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ABSTRACT

Craddock, Thomas E. Ph.D., Purdue University, August 2019. Ensuring Large-
Displacement Stability in ac Microgrids. Major Professor: Oleg Wasynczuk.

Aerospace and shipboard power systems, as well as emerging terrestrial micro-

grids, typically include a large percentage of regulated power-electronic loads. It is

well known that such systems are prone to so-called negative-impedance instabili-

ties that may lead to deleterious oscillations and/or the complete collapse of bus

voltage. Numerous small-displacement criteria have been developed to ensure dy-

namic stability for small load perturbations, and techniques for estimating the re-

gions of asymptotic stability about specific equilibrium points have previously been

established. However, these criteria and analysis techniques do not guarantee sys-

tem stability following large and/or rapid changes in net load power. More recent

research has focused on establishing criteria that ensure large-displacement stabil-

ity for arbitrary time varying loads provided that the net load power is bounded.

These Lyapunov-based techniques and recent advancements in reachability analysis

described in this thesis are applied to example dc and ac microgrids to not only in-

troduce a large-displacement stability margin, but to demonstrate that the selected

systems can be designed to be large-displacement stable with practicable constraints

and parameters.
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1. INTRODUCTION

With higher penetration of renewable energy sources, and with electric loads being

more tightly regulated, designing microgrids with stability in mind is becoming in-

creasingly necessary. Distributed Energy Resources (DER’s) are not limited by the

inertial response of large generators, and as such can respond much more quickly to

changes in load. However, due to this lack of inertia, converter-based DER’s can be

less stable than their electric machine counterparts. Furthermore, power electronics-

driven loads often present themselves as constant-power loads (CPL’s), which exhibit

a negative-impedance effect that greatly impacts the stability of a system [1–3]. Nu-

merous researchers have developed design criteria to ensure the stability of both dc

and ac power systems [1, 2, 4–8].

1.1 Small-displacement Stability of dc Systems

Power systems with regulated power-electronic loads such as those used in ships,

submarines, aircraft, and spacecraft are often subject to negative-impedance instabil-

ities [1–3]. Specifically, dc-to-dc converters and dc-to-ac inverters are often designed

so that their output power is unaffected by perturbations in the input voltage. Since

the conversion efficiency is close to unity, the input power remains essentially con-

stant even if the input voltage varies, at least for variations within a certain range.

Such loads are commonly called constant-power loads (CPL’s), even though the load

power may vary as a function of time. For small perturbations, it can be readily shown

that a CPL appears as a negative resistance within the regulation bandwidth of the

converter, which has a potentially destabilizing effect on the overall power system.

Consequently, considerable attention has been devoted to the study and mitigation

of potential instabilities attributed to this effect.
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A key first step in stability analysis is the development of average-value models

that can be linearized and therefore can produce linear state-space models and/or

transfer functions relating the output impedance of source converters, Zs, and the

input admittance of load converters, Yl, to the frequency of the voltage/current per-

turbations. For a single source connected to a single load, such as that shown in

Figure 1.1, small-signal stability is achieved if and only if the Nyquist criterion is

satisfied. This criterion is certainly satisfied if the Nyquist contour of Zs(ω)Yl(ω) re-

mains inside the unit circle for all frequencies leading to the Middlebrook criterion [9],

which is a sufficient but not necessary criterion for small-signal stability. Although it

has been shown that this criterion introduces conservatism [1], it is readily applied.

Specifically, given the source impedance, it is easy to set forth a bound on the load

admittance that will ensure the system is stable for small-signal disturbances. The

primary criticism of the Middlebrook criterion has been that it leads to a conserva-

tive design. Consequently, numerous less conservative small-displacement stability

criteria have been developed [2], [1].

Many stability analysis techniques stem from the Nyquist Stability Criterion, such

as the Nyquist Immittance Criterion, the Middlebrook Criterion, the Opposing Argu-

ment Criterion, the Gain Margin/Phase Margin Criterion, and the ESAC Criterion.

These criteria define so-called “forbidden regions” of the phase plane in which the

Nyquist Contour is not allowed. These are described briefly in the following para-

graphs.

The Nyquist Stability Criterion can be stated as “The number of unstable, closed-

loop poles of a system is equal to the number of unstable open-loop poles plus the

number of clockwise encirclements of the −1 + j0 point by the Nyquist Contour,”

where the Nyquist Contour is the mapping of the Nyquist Path onto the F (s) plane

as a closed curve [10]. Here, F (s) is the characteristic polynomial of the closed-

loop system, and the Nyquist Path is the clockwise contour consisting of the entire

imaginary axis of the complex plane and a semicircular path of infinite radius in the

right-half s plane.
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Fig. 1.1.: Citcuit diagram illustrating the dynamic relationship between source

Thevenin and terminal (load) voltage in a dc system.

The Nyquist Immittance Criterion (NIC) is derived from the Nyquist Stability

Criterion for a system consisting of a Thevenin-equivalent source with impedance

Zs(s) feeding a Norton-equivalent load with admittance Yl(s). The NIC states that

a necessary and sufficient condition for this system to be stable is if the Nyquist

evaluation of Zs(s)Yl(s) does not encircle the −1 + j0 point [11].

The Middlebrook Criterion is a sufficient, but not necessary condition for stability

of dc systems. It states that the ratio of source impedance Zs to load impedance Zl,

known as the minor loop gain, is less than the reciprocal of the gain margin 1
GM

for

all frequencies [4, 11]: ∣∣∣∣ZsZl
∣∣∣∣ < 1

GM
, GM > 1 (1.1)

It is obvious that the Nyquist Contour can never encircle −1 + j0 if this criteria is

met, due to the fact that it is contained by the unit circle. The forbidden region of

the s-plane is shown in Figure 1.2. While easily applied, this criterion introduces an

unnecessary degree of conservatism to designs.

The Gain-Margin/Phase-Margin (GMPM) criteria, whose forbidden region is shown

in Figure 1.2, is less conservative than Middlebrook. GMPM stipulates that the mi-

nor loop gain be less than the reciprocal of the gain margin 1
GM

, or that the difference

in angle between Zs and Zl be no greater than 180◦ less the phase margin [4, 11, 12].
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∣∣∣∣ZsZl
∣∣∣∣ < 1

GM
or |arg(Zs)− arg(Zl)| ≤ 180◦ − PM (1.2)

While less conservative than Middlebrook, GMPM is still restrictive, and requires

knowledge of both magnitude and phase information for both the source and the

load.

The Opposing Argument Criterion (OAC) was developed when GMPM was found

to be difficult to generalize and scale. The OAC states that the real part of the minor

loop gain is greater than the negative reciprocal of the gain margin:

Re

(
Zs
Zl

)
> − 1

GM
(1.3)

The forbidden region this criteria defines is also shown in Figure 1.2. This criterion

is particularly useful when paralleling loads, as the criterion can be modified slightly

to obtain a criterion for each load individually. The modified criterion is

Re

(
Zs
Zl,k

)
> − 1

GM

Ps
Pl,k

(1.4)

Where Ps is the power delivered by the source and Pl,k is the power delivered to the

kth load. While the OAC is more general than GMPM, and less conservative than

Middlebrook, it still requires both magnitude and phase information about the source

and load/loads. Additionally, it still imposes a degree of conservatism [4,11,13–15].

The Energy Source Analysis Consortium (ESAC) criterion was developed to re-

duce the “forbidden region”, thereby limiting artificially introduced conservatism

[2,4,11]. The forbidden region is shown in Figure 1.2. Furthermore, with the previous

criteria, it was observed that component grouping was a critical decision when ana-

lyzing stability. It is possible for one definition of “source” and “load” to be stable,

while another definition could be unstable, even if both systems are identical. The

ESAC criterion is less sensitive to these definitions, though it does not entirely elim-

inate the issue. The ESAC criterion defines a 3-dimensional “forbidden volume” in

the admittance space (magnitude, phase, and frequency) which the load admittance

must not enter. Moreover, a generalized set of load admittances can be defined and
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tested, which makes the ESAC criterion very well suited for regional stability analysis

as well as local stability analysis. The ESAC criterion is difficult to apply, however,

and still is only applicable to linear systems. Nonlinear systems require linearizing

for its use, which calls into question the criterion’s applicability in large-displacement

stability analysis.

Similar to the ESAC criterion is the Root-Exponential Stability Criterion (RESC),

which defines a forbidden region of the s-plane similar in shape to that defined by

ESAC, but defined with a continuous function of s [16]. The function is given by

f(s) = n

√
(αIm(s))n + (βeγRe(s))

n
(1.5)

where α, β, and γ are constants defined in terms of the desired gain and phase

margins, and n is an integer greater than or equal to 2. The edge of the forbidden

region is defined by the points on which f(s) = 1. This criterion was developed to

offer greater numerical stability during design, since the boundary of the forbidden

region is well defined at all points. This boundary can be seen in Figure 1.2.

The previous stability criteria are used to analyze systems in the DC Stability

Toolbox [11]. This toolbox allows for the modeling and analysis of a wide array of

systems in an average value sense. The toolbox has routines capable of evaluating

contours, evaluating stability criteria, and has built-in components useful for design

and simulation. A graphical description of these criteria showing forbidden regions is

shown in Figure 1.2.
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Fig. 1.2.: A graphical depiction of small-displacement dc stability criteria [4].

Other criteria have been proposed for small-signal stability analysis, such as the

Three-Step Impedance Criteria (T-SIC) [17]. All previously discussed criteria assume

a stable transfer function associated with the source, and are based on assessment of

the minor-loop gain. An extended minor loop gain is defined and used in Nyquist

contours, which affords the possibility of an unstable source. Furthermore, with the

aforementioned stability criteria, it is possible to arrive at incorrect results when

applying them to systems with regulated loads. With T-SIC, stability is guaranteed,

even with regulated loads, due to a pure impedance mapping introduced in [17].

Finally, there is the Passivity-Based Stability Criterion (PBSC), which is not

based on minor loop gain analysis. PBSC guarantees stability if Zbus (the parallel

combination of all source and load impedances on a given bus) has no Right-Half

Plane (RHP) poles, and if the real part of that parallel combination is greater than
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or equal to 0 [4,18]. This is equivalent to requiring that the angle of Zbus lies between

-90 and 90 degrees for all frequencies.

While useful, these design criteria are considered to be “small-displacement” cri-

teria due to the fact that they only apply to linear systems. In practicable power

systems, there does not exist a truly linear system due to the presence of CPL’s

and hard limits placed on control variables. When modeling systems and performing

stability analysis, it is necessary to approximate the system’s behavior by lineariz-

ing about an equilibrium point or assuming that the system is operating within its

physical limits.

However, the main disadvantages of small-displacement analysis are: (a) guar-

anteeing small-displacement stability, albeit over a range of operating conditions,

does not guarantee stability following large disturbances such as pulsed loads, faults,

component failures, or the connection/disconnection of large loads; and (b) they

are generally difficult to apply to complex systems where the number of potential

source/load configurations is very large. Each and every potential configuration must

either be considered in the design phase, or an on-line strategy is needed to evaluate

the stability before a new configuration is entered.

1.2 Small-displacement Stability of ac Systems

For ac systems, traditional stability analysis techniques are difficult to apply di-

rectly, since the physical variables vary as a function of time, even for steady-state

operation. The Nyquist stability criterion and more general analysis techniques such

as Lyapunov’s Direct and Indirect methods rely on the state settling out to a con-

stant value in steady-state. Techniques taken from the study of orbital mechanics,

such as Floquet Theory [19, 20], can be used, but are often difficult to understand

and apply. As such, it is useful to define a reference frame transformation such that

the states do in fact become dc in steady-state. For 3-phase systems, a commonly

used transformation is defined as
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
fq

fd

f0

 =
2

3


cos θ cos(θ + 2π/3) cos(θ − 2π/3)

sin θ sin(θ + 2π/3) sin(θ − 2π/3)

1/2
1/2

1/2



fa

fb

fc

 (1.6)

where f is a placeholder for voltage, current, flux linkage, or any other 3-phase quan-

tity in the system of interest, and θ = ωt where ω is the speed of the reference frame

in which the variables are expressed. The subscripts on the right-hand side of the

equation denote the phase to which each variable corresponds, and the subscripts on

the left-hand side denote the fictitious axes onto which the states are being projected.

An example three-phase power system is depicted in Figure 1.3. Therein veqs and

veds (ieqs and ieds) denote the q and d components of terminal voltage (current) in a

synchronously rotating frame of reference (θ = ωet where ωe is the ac frequency).

During balanced, steady-state operating conditions, these variables are constant and

the zero sequence variable is identically zero. For small perturbations, the dynamic

relationship between source voltage and current relationships can be expressed in

transfer function form as

 ∆veq

∆ved

 =

 zqq zqd

zdq zdd

 ∆ieq

∆ied

+

 hqq hqd

hdq hdd

 ∆veqS

∆vedS

 (1.7)

Symbolically,

∆veqd = ZS∆ieqd + H∆veqdS (1.8)

where ∆veqdS may be viewed as a perturbation in the source’s Thevenin voltage and

ZS as the source impedance, which is now a 2×2 transfer function matrix. Similarly,

for the load,

∆ieqd = YL∆veqd (1.9)

where YL is the load admittance. The preceding two equations can be placed into

block-diagram form as shown in Figure 1.4.

The Nyquist criterion as described in the previous section is valid only for Single

Input, Single Output (SISO) systems, but in 3-phase ac systems, there are 2 indepen-
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Fig. 1.3.: A three-phase ac system.
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Fig. 1.4.: Block diagram illustrating dynamic relationship between source Thevenin

and terminal (load) voltage.

dent voltages and 2 independent currents. The Nyquist Criterion can be generalized

to handle such a problem [5, 6, 21], where the Nyquist contour is evaluated on the

eigenvalues of the open-loop transfer matrix ZSYL, which is analogous to the minor

loop gain in the previous section. The loci that are generated are referred to as the

eigen-loci, and if the eigen-loci never encircle -1, the system is said to be Bounded

Input Bounded Output (BIBO) stable [5].

Several results from Linear Algebra are applied to this criterion to develop design-

oriented design criteria that are more readily applied. In one case, the Gershgorin,

or G-norm is defined for a matrix R as

||R||G = max
i,j

(|ri,j|) (1.10)

If the G-norm of ZSYL is less than 1 for all frequencies, or

||ZSYL||G <
1

2
(1.11)

then by Gershgorin’s Circle Theorem, the eigenvalues of the return ratio will be within

the unit circle, and the system will be BIBO stable, provided ZS and YL have no

poles in the right-half plane [5].

This approach can be advantageous, since it does not require the calculation of

eigenvalues for the closed-loop system; however, it can be difficult to apply in the

design process, since it is not clear how individual elements of ZS or YL affect the
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final outcome. The return ratio can be decoupled, and the G-norm criterion can be

applied to each matrix individually, resulting a criterion expressed mathematically as

||ZS||G ||YL||G <
1

4
(1.12)

This technique can be expanded by applying other norms, which can reduce con-

servatism in the design. For example, the induced infinity norm can be applied to

ZS and the induced unity norm can be applied to YL. Since each element of ZSYL

is an inner product between a row of ZS and a column of YL, the infinity norm is

equivalent to the largest row sum of a matrix, and the unity norm is equivalent to

the largest column sum of a matrix, it can be shown that if

||ZS||i,∞ ||YL||i,1 <
1

2
(1.13)

the system will be BIBO stable.

Finally, a criterion was developed based on the singular values of the return ratio.

It may be shown that

||ZSYL||2 = σ̄ (ZSYL, ω) (1.14)

where σ̄ is the largest singular value of ZSYL. It can be seen that if the induced norm

of the return ratio is less than 1 for all frequencies, then the system will be BIBO

stable. Furthermore, by the Cauchy Inequality,

||ZSYL||2 ≤ ||ZS||2 ||YL||2 (1.15)

Thus, the system will be stable if

σ̄ (ZS, ω) σ̄ (YL, ω) < 1 (1.16)

for all frequencies [5]. Equation (1.16) is analogous to the well-known Middlebrook

criterion used in dc systems.

These criteria have many of the same limitations as their dc counterparts. The

system under study is assumed to be linear. Nonlinear systems can be studied with

these techniques, yet it remains unclear how large of a perturbation can be applied
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before the stability criteria are invalidated by large discrepancies between the linear

approximation of the system behavior and the true system behavior. With this in

mind, it is important to develop a definition for large-displacement stability in both

ac and dc power systems, and is referred to in this thesis as the Belkhayat criterion [6].

1.3 Large-displacement Stability of dc Systems

To address concerns raised with the negative-impedance effect, research was per-

formed into estimating the Region of Asymptotic Stability (RAS) of dc systems for

Naval ships [22]. In this research, several methods are set forth to generate Lyapunov

functions for a given system, and subsequently these Lyapunov functions are used to

estimate the RAS for a given equilibrium point using genetic algorithms.

This method presents several advantages over small-displacement methods, pri-

marily by generating a subset of the RAS. One of the properties of the RAS is that

it is impossible for the state to leave the RAS, and as such, if the equilibrium point

remains the same, the state vector will always approach the equilibrium point asymp-

totically. This property holds true regardless of the linearity of the system.

This method of RAS estimation can be conservative. One is only guaranteed to

be a subset of the RAS, not necessarily the whole region. Furthermore, the Lyapunov

functions that were generated were all quadratic, which then creates an elliptical RAS

estimate, which may not reflect the true shape of the RAS.

The RAS was established using a different approach in [3]. Therein, a brute

force sweep of the state space was performed to find the boundary of the RAS for

an equilibrium point of a single-source dc system feeding a constant-power load.

It was observed that there exists a trade-off between source response time, dc link

capacitance, and transient overload capacity, and this trade-off was quantified. A

design paradigm was then set forth based upon this trade off. Many of the results

described in this paper is repeated later in this document, and then expanded. “Large-
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displacement Stability” was defined as maintaining stability for a single step-change

in load power. This definition is revisited and revised later in this thesis.

1.4 Large-displacement Stability of ac Systems

Research has been performed in the realm of ac microgrids to address the limi-

tations of small-displacement stability analysis techniques as well. In [23], Popov’s

absolute stability criterion was applied to analyze an ac source supplying a constant-

power load. To apply Popov’s criterion, the system model must take on the following

form:

ẋ = Ax + Bu (1.17)

y = Cx + Du (1.18)

u = −ψ (y) (1.19)

where ψ ∈ [0,∞) is a continuous function in y that is memoryless and locally Lips-

chitz, and accounts for the nonlinear behavior of the system. It has been shown that

by careful selection of a Lyapunov function using the so-called Kalman-Yakubovich-

Popov lemma, the system is asymptotically stable.

This technique is certainly attractive, due to the fact that the nonlinearities in-

troduced with constant-power loads meet the criteria of ψ (y), however, there is at

least one major shortcoming of this approach. In practicable power systems, it is

necessary to limit commanded values to be below a certain level. For example, it can

be dangerous to allow the controller to command a dc link current values significantly

greater than the source rating, since such a current may have a damaging effect on

the system. Instead, the current command might be limited to say 120% of its rated

value, so that if an overcurrent is commanded, there is less danger of damaging the

system. Limiting commands in this fashion is common, however it introduces a non-

linearity that cannot be represented by (1.17)-(1.19), and therefore it can be difficult

to analytically determine the stability of an operating point using Popov’s criterion.



14

Work was done in [24] to design 3-phase ac systems with large-displacement sta-

bility in mind. In that work, a region of stability was established numerically in the

PQ plane, where P is real power and Q is reactive power. The way in which the

size and shape of this region varied was investigated by adjusting system response

time and controller constants, and a control paradigm was set forth for maintaining

stability of a 3-phase bus voltage based on a timing signal present in different parts

of the control.

Similar to the work done in [3], it was assumed that the system need only maintain

stability for a single step-change in P and/or Q. The work set forth in this thesis

diverges from and expands on this notion by defining large-displacement stability for

any number of step changes in load, so long as the load is in an allowable set.
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2. STABILITY DEFINITIONS

Average value models of power systems can typically be expressed mathematically as

a set of coupled, first-order ordinary differential equations. Symbolically

dx

dt
= f (x(t), u) ; x(t0) = x0 (2.1)

where x(t) ∈ Rn is an n-dimensional state vector with initial condition x0 at time

t0, and u ∈ Rm is an m-dimensional input vector. In the case of power systems,

the state vector is frequently comprised of inductor currents, capacitor voltages, or

control system states, while the input vector is made up of load currents, load power,

or commanded steady-state values of states. In general, u need not be constant,

however, the initial focus of this section is on a system with constant input (later,

the implications of a time-varying input are discussed). Finally, f(x, u) is assumed

to be Lipschitz-continuous with respect to x and u. This ensures a unique solution

to (2.1). If u is fixed, it can be seen that the right-hand side of (2.1) depends only on

the state vector x, and is not an explicit function of time t.

In general, a system such as (2.1) may or may not have what is referred to as

an equilibrium state xe that satisfies f(xe, u) = 0. In practicable power systems, it

is all but essential that there exists one such equilibrium state, and so it is assumed

that there is one for the following discussion. Often, a new state vector is defined as

x̃ = x − xe and (2.1) is reformulated so that the equilibrium state becomes x̃e = 0.

However, this common convention will not be followed in this thesis for reasons that

will become apparent.

It is useful at this point to define certain terms that will be used in this thesis [25].

First, a system is said to be stable in the sense of Lyapunov (SISL) if for every

ε > 0 and any given intial time t0, there exists a scalar δ = δ(ε, t0) > 0 such that

if ‖x(t0)− xe‖ < δ, then ‖x(t; t0, x0)− xe‖ < ε for all t ≥ t0. Here, ‖x‖ is the
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Euclidean-norm of x. An equilibrium point xe of a system is said to be convergent if

for any given t0 there is a positive scalar δ1 = δ1(t0) such that if ‖x(t0)− xe‖ < δ1,

then

lim
t→∞

x(t; t0, x0) = xe (2.2)

An equilibrium point of a system is said to be asymptotically stable in the sense

of Lyapunov (ASISL) if it is both SISL and convergent. Furthermore, an equilibrium

point of a system is said to be uniformly asymptotically stable (UASISL) if it is

ASISL and δ is independent of t0. Finally, an equilibrium point is said to be globally

uniformly asymptotically stable (GUASISL) if it is UASISL and δ is infinitely large.

x(1)

x(2)

x t0( )

xe

RAS

Fig. 2.1.: Graphical interpretation of the RAS for a 2nd order system.

A desirable, if not essential feature of a practicable power system is that the

equilibrium state for any allowable operating condition is UASISL. However, due to

voltage/current constraints or bandwidth limitations, it is generally not possible to

design a system that is GUASISL. Therefore, in a practiable system, there exists a

so-called the region of asymptotic stability (RAS), which is defined as the set of all x0
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for which the solution of (2.1) satisfies ‖x(t; t0, x0)− xe‖ → 0 as t→∞. A graphical

interpretation of a RAS for a 2nd-order system (x(t) ∈ R2) is depicted in Figure 2.1

where x(1) and x(2) denote the system states. An important point to make is that

all stable trajectories are wholly contained in the RAS and all unstable trajectories

never enter the RAS. Because of these properties, it is desirable to establish the RAS

for any given system.

Suppose now that the input u is allowed to vary within a set of allowable inputs

U ⊂ Rm. In practicable power systems, inputs are not assumed to be arbitrary. For

example, during normal operation, the input power would not exceed rated power. It

is assumed here that U is a path-connected topological space that is not necessarily

convex. By designing the system appropriately, it can be assumed that for each

ui ∈ U , there exists a single corresponding xei satisfying f(xei, ui) = 0. Again, by

designing the control system well, the equilibrium point xei can be made to be locally

asymptotically stable.

The dynamic behavior for small displacements from the equilibrium can be char-

acterized by linearizing f(x, u) about xe,i and ui,

d∆x

dt
=
∂f(x, u)

∂x

∣∣∣∣
xe,i,ui

∆x+
∂f(x, u)

∂u

∣∣∣∣
xe,i,ui

∆u (2.3)

where ∆x = x− xe,i and ∆u = u− ui. Simplifying notation,

d∆x

dt
= A(xe,i, ui)∆x+ B(xe,i, ui)∆u (2.4)

where A(xe,i, ui) is commonly called the Jacobian Matrix. In order for the equilibrium

state xe,i to be locally ASISL, the eigenvalues of A(xe,1, ui) must have negative real

parts. Under the assumption that a controller can be designed to ensure local asymp-

totic stability, this implies that A is of full rank, and therefore invertible. By the

Implicit Function Theorem [26], this implies that there is a contiuously differentiable

function g(·) such that xe,i = g(ui) and that f(g(u), u) = 0 for all u.

It is useful to define the region of steady-state equilibria (RSSE) as

RSSE = {xe,i∀ui ∈ U} (2.5)
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Since the mapping from ui to xe,i is continuous and U is path connected, the RSSE

will also be a path-connected topological space. So as u varies in U , the equilibrium

state will move withing the RSSE. For each xe,i ∈ RSSE, the corresponding RAS

will be denoted as RASi. The establishment of RASi is, in general, difficult. As

noted in the previous chapter, a method of establishing RAS estimates for a naval dc

power system using genetic optimization is described in [22] and [27]. This method

is limited by the fact that it can only determine an elliptical approximation of the

RAS, and not the true RAS. Later sections of this thesis outline a procedure for

establishing RASi. This is accomplished by brute-force searching the state space,

which is readily and precisely done due to the small dimension of the system. If the

numerical solution of (2.1) starting at the search point converges to xe,i, the given

state lies inside RASi. Otherwise, it does not. The boundary will be a 1-dimensional

path if n = 2, a 2-dimensional surface if n = 3, or, in general, an n − 1 dimensional

hypersurface. Subsequently, it is assumed that RASi is known for all xe,i ∈ RSSE.

It is useful to define the region of large-displacement stability (RLDS) as

RLDS =
⋂

xe,i∈RSSE

RASi (2.6)

If the RLDS of a system is non-empty, and contains the RSSE and the reachable state

space (RSS), the system is said to be single-step stable (SSS). An important feature

of a system that is SSS is that the input u can be stepped from any ui ∈ U to any

other arbitrary uj ∈ U with x(t0) = xe,i with the resulting trajectory guaranteed to

converge asymptotically to the new equilibrium xe,j. This result is illustrated in the

following paragraphs.

A graphical illustration of a 2nd order system (n = 2) that is SSS is depicted in

Figure 2.2. The figure shows the RAS for two prototypical equilibrium states (out of

infinitely many), the RLDS, and the RSSE. It can be seen that the RSSE is entirely

contained in the RLDS, which is the intersection of all RASi corresponding to all

possible inputs ui. If u is stepped from u1 to u2 at t = t0 with x(t0) ∈ RLDS, then the

ensuing trajectory will asymptotically converge to xe,2 since x(t0) ∈ RLDS ⊂ RAS2.
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x(1)

x(2)

xe,1

xe,2

RLDS

RSSE

RAS2

RAS1

Fig. 2.2.: Graphical illustration of RLDS of a system that is single-step stable.

By extension, u can be stepped from any uj ∈ U and, as long as x(t0) ∈ RLDS, the

ensuing response will asymptotically approach xe,j.

A graphical illustration of a system that is not LDS is depicted in Figure 2.3.

Although the RLDS is not shown, it is a subset of RAS1

⋂
RAS2

⋂
RAS3, which is

a small region surrounding xe,2. It should be apparent that the RSSE 6⊂ RLDS.

Additionally, only three RAS’s are shown in the figure, while more obviously exists.

It is assumed that the RLDS exists in this example, though it is not guaranteed in

general. Therein, the system response for a step change from u1 to u2 with x(t0) = xe,1

will converge since xe,1 ∈ RAS2. It can be seen, however, that the response for a step

change from u1 to u3 with x(t0) = xe,1 will not converge since xe,1 /∈ RAS3. Although

the step response from u1 to u3 is unstable, it is nonetheless possible to reach xe,3

starting at xx,1 by first stepping from u1 to u2, allowing x(t) enter into RAS3, and

then stepping u to u3. Since all equilibria are locally asymptotically stable, the

system could be stable if the input u is prevented from changing abruptly or too fast.
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x(1)

x(2)
RAS1RAS2

RA 3S

RSSE

xe,1
xe,2

xe,3

Fig. 2.3.: Graphical illustration of a system that is neither SSS nor LDS.

However, it lacks the robustness that a LDS system offers. Great care is required in

determining input changes when the system is not LDS.

Next, suppose that the input u(t) is a piecewise constant function of time with

a finite number of steps from any value in U to any other value in U . Because the

mapping from u to xe is continuous, the corresponding equilibrium state xe(t) will

then be a piecewise constant function of time that is constrained to the RSSE. As

the number of steps in increased, u and xe can be made to approximate piecewise

continuous functions of time. It is useful to define the reachable state space (RSS) of

a system as the set of states that are reachable from any x ∈ RSSE for any u(t) ∈ U

as t→∞. A system is defined herein to be Large-Displacement Stable (LDS) if

RSS ⊂ RLDS (2.7)

This definition is supported by the notion that leaving the RLDS implies that the

state trajectory is outside at least one RAS. If the input is stepped to the value corre-

sponding to that RAS at any time the trajectory is outside that RAS, the trajectory
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is guaranteed to go unstable. Therefore, it is desirable for the reachable set to be

inside the RLDS.

It is a necessary and sufficient condition for the RSS to be bounded to ensure

that a given system is LDS. This is because the RSS can only be bounded if it is

bounded by the RLDS, which can be understood following the same reasoning that

motivates the definition. If a hypothetical RSS is bounded, though not contained

by the RLDS, then state trajectories are possible that go outside the RLDS, and

therefore the possibility of instability exists, which implies the RSS is not bounded.

This contradiction illustrates that the only way for the RSS of a given system to

be bounded is if the bound is within the space common to every RAS, which is the

RLDS. This motivates the definition of Large-Displacement Stability.

In practice, a bounded RSS may not be sufficient for a designer to claim the

actual physical system is LDS. This is due to the fact that both the RSS and the

RLDS are established via numerical simulation or calculation based on average-value

models of the system, which inherently contain assumptions and approximations.

Therefore, to gain a sense of robustness relative to model uncertainties, a Large-

Displacement Stability Metric (LDSM) is set forth as the minimum distance between

the two boundaries:

LDSM = min‖x1 − x2‖: x1 ∈ RSS, x2 /∈ RLDS (2.8)

A graphical interpretation of the LDSM can be seen in Figure 2.4.



22

x(1)

x(2)

RSS

RSSE

RLDS

LDSM

Fig. 2.4.: A graphical interpretation of a two-dimensional system that is LDS. Here,

LDSM is the large-displacement stability margin.
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3. ENSURING LARGE-DISPLACEMENT STABILITY IN

DC SYSTEMS

In this chapter, two sample systems are discussed. The results of two system studies

performed in [3] and [28] are reviewed. The first system studied in those works is a

single-source dc power system with a constant-power load. The results of that study

are extended in the following section, which investigates the stability of a dc system

with electric machine dynamics taken into account. In both cases, the RLDS, RSSE,

and RSS are readily visualized geometrically due to their low dimension.

3.1 Single-Source System

A simple dc system is shown in Figure 3.1 [3]. A controllable current source

supplies a dc-link capacitor which, in turn, supplies an ideal constant-power load.

The current source is considered non-ideal due to its non-zero response time and

current limits. The current supplied by the source has a first-order response with

respect to its command, which is generated with a simple proportional controller

with a feed-forward term.

i∗s = kp(v
∗
dc − vdc) + iload (3.1)

Here, v∗dc is the commanded dc voltage, which is set to v∗dc = 1.

For generality, the study is performed in per-unit. That is, vdc, idc, and P are

all equal to 1 for rated steady-state conditions. It can be easily shown that the

equations governing the system are identical in per-unit and in the International

System of Units (SI units). Assuming that the limit on the current command is not

reached, the state-space representation of Figure 3.1 can be expressed:

p

 is
vdc

 =

− 1
τs
−kp
τs

1
C

0

 is
vdc

+
1

vdc

 1
τs

1
C

P +

kpτs
0

 v∗dc (3.2)
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where p is the Heaviside operator for differentiation with respect to time.

is

+vdc

−
P

CPL

iload = P
vdc

i∗s = kp(v
∗
dc − vdc) + iload

i∗s 1
τss+1

ilim

−ilim

Fig. 3.1.: Simple dc system.

The term “constant-power Load” (CPL) can be ambiguous in its usage, and so

it is necessary to discuss what is meant when that term is used in this thesis. An

ideal CPL is a load whose current is equal to the net load power being consumed

P divided by the voltage dropped across the load. In many cases, the net power

delivered to the load can be assumed piecewise constant, though in general, this

is not always true. It may be the case that the power delivered to the load is most

conveniently modelled as some continuous function of time, and hence the input to the

system should be represented as a function P (t) rather than a constant P . Therefore

the term “constant-power Load” is not strictly accurate in general, but is the most

commonly used and convenient description for the load behavior being modelled in

this thesis.

For convenience, a scaled-time τ ′ = τ/C is introduced. This not only simpli-

fies (3.2), but it also facilitates the examination of the trade-off that exists between

transient-overload capacity and the source’s normalized response time τ ′s.

p′

 is
vdc

 =

− 1
τ ′s
−kp
τ ′s

1 0

 is
vdc

+
1

vdc

 1
τ ′s

1

P +

kpτ ′s
0

 v∗dc (3.3)
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where p′ denotes differentiation with respect to normalized time. From (3.3), it can

be seen that the equilibrium state is

is,e = P (3.4)

vdc,e = v∗dc = 1 (3.5)

The stability of the equilibrium point can be established by linearizing (3.3) about

the equilibrium point, and plugging in selected values of kp, τ
′
s, and P . The Jacobian

Matrix A is shown below, where vdc,e has been replaced with its per-unit value of 1.

A =

− 1
τ ′s
−kp+P

τ ′s

1 P

 (3.6)

The characteristic polynomial can be found, and the poles of the system can be

placed, ensuring small-displacement stability. Using Routh’s Stability Criterion, it

can be seen that if kp > 0 and τ ′s >
1
P

, then the system will be locally stable. The

characteristic equation is:

0 = τ ′sλ
2 + (1− Pτ ′s)λ+ kp (3.7)

Up until this point, it has been assumed that control limits have not been reached,

and that the input disturbance is small. However, in the presence of large distur-

bances, is will overshoot its equilibrium point, which implies that the source must

be able to handle power levels greater than 1 pu for short spans of time. Obviously,

a source cannot handle arbitrarily large power pulses, regardless of duration, and as

such, it becomes important to determine the minimum transient overload capacity

required to maintain stability. In normalized time, a search was performed to find

the minimum necessary transient overload capacity for a single step change in CPL,

the results of which are shown in Figure 3.2. That is to say, for a given normalized

time constant τ ′s, the source current must be allowed to go to 1 plus a number on or

above the line shown.

Upon selecting a normalized time constant and appropriate transient overload

capacity, the eigenvalues of the linearized state transition matrix can be evaluated to
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Fig. 3.2.: Minimum transient overload capacity with respect to normalized time con-

stant.

determine if the equilibrium point is small displacement stable. The parameters in

Table 3.1 were used to perform simulations. The eigenvalues of the Jacobian matrix

of the scaled-time system were calculated to be −1, 027.40 ± j1, 906.77, indicating

that the system is small-displacement stable. With a locally stable equilibrium point,

it is possible to numerically establish the RAS.

3.2 RAS and RLDS Estimation

The RAS for a 1-pu (rated) constant-power load applied to the single-source dc

system is shown in Figure 3.3. To establish the RAS for a given equilibrium point,

one state is initialized to a fixed value, and a bisection method search is implemented
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Table 3.1.: Simulation Parameters for single-source dc system.

Parameter Value (unit)

C 1.46 (ms)

τs 0.292 (ms)

kp 5 (pu)

along the other state to search for the minimum value of that state to maintain

stability. After that minimum value is established, the first state is incremented, and

the search repeats.

To better illustrate the state vector’s behavior during transients, several sample

trajectories were superimposed on the RAS. This is shown in Figure 3.4. It can be

seen that the state vector never leaves the RAS if it is inside the RAS, and it never

enters the RAS if it starts outside the RAS.

The study performed to determine the RAS can be repeated for a range of inputs

P to determine if the RLDS exists, and if it contains the RSSE. In this case, the

RSSE is the line on which vdc = 1 and is = P , where P can vary continuously from

0 to 1 pu. The RAS’s for selected different loads on the single-source dc system are

shown in Figure 3.5. While it is impossible to test every possible allowable input, and

therefore impossible to say for certain that the RLDS exists and takes a certain shape,

it is assumed that if there is a space common to a set of RAS’s corresponding to a

wide range of allowable inputs, we can claim with high confidence that the common

space is the RLDS. It can be seen that the RAS for a P of 1 pu is the intersection

of all RAS’s displayed. Therefore, it can be concluded that the RLDS is the RAS

for a 1 pu step change in constant-power load. It can also be seen that the RLDS

wholly contains the RSSE in Figure 3.5. By the definitions set forth in Chapter 2,

the system will be Single-Step Stable.
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Fig. 3.3.: The RAS for a P = 1 pu.

Fig. 3.4.: The trajectories of the system under a 1 pu step-change in CPL.
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Fig. 3.5.: The RAS’s corresponding to different inputs to the single-source dc system.

3.3 Reachable State Space Estimation

It is necessary to determine the boundary of the reachable state-space in order to

determine the LDSM of the system, though this task is highly nontrivial. In general,

establishing reachable sets of a dynamical system involves performing calculations

based on initial states and finite time horizons. Several algorithms and toolboxes

exist to perform these searches, notably CORA [29], but in general, these tools are

developed to find the reachable set over a finite time horizon, and return convex over-

approximations of the reachable set [30–32]. In this research, however, in order for the

LDSM to exist, the RSS must be bounded over an infinite time horizon. Additionally,

it is desired that the estimated RSS be as tight an approximation as possible, without

assuming that the results are convex.

Assuming that such a boundary could be established, it is noted that the state-

derivative would be either tangential to the boundary, or would point to the interior of
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the space. Furthermore since there are many such closed surfaces that could satisfy

this criteria, it is also noted that the boundary of the RSS should be the closed

surface that satisfies the derivative condition, but also encloses the smallest possible

area (or more generally, hypervolume). To understand this, it is helpful to consider

a trajectory that starts on the inside of the RSS. If that trajectory were to come

to intersect a surface on which the state derivative is tangential to or points inward

for all possible inputs, the trajectory would continue to evolve, though not past the

boundary with which it intersected, since the “velocity” of the state does not point

past the boundary. Since the trajectory cannot exceed such a boundary, the first and

only such boundary the trajectory could intersect would be the one that encloses the

smallest possible hypervolume.

To estimate the boundary of the RSS for the given system, a brute-force recur-

sive search can be implemented. Qualitatively, the algorithm can be summarized by

applying every input to the system initialized to a certain point, and then applying

every input to the system after each ensuing trajectory is allowed to evolve over a

small time horizon. The state space is discretized into a set of rectangles (referred

to as domains), each initially marked with a logical 0. As each simulated trajectory

traverses the state space, each domain it traverses is marked a logical 1. When the

trajectory arrives at the equilibrium point corresponding to the input that drives it,

the search algorithm terminates. This process is summarized in Algorithms 1 and 2.

Algorithm 1 Main function to search for the reachable state-space of the dc system

reachable set = false(Nvdc ,Nis)

x← xeq

search statespace(x, u1)

search statespace(x, u2)

The shortcomings of this algorithm include the immense computational complex-

ity as the number of inputs and states increase. Only a small sample of inputs can

be tested while preserving memory, and as such the extremes of the input space are
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Algorithm 2 search statespace(x,u)

update xeq

while ||x− xe||> ε do

px← state derivative(x, u)

x← x+ h px

i, j ← quantize(x)

if reachable set(i,j) = false then

reachable set(i,j) = true

search statespace(xk, u1)

search statespace(xk, u2)

end if

end while
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tested. However, since the input is changing at every fixed time-step, other inputs

can be approximated as the average of two extreme inputs over several time-steps.

For example, a step-change in load of 0.25 pu can be approximated by a repeating

pattern of step changes in load, starting at 1 pu for one time-step, followed by a load

of 0 pu for 3 time-steps. As the time-step is small, the average over a long time can

reasonable approximate a wide array of continuously varying loads.

Furthermore, since this algorithm is memory intensive, the spatial discretization

is limited. This limited resolution means that there is a degree of uncertainty in the

final result. After the routine terminates, each domain index is mapped to the center

of its corresponding rectangle in the state space, regardless of the path the trajectory

took through that domain. As will be discussed in this section, the true boundary of

the RSS, should it exist, will be within one domain-width of the final result obtained

by the recursive search. In order to minimize uncertainty, a large number of domains

and a small time-step is required. Taking this to extremes, however, will result in a

significant computational burden, and so a balance is required.

Due to the discretization of the state space, it is difficult to numerically establish

normal vectors to the established surface. As such, it is difficult to establish whether

or not the state derivative lies tangential to the established surface. However, since

the domains are recorded only when the state trajectory traverses that domain, and

at each time-step of the simulation each input is applied to the trajectory, if it were

possible for a trajectory to reach a new domain at the termination of the algorithm,

it would do so. This can be seen by analyzing the state derivative at a fixed value of

x. It can be seen in (3.2) that the state derivative is affine with respect to the input

P . Since P is selected from a convex set U , and the state derivative is affine with

respect to that input, the state derivative itself is a convex set at every fixed value
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of x. To show this, a convex combination of px = f(x, u) can be taken at different

different inputs for the same xk:

αf(xk, u1) + (1− α)f(xk, u2) =

αAxk + αB1(xk)u1 + αB2v
∗
dc + (1− α)Axk + (1− α)B1(xk)u2 + (1− α)B2v

∗
dc =

Axk + B1(xk)(αu1 + (1− α)u2) + B2v
∗
dc (3.8)

where A is the matrix premultiplying [is vdc]
T in (3.2), B1(x) is the vector premul-

tiplying P in (3.2), B2 is the vector premultiplying v∗dc in (3.2), and α ∈ [0, 1]. For

brevity, the results from when the current command limit is reached are not dis-

cussed herein, though it can be seen that similar conclusions are established under

such conditions.

Since u1 and u2 are taken from convex set U , (αu1 + (1 − α)u2) ∈ U . If u1 and

u2 are taken to be the extremes of U , then the state derivative will vary between

the derivative corresponding to u1 to the derivative corresponding to u2 as α varies

from 1 to 0. It can be seen, then, that if there were an input that would drive the

state trajectory in a direction beyond the boundary, the search would apply inputs

that result in a derivative that points at least partially in that direction. Since the

boundary is established, no applied input results in a derivative that points outside

that boundary, and therefore the established boundary represents a conservative ap-

proximation of the boundary of the RSS. If there is a component of the derivative that

points away from the boundary, it is small enough that the trajectory never enters

a domain further away from what is established. The trajectory that traverses the

boundary of the RSS might lead away from the center of the domain, however, and

as such a maximum error introduced by the spatial discretization must be quantified.

The maximum error produced by this method can be expressed:

error =
1

2

√
x2

1,dom + x2
2,dom (3.9)

where xi,dom is the width of a domain along the ith axis. This error corresponds to the

distance from the center of a domain to the corner of a domain, which is the maximum
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Table 3.2.: RSS search parameters for the dc system

Parameter Value

Nvdc 350

Nis 450

vdc,max (pu) 1.5

vdc,min (pu) 0.5

is,max (pu) 1.8

is,min (pu) -1.8

distance a trajectory could be from the center of a domain while still marking that

domain a 1.

For the system described in this chapter, this search was executed with parameters

shown in Table 3.2, in which Nk refers to the number of domains along the k axis,

and fmin and fmax refer to the upper and lower search bounds along the respective

axes. With these search boundaries and domains, the maximum error between the

estimated RSS and the true RSS boundary is 0.0042 pu. The RSS was estimated

with 2 loads: u1 = 1 pu and u2 = 0.

The calculated RSS and RLDS can be seen in Figure 3.6. It can be seen that

there is a separation between the boundaries. The smallest distance between these

two boundaries can be calculated by a brute-force search. In nested for loops, the

norm of the difference of each point along each boundary is calculated. Using this

approach, the LDSM was calculated to be 0.066. Assuming conservatively that the

true boundary of the RSS is maximally far from the estimated boundary, the LDSM

for this system is 0.062.
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Fig. 3.6.: The RSS and RLDS of the two dimensional dc system. The given system is

large-displacement stable (LDS) with a large-displacement stability margin (LDSM)

of 0.091.
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3.4 Permanent-Magnet Generator with Active Rectifier

The system studied in the previous section has two states. Consequently, the

RSS and RLDS can be displayed in two dimensions. In a practicable implementation

of the system depicted in Figure 3.1, the current source could be replaced with a

permanent-magnet generator feeding an active rectifier. This system is studied in [3]

and [28], and introduces additional states in the form of the q- and d-currents in the

electric machine as described by Park’s equations [33].

The dynamics of a P -pole permanent-magnet generator (neglecting the zero se-

quence) can be expressed with reasonable accuracy in the rotor reference frame as

vrqs = rsi
r
qs + ωrLdi

r
ds + ωrλ

′
m + Lq

dirqs
dt

(3.10)

vrds = rsi
r
ds − ωrLqirqs + Ld

dirds
dt

(3.11)

with the electromagnetic torque expressed as

Te =
3

2

P

2

(
λ′mi

r
qs + (Ld − Lq)irqsirds

)
(3.12)

where vrqs and vrds are the q- and d-axis stator voltages, irqs and irds are the q- and

d-axis stator currents, rs is the stator resistance, Lq and Ld are the q- and d-axis

inductances, ωr is the electrical rotor speed in radians per second, and λ′m is the flux

linkage due to the permanent magnet. These equations assume positive current flows

into the machine.

To control the currents out of the machine, a control law is defined to set the

stator voltages to achieve desired currents. First, feedforward terms are defined to

decouple the respective current responses as follows:

vr∗qs,ff = rsi
r
qs + ωrLdi

r
ds + ωrλ

′
m (3.13)

vr∗ds,ff = rsi
r
ds − ωrLqirqs (3.14)

To place closed-loop poles in desired locations, feedback is incorporated into the

control. To limit system dimension, a pure proportional controller is selected, though
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commonly proportional-integral control is used. This choice results in steady-state

error in the system response, though the error is small enough to be neglected. The

control law for each current can be expressed

vr∗qs = kp,ac(i
r∗
qs − irqs) + vr∗qs,ff (3.15)

vr∗ds = kp,ac(i
r∗
ds − irds) + vr∗ds,ff (3.16)

where kp,ac is the proportional gain. In a switching converter using Space-Vector Mod-

ulation or Sine-Triangle Modulation [33] to determine switch states, the commanded

stator voltages can be substituted into (3.10) and (3.11) to arrive at a transfer function

for the stator currents’ response to their commands:

irqs
ir∗qs

=
1

Lq

kp,ac
s+ 1

(3.17)

with a similar relationship between the d-axis current and its command.

The dc link voltage is controlled using the same control law as the two-dimensional

system studied in the previous sections. The control law is given by (3.1). Since the

dc current is a function of the ac current out of the machine, a relationship must

be established to generate a q-axis current command. The commanded dc current

is multiplied by the dc link voltage to generate a power command, which is then

divided by the rotor speed ωr to produce a torque command. The torque command

is mapped to a current command using (3.12). The d-axis current is commanded to

0 to minimize losses in the generator. This mapping can be expressed as

ir∗qs = − i∗dcvdc
ωr

ωb

3
2
P
2
λ′m

(3.18)

with the inclusion of the negative sign due to the dc current being defined as be-

ing positive into the load, and the q-axis current being defined as positive into the

machine.

The load is modelled as an ideal step change, with the load current described by

that step change divided by vdc.

iload =
P

vdc
(3.19)
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Table 3.3.: Generator-Rectifier System Parameters

Parameter Value (unit) Description

Pb 50 (kW) Rated Power

ωb 2π400 (rad/s) base (rated) frequency

Vb,dc 270 (V) base (rated) dc voltage

Ib,dc 185 (A) base (rated) dc current

Vb,ac 108 (V) rated peak ac phase-to-neutral voltage

Ib,ac 309 (A) rated peak ac phase-to-neutral current

ωbLq 0.33 (pu) PMAC q-axis reactance

ωbLd 0.33 (pu) PMAC d-axis reactance

rs 0.01 (pu) PMAX stator resistance

ωbλ
′
m 1 (pu) PMAC back emf at rated speed

C 1.46× 10−3 (pu) dc bus capacitance

kp,ac 5 (pu) stator current regulator proportional gain

G 2 (pu) dc voltage regulator proportional gain

The RAS’s used to establish the RLDS, as well as the RSS, were established using

an average-value model of this system with all variables expressed in per unit. The

per unit bases used to normalize states, as well as system parameters in per unit are

listed in Table 3.3. To find the surfaces of these spaces, similar algorithms to what

were described earlier in this chapter were used.

To summarize finding the boundary of each RAS, two of the three states in the

system were initialized to a fixed value, and a bisection method search was performed

along the third state to establish the minimum required value of that state to maintain

stability for a step change in load of a given value. The boundaries of each RAS can

be superimposed, and the resulting volume common to all regions is taken to be the

RLDS. It can be seen in Figure 3.7 that as the load increases, the size of the RAS
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Fig. 3.7.: Three RAS boundaries superimposed. The RLDS = RASP=1. Since RSSE

⊂ RLDS, the system is single-step stable.

corresponding to that load shrinks and is contained by all RAS’s corresponding to

smaller loads. Therefore, the RAS corresponding to a P of 1 pu is the RLDS.

With the RLDS established, it is necessary to establish the RSS. Algorithm 1 can

be implemented with a version of Algorithm 2 to account for the increase in system

order. In the modified version of Algorithm 1, an additional index is added as an

output of the quantize function, and the state derivative function is replaced with an

the average-value model of the machine-rerctifier system, rather than that of a simple

current source.

The RSS can be seen above the boundary of the RLDS in Figure 3.8. The param-

eters used to establish this space can be found in Table 3.4. For this study, it was

assumed that power could be supplied by the machine, or supplied to the machine.
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Table 3.4.: RSS search parameters for the machine-rectifier system

Parameter Value

Nvdc 150

Nirqs 150

Nirds
100

vdc,max (pu) 1.5

vdc,min (pu) 0.5

irqs,max (pu) 1.8

irqs,min (pu) -1.7

irds,max (pu) 0.2

irds,min (pu) -0.3

For this reason, the input power was bounded between positive and negative 1 pu.

The extremes used in the search for the RSS boundary were u1 = 1 pu and u2 = −1

pu.

The true boundary of the RSS would be within one domain of the boundary

shown in Figure 3.8. The maximum possible error between the two boundaries can

be established by applying a version of (3.9) modified to include a third domain.

Applying this equation with the parameters listed in Table 3.4, the maximum distance

between the boundary established and the true boundary is 0.0124 pu.

To establish the LDS, a brute force search was implemented to calculate the norm

of the distance between every combination of points on the boundary of the RSS and

the RLDS, as was done in the two-dimensional case earlier in this chapter. The LDSM

was found initially to be 0.3325, but since the true boundary could be as far as 0.0124

pu away from the points found in the search, the LDSM is stated conservatively to be

0.32 pu. Based upon these results, the given system is considered large-displacement

stable with a sizable stability margin.
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Fig. 3.8.: The RSS and RLDS of the machine rectifier system. Since RSS ⊂ RLDS¡

the system is defined to be large-displacement stable with a stability margin of 0.32.
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4. ENSURING LARGE-DISPLACEMENT STABILITY IN

AC SYSTEMS

In the previous chapters, it was observed for the dc system studied in [3] that selecting

large values of voltage feedback constant, current limit, and dc bus capacitance,

as well as a small value of current source time constant result in a larger RLDS

and more stable system. The trade-off between capacitance and transient overload

capacity was investigated for a particular value of voltage feedback constant, but the

relationship between all variables and their impact on the size of the RLDS was not

fully investigated. To explore the effect of increasing or decreasing a particular control

parameter in the dc system with a given architecture, a space can be envisioned where

each axis describes one parameter and the LDSM for that set of parameters. There

are four independent and one dependent parameter that have an impact for the dc

system, but if a traditional pole-placement-based controller design is used, it can

be seen that both the voltage feedback constant and current source time constant

depend directly on switching frequency, and hence for the variables of interest, the

parameter-space is 4-dimensional. This boundary is important to establish not only

to understand the trades that exist between different controller parameters, but also

to understand the impact of parameters such as ilim that do not appear in traditional

eigenvalue analysis.

Extending this principle to the ac system, it is also easily seen that switching

frequency, capacitive reactance, and current limits will be the variables of interest. In

general, it is possible to limit the q-axis and current magnitude independently [24].

However, to simplify the description of the parameter space boundary in this thesis,

it is assumed that the the q-axis current limit is the same as the current magnitude

limit.
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In this chapter, a control architecture is set forth for an example ac system with a

three-phase current source feeding a capacitor bank, which in turn feeds a constant-

apparent-power load. A brute-force search is then implemented to check each of a set

of combinations of switching frequency, capacitance, and current limits for stability

of the given system model. Parameters are selected from this search to result in a

highly stable system, and the RLDS and RSS are established. Finally, the Belkhayat

criterion is evaluated for the selected system to demonstrate that that an LDS system

easily satisfies this small-displacement criterion.

4.1 Ac System Model and Controller Design

The system being studied is a non-ideal, three-phase current source feeding a wye-

connected capacitor bank with floating neutral point, which in turn feeds a constant

apparent-power load. The system is shown in Figure 4.1. As was the case in Chapter

3, the term “Constant-Apparent-Power Load” refers to a class of loads which draw

current in such a way as to maintain a constant power draw. As such, as the volt-

age across the load decreases, the current draw will increase to compensate. It is

sometimes true that the power drawn by the load is constant, though in general this

need not be the case. Just as the dc system studied in Chapter 3 might undergo a

time-varying power load P (t), so too can the system studied in this chapter draw a

load with real and reactive components P (t) and Q(t), respectively.

In a three-phase power system, the total power being delivered to any point in

the system can be expressed

Ptotal = vaia + vbib + vcic (4.1)

where vx, x ∈ {a, b, c} is the peak line-to-neutral voltage of phase x and ix is the peak

current carried by line x [34]. Assuming that the sinusoidal voltages and currents

have the same amplitude and are mutually displaced by 120◦, and that time t = 0
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is defined such that there is no phase shift on the a-phase voltage, the a-phase’s

contribution to power can be expressed

Pa-phase =
1

2
vpip (cosφ (1 + cos 2ωt) + sinφ sin 2ωt) (4.2)

where vp is the peak line-to-neutral voltage of each phase, ip is the peak line current of

each phase, ω is the frequency of the voltages and currents in radians per second, and

φ is the phase shift between the voltage and current waveforms. There are similar

expressions for the b-phase and c-phase’s power which include a phase shift in the

time-dependent sinusoidal terms corresponding to the phase shift in the voltages and

currents. In steady-state, φ will be constant, and it can be seen that the average

value P of the total power being transferred on each individual phase, referred to as

real power, is

P =
1

2
vpip cosφ (4.3)

The second term in (4.2) is referred to as the reactive component of the load, and

represents the component of power that is not dissipated. The peak of the reactive

power Q is defined on a per-phase basis as

Q =
1

2
vpip sinφ (4.4)

Additionally, it is noted that the square root of the sum of the squares of real and

reactive power is equal to three halves the product of the peak line-to-neutral voltage

and peak current of each phase. This product is henceforth referred to as apparent

power.

S =
√
P 2 +Q2 =

√(
1

2
vpip

)2

cos2 φ+

(
1

2
vpip

)2

sin2 φ =
1

2
vpip (4.5)

Extending these results to three-phase systems, it can be seen that the total power

transferred is equal to three times the average power transferred by each individual

phase, and that the reactive power contribution from each phase cancel one another

out. This is because reactive power represents the rate of change of energy stored in

inductive and capacitive elements which is not converted to other forms of energy such
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K−1
e (θe)

θe

iabcI

Fig. 4.1.: 3-phase ac system.
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as thermal or kinetic energy. Despite the fact that reactive power is not transferred

in a three-phase system, it is still necessary to define Q for a three-phase system to

account for phase shifts in current which occur for different types of loads. Real and

reactive power for a three-phase system can each be expressed as three times their

single phase counterparts, or

P =
3

2
vpip cosφ (4.6)

Q =
3

2
vpip sinφ (4.7)

with three-phase apparent power defined as

S =
√
P 2 +Q2 =

3

2
vpip (4.8)

Performing system studies in real variables is often disadvantageous, since state

variables in this frame of reference are sinusoidal, which presents challenges in de-

signing controllers. The reference frame transformation defined by (1.6) is used to

express variables in the synchronous reference frame, which ensures that they will be

constant in the steady-state. All system studies in this chapter are performed in the

synchronous reference frame, and as such it is necessary to express real and reactive

power in terms of voltages and currents in that reference frame. To do this, (4.1) can

be expressed in vector form as

Ptotal =
[
ia ib ic

]
va

vb

vc

 = iTabcvabc (4.9)

Each vector fabc, f ∈ {v, i} can be substituted for its transformed counterpart mul-

tiplied by the inverse transformation matrix K−1
e fqd0 to arrive at

P =
3

2
(vqiq + vdid + 2v0i0) (4.10)

In balanced or 3-wire ac systems, the zero-sequence component of voltage and current

are both zero identically 0 by virtue of Kirchoff’s voltage and current laws, and so the
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zero-sequence component of power is henceforth neglected. It is important to note

that the transformation into the synchronous reference frame only yields an expression

for the real component of power P . To determine an expression for reactive power

in terms of voltages and currents in the synchronous reference frame, (4.10) can be

substituted into (4.8) along with the expressions vp =
√
v2
q + v2

d and ip =
√
i2q + i2d.

Simplifying this expression, Q can be expressed

Q =
3

2
(vqid − vdiq) (4.11)

The real and reactive power P and Q consumed by the load can be represented

in per unit and in matrix form by:P
Q

 =

 vq vd

−vd vq

iqL
idL

 (4.12)

where iqL is the q-axis component of load current and idL is the d-axis component of

load current in the synchronous reference frame, and vq and vd are the q- and d-axis

bus voltages in the synchronous reference frame.

While a current source behavioral model is studied in this work, it is possible

to arrive at identical results from a control and stability perspective with a current-

regulated voltage source converter feeding an LC filter, given a sufficiently large dc

link voltage. The dynamics of the filter inductor currents iqdI in the voltage source

case can be expressed in the synchronous reference frame as

LpiqdI = vqdI − vqd − ωeL

 0 1

−1 0

 iqdI (4.13)

where vqdI are the line to neutral inverter voltages in the synchronous reference frame,

vqd are the line to neutral capacitor voltages in the synchronous reference frame, iqdI

are the inductor currents in the synchronous reference frame, L is the filter inductance

and ωe is the fundamental frequency of the output voltages and currents. A control
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law is defined which determines vqdI such that the the closed-loop current response

is first-order. This control law can be expressed as

vqdI = kpI
(
i∗qdI − iqdI

)
+ vqd + ωeL

 0 1

−1 0

 iqdI (4.14)

In general, it is standard to place the closed-loop pole of the innermost loop a decade

below the switching frequency of the converter. This is achieved by setting kpI to

L2πfsw
10

.

The inductors in the LC filter are included to lower current ripple in the output

of the converter. Similarly, the capacitors are placed to limit voltage ripple, but

there is the additional benefit of both components in the filter of energy storage. The

capacitors will store much more energy than the inductors for the design considered in

this thesis. For this reason, as well as the identical performance in respective average

value models, for the remainder of this chapter a current source will be considered

with a non-instantaneous response, rather than considering a voltage source feeding

an inductor. The current source is assumed to have a transfer function of the form:

iqdI =
1

τs+ 1
i∗qdI (4.15)

where i∗qdI are the commanded q- and d-axis source currents in the synchronous ref-

erence frame.

The q- and d-axis filter capacitor voltage dynamics can be expressed in the syn-

chronous reference frame as

pvqd = ωbXCac(iqdI − iqdL) + ωe

0 −1

1 0

vqd (4.16)

where ωb is the base frequency of the system, XCac is the reactance of the capacitor

in per-unit, and iqdL are the q- and d-axis load currents in the synchronous reference

frame. Under the assumption that iqdI changes near-instantaneously with respect to

their commands, a controller can be designed to attain a first order response with

respect to the commanded output voltages v∗qd.
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Since it is required that the closed-loop pole of the current control loop be an

order of magnitude faster than the voltage control loop, the controller gains can be

determined to achieve a pole location at −2πfsw/100. A proportion control law with

a feedforward component can be defined as

i∗∗qdI = kpv(v
∗
qd − vqd) + iqdL +

ωe
ωbXCac

 0 1

−1 0

vqd (4.17)

Were it possible to command arbitrarily large currents, the controller design could

stop here. However, a practicable inverter cannot be designed to handle arbitrary

currents for, even in short bursts. There may be instances where the q- and d-axis

current commands become too large, and so a limiting function is applied. The

commands are limited using the sat function as follows:

i∗qI = sat
(
i∗∗qI , ilim

)
(4.18)

i∗dI = sign (i∗∗dI)
√

sat
(
i∗2qI + i∗∗2dI , i

2
lim

)
− i∗2qi (4.19)

The sat function limits its first input to the second input when the first input is

positive, and limits the first input to the negative of the second input when the first

input is negative. The sign function returns a positive 1 when the input is positive,

a negative 1 when the input is negative, and 0 when the input is 0.

Assuming that command limits are not reached, however, and that iqdI respond

instantaneously to their command, a transfer function can be established of the form

vqd =
1

1
kpvωbXCac

s+ 1
v∗qd (4.20)

It is desired for this loop of the control to have a closed-loop time constant of τv =

100/(2πfsw) and thus, kpv must equal 2πfsw/(100ωbXCac) to achieve a closed-loop

pole in the desired location.

To express the load currents in terms of net load power, (4.12) can be solved for

iqdL to obtain iqL
idL

 =
1

v2
q + v2

d

vq −vd
vd vq

P
Q

 (4.21)
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It can be seen that all control parameters using traditional pole-placement con-

troller design strategies are directly dependent on switching frequency, ac bus ca-

pacitance, and current command limits. While the poles of the transfer functions

depend on fsw, and XCac, it is more difficult to take into account the effect ilim has

on system performance. Additionally, since the poles depends on the ratio of switch-

ing frequency and filter reactances, there are infinitely many combinations of those

parameters that result in the same pole location, but different overall system perfor-

mance. Finally, closed-loop poles are useful in stability analysis, though their impact

is made less clear by the nonlinearities introduced by the CSL and current limits. It

is known that in systems with constant power loads, the capacitor voltages change

rapidly with respect to source current, which contradicts the assumption made in

designing the controller that current would rise near instantaneously with respect to

bus voltage, and hence analyzing the poles is not sufficient to determine the stability

of the system response.

To facilitate understanding the impact of each parameter on Large-Displacement

stability, a parameter space is defined in which the axes represent parameters of

the system and the LDSM. A brute-force search was implemented to check a broad

sampling of combinations of fsw, XCac, and ilim. At each combination of those three

values, the minimum necessary q-axis capacitor voltage was established for a 1 pu

step change in real power load.

4.2 Parameter-Space Search

For a given system architecture, it is desired to know the set of parameters that

results in the largest possible LDSM. However, due to computational complexity, the

LDSM was not established in the parameter space search performed in this thesis,

since the algorithms used to establish the RLDS and the RSS are both computation-

ally intensive. Instead, a search was performed to search for the minimum necessary

q-axis voltage to maintain stability for a step-change in real-power load from 0 to 1
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Table 4.1.: The range of parameters over which the parameter space was searched.

Parameter minimum value (unit) maximum value (unit)

fsw 10 (kHz) 100 (kHz)

ilim 1.1 (pu) 1.5 (pu)

XCac 5 (pu) 14 (pu)

pu with the state initialized to the origin. It is assumed in this search that having a

small minimum-necessary vq results in a large LDSM.

A vector was defined for each parameter of interest, with elements spanning a

broad range of possible values for that parameter. For each combination of parame-

ters, the system was initialized to the equilibrium point associated with zero load, and

a trajectory was simulated for a real-power load of 1 pu stepped at t = 0. Depending

on the stability of the ensuing trajectory, the simulation is repeated with the q-axis

voltage reinitialized based on a bisection method search, in which the initial voltage

is reduced if the previous trajectory was stable, and increased if it was not. After a

fixed number of iterations, the system parameters are updated, and the search begins

anew.

The average value model was exercised over 125 sets of parameters, corresponding

to five values of each individual parameter. The range of each parameter is shown in

Table 4.1. At each combination of values, the bisection method search was executed

12 times.

A projection of the parameter space boundary estimate can be seen in Figure 4.2.

It can be seen in that figure that as switching frequency decreases, the minimum

necessary q-axis voltage generally increases. This implies that faster switching fre-

quencies, which enable faster poles to be placed, lend themselves well to designing

systems for stability. Additionally, it can be seen that for a switching frequency of 10

kHz, it is impossible at any value of ilim or XCac to maintain stability for a 1 pu step
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Fig. 4.2.: A projection of the parameter-space boundary onto ilim, XCac, vq,min space

change in real-power load. Lastly, it can be seen that as switching frequency increases,

each “sheet” tends to get closer together, implying that switching frequency, and by

extension closed-loop controller bandwidth, is the dominant parameter associated

with Large-Displacement Stability.

Alternate projections of this boundary can be seen in Figures 4.3 and 4.4. From

these figures, it can be observed that the “sheets” are grouped at approximately

uniform distances from each other at higher switching frequencies in both cases, indi-

cating that the ability to maintain stability depends directly on each of these values.

Since the separation between the sheets is greater in Figure 4.3 than in Figure 4.4,

it can be claimed that as long as switching frequency is sufficiently high, the current

command limit has a greater impact on stability than capacitance.
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Fig. 4.3.: A projection of the parameter-space boundary onto fsw, XCac, vq,min space
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Fig. 4.4.: A projection of the parameter-space boundary onto fsw, ilim, vq,min space
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These figures confirm what might intuitively be understood by an engineer de-

signing a control system for a 3-phase current source: larger switching frequencies

enable faster closed-loop poles, larger capacitors lead to less required initial voltage

to maintain stability for larger transients, and larger transient overload limits lead to

more stable systems. What is gained by showing them is that capacitance is, out of

the three parameters investigated, the least important when it comes to designing for

stability past a certain threshold of fsw, and that switching frequency dominates the

system performance.

4.3 Estimating Regions of Asymptotic Stability

In practicable power systems, maintaining stability for step changes in load up

to 1 pu may not be required. Power systems tend to be oversized for safety reasons,

and therefore within the following work, it is assumed that the load is bounded in

magnitude by 0.5 pu, and in angle by −π/2 to π/2 in the PQ-plane. It is assumed

that the system being analyzed is designed only to source power, not to sink power,

which increases the size of the RAS and decreases the size of the RSS. To generate

the results in this chapter, a switching frequency of 50 kHz was applied, along with

a capacitive reactance of 5 pu and a transient overload capacity of 1.5 pu.

The RAS is established numerically by fixing a subset of the states and performing

a linear search along the remaining states for the minimum value required of those

states to maintain stability. More detail on this algorithm can be found in Appendix

A. The RAS was established for 5 different loads within the unit circle in the PQ

plane. Due to the dimensionality of the system, the RAS can be difficult to visualize

and interpret.

To view the four-dimensional RAS’s discussed in this chapter, it is necessary to

display projections of the RAS’s, since displaying the data in all four dimensions is
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impossible. Therefore, it is necessary to define what a three-dimensional projection

of a four-dimensional region R is. Such a projection is defined as

R(i,j,k) = {(x(i), x(j), x(k))∀x ∈ R} (4.22)

and a three-dimensional slice of a four-dimensional region R is defined as

R(i,j,k)

∣∣
x(l) specified

=
{(
x(i), x(j), x(k)

)
∀x ∈ R : x(l) specified for l 6= i, j, k

}
(4.23)

Similarly, a two-dimensional projection of a four-dimensional region R is defined as

R(i,j) = {(x(i), x(j))∀x ∈ R} (4.24)

A projection of the RAS for the ac system corresponding to a real power load of 0.5

pu and a reactive load of 0 is shown in Figure 4.5. Within the figure, the areas within

each arch have been filled in to improve visualization. The “wall” of the resulting

tunnel represents a projection the boundary of the RAS, with the projection of the

RAS itself being the space above the boundary along the vq axis. It is important to

note that points entirely above the projected boundary are always within the RAS

regardless of the remaining state that is not displayed. Similarly, points within the

tunnel are always outside of the RAS regardless of the remaining state. Points within

the wall may or may not be within the RAS depending on the value of the last state.

It is possible for projections of state trajectories to appear to enter the walls of the

tunnel, which might appear to contradict a key property of an RAS, which is that

state trajectories starting within the RAS always remain within the RAS. Even if

a projection of a trajectory enters the wall representing the projection of the RAS

boundary, it remains impossible for the trajectory to leave the RAS, and so the state

that was not displayed in the projection is known to have a value such that a slice of

the RAS boundary at that fixed value would remain below the trajectory.

After each individual arch is established, the projection of the RAS boundary can

be established by finding the boundary of the set of arches to form a “tunnel” with

thick walls. The projection of the RAS itself if the hyper-volume above these walls
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Fig. 4.5.: Projections of the RAS for the ac system with a load of P = 0.5 pu, Q = 0

pu, projected into (a) vq, vd, iqI space and (b) vq, vd, idI space. The region above

the tunnel is guaranteed to be inside the RAS, while the region inside the tunnel is

guaranteed to be outside the RAS.
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along the vq axis. To consider a 3-dimensional slice of the space, one arch can be fixed

from each collection of arches making up the tunnel wall, keeping the individual arch

corresponding to the value of interest. The rough shape of the tunnel is preserved,

but it can be seen that the walls become infinitely thin, and move side-to-side (in

the case of the projection into vq, vd, iqI space) or up-and-down (in the case of the

projection into vq, vd, idI space) as the value of the fixed state is fixed to other values.

This process was repeated for 5 loads around the unit circle. These projections

can be seen in Figures 4.5 through 4.9. It can be seen that as the load moves closer

and close to the Q axis, the minimum necessary voltage magnitude decreases along

both voltage axes. This implies that it is most difficult to maintain stability for a

step change in purely real constant apparent power load.

It can be seen in Figure 4.10 that there is an intersection of the surface corre-

sponding to the RAS associated with a load of P = 0.5 pu, Q = 0 and the surfaces

corresponding to P =
√

2/4 pu, Q = ±
√

2/4 pu. The surfaces are close to one an-

other in both figures, and based on experience in exercising the simulation used to

generate these surfaces, it is extremely unlikely (impossible, as will be demonstrated

in the next section) that the state trajectory ever lead to that part of the state-space.

Therefore, for the sake of simplicity, the RLDS can be approximated by the RAS

corresponding to an input power of P = 0.5 pu, Q = 0, as the volume above that

surface is common to all RAS’s.

4.4 RSS Estimation

To estimate the boundary of the RSS, a brute-force recursive search can be im-

plemented, similar to the algorithm implemented in Chapter 3 for the 2- and 3-

dimensional systems studied therein. Similarly to those cases, a wide array of inputs

are simulated along each trajectory resulting from each input. The state-space is dis-

cretized into a set of hyperrectangular domains, each initially marked with a logical

0. As each simulated trajectory traverses the state-space, each domain it traverses is
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Fig. 4.6.: Projections of the RAS for the ac system with a load of P =
√

2/4 pu,

Q =
√

2/4 pu, projected into (a) vq, vd, iqI space and (b) vq, vd, idI space. The

region above the tunnel is guaranteed to be inside the RAS, while the region inside

the tunnel is guaranteed to be outside the RAS.
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Fig. 4.7.: Projections of the RAS for the ac system with a load of P =
√

2/4 pu,

Q = −
√

2/4 pu, projected into (a) vq, vd, iqI space and (b) vq, vd, idI space. The

region above the tunnel is guaranteed to be inside the RAS, while the region inside

the tunnel is guaranteed to be outside the RAS.
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Fig. 4.8.: Projections of the RAS for the ac system with a load of P = 0 pu, Q = 0.5

pu, projected into (a) vq, vd, iqI space and (b) vq, vd, idI space. The region above

the tunnel is guaranteed to be inside the RAS, while the region inside the tunnel is

guaranteed to be outside the RAS.
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Fig. 4.9.: Projections of the RAS for the ac system with a load of P = 0 pu, Q = −0.5

pu, projected into (a) vq, vd, iqI space and (b) vq, vd, idI space. The region above

the tunnel is guaranteed to be inside the RAS, while the region inside the tunnel is

guaranteed to be outside the RAS.
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Fig. 4.10.: A projection of the intersections of conservative over-approximations of

the RAS’s for 5 loads around the PQ-plane into (a) vq, vd, iqI space and (b) vq, vd,

idI space.
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marked a logical 1. When the trajectory arrives at the equilibrium point correspond-

ing to the input which drives it, the search algorithm terminates. The key difference

between the searches performed in Chapter 3 and the search performed here is that

there are two possible inputs bounded by an aparent power of 0.5 pu and an angle

between −π/2 and π/2 in the PQ plane with respect to the positive P axis. This

process is summarized in Algorithms 3 and 4.

Algorithm 3 Main function to search for the reachable state-space

reachable set = false(Niq ,Nid ,Nvq ,Nvd)

x← xeq

search statespace(x, u1)

search statespace(x, u2)

search statespace(x, u3)

search statespace(x, u4)

search statespace(x, u5)

search statespace(x, u6)

It is important to test a wide array of inputs over the two-dimensional input

space. It is noted that the approximation of other loads over longer time horizons as

discussed in Chapter 3 still applies, though approximating loads between two selected

inputs along the outer edge of the input space suffers a minor loss in accuracy. For

example, if it is desired to approximate a load with a real component of P = 0.9239

pu and an imaginary component of Q = 0.3827 (corresponding to a load of magnitude

1 pu with an angle of π/8 radians with respect to the positive P axis), an average

could be taken of a load of P = 1 pu, Q = 0 pu and a load of P = 0.7071 pu and

Q = 0.7071 pu (each corresponding to a load with magnitude 1, the first with an angle

of 0 with respect to the positive P axis, the second with an angle of π/4). However,

it can be seen that these two loads average to P = 0.8536 pu and Q = 0.3536 pu,

which corresponds to a load of magnitude 0.9239 with an angle of π/8 with respect to

the positive P axis, not a magnitude of 1. Due to the small difference in magnitude,
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Algorithm 4 search statespace(x,u)

update xeq

while ||x− xe||> ε do

px← state derivative(x, u)

x← x+ h px

i, j, k, l ← quantize(x)

if reachable set(i,j,k,l) = false then

reachable set(i,j,k,l) = true

search statespace(xk, u1)

search statespace(xk, u2)

search statespace(xk, u3)

search statespace(xk, u4)

search statespace(xk, u5)

search statespace(xk, u6)

end if

end while
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this difference is noted, however for the sake of approximation, the loss in accuracy

is accepted.

The increased number of inputs exacerbates the memory usage of the algorithm,

thus limiting the resolution of the final answer. This limited resolution means that

there is a degree of uncertainty in the final result. After the routine terminates, the

each domain index is mapped to the center of its corresponding hyperrectangle in

the state-space, regardless of the path the trajectory took through that domain. The

true boundary of the RSS, should it exist, will be within one domain-width of the

final result obtained by the recursive search. In order to minimize uncertainty, a

large number of domains and a small time-step is required. Taking this to extremes,

however, will put a great strain on the program being used to execute this search,

and so a balance is required. The maximum error produced by this method can be

expressed:

error =
1

2

√
x2

1,dom + x2
2,dom + x2

3,dom + x2
4,dom (4.25)

where xi,dom is the width of a domain along the ith axis.

For the system designed in this chapter, this search was executed with parameters

shown in Table 4.2, in which Nx refers to the number of domains along the x axis,

and fmin and fmax refer to the upper and lower search bounds along the respective

axes. With these search boundaries and domains, the maximum error between the

estimated RSS and the true RSS boundary is 0.0116 pu. The RSS was estimated

with six loads, including P = 0.5 pu, Q = 0 pu; P =
√

2
4

pu, Q = ±
√

2
4

pu; P = 0 pu,

Q = ±0.5 pu; and P = 0 pu, Q = 0 pu.

Projections of the estimated reachable state-space and projections of the RLDS

can be seen in Figure 4.11. In Figure 4.11(a), it can be seen that there is a large

degree of separation between the two boundaries, and that these boundaries take all

possible values of idI into account, indicating that the system is highly stable. The

same is true for Figure 4.11(b), which takes into account all possible values of iqI .

Within each projection, the projected boundaries appear to be closer or further

apart from one another at different values of state. The trajectory is always guar-
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Table 4.2.: RSS search parameters for the 50 kHz system

Parameter Value

Niq 135

Nid 100

Nvq 75

Nvd 75

iqI,max (pu) 0.7

iqI,min (pu) -0.2

idI,max (pu) 0.5

idI,min (pu) -0.9

vq,max (pu) 1.2

vq,min (pu) 0.8

vd,max (pu) 0.3

vd,min (pu) -0.3
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Fig. 4.11.: The RSS and RLDS projected into (a) iqI , vd, vq space, and (b) idI , vd, vq

space with inputs bounded by 0.5 pu.
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anteed to be within the lighter region in each projection, regardless of the value of

the state that has been “projected away”. As previously discussed, the volume above

the darker “tunnel” is the portion of the projection of the RLDS where the state is

guaranteed to be within the RLDS regardless of the value of the fourth state. The

volume enclosed by the darker region corresponds to the portion of the projection of

the RLDS in which the value of the fourth state determines whether or not the state is

within the RLDS or outside of the RLDS. Therefore, if a similar study were performed

on a system and results were obtained such that the projection of the boundary of

the RSS appears to intersect with the projection of the boundary of the RLDS, the

results need not be discarded. As was noted previously, the RSS is bounded if and

only if it is wholly contained by the RLDS. Therefore if the situation arises in which

the projections of the boundary intersect, yet the RSS boundary was still found, the

system is still LDS.

To calculate the Large-Displacement Stability Margin (LDSM), a brute-force search

was implemented to take the norm of the difference of each point on the boundary of

the RSS and each point on the boundary of the RLDS, keeping track of the small-

est result at each combination. This process was not completed using projections of

data, but rather the 4-dimensional data generated by each respoective search algo-

rithm. Using this brute-force search, the LDSM was found to be 0.5762. Assuming

conservatively that the true boundary of the RSS is a full 0.0116 pu away from the

estimated boundary shown in Figure 4.12, the LDSM for the system shown in Figure

4.1 is 0.5646 pu.

As previously stated, this system was designed for loads bounded in magnitude

by 0.5 pu and in angle by −π/2 to π/2 in the PQ plane. If, however, it is desired to

have a system for which it is possible to apply 1 pu step changes, the same algorithms

utilized in this chapter can be utilized to show that such a system is realizable. In the

results shown earlier in this chapter, a switching frequency of 50 kHz was used, but

in order to achieve a LDS system for this larger input set, it is necessary to increase

fsw to 100 kHz. XCac and ilim were both kept the same.



70

Table 4.3.: RSS search parameters for the 100 kHz system

Parameter Value

Niq 80

Nid 40

Nvq 80

Nvd 80

iqI,max (pu) 1.5

iqI,min (pu) -0.5

idI,max (pu) 1

idI,min (pu) -1.5

vq,max (pu) 1.2

vq,min (pu) 0.8

vd,max (pu) 0.1

vd,min (pu) -0.1

Figure 4.12 shows the projections of the RSS and RLDS of the 4d system with

a switching frequency of 100 kHz. It can be seen that there is still a large degree of

separation between the two boundaries when projected into 3d space. Once again,

a brute force search was implemented to establish the LDSM. For the RSS search

parameters in Table 4.3, the discretization error is 0.0203, and the norm of the max-

imum distance between the boundaries was found to be 0.2755 pu, resulting in an

LDSM of 0.2552 pu.

4.5 Small-Displacement Criterion

A common criticism of small-displacement stability criteria is that several lead to

overly conservative designs. In this research, a new perspective on stability is taken
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Fig. 4.12.: The RSS and RLDS projected into (a) iqI , vd, vq space, and (b) idI , vd, vq

space with inputs bounded by 1 pu.
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which does not rely on linearity or linear approximations of systems. In light of this

new framework, it is of interest to analyze the stability of the system from traditional

small-displacement perspectives to determine whether or not the criteria are overly

conservative.

As described in Chapter 1, the ac system studied in this chapter can be represented

as a Thevenin equivalent source in the synchronous reference frame with equivalent

impedance matrix ZS ∈ C2×2 feeding a Norton equivalent load with equivalent ad-

mittance matrix YL ∈ C2×2. If the product of the largest singular values of these

matrices is less than 1 for all frequencies, then the system is said to be stable.

To represent this system in that form, current command limits are neglected, and

the current source dynamics found in (4.15) and capacitor dynamics found in (4.20)

are put into state-space form, substituting the control law (4.17) into (4.15). The

load currents are not expressed as functions of power, but left as general inputs. The

linear state-space equations describing the internal dynamics are

(4.26)

p


vq

vd

iqI

idI

 =


0 −ωe ωbXCac 0

ωe 0 0 ωbXCac

−kpv
τ

1
τXCac

− 1
τ

0

− 1
τXCac

−kpv
τ

0 − 1
τ




vq

vd

iqI

idI



+


0 0

0 0

kpv
τ

0

0 kpv
τ


v∗q
v∗d

+


−ωbXCac 0

0 −ωbXCac

1
τ

0

0 1
τ


iqL
idL



where, the vector containing the qd voltages and currents is the state vector x, the

matrix pre-multiplying the state vector is denoted A, the matrix pre-multiplying the

q- and d-axis voltage commands is denoted B1, and the matrix pre-multiplying the
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load currents is denoted B2. The outputs of the source are the q- and d-axis voltages.

The outputs are expressed

y =

1 0 0 0

0 1 0 0



vq

vd

iqI

idI

 (4.27)

where the matrix pre-multiplying x is denoted C. To establish the Thevenin equiv-

alent representation of the source, the Heaviside operator p is replaced with jω, and

(4.26) is solved for x. The results are substituted into (4.27). Symbolically, the final

result is expressedvq
vd

 = C (jωI4 −A)−1

B1

v∗q
v∗d

+ B2

iqL
idL

 (4.28)

where I4 is the identity matrix of size 4. The impedance matrix as described by

Chapter 1 is

ZS = C (jωI4 −A)−1 B2 (4.29)

and the H matrix is

H = C (jωI4 −A)−1 B1 (4.30)

To establish the load admittance, (4.21) can be linearized about a point of interest.

For this research, (4.21) was linearized about the equilibrium point, and so YL is

YL =

−P −Q

Q −P

 (4.31)

To evaluate the so-called Belkhayat Criteria as described in Chapter 1, the param-

eters used to generate the RSS and RLDS of the 50 kHz system were used to generate

ZS and YL. Then, the singular values of these matrices were found at a broad range

of frequencies and a broad range of loads, and their product was taken. The results

can be seen in Figure 4.13. Only two loads were tested, since the singular values

of the admittance matrix are maximized when the load is entirely real or entirely

reactive, and minimized when the load is evenly split between both axes.
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Fig. 4.13.: The Belkhayat contours of the LDS system over a broad range of frequen-

cies.
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It can be seen that the largest that the product of the two singular values gets

is less than 0.045. Given that the product is required to be less than 1 for all fre-

quencies, the Belkhayat criteria is easily satisfied. With the results produced within

the framework set forth in this thesis, it is apparent that any concerns over of the

conservatism of this small-displacement criterion are not relevant.
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5. DETAILED SYSTEM STUDY

Due to their computational complexity, detailed system studies cannot be used to

generate regions of interest, such as the RLDS or RSS, since the methods discussed

in this research rely on performing hundreds, if not thousands of simulations. Some

accuracy is lost in the conversion of detailed models which incorporate switching

effects to average-value models which do not. Therefore, once the regions of interest

have been established using average-value models, it is important to validate average-

value model results against more detailed system studies. In this chapter, a detailed

model of an inverter is set forth to emulate the three-phase current source described

in Chapter 4, and studies are conducted to illustrate the large-displacement response.

5.1 Detailed Inverter Model

As noted in Chapter 4, from a stability perspective, there is no difference between

a current-regulated voltage source converter and the current source behavioral model

studied in Chapter 4, as long as the base ac voltage is sufficiently lower than the base

dc voltage. For this study, a current-regulated voltage source converter was developed

with a control law of the same form as (4.14). A circuit/block diagram of the source

model can be seen in Figure 5.1. The various components depicted in Figure 5.1 are

described in the following paragraphs.

The commanded inverter voltages v∗qdI are fed into a sine-triangle modulator with

third harmonic injection to produce voltages at the output of the converter [33]. In

this modulation strategy, switching signals are generated by comparing sinusoidal

duty cycles da, db, and dc to a triangle wave oscillating at fsw. When the duty cycle
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Fig. 5.1.: Detailed model of the source converter.
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exceeds the triangle wave, the corresponding switch state becomes 1, and is otherwise

0. After applying the third harmonic injection, these duty cycles can be expressed

da = d cos β − d3 cos 3β (5.1)

db = d cos

(
β − 2π

3

)
− d3 cos 3β (5.2)

dc = d cos

(
β +

2π

3

)
− d3 cos 3β (5.3)

Precluding overmodulation, the duty cycles are limited to values between 0 and

1. Consequently, the amplitude of the fundamental component of each duty cycle

d must not exceed 2/
√

3 and d3 set to d/6. The moving temporal average of the

line-to-neutral voltages applied to the filter will be of the form [33]

v̂aI =
1

2
dvdc cos β (5.4)

v̂bI =
1

2
dvdc cos

(
β − 2π

3

)
(5.5)

v̂cI =
1

2
dvdc cos

(
β +

2π

3

)
(5.6)

where the mvoing temporal average is defined

v̂xI =
1

T

∫ T

t−T
vxI(τ)dτ (5.7)

where T = 1/fsw is the switching period.

By setting β to θe + φv and subsequently transforming these voltages into the

synchronous reference frame, it can be seen that the temporal average of the q and d

components of the voltages are

v̂qI =
1

2
dvdc cosφv (5.8)

v̂dI = −1

2
dvdc sinφv (5.9)

For notational simplicity, the carrot will be omitted in subsequent equations.
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Finally, the desired voltages expressed in (4.14) are used to determine d and φv

by applying the following relationships:

d =
2
√
v2
qI + v2

dI

vdc
(5.10)

φv = tan−1

(
−vdI
vqI

)
(5.11)

The duty cycle amplitude d and phase φv are then used to generate the three phase

duty cycle waveforms and compared to the triangle wave to produce the inverter

output voltages. In this work, to prevent overmodulation, the duty cycle is limited

using a sat function similar to the one used in (4.18) and (4.19) to be less than or

equal to
√

3/3 and greater than or equal to 0.

The switches in the inverter itself are considered to be ideal. The inverter subsys-

tem takes the switch states generated by the modulator subsystem to determine the

line-to-ground voltages in the inverter, vag, vbg, and vcg. To extract the line-to-neutral

voltages, it is assumed that the sum of the abc voltages is zero, and that there is a

voltage developed between the neutral point of the wye-connected capacitor bank

and the bottom rail of the inverter, referred to as vng. By applying Kirchoff’s Voltage

Law, the following relationships can be established:

vag = vas + vng (5.12)

vbg = vbs + vng (5.13)

vcg = vcs + vng (5.14)

As noted previously, the carrot above each variable has been omitted. These equations

can be summed, and since the line-to-neutral voltages vas, vbs, and vcs sum to zero,

it can be shown that

vng =
vag + vbg + vcg

3
(5.15)
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To express the line-to-neutral voltages in terms of line-to-ground voltages, (5.15) can

be substituted into (5.12)-(5.14) to find:

vas = 2/3vag − 1/3vbg − 1/3vcg (5.16)

vas = −1/3vag + 2/3vbg − 1/3vcg (5.17)

vas = −1/3vag − 1/3vbg + 2/3vcg (5.18)

The remainder of the source model closely follows the equations represented in

Chapter 4. The desired inverter output voltages are calculated from commanded

current values, which are determined by (4.17). To calculate the commanded qd

currents, the load currents iqdL are measured, as well as the bus capacitor voltages

vqd, and these values are used in a feedback-feedforward controller. These commands

are then limited by (4.18) and (4.19) to prevent overly large values of instantaneous

current command.

In Chapter 4, the inverter was modelled as a current source, but it was noted that

the behavior of the inverter controlled as a current-regulated voltage source converter

was also discussed. In that discussion, it was assumed that the voltage sources could

instantaneously take on the desired value to regulate inductor currents in the LC

filter. In practice, however, if the controller gains are aggressive and there is significant

ripple present on measured signals, the modulator signal d can undergo large ripple.

The assumption that the duty cycle be smooth is integral in the derivation of the

average-value model, and as such, filters are placed on the commanded qd inverter

output voltages, and the gains were decreased by a factor of 2π to smooth the duty

cycle signal in the detailed simulation. The bandwidth of these filters can be set to

be large enough with respect to the closed-loop bandwidth of the current and voltage

controllers so that they can be neglected in the average-value model while still having

the desired effect in the detailed simulation.

The load was not considered to be ideal in the detailed simulation. Instead, an

additional converter model was implemented with control set forth to ensure that the

load emulated an ideal CPL. The current regulator for the load is defined in the same
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fashion as the current regulator of the source, taking the right hand side of (4.21)

as commanded current values after converting from per-unit to SI units. The load

current commands in SI units arei∗qL
i∗dL

 =
2

3

1

v2
q + v2

d

vq −vd
vd vq

P
Q

 (5.19)

The commanded currents are then fed into a controller to generate commanded rec-

tifier input voltages. The controller is of the same form as (4.14), replacing source

inverter currents with load rectifier currents. The load rectifier voltage commands

v∗qdR can be expressed

v∗qdR = kpR(i∗qdL − iqdL) + vqd + ωeLload

 0 1

−1 0

 iqdL (5.20)

An identical modulator is used, as well as an identical inverter model with ideal

switches. Since the load currents are used to generate current commands in the source,

a filter inductor is added to each phase of the load to ameliorate switching effects that

may have a detrimental impact on the measured value of the load currents. With

the inclusion of the load-side inductors, the system order has increased from 4 to 6.

Additionally, the bandwidth of the load is now limited by these inductors, while no

bandwidth limitations were placed on the load in the average-value model. However,

with a fast switching frequency implemented on the load, a very large bandwidth is

achievable in the load, and so this nonideality is neglected. A diagram of the load

model can be seen in Figure 5.2.

While the average-value model was simulated in per unit, the detailed model was

simulated using SI units. The per unit bases and simulation parameters are listed in

Table 5.1.

5.2 Simulation results

To validate the average-value model used to generate the regions of interest to

determine the large-displacement stability of the source, average-value model and de-
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Fig. 5.2.: A diagram of the detailed load model

Table 5.1.: Simulation parameters and per unit bases

Parameter Value (unit)

Pbase 1 (kW)

Vbase 120
√

2 (Vpeak, line to neutral)

Ibase 3.9284 (A)

ωe 2π60 (rad/s)

fsw 50 (kHz)

Lsource 1.5 (mH)

Lload 750 (µH)

C 12.25 (µF)

ilim 5.8926 (A)
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tailed simulations were exercised over the same load profile. The system is initialized

to to no load, and at 0.02 seconds, the load is stepped to P = 0.5 pu, Q = 0 pu.

At 0.03 seconds, the load is changed to P = 0 pu, Q = 0.5 pu, and finally at 0.035

seconds, the load is stepped to P =
√

2/4 pu, Q = −
√

2/4 pu.

It is noted, however, that within the detailed model, there is significant ripple

on the duty cycle signal used in the sine-triangle modulator. Though there is good

agreement between the average-value model and the detailed model, the derivation

of the average-value model is dependent on a duty cycle that does not change sig-

nificantly over a switching period. As noted previously, to limit changes in the duty

cycle, a low-pass filter with bandwidth 50 krad/sec was introduced on the q- and

d-axis inverter output voltage command signals used to generate the duty cycle, and

the proportional gains in the voltage and current regulator loops were decreased by

a factor of 2π, bringing the closed-loop bandwidth of the control loops to be 795.77

radians per second and 79.577 radians per second.

In a practicable converter, it is necessary to filter the inverter output voltage

commands to prevent large ripple in the duty cycle of the sine-triangle modulator.

The results discussed in Chapter 4 therefore require extension. The numerical values

obtained for controller gains are still achievable, though higher switching frequencies

are required. Gains such as those described by (4.20) can be expressed in terms of

filter bandwidth rather than switching frequency in radians per second.

A comparison of the duty cycle signal in the detailed simulation the simulation

without the filter and in the simulation with filters (and decreased gains) can be

seen in Figure 5.3. These changes significantly reduce duty cycle ripple, though the

transient behavior takes somewhat longer to settle out. Since the dynamics have

been changed, it is necessary to not only reestablish the RLDS and RSS, but to

determine whether the inclusion of two additional states has any significant impact

on the dynamics of the system. The results from the detailed simulation with the

additional states are compared to the average-value model simulation results without

the inclusion of the additional states in Figures 5.4 through 5.7. As can be seen
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Fig. 5.3.: A comparison of the duty cycle signal, d, in detailed simulations.
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Fig. 5.4.: Comparison of q-axis voltage results from average-value model and detailed

simulation including voltage command filters and reduced controller gains.

in these figures, there is generally good agreement between the detailed simulation

with additional states and the average-value model without inclusion of the command

filters. This is due to the bandwidth of the command filter being so much higher than

the fastest control loops.

While the transient behavior of the q-axis voltage in the detailed simulation gen-

erally corresponds to the average-value model results, there is a slight difference in

the peak and minimum voltages during transients. For the load stepped at 0.035

seconds, there is a difference of 8.6 V, or 0.0507 pu. The steady-state value is within

fractions of a volt, and so this small difference is neglected.

Similarly, there are small discrepancies between average-value model and detailed

simulation results in the d-axis voltage. The peak difference after the load step at
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Fig. 5.5.: Comparison of d-axis voltage results from average-value model and detailed

simulation including voltage command filters and reduced controller gains.
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Fig. 5.6.: Comparison of q-axis current results from average-value model and detailed

simulation including voltage command filters and reduced controller gains.

0.035 seconds is 4.91 volts, or 0.0289 pu. It can also be seen that the low frequency

oscillation present in the original simulation is still present, though greatly reduced

in magnitude.

It is difficult to determine the error between the peaks of the currents due to

the ripple present on the signals from the detailed simulation. The absolute peaks

can be compared for the load step at 0.035 seconds, where the difference is 0.085

A, or 0.0216 pu, but this difference is smaller than the steady-state ripple. For this

reason, to conservatively estimate error between the average-value model and detailed

simulation, rather than compare differences in peak transient values, the peak ripple

present in the detailed model is compared. The peak ripple on the q-axis current is

0.188 A, which is 0.0479 pu.
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Fig. 5.7.: Comparison of d-axis current results from average-value model and detailed

simulation including voltage command filters and reduced controller gains.
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The d-axis current does not undergo overshoot in either simulation, error between

detailed and average value simulations is expressed in terms of steady-state ripple.

The peak ripple of the d-axis current is 0.244 A, or 0.0776 pu. To estimate the peak

error between the average-value model and detailed model, the norm of the errors

between voltage peaks and peak current ripples is taken, and is calculated to be

0.1083 pu.

Since the parameters of the system have changed, it is necessary to reestablish the

RLDS, RSS, and LDSM. Since the average-value model captures the salient features

of the detailed simulation results without including additional states from the voltage

command filters or finite load bandwidth, the same procedure set forth in Chapter

4 can be used. The RLDS is established by initializing the two currents and the

voltage angle in the vq-vd plane, and performing a linear search along the magnitude

of the qd voltages for the minimum necessary magnitude to maintain stability for a

real power load of 0.5 pu. The RSS was established using Algorithms 3 and 4 with

search parameters shown in Table 5.2.

It can be seen in Figure 5.8 that the RLDS boundary rises higher along the vq

axis and the RSS encloses a larger space than what was enclosed previously. The

maximum error between the estimated boundary of the RSS and the true boundary

is 0.0256 pu, and the LDSM was recalculated, and found to be 0.1851 pu assuming

the RSS boundary is exact. Subtracting the RSS boundary error from the LDSM

estimate, the LDSM is minimally 0.1595. Since the LDSM is larger than the error

between detailed and average-value model simulations, the system studied in this

research can be claimed to be Large-Displacement Stable.

The capacitor voltages from the detailed simulation can be seen in Figure 5.9. It

can be seen that the voltage is smooth relative to the currents and that the voltage

recovers quickly from perturbations. The resonant frequency of the source-side induc-

tor and the bus capacitor is 7.377 kHz, which is low enough to eliminate the majority

of switching effects on the voltage.
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Table 5.2.: RSS search parameters for the 50 kHz system with relaxed gains

Parameter Value

Niq 70

Nid 70

Nvq 60

Nvd 60

iqI,max (pu) 1

iqI,min (pu) -0.5

idI,max (pu) 0.8

idI,min (pu) -1.2

vq,max (pu) 1.5

vq,min (pu) 0.7

vd,max (pu) 0.8

vd,min (pu) -0.8
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Fig. 5.8.: Projections of the RLDS and RSS projected into (a) iqI , vd, vq space and

(b) idI , vd, vq space.
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Fig. 5.9.: Ac bus capacitor voltages in physical (abc) variables during load transients.
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Fig. 5.10.: Inverter output currents in physical (abc) variables during load transients

The inverter output currents from the detailed simulation can be seen in Figure

5.10. It can be seen that there is a large ripple component on the current, though

it is small. Additionally, because the capacitor bank sources reactive power, there

is a component of current flowing prior to the first load step. Inspecting Figures

5.9 and 5.10, it can be seen that the currents are 90 degrees ahead of the voltage,

corresponding to the source sinking reactive power.

The load commands in the detailed simulation are not immediately met, since the

load is modelled as having finite bandwidth. Figures 5.11 through 5.13 show the load

currents in abc variables as they change with respect to their commands. It can be

seen that the currents closely match the commanded values over time, though there

is ripple on the currents. The ripple is worse on the load currents than on the source

currents due to the smaller inductor used on the load side of the LCL filter.
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Fig. 5.11.: The a-phase load current and commanded load current.
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Fig. 5.12.: The b-phase load current and commanded load current.
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Fig. 5.13.: The c-phase load current and commanded load current.
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Fig. 5.14.: Simulated and commanded real power consumed by the load.

Finally, the real and reactive power consumed by the load in the detailed simu-

lation are compared to the commanded real and reactive power in Figures 5.14 and

5.15. Since the current ungergoes so much ripple, the real and reactive power con-

sumed by the load also includes ripple comparable to the currents. If it were desired

to limit the power ripple, larger inductances could be used in the LCL filter.
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Fig. 5.15.: Simulated and commanded reactive power consumed by the load.
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6. SUMMARY, CONCLUSIONS, AND AREAS OF

FUTURE RESEARCH

In this chapter, key results and conclusions are summarized and suggested areas of

future research are provided.

6.1 Summary and Conclusions

In this research, a definition of Large-Displacement Stability (LDS) was set forth

along with a criteria to determine whether or not a system is LDS. A state trajectory

of a system that is LDS will always asymptotically approach the equilibrium point

for any arbitrary change in input at any arbitrary time as long as the input remains

within predetermined bounds. The criteria was applied for several candidate systems,

including: (1) a simple two-dimensional dc system consisting of a current source and

bus capacitor feeding a constant-power load, (2) an extension of that system that

replaces the current source with a permanent-magnet synchronous generator con-

trolled by an active rectifier, and (3) a three-phase current source and wye-connected

capacitor bank feeding a constant-apparent-power load.

Each system was designed by selecting a switching frequency, bus capacitance,

and transient overload capacity that ensures LDS. The switching frequency was used

to select controller gains to place closed-loop poles in the complex plane at decades

below the switching frequency. Each parameter was selected to be a practicable value

based on readily available components and achievable switching frequencies.

Once system parameters were selected for each system, Regions of Asymptotic

Stability (RAS) were established for a wide range in loads. The RAS’s were estab-

lished by a brute force search for, given n − 1 fixed values of a state, the minimum

necessary value of the remaining state for a trajectory to maintain stability for a fixed
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load. Once each RAS was established, they were overlaid to show the Region of Large-

Displacement Stability (RLDS). Once it was shown that the RLDS was nonempty and

contained the set of equilibrium points, the system was said to be Single-Step Stable.

A recursive, brute-force search algorithm was used to estimate the Reachable State

Space (RSS) of a given system. The algorithm consists of first initializing the system

to a fixed point in the set of equilibrium points, applying a wide range of inputs, and

allowing each ensuing state trajectory to evolve using a fixed-step numerical solver

until it arrives at its new respective equilibrium point. Once each trajectory arrives

at its equilibrium point, the algorithm goes up a layer of recursion and applies a new

input to generate a new trajectory. This procedure continues until all inputs have

been applied at all points along all trajectories. The state space is discretized into

n-dimensional domains, and domains through which trajectories travel are marked

with a logical 1. If the RSS is not bounded, the algorithm finds a combination of

inputs to drive the system unstable. If the RSS is bounded, the algorithm terminates

and the domains that have been marked 1 are plotted. A maximum error between

the true boundary of the RSS and the estimated boundary was determined based on

the size of each domain.

The boundaries of the RLDS and the RSS were compared to establish a Large-

Displacement Stability Margin (LDSM) by taking the minimum distance between the

two boundaries. This LDSM was maximized in the ac system by selecting parameters

that would result in the lowest necessary q-axis voltage to maintain stability.

In the case of the ac system, the Belkhayat Criteria was evaluated to show that

the system satisfies what is considered a conservative small-displacement stability

criterion by more than an order of magnitude. Though not a sufficient nor a necessary

condition for large-displacement stability, evaluating the Belkhayat criteria gives a

sense of system robustness.

The ac system results were also validated using a detailed simulation. The current-

source model used to determine RAS’s and the RSS was compared to a voltage source

inverter controlled to have dynamics similar to the current source. The detailed sim-
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ulation also incorporates nonideal load characteristics, such as switching effects from

the active rectifier controlled to appear as a constant-power load. In the transition

of the source and load models from a nonideal current source and ideal CPL to a

voltage source converter and switched load, filter inductances and controller gains

were selected to limit the ripple introduced by the switching converters. Practicable

values were selected, and the error introduced due to switching transients was quan-

tified and shown to be small with respect to the LDSM found in the analysis of the

average-value model.

6.2 Hardware Implementation

Detailed simulation results generated in this thesis closely match results generated

with average-value model simulations. Though a high degree of confidence is held in

the simulation results, it is desirable to implement the ac system studied in this work

in a lab setting to further validate the average-value models used to establish the

RSS, RLDS, and LDSM of the ac system.

6.3 Improved Algorithms for Estimating Regions of Interest

Brute force search techniques are computationally intensive, and improvements

can be made to determine both the RLDS and RSS using searches based on boundary

conditions. This approach can be more efficient, as well as more accurate. For

example, to establish the RSS, a “front of points” can be defined to tightly wrap

the equilibrium set, and the state derivative can be evaluated at each point for a

range of inputs. The front is advanced based on the magnitude and direction of the

allowable state derivative at each point until the state derivatives are tangential to

the boundary or points inside the boundary at each point. This method has recently

been implemented in a two-dimensional system [35], and yields similar results to the

recursive search, but with a smoother boundary. This work can be extended to higher

dimensional systems.
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Similarly, the RAS associated with an equilibrium point can be established with

a similar advancing front. Where the RSS boundary is the boundary on which each

state derivative is tangential or points inside and encloses the smallest area, the RAS

boundary is the boundary on which the one state derivative vector is tangential and

encloses the largest possible area. Whereas the advancing front in the RLDS case

stops when the derivative condition is satisfied, the front in the RAS search would

continue until the state derivative begins to point outside the of enclosed space.

6.4 Higher Dimensional Systems

It is of interest to extend the results to higher dimensional systems. With more

efficient search algorithms, establishing the regions of interest for microgrids with

multiple sources and loads will become possible. The challenges in interpreting 4-

dimensional results are exacerbated in higher dimensional systems, including under-

standing of the projections of higher dimensional spaces into 2 or 3 dimensions.

6.5 Examining Load Characteristics

It is of interest to determine if a non-LDS system can be made LDS by imposing

bandwidth constraints on the input. Achieving Large-Displacement Stability in a

microgrid might not be possible for some systems if the load is modelled as a large

constant-power step input. However, physical loads do change instantaneously in

general, and therefore it is desirable to understand the impact that a non-zero rise

time on the input might have on the LDS of the system as a whole. A designer may

also be forced to impose bandwidth limitations on the load if the requirements on

the source are too restrictive, and so it is of interest to establish the trade between

source and load bandwidths.
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A. SEARCH ALGORITHM

Computer simulations were constructed for each system to search for the RAS’s of

different input loads. The simulations were exercised at an array of points to establish

the RAS for a given load.

In the case of the 3-phase ac system, the 4-dimensional RAS was established

by sweeping initial conditions in the converter’s synchronous reference frame, and

checking if the state vector returns to the equilibrium point. The states which are

being checked are the q- and d-axis capacitor voltages and the q- and d-axis source

currents.

The initial conditions were swept in nested for-loops. First, the q- and d-axis cur-

rents were initialized to fixed values. After the currents were initialized, the voltages

were initialized. Searching the space in a grid is computationally intensive, and can

fall short of finding the entire boundary. For smaller slices of the RAS, it is neces-

sary to begin searching at a relatively large value of vd in order to establish the full

boundary. As the slices grow, however, the boundary falls closer and closer to the

origin, and so starting with a large vd wastes time. And so, rather than sweep voltage

initial conditions in a Cartesian grid, the voltages were transformed into polar coordi-

nates, and a linear search for the PRAS boundary was performed using the bisection

method. That is to say, a line was defined between the origin of the vq-vd plane and

some fixed point away from the origin along a certain angle with respect to the posi-

tive vd axis is defined as θ. A bisection-search is performed along that line for a fixed

number of iterations, and the resulting point is then transformed back into Cartesian

coordinates and stored in a matrix along with the initial currents. The angle is then

incremented, and the search is performed again. This search is performed at a fixed

number of different angles, ranging from 0 to π radians. This search was noticed to

be much more efficient than sweeping Cartesian coordinates, and can find the point
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Fig. A.1.: Visualization of the linear search being performed

.

on the PRAS curve within an accuracy proportional to 2(n−1), where n is the number

of bisections performed. After finding all of the initial voltages that comprise the

curve, the currents are incremented, and the search begins again.
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