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ABSTRACT

Kang, Hao Ph.D., Purdue University, August 2019. Interactive and Intelligent
Camera View Composing. Major Professor: Bedrich Benes.

Camera view composing, such as photography, has become inseparable from

everyday life. Especially with the development of drone technology, the flying

mobile camera is accessible and affordable and has been used to take impressive

photos. However, the process of acquiring the desired view requires manual searches

and adjustments, which are usually time consuming and tedious. The situation is

exacerbated with difficulty in the controlling of a mobile camera that has many

Degree of Freedom. It becomes complicated to compose a well-framed view, because

experience, timing, and aesthetic are all indispensable. Therefore, professional view

composing with a mobile camera is not an easy task for most people. Powered by

deep learning, recent breakthroughs in artificial intelligence have enabled machines

to perform human-level automation in several tasks (He, Zhang, Ren, & Sun, 2016;

Silver et al., 2016). The advances in automatic decision-making and autonomous

control have the potential to improve the camera view composing process

significantly.

We observe that (a) the human-robot interaction can be more intuitive and

natural for photography tasks, and (b) the drone photography tasks can be further

automated by learning professional photo taken patterns with data-driven methods.

In this work, we present two novel frameworks for drone photography basing on the

two observations. First, we demonstrate a multi-touch gesture-controlled

gimbaled-drone photography framework-FlyCam. FlyCam abstracts the camera and

the drone into a single flying camera object and supports the entire control

intuitively on a single mobile device with simple touch gestures. Second, we present
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a region-of-interest based, reinforced drone photography framework-Dr3Cam. Our

full automation Dr3Cam is built on top of state-of-the-art reinforcement learning

research and enables the camera agent to seek for good views and compose visually

appealing photos intelligently. Results show that FlyCam can significantly reduce

the workload and increase the efficiency in human-robot interaction, while Dr3Cam

performs human-level view composing automation for drone photography tasks.

Figure 1.: A Purdue bell tower photo composed autonomously with Dr3Cam.
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CHAPTER 1. INTRODUCTION

Camera view composition is vital to obtain informative and visually

appealing views in both virtual and real applications. For example, in a virtual

environment, the composition is essential to animation and game frames; in

practical applications, it is critical in photography and cinematography. However,

getting a good camera view usually requires knowledge, experience and sense of

aesthetics. Moreover, operating a high Degree of Freedom (DoF) mobile camera,

such as a drone, in 3D space is not intuitive due to the lost in space pitfall (Christie

et al., 2008) and requires training. Hanson and Wernert (1997) proposed a low (2)

DoF controller solution to mitigate the high DoF camera control problem in CG.

From an aesthetic perspective, the composition of visual elements are commonly

based on symmetry, golden ratio, distribution, such as Rule-of-thirds, Rule-of-odds,

Rule-of-space and Subframing (Barnbaum, 2017) shown in Figure 1.1. The

principals can be evaluated by algorithms for views (Liu et al., 2010), and further

automate the photography with a low DoF mobile camera (Zabarauskas &

Cameron, 2014), that allows orientation and position adjustments for simple

objectives, to simplify photo acquiring procedure. Similarly, the goal of our study

dedicates to reducing high DoF mobile camera control difficulty during the

composition process for capturing aesthetic pleasing views.

1.1 ”A Good View”

Aiming at improving the mobile camera view composing process, it is

necessary to understand what makes a good photo. Despite the rule-breaking

masterpieces, general good photos follow empirical composition principles with the

consideration of light, color, etc.
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(a) (b)

(c)
(d)

Figure 1.1.: The explanation of four basic composition rules (Forbes, 2019). (a)
Rule-of-thirds: subdividing the photo into thirds both vertically and horizontally, the
sections where dividing lines cross are points of interests. (b) Rule-of-odds: framing
the subject with two surrounding objects suggests balance and harmony visually. (c)
Rule-of-space: creating negative space that relates to the subject can lead to a sense
of motion, activity, or conclusion in the composition. (d) Subframing: framing the
target with lines within the composition, thus having a picture in a picture, which
can provide emphasis on the subject.
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Many existing photography systems follow heuristic photographic

composition rules. Zabarauskas and Cameron (2014) summarized several rules that

are widely applied basing on the photographic composition book written by Grill

and Scanlon (1990):

• Rule of thirds, which suggests that the points of interest in the scene should be

placed at the intersections (or along) the lines which break the image into

horizontal and vertical thirds.

• No middle rule, which states that a single subject should not be placed at a

vertical middle line of the photograph.

• No edge rule, which states that the edges of an ideal frame should not be

crossing through the human subjects.

• Occupancy rule, which suggests that approximately a third of the image

should be occupied by the subject of the photograph (Zabarauskas &

Cameron, 2014, p. 1812).

There are similar studies on how to obtain aesthetically delightful views using

heuristic principles for a 3D object (Gooch, Reinhard, Moulding, & Shirley, 2001)

and human targets (Cavalcanti, Gomes, Meireles, & Guerra, 2006).

However, as the saying by Naoto Fukasawa, ”aesthetics is a beauty that is

found by a relationship between things, people and the environment” - heuristic rules

or the ”hand-crafted” features usually do not adequately account for the correlation

between the foreground and the background, as well as the light and color effects of

the entire image. A view can be assessed with more factors such as tune, contrast,

space, focus, texture, framing, form, visual balance, perspective, etc. However,

modeling a generalizable aesthetic standard can be a challenging task due to the

difficulty of finding all the adaptive rule set. In our study, we primarily focus

compositional correctness at best, while considering color, light, and content as

weak control factors. We define such a good photo as AGV.
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1.2 Mobile Camera Model

Camera pose can be decided by its position and orientation. Photo

composition is a process to find the best camera pose that leads to the desired view.

A simple camera model in CG conventionally has seven DoF - three in Cartesian

coordinates to present camera position, three in Euler angles to present camera

rotations, and one intrinsic parameter indicating the camera Field of View (FoV)

(Christie et al., 2008). The camera model is shown in Figure 1.2. The camera in

our research follows the model below.

The location of the camera in 3D space is represented with vector

p = [x, y, z], where x, y, and z are the Cartesian coordinates. The orientation of the

camera is represented with vector o = [φ, θ, ψ], where φ is the Euler angle of tilt (or

pitch), θ is the Euler angle of pan (or yaw), and ψ is the Euler angle of roll. The

FoV angle γ is a camera intrinsic parameter. Therefore, the camera model

parameters are represented with vector q = [x, y, z, φ, θ, ψ, γ].

One advantage of using the above camera model is the scalability of applying

it directly to a mobile camera. Particularly in our study, we consider the mobile

camera to be a quadrotor drone mounted with a gimbal camera. The FoV (γ) is not

considered to be a control parameter. Depending on the mechanical structure, a

drone usually has seven or less DoF. Figure 1.3 shows an example of a drone camera

that has five DoF in our study, which are aircraft translation on its Pitch Axis, Yaw

Axis, Roll Axis, aircraft rotation around its Yaw Axis, and gimbaled camera pitch

around its Cam Pitch Axis. The control parameters for the drone camera can be

presented with q = [xa, ya, za, φc, θa], where the subscript a stands for aircraft, and

the subscript c stands for the gimbal camera.

1.3 Problem Statement

We adopt the mobile camera model in Figure 1.2 and the drone model in

Figure 1.3 described in Section 1.2. Our goal is to reduce drone control difficulty
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Figure 1.2.: A simple virtual camera model based on Euler angles: tilt (φ), pan (θ)
and roll (ψ). Taken from (Christie et al., 2008).

Figure 1.3.: A drone coordinate system. The drone camera has five DoF. Taken from
(Kang et al., 2018).
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during the composition process for capturing AGV. We break the problem down into

two parts: (a) improve the drone control, and (b) simplify the composition process.

Figure 1.4.: The dual joystick RC (left) and gimbal camera (right) of a DJI c© drone.

The manual control of a drone for photography tasks is sophisticated and

requires training. The traditional way to fly a drone is by using a dual joystick RC

(Figure 1.4 left). The asymmetric functions of the sticks make it challenging to

conduct smooth eye-hand coordination. This situation is exacerbated with a

gimbaled camera (Figure 1.4 right), which needs additional control. The lost in

space pitfall is a significant challenge. Hanson and Wernert (1997) brought up the

problem that is caused by managing high DoF camera in 3D environments. One

given solution is to reduce the operational dimensions. The research XPose (Lan et

al., 2017) shown in Figure 1.5 provides an intuitive touch-based interface, that can

reduce the drone operation dimensions, for semi-autonomous photo shooting via

points of view. However, they were not considering the gimbal operations, while

gimbal plays an essential role in drone photography nowadays. Path customization

has been intensively explored for drone photography or cinematography, such as

trajectory planning by using pre-programmed command sets (Fleureau, Galvane,

Tariolle, & Guillotel, 2016), key-frame positioning (Joubert, Roberts, Truong,
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Berthouzoz, & Hanrahan, 2015; Roberts & Hanrahan, 2016), viewpoint

optimization (Ngeli et al., 2017) shown in Figure 1.7. The focus of path

customization methods is to design or optimize a trajectory that mostly depends on

charted environments. However, the focus on HRI improvement is neglected while

the drone is in mid-air for photography tasks.

Figure 1.5.: An envisioned use case taken from (Lan et al., 2017). (a) Select an object
of interest with the encircle gesture. (b) Activate the Orbit exploration mode. (c)
The drone-mounted camera takes sample photos while orbiting the object of interest
autonomously. (d) Browse sample photos in the gallery preview. (e) Restore a POV
associated with a selected sample photo. (f) Compose a final shot by dragging selected
objects of interest to desired locations in the photo. (g) Take the final shot. (h) The
final photo.

The low level motor control of a drone distracts the user from the

photography. A goal-oriented design is required to let the users forget about the

drone and only focus on the high level tasks. An improved HRI solution is needed

to make the drone controls more intuitive and natural.

On the other hand, as the views can be scored based on the photographic

principals (Liu et al., 2010), the photo composition process can be further

simplified, even automated, with a mobile camera. Although researchers have

explored several autonomous solutions (Byers, Dixon, Goodier, Grimm, & Smart,

2003; Myung-Jin Kim et al., 2010; Zabarauskas & Cameron, 2014), previous

approaches are limited to simple camera DoF and monotonous composition rules.
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Figure 1.6.: The algorithm for generating feasible quadrotor camera trajectories.
Taken from (Roberts & Hanrahan, 2016).

Figure 1.7.: Illustration of cinematographic framing constraints: size, viewing angle
and position on screen (from left to right). Taken from (Ngeli et al., 2017).

Figure 1.8.: Optimizing the aesthetics of the original photograph in (a) the method
by Liu et al. (2010) leads to the new image composition shown in (c). (b) shows the
cropping result of the baseline. The aesthetic scores are shown in (d). Our result in
(c) obtains higher aesthetic score than (a). RT (rule of thirds), DA (diagonal), VB
(visual balance), and SZ (region size) are components of the objective function.
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The previous rule-based methods are not flexible enough to take photos with

arbitrary targets in a complex scene. Recent breakthroughs in DL have enabled the

automation in many complex tasks (He et al., 2016; Mnih et al., 2015; Silver et

al., 2016). For example, RL framework allows agents to interact with the

environment by taking actions based on sensory observations (Sutton & Barto,

2018). In our case, the drone takes fly actions to adjust its pose to find an appealing

composition for the region of interest basing on the input camera view. AI

algorithms can summarize appropriate strategies from extensive data for view

composing.

Composing a good camera view is usually tedious and time-consuming with

a drone. Other than the potential HRI improvement, existing automation methods

rely on the prior knowledge of the working scene or nave composition rules, which

have significant limitations in real applications. An automated view composing

solution on a drone that can seek AGVs in uncharted scenes is needed to fill in the

gap.

1.4 Research Questions

The current mobile camera view composing, including drone photography,

has complicated and cumbersome operation process, which is not satisfactory. Our

research focus on the improvements, which makes the main research question be:

1. Can we improve the view composing process with a mobile camera?

Moreover, we consider to make the improvements on a drone as the

presentation of the mobile camera from two aspects: (a) the HRI on the control for

photography tasks, and (b) the simplification of aesthetic view seeking and

composing. Therefore, followed by the main research question, we form two

sub-questions considering HRI listed below:

1.1 Is it possible to make the drone HRI more intuitive and natural?

Regarding the photography task, we further develop question 1.1 to:
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1.2 How to let the user focus on photography tasks without thinking about

drone motor controls?

On the other hand, with the consideration of the view composition topic, we

propose question 2.1 as following:

2.1 Is it possible to simplify the drone photography process with aesthetic

composition consideration?

And basing on the previous rule-based methods (Joubert et al., 2015;

Zabarauskas & Cameron, 2014), we further develop the last question to be:

2.2 Is it possible to fully automate drone photography for uncharted scenes?

1.5 Scope

The scope of this research is divided into two sub-sections considering the

HRI and automation respectively. However, both sections are aiming at improving

the mobile camera view composition process. The sub-section on drone HRI

improvement for photography is introduced in 1.5.1 and the drone photography

automation sub-section is demonstrated in 1.5.2.

1.5.1 Multi-touch Gesture Controlled Drone Gimbal Photography

We first focus on the exploration of HRI improvements for drone

photography described in Chapter 2. The conventional drone control relies on a

dual joystick RC. However, the four DoF aircraft movements together with the

gimbal camera pitch are mapping asymmetrically to the two joysticks, which leads

to a long learning curve and are not intuitive. Even skillful users need to think

about the aircraft controls that distracts photography tasks. A goal-oriented

high-level HRI is needed for drone photography. We propose a novel framework for

gimbal drone camera photography. Our approach unifies the drone aircraft with the

gimbal as a single flying camera. The enhanced HRI allows the user to focus on the

photography tasks instead of the motor control by applying simple touch gestures to
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adjusting the flying camera on a mobile device. The gestures happen on the drone

camera streaming as if the user is directly manipulating with the view. Our

algorithm behind the scene seamlessly handles the gestures and interprets them into

commands that combine the gimbal motion with the aircraft movement. Moreover,

we utilize a sigmoidal gesture mapping function that compensates for abrupt drone

swinging when moving horizontally, which ensures photo quality.

1.5.2 Region-of-Interest Based Reinforced Drone Photography

We further investigate the full automation of drone photography with

aesthetic composition consideration (Chapter 3). Photographic principals such as

Rule-of-thirds can be programmatic evaluated (Liu et al., 2010; Wei et al., 2018)

and used to guide view composing (Zabarauskas & Cameron, 2014). However, most

previous work relying on the heuristic rules do not scale well to arbitrary targets in

complex scenes that require an overall aesthetic consideration of the foreground and

background together with light, color, etc. Moreover, the rule-based visual servoing

methods of mobile camera control are usually limited to low DoF (Byers et al.,

2003; Myung-Jin Kim et al., 2010). Recent advances in RL allow us to handle

complex control of agents with high performance (Gu, Holly, Lillicrap, & Levine,

2017; Lu et al., 2018). The photography procedure can be naturally integrated

into the observation-action-reward RL settings. Therefore, we explore the reinforced

approach on photography automation with a high DoF drone. We propose a

framework that enables the drone to actively seek and compose visually appealing

views in uncharted scenes basing on auto-detected or user-defined RoIs. The neural

network requires training, and we utilize a photo-realistic 3D virtual environment

for it.
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1.6 Significance

The control of a high DoF mobile camera is complicated. Moreover,

composing a well-framed photo with such camera requires knowledge and

experience. The simplification of the view composing process with a mobile camera

is needed. Existing methods rely on the prior knowledge of the working scene or

simple composition rules, which have significant limitations in real applications. In

this study, we particularly focus on a quadrotor drone equipped with a gimbal

camera and improve its view composing by proposing a new drone HRI

photography framework and a reinforced drone photography automation framework.

We claim our first contribution as a novel touch gesture based drone HRI

that unifies the control of the movement of the aircraft and the gimbal. Our

well-designed gestures enable the direct manipulation of the camera view instead of

drone and gimbal operations. Such improvement significantly reduces the difficulty

of drone photo composition process. User studies with 20 subjects show that our

new HRI on the drone photography tasks leads to significant lower workload and

better efficiency compared to the traditional RC control. The new interaction

method has a high performance in both intuitiveness and easiness of navigation,

which can be potentially applied to other teleoperation tasks in robotic control

problems.

We claim our second contribution as a scalable RL solution for good view

seeking and composing, that can be deployed to a drone for photography

automation. The high DoF drone agent can actively explore the uncharted scene for

framing RoIs with aesthetic consideration. We trained the agent under virtual 3D

environments for cost-saving, efficiency, and safety. Our novel intermediate visual

observations bridge the gap between virtual and real scenes and allow the drone to

execute autonomous framing in practical applications. The real photography task

results show that our method outperforms heuristic baseline method suggested

by Zabarauskas and Cameron (2014), and produce visually appealing drone photos
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as good as human operators. David Silver (Silver, 2016) asserts that:

Artificial Intelligence = Reinforcement Learning +Deep Learning. Our study

makes necessary exploration and accumulation for general AI research. Our RL

solution has the potential to be used in other drone automation tasks, such as

scanning, by redefining the rewards.

1.7 Summary

This chapter provided the background of the view composing problem with a

mobile camera. We introduced the mobile camera model that this study uses. We

further discussed the research problem in two-fold, considering the improvement of

drone HRI and automation of photography task. In the next two chapters, we are

going to cover two aspects of the problem respectively in details.
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CHAPTER 2. FLYCAM: MULTI-TOUCH GESTURE CONTROLLED DRONE

GIMBAL PHOTOGRAPHY

This chapter has been published in IEEE Robotics and Automation Letters

and presented at IROS 2018 (Hao Kang, Haoxiang Li, Jianming Zhang, Xin Lu, and

Bedrich Benes, 2018). The first authors contributions include implementation,

testing, and manuscript preparation. Coauthors provided ideas, resources, and

guidance in the research and helped in proofreading and modification in the

manuscript preparation.

2.1 Abstract

We introduce FlyCam - a novel framework for gimbal drone camera

photography. Our approach abstracts the camera and the drone into a single flying

camera object so that the user does not need to think about the drone movement

and camera control as two separate actions. The camera is controlled from a single

mobile device with six simple touch gestures such as rotate, move forward, yaw,

pitch, etc. The gestures are implemented as seamless commands that combine the

gimbal motion with the drone movement. Moreover, we add a sigmoidal motion

response that compensates for abrupt drone swinging when moving horizontally.

The smooth and simple camera movement has been evaluated by user study, where

we asked 20 human subjects to mimic photograph taken from a certain location.

The users used both the default two joystick control and our new touch commands.

Our results show that the new interaction performed better in both intuitiveness and

easiness of navigation. The users spent less time on task and the System Usability

Scale index of our FlyCam method was 75.13 which is higher than the traditional
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dual joystick method that scored at 67.38. Moreover, the NASA task load index

also shown that our method had lower workload than the traditional method.

2.2 Introduction

The consumer civilian drone technology has became increasingly accessible

and affordable. Many advances have been dedicated towards longer flight time,

collision avoidance and path customization. Consumer drones are also often

equipped with a high-quality camera mounted on a rotatable gimbal that is

controlled separately. People most commonly fly the drones to obtain impressive

videos or to take pictures. In a typical configuration, the real-time drone camera

streaming is viewed with the help of a mobile application running on a smart phone

or a tablet. Some drones store the videos on the on-board memory card that can be

viewed later.

Most of the technological progress has been dedicated to the drone

themselves and the most common way to control them is by using a dual joystick

remote controller (RC), where one joystick is used for turning the drone and the

other joystick is for propelling. The gimbaled camera needs additional control that

complicates the navigation. While commonly used in amateur and professional

planes and drones, this kind of navigation is not intuitive for beginners. The dual

joystick operation asymmetry leads to a long learning curve for the starters and has

caused many failures and destroyed drones. Even skillful users need to take into

account additional consideration for drone control that is distracting when a

particular objective, such as a photo or a video, is being targeted. This situation is

exacerbated with drones with a separate camera control. In order to get a desired

view, the user must steer the drone to reach an approximate location, then adjust

camera orientation to see the resulting view. If the view is not as expected, the

drone needs to be moved further, camera adjusted, etc. The user usually needs to

iterate this process to achieve the desired camera view.
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Our key observation is that the Human-Drone Interaction could be more

intuitive and natural if one would decouple the mechanical control from the desired

objective. A goal-oriented design would let the users forget about the drone and

only focus on the high level tasks. The low level motor control would be abstracted

out from the users and the users should be able to operate the views with their

flying camera directly, rather than worrying about the direction where the drone has

to go. Moreover, as a derived camera application running on mobile devices, the

drone photography applications could naturally integrate common touch gestures

for camera and drone controls to replace the RC.

In this paper, we introduce FlyCam, a multi-touch camera view

manipulation framework for drones equipped with cameras with gimbal. Our

framework substitutes the traditional RC for drone controls by simplifying the low

level aircraft controls, together with gimbal operations, to only six simple and

intuitive multi-touch gestures. A single finger drag rotates the aircraft and camera;

a double finger drag drives the drone up/down or left/right; and a single/double tap

hold moves the drone forward or backward along the camera optical axis. The speed

of the drone actions are controlled by the dragging distance on the screen or the

tapping pressure. The direct manipulation of the camera view instead of drone and

gimbal operations significantly reduces the difficulty of photo composition process

with drone camera. The difference is reflected clearly in Figure 2.1 as trajectories

extracted from one user study of five shooting tasks with a drone (2.7.3).

We have performed a user study, where we compare the traditional RC

control with our new interface. The results show that our framework offers better

efficiency in the drone photography tasks, and our new interface provides a better

usability and a lower workload to the users. Our main contribution is in providing a

unified framework that encapsulates control of movement of drones and camera

control.
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Figure 2.1.: Comparison of the drone trajectories taken by the traditional dual
joystick RC method (top) and our new FlyCam method (bottom). The goal of the
experiment was to recover five views given as photographs. The top trajectory is
longer and more intricate, indicating that the user had to perform more adjustments
and put more efforts during the task. The bottom trajectory is more direct and
concise, indicating that the user was able to get to the desired locations quickly and
fine-tune the position better by using our method.

2.3 Related Work

We relate our work to the control of gimbaled camera and aircraft and to the

touch gestures.
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2.3.1 Gimbaled camera and aircraft control

The gimbaled camera control of UAVs was discussed before the consumer

drones becomes popular by Quigley, Goodrich, Griffiths, Eldredge, and Beard

(2005) and Jakobsen and Johnson (n.d.). Two studies of fly-by-cameras (DongBin

Lee, Vilas Chitrakaran, Burg, Dawson, & Bin Xian, 2007; Neff, Lee, Chitrakaran,

Dawson, & Burg, 2007) analyzed the kinematics models of drones and camera and

motivated our work. Drone manufactures have also introduced various First-Person

View (FPV) displays (DJI, 2017a; Yuneec, 2016a). The displays can track the

head pose of the user, and reflect action to the drone gimbal. Contrary to the

previous work, the novelty of our work is that the user can control both the gimbal

and the drone movement by touch gestures from a single mobile device.

The most conventional method of consumer drone controls relies on a dual

joystick Remote Controller (RC) and it is commonly used for example in

works (3D-Robotics, 2017; DJI, 2017d; Yuneec, 2016a). For lighter, smaller, and

more affordable consumer drones, the RC is replaced by a mobile application that

uses on-screen virtual joysticks (Parrot, 2012) or device built-in accelerometers to

control the drone (Ehang, 2016). However, this requires the users to have an

understanding of drone dynamic behavior, which are not designed naturally for

efficient and undemanding photo composition. This often causes navigation errors

and even damage to the UAVs.

Prior research on human robot interactions proposes a number of novel drone

controls. Various hands free control methods, such as eye tracking (Ettikkalayil,

2013; Hansen, Alapetite, MacKenzie, & Møllenbach, 2014), speech (Landau & van

Delden, 2017; Trujillo, Puig-Navarro, Mehdi, & McQuarry, 2017), and brain

electroencephalogram (LaFleur et al., 2013; Y. Yu et al., 2012), were applied to

control UAVs. Body gestures were also widely studied and some rely on external

sensors to capture the gestures, such as Microsoft Kinect (Ng & Sharlin, 2011;

Pfeil, Koh, & LaViola, 2013; Sanna, Lamberti, Paravati, Henao Ramirez, &
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Manuri, 2012), the Leap Motion controller (Chandarana, Trujillo, Shimada, &

Danette Allen, 2017; Sarkar, Patel, Ram, & Capoor, 2016), or wearable

devices (Sandru et al., 2016; Teixeira, Ferreira, Santos, & Teichrieb, 2014). Other

methods use the on-board cameras or sensors to guide a single UAV or a team of

UAVs (Lichtenstern, Frassl, Perun, & Angermann, 2012; Monajjemi, Wawerla,

Vaughan, & Mori, 2013; Nagi, Giusti, Caro, & Gambardella, 2014; Nagi, Giusti,

Gambardella, & Di Caro, 2014). Empirical studies on Human-Drone Interaction

(HDI) using body gestures were conducted to explore the natural human behaviors

in the interaction scenarios (Abtahi, Zhao, E., & Landay, 2017; Cauchard, E,

Zhai, & Landay, 2015; E, E, Landay, & Cauchard, 2017; Obaid, Kistler,

Kasparavičiūtė, Yantaç, & Fjeld, 2016). Multi-modal UAV controls were also used

to gain better control over hybrid modes. The combinations of speech, gesture

(hand and body), and visual markers were applied by Peshkova, Hitz, and Ahlström

(2017) and Fernndez et al. (2016), and they were compared and discussed by Abioye

et al. (Opeyemi, Prior, T Thomas, Saddington, & Ramchurn, 2019). The

nontraditional input modalities were analyzed to form a scheme in developing

intuitive input vocabulary (Peshkova, Hitz, & Kaufmann, 2017). However, it is

difficult to translate natural vocabulary into drone instructions for precise control.

Path customization was explored as a task level UAV control and some

results have been successfully applied to the consumer drone industry. The path

customization is mainly set up for drone photography or video recording trajectory

planning by using pre-programmed command sets (Fleureau et al., 2016),

key-frame positioning (Gebhardt, Hepp, Nägeli, Stevšić, & Hilliges, 2016; Joubert

et al., 2015; Roberts & Hanrahan, 2016), viewpoint optimization (Nägeli, Meier,

Domahidi, Alonso-Mora, & Hilliges, 2017; Ngeli et al., 2017), way-point setting,

and following the user motion (3D-Robotics, 2017; DJI, 2017d; Yuneec, 2016b).

Existing systems enable designing cinematography shots ahead of time in a virtual

environment. In contrast, our system makes it easier to perform artistic exploration
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while the drone is in mid-air, which could be useful, e.g., to explore how the scene

looks in real-world lighting conditions

2.3.2 Touch gestures

Researchers explored and defined natural multi-touch gestures with 3D

objects on large screens (Buchanan, Floyd, Holderness, & LaViola, 2013; KUa &

Chen, 2014), as well as single-touch techniques for virtual camera manipulation on

small devices (Fiorella, Sanna, & Lamberti, 2010; Mendes, Sousa, Ferreira, &

Jorge, 2014). Navigation in virtual 3D environment using multi-touch gestures were

also investigated (Jankowski, Hulin, & Hachet, 2014; Ortega, 2014) and these

studies are instructive for multi-touch gesture design for drone navigation, but they

were focusing on virtual 3D environment.

Multi-touch gestures have been applied in UAV Ground Control Station

(GCS) (Crescenzio, Miranda, Persiani, & Bombardi, 2009; Haber, 2015; Haber &

Chung, 2016), and experimented in Human-Robot Interaction (HRI) in the context

of teleoperations (Paravati, Sanna, Lamberti, & Celozzi, 2011), bipedal

walk (Sugiura et al., 2009), and general control (Micire, Drury, Keyes, & Yanco,

2009). Close to our work is the research of Chen et al. (Chen, Lee, Chan, Liang, &

Chen, 2015) and Gross (Gross, 2016) who introduced methods to operate a drone

through camera view manipulation with multi-touch gestures. A more recent

research XPose Lan et al. (2017) also provides an intuitive touch-based interface for

semi-autonomous photo shooting via points of view. The main difference to our

work is that the other studies were not considering the gimbal operations, while

gimbal plays an important role in drone photography nowadays. Contrary to our

work, the gestures are used to navigate the drone movement and not to unify

movement with the control of the camera.



21

2.4 System Overview

FlyCam framework consists of four modules shown in Figure 2.2. The

application runs on a mobile device, takes as input multi-touch gestures, and

visualizes the drone camera streaming as the output (see also Figure 2.7 for the

graphical user interface and the accompanying video for real-time demo).

Touch 
View

Gesture 
Classifier

Task 
Scheduler

Instruction 
Generator

Video
Streaming

Control
Commands

Figure 2.2.: Overview of the pipeline for FlyCam framework. The user inputs
gestures that are classified and instructions for the drone navigation are generated
and scheduled. Visual feedback is immediately shown on the screen.

The Touch View that takes multi-touch gestures as the input. The Gesture

Classifier detects and categorizes the user input into meaningful gestures and

parameterizes them. For example, moving one finger to the left is interpreted as

rotating left. The distance of the stroke is calculated as the parameter of the

corresponding angle. The Instruction Generator converts the gestures and their

parameters into drone control instructions that are sent to the drone as a

commands. This block also unifies the heterogeneous operations between the gimbal

and drone. Finally the Task Scheduler communicates directly with the drone.

2.5 Gesture Control

Because of the landscape orientation of the streaming video from the drone,

the mobile device is held horizontally. Users prefer to use two thumbs to perform

touch gestures on small screen devices and they hold the device with one hand, and

perform touch gestures with the other hand alone on large screens as shown in

Figure 2.3.
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Figure 2.3.: Holding behavior of the control tablet can vary for different sizes of the
screen. Small screens are controlled with thumbs, whereas large screens are controlled
by one hand.

One finger 
drag

Two finger
drag

Single tap
hold

Double tap
hold

Single tap 
hold and drag

Double tap 
hold and drag

Aircraft yaws &
Camera pitches

Aircraft throttles &
Aircraft slides

Aircraft moves forward 
along camera axis

Aircraft moves backward 
along camera axis

Aircraft moves forward 
along camera axis &

Aircraft yaws &
Camera pitches

Aircraft moves backward 
along camera axis &

Aircraft yaws &
Camera pitches

Figure 2.4.: Our six gestures and the corresponding drone actions.

We employed four atomic gestures in FlyCam framework that are combined

into six gestures that serve well for both holding behaviors from Figure 2.3. The

atomic gestures are one or two finger drag, single tap hold, and double tap hold.

These four gestures can be performed easily with two thumbs, as well as one single

hand.

Figure 2.4 and the accompanying video show the six gestures used in

FlyCam framework and the corresponding mapping to the drone actions. These six

touch gestures constitute the user input that is captured, parsed, and abstracted by

the four modules of the framework. The framework allows to fly the camera freely

without the user needing to concentrate on the low level drone controls. It also

seamlessly links the aircraft movement with the gimbaled camera operation, which

provides a more user-friendly fly-by-camera mode (see Section 2.6.3).
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2.6 System

The six gestures from Section 2.5 are implemented in our system that can

recognize them from the touch screen, interpret, and send as control commands to

the actual drone (see Figure 2.2).

Linear mapping                   

Sigmoidal mapping   

Linear mapping

Sigmoidal mapping

Figure 2.5.: Linear mapping of the velocity and the drag distance cause the drone to
move abruptly and sway at the beginning and at the end of each gesture (top right
trajectory). We compensate for this behavior by using a sigmoidal function, and the
corresponding trajectory is shown on the bottom right.

2.6.1 Touch View

Touch View is the interaction layer of the framework. It provides the

Graphical User Interface (GUI) (shown in Figure 2.7) and takes the multi-touch

operations as user input. Touch View also receives, decodes, and presents drone

camera streaming in real time that allows the user to see immediate visual feedback

of their operations.

2.6.2 Gesture Classifier

The Gesture Classifier identifies touch gestures and categorizes them into the

types of drone action by converting them into parameterized actions for generating



24

drone instructions. The conversion parameterizes the drag distance in the screen

x− y coordinate and the touch pressure for tap hold action.

2.6.3 Instruction Generator

We assume a drone with five Degrees of Freedom (DoF) and the associated

coordinate is shown in Figure 1.3. The five DoF are: 1) translation on roll axis,

2) translation on pitch axis, 3) translation on yaw axis, 4) rotation around yaw axis,

and 5) rotation around camera pitch axis.

The movements of the aircraft and the gimbaled camera are controlled by a

combination of the velocities on the five DoF - three line velocities and two angular

velocities. The parameters received from the Gesture Classifier contains drag

distance or touch pressure, together with drone action type - translation on camera

optical axis, slide, throttle, yaw, and gimbaled camera pitch. The drag distance and

touch pressure are used for determining the speeds. For the action of translation on

camera optical axis, the stronger the pressure is, the higher the speed is. The

pressure is retrieved from the device as a float pointing number in range [0.0, 1.0].

For the slide, throttle, yaw and gimbaled camera pitch actions, the larger the drag

distance is, the higher the speed is. The relationship between the speed and drag

distance is shown in Figure 2.5 and we use two kinds of mapping:

rv = c||p1 − p0|| (2.1)

rv = 1/
(
e−12||p1−p0||+6 + 1

)
, (2.2)

where rv is the ratio of drone maximum velocity, and p0 and p1 are gesture start and

end points, and c (Eqn (2.1)) is a scalar constant depending on device resolution.

The mappings are shown and compared in Figure 2.5. The simple linear mapping in

Eqn (2.1) causes the drone to accelerate fast and overshoot at the end. We

experimentally observed that the logistic function mapping (Eqn 2.2), which is used

in our implementation, compensates for the weight of the drone and provides
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smoother and more coherent drone trajectory which leads to stable images and

better user experience. The second row of Figure 2.5 shows that the trajectory is

nearly as horizontal as directed.

Our main contribution is the union of the heterogeneous operations between

gimbal and aircraft that is achieved by redefining the forwards and backwards

actions. Rather than being relative to the drone heading direction, these two actions

are changed to be relative to the camera optical axis. The horizontal speed (on roll

axis) and vertical speed (on yaw axis) of the drone can be calculated with

orthogonal decomposition on forwards or backwards speed:vh
vv

 =

 0 cosα

sinα 0

vf
vf

 (2.3)

vf = rvvmax (2.4)

where vh is the horizontal and vv the vertical component of the forward velocity vf ,

and α is the camera pitch angle relative to the horizontal plane. The forward

velocity vf is a portion of the drone maximum velocity vmax determined by the

ratio rv from Eqn 2.2.

Figure 2.6 shows the velocity decomposition and the trajectory comparison

of the two methods on a diagonal motion towards a target. The trajectories reflect

the operation simplification brought by FlyCam method.

𝑉𝑉ℎ

𝑉𝑉𝑣𝑣 𝑉𝑉𝑓𝑓

𝛼𝛼
RC method

FlyCam method

Figure 2.6.: Our unified control of the drone motion and camera motion allows for a
smooth transition between the motion and camera aiming.
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The drone command set is constructed with the velocity information that is

based on the ratio of max speed for each DoF and the velocity decomposition.

2.6.4 Task Scheduler

The communication from the framework to the drone is executed by the Task

Scheduler module. This module maintains a thread that periodically reads the

afore-described velocities inside the command set [vpitch axis, vroll axis, vyaw axis, ωyaw,

ωcam pitch] from the Instruction Generator module and sends instructions to the

gimbal and aircraft respectively.

2.7 Implementation and Evaluation

2.7.1 Implementation

We have developed the application and we tested it by using DJI Phantom 4

Pro (DJI, 2017d). Our framework was implemented in Java on a 9.7” Android

tablet (ASUS ZenPad 3S 10) and a 5.2” Android phone (Huawei P9). We have used

DJI Mobile SDK for Android 4.3.2 (DJI, 2017b) and DJI UILibrary for

Android 1.0 (DJI, 2017c).

Figure 2.7 shows the GUI of FlyCam framework. The GUI is displayed on

the top of the real-time camera streaming. The top status bar (#1) indicates the

information such as the pre-flight aircraft status, GPS and remote controller signal

strength, remaining battery power, etc., #2 indicates two buttons for drone taking

off/landing and gesture mode activating/deactivating, #3 indicates the camera

widget for photo shooting and video recording as well as advanced settings. The

dash board widget (#4) provides the aircraft compass, as well as some in-flight

information such as distance, altitude, and velocity. The traces in the center of the

screen (#5) are examples of multi-touch gesture that have been applied to the
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framework, in the case of Figure 2.7 double finger drag: aircraft throttle up is

displayed.

①

② ③

④

⑤

Figure 2.7.: The Graphical User Interface of FlyCam framework.

2.7.2 System Evaluation

The application provides real-time feedback and the timing of the individual

system modules from Figure 2.2 is shown in Table 2.1.

One touch gesture can be classified and turned into corresponding drone

commands within a few milliseconds. The task scheduler module executes a

command every 20 milliseconds to load and send out commands. The bottleneck of

the framework implementation is the communication between the framework and



28

Table 2.1.: Module timing in [ms].

Gesture Classifier 0.18
Instruction Generator 3.79
Task Scheduler 20.32
Framework & Drone Communication a 33.60
Sum 57.89

aThe latency was measured with a distance of 30 meters in the open space with a strong signal.

the drone which is a limitation of the hardware and the underlying SDK. The speed

of our application is sufficient to provide complete control over the drone.

2.7.3 User Study

We conducted a comparative user study between the traditional RC and

FlyCam method. All participants were exposed to both approaches and they were

also asked to capture the same set of photographs. A post scenario survey was made

by using the System Usability Scale (SUS) and The NASA Task Load Index

(NASA-TLX). The results were compared and analyzed for four criteria: 1) photo

similarities, 2) task time spent, 3) SUS score (Brooke, 1996), and 4) NASA-TLX

score (Hart, 2006; Hart & Staveland, 1988). These measurements evaluate how

quickly and how easily the participants were able to get a desired photograph

(Figure 2.8).

Participants

Our user study included 20 volunteers (50% female and 50% male) of ages

19–33 years with the mean of µ = 23. The participants have background in

technology (12), engineering (3), design (3), science (1), and management (1). None

of the participants had any prior drone operation or related experience.
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Apparatus, Setting, and Tasks

The study was conducted outdoors with the drone Obstacle Avoidance (OA)

sensors fully activated. The participants were supervised by a certified professional

drone operator (guide) for the whole study for safety consideration.

We prepared five photos (ground truth) that were taken in advance on the

test site (the photographs as well as the photos taken by the users are available as

additional material). The ground truth photographs include significant visual point

taken from varying angles, ranges, and compositions. The tasks are to reproduce

the given ground-truth photos. The sequence of the ground truth photos was fixed.

Without setting any time limit, each study took about 45− 60 minutes including

demonstration time, drone testing time, talk time, exit survey time, etc.

Figure 2.8.: The ground truth photo (left), a photo taken with FlyCam method
(middle), and with the traditional RC method (right).

Procedure

For each participant, we randomly decided the order of the two methods to

avoid the sequential effect of tested methods as suggested by A. J. Yu and Cohen

(2008).

After the testing order had been decided, a brief introduction of the drone

and the tested method was given to the participant. The participant then had three

minutes for a test flight in order to get familiar with each method of control. Before

the actual testing, the five tasks were introduced and explained to the participants.
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The drone was started by the certified guide, recording was turned on, and

then the control device was passed to the participant. The participant was shown

the hard copies of the ground truth photos one by one and was asked to reproduce

the photos. The average time to complete the tasks for traditional RC method was

7 minutes 34 seconds, and for FlyCam method was 7 minutes 02 seconds. During

the tasks, the participant was allowed to ask the guide about the usage if it was

needed. When the participant finished the last task, the screen recording was

stopped and the drone was landed by the guide.

After both the methods were tested, the participant was asked to complete a

web-based exit survey. The survey as well as the testing were anonymous, and

included demographic information, SUS questionnaire, and NASA-TLX assessment.

The survey took 10− 15 minutes to complete. Moreover, we have also recorded the

time spent for each photograph. The screen recording video, and the photos taken

by the participants were archived.

2.7.4 Results

Similarity of photo composition

We contrasted the photos taken by the participants with the ground truth

photos. In order to compare the photograph compositions, we calculated the camera

position and orientation (quaternion form) when each photo was taken. This

information was recovered with the help of VisualSFM (Wu, 2011; Wu, Agarwal,

Curless, & Seitz, 2011) for each photo. We computed the camera position change

(∆t) and rotation change (∆r) between each user taken photo and the

corresponding ground truth photo. These changes were categorized by methods, and

tested with two Matched Pairs t Tests respectively on the population mean

differences of ∆t and ∆r. The results show that the data do not provide evidence of

significant differences for the two methods on either ∆t or ∆r
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(µdiff ∆t : DF = 99, t = 1.26, P − value = 0.2106, α = 0.05;µdiff ∆r : DF = 99, t =

0.78, P − value = 0.4373, α = 0.05).

Considering the outdoor environment, the drone position and camera

orientation were heavily affected during the tasks by the external conditions such as

wind, which created randomness to a certain extent. As figure 2.8 shows, the

participants were using the same standard to recover the photos with the two tested

methods and we did not expect and observe similarity difference in photo

composition in the study.

Timing

Whereas both methods can achieve the same result, an important measure of

the suitability of each method it the actual time spent in achieving this goal. The

mean time spending of the 20 participants by using FlyCam method is 422.35 second

with a standard deviation of 88.23. The mean time spending of the 20 participants

using traditional RC method is 453.95 second with a standard deviation of 111.16.

A Matched Pairs t-Test on the population mean difference of time spent

between the two tested methods shows the data provide evidence that there is a

significant difference between the time spent on task completion using the two

methods (DF = 19, t = −2.10, P − value = 0.0496, α = 0.05 ). Based on this, we

conclude that FlyCam method shows a better efficiency than the traditional RC

method in photo composition tasks. This can be attributed to the fact that FlyCam

method combines the aircraft motion and camera operation effectively, which makes

the drone reach the target zone more quickly. Also, FlyCam method makes the fine

tuning process easier and saves a lot of unnecessary camera pose adjustments. The

shooting positions of the five ground truth photos in the experiment are relatively

independent to each other. FlyCam method can work more efficiently in continuous

scenes for view selections.
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System Usability Scale

The System Usability Scale (SUS) (Brooke, 1996) is widely applied reliable

tool for measuring the usability. The SUS consists of 10 item on 5 Likert scale

response (strongly disagree, disagree, neutral, agree, and strongly agree)

questionnaire in our post scenario survey for both tested methods. The questions we

asked were:

1. I think that I would like to use this method frequently.

2. I found this method unnecessarily complex.

3. I thought this method was easy to use.

4. I think that I needed or would need help to recall the usage of this method.

5. I found the various human-drone interactions in this method were well

integrated.

6. I thought there was too much inconsistency (unexpected drone

poses/behaviors) in this method.

7. I would imagine that most people would learn to use this method very quickly.

8. I found this method very cumbersome to use.

9. I felt very confident using this method.

10. I needed to learn a lot of things before I could get going with this method.

We applied the scoring system suggested by Brooke et al. (Brooke, 1996). The

mean score of FlyCam method was 75.13, which is higher than the overall score of

the traditional RC method that was 67.38. A research on 3500 SUS surveys within

273 studies (Bangor, Kortum, & Miller, 2009) gave out a total mean score of 69.5,

which shows that FlyCam framework is above average and therefore better than the

traditional RC method from the system usability perspective.
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From the responses of question 7 and question 10, 47.5% of the participants

highly agreed that FlyCam method can be learned quickly and easily, while only

35% thought so for the traditional RC method. This reflects that the learning curve

of FlyCam method is less steep than the RC method to more users. Moreover, once

the user was comfortable with the operations, FlyCam method gains more fidelity.

After getting familiar with the methods and completing the tasks, 85% of the

participants preferred to use FlyCam method frequently basing on question 1

response.

The NASA Task Load Index

Besides system usability, we also evaluated the user workload. The NASA

Task Load Index (NASA-TLX) Hart (2006); Hart and Staveland (1988) is a

subjective multidimensional assessment tool to rate the workload of tasks or system.

Our post scenario survey includes NASA-TLX rating scales due to the essence of

our research being UAV operations. The workload is detached into six factors in

NASA-TLX, which are 1) Mental Demand (MD), 2) Physical Demand (PD),

3) Temporal Demand (TD), 4 )Overall Performance (OP), 5) Effort (EF), and

6) Frustration (FR). The overall workload score of FlyCam method is around 36,

which is four points less than 40, which is the workload score of the traditional RC

method. The comparison of the calculated workload index average weighted rating

scores is shown as Figure 2.9. It shows that except for the OP every other factors of

FlyCam method have a lower rate than the traditional RC method. However, the

difference in OP is not statistically significant:

(DF = 19, t = −0.3996, P − value = 0.6939, α = 0.05). With FlyCam method, user

shifted more attention from PD to MD and OP. This phenomenon was also

evidenced by a study on large multi-touch Ground Control Station of UAVs (Haber

& Chung, 2016). The multi-touch gestures free the users from monotonous and

repetitive physical operations and allows them to put more efforts in thinking and
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getting better performance on photo composition. The NASA-TLX rating scores

indicates that FlyCam method had lower workload to the participants than the

traditional RC method for the drone photography tasks.
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Figure 2.9.: Comparison of the calculated workload index average weighted rating
scores. FlyCam shows lower workload in MD, PD, TD, EF, and FR, whereas the
traditional RC method shows a slightly (0.5) lower workload in OP.

2.8 Conclusions

We introduced FlyCam, a novel framework that enables users to easily take

photographs with drones equipped with gimbal. Our key contribution is in

decoupling the flight from the camera operations. The user simply navigates the

drone as if it was a flying camera capable of free movements in 3D space and

FlyCam framework takes care of the drone and camera control. We introduced six

simple touch gestures to utilize this unified control model. We further introduced

several novel techniques such as mitigating the swaying of the drone by using

sigmoidal velocity control and moving the gimbal in sync with the drone rotation.

We evaluated our system with a user study, where the users were asked to

replicate given photographs. Our evaluation shows that FlyCam method

outperforms the traditional two joystick control in terms of readiness of completion

and easiness of usage. FlyCam method also scored higher in the NASA Task Load
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Index (Hart, 2006; Hart & Staveland, 1988) as well as in System Usability

Scale (Brooke, 1996).

Our system has several limitations. First, there is a communication delay

caused by the hardware that causes lagging of the response. We assume this will be

addressed by new drones and in a new version of the SDK. Second, the tap hold

gesture is not accepted naturally by all users. Two of the users habitually applied

double tap hold instead of when they actually intent to do a single tap hold,

potentially due to the habit on mouse left button double-click. Besides, the delayed

response of tap hold gestures makes the drone position adjustment in close range

jerky. A potential replacement gesture could be a pinch, which can zoom in and out

the view by driving the drone closer or further to the camera view center along the

optical axis. Third, while we aimed at keeping the number of touch gestures

minimal, it could be possible to extend the number of gestures as it is not obvious

what a good small number of gestures would be.

There are several possible avenues for future work. The FlyCam has been

tested only on one drone equipped with gimbal camera and it would be interesting

to see how this approach can be generalized to different drones. Another future

work would include comparison of the gestures on tablets of different sizes. We have

observed in our user study that it is not always intuitive for the users to make the

mental mapping of the screen size to the desired action of the drone. Another future

work would be to include left-handed subjects. The gestures are symmetrical and it

should be easy to consider.
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CHAPTER 3. DR3CAM: REGION-OF-INTEREST BASED REINFORCED

DRONE PHOTOGRAPHY

This chapter is a result of collaboration with Yichen Sheng, Jianming Zhang,

Suren Deepak Rajasekaran, Zhe Lin, Haoxiang Li, and Bedrich Benes. It is

currently being prepared for submission to ACM Transactions on Graphics (TOG).

The first authors contribution includes implementation, testing, and manuscript

preparation. Coauthors provided ideas, resources, and guidance in the research and

helped in proofreading and modification in the manuscript preparation. Specifically,

Yichen Sheng and Suren Deepak Rajasekaran helped with the creation of virtual

training environments.

3.1 Abstract

Despite the rule-breaking masterpieces, general good photos follow empirical

composition principles with the consideration of light, color, etc. The process of

framing good photos can be highly automated. Previous work usually relies on

heuristic rules or pre-knowledge of scenes, which make the applications challenging

to scale onto real uncharted environments. Inspired by the human framing process,

we set up a novel reinforced observation-action-reward solution for photography

automation. We propose an intelligent mobile camera agent that autonomously

seeks and composes aesthetically pleasing views for auto-detected regions of interest.

We deploy the agent onto a high DoF drone after training it under photorealistic 3D

virtual environments. The framework is able to scale to the real application, and

the experiments show that Dr3Cam outperforms heuristic baseline and acquires

human-level framing on drone photography tasks in three testing scenes.
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3.2 Introduction

”A good photograph is knowing where to stand.” - Ansel Adams.

Photography is a visual art form. As with every visual art form, it is based

on the elements and principles of art. The elements of art are the basic forms that

an artist may use to construct an artwork, and it consists of color, form, line, shape,

space, texture, and value. The principles of art are balance, emphasis, movement,

proportion, rhythm, unity, and variety. The principals define ways of how an artist

can organize the elements inside artwork that she/he intends to create (Gude,

2004).

In photography, the subject matter that we are trying to photograph are

forms of these elements of art, such as the shape and silhouettes of the human,

animal, or environmental subjects. Moreover, the composition of these elements and

principles are based on compositional rules based on symmetry, golden ratio, phi

grid, symmetry such as Rule of Thirds, Rule of Odds, Rule of Space and

Subframing (Barnbaum, 2017).

Such principals can be computed (Liu et al., 2010) by algorithms, and

further automate the photography (Zabarauskas & Cameron, 2014) with a mobile

camera, that allows the camera orientation and position adjustments. Albeit

researchers have explored several robot photographers (Byers et al., 2003;

Myung-Jin Kim et al., 2010; Zabarauskas & Cameron, 2014), previous approaches

are limited to simple camera Degree of Freedom (DoF) and monotonous

composition rules. The previous rule-based methods are not flexible enough to take

photos with arbitrary targets in a complex scene. Powered by recent Deep Learning

(DL) research, Artificial Intelligence (AI) field has several significant breakthroughs.

AIs approach or even surpass humans in several complex tasks, such as image

recognition (He et al., 2016), video games (Mnih et al., 2015), and Go (Silver et

al., 2016). General AI becomes a popular topic. David Silver asserts that:

Artificial Intelligence = Reinforcement Learning +Deep Learning.
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Think about how a human photographer takes a photo. A human

photographer looks around the scene to find the Region of Interest (RoI) that draws

attention. Then the photographer moves to a shooting spot to create proper

distance and angle to the RoI. Considering the environment elements together with

the RoI, the photographer fine-tunes the composition and eventually takes the

photo.

Our key observation is that the human photography procedure can be fully

automated with RL support that enables intelligent interactions with the

environment. Therefore, we design an attention-based photography agent with the

RL framework. Our 5-DoF camera agent is able to actively seek for surrounding

RoI, autonomously adjust where it stands (or flies) by changing its position and

orientation, and aesthetically composes visually appealing photos for the RoIs.

Moreover, we explore how well the agent can act as a real photographer in

uncharted scenes by deploying it to a drone and conducting a user study.

End-To-End drone training can be very time-consuming and even cause damages.

Therefore, we utilize a photorealistic virtual training environment. However, a

virtual environment can be problematic due to the gap between synthetic rendering

and real-world scenarios (Zhang, Leitner, Milford, Upcroft, & Corke, 2015). We

overstep the problem by novelly parsing the input view pixels into intermediate

elements, such as convolutional features and salient information, as the observation.

Our implementation of a drone manages to handle arbitrary scenes with multiple

RoIs. The experiments show that our method outperforms heuristic method, and

can achieve human-level photo framing with a drone.

In summary, our main contributions are:

• we propose a scalable RL solution for aesthetically pleasing view seeking and

composing,

• we provide a novel framework for drone photography automation.
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3.3 Related Work

We relate our work to the mobile camera control and reinforcement learning.

3.3.1 Mobile Camera Control

The virtual camera control has been widely studied in Computer Graphics,

relating to the control of camera position, orientation, motion, and the more

broader concepts such as viewpoint computation, motion planning, and

editing (Christie & Olivier, 2009). Several early studies were conducted on

object-based camera control assistance with single (Burtnyk, Khan, Fitzmaurice,

Balakrishnan, & Kurtenbach, 2002; Khan, Komalo, Stam, Fitzmaurice, &

Kurtenbach, 2005), and multiple targets (Christie, Normand, & Olivier, 2012).

Lino and Christie (2012, 2015) suggested an algebraic approach to simplify the 6D

camera searching space to a 2D manifold torus surface. The technique allows the

virtual camera positioning for two or three target objects to be more efficient with

no assumption on exact on-screen positioning. The work (Lino & Christie, 2012)

was extended to guide the camera motion planning in crowd simulations (Galvane,

Christie, Ronfard, Lim, & Cani, 2013), narrative-driven game (Galvane, Ronfard,

Christie, & Szilas, 2014), and rail generation (Galvane, Christie, Lino, & Ronfard,

2015). These methods give flexible virtual camera control; however, they mostly

rely on the pre-knowledge of the scene, which is not applicable in our situation.

Regarding real mobile camera control, researchers (Ahn et al., 2006; Byers

et al., 2003; Campbell & Pillai, 2005; Myung-Jin Kim et al., 2010; Zabarauskas

& Cameron, 2014) developed robot photographers, attaching camera(s) to a ground

mobile robot, that can automatically navigate with collision avoidance and frame

indoor photographs. Similar to our goal, the robot photographers actively seek for

visually appealing views. However, the algorithms behind the robot photographers

mostly depend on heuristic composition rules or similar techniques. The pure

rule-based methods simply consider putting the salient features (e.g., faces) to
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proper image-coordinate positions. This does not adequately account for complex

scenes with arbitrary targets.

With the rapid development of drones, fly cameras are more accessible.

Researchers dedicate to improve the drone manual control for photography (Huang,

Yang, et al., 2018; Kang et al., 2018; Lan et al., 2017), design camera path with

charted scenes (Gebhardt et al., 2016; Gebhardt, Stevšić, & Hilliges, 2018;

Joubert et al., 2015; Roberts & Hanrahan, 2016; Xie et al., 2018), and apply

autonomous cinematography on motion target (Bonatti, Yanfu, Choudhury, Wang,

& Scherer, 2018; Fleureau et al., 2016; Galvane, Fleureau, Tariolle, & Guillotel,

2016; Galvane et al., 2018; Huang, Gao, et al., 2018; Huang, Lin, et al., 2019;

Huang, Yang, et al., 2019; Nägeli et al., 2017; Ngeli et al., 2017). Previous work

made in-depth contributions mainly to camera path optimization and target

tracking. However, we do not see similar work to ours that enables the drone as an

intelligent agent that actively explores the uncharted scene for acquiring impressive

views.

3.3.2 Reinforcement Learning

Reinforcement learning (RL) framework allows agents to interact with the

environment by taking actions basing on sensory observations (Arulkumaran,

Deisenroth, Brundage, & Bharath, 2017; Sutton & Barto, 2018). In our case, the

drone takes fly actions to adjust its pose to find an appealing composition for the

region of interest based on the input camera view. Recent Deep Learning (DL)

technique enables RL to perform human-level in decision-making tasks, such as

video games (Mnih et al., 2015), Go (Silver et al., 2016) and driving (Kendall et al.,

2018). RL implementations aim to improve the long-term outcomes and training

efficiency with optimizations on value (Hasselt, Guez, & Silver, 2016; Mnih et al.,

2015), policy (Schulman, Levine, Abbeel, Jordan, & Moritz, 2015; Schulman,

Wolski, Dhariwal, Radford, & Klimov, 2017), or both (Mnih et al., 2016).
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RL has been successfully applied to agent control (Gu et al., 2017; Lu et

al., 2018; Won, Park, & Lee, 2018), and visual navigation (Gandhi, Pinto, &

Gupta, 2017; Mo, Li, Lin, & Lee, 2018; Sadeghi & Levine, 2016; Tai, Paolo, &

Liu, 2017; Zhu et al., 2017) problems which are relating to our work. Though

there are end-to-end (Kahn, Villaflor, Pong, Abbeel, & Levine, 2017) training in

the real environment for simple tasks, the majority of the training taken place in a

virtual environment or with pre-collected offline data, this is because the

trial-and-error training process of RL in the real world can be time-consuming or

even cause damage.

To solve these problems, researchers begin to leverage synthetic methods to

generate diverse training data. One mainstream hacks into commercial video

games (Johnson-Roberson et al., 2017; Krahenbuhl, 2018; Richter, Hayder, &

Koltun, 2017) to exploit art resources and high-quality rendering created by

professional artists. However, hacking methods do not have adequate freedom in

game controlling. Thus, another approach (Mueller, Casser, Lahoud, Smith, &

Ghanem, 2017; Qiu et al., 2017) utilizes game engines for setting up a training

environment, which enhances flexibility. Recent work by Shah, Dey, Lovett, and

Kapoor (2018) introduces a physical-based photo-realistic simulator for training

autonomous vehicles, that is beneficial to our study.

We embrace the virtual training environment due to data diversity and

training efficiency. The primary concern of the virtual training environment is the

over-fitting issue. The domain of synthetic visual features can be different from the

real world scenario, which causes the trained model unable to scale to real

world (Zhang et al., 2015). A natural solution is to improve photo-realistic

rendering details (Shah et al., 2018; Zhu et al., 2017). Moreover, we also consider

applying intermediate visual features (Section 3.6.1) as the observations instead of

using raw pixels.
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3.4 Overview

Our drone agent aims to take good photos autonomously. In this section, we

first discuss the term of a ”good photo” that our system considers in Section 3.4.1,

and then give an introduction of the system blocks in Section 3.4.2.

3.4.1 A good photo

The empirical photography rules can definitely help in guiding photographers

and algorithms for taking better pictures. However, based on human psychology and

visual understanding of what makes an image aesthetically good, there are further

complex levels in photography that makes a picture communicate on different levels

with people. There are several photographs which broke these aforementioned

compositional rules in producing better photos that are critically acclaimed.

These photographs with more profound meaning that is dependent on

communicating with the audience in terms of lighting, composition, colors and

subject matter are highly qualitative in nature, is currently not possible with

automated methods as it requires more scene understanding, control, and intended

audience. The current state of the art methods (Liu et al., 2010; Wei et al., 2018),

and also ours, only allow us to focus compositional correctness at best, while

considering color, light, and content as weak control factors that are hidden neurons

in the networks.

3.4.2 System pipeline

The system is consisting of four major components, (1) the drone, (2) the

mobile application, (3) the server, and (4) the virtual training environment. The

blocks of the system can be seen in Figure 3.1. The drone streams its camera view

in real-time to the mobile application (App) and sequentially executes moving

commands (referring to actions in Section 3.6.2) sent back from the App. The App
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synchronously communicates with the server by sending frames from the camera

view stream and waits for the returning action responses from the server. Once each

action response is retrieved from the server, the command is sent to the drone by

the App. The server parses each frame into observations described in Section 3.6.1.

The observations consist of several segments of intermediate visual features of the

input frame, such as the convolutional features, salient information, view scores, etc.

Each observation is passed into a pre-trained RL network that decides the agent

next action. As a core segment of observation as well as the basis of rewards

(referring to Section 3.6.3), the view scores are essential in predicting the camera

agent actions for acquiring a good shooting position. We use a hybrid approach that

combines a DL method with a computational method to score views discussed in

Section 3.5. The neural network is trained in a photo-realistic virtual environment

for minimizing the cost that is mentioned in Section 3.6.4. For more information

about the RL implementation, please refer to Section 3.6.

3.5 View Scoring

Photos can be programmatic evaluated basing on composition principals,

aesthetic characteristics, etc. Traditional computational methods emphasize on the

compliance of the pre-defined rule conditions. The more recent data-driven

approach, especially powered by Deep Learning (DL), train models to predict photo

scores by utilizing image features. Our work aims to create a camera agent that can

intelligently optimize its pose to hunt excellent views for photography. Therefore,

scoring a view is one essential component of our study, which makes a part of the

observation for the reinforced process (Section 3.6.1). Moreover, the optimization of

RL aims at maximizing the rewards, which is formed by the view scores in our

system (Section 3.6.3). We cover the pros and cons of DL, computational, and

hybrid approaches in this section.
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3.5.1 Deep Learning Approach

In our study, the views for each photography task come from the same

shooting scene. The DL photo scoring models trained with non-relevant

images (Kong, Shen, Lin, Mech, & Fowlkes, 2016; Murray, Marchesotti, &

Perronnin, 2012) do not adequately consider the comparative nature of views

sampled from the same scene. A ranking model trained with comparative

same-scene-views is more suitable for our scenario. We adopt the siamese View

Evaluation Net (VEN) from the state-of-the-art view composition work (Wei et al.,

2018) to score the camera views.

The DL approach is scalable to general scenes. The VEN provides a

satisfactory evaluation on complex views considering both foreground and

background elements that empirical photography rule cannot merely apply to.

However, the spatial score distribution is dispersed, and the VEN lacks having a

preference for the salient objects. This makes the learning (Section 3.6) difficult the

various dispersed good views cannot efficiently provide a pattern. The drone tends

to make minor adjustments with few actions. Figure 3.2b offers a visualization of

score distribution evaluated by VEN. Please also check the views and DL scores (the

higher, the better) in Figure 3.3.

3.5.2 Computational Approach

Computational-based photo composition evaluation considers well-grounded

composition guidelines, such as rule-of-thirds, diagonal dominance, triangular

composition, visual balance, etc. Different from the DL (Section 3.5.1), the judging

criteria are explicitly defined in the computational approach. The criteria work well

with a specified RoI, that can help to compensate the insufficiency of the dispersed

spatial score distribution with the DL approach. Our computational approach for

the camera view scoring is inspired by (Liu et al., 2010). We focus on phi grid,

visual balance, diagonal dominance, salient region size, and longest line placement.
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High Aesthetics
Low

 Aesthetic

(a)

(b)

(c)

Figure 3.2.: The top row (a) is a flattened 360 spherical photo taken at one point
of a scene. The rows (b) and (c) are the visualizations of score distribution with
the DL approach (Section 3.5.1) and the computational approach (Section 3.5.2) .
Each pixel in (b) and (c) represents the view score of a cropped and de-warpped
sub-image centered by the same pixel coordinates in (a). The cropping window
is with an 89◦ field-of-view and 512 × 384 resolution. The values of the score are
mapped to colors - with yellow as the highest aesthetic and blue as the lowest. Please
also refer to Figure 3.3, which shows the visualization of score distribution with the
hybrid approach (Section 3.5.3) together with a few cropped view samples and scores
predicted with the three approaches.
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High
Low

(a) (b)

(c)

(d) (e)

HB: 0.39
DL: 1.57
CP: 0.00

HB: 1.19
DL: 2.36
CP: 0.80

HB: 0.26
DL: -1.4
CP: 0.83

HB: 0.67
DL: 0.75
CP: 0.64

Figure 3.3.: The figure shows the visualization of score distribution (c) with the
hybrid approach (referring to Section 3.5.3 and Figure 3.2), together with a few
cropped and de-warpped view samples (a, b, d, and e) and their scores (in green arrow
boxes) predicted with the three approaches. For the scores, HB stands for the hybrid
approach (Section 3.5.3). DL stands for the deep learning approach (Section 3.5.1),
and CP stands for the computational approach (Section 3.5.2). The RoIs (Hou et al.,
2019) are circled out in the images.
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Figure 3.4.: The original photo (left) and the salieny map (right) with salient region
detected with (Hou et al., 2019), centroid (blue), and principal axis (yellow).

In this section, distance refers to the normalized Manhattan distance (NMD),

which measures the distance between pair-wised pixel points or line segments in

image coordinate suggested by Liu et al. (2010). The computational approach is

visual attention based, which relies on salient-region information, such as salient

centroids, principal axis, and region sizes, detected with the method proposed

by Hou et al. (2019). A photo with its saliency map and corresponding information

is demonstrated in Figure 3.4.

Phi grid

We use phi grid (Figure 3.5 red grid) to measure the position score of

salient-regions of an image. Different from the similar rule-of-thirds grid (Figure 3.5

yellow grid), phi grid uses the golden ratio, which has a more precise mathematical

definition. Moreover, phi grid has better scalability to wide photos. The equations

to compute the phi grid score are shown in equations 3.1−3.5.

Sphi = ωpSp + ωlSl (3.1)
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We consider the phi grid score Sphi as a combination of a point score

(Equation 3.2 and 3.3) and a line score (Equation 3.4 and 3.5). The point score Sp

describes how close is each centroid of the salient region to the nearest grid line

intersection. Similarly, the line score Sl describes how close is each principal axis of

the salient region to the nearest grid line. The weight ωp of point score Sp and the

weight ωl of line score Sl are set to 0.33 and 0.67.

Sp =

∑n
i=0Ai exp

(
−D2

i

σp

)
∑n

i=0Ai
(3.2)

Di = min
j=1,2,3,4

d (Ci, Ij) (3.3)

In the point score calculation above, Ai is the area size of each salient region.

Ci and Ij are the centroids of salient regions and the four intersection points of the

grid lines respectively. Di in equation 3.3 represents the point NMD between each

centroid and its closest intersection point.

Sl =

∑n
i=0 exp

(
−D2

i

σl

)
n

(3.4)

Di = min
j=1,2,3,4

d
(
Li, L

′
j

)
(3.5)

In the line score calculation above, Di in equation 3.5 represents the

line-segment NMD between the principal axis and its nearest grid line for each

salient region. Li and L′j respectively present the principal axis of each salient

region and the four grid line segments. The line-segment NMD d(Li, L
′
j) is defined

as the average point NMD between all points of Li and the closest points on L′j. We

experimentally set σp and σl to 0.04.
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Figure 3.5.: Phi grid (red) and rule-of-thirds grid (yellow). The guidelines suggest to
put salient region onto the grid line or intersection points.
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Visual balance

Visual balance is another significant factor that determines the aesthetic of a

photo. We use equation 3.6 and 3.7 to compute the score of visual balance.

Svb = exp

(
−D

2
i

σvb

)
(3.6)

Di = d

(∑n
i=0CiAi∑n
i=0 Ai

, C ′
)

(3.7)

In the visual balance score calculation above, Ci and C ′ respectively

represent the centroid of each salient region and the image center. Ai is the area size

of each salient region. Di in equation 3.7 represents the point NMD between the

area-weighted mean centroid of salient regions and the image center. We

experimentally set σvb to 0.01.

Diagonal dominance

Diagonal dominance suggests the principal axis of a salient regions to be

accord to either diagonal lines in the photo. The score can be computed similarly to

the phi grid line score. The equations are shown below in equation 3.8 and 3.9.

Sdd =

∑n
i=0 exp

(
−D2

i

σdd

)
n

(3.8)

Di = min
j=1,2

d
(
Li, L

′
j

)
(3.9)

In the diagonal dominance score calculation above, Di in equation 3.9

represents the line-segment NMD between the principal axis and its nearest

diagonal for each salient region. Li and L′j respectively present the principal axis of

each salient region and the two diagonals. We experimentally set σdd to 0.1.
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Salient region size

The previous study (Liu et al., 2010) pointed out that the ratio of salient

region area size affects the aesthetics of a photo significantly. Especially in the case

when we take photos of one salient object in different ranges with the same phi grid

guidance. There are three significant high aesthetic peaks regarding the salient

region area size ratios, which are around r1 = 0.1, r2 = 0.56, r3 = 0.82. However,

with our application on drones, it is uncommon to take a close shot that makes the

salient region to occupy more than 80% of the photo. Therefore, we only consider

the ratios r1 = 0.1 and r2 = 0.56. The equations for computing the salient-region

sizes are shown below in equation 3.10.

Srs = max
j=1,2

exp

−
(∑n

i=0 Ai

A′ − rj
)2

σj

 (3.10)

In the salient-region size score calculation above, Ai and A′ respectively

present the area size of each salient region and the image size in pixel. We

experimentally set σ1 = 0.16 and σ2 = 0.2.

Longest line placement

The long lines such as a horizon line and the sea level line play an important

role in photos, especially in aerial photos. Placing the long line horizontally,

vertically to overlap with grid line such as rule-of-thirds lines makes the photo

aesthetically pleasing. We detect the longest line (above 0.6 of image diagonal

length if any) in the photo, and compute the longest line placement score with the

equations 3.4 and 3.5 in Section 3.5.2. However, we replace the phi grid with the

rule-of-thirds grid in the longest line placement score calculation to avoid the

collision between the salient region and the longest line.
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Combined score

We combine the weighted phi grid (Sphi), visual balance (Svb), diagonal

dominance (Sdd), salient region size (Srs), and longest line placement (Sll) scores

together to form a final composition score for the photo with equation 3.11. We set

ωphi = 0.5, ωvb = 0.25, ωrs = 0.25, ωdd = 0.25 ,and ωll = 0.25. However, diagonal

dominance is a nice-to-have guideline that does not necessarily to be existing in

every high-aesthetic photo composition. Therefore, we put a threshold less than 0.8

to switch off diagonal dominance by making ωdd = 0 in such case. Similarly, the

longest line may not exist in a photo, therefore, we make ωll = 0 when no longest

line is detected.

Scb =
ωphiSphi + ωvbSvb + ωddSdd + ωrsSrs + ωllSll

ωphi + ωvb + ωdd + ωrs + ωll
(3.11)

Summary

In the computational approach, we apply several empirical principals that

make a photo compositional pleasing. We formulate algorithms to examine the

extent of the compliance on the salient regions or lines. This works well with

photography tasks that have shooting targets. Figure 3.2c provides a visualization

of score distribution evaluated by a rule-based approach. The high-aesthetic views

are concentrated near the salient regions, such as the fountain and the persons.

However, the rest views without salient object get score 0 regardless of the aesthetic

level. This creates problems that cause the drone difficult to learn rotational actions

(aircraft yaw, camera pitch) in the reinforce training (Section 3.6). We think this is

because the views of a salient object in different angles with similar shape and size

do not contribute significant score changes with the computational methods. Four

view examples with scores are demonstrated in Figure 3.3; and the combined scores

are noted with CP.
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3.5.3 Hybrid Approach

Both of the previous approaches have their shortcomings. We combine the

two methods in Equation 3.12 to form a new solution.

Shb = ωdlSdl + ωcbScb (3.12)

Where, Sdl represents the score given by VEN in Section 3.5.1, and Scb represents

the combined score given by Equation 3.11 in Section 3.5.2. ωdl and ωcb are set to

0.25 and 0.75.

The hybrid approach takes into account the overall aesthetic of the view, but

also the compliance of composition rules on the salient region. Figure 3.3c provides

a visualization of score distribution evaluated by the hybrid approach. The scores of

a few examples are demonstrated with hybrid scores (HB) in Figure 3.3. The

learning (Section 3.6) with the hybrid approach results in better long-term camera

pose optimization to form a high-aesthetic final composition in our experiments. We

compare the final reinforced model trained with the hybrid and the computational

approaches on the same target in Figure 3.6. We embrace the hybrid approach in

our study.

3.6 Reinforcement Learning

Under the RL framework, an agent observes the environment then decides an

action that maximizes the overall rewards. In our research, the drone agent sends

back to the server its camera view image that is parsed into intermediate-level

features as the observation (Section 3.6.1). The RL model consumes the observation

to make an action from the pool (Section 3.6.2) that with confidence leads to high

rewards defined in Section 3.6.3. We train the RL policy with value network

(Section 3.6.4) with a photo-realistic virtual environment (Shah et al., 2018)
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Figure 3.6.: One example of comparison between computational and hybrid
approaches on a target object. Both experiments started at the same initial location.
The hybrid approach performs more rotational actions.
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discussed in Section 3.6.4, and deploy the model to our testing drone for real-world

application described in Section 3.6.5.

3.6.1 Observation

We initially tested the pure pixel-to-action approach that takes the camera

view image as the observation. The pixels are directly put into convolutional-based

RL networks. However, this leads to poor convergence. Also considering the

potential over-fitting issue with the virtual training environment in Section 3.6.4, we

eventually choose to parse the camera view images into intermediate features as the

observation.

The observation consists of four segments that are shown in Figure 3.7 left.

We firstly extract a flattened 1280D feature vector as one observation segment with

Mobilenetv2 (Sandler, Howard, Zhu, Zhmoginov, & Chen, 2018) considering the

performance. We use a pre-trained ImageNet (Deng et al., 2009) 1000 classes

classification model to enable learning transfer. An 11D one-hot vector of the

previous action is constructed to be the second observation segment. Following the

action vector, the RoIs of the image are detected (Hou et al., 2019) and encoded as

bounding boxes to the third observation segment. The top three largest RoIs form a

12D vector with four negative ones fill-in for each missing RoI. The last observation

segment is a 8 vector constructed with view scores in Section 3.5.2 in the form of

[Sdl, Svb, Srs, Sp, Sl, Sdd, Sll, Shb]. The four segments are concatenated as a whole

observation.

3.6.2 Actions

Our drone model has 5 Degree of Freedom (DoF) with 11 discrete actions

shown in Figure 3.7 right. We consider 6 linear actions including forward, backward,

up, down, left and right, 4 angular actions including turn left, turn right, camera

pitch up, and camera pitch down, and one stop action.
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3.6.3 Reward Function

The reward is defined in Equation 3.13 and 3.14 below.

ri = Shb(i)− Shb(i− 1)− P (3.13)

R =
n−1∑
i=0

ri + crn (3.14)

Where ri indicates the reward for step i. Shb(i) represents the hybrid score

(Section 3.5.3) of the camera view at step i. P is a constant that represents the

penalty of an action. We set the action penalty to 0.005 for angular actions and 0.01

for the rest in our experiments. The accumulated reward R sums up the previous

step rewards and finally adds the final step reward multiplied by a constant c that is

larger than 1. We emphasis the value of the end step because the last camera view is

the final outcome of our study that matters the most. c is set to 3 in our experiment.

3.6.4 Implementation and Training

We use the actor-critic implementation A2C 1, which is a synchronous

deterministic variant of A3C (Mnih et al., 2016), for our task. Considering the

time-series feature of the data, we apply Long-Short Term Memory

(LSTM) (Hochreiter & Schmidhuber, 1997) architecture to our policy network.

We utilize a virtual training environment that is set up with Unreal Engine

4 2 using AirSim (Shah et al., 2018) plugin. AirSim supports physics-based

simulation with vehicles, including drones. We created two different virtual scenes

for training. The first scene contains 10 car models. The cars are set to random

orientations and positions for diversity during training. We trained the network for

1M action steps with the first scene, and then applied transfer learning to continue

for another 1M steps on a larger neighborhood scene. The neighborhood scene

1https://openai.com/blog/baselines-acktr-a2c/
2https://www.unrealengine.com
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Figure 3.8.: Virtual training environment.

contains more classes of objects, including persons, cars, houses, trees, traffic signs,

etc. An overview is given in Figure 3.8.

3.6.5 Deployment

The system is consisting of three major components in our study: the drone,

the Android application (app), and the server. A DJI Spark drone is used in our

study. The drone streams its camera view in real-time to our app through DJI

Mobile SDK 3, and executes action from the app. The app communicates with the

server through ROS (Quigley et al., 2009) by sending a drone camera frame and

receiving drone action. We deploy the RL model to a laptop as the server (CPU:

Intel Core i7-7700HQ, GPU: NVIDIA GeForce GTX 1050 Ti, RAM: 16G). On the

3https://developer.dji.com/mobile-sdk/
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server side, the node takes one frame each time and parses into an observation. The

RL model on the server trades an observation with an action that is sent back to

the app.

Our system supports two modes regarding RoI. The first mode (Free Mode)

automatically detect salient region from drone camera view referring to Section 3.6.1

same as training. Free Mode fully enables the autonomous exploration of the scene.

Though the final compositions are visually appealing (Section 3.7), the complete

freedom makes the control of the shooting content difficult. However, it is useful for

the situations that the users do not want to intervene in the searching process or do

not have access to display the drone view. The second mode (Target Mode) is more

restrict that takes user input rectangular selection from the app as RoI. This mode

forces the drone to track a user-defined region and optimize its view around it, which

is more suitable for photographic scenes with a clear target. In the Target Mode, our

current system only takes one user-defined region and blocks the other salient

detection. We put multiple users defined RoI Target Mode to the future work.

3.7 Evaluation

We evaluate the system on the drone by comparing aesthetic scores of photos

taken by our method with the others made by several baseline methods, including

three person experiments. The methods are listed below.

• Randomness (RD) The drone randomly samples actions (see Figure 3.7 left),

and takes a photo when Stop is met.

• Heuristic baseline (HR) The drone detects the major salient target Hou et al.

(2019), and applies the photograph composition heuristics used by Byers et al.

(2003); Zabarauskas and Cameron (2014) including: Rule of thirds, No

middle rule, No edge rule, and Occupancy rule on to the target.
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• Person 1− 3 (P1-P3) Three persons manually operates the drone to take

photos with DJI GO 4 app 4. All three persons rate their photography skill to

be above average.

• Ours The drone uses our intelligent camera agent to take photo fully

autonomously with Free Mode.

We chose three different scenes (school, bell tower, and neighborhood). At

each scene, we fixed five starting points and took four photos starting from the

point with the six methods. In total, we got 4× 5× 3× 6 = 360 photos. The photos

were scored as Human Intelligence Tasks (HITs) with Mechanical Turk 5. The

instruction (Kong et al., 2016) is described as Please rate the photo w.r.t its

aesthetic. This is a 5-scale choice, from 1 through 5, meaning from low to high

aesthetic. The 5-scales and their corresponding scores are: Very Bad (1), Bad (2),

Neutral (3), Good (4), and Very Good (5). 20 workers scored each photo. The

proportions of photo ratings with different methods are shown in Figure 3.9. Our

method is closest to and slightly better than human framing (P1, P2, and P3) in the

experiments compared to the other two baselines. We also verify the hypothesis

with statistic tests.

Because of the 5-scale ranking, the variables are ordinal. Non-parametric

Mann-Whitney U tests were conducted on the Likert item data. The mode of the 20

rankings from HITs is used for each photo. We set null hypothesis H0 being: the

mean ranks of the two groups are equal. Table 3.1 shows that there are significant

differences between the mean ranks of the rating of photos taken by RD and

humans. The test statistics also imply that HR baseline performed similarly to P2

and P3, and our method does not result in significant mean rank differences with

human operations in the experiments.

We also computed the average rating score basing on the 1− 5 ratings of the

20 HITs for each photo and further conducted parametric ANOVA tests on the

4https://www.dji.com/downloads/djiapp/dji-go-4
5https://www.mturk.com/
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Table 3.1.: Mann-Whitney U Test statistics on autonomous method versus human
operation pairs. Non-statistically significant pairs (α = 0.05) are marked in orange,
indicating the failing rejection of H0, and meaning that the mean ranks of the two
groups are statistically equal.

U Test P1 P2 P3 P1-P3

RD

W = 1266
n1 = 60
n2 = 60
P < 0.001

W = 1373
n1 = 60
n2 = 60
P = 0.010

W = 1295
n1 = 60
n2 = 60
P = 0.002

W = 3935
n1 = 60
n2 = 180
P < 0.001

HR

W = 1478
n1 = 60
n2 = 60
P = 0.037

W = 1592
n1 = 60
n2 = 60
P = 0.191

W = 1501
n1 = 60
n2 = 60
P = 0.054

W = 4572
n1 = 60
n2 = 180
P = 0.025

Ours

W = 1831
n1 = 60
n2 = 60
P = 0.821

W = 1947
n1 = 60
n2 = 60
P = 0.307

W = 1843
n1 = 60
n2 = 60
P = 0.753

W = 5621
n1 = 60
n2 = 180
P = 0.525

processed data. The null hypothesis H0 is set to the mean score is the same for the

groups. Similar to the Mann-Whitney U tests, the AVONA statistics are shown in

Table 3.2, and lead to similar conclusions to the non-parametric tests. The data

show that the mean score of photos taken by our method does not significantly

differ from human captures in our experiments.

Example photos of the experiments with our method are shown in

Figure 3.10. The first column shows two example photos rated as Good, the second

column for Neutral, and the last column for Bad.

3.8 Conclusion

We have introduced an intelligent mobile agent that can seek and compose

good views automatically. The agent has been deployed to a drone for photography

automation. Though the system can compose user-satisfied photos in the

experiments, there are several potential limitations.
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Table 3.2.: ANOVA test statistics on autonomous method versus human operation
pairs. Non-statistically significant pairs (α = 0.05) are marked in orange, indicating
the failing rejection of H0, and meaning that the mean scores are statistically the
same for the comparing groups.

ANOVA P1 P2 P3 P1-P3

RD
F (1, 118)
= 14.757
P < 0.001

F (1, 118)
= 12.347
P < 0.001

F (1, 118)
= 24.257
P < 0.001

F (3, 236)
= 10.018
P < 0.001

HR
F (1, 118)
= 4.011
P = 0.047

F (1, 118)
= 2.524
P = 0.115

F (1, 118)
= 8.811
P = 0.004

F (3, 236)
= 3.251
P = 0.0235

Ours
F (1, 118)
= 1.630
P = 0.204

F (1, 118)
= 3.533
P = 0.063

F (1, 118)
= 0.282
P = 0.597

F (3, 236)
= 1.466
P = 0.224

The drone uses passive obstacle avoidance, that does not continue the task

after the detection of obstacle within a close range. The autonomous camera agent

decides its motions basing on the RoIs. However, if the user does not select the

RoIs, the automatic saliency detection may lead to poor RoIs that do not contain

human interested features. The improvement requires a further scene understanding

mechanism. Also, the terms (e.g., phi-grid, visual balance) that are used in judging

the photo composition and aesthetic levels are limited; therefore, we can explore

more photographic terms and combinations that make a better view scoring

standard in the future work. Moreover, the weights of the terms used for the reward

function are set experimentally, which may not be the most optimized selection.

Our solution on the good view seeking may lead to local maximum points; however,

how to find the global best in an uncharted scene will be another exciting direction.
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CHAPTER 4. CONCLUSIONS AND FUTURE WORK

Coming back to the original research question: Can we improve the view

composing process with a mobile camera? We came up with a two-fold solution,

basing on which we proposed two frameworks that have been successfully applied to

drones for photography tasks. On the one hand, we introduced a novel drone HRI

method that enables intuitive goal-oriented drone photography. On the other hand,

we trained an intelligent drone agent that actively seeks and composes visually

pleasing photos automatically. Both sides aim at the improvement of camera view

composition process. In this chapter, we make conclusions about our work. We also

discuss the limitations of our system and potential future work in this direction.

4.1 Multi-touch Gesture Controlled Drone Gimbal Photography

Controlling a high DoF mobile camera, including a drone, is complicated.

Operators have to apply continuous eye-hand coordination on the camera for pose

changes, which creates challenges in high-level view composing tasks while keeping

low level camera movements in mind all the time. For example, the typical control

of a drone is through a dual joystick RC. In order to take a desired photo, the user

must steer the drone to reach an estimated location, then adjust camera orientation

to see the resulting view. If the view is not as expected, the drone needs to be

moved further, camera adjusted, etc. This process can happen several times before

the view is reached. We asked two questions regarding the situation.

• Is it possible to make the drone HRI more intuitive and natural?

• How to let the user focus on photography tasks without thinking about drone

motor controls?
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For the first question, we decouple the flight from the camera operations. We

provide a unified framework that encapsulates control of the movement of drones

and camera control. In this way, the user does not need to think about the drone

movement and camera control as two separate actions naturally, she/he can focus

on the photography tasks. One subject left the feedback after the user study: ”the

camera-pointing-forward function provided by the tablet only mode (FlyCam) is

super useful. (It is) the must-have function!” For the second question, we designed

six simple touch gestures. The user can apply gestures onto a touch-screen mobile

device that is the replacement of the RC. Another subject mentioned: ”the gesture

method (FlyCam) is new to me, and I was less skilled at using it to control the

drone, but it was relatively easier to learn.” Moreover, the gestures are conducted on

top of the real-time drone camera streaming, which makes the user feel like

manipulating the camera view directly. We speculated that the FlyCam HRI could

lead to the easiness of navigation and efficiency in drone photography tasks. The 20

human subjects user study proved that FlyCam is more intuitive and with a lower

workload than the traditional RC method.

4.2 Limitations of Multi-touch Gesture Controlled Drone Gimbal Photography

FlyCam has several limitations. First, the communication between the drone

and the mobile device has a delay, which causes control less responsive. A user

pointed out in the feedback: ”I preferred the controller more as well as how

responsive the controls were.” However, the future hardware update will eventually

minimize the delay. Second, the tap-hold gesture (moving forward) is not a natural

gesture for photography tasks, potentially caused by the conventional mouse

double-click behavior. Moreover, the delay threshold of the tap-hold and double tap

hold gestures may lead to proximal drone adjustment not smooth. Zoom in and out

pinch could be a better replacement to the tap-hold gesture, as it is widely used in

camera/map applications.
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4.3 Region-of-Interest Based Reinforced Drone Photography

Our second starting point was to simplify the mobile camera view composing

process. Considering the drone as the carrier, we formed the research question:

Is it possible to simplify the drone photography process with aesthetic

composition consideration?

Previous work (Xie et al., 2018) focuses more on trajectory optimizations in

a charted environments. Some other approaches (Zabarauskas & Cameron, 2014)

utilize rule-based composition guidance to make the low DoF photography

automation, which does not apply to complex targets and scenes. Therefore, we

further asked the question:

Is it possible to fully automate drone photography for uncharted scenes?

Inspired by the real photographer behaviors, we observed that the

photography procedures could be encapsulated into RL settings, as an

observation-action-reward process. We surmised that we could make a camera agent

that aims at finding RoIs and compose pleasing views through the trial-and-error

training. We could deploy such an agent onto a drone for photography automation.

However, considering the end-to-end training cost and risk, we utilized a virtual

training environment. The system novelly concatenates intermediate visual features

as the observation to overcome the gap between the virtual environment and the

real-world scene. The experiment results show that our drone photography

automation method outperformed the heuristic baseline and achieved human-level

composing standard.

4.4 Limitations of Region-of-Interest Based Reinforced Drone Photography

Dr3Cam also has several limitations. First of all, we used a hybrid view

scoring method that contains the rule-based consideration. We take into account of

phi grid, visual balance, diagonal dominance, region size, and longest line placement ;

however, the limited term selection may cause the ignore for other aspects. Further,
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we experimentally set the weights of rule-based terms in the reward calculations,

which may not lead to the most optimized solution. Therefore, further investigations

on more photographic rule terms with a different combination of weights is an

interesting follow-up study. Second, we do not take into consideration of active OA,

which is a good-to-have feature in the drone automation tasks. But we think it is

more about the sensor enhancement of drone hardware industry. Third, though it

has been proved that our method can lead to a visually appealing view composing,

it does not guarantee that the final shot is the global maximum view in the scene. It

is a promising topic to explore the most efficient way to approach to the best view.

4.5 Future Work

The current digital cameras usually support both the manual mode and the

auto mode, and both modes cannot be removed. We believe the mobile camera view

composing, including drone photography, is with the same situation as the

two-mode digital cameras. Users need both manual control and automation method

for different tasks. We also consider two directions for the future work.

For the manual controls, there are several potential directions. Starting with

our FlyCam framework, we intentionally designed the minimal number of gestures

to keep the system simple. However, it could be possible to extend the gesture pool

for more complex photography commands, such as orbiting a target. The

exploration of broad touch gestures for drone photography tasks is a promising

topic. Moreover, body gesture control on simple tasks, such as triggering the shutter

or tracking a subject, has already been employed to consumer drones. While the

accurate interactions on RoI specification and drone pose fine adjustments are still

not satisfactory on photography tasks, but very much required as a natural

interaction method. A further investigation of the accurate HDI with body gestures

needs to be conducted.
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Since drones are also widely used to take video footage, while many existing

works dedicate to the trajectory design and optimization (Gebhardt et al., 2018;

Joubert et al., 2015; Roberts & Hanrahan, 2016) and neglect the real-time

interactivity of the drone control. We can expand the multi-touch solution to drone

cinematography, which changes the focus from photography to the videography

tasks. It could be challenging as well as valuable to seek for a responsive solution

that enables the users to intuitively change the drone path while complying with the

C4 continuity (Roberts & Hanrahan, 2016) of the trajectory.

Furthermore, AI algorithms could give exceptional support to our

multi-touch gesture-controlled solution. For example, if the user points at a target

and the target can be automatically selected and segmented out, the user could

drag and drop the selection on the screen directly to where she/he wants to place

the target in the photo. The selection could be more helpful if advanced 3D

reconstruction is applied to the target, so that the user can manipulate the 3D

model of the target on the screen with touch gestures, to decide from where the

camera should look at the target. The assistance of view composing supported with

neural networks could be an extension of the FlyCam.

Considering the HRI, we also believe coordination is an interesting problem.

We divide the coordination into two cases: multiple users controlling the same drone

and one user controlling multiple drones. Basing on the FlyCam framework, one

user can control the drone entirely from a single mobile device. What if two users

use two mobile devices to connect to the drone at the same time and want to take

photos together? We need to study the user coordination behaviors further to give

out a reasonable design. On the other hand, users may also want to take photos of

the same subject from different angles/ranges, and it could be more efficient if there

were an intuitive method to operate multiple drones at the same time on one task.

Multiple drone control with a single mobile device using touch gesture could be

another potential area of future work for our study.
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One critical feature of our framework is the low workload and pressure. We

introduced FlyCam for drone photography tasks; however, the touch gesture based

goal-oriented design could have potential use in other high DoF remote controls

such as robot arm manual manipulation. It could be excited to migrate the design

onto different tasks other than photography.

For automation, there are more interesting follow-up topics. As mentioned in

Section 4.3, local maximum reward that leads to the early termination of searching

is a potential limitation of Dr3Cam. Therefore, we develop a further research

question: Will the global maximum reward lead to a significantly different result?

We put this to future work because we believe that it is not possible to find the

global best view within a reasonable time in an uncharted scene with current

settings. We would like first to justify the research question. If we can confirm that

the global maximum reward leads to significantly better compositions in

photography tasks, we may continue the exploration in this area. With better scene

understanding techniques, it could be a promising avenue to continue seeking global

best view solutions.

For the photography automation in uncharted scenes, it could be helpful if

we can have a sort of understanding of the context. Therefore, advanced ML

algorithms such as object detection, semantic segmentation, and target tracking

may contribute improvements to our study. Moreover, it is interesting to investigate

the training process of RL with various implementations, which may give us

different convergence efficiency and accumulated reward that lead to potential

enhancement of the model. We may further investigate the utilization of additional

sensors, such as depth and 360 cameras. For example, the depth camera can be used

to retrieve additional 3D information of the salient object, which could be beneficial

in long-term camera motion planning. The 360 can provide a panorama view of the

scene, which could make the search of RoIs more flexible and accurate, and it is

potential support to seek for the global best view.
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Another exciting direction is to learn the user composition style and apply

the view composing automation considering the style. With many pre-taken photos

of one user, it is possible to determine the preference of the user. By redefining the

reward functions according to the user style, it could be possible to develop a

personalized drone photographer. Along this direction, it could also be valuable to

study the styles of drone cinematography trajectories. Basing on the professional

drone videos, it could be possible to study the drone actions inversely. The

continuous actions make a styled trajectory. By successfully transferring a styled

professional trajectory to an arbitrary trajectory, we may get excellent

cinematography.

Multiple drones coordination is another potential future research area.

Similar to the point discussed in HRI future work, it could lead to better efficiency

if multiple drones could communicate with each other for acquiring a variety of

excellent views inside a scene at the same time. Moreover, it could offer a potential

high-performance solution to seek for the global best view of an uncharted scene.

Further, the automation of multiple drone coordination could contribute to broader

fields such as scene scanning and reconstruction, searching and rescue, etc.

Since end-to-end training is not suitable in many training tasks, virtual

environment or synthetic data generation is a trending area that needs exploration.

However, the well-known over-fitting issue caused by the difference between training

and testing scenes is a primary concern. Therefore, it is excited to conduct an

in-depth study of the artificial features that may cause the gap. It could be

beneficial for many AI related field including autonomous driving and computer

vision.

Last but not least, we set up an RL framework with virtual training

environments, and automate the drone photography by setting a view-score-based

reward function. However, the pipeline may be used for other similar tasks by

replacing the reward function and the virtual training environment. For example,

3D scanning automation with drones could be a potential investigation direction.
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4.6 Summary

In this dissertation, we introduced two drone photography frameworks that

respectively account for natural HRI and full automation. As the carrier of the

mobile camera view composing study, we expect our methods to bring new ideas to

the robotics community as well as make initial attempts in general AI field. We

hope to continue working in this direction and contributing to the brighter future of

technology.
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