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ABSTRACT

Chung, Dahjung Ph.D., Purdue University, August 2019. Person Re-Identification &
Video-based Heart Rate Estimation. Major Professor: Edward J. Delp.

Estimation of physiological vital signs such as the Heart Rate (HR) has attracted a

lot of attention due to the increase interest in health monitoring. The most common

HR estimation methods such as Photoplethysmography(PPG) require the physical

contact with the subject and limit the movement of the subject. Video-based HR es-

timation, known as videoplethysmography (VHR), uses image/video processing tech-

niques to estimate remotely the human HR. Even though various VHR methods have

been proposed over the past 5 years, there are still challenging problems such as di-

verse skin tone and motion artifacts. In this thesis we present a VHR method using

temporal difference filtering and small variation amplification based on the assump-

tion that HR is the small color variations of skin, i.e. micro blushing. This method is

evaluated and compared with the two previous VHR methods. Additionally, we pro-

pose the use of spatial pruning for an alternative of skin detection and homomorphic

filtering for the motion artifact compensation.

Intelligent video surveillance system is a crucial tool for public safety. One of

the goals is to extract meaningful information efficiently from the large volume of

surveillance videos. Person re-identification (ReID) is a fundamental task associated

with intelligent video surveillance system. For example, ReID can be used to identity

the person of interest to help law enforcement when they re-appear in the different

cameras at different time. ReID can be formally defined as establishing the corre-

spondence between images of a person taken from different cameras. Even though

ReID has been intensively studied over the past years, it is still an active research

area due to various challenges such as illumination variations, occlusions, view point
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changes and the lack of data. In this thesis we propose a weighted two stream train-

ing objective function which combines the Siamese cost of the spatial and temporal

streams with the objective of predicting a person’s identity. Additionally, we present

a camera-aware image-to-image translation method using similarity preserving Star-

GAN (SP-StarGAN) as the data augmentation for ReID. We evaluate our proposed

methods on the publicly available datasets and demonstrate the efficacy of our meth-

ods.
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1. INTRODUCTION

1.1 Video Heart Rate Estimation

Over the past several decades, physiological vital signs, such as heart rate, respi-

ration rate, have been widely used for the human health monitoring [1]. Especially,

the Heart Rate (HR) is an important physiological sign since we can monitor our

cardiac activity through it and cardiac diseases are directly connected to the human

life.

In order to define the human HR, we introduce how human heart operates. The

human heart has left and right sides which operate as a separate pump [2]. The left

side of the heart receives oxygenated blood from the lungs and pumps in through

arteries to the body tissues. The right side of the heat receives deoxygenated blood

from the veins and pumps it to the lungs for oxygenation. A heart cycle (a heart

beat) can be defined as a complete blood circulation: the left side pumps to the lung

while the right side of the heart pumps blood to the body and lungs. The Heart Rate

(HR) is defined as the number of heart beats per unit of time (beat per minute =

bpm).

Human HR can vary from 40 bpm to 200 bpm based on many factors such as

human body status, age or gender. HR can be divided into two types of range based

on the current state of the human body:

1. Basal or Resting heart rate range

The resting heart rate is defined as the heart rate when a person is not under

physical activity or in a statement of rest. The normal range of resting heart

rate varies based on the person’s age. The normal range is 70 to 130 bpm, 60 to

100 bpm and 40-60 bpm for the children age between 1 year to 10 years, adult

and athletes respectively [3].
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2. Target heart rate or Training heart rate range.

The target (or training) heart rate range is defined as the heart rate when a

person is under physical activity. In this case, normal range of target heart rate

differs based on the person’s age, gender and type of physical activity. Although

there are many variables to take in account, typical wide range of target hear

rate is 60 bpm to 180 ± 20 bpm [4].

Since HR is a crucial sign of monitoring human health, it has many applications

such as patient monitoring, diagnosis and athletes monitoring [5]. This emphasizes

the importance of heart rate estimation. Next, we will overview two groups of the

previous estimation techniques: conventional and video-based methods.

Among the conventional HR estimation methods, Electrocardiography (ECG) is

the most common technique in the medical applications. ECG records electrical signal

from the heart activity over the specific time to estimate HR signal. Conventional

method of HR estimation from ECG signal is called QRS detection method proposed

by Köhler et al. [6]. QRS waves correspond to the depolarization of the ventricles

of the human heart. Due to this characteristic, it can be used as basis for detecting

human heart rate. Although ECG signal has a lot of information related to human

health monitoring and we can estimate HR accurately, it is not accessible to common

people due to the cost.

Another conventional method is Photoplethysmography (PPG). Detection of the

cardiac pulse traveling through the body is referred to as Plethysmography (Plethys-

mos means increase in Greek) [7]. Photoplethysmography (PPG), first introduced in

1930’s [8], uses light reflectance or transmission for simple and low-cost HR monitor-

ing method. PPG is an optical technique that can detect the blood volume changes

in the microvascular bed of tissue [9]. It has a near infrared light source and a pho-

todetector to measure the small variation of light intensity in the reflected light from

the skin. This small variation is synchronized to the cardiac cycle due to the blood

volume changes. PPG technique has been used widely in many clinical applications

such as pulse oximeters (Heart Rate, Oxygen Rate), vascular diagnostics and dig-
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ital beat-to-beat blood pressure measurement systems [10]. Despite it’s simplicity

and inexpensiveness, PPG still has some challenges. First, PPG has less accuracy

than ECG and its performance heavily depends on the light source and different skin

tones. Although there have been intensive studies to reduce the motion artifacts in

PPG signal [11–13], it is still sensitive to physical motions of the subject since it

requires contact to capture the signal.

Although described methods (ECG and PPG) are able to estimate HR accurately,

they still have some critical limitations. First, for the accurate measurement, sensors

need to be attached to the subjects or patients’ body such as fingers or earlobes. In

some cases, these kinds of physical contacts are not possible. For instance, patients

who have tactile sensitivities or skin burn problem can not tolerate attaching de-

vices to their skin. Second, sensors have cables to transfer the signal. Theses cables

constraint the movement of the subject. For the case of long periods of monitoring

such as Intensive Care Unit (ICU), movement constraints cause significant inconve-

nience. Besides, in real life application, if the subject wants to measure the heart rate

during workout, this cable limits the movement of the subject. Thus, it is valuable

to elaborate the non-contact means of HR monitoring in both medical and real life

applications to overcome these drawbacks.

One approach of non-contact HR monitoring is using thermal imaging [14]. This

approach is detecting the small temperature changes in skin region of thermal image

which is caused by cardiac activity. Although using thermal imaging gives us more

information related to cardiac activity, it requires special equipment which is very

expensive. Expensive cost regulates this approach in the narrow field such as medical

studies or laboratory level of work.

Another approach of non-contact HR monitoring is video-based HR estimation.

Video-based HR estimation, known as videoplethysmography (VHR) is a safe and

low-cost technique originated from the PPG technique. VHR can be defined as the

methods that use human face videos to estimate HR signal.
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Epidermis

Dermis

Skin Surface
Melanin

Carotene

Hemoglobin

Bilirubin

Fig. 1.1.: Basic concept of VHR with human skin optical model [15]

Figure 1.1 shows the basic concept of VHR with the human skin optical model.

As shown in Figure 1.1, human skin has two different layers underneath the surface:

Epidermis and Dermis. If the light comes to the skin surface, the large amount of

the light will be reflected by the skin surface. The rest of the light penetrates into

the inside of skin. Some of light is absorbed/reflected in the first layer Epidermis

by Melanin or Carotene. The remaining part of the light go deeper to Dermis and

be absorbed/reflected by Hemoglobin or Bilirubin. This third light reflection from

Hemoglobin in arteries and capillaries reflects the blood volume changes in the vessels

which is same as PPG principle. The camera which is the optical device captures the

reflected light intensities from the skin to form the image or video sequence. Since one

of the reflection carries the heart rate information, we are able to estimate PPG signal

from the video by using various processing techniques. Because of its simplicity and

low-cost, VHR can be used in many applications including medical patient monitoring

or home monitoring using mobile phone camera or webcam. Additionally, it could

also inform surveillance systems and provide an alert when someone’s heart rate is

too high or low.
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In past years, Video-based Heart Rate Estimation (VHR) had a lot of attrac-

tion and is being intensively studied. Although current VHR methods can estimate

HR with certain level of accuracy, there are still challenges to overcome. Current

challenges that VHR is facing include:

1. Diverse Skin Tones

Diverse skin tones make difficulties in VHR methods due to PPG-like principle.

Since the basic idea of VHR is the observation of reflected light from the skin,

the reflected light from the darker skin tone has very low signal strength and

carries less information related to HR.

2. A wide range of typical human HR

As discussed earlier in this chapter, human HR has a wide range (40 bpm - 200

bpm) based on many variables such as skin tone, age and gender. There might

be a large amount of noise in lower or higher frequency band. Noise presence

in those bands are challenges in HR estimation.

3. Light Condition Dependency

Since VHR is originated from PPG, the illumination source is a very important

factor. Firstly, ambient light is recommended. Although, we do not have to use

ambient light for VHR thanks to previously proposed methods, the low signal

strength is still challenging if we have too bright light.

4. Motion Artifact

Like pulse oximeter (Physical contact PPG device), VHR is also suffering from

motion artifact. Although many methods show accurate HR estimations when

there is no motion involved, signal-to-noise ratio becomes very low when there

is motion involved. This artifact is the most challenging problem in VHR and

it still has the room for improvement.
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1.2 Person Re-Identification

The security budgets for governments and corporations are increasing over the past

decades to protect borders, public transportation, malls, parking lots and homes [16].

As a result, more Closed-Circuit TV (CCTV) systems were employed and the number

of video surveillance systems installed has exponentially increased. According to a

study by Cisco, Internet video surveillance traffic is projected to increase tenfold

between 2015 and 2020 [17].

As the volume of surveillance video has grown exponentially in recent years, mak-

ing the continues monitoring of surveillance data is impossible. For instance, in air-

port, we need to have the continuous monitoring and a real-time alert system based

on the surveillance video to prevent incidents. However, there will be hundreds or

thousands of camera installed in the airport area and it is impossible to have someone

watch the feeds from all cameras and detect the suspicious actions or events.

In order to address this issue, intelligent video surveillance system capable of real-

time monitoring and automated analysis has been intensively studied in the image

processing and computer vision community [18, 19]. The common goal of intelligent

video surveillance system is to extract meaningful information efficiently from the

large volume of surveillance data. Intelligent video surveillance system has various

compute vision tasks to analyze the surveillance video. It includes the object detec-

tion, object tracking, action recognition, crowd analysis, human behavior analysis,

anomaly detection and person re-identification etc.

Object detection is a task to detect the semantic objects of a certain class such

as human or cars in the video [20–22]. Object detection can be used to detect ob-

jects to understand the scenes in the videos such as human faces, vehicles. Object

tracking is to track the given object as they move around in the frame throughout

the time [23, 24]. Object tracking can be applied to track specific person or vehicle

in complicated surveillance videos. Action Recognition can be defined as identifying

the action occurring in the video and classifying them into action categories [25–28].
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Crowd analysis is a method to interpret the movement of groups or objects [29, 30].

This can be used to monitor the crowded scene and to detect the dense crowds.

Anomaly detection is a technique to identify the unusual patterns in data that were

not expected behaviors [31]. It has many applications such as intrusion detection,

fraud detection and public safety monitoring [32].

Lastly, Person re-identification (ReID) is a fundamental task associated with in-

telligent video surveillance system. ReID can be formally defined as establishing the

correspondence between images of a person taken from different cameras at differ-

ent times [33]. It refers to tracking a person across a network of non-overlapping

cameras [34]. Given single/multiple images or a video sequence outlining a person’s

appearance in the field of view of a camera, ReID is the task of recognizing the same

person within the list of images/videos collected from multiple cameras with non-

overlapping field of view (gallery). Person re-identification can be used to find the

person of interest in the massive volume of surveillance video such as forensic search.
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PRID 2011 ILIDS-VID

Fig. 1.2.: Sample images of two subjects captured from two different cameras in the

PRID2011 [35] and the ILIDS-VID [36] datasets
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Camera 1 Camera 3 Camera 4

Camera 2 Camera 3 Camera 4

(a) DukeMTMC-reID [37]

Camera 4 Camera 5 Camera 6

Camera 1 Camera 3 Camera 6

(b) Market-1501 [38]

Fig. 1.3.: Sample Images showing challenges related to camera variations in the ReID

problem

Even though ReID has been intensively studied over the past years, it is still

an active research area due to various challenges. Current challenges in Person Re-

identification are :

1. Inter/Intra variations

Inter-class variation means that different people can look similar across the

multiple camera views. Intra-class variation means the same individuals may

look very different when they were observed by different camera views. The

larger the space and time gap between probe and gallery images, the greater

probability will be that people may appear with different clothing or carried

objects [39]. In addition, there is a higher chance to have significant illumination
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changes which makes hard to distinguish people in the images. Since these

variations are multi-modal and complex to model, most of the models trained

with a specific pair of cameras do not generalize well to new set of cameras with

different viewing conditions [40].

2. Pose variations and Occlusions

As we have the longer time separation between views, there will be more signif-

icant changes in the background. This may also cause a lot of pose variations

in the person as well as occlusions by some other objects. Figure 1.2 shows the

example of person’s pose variations and the occlusions by the other objects

3. Scalability and Different Views

There will be a lot of different resolutions from different cameras. In addition,

each camera has different point of views. These constraints introduces more

variations into data and we need to consider these variations when we create a

model for ReID.

4. Lack of data and expensive annotation process

Annotating person identity label along with the camera label is very time con-

suming. Ideally in ReID, we need to collect images of each person appearing in

each camera view at different time in order to learn a robust model to cross-

camera and person variations. However, this annotating process gets more

time-consuming and extensive as we have a larger camera network.

Figure 1.2 and Figure 1.3 show sample images describing the differences in camera

viewpoints and illumination conditions in four different datasets. It demonstrates that

it is challenging to distinguish the same person in the images taken from different

cameras. For example, in Figure 1.3b, each row shows the same person’s images

taken from different cameras. Even though the person is wearing same clothes across

the camera, the color of their clothing looks significantly different in images. This is

even challenging for human to distinguish the same person. Most of these challenges
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are due to camera variations such as different settings or environments of multiple

cameras. In addition, collecting and annotating a large dataset for multiple cameras

is a very time-consuming and expensive process.

1.3 Contribution Of The Thesis

In this thesis, we developed new methods for video heart rate estimation and

person re-identification. The main contributions of the thesis are listed as follows:

• Improving Video Heart Rate Estimation

1. We propose a new VHR method using temporal differencing filter and

small variation amplification instead of ICA. We observe that green channel

signal has all the information we need for HR estimation. Besides, based on

PPG principle, HR signal is carried in only small temporal variation. Thus,

to compute variation, recursive temporal differencing filter is used. On the

temporal differencing filtered signal, we use small variation amplification

that amplifies only small variation and reduce large variation.

2. To get more stable estimations, we propose reduction of signal range for

bandpass filter using a cutoff frequency search. Instead of using fixed

cutoff frequency for bandpass filter, we search for a tighter and adaptive

frequency range starting from the highest peak based on the fact that the

highest peak reflects the strongest periodic HR.

3. We propose an alternative method of skin detection, spatial pruning, for

noise removal within face for the future direction. Even though skin detec-

tion is performing well on some samples, its performance heavily depends

on the lighting condition or the subject’s skin tone. Since we compute

the average over the skin, if we can not detect any skin points, we will

not get any points for future estimation. To get more stable and accurate
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information, we propose the use of K-means clustering on the histogram

of tracked face.

4. We provide the motion artifact model based on the illumination incident

angle principle. We show that this motion artifact exists in the modulation

form with HR signal and produces a lot of error in HR estimation. For

the future direction, we propose a usage of homomorphic filter for the

separation of illumination from a given image to mitigate addressed motion

artifact from illumination.

• Person Re-Identification using a Two Stream Siamese CNN

1. We propose a two stream CNN architecture where each stream is a Siamese

network. This architecture can learn spatial and temporal information

separately. By having two separate networks, each network can learn its

own best feature representation.

2. We propose a weighted two stream training objective function which com-

bines the Siamese cost of the spatial and temporal streams with the objec-

tive to predict a person’s identity. For the ReID task, spatial features are

more discriminative than temporal features [41]. The weighted cost func-

tion controls the individual contribution of the two streams accordingly.

To our best knowledge, this is the first time a weighted two stream cost

function is proposed for ReID.

3. We evaluate our proposed method on two publicly available datasets. Our

proposed method outperforms or shows comparable results to the existing

best perform methods on two public datasets.

• Person Re-Identification using a Similarity Preserving StarGAN (SP-StarGAN)

1. We propose a similarity preserving StarGAN (SP-StarGAN) which is an

improvement of StarGAN [42]. To improve the quality of the generated im-

ages, we propose to add a identity mapping term and multi-scale structural
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similarity (MS-SSIM) to the generator loss. SP-StarGAN can be used not

only for ReID data augmentation but also for general multi-domain image-

to-image translation. Compare to the previous method (Camstyle [43]),

our method has almost 15 times less parameters to train while producing

competitive generated image quality as well as competitive accuracy in

ReID.

2. For ReID, we use SP-StarGAN to generate more training samples across

different cameras. In addition, we propose to employ the Re-Ranking

method [44] for ReID as post processing along with SP-StarGAN generated

samples in order to improve ReID matching accuracy. We demonstrate

that Re-Ranking shows higher performance in ReID accuracy with better

quality generated images.

1.4 Publications Resulting From Our Work

1. D. Chung, and E. J. Delp, “Camera-Aware Image-to-Image Translation Using

Similarity Preserving StarGAN For Person Re-identification,” To appear, Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Workshops, June 2019, Long Beach, CA.

2. D. Chung, K. Tahboub and E. J. Delp, “A two stream siamese convolutional

neural network for person re-identification,” Proceedings of the International

Conference on Computer Vision, pp. 1983-1991, October 2017, Venice, Italy.

3. D. Chung, J. Choe, M. E. OHaire, A.J. Schwichtenberg, and E. J. Delp, “Im-

proving video-based heart rate estimation,” Proceedings of the IS&T Interna-

tional Symposium on Electronic Imaging, February 2016, San Francisco, CA.

4. J. Choe, D. Chung, A. J. Schwichtenberg, and E. J. Delp, “Improving video-

based resting heart rate estimation: A comparison of two methods,” Proceedings
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of the IEEE 58th International Midwest Symposium on Circuits and Systems,

pp. 1-4, August 2015, Fort Collins, CO.
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2. LITERATURE REVIEW

2.1 Video Heart Rate Estimation

In 2008, Verkruysse et al. shows that PPG signal can be remotely estimated by

using human face video with normal ambient light [7]. In their work, they demonstrate

the effect of the spatial averaging over the face to improve Signal Noise Ratio (SNR)

of pulse signal. Through their work, the feasibility of VHR has been proven and it

has attracted significant attention by many people. Sun et al. [45] also demonstrates

the feasibility of VHR using the low-cost camera with spatial averaging approach.

In this work, Sun shows that we can estimate HR from the video obtained by a

high-resolution camcorder or a inexpensive webcam.

Several VHR methods have been developed over the past years based on following

two basic assumptions from its PPG-like principle.

1. Small color variations in the cheek/face region reflect blood volume changes

(i.e., heart-beats). This is sometimes known as “micro-blushing”.

2. Given the rhythmic nature of heart-beats, the color variations will also follow

an oscillatory pattern of cardiac cycle.

In the rest of the section, we will review four categories of video-based HR esti-

mation: (1) Independent Component Analysis (ICA) Approach, (2) Motion Detec-

tion/Amplification Approach, (3) Chrominance-baed Approach and (4) Other Ap-

proaches.

2.1.1 Independent Component Analysis (ICA) Approach

Independent Component Analysis (ICA) approach is the most popular and well-

studied approach to estimate HR from the face videos. It is first proposed by Poh
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(and Picard) et al. [46] in 2010. This method uses Independent Component Analysis

(ICA) to decompose 1D signals obtained from the video to separate HR signal. Poh’s

method begins with face detection to localize the estimation in region of interest

(ROI). The average of the pixel intensity of the 60% width of face region is obtained

in each RGB frame to form three 1D signals denoted as xi(t) where i = 1, 2, 3. Three

1D signals x1, x2 and x3 are normalized with z-score normalization to form a zero-

mean and unit variance signal using Equation 2.1

x′i(t) =
xi(t)− µi

σi
(2.1)

where µi, σi are mean and variance of xi(t) respectively. Then normalized signals

x′i(t) are decomposed into three underlying source signals using ICA. ICA assumes

that the given signals are linear mixture of source signals [47] as shown in Equation

2.2

y(t) = Ax(t) (2.2)

where y(t) = [y1(t), y2(t), y3(t)]
T , x(t) = [x1(t), x2(t), x3(t)]

T and 3x3 mixture matrix

A. ICA estimates a decomposition matrix W that maximize the non-Gaussianity

of each source. After estimating W , underlying sources x̂(t) can be determined by

Equation 2.3.

x̂(t) = Wy(t) (2.3)

Poh’s method always choose the second component of ICA output. Then, they com-

pute Power Spectrum Density (PSD) to estimate average HR. The highest peak within

[0.75 - 4] Hz is determined as the estimated pulse frequency. However, choosing al-

ways second component x̂2(t) might be inaccurate choice even though they claim that

it typically contains strongest periodic signal.

In 2011, Poh (and Picard) et al. has extended their own work using ICA ap-

proach [48]. Figure 2.1 shows the overall block diagram of Poh’s second work. For

the remainder of this thesis, this method will be referred as Picard method [48].

Since Picard method will be used as a benchmark for comparison purpose, we are

elaborating more details about it.
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Fig. 2.1.: The block diagram of the Picard method [48].

Figure 2.1 shows the overall flow of the Picard method. Picard starts with the

same face detection. The average of pixel intensities within 60% width of detected

face is computed to form three 1D signals just like Poh’s method. The 1D signals

are detrended using a high-pass like filter based on a smoothness priors [49] in order

to remove the slow trend in the signal. The parameter for the detrending filter sets

the high pass cutoff frequency. Picard denotes this parameter as λ. This parameter

is empirically determined by the sampling rate of the data. We set λ = 100 which

corresponds to 0.021fs where fs is the sampling rate (in our case, fs = 30 Hz which

is the frame rate of our video sequence) for the future experiment. The detrended

signal is normalized with same normalization (Equation 2.1) to form a zero-mean

and unit variance signal. ICA is used on the three 1D normalized signals to separate

the HR signal from the other noise signals using same Equations 2.2 and 2.3. The

Power Spectrum Density (PSD) is obtained for the three ICA components. Unlike

the Poh’s method, Picard chooses the ICA component which has the highest peak in

PSD within the resting HR range (0.7 to 2 Hz). This is the choice based on the idea

that strongest periodic signal is the our target signal HR among the source signals.

After a 5 point moving average filter (M = 5), the signal is bandpass filtered using a

128-point Hamming window (filter order Nf = 127) with fixed cutoff frequency. The
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Low cutoff frequency (fl) and high cutoff frequency (fh) are 0.7 and 2 Hz respectively.

Next, the bandpass signal is interpolated to a higher sampling frequency fsnew = 256

Hz using cubic spline interpolation. In the last block of Figure 2.1, the Inter-Beat-

Interval (IBI), is the time interval between two peaks in units of seconds, is determined

to estimate the HR. The IBI block detects peaks and finds the interval between them

to estimate the HR. Finally, the IBI signal is filtered using the NC-T filter [50] in the

IBI block with fixed parameters un = 0.4 and um = 1.0 Hz. This filter can remove

the unstable HR estimation by filtering the rapidly changing values. Poh and Picard

methods show the mathematical approach to separate the heart rate signal from the

observed noisy signal. However, they have only tested on the face zoomed-in and no

motion videos which is not feasible in real life. Besides, ICA has the limitation that

we can only recover same number of source signal as the number of input signal.

Monkaresi et al. [51] improved Poh’s method by choosing the ICA components

using K-Nearest Neighbor classification. Monkaresi’s method has similar overall flow

with Picard method. It begins with face tracking. 60% width of tracked face is

used to compute the average in order to form three 1D signals. Three 1D signals go

through same detrending, normalization and ICA. Then, noise reduction is done by

using comparing the current window estimation with the previous window estimation.

Unlike the Picard method, they propose a new estimation method using two machine

learning techniques (kNN and linear regression) without component selection. PSD

of three ICA components are computed and nine features are obtained from PSD.

Six of them include the highest peak frequencies in each component before and after

noise reduction. The index of the spectrum peak in the PSD of each component form

the rest of features. Using obtained nine features and kNN/linear regression, model

is trained and used for estimating HR.

McDuff et al. also has extended Picard’s method by using using a five band

digital camera [52]. In this work, to overcome the ICA limitation described above,

they demonstrate that increasing the number of input signal by using a five band

camera gives better performance in HR estimation. McDuff uses a five band digital
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camera which has Red, Green Blue, Cyan and Orange band sensors. Although this

method outperforms their previously proposed method, Picard method, the five band

camera is not widely used in practice.

Additionally, Choe et al. improves the Picard method [48] by using an adaptive

cutoff frequency for the bandpass filter (AFR) to achieve a more stable HR esti-

mate [53]. For the rest of this thesis, this method will be referred as AFR method [53].

In Figure 2.2, the white blocks depict Picard method and the gray blocks illustrate

extensions/adaptations used in the AFR method. AFR uses an adaptive cutoff fre-

quency range instead of a fixed cutoff frequency range for the bandpass filter. AFR

selects frequencies by targeting those within the typical range of human heart rate

and by ignoring oscillatory signals that may be present in the background signal (i.e.,

lighting, camera vibration).
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Fig. 2.2.: The block diagram of the our previously published AFR method [53].

AFR begins with face and background region detection. Background region is

selected in the flat wall area behind the subject. Two sets of 1D RGB signals from

both regions are detrended and normalized. The ICA and PSD processes are the same

as the Picard method. Adaptive cutoff frequencies are determined for the bandpass
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filter in several steps. First, AFR forms frequency clusters in each PSD from both

face and background regions which are the candidates for the cutoff frequencies for

bandpass filter. A frequency cluster is a range of neighboring frequencies that are

determined by thresholding the PSD. Frequency Clustering, background removal and

adaptive frequency range are done in the PSD domain by following steps:

1. Weak signals are ignored when the clusters are formed. If P [k] < tr ·Pmax, then

it is determined as weak signal and ignored where P [k] is the PSD and Pmax is

the maximum power. Thresholds tr = 0.1(10%) is determined empirically.

2. To form clusters, repeatedly merge the clusters if two clusters are neighbors. tn

[Hz] is used to determine the neighboring clusters. Threshold tn is chosen as

0.1 Hz (6 bpm) empirically.

3. Compute the sum of the power (energy) of each cluster ci.

4. Starting from the highest energy cluster in face region, choose a cluster ci∗ which

meets the criteria: d > tm where d is given by Equation 2.4

d =
n−1∑
k=0

|P1[k]− P2[k]| (2.4)

where P1 is the PSD of cluster 1 and P2 is the PSD of cluster 2. Threshold tm

is chosen as 0.4 empirically.

5. Add margins to fi∗l -fi∗h for the selected cluster ci∗ using Equation 2.5 and 2.6

fal = max(fi∗l − tn, fl) (2.5)

fah = min(fi∗h + tn, fh) (2.6)

where i∗ is the index of selected cluster, fi∗l -fi∗h is the frequency range of ci∗ .

The margin tn is as same as the parameter from step 2.

Then, (fi∗l -fi∗h) is used as a adaptive frequency range for following bandpass fil-

ter block. While Picard is using a fixed frequency range (0.7 - 2 Hz), AFR is using
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adaptively narrowed down frequency range for bandpass filter. Once the signal is

bandpass filtered, the IBI computation of Picard is done. Through estimating adap-

tive frequency range with background removal, AFR achieves improvement in terms

of accurate estimation.

2.1.2 Motion Detection/Amplification Approach

Rubenstein et al. proposed a new method of VHR by detecting subtle changes in

the video [54]. The basic idea of his work is that we can amplify the small temporal

changes in the videos which are invisible from the human naked eyes.
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Fig. 2.3.: The block diagram of Rubenstein’s method [54]

Figure 2.3 shows the overall block diagram of Rubenstein’s method. The sequence

of images (frames) are fed into their system as input. In the first block, spatial

decomposition, frames of the video are decomposed into the different frequency bands.

To decompose the video, they compute a full Laplacian pyramid [55] or Gaussian

pyramid by downsampling the frames of video. The purpose of spatial decomposition

is to suppress the artifacts and increase signal-to-noise ratio. Then, for the heart

rate estimation application, temporal filtering is done using the frequency band of

typical HR range 0.4-4 Hz (24-240 bpm). This temporal filtering block produces the

small motion magnification effect. They have provided the justification of temporal

bandpass filtering by proving the relationship between temporal filtering and motion
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magnification. The analysis is given in term of 1D since it can be directly expand to

2D.

I(x, t) denotes the image intensity at position x and time t. As image goes through

motion, it can be expressed and approximated with a first-order Taylor expansion,

I(x, t) = f(x+ δ(t))

≈ f(x) + δ(t)
∂f(x)

∂x

where I(x, 0) = f(x) and δ(t) is the displacement (subtle motion). Let B(x, t) be the

temporal bandpass filtered of I(x, t) given by following equation.

B(x, t) = δ(t)
∂f(x)

∂x
(2.7)

Then, motion magnified image will be given

Ĩ(x, t) = I(x, t) + αB(x, t)

≈ f(x) + (1 + α)δ(t)
∂f(x)

∂x

By assuming the first-order Taylor expansion holds for the (1 + α)δ(t), we obtain

Ĩ(x, t) ≈ f(x+ (1 + α)δ(t)) (2.8)

If we magnify the subtle motion δ(t) directly,

Î(x, t) = f(x+ (1 + α)δ(t)) (2.9)

we can easily check that Î(x, t) = Ĩ(x, t). So it is justified that subtle motion magni-

fication is same as temporal bandpass filtering by showing the equality of Equation

2.9 to 2.8.

After temporal bandpass filtering, different amplification factor α is computed

for each spatial band by using user input parameter λ. Finally, amplified spatial

bands are reconstructed into one output video for the final result. If we set our

region of interest as face region and use this method, we can see the subtle red color

changes which represent the blood perfusion (HR). Although this method is very



22

intuitive and shows graphical output, it is very sensitive to the subject’s motion since

it is magnifying the motion. Besides, the performance is heavily based on the input

parameters.

Balakrishnan et al. [56] estimated HR by detecting subtle head motions. Their

basic concept is based on that the cardiac movement of blood from the heart to the

head causes the subtle periodic head movement. A person’s head video is fed into

their system as an input. First, head motion is estimated by feature tracking and the

resulting motion model is called trajectories. Then, trajectories are temporal filtered.

Next, PCA is used to project the temporal filtered motion information to 1D signals.

In PCA, only eigenvectors corresponding to the first five eigenvalues are selected.

Finally, to estimate HR, peak detection is used. This work is a novel and creative

approach. However, it also turns out that sensitiveness makes it less feasible in real

life application.

2.1.3 Chrominance-based Approach

To address the motion artifact problem in ICA and motion detection/amplification

based approaches, De Haan et al. proposed a chrominance-based VHR method using

the ratio of two normalized color signals [57]. Based on the skin optics model shown

in Figure 1.1, they have made several assumptions. The reflected light from the skin

has two different components.

1. The diffuse or reflection component

This component is the reflection or diffusion from the layers (Epidermis, Dermis)

underneath the skin surface. It carries the color variation information which is

synchronized with the cardiac cycle.

2. The specular reflection component (Directly reflected from the skin surface)

It is the light component reflected by the skin surface which contains the color

information of the illumination and no pulse signal.
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Besides, they assume that the specular reflection affects all three color channels in

the same way (by adding the identical specular fraction to each channel under the

white light). Their main assumption is that the non-local intensity variation and

specular reflection causes main distortion in the pulse signal. They also assume the

standardized skin tone for the subject. They introduce a model for the intensity of a

given pixel based on the described assumption [57]

Ci = ICi
(ρCdc + ρci + si) (2.10)

where the C = {R,G,B}, ICi
is the intensity of the light source, i is the frame index,

ρCdc is the dc component of the reflection, ρci is the signal caused by the pulsations

and si is the specular reflection component. To remove the si component which is

all same for each color channel (based on their assumption), they propose several

different color ratio models such as XOverY , Fixed and XsminαYs.

For instance, their estimated pulse signal S is modeled with XOverY by Equation

2.11

S =
Xn

Yn
− 1 (2.11)

where Xn = R−G and Yn = 0.5R + 0.5G−B.

De Haan et al. has extended his own work for the further improvement [58].

They introduce a new model called ’signature’ which is the unique characteristic of

the pulse available in the average pixel values of skin region. The normalized blood-

volume pulse vector ~Pbv is modeled using Equation 2.12

~Pbv =
[σ( ~Rn), σ( ~Gn), σ( ~Bn)]√

σ2( ~Rn) + σ2( ~Gn) + σ2( ~Bn)]
(2.12)

where σ(x) is the standard deviation of x.

Wang et al. [59] have extended De Haan et al. method by exploiting spatial redun-

dancy. Wang’s method begins with subject’s face tracking for motion compensation

denoted as global motion compensation. Within the tracked face, the pixel displace-

ments is estimated using optical flow called local motion compensation. After the

motion compensation steps, the difference of same location pixels between adjacent
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frames is concatenated to form the signal. Next, spatial pruning is done to select the

optical inliers. In spatial pruning block, first skin and non skin classification is done

using OC-SVM. Then, in the proposed temporally normalized color space, they get

the reliable points by checking the geometric transformation of pixel. Finally, they

use adaptive band-pass filtering and PCA decomposition to get the final estimation

of HR signal.

2.1.4 Other Approaches

Apart from ICA, many other approaches have been proposed over past years.

Another main approach of VHR method is Region of Interest (ROI) based approach.

This approach focuses on the locating good region in skin for HR estimation. Tasli

et al. propose a new ROI based method using adaptive regions within the face while

other methods are using fixed ROI [60]. This work begins with face detection and

facial landmark feature tracking using the active appearance model [61]. Adaptive

ROI is defined based on the facial landmarks and used for computing green channel

average to form 1D signal. Next, to obtain the periodic HR signal, they process

outlier removal using Equation 2.13 and 2.14

p(x, y) ∈ Outlier, if ∆(x, y) ≥ 3 ∗ σ(R) (2.13)

∆(x, y) = ||p(x, y)− µ(R)||2 (2.14)

where p(x, y) is the pixel intensity in the selected region R and µ(R), σ(R) are the

mean and variance of region R. Then, normalization and detrending are done for

final estimated HR signal.

Feng et al. propose another ROI based method using dynamic ROI and K-means

Clustering [62]. It begins with a fixed ROI region on the skin region. Then, ROI is

divided into M x N non-overlapped square blocks. For each block, average of green

channel pixel intensity is computed and it is temporal filtered with bandwidth (0.75
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- 4) Hz. Then, M x N 1D signals are obtained and Cross Correlation and SNR are

computed for each signal using Equation 2.15 and 2.16

γ = max
u

(

∑
n[f(n)− f̄u][g(n− u)− ḡu]√∑
n [f(n)− f̄u]

2
[g(n− u)− ḡu]2

) (2.15)

where f(n), g(n) are two 1D signals, u is a shift parameter, γ is the correlation

coefficient and f̄u, ḡu is the average of f(n) and g(n),

SNR =
S(fHR)∑ fs

2
f=0 S(f)− S(fHR)

(2.16)

where S(f) is the PSD of given signal f(n), S(fHR) is the Power at the estimated HR

frequency(highest peak from fixed ROI) and fs is the sample rate. At the same time,

they compute the motion masks to avoid the hair or line points in the ROI. From

the motion mask, they remove some blocks which involves motion distortion. Using

K-means Clustering with two features (γ, SNR), they choose dynamic ROI to remove

some blocks which has low signal strength. Finally, by averaging and overlap-adding,

they obtain the final estimated HR signal.

Feng et al. has extended their own work based on the optical skin model [63]. To

discuss the motion artifact, they model the optical signal of remote PPG as

Ii(t) = αiβi(S0 + γiS0Pulse(t) +R0)M(t) (2.17)

where i ∈ {R,G,B}, S0 is the average scattered light from ROI, R0 is the diffuse

reflection light from the surface, αi is the power of ith color light, βi is the power of

diffuse reflection light from ith color light and M(t) is the motion modulation. First, it

tracks the ROI using speeded-up robust features (SURFs) points within detected face

and KLT method. Next, 1D signals are obtained by averaging and initial bandpass

filtered to remove S0 and R0 effect in the model. Then, an adaptive color difference

is done between green and red channels using Equation 2.18 (this block called Green

Red Difference (GRD))

GRD(t) =
IG(t)

αGβG
− IR(t)

αRβR
= (γG − γR)S0Pulse(t)M(t) (2.18)
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where αGβG, αRβR are estimated from the average pixel intensities IG(t) and IR(t).

After GRD, to remove motion term M(t), an adaptive bandpass filter is used with

the initially estimated HR.

Besides the ROI based approach, there is also a weighted signal approach. Yan

et al. propose another weighted signal approach method [64] using Red, Green and

Blue Channels. In their work, they use the forehead area as their ROI and ROI is

tracked in each frame. Next, they compute average over ROI to obtain 1D signals for

Red, Green and Blue Channels denoted as x1(t), x2(t) and x3(t) respectively. Then,

to maximize the signal-noise-ratio, the fixed weighted averaged of three signals is

computed based on the Equation 2.19

I(t) =

∑3
i=1wixi(t)

3
(2.19)

where i = 1, 2, 3, wi is fixed weighted averaged signal (w1 = 0.59, w2 = 0.3 and

w3 = 0.11). wi is determined based on the fact that green signal has the most

information for HR and blue has the least information. Finally, I(t) goes through

wavelet transform for de-nosing purpose and bandpass filtered.

Kumar et al. propose a weighted signal approach by combining the color signals

with adaptive weights [65]. Their work also starts with the tracking facial landmarks

from the detected face. The face is divided into the sub regions and these subregions

are tracked using KLT method. Then, sub regions are divided into 20 x 20 pixel

blocks. Within 20x20 pixel blocks, the average of green channel is computed to form

1D signals. For each 1D signals, the Goodness metric Gi is computed to estimate

signal weights using Equation 2.20

Gi(PR) =

∫ PR+b

PR−b Ŷi(f)df∫ B1

B2
Ŷi(f)df −

∫ PR+b

PR−b Ŷi(f)df
(2.20)

where [PR− b, PR+ b] denotes a small range around the initial estimated pulse rate

PR, [B1, B2] is the bandwidth of the bandpass filter, Ŷi(f) is the PSD of the 1D signal
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and i is the sub block index. Finally, the final estimated HR signal p̂(t) is computed

using Equation 2.21

p̂(t) =
n∑
i=1

Giŷi(t) (2.21)

2.2 Person Re-Identification

We introduced the challenges in person re-identification in Section 1.2. Over

the past years, the performance of ReID methods have improved by adopting new

features, using metric learning techniques, and the use of semantic attributes and

appearance models [41,66–72].

Most of the traditional approaches proposed for person re-identification uses low-

level features in the form of color and texture histograms and exploit metric learning

to find a distance function in which distances between images from the same class

are minimized and distances between different classes are maximized [68, 69, 73–75].

More recently, deep learning based methods have been proposed to improve the per-

son re-identification accuracy [44, 76–79]. In addition, multiple datasets have been

made available for testing, these include: Viewpoint invariant pedestrian recognition

dataset (VIPeR) [66], person re-identification (PRID2011) dataset [35] and the iLIDS

video re-identification (iLIDS-VID) dataset [36]. VIPeR contains a single image per

appearance (single shot), whereas recent datasets, such as PRID2011 and iLIDS-VID,

contain multiple images per appearance (multi-shot). Larger-scale ReID datasets have

been released more recently: Market-1501 [38] and DukeMTMC-reID [37]. Compare

to PRID2011 and iLIDS-VID, Market-1501 and DukeMTMC-reid has more number

of persons, images per person and number of cameras.

In the rest of this section, we will review five categories of person re-identification:

(1) Feature learning approach, (2) Metric learning approach, (3) Deep learning ap-

proach, 4) Generative Adversarial Network Approach and (5) Other approaches.
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2.2.1 Feature Learning Approach

In person re-identification, the input is assumed to be bounding boxes outlining

persons appearances in two different cameras. Each appearance is represented by a

single or multiple bounding boxes. A common approach is to divide a bounding box

into a number of horizontal strips and to extract low-level features from each strip.

In [66], an ensemble of local features (ELF) is constructed by using the eight color

channels corresponding to the three separate channels of the RGB, YCbCr and HSV

color spaces with the exception of the value (V) channel. Thirteen Schmid [80] and six

Gabor [81] filters are also used to model texture feature. Sixteen bin histograms are

constructed for each of the 19 filter responses and for the eight color channels. The

histograms are concatenated to form a high dimensional feature vector for each image.

Other approach is the use of the local maximal occurrence feature (LOMO) based on

multi-scale Retinex to estimate HSV color histograms used for color features [41]. The

scale invariant local ternary pattern (SILTP) descriptor is used to model illumination

invariant texture [82]. In [67], a hierarchical Gaussian descriptor (GOG) is proposed

and is based on the mean and covariance information of pixel features within patches

and region hierarchies. Color and texture features are usually concatenated to form

a high dimensional feature vector which is used as an input for learning methods.

In the rest of the subsection, we describe some of the best performing feature

extraction methods in more details:

Ensemble of Local Features (ELF)

Gray et al. [66] proposed a method that learns simultaneously an ensemble of classi-

fiers and a set of discriminative features. Low level features are consist of color his-

tograms and texture information and they are extracted within local patches. Eight

color channels corresponding to the three separate channels of the RGB, YCbCr and

HSV colorspace are used along with nineteen texture channels. Schmid [80] and Ga-
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bor [81] filters were used to extract texture channels by convolving filters with the

luminance channel. Schmid filters are formulated as

F (r, σ, τ) =
1

Z
cos(

2πτ

σ
)exp(

−r2

2σ2
) (2.22)

and are used to learn to viewpoint and pose invariant features. Z refers to normal-

ization constant and τ , σ are hyper-parameters to be tuned. Gabor filters are used

with vertical and horizontal strips. Sixteen bin histograms are formed for all the

texture filter responses and for the eight processed color channels. The histograms

are concatenated to form a high dimensional feature vector. Then, a feature vector

is used the input of metric learning methods.

Local Maximal Occurrence Features (LOMO)

LOMO [41] uses the scale invariant local ternary pattern (SILTP) descriptor [82]

using HSV color space. SILTP is an improved operator over LBP(Local Binary Pat-

tern) [83]. Even though LBP has a invariant property under monotonic gray scale

transforms, it is inefficient with the nosiy images. SILTP improves the invariance to

intensity scale changes by employing a scale invariant local comparison tolerance. In

addition, LOMO employs the sliding window and the maximal occurrence among all

sub-windows in the same horizontal position. Three-scale pyramic was built and the

final feature descriptor was achieved by concatenating all the computed local maximal

occurrences.

Hierarchical Gaussian Descriptor (GOG)

Matsukawa et al. propose to use a hierarchical model stems from the appearance

structure of person images [67]. To achieve the feature representation, GOG employs

the part-based model [84]. Images are divided into regions by using horizontal stripes

of the image. For each region, local patches are extracted. Each patches are described

through a Gaussian distribution of pixel features (patch Gaussians). The mean and

co-variance are used to model Gaussian distributions of each patch. The final fea-

ture descriptor is form by concatenating four descriptors from different color spaces

followed by L2 normalization [85].
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2.2.2 Metric Learning Approach

We now describe some of the classification/metric learning methods that have

been used in ReID. The keep it “simple and straightforward metric learning” method

(KISSME) [68] and cross-view quadratic discriminant analysis (XQDA) [41] are widely

used metric learning techniques for ReID. Both approaches belong to the class of Ma-

halanobis distance functions. KISSME, based on a likelihood ratio test, casts the

problem in the space of pairwise differences and assumes a Gaussian structure of the

difference space [68]. XQDA extends Bayesian faces and the KISSME approach by

learning a subspace reduction matrix and a cross-view metric jointly. A closed-form

solution is computed by formatting the problem as a generalized Rayleigh quotient

and using eigenvalue decomposition [41]. In [86], the training images are selected

and re-weighted based on visual similarities with the query image and its candidate

set of images. A weighted maximum margin is trained online and transferred from a

generic metric to a candidate specific metric. In [87], a multi shot approach is based

on the combination of random projections for dimensionality reduction and random

forests for classification. A relative distance comparison model which maximizes the

likelihood that a pair of correct match has a smaller distance than that of a wrong

match pair along with an ensemble strategy is introduced in [88]. In [89], person

re-id is formulated as a block sparse recovery problem and in [90] is formulated as a

graph matching problem. In [91], images for a person trajectory are clustered hier-

archically to mitigate the problems faced by Fisher Discriminate Analysis (FDA). A

viewpoint-invariant descriptor along with sub-image rectification and poses estima-

tion is proposed in [92].

In the rest of the subsection, we describe some of the best performing metric

learning techniques in more details:

Keep it Simple and Straightforward Metric Learning (KISSME)

The keep it simple and straightforward metric learning (KISSME) method [68] uses



31

the class of Mahalanobis distance functions. Given two feature vectors xi and xj, the

Mahalanobis distance function is formulated as

d2M(xi, xj) = (xi − xj)T M (xi − xj) (2.23)

where M is a positive semi-definite matrix. dM refers to the similarity metric between

two person images in person re-identification. The goal of the method using the class

of Mahalanobis distance functions is to learn the matrix M . KISSME method test

the hypothesis H0 (dissimilar pair) versus H1 (dissimilar pair):

δ(xi, xj) = log
p(xi, xj|H0)

p(xi, xj|H1)
(2.24)

The problem is be re-formulated as

δ(xij) = log
f(xij|θ0)
f(xij|θ1)

(2.25)

in the space of pairwise differences xij = xi − xj with zero-mean assumption.

Assuming a Gaussian structure of the difference space, Equation 2.25 can be

rewritten as

δ(xij) = log

( 1√
2π|

∑
yij=0 |

exp(−1/2xTij
∑−1

yij=0 xij)

1√
2π|

∑
yij=1 |

exp(−1/2xTij
∑−1

yij=1 xij)

)
(2.26)

where ∑
yij=1

=
∑
yij=1

(xi − xj)(xi − xj)T (2.27)

∑
yij=0

=
∑
yij=0

(xi − xj)(xi − xj)T (2.28)

and xij is the symmetric pairwise differences.

The likelihood ratio can be reformulated by taking log as

δ(xij) = xTij

(∑−1

yij=1
−
∑−1

yij=0

)
xij. (2.29)

The matrix M is obtained by re-projection of M̂ =
(∑−1

yij=1−
∑−1

yij=0

)
onto the cone

of positive semi-definite matrices.
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Cross-View Quadratic Discriminant Analysis (XQDA)

Liao et al. [41] extend the Bayesian face and KISSME [68] methods to cross-view met-

ric learning method. The XQDA considers to learn a subspace W = (w1, w2, ..., wr)

∈ R with cross-view data while simultaneously learning a distance function. The

distance function with the subspace W is defined as

dW (x, z) = (x− z)T W (
∑′−1

I
−
∑′−1

E
)W T (x− z) (2.30)

where
∑′

I = W T
∑

IW and
∑′

E = W T
∑

EW . To optimize the projection direction

W such that σE(w)/σI(w) is maximized, Rayleigh Quotient

J(w) =
W T

∑
EW

W T
∑

IW
(2.31)

is used. The maximization of J(w) is solved employing the generalized eigenvalue

decomposition in a similar way as in LDA.

2.2.3 Deep Learning Approach

Deep learning is a method that uses neural networks consisting of multiple layers

and non-linear activation functions. Recently, deep learning [93, 94] has shown sig-

nificant performance improvement in many different fields such as natural language

processing [95, 96], and graphical modeling [95, 97] and computer vision tasks [98].

LeNet [99] was the first successful case of convolutions neural networks developed by

Yann LeCun. LeNet was trained on MNIST dataset to perform the digit recogni-

tion. Even though LeNet successfully demonstrates the feasibility of Convolutional

Neural Network (CNN), it did not get big attention because it was not feasible to be

applied to the real-world applications due to the lack of computation power. With

the recent progress in graphics processing units (GPUs), deep learning has gotten a

lot of attention especially in computer vision community [100]. Besides, many public

datasets are introduced such as ImageNet [101, 102], PASCAL VOC [103, 104] for

image classification and SPORTS-1M [105] for action recognition. Along with the

larger datasets, CNN had shown a significant improvement in performance due to
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the ability to learn more sophisticated features. The first few convolution layers in

CNN are able to capture lower level features such as edges whereas the deeper convo-

lution layers are able to learn higher level features by incorporating previous layer’s

features [106,107]. The convolution layer can be defined as

xlij =

m1−1∑
a=0

m2−1∑
b=0

ωaby
l−1
(i+a)(j+b) (2.32)

where m1xm2 is the filter size, l is the layer number, y is the input to the l-th convolu-

tion layer (the output of the previous layer) and ω is the weights to learn. AlexNet [98]

was proposed by using larger convolution filters, max pooling and Rectified Linear

Unit (RELU) as non-linear activation. RELU is defined as

f(x) = max(x, 0) (2.33)

where x is the input to the RELU. The max-pooling is the down-sampling layer

for reducing the spatial size of the activation maps. In addition, AlextNet employs

the heavy data augmentation which is a method to create extra training images by

image rotation, translations or horizontal/vertical flipping to prevent over-fitting.

VGGNet [108] uses a series of small size convolution filters such as 3 x 3 to reduce

the total number of parameters. GoogleNet [109] uses the inception modules to have

various receptive field using 1 x 1 convolution filters, 3 x 3 convolution filters, and 5 x

5 convolution filters. More recently, Residual Network (ResNet) is proposed in [110].

He et al. [110] propose the residual block which contains two convolution layers with

a shortcut connection. The output of the residual block becomes F (x) +x where x is

an input and F (x) is the output of convolution layers. ResNet has shown that we can

train deeper layers without performance degradation with the shortcut connections.

To train the neural network, many optimization techniques are introduced such

as stochastic gradient descent [111] (SGD) with momentum or the Adam optimizer

[112]. In addition, to implement the neural network algorithm, many deep learning

frameworks such as Torch [113], TensorFlow [114], Pytorch [115], Caffe and Caffe2

[116] are introduced.
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Until recently, CNN architectures [94] have not been used for the ReID due to the

small size of public datasets. With the release of larger datasets, recent methods have

demonstrated the feasibility of the use of CNNs for ReID [117, 118]. A filter pairing

neural network (FPNN) is proposed as a unified solution to extract features and learn

photometric and geometeric transforms in [117]. In [118], feature extraction layers

are followed by a cross-input neighborhood difference layer to compute the differences

in feature values across the camera views.

After this initial work, deep learning ReID methods extended [117, 118] and in-

corporate metric learning and part-based learning [119–121]. In [119], a cosine layer

connects two sub-networks and jointly learn color, texture and a similarity metric.

Later, Cheng et al. [120] employed a multi channel part-based CNN to jointly learn

both global and local features of the human body. The network is trained using triplet

images and a triplet loss function is used to learn the network model. In [122], single

image and cross-image representations are combined in a single network. A deep

learning network for learning features from multiple domains is proposed in [121]. A

domain guided dropout (DGD) method [121] is shown to improve feature learning.

In [123], a Siamese Long Short-Term Memory (LSTM) model that can process image

parts sequentially is described. The use of LSTM enables the capability of mem-

orizing the spatial dependency and selectively propagating the context information

throughout the network.

More recently, deep learning based methods have been described such as RNN-

ReID [124], SVDNet [78], IDE [125], Re-Ranking [44] and TJ-AIDL [79]. To exploit

the temporal information for ReID, the use of recurrent neural network (RNN) with

the Siamese structure is proposed in [124]. An optical flow image is concatenated to

the YUV image and comprises the input to the deep learning network. For the remain-

der of this thesis, we will refer to the ReID technique proposed in [124] as the RNN-

ReID technique. Si et al. [126] propose the dual attention match network to learn

context aware features while performing the attentive comparison simultaneously. Be-

sides, it uses a Siamese network with triple loss, de-correlation loss and cross-entroy
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loss. In [127], deep Siamese attention network is proposed for video-based person re-

identification. By employing attention mechanism, the model can learn which parts

in which frames are discriminative and important for person-identification. Sun et

al. [78] propose to use Singular Vector Decomposition (SVD) [128] to optimize the

deep learning model.

In addition, Zheng et al. [125] proposed ID-Discriminative Embedding (IDE) using

ResNet [110] to train a ReID model as a classifier. In [44], they propose a re-ranking

method using k-reciprocal Encoding inspired by [129]. This method can be used with

any initial ranking. We refer this method [44] as Re-Rank for the rest of this thesis.

In the rest of the subsection, we describe some of the previous deep learning meth-

ods in more details:

ID-Discriminative Embedding (IDE) [125]

IDE uses the softmax loss to learn the ID-Discriminative embedding for person re-

identification. This method trains a person re-identification model as image classifi-

cation task. It uses ResNet-50 [110] as the backbone and fine-tunes from ImageNet

pre-trained model. ResNet-50 has 34-layers with 3-layer bottleneck block, resulting

in a 50-layers in total. Each person ID is used as the class label for the softmax loss.

RNN-ReID [124]

Figure 2.4 shows the overall flow of RNN-ReId method. McLaughlin et al. propose

to use both YUV image and optical flow images as the input to exploit spatial and

temporal information. First, RNN-ReID process each input for different time stamps

with CNN. The CNN is consist of three convolution layers and one fully-connected

layer. Then the result of CNN is fed into RNN layer for each time stamps. Temporal

average pooling is used to summarize the video features into a single vector. For the

final training loss, Siamese cost is computed between feature vectors captured from

camera A and camera B.
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Fig. 2.4.: A overall block diagram for RNN-ReID method [124]

2.2.4 Generative Adversarial Network Approach

Generative Adversarial Networks.

Goodfellow et al. [130] proposed the Generative Adversarial Networks (GANs) which

learns generative models through an adversarial process that is training a generative

model and a discriminator model simultaneously. As Figure 2.5 shows, GANs are

consist of two sub-networks: a generator network G and a discriminator network D.

The goal of GANs is learning to generate realistic fake images with the generator

network while learning to distinguish between real and fake images with the discrimi-

nator network. More specifically, G learns the mapping from noise variable z to image

space G(z; θG) where θG is the generator parameters, whereas D tries to maximize the
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Fig. 2.5.: A overall block diagram of GAN [130]

probability of assigning the correct label to both real images and generated images .

Therefore, GANs final loss function can be formulated as [130]:

min
G

max
D

V (G,D) = Ex[logD(x)] + Ex[1− logD(G(z))]. (2.34)

As G and D play the two-player minmax game, G can generate more realistic images

while D can distinguish generated images.

In recent years, GANs has been used in many applications including image gen-

eration [131] and image-to-image translation [42,132,133]. Radford et al. [131] intro-

duced deep convolutional generative adversarial networks (DCGANs) that have some

architectural constraint for stable training and they have demonstrated the applica-

bility for image generation. One of the extensions of GANs, Pix2Pix [132], used a

conditional GANs to learn the relationship between the output and input image for

image-to-image translation. Pix2Pix [132] has the limitation that it requires paired

training data. To overcome this limitation, a coupled generative adversarial network

(CoGAN) was introduced to learn the joint distribution across domains without hav-

ing the paired training data.

Next, cycle consistency adversarial networks (CycleGAN) [133] employed a cycle-

consistency term in the adversarial loss for image-to-image translation without having

paired samples. Figure 2.6 shows the overall block diagram of CycleGAN. CycleGAN
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(a) A overall flow

(b) Detailed mapping flow

Fig. 2.6.: A overall block diagram of CycleGAN [133]

has two Generators G and F and two discriminators DX and DY . Generator G

learns the mapping from domain X to Y whereas generator G learns the mapping

from domain Y to X. Discriminators DX and DY learn to distinguish the fake images

for each generator. AS shown in Figure 2.6b, the real image in domain X goes through
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generator G. We then have generated image in domain Y and this generated image

goes through generator F to reconstruct the images in domain X. To preserve a

cycle-consistency, L2 Loss is computed between the reconstructed image and the real

image. The full objective function of CycleGAN can be formulated as

L(G,F,DX , DY ) = Ladv(G,DY , X, Y ) + Ladv(F,DX , Y,X)

+ λLcyc(G,F ),
(2.35)

where where λ controls the relative importance of the two objectives,

Ladv(G,DY , X, Y ) = Ey[log(DY (y)] + Ex[log(1−DY (G(x))], (2.36)

Ladv(F,DX , Y,X) = Ex[log(DX(x)] + Ey[log(1−DX(F (y))], (2.37)

Lcyc(G,F ) = Ex[||F (G(x))− x||1] + Ey[‖|G(F (y))− y||1]. (2.38)

In Equation 2.35, 2.36, 2.37 and 2.38, G is the mapping function from domain X

to domain Y , DY is the discriminator to distinguish generated image G(x) from real

sample y. Besides, F is the mapping function from domain Y to domain X, DX is

the discriminator to distinguish generated image F (y) from real sample x.

CycleGAN has the limited scalability that it can only learn the mapping between

two domains. This requires multiple models to be trained in order to translate images

across multiple domains. To address this problem, Choi et al. [42] proposed a unified

generative adversarial networks (StarGAN) which allows us to learn the mapping

between multiple domains with a single model. We describe details of the StarGAN

[42] in Chapter 5.

Generative Adversarial Networks Approaches in ReID

Even though larger ReID datasets are available, the number of samples are still limited

to train CNN models due to the expensive annotation process. Thus, over-fitting still

can happen due to the lack of training samples in ReID dataset. To address this

problem, some data augmentation methods have been proposed [37, 43, 134]. Zhong
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et al. [134] proposed a random erasing technique which randomly selects the rectangle

region and erases it with random values to avoid the over-fitting problem. In [37],

DCGAN [131] was used to generate unlabeled person images. They also proposed

the label smoothing regularization for outliers (LSRO) to assign the stable labels for

the generated images. LSRP cam be formulated as

LLSRO = −(1− ε) log p(y)− ε

C

C∑
c=1

log p(c), (2.39)

qLSR(c) =

1− ε+ ε
C
, c = y

ε
C
, c 6= y

(2.40)

where ε ∈ [0, 1] is a hyper-parameter, C is the number of classes and c ∈ 1, 2, ..., C.

More recently, Zhong et al. [43] introduced a scene style transferred image gen-

eration using CycleGAN [133] as a data augmentation method for ReID. They also

described improved label smoothing regularization (LSR) for generated images to ad-

dress small portion of unreliable data. We will refer this method [43] as Camstyle for

the rest of the thesis.

Zhang et al. propose a Crossing Generative Adversarial Network (Cross-GAN)

[135] for learning a joint distribution for cross-image representations in an unsuper-

vised manner. Cross-GAN employs the variational auto-encoder and adversarial layer

to learn the latent representation. In [136], Similarity Preserving GAN (SimpGAN)

is proposed to adopts the generative adversarial networks with the cycle consistency

constraint to transform the unlabeled images from the source domain style to the tar-

get domain style. SimpGAN is used to model the cross-dataset domain style transfer

in ReID.

In addition, Deng et al. [137] proposed a image-to-image translation model across

different dataset domains while preserving self similarity and domain dissimilarity.

Their method consists of an Siamese network and a CycleGAN. In [79], Transferable

Joint Attribute-Identity Deep Learning (TJ-AIDL) was introduced to learn attribute-

semantic and identity discriminative features simultaneously and transfer them to
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the target domain without collecting additional data from the target domain. In

order to reduce the dataset domain discrepancy, Wei et al. [138] proposed a Person

Transfer Generative Adversarial Network (PTGAN) using a CycleGAN to learn the

relationship between two different dataset domain.

CamStyle Adaptation for ReID [43]

CamStyle uses CycleGAN to generate scene style transferred images as extra training

images. This method is to generate more images within one dataset domain but with

different camera domains. Given a dataset with L different camera views, C2
L different

CycleGAN models are separately trained for each pair combination of camera. To

encourage the style-transfer to preserve the color consistency between generate image

and the original image, identity mapping loss is added to the CycleGAN loss. The

identity mapping loss is defined as:

Videntity(G,F ) = Ex[||F (x)− x||1] + Ey[‖|G(y)− y||1] (2.41)

where the variable notations are same as CycleGAN. All images are resized to 256x256.

The generator has 9 residual blocks and four convolution layers. The discriminator

follows 70x70 PatchGANs architecture [132].

2.2.5 Other Approaches

When the majority of clothing worn tends to be non-discriminative, ReID becomes

very challenging. Attributes-based re-identification methods try to solve this problem

by incorporating semantic attributes [139]. ‘Jacket’, ‘female’ and ‘carried object’ are

all examples of semantic attributes. Layne et al. [70] has shown the feasibility of

the semantic attributes for ReID. This method learns an attribute-specific, parts-

based feature representation with attribute learning technique. Semantic attributes

are mid-level features learned from a larger dataset a prior [140]. In [141], semantic

attributes are combined with the low level features and is shown to improve the

performance of ReID. In [142], CNN is used to learn a ReID embedding and predict



42

the person attributes simultaneously. This multi-task CNN learning integrates the

person classification loss with the attribute classification loss.
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3. IMPROVING VIDEO HEART RATE ESTIMATION

In this chapter, we describe the proposed method to improve existing video-based

Heart Rate Estimation methods. We then describe the dataset that we used for the

experiment and compare the performance with the Picard method and AFR method

described in the Section 2.1.1.

3.1 Proposed Method

To mitigate described challenges in section 1.1, the present study employed small

variation amplification, described in detail later, instead of ICA. Building on the

strengths of previous approaches [65] we will only assess the green channel signal.

Additionally, since HR is reflected in small color changes in skin region, using small

variation amplification allows us to amplify the small color variations and attenuate

large variations. To obtain a more stable estimation of the HR, we use a new approach

to estimate the cutoff frequencies of the bandpass filters used before the Inter-Beat-

Interval (IBI) computation (see Figure 2.1).

Figure 3.1 shows the overall system block diagram of the proposed method. Gray

colored blocks indicate the extensions of the Picard [48] and AFR [53] methods men-

tioned in the section 2.1.1.

We first summarize the flow of the system and then describe the details of newly

proposed blocks in the following subsections. Our proposed method begins with

tracking the facial region on the subject to allow for HR estimates in both motion

and no-motion conditions. Once the facial region is identified, then skin pixels are

detected within the facial region. Face tracking and skin detection steps are distinct

and are not used in the Picard and AFR. Details of face tracking and skin detection

are given in the section 3.1.1. Next, the average of skin pixel intensities is computed
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Fig. 3.1.: The overall block diagram of the proposed method.

in each frame to form the 1D signal. Unlike the use of RGB channel images in the

Picard and AFR, we only use green channel image to form 1D signal. The reason

why we use only the green channel image is that it has the most information relevant

to HR. Kumar et al. [65] discussed that hemoglobin (Hb), which is related to blood

volume change and eventually to HR, has a high absorption coefficient in the green

wavelength. Detrending and normalization is the same as described in section 2.1.1.

Next temporal differencing filter and small variation amplification (SVA) is used

instead of Independent Component Analysis (ICA). This is a new idea that amplify-

ing the small color variations and attenuating the large variations in the skin regions

to estimate HR. By using temporal differencing filter, we can get the difference in-

formation. We then use SVA to amplify the small difference and attenuate the large

difference. Detailed formula is given in the following subsection 3.1.2.

As in AFR, we use the background (non-skin) signal but simply compare the

highest peaks of the background and skin signals instead of frequency clustering.

Power Spectrum Densities (PSDs) are obtained next for the amplified green signal

from the skin and background regions. The highest peak is determined by comparing

the highest peak frequencies from skin and background regions. The highest peak
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is then used in the Cutoff Frequency Search (CFS) to find the cutoff frequencies for

the bandpass filter. After a M-point moving average filter (M = 5), the signal is

bandpass filtered with the cutoff frequencies from CFS.

Our method’s IBI is almost same as the IBI of Picard and AFR. The only difference

is the use of IBI windowing (boldface in Figure 3.1). IBI windowing uses a M point

moving average filter (M = 5) on the NC-T filter output since ground truth HR from

pulse oximeter is also moving window averaged.

3.1.1 Face Tracking and Skin Detection

The initial bounding box for tracking is obtained by face detection using a Haar

Cascade Classifier [20]. For tracking, we derive a reference color model from the

initial bounding box of the face region. For the color model, each RGB color space

is quantized from the original 256 bins to 16 bins and is mapped into 1D 163-bin

histogram. The sum of this histogram is then normalized to one. Particle filter

tracking is used to find the corresponding face region in each frame [143]. Denoting

the hidden state and the data at time t by xt and yt respectively, the probabilistic

model we use for tracking is

p(xt+1|y0:t+1) ∝ p(yt+1|xt+1)

∫
xt

p(xt+1|xt)p(xt|y0:t)dxt (3.1)

where p(yt+1|xt+1) is the likelihood model of the data, and p(xt+1|xt) is the transition

model of the second-order auto-regressive dynamics [143]. We define the state at time

t as the location in the 2D image represented as pixel coordinates. For obtaining the

likelihood p(yt|xt), we use the distance metric d(y) =
√

1− ρ (y) where ρ (y) is the

sample estimate of the Bhattacharyya coefficient between the reference color model

and the candidate color model of each particle at position y [144]. Face Tracking part

is implemented and written by co-author Jeehyun Choe.

Given that our target signal includes only small color variations, even small levels

of noise may significantly impact our HR estimates. Therefore, in an attempt to

minimize noise, skin detection is use to remove hair, eye and mouth regions which
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do not contain HR information. By using skin detection, we can also remove the

eye-blinking artifact which is a large temporal variation.

A bayesian classifier using non-parametric density estimation is used for skin de-

tection [145]. Let’s assume that we have training images which are labeled for skin

and non-skin pixels. The feature vector xq is the quantized feature vector x by step

Q [145].

x = (r, g, b)→ xq = (rq, gq, bq)

where (r,g,b) are pixel values in each color channel, rq = b r
Q
c, gq = b g

Q
c and bq = b b

Q
c.

We then construct the normalized histogram of quantized feature vector xq for skin

and non-skin pixels. The normalized histogram for each class is stored as a look-up

table for the test classifications. Using the look-up table, we can classify the pixels

values of new images which are not labeled. In Figure 3.2, white pixels indicate the

skin pixels detected by a bayesian classifier within tracked face region. We only use

the pixels which are denoted as white points for computing average to form 1D signal.

As shown in Figure 3.2, we are able to remove the eyebrow or mouth regions which

do not contain any HR signal by skin detection.

Fig. 3.2.: Example result of skin detection within tracked face.
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3.1.2 Recursive Temporal Differencing Filter and Small Variation Am-

plification (SVA)

The basic idea is that we only amplify the small changes in time and suppress

the large changes, because the HR signal is the small color changes in the skin region

caused by cardiac activity. To achieve, a first order temporal recursive differencing

filter is used on the detrended green channel signal:

g[n] = g[n+ 1]− g[n] (3.2)

where g[n] is the detrended green signal from skin pixels and n is the frame index.

Small variation amplification (SVA) is then used (Equations 3.3 and 3.4):

gamp[n] = αg[n] (3.3)

α = |g[n]|γ (3.4)

where α is the amplification factor based on the difference value of green signal. We

choose γ = −0.1 empirically. From these blocks, we can suppress the large temporal

variations in the signal and amplify the HR signal reflected in small temporal changes.

3.1.3 Peak Selection and Cutoff Frequency Search (CFS)

Peak Selection begins with finding the highest peak in the PSD for the skin and

background regions. If the highest peak from the skin region is similar to the highest

peak from the background region, then this is a strong periodic noise signal from

factors such as lighting. The similarity between highest peaks is determined by:

df = |f1 − f2| (3.5)

where f1 is the highest peak frequency from the skin region and f2 is the highest peak

frequency from the background region. If df < T , we then find the next highest peak

in the skin PSD. We empirically choose threshold T = 0.1. The selected highest peak
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Fig. 3.3.: An example of CFS in PSD.

is used as the starting point for the CFS which eventually determines tighter cutoff

frequencies for the Bandpass Filter (BPF).

As shown in Figure 3.3, a gradient search is done on the skin region PSD domain

starting from the highest peak. The points that have a sign change are determined as

the new cutoff frequencies (flnew and fhnew) for BPF. Tighter cutoff frequencies were

achieved using CFS for BPF and this supports more stable estimations in the IBI

computation.

3.2 Experimental Results

3.2.1 Experimental Setup and Dataset

In our experiments, we acquired two different datasets. Both were collected in

the same room which had windows with semi-transparent blinds and lighting on the

ceiling as shown in Figure 3.4. Camera 1 in Figure 3.4 was used to record the subject

and camera 2 was used to record the pulse oximeter for the ground truth HR. All

videos had a spatial resolution of 1920× 1080, 30 fps and 60 seconds length.
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Camera 2

Camera 1

Participant’s Seat

Fig. 3.4.: The room and camera setting.

The ground truth HR was measured using a Pulse Oximeter attached to the finger

of the subject. A Nonin GO2 Achieve Finger Pulse Oximeter was used in Dataset

1 and CE & FDA Approved Handheld Pulse Oximeter was used in Dataset 2. The

pulse oximeter HRs were manually recorded from the video once per second in both

datasets. Dataset 1 included 22 subjects (12 females and 10 males) and Dataset 2

included 18 subjects (9 females and 9 males).

The distance between the subject and the camera was approximately 1.8 m in

both datasets, the zoom was manually adjusted to focus only on the upper torso and

face in Dataset 1. In Dataset 2, the zoom was manually adjusted to show entire upper

body of the subject. Examples of videos from Dataset 1 and 2 are provided in Figure

3.5.

Dataset 1 included no-motion videos and Dataset 2 included both non-random

motion and no-motion videos. In the no-motion videos, the subjects were seated and

were asked to look toward the camera. In the non-random motion videos, the subjects

were asked to move their head from left to right repeatedly while keeping their faces
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(a) Dataset 1 Video Setting.

(b) Dataset 2 Video Setting.

Fig. 3.5.: Video Setting Examples.

toward the camera. I In our experiments, we set the parameters for Picard [48] and

AFR [53] as described in the section 2.1.1. A summary of the parameters used in the

three methods are provided in Table 3.1. All the parameters are chosen empirically

except the video frame rate fs.

The initial facial region was detected in the first frame of the video [20]. 80% of

the detected face region’s width and height were used with all three methods. Skin
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Table 3.1.: A summary of parameters used in the three VHR methods.

Parameter Picard [48] AFR [53] Proposed

λ 100

fs 30

(fl,fh) (0.7,2)

fsnew 256

M 5

Nf 127

(un, um) (0.4,1)

tr - 0.1 -

tn - 0.1 -

tm - 0.4 -

γ - - -0.1

T - - 0.1

detection was trained from the SFA image database [146]. The background region is

selected on the wall behind the subject (with the size of 80% of face region).

3.2.2 Error Rate Comparison

The proposed method shows better overall performance, compared to the Picard

[48] and AFR [53]. For example, Figure 3.6 shows one of the final HR estimation

from all three methods for the motion video of Subject 9 in Dataset 2. The red line

shows manually annotated ground truth HR from the pulse oximeter. The estimated

HR from Picard, AFR and the proposed method are labeled as black, green, and blue

respectively. Our proposed method shows the closest estimation to true HR in this

case.

To evaluate the overall performance, we defined the error metrics as:
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(a) Subject 10 with no-motion in Dataset1.

(b) Subject 9 with motion in Dataset2.

Fig. 3.6.: A comparison of the three VHR methods : Estimated HR [bpm] vs Time

[sec].
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e1 =



1

N

N∑
n=1

|HRest[n]−HRtrue[n]

HRtrue[n]
| ∗ 100 [%]

1

N

N∑
n=1

|HRest[n]−HRtrue[n]| [bpm]

(3.6)

where HRest[n] is the estimated HR in units of beat per minute (bpm), HRtrue[n] is

the manually recorded HR in units of bpm from the pulse oximeter and n is the time

domain index when the HR estimations exist. Comparison results for the three VHR

methods in terms of Error Rate e1 in both units [bpm and % ] are shown in Table

3.2, 3.3 and 3.4.

In Dataset 1, the proposed method has the lowest average error rate across all

22 subjects (3.67 % and 4.71 bpm) as shown in Table 3.2. The proposed method

outperforms Picard and AFR in most of the videos except three cases. The overall

error rate in Dataset 1 is lower than the one in Dataset 2 because Dataset 1 has more

pixels in the face region due to the manual zoom focus on the upper torso and face

(compared to the whole upper body in Dataset 2).

In Dataset 2, the proposed method has the lowest average error rate across all

18 no-motion videos (7.09 % and 9.48 bpm) as shown in Table 3.3. The proposed

method outperforms Picard and AFR in most of the videos except four cases. Even

though the proposed method outperforms the previous methods in Dataset 2, the

overall error is still higher than Dataset 1 due to the less number of pixels in face

region.

In non-random motion videos, all three methods still have a large error rate com-

pared to the no-motion scenario. The proposed method has the lowest average error

rate as measured by percent across all 18 subjects (16.89 %), while the Picard method

has the lowest average error rate as measured by bpm across all 18 subjects (13.36

bpm) as shown in Table 3.4. The proposed method outperforms Picard and AFR in

most of the videos except five cases. However, when the highest peak is not matched
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Table 3.2.: A comparison of three VHR methods in Dataset 1 with no motion : Error

Rate e1 [ bpm , % ]

ID Picard [48] AFR [53] Proposed

[ bpm ] [ % ] [ bpm ] [ % ] [ bpm ] [ % ]

1 5.53 8.00 1.49 2.16 1.58 2.29

2 3.58 6.32 2.97 5.27 1.81 3.21

3 5.50 10.44 1.89 3.59 1.19 2.27

4 6.47 7.23 2.75 3.08 2.44 2.73

5 11.29 21.21 2.69 5.03 2.26 4.21

6 12.37 13.67 4.47 4.92 3.15 3.46

7 8.36 10.66 2.89 3.69 2.36 3.01

8 7.12 10.00 2.95 4.12 1.93 2.69

9 5.95 7.91 2.39 3.17 2.10 2.78

10 6.57 6.99 2.85 3.03 15.15 16.05

11 5.03 6.37 1.43 1.82 1.91 2.44

12 5.34 9.82 4.28 7.82 2.47 4.49

13 16.49 22.11 16.25 21.16 14.02 18.17

14 5.77 7.26 2.88 3.63 1.84 2.32

15 9.29 12.96 5.05 6.88 4.15 5.65

16 8.56 12.25 6.58 9.35 3.03 4.33

17 4.38 6.55 2.76 4.12 2.29 3.44

18 4.79 6.32 1.73 2.29 1.23 1.62

19 8.00 8.80 2.94 3.21 1.54 1.68

20 6.24 7.52 2.58 3.11 1.96 2.37

21 9.87 11.24 6.19 7.04 8.84 9.74

22 7.98 10.33 4.00 5.17 3.57 4.63

Avg. 7.48 10.18 3.82 5.17 3.67 4.71
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Table 3.3.: A comparison of three VHR methods in Dataset 2 with no motion: Error

Rate e1 [ bpm , % ]

ID Picard [48] AFR [53] Proposed

[ bpm ] [ % ] [ bpm ] [ % ] [ bpm ] [ % ]

1 21.44 32.28 13.06 20.04 6.91 10.51

2 10.90 15.38 7.62 10.58 6.50 9.12

3 10.67 13.10 9.89 12.15 9.58 11.75

4 19.40 26.85 3.86 5.29 36.96 50.81

5 10.11 10.44 5.93 6.09 6.13 6.33

6 15.94 21.34 14.84 19.88 2.49 3.32

7 8.31 10.04 3.40 4.10 3.71 4.46

8 16.39 23.00 10.31 14.30 7.70 10.65

9 11.17 14.35 9.09 11.69 5.85 7.53

10 9.29 13.78 3.83 5.64 1.46 2.17

11 17.41 19.07 28.60 31.39 8.13 8.91

12 12.70 18.55 8.15 11.79 4.24 6.11

13 15.24 16.86 23.02 25.54 3.26 3.60

14 7.46 8.84 5.06 6.01 4.07 4.85

15 7.99 11.08 4.66 6.48 3.02 4.16

16 8.99 11.83 5.94 7.87 6.66 8.86

17 20.05 38.98 6.22 11.16 6.09 10.87

18 6.49 9.14 4.87 6.75 4.77 6.59

Avg. 12.77 17.50 9.35 12.04 7.09 9.48
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Table 3.4.: A comparison of three VHR methods in Dataset 2 with non-random

motion: Error Rate e1 [ bpm , % ]

ID Picard [48] AFR [53] Proposed

[ bpm ] [ % ] [ bpm ] [ % ] [ bpm ] [ % ]

1 10.86 14.38 9.92 13.13 4.49 5.94

2 20.78 29.57 20.54 29.27 6.82 9.68

3 13.22 16.99 11.27 14.87 5.88 7.81

4 14.56 18.86 15.53 19.89 27.74 35.65

5 19.52 20.55 27.39 28.93 34.08 36.01

6 23.98 26.35 31.15 34.23 18.81 20.67

7 16.34 16.71 17.83 18.18 14.62 14.88

8 10.73 15.12 15.00 21.03 11.28 15.79

9 8.96 11.49 2.66 3.42 2.08 2.66

10 9.70 13.32 9.68 13.30 20.85 28.56

11 14.82 15.96 14.82 15.96 21.33 22.95

12 7.79 11.79 4.74 7.19 2.76 4.17

13 13.29 15.38 35.47 40.69 25.20 28.90

14 12.59 15.68 14.63 18.24 26.58 33.08

15 13.87 23.01 11.75 19.36 11.24 18.53

16 8.33 10.35 4.92 6.08 3.57 4.44

17 11.75 19.75 6.44 10.78 2.64 4.42

18 9.39 11.76 8.20 9.83 8.14 9.89

Avg. 13.36 17.06 14.55 18.02 13.78 16.89
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with the true HR, the proposed method has the tendency to propagate the error

because of CFS.

3.2.3 Statistical Analyses

Table 3.5.: No-motion videos, Number of Sample : 40.

Pair Methods Mean SD p-value

1
Proposed 6.8545 8.13569

AFR 8.2603 6.79649 0.365

2
Proposed 6.8545 8.13569

Picard 13.4718 7.35702 < 0.05

3
AFR 8.2603 6.79649

Picard 13.4718 7.35702 < 0.05

Table 3.6.: Non-random motion videos, Number of Sample : 18.

Pair Methods Mean SD p-value

1
Proposed 16.8906 11.62436

AFR 18.0211 9.96929 0.635

2
Proposed 16.8906 11.62436

Picard 17.0567 5.22310 0.952

3
AFR 18.0211 9.96929

Picard 17.0567 5.22310 0.602

We used a series of the paired samples t-tests [147] to compare the proposed

method to the other two methods. The outcome variable was the percentage error

rate e1[%] for no motion and non-random motion videos. Two-tailed tests were used
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with an alpha level of 0.05. Descriptive statistics, including mean error rate (M) and

standard deviation (SD) are presented in Table 3.5 and 3.6.

For the no-motion videos (N = 40, Table 3.5), the proposed method had a lower

mean error rate (M) than both other methods, but was only significantly lower than

the Picard method (p < 0.05), not AFR (p = 0.37). The AFR error was also sig-

nificantly lower than Picard (p < 0.05). Thus both the proposed and AFR methods

outperformed the Picard method. For the non-random motion videos (N = 18, 3.6),

the same pattern of results emerged; however, method differences were not statisti-

cally significantly different.

3.3 Spatial Pruning

We have previously proposed the usage of skin detection from the section 3.1.

However, even though the skin detection performs pretty well, it still heavily depends

on the illumination changes, scene changes or subject’s skin tone color in the videos.

If skin detection produces a lot of error in our system, it will produce critical noise

in our target signal. Thus, we propose a new method called spatial pruning as an

alternative method of skin detection. The idea here is that we have already tracked

face region and that face region is composed of skin region mostly. So if we can cluster

the pixels into two different groups based on the distribution of pixel intensities, we

then can separate only skin pixels from the tracked face.

We have two assumptions in this method:

1. Histogram of face region has bimodal distribution.

2. The higher bump in bimodal distribution represents pixel value and the lower

bump represents the other noise regions such as mouth, eyebrow or small back-

ground in the edge.

Figure 3.7 shows the overall flow of the proposed spatial pruning. Input of this

block is the tracked face region. Within the face region, we can compute the histogram
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Fig. 3.7.: The block diagram of the spatial pruning.

which represents the distribution of pixels. Histogram of the face region is computed

by using Equation 3.7

hk =
Nk

N
(3.7)

where k = 0, 1, . . . , 255 is the bin index, Nk is the number of pixels which have

intensity value k and N is the total number of pixel. This histogram hk is fed into

K-means clustering to separate two clusters (one for skin, one for nose). Based on our

assumptions described above, we choose one cluster which contains the most frequent

pixel value. The chosen cluster’s values are averaged to obtain the output signal g[n].

3.3.1 K-means Clustering

In this section, we introduce the theory and details of K-means Clustering method.

K-means Clustering is a clustering technique that attempts to find K number of

clusters, which are represented by their centroids [148]. We first choose K initial

centroids (K is a user determined parameter). In our case, K = 2 since we want to

cluster into skin or noise cluster.

1. Select randomly K points for initial centroids.

2. Form K clusters by assigning each data point to its closest centroid. To deter-

mine the closest centroid, Euclidean distance is typically used. This step can
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be explained as minimizing the objective function Sum of the Squared Error

(SSE) 3.8

SSE =
K∑
i=1

∑
x∈Ci

||ci − x||2 (3.8)

where Ci is the ith cluster, ci is the cluster centroid, K is the total number

of clusters, || ∗ ||2 is the squared euclidean distance, and x is a data point (a

histogram value in this application).

3. Update the new centroid for each cluster by using Equation 3.9

ci =
1

Ni

∑
x∈Ci

x (3.9)

where Ni is the number of data points in the ith cluster and the rest of the

notations follows the Equation 3.8.

4. Repeat step 1, 2 until centroids do not change. Since K-means Clustering is an

iterative method, we need to give the number of iteration to stop the search.

We chose empirically 100 iterations in this experiment.

3.3.2 Preliminary Result and Discussion

To check the feasibility of the idea, we have done the preliminary test on the

real data. Figure 3.8 shows the clustered histogram using K-means clustering on

the tracked face region. As in the first assumption of section 3.3, face histogram

shows the bimodal distribution. We use the K-means clustering (in our case, K =

2) to separate the skin region and noise region. Since the histogram has bimodal

distribution (clearly separable data points), K-means clustering method successfully

separates two clusters in the histogram. Red color denotes the first cluster and blue

color denotes the second cluster in Figure 3.8.

Based on our second assumption in section 3.3, red cluster will be skin cluster

and blue cluster will be noise cluster. To verify our second assumption, we have done

rough inver-mapping to the frame from the skin cluster values by using Equation 3.10
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Fig. 3.8.: Clustered Histogram using K-means clustering (K=2).

L
′
[x, y] =

0, if |L[x, y]− hmax| < 30

L[x, y], otherwise

(3.10)

where L[x, y] is the pixel intensity at [x, y] and hmax = argmaxhk
k

(the histogram bin

which has the maximum occurrence). The result shown in Figure 3.9b verifies that

our second assumption is right. White pixels denote pixels classified as skin in Figure

3.9a and 3.9b.

Even though we manually choose the skin detection parameter (which is not fea-

sible in practice) for the maximum performance in this experiment, it has many false

negative error around cheek area as shown in Figure 3.9a. Compare to skin detection,

our approach shows more stable and well-classified skin region even though we only
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(a) Skin Detection Sample Result.

(b) Clustering Preliminary Result.

Fig. 3.9.: A Comparison of Skin Detection and Spatial Pruning.
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use rough approximation method for preliminary experiment as shown in Equation

3.10.

Since the preliminary result is promising for this approach, we plan to elaborate

the idea with mathematical background and run the experiment with entire dataset.

For example, since we have two clusters from the method, we model two clusters

defined by the following Equations 3.11 and 3.12

µi =
1

Ni

∑
L[x,y]∈Ci

L[x, y] (3.11)

σi
2 =

1

Ni − 1

∑
L[x,y]∈Ci

(L[x, y]− µs)2 (3.12)

where i is the cluster index (i ={skin,noise}), Ci is the i-th cluster, Ni is the number

of points in the Ci and µi, σi are mean and variance of Ci respectively.

Let C1 be the skin cluster. Instead of using entire points in C1, we are planning to

model skin pixel distribution as gaussian distribution with µ1, σ1 and use the points

only distributed near µ1.

3.4 Motion Artifact Modeling based on Illumination

Since our proposed method in section 3.1 did not provide any statistically signif-

icant improvement in non-random motion videos, we model in this section 1D green

signal to analyze existing noise in HR signal. Our mathematical model is based on

motion noise caused by illumination changes on the skin surface.

When an image is obtained by a camera, the measured intensity of an image is the

product of incident illumination and reflectance at a surface [149]. (Equation 3.13)

L[x, y, n] = I[x, y, n] ·R[x, y, n] (3.13)

In Equation 3.13, L[x, y, n] is the intensity of the image, I[x, y, n] is the intensity of

incident illumination and R[x, y, n] is the reflectivity of the surface. n is the frame

index and [x, y] is the two-dimensional spatial coordinate in n-th frame.



64

Intensity of incident illumination I[x, y, n] can be expressed by three factors [149]

as shown in Equation 3.14

I[x, y, n] = I0 + Is · cos
[
θ[x, y, n]

]
(3.14)

where I0 is the intensity of uniform diffuse illumination (e.g., background light, sun-

light) and Is is the intensity of the point light source. We can assume that I0, Is

are constants since the illumination source is not variant in our case. θ[x, y, n] is the

angle between incidence illumination and surface normal. As the subject is moving

in video, the incident angle θ[x, y, n] will vary along the motion. We should note

that most of the VHR methods [48] [53] [65] assume the constant illumination. In

this model, we assume that illumination changes in function of the incident angle

(θ[x, y, n]).

The reflectance R[x, y, n] at a surface is the intensity of the light reflected back

from skin. The light reflected back from the skin consists of two different levels

of reflectance based on the skin optical model [150]: (i) surface reflectance and (ii)

subsurface reflectance or backscattering. A large portion of light is reflected by the

skin surface. Remaining part of the light is reflected by subsurface. This subsurface

reflectance contains the heart rate information because it reflects the blood volume

change by chromophores (HbO2) [65]. From skin optical model shown in Figure 1.1,

the reflectance signal can be modeled as Equation 3.15

R[x, y, n] = a[x, y, n] · h[n] + b[x, y, n]

' a · h[n] + b
(3.15)

where a is the strength of blood perfusion and b is the surface reflectance. a, b are

assumed to be constants in the same subject because it is a characteristic of the

human subject. We can also assume that b >> a since b is the intensity of a large

portion of reflected light from light source.
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Using Equation 3.14 and 3.15, we model the intensity of the image by Equation

3.16.

L[x, y, n] =
(
I0 + Is · cos

[
θ[x, y, n]

))(
a · h[n] + b

)
= I0 · a · h[n] + Is · a · cos

[
θ[x, y, n]

]
· h[n]

+ Is · b · cos
[
θ[x, y, n]

]
+ I0 · b

(3.16)

Equation 3.17 models 1D green signal of the method in chapter 3.1 by averaging

over skin region pixels within the frame

g[n] =
1

Ns

∑
x∈Sx

∑
y∈Sy

L[x, y, n]

=
1

Ns

∑
x∈Sx

∑
y∈Sy

(
I0 · a · h[n] + Is · a · cos

[
θ[x, y, n]

]
· h[n]

+ Is · b · cos
[
θ[x, y, n]

]
+ I0 · b

) (3.17)

where Sx , Sy are the skin pixel coordinates and Ns is the total number of skin pixel

in one frame. To ease the notation, let time varying term irrelevant to HR signal be

m[n].

m[n] =
1

Ns

∑
x∈Sx

∑
y∈Sy

cos
[
θ[x, y, n]]

]
(3.18)

Then, g[n] can be simplified using Equation 3.18, A = I0 · a, B = Is · a, C = Is · b

and D = I0 · b in Equation 3.19.

g[n] = I0 · a · h[n] + Is · a ·m[n] · h[n] + Is · b ·m[n] + I0 · b

= A · h[n] + (B · h[n] + C) ·m[n] +D
(3.19)

Note that m[n] is the motion artifact signal since θ[x, y, n] varies along the subject’s

motion. In the final form of 1D raw green signal g[n], there are multiplicative motion

artifact term and also additive motion artifact term.

In order to analyze the motion artifact effect in frequency domain, we compute

PSD of g[n] and it can be expressed in terms of PSD of h[n] and m[n] as shown in

Equation 3.20∣∣G[k]
∣∣2 = A2

∣∣H[k]
∣∣2 +B2

∣∣H[k] ∗M [k]
∣∣2 + C2

∣∣M [k]
∣∣2 +D2δ[k] (3.20)
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where H[k], M [k] here are Discrete Fourier Transform(DFT) coefficients of h[n], m[n]

respectively. As shown in Equation 3.20, G[k] has still the heart rate signal H[k] but

it is involved with the convolution term. Based on the motion artifact frequencies

in M [k], the convolution term will produce noisy signal near H[k] since H[k] will

be shifted by factor of M [k]’s frequencies. This noisy signal in PSD can overwhelm

the HR signal based on the constant values (A,B,C,D). If the subject has low level

of blood perfusion (small a), HR signal will be significantly overwhelmed by motion

artifact signal.

To verify this model, we test on the synthetically generated data. Let h[n] as the

heart rate signal which is periodic signal given by Equation 3.21

h[n] = cos(2πfhrn) (3.21)

where fhr = 1 Hz (60 bpm) is heart beat frequency. Motion artifact factor m[n] is

given as summation of two different frequencies f1 and f2

m[n] = cos(2πf1n) + cos(2πf2n) (3.22)

where f1 = 0.25 Hz, f2 = 0.15 Hz. The constants are empirically chosen based on

the skin optics principles : I0 = 1, Is = 3, a = 5, b = 50. By substituting the set

values to the Equation 3.20, we then can derive the final formula of G[k] as given in

Equation 3.25

H[k] ∗M [k] =
1

4
[δ[k − 1.25] + δ[k − 1.15] + δ[k − 0.85] + δ[k − 0.75]

+ δ[k + 1.25] + δ[k + 1.15] + δ[k + 0.85] + δ[k + 0.75]]

(3.23)

G[k] = 5H[k] + 15H[k] ∗M [k] + 150M [k] + 50δ[k]

= 50δ[k] + 2.5δ[k − 1] + 2.5δ[k + 1]

+ 75
[
δ[k − 0.25] + δ[k + 0.25] + δ[k − 0.15] + δ[k + 0.15]

]
+ 3.75

[
δ[k − 1.25] + δ[k − 1.15] + δ[k − 0.85] + δ[k − 0.75]

+ δ[k + 1.25] + δ[k + 1.15] + δ[k + 0.85] + δ[k + 0.75]]
]

(3.24)
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G(f) = 5H(f) + 15H(f) ∗M(f) + 150M(f) + 50δ(f)

= 2.5δ(f − 1) + 2.5δ(f + 1)

+ 3.75
(
δ(f − 1.25) + δ(f − 1.15) + δ(f − 0.85) + δ(f − 0.75)

+ δ(f + 1.25) + δ(f + 1.15) + δ(f + 0.85) + δ(f + 0.75)
)

+ 75
(
δ(f − 0.25) + δ(f + 0.25) + δ(f − 0.15) + δ(f + 0.15)

)
+ 50δ(f)

(3.25)

Figure 3.10 shows the time domain signal and power spectrum density of each

synthetic data h[n], m[n] and g[n]. Figure 3.10a demonstrates the broad range of

PSD to see the low frequency motion effects. Figure 3.10b shows the PSD within 0.7

- 3 Hz only. As shown in that, HR signal (1 Hz signal) has been overwhelmed by

motion artifact terms because of modulation part in Equation 3.25. Thus, we have

shown that HR signal can be overwhelmed by the motion artifact terms caused by

illumination incident angle changes.

3.5 Separation of Illumination and Reflectance using Homomorphic Fil-

ter

Based on our motion artifact modeling in the previous section, we define the mo-

tion artifact problem as illumination incident changes. Thus we propose a separation

of Illumination and Reflectance from the given image by using homomorphic filter.

According to the Equation 3.13, Illumination L[x, y, n] and Reflectance R[x, y, n] has

multiplicative relation. General approach of separating multiplicative model in signal

processing starts with taking logarithm [151]. By taking logarithm, the result will be

additive modeling as shown in Equation 3.26

log(L[x, y, n]) = log(I[x, y, n]) + log(R[x, y, n]) (3.26)

Based on the typical usage of Homomorphic Filter for separating illumination and

reflectance [152], we propose a new block shown in Figure 3.11.
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Fig. 3.10.: Synthetic Data Simulation Result.
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Fig. 3.11.: The block diagram of the homomorphic filter.

It begins with taking logarithm. Based on the fact that illumination is slowly

changing component (low frequency component), we take low pass filtering on the

image to estimate illumination log(Î[x, y, n]). By subtracting estimated illumination

from log(L[x, y, n]), we can estimate Reflectance R[x, y, n] as shown in Equation 3.27

log(R̂[x, y, n]) = log(L[x, y, n])− log(Î[x, y, n]) (3.27)

Finally, we take exponential back to go back to original coordinate from the log

coordinate. Thus, if we can separate successfully the reflectance from the given image,

we will have illumination free information for future HR estimation. In the end, we

expect more accurate HR estimation by employing this idea.
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4. A TWO STREAM SIAMESE CNN

FOR PERSON RE-IDENTIFICATION

Zheng et al. [76] demonstrates that multi-shot scenario is superior to single-shot sce-

nario using empirical evidences. Their experiments show that multi-shot approaches

are more favorable since both probe and gallery contain much richer visual infor-

mation as compared to single image. In addition, combining spatial features using

multi-shot helps address the challenges associated with viewpoint and pose invari-

ance [36, 153]. Also, in real-life surveillance systems, human detection and tracking

methods generate multiple images for each person appearance. Therefore, ReID in

multi-shot scenario is more suitable for practical applications. ReID in multi-shot

scenarios is also referred to as video-based ReID.

[154] shows that temporal features (e.g. gait pattern) can offer discriminative

features for person identification even using low resolution video sequences. In ReID

multi-shot scenarios, these temporal features can be used in combination with spa-

tial features to create better feature representation. Temporal features can improve

the accuracy of ReID methods in particular when the majority of clothing worn by

subjects tends to be non-discriminative [36,124].

In [124], a deep learning video-based ReID method using a recurrent convolutional

neural network architecture is proposed to exploit both spatial and temporal features.

A single network is used to learn a representation for both feature types. This poses

a limitation which constrains the amount of information that the network can learn.

To address this limitation, we propose the use of a two stream convolutional neural

network (CNN) [26] with weighted objective function where each stream has Siamese

structure [155].
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CNN

RGB Frames Optical Flow Stacks

Temporal Pooling Temporal Pooling

RGB Frames Optical Flow Stacks

Temporal Pooling Temporal Pooling

Camera BCamera A

Final Siamese Cost

CNN

… … … …

Siamese Cost 1

Camera BCamera A

Siamese Cost 2

CNN CNN CNN CNN CNN CNN

Identity Cost

SpatialNet TemporalNet

… … … …

Fig. 4.1.: Overall Architecture of the proposed two stream ReID system

4.1 Proposed Method

4.1.1 Overall Network Architecture

The overall architecture of our proposed method is shown in Figure 4.1. The

method is motivated by the fact that both spatial and temporal features possess

discriminative information useful for the ReID task. However, the best feature rep-

resentation does not need to be the same for both types of features. Therefore, we

propose a two stream Siamese CNN which processes spatial and temporal information

separately.

Siamese CNNs contain two identical sub-networks with shared weights and are

suitable for tasks which involve finding the similarity between two comparable in-

puts [155]. CNNs typically process an image or multiple images and classify them

into a single class, whereas Siamese CNNs process two images or two sequences of

images and compute the similarity between them. In our proposed ReID system, the
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input to first stream are two sequences of RGB frames where each sequence is captured

from a different camera. The second stream processes the optical flow information

from both cameras as shown in Figure 4.1. The input is described in more details in

Section 4.1.2. Each stream is based on the same network architecture. Throughout

this thesis, we will refer to the network associated with spatial content as SpatialNet

and the network associated with temporal content as TemporalNet.

Both networks are composed of multiple CNNs with Siamese architecture, and all

the CNNs within the same stream share the same parameters. We refer to this CNN

as the “base CNN” and describe its structure in Section 4.1.3. The outputs of the

base CNNs which processes images from the same camera view are combined using

temporal pooling. The temporal pooling is described in Section 4.1.4. The outputs

of the temporal pooling from both cameras are combined using the Siamese cost as

described in Section 4.1.5. Finally, the two networks associated with both streams

are fused together using a weighted cost function as described in Section 4.1.6.

4.1.2 The Inputs

We define the generic input sequence as Ic, where c ∈ a, b for camera A and B,

respectively. For the SpatialNet, the input sequence are RGB frames:

Ic = (S(1), . . . , S(t), . . . , S(L)) (4.1)

where L is the sequence length and S(t) is the RGB frame at time t.

For TemporalNet, optical flow images are used as input:

Ic = (T (1), . . . , T (t), . . . , T (L)) (4.2)

where L is the sequence length and T (t) is the input optical flow image at time t. The

effectiveness of using optical flow to learn temporal features are demonstrated in [26,

124]. The optical flow is the pattern of apparent motion between two consecutive

frames caused by the object or camera movement. It is the 2 dimensional vector where

each vector is a displacement vector for horizontal and vertical direction. And this
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2D vector is describing the movement of points from first frame to second frame. To

define the problem, we assume that the motion will be small between two consecutive

frames. The small motion in the images can be defined as

H(x, y) = I(x+ u, y + v) (4.3)

where I(x, y) is the first frame, H(x, y) is the second frame, u, v are the displacement

of the object. We take the first order Taylor series expansion, then we can define

I(x+ u, y + v) as

I(x+ u, y + v) = I(x, y) +
∂I

∂x
u+

∂I

∂y
v + higher order terms

≈ I(x, y) +
∂I

∂x
u+

∂I

∂y
v.

(4.4)

By combining Equations 4.3 and 4.4, we obtain

0 = I(x+ u, y + v)−H(x, y)

≈ I(x, y) + Ixu+ Iyv −H(x, y)

≈ (I(x, y)−H(x, y)) + Ixu+ Iyv

≈ It +∇I · [u v]

(4.5)

With the limit u→ 0, v → 0, Equation 4.5 becomes

It +∇I · [∂x
∂t

∂y

∂t
] = 0. (4.6)

To solve Equation 4.6, we use the Lucas-Kanade optical flow technique [156]. In

Lucas-Kanade technique, we assume that neighbor pixels within a small window have

same displacements u and v. With this assumption, for each neighbor pixel pi, we

obtain the Equation 4.7 from Equation 4.6.

It(pi) +∇I(pi) · [u v] = 0 (4.7)

We can form a matrix form equation by combining n equations from nXn window as
Ix(p1) Iy(p1)

Ix(p2) Iy(p2)
...

...

Ix(p
2
n) Iy(p

2
n)


u
v

 = −


It(p1)

It(p2)
...

It(p
2
n)

 . (4.8)



74

This system has more equations than unknowns. Thus, Lucas-Kanade method obtains

a solution by the least squares principle. Finally, the solution can be obtained as

d = (ATA)−1AT b. (4.9)

The advantage of LucasKanade method is that it is less sensitive to image noise than

the point-wise methods due to the windowing process. However, since it is a local

method, it can not provide the information in the entire image region.

To obtain optical flow image T (t) from displacement vectors, we add 127 to each

value and divide by 255. Sample optical flow images are shown in Figure 4.1.

4.1.3 The Base CNN Architecture

Conv 1

5x5x16

( pad 4, stride 2 )

tanh

2x2 max pool

Conv 2

5x5x32

( pad 4, stride 2 )

tanh

2x2 max pool

Conv 3

5x5x32

( pad4, stride 2 )

tanh

2x2 max pool

full

128

Dropout

f

Fig. 4.2.: The structure of the base CNN and hyper-parameters

As shown in Figure 4.1, the input sequence Ic is processed using the base CNN.

Figure 4.2 shows the base CNN structure and the hyper-parameters associated with

it. The CNN takes one input sample (S(t) or T (t)) and produces the output feature

vector fS or fT for SpatialNet and TemporalNet, respectively. Our base CNN is

composed of three convolution layers where each layer has convolution, non-linear

activation and max-pooling steps. We use hyperbolic-tangent (tanh) as non-linear

activation function. At the end of the three convolution layers, a fully connected

layer is placed to have mapping to all the activations from the last convolution layer.

Dropout [157] is also used to reduce the model over-fitting.
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4.1.4 Temporal Pooling

For the SpatialNet, the base CNN processes a single RGB frame out of the se-

quence of frames in the multi-shot scenario, or optical flow content in the case of

the TemporalNet. Combining the spatial or temporal features using multiple frames

helps address the challenges associated with various viewpoints and poses. To process

the input sequence, each sub-network of the Siamese network in each stream utilizes

L base CNNs and produces L feature vectors. The feature vectors produced by the

L CNNs in each sub-network are combined into a single feature vector using tem-

poral pooling. Max pooling, sum pooling and mean pooling are the most common

techniques used to achieve this. In [124], the RNN-ReID method has shown that the

mean pooling method is the most suitable temporal pooling technique for the ReID

task. We adopt the same approach in our proposed method. If we denote the base

CNN by the function C(), then the temporally pooled feature vector, f̄ic , is computed

as follows:

f̄ic =
1

L

L∑
t=1

C(I
(t)
ic

) (4.10)

where i is the person ID, c ∈ {a, b} is the camera view and I
(t)
ic

, t ∈ 1, . . . , L, is one

element (RGB image or optical flow vectors) of the input multi-shot sequence. The

sequence of images are processed and temporally pooled to obtain the feature vector

f̄Sic or f̄Tic for the SpatialNet and TemporalNet, respectively.

4.1.5 Siamese Cost

Siamese networks are composed of two sub-networks with shared weights [155].

While learning the features from each sub-network, Siamese networks compare the

features from the pair using Euclidean distance. Thus, in training process, the net-

work tries to minimize the distance between feature pairs when they are from the same

class and maximize the distance between feature pairs when they are from different

classes. Due to this property, Siamese networks have been widely used for the ReID
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task since the goal is to find the similarity between a pair of sequences. As mentioned

before, we use a Siamese network for both streams: SpatialNet and TemporalNet as

shown in Figure 4.1. Furthermore, the generic Siamese cost of our proposed method

can be defined as follows:

D(f̄ic , f̄jc) =


1
2
||f̄ic − f̄jc ||

2
, if i = j

1
2
{max(m− ||f̄ic − f̄jc||, 0)}2, if i 6= j

(4.11)

where m is the Siamese margin and f̄ic , f̄jc are the temporally pooled feature vec-

tors for person i and j, respectively. Equation 4.11 applies to both SpatialNet and

TemporalNet in the same way with different type of inputs.

4.1.6 Weighted Two Stream Joint Identification

and Verification

During the training process, we build on the joint identification and verification

approach from [158] to define our training objective. We use the softmax loss function

to compute the identification cost as in [124]. Then, this cost is integrated into our

final training objective function as explained later. The identification cost is defined

as:

V (x) = P (q = c|x) =
exp(Wcx)∑
k exp(Wkx)

(4.12)

where x is the feature vector and q is the person’s identity. Wc and Wk indicate the

cth and the kth column of the softmax matrix W , respectively. Note that the softmax

matrix W is the matrix representation of the fully connected layer in the base CNN

architecture.

From the RNN-ReID method, it was already observed that joining the identifi-

cation with the Siamese cost is crucial to improve the ReID accuracy. We have two
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Siamese cost functions from each stream, whereas RNN-ReID has only one Siamese

cost. Therefore, we define the combined cost function Jf as follows:

Jf =ωSD(f̄Sic , f̄
S
jc) + ωTD(f̄Tic , f̄

T
jc)

+ V (f̄Sic) + V (f̄Sjc)
(4.13)

where V is the standard softmax loss defined in Equation 4.12. ωS, ωT are the weights

for SpatialNet and TemporalNet, respectively. Note that we only use the identifica-

tion cost V which is computed using the spatial features since they contain more

information regarding to the person label than the temporal features. We propose

using different weights for each stream to be able to emphasize the spatial features

as compared to the temporal features. For ReID Task, even though walking motion

adds discriminative power to the ReID solution, spatial features such as appearance,

color or texture are relatively more important in terms of re-identifying people. Thus,

we set the weights empirically with the condition ωS ≥ ωT .

4.1.7 Similarity Metric for Testing

The weighted two stream joint identification and verification objective function,

which is used for training, incorporates the ability to predict a person’s identity. How-

ever, during the evaluation, the goal is to find the similarity score (metric) between

two sequences of images and to rank the gallery accordingly. Therefore, we modify

Equation 4.13 to disregard the contribution of the standard softmax loss V and re-

place the Siamese cost D with the Euclidean distance. The Euclidean distances are

computed using the temporally pooled feature vectors (f̄Sic , f̄
T
ic , f̄Sjc and f̄Tjc) as follows:

dS = ||f̄Sia − f̄
S
jb
|| (4.14)

dT = ||f̄Tia − f̄
T
jb
|| (4.15)

Finally, dS and dT are combined using a weighted average to compute the final simi-

larity metric dF :

dF =
ωSdS + ωTdT
ωS + ωT

(4.16)
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4.2 Experiment Results

In this section, we evaluate our proposed method using the publicly available

datasets: Person re-identification (PRID2011) dataset [35] and the iLIDS video re-

identification (iLIDS-VID) dataset [36]. We investigate our proposed method with

different hyper-parameter settings and evaluate the performance against the state-of-

the-art ReID methods.

4.2.1 Datasets

Both datasets feature a multi-shot scenario in which a person trajectory is rep-

resented by a sequence of images. The PRID2011 dataset contains images from two

non-overlapping static surveillance cameras. The sequence presents the significant

differences in viewpoint, illumination and camera characteristics. It is composed of

385 person trajectories from one view and 749 from the other one, with 200 persons

appearing in both views. Each image sequence has a variable length ranging from 5

to 675 image frames, with an average number of 100 images. We only consider the

200 persons appearing in both views as suggested in [36].

The iLIDS-VID dataset was created by observing pedestrians in two camera views.

The outputs of two non-overlapping cameras were captured at a crowded airport

arrival hall. It consists of 600 image sequences of 300 individuals with one pair of

sequences from two camera views for each person. Each image sequence has a variable

length ranging from 23 to 192 image frames, with an average number of 73 images. It

is one of the most challenging datasets due to the cluttered background and random

occlusions.

4.2.2 Experiment Setup

Input images are pre-processed before being fed into the two stream Siamese

CNN. Each color channel of the RGB image is normalized to introduce invariance
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to illumination changes. This is simply done by subtracting the mean and dividing

by the standard deviation. Each horizontal and vertical optical flow channel is also

normalized to the range of [−1, 1].

The same data augmentation technique in [124] is used to add more variety to the

data. Random mirroring and cropping are used for data augmentation. Note that

a consistent data augmentation technique is applied to the images from the same

sequence.

As suggested in [124], positive and negative pairs are alternatively fed into the

network. Sequence pairs are randomly sampled from the all training identities. All

training sequence lengths are set to 16 and the test sequence lengths are varied to

investigate the significance of the sequence length as described in Section 4.2.6. Note

that this sequence length can be arbitrary due to the network architecture.

The proposed network is trained for 1000 epochs using the stochastic gradient de-

scent method. The batch size is set to 1, the learning rate to 1e−3 and the momentum

to 0.9. The Siamese cost function margin is set to m = 2. The base CNN feature

dimension is 128 with the dropout rate set to 0.5.

4.2.3 Evaluation Protocol

We follow the evaluation protocol described in [36]. The dataset is randomly split

into two subsets with the same size. One is used for training and one for testing.

For the testing, the sequences from the first camera are used as the probes while the

sequences from the second camera are used as the gallery.

We validate the performance of our proposed method and compare the perfor-

mance against other methods using the Cumulative Matching Characteristic (CMC)

curve which indicates the probability of finding the correct match in the top K matches

within the ranked gallery. The experiment is repeated five times by randomly splitting

the dataset into training and testing and the average result is reported.
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In our proposed method, we have two extra hyper-parameters (ωS, ωT ). To see

the effectiveness of proposed method, we perform experiments with various hyper-

parameters settings. We perform experiments with ωS = 1 when ωT is set to 0 or

1 in order to verify the individual contribution of TemporalNet. We also perform

experiments with ωS = 2, 3 when ωT = 1 to see the relative contribution of the

spatial features as compared to the temporal features.

4.2.4 Training Details

In training process, we proposed a new cost function (Jf ) for proposed network

as described in Equation 4.13. We defined the cost computed with the given input at

specific epoch as Loss. Loss changes throughout each epoch are provided in Figure

4.3 and Figure 4.4. Since our cost function has new hyper-parameter ωS, we plot the

loss value with ωS = 1, 2, 3 which are same as experiment setting. As increasing the

ωS, the total loss value increases since Jf is proportional to ωS. Note that loss value

from ILIDS-VID [36] dataset is much higher than the one from PRID2011 [35]. It

is expected behavior since ILIDS-VID dataset has more challenges such as cluttered

background or occlusions.

4.2.5 Feature Visualization

One of the most common and widely used deep learning feature visualization

method is visualizing the convolution layer output given the input [107]. We use

this technique to visualize proposed network features. Proposed method has three

convolution layers in base CNN structure as shown in Figure 4.2.

Note that conv1 layer has 16 filters and conv2, conv3 layers have 32 filters. A

sample is randomly selected from each dataset (PRID2011 [35] and ILIDS-VID [36]

dataset). This sample passes through the forward pass with the trained proposed

network to visualize the features in the middle convolution layers (conv1, conv2 and

conv3 in Figure 4.2).
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Fig. 4.3.: Loss function over epochs in PRID2011 [35]

For the SpatialNet, Figure 4.5, Figure 4.6, Figure 4.9 and Figure 4.10 show the

features associating with the RGB image as input. As we expected, the features

learned from the SpatialNet show mostly appearance information such as edges and

objects in the image. These features are critical for ReID Task. For the TemporalNet,

Figure 4.7, Figure 4.8, Figure 4.11 and Figure 4.12 show the features associating with

the optical flow image as input. Since the optical flow image had less structural

information from the start, it shows less structural information in the visualized

feature images.
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Fig. 4.5.: Visualized features of SpatialNet with the sample from camera A in

PRID2011 [35]



84

Conv 2 Conv 3

Normalized 
RGB Image

Conv 1

RGB 
Image

Fig. 4.6.: Visualized features of SpatialNet with the sample from camera B in

PRID2011 [35]
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Fig. 4.7.: Visualized features of TemporalNet with the sample from camera A in

PRID2011 [35]
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Fig. 4.8.: Visualized features of TemporalNet with the sample from camera B in

PRID2011 [35]
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Fig. 4.9.: Visualized features of SpatialNet with the sample from camera A in ILIDS-
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Fig. 4.10.: Visualized features of SpatialNet with the sample from camera B in ILIDS-

VID [36]
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Fig. 4.11.: Visualized features of TemporalNet with the sample from camera A in

ILIDS-VID [36]
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Fig. 4.12.: Visualized features of TemporalNet with the sample from camera B in

ILIDS-VID [36]
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4.2.6 Results and Discussion
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Fig. 4.13.: CMC curves for different probe/gallery sequence lengths

Table 4.1.: Matching accuracies with various probe/gallery sequence lengths in iLIDS-

VID

PPPPPPPPPPPPPP
Length

Rank
1 5 10 20

16 41 70 81 92

32 50 79 88 95

64 56 82 91 97

128 58 85 93 97
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In this section, we investigate the significance of the sequence length during test-

ing. An experiment is conducted to evaluate the ReID matching accuracy using

various sequence lengths. Our proposed network shown in Figure 4.1 is trained with

the sequence length set to 16 using the iLIDS-VID dataset. During evaluation, the

matching accuracy is calculated using {16, 32, 64, 128} as lengths for the probe and

gallery sequences. In the case when the probe or gallery sequence is shorter than the

test length, we use the entire sequence.
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Fig. 4.14.: Matching Accuracy for variable sequence Length in PRID2011 [35]

The matching accuracies for different sequence lengths are summarized in Table

4.1. The results clearly indicate that the matching accuracies are improved as the

sequence length is increased. For instance, when we increase the sequence length from

16 to 128, the top rank matching accuracy is improved by 17%. This is an intuitive

result since combining the spatial and temporal features using multiple images helps

address the challenges associated with various viewpoints and poses.
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Fig. 4.15.: Matching Accuracy for variable sequence Length in ILIDS-VID [36]

Figure 4.14 and Figure 4.15 show extra experiment results from the shorter se-

quence length 1 to 128. Compare to the case using only single image, the match-

ing accuracy has increased significantly when we use 128 sequence length for both

datasets.

Verification on Two Stream

To verify the usefulness of temporal information in ReID task, we perform the

experiments with the different settings of the hyper-parameters (ωS, ωT ). This also

can verify the improvement gained by the use of a two stream CNN architecture.

Note that ωS and ωT control the individual contributions of the SpatialNet and the

TemporalNet, respectively. When ωT = 0, the contribution of TemporalNet becomes

totally 0 in training phase. This also applies to the test phase in the same way based

on the Equation 4.16.
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Table 4.2.: Matching accuracies with different stream settings

(a) PRID2011

PPPPPPPPPPPPPP
Streams

Rank
1 5 10 20

ωS = 1, ωT = 0 75 93 97 98

ωS = 1, ωT = 1 78 94 94 99

ωS = 2, ωT = 1 78 94 97 99

ωS = 3, ωT = 1 79 93 97 98

(b) iLIDS-VID

PPPPPPPPPPPPPP
Streams

Rank
1 5 10 20

ωS = 1, ωT = 0 57 60 91 95

ωS = 1, ωT = 1 58 86 93 97

ωS = 2, ωT = 1 60 86 93 97

ωS = 3, ωT = 1 56 86 92 96

We then compare ReID matching accuracies for different hyper-parameter settings

such as spatial only case (ωT = 0, ωS = 1,) and Both Stream cases when ωT is fixed to

1 while ωS is varying from 1−3. As shown in Table 4.2, using both stream cases have

3-4% accuracy improvement in PRID2011 and 1-3% accuracy improvement in iLIDS-

VID. This result demonstrates that by having two separate networks to represent

the spatial and the temporal content, each network is able to learn the best feature

representation and improves the ReID performance. In addition, based on the results

for ωS ≥ 2 cases, ReID performance improved in PRID2011 whereas it did not improve

in iLIDS-VID for ωS = 3 case. We thus conclude that the optimal relative contribution

of the spatial and temporal features is data dependent.
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Comparisons

We compare the performance of our proposed method against several of the best

performing methods in a multi-shot ReID setting. We evaluate state-of-the-art met-

ric learning methods (XQDA [41] and KISSME [68]) using state-of-the-art feature

extraction methods: LOMO [41], GOG [67] and ELF [66]. Since we are evaluating

multi-shot ReID methods, we extract the features for each image in the sequence

and compute the average which is used by the metric learning methods. To our best

knowledge, the combination of GOG and XQDA achieves state-of-the-art performance

and the RNN-ReID method is the best performing deep learning method [124].

The CMC curves are plotted in Figure 4.16a and 4.16b and the matching accu-

racies are summarized in Table 4.3a and 4.3b for the PRID2011 and the iLIDS-VID

datasets, respectively. For the PRID2011 dataset, our proposed method outperforms

all the other methods. The top rank matching accuracy is 4% higher than the accu-

racy achieved by the GOG+XQDA method and 8% higher than RNN-ReID.

For the iLIDS-VID dataset, the results show that our approach has comparable

accuracy to the RNN-ReID method and is 5% higher than the accuracy achieved by

the GOG+XQDA method as can be seen in Table 4.3b and Figure 4.16b. The top

rank matching accuracy for the iLIDS-VID dataset is 18% lower than the case for

the PRID2011 dataset. We believe this mainly due to the cluttered background and

occlusions associated with the iLIDS-VID dataset.
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Fig. 4.16.: CMC Curves for comparison.
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Table 4.3.: Matching accuracies comparison with previous methods

(a) PRID2011

PPPPPPPPPPPPPP
Methods

Rank
1 5 10 20

Proposed (ωS = 2) 78 94 97 99

RNN-ReID [124] 70 92 98 99

GOG [67] + XQDA [41] 74 91 94 96

GOG [67] + KISSME [68] 57 80 89 94

LOMO [41] + XQDA [41] 67 86 92 94

LOMO [41] + KISSME [68] 48 72 82 91

ELF [66] + XQDA [41] 22 43 54 64

ELF [66] + KISSME [68] 15 32 42 56

(b) iLiDS-VID

PPPPPPPPPPPPPP
Methods

Rank
1 5 10 20

Proposed (ωS = 2) 60 86 93 97

RNN-ReID [124] 58 80 92 98

GOG [67] + XQDA [41] 55 79 86 90

GOG [67] + KISSME [68] 38 67 79 89

LOMO [41] + XQDA [41] 53 79 88 95

LOMO [41] + KISSME [68] 35 65 79 90

ELF [66] + XQDA [41] 23 49 60 74

ELF [66] + KISSME [68] 15 40 55 70
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5. SIMILARITY PRESERVING STARGAN FOR PERSON

RE-IDENTIFICATION

As deep learning approaches have been studied, large-scale ReID datasets have been

released : Market-1501 [38] and DukeMTMC-reID [37]. Compare to the other datasets

such as PRID 2011 [35], iLIDS-VID [36], Market-1501 and DukeMTMC-reID have

more than 6 different cameras settings and a large number of images and identities.

This means that the same person can show up in more than two camera views which

introduces more challenges to re-identify the person.

Although larger datasets have been introduced, more training data is needed. In

addition, since the number of camera is growing in these datasets, more samples for

each camera are needed in order to learn robust camera invariant feature representa-

tions. It is expensive and time-consuming to have manual identity annotations across

different cameras as we have more cameras and videos to annotate the identity for

ReID tasks.

To alleviate this problem, Zhong et al. [43] proposed a method for generating scene

style transferred images using a CycleGAN (CamStyle) [133] as a data augmentation

method for ReID. They trained multiple image-to-image translation models for each

camera pair using CycleGAN. Then, the model can generate new sample images

from the source style to the target style. In CamStyle [133], authors defined this

problem as generating ”Camera Style” transferred images. However, in this problem,

we do not consider camera specific settings such as focal length or angle of view

of the camera. Thus, we re-define this problem as ”Scene Style” transfer problem.

Scene style means the scene specific characteristics across different cameras such as

bright or dark illumination. We will refer generated images as scene style transferred

images in the rest of this thesis. These scene style-transferred images allow us to

have extra training samples with different scene styles without additional manual
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annotation. In other words, we have extra images as if they are captured from target

camera but it is actually generated from the real image captured from source camera.

In addition, label smoothing regularization (LSR) on the style-transferred images

to softly distribute their labels and reduce the noise effect generated by the extra

samples. Due to the limitation of CycleGAN which can model only one-to-one domain

mapping, this method only can learn the mapping for one camera pair (e.g., camera 1

to camera 2) with the single model. Thus, using Camstlye [133], multiple models need

to be trained to model an entire camera network. For example, in the DukeMTMC-

reID [37] dataset which has 8 different cameras, C2
8 = 28 different models need to be

trained separately. The time complexity as well as the the number of parameters will

be sharply increased as the number of camera increases. In addition, cross-camera

relationships will be ignored in this architecture.

To address these limitations, we propose the use of StarGAN [42] with an addi-

tional similarity preserving term in the loss function for scene-aware image-to-image

translation to generate the extra samples for ReID.

5.1 Proposed Method

Figure 5.1 shows the overall flow of our proposed method. First, we train the

similarity preserving StarGAN to obtain the scene-aware image-to-image translation

model. This model learns the mapping across different cameras with a single model

in the ReID dataset. We then generate scene style translated images for all respective

camera combinations from this single model. Finally, we train the deep learning ReID

network with both real images and scene style translated images.

5.1.1 StarGAN

In this section we briefly revisit the StarGAN [42]. StarGAN has a single generator

G learning the mappings among multiple domains and a single discriminator D with

auxiliary classifier to discriminate fake and real images and control multiple domain
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Fig. 5.1.: Overall Proposed Framework

simultaneously. In order to stabilize the training process while generating realistic

fake images, the Wassertein GAN loss with a gradient penalty [159,160] was used for

the adversarial loss and defined as:

Ladv =Ex[Ds(x)]− Ex,ct [Ds(G(x, ct))]

− λgpEx̂[(||∇x̂Ds(x̂)||2 − 1)2]
(5.1)

where Ds is defined as the probability distribution over the sources, x̂ is uniformly

sampled along a straight line between a pair of a real and a generated image. In

addition, G generates an image G(x, ct) mapped from the input image x to the target

domain label ct, while D tries to distinguish the between real and generated images.

StarGAN [42] has an auxiliary classifier on top of D to classify images to the

respective domain label. For the real image, a domain classification loss is defined as:

Lrcls = Ex,cs [−logDcls(cs|x)] (5.2)
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where Dcls(cs|x) denotes the probability distribution over domain labels given the

real image x and cs means the source domain label. For the fake image, a domain

classification loss is described as:

Lfcls = Ex,ct [−logDcls(ct|G(x, ct))] (5.3)

where Dcls(ct|G(x, ct)) represents a probability distribution over domain labels given

the fake image G(x, ct) and ct refers the target domain label.

In order to preserve the content of the input images while translating the domain-

related information of the image, StarGAN used a cycle consistency loss [133] which

is defined as

Lrec = Ex,ct,cs [||x−G(G(x, ct), cs)||1] (5.4)

where the translated image G(x, ct) becomes the input for the G with the original

domain label cs and reconstruct the original image x.

Finally, the overall StarGAN loss function is expressed as

LD = −Ladv + λclsL
r
cls, (5.5)

LG = Ladv + λclsL
f
cls + λrecLrec (5.6)

where λcls, λrec are hyper-parameters for the relative importance of each term.

5.1.2 Similarity Preserving StarGAN

In this thesis, we employ the StarGAN model to generate scene style translated

images as extra training samples for ReID. However, we observe that the cycle con-

sistency term, Lrec in Equation 5.4, was not enough for preserving the content of the

input image related to person identity while translating the camera domain-related

content. For scene-aware image-to-image translation, we do not want to have dra-

matic changes in the image since we need to keep the same identity while transferring

the scene specific settings. In order to preserve the same identity while transferring

the image to the different camera setting, we add two additional terms into StarGAN
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generator loss (Equation 5.6). We present the details of each additional term in the

following.

Identity Mapping Loss.

In order to preserve the cycle-consistency between the input and output, we add the

identity mapping loss [161] to regularize the generator to be an identity mapping

when the real image with the source domain label is provided.

The identity mapping loss term is defined as

Lid = Ex,cs [||G(x, cs)− x||1] (5.7)

where G(x, cs) is the generated image with the source camera label cs and the x is

the real image from camera cs.

Multi-scale Structural Similarity.

Wang et al. [162] originally used the structural similarity between two images across

different scales. We add the multi-scale SSIM (MS-SSIM) term to our generator loss

to preserve the structural similarity. Specifically in scene-aware image translation, we

need to preserve the most of the structural information to maintain the same identity.

By using this term, the generator tries to preserve the structural information of the

input image.

Since SSIM is a single scale approach, the algorithm depends on the specific view-

ing conditions such as image resolution or viewing distance. To address this drawback,

multi-scale SSIM (MS-SSIM) [162] was introduced to calibrate the parameters that

control the relative importance across different scales. In ReID, we may have very

different input image resolutions. Thus, we employ the MS-SSIM for the similarity

metric in our proposed method.

Let xr = G(G(x, ct), cs) as the reconstructed image with the source camera label

cs, ct refers to the target camera label and the x as the input image. The SSIM loss

can defined as

LSSIM(xr, x) = [l(xr, x)αc(xr, x)βs(xr, x)γ] (5.8)
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where

l(xr, x) =
2µxrµx + C1

µxr
2 + µx2 + C1

(5.9)

c(xr, x) =
2σxrσx + C2

σxr
2 + σx2 + C2

(5.10)

s(xr, x) =
σxrx + C3

σxrσx + C3

. (5.11)

l(xr, x), c(xr, x), s(xr, x), α, β, γ represent the luminance, contrast and structure

information and their relative importance, respectively. µxr , µx are the means of xr

and x and σxr , σx are the standard deviations of xr and x. σxrx is the co-variance of

xr and x and C1 = 0.012, C2 = 0.032, C3 = C2/2 are the fixed hyper-parameters.

From Scale 1 to the highest Scale M, we compute the contrast comparison c(xr, x)

and the structure comparison s(xr, x) at each scale j. The luminance comparison

denoted as lM(xr, x) is computed only at Scale M. M is set to 5 in our experiments.

Thus, we defined MS-SSIM [162] as

LMS−SSIM(xr, x) =[lM(xr, x)]αM

∗
M∏
i=1

[c(xr, x)]βi [s(xr, x)]γi .
(5.12)

Full SP-StarGAN loss function.

Finally, the proposed full generator loss function to optimize can be defined as

LG = Ladv + λclsL
f
cls + λclsLrec

+ λidLid − λsLMS−SSIM

(5.13)

where λcls, λrec, λid, λs are the relative importance of domain classification, recon-

struction, identity mapping and MS-SSIM losses, respectively. Note that we have the

same discriminator loss function as in Equation 5.5.

Network Architecture.

We employ the same network architecture from [42]. The generator is consist of two

convolutional layers with stride size 2, 6 residual blocks [110] and two transposed



104

convolutional layers with stride size 2. The instance normalization [163] was used

only for the generator. For the discriminator, the PatchGANs [164] was used to

classify the local image patches are real or fake.

5.1.3 Deep Person ReID Network

Base Deep ReID Model.

We use the ID-Discriminative Embedding (IDE) [125] to train ReID model. In this

network, we use ResNet-50 [110] convolutional layers followed by global max pooling

layer. We then add two fully connected layers as stated in [43]. The first layer has

1024 dimensions followed by batch normalization [165], ReLU and Dropout [157]. For

the ID-Discriminative Embedding, we have the second layer that has P (the number

of class dimensions) in order to use cross-entropy loss.

Loss Function.

We use the cross-entropy loss for the real images. The cross-entropy loss is defined as

LR = −
C∑
c=1

log(p(c))q(c) (5.14)

where p(c) is the estimated probability of the input with the ground truth label c and

C is the number of classes. q(c) the ground truth distribution and is defined as

q(c) =

1, c = y

0, c 6= y

(5.15)

For the generated images, we utilize the label smoothing regularization (LSR) as

suggested in [43] to reduce the negative effect of some of the noisy generated images.

The label smoothing regularization (LSR) loss can be defined as

LLSR = −(1− ε) log p(y)− ε

C

C∑
c=1

log p(c) (5.16)

Even though we have the identity label for the generated images, some images have

transfer noise due to the occlusions or the noise in the input image. To alleviate this
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problem, LSR assigns the small weights to the other classes and give less confidence

in the identity label. The final loss of the Deep Person ReID Network is formulated

as

LT =
1

M

M∑
i=1

LiR +
1

N

N∑
j=1

LjLSR (5.17)

where LR is defined in Equation 5.14 and LLSR is defined in Equation 5.16. M , N

indicate the number of real images and generated images used in the training process.

Re-Rank.

We employ the re-ranking method [44] as post processing on our initial ranking results

from base deep ReID model. Zhong et al. proposed to use the k-reciprocal encoding

for ReID re-ranking. Re-rank computes features by encoding its k-reciprocal neigh-

bors into a single vector. Then this vector is used to re-rank under the Jaccard

distance. And the final distance is computed with the combination of the original

distance and the Jaccard distance. We will refer this method as Re-Rank in the rest

of the thesis.

5.2 Experiment Results

5.2.1 Datasets

Market-1501 [38] contains 32,668 images in total with 1,501 identities from 6 dif-

ferent camera views. From the video, person images were detected using a deformable

part model [166]. This dataset is partitioned into 12,935 images (751 identities) for

training and 19,732 images (750 identities) for the gallery. In ReID test, 3,3668 hand-

captured images from 750 identities are pre-selected as queries to evaluate ReID

performance. Single-query evaluation protocol is used.

DukeMTMC-reID [134] has 36,411 images in total with 1,404 identities from 8

different camera views. It is composed of 16,522 images (702 identities) for training

samples and 17,661 images (702 identities) for the gallery. In ReID test, 2,228 images

from 702 identities are pre-selected as queries for the evaluation.
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Table 5.1.: ReID accuracy evaluation on different proposed components

in SP-StarGAN loss on Market-1501

Method λid λs mAP Top-1 Rank

Baseline (IDE*) - - 65.87 85.66

StarGAN 0 0 66.1 86.5

StarGAN + Identity

1 0 67.2 86.7

2 0 68.2 87.9

5 0 67.4 87.5

StarGAN + MS-SSISM

0 1 67.4 87.4

0 2 67.6 87.4

0 5 66.2 85.9

StarGAN + Both

1 1 67 87.2

1 2 67.6 87.5

1 5 67.6 86.9

2 1 68.6 88.1

2 2 68.5 87.6

2 5 67.6 87.6

5.2.2 Experiment Setup and Training Details

Similarity Preserving StarGAN. We first resize the images to 178x178 and

then crop them randomly to 128x128. The horizontal random flip is used with a

probability of 0.5 as the data augmentation. As described in [42], all models are

trained using Adam [112] with β1 = 0.5 and β2 = 0.999. The generator updates

after five discriminator updates as in [159]. The initial learning rate is 0.0001 for

the first 100,000 iterations and linearly decays to the learning to 0 over the next

100,000 iterations. The batch size is 16. We use the fixed hyper-parameter values for
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Table 5.2.: ReID accuracy evaluation on different proposed components

in SP-StarGAN loss on DukeMTMC-reID

Method λid λs mAP Top-1 Rank

Baseline (IDE*) - - 51.83 72.31

StarGAN 0 0 66.1 86.5

StarGAN + Identity

1 0 51.7 74.2

2 0 52.4 74

5 0 51.4 73.7

StarGAN + MS-SSISM

0 2 51.3 72.7

0 2 49.6 71

0 5 51.9 74

StarGAN + Both

1 1 51.9 73.9

1 2 51.8 74.4

1 5 51 72.9

2 1 51.7 72.8

2 2 51.7 73.6

2 5 51.6 73.4

λgp = 10, λcls = 1, λrec = 10 in Equation 5.13. We describe the analysis to select

the best value for λid, λs in Section 5.2.3.

Finally, for inference, we generate all combinations of different cameras per image

with the image size 128x128. For example, if the real image is taken from camera 1

and we have K different cameras in the dataset, then generate the translated images

with target camera domain label from 2 to K.

Deep Person ReID Network. We follow the training general strategy in [43]

to train the base deep reID model except for the learning rate policy. All images are

resized to 256x128. Two base data augmentation method were used for the training

: random cropping and random horizontal flipping. A model is trained with SGD
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solver. The initial learning rate is set to 0.01 for the ResNet-50 convolutional layers

and 0.1 for the two additional fully connected layer since we use ImageNet [101] pre-

trained ResNet-50 layers as the initialization. In our experiments, the initial learning

is divided by 10 after first 30 epochs out of 60 epochs in total. The batch size is set

to 128 and the dropout probability is set to 0.5.

In the ReID test, we extract the feature from the pooling layer and use Euclidean

distance to compute the similarity between the gallery and query images. We use

the generated images as the extra training samples and follow the strategy of [43]

in the selection of the generated images. We randomly select M real images and N

generated images in a training mini-batch. We set the M : N ratio to 3 : 1 for all

experiments. We evaluate the ReID performance in terms of mean Average Precision

(mAP) and Top-1 Rank matching accuracy.

5.2.3 Component Evaluation

In this section, we investigate the significance of the components in GAN part and

ReID Network Part of the proposed method.

Similarity Preserving StarGAN.

We first investigate the effect of the additional loss terms in SP-StarGAN on ReID

accuracy metrics. We evaluate for different hyper-parameter settings such as Star-

GAN + identity, StarGAN + MS-SSIM and StarGAN + Both when λid and λs are

varying from 1− 5. Note that this evaluation was done without any additional aug-

mentation or post-processing in Deep Re-ID network. In [43], they defined IDE* with

the improved learning rate policy while keeping the same network architecture from

IDE [125]. IDE* is used as the baseline to evaluate the proposed components. As

shown in Table 5.2, the usage of original StarGAN [42] improved around 1% from the

baseline in both mAP and Top-1 Rank accuracy. When we included the additional

loss terms into the generator loss function, we obtain around 2% improvement in

ReID accuracy depending on the hyper-parameters λid and λs. This improvement
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is coming from the generating better quality images which results that having less

noise in generated samples. We also observe that we do not have the continuing

improvement as we increase the contributions of the additional loss terms.

Deep Person ReID Network.

We evaluate the different components in Deep ReID network including Random Eras-

ing (RE) and Re-Rank. For this evaluation, we fix the hyper-parameters for the GAN

part as λid = 2 and λs = 1. For any type of proposed GANs, we observe the signifi-

cant improvement in ReID accuracy by employing both RE and Re-Rank. This result

demonstrates that using Random Erasing as extra data augmentation along with the

Re-Rank as the post processing has significant positive effect on ReID accuracy. Thus,

our final proposed method version in the following section will be including both RE

and Re-Rank as well as StarGAN + Both method with the parameters λid = 2 and

λs = 1.

5.2.4 Complexity Analysis

Table 5.5 shows the comparison of the complexity of the model between CamStyle

[43] and proposed method. Note that this experiment was done using a NVIDIA

Titan Xp GPU. CamStyle has around 792 M parameters to train while our proposed

method has only 52.23 M parameters to train as shown in Table 5.5a. For training

and inference processing time as shown in Table 5.5b, CamStyle takes around 150

more hours in training than the proposed method for DukeMTMC-reID [37] dataset.

Camstyle can only learn the mapping between two different camera domains at one

time due to the limitation of CycleGAN. This results the dramatic increase in the

complexity since we need to train multiple models. On the other hand, proposed

method can model the mapping between multiple camera domains with the single

model while showing the competitive ReID accuracy.
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Table 5.5.: A complexity comparison on CamStyle [43] and Our Proposed Method

(a) Number of Parameters on DukeMTMC-reID [37]

Sub-Network
Number of Parameters [M]

CamStyle Ours

Generator 637.17 M 8.44 M

Discriminator 154.84 M 44.79 M

Total 792.01 M 53.23 M

(b) Processing Time on DukeMTMC-reID [37]

Mode
Processing Time [hours]

CamStyle Ours

Training 304.17 12.84

Inference 2.16 0.12

5.2.5 Comparisons

Visual Evaluation Comparison

We compare the sample generated images from Camstlyle and our proposed method.

Both Camstlye and our proposed method can generate competitive quality of person

images. However, as shown in Figure 5.2, in this particular sample, proposed method

can generate better quality images especially in person’s leg compare to Camstyle [43]

and the original StarGAN [42]. This particular sample has a lot of noise in the input

image and it demonstrates that proposed method can create better quality image

even with the noisy input.

ReID Evaluation Comparison

For the full version of proposed method, we use the StarGAN + Both where λid = 2

and λs = 1 with RE and Re-Rank. We compare our proposed method with the state-

of-the-art methods on Market-1501 and DukeMTMC-reID in Table 5.6 and 5.7. In
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Fig. 5.2.: Sample Generated Image Comparison

both datasets, our proposed method outperforms all the other methods in terms of

both mean Average Precision(mAP) and Top-1 Rank accuracy. mAP can be defined

as

mAP =

∑Q
q=1(

∑N
k=1 Pq(k)∆rq(k))

Q
(5.18)

where Pq(k) is the precision at a cutoff of k images given query q and ∆rq(k) is the

change in recall which happened between k − 1 and k cutoff given query q.

We achieve significant improvement in especially mAP (15-72%) by employing

Re-Rank with SP-StarGAN. We also achieve the highest accuracy in terms of Top-1

Rank accuracy in both datasets.
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Fig. 5.3.: Sample Generated Image Comparison

Table 5.6.: A ReID accuracy comparison on Market-1501

Methods mAP Top-1 Rank

LOMO + XQDA [41] 14.09 34.4

IDE [125] 46 72.54

Re-rank [44] 63.63 77.11

SVDNet [78] 62.1 82.3

TriNet [167] 69.14 84.92

DJL [168] 65.5 85.1

DCGAN [37] 66.07 83.97

IDE* [43] 65.87 85.66

IDE* + CamStyle [43] 68.72 88.12

IDE* + CamStyle + RE [134] 71.55 89.49

Ours (full version) 86.3 91.1
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Table 5.7.: A ReID accuracy comparison on DukeMTMC-reID

Methods mAP Top-1 Rank

BOW + KISSME [68] 12.17 25.13

LOMO + XQDA [41] 17.04 30.75

IDE [125] 44.99 65.22

SVDNet [78] 56.8 76.7

TriNet [167] 72.44 53.5

DCGAN [37] 47.13 67.68

IDE * [43] 51.83 72.31

IDE * + CamStyle [43] 53.48 75.27

IDE* + CamStyle + RE [134] 57.61 78.32

Ours (full version) 65 82.1
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6. CONCLUSIONS

6.1 Summary

In this thesis, we describe improved video heart rate estimation method and two

person re-identification methods. The main contributions of this thesis are listed as

follows:

• Improving Video Heart Rate Estimation

1. We reviewed the literature of video-based HR estimation methods. There

were Independent Component Analysis (ICA) Approach, Motion Detec-

tion/Amplification Approach, Chrominance Based Approach and Other

Approaches. We also stated the problem of current level of work. VHR

method still have rooms for improvement by solving motion artifacts or

varying skin tone problems.

2. We propose a new VHR method using temporal differencing filter and

small variation amplification. Since the definition of HR is the small color

variation underneath the skin in our application, we employ the recursive

temporal differencing filter to get temporal variations. We then perform

small variation amplification using Equation 3.4 and 3.3 that amplifies only

small variation and reduce large variation. To get more stable estimations,

we also propose reduction of frequency range for bandpass filter using a

cutoff frequency search.

3. For the future direction, we propose an alternative method of skin detec-

tion, spatial pruning, for noise signal removal. By using histogram and

K-means clustering within the tracked face, we expect to get more stable

and accurate information for the HR estimation. We provide the justifi-
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cation of illumination incident angle effect on our HR signal. This effect

is shown as motion artifact since it is changing along the subject’s mo-

tion. To alleviate motion artifact problem from illumination, we plan to

implement the separation of illumination and reflectance from the image

by using homomorphic filter.

• Person Re-Identification using a Two Stream Siamese CNN

1. We propose a person re-identification method based on a two stream con-

volutional neural network where each stream is a Siamese network. This

architecture can learn spatial and temporal information separately in a

re-identification setting. By having two separate networks, each network

can learn its own best feature representation.

2. We propose a weighted two stream training objective function which com-

bines the Siamese cost of the spatial and temporal streams with the ob-

jective to predict a person’s identity. The weighted cost function controls

the individual contribution of each stream.

3. We evaluate our proposed method on two publicly available datasets. Our

experimental results also demonstrate that by having two separate net-

works to represent the spatial and the temporal content, each network is

able to learn the best feature representation and improves the ReID per-

formance. Our proposed method outperforms or shows comparable results

to the existing best perform methods on two public datasets.

• Person Re-Identification using a Similarity Preserving StarGAN (SP-StarGAN)

1. We propose the scene-aware multiple domain image-to-image translation

using Similarity Preserving StarGAN for Person Re-Identification. SP-

StarGAN has the identity mapping loss and Multi-scale Structural Simi-

larity loss in the generator loss function. The SP-StarGAN can learn the

mapping among all different scene settings in ReID dataset and generate
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the scene-aware translated images as the extra training samples in ReID

with a single model.

2. For ReID, we propose to employ the Re-Ranking method [44] as post

processing along with SP-StarGAN generated samples in order to improve

ReID matching accuracy. We empirically demonstrate that Re-Ranking

shows higher performance in ReID accuracy with better quality generated

images.

3. We also provide the experimental results showing that having two addi-

tional loss terms helps address the quality problem in generated images

as well as ReID performance. We also demonstrate that by using SP-

StarGAN along with Random Erasing and Re-Rank improves the ReID

performance.

6.2 Future Work

Our proposed methods can be extended in the following ways:

• Improving Video Heart Rate Estimation

In the section 3.4 we have shown how the motion artifact is involved with the

heart rate signal through the mathematical modeling. Since the nature of il-

lumination in image capture is multiplicative model, the illumination produces

modulation artifacts term in the signal as shown in Equation 3.20. The experi-

ments on the synthetic data show that the modulation artifacts overwhelm our

target signal (HR signal) and reduce the estimation accuracy.

To overcome this problem, we plan to have an improved system for video based-

HR estimation by implementing the future work ideas described in Section

3.3 and 3.4. The overall future block diagram is given in Figure 6.1 where

homomorphic filter will be employed before Spatial Pruning.
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Fig. 6.1.: The overall block diagram of the future work.

As Figure 6.1 shows, we propose to use homomorphic filtering to remove the

illumination effect from the given image. In addition, we plan to implement 2D

homomorphic filtering on image domain for the purpose of separating illumina-

tion from image. Furthermore, we plan to analyze how this idea will actually

affect on real video data and HR estimation.

• Person Re-Identification using a Two Stream Siamese CNN

In our work, we only consider the spatial and temporal information of the per-

son. However, semantic attributes are critical and robust features to identify

a person. To address this, in the future, we plan to incorporate semantic at-

tributes using a multi-stream approach to address the challenges associated with

occlusions and cluttered background.

• Person Re-Identification using a Similarity Preserving StarGAN (SP-StarGAN)

Even though most of the person re-identification (ReID) methods has competi-

tive accuracy, it still works only well on same dataset as the trainig dataset. In

the real-world setting, we expect the method to be able to identify a person even

if the person is not coming from similar environmental setting to the training

data. This is a challenging task and cross-dataset domain ReID is another pop-
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ular research area. In the future, we want to extend the usage of SP-StarGAN

to cross-dataset domain ReID problem.

6.3 Publications Resulting From Our Work

1. D. Chung, and E. J. Delp, “Camera-Aware Image-to-Image Translation Using

Similarity Preserving StarGAN For Person Re-identification,” To appear, Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Workshops, June 2019, Long Beach, CA.

2. D. Chung, K. Tahboub and E. J. Delp, “A two stream siamese convolutional

neural network for person re-identification,” Proceedings of the International

Conference on Computer Vision, pp. 1983-1991, October 2017, Venice, Italy.

3. D. Chung, J. Choe, M. E. OHaire, A.J. Schwichtenberg, and E. J. Delp, “Im-

proving video-based heart rate estimation,” Proceedings of the IS&T Interna-

tional Symposium on Electronic Imaging, February 2016, San Francisco, CA.

4. J. Choe, D. Chung, A. J. Schwichtenberg, and E. J. Delp, “Improving video-

based resting heart rate estimation: A comparison of two methods,” Proceedings

of the IEEE 58th International Midwest Symposium on Circuits and Systems,

pp. 1-4, August 2015, Fort Collins, CO.
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