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ABSTRACT

Shankar Kumar,Valli Sanghami. M.S.E.C.E., Purdue University, August 2019. In-
tersection Collision Avoidance for Autonomous Vehicles Using Petri Nets. Major
Professor: Lingxi Li.

Autonomous vehicles currently dominate the automobile field for their impact on

humanity and society. Connected and Automated Vehicles (CAV’s) are vehicles that

use different communication technologies to communicate with other vehicles, infras-

tructure, the cloud, etc. With the information received from the sensors present, the

vehicles analyze and take necessary steps for smooth, collision-free driving. This the-

sis talks about the cruise control system along with the intersection collision avoidance

system based on Petri net models. It consists of two internal controllers for velocity

and distance control, respectively, and three external ones for collision avoidance.

Fault-tolerant redundant controllers are designed to keep these three controllers in-

check. The model is built using a PN toolbox and tested for various scenarios. The

model is also validated, and its distinct properties are analyzed.
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1. INTRODUCTION

Transportation is one of the fields that has benefited from technological advancements.

With inventions in both hardware and software, driving has become less risky and

more comfortable. With the advancement of sensing, communication, and control

technologies, the number of deaths has dropped in recent years.

Some important safety features are Intersection Collision Avoidance and Cruise

Control. The cruise control system helps in maintaining a required safe distance from

the vehicle driving in the front, hence tailgating is avoided. Though the cruise control

system had been implemented in 1991 by Mitsubishi[19], it was just the beginning

with only a warning. The most recent advancements not only notify the driver but

also take control and avoid such scenarios by changing the speed via the throttle

mechanism or emergency braking systems. Another major obstacle in driving is

intersection collisions. Nearly one-third of accidents occur due to intersections in

rural and urban areas[27]. With V2X communications and with the information

collected from LIDAR (Light Detection and Ranging), RADAR, other sensors, and

real-time image detection, the intersection collision avoidance (ICA) system in the

vehicle can foresee the collisions and take necessary steps to avoid it via speed control.

These changes reduce risk and also improve driving experiences.

1.1 Literature Review

In[1], the authors proposed the priority-based techniques to prevent deadlock sit-

uations in intersections. Usually, when talking about the intersection collisions, the

vehicle which comes first to the intersection is given a higher priority, and other ve-

hicles wait until this vehicle crosses the intersection. But in the cases where several

vehicles arrive at the intersection at the same time and have conflicting signal phases,
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the problem arises on which vehicle should be given a higher priority. So, in those

cases, the authors suggested other priority techniques.

The authors of [2] talked about the vehicle dynamics which get input from systems

like the throttle mechanism and the braking system. Depending on the input collected

from the throttle and braking mechanisms, the system generates wheel torque. The

vehicle model takes throttle and brake inputs and produces longitudinal displacement

as output. This system is a cascade of power-train and vehicle models.

The intelligent Intersection Collision Avoidance System was introduced by the

authors in[5]. This modular system is flexible and consists of a few intelligent nodes

that are embedded inside the desired lane at the mid-point. And there is also a

base station that analyzes the data obtained from the nodes. As the vehicles pass,

the nodes embedded inside the lane record the time-stamp and vehicle information.

This data is sent to the base station which analyzes it and determines if a collision is

imminent. If so, then a warning is given to the vehicles at risk.

The authors of[8] mentioned the advantages of Petri nets in manufacturing cells

with multiple robots. Here, colored Petri nets are used in modeling and analyzing

the behavior of the cells, then the model is validated and simulated in 3D graphic

simulation.

The disadvantages of the Petri net, in general, are mentioned by the authors in[9].

The disadvantages mentioned are the construction of Petri nets for a large system and

the unavailability of inexpensive software explicitly for the Petri net usage. Also, the

reuse of Petri nets is restricted. These are some reasons mentioned for the confined

usage of Petri nets in academic institutions and research fields.

The authors of[10] introduced the concepts of the Electronic Stability Program

(ESP) and Electromechanical Parking Brake (EPB). The ESP is used for initiating

the braking operations by building up pressure by actuating the valves. Then, in the

stationary state, the cruise control is deactivated, and the EPB is activated. When

the cruise control is activated, the EPB is automatically deactivated.
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The Petri net controller design was introduced in[12]. For designing a controller

using place invariants, the constraints should be represented in linear inequalities that

consist of elements of the Petri net marking vector. If the constraints are written with

respect to a firing vector, then the controller will have maximal permissiveness only

if the net is safe. But if the constraints are represented in terms of a marking vector,

then the maximal permissiveness is guaranteed.

The authors of[16] introduced the first-order hybrid Petri nets and its dynamics.

The hybrid net consists of the dynamics that are both time-driven and event-driven.

The macro-events that occur in the hybrid Petri nets are those events that occur

when a discrete transition is fired or when a continuous transition is either disabled

or enabled. Different types of frames in the Controller Area Network were mentioned

in[15]. The data frame consists of Arbitration Field, the Data Field, the CRC Field,

and the Acknowledgment Field. Another type of frame is called a remote frame which

is similar to the data frame but without data. The error frame is a special message

that violates the formatting rules of a CAN message. If the message gets delayed,

then the overload frame is used: it represents completeness.

The history of Adaptive Cruise Control was mentioned in[19]. Around 1995,

the adaptive cruise control system was implemented. Rather than giving a simple

warning, it was able to take control and accelerate accordingly, but it was not able to

brake when the vehicle traveling in front of the host vehicle slowed down or stopped.

Later, the sensors were used, and after the iterative advancements, the cruise control

system has become full-fledged.

1.2 Contributions

The contributions of this thesis are summarized as follows:

• Intersection Collision Avoidance System and Cruise Control system are de-

signed.

• Controllers are designed to make sure the intersection collision is avoided.
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• Fault Tolerance techniques are implemented using redundant controllers to keep

the other controllers in check.

• Both Cruise Control, as well as Intersection Collision Avoidance systems, are

verified for different scenarios.

• Properties of the proposed Petri net model are analyzed.

1.3 Organization

This thesis proposes the modeling of Intersection Collision Avoidance and Cruise

Control System using Petri nets and analyzes the fault tolerance techniques and

the behavior of Petri nets. Chapter 2 deals with Petri net introduction, its types,

properties, advantages, and disadvantages. Chapter 3 introduces different types of

communications, in-vehicle, vehicle to vehicle, vehicle to pedestrian, and vehicle to

infrastructure. Chapter 4 introduces the design of models on intersection collision

avoidance and cruise control and the model design. Chapter 5 analyzes the properties

of the Petri net model. Chapter 6 concludes and presents future work.
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2. INTRODUCTION TO PETRI NET MODELS

The concept of Petri nets was first proposed by Carl Adams Petri in the year 1962.

The Petri net model consists of four elements: places, transitions, tokens, and weights.

Petri nets are nothing but a marked graph. It is also called a place/transition net(P/T

Nets). It has a rigorous mathematical definition that makes them representable. Petri

nets also provide a graphical way of modeling step-wise processes. The properties in-

clude liveness, boundedness, reachability, coverability, fairness, place invariant, tran-

sition invariant, and so on, which helps in the analysis of the system. Among the four

elements, the places are represented by a circle that indicates the achievable states

of the system. The transitions which are indicated by bars indicate the events or ac-

tions that change the state of the system. The arcs connect the places to transitions

and vice-versa. The tokens are represented by numerical values that may include the

state, signal, condition, or a physical object. The arcs consist of weights, normally

the weight of an arc is 1. If the weights are different from 1, it is mentioned explicitly.

A Petri net is a 5-tuple, Petri net = (P, T, F, W, MO) where,

• P consists of P1, P2.... -finite places.

• T consists of T1, T2.... - finite transitions.

• F is a subset of (P x T) U (T x P)- set of arcs (flow relations).

• W: weight function.

• M0: initial marking.

• P intersection T is a null matrix and P union T is not equal to a null matrix.
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A Petri net structure N = (P, T, F, W) without any specific initial marking is

denoted by N. A Petri net with the given initial marking is denoted by (N, MO),

where MO denotes the initial marking.

Fig. 2.1. Petri Net Example

In Figure 2.1[24], it can be seen that places are marked by P0, P1...P5. The

transitions are marked by T0, T1, T2, T3. We can also see that there are tokens

in P0, P1. So, the initial marking can be assumed as M0=[1 1 0 0 0]. The Petri

net should have a proper link between places and transitions for the system to work

properly. Connections cannot be made between a place to place or a transition to

transition. Hence a place is connected to a transition and vice-versa.

2.1 Enabling Transitions

By knowing the states and the way they change, the behavior or the flow of the

system could be easily determined. Consider w(P, T)=x: it indicates that the number

of tokens is x. A transition T is enabled, only if the place P has a minimum of x

tokens. If the number of tokens in place P is less than the arc weight, in this case, x,

then the transition is not enabled. And also, the firing of transition not only depends

on the arc weights and tokens but also on the fact that conditions, if any, are satisfied
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or if the event is happening. Also, if the transition is enabled, it takes the tokens

from the input place which are equal to arc weight number and gives away tokens to

the output places, the number of tokens being the same as the arc weight numbers.

Fig. 2.2. Transition Firing

From Figure 2.2[28], it is seen that there are two tokens in one input place and

one token in another input place. Since the weights are not mentioned in the arcs,

it is assumed to be 1. Now both the places have a minimum number of tokens for

the transition to fire. So, the transition fires and gives one token to the output place,

since it also has the arc weight one.

Figure 2.3[4] shows the Petri nets with different arc weights other than the default

number 1: the input places are P1 and P2, and the output places are P3, P4, P5.

The arc weight of P1 is mentioned as 2. It means that that place should have a

minimum of two tokens to make the transition T1 get enabled. So, only when P1

has a minimum of 2 tokens and P2 has 1 token, the transition T1 is fired. Once the

transition is fired, the tokens are given to the output places of that transition. It can

be seen that the arc weights of output places P3, P4 and P5 are 1, 2, 3 respectively.

Hence, when the transition is fired, it gives 1, 2 and 3 tokens to the places P3, P4,

and P5 respectively. Hence, the output would look like Figure 2.4[4]. After firing

T1, the tokens in the input places will change to 0, so the transition T1 is no longer

enabled.
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Fig. 2.3. Before Transition Firing

Fig. 2.4. After Transition Firing
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When a Petri net has a place that can accommodate an infinite number of tokens,

then the Petri net is termed to be Infinite net. If there is a certain limit to the

number of tokens it can accommodate, then it is known as a finite net. A transition

without any input place is called a source transition, and one without any output

place is called a sink transition. This means that the source transitions are enabled

indefinitely since the transition does not require any conditions to be satisfied to get

enabled. While this is the case for a source transition, the sink transition gets all

tokens but does not have any chance to give away those tokens. If a place acts as

both input and output to a transition, then the Petri net is supposed to be containing

a self-loop. Similarly, if a Petri net does not have any self-loops, then it is called as

pure. A Petri net that has all arc-weights as 1 is called an ordinary Petri net.

2.2 Marking

Each place contains an integer (positive number or zero) number of tokens or

marks. The number of tokens contained in a place P can be defined by the vector of

these markings, i.e., m transpose = (m1, m2, m3, m4, m5). The initial marking of

the Petri net in Figure 2.3[4] is thus,

mT = (2, 1, 0, 0, 0)

The marking defines the state of the Petri net, or more precisely, the state of the

system. The evolution of the state thus corresponds to an evolution of the marking

which is caused by the firing of transitions.

2.3 Working of Petri Net

Figure 2.5[22] illustrates the working of a Petri net that is used in daily life. The

example taken here is a vending machine. It can be noted that the Petri net looks

similar to a state diagram. From the figure, it is understood that the very first

transition is fired only when an order arrives. As the transition is fired, it enters
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the place which contributes to a waiting period after which the next processing work

is done. This transition has two outputs. One of them reaches the completion of

the order stage, and the other enters the waiting phase before entering the main

processing path.

Fig. 2.5. Vending Machine Example

In short, once the order arrives, it enters the waiting stage probably to request

resources. Then the processing takes place. Once, the processing is completed, then

the order is sent for delivery.

2.4 Properties

The Petri net helps us in analyzing the system and having in-depth knowledge

about the system. To discern the model, we need to inspect it by looking into their

properties which will help us to apprehend their working, what to expect, and what

not to expect from the model and also helps to improve its working. Some of the

important properties of Petri net are boundedness, reachability, reversibility, conser-

vation, etc.



11

2.4.1 Reachability

The reachability tree is one of the important properties of Petri nets. It gives

us better knowledge about the states that the model can traverse. For example, let

us consider an initial marking m0 and another marking m1. The reachability tree

determines if the marking m1 is attainable from the initial marking m0 or not. If

it is attainable, the marking m1 is termed to be one of the reachable states. Since

it entirely depends on the initial marking, reachability comes under the behavioral

property. So, the marking m1 is obtained by firing a transition from initial marking

m0.

Figure 2.6[21] is an example of the reachability tree. The first marking [2 0 0]

indicates that it is the initial marking. The places are represented by an oval shape.

From the initial marking, the new marking [1 1 0] is obtained when the transition t1

is fired. Now as the new marking is obtained, it is possible for transitions t3, t1 and

t2 to get enabled from that point. So, when the transition t3 is fired, the marking [1

1 0] becomes [1 0 0]. If transition t1 and t2 fires, the new markings would be [0 2 0]

and [1 0 1] respectively.

It is also possible for the reachability tree to include infinite states. Hence, to cur-

tail the tree, the omega factor was included, since an infinite tree leads to complexity.

The new tree or graph with omega is called pseudo-infinity, which maintains the tree

at a finite state. So, the tree without omega factor is called a reachability tree, but

the one with the omega factor is termed as coverability tree. When proceeding with

the tree, if no other marking is possible from a certain state, then it is termed as

the dead-end. It is understood that the new markings are called Frontier Nodes. If

there is a dead-end to a marking, then it is termed as Terminal Node. If a previous

marking is obtained, then they are called as Duplicate Nodes.
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Fig. 2.6. Reachability Graph
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2.4.2 Boundedness

A Petri net is called k-bounded if each place gets at most k tokens for all the

reachability states with reference to the initial marking m0; here k is an integer.

If k=1, then the net is termed as safe. Safeness is a special attribute to the bound-

edness property. In a safe net, the maximum number of tokens that any place in a

reachability tree can have is 1. So, all places have either zero or one token. If the Petri

net is not bounded, then it means that the reachability tree will grow indefinitely. So,

the reachability or coverability property is interrelated to the boundedness property.

Fig. 2.7. Example to Illustrate Boundedness

It is seen from Figure 2.7[20], there are four places P1, P2, P3, P4, and two

transitions T1 and T2. It is noted that the place P4 does not show boundedness. As

long as the transition T2 fires, the tokens in P4 will increase. It does not have any

way to give away those tokens, so it is unbounded.

2.4.3 Liveness

Liveness is another interesting property of the Petri nets with regards to the

initial marking m0. A Petri net is called live if, for every marking that belongs to

the reachability set, it is possible to fire all the transitions in the net at least once by
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some firing sequence. There are different levels of liveness from level 0 to level 4, for

the better interpretation of this property. Each levels are explained as follows:

• Level 0: The transition is never fired or in other ways, it means that it is dead.

• Level 1: The transition is fired at-least once. It is termed as Live 1.

• Level 2: If the firing transition t can be fired for a finite integral number of

times, then it is called Live 2 Liveness.

• Level 3: The transition t is fired indefinite times at-least once.

• Level 4: It may always fire, i.e. it is L1-live in every reachable marking in R(N,

M0).

2.4.4 Reversibility

The reversibility property of the Petri net is also called as Home State. It means

that the Net is Reversible if the initial marking is achieved by all the reachable

markings. Mathematically, a Petri net is called Reversible or Proper if m0 is reachable

from any m. The Net is also termed as Reversible if a marking covered by the initial

marking is obtained. In real-time applications, most of the systems can be reached

back to their original state or to the state that is close to the initial state unless there

has been some energy loss in between the process. So a Petri net is called reversible

if every node in the coverability tree contains m0, the initial marking. If it contains

some other nodes along with the initial marking, then its Partially Reversible.

2.5 Petri Net Modelling Constructs

2.5.1 Sequential

In the sequential execution of the Petri net model, the transitions are fired in

order i.e the transition t2 is fired only after transition t1 is fired. Thus, the firing

takes place in a sequence.
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2.5.2 Synchronization

Here, in synchronization, the transition is fired if more than one place acts as an

input to a single transition. Even if one input place does not satisfy the required

condition, then the firing of transition does not take place.

2.5.3 Conflict

In this type of scenario, one single place acts as an input to more than one tran-

sition. Hence, a conflict occurs to determine which transition to be fired first, if the

place has a sufficient number of tokens. It is solved using a non-deterministic way of

an approach by assigning probabilities to the transitions. The sum of probabilities

should add up to 1. The transition with higher probability will be fired first, and the

flow of the model proceeds in that direction.

2.5.4 Priority and Concurrency

In priority type, there is an inhibit arc apart from the normal one. So, if a place is

having an inhibit arc, then the transition connected to that place will be fired if there

is no token in that place. In concurrency, more than one place acts as an output to a

transition, and each place paves a way to its path. Figure 2.8[23] shows the different

structures of Petri net models.

2.6 Incidence Matrix

Let the Petri net PN= (P, T, F, W, MO), then the incident matrix will consist

of A: P x T, where P represents the places in the Petri net and T indicates the

transitions. They are the rows and columns of a matrix respectively.
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Fig. 2.8. Petri Net Structures
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For example: Consider the incident matrix A to be:∣∣∣∣∣∣∣∣∣
−1 0 1 0 0 0

−1 1 0 0 0 0

0 1 −1 0 0 0

∣∣∣∣∣∣∣∣∣
Let us assume the initial marking to be m0:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

2

0

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
And the firing vector to be U= ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

0

0

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
then the next reachable state with given matrices is calculated using the formula:

m1= m0 + A * U. This formula is time efficient in finding the next marking. Here,

m1, the next marking would be: ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

1

0

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
The above-given equation of finding the next marking m1 helps in determining

the reachable states for the complex systems by simply knowing the initial marking
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and sequence of firing transitions. The incident matrix B is derived from the output

matrix and input matrix both having a dimension of P x T where P denotes the

places which are represented by rows and T denotes the transitions in the Petri net

model which is columns. Considering,

B− =

∣∣∣∣∣∣∣∣∣
−1 1 1 0 0 0

−1 1 0 0 0 1

0 1 −1 0 0 0

∣∣∣∣∣∣∣∣∣
B+ =

∣∣∣∣∣∣∣∣∣
−1 0 0 0 0 0

−1 0 0 0 0 1

0 1 −1 0 0 0

∣∣∣∣∣∣∣∣∣
The incident matrix is calculated by the formula

B = B+ −B−

so, B= ∣∣∣∣∣∣∣∣∣
0 1 1 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣
2.7 Autonomous Continuous Petri Nets

Continuous Petri nets are a relaxation from discrete Petri nets. Continuous Petri

nets allow users to create a model with a real number of firings as well as tokens.

Figure 2.9[13] represents the representation of both continuous and hybrid Petri nets.

The inhibitory arc works in such a way that the transition does not fire until the

place has tokens.

It is used in the applications where a large number of tokens are used which causes

a large number of reachable markings, and it is possible to convert a discrete Petri

net to continuous and vice-versa.

Figure 2.10[26] is an example of a continuous Petri net. S1, S2, S3 are places that

are represented by thick circles or most of the time by two circles. The r1, r2, r3, and
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Fig. 2.9. Continuous and Hybrid Petri Net Representation

Fig. 2.10. Continuous Petri Net



20

r4 represents transitions which are also represented by thickening the outline to show

the difference between a continuous and discrete Petri net. The number of reachable

macro-markings of an n-place continuous Petri net is less than or equal to 2 to the

power n.

2.8 Autonomous Hybrid Petri Net

Hybrid Petri net consist of both discrete and continuous Petri nets. To be exact,

a hybrid Petri net consists of discrete places and discrete transitions, as well as,

continuous places and continuous transitions.

Fig. 2.11. Example of Hybrid Petri Net

Figure 2.11[25] illustrates the hybrid Petri net. The place P3, which is indicated

by a single circle is discrete while the other two places which are represented by the

thickening of circles are continuous. Similarly, T1 is a continuous transition since it
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is shaded. The union of both discrete and continuous Petri nets is termed as hybrid

Petri net. Another type of hybrid net is a hybrid dynamic net (HDN). It is similar

to HPN, but the firing rule for continuous transitions is different here. In the hybrid

dynamic net, the outgoing, and incoming arcs of continuous transition should have

the same arc weights.

2.9 Applications

Petri nets are easy to express due to their diagrammatic representation; it is similar

to state diagrams. Petri nets are used to model the systems in industries. But as

industries bloomed, and technologies improved, the simple Petri nets became fruitless

in certain aspects, like impossible to trace the messages sent via a communication

system. This drove the researchers to build the Petri nets with the basic net structure

but differs from the base net by some additional rules and few relaxations. So, different

Petri nets are developed and used for specific purposes.

2.9.1 Fuzzy Petri Net

Fuzzy Petri nets are used in the areas where precise control is expected and when

there is a need to transfer specific uncertain data[8].

2.9.2 Temporal Petri Net

Temporal Petri nets come into play when the simple Petri nets are not able to

deal with the properties like the eventuality, which expects certain places to have

tokens and certain transitions to fire eventually. Its applications are in alternating

bit protocol, modeling, and analyzing a handshake daisy chain arbiter, etc.



22

2.9.3 Stochastic Petri Net

Stochastic Petri nets play an important role in modeling, controlling, and ana-

lyzing the manufacturing systems. It is also used to analyze a system with regards

to the dead-lock. Deadlock is a situation that arises when a process goes into wait-

ing state when the resources it requested is held by another waiting state, which in

turn, is waiting for another resource. So, the state of the process remains unchanged

indefinitely causing the system to enter into a dead-lock.

The simulation of the Petri net helps in a better understanding of the model. The

visual output helps in better perception. Mostly, Petri nets, in general, are used in

areas like:

• Business Process Modelling.

• Artificial Intelligence.

• Data Analysis.

• Reliability Engineering.

• Communication networks like Expressnet, Fastnet, D-Net, U-Net, Token Ring,

Field buses, such as FIP and ISA-SP50.
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3. PROPOSED PETRI NET MODEL FOR

INTERSECTION COLLISION AVOIDANCE

3.1 Introduction

Autonomous cars are considered to be influential in the future world. All major

companies are invested in the research of autonomous cars. When autonomous cars

come into the market, it will not only help in smoothing the traffic flow but will

also ensure the accidents due to human error are drastically reduced. The driving

experience for the customers will also be manifold.

Autonomous vehicles are vehicles that drive without human guidance. Artificial

Intelligence plays a vital role. In short, the computer will get the information needed,

will process it, and will decide on the best outcome. Its impact on the future will be

astounding, particularly in areas like emergency help, parking, military, and also in

making travel easy for the differently-abled persons. And this is one of the reasons

for the automakers to jump into the race of building autonomous cars. Though few

autonomous cars are used for test-drive purposes, they are not commercially available

yet.

But there are challenges to overcome. Since Artificial Intelligence plays a deter-

mining role, the programming part becomes tedious. A small mistake may lead to

accidents. Other than this, hacking of the vehicle system proves to be a major set-

back, since it may lead to human fatalities. And also, operating the vehicles during

adverse weather conditions is another setback, as the road signs and lines may become

obscure.
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3.2 Cruise Control System

According to various statistics, at least one person dies in a crash for every second,

and one major reason behind this is due to the distraction of human drivers. When

traveling long distances, it is required for the drivers to have a complete concentration

throughout the journey, which is a great challenge. Hence, the cruise control system

is developed to ensure that the computer takes control so that the human drivers

can relax, and let the vehicle take control. Adaptive Cruise Control is a feature that

allows the cruise control system to take control and manage the desired speed to help

maintain smooth traffic flow. It gets the information of other vehicles in the path of

the host vehicle. If the vehicle traveling in front of the host vehicle suddenly decreases

the speed, the cruise control system comes into play and reduces the speed of the host

vehicle to prevent accidents. Thus, a cruise control system in the vehicle ensures that

the vehicle is accelerated or decelerated to maintain a safe distance from the target

vehicle without the intervention from the humans.

3.2.1 Design

Figure 3.1 indicates the Cruise Control System model. In this model, the velocity,

as well as distance controllers, are designed in such a way that the controllers are

internal. Desired distance and velocity are obtained by the way the model is designed.

The place p1 is the start point of the model. If there is some fault in obtaining the

information, then the model proceeds to a stop. If all goes well, the model enters the

next stage of the velocity controller.

Both p7 and p6 are the places that store the velocity of the host vehicle and

the target vehicle. The place ”display” indicates the velocity obtained after velocity

controller acts. If the velocity of the target vehicle is less than the host vehicle, then

the velocity of the host vehicle is reduced immediately. With the obtained velocity,

the place p12 stores the information of the distance at which the host vehicle should

follow the target vehicle i.e safe distance.
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Fig. 3.1. Cruise Control System
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In normal cases, a safe distance would be traveling 2 seconds behind the target

vehicle. During adverse weather conditions, it would be 4 seconds. Taking the dif-

ference in the safe distance that is to be maintained and currently maintained by the

vehicle into account, the velocity is reduced again, which is indicated by p19. Thus,

p19 is re-changed velocity. If the distance controller is not necessary, then the model

enters p11. This maintains the final velocity, which is the velocity of the host vehicle

before entering the distance controller. When a conflict arises, then the transition

with a higher priority is fired.

3.3 Intersection Collision Avoidance

A collision avoidance system, also known as a pre-crash system, forward-collision

warning system, or collision mitigating system, is an automobile safety system de-

signed to prevent or reduce the severity of a collision. It uses radar and sometimes

LIDAR and camera to detect an imminent crash. Intersection Collision Avoidance

prevents the collision at the intersection by taking control to reduce fatality rates

and property damage. According to the National Highway Traffic safety Administra-

tion(NHTSA), intersection collision is one of the top causes of accidents taking place

which is around 40 percent of vehicle collision i.e around 2 million crashes occur at

the intersections. The crashes at intersections occur mostly due to:

• Insufficient surveillance of the surrounding area (44.1 percent).

• Wrong assumptions about how other drivers would react (8.4 percent).

• Obstructed view when turning (7.8 percent).

• Misjudgment about the other drivers speed or the gap between vehicles (5.5

percent).

• Distracted driving (5.7 percent).

Accidents at intersections can occur easily even if there is a slight distraction or

uncontrolled speed. Some normally occurring crashes are due to rear-end collision,
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which occurs if a vehicle is closely following other vehicles. The percentage of such

crashes is higher than for the same scenario in a straight road. The other normal

scenario is turning without noticing a pedestrian or cyclist in the path. And there

are side-impact crashes, which occurs when one driver runs a red signal and T-bones

another car. Certain definitions involved in the communication between Vehicle to

Vehicles, Network, or Pedestrian are:

Vehicle ID: Each vehicle has a unique identification number.

Current Road Segment: Identifies the current road that the vehicle is using to get

to the intersection.

Arrival-Time: The time at which the vehicle gets to the intersection.

Exit-Time: The time at which the vehicle will exit the intersection.

Current Lane: Identifies the lane being used.

Using C-V2X communication all the details for the vehicles are collected and

shared, so any vehicle is aware of its surroundings and in a position to determine

future actions.

3.3.1 Collision Detection

Based on the location of the vehicle, moving direction, and velocity obtained,

the system predicts the probability of a potential collision and warns the driver ac-

cordingly. An intersection collision avoidance system can be designed to manage the

intersection traffic and to detect the collision. If a collision is detected, then the con-

trollers will act to reduce the speed of the host vehicle to avoid a collision. There are

certain conditions to be satisfied for a collision to occur in an intersection. They are

as follows:

• The vehicles traveling in the same intersection or one vehicle turning left.

• Time conflict.

• Space conflict.
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Figure 3.2[1] and 3.3[1] indicates the scenarios that cause space conflict and scenarios

that do not cause conflict. The green and blue lines indicate the path of two vehicles,

and the red color indicates the chances of overlapping paths of both vehicles. The

black lines indicate the intersection.

Fig. 3.2. Scenarios without space conflict

Fig. 3.3. Scenarios with space conflict

The intersection point is considered to be a square that is present at the heart of

the diagram. So, if two vehicles are assumed to be traveling at the same intersection

with the same space, same entry time as well as exit time, then the collision becomes

imminent. So, there should be no two vehicles entering and exiting the intersection

at the same time. If such a scenario exists, then the velocity of the vehicle with a

lower priority is reduced.

In Figure 3.4, the Intersection Collision Avoidance System along with the cruise

control system is shown. It can be noted that the system is without the controllers.



29

Fig. 3.4. Intersection Collision Avoidance System



30

The place p35 stores information about both vehicles obtained via V2X communica-

tion. The V2X communication sends data using a 5.9 GHz frequency band or using

the mobile network. The in-vehicle information is obtained using the Controller Area

Network (CAN). In the intersection collision avoidance system without controllers,

places p31 and p27 can contain two tokens. These places represent the entry as well

as the exit place in an intersection. So, if these places have two tokens, it means that

the exit and entry time of the two vehicles are the same, causing time conflict and a

higher probability of collision. In this model Figure 3.5, three controllers are designed

to make sure that the entry, as well as exit place, has exactly one vehicle at a given

time, to avoid intersection collision. The controllers make sure to follow this rule by

the speed change. Speed change would be made via the braking or throttle mech-

anism. Once the intersection has been crossed, the vehicle enters the cruise control

stage.

Table 3.1.: Functions of Places

Places Definitions

p1 Start of the Model

p2 Checks for disruptions

p3 stop

p4 Checks for intersection

p5 Enters the velocity controller

p6 The Velocity of the host vehicle

p7 The Velocity of the target vehicle

p8 Ensures the velocity controller is in process

p9 Final velocity

p10 Input to distance controller

p11 Ensures that safe distance is followed

p12 Enters distance controller

continued on next page
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Table 3.1.: continued

Places Definitions

p13 Information about distance followed

p14 Distance between both vehicles

p15 Distance followed

p16 Starts the process of re-changing velocity

p17 Ensures that final velocity is re-changed

p18 Difference between final and re-changed velocity

p19, p20 Re-changed Velocity

p21, p22 Final velocity

p23 Indicates the end of the cycle

p24 Start of Intersection Collision Avoidance system

p25 Exit information of host vehicle

p26 Exit information of another vehicle

p27 Exit place

p29 Entry information of host vehicle

p30 Entry information of another vehicle

p31 Entry place

p32 End of Intersection Collision Avoidance System

p34 Indicates the state before Intersection crossing

p35 Information on both vehicles

p36 Entry place Controller

p37 Exit place Controller

p38 Controller to indicate the intersection crossing

p39,p40,p41 Redundant Controllers
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Fig. 3.5. Intersection Collision Avoidance System with Controllers
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Figure 3.5 shows the Intersection Collision Avoidance System with controllers.

The places p25, p26, p29, p30 consists of exit and entry information of the host and

the target vehicle. Places p27 and p31 are exit and entry points.

The controllers are designed such that those two places do not contain more than

one token. There is another controller for the place p32. Place p32 indicates that the

intersection has been crossed by the vehicle. So, in total, there are three controllers

to ensure that the model is working fine. And three redundant controllers to check

the working of those normal controllers.

Limitations

The model has been designed and implemented in such a way that it is used for

simple intersections. But when there is a polygon intersection, the model fails. And

also, the space of two vehicles is considered to be the same, and one vehicle per lane

is considered here.

3.4 Fault Tolerance

The fault tolerance technique was introduced for Petri net controllers. It provides

tolerance in case of fault occurrences in the net. Any faults in the controller in the

net may cause the net to function abnormally, hence the fault tolerance technique

is used to detect place and transition faults. Faults in real-time can be defined as

conditions or scenarios that cause a device or a component to fail to perform in a

required manner. A fault may lead to the termination of the ability of an item to

perform a function. If the failure can be detected early, then changes can be made,

or places may be controlled to ensure that the functionality remains the same.

A place fault results in an incorrect token-load of a place i.e it changes the number

of tokens to be given to a place. A transition fault arises when the token-load of either

the input or output place - set of transitions is not appropriately updated following

the firing of a transition. We say that transition tj has a post-condition fault if
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no tokens are deposited at its output places, even though the tokens from its input

places are consumed. Similarly, we say that transition tj has a pre-condition fault if

the tokens that are supposed to be removed from the input places are not removed,

even though tokens are deposited at the corresponding output places. In this system,

the redundant controllers are designed to avoid faults. The use of d redundant places

enables the detection and identification up to:

d− 1

transition faults and up to d/2 place faults. Thus, the redundant controller detects

the faults at controllers.

For each controller, one redundant controller is designed to keep that controller

in check. By performing linear parity checks on the combined marking of the original

controller places and the additional redundant places, our methodology can detect

and identify faults in the redundant Petri net controller in a systematic manner. The

redundant controller is constructed in such a way that it does not interfere with the

already designed model, such as disrupting the transitions.

3.4.1 Design of Controllers and Redundant Controllers

The controllers are designed in such a way that the constraints are enforced using

the formula:

L ∗ q <= b

where the rows in L matrix deals with the number of constraints, q is the marking

vector. For designing the controllers, the formulas taken into considerations are:

L ∗ q0 + qc0 = b

where, q0 is the initial marking and qc0 is the initial marking of the Petri net controller.

−L ∗B = Bc
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where, B indicates the incident matrix of the Petri net model and Bc indicates the

incident matrix of the controllers. The constraints taken into account are such that

the number of tokens in places p31, p32 and p27 should be equal or less than 1.

M(p31)<=1

M(p27)<=1

M(p32)<=1

The place fault is given by:

qf (t) = q(t) + ep

where q(t) is the state that would have been reached if there are no faults and

ep is a place error vector

While designing the redundant controllers, extra places and tokens are added

to the original Petri net model. The controller’s state is changed according to the

transitions. These redundant controllers will obtain information related to faults.

The initial marking of the redundant controllers are given by,

qc0 =

 b− L ∗ q0
c ∗ b− c ∗ L ∗ q0
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The incident matrix of the redundant controllers is given by,

Br
c
T =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−1 0 0 −1 −1 −1

−1 0 0 −1 −1 −1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 −1 1 1 0

0 0 0 0 0 0

0 −1 0 −1 −2 −1

0 −1 0 −1 −2 −1

0 1 −1 1 2 0

0 0 1 0 0 1

0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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The parity check matrix is given by P=[-c I] where c matrix ensures that the

columns of the parity check P are not rational multiples of each other. The incident

matrix of the redundant controller is:

Br
c =

 Bc

c ∗Bc


Here, the c matrix is considered to be:

c =

∣∣∣∣∣∣∣∣∣
1 1 0

1 2 0

1 1 1

∣∣∣∣∣∣∣∣∣
D matrix D=[0]. To allow the redundant controllers to admit all the firing transitions

that are allowed in normal controllers, the D matrix should only have non-negative

integers.

P =

∣∣∣∣∣∣∣∣∣
−1 −1 0 1 0 0

−1 −2 0 0 1 0

−1 −1 −1 0 0 1

∣∣∣∣∣∣∣∣∣
If the obtained result is multiples of these arrays, then there is place faults in p1, p2,

p3, p4, p5, p6 respectively. 
1

1

1




1

2

1




0

0

1
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1

0

0




0

1

0




0

0

1


Hence, in this model, the place faults were determined and the transition faults

were assumed to be absent.
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4. ANALYSIS OF THE PETRI NET MODELS

4.1 Place Invariants

Invariants are one of the properties of the Petri net which does not depend on the

initial marking. It talks about the topographical structure of the net. The invariant

analysis is an important property of the Petri net since it describes the dynamic

process of the system. Place invariants are a set of places that contain constant

tokens for all possible markings.

P invariants can be used for determining the reachability states. It is a pre-

processing step. The weighted sum of the tokens in the invariant remains constant at

all markings, and the sum is determined by the initial marking of the Petri net. The

place invariants of a net can be determined using the formula,

X ∗ A = 0

where A is the N x M incidence matrix of the Petri net, with N being the number of

places and M the number of transitions of the net.

Multiplying a place invariant with a constant or adding two invariants will give

rise to another invariant. A P-invariant in which all entries are either 0 or 1 indicates

a set of places in which the number of tokens remains unchanged in all reachable

markings.

Figure 4.1 shows some P invariants associated with this model. When multiplied

with the Incident matrix, it gives a zero matrix. Each column represents one p-

invariant vector. In the first p-invariant vector the place p8 has 1 token. It can be

seen from the Cruise Control System, that this place always remains 1. Thus, the

p-invariant condition is satisfied.
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Fig. 4.1. P Invariants
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4.2 Transition Invariants

A property that does not vary and remain constant even after the firing of tran-

sitions is termed to be invariant. When the markings in the net return to its original

state, it is termed to be transition invariant. The order of the transition firing is

not important here. Whatever be the order a transition is fired, the cycle will be

complete. It is the same as the place invariant which can be used for reachability

analysis. A T-invariant is a vector with one entry for each transition. A T-invariant

indicates a possible loop in the net, that is, a sequence of transitions whose total

effect is null, i.e. which leads back to the initial state from which it started.

Multiplying an invariant with a scalar number gives back an invariant. If a Petri

net is defined by (P, T, F) each transition is assigned a non-negative number z as a

weight.

So, if a particular transition is fired z times, then the marking is not changed. Let

T includes a set of transitions t1, t2 till tn. Then, a transition invariant is defined as

the summation of z1*t1, z2*t2 till zn*tn. The transition invariant indicates a loop or

cycle. The formula for transition invariant is,

A ∗ T = 0

with A being Incident matrix and T invariant vector. In this model, the transient

invariant obtained is,
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T =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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5. CONCLUSIONS AND FUTURE WORK

5.1 Conclusion

In this thesis, the intersection collision warning system is designed and analyzed

along with the cruise control system in Petri net models. The Petri net controllers

are designed to make sure that the model is working fine. Redundant controllers

are formulated using the fault-tolerance technique to ensure proper working of the

controllers. These redundant controllers detect the place faults and help in preserving

the functionality of the controllers. The model is validated for different scenarios using

MATLAB PN toolbox.

5.2 Future Work

The given Petri net model can be upgraded by adding certain features that are

relevant to safety and data security. The features to improvise are related to,

• Adverse weather conditions.

• Cybersecurity.

• V2V communication.

5.2.1 Adverse Weather Conditions

In this thesis, the Petri net model was designed for typical weather elements. So,

in the case of adverse weather, this model is not suitable for implementation. Hence,

additional conditions should be implemented in such a way that the vehicle works

fine even during harsh weather conditions like snow, fog, rain, ice, etc.



44

5.2.2 Cybersecurity

Since this model was developed for autonomous vehicles, the protection of the data

becomes significant. If the vehicle is vulnerable to any cyber-attack, then it would

lead to complete havoc. Depending on the circumstances, it would lead to many

deaths. For the autonomous vehicles, the vehicle-to-vehicle communication transmits

information like velocity, the distance of a target vehicle, updates in infrastructure

like traffic signals, etc. Since a vehicle predicts its next action using this information,

the probability of this data being attacked is not to be taken easily. So, incorporating

certain features for the vehicle’s data security would be an extension of this model.

5.2.3 V2V Communication

This model barely covers the communication issues between two vehicles. V2X

communication is used to get real-time information in this model, but the model itself

does not deal with the communication part. Hence, the model can be improvised by

including a communication block along with other safety features.
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