
BUILDING FAST, SCALABLE, LOW-COST, AND SAFE RDMA SYSTEMS IN

DATACENTERS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Shin-Yeh Tsai

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2019

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Yiying Zhang, Chair

School of Electrical and Computer Engineering

Dr. Mathias Payer

Department of Computer Science

Dr. Tiark Rompf

Department of Computer Science

Dr. He Wang

Department of Computer Science

Approved by:

Dr. Voicu S. Popescu

Department of Computer Science

iii

Dedicated to my family for their love and support

iv

ACKNOWLEDGMENTS

This dissertation would not have been possible without the support from many

people in my life. First of all, I would like to express my sincerest gratitude to my

advisor Professor Yiying Zhang for her support, patience, and listening. I really

appreciate that she gave me a chance to do research with her. By working with her,

I have learned how to discover a research problem, how to build a system to verify

ideas, and how to take broad, high-level ideas and to be able to focus on those ideas

in a more nuanced, focused way.

I still remember the time that Professor Zhang and I worked together for my

first research project, and the impressive moment that we were notified the project is

accepted to be published. In the early stage of the project, she gave me tremendous

suggestions to improve the designs. When we were consolidating our ideas and writing

the paper, she taught me how to write in a technical style and helped me to polish

and improve the contents. After the paper is accepted, she taught me how to prepare

an excellent presentation and how to illustrate our ideas in the presentation clearly.

I have learned so much from Professor Zhang, and I would not be able to complete

this work without her gratuitous support.

I would also like to thank the members of my committee: Professor Mathias Payer,

Professor Tiark Rompf, and Professor He Wang. Their feedback about my disserta-

tion and research has made my work significantly stronger. I would particularly like

to thank Professor Payer for his insightful comments and suggestions. It was an

enjoyable experience to collaborate with him to discover exciting research ideas.

It was also a pleasure to be a member of an awesome research group, WukLab. I

thank them for their input and support of my work. Their feedback about my ideas

has made my work better.

v

Finally, I am immensely grateful to my family, especially my parents, who encour-

aged me to pursue this work and provide their unconditional love through the whole

process. I acknowledge my mom for her endless patience and understanding. I miss

my maternal grandfather and my paternal grandmother so much. The life lessons

they taught me and what I have learned during my Ph.D. journey will be in my heart

forever. I dedicate this dissertation to my family.

vi

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

ABSTRACT . xiii

1 INTRODUCTION . 1
1.1 Indirection Layer on RDMA for Better Datacenter Support 3
1.2 RDMA-Based Data Store with Remote Persistent Memory 4
1.3 Security Implications of One-Sided Communication and RDMA 4
1.4 Chapter Overview . 5

2 BACKGROUND . 7
2.1 Remote Direct Memory Access . 7

2.1.1 Architecture and Abstraction 7
2.1.2 RDMA NICs . 10
2.1.3 RDMA Microbenchmarks . 11
2.1.4 RDMA in Datacenter Applications 13

2.2 Datacenter In-Memory Data Stores . 14
2.2.1 Distributed and Remote DRAM-Based Data Stores 14
2.2.2 Distributed Persistent Memory Data Stores 15
2.2.3 RDMA Data Stores . 16

2.3 Side-Channel Attacks . 16

3 INDIRECTION LAYER ON RDMA FOR BETTER DATACENTER SUP-
PORT . 18
3.1 Issues of RDMA . 22

3.1.1 Issue 1: Mismatch in Abstractions 22
3.1.2 Issue 2: Unscalable Performance 23
3.1.3 Issue 3: Lack of Resource Sharing, Isolation, and Protection . . 24

3.2 Virtualizing RDMA in Kernel: a Design Overview 25
3.2.1 Kernel-Level Indirection . 25
3.2.2 Challenges . 26
3.2.3 LITE Overall Architecture . 27
3.2.4 LITE Design Principles . 29

3.3 LITE Memory Abstraction and RDMA 30
3.3.1 LITE Memory Abstraction and Management 31
3.3.2 LITE RDMA Benefits and Performance 36

vii

Page

3.4 LITE RPC . 38
3.4.1 LITE RPC Mechanism . 39
3.4.2 Optimizations between User-Space and Kernel 41
3.4.3 LITE RPC Performance and CPU Utilization 44

3.5 Resource Sharing and QoS . 47
3.5.1 Resource Sharing . 48
3.5.2 Resource Isolation and QoS . 49

3.6 Extended Functionalities . 50
3.6.1 Memory-Like Operations . 51
3.6.2 Synchronization and Atomic Primitives 51

3.7 LITE Applications . 52
3.7.1 Distributed Atomic Logging . 52
3.7.2 MapReduce . 53
3.7.3 Graph Engine . 55
3.7.4 Kernel-Level DSM . 56
3.7.5 Programming Experience . 57

3.8 Moving LITE to User Space . 59
3.9 Conclusion . 59

4 RDMA-BASED DATA STORE WITH REMOTE PERSISTENT MEMORY 60
4.1 DPM Overview . 65

4.1.1 DPM Deployment and Architectures 65
4.1.2 DPM Benefits and Challenges 66
4.1.3 Design DPM for Read-Most Data Stores 67

4.2 DPM Data Stores . 68
4.2.1 System Interface and Overview 68
4.2.2 Direct Connection . 69
4.2.3 Connecting Through Coordinator 72
4.2.4 Separating Data and Control 74
4.2.5 Failure Handling . 81
4.2.6 Load Balancing . 83

4.3 Evaluation Results . 84
4.3.1 Micro-Benchmark Results . 86
4.3.2 YCSB Results . 87

4.4 Conclusion . 94

5 SECURITY IMPLICATIONS OF ONE-SIDED COMMUNICATION AND
RDMA . 95
5.1 Vulnerabilities in One-Sided Communication 96
5.2 Pythia: Remote Oracles for the Masses 101

5.2.1 Threat Model . 103
5.2.2 Side-Channel Attacks on RDMA 104
5.2.3 Attacking Real RDMA-Based Systems 123

viii

Page
5.2.4 Mitigation Techniques . 131
5.2.5 Discussion . 133

5.3 Opportunity of One-Sided Communication 135
5.4 Conclusion . 138

6 RELATED WORK . 139
6.1 User-Level TCP/IP Implementation 139
6.2 RDMA-Based Libraries . 140
6.3 RDMA-Based Key-Value Stores . 140
6.4 One-Sided and Two-Sided Primitives in RDMA-Based Systems 141
6.5 Distributed PM Systems . 142
6.6 Remote Side-Channel Attacks . 143

7 CONCLUSION . 144
7.1 Lessons Learned and Discussion . 145

7.1.1 Moving from HPC to Datacenters 145
7.1.2 Hardware Offloading . 146
7.1.3 One-Sided vs. Two-Sided Communication 147

7.2 Concluding Remarks . 148

REFERENCES . 150

VITA . 174

ix

LIST OF TABLES

Table Page

3.1 Major LITE APIs. 28

3.2 LITE Application Implementation Effort. 58

4.1 Design Comparison of DPM Data Stores. 67

4.2 Cost Comparison of DPM Data Stores. 68

x

LIST OF FIGURES

Figure Page

2.1 Latency of RDMA Requests. 11

2.2 Throughput of RDMA Requests. 12

3.1 Traditional RDMA Stack. 19

3.2 LITE Architecture. 20

3.3 LITE lh Example. 32

3.4 RDMA Write Latency against Num of (L)MRs. 33

3.5 RDMA Write Throughput against (L)MR Size. 34

3.6 LITE and Native RDMA Write Latency. 35

3.7 LITE RDMA Throughput. 37

3.8 (De)Registering (L)MR Latency under LITE and native RDMA. 38

3.9 LITE RPC Mechanism. 39

3.10 RPC Latency Comparison. 40

3.11 RPC Throughput. 42

3.12 LITE RPC Memory Utilization. 43

3.13 CPU Usage with Facebook Distribution. 45

3.14 Scalability of LITE RDMA and RPC. 46

3.15 LITE QoS with Real Applications. 47

3.16 LITE QoS under Synthetic Workload. 48

3.17 LITE Memory Operations Latency. 49

3.18 MapReduce Performance. 53

3.19 PageRank Performance. 54

4.1 PM Organization Comparison. 62

4.2 Read/Write Protocols of DPM Systems. 70

4.3 SepDS System Design. 74

xi

Figure Page

4.4 Replicated Data Entity. 80

4.5 Write Latency . 84

4.6 Read Latency . 85

4.7 Throughput Comparison with YCSB . 85

4.8 Scalability w.r.t. DPMs . 87

4.9 Scalability w.r.t. CNs . 87

4.10 CPU Utilization . 90

4.11 Effect of Metadata Cache in SepDS . 90

4.12 Effect of Data Cache in CentralDS . 91

4.13 Load Balancing in SepDS . 91

5.1 MR Key Value . 99

5.2 Attack Environment and RNIC Architecture. 103

5.3 Effect of Number of Index Bits. 110

5.4 Effect of Eviction Set Offset. 111

5.5 Effect of Secondary Index. 112

5.6 Reverse-Engineered PTE Cache Organization. 115

5.7 Timing Differences. 117

5.8 Accuracy of Attacks. 118

5.9 Latency of Attacks. 119

5.10 Timing Differences in ConnectX-5. 120

5.11 Accuracy of Attacks in ConnectX-5. 121

5.12 Timing Differences in ConnectX-3. 122

5.13 Timing Differences in CloudLab. 123

5.14 Accuracy of Attacks in CloudLab. 124

5.15 Latency of Attacks in CloudLab. 125

5.16 PythiaCrailMR . 127

5.17 PythiaCrailPTE . 128

5.18 PythiaCrailClient . 129

xii

Figure Page

5.19 Timing Difference in Crail. 130

5.20 Read Performance of One-Sided ORAM 137

xiii

ABSTRACT

Tsai, Shin-Yeh Ph.D., Purdue University, August 2019. Building Fast, Scalable, Low-
Cost, and Safe RDMA Systems in Datacenters. Major Professor: Yiying Zhang.

Remote Direct Memory Access, or RDMA, is a technology that allows one com-

puter server to direct access the memory of another server without involving its

CPU. Compared with traditional network technologies, RDMA offers several benefits

including low latency, high throughput, and low CPU utilization. These features are

especially attractive to datacenters, and because of this, datacenters have started to

adopt RDMA in production scale in recent years.

However, RDMA was designed for confined, single-tenant, High-Performance-

Computing (HPC) environments. Many of its design choices do not fit datacenters

well, and it cannot be readily used by datacenter applications. To use RDMA, current

datacenter applications have to build customized software stacks and fine-tune their

performance. In addition, RDMA offers limited scalability and does not have good

support for resource sharing or protection across different applications.

This dissertation sets out to seek solutions that can solve issues of RDMA in a

systematic way and makes it more suitable for a wide range of datacenter applications.

Our first task is to make RDMA more scalable, easier to use, and have better

support for safe resource sharing in datacenters. For this purpose, we propose to add

an indirection layer on top of native RDMA to virtualize its low-level abstraction into

a high-level one. This indirection layer safely manages RDMA resources for different

datacenter applications and also provide a means for better scalability.

After making RDMA more suitable for datacenter environments, our next task is

to build applications that can exploit all the benefits from (our improved) RDMA. We

designed a set of systems that store data in remote persistent memory and let client

xiv

machines access these data through pure one-sided RDMA communication. These

systems lower monetary and energy cost compared to traditional datacenter data

stores (because no processor is needed at remote persistent memory), while achieving

good performance and reliability.

Our final task focuses on a completely different and so far largely overlooked one

— security implications of RDMA. We discovered several key vulnerabilities in the

one-sided communication pattern and in RDMA hardware. We exploited one of them

to create a novel set of remote side-channel attacks, which we are able to launch on

a widely used RDMA system with real RDMA hardware.

This dissertation is one of the initial efforts in making RDMA more suitable for

datacenter environments from scalability, usability, cost, and security aspects. We

hope that the systems we built as well as the lessons we learned can be helpful to

future networking and systems researchers and practitioners.

1

1 INTRODUCTION

Remote Direct Memory Access, or RDMA, is a technology that lets a computer server

directly access the memory of another server without involving the CPU of this other

server. Apart from this access pattern (commonly called one-sided communication),

RDMA also allows applications to issue requests directly from the user space to the

NIC, bypassing the OS kernel, and in doing so RDMA avoids any memory copying.

With one-sided communication, kernel bypassing, and memory zero copy, the RDMA

technology enables network communication with high throughput, low latency, and

low CPU utilization.

The RDMA technology was originally designed for the high-performance comput-

ing (HPC) environments and has been widely adopted in these environments over the

past two decades. In recent years, there has been a dramatically increasing interest

in adopting RDMA in datacenters. Major cloud vendors like Microsoft Azure [1] and

Alibaba Cloud [2] have all deployed RDMA in production scale. RDMA is especially

attractive in datacenter environments for three reasons.

First, datacenter applications are becoming more distributed [3–8] and disaggre-

gated [9–16]. Network communication is a key factor in almost all modern datacen-

ter applications’ performance. While most of today’s datacenters run on 40 Gbps

Ethernet-based network with ∼100µs round-trip time (RTT) [17, 18], the latest

RDMA technology can reach 200 Gbps throughput and sub-0.6µs RTT [19], thanks

to its kernel bypassing and memory zero-copy features. Both throughput-oriented

and latency-bound datacenter applications can benefit from the network performance

improvements offered by RDMA.

Second, big data gives rise to a host of applications that access large amounts

of (in-memory) data during their computation: data analytics, graph computation,

deep learning, and in-memory databases, to name just a few. Their memory capacity

2

needs often exceed what a single machine can offer in today’s datacenters [20–25].

For example, computation on a big social-network graph can take more than 5 TB

memory [22]. Unfortunately, memory in a single computer is facing a capacity wall

and a bandwidth wall, and it’s hard to meet the requirements of many memory-

hunger applications. At the same time, memory (and CPU) utilization across different

machines is imbalanced, causing resource wastes in datacenters. Both these two

problems can be solved by allowing applications to go beyond a single machine’s

memory and access remote memory, the key feature RDMA provides.

Third, certain tasks and applications in datacenters only need locations to store

data without the need to perform any computation on them at these locations. For

example, storage systems and databases in datacenters often keep multiple copies of

data for better reliability and availability. With a primary-backup model, only a pri-

mary server performs application computation of data, and other servers (passively)

receives copies of the data. RDMA’s one-sided communication pattern benefits these

datacenter systems by largely reducing the CPU utilization of the backup servers,

which in turn saves energy consumption of the whole datacenter.

Despite of these promising usage cases of RDMA, moving RDMA into datacenters

faces key challenges. RDMA was designed for HPC environments that are often

single-purposed, single-tenant, and have small scales. RDMA in its native form (i.e.,

unmodified RDMA hardware, driver, and default libraries) is not a good fit for the

more general-purpose, multi-tenant, and large-scale datacenter environments.

Native RDMA is hard to use and inflexible; it does not scale well; it only offers

limited options in sharing resources, performance isolation, and resource protection;

and it has various security vulnerabilities. Because of these issues, datacenter appli-

cations cannot and should not use RDMA as is. A common practice currently is to

build customized RDMA-based software stacks for each datacenter application and

fine-tune its performance [26–38].

This dissertation aims to make RDMA more suitable for datacenter applications

in a systematic way. We revisited many design decisions in native RDMA and built a

3

generic layer on top of native RDMA to make it more scalable and easier to use, with

better support for resource sharing, performance isolation, and resource protection.

We further built a set of remote-memory systems on top of this improved RDMA

abstraction and ported several applications to it. Finally, we explored security vul-

nerabilities in both hardware that implements RDMA and the more generic one-sided

communication pattern.

This dissertation significantly advances state of the art in RDMA software, trans-

forming RDMA from a technology designed for restricted, HPC environments to one

that is readily useful for a wide range of datacenter applications, all without changing

any of RDMA-based hardware or the RDMA network protocol. Below, we give a brief

overview of the three main projects in this dissertation.

1.1 Indirection Layer on RDMA for Better Datacenter Support

For RDMA to be successful in datacenters, it first needs to be scalable, easy-to-

use, and safe to share across different applications. The first part of this dissertation

focuses on improving the usability and scalability of RDMA for datacenter environ-

ments.

The design of native RDMA offloads the whole network stack and complex meta-

data to NIC hardware. While this approach minimizes software overhead, it inevitably

limits the flexibility of RDMA and makes RDMA NICs the scalability bottleneck.

We propose to add a software indirection layer on top of RDMA hardware to virtu-

alize the low-level, inflexible native RDMA abstraction into a flexible and easy-to-use

one that can better support datacenter applications. We build such an indirection

layer in the kernel space, which manages and safely shares RDMA resources across

applications. This system not only makes RDMA a better fit for datacenter applica-

tions but also preserves most of native RDMA’s superior performance and significantly

improve its scalability.

4

1.2 RDMA-Based Data Store with Remote Persistent Memory

The indirection layer we built (as the first part of this dissertation) makes RDMA

more flexible, scalable, easy-to-use, and suit datacenter environments better. The

next question we seek to answer is how to build applications on top of the (improved)

RDMA stack.

Our major efforts here is on building distributed RDMA-based data stores, an im-

portant class of systems that datacenter applications leverage for storing and accessing

their data. Our focus here is to not only seek solutions that have good performance

and scalability, but also ones that have low monetary and energy cost and can sustain

system crashes.

To achieve these goals, we push the one-sided communication idea to an extreme

by proposing to completely remove the CPU at where data is stored, making these

data accessible only from one-sided RDMA. We further propose to store these data in

persistent memory, which are denser than DRAM and can sustain power loss. With

these ideas, we designed a set of novel RDMA-based data store systems with remote

persistent memory. These systems offer great performance, low cost, reliability, and

high availability.

1.3 Security Implications of One-Sided Communication and RDMA

The first two parts of this dissertation and most of existing RDMA research and

production systems focus on the performance, scalability, and programmability of

RDMA, leaving one important aspect yet to be explored — security. The third part

of this dissertation explores various security implications of RDMA systems and one-

sided communication in datacenter and cloud settings.

Among these security implications, the most notable one is vulnerabilities related

to RDMA’s hardware design. RDMA NICs caches various metadata in a limited-size

on-NIC SRAM. We discovered new timing side channels that exploit this mechanism

of RDMA NICs and built real side-channel attacks on a widely used RDMA data store

5

system with three generations of RDMA NICs. With these attacks, an attacker can

steal the access information of a victim without accessing either the victim’s machine

or the machine that stores the data. As the first work to explore vulnerabilities in

RDMA hardware, we raise awareness of the security aspects of RDMA and provide

several promising directions of mitigation techniques.

1.4 Chapter Overview

The rest of this dissertation is organized as follows.

• Background: Chapter 2 provides a background on one-sided communication,

RDMA architecture and applications, persistent memory, and side-channel at-

tacks.

• Indirection Layer on RDMA for Better Datacenter Support: Chap-

ter 3 presents LITE, the indirection layer we built in the Linux kernel which

virtualizes native RDMA into a flexible, high-level, easy-to-use abstraction and

allows applications to safely share resources.

• RDMA-Based Data Store with Remote Persistent Memory: Chapter 4

describes DPM, a set of systems that treat remote persistent memory as “dumb”

(i.e., with no processing power) and access these remote persistent memory

devices via one-sided communication.

• Security Implications of One-Sided Communication and RDMA: Chap-

ter 5 discusses various security implication of RDMA and the one-sided com-

munication pattern. The focus of this chapter is a set of RDMA-based remote

side-channel attacks. We also discuss potential mitigation techniques and the

opportunities of leveraging RDMA to enhance security.

• Related Work: Chapter 6 briefly introduces other research efforts in datacen-

ter RDMA systems and applications. We also present related research work in

persistent memory data store systems and remote side-channel attacks.

6

• Conclusion: Chapter 7 concludes this dissertation with a summary of all the

chapters and the lessons we have learned.

7

2 BACKGROUND

This chapter provides the background of various aspects of this dissertation. We

first provide an overview of RDMA and its current usages in datacenters (§2.1), then

introduce various distributed in-memory data store systems in datacenters (§2.2), and

finally discusses side-channel attacks and its countermeasures (§2.3).

2.1 Remote Direct Memory Access

This section provides a background of RDMA. We first give an overview of the

RDMA technology and introduce the abstraction of native RDMA. We then discuss

RDMA NICs where most RDMA functionalities are implemented and provide our

performance benchmark results of four different RDMA NICs. Finally, we describe

RDMA-based applications in datacenter and the deployment of RDMA in datacenter.

2.1.1 Architecture and Abstraction

Remote Direct Memory Access, or RDMA, is a network technology designed to

offer low-latency, high-throughput, and low-CPU-utilization network communication.

Its main idea is to allow one machine to directly access the memory of another ma-

chine without involving the CPU of this other machine, a communication pattern

called one-sided communication. RDMA offers superior performance compared with

traditional network technologies because of three main technologies. First, one-sided

RDMA requests bypass the CPU of the receiver. Second, applications issue RDMA

requests directly from user space, bypassing kernel and avoiding kernel trap cost on

the data path. Third, RDMA avoids memory copying when performing network

communication (a technique called zero-copy).

8

There are three implementations of RDMA: InfiniBand (IB) [39, 40], Internet

Wide Area RDMA Protocol (iWARP) [41], and RDMA over Converged Ethernet

(RoCE) [42,43]. All implementations follow the standard RDMA protocol [44]. IB is

a switched network that is specifically designed for RDMA. iWARP and RoCE are

two Ethernet-based technologies. iWARP is defined based on four IETF-standards

and it relies on congestion-aware protocols such as TCP and STCP to deliver reliable

RDMA services. iWARP typically requires implementing the whole TCP network

stack in RDMA NICs, because the kernel implementation of the TCP network stack

is a performance bottleneck in a high-speed network. RoCE implements the RDMA

protocol over standard Ethernet (RoCEv1) and UDP (RoCEv2), and is the preferred

technology in existing datacenters [18]. Because of its performance and cost bene-

fits [18, 45,46], RDMA has been deployed in large scale in datacenters like Microsoft

Azure [1] and Alibaba Cloud [2].

To find out the owning cost of RDMA networks in datacenters, we study the

market prices of RDMA NICs and RDMA switches. We use RoCE as an example

since most of the datacenter networks already adopt Ethernet-based network, and

RoCE offers better performance than iWARP [46,47]. Lots of the existing commod-

ity Ethernet switches [48–50] already support Priority Flow Control (PFC) which

enables lossless Ethernet for RoCE. Thus, it does not need to replace existing Eth-

ernet switches to adopt RoCE network. On the other hand, RoCE NICs are price

competitive to regular Ethernet NICs [51,52] especially in 40 Gbps — the most popu-

lar network bandwidth in datacenters [18]. Therefore, in datacenters, the owning cost

of RoCE network is similar to the owning cost of existing Ethernet-based network

because the price of RoCE NICs is similar to the price of regular Ethernet NICs and

datacenters do not need to purchase a set of new Ethernet switches.

The standard interface of native RDMA is a set of operations collectively called

Verbs. Native RDMA allows accesses from both user space and kernel space using

Verbs. libibverbs is an open-source low-level library which defines a set of required

APIs. Developers build RDMA-based applications through Verbs and libibverbs, and

9

both Verbs and libibverbs can support different RDMA implementations (e.g., RoCE,

iWARP, and RDMA) which facilitates the development of RDMA-based applications.

RDMA supports both one-sided and two-sided communication. One-sided RDMA

operations directly access memory at a remote node without involving the remote

node’s CPU, similar to DMA on a single machine. Two-sided RDMA operations

inform the remote node of a delivered message and involve both sender and receiver

processing either through signaling or polling, similar to send/recv in traditional

network messaging.

RDMA communication is implemented using various types of queues including

send, receive, and completion queues, and applications use these queues to post re-

quests and to learn when a request has completed or been received.

To perform a one-sided RDMA operation, an application process at a receiver node

needs to first allocate a consecutive virtual memory space and then use the virtual

memory address range to register a memory region, or MR, with the RDMA NICs.

An application can register multiple MRs over the same or different memory spaces.

The RDMA NIC will assign a pair of local and remote protection keys (called lkey

and rkey) to each MR. This application then conveys the virtual address of the MR

and its rkey to processes running on other nodes. After building connections between

these other nodes (senders) and the node that the MR-registering application runs

on (receiver), these processes can use 1) a virtual memory address that falls in the

MR’s virtual memory address range, 2) a size, and 3) the rkey of the MR to perform

one-sided RDMA read and write. In RDMA’s term, a connection is called a Queue

Pair, or QP. The local host also needs to register a local MR for the read/write buffer

and can then perform RDMA operations by posting requests on a send queue (SQ).

The RDMA read/write operation returns as soon as the request is sent to RDMA

NIC. Applications have to separately poll a send completion queue (CQ) to know

when the remote data has been read or written.

10

To perform a two-sided RDMA operation, the remote host needs to pre-post

receive buffers to a receive queue (RQ) before the local host can send a message. The

remote host polls the receive CQ to identify a received message coming.

RDMA supports reliable and unreliable connections (RC and UC) and unreliable

datagram (UD). UD mode has the best scalability because UD mode supports the

communication between one UD QP to multiple UD QPs, but UD mode only supports

send/recv operations. UC mode supports send/recv and write operations, but the

connection semantic limits the scalability to the communication between one UC

QP to one UC QP. RC mode supports all RDMA operations including send/recv,

read/write, and atomic operations, and RC mode has the same scalability as UC

mode although RC mode has more processing overhead on RDMA NICs [33].

2.1.2 RDMA NICs

RDMA NICs, or RNICs, are where most RDMA functionalities are implemented.

They usually contain complex hardware logic that implements the RDMA protocol

and some SRAM to store metadata, and they are often connected to the host’s PCIe

bus (allowing RNICs access to main memory through DMA). Because of the need to

bypass the kernel and receiver’s CPU, most RDMA functionalities and data structures

have to be offloaded to the RNIC hardware.

An RNIC’s on-board SRAM stores three types of metadata. First, it stores meta-

data for each QP in its memory. Second, it stores lkeys, rkeys, and virtual memory

addresses for all registered MRs. Third, it caches page table entries (PTEs) for MRs

to obtain the DMA address of an RDMA request from its virtual memory address.

RNICs have a limited amount of on-board SRAM which can only hold metadata for

hot data. When the SRAM is full, an RNIC will evict its cached metadata to the

main memory on the host machine, and on a future access, fetch the evicted metadata

from the host main memory back through the PCIe bus. The SRAM architecture is

11

Request Size (byte)

2 6 2 8 2 10 2 12 2 14

L
a
t
e
n
c
y

(
u
s
)

0

2

4

6

8
R−BF

R−X3

R−X4

R−X5

W−BF

W−X3

W−X4

W−X5

Figure 2.1.: Latency of RDMA Requests. R- and W- represent READ and WRITE
request respectively. X3, X4, and X5 represent ConnectX series RNICs, and BF represents
BlueField. All of them are connected with a 100 Gbps InfiniBand switch.

vendor-specific and not disclosed or specified in the RDMA standard. We benchmark

the performance of the state-of-the-art RNICs in Section 2.1.3.

2.1.3 RDMA Microbenchmarks

To better understand the performance of RDMA and to provide a baseline for eval-

uations in this dissertation, we show the microbenchmarks of the native RDMA among

four different Mellanox RNICs: ConnectX-3 (40 Gbps) [53], ConnectX-4 (100 Gbps) [54],

ConnectX-5 (100 Gbps) [55], and BlueField (100 Gbps) [56]. We connect all the

RNICs with a 100 Gbps InfiniBand switch. ConnectX-3, ConnectX-4, and ConnectX-

5 are ASIC-based NICs, and BlueField is a SoC-based SmartNIC which has on-board

programmable processors. SmartNICs are more expensive than ASIC-based NICs,

but SmartNICs can accelerate several applications (e.g., encryption, decryption, fire-

wall, etc) and reduce host CPU utilization.

12

Request Size (byte)

2 6 2 8 2 10 2 12 2 14

T
h
r
o
u
g
h
p
u
t

(
G
b
p
s
)

0

20

40

60

80

100
R−BF

R−X5

R−X4

R−X3

W−BF

W−X5

W−X4

W−X3

Figure 2.2.: Throughput of RDMA Requests. R- and W- represent READ and
WRITE request respectively. X3, X4, and X5 represent ConnectX series RNICs, and BF
represents BlueField. All of them are connected with a 100 Gbps InfiniBand switch.

We use OpenFabrics perftest software to measure the latency and the throughput

of the above four RNICs. Limited by the type of machines we have in our lab cluster,

all RNICs can only connect to these machines via a PCIe 3.0 ×8 bus. However,

ConnectX-4 and ConnectX-5 require at least PCIe 3.0×16 bus to sustain the 100 Gbps

bandwidth. Therefore, the throughput of these two RNICs are capped by the PCIe

bandwidth of the host machines. For BlueField, we use the on-board SoCs to issue

and process the requests. Thus, the RDMA requests access on-board memory through

on-board PCIe 4.0 ×16 bus without being capped by the PCIe bandwidth of the host

machines.

Figure 2.1 shows the latency of RDMA requests as request size increases. For all

different RNICs, read request has higher latency than write request because of the

implementation of RDMA transmission protocol [33]. ConnectX-4 and ConnectX-5

are the new generation RNICs which outperform ConnectX-3 in latency especially

13

when the request size is big. Although BlueField uses the same chip as ConnectX-5,

BlueField has a higher latency because the processing speed of BlueField is slower

than the regular ASIC-based RNICs.

Figure 2.2 takes a closer look at the throughput of RNICs against request size.

BlueField has the highest throughput because BlueField supports the highest maxi-

mum bandwidth and the on-board PCIe bandwidth can sustain the bandwidth. Al-

though ConnectX-4 and ConnectX-5 have the same maximum bandwidth as Blue-

Field, the throughput of ConnectX-4 and ConnectX-5 is capped by the PCIe band-

width of the host machines. ConnectX-3 has the lowest throughput because the

maximum bandwidth of ConnectX-3 is only 40 Gbps. Read and Write requests have

similar throughput. When the request size is small (e.g., smaller than 4096), the

throughput of BlueField is lower than ConnectX-4 and ConnectX-5 because of the

limited processing speed of BlueField. When the request size increases, BlueField has

the highest throughput because the bandwidth is not capped by the on-board PCIe

bandwidth, but the throughputs of ConnectX-4 and ConnectX-5 are capped by the

attached PCIe 3.0 ×8 bus. There is no significant difference between read and write

request in the throughput test because the parallel processing within the throughput

benchmark amortizes the difference between two protocols.

2.1.4 RDMA in Datacenter Applications

The past two decades have seen a growing usage of RDMA in HPC environ-

ments [57–59]. In recent years, there is an emerging trend in using RDMA in data-

center environments from both industry and academia [60–63]. Recent RDMA-based

applications include in-memory key-value stores [29–35,64–66], in-memory databases

and transactional systems [26, 67, 68], graph processing systems [28, 69], distributed

machine learning systems [70], consensus implementations [71, 72], distributed non-

volatile memory systems [36,37,73], and remote swap systems [63,74]. Most of these

14

applications use both one-sided and two-sided RDMA operations, with some being

pure one-sided [26,27].

We believe that the use of RDMA in datacenters will continue increasing in the

future because of application needs support from hardware and network. Many mod-

ern datacenter applications demand fast access to a vast amount of data, most conve-

niently and efficiently as in-memory data. With memory on a single machine facing

its wall [75], these applications can largely benefit from fast, direct access to remote

memory [25, 63, 76]. At the same time, more hardware in datacenters is adding the

support for direct RDMA accesses, such as NVMe over Fabrics [77, 78] and GPU

Direct [79–82]. Thus, there will be both high demand and more support for the low-

latency, RDMA-equipped technologies in datacenters, and we believe that the trend

of using RDMA to build datacenter systems will only increase in incoming years.

2.2 Datacenter In-Memory Data Stores

This section presents background on different types of data stores including in-

memory data stores, in-PM data stores, and RDMA data stores in the datacenter

settings.

2.2.1 Distributed and Remote DRAM-Based Data Stores

Existing in-memory data store systems can be categorized into two types of mod-

els. The first model is distributed memory, which combines the memory of nodes in

a cluster into a virtual memory pool [25, 37, 83–89]. Processes running on any node

in the cluster can allocate and access memory in this global pool. However, usage

of these distributed memory systems has been limited, mainly because their high

network and software overheads are not acceptable for most memory-based applica-

tions. Distributed memory/PM allows a process to use memory larger than local

main memory and greatly improves resource utilization. However, it requires a sig-

15

nificant amount of CPU time on each machine to participate in a distributed data

access protocol.

The second model is a remote memory model which separates servers in a cluster

into two groups, compute nodes and memory nodes [26,27,90–92]. Data is stored and

managed at the memory nodes and compute nodes issue network requests to fetch or

store data at memory nodes. This model requires CPUs at memory nodes to process

memory requests and perform various metadata and control tasks. Every memory

has a local CPU which performs memory management.

2.2.2 Distributed Persistent Memory Data Stores

Non-volatile memory technologies such as 3DXpoint [93], phase change memory

(PCM), spin-transfer torque magnetic memories (STTMs), and the memristor provide

byte addressability, persistence, and latency that is within an order of magnitude of

DRAM [94–101]. In addition, NVM consumes significantly lower energy compared

to DRAM [102–104]. NVMs can attach directly to the main memory bus and we

call such DIMM-based NVMs Persistent Memory or PM in this dissertation. PM has

attracted extensive research efforts in the past decade, most of which were designed

for single-node environments [29, 105–113].

Recently, because of the need to deploy PM in datacenter environments [114],

new research interests arise in the distributed PM area [36, 37, 73, 115]. Mojim [36]

uses asynchronous primary-backup replication to provide reliability and availability to

PM. Hotpot [37] and Octopus [73] have all taken a model where each node in a cluster

includes some amount of PM used to store data that can be accessed both locally

and by other nodes. This distributed PM model not only increases CPU utilization

but also makes PM deployment hard. To deploy PM in datacenters, one has to find

empty DIMM slots in existing servers there or purchase new servers to host PM.

16

2.2.3 RDMA Data Stores

In addition to the general discussion of RDMA applications in Section 2.1, this

section focuses on RDMA data stores specifically. Recently, with the increasing

popularity of low-latency RDMA networks in datacenters [29, 33, 116], several re-

cent in-memory data stores such as key-value stores [29–31,34,35,64,65], in-memory

databases and transactional systems [26,27,67,68], and remote swap systems [63,74]

use RDMA to perform their network communication. Most of them use one-sided

RDMA for reads and two-sided RDMA for writes. To achieve low-latency perfor-

mance, they usually use busy-polling threads to receive incoming two-sided RDMA

requests. Wei et al. summarize the design tradeoffs of one-sided vs. two-sided RDMA

for transaction systems [68].

Existing RDMA-based distributed data stores perform management tasks such as

memory allocation, garbage collection, and load balancing at CPUs in data-hosting

nodes [26, 29]. Consequently, even when one-sided RDMA operations help reduce

CPU utilization, practical RDMA-based data stores still require a CPU and a signif-

icant amount of energy at each data-hosting machine. For example, FaRM [29], an

RDMA-based distributed memory system that tries to use as much one-sided commu-

nication as possible, still requires processing power to perform metadata operations

and certain steps in its write replication protocol.

2.3 Side-Channel Attacks

Traditional computer security attacks target the weakness in a computer system

itself. In contrast, side-channel attacks exploit information leakages in aspects be-

yond the targeted system itself (thus the name “side channel”). Such side channels

include power usage, electromagnetic emissions, timing difference, and acoustic emis-

sions [117,118].

In recent years, a host of attacks that exploit various hardware features to estab-

lish side channels have been proposed. CPU-cache-based side-channel attacks such

17

as Prime+Probe [119–127], Evict+Reload [128], Flush+Reload [129], and

Flush+Flush [127, 128] can leak victim’s memory access patterns at fine granu-

larity. CPU-cache-based side channels are also the key enabling factors in attacks

like Meltdown [130], Spectre [131], and Foreshadow [132]. Other than CPU caches,

TLB [133] or port contention [134] also expose hardware-based side channels.

Side-channel attacks raised key concerns in cloud environments where one ten-

ant can steal information from other tenants when they share the same physical

resource [122, 135–137] or the same service [138]. Most notable and impactful side-

channel related attacks are Spectre [131] and Meltdown [130], which exploit vulnera-

bilities in most modern processors to steal data that attackers otherwise do not have

access to. They resulted in patching Linux machines running in almost all major

datacenters and causing application performance slowdown of as high as 30% [139].

There are two major ways to mitigate side-channel attacks in system design. The

first way is to hide leaked information (e.g., re-implement critical components or

change cryptographic primitives). The second way is to remove the correlation be-

tween each execution cycle (e.g., randomization or introducing noise). System devel-

opers frequently use noise, randomization, and resource isolation to hide information

and eliminate the correlation [118, 129, 140, 141]. However, these countermeasures

mostly come with latency and throughput overhead, which is critical to datacenter

applications. Datacenter environments share physical resources for better resource

utilization, and this colocation makes datacenter applications even more vulnerable

to side-channel attacks.

18

3 INDIRECTION LAYER ON RDMA FOR BETTER DATACENTER

SUPPORT

RDMA was originally designed for HPC environemnts. Many design choices in RDMA

suit a confined, single-purpose environment like HPC well, but native RDMA is not

a good fit for the more general-purposed, heterogeneous, and large-scale datacenter

environments because of the following three reasons.

First, there is a fundamental mismatch between the abstraction native RDMA pro-

vides and what datacenter applications desire. Datacenter applications usually build

on high-level abstractions, but native RDMA provides a low-level abstraction that is

close to hardware primitives. As a result, it is not easy for datacenter applications to

use RDMA and even more difficult for them to exploit all the performance benefits

of RDMA. Most RDMA-based datacenter applications require customized RDMA

software stacks [29–33, 66], significant amounts of application adaptation [26–28], or

changes in RDMA drivers [29,66].

Second, RDMA manages and protects resources at the hardware level, and it lets

user-level applications directly issue requests to RDMA NICs (called RNICs) bypass-

ing kernel. This design causes at least three drawbacks for datacenter applications:

lack of resource sharing, insufficient performance isolation, and inflexible protection.

The third issue of native RDMA is that the current architecture of RDMA cannot

provide performance that scales with datacenter applications’ memory usage. When

bypassing kernel, RDMA inevitably adds burden to RNICs by moving privileged

operations and metadata to hardware. For example, RNICs store protection keys and

cache page table entries for user memory regions in its SRAM. It is essentially difficult

for this architecture to meet datacenter applications’ memory usage demand since the

increase of on-RNIC memory capacity is slow and is cost- and energy-inefficient.

19

OS RNIC Driver

User-Level RDMA
App

Verbs
Abstraction

RNIC

node,
lkey,
rkey
addr

Cluter
Mgmt

Connections
Queues, Threads

Send/Recv Buffers

User-Level Messaging
App

Permission check
Address mapping

lkey 1

lkey n

rkey 1

rkey n

Connections
Queues, Threads
Keys, Mem Space

… …

send

recv

Connections
Queues

Library

Conn &
Buffer
Mgmt

Conn
Mgmt

Conn
Mgmt

Buffer
Mgmt

Mem
Mgmt

send
recv

Cached
PTEs

Page Table

Figure 3.1.: Traditional RDMA Stack.

This chapter presents LITE, a Local Indirection TiEr in the kernel space to vir-

tualize and manage RDMA for datacenter applications. LITE organizes memory as

virtualized memory regions and supports a rich set of APIs including various mem-

ory operations, RPC, messaging, and synchronization primitives. Being in the kernel

space, LITE safely manages privileged resources, provides flexible protection, and

guarantees performance isolation across applications. Figures 3.1 and 3.2 illustrate

the architecture of native RDMA and LITE.

Our approach of onloading [142] functionalities into kernel is the opposite to

RDMA and many other networking systems’ approach of offloading functionalities

into hardware [143–145]. It is widely held that RDMA achieves its low-latency per-

formance by directly accessing remote memory, bypassing kernel, and zero memory

copy. We revisited these three techniques and found that with a good design, using

a kernel-level indirection layer can preserve RDMA’s performance benefits and avoid

the drawbacks of native RDMA caused by kernel bypassing.

First, we add a level of indirection only at the local node and still ensure that one-

sided RDMA operations directly access remote memory. Second, we onload only the

20

OS

RNIC Driver

LITE 1-Sided
RDMA

User-Level
App

Kernel App

global rkey

LITE
Abstraction

Verbs
Abstraction

Permission check
Address mapping

RNIC

addr1 addr2

global lkey

LITE
RPC

LITE APIs

Mgmt

lh1 lh2

mgmt mem RPC

Connections
Queues

RPC
Client

msgingsynch

User-Level
App

global rkey

global lkey
send poll recv

User-Level RPC
Function

RPC
Server

RDMA
Buffer
Mgmt

Figure 3.2.: LITE Architecture.

management of privileged resources from hardware to kernel and leave the rest of the

network stack at hardware. Doing so not only preserves native RDMA’s performance

but also solves the performance scalability issues caused by limited on-RNIC SRAM.

Third, we avoid memory copy between user and kernel spaces by addressing user

memory directly with physical addresses. Finally, we designed several optimization

techniques to minimize system call overhead.

Internally, LITE consists of an RDMA stack and an RPC stack. The RDMA

stack manages LITE’s memory abstraction by performing its own address mapping

and permission checking. With this level of indirection, we safely remove these two

functionalities and the resulting scalability bottlenecks from RNICs without any mod-

ification on RNICs or drivers. LITE implements RPC with a new mechanism based

on two-sided RDMA and it achieves flexibility, good performance, low CPU utiliza-

tion, and efficient memory space usage at the same time. On top of these two stacks,

we implement a set of extended higher-level functionalities and QoS mechanisms.

Our evaluation shows that compared to native RDMA and existing solutions that

are customized to certain applications [32, 66], LITE delivers similar latency and

21

throughput, while improving flexibility, performance scalability, CPU utilization, re-

source sharing, and quality of service.

We further demonstrate the ease-of-use, flexibility, and performance benefits of

LITE by building four distributed applications on LITE: an atomic logging system,

a MapReduce system, a graph engine, and a kernel-level Distributed Shared Memory

(DSM) system. These systems are easy to build and perform well. For example,

our implementation of graph engine has only 20 lines of LITE code, which encapsu-

late all the network communication functionalities. While using the same design as

PowerGraph [6], this LITE-based graph engine outperforms PowerGraph by 3.5× to

5.6×. Our LITE-based MapReduce is ported from a single-node MapReduce imple-

mentation [146] with 49 lines of LITE code, and it outperforms Hadoop [4] by 4.3×

to 5.3×.

In summary, we propose to build a new abstraction, LITE, which virtualizes the

low-level, inflexible native RDMA abstraction into a flexible and easy-to-use one that

can better support datacenter applications, and to build this virtualization layer in

the kernel space to manage and safely share RDMA resources across applications.

Overall, LITE offers the following three key functionalities:

• Virtualizes RDMA with a generic kernel-level indirection layer for datacenter

RDMA applications.

• Provides a set of mechanisms to minimize the performance overhead of kernel-

level indirection and demonstrated the possibility of virtualizing RDMA while

preserving (or even improving) its performance.

• Solves all the three issues of native RDMA for datacenter applications. Data-

center applications can easily use the abstraction layer to perform low-latency

network communication and distributed operations.

22

3.1 Issues of RDMA

This section introduces the limitations of using RDMA in datacenter applications.

Many design choices of RDMA work well in a controlled, specialized environment like

HPC. However, datacenter environments are different in that they need to support

heterogeneous, large-scale, fast-evolving applications. There are several issues in us-

ing native RDMA for datacenter applications as we will introduce in Section 3.1.1,

Section 3.1.2, and Section 3.1.3.

3.1.1 Issue 1: Mismatch in Abstractions

A major reason why RDMA is not easy to use is the mismatch between its abstrac-

tion and what datacenter applications desire. Unlike the HPC environment where

developers can carefully tune one or very few applications to dedicated hardware,

datacenter application developers desire a high-level, easy-to-use, flexible abstraction

for network communication so that they can focus on application-specific develop-

ment. Originally designed for the HPC environment, native RDMA uses a low-level

abstraction that is close to hardware primitives and is difficult to use [32]. Appli-

cations have to explicitly manage various types of resources and go through several

non-intuitive steps to perform an RDMA operation, as explained in Section 2.1. It is

even more difficult to optimize RDMA performance. Users need to properly choose

from different RDMA operation options and tune various configurations, sometimes

even to adopt low-level optimization techniques [29,32,66].

An API wrapper on top of the native RDMA interface such as Rsocket [147] can

translate certain RDMA APIs into high-level ones. However, such a simple wrapper is

far from enough for datacenter applications. For example, RDMA memory regions are

created and accessed using virtual memory addresses in application process address

spaces. The use of virtual memory addresses requires RNICs to store page table

entries (PTEs) for address mapping (Section 3.1.2), makes it hard to share resources

across processes (Section 3.1.3), and does not sustain process crashes. API wrappers

23

cannot solve any of these issues since they do not change the way RNICs use virtual

memory addresses.

3.1.2 Issue 2: Unscalable Performance

When bypassing kernel, privileged operations and data structures are offloaded

to the hardware RNIC. With limited on-RNIC SRAM, it is fundamentally hard for

RDMA performance to scale with respect to three factors: the amount of MRs, the

total size of MRs, and the total number of QPs.

First, RNICs store lkeys, rkeys, and virtual memory addresses for all registered

MRs. As the number of MRs increases, RNICs will soon (above 100 MRs in our ex-

periments) face memory pressure (Figure 3.4). Since each MR is a consecutive virtual

memory range and supports only one permission, not being able to use many MRs

largely limits the flexibility of RDMA. For example, many key-value store systems use

non-consecutive memory regions to store data. Memcached [90] performs on-demand

memory allocation in 1 MB units and optimizes memory allocation using 64 MB pre-

allocated memory blocks. It would require at least 1000 MRs for 64 GB data even

with pre-allocation. Masstree [148] uses a separate memory region for each value and

can take up to 140 million memory regions. These scenarios use MRs far more than

what an RNIC can handle without losing performance. Using bigger MRs can reduce

the total number of MRs, but requires substantial application changes and can cause

memory space waste [149].

Second, RNIC caches PTEs for MRs to obtain the DMA address of an RDMA

request from its virtual memory address. When there is a PTE miss in the RNIC, the

RNIC will fetch the PTE from the host OS. When the total size of registered MRs

exceeds what an RNIC can handle (above 4 MB in our experiments in Figure 3.5),

thrashing will happen and degrade performance. Unfortunately, most datacenter ap-

plications use large amount of memory. For example, performing PageRank [150] on a

1.3 GB dataset using GraphX [151] and Spark [3] will need 12 GB and 16 GB memory

24

heaps respectively [63]. FaRM [29] uses 2 GB huge pages to mitigate the scalability

issue of MR size. However, using huge pages will result in increased memory foot-

prints, physical memory fragmentation, false memory sharing, and degraded NUMA

performance [152–154].

Finally, RNIC stores metadata for each QP in its memory. RDMA performance

drops when the number of QPs increases [29], largely limiting the total number of

nodes that can be connected through RC in an RDMA cluster. FaSST [66] used UD

to reduce the number of QPs. But UD is unreliable and does not support one-sided

RDMA.

Datacenter applications often require the above three types of scalability. Even

if a single application’s scale is small, the combination of multiple applications will

likely cause scalability issues. The speed of on-RNIC memory increase falls behind

the increasing scalability of datacenter applications. Moreover, large on-RNIC mem-

ory is cost- and energy-inefficient [142]. We believe that offloading all priviledged

functionalities and metadata to hardware is not and will not be a viable way to use

RDMA for datacenter applications. Rather, the RDMA software and hardware stacks

need to be restructured.

3.1.3 Issue 3: Lack of Resource Sharing, Isolation, and Protection

Native RDMA does not provide any mechanisms to safely share resources such

as QPs, CQs, memory buffers, polling threads across different applications; it only

provides a mechanism to share receive queues (called SRQ) within a process. Each

application process has to build and manage its own set of resources.

The lack of resource sharing makes the performance scalability issue described

above even worse. For example, each pair of processes on two nodes need to build

at least one QP to perform RC operations. To perform polling for two-sided RDMA,

each node needs at least one thread per process to busy poll separate receive CQs.

Sharing resources within a process [29] improves scalability, but has limited scope.

25

Without global management of resources, it is also hard to isolate performance and

deliver quality of service (QoS) to different applications. For example, an application

can simply register a huge amount of MRs to fill RNIC’s internal memory and impact

the performance of all other applications using the RNIC.

RDMA protects MR with lkeys and rkeys. However, such protection is not flexible.

Each MR can only be registered with one permission, which is used by all applications

to access the MR. To change the permission of an MR, it needs to be de-registered and

registered again. Moreover, native RDMA relies on user applications to pass rkeys

and memory addresses of MRs between nodes. Unencrypted rkeys and addresses can

cause security vulnerability [155].

3.2 Virtualizing RDMA in Kernel: a Design Overview

“All problems in computer science can be solved by another level of indirection” —

often attributed to Butler Lampson, who attributes it to David Wheeler

The issues of native RDMA outlined in the previous section, namely 1) no high-

level abstraction, 2) unscalable performance due to easily-overloaded on-RNIC mem-

ory, and 3) lack of resource management, are orthogonal to each other. However, they

all point to the same solution: a virtualization and management layer for RDMA.

Such a layer is crucial to make RDMA practical for datacenter applications. This

section discusses why and how we add a kernel-level indirection, the challenges of

adding such an indirection layer, and an overview of the design and architecture of

LITE.

3.2.1 Kernel-Level Indirection

Many of RDMA’s issues discussed in Section 3.1 have been explored decades ago,

with different types of hardware resources. Hardware devices such as DRAM and disks

expose low-level hardware primitives that are difficult and unsafe to use directly by

26

applications. Virtual memory systems and file systems solve these issues by virtualize,

protect, and manage these hardware resources in the kernel space. We believe that

we can use the same classic wisdom of indirection and virtualization to make native

RDMA ready for datacenter application usage.

We propose to virtualize RDMA using a level of indirection in the kernel space. An

indirection layer can transform native RDMA’s low-level abstraction into a high-level,

easy-to-use abstraction for datacenter applications. A kernel-level indirection layer

can safely manage all privileged resources. It can thus move metadata and operations

from hardware to software. Doing so largely reduces the memory pressure of RNICs

and improves the scalability of RDMA-based datacenter applications that is currently

bottlenecked by on-RNIC SRAM size. Moreover, a kernel indirection layer can serve

both kernel-level applications and user-level applications.

3.2.2 Challenges

Building an efficient, flexible kernel-level RDMA indirection layer for datacenter

applications is not easy. There are at least three unique challenges.

The biggest challenge is how to preserve the performance benefits of RDMA while

adding the indirection needed to support datacenter applications?

Next, how can we make LITE generic and flexible while delivering good perfor-

mance? Both LITE’s abstraction and its implementation need to support a wide

range of datacenter applications. LITE also needs to let applications safely and ef-

ficiently share resources. Unlike previous works [29, 30, 32, 33, 66], we cannot use

abstractions or optimization techniques that are tailored towards a specific type of

application.

Finally, can we add kernel-level indirection without changing existing hardware,

driver, or OS? To make it easier to adopt LITE, LITE should not require changes to

existing system software or hardware. Ideally, it should be contained in a stand-alone

kernel loadable module.

27

3.2.3 LITE Overall Architecture

LITE uses a level of indirection in the kernel space to virtualize RDMA. It man-

ages and virtualizes RDMA resources for all applications that use LITE (applications

that do not want to use LITE can still access native RDMA directly on the same

machine). LITE talks to RDMA drivers and RNICs using the standard Verbs ab-

straction. Figure 3.2 presents LITE’s overall architecture. We implemented LITE as

a loadable kernel module in the 3.11.1 Linux kernel with around 15K lines of code.

Overall, LITE achieves the following design goals.

• LITE provides a flexible and easy-to-use abstraction to a wide range of data-

center applications.

• LITE preserves RDMA’s three performance benefits: low latency, high band-

width, and low CPU utilization.

• LITE’s performance scales better than native RDMA.

• LITE offers fine-grained and flexible protection.

• It is efficient to share RDMA resources and easy to isolate performance with

LITE.

• LITE needs no hardware, driver, or OS changes.

LITE supports three types of interfaces: memory-like operations, RPC and mes-

saging, and synchronization primitives, and it supports both kernel-level and user-

level applications. We selected these semantics because they are familiar to datacen-

ter application programmers. Most of LITE APIs have their counterparts in existing

memory, distributed, and networking systems. Table 1 lists LITE’s major APIs.

Internally, LITE consists of two main software stacks: a customized implementa-

tion of one-sided RDMA operations (Section 3.3), and a stack for RPC functions and

messaging based on two-sided RDMA operations (Section 3.4). These parts share

many resources, such as QPs, CQs, and LITE internal threads (Section 3.5).

28

Table 3.1.: Major LITE APIs. Only the APIs in bold have their counterparts in native
Verbs.

API Explanation Analogy

LT join Start LITE and join cluster

Memory

LT read RDMA read from space in an LMR mem load
LT write RDMA write to space in an LMR mem store
LT malloc allocate an LMR at node(s) malloc

LT free free an LMR and notify others free
LT (un)map open/close an LMR with name m(un)map
LT memset set space in an LMR with value memset
LT memcpy copy content from LMR to LMR memcpy

LT memmove move data from LMR to LMR memmove

RPC/Msg

LT regRPC register an RPC func with an ID RPC register
LT RPC calls a remote RPC function with ID RPC call

LT recvRPC receives next RPC call with RPC ID RPC receive
LT replyRPC replies an RPC call with retsults RPC return

LT send send data to a remote node send msg

Sync

LT (un)lock lock/unlock a distributed lock pthread lock
LT barrier wait until a set of nodes reach barrier pthread barrier

LT fetch-add atomically fetch data and add value fetch&add
LT test-set atomically test data and set value test&set

Our security model is to trust LITE and not any users of LITE. For example,

LITE disallows users from passing MR information themselves and thus avoids the

security vulnerability of passing rkeys in plain text (Section 3.1.3). Improvement to

our current security model is possible, for example, by reducing the physical memory

space LITE controls or utilizing techniques like MPK [156]. We leave it for future

work.

A LITE cluster consists of a set of LITE nodes, each running one instance of LITE.

We provide a management library that manages the LITE cluster membership. It

can run on one node or a high-availability node pair, and all the states it maintains

can be easily reconstructed upon failure restart.

29

3.2.4 LITE Design Principles

Before our detailed discussion of LITE internals, we outline the design principles

that help us achieve our design goals.

Generic layer with a virtualized, flexible abstraction. LITE provides a flexible, high-

level abstraction that can be easily used by a wide range of applications. We designed

LITE APIs to be a set of common APIs that datacenter applications can further build

their customized APIs on top of. Specifically, we offload memory, connection, and

queue management from applications to LITE. This minimal set of LITE APIs incor-

porate protection and moving them to the user space can cause security vulnerabilities

or require hardware-assisted mechanisms that are not flexible [157,158].

Avoid redundant indirection in hardware by onloading software-efficient functionalities.

Using a kernel-level indirection does not necessarily mean adding one level of indi-

rection. We remove the indirection that currently exists in hardware RNIC to avoid

redundant indirection. Specifically, we onload two functionalities from hardware to

LITE: memory address mapping and protection. We leave the rest of the RDMA

stack such as hardware queues at RNIC. Removing these two functionalities from

hardware not only eliminates the overhead of redundant indirection, but also mini-

mizes hardware memory pressure, which in turn improves RDMA’s scalability with

respect to applications’ memory usage (Section 3.1.2). Meanwhile, onloading only

these two functionalities does not add much burden to the host machine and pre-

serves RDMA’s good performance, as we will see in Section 3.3.2.

Only adding indirection at the local side for one-sided operations. Direct remote

memory accesses with one-sided RDMA eliminates CPU utilization at the remote

node completely. To retain this benefit, we propose to only add an indirection layer

at a local node. As we will show in Section 3.3, the local indirection layer is all that

is needed to solve the issue of native one-sided RDMA operations.

Avoid hardware or driver changes. Removing hardware-level indirection without

changing hardware is desired but is not easy. Fortunately, we identified a way to

30

interact with RNIC with physical memory addresses. Based on this mechanism, we

propose a new technique to minimize hardware indirection without changing hardware

(Section 3.3.1).

Hide kernel cost. We design several techniques to hide system call overhead by moving

most of the overhead off performance-critical paths (Section 3.4.2). Unlike previous

light-weight system call solutions [159], our approach does not require any change in

existing OS. LITE avoids memory copy using address remapping and scatter-gather

lists. Finally, LITE lets the sending-side application threads run to the end to avoid

any thread scheduling costs.

The next few sections are organized as follows. Section 3.3 and Section 3.4 de-

scribe in detail LITE’s one-sided RDMA and RPC stacks. Section 3.3 also presents

a new virtualized memory abstraction LITE uses. Section 3.5 discusses LITE’s re-

source sharing and QoS mechanisms. Section 3.6 briefly describes several extended

functionalities we add on top of the RDMA and the RPC stacks in LITE.

All our experiments throughout the rest of the chapter were carried out in a cluster

of 10 machines, each equipped with two Intel Xeon E5-2620 2.40GHz CPUs, 128 GB

DRAM, and one 40 Gbps Mellanox ConnectX-3 NIC. A 40Gbps Mellanox InfiniBand

Switch connects these machines’ IB links.

3.3 LITE Memory Abstraction and RDMA

This section presents LITE’s memory abstraction and its mechanism to support

flexible one-sided RDMA operations. LITE manages address mapping and permis-

sion checking in the kernel and exposes a flexible, virtualized memory abstraction to

applications. LITE adds a level of indirection only at the request sending side. Like

native RDMA, one-sided RDMA operations with LITE does not involve any remote

CPU, kernel, or LITE. But with the indirection layer at the local side, LITE can sup-

port more flexible, transparent, and efficient memory region management and access

control.

31

3.3.1 LITE Memory Abstraction and Management

LITE’s memory abstraction is based on the concept of LITE Memory Regions

(LMRs), virtual memory regions that LITE manages and exposes to applications.

An LMR can be of arbitrary size and can have different permissions to different

users. Internally, an LMR can map to one or more physical memory address ranges.

An LMR can even spread across different machines. This flexible physical location

mapping can be useful for load balancing needs.

LMR handler. LITE hides the low-level information of an LMR (e.g., its location)

from users and only exposes one entity — the LITE handler, or lh. lh can be viewed

as a capability [160, 161] to an LMR that encapsulates both permission and address

mapping. LITE allows users to set different types of permissions to different users,

such as read, write, and master (we will explain master soon). In using lh, LITE pro-

vides the transparency that RDMA lacks. Native RDMA operations require senders

to specify the target node, virtual address, and rkey of an MR. LITE hides all these

details from senders behind the lh abstraction. Only an LMR’s master knows which

node(s) an LMR is on. lh is all that users need to perform LITE operations. However,

an lh is meaningless without LITE and users cannot use lhs to directly access native

MRs.

We let users associate their own “name” with an LMR, for example, a global

memory address in a DSM system or a key in a key-value store system. Names

need to be unique within a distributed application. Other users can acquire an lh

of the LMR from LITE using this name via LT map. This naming mechanism gives

applications full flexibility to impose any semantics they choose on top of LITE’s

memory abstraction.

lh mapping and maintenance. LITE manages the mapping from an lh to its

physical memory address(es) and performs permission checking for each LMR before

issuing native RDMA operations to RNICs. LITE maintains lh mappings and per-

missions at the node that accesses this LMR instead of at where the LMR resides,

32

Node
1

Node
2

Node
3

lh3: read
 node2,
 addrA

lh1

LITE

User
Space

addrA

lh3

LITE_malloc

LITE_maplh1: master
 node2, addrA
 registered@node 3

LITE_malloc(node2,size,name)
LITE_map(name,master)

Figure 3.3.: LITE lh Example. Node1 allocates an LMR from node2 and is the master
of it. Node3 maps the LMR with read permission by contacting Node1.

since we want to avoid any indirection at the remote node and retain RDMA’s direct

remote access. Figure 3.3 shows an example of using and managing lhs for an LMR.

An lh of an LMR is local to a process on a node; it is invalid for other processes

or on other nodes. Unlike native RDMA which lets users pass rkey and MR virtual

memory address across nodes to access an MR, LITE prevents users from directly

passing lhs to improve security and to simplify LMR’s usage model. All lh acquisition

has to go through LITE using LT map. LITE always generates a new lh for a new

acquisition.

Master role. Although LITE hides most details of LMR such as its physical loca-

tion(s) from users, it opens certain LMR management functionalities to a special role

called master. The user that creates an LMR is its master. A master can choose

which node(s) to allocate an LMR during LT malloc. We also allow a master to

register already-allocated memory as an LMR.

Master can move an existing LMR to another node. Master maintains a list of

nodes that have mapped the LMR, so that when the master moves or frees (LT free)

the LMR, LITE at these nodes will be notified. The master role can use these

functionalities to easily perform resource management and load balancing.

33

Number of MRs
10 100 1K 10K 100K

L
a
t
e
n
c
y

(
u
s
)

0

1

2

3

4
LITE_write

Verbs write

Figure 3.4.: RDMA Write Latency against Num of (L)MRs. Each (L)MR is
4 KB. Each write is 64B and its location is randomly chosen from all (L)MRs.

Only a master can grant permissions to other users. To avoid the allocator of an

LMR being the performance bottleneck or the single point of failure, LITE supports

more than one master of an LMR. A master role can grant the master permission to

any other user.

Non-master map and unmap LMR. A user who wants to access an LMR first

needs to acquire an lh by asking a master using LT map. At the master node, LITE

checks permission and replies the requesting node with the location of the LMR.

LITE at the requesting node then generates a new lh and establishes its mapping and

permissions. LITE stores all the metadata of an lh at the requesting node to avoid

extra RTTs to master when users access LITE. After LT map, users can perform

LITE memory APIs in Table 3.1 using the lh and an offset. To unmap an LMR,

LITE removes the user’s lh and all its associated metadata and informs the master.

Avoiding RNIC indirection. With LITE managing LMR’s address mapping and

permission checking, we want to remove the redundant indirection in RNICs and

reduce its memory pressure. However, without changing hardware, LITE can only

34

Total Size (MB)
1 4 16 64 256 1024

R
e
q
u
e
s
t
s
/
u
s

0

1

2

3

4

5

6

LITE_write−1K

Verbs write−1K

LITE_write−64B

Verbs write−64B

Figure 3.5.: RDMA Write Throughput against (L)MR Size. Each run uses
one MR. Each RDMA operation randomly writes 64B or 1KB.

perform native RDMA operations with real MRs, which are mapped and protected

in RNICs.

Fortunately, there is an infrequently used API that RDMA Verbs supports — the

kernel space can register MRs with RNICs directly using physical memory addresses.

LITE leverages this API to register only one MR with RNIC that covers the whole

physical main memory. Using this global MR internally offers several benefits.

First, it eliminates the need for RNICs to fetch or cache PTEs. With native

RDMA, an RNIC needs to map user-level virtual memory addresses to physical ones

using their PTEs before performing an DMA operation. Since LITE registers the

global MR with physical memory addresses, RNICs can directly use physical addresses

without any PTEs. This technique largely improves LITE’s performance scalability

with LMR size (section 3.3.2).

Second, for the global MR, LITE registers only one lkey and one rkey with RNIC

and uses the global lkey and rkey to issue all RDMA operations to RNIC. With only

35

RDMA Size (B)
8 64 512 4K 32K

L
a
t
e
n
c
y

(
u
s
)

0

5

10

15

20

25

30

35
TCP/IP

LITE_write

LITE_write KL

Verbs write

Figure 3.6.: LITE and Native RDMA Write Latency. KL denotes kernel-level
invocation. Lines without KL denotes user-level.

one global lkey and rkey at the RNIC, LITE has no scalability issue with the amount

of LMRs (section 3.3.2).

Finally, a subtle effect of using physical addresses is the avoidance of a costly

memory pinning process during the creation of LMR. When an MR is created, native

RDMA goes through all its memory pages and pins them in main memory to prevent

them from being swapped out during RDMA operations [162,163]. In contrast, LITE

does not need to go through this process since it allocates physical memory regions

for LMRs.

However, using physical addresses to register a global MR with RNIC has one

potential problem. LITE has to issue RDMA operations to the RNIC using physi-

cal memory addresses, and the memory region in an RDMA operation needs to be

physically consecutive. These two constraints imply that each LMR also has to be

physically consecutive. But allocating large physically consecutive memory regions

can cause external fragmentation.

36

To solve this problem, we utilize the flexibility of the LMR indirection and spread

large LMRs into smaller physically-consecutive memory regions. When a user per-

forms a LITE read or write operation to such an LMR, LITE will issue several RDMA

operations at the different physical memory regions. In our experiments, this tech-

nique scales well and has only less than 2% performance overhead compared to per-

forming an RDMA operation on a huge physically consecutive region (e.g., 128 MB),

while the latter will cause external fragmentation. When an LMR is small, LITE still

allocates just one consecutive physical memory.

3.3.2 LITE RDMA Benefits and Performance

LITE executes one-sided LT read and LT write by issuing native one-sided RDMA

read or write to RNICs after performing address translation and permission checking.

Since LITE directly uses physical memory addresses to perform native RDMA oper-

ations, there is no need for any memory copy and LITE retains RDMA’s zero copy

benefit. LITE lets the requesting application thread run to the end and incurs no

scheduling costs. Different from native RDMA read and write, LT read and LT write

return only when the data has been read or written successfully. So users do not need

to separately poll the completion status. LITE’s one-sided RDMA achieves several

benefits.

First, LITE’s memory abstraction allows more flexibility in LMR’s physical lo-

cation(s), naming, and permissions. The LMR indirection also adds a high-degree

of transparency, yet still letting masters perform memory resource management and

load balancing.

Second, unlike previous solutions [29], LITE does not require any change in RDMA

drivers or the OS and is implemented completely in a loadable kernel module.

Finally, LITE solves the performance scalability issues of native RDMA in sec-

tion 3.1.2, while still delivering close-to-raw-RDMA performance when the scale is

37

Write Size (KB)
0 10 20 30 40 50 60 70

T
h
r
o
u
g
h
p
u
t

(
G
B
/
s
)

0

1

2

3

4

LITE−8

Verbs−8

RDMA−CM−8

Verbs−1

RDMA−CM−1

LITE−1

TCP/IP

Figure 3.7.: LITE RDMA Throughput. The number at the end of each line label
represents the level of parallelism in request issuing. TCP/IP uses 1 thread with tcp bw test
in qperf.

small. We expect datacenter environments to have large scale, making LITE a better

performant choice than native RDMA.

Figure 3.4 presents the latency of LT write and native RDMA write as the number

of LMRs or MRs increases. Figure 3.5 shows the throughput of LT write and native

RDMA write as the size of an LMR or MR increases. Read performance has similar

results. Native RDMA’s performance drops quickly with the amount and the size of

MRs, while LITE scales well with both the number of LMRs and the total size of

LMR and outperforms native RDMA when the scale is big.

Figure 3.6 and Figure 3.7 take a closer look at the latency and throughput com-

parison of LITE, native RDMA write, and TCP/IP. We use qperf [164] to measure

the performance of TCP/IP on InfiniBand (via IPoIB [165]). Even with a small

scale, LITE’s performance is close and sometimes better than native RDMA. LITE’s

kernel-level RDMA performance is almost identical to native RDMA, and its user-level

RDMA has only a slight overhead over native RDMA. With more threads, LITE’s

throughput is slightly better than native RDMA’s. TCP/IP’s latency is always higher

than both native RDMA and LITE, and TCP/IP’s throughput is mostly lower than

38

Size (KB)
1 4 16 64 256 1024

L
a
t
e
n
c
y

(
u
s
)

1

10

100

1000
Verbs register

Verbs deregister

LITE_unmap

LITE_map

Figure 3.8.: (De)Registering (L)MR Latency under LITE and native
RDMA. This LT map targets to a local LMR. Verbs register opens a MR to allow RDMA
device to access this memory region. Verbs deregister remove the access permission and re-
leases the resource of MR. LT map opens an LMR with a name and register a memory space
under the LMR. LT unmap closes the LMR and release resources. LT unmap includes RTT
to communicate with all registered LITE nodes.

them. When request size is between 128 B and 1 KB, TCP/IP’s throughput is slightly

higher than RDMA, because qperf executes requests in a non-blocking way, while our

RDMA experiments run in a blocking way.

LITE’s LMR register and de-register processes are also much faster and scale

better with respect to MR size than native RDMA, as shown in Figure 3.8. As

explained earlier in this section, native RDMA pins (unpins) each memory page of

an MR in main memory during registering (de-registering), while LITE avoids this

costly process.

3.4 LITE RPC

The previous section describes LITE’s memory abstraction and basic memory-like

operations in Table 3.1. In addition to one-sided RDMA and memory-like operations,

39

3

RPC Client Node RPC Server Node

App lib
Kernel
Space

User Space Kernel Space User Space
lib App

RPC func

1 a

2

6
78

e

cd

LMR

Time

f
5

b

4

Figure 3.9.: LITE RPC Mechanism. Red arrows represent the performance critical
path of LT RPC.

LITE still supports traditional two-sided messaging. But the main type of two-sided

operations we focus on is RPC. This section discusses LITE’s RPC implementation

and evaluation (second part of Table 3.1).

We believe that RPC is useful in many distributed applications, for example, to

implement a distributed protocol, to perform a remote function, or simply to send a

message and get a reply. We propose a new two-sided RDMA-based RPC mechanism

and a set of optimization techniques to reduce the cost of kernel crossings during RPC.

The LITE RPC interface is similar to traditional RPC [166]. Each RPC function is

associated with an ID which multiple RPC clients can bind to and multiple RPC

server threads can execute.

3.4.1 LITE RPC Mechanism

RDMA-write-imm-based Communication. We propose a new method to build

RDMA-based RPC communication: using two RDMA write-imm operations. Write-

imm is a Verb that is similar to RDMA write. But in addition to performing a direct

40

RPC Return Size (B)
8 64 512 4096

L
a
t
e
n
c
y

(
u
s
)

0

2

4

6

8
LITE_RPC

LITE_RPC KL

2 Verbs writes

HERD

FaSST

Figure 3.10.: RPC Latency Comparison. The RPC input size is always 8B. FaRM
uses two RDMA writes to implement message passing primitive. Sender uses one RDMA
write to write to a buffer, and receiver polls the buffer to get message. We use two RDMA
writes to emulate a RPC call in FaRM.

write into remote memory, it also sends a 32-bit immediate (IMM) value and notifies

the remote CPU of the completion of the write by placing an IMM entry in the remote

node’s receive CQ.

LITE performs one write-imm for sending the RPC call input and another write-

imm for sending the reply back. LITE writes RPC inputs and outputs in LMRs and

uses the 32-bit IMM value to pass certain internal metadata. To achieve low latency

and low CPU utilization, LITE uses one shared polling thread to busy poll a global

receive CQ for all RPC requests. LITE periodically posts IMM buffers in the receive

queue in the background.

LITE RPC Process. When an RPC client node first requests to bind with an RPC

function, LITE allocates a new internal LMR (e.g., of 16 MB) at the RPC server

node. A header pointer and a tail pointer indicate the used space in this LMR. The

client node writes to the LMR and manages the tail pointer, while the server node

reads from the LMR and manages the header pointer.

41

Figure 3.9 illustrates the process of an LT RPC call. The RPC client calls

LT RPC with function input and a memory space address for the return value 1 .

LITE uses write-imm to write the input data and the address of the return memory

space to the tail pointer position of the LMR at the server node 2 . LITE uses the

IMM value to include the RPC function ID and the offset where the data starts in

the LMR.

At the server node, a user thread calls LT recvRPC to receive the next RPC call

request. When the server node polls a new received request from the CQ, it parses

the IMM value to obtain the RPC function ID and data offset in the corresponding

LMR 3 . LITE moves the data from the LMR to the user memory space specified in

the LT recvRPC call and returns the LT recvRPC call 4 . The LMR header pointer

is adjusted at this time and another background thread sends the new header pointer

to the client node f . The RPC server thread performs the RPC function after 4

and calls LT replyRPC with the function return value 5 . LITE writes this value to

the client node at the address specified in LT RPC using write-imm 6 . The client

node LITE returns the LT RPC call 8 when it polls the completion of the write 7 .

To improve LT RPC throughput and reduce CPU utilization, we do not poll the

sending state of any write-imm. LITE relies on the RPC reply (7) to detect any

failure in the RPC process including write-imm errors; if LITE does not receive a

reply within a certain period of time, it will return a time-out error to user. Thus,

we can safely remove the check of sending states.

3.4.2 Optimizations between User-Space and Kernel

A straightforward implementation of the above LITE RPC process would involve

three system call overhead (LT RPC, LT recvRPC, and LT replyRPC) and six user-

kernel-space crossings, costing ∼0.9µs. We proposed a set of optimization techniques

to reduce this overhead for LITE RPC. The resulting RPC process only incurs two

user-to-kernel crossings 1 5 , or ∼0.17µs in our experiments.

42

RPC Return Size (KB)
0 1 2 3 4

T
h
r
o
u
g
h
p
u
t

G
B
/
s

0

1

2

3

4 LITE−16

HERD−16

FaSST−16

HERD−1

FaSST−1

LITE−1

Figure 3.11.: RPC Throughput. RPC throughputs using 16 and 1 concurrent RPC
clients and servers. RPC input size is always 8 bytes.

LITE hides the cost of returning a system call from the kernel space to the user

space by removing this kernel-to-user crossing from the performance critical path.

When LITE receives an LT RPC or LT recvRPC system call, it immediately returns

to the user space without waiting for the results b d . But instead of returning the

thread to the user, LITE returns it to a LITE user-level library.

We use a small memory space (one page) that is shared between kernel and an

application process to indicate the ready state of a system call result, similar to the

shared memory space used in previous light-weight system calls [159,167]. When the

LITE user-level library finds the result of a system call being ready, it returns the

system call to the user 4 8 .

To further improve throughput, we provide an optional LITE API to send a re-

ply and wait for the next received request. This API combines LT replyRPC and

LT recvRPC in order to remove steps a and b . This interface is useful for RPC

servers that continuously receives RPC requests.

43

1RQ 2RQ 3RQ 4RQ LITE

M
e
m
o
r
y

U
t
i
l
i
z
a
t
i
o
n

25%

50%

75%

100%
key value

Figure 3.12.: LITE RPC Memory Utilization. The first 4 set of bars represent
send-based RPC with different number of varying-sized RQs.

LITE minimizes CPU utilization when performing the above optimizations. Un-

like previous solutions that require multiple kernel threads to reduce system call

overhead [159] or require changes in system call interface [159, 168], LITE does not

need any additional kernel (or user-level) threads or any interface changes. Further-

more, the LITE library uses an adaptive way to manage threads. It first tries to busy

check the shared state. If it does not get any ready state shortly, LITE library will

put the user thread to sleep and lazily checks the ready state (c e).

In addition to minimizing system call overhead, LITE also minimizes the cost of

memory copying between user and kernel spaces. LITE avoids almost all memory

copying by directly addressing a user-level memory buffer using its physical address

(1 5 8). LITE only does one memory move to move data from the LMR at the

server node to the user-specified receive buffer. From our experimental results, doing

so largely improves RPC throughput by releasing the internal LMR space as soon as

possible.

44

3.4.3 LITE RPC Performance and CPU Utilization

LITE provides a general layer that supports RPC operations of different appli-

cations. LITE RPC offers low-latency, high-throughput, scalable performance, effi-

cient memory usage, and low CPU utilization. Figures 3.10 and 3.11 demonstrate

LT RPC ’s latency and throughput and how they compare to other systems.

The user-level LT RPC has only a very small overhead over the kernel-level one.

To further understand the performance implications of LITE RPC, we break down the

total latency of one LITE RPC call. Of the total 6.95µs spent on sending 8B key and

return a 4 KB page in an LT RPC call, metadata handling including mapping and

protection checking takes less than 0.3µs. The kernel software stacks of LT recvRPC

and LT replyRPC take 0.3µs and 0.2µs respectively. The cost of user-kernel-space

crossings is 0.17µs.

To compare LITE with related efforts, we quantitatively and qualitatively com-

pare it with several existing RDMA-based systems and their RPC implementations.

FaRM [29] uses RDMA write as their message-passing mechanism. RPC could be

implemented on top of FaRM with two RDMA writes. Since FaRM is not open-

source, we directly compare LITE’s RPC latency to the summation of two native

RDMA writes’ latency which is a lower bound but is not enough to build a real RPC

operation. LITE has only a slight overhead over two native RDMA writes.

To evaluate the performance of LITE, we next compare LITE with two open-

source RDMA-based RPC systems, HERD [32] and FaSST [66], using their open-

source implementations. HERD implements RPC with a one-sided RDMA write for

RPC call and one UD send for RPC return. HERD’s RPC server threads busy check

RDMA regions to know when a new RPC request has arrived. In comparison, LITE

uses write-imm and polls the IMM value to receive an RPC request. The latency

of checking one RDMA region is slightly faster than LITE’s IMM-based polling (as

with the microbenchmark results in Figure 3.10). However, in practice, HERD’s

mechanism does not work for our purpose of serving datacenter applications, since it

45

Inter−Arrival Time Amplification Factor

1 2 4 8

C
P
U

T
i
m
e

(
u
s
e
c
)

0

50

100

150

200
HERD FaSST LITE

Figure 3.13.: CPU Usage with Facebook Distribution. Average CPU time per
request when changing the Facebook distribution inter-arrival time with an amplification
factor.

needs to busy check different RDMA regions for all RPC clients, causing high CPU

or performance overhead. LITE only checks one receive CQ which contains the IMM

values for all RPC clients.

FaSST is another RPC implementation using two UD sends. LITE has better

throughput than FaSST and better latency when RPC size is big. FaSST uses a

master thread (called coroutine) to both poll the receive CQ for incoming RPC re-

quests and execute RPC functions. Our evaluation uses FaSST’s benchmark which

performs a dummy zero-length RPC function. In practice, executing an arbitrary

RPC function in the polling thread is not safe and will cause throughput bottlenecks.

LITE lets user threads execute RPC functions and ensures that the polling thread is

lightweight.

Moreover, LITE is more space efficient than send-based RPC implementations.

To use send, the receiving node needs to pre-post receive buffers that are big enough

to accommodate the maximum size of all RPC data, causing huge amount of wasted

46

Cluster Size

2 4 6 8

R
e
q
u
e
s
t
s
/
u
s

0

5

10

15

20
LITE_write

LITE_RPC

Figure 3.14.: Scalability of LITE RDMA and RPC. Each node runs 8 threads.
LT write writes 64B. LT RPC sends 64B and gets 8B reply.

memory space [169]. In comparison, with write-imm, LITE does not need receive

buffers for any RPC data. Figure 3.12 presents the memory space utilization with

LITE RPC and send under the Facebook key-value store distributions [170]. For

the send-based RPC in comparison, we already use a memory space optimization

technique that posts receive buffers of different sizes on different RQs and chooses the

most space-efficient RQ to send the data to [169]. Still, LITE is significantly more

space-efficient than send-based RPC, especially for sending big data (values in the

Facebook key-value store workload).

Finally, we evaluate the CPU utilization of LITE and compare it with HERD and

FaSST. We first use a simple workload of sending 1000 RPC requests per second using

8 threads between two nodes. LITE’s total CPU time is 4.3 seconds, while HERD

and FaSST use 8.7 and 8.8 seconds.

47

LITE−Log LITE−Graph

P
e
r
f
o
r
m
a
n
c
e

0

0.5

1

1.5

2

2.5
No b/g traffic

SW−Pri

HW−Sep

No QoS

Figure 3.15.: LITE QoS with Real Applications. No b/g traffic represents running
LITE-Graph and LITE-Log without low-priority background traffic. No QoS is used as a
baseline of performance (higher is better).

We then implemented a macrobenchmark that performs RPC calls with inter-

arrival time, input and return value sizes following the Facebook key-value store

distribution [170]. In order to evaluate CPU utilization under different load, we

multiply the inter-arrival time of the original distribution with a factor of 1× to 8×.

Figure 3.13 plots the average CPU time per request of LITE, HERD, and FaSST when

performing 100,000 RPC calls. When the workload is light (i.e., larger inter-arrival

time), LITE uses less CPU than both HERD and FaSST, mainly because of LITE’s

adaptive thread model that lets threads sleep. When the workload is heavy, LITE’s

CPU utilization is better than FaSST and is similar to HERD.

3.5 Resource Sharing and QoS

This section discusses how LITE shares resources and guarantees quality of service

(QoS) across different applications. Our emphasis is to demonstrate the possibility

and flexibility of using LITE to share resources and to perform QoS, but not to find

the best policy of resource sharing or QoS.

48

Time (sec)
0 5 10 15 20

T
h
r
o
u
g
h
p
u
t

(
G
B
/
s
)

0

2

4

6

SW−Pri−Total

SW−Pri−High

HW−Sep−Total

HW−Sep−High

NO QoS−Total NO QoS−High

Figure 3.16.: LITE QoS under Synthetic Workload. 20 low-priority threads start
from time 0, each running 600K requests (5 doing 4 KB LT write, 5 doing 8 KB LT write, 5
doing 4 KB LT read, and 5 doing 4 KB LT read). After 2 seconds, 20 high-priority threads
join the system, each running 200K requests (10 doing 4 KB LT write and 10 doing 4 KB
LT read). After finishing 200K requests, 8 of these 20 high-priority threads will sleep for 2
seconds and start running another 100K high-priority requests.

3.5.1 Resource Sharing

LITE shares many types of resources across user applications and between LITE’s

one-sided RDMA and RPC components. In total, LITE uses K×N QPs and one busy

polling thread for a shared receive CQ per node, where N is the total number of nodes.

K is a configurable factor to control the tradeoff between total system bandwidth

and total number of QPs; from our experiments 1≤K≤4 gives best performance.

Being able to share resources largely improves the scalability of LITE and minimizes

hardware burden. In comparison, a non-sharing implementation on Verbs would need

2×N×T QPs, where T is number of threads per node. FaRM [29] shares QPs within

an application and requires 2×N×T/q QPs, where q is a sharing factor. FaSST [66]

uses T UD QPs; UD is unreliable and does not support one-sided RDMA operations.

None of these schemes share QPs or polling threads across applications. Figure 3.14

shows that LITE one-sided RDMA and LT RPC both scale well with number of

nodes.

49

Size (KB)
1 4 16 64 256 1024

L
a
t
e
n
c
y

(
u
s
)

1

10

100

1000
Verbs write

LITE_memcpy

LITE_memcpy (local)

LITE_memset

LITE_malloc

Figure 3.17.: LITE Memory Operations Latency. LT memcpy (local) repre-
sents LT memcpy between two LMRs on the same node. LT memmove is the same as
LT memcpy.

3.5.2 Resource Isolation and QoS

When sharing resources, LITE ensures that user data is properly protected and

that different users’ performance is isolated from each other. We explored two ap-

proaches of delivering QoS. The first way (HW-Sep) relies on hardware resource isola-

tion to achieve QoS. Specifically, HW-Sep reserves different QPs and CQs for different

priority levels, e.g., three QPs for high-priority requests and one QP for low-priority

ones. Jobs under a specific priority can only use resources reserved for that priority.

The second approach (SW-Pri) performs priority-based flow and congestion con-

trol at the sending side using a combination of three software policies: 1) when the

load of high-priority jobs is high, rate limit low-priority jobs (i.e., reducing their

sending speed); 2) when there is no or very light high-priority jobs, do not rate limit

low-priority jobs; and 3) when the RTT of high-priority jobs increases, rate limit low-

priority jobs. We chose these three policies to demonstrate that it is easy and flexible

50

to implement various flow-control policies with LITE; the first two policies are based

on sending-side information and the last one leverages receiver-side information.

We evaluated HW-Sep and SW-Pri first with a synthetic workload that has a

mixture of high-priority and low-priority jobs performing LT write and LT read of

different request sizes. Figure 3.16 details this workload and plots the performance

of HW-Sep, SW-Pri, and no QoS over time. As expected, without QoS, high-priority

jobs can only use the same amount of resources as low-priority jobs, and thus are

only able to achieve half of the total bandwidth. SW-Pri achieves high aggregated

bandwidth that is close to the “no QoS” results, while being able to guarantee the

superior performance of high-priority jobs. HW-Sep’s QoS is worse than SW-Pri

and its aggregated performance is the worst among the three. This is because low-

priority jobs cannot use the resources HW-Sep reserves for high-priority jobs even

when there is no high-priority jobs, thus limiting the total bandwidth achievable by

HW-Sep. This result hints that a pure hardware-based QoS mechanism (HW-Sep)

cannot provide the flexibility and performance that a software mechanism like SW-Pri

offers.

Next, we evaluated LITE’s QoS with real applications. We ran two applications

that we built, LITE-Graph (Section 3.7.3) and LITE-Log (Section 3.7.1), with high

priority, and a low-priority background task of constantly writing data to four nodes.

Figure 3.15 compares the performance of LITE-Graph and LITE-Log under HW-

Sep, SW-Pri, and no QoS. Similar to our findings from synthetic workloads, SW-

Pri achieves better QoS than HW-Sep with real applications as well. Compared to

LITE-Log, LITE-Graph is less affected by QoS because it is more CPU-intensive than

LITE-Log.

3.6 Extended Functionalities

This section presents the implementation and evaluation of LITE’s extended func-

tionalities that we built on top of LITE’s RDMA and RPC stacks. These function-

51

alities include memory-like operations that we did not cover in Section 3.3 (rest of

the Memory part of Table 3.1) and synchronization operations (the Sync part of

Table 3.1).

3.6.1 Memory-Like Operations

In addition to RDMA read and write, LITE supports a rich set of memory-like

APIs that have similar interfaces as traditional single-node memory operations, in-

cluding memory (de)allocation, set, copy, and move. To minimize network traffic,

LITE internally uses its RPC interface to implement most LITE memory APIs. Fig-

ure 3.17 presents the latency of LT malloc, LT memset, LT memcpy, and LT memmove

(Table 3.1) as LMR size grows.

Applications call these memory-like APIs using lhs, in a similar way as how they

call POSIX memory APIs using virtual memory addresses. For example, applications

specify a source lh and a destination lh to perform LT memcpy and LT memmove.

LITE implements LT memcpy and LT memmove by sending an LT RPC to the node

that stores the source LMR. This node will perform a local memcpy or memmov if

the destinate LMR is at the same node. Otherwise, it will perform an LT write to

the destinate LMR which is at a different node. Afterwards, this node will reply to

the requesting node, completing the application call.

LITE implements LT memset by sending a command to the remote node that

stores the LMR, which performs a local memset and replies. An alternative way to

implement LT memset is to perform an LT write to the MR with the value to be set.

This alternative approach is worse than our implementation of LT memset when the

LMR size grows, since it sends more data over the network.

3.6.2 Synchronization and Atomic Primitives

LITE provides a set of synchronization and atomic primitives, including LT lock,

LT unlock, LT barrier, LT fetch-add, and LT test-set (Table 3.1). The last two are

52

direct wrappers of their corresponding native Verbs. We added distributed locking

and distributed barrier interfaces to assist LITE users in performing distributed co-

ordination.

We used an efficient implementation of LITE locking that balances lock operation

latency and network traffic overhead. A LITE lock is simply a 64-bit integer value

in an internal LMR and each lock has an owner node. The LT lock operation first

uses one LT fetch-add to try to acquire the lock. If a lock is available, this acquiring

process is very fast (2.2µs in our experiment). Otherwise, LITE will send an LT RPC

to the owner of the lock who maintains a FIFO queue of all users waiting on the lock.

By maintaining a FIFO wait queue, LITE minimizes network traffic by only waking

up and granting a lock to one waiting user once the lock is available. Our experiment

shows that LITE lock scales well with number of contending threads and nodes.

3.7 LITE Applications

To demonstrate the ease-of-use, flexibility, and superior performance of LITE, we

developed four datacenter applications on top of LITE. This section describes how

we built or ported these applications and their performance evaluation results. We

summarize our experience in building applications on LITE at the end of this section.

3.7.1 Distributed Atomic Logging

LITE-Log is a simple distributed atomic logging system that we built using LITE’s

memory APIs. With LITE-Log, we push the “one-sided” concept to an extreme: the

creation, maintenance, and access of a global log are performed all from remote. This

one-sided LITE-Log has complete transparency to its users and is very easy to use.

An allocator creates a global log as an LMR and several metadata variables also

as LMRs using LT malloc. A set of writers commit transactions to the log, and a log

cleaner periodically cleans the log. The same node can run more than one role.

53

Phoenix 2−node 4−node 8−node

R
u
n

T
i
m
e

(
s
e
c
)

0

2

4

6

8
24.6 21.6 21.3

Map Reduce Merge Hadoop

Figure 3.18.: MapReduce Performance. The left bars in the 2,4,8-node groups are
LITE-MR.

Writes to the log (log entries) are buffered at a local node until a commit time. At

commit time, the writer first reserves a consecutive space in the log for its transaction

data by testing and adjusting metadata of the log using LT fetch-add. The writer then

writes the transaction with LT write to the reserved log space. The log cleaner runs

in thebackground to clean up the global log with the help of LT read, LT fetch-add,

and LT test-set.

Our experiments show that LITE-Log can achieve 833K transaction commit per

second when two nodes concurrently commit single-entry (of 16B) transactions and

LITE-Log’s transaction commit throughput scales with number of nodes and size of

transaction.

3.7.2 MapReduce

LITE-MR is our implementation of MapReduce [171] on LITE. We ported LITE-

MR from Phoenix [146], a single-node multi-threaded implementation of MapReduce.

We spread the original Phoenix mapper and reducer threads onto a set of worker nodes

54

4Node 7Node

R
u
n

T
i
m
e

(
m
i
n
)

0

2

4

6

8

10
LITE−Graph

LITE−Graph−DSM

Grappa

PowerGraph

Figure 3.19.: PageRank Performance. Each node runs four threads.

and use a separate node as the master node. The master enforces the original Phoenix

job splitting policy but splits tasks to multiple worker nodes. We implemented LITE-

MR’s network communication using LT read and LT RPC.

Same as MapReduce, LITE-MR uses three phases: map, reduce, and merge. In

the map phase, each worker thread performs map tasks assigned by the master. After

completing all map tasks, a worker thread combines all the intermediate results into

a set of finalized buffers. It then registers one LMR per finalized buffer with an

identifier and sends all the identifiers to the master.

In the reduce phase, the master sends the identifiers collected in the map phase to

the reduce worker threads. The worker threads use these identifiers to directly read

the map results from the mapper nodes using LT read. After completing all reduce

tasks, a reduce worker thread combines the results of all its tasks. It registers the

combined buffer with one LMR and reports its associated identifier to the master.

The merge phase works in a similar way as the reduce phase; each merge worker

threads read reduce results with LT read. At the end of Merge phase, the master

node reads the final results with LT read and reports the results to the user.

55

Figure 3.18 presents the WordCount run time of the Wikimedia workloads [172]

using Phoenix, LITE-MR, and Hadoop [4]. For all the schemes, we use the same

number of total threads. Phoenix uses a single node, while LITE-MR and Hadoop

use 2, 4, and 8 nodes. LITE-MR outperforms Hadoop by 4.3× to 5.3×. We run

Hadoop on IPoIB, which performs much worse than LITE’s RDMA stack.

Surprisingly, with the same amount of total threads, LITE-MR also outperforms

Phoenix even though LITE involves network communication and Phoenix only ac-

cesses shared memory on a single node. We break down Phoenix and LITE-MR’s

run time into different phases and found that LITE-MR’s map and reduce phases are

shorter than Phoenix’s. In these phases, only reducers read data from mappers. We

made a simple change to modify Phoenix’s global tree-structured index to a per-node

index to run LITE-MR on distributed nodes. The gain of this change is larger than

the cost of network communication in LITE. However, using the same split index

in Phoenix affects Phoenix’s multicore optimizations for local threads. LITE-MR’s

merge phase performs worse than Phoenix’s because all data to be merged is on a

single node with Phoenix while they are on different nodes with LITE-MR. Both

LITE-MR and Phoenix use 2-way merge and requires multiple rounds of reading and

writing data. However, this cost is the result of performing distributed merging, not

because of using LITE. Finally, LITE-MR performs better with more nodes, because

the total number of LMRs stay the same but the cost of mapping and unmapping

LMRs is amortized across more nodes.

3.7.3 Graph Engine

We implemented a new graph engine, LITE-Graph, based on the design of Power-

Graph [6]. Like PowerGraph, it organizes graphs with vertex-centric representation.

It stores the global graph data in a set of LMRs and distributes graph processing

load to multiple threads across LITE nodes. Each thread performs graph algorithms

56

on a set of vertices in three steps: gather, apply, and scatter, with the optimization

of delta caching [6].

After each step, we perform an LT barrier to only start the next step when all

LITE nodes have finished the previous step. At the scatter step, LITE-Graph uses

LT read and LT write to read and update the global data stored in LMRs. To ensure

consistency of the global data, we can only allow one write at a time. LITE-Graph

uses LT lock to protect the update to each LMR. With this implementation, splitting

the global data into more LMRs can increase parallelism and the total throughput of

LITE-Graph.

We perform PageRank [150] on the Twitter dataset (1 M vertices, 1 B directed

edges) [173] using LITE-Graph, PowerGraph, and Grappa [25]. Grappa is a DSM

system that uses a customized IB-based network stack to aggregates network requests.

PowerGraph uses IPoIB on InfiniBand. Figure 3.19 shows the total run time of these

systems using four nodes and seven nodes, each node running four threads. Compared

to PowerGraph and Grappa, LITE-Graph performs significantly better, mostly due

to the performance advantage of LITE’s stack over IPoIB and Grappa’s networking

stack.

3.7.4 Kernel-Level DSM

LITE-DSM is a kernel-level DSM system that we built in Linux on LITE. It

supports multiple concurrent readers and a single writer (MRSW) and the release

consistency level (using two operations to acquire and release a set of data for writ-

ing). LITE-DSM designates a home node for each memory page like HLRC DSM

systems [84, 174]. Currently, it assigns home node in a round robin fashion. At re-

leasing time, dirty data is pushed to the home node, which informs all nodes that

have a cached copy to invalidate the data.

LITE-DSM hides all its operation and the globally shared memory space from

users by intercepting the kernel page fault handler to perform remote operations if

57

needed. Users on a set of nodes open LITE-DSM by first agreeing on a range of

reserved global virtual addresses that are the same on all nodes using LT RPC.

A remote page read in LITE-DSM does not need to inform the home node, since

multiple readers can read at the same time. Thus, LITE-DSM uses the one-sided

LT read to perform a remote page read. The acquire and release operations both

involve distributed protocols to invalidate or update data and metadata. Thus, we

use LT RPC to implement LITE-DSM protocols to exchange as much information as

possible in a single round trip.

In building these distributed protocols, we found the need of a multicast func-

tion [61, 175, 176]. We extended LITE APIs to include a new API that sends RPC

to multiple RPC server machines. Since multicast is not our focus, we use a simple

implementation by generating concurrent LT RPC requests to the destinations and

replying to the RPC client after all the desinations reply.

We evaluated LITE-DSM with sequential and random read, write, and sync op-

erations on four machines. As expected, reads have the lowest latency, 12.6µs and

17.2µs for random and sequential 4 KB read. Sync is more costly, taking 9.2µs and

74.3µs to begin and commit 10 dirty 4 KB pages.

We further built a user-space graph engine, LITE-Graph-DSM, on top of LITE-

DSM using a similar design as LITE-Graph. LITE-Graph-DSM performs native

memory loads and stores in the distributed shared memory space provided by LITE-

DSM instead of LITE memory operations. As shown in Figure 3.19, LITE-Graph-

DSM’s performance is worse than LITE-Graph because of the overhead caused by the

additional DSM layer. LITE-Graph-DSM still outperforms PowerGraph significantly

and is similar or better than Grappa.

3.7.5 Programming Experience

Overall, we find LITE very simple to use and it provides all the network func-

tionalities that our applications need. Table 3.2 lists the lines of code (LOC) and

58

Table 3.2.: LITE Application Implementation Effort. *LITE-MR ports from the
3000-LOC Phoenix with 600 lines of change or addtion.

Application LOC LOC using LITE Student Days

LITE-Log 330 36 1
LITE-MR 600* 49 4
LITE-Graph 1400 20 7
LITE-DSM 3000 45 26
LITE-Graph-DSM 1300 0 5

graduate student days to implement the applications on LITE. Most of the code and

implementation efforts are on the applications themselves instead of on LITE. There

is no need for any other networking code apart from the use of LITE APIs. In com-

parison, we spent 4 months and 4500 LOC building an RDMA stack and optimizing

it for our previous in-house DSM system.

Using LITE requires no expert knowledge in RDMA. LITE-Log and LITE-MR

were built by the same student that built LITE, while the rest were built by one

who has no knowledge about LITE internals. They were able to build applications

at similar speed and ease.

Overall, we find LITE’s abstraction very flexible. For example, the “name” LITE-

Graph associates with its LMR is the vertex index, and the “name” LITE-DSM uses

is the global virtual memory address in DSM. In general, LITE’s memory APIs are

a good fit for accessing data fast and its synchronization APIs are helpful in offering

synchronized accesses. Building applications using these APIs is to a large extent

similar to building a single-machine shared-memory application. LITE RPC is a

better fit for exchanging metadata and implementing complex distributed protocols.

After choosing the right LITE APIs (e.g., memory vs. RPC), optimizing LITE-

based application performance is easy and mostly does not involve networking opti-

mizations. For example, LITE-Graph improves performance by using finer-grained

LITE locks to increase parallelism, the same concept commonly used in multi-threaded

applications.

59

Finally, it is easy to run multiple applications together on LITE, while each ap-

plication’s implementation process involves no other applications.

3.8 Moving LITE to User Space

LITE was designed for general datacenter usages; it provides scalability, flexibility,

ease-of-programming, safe sharing, and quality of service. Our decision of building

LITE as a kernel-level indirection layer fits applications that require stronger security

guarantees. However, it comes with two tradeoffs. First, it is inevitable to incur the

latency overhead caused by kernel trap. Second, maintaining and managing kernel

modules is more difficult than user-level code.

After developing LITE in the kernel space, we explored options to migrate it to the

user space for applications that are latency sensitive and can accept weaker security

guarantees. Specifically, we created a user-level version of LITE called U-LITE that

maintains most of LITE’s high-level abstraction and scalability benefits.

Applications use U-LITE by including it as a library. U-LITE registers a big

memory space with memory huge page during initialization. It also manages memory

spaces and address mappings for LMRs. Currently, we do not support RPC with

U-LITE or resource sharing across different application processes, and leave them for

future work.

3.9 Conclusion

We presented LITE, a Local Indirection TiEr in the OS to virtualize and manage

RDMA for datacenter applications. LITE solves three key issues of native RDMA

when used in the datacenter environments: mismatched abstraction, unscalable per-

formance, and lack of resource management. LITE demonstrates that using a kernel-

level indirection layer can preserve native RDMA’s good performance, while solving

its issues. We performed extensive evaluation of LITE and built four datacenter

applications on LITE. Overall, LITE is both easy to use and performs well.

60

4 RDMA-BASED DATA STORE WITH REMOTE PERSISTENT MEMORY

The previous chapter presented LITE, an indirection tier that virtualizes and manages

RDMA for datacenter applications. LITE largely improves the usability and scala-

bility of RDMA, while preserving RDMA’s good performance and providing means

for safe RDMA resource sharing. A natural question that follows is how to build

applications on top of the (improved) RDMA abstraction. While the previous chapter

described our efforts in porting several different applications to LITE, this chapter

focuses on one important type of system in datacenters — in-memory data stores and

presents our efforts in building RDMA-based in-memory data stores.

Many datacenter applications use in-memory data stores such as in-memory key-

value stores [29, 31, 33], databases [26, 177], storage systems [92], and caching [91]

for fast data accesses. With in-memory data stores being a critical system layer in

datacenters, various research efforts have been put into building them. However, most

of the existing work focus on performance and optimization, ignoring two important

system design factors: monetary costs and manageability.

We set our target to study a different direction: build a low-cost, scalable data

stores. Two main factors contribute to the owning and running cost (CapEx and

OpEx) of existing in-memory data stores. First, large DRAM used to store data is

expensive and consumes a significant amount of energy. Second, all in-memory data

stores that we know of require processing power at the server [29, 31, 33, 92] or hard-

ware [64,178,179] that host the data, adding both CapEx and OpEx to datacenters.

To cut the cost of DRAM, we adopt the upcoming persistent memory (PM) [180,

181], which offers 60% lower energy and scales 2-4× than DRAM besides being non-

volatile [102, 103, 182]. To cut the cost of processing power, we exploit one-sided

network communication of RDMA. RDMA allows one machine to access another

machine’s memory without involving the latter’s CPU.

61

One-sided RDMA accesses can eliminate CPU utilization completely. Several

recent in-memory data stores adopted one-sided RDMA read operations for read

accesses, but their write accesses and data management still require processing power.

We explore the possibility of removing processing units entirely from the memory

nodes and perform all access and management operations from remote.

The resulting system treats PM as a passive, or “dumb”, media to store data

(persistently), and we call it dumb persistent memory, or DPM. DPM can be con-

structed with DIMM-attached PM [180, 181] and an RNIC in a regular server or in

a disaggregated way [38, 183] with a device to host PM and an RNIC. Being able to

remove processing needs in DPM can free up a server’s CPU to perform other tasks

or can make a disaggregated device easy and cheap to build. In addition, DPM can

improve the manageability of a data store by controlling it in a centralized manner.

DPM is a cost-effective system because DPM only needs a network interface, a

hardware PM controller, and PM; it requires no server packaging or any processors.

Datacenters owners can use normal servers as compute nodes, or CN, and store data

in DPM.

However, removing processing units from where data is hosted is not easy. Existing

in-memory data stores heavily rely on processing power for both the data path and

the control path. Without any processing power, accesses to DPMs have to come

all from the network, which makes concurrent writes especially hard; DPMs cannot

perform any management tasks of its own memory resources; and each DPM can fail

independently.

To confront the unique challenges of DPM and to explore the design tradeoffs

of the DPM model, this chapter presents three architectures of organizing DPMs

(Figure 4.1(c) to 4.1(e)).

Our core design philosophy across these different DPM models is to build concur-

rent data stores that target read-most workloads where concurrent writes can happen

but not often. This is a common workload pattern in many datacenter environ-

ments [170]. We demonstrate that for read-most workloads, it is possible to remove

62

Node

DRAM
CPU

Node

DRAM
CPU

Node

DRAM
CPU

Node

DRAM
CPU…

…

(b) Remote PM w/ Processing

Node

CPU …

Lo
ca

l
PM

Re
m

ot
e

PM

(a) Distributed PM

DR
AM

Node

CPU

Lo
ca

l
PM

Re
m

ot
e

PM
DR

AM
PM PM

Coordinator
PM

CPU

(d) DPM-Central
…

…
DRAM
CPU

Compute

DRAM
CPU

Compute

DRAM

PM PM
(e) DPM-Sep

…

…
DRAM
CPU

Compute

DRAM
CPU

Compute

Metadata
Server PM

CPU
DRAM

PM PM
(c) DPM-Direct

…

…
DRAM
CPU

Compute

DRAM
CPU

Compute

Figure 4.1.: PM Organization Comparison. Blue bars indicate two-way communi-
cation and pink ones indicate one-way communication. Bars with both blue and pink mean
support for both.

processing units all together while preserving the same performance, but doing so

requires new designs in both the data path and the control path.

We start our exploration of DPM organizations with a simple architecture, DPM-

Direct, where compute nodes (CNs) directly access DPMs with one-sided operations.

The second architecture, DPM-Central, uses a central server (the coordinator) to or-

chestrate the accesses from CNs to DPMs and to manage DPM resources. CNs can

talk to the coordinator with two-sided communication and the coordinator accesses

DPMs with one-sided communication. Our third architecture, DPM-Sep, separates

the data plane from the control plane. CNs directly access DPMs for all data opera-

tions. We use a metadata server (MS) to handle all metadata and control operations.

CNs talk to the MS with two-sided communication.

Based on these three architectures, we designed three atomic, crash-consistent

DPM data store systems. All these systems provide the same guarantees that when

writing to a data entry, the data entry either has all new data (if the write is success-

63

fully committed) or all old data (if the write fails), and that CNs only read committed

data (i.e., the read-committed isolation level). These properties hold even when a

DPM crashes during the write and recovers afterwards.

With the DPM-Direct architecture, all data and control paths have to be con-

ducted by CNs in a distributed manner. We design a data store, DirectDS, for op-

timized read performance and minimal management/control tasks. To avoid space

allocation on each write, DirectDS assigns two spaces for each data entry during cre-

ation time, one to write uncommitted new data and one to store committed data.

DirectDS uses error detection code to achieve single network round trip (RTT) reads

and use a customized distributed locking mechanism for writes.

On top of DPM-Central, we propose CentralDS. CentralDS leverages the central-

ized coordinator to perform space management, to store metadata, and to serve as

the serializing point for concurrent accesses. CNs send RPC read/write requests to

the coordinator, which uses local locks to protect concurrent accesses, reads/writes

data to DPM, and updates metadata locally.

On top of DPM-Sep, we propose SepDS. On the data path, SepDS performs out-

of-place writes that are similar to log-structured writes. We use a novel data structure

that enables CNs to efficiently locate the latest data entry without the need to com-

municate with the MS. This design achieves 1-RTT read performance when there

is no concurrent writes, while ensuring correct concurrent writes with satisfactory

performance. We move all metadata and control operations off performance critical

path. The MS stores all metadata and CNs caches hot metadata. To minimize the

need for CNs to communicate with MS, CNs inform the MS to reclaim old data en-

tries in a lazy, batched manner. We also completely eliminate the need for the MS

to communicate with DPMs; it manages DPM space and performs control tasks like

load balancing without accessing them.

To sustain non-transient DPM failures and to provide high availability, it is not

enough to store data in just one DPM. For each of the three systems, we add the

support of data and metadata replication. We also leverage the data redundancy to

64

provide better load balancing — we dynamically choose which DPM to write/read

data replicas based on the loads of each DPM.

We evaluate the three DPM data stores using real servers as CNs, the coordinator,

the MS, and DPM devices, all connected with RDMA network, and we emulate PM

with DRAM. We perform a systematic, extensive set of experiments to evaluate the

latency, throughput, scalability, CPU utilization, and the CapEx and OpEx of the

three DPM data stores using microbenchmarks and YCSB workloads [184,185].

Our evaluation results demonstrate that we can achieve the same or better per-

formance and scalability as traditional distributed and remote non-DPM in-memory

stores (Figure 4.1(a) and Figure 4.1(b)) when reducing OpEx by 30% to 99% and

CapEx by 75%. Our evaluation also provides a detailed tradeoff analysis of the three

DPM architectures and reveals pitfalls in designing DPM systems. For example, while

DPM-Central delivers great concurrent write performance and simplifies the control

plane, its read performance and CapEx/OpEx are the worst among the three DPM

designs.

Overall, DPM is a new model of low-cost in-memory data stores using dumb

persistent memory and exploiting one-sided network communication of RDMA. DPM

offers several key benefits:

• Without the need for a processor or a server to host DPM, the monetary and

energy cost of DPM is low.

• The DPMmodel is designed for datacenter workload — read-most workload.

• Unlike the alternative approach of attaching PM to a server, DPMs can be

integrated into current datacenters without any disruption to existing servers.

• Multiple compute nodes can share one DPM device and one compute node can

store data on multiple DPMs. Doing so enables better resource packing than

attaching and confining the usage of PM to a single node.

65

• The DPM model offers great elasticity since DPMs can be freely added, re-

moved, and replaced. The amount of compute nodes and DPMs can scale

independently.

4.1 DPM Overview

Before presenting the design of DPM data stores, we first give an overview of

existing distributed memory systems, DPM, and the three architectures we propose.

Traditional distributed storage or distributed memory systems can be categorized

into two types of models as discussed in Section 2.2.1. The first model is distributed

memory (Figure 4.1(a)), which combines the memory of nodes in a cluster into a

virtual memory pool. The second model is a remote memory model which separates

servers in a cluster into two groups, compute nodes and memory nodes (Figure 4.1(b)).

4.1.1 DPM Deployment and Architectures

A natural way to deploy PM in datacenters is to insert them to regular servers’

DIMM slots. Under this deployment, we can build low-cost PM-based data stores by

treating PM dumb and let remote servers access it through one-sided RDMA.

Another way to deploy PM is to host them in disaggregated devices. Similar to

disaggregated memory [183, 186] and other resource disaggregation systems [38, 187,

188], disaggregated PM devices attach directly to the network and can be accessed

by remote servers over the network. With the DPM approach, these devices do not

need any local processing units; they only need to connect PM directly to a network

interface on board (with possibly a small hardware memory controller). The Machine

project from HPE [22,187,189–192] also uses the disaggregated approach to organize

PM. The Machine organizes a rack by connecting a pool of SoCs to a pool of PMs

through a specialized cache-coherent network layer [193]. Although being a significant

initial step in disaggregated PM research, the Machine only explores one design choice

and relies heavily on special network to access and manage disaggregated PM.

66

We propose three architectures to organize DPM and they work for both server-

hosted DPM and disaggregated DPM, over general-purpose RDMA network. The

first architecture, DPM-Direct, directly connects CNs to DPMs and has CNs perform

all data and control plane operations through one-sided RDMA operations to DPMs

(Figure 4.1(c)). DPM-Central connects all CNs and DPMs to a central coordinator,

which is involved in both data and control planes (Figure 4.1(d)). Finally, DPM-Sep

separates data plane and control plane by performing the former directly from CNs to

DPMs and the latter handled by one or more global metadata servers (Figure 4.1(e)).

4.1.2 DPM Benefits and Challenges

DPM offers a cost-effective way to deploy PM in datacenters. The DPM approach

can largely reduce the total CPU utilization by not requiring any processing power at

where the data is hosted. As we will see in Section 4.3, our DPM-based data stores

reduces CPU utilization by 80% to 85% compared to the traditional remote memory

architecture. In addition, it offers an easy and low-cost option to build disaggregated

PM devices. Moreover, by extracting metadata and control planes from disaggregated

DPM devices, it largely improves the manageability of the system.

Notice that there is a subtle but important difference between the DPM approach

and approaches to reduce processing time. The DPM approach pushes for the com-

plete elimination of processing needs at where data is hosted. In doing so, processing

units such as CPU, ASIC, FPGA [194], and SoC [56] can be removed entirely, reduc-

ing not only the cost of these units themselves but also device PCB materials and the

developing cost of software running on these units [195].

Although DPM offers many benefits, it is only attractive when there is no or min-

imal performance lost compared to other more expensive solutions. Building a DPM

data store system that can lower the cost but maintain the performance of non-DPM

systems is hard. Different from traditional distributed storage and memory systems,

DPMs can only be accessed and managed from remote. A major technical hurdle is

67

Table 4.1.: Design Comparison of DPM Data Stores. The R-RTT and W-
RTT columns show the number of RTTs required to perform a read and a write (with
replication). All RTT values are measured when there is no contention. RTTs in distributed
PM’s read/write, N, depends on protocols and whether data is local. The Scalability column
shows if a system is scalable with the number of CNs, the number of DPMs, both, or neither.
† only scalable when there is no contention. The metadata columns show the space needed
to store the metadata of a data entry.

System R-RTT W-RTT Scalability Metadata

Distributed PM 0-N 0-N Neither large
Remote PM w/ CPU 1 1 w/ cost small
DirectDS 1 6(6) w/ DPM† large
CentralDS 2 3(3) Neither small
SepDS 1 3(4) w/ both medium

in providing good performance with concurrent data accesses. The lack of processing

power at DPMs makes it impossible to orchestrate (e.g., serialize) concurrent accesses

there. Managing distributed PM resources without any DPM-local processing is also

hard and when performed improperly can largely hurt foreground performance. In

addition, DPMs can fail independently and such failures have to be handled properly

to ensure data reliability and high availability.

4.1.3 Design DPM for Read-Most Data Stores

To confront the challenges of DPM, we propose to design distributed data stores

for read-most workloads, the most common access pattern in datacenters [170]. Such

data stores should still support concurrent writes and ensure data consistency, but

their performance should be optimized for reads. We demonstrate that such data

stores can be built with no processing units at where data is hosted. By not optimiz-

ing for concurrent write performance, we can have everything else: low CapEx and

OpEx cost, good performance under low write contention, scalability, manageability,

reliability, and high availability.

68

Table 4.2.: Cost Comparison of DPM Data Stores. The CapEx column represents
dollar cost to build eight CNs and eight PMs, and the OpEx column shows the energy cost to
run 1 billion operations. Section 4.3 discusses the details of CapEx and OpEx calculation.

System CapEx ($) OpEx ($/BOP) Performance

Distributed PM 30400 2.4547
Good only when accessing
data on local node

Remote PM w/ CPU 60800 0.0139 Good overall

DirectDS 38520 0.0155 Best for small-sized read

CentralDS 42320 0.0452
Not good
for read-intensive traffic

SepDS 42320 0.0061
Good overall
(unless high write contention)

4.2 DPM Data Stores

This section first describes the interface of all our DPM data stores and their

common features. We then present the three data stores we built with the three

architectures presented in Section 4.1.1, DirectDS, CentralDS, and SepDS. Figure 4.2

illustrates the read and write operation flow of these systems and Tables 4.1 and 4.2

summarize the tradeoffs of these systems. Finally, we discuss failure handling and

load balancing in these data stores. We implemented all our data store systems in

user space on Linux.

4.2.1 System Interface and Overview

Interface and guarantees. The current data model that our three data stores

support is a key-value store, but these systems can be extended to other data models.

Users can create, read (get), write (put), and delete a key-value entry. Different CNs

can have shared access to the same data. We manage the consistency of concur-

rent data accesses in software instead of relying on any hardware-provided coherence

like [193,196,197].

69

All our DPM data stores ensure atomicity of an entry across concurrent readers

and writers. A successful write indicates that the data entry is committed (atom-

ically), and reads only see committed value. We choose single-entry atomic write

and read committed because these consistency and isolation levels are widely used in

many data store systems [31,33] and can be extended to other levels.

Since our DPM systems store persistent data, it is important to provide data

reliability and high availability. Our DPM systems guarantee the consistency of data

when crashes happen. After restart, each data entry is guaranteed to either only have

new data values or old ones. In addition, all our three systems provide replication

across DPMs to ensure that data is still available even after losing N−1 DPMs (when

the degree of replication is N).

Network layer. We choose RDMA as the network layer that connects all servers

and DPMs. We use RDMA’s RC (Reliable Connection) mode which supports one-

sided RDMA operations and ensures lossless and ordered packet delivery. Similar to

prior solutions [29,32,33,116], we solve RDMA’s scalability issues using memory huge

page to register memory regions with RDMA NICs.

Ensuring data persistence. For data to be persistent in DPM, it is not enough

to just perform a remote write. After a remote write (e.g., RDMA write), the data

can be in NIC, PCIe hub, or PM. Only when the data is written to PM can it sustain

power failure. To ensure this data persistence, we follow the guidance of SNIA [198]

and Mellanox [39, 44] by performing a remote read to ensure that data is actually

in PM. Since we use RDMA RC which guarantees ordered data delivery and PCIe

also follows ordering [199], we only read the last byte of a data entry to verify its

persistence [198].

4.2.2 Direct Connection

The DPM-Direct architecture (Figure 4.1(c)) connects CNs directly to DPMs.

CNs perform un-orchestrated, direct accesses to DPMs using RDMA one-sided oper-

70

CC

PM

(a) DirectDS

CN

Lock Create-Redo Update Unlock
read write

RL U WL UUM
Create-Redo

(b) CentralDS

read write
CN

Cor

PM

Create-
Redo

Link-
Redo

Update-
Shortcut

US

MS

CN

PM

read write
Foreground Background

GC

(c) SepDS

WL Writer Lock
U Unlock
C CRC calculation

US Update Shortcut

UM Update Metadata

RL Reader Lock

Read validation
Compare & Swap

One-sided
RPC

Old data

New data

Figure 4.2.: Read/Write Protocols of DPM Systems.

ations. Under DPM-Direct, performing metadata and control operations from CNs

is hard and costly (e.g., by performing distributed coordination across CNs).

Control plane. We made two design choices to ease the control path of DirectDS.

First, we pre-assign two spaces for each data entry, one to store committed data where

reads go to (we call it the committed space) and one to store in-flight, new data (un-

committed space). These spaces are statically allocated at data entry creation time

by CNs. Doing so avoids dynamic space allocation and de-allocation. We currently

use a distributed consensus protocol across CNs to perform space allocation and de-

allocation and use Memcached [90] to store metadata. Other distributed consensus

and metadata management systems can also work. Second, to avoid reading and

writing metadata from DPMs and the cost of ensuring metadata consistency under

concurrent accesses, CNs in DPM-Direct locally store all the metadata of key-value

entries, including the key of a value and the location of its committed and uncom-

mitted spaces.

Data plane. A straightforward method to ensure safe concurrent read and write

accesses is to use distributed locks and lock a data entry before accessing it. Doing so

causes two network round trips (RTTs) of lock and unlock for each data access. To

71

improve read performance, we adopt a lock-free read mechanism with the help of error

detecting codes. Figure 4.2(a) illustrates the read and write protocol of DirectDS.

To read a data entry, a CN uses its stored metadata to find the location of the

data entry’s committed space (and the first 8-byte lock). Then, the CN simply issues

an RDMA read to fetch the data and calculates and validates its CRC afterwards.

The read latency of DirectDS is one RTT plus the CRC calculation time.

To write a data entry, a CN first calculates and attaches a CRC to the new data

entry. It then locates the entry and locks it. After acquiring the lock, the CN writes

the new data (and CRC) to the un-committed space. To ensure data persistence, the

CN issues an RDMA read to the last byte of the un-committed space to validate that

it is actually written to PM [198,200]. This uncommitted data serves as the redo copy

that will be used during recovery if a crash happens. The CN then writes the new

data to the committed space with an RDMA write and validates it with an RDMA

read. At the end, the CN releases the lock. The total write latency is 6 RTTs (when

no contention), two of which involve data read/write.

We implemented our distributed locking using RDMA one-sided operations. We

associate an 8-byte value at the beginning of each data entry to implement its lock.

To acquire the lock, a CN performs a one-sided RDMA c&s (compare-and-swap)

operation to the value (e.g., comparing whether the value is 0 and if so setting it to

1). To release the lock, the CN simply performs an RDMA write and sets the value

to 0.

Our lock implementation leverages the unique feature of the DPM model that all

memory accesses to DPMs come from the network (i.e., the NIC). Without processor’s

accesses to memory, DMA guarantees that network atomic operations like c&s are

atomic [144, 201]. Note that an RDMA c&s operation to an in-memory value which

can also be accessed locally at the same time does not guarantee the atomicity of the

value [116, 144, 202], and thus it cannot be used in distributed PM systems in the

same way.

72

Discussion. As we will see in Section 4.3, DirectDS delivers very good read

performance when read size is small. since it only requires one lock-free RTT and it

is fast to calculate small CRC. Its write performance is much worse because of the

high RTTs and lock contention on writes to the same data entries. Its scalability is

also limited because of lock contention during concurrent writes.

Moreover, DirectDS also requires large space for both data and metadata. For

each data entry, it doubles the space because of the need to store two copies of data.

The metadata overhead is also high, since CNs have to store all metadata.

4.2.3 Connecting Through Coordinator

Most limitations of DPM-Direct come from the fact that there is no central coor-

dination of data, metadata, or control operations. For example, DPM-Direct systems

have to write data twice, once to the un-committed and once to the committed space,

because CNs in DPM-Direct only know a fixed location to read committed data. The

DPM-Central architecture (Figure 4.1(c)) takes the opposite design choice and uses

a central coordinator to orchestrate all data accesses and to perform metadata and

management operations. All CNs send RPC requests to the coordinator (we use the

HERD [32, 33] RPC system for this purpose, but other RPC systems [203, 204] can

also work). The coordinator handles RPC requests by performing one-sided requests

to DPMs. For better throughput, we use multiple RPC handling threads at the

coordinator.

Since all requests go through the coordinator, it can serve as the serialization

point for concurrent accesses to a data entry. We simply use a local read/write lock

for each data entry at the coordinator as the synchronization of multiple coordinator

threads. In addition to orchestrating data accesses, the coordinator performs all space

allocation and de-allocation of data entries. The coordinator uses its local PM to

persistently store all the metadata for a data entry including its key, its location, and

a read/write lock. With the coordinator handling all read requests, it can freely direct

73

a read to the latest location of committed data. Thus, it does not need to maintain

the same location for committed data and changes the location of committed data

after each write.

To perform a read, a CN sends an RPC read request to the coordinator. The

coordinator finds the location of the entry’s committed data using its local metadata,

acquires its local lock of the entry, reads the data from the DPM using a one-sided

RDMA read, releases the lock, and finally replies to the CN’s RPC request. The

end-to-end read latency a CN observes is 2 RTTs, and both RTTs involve sending

data.

When receiving a write request from a CN, the coordinator allocates a new space

in a DPM for the new data. It then writes the data and validates it with an RDMA

read. Note that we do not need to lock (either at coordinator or at DPM) during this

write, since it is an out-of-place write to a location that is not exposed to any other

coordinator RPC handlers.

After successfully verifying the write, the coordinator updates its local metadata

of where the committed version of the data entry is and flushes this new metadata

to its local PM for crash recovery (by performing CPU cache flushes and memory

barrier instructions [205]). Since concurrent coordinator RPC handlers can update

the same information of where the latest data entry is, we use a local lock to protect

this metadata change. The total write latency without contention is 3 RTTs, with

two of them containing data and one for validation.

Discussion. CentralDS largely reduces write RTTs over DirectDS and thus has

good write performance when the scale of the cluster is small. However, from our

experiments, the coordinator soon becomes the performance bottleneck when either

the number of CNs increases or the number of DPMs increases. CentralDS’s read

performance is also worse than DirectDS with the extra hop between a CN and the

coordinator. In addition, the CPU utilization of the coordinator is high, since it

needs to have a high amount of RPC handlers to sustain parallel requests from CNs

74

MS

CN

uncommitted entry

committed entries

ptr

8B header
DPM

data

data

data

data

shortcut
ptr GC-verFreeList

ToGCList

metadata cache

OvflowList

key

key write-cursor

head

tail

next
GC-ver

my
GC-ver

ch
ai

n

shortcut-loc

shortcut-loc

head of chain

read-cursor

Figure 4.3.: SepDS System Design.

(Section 4.3). However, unlike DPM-Direct, CNs in the DPM-Direct architecture

does not need to store any metadata.

4.2.4 Separating Data and Control

DPM-Direct has good read performance (when data size is small) but has poor

write performance and costly metadata/control plane. CentralDS improves DPM-

Direct’s write performance and manageability but suffers from the scalability bot-

tleneck of the central coordinator. To solve these problems of the first two DPM

architectures, we propose a third architecture, DPM-Sep (Figure 4.1(d)), and a data

store designed for it, SepDS. The main idea of DPM-Sep is to separate the data plane

from the control plane. It lets CNs directly access DPMs for all data operations and

uses a metadata server (MS) for all control plane operations.

The MS stores metadata of all data entries in its local PM. We keep the amount

of metadata small, and 1 TB of PM (a conservative estimation of the size of PM a

server can host) can store metadata for 64 TB data at the granularity of 1 KB per

data entry. CNs cache metadata of hot data entries; under memory pressure, CNs

75

will evict metadata according to an eviction policy (we currently support FIFO and

LRU).

SepDS aims to deliver scalable, low-latency, high-throughput performance under

low write contention at the data plane and to avoid the MS being the bottleneck at

the control plane. Our overall approaches to achieve these design goals include: 1)

moving all metadata operations off performance critical path, 2) using lock-free data

structures to increase scalability, 3) employing optimization mechanisms to reduce

network round trips for data accesses, and 4) leveraging the unique atomic data

access guarantees of DPM. Figure 3 illustrates the data structures used in SepDS.

Data Plane

To achieve our data plane design goal, we propose a new mechanism to perform

lock-free, fast, and scalable reads and writes. The basic idea is to allow multiple

committed versions of a data entry in DPMs and to link them into a chain. Each

committed write to a data entry will move its latest version to a new location. To

avoid the need to update CNs with the new location, we use a self-identifying data

structure to let CNs be able to find the latest version.

We include a header with each version of a data entry, which contains a pointer

and some metadata bits used for garbage collection. The pointers chain all versions

of a data entry together in the order that they are written. A NULL pointer indicates

that the version is the latest.

A CN acquires the header of the chain head from the MS at the first access to

a data entry. It then caches the header locally to avoid the overhead of contacting

MS on every data access. As a CN reads or writes an entry, it advances its cached

header. We call a CN-cached header a cursor.

Read. SepDS reads are lock-free. To read a data entry, the CN performs a chain

walk. The chain walk begins with fetching the data entry its current cursor points

to. It then follows the pointer in the following entries until it reaches the last entry.

76

All steps in the chain walk use one-sided RDMA reads. After a chain walk, the CN

updates its cursor to the last entry.

A chain walk can be slow with long chains when a cursor is not up to date [206].

Inspired by skip-list [207], we propose to solve this issue by using a shortcut to directly

point to a newer entry. The shortcut of a data entry is stored in DPM and the location

of the shortcut never changes during the lifetime of the data. MS stores the locations

of all shortcuts and CNs cache the hot ones. Shortcuts are best effort in that they

are intended but not enforced to always point to the last version of an entry.

The CN issues a chain walk read and a shortcut read in parallel. It returns to

user when the faster one returns and discards the other result. Note that we do

not replace chain walks completely with shortcut reads, since shortcuts are updated

asynchronously in the background and may not be updated as fast as the cursor.

When the CN has a pointer that points to the latest version of data, a read only

takes 1 RTT.

Write. SepDS never overwrites existing data entries and performs a lock-free out-

of-place write before linking the new data to an entry chain. To write a data entry,

a CN first selects a free DPM buffer assigned to it by MS in advance (see § 4.2.4).

It performs a one-sided RDMA write to write the new data to this buffer and then

issues a read of the last byte to ensure that the data is written in PM. Afterwards,

the CN performs an RDMA c&s operation to link this new entry to the tail of the

entry chain. Specifically, the c&s operation is on the header that CN’s cursor points

to. It compares if the pointer in the header is NULL and swaps the pointer to point

to the new entry. If the c&s succeeds, we treat this data as committed and return the

write request to the user. If the pointer is not NULL, it means that the cursor does

not point to the tail of the chain and we will do a chain walk to reach the tail and

then do another c&s.

Afterwards, the CN uses a one-sided RDMA write to update the shortcut of the

entry to point to the new data entry. This step is off the performance critical path.

The CN also updates its cursor to the newly written data entry. We do not invalidate

77

or update other CNs’ cursors at this time to improve the scalability and performance

of SepDS.

SepDS’ chained structure and write mechanism ensure that writers do not block

readers and readers do not block writers. They also ensure that readers can only view

committed data. Without high write contention to the same data entry, one write

takes only 3 RTTs.

Retire. After committing a write, a CN can retire the old data entry, indicating that

the entry space can be reclaimed. To improve performance and minimize the need to

communicate with the MS, CNs perform lazy, asynchronous, batched retirement of old

data entries in the background. We further avoid the need for MS to invalidate CN-

cached metadata using a combination of timeout and epoch-based garbage collection.

Control Plane

CNs communicate with the MS using two-sided operations for all metadata op-

erations. The MS performs all types of management of DPMs. It manages physical

memory space of DPM, stores the location and shortcut of a data entry. We carefully

designed these MS functionalities to achieve good performance and scalability.

Space allocation. With the data plane out-of-place write model, SepDS has high

demand for DPM space allocation. We use an efficient space allocation mechanism

where MS packages free space of all DPMs into chunks. Each chunk hosts the same

size of data entries and different chunks can have different data sizes, similar to

FaRM [29] and Hoard [208]. Instead of asking for a new free entry before every write,

each CN requests multiple entries at a time from the MS in the background. This

approach moves space allocation off the critical path of writes and is important to

deliver good write performance.

Garbage collection. SepDS’ append-only chained data structure makes its writes

very fast. But like all other append-only or log-structured data stores, SepDS needs

to garbage collect (GC) old data. We designed a new efficient GC mechanism that

78

does not involve any data movement or communication to DPM and minimizes the

communication between MS and CNs.

The basic flow of GC is simple: the MS keeps busy checking and processing incom-

ing retire requests from CNs. The MS decides when a data entry can be reclaimed

and puts a reclaimed entry to a free list (FreeList). It gets free entries from this list

when CNs request for more free buffers. A reclaimed entry can be used by any CN

for any new entry, as long as the size fits.

Although the above strawman GC implementation is simple, making GC work

correctly, efficiently, and scale well is challenging. First, to achieve good GC perfor-

mance, we avoid the invalidations of CN cached cursors after reclaiming entries so as

to minimize the network traffic between the MS and CNs. However, with the straw-

man GC implementation, CNs’ outdated cursors can cause failed chain walks. We

solve this problem using two techniques: 1), the MS does not clear the header (or the

content) of a data entry after reclaiming it, and 2), we assign a GC version to each

data entry. The MS increases the GC version number after reclaiming a data entry. It

gives this new GC version together with the location of the entry when assigning the

entry as a new free buffer to a CN, A. Before CN A uses the entry for its new write,

the entry content at the DPM still has old header and data (with old GC version).

Other CNs that have cached cursors to this entry can thus still use the old pointer to

perform chain walk. CNs differentiate if an entry is its intended data or has already

been reclaimed and reused for other data by comparing the GC version in its cached

cursor and the one it reads from the DPM. After CN A writes the new data with the

new GC version number, other CNs that have the old cursors will have a mismatched

GC version and discard the entry and invalidates their cursors. Doing so not only

avoids the need for MS to invalidate cursor caches on CNs, but also eliminates the

need for MS to access DPMs during GC.

The next challenge is related to our targeted guarantee of read isolation and

atomicity (i.e., readers should always read the data that is consistent to its metadata

header). An inconsistent read can happen if the read to a data entry takes long and

79

during the reading time, this entry has been reclaimed and used to write a new data

entry. We use a read timeout scheme similar to [29]. CNs abort a read operation after

Tr, an agreed value among CNs and the MS. The MS delays the actual reclamation of

an entry to only Tr time after it receives the retire request of the entry. Specifically,

the MS leaves the entry in a ToGCList for Tr and then moves it to the FreeList.

The final challenge is the overflow of GC version numbers. We can only use limited

number of bits for GC version in the header of a data entry (currently 8 bits), since

the header needs to be smaller than the size of an atomic RDMA operation. When

the GC version of an entry increases beyond the maximum value, we will have to

restart it from zero. With just the GC version number and our GC mechanism so

far, CNs will have no way to tell if an entry matches its cached cursor version or has

advanced by 28 = 256 versions. To solve this rare issue without invalidation traffic to

CNs, we use an epoch-based timeout mechanism. When the MS finds the GC version

number of a data entry overflows, it puts the reclaimed entry into OvflowList and

waits for Te time before moving it to the FreeList that can be assigned to CNs. All

CNs invalidate their own cursors after an inactive period of Te (if during this time,

the CN access the entity, it would have advanced the cursor already). To synchronize

epoch time, the MS sends a message to CNs after Te, and the MS can choose the

value of Te. Epoch message is the only communication the MS issues to CNs during

GC.

Discussion.

The SepDS design offers four benefits. First, SepDS reads and writes are fast, with

1 RTT and 3 RTTs respectively when there is no contention. Even under contention,

SepDS still achieves comparable performance as alternative systems. Achieving

this low latency and guaranteeing atomic write and read committed is not easy and is

achieved by the combination of four approaches: 1) ensuring the data path does not

involve the MS, 2) reducing metadata communication to the MS and moving it off

80

DPM1 DPM2 DPM3 DPM4

Figure 4.4.: Replicated Data Entity. A replicated data entity on four DPMs. The
replication factor is two.

performance critical path, 3) ensuring no memory copy in the whole data path, and

4) leveraging the unique advantages of DPM to perform RDMA atomic operations.

Second, SepDS scales well with the number of CNs and DPMs, since its reads and

writes are both lock free. Readers do not block writers or other readers and writers

do not block readers. Concurrent writers to the same entity only contend for the

short period of RDMA c&s operation. SepDS also minimizes the network traffic to

MS and the processing load on MS to make MS scale well with number of CNs and

data operations.

Third, we avoid all data movement or communication between the MS and DPMs

during GC. To scale and support many CNs with few MSs, we avoid CN invalidation

messages completely. The MS does not need to proactively send any other messages

to CNs either. Essentially, the MS never pushes any messages to CNs. Rather, CNs

pull information from the MS.

Finally, the SepDS data structure is flexible and can support load balancing very

well. Different entries of a data entity do not need to be on the same DPM device.

As we will see in Section 4.2.5 and Section 4.2.6, this flexible placement is the key to

SepDS’ load balancing and data replication needs.

However, SepDS also has its own limitation. It requires CNs to cache metadata.

As we will see in Section 4.3, when CN’s local metadata cache becomes small, SepDS’s

81

performance drops. Thus, SepDS works the best when CNs have enough memory or

when data accesses have good temporal locality.

4.2.5 Failure Handling

DPMs can fail independently from CNs. A DPM system needs to handle both

the transient failure of a DPM (which can be rebooted) and a permanent failure

of one. For the former, our three DPM systems guarantee crash consistency, i.e.,

after reboot, the DPM can recover all its committed data. For the latter, we add the

support for data replication across multiple DPMs to all the three data store systems.

In addition, CentralDS and SepDS also need to handle the failure of the coordinator

and the MS.

Recovery from Transient Failures

We now present how each system recovers from a single DPM’s failure when it

restarts. We assume that the rest of the system (e.g., CNs, the coordinator, the

MS) keeps alive. We will discuss the reliability of the coordinator and the MS in

Section 4.2.5.

DirectDS. When recovering a DPM in DirectDS, we need to decide whether to

use the data in the committed space or the un-committed space (i.e., where the redo

copy is). DirectDS validate the data in the committed space with its CRC. During

recovery, we calculate the CRC of the committed space. If the CRC is correct, it

indicates the committed space has the complete data. Otherwise, we copy the data

from the redo copy to the committed space.

CentralDS. Handling the failure of a DPM in CentralDS is simple, as long as

the coordinator stays alive. Since CentralDS performs out-of-place writes and the

coordinator stores the state of all writes, we can simply use the information in the

coordinator to know what writes have written their redo copies but haven’t committed

82

yet and what writes have not written redo copies. For the former case, we advance

to the redo copy, and for the latter, we use the original version.

SepDS. SepDS’ recovery mechanism is also simple. If a DPM fails before a CN

successfully links the new data it writes to the chain (indicating an un-committed

write), the CN simply unsets lock bits (within a pointer) of the data entry (releasing

the held lock) and discards the new write (by treating the space as unused).

Adding Redundancy

We now present how we add redundancy to DPM in all the three systems and how

we handle coordinator and MS failures. With the user-specified degree of replication

being N , our data store systems guarantee that data is still accessible after N − 1

DPMs have failed.

DirectDS. In order to sustain DPM failure during a write, we need to replicate both

the first write to the un-committed space (the redo copy) and the second write to

the committed space. After getting the lock, a CN sends the new data to the un-

committed space on N DPMs in parallel. Afterwards, it performs N read validation,

also in parallel. Once read validation of all the copies succeeds, the CN writes the

data to the committed space of the N DPMs in parallel and performs a parallel read

validation afterwards.

CentralDS. To handle a replicated write RPC request, the coordinator writes

multiple copies of the data to N DPMs in parallel and performs a parallel read

validation of them. After the read validation, the coordinator updates its metadata

to record the new locations of all these copies.

SepDS. We propose a new atomic replication mechanism designed for the SepDS

data structure. The basic idea is to link each data entry version DN to all the replicas

of the next version (e.g., Da
N+1, D

b
N+1, D

c
N+1 for three replicas) by placing pointers

to all these replicas in the header of DN . Figure 4.4 shows an example of replicated

83

data entry. With this all-way chaining, SepDS can always construct a valid chain as

long as one copy of each version in an entry survives.

Each data entry has a primary copy and one or more secondary copies. To write

a data entry DN+1 with R replicas to an entry whose current tail is DN , a CN first

writes all copies of DN+1 to R DPMs. In parallel, a CN performs a one-sided c&s

to a bit, Bw, in the header of the primary copy of DN to test if the entry is already

in the middle of a replicated write. If not, the bit will be set, indicating that the

entry is now under replicated write. All the writes and the c&s operation are sent

out together to minimize latency.

After the CN receives the hardware acknowledgment of all the operations, it con-

structs a header that contains R pointers to the copies of DN+1 and writes it to all

the copies of DN . Once the new header is written to all copies of DN , the system can

recover DN+1 from crashes (up to R− 1 concurrent DPM failure).

Backup coordinator and MS. To avoid the coordinator or the MS being the single

point of failure in CentralDS and SepDS, we implement a mechanism to enabling one

or more backup coordinator (MS), by having the primary coordinator (MS) replicate

the metadata that cannot be reconstructed (i.e., keys and locations of values) to the

backup coordinator (MS) when changing these metadata.

4.2.6 Load Balancing

With the DPM model, a system will have a pool of DPMs. Thus, it is beneficial

to balance the load to each of them.

With a centralized place to initiate all requests, it is easy for CentralDS to perform

load balancing. The coordinator simply records the load to each DPM and directs

new writes to the DPM with lighter load. When DPM is replicated, the coordinator

can also balance read loads by selecting the replica that is on the DPM with lighter

load.

84

Request Size (B)
128 256 512 1K 2K 4K

L
a
t
e
n
c
y

(
u
s
)

0

5

10

15

20

DirectDS

CentralDS

SepDS

HERD

Verbs write

Figure 4.5.: Write Latency

We use a novel two-level approach to balance loads in SepDS: globally at MS and

locally at each CN. Our global management leverages two features in SepDS: 1) MS

assigns all new space to CNs; and 2) data entries of the same entity in SepDS can be

on different DPMs. To reduce the load on a DPM, MS directs all new writes to other

devices. At a local level, each CN internally balances the load to different DPMs.

Each CN keeps one bucket per DPM to store free entries. It chooses buckets from

different buckets for new writes according to its own load balancing needs.

However, balancing loads with the DPM-Direct architecture is hard, since there

is no coordination across CNs.

4.3 Evaluation Results

This section presents the evaluation results of different DPM systems including

DirectDS, CentralDS, and SepDS. All our experiments were carried out in a cluster of

14 machines, connected with a 100 Gbps Mellanox InfiniBand Switch. Each machine

85

Request Size (B)
128 256 512 1K 2K 4K

L
a
t
e
n
c
y

(
u
s
)

0

5

10

15

DirectDS

CentralDS

HERD

SepDS

Verbs read

Figure 4.6.: Read Latency

C(0%) B(5%)

T
h
r
o
u
g
h
p
u
t

(
M
O
P
S
)

0

5

10

15

20

25
DirectDS

SepDS

SepDS−Async

CentralDS

Hotpot−Zipf

DirectDS−R

SepDS−R

SepDS−Async−R

CentralDS−R

Hotpot−Uniform

Figure 4.7.: Throughput Comparison with YCSB Running YCSB on four CNs
and four DPMs.

is equipped with two Intel Xeon E5-2620 2.40GHz CPUs, 128 GB DRAM, and one

100 Gbps Mellanox ConnectX-4 NIC.

86

4.3.1 Micro-Benchmark Results

We first evaluate DPM data stores’ read and write performance using a simple

micro-benchmark. Figure 4.5 plots the average write latency with different request

size. We use native RDMA one-sided write as the baseline; it only performs a write

without any read validation and has the lowest latency. Among DPM systems, SepDS

and CentralDS achieve the best write latency. DirectDS’s write performance is the

worst because of its 6-RTT write protocol. Its write performance also gets worse with

larger request size because of the increased overhead of CRC calculation.

We also compare DPM systems with HERD [33], a two-sided RDMA-based in-

memory key-value store. We use HERD’s default configuration of using 12 busy

polling receiving side’s threads for all our experiments. HERD outperforms our DPM

systems on write latency because it only does a write without read validation. Finally,

we evaluate all the DPM systems’ write performance without read validation (i.e.,

treating DPM as volatile memory). We found each read validation to cost a constant

of 1.5µs overhead.

Read validation is just one way that works with current RDMA and PM hardware

to ensure an PM write is persistent. We envision when PM is deployed in practice with

RDMA, the supporting hardware will have another way of guarantee write persistence

without the need of the extra RTT of read validation (e.g., by simply changing the

NIC to only send the ACK after data is written to the PM media). Because of this

and to have a fair comparison with DRAM-based systems like HERD, we do not

perform the read validation step in the rest of our evaluation.

Figure 4.6 plots the read latency comparison. We again use native one-sided

RDMA read as a baseline here. Overall, SepDS’s performance is the best among

DPM systems and is only slightly worse than native RDMA. DirectDS has very good

read performance when request size is small. However, when request size increases, the

overhead of CRC calculation dominates, largely hurting DirectDS’s read performance.

As expected, CentralDS’s read performance is not good because of its 2-RTT read

87

Number of DPMs
1 2 4 8T

h
r
o
u
g
h
p
u
t

(
M
O
P
S
)

0

5

10

15

20

25
SepDS−Async

SepDS

CentralDS

DirectDS

(a) Workload C (0%)

Number of DPMs
1 2 4 8T

h
r
o
u
g
h
p
u
t

(
M
O
P
S
)

0

5

10

15

(b) Workload B (5%)

Figure 4.8.: Scalability w.r.t. DPMs Running 4 CNs.

protocol. HERD performs worse than SepDS because of it requires some extra CPU

processing time for each read.

Number of Clients
1 2 4 8T

h
r
o
u
g
h
p
u
t

(
M
O
P
S
)

0

2

4

6

8 SepDS−Async

SepDS

DirectDS

HERD

CentralDS

(a) Workload C (0%)

Number of Clients
1 2 4 8T

h
r
o
u
g
h
p
u
t

(
M
O
P
S
)

0

2

4

6

8

(b) Workload B (5%)

Figure 4.9.: Scalability w.r.t. CNs Running 1 DPMs.

4.3.2 YCSB Results

We now present our evaluation results using the YCSB benchmark [184,185]. We

use a total of 100K key-value entries where the key size is 8 bytes and the value size is

1 KB. The accesses to keys follow the Zipf distribution. We use two workloads with dif-

ferent read-write ratios: read only (workload C) and 5% write (workload B), following

common workload patterns in datacenters [170]. We compare the three DPM systems

with HERD [33] and Hotpot [37], which serve as comparison points of the distributed

88

and remote memory model. We further evaluate the effect of CN asynchronously

sending data access requests with the help of coroutines (SepDS-async), similar to

the asynchronous mechanism implemented in FaSST [66] and DrTM+H [68]. HERD

uses its customized asynchronous implementation and Hotpot does not support asyn-

chronous interface.

Throughput Results

Basic performance. We first evaluate the performance of all our DPM systems

under one configuration: 4 CNs and 4 DPMs, each CN running 8 application threads.

Figure 4.7 shows the overall performance of DPM systems, replicated DPM systems

(with degree of replication 2), and Hotpot.

SepDS performs the best among all systems regardless of read/write intensity,

even under high contention (with Zipf distribution to keys). SepDS-async further

improves SepDS’s throughput by sending more requests at the same time. DirectDS

performs well with workloads that are read intensive. DirectDS’s read performance

is not affected by contention, since it does not need to perform any lock. CentralDS’s

read performance is worse than DirectDS and SepDS because each read in CentralDS

requires 2 RTTs and under contention the coordinator becomes the bottleneck.

The overall performance of Hotpot is orders of magnitude worse than all DPM

data stores. The main reason is that each read and write in Hotpot involves a com-

plex protocol that requires RPCs across multiple nodes. Hotpot’s performance is

especially poor with writes, since the distributed PM consistency protocol involves

frequent invalidation of cached copies, especially under high write contention to the

same data. Hotpot performs better when running workloads with uniform distri-

bution (but still much worse than DPM systems). The Hotpot results are from its

MRSW consistency level without replication and four servers in total, each running 8

application threads, a configuration reported by the Hotpot paper. Hotpot only sup-

89

ports the 40Gbps ConnectX-3 NIC, so its performance can also be partially impacted

by the NIC compared to our ConnectX-4 environment.

Replication overhead. As expected, adding redundancy lowers the throughput

of write operations in all data stores. Even though all systems issue the replica-

tion requests in parallel, they only use one thread to perform asynchronous RDMA

read/write operations and doing so still has an overhead.

Scalability. Next, we evaluate the scalability of different DPM systems with respect

to the number of CNs and the number of DPMs. Figure 4.8 shows the scalability of

DPM data stores w.r.t. the number of DPMs (HERD only supports single memory

node and we do not include it in this experiment). SepDS scales well with DPMs

because CNs access DPMs directly for data accesses, having no scalability bottleneck.

SepDS-async improves SepDS further by sending more asynchronous requests (it sat-

urates the network full bandwidth beyond four DPM nodes. CentralDS has poor

scalability because of the coordinator being the bottleneck that all requests have to

go through. Surprisingly, DirectDS’s scalability is also poor. Although CNs in Di-

rectDS access DPMs directly, they need to calculate CRC for each read/write request.

When the number of DPM nodes increases, CNs need to do more CRC calculation

in the same amount of time and this computation overhead becomes a performance

bottleneck.

Figure 4.9 shows the scalability of DPM data stores and HERD when varying the

number of CNs with a single DPM. SepDS-async and HERD have the best (and simi-

lar) performance with workload C, effectively saturating the network full bandwidth.

Both systems send asynchronous requests that can saturate network bandwidth and

neither systems have any scalability bottlenecks. Under workload B, the performance

of SepDS is slightly worse with more CNs because of the increased write contention.

The rest three systems cannot saturate network bandwidth but scale well with more

CNs.

90

C(0%) B(5%)

C
P
U

t
i
m
e

(
s
e
c
)

0

40

80

120

160

200

DirectDS

SepDS

SepDS−Async

CentralDS

HERD

Figure 4.10.: CPU Utilization

C B

T
h
r
o
u
g
h
p
u
t

(
M
O
P
S
)

0

5

10

15

20

25
100%

10%

1%

0%

Figure 4.11.: Effect of Metadata Cache in SepDS

CPU Utilization and Cost

CPU utilization. We evaluate the CPU utilization of different data stores. Fig-

ure 4.10 plots the total CPU time to complete ten million requests. For read-intensive

workload, DirectDS and SepDS use less CPU time than CentralDS and HERD because

they perform one-sided RDMA directly from CNs to DPMs. SepDS-async reduces

CPU time further because of its higher throughput performance. HERD also uses

asynchronous requests but takes 2.3× longer total CPU time, because it uses many

91

C B

T
h
r
o
u
g
h
p
u
t

(
M
O
P
S
)

0

2

4

6
100%

10%

1%

0%

Figure 4.12.: Effect of Data Cache in CentralDS

Round−

Robin

Write Read−

Write

T
r
a
f
f
i
c

(
G
B
)

0

2

4

6

8
DPM−1

DPM−2

DPM−3

Figure 4.13.: Load Balancing in SepDS

busy-polling threads at its memory nodes to achieve good performance (12 threads by

default). Note that HERD only supports one memory node, and we assume perfect

scaling of HERD to estimate its upper bound of performance (lower bound of CPU

time). CentralDS has high CPU utilization because the coordinator’s CPU spends

time on every request and the total time to finish the workloads with CentralDS is

long.

92

CapEx and OpEx. Table 4.2 summarizes the cost to build different data stores with

8 CNs and 8 DPMs (for distributed PM, we use eight machines in total). We collected

hardware and energy costs from online, and the hardware used in our calculation is

the same or similar model as what’s used in our experiments. The CapEx is calculated

with the market price of datacenter-level server ($3800), CPU ($440 [209]), DRAM

($220 [210]), and NIC ($795 [211]). Because NVM is not yet available in the public

market, we use DRAM cost for NVM. Distributed PM has the lowest CapEx because

it can share PM and only needs eight machines in total. Remote PM requires 16

machines in total (8 for CNs and 8 for DPM nodes). The three DPM systems do

not require full machines for DPM nodes and we only include PM and NIC costs for

them.

The OpEx is calculated using the CPU time to complete one billion requests of

workload B and CPU energy cost ($83.22 per year [212]). We do not include the

energy to host NVM, since it is the same for all systems. Distributed PM has the

highest OpEx because of its poor performance and high CPU utilization. SepDS has

the lowest OpEx because of its low CPU utilization and overall good performance.

Client Caching Effect

Metadata caching effect. To evaluate the effect of different sizes of metadata cache

at CNs in SepDS, we ran the same YCSB workloads and configuration as Figure 4.7

and plot the results in Figure 4.11. Here, we use the FIFO eviction policy (we also

tested LRU and found it to similar or worse than FIFO). With smaller metadata

cache, all workloads’ performance drop because a CN has to get the metadata from

the MS before accessing the data entry that does not have local metadata cache.

With no metadata cache (0%), CNs need to get metadata from the MS before every

request. However, under Zipf distribution, with just 10% metadata cache, SepDS can

already achieve satisfying performance.

93

Data caching effect. We do not cache data at CNs because doing so would require

coherence traffic, resulting in performance that is similar to distributed PM. However,

it is possible to cache data at the coordinator with the DPM-Central architecture,

because that is the only copy and does not need any coherence traffic. By caching

hot data in a coordinator, the coordinator does not need to access DPMs to get

data for every read which can reduce network traffic and improve performance. We

built a FIFO data cache at the coordinator for CentralDS to analyze the effect of

data caching. Figure 4.12 plots the throughput with different percentages of the data

cache in a coordinator. With bigger data cache, the performance increases. However,

the overall performance is still limited by network bandwidth. Overall, we found the

effect of data caching to be small with CentralDS, but demands large amount of PM

space at the coordinator.

Load Balancing

To evaluate the effect of SepDS’s load balancing mechanism, we use a synthetic

workload with six data entities, a, b, and c1 to c4. The workloads initially creates a

(no replication) and b (with 3 replicas) and reads these two entities continuously. At

a later time, it creates c1 to c4 (no replication) and keep updating them. One CN

runs this synthetic workload on three DPMs. Figure 4.13 shows the total traffic to

the three DPMs with different allocation and load-balancing policies. With a naive

policy of assigning DPMs to new write requests in a round-robin fashion and reading

from the first replica, write traffic spreads evenly across all DPMs but reads all go to

DPM-1. With write load balancing, MS allocates free entries for new writes from the

least accessed DPM. Doing so spreads write traffic more towards the lighter-loaded

DPM-2 and DPM-3. With read load balancing, SepDS spreads read traffic across

different replicas depending on the load of DPMs. As a result, the total loads across

the three DPMs are completely balanced.

94

4.4 Conclusion

This chapter presents a low-cost way of building in-memory data stores, by re-

moving all the computation needs at where data is hosted. We proposed three DPM

architectures, built three atomic, crash-consistent, and reliable data stores on top

of them, and performed extensive evaluation of these data stores. Our findings can

guide future DPM system builders.

95

5 SECURITY IMPLICATIONS OF ONE-SIDED COMMUNICATION AND

RDMA

The previous two chapters discussed our efforts in building better RDMA system

stack and applications for datacenter environments. Our focus as well as focus of most

other RDMA-related research have been on performance, scalability, and usability of

RDMA, leaving one important aspect unexplored, security.

This chapter introduces the security vulnerabilities in one-sided communication.

First, one-sided communication’s feature of not having any software processing at the

receiving side poses unique threats in distributed systems. For example, malicious

clients can read or write to remote storage servers with one-sided network requests

without being noticed, making it hard to account for errors. Attackers can also

easily launch Denial of Service attacks using one-sided communication to swamp the

network or the target machine’s memory or storage resources.

Second, in order to bypass host processors, hardware devices that enable one-

sided communication have to implement functionalities that are traditionally built in

software. We identified several security issues in one-sided hardware, some caused by

features added for better performance, some by the need to bypass host CPU, and

some by ill-designed implementation.

To study the security issues in one-sided communication deeper, we focus on the

most popular one-sided communication technology, RDMA, and introduces Pythia, a

set of side-channel attacks that can be launched completely from the network through

RDMA. With limited on-board SRAM, RDMA NICs cannot cache all the metadata

such as page table entries and have to move metadata between their SRAM and the

host machine’s main memory through the PCIe bus. As a result, there exists a timing

difference between RDMA operations that hit or miss SRAM. We demonstrated the

96

feasibility of exploiting the above vulnerability to launch side-channel attacks on

RDMA-based systems.

Finally, we describe the opportunities to achieve user privacy by one-sided com-

munication. One-side communications offer unique opportunities to help enhance

security. Indeed, one-sided network communication is a double-edged sword in secu-

rity.

The contributions of this security study are:

• Identify fundamental limitations in one-sided communication that can pose se-

curity threats.

• Discovery of new side channels in RDMA-based systems that leak client RDMA

access patterns.

• Reverse engineering of the most widely used RDMA NIC hardware architecture,

which can be leveraged in designing efficient side channels.

• Design, implementation, and evaluation of, Pythia, a set of RDMA-based side-

channel attacks, which are fast, accurate, and can be launched solely from a

separate machine across the network.

• Discussion of possible mitigations, most of which are uniquely applicable to

RDMA systems.

• leverage one-sided communication to enhance the performance of an ORAM

system.

5.1 Vulnerabilities in One-Sided Communication

While the processing needs at receiver nodes increase CPU utilization in two-

sided communication, the receiver’s processing software stack provides the means to

implement various security defenses. In contrast, the lack of receiver involvement in

97

one-sided network communication poses several security threats in datacenter envi-

ronments. A major threat model we envision is a cloud environment that provides

in-memory data store services to cloud users. A victim accesses data that a server

hosts by issuing one-sided network requests from a client machine. The attacker runs

on another client machine and is another user of the cloud data store service (i.e.,

the attacker has no access to the victim or the server machines).

This section presents four real cases of security issues in two different types: one-

sided abstraction and one-sided hardware devices.

Case 1: threats to accountability. In distributed, multi-tenant datacenter envi-

ronments, many parties can potentially cause errors (e.g., node failures, data corrup-

tion, stealing information). It is important to account for errors when they happen.

Accountability enables the pinpointing of the party responsible for a problem and

allows other parties to be proven innocent [213]. In a threat model where a server

hosts data that multiple clients can read and write, an attacker can be one of the

clients that desire to write malicious data or read other clients’ data without being

noticed.

Under two-sided communication, the receiver handles all incoming network re-

quests and can identify their senders, providing a means for accountability. However,

it is fundamentally difficult for one-sided communication to be accountable, because

CPU and software are completely bypassed at the receiving side. Attackers can exploit

this vulnerability to perform one-sided network operations without being detected.

For example, in RDMA-based in-memory storage systems that support one-sided

writes [26, 67, 214], an attacker client can write malicious data to any locations in

the store without being detected. One possible way benign clients can avoid reading

unaccountable data is to authenticate the writer of the data with encryption keys.

However, this mechanism needs a fair amount of computation, and the performance

overhead is especially large considering one-sided networks’ high speeds [56,215].

Case 2: threats in denial of service. Without any processing at the receiving side,

one-sided communication also makes it hard to throttle the speed of network requests

98

from any particular sender. This limitation can be exploited to launch different types

of Denial of Service (DoS) attacks [216]. Our threat model here is a cloud environment

where an attacker has one-sided network accesses to a server that provides some

service (e.g., an RDMA-based key-value store, GPU acceleration with GPUDirect) to

multiple clients. An attacker can flood the network to the server with a large number

of one-sided network requests without being detected.

Another potential DoS attack that is different from traditional network DoS at-

tacks is to exhaust a server’s hardware resources that are used to provide one-sided

communication services. For example, RDMA NICs (RNICs), devices that enable

one-sided RDMA operations, store metadata for network connections and memory

spaces in on-NIC SRAM so that RNICs can process incoming one-sided requests with-

out involving the host machine. Attackers can fill the on-NIC SRAM by accessing

many different memory spaces, forcing the receiver’s RNIC to evict victims’ meta-

data. With one-sided communication, lots of metadata are offloaded into hardware

where the resource is really restricted in comparison with the resource in software in

traditional two-sided communication. This makes the server more vulnerable to DoS

attacks. To make it worse, the server cannot tell which client is the attacker, because

the attacker’s one-sided network traffic cannot be detected by the server.

Case 3: hardware-managed “keys” are not secret. RNICs use a pair of “keys”,

lkey and rkey, to protect the local and remote access of each memory region or MR.

An RNIC of a machine generates and stores lkey and rkey (together with the memory

address) at the time when a user process registers an MR on the machine. Applica-

tions running on other machines use the virtual memory address of a registered MR

and its rkey to access it. When receiving an RDMA request, the RNIC checks its

access permission using the rkey.

Surprisingly, we discovered that RNICs generate rkeys in a predictable, sequential

pattern with Mellanox ConnectX-3, ConnectX-4, and ConnectX-5 RNICs, the three

most popular generations of RNICs. Figure 5.1 plots the values of lkey/rkey of the

first 5000 MRs that are registered at a host in the order of the registration time (lkey

99

n−th MR registered

0 1K 2K 3K 4K 5K

r
k
e
y
/
l
k
e
y

V
a
l
u
e

1M

2M

3M ConnectX−5

ConnectX−4

ConnectX−3

Figure 5.1.: MR Key Value X axis represents the sequence of MRs as they are generated
in time.

and rkey have exactly the same values for all MRs). For all the three generations of

RNICs, there are clear and easy-to-guess patterns in lkey/rkey values. Moreover, the

first 500 MRs have sequentially increasing lkey/rkey values.

Most RDMA-based in-memory storage systems use a small number of large MRs [29,

214], making it even easier for attackers to guess MR keys. After guessing both the

rkey and the memory address of an MR (the latter can be guessed in a similar way

as traditional buffer-overflow attacks), attackers can gain full access to the MR, over-

writing victims’ memory content or stealing their data.

Case 4: exposing physical memory addresses to remote machines. Another

case where RNIC design can threat security is a feature designed to improve perfor-

mance. By default, user processes register MRs with RNICs using virtual memory

addresses in their address spaces and RNICs store the virtual to physical memory

address mapping in their SRAM. To eliminate the space and performance overhead

of address mapping, Mellanox ConnectX-4 and later versions of Mellanox RNICs

introduce a new feature that allows user processes to register MRs directly using

100

physical memory addresses [217]. Applications running on other machines can use

these physical memory addresses to access the MRs.

Exposing physical memory addresses poses many new security threats, since know-

ing physical memory address layout is the basis of many attacks. For example,

knowing physical memory addresses make both rowhammer [218–220] and throwham-

mer [221] attacks easier. Although registering MRs with physical address improves

performance, we recommend applications builders to take caution when using this

feature.

Discussion and defenses. Attacks that can successfully exploit the Case 1 and

Case 2 rely on the assumption that their traffic cannot be sniffed by trusted parties.

We believe this assumption to be reasonable because most packet sniffing tools re-

quire the root privilege to run and datacenter administrators usually prohibit packet

sniffing. For example, packet sniffing is prohibited by RNIC by default and requires

the RNIC administrator privilege to change the default configuration [222–224].

While many traditional defense mechanisms may not work or will break the one-

sided communication pattern, we identified two possible directions for future defenses.

First, at the sender, we can employ defense mechanisms to monitor or control network

activities before network requests are sent out with the help of an intermediate layer

like LITE [214] or with traffic dump tools [222, 223]. Second, at the receiver, we

can enhance the hardware devices that handle one-sided requests with better security

features, for example, by programming SmartNICs.

While the Case 3 and Case 4 all happen with Mellanox RNICs, we believe that

similar issues can happen with other one-sided hardware and that there are deep-

rooted reasons for why they happen. There are clear tradeoffs between including

more security functionalities in hardware devices and the devices’ performance and

cost. For one-sided devices, vendors usually choose the latter over security, because

what makes one-sided devices appealing is their superior performance and low cost

(on saving CPU utilization). For example, the side channel threats in RDMA are a

result of vendors choosing performance (caching hot metadata in on-board SRAM)

101

and cost saving (maximize the utilization of SRAM by not isolating SRAM space

across applications) over security.

Mitigating security issues in one-sided hardware implementation is possible. For

example, RNICs can use cryptographically generated keys as lkey and rkey (Case 3);

they can isolate SRAM for different applications or introduce noise to disturb tim-

ing differences; and they can remove the exposure of physical memory addresses

(Case 4). Certain one-sided hardware vendors have manufactured SmartNICs that

supports one-sided network communication [56, 194]. Various defense mechanisms

can be implemented on these SmartNICs (e.g., encryption). Despite the promise of

the above mitigations, it is still challenging but important to deliver security features

with minimal impacts on performance, cost, and hardware complexity.

5.2 Pythia: Remote Oracles for the Masses

After studying the vulnerabilities in one-sided communication, in this section, we

focus on RDMA, and introduce Pythia, a set of side-channel attacks in RDMA.

The need for RDMA NICs to bypass CPU and directly access memory result in

them storing various metadata like page table entries in their on-board SRAM. When

the SRAM is full, RNICs swap metadata to main memory across the PCIe bus. We

exploit the resulting timing difference to establish side channels and demonstrate that

these side channels can leak access patterns of victim nodes to other nodes.

The basic idea of Pythia is to issue RDMA network requests to the server to fill its

RNIC SRAM, eventually evicting the metadata of the target data. Then the attacker

reloads the target data with an RDMA request and based on the time it takes, predict

if the victim has accessed the data.

Although the basic idea is similar to the Evict+Reload CPU cache side-channel

attack [128], designing Pythia presents many new challenges. The first challenge is

the difficulty in achieving good eviction performance. Existing CPU-cache based side-

channel attacks leverage cache associativity to reduce the eviction set size, thereby

102

improving eviction performance. However, RNICs are vendor owned and are complete

black boxes to public knowledge. To confront this challenge, we reverse engineered

the memory architecture of the Mellanox ConnectX-4 RNIC [54], the type of RNIC

that is used in all major datacenter RDMA deployment. We successfully discovered

the internal architectural organization of RNIC SRAM and leverage this knowledge

to achieve low-latency eviction.

The second challenge is in the reload and prediction process. Because of our en-

vironment of being in a shared datacenter network, the latency of an RDMA request

can vary with different network state. The traditional approach of using a static

threshold to differentiate cache hit from cache miss is not a good fit for our envi-

ronment. We take an adaptive approach to dynamically train a hit/miss classifier

based on RDMA access latency at the time of attack and use the trained classifier to

statistically predict victim accesses [133,225].

We evaluated Pythia in our lab environment and in a public cloud [226] with four

different types of RNICs. Pythia completes one Evict+Reload cycle (across the

network) in as low as 57µs with 97% accuracy. The definition of accuracy throughout

this chapter is the percentage of successful guesses over total guesses. Moreover,

Pythia effectively hides its traces from the server and victims because it performs all

its attack using RDMA operations from a separate machine.

We further built three variations of Pythia to attack a real RDMA-based system,

the Apache Crail key-value store system [34, 35]. On a real application like Crail,

it is more challenging to establish a strong side-channel attack because of limited

application interface and noise coming from application performance overhead. After

improving Pythia to accommodate these difficulties, we successfully launched a side-

channel attack solely from a separate client machine using the unmodified Crail client

interface. This attack is efficient and can accurately learn a victim’s key-value pair

access patterns.

Pythia is the first work that explores side-channel vulnerabilities in RDMA and

exploits the vulnerabilities to launch attacks on RDMA-based datacenter systems.

103

Server Machine

RDMA Network

 RNIC SRAM

 Main Memory CPU

Client Machine

Attacker

Client Machine

Victim

QP MR PTE

PCIe
PTEMRData

Figure 5.2.: Attack Environment and RNIC Architecture. The attacker and
the victim are both clients that can access data in the server machine’s memory throuth
RDMA.

With today’s datacenters all having robust defenses against direct sniffing or hijacking

of network traffic, side channels are more feasible attack mechanisms and we believe

that our work raises serious security concerns in a young but already widely-adopted

network technology. We have responsibly disclosed the weaknesses to Mellanox and

Crail.

5.2.1 Threat Model

In our attack, there are three parties: the server which hosts data in its main mem-

ory for other client machines to access (e.g., an in-memory database or an in-memory

key-value store), the victim who accesses the server’s in-memory data through RDMA,

and the attacker who tries to infer the victim’s accesses and access patterns. The at-

tacker and the victim are both normal clients that can access the data store service

the server provides, and they run on separate machines. Following the threat mod-

104

els of related work that introduces and evaluates side channels, we assume that the

attacker does not have direct control over the victim. As victim and attacker ex-

ecute on different machines and communication to the server happens through the

network, we assume that the attacker cannot observe the victim’s network packets

(as otherwise, the attacker could directly infer the accessed addresses and values as

RDMA is currently not encrypted). This assumption is reasonable as sniffing victim’s

packets would require an attacker to have root access on either the victim’s machine

or the server’s machine [222–224] or to launch man-in-the-middle attack to the net-

work, both of which are well defended in cloud datacenters. Figure 5.2 illustrates

this environment. We also assume that the server cannot directly observe memory

accesses of either the victim or the attacker as both victim and attacker interact with

the server through one-sided RDMA operations, not involving the server’s CPU.

5.2.2 Side-Channel Attacks on RDMA

RDMA exposes node-internal memory to external hosts. Due to best practices of

optimizing accesses and caching, current RDMA hardware is vulnerable to a variety of

timing side channels. We present an overview of RDMA-based side channels, two basic

attacks, refined attacks with our reverse engineered knowledge of RNIC internals,

and evaluation results of the attacks. Unless otherwise stated, all our experiments

use three machines, each equipped with a Mellanox ConnectX-4 100 Gbps network

adapter [54], two Intel Xeon E5-2620 2.40GHz CPUs, and 128 GB main memory.

They are connected with a Mellanox SB7700 100 Gbps InfiniBand switch [227]. One

machine is used as the server that serves in-memory data through RDMA. The other

two machines are the victim client machine and the attacker client machine, both

of which can perform RDMA operations to access data on the server. In all the

experiments in this section, the victim has a 50% chance of accessing the targeted

data that the attacker tries to infer accesses on.

105

Attack Overview

The basic idea of our side-channel attacks is to exploit two weaknesses in RNIC:

1) the RNIC caches metadata in its SRAM, RDMA accesses whose metadata is not

in SRAM must wait until that data is fetched from main memory, and 2) all RDMA

accesses from all applications share the RNIC SRAM. As explained in Section 2.1,

RNICs store three types of metadata in their SRAM: QP information, MR infor-

mation, and PTEs. An RDMA access involves all three types of metadata: upon

receiving a network request, an RNIC needs to locate which QP the request belongs

to, which MR it falls into, and which page it is accessing. If any of these metadata

is not in the RNIC SRAM, the RNIC will fetch it from the host memory, stalling

the request until the required data arrives. By exploiting this timing difference, we

can launch side-channel attacks to know which QP, which MR, and which PTE the

victim has accessed.

Traditional CPU-cache-based side-channel attacks take three major forms: prime-

based (e.g., Prime+Probe [119–126]), flush-based (e.g., Flush+Reload [129]),

and evict-based (e.g., Evict+Reload [128]). Because RNICs do not provide any

interface to flush their SRAM, all flush-based side-channel attacks are incompatible

with RDMA such as Flush+Reload [129] and Flush+Flush [228]. All the op-

erations that are needed in prime-based and evict-based attacks can be implemented

through RDMA network requests that an attacker performs over the network. At-

tackers can hide their traces during the attacks, since one-sided RDMA reads are

oblivious to the server or other clients. Hardware performance counters [229] may

help servers track DMA traffic, but it is challenging to associate traffic with RDMA

accesses or attacks. Even if the server suspects that an attack is happening, it is still

hard, in practice, to attribute an attack based on traffic counters.

For the rest of the chapter, we focus on RDMA-based Evict+Reload attacks.

Prime+Probe attacks are also possible on RDMA and we briefly discuss them in

Section 5.2.5.

106

Unique Advantages and Challenges

There are three unique advantages for attackers in RDMA systems. First, RDMA’s

one-sided communication pattern allows the attacker to hide her traces, since the

receiving node is unaware of any one-sided accesses. Second, the RDMA network

is much faster both in latency and in bandwidth than traditional datacenter net-

works. The latest generation of RDMA switches and RNICs can sustain 200 Gbps

bandwidth and under 0.6µs latency [19]. RDMA’s superior performance enables

fine-grained, high-throughput, timing-based side-channel attacks over the network.

Finally, RDMA’s one-sided communication bypasses the sender’s OS and does not

involve CPU at the receiver, both of which help reduce disturbance to timing-based

attacks.

At the same time, attacking the RNIC presents several novel challenges that no

CPU-cache-based side-channel attack experiences. First, it is hard to discover efficient

side channels in RNIC hardware. Unlike CPU caches, there is no public knowledge of

how RNICs organize or use their SRAM. RNICs store different types of information

in SRAM compared to a linear layout of CPU caches. Second, we set a strict threat

model where attacks are launched from a separate machine that is different from

the victim’s machine and the server machine. This goal means that attacks have to

be performed using RDMA network requests only. Finally, since our side channels

are established over the network, noise in the network could potentially increase

difficulties for timing-based attacks.

Basic Attack

Before presenting our side-channel attacks, we first discuss the type of victim

information we choose as our attack target and the type of metadata we use to

perform the eviction phase. Notice that these two dimensions are orthogonal and

both have three options: QP, MR, and PTE.

107

Among these three types of information, knowing which QP the victim accesses

leaks little information about the victim and usually is not useful in real attacks. MRs

and PTEs can both leak more information. Using PTE as the attack target unit will

reveal memory page (in virtual memory) accesses. All OSes use 4 KB as the default

page size. The MR size is decided by the application that creates and registers it.

For performance reasons [163], most RDMA-based applications choose to use large

MRs. Thus, we choose PTE as the target of our attack. However, most of our ideas

and techniques can be used to perform attacks that target MRs.

After choosing the attack target, we must decide what metadata to use to evict

RNIC SRAM. To answer this question, we tried to evict SRAM using the three types

of metadata and reload our targeted information (i.e., PTE). We can successfully

evict a PTE with PTEs, no matter whether or not the PTEs we use to evict belong

to the same MR as the target PTE. We can also evict an MR with other MRs. We

further find that when an MR is evicted, PTEs of all the pages belonging to this MR

will also be evicted. But we can only use QPs to evict QP. This behavior implies

that RNICs isolates the SRAM used for QPs and for MRs and PTEs. We present the

evaluation results later this section. From this initial test, we discovered that we can

evict a PTE by either evicting the MR it belongs to (using a large number of MRs)

or by evicting the PTE directly using a large number of other PTEs.

Eviction by MRs

We now present our attack that evicts SRAM with MRs, PythiaMR. Algorithm 1

presents the pseudocode of PythiaMR.

Because the MR-based attack requires the attacker to use many MRs to evict the

server’s RNIC SRAM, the attacker requires access to a sufficient amount of MRs.

If the number of MRs is restricted, the attacker may resort to a (hypothetical) MR

gadget that allows her to register multiple MRs. One approach is to launch a process

on the server that allows her to register multiple MRs (see Section 5.2.3 for details).

Since RDMA provides the functionality of registering multiple MRs with the same

108

Algorithm 1: MR-based eviction

Input : a target victim virtual memory address
Output:

if No access to sufficient amount of MRs then
start process at server to create MR set;

else
foreach MR that the attacker has access to do

if MR 6= victim’s MR then
insert MR into MR set ;

end

end

end

foreach MR in MR set do
perform 8-byte RDMA-read to MR;

end

memory space, the attacker process at the server only needs to allocate a small mem-

ory space (of arbitrary size) and register it multiple times. This process then needs

to send the rkeys corresponding to these registered MRs to the attacker running on

a client machine.

In the eviction phase, the attacker performs one-sided RDMA reads from a client

machine to the MRs it has access to at the server (except for the MR that the victim

PTE is in). Since the server’s RNIC needs to fetch and store metadata for each MR

when the MR is accessed, its SRAM will eventually be filled with MR metadata that

the attacker accessed.

Eviction by PTEs

Alternatively, we can use PTEs to establish a side channel. Compared to MR-based

attacks, PTE-based attacks can often be performed entirely from a client machine.

Algorithm 2 presents the pseudocode of our PTE-based attack.

To perform PTE-based eviction, the attacker issues one-sided RDMA reads to a

sufficiently big memory space (1 GB to 4 GB for the RNICs we study). Most RDMA-

109

Algorithm 2: Naive PTE-based eviction

Input : a target victim virtual memory address
Output:

VictimVPN ← victim address >> 12 ;
generate eviction set using VictimVPN;

foreach VPN in eviction set do
perform 8-byte RDMA-read to address VPN << 12 ;

end

based applications are services that provide in-memory data storage and use a large

amount of memory, thus meeting the requirements of PTE-based attacks.

Accessing different memory pages will cause the RNIC to fetch PTEs to its SRAM.

Because all accesses to the same memory page will hit the same PTE, we only need

to perform one RDMA read (with the smallest RDMA operation size of 8 bytes) in

every 4 KB virtual memory address range. To avoid loading the PTE that the victim

accesses, we skip the memory addresses that are close to the victim address.

Reload and Predict

After the eviction phase (either by MRs or by PTEs), the attacker reloads the

targeted victim data. If the reload time is smaller than a threshold, the attacker

determines that the data has been accessed by the victim. Algorithm 3 presents the

pseudocode of the reload and prediction process.

The threshold used at the reload time directly affects the result of an attack.

Different from traditional CPU-cache side-channel attacks, our attacks are in a dis-

tributed environment where network status can vary with other workloads in the

datacenter. Thus, instead of a fixed threshold, we adapt the threshold dynamically

according to the network status. To adjust the threshold, the attacker periodically

measures the latency of an RDMA operation which hits the RNIC SRAM and the

latency of one that misses the SRAM. The threshold can be set as a value in the

middle of these two latencies.

110

Algorithm 3: Reload and predict

Input : a target victim virtual memory address
Output: prediction of if the victim has accessed the target address

determine Threshold according to network status;

start timer;
RDMA-read victim address ;
end timer;
time ← elapsed time;

if time ¡ Threshold then
output accessed ;

else
output not accessed ;

end

Number of Index Bits

0 3 6 9 12 15

A
c
c
u
r
a
c
y

(
%
)

0

20

40

60

80

100

Doubling eviction−set−size

Fixed eviction−set−size

Figure 5.3.: Effect of Number of Index Bits.

In addition to using an average threshold, other more advanced methods can also

be used to determine the reload result. In fact, we design a statistical method to

determine the reload result for our real-application attacks, as will be presented in

Section 5.2.3.

111

VPN Offset

0 16 32 48 64

A
c
c
u
r
a
c
y

(
%
)

0

20

40

60

80

100

VictimVPN 0

VictimVPN 20

VictimVPN 50

Figure 5.4.: Effect of Eviction Set Offset. X axis represents the first VPN in an
eviction set (i.e., the “offset” of an eviction set”).

Finding PTE Eviction Sets

We call the attack that uses the eviction phase presented in Algorithm 2 the basic

PTE-based attack, or PythiaPTEBasic. In order to reduce the time to perform evic-

tion and improve the efficiency of PythiaPTEBasic, we search for a smaller eviction

set that achieves similar accuracy as PythiaPTEBasic. Specifically, we perform a set

of experiments to systematically reverse engineer the internal organization of RNIC

SRAM and use our learned knowledge to construct a minimal PTE eviction set.

Reverse engineering RNIC SRAM organization is significantly harder than reverse

engineering traditional CPU caches because there is no public knowledge of the in-

ternal organization of any RNIC. All we know is that the RNIC caches three types

of metadata (PTEs, MRs, and QPs) in its SRAM. Moreover, reverse engineering the

112

High Index Start Bit

15 17 19 21 23 25 27 29

A
c
c
u
r
a
c
y

(
%
)

70

80

90

100

Figure 5.5.: Effect of Secondary Index. Error bars show the standard deviation
across 1000 VictimVPNs.

RNIC involves network operations which add noise compared to a well-isolated CPU

cache environment.

First attempt in finding index bits. We initially guess that RNICs organize

their in-SRAM PTE caches as set-associative caches, similar to how CPUs organize

their caches. To validate this guess, we assume that the PTE cache is organized as

a fixed number of sets (e.g., 2, 4, 8) and different number of bits (e.g., 1, 2, 3) are

used to calculate the index into these sets. Since PTEs are identified by virtual page

number (VPN), we can ignore the lowest 12 bits (with page size being 4 KB). We

then use the lowest K bits of VPN s to calculate the index into one of the 2K cache

sets. These K bits correspond to the 12th to the (11 + K)th bits of the full virtual

memory address (we call the lowest bit the 0th bit and count upwards to higher bits).

We call the VPN of a victim memory address VictimVPN. The eviction set of a

VictimVPN is formed by setting the same K bits as the VictimVPN and varying

other bits in VPN s. To put it another way, for every 2K pages, we pick one VPN to

add to the eviction set. We keep adding distinct VPN s in this way until the number

113

Algorithm 4: Forming Eviction Set - Strawman

Input : VictimVPN, eviction set size, num of index bits
Output: an eviction set targeting VictimVPN

eviction set ← {};
mask = VictimVPN & (1 << num index bits − 1);

for i = 0 to evict set size do
VPN ← i << num index bits + mask ;
if VPN 6= VictimVPN then

insert VPN into eviction set ;
end

end

output eviction set ;

of VPN s in the set reaches an eviction set size. Algorithm 4 presents the pseudocode

of how we form an eviction set. This is our straw-man approach and we call the

PTE-based attack that uses this approach of forming eviction sets PythiaPTEStraw.

Figure 5.3 plots the attack accuracy when we vary K from 0 to 15. We use two

groups of attacks on VictimVPN 0. In the first group (the solid line), each eviction

set has 27 = 128 operations. The accuracy keeps improving until K is 13 and then

flattens out. This result hints at the possibility of the RNIC using a set-associative

cache with 213 = 8192 sets. It is because when K is smaller than 13, part of the

operations in the eviction set will fall into a different cache set as the VictimVPN ’s

set, making the eviction set too small to evict the whole victim’s cache set.

To verify this guess, we perform a second group of attacks (the dashed line). In

this group, we double the eviction set size every time when we decrease K by 1. For

example, we set the eviction set size to 128 when K is 13 and to 256 when K is 12.

If the RNIC uses 8192 cache sets, then when K is 13, all of the eviction set will fall

into the VictimVPN ’s set, and when K is 12, half of the eviction set will fall into

the VictimVPN ’s set. These two attacks will then have the same effect in evicting

the VictimVPN. Our results confirm this assumption. When K is less than 13, the

attack accuracy is similar to when K is 13. However, when K is larger than 14, the

114

accuracy drops. This is because we only use 64 and 32 eviction set size when K is 14

and 15, and these eviction sets are not large enough to evict a whole cache set.

From this set of experiments, we suspect that virtual memory address bits 12 to

24 are used in calculating the PTE cache set index and that each PTE cache set has

128 entries (i.e., a 128-way cache).

Discovering prefetching behavior. Our guess above uses 13 bits as the index

into the PTE cache and assumes that the PTE cache has 8192 sets. If this guess is

correct, then an eviction set whose (VPN%8192) is different from (VictimVPN%8192)

should fall completely into a different cache set from the victim’s. To verify this

assumption, we perform another set of attacks to the VictimVPN 0. In the nth

attack, we construct its eviction set using VPN s where (VPN%8192 = n), and we

change n from 0 to 8191.

Figure 5.4 plots the accuracy of the first 64 attacks (the rest of the attacks have

the same pattern and we omit them from the figure). The black solid line shows the

result of VictimVPN 0. Surprisingly, not only the 0th attack (VPN%8192 = 0) has

high accuracy, but also the 1st to the 7th attacks. To further understand this effect,

we perform the same set of attacks on another two VictimVPN s, 20 and 50. With

these VictimVPN s, the accuracy is high from 16th to 23rd attacks and 48th to 55th

attacks respectively. These results imply that evicting any VPN within an eight-VPN

range of (VictimVPN−VictimVPN%8) to (VictimVPN−VictimVPN%8+7) has the

same effect.

We suspect that the RNIC prefetches eight VPN s at a time. This finding implies

that instead of using 13 bits as cache index bits as in PythiaPTEStraw, only the

higher 10 bits (bits [15:24]) are used for index and the lower 3 bits (bits [12:14]) are

used for prefetching. The RNIC cache thus only has 210 = 1024 sets.

Discovering secondary index. Our attack strategies so far work well (> 90%

accuracy) with the VictimVPN s we tested (e.g., 0, 20, 50). However, when we test

the same attack strategy on some other VictimVPN s (e.g., 6195, 30950), the accuracy

can sometimes drop to ∼75%. A dropped accuracy means that our eviction set cannot

115

33:24 14:12 11:0

Page OffsetPrefetchLow IndexHigh Index

24:15

virtual memory address
virtual page number (VPN)

Eviction set for victim VPN
0x10000000000XXX

128 waysindex

2

0
1

…
1024

Figure 5.6.: Reverse-Engineered PTE Cache Organization.

evict the VictimVPN, i.e., the VictimVPN is in another cache set whose index is not

the same as the index calculated using bits [15:24].

We thus suspect that there exists another 10 bits that are used to calculate where

out of the 1024 sets a VictimVPN can fall into. To answer this question, we use a

moving window of 10 bits, from bits [15:24] to bits [29:48], in the victim’s virtual

memory address. We randomly pick 1000 VictimVPN s and attack each of them by

forming an eviction set with an index calculated with the moving window of 10 bits

and an index calculated with bits [15:24] (64 operations under each index). We use

two indices in this experiment because our alternative experiment of using just the

index calculated by the moving window does not yield good accuracy. Figure 5.5 plots

the average attack accuracy across 1000 VictimVPN s and their standard deviation

(in error bars). Bits [24:33] yields the best average accuracy and smallest deviation.

Thus, we believe that these bits are used as a second index into the PTE cache.

Note that when the moving window is bits [15:24], the accuracy deviation is high,

indicating that using bits [15:24] alone is not good enough.

Complete algorithm. Figure 5.6 presents the final PTE cache architecture we

speculate RNICs use based on our reverse engineering results. The PTE cache has

116

Algorithm 5: Forming Eviction Set - Full

Input : VictimVPN, eviction set size
Output: an eviction set targeting the victim virtual memory address

eviction set ← {}; prefetch bits ← 3 ; index bits ← 10 ;
high index start ← 12 ;
low index ← (VictimVPN >> prefetch bits)&(1 << index bits − 1);
mask low ← low index << prefetch bits ;
high index ← (VictimVPN >> high index start)&(1 << index bits − 1);
mask high ← high index << prefetch bits ;

for i = 0 to evict set size/2 do
VPN ← i << (index bits + prefetch bits) + mask low ;
if VPN 6= VictimVPN then

insert VPN into eviction set ;
end

end

for i = 0 to evict set size/2 do
VPN ← i << (index bits + high index start) + mask high;
if VPN 6= VictimVPN then

insert VPN into eviction set ;
end

end

output eviction set ;

1024 sets and 128 ways. A PTE can be cached at one of the two cache sets. Two

groups of bits are used to calculate the index of these two cache sets. The first group

is bits [15:24], and the second group is bits [24:33]. We call them low index bits and

high index bits. From our observation, both the high and the low index bits can

decide which cache set will be used to cache a PTE. A PTE will be cached in either

the cache set calculated by the high index bits or the cache set indicated by the low

index bits. Every time when a PTE is accessed, its neighboring PTEs will also be

fetched to the same set and bits [12:14] determine the 8 PTEs that will be prefetched.

Based on this reverse-engineered architecture, we present the final PTE-based

Evict+Reload attack, PythiaPTEFull. We form half of the eviction set of a Vic-

timVPN with VPN s that have the same low index bits as the VictimVPN and another

117

Latency (us)

0 1 2 3 4 5 6 7 8

P
e
r
c
e
n
t
i
l
e

0

20

40

60
Hit

Miss−PTE

Miss−MR

Figure 5.7.: Timing Differences. Each line presents the timing differences of each case
over 1000 trials.

half with VPN s that have the same high index bits as the VictimVPN. Algorithm 5

presents the complete algorithm.

Evaluation Results

We now present our evaluation results with the attacks described above.

Isolated Environment

We performed a set of experiments with three machines as described in the begin-

ning of this section in our lab environment without any other network traffic.

Timing differences. Our side channels are based on timing differences between

consecutive loads of the same memory address. To measure miss latency, we evict

the RNIC SRAM using either MRs or PTEs and then issue an RDMA operation.

To measure hit latency, we simply repeatedly issue the same RDMA operation. The

measurements in Figure 5.7 show a clear timing difference between hit and miss

118

Eviction Set Size

2 6 2 7 2 8 2 9 2 10

A
c
c
u
r
a
c
y

(
%
)

0

20

40

60

80

100

PTE−Full

PTE−Straw

MR

PTE−Basic

Figure 5.8.: Accuracy of Attacks. Error bars show the standard deviation across
1000 VictimVPNs.

latency. When we use MRs to evict SRAM, both the victim’s MR and all the PTEs

under this MR will be evicted. An RDMA operation afterwards will need to fetch

both the PTE and the metadata for the MR containing the page from host main

memory through the PCIe bus. On the other hand, using PTEs to evict will only

evict the victim’s PTE and reloading will only fetch the PTE. This explains why the

miss latency of MR-based eviction is higher than that of PTE-based eviction.

Attack accuracy and latency. Figures 5.8 and 5.9 plot the accuracy and la-

tency of four attack strategies: PythiaMR, PythiaPTEBasic, PythiaPTEStraw, and

PythiaPTEFull, as we change the eviction set size. As expected, with the same evic-

tion set size, the time to perform these four attacks is similar, since they all use the

same amount of RDMA operations. With bigger eviction sets, all attacks become

slower.

PythiaPTEFull’s accuracy is the highest: it can achieve 97% accuracy with only

57µs per attack (when the eviction set size is 256). PythiaMR and PythiaPTEBasic

119

Eviction Set Size

2 6 2 7 2 8 2 9 2 10

L
a
t
e
n
c
y

(
u
s
)

0

50

100

150

200

250
MR

PTE−Full

PTE−Straw

PTE−Basic

Figure 5.9.: Latency of Attacks.

have low accuracy, although we do observe PythiaMR’s accuracy improves signifi-

cantly as the eviction set size increases (PythiaMR’s accuracy reaches 90% with 215

eviction set size). This result demonstrates the benefit of using our reverse engineering

findings.

Another observation is that the accuracy of PythiaPTEFull peaks when the evic-

tion set size is 256 and remains the same when increasing the size further. This

implies that the PTE cache has 128 ways, since we construct two cache sets with 256

entries in total.

Evaluation with different RNICs. All our experiments so far are performed

with the Mellanox ConnectX-4 RNIC (most RDMA deployments in real datacenters

use ConnectX-4 [18, 230]). We further validate our attacks on Mellanox ConnectX-

5 [55] and ConnectX-3 [53] RNICs. ConnectX-5 is the latest generation of RNICs

from Mellanox and ConnectX-3 is the previous generation of ConnectX-4.

Figure 5.10 plots the timing results of SRAM hits and misses (due to eviction

by MRs and by PTEs) on ConnectX-5. ConnectX-5’s performance is better than

120

Latency (us)

0 1 2 3 4 5 6 7 8

P
e
r
c
e
n
t
i
l
e

0

10

20

30

40
Hit

Miss−PTE

Miss−MR

Figure 5.10.: Timing Differences in ConnectX-5. Each line presents the timing
differences of each case over 1000 trials.

ConnectX-4 on all cases. A clear timing difference between misses and hits remains,

and misses caused by MR-based eviction are slower than by PTE-based eviction.

Figure 5.11 plots the accuracy of the four types of attacks. The accuracy results are

similar to ConnectX-4. Attack latency is also similar to ConnectX-4 and we omit

the latency figure. Thus, we can confirm that ConnectX-5 uses a similar SRAM

architecture as ConnectX-4, and it has the same side channels as ConnectX-4. We

can launch the same attacks on ConnectX-5 with high accuracy and low latency.

We then perform the same set of experiments on ConnectX-3, see Figure 5.12.

The hit latency with ConnectX-3 is longer than ConnectX-4. As hardware evolves,

its internal performance often improves, which can explain why hit latency improves

over generations of Mellanox RNICs. Surprisingly, the miss latency due to MR-based

eviction is shorter on ConnectX-3 than on ConnectX-4 and ConnectX-5. Misses in

RNIC SRAM involve the RNIC fetching metadata from the host main memory. We

suspect the reason why miss performance drops in newer generations is because RNICs

add more metadata for each data entry in newer generations, requiring longer time

121

Eviction Set Size

2 6 2 7 2 8 2 9 2 10

A
c
c
u
r
a
c
y

(
%
)

0

20

40

60

80

100

PTE−Full

PTE−Straw

MR

PTE−Basic

Figure 5.11.: Accuracy of Attacks in ConnectX-5. Error bars show the standard
dev of 1000 VictimVPNs.

to fetch more metadata. As a result, the timing difference between miss and hit for

ConnectX-3 is small.

Comparing ConnectX-3, ConnectX-4, and ConnectX-5, the three generations of

RNICs from Mellanox, we found that as hardware RNICs evolve, their performance

improves quickly, while the PCIe bus and host memory speed improve very slowly.

As a result, the discrepancy between hit performance and miss performance becomes

larger and we believe that this trend will continue in the future.

Public Cloud Environment

CloudLab [226] is a public cloud that has close to 15,000 cores distributed across

three sites in the United States. We evaluated our attacks on a cluster that is

connected with RoCE switches. Each machine in this cluster equips two Mellanox

ConnectX-4 25 Gbps adapters. These RNICs are of the same product generation

as our lab’s ConnectX-4 RNICs, with the difference that our RNICs are 100 Gbps

adapters. Both types of adapters can be configured for Ethernet (RoCE) and for In-

122

Latency (us)

0 1 2 3 4 5 6

P
e
r
c
e
n
t
i
l
e

0

10

20

30

40
Hit

Miss−PTE

Miss−MR

Figure 5.12.: Timing Differences in ConnectX-3. Each line presents the timing
differences of each case over 1000 trials.

finiBand. We configure ours for InfiniBand, and CloudLab’s are configured for RoCE.

Apart from RNIC differences, CloudLab is used concurrently by many different users;

it has a more complex, hierarchical network topology; and it uses a RoCE network

instead of InfiniBand. At the time of our test, 129 out of 199 physical machines in

the cluster were in use.

We repeat the same set of experiments in Figure 5.8. Similar to our lab’s ex-

periments, we use three machines, a server, a victim client, and an attacker client.

Figure 5.13 plots the timing difference of RNIC SRAM hit and misses (due to MR-

based eviction and PTE-based eviction). Similar to our isolated environment results,

misses caused by MR-based eviction are slower than misses caused by PTE-based

eviction, and both types of misses are slower than hits. In CloudLab’s shared net-

work and shared machine environments, the latencies of all accesses are longer than

in our lab environment, but the timing differences are still clear.

123

Latency (us)

0 1 2 3 4 5 6 7 8

P
e
r
c
e
n
t
i
l
e

0

10

20

30

40
Hit

Miss−PTE

Miss−MR

Figure 5.13.: Timing Differences in CloudLab. Each line presents the timing dif-
ferences of each case over 1000 trials.

Figures 5.14 and 5.15 plot the accuracy and latency of the four types of attacks

in CloudLab. Similar to the results in Figures 5.8 and 5.9, With the same eviction

set size (and thus similar latency), PythiaPTEFull and PythiaPTEStraw have higher

accuracy than PythiaMR and PythiaPTEBasic. However, these attacks have larger

variation in accuracy compared to attacks in our lab’s environment because of the

more dynamic environment in CloudLab.

5.2.3 Attacking Real RDMA-Based Systems

To demonstrate the feasibility of launching side-channel attacks on real RDMA-

based applications, we design and perform a set of attacks on Crail [34,35], an open-

source RDMA-based key-value store written in Java. A Crail system consists of

several roles: a server which stores key-value pairs, a namenode which stores metadata

and manages the control path, and clients which issue key-value pair gets and sets to

the server via a Crail-provided API. We install each component on a separate machine

124

Eviction Set Size

2 6 2 7 2 8 2 9 2 10

A
c
c
u
r
a
c
y

(
%
)

0

20

40

60

80

100

PTE−Full

PTE−Straw

MR

PTE−Basic

Figure 5.14.: Accuracy of Attacks in CloudLab. Error bars show the standard
deviation across 1000 VictimVPNs.

and connect all of them with RDMA. This section presents our design and evaluation

of attacks on Crail.

Attacks

Based on the attack primitives described in Section 5.2.2, we designed three at-

tacks on Crail. All these attacks have the same goal: knowing whether or not the

victim Crail client accesses a specific key-value pair.

MR-based attack (PythiaCrailMR). Our first attack uses MR-based eviction as

described in Algorithm 1. This attack requires three attacker processes. The first

is a Crail client process (Pc). The second and the third processes run our attack

code, with the second one running on the Crail server machine (Ps) and the third one

running on any other machine (Pa) (it can be the same machine as the one where Pc

runs). In the preparation phase, Ps registers a large number of MRs. In the eviction

phase, Pa issues one-sided RDMA reads to these MRs. Finally, Pc performs a Crail

125

Eviction Set Size

2 6 2 7 2 8 2 9 2 10

L
a
t
e
n
c
y

(
u
s
)

0

100

200

300

400
MR

PTE−Full

PTE−Straw

PTE−Basic

Figure 5.15.: Latency of Attacks in CloudLab.

get operation to reload the victim key-value pair. PythiaCrailMR requires Ps and

Pa because MR-based attacks need to access many MRs but by default Crail only

registers a small set of MRs.

PTE-based attack (PythiaCrailPTE). The second attack uses PTE-based evic-

tion. In this attack, we require three processes as in the MR-based attack: Pc, Ps, and

Pa. In the preparation phase, we first use Ps to allocate a big chunk of memory and

register it with an MR. In the eviction phase, Pa performs one-sided RDMA reads

to different VPNs in the allocated memory space. Afterwards, Pc issues a Crail get

request to the victim key-value pair.

Our reverse engineering results in Section 5.2.2 can be leveraged to reduce the

eviction set size in PythiaCrailPTE. However, to form the eviction set, we need to

know the index of the SRAM cache set(s), which is calculated by the virtual memory

address. Without modifying the source code of Crail which is written in Java, it

is difficult to directly know the virtual memory address of a target key-value pair.

Instead, we use a “learning” phase before launching the actual attack to determine

126

the eviction set to use for a target key-value pair. Specifically, we let Pc access the

target key-value pair and let Pa try all 1024 different cache sets for eviction. After

1024 trials, we pick the cache set that yields the best accuracy as our attack eviction

set.

Client-only attack (PythiaCrailClient). Our last attack on Crail is launched ex-

clusively from a regular Crail client process and requires no other privileges or re-

sources. The attacker (as a normal Crail client) issues Crail get requests to different

key-value pairs during the eviction phase. After the eviction phase, it performs a

Crail get operation to the victim key-value pair.

Our initial design of PythiaCrailClient randomly picks key-value pairs to access

during the eviction phase. However, we soon discovered two issues with this naive

approach. First, it needs a large number of key-value pairs to effectively evict the

target key-value pair. Doing so not only makes the attack slow but also requires the

Crail system under attack to already be storing many key-value pairs. Second, we

found that the Crail system becomes slower and unstable as the server processes more

client requests. We suspect this to be caused by Crail’s own (memory) management

overhead. Unstable access latency makes our timing-based attack harder and pro-

hibits an accurate prediction during the reload phase. We improve our initial design

with the following optimization. We selectively choose a small set of key-value pairs

as the eviction set. We make the assumption that key-value pairs are sequentially

allocated in chunks of memory and pick the pairs that are likely to be in the same

RNIC SRAM cache set as the victim key-value pair. After reducing the eviction set

size, our attack runs very fast. Instead of continuously launching the attack in loops,

we add some sleep time between eviction and reloading so that we do not issue too

many Crail requests to make Crail unstable.

Probabilistic prediction. Under real workloads and noisy network environments,

we found that a simple threshold as used in Section 5.2.2 cannot accurately determine

if the victim has accessed the target data. Thus, we use a more dynamic and adaptive

approach to predict the outcome of the attack. Similar to the approach used in

127

Timeline (ms)

0 20 40 60 80 100 120 140

A
c
c
e
s
s

P
r
o
b
a
b
i
l
i
t
y

(
%
)

0

20

40

60

80

100

Victim Attacker

Figure 5.16.: PythiaCrailMR

TLBleed [133], we perform a learning phase to train a classifier of operation latency

with KNN [225] before the attack. We use the trained model to predict the probability

of a reload latency implying a victim access (i.e., a hit).

Results

We evaluated PythiaCrailMR, PythiaCrailPTE, and PythiaCrailClient using both

controlled tests and workloads that model real datacenter key-value stores.

Controlled Test

We first compare the latency of a Crail client key-value pair get operation that

hits RNIC SRAM, a client get that misses RNIC SRAM after the eviction phase in

PythiaCrailMR, in PythiaCrailPTE, and in PythiaCrailClient. In these controlled

tests, the victim client has a 50% chance of accessing the targeted key-value pair that

the attacker tries to infer accesses on. Figure 5.19 plots these four types of latencies,

128

Timeline (ms)

0 30 60 90 120 150

A
c
c
e
s
s

P
r
o
b
a
b
i
l
i
t
y

(
%
)

0

20

40

60

80

100

Victim Attacker

Figure 5.17.: PythiaCrailPTE

each performing 1000 trials. All the three types of misses take longer than hits,

with the timing difference of PythiaCrailMR the biggest and PythiaCrailClient the

smallest. The timing difference implies that it is easiest to separate hits and misses

with PythiaCrailMR.

We launch the PythiaCrailMR, and PythiaCrailPTE, and PythiaCrailClient at-

tacks by first performing their respective eviction phases. Next, we let victim access

or not access the target key-value pair. Finally, we measure the time to reload the key-

value pair and compare it with a threshold we determined from the timing difference

testing phase. As expected, PythiaCrailMR gives the best accuracy. The accuracies

of PythiaCrailMR, PythiaCrailPTE, and PythiaCrailClient are 96%, 85%, and 79%

respectively, and the time to perform these attacks are 19ms, 0.1ms, and 0.3ms.

Macro-benchmark Results

Workloads. To evaluate how our attacks perform with real datacenter key-value

store workloads, we construct a macro-benchmark with the Yahoo! Cloud Serving

129

Timeline (ms)

0 20 40 60 80 100 120 140

A
c
c
e
s
s

P
r
o
b
a
b
i
l
i
t
y

(
%
)

0

20

40

60

80

100

Victim Attacker

Figure 5.18.: PythiaCrailClient

Benchmark (YCSB) [184] and statistics reported by Facebook in their production

key-value store [170]. YCSB provides key-value get/set access pattern but no inter-

arrival time between requests. Facebook provides the inter-arrival time of requests

received at a server in its cluster, which includes requests from all the clients to this

server. We set each key-value pair size to be 1 KB, the average key-value pair size

reported by Facebook.

Attack environment setup. In this experiment, the victim (on a Crail client

machine) executes our macro-benchmark to access key-value pairs on a Crail server

machine using the Crail APIs. Since Facebook only provides aggregated request inter-

arrival time across clients and does not reveal how many clients there are, we use one

client machine to model the aggregated effect of all clients with the provided inter-

arrival time. We run an attacker process as a normal Crail client on another machine.

A fourth machine serves as the Crail namenode. While the victim process executes

130

Latency (us)

3 5 7 9 11 13 15

P
e
r
c
e
n
t
i
l
e

0

3

6

9

12

15
Hit Miss−Crail

Miss−PTE

Miss−MR

Figure 5.19.: Timing Difference in Crail. Each line presents the timing differences
of each case over 1000 trials.

the macro-benchmark, we repeatedly perform PythiaCrailClient, PythiaCrailMR, or

PythiaCrailPTE to detect if the victim accesses a target key-value pair.

Results. Figures 5.16, 5.17, and 5.18 present the timeline of the victim accessing

the target key-value pair (red crosses) and the attacker’s prediction (black dots with

values as access probability). All three attacks can capture most if not all victim ac-

cesses. Among them, PythiaCrailMR is the worst in attack accuracy. This is because

each attack in PythiaCrailMR takes 19ms, which is much longer than the Facebook

inter-arrival time. As a result, PythiaCrailMR misses victim accesses that happen

more frequent than its attack length. Both PythiaCrailPTE and PythiaCrailClient

run very fast and capture all victim accesses. In fact, these two attacks run so fast

that we add a sleep time of 1ms between evict and reload to avoid issuing too many

Crail requests and making Crail’s performance unstable. Comparing PythiaCrailPTE

and PythiaCrailClient, PythiaCrailPTE’s predictions are of low access probabilities

and PythiaCrailClient has more predictions of around 50% access probabilities. The

131

attacker can set a threshold accordingly to determine the final set of victim accesses

(e.g., those with probabilities > 60% for PythiaCrailClient).

Overall, we believe PythiaCrailClient to be the most effective attack, since it

predicts victim accesses with high confidence and it requires the least amount of

attacker resources: PythiaCrailClient can be launched exclusively from a separate

client machine through the unmodified Crail client interface. If attackers can run

modified Crail clients, they can launch more efficient side-channel attacks by forming

the eviction set with known virtual addresses.

5.2.4 Mitigation Techniques

Defending against RDMA-based side-channel attacks is possible and feasible. We

discuss both mitigations for current hardware as well as those for future hardware.

Huge virtual memory page or no virtual memory. PTE-based attacks are

only possible when RNICs cache PTEs and when the attacker can form an effective

eviction set. One way to prevent PTE-based attacks is to force all RDMA regis-

trations and operations to directly use physical memory addresses. When physical

memory addresses are used, RDMA does not need to access or cache PTEs, thereby

preventing PTE-based attacks. Registering physical memory addresses is a privileged

operation that RNICs allow the kernel [214] and privileged users to perform [217].

However, using physical memory addresses loses all the benefits of virtual memory

and introduces new security concerns.

Another method to defend against PTE-based attacks is to use huge memory

pages [29]. Using huge pages (e.g., 1 GB pages) introduces two types of difficulties

for attackers. First, the attacker can only guess victim accesses at coarse granularity

(e.g., 1 GB). Second, the attacker will need to have access to a huge memory space

to form an eviction set with enough PTEs.

Isolate server’s resource. Our experience with Crail demonstrates that attack-

ing Crail is difficult when the attacker can only use Crail’s interface without the access

132

to a large number of PTEs or MRs and without knowing Crail’s data layout in the

virtual memory address space. Our experiments show that for PythiaCrailMR and

PythiaCrailPTE to work, an attacker needs to run a process, Ps, on the server ma-

chine. Otherwise, the attacker would not be able to launch those attacks (although

PythiaCrailClient still works). Thus, a server that hosts RDMA service can prohibit

normal users from running any processes to help defend against side-channel attacks.

Various address randomization techniques can also complicate attacks.

Separate protection domains. When we disclosed the attacks in this chapter to

Mellanox, the Mellanox engineers stated that separating Protection Domains (PDs)

between different clients and connections can potentially mitigate the attacks. We

evaluated this mitigation by moving the attacker to a different PD and found that

doing so mitigates Pythia attacks. Unfortunately, all existing RDMA applications

that we are aware of [29, 35, 68] use only one PD for higher performance. Using

multiple PDs results in low throughput and high latency overhead (15% throughput

reduction and 21% latency overhead with 256 PDs in our experiments). We plan to

further investigate both attack and defense mechanisms when separating PDs across

clients.

Introduce noise. Our side channels are established on timing differences at the

microsecond or sub-microsecond level. Attacking Crail running real workloads is

more difficult than attacking raw RDMA accesses mainly because of Crail’s non-

deterministic performance overhead. Therefore, an effective countermeasure is to

introduce random latency overhead at an RDMA-based application or in the data-

center RDMA network, which, however, could impact application performance.

Detect and throttle attacker’s network traffic. Our attackers can hide their

attacks because one-sided RDMA operations are completely hidden from the receiver

CPU (the server in our case). To detect these attacks, the server can deploy traffic

sniffing tools to sniff all incoming RDMA network requests. If the sniffer detects

heavy network activity from a client, it can raise a flag that this client may be

133

malicious. If it further detects an access pattern that matches eviction sets described

in Section 5.2.2, this client is more likely to be an attacker. This defense comes with

the same drawbacks of other heuristic-based defenses that an attacker may stay under

the detection threshold.

A further countermeasure is to throttle the maximum bandwidth allowed at every

client. If an attacker cannot issue enough operations to evict RNIC SRAM, its attack

accuracy will drop significantly. However, throttling client bandwidth can hurt normal

clients’ performance.

Better hardware design. All existing RNICs share their SRAM across all users

and across all connections. Because of this, an attacker can evict a victim’s PTE

and MR even when the attacker and the victim have different connections to the

server. If RNICs can partition their SRAM to different isolated domains for different

connections, then attackers can never evict victim’s PTEs or MRs. However, isolation

resources at hardware level will inevitably hurt performance and increase hardware

complexity, which gives little incentive for RNIC vendors to change their hardware

design.

5.2.5 Discussion

We now discuss the implications, impact, and limitations of Pythia, and some

other attacks on RDMA that can be designed based on Pythia. In addition to dis-

cussing security vulnerabilities, this section also introduces unique opportunities to

enhance security and privacy based on one-sided communication.

Attacking Real Applications

We demonstrated that it is feasible to launch Pythia attacks on Crail, a real

RDMA-based system developed by the Crail team. PythiaCrailClient, the attack

134

that is launched by performing Crail-provided client APIs only, can successfully infer

victim’s access patterns under real workloads.

We believe that Pythia can similarly attack other RDMA-based applications as

well. Pythia only requires two features from an RDMA-based application: the appli-

cation uses one-sided RDMA operations and allocates regular paged memory. Many

applications meet these requirements, such as the NAM-DB RDMA-based in-memory

database [26], the Pilaf RDMA-based key-value store [31], and the Wukong RDMA-

based graph system [28]. Unfortunately, most of these systems are not available

publicly.

Attack Limitations

Although our side-channel attacks are fast, accurate, and can be launched entirely

from the network, they do have several limitations. First, the granularity of Pythia

attacks (and therefore information leakage of accesses) is a memory page. Pythia

currently cannot differentiate between two victim accesses that access the same target

page. Second, Pythia can only predict if a data entity at the server has been accessed,

but not which client machine(s) accessed it. Third, our MR-based attacks require

access to a large number of MRs, and PTE-based attacks require access to large

memory spaces. Finally, our attacks consume network bandwidth and can be detected

by sniffing the network.

Other RDMA-Based Attacks

Pythia serves as a starting point for designing other types of RDMA-based attacks.

Prime+Probe. For example, similar to Pythia Evict+Reload attacks, it is pos-

sible to launch Prime+Probe attacks from the network by exploiting the MR or

the PTE side channels.

Covert channel attack. The MR and the PTE side channels we established can

also be used as covert channels. We implemented a naive covert-channel attack of

135

using one Evict+Reload cycle to transmit one bit and it could reach a sending

rate of 20 Kbps with PythiaPTEFull.

5.3 Opportunity of One-Sided Communication

We have introduced the vulnerabilities in one-sided communication and shown

side-channel threats with Pythia in this chapter. Pythia serves as a starting point

for designing other types of attacks in one-sided communication. Although one-

sided communication poses different threats to datacenter security, it provides one

great opportunity to enhance security. Users can ensure their privacy by hiding their

network activities from receiving servers using one-sided communication. This session

discusses how we can leverage this opportunity to develop secure and fast data storage

systems.

Environment and Threat Model. ORAM, or oblivious RAM, is a type of tech-

nology that makes access patterns “oblivious” by continuously re-encrypting and

reshuffling data blocks at storage servers [231–239].

We adopt the same trust model as previous ORAM systems [240–243], where

trusted clients access an untrusted storage service provider (e.g., in-memory key-

value store, NVMe-based storage). We also adopt the same level of “security” and

“privacy” as existing ORAM solutions [238, 240–243], where the untrusted service

provider should gain no information about client data or access patterns. Thus,

hiding the content of data through encryption alone is not enough. In addition, no

information should be leaked about: 1) which data is being accessed; 2) whether the

access is a read or a write; 3) when the data was last accessed; 4) whether the same

data is being accessed; or 5) the access pattern (sequential, random, etc).

One-Sided Oblivious RAM. Although proven to be cryptographically safe, exist-

ing ORAM-based systems have high performance overhead, making it too costly to

be adopted in many datacenter environments. We now present our improved ORAM

136

system design. Our system is based on Path ORAM [241] but can significantly out-

perform Path ORAM.

We propose to leverage one-sided communication to hide data access informa-

tion and to replace (costly) ORAM operations with one-sided operations, thereby

improving the performance of ORAM. Although the basic idea is simple, one needs

to take extra care when applying it to provide the same level of security guarantees as

ORAM. For example, a receiver (the malicious service provider) cannot detect when

a one-sided write happens. But it can take snapshots of data content periodically

and compare two snapshots to detect modifications in between. It can then infer that

a write happens by performing frequent snapshotting. Thus, one-sided writes can

still leak information to the service provider. Because of this, we use the unmodified

ORAM write protocol and only improve ORAM read performance.

Reading data using one-sided communication can be completely invisible to the

service provider, even if the provider performs snapshotting. We use a simple tech-

nique to achieve this security goal. By default, we perform one-sided reads for client

read requests but randomly choose a certain amount of client read requests (e.g., X%

of all read requests) to perform original ORAM operations. Meanwhile, performing a

one-sided read is significantly faster than performing an ORAM operation, since the

latter requires read and write of a whole path, while the former only performs a read

to one object. Although the algorithmic complexity of the modified Path ORAM is

still identical to the original Path ORAM, the performance of our improved ORAM

read is significantly better than the original Path ORAM.

We implemented the original Path ORAM protocol and our modified read mecha-

nism using RDMA and tested their performance with two network settings, a 40 Gbps

InfiniBand network and a 100 Gbps InfiniBand network. Figure 5.20 presents our

modified read performance when changing X% from 10% to 100% (under 100%, our

system falls back to original Path ORAM). Here, we use a pure-read workload in the

YCSB key-value store benchmark [184, 185], with 32,000 512-byte key-value pairs.

137

% of ORAM Operations

0 20 40 60 80 100

T
h
r
o
u
g
h
p
u
t

(
K
O
P
s
)

0

10

20

30 100 Gbps

40 Gbps

Figure 5.20.: Read Performance of One-Sided ORAM X axis shows the amount
of read operations that we use original ORAM operations to perform. The two lines show
the performance when using a 100 Gbps and a 40 Gbps InfiniBand network.

We encrypt all data with AES256. With 50% one-sided reads, we achieve ∼2× per-

formance of pure Path ORAM.

Limitations and Discussion. One limitation of our one-sided ORAM solution is the

requirement of prohibiting network packet sniffing. As described in Section 5.1, most

systems enable this prohibition by default. However, if an attacker can bypass such

prohibition mechanisms (e.g., when it controls a physical machine), it can observe

one-sided traffic. Thus, our threat model applies only to other cases, for example,

when the attacker only owns a virtual machine.

One-sided NICs usually writes to memory through DMA. There are methods for

a server to track (all) DMA activities (e.g., with processor counter monitor [229]).

However, it is still hard to pinpoint one-sided traffic, since other types of DMA

activities may be happening at the same time. Even if a server can detect one-

sided network traffic, it is still challenging to tell whom the sender is and which data

is being accessed.

138

5.4 Conclusion

This chapter provides the first and initial look into the security aspect of one-sided

communication and presents Pythia, the first set of side-channel attacks on RDMA-

based systems. We demonstrate several vulnerabilities that are rooted in one-sided

communication’s basic design philosophies. We reverse engineer the internal data

structures of current RDMA systems and leverage this information to improve our

attack. Pythia can be launched completely from a normal client machine to steal

access patterns of victims on other machines. We evaluate Pythia in laboratory

settings to showcase the capabilities of the attack, on real software such as Crail, and

on real data centers to show real-world impact. Pythia is fast, accurate, and can hide

its trace from victims and the server.

Our findings can be a starting point to explore potential attacks and defenses for

future researchers and practitioners. This chapter is a warning for future one-sided

hardware vendors, software developers who want to use one-sided communication,

and datacenters that have or plan to deploy one-sided network systems. We believe

that these three parties should work together to achieve the security goals in data-

centers while preserving one-sided communication’s performance and cost benefits.

One promising direction is to leverage programmable network devices like Smart-

NIC [56,194] and programmable switches [244–246] to implement security defenses in

hardware.

Although adding security guarantees to existing one-sided communication tech-

nologies is not an easy job, we do not believe the future of one-sided communication

to be diminishing. Moreover, one-sided communication provides a great opportunity

to improve privacy, the security property that is increasingly important in today’s

cloud environments.

139

6 RELATED WORK

This chapter introduces various research efforts that are related to this dissertation.

We first describe user-level TCP/IP implementations and user-level RDMA-based

libraries. We then introduce literature on RDMA-based key-value stores, one- and

two-sided primitives in RDMA-based systems, and several existing distributed PM

systems. Finally, we close this chapter by introducing research efforts in side-channel

attacks and the mitigations to side-channel attacks.

6.1 User-Level TCP/IP Implementation

There have been various efforts in user-level TCP/IP implementations such as

mTCP [247], U-Net [248], IX [158], and Arrakis [157]. Moving TCP/IP stack from

kernel to user space can reduce the performance cost of kernel crossings. However, re-

source sharing across user-level processes is inefficient and not safe. In fact, U-Net and

IX rely on kernel to perform resource isolation. Hardware-enforced isolation mecha-

nisms such as SR-IOV is one way to let user-level processes safely access hardware

resources and has been used by systems like Arrakis to build low-latency user-level

TCP/IP network stacks [157]. However, unlike TCP/IP, hardware isolation mecha-

nisms limit the flexibility of RDMA, since these mechanisms require pre-allocating

and pinning all memory of each application (or VM) for DMA [249]. A software layer

in the kernel like LITE can allocate and map application memory on demand, i.e.,

only when accessed. Software can also implement more flexible resource sharing and

isolation policies. RDMA has different properties and performance implications from

TCP/IP. Moreover, LITE is designed for RDMA and solves RDMA’s issues in the

datacenter environments.

140

6.2 RDMA-Based Libraries

There are several RDMA-based user-level libraries including the standard OFED

library [250], rdma-cm [251], MVAPICH2 [58, 59], Rsockets [147], Portals [252], and

eRPC [204]. MVAPICH2 supports the MPI interface and is designed for the HPC

environments. Rsockets implements a socket-like abstraction. Portals [252] exposes

an abstraction that is based on put and get operations. eRPC [204] is a general-

purpose RPC library that is optimized for small messages, short duration RPC tasks,

and congestion-free networks. LITE’s abstraction is designed for datacenter applica-

tions and is richer and more flexible than the above libraries. Moreover, LITE uses

a kernel-level indirection to solve native RDMA’s issues in datacenters, which none

of these existing libraries solve. There are also several kernel-level layers on top of

InfiniBand, such as IPoIB [165], SDP [253], and SRP [254], to support traditional

network and storage interfaces. They all have heavy performance overhead and do

not offer the low-latency performance as LITE does.

6.3 RDMA-Based Key-Value Stores

Several new RDMA-based systems were built in the past few years for datacenter

environments. FaRM [29] is an RDMA-based distributed memory platform which

inspired LITE. Its core communication stack uses RDMA write. On top of the basic

communication stack, FaRM builds a distributed shared memory layer, a transaction

system [30], and a distributed hash table. LITE-DSM is also a distributed shared

memory layer, but LITE is more generalized and flexible: it supports other types

of remote memory usages and a write-imm-based RPC mechanism; it safely shares

resources across applications; it does not require big pages or any driver changes.

Pilaf [31] and HERD [33] are two key-value store systems that implement cus-

tomized RDMA stacks using RDMA read, write, or send. HERD-RPC [32] and

FaSST [66] are two RDMA-based RPC implementations. FaSST’s main goal is to

scale with number of nodes. The Derecho project [61, 175, 176] is a set of efforts

141

to build a distributed computing environment. It uses a new RDMA-based multi-

cast mechanism and a shared-state table to implement several consensus and mem-

bership protocols. There are also several RDMA-based database and transactional

systems [26, 27, 30, 67, 116], distributed RDF store [28], DSM system [25], consensus

system [71], and distributed NVM systems [36,37,73]. These systems all target a spe-

cific type of application and most of them build customized software to use RDMA.

LITE is a generic, shared indirection layer that supports various datacenter applica-

tions. Building LITE has the unique challenge that its design decisions cannot be

tailored to just one application.

6.4 One-Sided and Two-Sided Primitives in RDMA-Based Systems

Several in-memory key-value stores and transaction systems use a combination

of one- and two-sided RDMA for their data path. FaRM use one-sided RDMA for

reads and perform both two- and one-sided RDMA for replicated writes (depending

on whether it is to the primary copy). Pilaf [31] and HERD [33] use two-sided RDMA

for writes. HERD [33] and FaSST [66] use two-sided RDMA for reads too. Wei et

al. compare one- and two-sided RDMA primitives and implemented a transaction

system that uses one- and two-sided RDMA in different transaction phases [68]. Their

group’s previous work on RDMA-based transaction systems [67, 116, 255] also use

a combination of one- and two-sided RDMA. KV-Direct [64] is an FPGA-based in-

memory key-value store that uses the FPGA chip in a SmartNIC to manage metadata

and data operations.

Another set of remote memory systems uses one-sided communication for the

data plane but requires processing power for the control plane. NAM-DB [26, 27] is

an RDMA-based in-memory database system that uses one-sided communication for

both read and write. INFINISWAP [63] is an RDMA-based remote memory paging

system. Remote regions [74] is a system that exposes remote memory as files that

other host servers can access (through a file system interface). Although these systems

142

do not use two-sided communication for the data path, they all rely on processing

power at remote nodes to run data management tasks. RAMCloud [92] is a remote

key-value storage system that stores a full copy of all data in DRAM and backups

in disks or SSDs. These systems all rely on local computation power at remote

memory/storage servers to perform various online and recovery management services

which differs from DPM model.

6.5 Distributed PM Systems

A set of recent research projects focus on building distributed PM systems, in-

cluding Mojim [36], Hotpot [37], Octopus [73], and Orion [115]. Mojim [36] provides

an efficient, RDMA-based, asynchronous replication mechanism for PM to make it

more reliable and available. Hotpot [37] is a distributed shared persistent memory

system, which integrates the idea of distributed shared memory and distributed stor-

age systems to provide a global sharable PM space. Octopus [73] and Orion [115]

are two PM-based distributed file systems that provide high performance, byte ad-

dressability, and reliability. These distributed PM systems all use the architecture

in Figure 4.1(a). Building distributed PM systems with the DPM model presents a

whole new set of challenges.

The Machine from HPE [22,187,189–192] is a system that relates to DPM most.

The Machine organizes a rack by connecting a pool of SoCs to a pool of PMs through a

specialized cache-coherent network layer [193]. This architecture is similar to DPM-

Direct, but it relies on the special network to ensure coherence among concurrent

data accesses. When moving to a general network, one needs to build more complex

protocols to ensure coherence, which DirectDS explores. In addition, we also explore

the DPM-Central and DPM-Sep architectures of building DPM, and our systems

work with both normal machines and disaggregated systems.

143

6.6 Remote Side-Channel Attacks

This section introduces the research efforts in remote side-channel attacks and

discusses how Pythia is different from all of them.

Several remote side-channel attacks exploit TCP sequence numbers to hijack con-

nections [256–258]. Another line of work relies on traffic analysis to exploit sensitive

information [259, 260]. Brumley et al. perform a timing-based attack on OpenSSL’s

ladder implementation to obtain the private key of a TLS server [261]. Cock et al.

present an empirical study of remote timing channels on microkernel [262]. NetSpec-

tre [263] presents an access-driven remote Evict+Reload cache attack. Zachary

et al. combine CSS and JavaScript to remotely sniff victims’ browsing patterns [264].

Different from all remote side-channel attacks, Pythia targets the RDMA network.

Throwhammer [221] is another work using RDMA network, but it targets Rowham-

mer attack instead of exploiting side channels. Moreover, Pythia exploits RNIC

hardware features to establish timing-based side channels, while previous remote side

channels exploit network protocols or software features.

Various defense mechanisms have been proposed to combat CPU cache side-

channel attacks in both hardware [265–269] and software [140, 270–273]. Unfortu-

nately, none of the existing defense mechanisms can be directly applied to RDMA-

based side-channel attacks. This dissertation introduces a set of new mitigations that

target RDMA-based side-channel attacks.

144

7 CONCLUSION

RDMA is a technology designed for confined, single-tenant, small-scaled HPC environ-

ments. Because of its low-latency, high-throughput, and low-CPU-utilization benefits,

datacenters have started to adopt RDMA in recent years. Unlike HPC environments,

datacenters have a whole different set of requirements and features: applications in

datacenters evolve fast and desire easy-to-use abstractions; the scale of a datacenter is

much larger than an HPC cluster; datacenters are often multi-tenant where reliability,

availability, and security are important considerations beyond performance.

Although RDMA works well in HPC environments, it falls short in datacenter en-

vironments. RDMA lacks a flexible, easy-to-use abstraction, it has various scalability

limitations, it does not have good support for secure resource sharing, and there are

security vulnerabilities in RDMA communication and RDMA hardware. Because of

these issues, we believe that RDMA is not readily usable in datacenters.

We made initial efforts in improving RDMA’s usability, scalability, safety, and

security in this dissertation, making it a more suitable technology for datacenter

environments. We presented LITE, a novel indirection layer to virtualize and manage

RDMA for datacenter applications. LITE demonstrates that adding an indirection

layer on RDMA not only improves its manageability, usability, and scalability, but

also preserves most of its superior performance. We then presented DPM, a low-cost,

fast, scalable, and reliable RDMA-based data store designed for datacenter read-most

workloads. DPM uses persistent memory and removes processors at the memory to

reduce owning and running cost. Finally, we discussed our efforts in exploring security

implications of RDMA. We reverse-engineered state-of-the-art RDMA NICs, designed

a set of side-channel attacks, and proposed mitigation techniques of these attacks.

This dissertation studies several design decisions in native RDMA, proposes a

generic indirection layer for RDMA to make it more suitable for datacenter applica-

145

tions, presents a set of datacenter applications and systems that we ported or built

on (improved) RDMA, and studies an important and unexplored factor, security, of

RDMA. All together, this dissertation significantly advances state-of-the-art RDMA

technologies and outlines a set of promising directions to incorporate RDMA in dat-

acenters.

This chapter discusses the set of lessons we learned and future directions where

our work can possibly be extended.

7.1 Lessons Learned and Discussion

Although RDMA has been adopted in the HPC environments for almost two

decades, it is still a young and immature technology in datacenter environments.

When we started working on this dissertation, we were faced by many challenges in

moving RDMA to datacenter environments. Looking back, we have learned a few

lessons while working on this dissertation.

7.1.1 Moving from HPC to Datacenters

A technology that works well in one environment may not work for another.

In the early days of exploring solutions to integrate RDMA in datacenter envi-

ronments (both by us and by others), we found that many of the major challenges

rooted from the fact that RDMA was designed for the HPC environment, which is very

different from datacenters. HPC environments are usually single-tenant and single-

purpose, and they usually adopt specialized hardware and fine-tuned, customized

software stack. In contrast, datacenters are multi-tenant, general-purpose environ-

ments that usually adopt commodity hardware and needs to support many types

of software applications. Moreover, the scale of a datacenter is much larger than a

supercomputer. Moving RDMA to datacenter environments thus meet unforeseen

challenges in usability, scalability, and security.

146

To solve these challenges, this dissertation explores solutions that preserve original

RDMA architecture and add indirection layers on top. We have demonstrated the

effectiveness and benefits of this approach. Yet, other approaches may also work, for

example, by changing the RDMA protocol, software, and hardware implementation.

In general, it is clear that when moving a technology from one environment to

another, one should not expect it to work without any changes. A bigger and more

challenging question is how and where to change the technology. This dissertation

explores one direction in the design space, and we encourage future researchers and

practitioners to explore more design choices of integrating RDMA in datacenters.

7.1.2 Hardware Offloading

Scalability and security are key challenges in hardware offloading.

The main approach RDMA adopts to achieve many of its benefits such as CPU and

kernel bypassing is offloading network and management stacks to the hardware (i.e.,

RNICs). This dissertation reveals that although hardware offloading delivers excellent

performance, it raises flexibility, scalability, and security issues. We demonstrate

that by carefully choosing appropriate functionalities and metadata to implement

in software, we can solve most of the flexibility, scalability, and security issues with

minimal performance impact.

Recent trends in several other fields also move towards offloading more software

functionalities to hardware, ranging from offloaded network stacks [274, 275] and

smartNIC [64, 143, 276] to smart SSDs [277–279]. As illustrated in this dissertation,

hardware is fundamentally less flexible and harder to program than software; the

amount of resources in specialized hardware is also a lot less abundant than general-

purpose computers. When evaluating what functionalities and metadata to offload to

hardware, one should not only consider performance but also scalability, extensibility,

and security.

147

7.1.3 One-Sided vs. Two-Sided Communication

Abstraction drives usage cases; implementation largely decides performance and cost.

RDMA supports both one-sided and two-sided communication. There has been

a huge debate on the choice of one-sided and two-sided RDMA in recent years. We

have explored various tradeoffs between these two RDMA communication methods

in this dissertation, ranging from performance and scalability to monetary cost and

security. We share our final thoughts on them below.

Abstraction and usages. From programmers’ (applications’) view, there is a funda-

mental difference between these two communication patterns. With two-sided com-

munication, both sides are active parties that can perform actions; with one-sided

communication, one side treats the other side as a passive, non-acting party. Thus,

we believe that the best use case and the best match for two-sided communication

is an environment where both sides of the communication are compute and the best

match for one-sided communication is an environment where one side is compute

and the other side is data. In a sense, two-sided communication follows traditional

messaging usages, and one-sided communication is more like data/memory accesses

(with a major difference being RDMA not providing coherence across different copies

of data, unlike CPU memory bus).

Although all traditional network and messaging usages are applicable to two-sided

communication, it is less clear what are the best way to use one-sided communica-

tion. Here, we give a set of recommendations. Compute servers can use one-sided

communication to store and access data at remote memory or storage. These data

can be local memory that is swapped out to a remote server [63, 74], disaggregated

compute nodes’ memory stored in disaggregated memory nodes [38,183], or key-value

or relational data in disaggregated nodes or regular server [26, 27]. What makes it

challenging to use one-sided communication for some of these environments are 1)

the possible need for processing data at remote side, and 2) the possible need for

ensuring coherence when there are multiple writers to remote memory. We identify

two promising solutions for these challenges. For 1), the processing can be moved

148

to the sender (compute) side, be changed into functionalities that can be performed

asynchronously by remote side’s processor after data has been transmitted, or be im-

plemented in hardware [64]. For 2), Chapter 4 demonstrated several ways to support

concurrent writers.

Implementation. Under the hood, there can be different ways to implement one-

sided and two-sided communication. For example, although both RDMA and tra-

ditional TCP supports two-sided communication, their implementation differs dra-

matically. RDMA NICs perform most of the network functionalities and directly

read/write to pre-registered space in main memory and then notify host CPU, which

then performs the rest of the two-sided communication functionalities. With tradi-

tional TCP, host CPU performs most of the network stack functionalities.

On the other hand, the difference between one-sided and two-sided communica-

tion can simply be viewed as the location where network stacks are implemented. For

one-sided communication, the network stacks are entirely implemented in hardware

(ASIC-, FPGA-, SoC-based NICs), while two-sided communication stacks are imple-

mented entirely or in part in host CPU. The difference then becomes specialized vs.

general-purpose processing units.

What we have learned in this dissertation is that different implementation can

result in different performance, scalability, and security tradeoffs. As past wisdom

goes [280], systems designers should keep abstraction separate from implementation

and consider functionality, performance, and reliability (security) when building a

new system or porting a mature technology to a new environment.

7.2 Concluding Remarks

When migrating a technology that is mature for one environment to another,

there can be many unforeseeable challenges. RDMA is one such technology. This

dissertation explores many different challenges of integrating RDMA into datacenters

and presents our solutions to them. We hope that our experiences and insights would

149

not only help future datacenter RDMA developments but also shed light on the

migration of other technologies to datacenters.

150

REFERENCES

[1] Tejas Karmarkar. Availability of linux rdma on microsoft azure. https:
//azure.microsoft.com/en-us/blog/azure-linux-rdma-hpc-available,
2015.

[2] Alibaba Cloud. Super computing cluster. https://www.alibabacloud.com/
product/scc, 2018.

[3] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient
distributed datasets: A fault-tolerant abstraction for in-memory cluster com-
puting. In Proceedings of the 9th USENIX Conference on Networked Systems
Design and Implementation (NSDI ’12), San Jose, CA, USA, April 2012.

[4] Apache Hadoop, 2011. http://hadoop.apache.org/.

[5] Google Brain Team. TensorFlow, 2015. https://www.tensorflow.org/.

[6] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos
Guestrin. PowerGraph: Distributed Graph-Parallel Computation on Natu-
ral Graphs. In Proceedings of the 10th USENIX conference on Operating Sys-
tems Design and Implementation (OSDI ’12), Vancouver, BC, Canada, October
2012.

[7] Kai Zeng, Jiacheng Yang, Haixun Wang, Bin Shao, and Zhongyuan Wang. A
distributed graph engine for web scale rdf data. In Proceedings of the 39th
international conference on Very Large Data Bases (VLDB ’13), Trento, Italy,
February 2013.

[8] Bin Shao, Haixun Wang, and Yatao Li. Trinity: A distributed graph engine
on a memory cloud. In Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’13), New York, NY, USA, June
2013.

[9] Amazon. Aws lambda, 2014. https://aws.amazon.com/lambda/.

[10] Google. Google cloud functions, 2018. https://cloud.google.com/
functions/.

[11] Peter X. Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira, Sangjin Han,
Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker. Network Requirements
for Resource Disaggregation. In 12th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI ’16), Savannah, GA, October 2016.

151

[12] Sangjin Han, Norbert Egi, Aurojit Panda, Sylvia Ratnasamy, Guangyu Shi, and
Scott Shenker. Network support for resource disaggregation in next-generation
datacenters. In Proceedings of the Twelfth ACM Workshop on Hot Topics in
Networks (HotNets ’13), College Park, ML, USA, November 2013.

[13] Sol Boucher, Anuj Kalia, David G. Andersen, and Michael Kaminsky. Putting
the ”micro” back in microservice. In Proceedings of the 2018 USENIX Con-
ference on Usenix Annual Technical Conference (USENIX ATC ’18), Boston,
MA, USA, July 2018.

[14] Akshitha Sriraman and Thomas F. Wenisch. utune: Auto-tuned threading for
oldi microservices. In Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation (OSDI ’18), Carlsbad, CA, USA, October
2018.

[15] Brian Cho and Ergin Seyfe. Taking advantage of a disaggregated storage and
compute architecture. In Spark+AI Summit 2019 (SAIS ’19), San Francisco,
CA, USA, April 2019.

[16] Kestutis Patiejunas and Amisha Jaiswal. Facebooks disaggregated storage and
compute for map/reduce. In Data @Scale (Scale ’16), Seattle, WA, USA, June
2016.

[17] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,
Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan.
Data center tcp (dctcp). In Proceedings of the ACM SIGCOMM 2010 Confer-
ence (SIGCOMM ’10), New Delhi, India, August 2010.

[18] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu Pad-
hye, and Marina Lipshteyn. Rdma over commodity ethernet at scale. In Proceed-
ings of the 2016 ACM SIGCOMM Conference (SIGCOMM ’16), Florianopolis,
Brazil, August 2016.

[19] Mellanox. Mellanox ConnectX-6 VPI Card, 2019. http://www.mellanox.com/
related-docs/prod adapter cards/PB ConnectX-6 VPI Card.pdf.

[20] Chris Mellor. Ai servers will need much more memory. and you know who’s going
to be there? yep, big daddy micron, 2018. https://www.theregister.co.uk/
2018/05/23/micron analysts day/.

[21] Peng Sun, Yonggang Wen, Ta Nguyen Binh Duong, and Xiaokui Xiao. Graphh:
High performance big graph analytics in small clusters. In 2017 IEEE Interna-
tional Conference on Cluster Computing (CLUSTER ’17), Honolulu, HI, USA,
September 2017.

[22] Mijung Kim, Jun Li, Haris Volos, Manish Marwah, Alexander Ulanov, Kim-
berly Keeton, Joseph Tucek, Lucy Cherkasova, Le Xu, and Pradeep Fernando.
Sparkle: Optimizing spark for large memory machines and analytics. In Pro-
ceedings of the 2017 Symposium on Cloud Computing (SoCC ’17), Santa Clara,
CA, USA, September 2017.

[23] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard
Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jor-
dan, and Ion Stoica. Ray: A distributed framework for emerging AI applica-
tions. In 13th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI ’18), Carlsbad, CA, USA, October 2018.

152

[24] Mingjie Tang, Yongyang Yu, Qutaibah M. Malluhi, Mourad Ouzzani, and
Walid G. Aref. Locationspark: A distributed in-memory data management
system for big spatial data. Proceedings of the VLDB Endowment, 9(13):1565–
1568, 2016.

[25] Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs, Luis Ceze, Simon
Kahan, and Mark Oskin. Latency-Tolerant Software Distributed Shared Mem-
ory. In Proceedings of the 2015 USENIX Annual Technical Conference (ATC
’15), Santa Clara, CA, USA, July 2015.

[26] Erfan Zamanian, Carsten Binnig, Tim Harris, and Tim Kraska. The End of a
Myth: Distributed Transactions Can Scale. Proceedings of the VLDB Endow-
ment, 10(6):685–696, 2017.

[27] Carsten Binnig, Andrew Crotty, Alex Galakatos, Tim Kraska, and Erfan Za-
manian. The End of Slow Networks: It’s Time for a Redesign. Proceedings of
the VLDB Endowment, 9(7):528–539, 2016.

[28] Jiaxin Shi, Youyang Yao, Rong Chen, Haibo Chen, and Feifei Li. Fast and
Concurrent RDF Queries with RDMA-Based Distributed Graph Exploration.
In 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI ’16), Savanah, GA, USA, November 2016.

[29] Aleksandar Dragojević, Dushyanth Narayanan, Orion Hodson, and Miguel Cas-
tro. FaRM: Fast Remote Memory. In Proceedings of the 11th USENIX Confer-
ence on Networked Systems Design and Implementation (NSDI ’14), Seattle,
WA, USA, April 2014.

[30] Aleksandar Dragojević, Dushyanth Narayanan, Edmund B. Nightingale,
Matthew Renzelmann, Alex Shamis, Anirudh Badam, and Miguel Castro. No
compromises: Distributed transactions with consistency, availability, and per-
formance. In Proceedings of the 25th Symposium on Operating Systems Princi-
ples (SOSP ’15), Monterey, CA, USA, October 2015.

[31] Christopher Mitchell, Yifeng Geng, and Jinyang Li. Using one-sided rdma reads
to build a fast, cpu-efficient key-value store. In Proceedings of the 2013 USENIX
Conference on Annual Technical Conference (ATC ’13), San Jose, CA, USA,
June 2013.

[32] Anuj Kalia, Michael Kaminsky, and David G. Andersen. Design Guidelines for
High Performance RDMA Systems. In Proceedings of the 2016 USENIX Annual
Technical Conference (ATC’16), Denver, CO, USA, June 2016.

[33] Anuj Kalia, Michael Kaminsky, and David G. Andersen. Using RDMA Effi-
ciently for Key-value Services. In Proceedings of the 2014 ACM Conference on
Special Interest Group on Data Communication (SIGCOMM ’14), Chicago, IL,
USA, August 2014.

[34] Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, Radu Stoica, Bernard Metzler,
Nikolas Ioannou, and Ioannis Koltsidas. Crail: A high-performance i/o architec-
ture for distributed data processing. IEEE Bulletin of the Technical Committee
on Data Engineering, 40:40–52, March 2017. Special Issue on Distributed Data
Management with RDMA.

153

[35] Apache. Crail: High-performance distributed data store. https://
crail.incubator.apache.org/, 2018.

[36] Yiying Zhang, Jian Yang, Amirsaman Memaripour, and Steven Swanson. Mo-
jim: A Reliable and Highly-Available Non-Volatile Memory System. In Pro-
ceedings of the 20th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS ’15), Istanbul, Turkey,
March 2015.

[37] Yizhou Shan, Shin-Yeh Tsai, and Yiying Zhang. Distributed shared persistent
memory. In Proceedings of the 8th Annual Symposium on Cloud Computing
(SOCC ’17), Santa Clara, CA, USA, September 2017.

[38] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. Legoos: A
disseminated, distributed OS for hardware resource disaggregation. In 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
’18), Carlsbad, CA, USA, October 2018.

[39] InfiniBand Trade Association. InfiniBand Architecture Specification, 2015.
https://cw.infinibandta.org/document/dl/7859.

[40] InfiniBand Trade Association. InfiniBand Architecture Volume 1 Architecture
Specification, Release 1.3. https://cw.infinibandta.org/document/dl/7859,
March 2015.

[41] RDMA Consortium. iWARP, Protocol of RDMA over IP Networks, 2009. http:
//www.rdmaconsortium.org/.

[42] InfiniBand Trade Association. RoCEv2 Architecture Specification, 2014.
https://cw.infinibandta.org/document/dl/7781.

[43] InfiniBand Trade Association. InfiniBand Architecture Annex A 16: RoCEv2.
https://cw.infinibandta.org/document/dl/7148, September 2014.

[44] Recio, R., Metzler, B., Culley, P., Hilland, J., and D. Garcia. A Remote Direct
Memory Access Protocol Specification, 2007. https://tools.ietf.org/html/
rfc5040.

[45] Daehyeok Kim, Tianlong Yu, Hongqiang Harry Liu, Yibo Zhu, Jitu Pad-
hye, Shachar Raindel, Chuanxiong Guo, Vyas Sekar, and Srinivasan Seshan.
Freeflow: Software-based virtual RDMA networking for containerized clouds.
In 16th USENIX Symposium on Networked Systems Design and Implementation
(NSDI ’19), Boston, MA, USA, February 2019.

[46] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan Zahavi, Arvind Kr-
ishnamurthy, Sylvia Ratnasamy, and Scott Shenker. Revisiting network support
for rdma. In Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication (SIGCOMM ’18), Budapest, Hungary, August
2018.

[47] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,
Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. Congestion Control for Large-Scale RDMA Deployments. In
Proceedings of the 2015 ACM Conference on Special Interest Group on Data
Communication (SIGCOMM ’15), London, United Kingdom, August 2015.

154

[48] Cisco. Cisco nexus 3000 series nx-os qos configuration guide. https:
//www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3000/sw/
qos/7x/b 3k QoS Config 7x/b 3k QoS Config 7x chapter 011.html, 2019.

[49] Dell. Dell poweredge fn i/o aggregator configuration guide. https://topics-
cdn.dell.com/pdf/poweredge-fx2 reference-guide8 en-us.pdf, 2015.

[50] Mellanox. Mellanox sn3000 series. http://www.mellanox.com/related-docs/
prod eth switches/BR SN3000 Series.pdf, 2019.

[51] Mellanox. Mellanox mcx345a-bcpn connectx-3 pro. https:
//store.mellanox.com/products/mellanox-mcx345a-bcpn-connectx-3-
pro-en-network-interface-card-for-ocp-40gbe-single-port-qsfp-
pcie3-0-x8-no-bracket-rohs-r6.html, 2019.

[52] Intel. Intel ethernet converged network adapter xl710 10/40 gbe.
https://www.intel.com/content/www/us/en/ethernet-products/
converged-network-adapters/ethernet-xl710-brief.html, 2019.

[53] Mellanox. Mellanox ConnectX-3 VPI Card, 2017. http://www.mellanox.com/
related-docs/prod adapter cards/PB ConnectX-3 Pro Card VPI.pdf.

[54] Mellanox. Mellanox ConnectX-4 VPI Card, 2018. http://www.mellanox.com/
related-docs/prod adapter cards/PB ConnectX-4 VPI Card.pdf.

[55] Mellanox. Mellanox ConnectX-5 VPI Card, 2018. http://www.mellanox.com/
related-docs/prod adapter cards/PB ConnectX-5 VPI Card.pdf.

[56] Mellanox. Bluefield smartnic. http://www.mellanox.com/related-docs/
prod adapter cards/PB BlueField Smart NIC.pdf, 2018.

[57] Mellanox Technologies. InfiniBand Now Connecting More than 50 Percent of
the TOP500 Supercomputing List. https://www.rdmag.com/news/2015/07/
infiniband-now-connecting-more-50-percent-top500-supercomputing-
list, 2015.

[58] Jiuxing Liu, Jiesheng Wu, and Dhabaleswar K. Panda. High Performance
RDMA-based MPI Implementation over infiniBand. International Journal of
Parallel Programming, 32(3):167–198, 2004.

[59] Wei Huang, Gopalakrishnan Santhanaraman, Hyun-Wook Jin, Qi Gao, and
Dhabaleswar K. Panda. Design of High Performance MVAPICH2: MPI2 over
InfiniBand. In Sixth IEEE International Symposium on Cluster Computing and
the Grid (CCGRID ’06), Rio de Janeiro, Brazil, May 2006.

[60] Paolo Costa, Hitesh Ballani, Kaveh Razavi, and Ian Kash. R2c2: A network
stack for rack-scale computers. In Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication (SIGCOMM ’15), London,
United Kingdom, August 2015.

[61] Ken Birman. A real-time cloud for the internet of things, 2016. Keynote talk
at MesosCon North America ’16.

[62] Derecho project, 2016. https://github.com/Derecho-Project/derecho-
unified.

155

[63] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury, and Kang
Shin. Efficient Memory Disaggregation with Infiniswap. In Proceedings of the
14th USENIX Symposium on Networked Systems Design and Implementation
(NSDI ’17), Boston, MA, USA, April 2017.

[64] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yongqiang Xiong, An-
drew Putnam, Enhong Chen, and Lintao Zhang. Kv-direct: High-performance
in-memory key-value store with programmable nic. In Proceedings of the 26th
Symposium on Operating Systems Principles (SOSP ’17), Shanghai, China, Oc-
tober 2017.

[65] Christopher Mitchell, Kate Montgomery, Lamont Nelson, Siddhartha Sen, and
Jinyang Li. Balancing cpu and network in the cell distributed b-tree store.
In Proceedings of the 2016 USENIX Conference on Usenix Annual Technical
Conference (ATC ’16), Denver, CO, USA, June 2016.

[66] Anuj Kalia, Michael Kaminsky, and David G. Andersen. FaSST: Fast, Scal-
able and Simple Distributed Transactions with Two-Sided (RDMA) Datagram
RPCs. In 12th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI ’16), Savanah, GA, USA, 2016.

[67] Yanzhe Chen, Xingda Wei, Jiaxin Shi, Rong Chen, and Haibo Chen. Fast
and general distributed transactions using rdma and htm. In Proceedings of the
Eleventh European Conference on Computer Systems (EUROSYS ’16), London,
United Kingdom, April 2016.

[68] Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo Chen. Deconstructing
rdma-enabled distributed transactions: Hybrid is better! In 13th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI ’18), Carls-
bad, CA, USA, October 2018.

[69] Ming Wu, Fan Yang, Jilong Xue, Wencong Xiao, Youshan Miao, Lan Wei, Haox-
iang Lin, Yafei Dai, and Lidong Zhou. Gram: Scaling graph computation to
the trillions. In Proceedings of the Sixth ACM Symposium on Cloud Computing
(SoCC ’15), Kohala Coast, HI, USA, August 2015.

[70] Rajarshi Biswas, Xiaoyi Lu, and Dhabaleswar Panda. Accelerating tensorflow
with adaptive rdma-based grpc. In 25th IEEE International Conference on
High Performance Computing, Data, and Analytics (HiPC ’18), Bengaluru,
India, December 2018.

[71] Cheng Wang, Jianyu Jiang, Xusheng Chen, Ning Yi, and Heming Cui. Apus:
Fast and scalable paxos on rdma. In Proceedings of the 2017 Symposium on
Cloud Computing (SoCC ’17), Santa Clara, CA, USA, September 2017.

[72] Marius Poke and Torsten Hoefler. Dare: High-performance state machine repli-
cation on rdma networks. In Proceedings of the 24th International Symposium
on High-Performance Parallel and Distributed Computing (HPDC ’15), Port-
land, OR, USA, June 2015.

[73] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. Octopus: an rdma-enabled
distributed persistent memory file system. In 2017 USENIX Annual Technical
Conference (ATC ’17), Santa Clara, CA, USA, July 2017.

156

[74] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard, Jayneel
Gandhi, Stanko Novaković, Arun Ramanathan, Pratap Subrahmanyam, Lalith
Suresh, Kiran Tati, Rajesh Venkatasubramanian, and Michael Wei. Remote
regions: a simple abstraction for remote memory. In 2018 USENIX Annual
Technical Conference (ATC ’18), Boston, MA, USA, July 2018.

[75] Hewlett-Packard. Memory Technology Evolution: An Overview of System
Memory Technologies the 9th edition, 2010. http://h20565.www2.hpe.com/
hpsc/doc/public/display?sp4ts.oid=348553&docId=emr na-c00256987.

[76] Diego Ongaro, Stephen M. Rumble, Ryan Stutsman, John Ousterhout, and
Mendel Rosenblum. Fast Crash Recovery in RAMCloud. In Proceedings of the
23rd ACM Symposium on Operating Systems Principles (SOSP ’11), Cascais,
Portugal, October 2011.

[77] Cisco, EMC, and Intel. The Performance Impact of NVMe and
NVMe over Fabrics, 2014. http://www.snia.org/sites/default/files/
NVMe Webcast Slides Final.1.pdf.

[78] Dave Minturn. NVM Express Over Fabrics. In 11th Annual OpenFabrics In-
ternational OFS Developers’ Workshop, Monterey, CA, USA, March 2015.

[79] Mellanox Technologies. NVIDIA GPUDirect Technology - Accelerat-
ing GPU-based Systems. http://www.mellanox.com/pdf/whitepapers/
TB GPU Direct.pdf, 2010.

[80] NVIDIA. NVIDIA GPUDirect. https://developer.nvidia.com/gpudirect,
2010.

[81] Sangman Kim, Seonggu Huh, Xinya Zhang, Yige Hu, Amir Wated, Emmett
Witchel, and Mark Silberstein. GPUnet: Networking Abstractions for GPU
Programs. In 11th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI ’14), Broomfield, CO, USA, October 2014.

[82] Feras Daoud, Amir Watad, and Mark Silberstein. GPUrdma: GPU-side Library
for High Performance Networking from GPU Kernels. In Proceedings of the 6th
International Workshop on Runtime and Operating Systems for Supercomputers
(ROSS ’16), Kyoto, Japan, June 2016.

[83] Daniel J. Scales, Kourosh Gharachorloo, and Chandramohan A. Thekkath.
Shasta: A low overhead, software-only approach for supporting fine-grain shared
memory. In Proceedings of the Seventh International Conference on Architec-
tural Support for Programming Languages and Operating Systems, ASPLOS
VII, Cambridge, MA, USA, 1996.

[84] Yuanyuan Zhou, Liviu Iftode, and Kai Li. Performance Evaluation of Two
Home-based Lazy Release Consistency Protocols for Shared Virtual Memory
Systems. In Proceedings of the Second USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI ’96), Seattle, WA, USA, November
1996.

[85] Songnian Zhou, Michael Stumm, Kai Li, and David Wortman. Heterogeneous
Distributed Shared Memory. IEEE Transactions on Parallel and Distributed
Systems, 3(5):540554, September 1992.

157

[86] Michael Stumm and Songnian Zhou. Algorithms Implementing Distributed
Shared Memory. IEEE Computer, 23(5):5464, May 1990.

[87] Roberto Bisiani and Mosur Ravishankar. PLUS: A Distributed Shared-Memory
System. In Proceedings of the 17th Annual International Symposium on Com-
puter Architecture (ISCA ’90), Seattle, Washington, May 1990.

[88] Brett D. Fleisch and Gerald J. Popek. Mirage: A Coherent Distributed Shared
Memory Design. In Proceedings of the 12th ACM Symposium on Operating
Systems Principles (SOSP ’89), Litchfield Park, AZ, USA, December 1989.

[89] Pete Keleher, Alan L. Cox, and Willy Zwaenepoel. Lazy Release Consistency
for Software Distributed Shared Memory. In Proceedings of the 19th Annual
International Symposium on Computer Architecture (ISCA ’92), Queensland,
Australia, May 1992.

[90] Brad Fitzpatrick. Distributed Caching with Memcached. Linux Journal,
2004(124):5, 2004.

[91] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee,
Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, David
Stafford, Tony Tung, and Venkateshwaran Venkataramani. Scaling Memcache
at Facebook. In In Proceedings of the 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI ’13), Lombard, IL, USA, April
2013.

[92] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita Kejriwal, Collin Lee,
Behnam Montazeri, Diego Ongaro, Seo Jin Park, Henry Qin, Mendel Rosen-
blum, Stephen Rumble, Ryan Stutsman, and Stephen Yang. The ramcloud
storage system. ACM Transactions Computer System, 33(3):7:1–7:55, August
2015.

[93] Intel Corporation - Product and Performance Information. Intel Non-
Volatile Memory 3D XPoint. http://www.intel.com/content/www/us/
en/architecture-and-technology/non-volatile-memory.html?wapkw=
3d+xpoint, 2018.

[94] M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K. Yamane,
H. Yamada, M. Shoji, H. Hachino, C. Fukumoto, H. Nagao, and H. Kano. A
Novel Nonvolatile Memory with Spin Torque Transfer Magnetization Switching:
Spin-RAM. In Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE
International, pages 459–462, 2005.

[95] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Phase Change
Memory Architecture and the Quest for Scalability. Commun. ACM, 53(7):99–
106, 2010.

[96] Benjamin C Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao, Engin Ipek,
Onur Mutlu, and Doug Burger. Phase-change technology and the future of
main memory. IEEE micro, 30(1):143, 2010.

[97] Myoung-Jae Lee, Chang Bum Lee, Dongsoo Lee, Seung Ryul Lee, Man Chang,
Ji Hyun Hur, Young-Bae Kim, Chang-Jung Kim, David H Seo, Sunae Seo,
et al. A Fast, High-Endurance and Scalable Non-Volatile Memory Device Made
from Asymmetric Ta2O(5-x)/TaO(2-x) Bilayer Structures. Nature materials,
10(8):625–630, 2011.

158

[98] Micron Technology Inc. P8P Parallel Phase Change Memory (PCM).
http://www.micron.com/~/media/Documents/Products/Data\%20Sheet/
PCM/p8p\ parallel\ pcm\ ds.pdf.

[99] Moinuddin K Qureshi, Michele M Franceschini, Luis A Lastras-Montaño, and
John P Karidis. Morphable memory system: a robust architecture for exploiting
multi-level phase change memories. In Proceedings of the 37th Annual Interna-
tional Symposium on Computer Architecture (ISCA ’10), Saint-Malo, France,
June 2010.

[100] Kosuke Suzuki and Steven Swanson. The non-volatile memory technology
database (nvmdb). Technical Report CS2015-1011, Department of Computer
Science & Engineering, University of California, San Diego, May 2015.

[101] J Joshua Yang, Dmitri B Strukov, and Duncan R Stewart. Memristive devices
for computing. Nature nanotechnology, 8(1):13–24, 2013.

[102] E. Kltrsay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu. Evaluating stt-
ram as an energy-efficient main memory alternative. In 2013 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS ’13),
Austin, TX, USA, April 2013.

[103] Jim Handy. Understanding the intel/micron 3dxpoint memory.
https://www.snia.org/sites/default/files/SDC15 presentations/
persistant mem/JimHandy Understanding the-Intel.pdf, 2015.

[104] Dongliang Xue, Chao Li, Linpeng Huang, Chentao Wu, and Tianyou Li. Adap-
tive memory fusion: Towards transparent, agile integration of persistent mem-
ory. In 2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA ’18), Vienna, Austria, February 2018.

[105] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K.
Gupta, Ranjit Jhala, and Steven Swanson. NV-Heaps: Making Persistent Ob-
jects Fast and Safe with Next-generation, Non-volatile Memories. In Proceedings
of the 16th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’11), Newport Beach, CA, USA,
March 2011.

[106] Haris Volos, Andres Jaan Tack, and Michael M. Swift. Mnemosyne: Lightweight
persistent memory. In Proceedings of the 16th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems (ASP-
LOS ’11), Newport Beach, CA, USA, March 2011.

[107] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. Memory persistency.
In Proceeding of the 41st Annual International Symposium on Computer Ar-
chitecuture (ISCA ’14), Minneapolis, MN, USA, June 2014.

[108] Amirsaman Memaripour, Anirudh Badam, Amar Phanishayee, Yanqi Zhou,
Ramnatthan Alagappan, Karin Strauss, and Steven Swanson. Atomic in-place
updates for non-volatile main memories with kamino-tx. In Proceedings of the
Twelfth European Conference on Computer Systems (EuroSys ’17), Belgrade,
Serbia, April 2017.

159

[109] Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M. Chen, and Thomas F.
Wenisch. High-performance transactions for persistent memories. In Proceed-
ings of the Twenty-First International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’16), Atlanta, GA,
USA, April 2016.

[110] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek, Ben-
jamin Lee, Doug Burger, and Derrick Coetzee. Better i/o through byte-
addressable, persistent memory. In Proceedings of the ACM SIGOPS 22Nd
Symposium on Operating Systems Principles (SOSP ’09), Big Sky, MT, USA,
October 2009.

[111] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip Lantz,
Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. System software for per-
sistent memory. In Proceedings of the EuroSys Conference (EuroSys ’14), Am-
sterdam, The Netherlands, April 2014.

[112] Xiaojian Wu and A.L.N. Reddy. Scmfs: A file system for storage class mem-
ory. In International Conference for High Performance Computing, Networking,
Storage and Analysis (SC ’11), Seattle, WA, USA, Nov 2011.

[113] Jiaxin Ou, Jiwu Shu, and Youyou Lu. A high performance file system for non-
volatile main memory. In Proceedings of the Eleventh European Conference on
Computer Systems (EuroSys ’16), London, United Kingdom, April 2016.

[114] Assaf Eisenman, Darryl Gardner, Islam AbdelRahman, Jens Axboe, Siying
Dong, Kim Hazelwood, Chris Petersen, Asaf Cidon, and Sachin Katti. Reducing
dram footprint with nvm in facebook. In Proceedings of the Thirteenth EuroSys
Conference (EuroSys ’18), Porto, Portugal, April 2018.

[115] Jian Yang, Joseph Izraelevitz, and Steven Swanson. Orion: A distributed file
system for non-volatile main memory and rdma-capable networks. In 17th
USENIX Conference on File and Storage Technologies (FAST ’19), Boston,
MA, USA, February 2019.

[116] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and Haibo Chen. Efficient
In-Memory Transactional Processing Using HTM. In Proceedings of the 25th
Symposium on Operating Systems Principles (SOSP ’15), Monterey, CA, USA,
October 2015.

[117] S. Chen, R. Wang, X. Wang, and K. Zhang. Side-channel leaks in web appli-
cations: A reality today, a challenge tomorrow. In 2010 IEEE Symposium on
Security and Privacy (SP ’10), Oakland, CA, USA, May 2010.

[118] YongBin Zhou and DengGuo Feng. Side-channel attacks: Ten years after its
publication and the impacts on cryptographic module security testing, 2005.
http://eprint.iacr.org/2005/388.

[119] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi.
Oblivm: A programming framework for secure computation. In Proceedings of
the 2015 IEEE Symposium on Security and Privacy (SP ’15), San Jose, CA,
USA, May 2015.

160

[120] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermea-
sures: The case of aes. In Proceedings of the 2006 The Cryptographers’ Track
at the RSA Conference on Topics in Cryptology (CT-RSA ’06), San Jose, CA,
USA, February 2006.

[121] Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient cache attacks on aes,
and countermeasures. Journal of Cryptology, 23(1):37–71, January 2010.

[122] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. Cross-
vm side channels and their use to extract private keys. In Proceedings of the
2012 ACM Conference on Computer and Communications Security (CCS ’12),
Raleigh, NC, USA, October 2012.

[123] Onur Aciiçmez. Yet another microarchitectural attack: Exploiting i-cache. In
Proceedings of the 2007 ACM Workshop on Computer Security Architecture
(CSAW ’07), Fairfax, VA, USA, November 2007.

[124] Onur Aciiçmez and Werner Schindler. A vulnerability in rsa implementations
due to instruction cache analysis and its demonstration on openssl. In Proceed-
ings of the 2008 The Cryptopgraphers’ Track at the RSA Conference on Topics
in Cryptology (CT-RSA ’08), San Francisco, CA, USA, April 2008.

[125] Onur Aciiçmez, Billy Bob Brumley, and Philipp Grabher. New results on in-
struction cache attacks. In Proceedings of the 12th International Conference on
Cryptographic Hardware and Embedded Systems (CHES ’10), Santa Barbara,
CA, USA, August 2010.

[126] Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. On the power of sim-
ple branch prediction analysis. In Proceedings of the 2Nd ACM Symposium on
Information, Computer and Communications Security (ASIACCS ’07), Singa-
pore, March 2007.

[127] Stephan van Schaik, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. Ma-
licious management unit: Why stopping cache attacks in software is harder
than you think. In Proceedings of the 27th USENIX Conference on Security
Symposium (SEC ’18), Baltimore, MD, USA, August 2018.

[128] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache template attacks:
Automating attacks on inclusive last-level caches. In Proceedings of the 24th
USENIX Conference on Security Symposium (SEC ’15), Washington, D.C.,
USA, August 2015.

[129] Yuval Yarom and Katrina Falkner. Flush+reload: A high resolution, low noise,
l3 cache side-channel attack. In Proceedings of the 23rd USENIX Conference
on Security Symposium (SEC ’14), San Diego, CA, USA, August 2014.

[130] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. Meltdown: Reading kernel memory from user
space. In Proceedings of the 27th USENIX Conference on Security Symposium
(SEC ’18), Baltimore, MD, USA, August 2018.

[131] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael

161

Schwarz, and Yuval Yarom. Spectre attacks: Exploiting speculative execution.
In Proceedings of the 2019 IEEE Symposium on Security and Privacy (SP ’19),
San Francisco, CA, USA, May 2019.

[132] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci,
Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul
Strackx. Foreshadow: Extracting the keys to the intel SGX kingdom with tran-
sient out-of-order execution. In Proceedings of the 27th USENIX Conference on
Security Symposium (SEC ’18), Baltimore, MD, USA, August 2018.

[133] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Translation
leak-aside buffer: Defeating cache side-channel protections with TLB attacks.
In Proceedings of the 27th USENIX Conference on Security Symposium (SEC
’18), Baltimore, MD, USA, August 2018.

[134] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner,
Alessandro Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kurmus. Smoth-
erspectre: exploiting speculative execution through port contention. https:
//arxiv.org/abs/1903.01843, 2018.

[135] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. Cross-
tenant side-channel attacks in paas clouds. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security (CCS ’14),
Scottsdale, Arizona, USA, November 2014.

[136] Luis M. Vaquero, Luis Rodero-Merino, and Daniel Morán. Locking the sky: A
survey on iaas cloud security. Computing, 91(1):93–118, 2011.

[137] Yinqian Zhang, Ari Juels, Alina Oprea, and Michael K. Reiter. Homealone:
Co-residency detection in the cloud via side-channel analysis. In Proceedings
of the 2011 IEEE Symposium on Security and Privacy (SP ’11), Oakland, CA,
USA, May 2011.

[138] Danny Harnik, Benny Pinkas, and Alexandra Shulman-Peleg. Side channels
in cloud services: Deduplication in cloud storage. IEEE Security and Privacy,
8(6):40–47, November 2010.

[139] Zhichao Hua, Dong Du, Yubin Xia, Haibo Chen, and Binyu Zang. Epti: Effi-
cient defence against meltdown attack for unpatched vms. In Proceedings of the
2018 USENIX Conference on Usenix Annual Technical Conference (ATC ’18),
Boston, MA, USA, July 2018.

[140] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Gernot
Heiser, and Ruby B Lee. Catalyst: Defeating last-level cache side channel at-
tacks in cloud computing. In 2016 IEEE International Symposium on High Per-
formance Computer Architecture (HPCA ’16), Barcelona, Spain, March 2016.

[141] Bart Coppens, Ingrid Verbauwhede, Koen De Bosschere, and Bjorn De Sut-
ter. Practical mitigations for timing-based side-channel attacks on modern x86
processors. In Proceedings of the 2009 30th IEEE Symposium on Security and
Privacy (SP ’09), Oakland, CA, USA, May 2009.

[142] Stephen M. Rumble, Diego Ongaro, Ryan Stutsman, Mendel Rosenblum, and
John K. Ousterhout. It’s Time for Low Latency. In Proceedings of the 13th
USENIX Conference on Hot Topics in Operating Systems (HotOS ’11), Napa,
CA, USA, May 2011.

162

[143] Antoine Kaufmann, Simon Peter, Naveen Kr. Sharma, Thomas Anderson, and
Arvind Krishnamurthy. High Performance Packet Processing with FlexNIC.
In Proceedings of the Twenty-First International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS ’16),
Atlanta, GA, USA, April 2016.

[144] Alexandras Daglis, Dmitrii Ustiugov, Stanko Novaković, Edouard Bugnion,
Babak Falsafi, and Boris Grot. Sabres: Atomic object reads for in-memory
rack-scale computing. In 2016 49th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO ’16), Taipei, Taiwan, October 2016.

[145] Pravin Shinde, Antoine Kaufmann, Timothy Roscoe, and Stefan Kaestle. We
need to talk about nics. In Presented as part of the 14th Workshop on Hot
Topics in Operating Systems (HotOS ’13), Santa Ana Pueblo, NM, USA, May
2013.

[146] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, and
Christos Kozyrakis. Evaluating MapReduce for Multi-core and Multiprocessor
Systems. In Proceedings of the 13th International Symposium on High Perfor-
mance Computer Architecture (HPCA ’07), Washington, DC, USA, February
2007.

[147] Sean Hefty. Rsockets. In 2012 OpenFabrics International Workshop, Monterey,
CA, USA, March 2012.

[148] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. Cache craftiness
for fast multicore key-value storage. In Proceedings of the 7th ACM European
Conference on Computer Systems (EUROSYS ’12), Bern, Switzerland, April
2012.

[149] Feng Li, Sudipto Das, Manoj Syamala, and Vivek R. Narasayya. Accelerating
relational databases by leveraging remote memory and rdma. In Proceedings
of the 2016 International Conference on Management of Data (SIGMOD ’16),
San Francisco, CA, USA, June 2016.

[150] Page Lawrence, Brin Sergey, Rajeev Motwani, and Terry Winograd. The pager-
ank citation ranking: Bringing order to the web. Technical report, Stanford
University, 1998.

[151] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J.
Franklin, and Ion Stoica. Graphx: Graph processing in a distributed dataflow
framework. In Proceedings of the 11th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI ’14), Broomfield, CO, USA, October
2014.

[152] Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J. Rossbach, and
Emmett Witchel. Coordinated and efficient huge page management with ingens.
In Proceedings of the 12th USENIX Conference on Operating Systems Design
and Implementation (OSDI ’16), Savannah, GA, USA, November 2016.

[153] Fabien Gaud, Baptiste Lepers, Jeremie Decouchant, Justin Funston, Alexandra
Fedorova, and Vivien Quéma. Large pages may be harmful on numa systems.
In Proceedings of the 2014 USENIX Conference on USENIX Annual Technical
Conference (ATC ’14), Philadelphia, PA, USA, June 2014.

163

[154] Madhusudhan Talluri, Shing Kong, Mark D. Hill, and David A. Patterson.
Tradeoffs in supporting two page sizes. In Proceedings of the 19th Annual
International Symposium on Computer Architecture (ISCA ’92), Queensland,
Australia, May 1992.

[155] Manhee Lee, Eun Jung Kim, and Mazin Yousif. Security Enhancement in
InfiniBand Architecture. In Proceedings of the 19th IEEE International Parallel
and Distributed Processing Symposium (IPDPS ’05), Washington, DC, USA,
April 2005.

[156] Jonathan Corbet. Memory protection keys, 2015. https://lwn.net/Articles/
643797/.

[157] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind Kr-
ishnamurthy, Thomas Anderson, and Timothy Roscoe. Arrakis: The operating
system is the control plane. In 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’14), Broomfield, CO, USA, October 2014.

[158] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Christos
Kozyrakis, and Edouard Bugnion. IX: A protected dataplane operating sys-
tem for high throughput and low latency. In 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI ’14), Broomfield, CO,
USA, October 2014.

[159] Livio Soares and Michael Stumm. Flexsc: Flexible system call scheduling with
exception-less system calls. In Proceedings of the 9th USENIX Conference on
Operating Systems Design and Implementation (OSDI ’10), Vancouver, BC,
Canada, October 2010.

[160] Richard Rashid, Daniel Julin, Douglas Orr, Richard Sanzi, Robert Baron,
Alessandro Forin, David Golub, and Michael Jones. Mach: a system software
kernel. In Thirty-Fourth IEEE Computer Society International Conference: In-
tellectual Leverage (COMPCON ’89), San Francisco, CA, USA, February 1989.

[161] Henry M. Levy. Capability-Based Computer Systems. Butterworth-Heinemann,
Newton, MA, USA, 1984.

[162] Ilya Lesokhin, Haggai Eran, Shachar Raindel, Guy Shapiro, Sagi Grimberg, Li-
ran Liss, Muli Ben-Yehuda, Nadav Amit, and Dan Tsafrir. Page Fault Support
for Network Controllers. In Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS ’17), Xi’an, China, April 2017.

[163] Frank Mietke, Robert Rex, Robert Baumgartl, Torsten Mehlan, Torsten Hoe-
fler, and Wolfgang Rehm. Analysis of the memory registration process in the
mellanox infiniband software stack. In Proceedings of the 12th International
Conference on Parallel Processing (Euro-Par ’06), Dresden, Germany, Septem-
ber 2006.

[164] Johann George. qperf - measure rdma and ip performance, 2009. https:
//linux.die.net/man/1/qperf.

[165] J. Chu and V. Kashyap. Transmission of IP over InfiniBand (IPoIB), 2006.
https://tools.ietf.org/html/rfc4391.

164

[166] Andrew D. Birrell and Bruce Jay Nelson. Implementing Remote Procedure
Calls. ACM Transactions on Computer Systems, 2(1):39–59, 1984.

[167] Jonathan Corbet. On vsyscalls and the vDSO, 2011. https://lwn.net/
Articles/446528/.

[168] Sangjin Han, Scott Marshall, Byung-Gon Chun, and Sylvia Ratnasamy.
MegaPipe: A New Programming Interface for Scalable Network I/O. In Pro-
ceedings of the 10th USENIX Conference on Operating Systems Design and
Implementation (OSDI ’12), Hollywood, CA, USA, October 2012.

[169] Galen M. Shipman, Ron Brightwell, Brian Barrett, Jeffrey M. Squyres, and
Gil Bloch. Investigations on infiniband: Efficient network buffer utilization
at scale. In Proceedings of the 14th European Conference on Recent Advances
in Parallel Virtual Machine and Message Passing Interface (PVM/MPI ’07),
Paris, France, September 2007.

[170] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.
Workload Analysis of a Large-scale Key-value Store. In Proceedings of the
12th ACM SIGMETRICS/PERFORMANCE Joint International Conference
on Measurement and Modeling of Computer Systems (SIGMETRICS ’12), Lon-
don, United Kingdom, June 2012.

[171] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing
on large clusters. In Proceedings of the 6th Symposium on Operating Systems
Design and Implementation (OSDI ’04), San Francisco, CA, USA, December
2004.

[172] Wikimedia Foundation. Wikimedia Downloads, 2015. https://
dumps.wikimedia.org/.

[173] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is Twit-
ter, A Social Network or A News Media? In Proceedings of the 19th Interna-
tional Conference on World Wide Web (WWW ’10), Raleigh, NC, USA, April
2010.

[174] Kai Li and Paul Hudak. Memory Coherence in Shared Virtual Memory Systems.
ACM Transactions on Computer Systems, 7(4):321–359, 1989.

[175] Ken Birman, Jonathan Behrens, Sagar Jha, Matthew Milano, Edward Tremel,
and Robbert Van Renesse. Groups, Subgroups and Auto-Sharding in Dere-
cho: A Customizable RDMA Framework for Highly Available Cloud Services.
Technical report, Cornel University, 2016.

[176] Jonathan Behrens, Ken Birman, Sagar Jha, Matthew Milano, Edward Tremel,
Eugene Bagdasaryan, Theo Gkountouvas, Weijia Song, and Robbert Van Re-
nesse. Derecho: Group Communication at the Speed of Light. Technical report,
Cornel University, 2016.

[177] redislabs. Redis. https://redis.io/, 2009.

[178] Michaela Blott, Kimon Karras, Ling Liu, Kees Vissers, Jeremia Bär, and Zsolt
István. Achieving 10gbps line-rate key-value stores with fpgas. In Presented as
part of the 5th USENIX Workshop on Hot Topics in Cloud Computing (Hot-
Cloud ’13), San Jose, CA, USA, June 2013.

165

[179] Michaela Blott, Ling Liu, Kimon Karras, and Kees Vissers. Scaling out to a
single-node 80gbps memcached server with 40terabytes of memory. In Proceed-
ings of the 7th USENIX Conference on Hot Topics in Storage and File Systems
(HotStorage ’15), Santa Clara, CA, USA, July 2015.

[180] Intel. Intel optane technology. https://www.intel.com/content/www/us/en/
architecture-and-technology/intel-optane-technology.html, 2019.

[181] Intel Corporation - Product and Performance Information. Reimagining the
data center memory and storage hierarchy. https://newsroom.intel.com/
editorials/re-architecting-data-center-memory-storage-hierarchy/,
2019.

[182] Sudarsun Kannan, Ada Gavrilovska, and Karsten Schwan. pvm: Persistent
virtual memory for efficient capacity scaling and object storage. In Proceed-
ings of the Eleventh European Conference on Computer Systems (EuroSys ’16),
London, United Kingdom, April 2016.

[183] Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ranganathan,
Steven K. Reinhardt, and Thomas F. Wenisch. Disaggregated memory for
expansion and sharing in blade servers. In Proceedings of the 36th Annual
International Symposium on Computer Architecture (ISCA ’09), Austin, TX,
USA, June 2009.

[184] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and
Russell Sears. Benchmarking Cloud Serving Systems with YCSB. In Proceedings
of the 1st ACM Symposium on Cloud Computing (SoCC ’10), Indianapolis, IN,
USA, June 2010.

[185] Jinglei Ren. Ycsb-c. https://github.com/basicthinker/YCSB-C, 2015.

[186] Kevin Lim, Yoshio Turner, Jose Renato Santos, Alvin AuYoung, Jichuan
Chang, Parthasarathy Ranganathan, and Thomas F. Wenisch. System-level
implications of disaggregated memory. In Proceedings of the 2012 IEEE 18th
International Symposium on High-Performance Computer Architecture (HPCA
’12), New Orleans, LA, USA, February 2012.

[187] Hewlett Packard. The Machine: A New Kind of Computer. http://
www.hpl.hp.com/research/systems-research/themachine/, 2005.

[188] Krste Asanovi. FireBox: A Hardware Building Block for 2020 Warehouse-Scale
Computers, February 2014. Keynote talk at the 12th USENIX Conference on
File and Storage Technologies (FAST ’14).

[189] Paolo Faraboschi, Kimberly Keeton, Tim Marsland, and Dejan Milojicic. Be-
yond processor-centric operating systems. In 15th Workshop on Hot Topics in
Operating Systems (HotOS ’15), Kartause Ittingen, Switzerland, May 2015.

[190] Haris Volos, Kimberly Keeton, Yupu Zhang, Milind Chabbi, Se Kwon Lee,
Mark Lillibridge, Yuvraj Patel, and Wei Zhang. Memory-oriented distributed
computing at rack scale. In Proceedings of the ACM Symposium on Cloud
Computing, (SoCC ’18), Carlsbad, CA, USA, October 2018.

[191] Hewlett Packard Labs. The machine. https://www.labs.hpe.com/the-
machine, 2019.

166

[192] Kimberly Keeton . Memory driven computing. https://www.youtube.com/
watch?v=eSP9euiV4-M, 2017.

[193] Gen-Z Consortium. Gen-z overview, 2016. https://genzconsortium.org/wp-
content/uploads/2018/05/Gen-Z-Overview-V1.pdf.

[194] Mellanox. Innova-2 flex open programmable smartnic. http:
//www.mellanox.com/related-docs/prod adapter cards/PB Innova-
2 Flex.pdf, 2018.

[195] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou,
Alireza Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian
Caulfield, Eric Chung, Harish Kumar Chandrappa, Somesh Chaturmohta, Matt
Humphrey, Jack Lavier, Norman Lam, Fengfen Liu, Kalin Ovtcharov, Jitu Pad-
hye, Gautham Popuri, Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva,
Madhan Sivakumar, Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair,
Deepak Bansal, Doug Burger, Kushagra Vaid, David A. Maltz, and Albert
Greenberg. Azure accelerated networking: Smartnics in the public cloud. In
Proceedings of the 15th USENIX Conference on Networked Systems Design and
Implementation (NSDI ’18), Renton, WA, USA, April 2018.

[196] Cache Coherent Interconnect for Accelerators, 2018. https:
//www.ccixconsortium.com/.

[197] Open Coherent Accelerator Processor Interface, 2018. https://opencapi.org/.

[198] SNIA, Chet Douglas. Rdma with pmem, 2015. https://www.snia.org/
sites/default/files/SDC15 presentations/persistant mem/
ChetDouglas RDMA with PM.pdf.

[199] PCI Express. Pci express base specification revision 4.0 version 0.3, 2014.

[200] Paul Grun and Stephen Bates and Rob Davis. Persistent memory over
fabrics. https://www.snia.org/sites/default/files/PM-Summit/2018/
presentations/05 PM Summit Grun PM %20Final Post CORRECTED.pdf, 2018.

[201] Dan Tang, Yungang Bao, Weiwu Hu, and Mingyu Chen. Dma cache: Using on-
chip storage to architecturally separate i/o data from cpu data for improving i/o
performance. In The Sixteenth International Symposium on High-Performance
Computer Architecture (HPCA ’10), Bangalore, India, Jan 2010.

[202] Mellanox Technologies. Rdma aware networks programming user
manual. http://www.mellanox.com/related-docs/prod\ software/
RDMA\ Aware\ Programming\ user\ manual.pdf, 2015.

[203] Cloud Native Computing Foundation. grpc. https://grpc.io/, 2019.

[204] Anuj Kalia, Michael Kaminsky, and David Andersen. Datacenter rpcs can be
general and fast. In 16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI ’19), Boston, MA, USA, February 2019.

[205] Tao Chen and G. Edward Suh. Efficient data supply for hardware accel-
erators with prefetching and access/execute decoupling. In The 49th An-
nual IEEE/ACM International Symposium on Microarchitecture (MICRO-49),
Taipei, Taiwan, October 2016.

167

[206] Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew Pavlo. An empirical
evaluation of in-memory multi-version concurrency control. Proceedings of the
VLDB Endowment, 10(7):781–792, March 2017.

[207] William Pugh. Skip lists: A probabilistic alternative to balanced trees. Com-
munication of the ACM, 33(6):668–676, June 1990.

[208] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R. Wil-
son. Hoard: A scalable memory allocator for multithreaded applications. In
Proceedings of the Ninth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’00), Cambridge,
MA, USA, November 2000.

[209] Intel. Intel xeon processor e5-2620 price. https://www.intel.com/content/
www/us/en/products/processors/xeon/e5-processors/e5-2620-v4.html,
2019.

[210] Memory.net. Micron 32gb ddr4 price. https://memory.net/product/
mta36asf4g72pz-2g6-micron-1x-32gb-ddr4-2666-rdimm-pc4-21300v-r-
dual-rank-x4-module/, 2019.

[211] Mellanox. Mellanox connectx-4 adapter price. https://store.mellanox.com/
products/mellanox-mcx455a-ecat-connectx-4-vpi-adapter-card-edr-
ib-and-100gbe-single-port-qsfp28-pcie3-0-x16-rohs-r6.html, 2019.

[212] CPUBoss. Intel xeon e5-2620 review. http://cpuboss.com/cpu/Intel-Xeon-
E5-2620, 2012.

[213] Raluca Ada Popa, Jacob R. Lorch, David Molnar, Helen J. Wang, and
Li Zhuang. Enabling security in cloud storage slas with cloudproof. In Proceed-
ings of the 2011 USENIX Conference on USENIX Annual Technical Conference
(ATC ’11), Portland, OR, USA, June 2011.

[214] Shin-Yeh Tsai and Yiying Zhang. LITE Kernel RDMA Support for Datacen-
ter Applications. In Proceedings of the 26th Symposium on Operating Systems
Principles (SOSP ’17), Shanghai, China, October 2017.

[215] Mellanox. Connectx-6 en card. http://www.mellanox.com/related-docs/
prod adapter cards/PB ConnectX-6 EN Card.pdf, 2019.

[216] Allyn Romanow, Jeffrey Mogul, Tom Talpey, and S. Bailey. Remote
Direct Memory Access (RDMA) over IP Problem Statement. https://
tools.ietf.org/html/rfc4297, 2005.

[217] Mellanox. Physical address memory region. https://
community.mellanox.com/s/article/physical-address-memory-region,
2018.

[218] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu Teodorescu. One bit
flips, one cloud flops: Cross-vm row hammer attacks and privilege escalation.
In Proceedings of the 25th USENIX Conference on Security Symposium (SEC
’16), Austin, TX, USA, August 2016.

168

[219] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowhammer.js: A
remote software-induced fault attack in javascript. In Proceedings of the 13th
International Conference on Detection of Intrusions and Malware, and Vulner-
ability Assessment (DIMVA ’16), San Sebastián, Spain, July 2016.

[220] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flipping bits in memory
without accessing them: An experimental study of dram disturbance errors. In
Proceeding of the 41st Annual International Symposium on Computer Archite-
cuture (ISCA ’14), Minneapolis, MN, USA, June 2014.

[221] Andrei Tatar, Radhesh Krishnan Konoth, Elias Athanasopoulos, Cristiano
Giuffrida, Herbert Bos, and Kaveh Razavi. Throwhammer: Rowhammer at-
tacks over the network and defenses. In Proceedings of the 2018 USENIX An-
nual Technical Conference (ATC ’18), Boston, MA, USA, July 2018.

[222] Mellanox Technologies. Mellanox OFED for Linux User Man-
ual. http://www.mellanox.com/related-docs/prod software/
Mellanox OFED Linux User Manual v3.1-1.0.0.pdf.

[223] Mellanox. RDMA/RoCE Solutions. https://community.mellanox.com/s/
article/rdma-roce-solutions, 2018.

[224] The Tcpdump Group. tcpdump - Dump Traffic on A Network. https://
www.tcpdump.org/manpages/tcpdump.1.html, 2018.

[225] Thomas. Cover and P. Hart. Nearest neighbor pattern classification. IEEE
Transactions on Information Theory, 13(1):21–27, September 1967.

[226] Robert Ricci, Eric Eide, and the CloudLab Team. Introducing cloudlab: Sci-
entific infrastructure for advancing cloud architectures and applications. The
USENIX Magazine, 39(6):36–38, December 2014.

[227] Mellanox. Mellanox InfiniBand EDR 100Gb/s Switch, 2018. http://
www.mellanox.com/related-docs/prod ib switch systems/pb sb7700.pdf.

[228] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard.
Flush+flush: A fast and stealthy cache attack. In Proceedings of the 13th Inter-
national Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA ’16), San Sebastián, Spain, July 2016.

[229] Intel. Intel performance counter monitor. https://software.intel.com/en-
us/articles/intel-performance-counter-monitor, 2012.

[230] Mellanox. Mellanox Network Adapters for 25G RoCE Ethernet Cloud Deployed
in Alibaba, 2017. http://www.mellanox.com/page/press release item?id=
1964.

[231] O. Goldreich. Towards a theory of software protection and simulation by oblivi-
ous rams. In Proceedings of the Nineteenth Annual ACM Symposium on Theory
of Computing (STOC ’87), New York, NY, USA, May 1987.

[232] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on
oblivious rams. Journal of ACM, 43(3):431–473, May 1996.

169

[233] Benny Pinkas and Tzachy Reinman. Oblivious ram revisited. In Proceedings of
the 30th Annual Conference on Advances in Cryptology (CRYPTO ’10), Santa
Barbara, CA, USA, August 2010.

[234] Michael T. Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and Roberto
Tamassia. Privacy-preserving group data access via stateless oblivious ram
simulation. In Proceedings of the Twenty-third Annual ACM-SIAM Symposium
on Discrete Algorithms (SPDA ’12), Kyoto, Japan, January 2012.

[235] Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious ram
with o((logn)3) worst-case cost. In Proceedings of the 17th International Con-
ference on The Theory and Application of Cryptology and Information Security
(ASIACRYPT ’11), Seoul, South Korea, December 2011.

[236] Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On the (in)security of hash-
based oblivious ram and a new balancing scheme. In Proceedings of the Twenty-
third Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’12), Ky-
oto, Japan, January 2012.

[237] Emil Stefanov, Elaine Shi, and Dawn Song. Towards practical oblivious RAM.
In Proceedings of the Network and Distributed System Security Symposium
(NDSS ’12), San Diego, CA, USA, February 2012.

[238] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren,
Xiangyao Yu, and Srinivas Devadas. Path oram: An extremely simple oblivious
ram protocol. In Proceedings of the 2013 ACM SIGSAC conference on Computer
and communications Security (CCS ’13), Berlin, Germany, November 2013.

[239] Xiao Shaun Wang, Yan Huang, T-H. Hubert Chan, Abhi Shelat, and Elaine
Shi. Scoram: Oblivious ram for secure computation. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security (CCS
’14), Scottsdale, AZ, USA, November 2014.

[240] Cetin Sahin, Victor Zakhary, Amr El Abbadi, Huijia Lin, and Stefano Tessaro.
Taostore: Overcoming asynchronicity in oblivious data storage. In Proceedings
of the 2016 IEEE Symposium on Security and Privacy (SP ’16), San Jose, CA,
USA, May 2016.

[241] Emil Stefanov and Elaine Shi. Oblivistore: High performance oblivious cloud
storage. In Proceedings of the 2013 IEEE Symposium on Security and Privacy
(SP ’13), San Francisco, CA, USA, May 2013.

[242] Peter Williams, Radu Sion, and Alin Tomescu. Privatefs: A parallel oblivious
file system. In Proceedings of the 2012 ACM Conference on Computer and
Communications Security (CCS ’12), Raleigh, North Carolina, USA, October
2012.

[243] Jacob R. Lorch, Bryan Parno, James Mickens, Mariana Raykova, and Joshua
Schiffman. Shroud: Ensuring private access to large-scale data in the data
center. In Proceedings of the 11th USENIX Conference on File and Storage
Technologies (FAST ’13), San Jose, CA, USA, February 2013.

[244] Ming Liu, Liang Luo, Jacob Nelson, Luis Ceze, Arvind Krishnamurthy, and
Kishore Atreya. Incbricks: Toward in-network computation with an in-network

170

cache. In Proceedings of the Twenty-Second International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS
’17), Xi’an, China, April 2017.

[245] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster,
Changhoon Kim, and Ion Stoica. Netcache: Balancing key-value stores with
fast in-network caching. In Proceedings of the 26th Symposium on Operating
Systems Principles (SOSP ’17), Shanghai, China, October 2017.

[246] Jianzhe Liang, Jun Bi, Yu Zhou, and Cheng Zhang. In-band network function
telemetry. In Proceedings of the ACM SIGCOMM 2018 Conference on Posters
and Demos (SIGCOMM ’18), Budapest, Hungary, August 2018.

[247] EunYoung Jeong, Shinae Wood, Muhammad Jamshed, Haewon Jeong, Sungh-
wan Ihm, Dongsu Han, and KyoungSoo Park. mtcp: a highly scalable user-level
TCP stack for multicore systems. In 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI ’14), Seattle, WA, USA, April 2014.

[248] Thorsten von Eicken, Anindya Basu, Vineet Buch, and Werner Vogels. U-
net: A user-level network interface for parallel and distributed computing. In
Proceedings of the Fifteenth ACM Symposium on Operating Systems Principles
(SOSP ’95), Copper Mountain, CO, USA, December 1995.

[249] Jonas Pfefferle, Patrick Stuedi, Animesh Trivedi, Bernard Metzler, Ionnis Kolt-
sidas, and Thomas R. Gross. A hybrid i/o virtualization framework for rdma-
capable network interfaces. In Proceedings of the 11th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments (VEE ’15), Istan-
bul, Turkey, July 2015.

[250] OpenFabrics Alliance. The OpenFabrics Enterprise Distribution, 2004. https:
//www.openfabrics.org.

[251] Intel. RDMA Communication Manager, 2010. https://linux.die.net/man/
7/rdma cm.

[252] Ron Brightwell, Bill Lawry, Arthur B. MacCabe, and Rolf Riesen. Portals 3.0:
Protocol building blocks for low overhead communication. In Proceedings of
the 16th International Parallel and Distributed Processing Symposium (IPDPS
’02), Washington, DC, USA, April 2002.

[253] Dror Goldenberg, Michael Kagan, Ran Ravid, and Michael S. Tsirkin. Trans-
parently achieving superior socket performance using zero copy socket direct
protocol over 20gb/s infiniband links. In 2005 IEEE International Conference
on Cluster Computing, Burlington, MA, USA, Septemter 2005.

[254] Technical Committee T10. Scsi rdma protocol, July 2002. http://www.t10.org/
drafts.htm\#SCSI3 SRP.

[255] Xingda Wei, Sijie Shen, Rong Chen, and Haibo Chen. Replication-driven live
reconfiguration for fast distributed transaction processing. In 2017 USENIX
Annual Technical Conference (ATC ’17), Santa Clara, CA, USA, July 2017.

[256] Zhiyun Qian, Z. Morley Mao, and Yinglian Xie. Collaborative tcp sequence
number inference attack: How to crack sequence number under a second. In
Proceedings of the 2012 ACM Conference on Computer and Communications
Security (CCS ’12), Raleigh, NC, USA, October 2012.

171

[257] Zhiyun Qian and Z. Morley Mao. Off-path tcp sequence number inference attack
- how firewall middleboxes reduce security. In Proceedings of the 2012 IEEE
Symposium on Security and Privacy (SP ’12), San Francisco, CA, USA, May
2012.

[258] Yue Cao, Zhiyun Qian, Zhongjie Wang, Tuan Dao, Srikanth V. Krishnamurthy,
and Lisa M. Marvel. Off-path tcp exploits: Global rate limit considered dan-
gerous. In Proceedings of the 25th USENIX Conference on Security Symposium
(SEC ’16), Austin, TX, USA, August 2016.

[259] Rob Jansen, Marc Juarez, Rafa Galvez, Tariq Elahi, and Claudia Diaz. Inside
job: Applying traffic analysis to measure tor from within. In 25th Annual
Network and Distributed System Security Symposium (NDSS ’18), San Diego,
CA, USA, February 2018.

[260] Xun Gong, Nikita Borisov, Negar Kiyavash, and Nabil Schear. Website detec-
tion using remote traffic analysis. In Privacy Enhancing Technologies - 12th
International Symposium (PETS ’12), Vigo, Spain, July 2012.

[261] Billy Bob Brumley and Nicola Tuveri. Remote timing attacks are still practi-
cal. In Proceedings of the 16th European Conference on Research in Computer
Security (ESORICS ’11), Leuven, Belgium, September 2011.

[262] David Cock, Qian Ge, Toby Murray, and Gernot Heiser. The last mile: An
empirical study of timing channels on sel4. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security (CCS ’14),
Scottsdale, AZ, USA, November 2014.

[263] Michael Schwarz, Martin Schwarzl, Moritz Lipp, and Daniel Gruss. Netspec-
tre: Read arbitrary memory over network, 2018. http://arxiv.org/abs/
1807.10535.

[264] Zachary Weinberg, Eric Y. Chen, Pavithra Ramesh Jayaraman, and Collin
Jackson. I still know what you visited last summer: Leaking browsing history
via user interaction and side channel attacks. In Proceedings of the 2011 IEEE
Symposium on Security and Privacy (SP ’11), Oakland, CA, USA, May 2011.

[265] Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Mark Silberstein, and
Christof Fetzer. Varys: Protecting SGX enclaves from practical side-channel
attacks. In Proceedings of the 2018 USENIX Conference on Usenix Annual
Technical Conference (ATC ’18), Boston, MA, USA, July 2018.

[266] Intel. Improving Real-Time Performance by Utilizing Cache Allocation
Technology , 2015. https://www.intel.com/content/dam/www/public/
us/en/documents/white-papers/cache-allocation-technology-white-
paper.pdf.

[267] Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael Abu-Ghazaleh, and Dmitry
Ponomarev. Non-monopolizable caches: Low-complexity mitigation of cache
side channel attacks. ACM Transactions on Architecture and Code Optimiza-
tion, 8(4):35:1–35:21, January 2012.

[268] Zhenghong Wang and Ruby B. Lee. Covert and side channels due to processor
architecture. In Proceedings of the 22Nd Annual Computer Security Applica-
tions Conference (ACSAC ’06), Miami Beach, FL, USA, December 2006.

172

[269] Zhenghong Wang and Ruby B. Lee. A novel cache architecture with enhanced
performance and security. In Proceedings of the 41st Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO ’41), Lake Como, Italy,
November 2008.

[270] Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz. STEALTHMEM:
System-level protection against cache-based side channel attacks in the cloud.
In Proceedings of the 21st USENIX Conference on Security Symposium (SEC
’12), Bellevue, WA, USA, August 2012.

[271] Jicheng Shi, Xiang Song, Haibo Chen, and Binyu Zang. Limiting cache-based
side-channel in multi-tenant cloud using dynamic page coloring. In Proceedings
of the 2011 IEEE/IFIP 41st International Conference on Dependable Systems
and Networks Workshops (DSNW ’11), Hong Kong, China, June 2011.

[272] Ziqiao Zhou, Michael K. Reiter, and Yinqian Zhang. A software approach to
defeating side channels in last-level caches. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security (CCS ’16),
Vienna, Austria, October 2016.

[273] Yinqian Zhang and Michael K. Reiter. Dúppel: retrofitting commodity oper-
ating systems to mitigate cache side channels in the cloud. In Proceedings of
the 2013 ACM SIGSAC conference on Computer and communications Security
(CCS ’13), Berlin, Germany, November 2013.

[274] Chelsio. TCP Offload Engine, 2019. https://www.chelsio.com/nic/tcp-
offload-engine/.

[275] Bojie Li, Kun Tan, Layong (Larry) Luo, Yanqing Peng, Renqian Luo, Ningyi
Xu, Yongqiang Xiong, Peng Cheng, and Enhong Chen. Clicknp: Highly flexi-
ble and high performance network processing with reconfigurable hardware. In
Proceedings of the 2016 ACM SIGCOMM Conference (SIGCOMM ’16), Flori-
anopolis, Brazil, August 2016.

[276] Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar, Dongsu Han, and
Sylvia Ratnasamy. Softnic: A software nic to augment hardware. Techni-
cal Report UCB/EECS-2015-155, EECS Department, University of California,
Berkeley, May 2015.

[277] Joel Coburn, Trevor Bunker, Meir Schwarz, Rajesh Gupta, and Steven Swanson.
From aries to mars: Transaction support for next-generation, solid-state drives.
In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles (SOSP ’13), SOSP ’13, Farminton, PA, USA, November 2013.

[278] Sudharsan Seshadri, Mark Gahagan, Sundaram Bhaskaran, Trevor Bunker,
Arup De, Yanqin Jin, Yang Liu, and Steven Swanson. Willow: A user-
programmable ssd. In Proceedings of the 11th USENIX Conference on Oper-
ating Systems Design and Implementation (OSDI ’14), Broomfield, CO, USA,
October 2014.

[279] Hung-Wei Tseng, Qianchen Zhao, Yuxiao Zhou, Mark Gahagan, and Steven
Swanson. Morpheus: Creating application objects efficiently for heterogeneous
computing. In Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA ’16), Seoul, Republic of Korea, June 2016.

173

[280] Butler W. Lampson. Hints for computer system design. In Proceedings of the
Ninth ACM Symposium on Operating Systems Principles (SOSP ’83), Bretton
Woods, NH, USA, October 1983.

174

VITA

Shin-Yeh Tsai was born in Kaohsiung, Taiwan. He received bachelor degree in

Computer Science at National Sun Yat-Sen University, Kaohsiung, Taiwan in 2009,

and master degree in Computer and Communication Engineering in National Cheng

Kung University, Tainan, Taiwan in 2012. In 2013 Fall, he joined Department of

Computer Science at Purdue University to pursue a Ph.D. degree. His research inter-

ests span operating systems, distributed systems, and datacenter networking, with a

current focus on RDMA-based datacenter networks and remote/distributed memory

systems.

