
EFFECTIVE AND EFFICIENT COMPUTATION

SYSTEM PROVENANCE TRACKING

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Shiqing Ma

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2019

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Xiangyu Zhang, Chair

Department of Computer Science

Dr. Dongyan Xu

Department of Computer Science

Dr. Byoungyoung Lee

Department of Computer Science

Dr. Chunyi Peng

Department of Computer Science

Approved by:

Dr. Voicu S. Popescu

Head of the Department Graduate Program

iii

To my beloved family members.

iv

ACKNOWLEDGMENTS

Firstly, I would like to thank my advisor Professor Xiangyu Zhang for his support of

my Ph.D. study and research, for his patience, guidance, motivation, understanding and

immense knowledge. In the past six years, I have learned so much from him about being a

researcher in computer science, a professor in university, and an advisor for students. His

guidance helped me in all the time of research and writing of this thesis. I could not have

imagined having a better advisor and mentor for my Ph.D study.

I am deeply grateful to my co-advisor Professor Dongyan Xu, who has given generous

help and guidance for me. He has taught me so many skills and he has always been a role

model to me. I cannot express how fortunate I am to have him as my co-advisor.

Besides my advisors, I would like to thank the rest of my thesis committee: Prof.

Byoungyoung Lee and Prof. Chunyi Peng, for their insightful comments and encouragement,

for the suggestions to improve my research and dissertation. My sincere thanks also goes to

Professor Somesh Jha from University of Wisconsin, Madison, for serving my preliminary

committee, for providing help in my Ph.D. research.

I dedicate this dissertation to my beloved family members. Their unconditional support

and love helped me get through hard times in my life. I am always lost to words when

it comes to my parents, Shuying Cui and Jianchang Ma, my brother and sister-in-law,

Buqing Ma and Hui Kang, my sister and brother-in-law, Linqing Ma and Zheng Wang, and

especially, my wife and the love of my life, Juan Zhai who I shared laughs and tears with

and together we got through our Ph.D.s. I love them from the deepest part of my heart.

Lastly, I count myself lucky to work with great labmates such as Kyu Hyung Lee,

Yingqi Liu, Guanhong Tao, Jianjun Huang, Wei You, Wen-Chuan Lee, Le Yu, Brendan

Saltaformmagio, Rohit Bhatia, Hui Lu, Yousra Aafer, Fei Wang, Yonghwi Kwon, Chung

Hwan Kim and Kexin Pei and my roommates such as Longyun Guo, Zhang Li and Yongyang

Yu. They all helped me a lot in the past six wonderful years in West Lafayette.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABSTRACT . xii

1 INTRODUCTION . 1
1.1 Dissertation Statement . 2
1.2 Contributions . 2
1.3 Dissertation Organization . 4
1.4 Dissertation Overview . 4

1.4.1 Provenance System in Enterprise Environment for Attack Forensics 4
1.4.2 Provenance in Deep Learning Based Artificial Intelligence Systems

for Adversarial Sample Detection 6

2 PROTRACER: TOWARDS PRACTICAL PROVENANCE TRACING BY AL-
TERNATING BETWEEN LOGGING AND TAINTING 8
2.1 Introduction . 8
2.2 Motivation . 13
2.3 System Architecture . 19
2.4 Tainting and Logging in the User Space Daemon 21

2.4.1 Definitions . 23
2.4.2 Run-time Operation Rules . 26
2.4.3 Handling Global File Accesses 31

2.5 Evaluation . 33
2.5.1 Effectiveness . 33
2.5.2 Logging Overhead and Scalability 36
2.5.3 Attack Investigation Cases . 38

2.6 Discussion . 42
2.7 Related Work . 43

3 MPI: MULTIPLE PERSPECTIVE ATTACK INVESTIGATION WITH SEMAN-
TIC AWARE EXECUTION PARTITIONING 45
3.1 Introduction . 45
3.2 Motivation . 48

3.2.1 Motivating Example . 49
3.2.2 Traditional Solutions . 50
3.2.3 Loop Based Partitioning Solutions 51

vi

Page
3.2.4 Our Approach . 54

3.3 Design . 57
3.3.1 Overview . 57
3.3.2 Annotations . 57
3.3.3 Runtime . 65
3.3.4 Analysis . 67
3.3.5 Run Time Optimization . 68
3.3.6 Causal Graph Construction . 69

3.4 Evaluation . 72
3.4.1 Overhead . 72
3.4.2 More Overhead Experimental Results 76
3.4.3 Annotation Efforts . 78
3.4.4 Annotation Miner . 79
3.4.5 Attack Investigation . 79
3.4.6 Case Studies . 82

3.5 Discussion . 85
3.6 Related work . 87

4 NIC: DETECTING ADVERSARIAL SAMPLES WITH NEURAL NETWORK
INVARIANT CHECKING . 89
4.1 Introduction . 89
4.2 Background and Related Work . 92

4.2.1 Neural Networks . 92
4.2.2 Adversarial Samples . 93
4.2.3 Existing Attacks . 96
4.2.4 Existing Defense and Detection 99

4.3 Observations . 103
4.3.1 Observations about DNN Attack Channels 103
4.3.2 Detection As Invariant Checking 105

4.4 System Design . 107
4.4.1 Overview . 107
4.4.2 Extracting DNN Invariants . 110
4.4.3 Training Invariant Models . 111
4.4.4 Randomization . 112
4.4.5 Threat Model . 114

4.5 Evaluation . 115
4.5.1 Setup . 115
4.5.2 Detecting Gradient Based Attacks 117
4.5.3 Detecting Content Based Attacks 119
4.5.4 NIC Invariants and Comparison 119
4.5.5 Adaptive Adversaries . 124
4.5.6 Choice of One Class Classifiers 126
4.5.7 Case Study . 126

vii

Page
4.6 Related Work . 128

5 CONCLUSION . 130

REFERENCES . 132

VITA . 147

viii

LIST OF TABLES

Table Page

2.1 ProTracer: Logging and Tainting Rules. 25

2.2 Comparison of Effectiveness of Various Provenance Systems 35

2.3 Effectiveness of ProTracer on Real-world Attack Scenarios 40

2.4 Causal Graph Comparison (BEEP/ProTracer). 41

3.1 MPI Space Overhead . 73

3.2 MPI Annotation Efforts . 78

4.1 Performance of NIC on Gradient Based Attacks 117

4.2 Performance of NIC on Content Based Attacks 118

4.3 NIC: Comparison with State-of-the-art Detectors 122

4.4 NIC: Effects of Different OCC Algorithms 125

4.5 NIC: PI and OP s . 127

ix

LIST OF FIGURES

Figure Page

2.1 Basic approaches to provenance tracing. (a) Actual executions in a top-down
order; (b) Approach I: audit logging; (c) Approach II: provenance propagation. . 9

2.2 The simplified causal graph of a phishing attack generated by BEEP. (Ovals:
execution units; Diamonds: network sessions; Rectangles: files. The nodes
inside the dashed areas are those pruned away by ProTracer. 14

2.3 Linux Audit system architecture . 16

2.4 ProTracer architecture overview (Dashed lines: control flow; Solid lines: data
flow; Numbers: the order of the events. 19

2.5 An abstract diagram to illustrate the logging and tainting run-time. The numbers
represent the order of the events. The logging/tainting behavior is highlighted
in red on edges.UT (u) and MT (a) are simplified representations of the taint
set of a unit u and address a, respectively. P denotes the current process and
id0 an ID denoting a network session. 21

2.6 Definitions for Logging and Tainting. 22

2.7 Example for the logging and tainting run-time. The shaded statements corre-
spond to syscalls. The statements in red are those instrumented by ProTracer to
generate special events. 29

2.8 Accumulated log size from the one-day execution of BEEP and ProTracer. Note
the size of BEEP log is measured by megabytes, whereas the ProTracer log is
measured by kilobytes. 37

2.9 Run-time overhead with different concurrent thread(s) for server programs. . . . 38

2.10 Run-time overhead for client programs. 38

2.11 Part of the graphs generated by BEEP and ProTracer for the backdoor case. . . 42

3.1 Simplified causal graph for case in §3.2.1 generated by traditional solutions . . 50

3.2 Simplified backtracking causal graph for the case in §3.2.1 with event loop
based partitioning technique. It only shows the causal relationship within the
Firefox process (runs for 5 minutes with 11 tabs and 7 websites) 52

3.3 Event handling loop of Transmission (version 2.6) 53

x

Figure Page

3.4 Different perspectives of Firefox partitioning 55

3.5 Simplified MPI causal graph for the case in §3.2.1 (Firefox in tabs) 55

3.6 Simplified MPI causal graph for the case in §3.2.1 (Firefox in websites) 56

3.7 MPI workflow . 58

3.8 Vim data structure and our annotations . 60

3.9 Simplified Firefox execution model . 61

3.10 Tab and window annotations in Firefox . 63

3.11 Firefox main thread and socket thread communication example 64

3.12 Example of annotation miner in MPI . 65

3.13 Instrumentation example (Vim, op_yank function) 68

3.14 An example of constructing backward causal graph. (UCX is short for Unit
Context Switch, FDR is short for File Descriptor Read, and SKW is short for
Socket Write.) . 72

3.15 MPI: Run-time overhead for each application 76

3.16 MPI: Run-time overhead for different partitioning perspectives 76

3.17 MPI: Space overhead for a whole day . 77

3.18 Annotation miner results . 79

3.19 FTP server partitioning perspectives . 80

3.20 FTP server partitioned by BEEP . 81

3.21 FTP server partitioned by each connection . 81

3.22 FTP server partitioned by users . 82

3.23 Causal graph for insider attack using BEEP 83

3.24 Causal graph for insider attack using MPI . 84

3.25 Firefox in page perspective . 85

4.1 Adversarial images of different attacks on MNIST. T: targeted. UT: untar-
geted. L0, L2 and L∞ stand for different distance metrics (gradient based
attacks) and CB stands for content based attacks. Captions are the attack names.
For gradient based attacks, Figure 4.1(a) is the original image. For each attack,
the first image is adversarial and the second image highlights the perturbations.
For content based attacks, red boxes highlight the added contents. 95

xi

Figure Page

4.2 Input A . 102

4.3 Input B . 102

4.4 PI and V I . 102

4.5 Input that violates PI . 102

4.6 Input that violates V I . 102

4.7 Program invariant and DNN invariant . 105

4.8 Overview of NIC . 108

4.9 Effects of using different SVM kernels . 112

4.10 Adversarial Samples. 1st line shows seed inputs, 2nd line shows without
detector, 3rd line shows with 1 detector. Gray boxes mean no adversarial
samples found in 1000 iterations. 124

4.11 Adversarial samples for the Trojan attack 127

4.12 NIC: V I and OV s . 127

xii

ABSTRACT

Ma, Shiqing Ph.D., Purdue University, August 2019. Effective and Efficient Computation
System Provenance Tracking. Major Professor: Xiangyu Zhang.

Provenance collection and analysis is one of the most important techniques used in

analyzing computation system behaviors. For forensic analysis in enterprise environment,

existing provenance systems are limited. On one hand, they tend to log many redundant and

irrelevant events causing high runtime and space overhead as well as long investigation time.

On the other hand, they lack the application specific provenance data, leading to ineffective

investigation process. Moreover, emerging machine learning especially deep learning based

artificial intelligence systems are hard to interpret and vulnerable to adversarial attacks.

Using provenance information to analyze such systems and defend adversarial attacks is

potentially very promising but not well-studied yet.

In this dissertation, I try to address the aforementioned challenges. I present an effective

and efficient operating system level provenance data collector, ProTracer. It features the idea

of alternating between logging and tainting to perform on-the-fly log filtering and reduction

to achieve low runtime and storage overhead. Tainting is used to track the dependence

relationships between system call events, and logging is performed only when useful

dependencies are detected. I also develop MPI, an LLVM based analysis and instrumentation

framework which automatically transfers existing applications to be provenance-aware. It

requires the programmers to annotate the desired data structures used for partitioning, and

then instruments the program to actively emit application specific semantics to provenance

collectors which can be used for multiple perspective attack investigation. In the end, I

propose a new technique named NIC, a provenance collection and analysis technique for

deep learning systems. It analyzes deep learning system internal variables to generate system

xiii

invariants as provenance for such systems, which can be then used to as a general way to

detect adversarial attacks.

1

1 INTRODUCTION

Computation system provenance collection and analysis is one of the most important

techniques in computer security. In enterprise environment, there is an increasing need

of more advanced forensics analysis techniques because of the rising of recent complex

cyber attacks, such as advanced persistent threats (APTs). The attackers usually targets

giant companies or governments. They intrude target networks and spread the malware

by leveraging advanced social engineering techniques, zero-day vulnerabilities or highly

customized malware, and the malware has very few activities for months or even years to

avoid being detected. Due to its long attack cycle, the damages it makes is usually huge.

Once detected, it is also very challenging to understand the root cause or the ramifications.

Provenance systems play an important role in such scenarios. These systems collect runtime

information of system activities and log them into log files. Once the attack is detected,

investigators perform backward analysis, which traces the dependencies between the logged

system events to find how the attack happens to understand the root cause of the attack; and

forward analysis, which locates the affected system objects (e.g. files, sockets) and system

subjects (e.g., processes) to understand the ramifications of the attack. Existing provenance

systems are not capable of handling these cases. The challenges mainly lie in two aspects:

the challenge of building an efficient and effective provenance system architecture to support

collecting, transferring and storing provenance data, and the challenge of transforming

existing applications to make them provenance-aware to enable application semantic rich

investigation.

Artificial intelligence (AI) systems, including deep learning systems, are vulnerable

to adversarial samples which are inputs carefully crafted by the adversary to fool AI

systems. With the success of AI systems in many areas such as image classification and

natural language processing (NLP), the security of AI system is becoming more and more

important. On one hand, such deep learning AI systems usually have a large number of

2

internal neurons, which represent behaviors of the AI system. Potentially, there is a great

opportunity to leverage such information to analyze AI systems. On the other hand, there is

no existing method to understand or interpret the internal activation values. This calls for

new provenance collection and analysis techniques to help researchers and users understand

or interpret the internal neurons and thus defend the adversarial samples.

In my research, I worked on solving security and software engineering problems [1, 2,

3, 4, 5, 6, 7, 8, 9]. In this dissertation, I will present my work on effective and efficient

computation system provenance tracking techniques to help computer forensics tasks [10,

11, 12, 13, 14, 15, 16, 17] and AI system security [18, 19, 20, 21].

1.1 Dissertation Statement

This dissertation addresses important issues in system provenance research for traditional

enterprise system and AI system. For traditional enterprise system, it first proposes ProTracer,

a newly designed operating system provenance collector that features alternating between

logging and tainting to enable on-the-fly event reduction to achieve low run time and storage

overheads. Second, it proposes an automatic approach to transfer existing applications to be

provenance-aware so that they can actively expose application specific semantics to the low

level provenance systems to help better attack investigations. For AI system, it proposes a

neuron activation distribution analysis based method to detect adversarial samples.

The thesis of this dissertation is as follows: effective and efficient provenance analysis

can be achieved by fine-grained system internal analysis, i.e., semantics aware execution

partitioning and on-the-fly log reduction for traditional software and layer-wise neuron

activation analysis for deep learning system.

1.2 Contributions

The contributions of this dissertation are as follows:

3

• We propose the novel idea of combining both logging and unit level tainting for

cost-effective provenance tracing. It collects system call events, performs on-the-fly

filtering to remove redundant and irrelevant events by leveraging a small size logging

buffer, and post-processes out-of-order events through a thread pool to achieve low

runtime and storage overheads. We re-designed the kernel tracing and transmission

facilities to help reduce the runtime overhead, and propose the idea of alternating

between logging and tainting to locate and filter out redundant and irrelevant events.

We built a prototype, ProTracer, based on the proposed idea, and the experimental

results show a great improvement over existing provenance systems, such as the Linux

Audit system.

• We propose and implement MPI based on the novel idea of partitioning execution

according to annotated internal program data structures to enable multi-perspective,

application semantics aware attack investigations. Given a small number of annota-

tions on program data structures, MPI automatically analyzes and instruments the

program to emit run time information to lower level operating system provenance

systems. Such information can be used for multi-perspective investigations. We also

develop an annotation miner that can be used to help programs identify internal data

structures to annotate.

• We analyze the attack channels used by adversarial samples in deep learning sys-

tems, and observe two popular attack channels: the internal neuron activation value

distribution channel and the provenance channel (i.e., the value distribution change

channel). Based on this analysis, we propose to analyze deep learning model internal

neuron behaviors of individual layers and their transitions to abstract the allowed and

benign model behaviors, and use such abstractions to detect adversarial samples. Our

approach has shown to be very effective in terms of detecting existing attack methods

and it also increases the attack bar for adaptive attacks.

4

1.3 Dissertation Organization

This dissertation is organized as follows: Chapter 2 discusses the design, implementation

and evaluation of ProTracer, which is a new efficient and effective operating system level

provenance tracking system. Chapter 3 presents MPI, which is a LLVM based analysis

and instrumentation framework to automatically transfer normal programs into provenance-

aware with multiple possible perspectives to enable more powerful attack investigation. In

Chapter 4, we will discuss the adversarial sample problem in existing AI systems and our

proposed adversarial sample detection method.

1.4 Dissertation Overview

1.4.1 Provenance System in Enterprise Environment for Attack Forensics

Recent cyber attacks, especially APT attacks are becoming increasingly sophisticated and

targeted, leading to significant damages such as data leak (e.g., huge swaths of confidential

documents were stolen in the Sony Picture attack), financial loss (e.g., the Carbanak attack

causes over $1 billion loss) and even threatening human life (e.g., the Stuxnet attack targets

nuclear power equipment). OS level provenance tracking is a very important approach for

APT attack investigation. Starting from the symptom events (e.g., the creation of a malicious

process), investigators perform backward or forward tracking on the provenance data based

on dependency relations (e.g., a process reads/writes a file). Traditional techniques suffer

from two problems: low analysis accuracy, and significant run time and space overhead. My

techniques try to solve these two problems.

Effective and Efficient Provenance Collection System Design

Prior to my work, widely used provenance collection systems like the Linux Audit

framework have substantial run time and storage overhead. According to our profiling

results, the root cause is the large amount of redundant events which require excessive

computing resources to transfer, log and store. To address these problems, I proposed

5

ProTracer, a lightweight provenance system that features online redundancy reduction. It

uses memory ring buffers as the data channel to speedup the data transfer process, and a

novel online log redundancy detection and reduction algorithm to reduce both the run time

overhead and space overhead via alternating between tainting system objects/subjects and

logging system events. It treats all incoming inputs to the system as taints, and propagates

them through dependency relations. Following the principle that persistent system events

(e.g., process creation) should be logged and temporary system events (e.g., duplicated file

reads) are used to propagate taints, we carefully designed a set of logging and tainting rules

to detect and reduce redundant events without affecting the completeness and correctness of

dependency analysis. The evaluation with different realistic system workloads and a number

of attack cases show that ProTracer only consumes 1.28% of the space used by state-of-the-

art provenance systems, 7 times smaller than a recent offline garbage collection technique

with less than 7% run time overhead for servers and less than 5% run time overhead for

regular applications. Moreover, the investigation process is also 7 times faster using reduced

log files.

Accurate Dependency Analysis

The low analysis accuracy problem in traditional techniques is mainly caused by the

dependence explosion problem: for long running processes, a subject (i.e., process) is

causally related to all the objects it has accessed so far, which introduces many false

dependencies. Prior to my work, the state-of-the-art work BEEP partitions these long

running executions to units based on individual iterations of event handling loops which

represent a common design pattern in these programs. An event handling loop accepts

external requests as inputs and then dispatches them to different functions for processing

in individual iteration. Each iteration constitutes a unit. With the partitioning, events

in different execution units are considered independent, which helps remove many false

dependencies. However, BEEP has many limitations. Firstly, execution units in BEEP

expose low level semantics, which are hard for investigators to understand. Secondly,

6

BEEP generates excessive units (e.g., units for GUI events like key strokes or mouse

movements). Thirdly, to find dependency relations across units, it requires a heavyweight

training process. Moreover, it performs binary rewriting to instrument the partitioning

logic, which is not practical for complex programs like Firefox. To solve these problems, I

proposed MPI, a multiple perspective attack investigation technique with semantics aware

execution partitioning. Users first annotate the target program to define desired investigation

perspectives with the assistance of our annotation helper tool. These perspectives reflect

high level semantic partitioning of the target program, such as individual tabs or individual

web pages for Firefox. MPI then automatically analyzes and instruments the target program

to produce provenance aware applications that can proactively report its current context

(e.g., current tab ID in Firefox) to the OS provenance collection system, such that events in

different contexts are independent. Doing so, MPI provides accurate, multiple perspective

and semantics rich attack investigations with less instrumentation and run time overhead.

1.4.2 Provenance in Deep Learning Based Artificial Intelligence Systems for Adversarial

Sample Detection

DNNs are vulnerable to adversarial samples that are generated by perturbing correctly

classified inputs to cause DNN models to misbehave (e.g., misclassification). This can

lead to disastrous consequences in security sensitive applications. Existing defense and

detection techniques work well for specific attacks but do not generalize well on different

types of attacks. The execution of a DNN model is just like a program execution consisting

of a sequence of matrix computations and activation functions. In the traditional software

security domain, researchers proposed program invariants checking to limit the program

behaviors to benign ones. For example, control flow invariants are used to check control

flow integrity, and a violation indicates an attack. Inspired by this, I proposed DNN

invariants to detect adversarial samples. Similar to program invariants, DNN invariants

represent benign behaviors of a given model. Unlike traditional program invariants, which

are logical constraints, DNN invariants are probabilistic models. There are two types of

7

DNN invariants, the value invariant and the provenance invariant. A value invariant is

activation value distributions of a specific layer for benign inputs, and a provenance invariant

is activation transition patterns of two consecutive layers for benign inputs. Together, value

and provenance invariants model the benign behaviors of a DNN model. A violation of any

invariant indicates an adversarial sample input. We empirically compared our technique,

NIC, with four other state-of-the-art detection methods (i.e., LID, MagNet, HGD, and

Feature Squeezing), and found that NIC is more general to different types of attacks with

over 96% detection accuracy on 11 different attacks and 13 different models.

8

2 PROTRACER: TOWARDS PRACTICAL PROVENANCE TRACING BY

ALTERNATING BETWEEN LOGGING AND TAINTING

Provenance tracing is a very important approach to Advanced Persistent Threat (APT)

attack detection and investigation. Existing techniques either suffer from the dependence

explosion problem or have non-trivial space and run-time overhead, which hinder their

application in practice. We propose ProTracer, a lightweight provenance tracing system that

alternates between system event logging and unit level taint propagation. The technique is

built on an on-the-fly system event processing infrastructure that features a very lightweight

kernel module and a sophisticated user space daemon that performs concurrent and out-

of-order event processing. The evaluation with different realistic system workloads and

a number of attack cases show that ProTracer only produces 13MB log data per day, and

0.84GB(Server)/2.32GB(Client) in 3 months without losing any important information. The

space consumption is only < 1.28% of the state-of-the-art, 7 times smaller than an off-line

garbage collection technique. The run-time overhead averages <7% for servers and <5%

for regular applications. The generated attack causal graphs are a few times smaller than

those by existing techniques while they are equally informative.

2.1 Introduction

There is an increasing need of detecting and investigating APT attacks in an enterprise

environment. A very important approach to addressing this problem is provenance tracking.

According to previous works [22, 23], provenance captures multiple aspects of information

about an entity in a system: what the entity’s origin is; how the entity is derived; and when it

originated. In the context of APT defense, entities with trackable provenance information

are of various granularity, such as processes, network connections, files, and data items

within files. Correspondingly, the what-provenance of such an entity e is the set of external

9

Figure 2.1.: Basic approaches to provenance tracing. (a) Actual executions in a top-down order; (b)

Approach I: audit logging; (c) Approach II: provenance propagation.

entities that have causally influenced e’s value or state (e.g., if one file’s content comes

from a number of network connections, then its what-provenance contains the IDs of the

corresponding sessions); whereas, the how-provenance of entity e consists of events and

their causal ordering – which can be organized as a causal graph – that demonstrates how

(and when) other entities influence e’s value or state.

Existing Approaches. Existing techniques fall into two categories: audit logging and

provenance propagation (or tainting). Audit logging [24, 10, 25, 26, 27, 28, 29, 30, 31]

records events during system execution and then causally connects events during attack

investigation. They treat processes as subjects; files, sockets, and other passive entities as

objects; and assume causality between subjects and objects involved in the same syscall event

(e.g., a process reading a file). In general, audit logging incurs much lower overhead than per-

instruction provenance propagation. Causal graphs can be constructed to denote both what-

and how-provenance. Provenance propagation, or tainting [32, 33, 34, 35, 36, 37, 38, 39]

works by first assigning IDs/tags to provenance sources (e.g., network sessions), and then

propagating the IDs through program dependencies captured during execution. Provenance

propagation usually entails set operations at the instruction level. Eventually, the set of

provenance IDs that reaches a sink (e.g., a socket for send) denotes the sink’s provenance.

Provenance propagation usually only captures the what-provenance.

Consider the example in Figure 2.1. Figure 2.1 (a) denotes a simple attack. The user

received a phishing email from attacker “Yellow Spring” and opened the URL in the email

10

through Firefox. Upon visiting the website, a Trojan executable for task management was

saved on the local disk. Later, the malware is executed and sends some secret to a remote

host. Fig. 2.1 (b) shows the events captured by audit logging. Causality can be derived from

events. Depending on the precision demanded and the scope of the analysis, events can be

captured at different granularity (e.g., syscalls or memory accesses) and different scopes

(e.g., host or whole enterprise).

Fig. 2.1 (c) shows the provenance propagation approach. IDs ys and x denote the

different provenance sources. Observe that when pine spawns Firefox, the latter inherits

the provenance of the former. The malware taskman’s provenance is the union of the

provenance set of Firefox and the download URL x. At the end, we know the origins of

the stolen secret, but we do not know its history. Such propagation can be exhibited within

an application, across applications, and across hosts.

Both approaches have pros and cons, and neither meets the requirements for enterprise-

wide APT detection/forensics. Logging has the following limitations:

(1) Dependence explosion is a major limitation of most audit logging. For a long-running

process, an output event is assumed to be causally dependent on all preceding input events,

and an input event is assumed to have causal influence on all subsequent output events. Such

conservative assumptions create excessive false positive causal relations, making it difficult

to reveal the true causality. In our previous work, we proposed to divide an execution to

autonomous units [26] such that an output is only dependent on the preceding inputs within

the same unit.

(2) High storage overhead. According to [40], audit logging easily generates gigabytes

of log data per host every day. This is particularly problematic for APT defense, as APT

malware tends to lurk in the victim host for a long time.

(3) Non-trivial run-time overhead. Although logging has relatively lower run-time overhead

compared to provenance propagation because it does not require expensive per-instruction

set operations, many existing logging systems [26, 40] are built on the default Linux audit

logging infrastructure that can cause up to 40% slow-down to the whole system due to

its poor design (Section 2.5). This makes it undesirable in a production environment.

11

Researchers have proposed advanced infrastructures [29, 30, 31] that can achieve much

lower overhead. However, to achieve the low overhead, these systems usually do not perform

any online event processing, but rather just record the events, leading to substantial space

consumption and dependence explosion.

The propagation-based approach features much lower space overhead compared to

logging as it does not generate log. It also has higher precision due to its fine-grained

instrumentation. However it has many limitations that hinder its application in the real

world:

(1) Substantial run-time overhead. Because propagation based techniques track individual

instructions’ execution and propagate (potentially) large provenance sets (Fig. 2.1 (c)),

they usually incur substantial run-time overhead. State-of-the-art implementations without

hardware support incur multiple factor of slow-down [33].

(2) Lack of implicit flow handling. Many propagation based techniques have difficulty

handling implicit flow, which is information flow through control dependencies [41] (usually

induced by program predicates).

(3) Complexity in implementation. Developers have to define provenance propagation logic

for each instruction, a task which is tedious and error-prone. This problem is exacerbated

when programs rely on third-party libraries; internal run-time engines (e.g., VMs); and

various languages and their run-times, which all require specific instrumentation/tracking

mechanisms.

In this paper, we develop ProTracer that leverages the advantages of both approaches

and overcomes their respective limitations. It collects system events and processes them on

the fly. The cost-effective online processing filters out events that are redundant or irrelevant

for provenance analysis, substantially reducing the space consumption and the size of the

generated causal graphs without affecting effectiveness.

System Goals. The goal of ProTracer is to provide efficient support for both the what-

provenance and the how-provenance queries on any system objects such as processes and

files. For example, given a corrupted file x, two what-provenance queries are: (1) “What

is the source/entry point of x?” and (2) “which other files in the enterprise were derived

12

from (and corrupted by) x?” A sample how-provenance query is: “Construct a causal

graph showing the events/entities that led to the corruption of x and those that have been

further corrupted by x.” We aim to achieve completeness. In particular, the result of a

what-provenance query on x must include all the external entities that directly/transitively

affected x; the result of a how-provenance query must capture the set of internal and external

entities that affected x and their causal relations with x.

The technique works as follows. It first leverages a selective instrumentation technique

similar to BEEP [26] to partition an execution to units, by emitting special syscalls denoting

the unit boundaries. Intuitively, an unit is an iteration of the event handling loop that

processes an external request or a UI event. Different from [26], ProTracer does not simply

log all the syscalls and the unit related events. Instead, it alternates between logging and

provenance propagation. Logging is conducted when changes are made to the permanent

storage or the external environment such as writing a file and sending a packet. For

other events such as file reads and network receives, ProTracer performs coarse-grained

provenance propagation (tainting), which taints at the level of a unit and an system object

(e.g. file) instead of an instruction and a memory byte. For example, if a unit receives packets

from two network sessions x1 and x2, the unit is tainted with both sources. If later the same

unit writes to a file on disk, a log entry is emitted containing the two sources. Then if the

file is read by another unit, the unit is tainted with the two sources too. Note that avoiding

logging as much as possible reduces the space overhead, and performing unit level and

system object level taint propagation substantially reduces the run-time overhead compared

to instruction level tainting. Unit level tainting does not lose any precision compared to

a log-all-events strategy. Furthermore, ProTracer decouples its implementation from the

expensive Linux audit logging system. It builds from scratch a highly optimized system.

It has a lightweight kernel module that simply saves events to a ring buffer. The buffer

is shared with a user space daemon that retrieves these events and processes them using

a thread pool. ProTracer features out-of-order event processing, meaning that the event

processing order does not need to be identical to the event order, maximizing concurrency.

Our contributions are summarized as follows.

13

• We propose the novel idea of combining both logging and unit level tainting to achieve

cost-effective provenance tracing.

• We develop an efficient run-time that features on-the-fly event processing. It not only

collects system events, but also filters out the redundant and irrelevant events on the

fly. It achieves low run-time overhead by out-of-order event processing through a

thread pool.

• We build a prototype and evaluate it on different systems with various users and

workloads for over 3 months, and on a number of real-world attacks that we reproduce.

Our results show that the space consumption of ProTracer is <1.28% of BEEP’s on

average, and about 7 times smaller than our previous offline log garbage collection

technique LogGC [40]. The log generated per day is roughly 13MB without losing

precision compared to BEEP. The run-time overhead averages <7% for servers and

<5% for user systems, which is 4-10 times lower than the default Linux Audit Logging

system, on which many techniques including BEEP were built, and comparable to

light-weight logging systems such as Hi-Fi [29, 30, 31] that simply record events

without processing them.

Like most existing audit logging systems [42, 26, 40], ProTracer trusts the kernel and any

user space daemon associated with the provenance tracing system. More discussion about

the assumptions, limitations and security analysis of ProTracer can be found in Section 2.6.

2.2 Motivation

Scenario: We will use a cyber attack scenario to motivate our technique. It is a phishing

attack, in which an employee received an phishing email with a malicious link via pine,

an email client. The email mentions that a free beta version of a costly program that the

employee has been hoping to own is released on the Internet. The employee was excited

and decided to try it out. He clicked the link; a new tab in Firefox was opened; he then

downloaded the file to the local machine. However, the file is actually a back-door malware.

14

a.a.a.a sendmail

sendmail

b.b.b.b

c.c.c.c

sendmail

procmail Mail file

pine Firefox

Firefox

d.d.d.d

Firefox

l.l.l.l

Backdoor

bash

backdoorFile: f

e.e.e.e

Figure 2.2.: The simplified causal graph of a phishing attack generated by BEEP. (Ovals: execution

units; Diamonds: network sessions; Rectangles: files. The nodes inside the dashed areas are those

pruned away by ProTracer.

Later when it is executed, a back-door process is started and sends some local file to a

remote IP address.

State-of-The-Art: In BEEP [26], we observed that many programs share a common prop-

erty: their execution is dominated by event handling loops. More importantly, individual

iterations of these loops tend to handle relatively independent tasks such as serving a client

request or handling a UI event. These observations were made by a study of more than

100 widely used open-source applications such as servers, browsers, and social networking

applications. It was then proposed to partition an execution to autonomous units, each

corresponding to an iteration of some event handling loop. In particular, program analy-

sis was developed in [26] to recognize the unit-inducing loops, leveraging the following

three observations: (1) such loops tend to be at the top level; (2) their loop bodies must

make some I/O syscalls; and (3) their loop bodies dominate the execution time. Binary

instrumentation is hence used to instrument the loop entry and exit points such that spe-

cial syscalls are generated to indicate unit boundaries. An output syscall is considered

only dependent on the preceding input syscalls in the same unit, whereas in other logging

techniques [42, 25, 27], it is dependent on all the preceding input syscalls in the whole

execution, leading to dependence explosion.

In some cases, a unit by itself may not fully cover the sub-execution that handles an

independent input. Instead, a few inter-dependent units together constitute a semantically in-

dependent sub-execution. In practice, there are memory dependencies across unit boundaries.

However, only some of them – called workflow dependencies – are helpful in connecting

15

units that belong to the same sub-execution. Examples include the dependencies caused

by the enqueue and dequeue operations of a task queue. In [26], inter-unit dependencies

are identified via program analysis. A small number of memory operations that induce

inter-unit dependencies are instrumented to emit special syscalls that help constructing the

dependencies during off-line processing.

Fig. 2.2 shows the causal graph constructed by BEEP. The ovals on the left represent the

units of sendmail, which checks the IP address through the Domain Name System (DNS)

(a.a.a.a), and then interacts with the authentication server (b.b.b.b) and mail server (c.c.c.c) to

fetch all emails. An email is further processed by a separate thread, whose unit is the one on

the right of the dashed circle. The email is further filtered by procmail before it is opened

by pine. Inside pine, the user clicks the phishing link, which triggers Firefox. Firefox

uses multiple threads to process a request. The units in the dashed area correspond to units

of the main thread and the tab thread, which uses an IPC channel i.i.i.i to communicate

with a worker thread that downloads the backdoor file from d.d.d.d. The malware is later

executed through bash and sends a file f to e.e.e.e.

Limitations of the State-of-the-Art. Although the causal graphs generated by BEEP (e.g.

Fig. 2.2) are usually precise and concise, there are a few critical limitations that hinder the

application of BEEP in practice.

(1) Substantial space overhead. BEEP generates a few GB log per-day for a system with a

normal workload. This is because it logs all the provenance related syscalls including those

generated by instrumentation. In [40], an offline garbage collection (GC) technique LogGC

was proposed to prune redundant events from BEEP logs. However, it still requires storing

all the events before pruning them. During pruning, it traverses the large log file back and

forth in order to identify the redundant events. Due to the high cost of processing large files,

one cannot afford running the GC technique frequently.

(2) Non-trivial run-time overhead. Although BEEP’s instrumentation is lightweight, like

many other audit logging systems (e.g. [42]) it is unfortunately built on the Linux Audit

system that has non-trivial run-time overhead by itself. According to our experiment

(Section 2.5), the overhead can be as high as 43%.

16

Linux programs

Matching engine

System call
processing

User Filter

Exit Filter

Task Filter

Exclude Filter

audit
daemon

User-space

Kernel syscall

syscall return

netlink

Figure 2.3.: Linux Audit system architecture

A further inspection reveals that the Linux Audit logging system is unnecessarily heavy-

weight. Fig. 2.3 illustrates the architecture of the Linux Audit logging system. It consists

of two main parts: a kernel module for system call processing and a few audit applications

that process/store auditing events, managed by an dispatcher daemon audisp. The kernel

module receives syscalls from Linux programs. A syscall first goes through the user

filter that decides if the syscall will be further sent to the other kernel modules for further

processing. The user filter also forwards the syscall to the exclude filter to determine if the

syscall should be prevented from being sent to the audit apps. After the syscall is processed

(by other modules), the return state needs to go through the exit filter and then the exclude

filter to determine if the state is interesting for auditing. The control is only given back to

the Linux program after all these activities.

Note that most of the filtering work is done on the kernel side, which blocks the

application execution for a long time. Second, all types of syscalls have to go through

filters even if they are not interesting. It uses netlink to send data from the kernel to the

user-space daemon, which is slow. Finally, the audit applications write to the log file, which

also generates a lot of events that need to go through the costly procedure.

In Hi-Fi [29], researchers have developed a more advanced logging infrastructure with

a substantially lower run-time overhead (3% in a representative workload). They leverage

17

the Linux Security Modules (LSM) that allow adding light-weight hooks before accesses to

kernel objects such as inodes, and use a high performance buffer to deliver kernel object

access events to a user space logging application. Despite its low overhead, Hi-Fi does not

perform event processing on the fly hence it records all events. Furthermore, kernel object

access events are at a level lower than syscalls. As a result, some commonly used syscalls

such as file read may lead to many kernel object accesses, which induce additional overhead.

Finally, LSM hooks may have difficulty handling customized syscalls introduced by BEEP

as those syscalls do not lead to any kernel object accesses. As such, the capability of solving

dependence explosion cannot be easily ported to Hi-Fi.

The Basic Idea of ProTracer. We improve the practicality of provenance tracing by the

following two aspects.

In the first aspect, We develop a lightweight kernel module. We will leverage a kernel

facility called Tracepoints [43]. A tracepoint can be placed in both user and kernel code to

provide a hook to call a kernel function (probe). In ProTracer, we will insert tracepoints to

kernel functions that process provenance related syscalls (e.g., sys_clone). The tracepoint

driver is extremely lightweight and simply stores the events to a ring buffer, which will be

processed by the user space daemon through a pool of threads. More details can be found in

Section 2.3.

In the second aspect, we avoid logging as much as possible by alternating between tainting

and logging. We only log when files are written to the disk or packets are sent through

sockets for either IPC or real network communication. For other syscalls that only lead to

intra-process information flow such as file reads and network receives, we perform unit level

taint propagation. Tainting has the following benefits:

(1) Avoid logging redundant events. Consider the dashed area for Firefox in the middle

of Fig. 2.2. At the entry point to the area on the left, ProTracer will introduce a new taint

to represent the provenance of the hyper link, which is essentially the sub-graph to the

left of the area. The taint is further propagated through the nodes inside the dashed area.

Note that since no external accesses are performed inside the area, the taint remains the

same until it gets out the area. As such, we avoids logging events in that duration without

18

losing any provenance information. The same applies to the dashed box for sendmail.

Similarly, consider an FTP server. Each unit of the server corresponds to processing a client

request. Assume the client request is to upload a large file, which entails many network

receive syscalls. In a pure logging system such as [26], all the syscalls need to be logged. In

ProTracer, logging these events is avoided by taint propagation. In fact, all these syscalls

have the same taint and do not add to the taint set.

(2) Avoid logging dead events. Tainting also allows ProTracer to handle the large number of

syscalls that do not have any permanent effects on the system. We call them the dead events.

For example, syscalls related to temporary files represent a large portion of a raw audit

log [40]. However, since these files are just used internally and never accessed by others,

their taint propagation usually does not reach any other file writes or network sends and

hence does not trigger any logging. Lets consider the FTP server example again. Assume

during the processing of the file upload request, the connection is lost. The FTP server will

eventually timeout and exit the execution unit without writing any data. In this case, the

taint source representing the data session with the client IP is not propagated to any updates

on the storage. Thus nothing needs to be logged.

Note that the aforementioned two kinds of reductions are different from the reduction

in LogGC [40], which is an offline log garbage collection technique. LogGC is based on

reachability so that all the events in the dashed area of Fig. 2.2 cannot be pruned as they are

reachable from the backdoor process. Furthermore, it requires first acquiring the entire log

file and then traversing the large file back and forth to identify unreachable items, incurring

high cost.

(3) Allow concurrent event processing. Introducing a new taint to represent a provenance

set allows out-of-order event processing. For example, by introducing a new taint when

the dashed region of Firefox in Fig. 2.2 is entered, the processing of the Firefox events

does not have to wait for the processing of the events in the sub-graph on the left of the

shaded area. This maximizes the utilization of the thread pool. More details can be found in

Section 2.4.

19

User Space

Kernel Space Ring Buffer

ProTracer
Kernel Module

Kernal functions with
Tracepoints

User Space Process
with thread pool

Log File

1. syscall -> kernal functoin

3. kernal module -> syscall

2. Copy syscall information to buffer ring

4. Handle syscall events

5. Write records to log file

Figure 2.4.: ProTracer architecture overview (Dashed lines: control flow; Solid lines: data flow;

Numbers: the order of the events.

2.3 System Architecture

The architecture of ProTracer is shown in Fig. 2.4. The system consists of two main

parts: a kernel module and a user space daemon process. The kernel module is responsible

for collecting syscall events and writing them to the ring buffer. The user space process

fetches and handles these events, including deciding to log the events or perform taint

propagation.

When a Linux application makes a syscall, the execution is trapped to the kernel space

and the application is blocked until the kernel finishes processing the syscall. It is hence

critical to ensure the kernel module is lightweight. ProTracer makes use of an existing

lightweight Linux kernel trace facility, Tracepoints [43]. In particular, we identify the set of

20

kernel functions that handle syscalls that can induce causality with system objects or other

processes. They mainly fall into the following categories.

• All syscalls that operate on file descriptors (representing regular files, network sockets,

device files, pipes and so on), including creation, read, write, and close.

• Special syscalls that help trace taints on certain types of objects. For example, sys_bind

for sockets.

• IPC syscalls operating on pipes, semaphores, message queues, shared memory, and

UNIX domain sockets.

• Process manipulation syscalls including process creation, termination, and privilege

changes (escalation or degradation).

• Syscalls generated by program instrumentation to denote unit boundaries and inter-unit

workflow.

The syscalls that are not monitored are mainly for time management (e.g. timer_create),

fetching information from file system or kernel (e.g. getpid), and those not implemented

(e.g. getpmsg). To our knowledge, the set is complete for provenance tracing with certain

assumptions. Detailed discussion can be found in Section 2.6. Tracepoints are inserted at

the entry and exit points of the kernel functions. They are lightweight hooks that can hand

over the execution to our kernel module so that the syscall and its context can be copied to

the ring buffer. The trace points at the entries are to collect the parameters while those at

the exits are to collect the syscall results. We separate the two to allow better concurrency

in event processing. Our kernel module is also responsible for managing the ring buffer to

avoid any event loss.

ProTracer uses a user space daemon process to process the syscall events. To increase

throughput, the daemon process uses a pool of worker threads, which is different from most

existing works. All events are time-stamped so that we do not need to worry about the event

order in the buffer and in the log file. A general worker thread assignment policy is that

syscalls from the same application cannot be processed by more than one worker thread. In

21

other words, event processing is in order for the same application. But it may be out-of-order

for events from different applications. For each event, the daemon process needs to decide to

log it or to perform taint propagation. More details are discussed in Section 2.4. All threads

share a log buffer that stores the log records. The log records are written to disk only when

the buffer is nearly full or the system is in a relatively idle state so that we can reduce the

number of disk I/O operations.

To achieve good performance, ProTracer uses a ring buffer to share data between the

kernel module and the user space daemon. The ring buffer is similar to the high performance

buffer in Hi-Fi [29], which is also memory-mapped to the user space so that it can be

accessed without any copy operations. However, we choose to use tracepoints for syscall

interception instead of LSM hooks, to support customized syscalls and to trace at the syscall

level instead of the lower kernel object access level.

Figure 2.5.: An abstract diagram to illustrate the logging and tainting run-time. The numbers

represent the order of the events. The logging/tainting behavior is highlighted in red on edges.UT (u)

and MT (a) are simplified representations of the taint set of a unit u and address a, respectively. P

denotes the current process and id0 an ID denoting a network session.

2.4 Tainting and Logging in the User Space Daemon

In this section, we explain the user space daemon that alternates between tainting and

logging. The basic scheme is intuitively illustrated by Fig. 2.5. When receiving a syscall

event, the daemon checks if it is a syscall that makes permanent changes to the external state

(e.g., a file write or a socket send). If so, it logs the current taint set of the event to disk,

which denotes the provenance of the associated object (e.g., the logging action in red on

22

O
T
∈
O
bj
ec
tT

a
in
tS

to
re

::
=

(I
P
C
|
F
il
e)
→

T
a
in
t

U
T
∈
U
n
it
T
a
in
tS

to
re

::
=

P
ro
ce
ss
→
P
(T

a
in
t)

M
T
∈
M

em
T
a
in
tS

to
re

::
=

A
d
d
re
ss
→
P
(T

a
in
t)

t
∈
T
a
in
t

::
=

(I
P
C
|
F
il
e
|
I
D
)
×

T
im

eS
ta
m
p

T
S
rc
∈
T
a
in
tS

ou
rc
e

::
=

I
D
→

(S
es
si
on
|
E
m
a
il
)

L
B
∈
L
og
B
u
f
f
er

::
=

(W
R

IT
E
×
(F

il
e
|
S
es
si
on
|
I
P
C
)
×
P
(T

a
in
t)
×
T
im

eS
ta
m
p
|

D
E

L
×
F
il
e
×
P
(T

a
in
t)
×
T
im

eS
ta
m
p
|

FO
R

K
×
P
ro
ce
ss
×
P
(T

a
in
t)
×

T
im

eS
ta
m
p
)

e
∈
E
v
en

t
::
=

F
il
eO

p
en

(P
ro
ce
ss
,F

il
e)
|
F
il
eR

ea
d
(P

ro
ce
ss
,F

il
e)
|
F
il
eW

ri
te
(P

ro
ce
ss
,F

il
e)
|

F
il
eD

el
(P

ro
ce
ss
,F

il
e)
|

I
P
C
R
ea
d
(P

ro
ce
ss
,I
P
C
)
|
I
P
C
W

ri
te
(P

ro
ce
ss
,I
P
C
)
|

S
es
si
on

C
re
a
te
(P

ro
ce
ss
,S

es
si
on

)
|
S
es
si
on

R
ea
d
(P

ro
ce
ss
,S

es
si
on

)
|

S
es
si
on

W
ri
te
(P

ro
ce
ss
,S

es
si
on

)
|

F
or
k
(P

ro
ce
ss
,P

ro
ce
ss
)
|

M
em

W
ri
te
(P

ro
ce
ss
,A

d
d
re
ss
)
|
M

em
R
ea
d
(P

ro
ce
ss
,A

d
d
re
ss
)
|

U
n
it
E
n
te
r(
P
ro
ce
ss
)
|
U
n
it
E
x
it
(P

ro
ce
ss
)
|

E
m
a
il
R
ec
v
(P

ro
ce
ss
,E

m
a
il
)

f
∈
F
il
e

c
∈
I
P
C

a
∈
A
d
d
re
ss

p
∈
P
ro
ce
ss

x
∈
S
es
si
on

m
∈
E
m
a
il

ts
∈
T
im

eS
ta
m
p

Fi
gu

re
2.

6.
:D

efi
ni

tio
ns

fo
rL

og
gi

ng
an

d
Ta

in
tin

g.

23

edge 1). When a new unit starts (i.e., the event handling loop starts to process a new and

independent request), the taint set associated with the unit is reset to only containing the

process itself (e.g., UT [u2] = {P} to the left of u2), meaning the provenance of the unit

only contains the current process.

Upon an input event, a new taint is created to denote the current provenance set of the

input object (e.g., the new taint F1 on edge 2 denoting the current provenance set of F1

and ID id1 on edge 3 denoting the network session). The taint is then added to the taint

set of the unit, denoting that now the unit is causally related to the corresponding input

source. Input syscalls only trigger taint propagation instead of logging. Upon a memory

write representing workflow, the current unit taint set is propagated to the memory (e.g., the

highlighted behavior on edge 8). Later, when another unit loads from the same memory

location, the memory taint set is propagated to the unit (e.g., the behavior on edge 9).

Eventually, when unit u3 writes to F3, the provenance of F3 is the current unit taint set. Note

that F3’s provenance set contains F1, implying a causal edge between this event and the

previously logged event about F1. In our implementation, we associate timestamps with

taints and events to facilitate recovery of such causality. It is worth noting that although

there are 10 syscall events, only two entries are logged, which are sufficient to disclose

both the what- and how-provenance of F1 and F3. In particular, the how-provenance is

represented by the causal graph.

Next, we discuss the details of our design using an abstraction of the system.

2.4.1 Definitions

The definitions related to our discussion are presented in Fig. 2.6. To support tainting,

three data structures are introduced to store taints for objects, units, and memory, respectively.

In particular, we use an ObjectTaintStore structure to associate a singleton taint to an object

of two possible kinds: Inter-Process Communication objects (IPCs) that are essentially a

special kind of sockets, and memory-mapped files. We use a UnitTaintStore structure to

associate a process with a set of taints, denoting the taints of the current execution unit,

24

which is usually an iteration of the event handling loop. MemTaintStore associates a set of

taints with a memory address, which is to support intra-process taint propagation. ProTracer

selectively instruments a very small number of critical memory reads and writes that denote

the inter-unit workflow (i.e., high level data flow [26]) of the application, e.g. the reads and

writes of a task queue that is used to pass user requests across execution units. A taint can

be a time-stamped IPC, file, or an ID that represents a taint source, which can be either a

network session or an email received. In other words, we use IDs to denote external sources.

The mapping is maintained by a TaintSource structure. In contrast, for objects internal to

the system we may use a taint consisting of the object and a timestamp ts to denote the

provenance of that object at ts, which may represent a set of IDs (e.g., in event 2 in Fig. 2.5

F1 denotes the current provenance of file F1, which contains P and id0).

As mentioned in Section 2.1, we cannot capture all important provenance by taint

propagation alone, which does not record the history of an object or a process. As such, in

addition to taint propagation, we also log important events. More specifically, we log all the

permanent changes to the system, such as file writes, file deletes, outgoing network traffic,

and process creation, together with their taints. LogBuffer is a memory buffer to store these

changes. We use a memory buffer to avoid frequent disk accesses. More importantly, the

memory buffer allows us to easily avoid logging events related to temporary files, which are

often in a large number. More discussion can be found later.

As mentioned in Section 2.3, ProTracer intercepts all syscalls related to provenance,

including those related to units. We abstract these syscalls to a few representatives as shown

in Fig. 2.6. In particular, they denote file, IPC, network session, process spawn, memory

reads/writes denoting inter-unit workflow, unit enter/exit, and taint source related operations.

The run-time behavior corresponding to these events will be discussed next. Note that

although our implementation intercepts both the entry and the exit of a kernel function

that handles a syscall, our abstraction combines the two events into one abstract event for

discussion simplicity.

25

Ta
bl

e
2.

1.
:P

ro
Tr

ac
er

:L
og

gi
ng

an
d

Ta
in

tin
g

R
ul

es
.

R
ul

e
#

E
ve

nt
A

ct
io

n

1
F
il
eO

pe
n
(p
,f

)
O
T
[f
]
=
⟨f
,g

et
Ti

m
ę(
)⟩

;

2
F
il
eR

ea
d
(p
,f

)
U
T
[p
]∪

=
{O

T
[f
]}

3
F
il
eW

ri
te
(p
,f

)
L
B

=
L
B

+
⟨W

R
IT

E
,f
,U

T
[p
]∪
{O

T
[f
]}
,g

et
Ti

m
ę(
)⟩

4
F
il
eD

el
(p
,f

)
if̨

(f
is

ow
ne

d
by

p)
L
B

=
L
B
−
⟨∗
,f
,∗
,∗
⟩;

L
B

=
L
B

+
⟨D

E
L
,f
,U

T
[p
],

ge
tT

im
ę(
)⟩

;

O
T
[f
]
=

n
il
;

5
I
P
C
R
ea
d
(p
,c
)

O
T
[c
]
=
⟨c
,g

et
Ti

m
ę(
)⟩
;
U
T
[p
]
=

U
T
[p
]∪
{O

T
[c
]}

6
I
P
C
W

ri
te
(p
,c
)

L
B

=
L
B

+
⟨W

R
IT

E
,c
,U

T
[p
],

ge
tT

im
ę(
)⟩

7
S
es
si
on

C
re
a
te
(p
,x
)

t
=

ne
w

So
ur

cę
()
;
O
T
[x
]
=
⟨t
,g

et
tim

ę(
)⟩

8
S
es
si
on

R
ea
d
(p
,x
)

U
T
[p
]
=

U
T
[p
]∪
{O

T
[x
]}

9
S
es
si
on

W
ri
te
(p
,x
)

L
B

=
L
B

+
⟨W

R
IT

E
,x
,U

T
[p
],

ge
tT

im
ę(
)⟩

10
F
or
k
(p

1
,p

2
)

L
B

=
L
B

+
⟨F

O
R

K
,p

2
,U

T
[p

1
],

ge
tT

im
ę(
)⟩

11
M

em
W

ri
te
(p
,a
)

M
T
[a
]
=

U
T
[p
];

12
M

em
R
ea
d
(p
,a
)

U
T
[p
]∪

=
M

T
[a
]

13
U
n
it
E
n
te
r(
p)

U
T
[p
]
=
{⟨
p,
−
⟩}

14
E
m
a
il
R
ec
v
(p
,m

)
t
=

ne
w

So
ur

cę
()
;
U
T
[p
]
=

U
T
[p
]+
{⟨
t,

ge
tT

im
ę(
)⟩
}

26

2.4.2 Run-time Operation Rules

Table 2.1 describes the taint propagation and logging operations conducted by the threads

in the user space daemon. A worker thread (in the daemon) receives an event from the ring

buffer and processes it based on the rules in the table.

File Operations. Rules 1-4 are for file related event processing. For a file open event with

process p opening a file f , ProTracer creates a new taint that consists of the file object and

the current timestamp. The taint denotes the provenance set of the file at this moment, which

may include multiple external sources. The principle is that ProTracer uses a singleton taint

to represent a provenance set for a system object that can propagate information across

processes, including file and IPC. This is a critical design decision which will be further

explained. The taint is then associated with f through the ObjectTaintStore OT . Upon a file

read, the taint set of the current execution unit of p is enhanced with the taint of f , meaning

the current execution of p is also affected by the provenance of f . Upon a file write, a log

entry is inserted to the log buffer denoting the write operation and the associated taint set,

which is the union of the current unit taint set and the file taint (Rule 3). Intuitively, after

the write, the file inherits the taints of all the preceding input syscalls in the same unit. The

design choice of using a singleton taint to denote the provenance (taint) set of an object

on external storage has a few critical advantages over the design of directly propagating

provenance sets.

• An object may be transitively dependent on a large set of taint sources. It is expensive

to propagate taint sets, which entails allocating space and performing set unions.

Hence, ProTracer uses a singleton taint consisting of the object and a timestamp to

denote the current taint set of the object and propagates the taint.

• The design allows out-of-order processing of events in the ring buffer. As mentioned

earlier, the kernel inserts events with timestamps to the ring buffer and the user space

daemon retrieves and handles these events from the same buffer. Events from different

processes may be dispatched to different threads that execute concurrently. As such,

event processing across processes may be out-of-order. For example, assume two

27

applications A and B. A writes to a file f and closes it before B reads it. The file

read event (in B) may be processed before the file write (in A) is processed. If we

directly propagate the taint set of f from A to B, we have to wait for the file write

to be processed before processing the file read, substantially limiting concurrency.

With the current design, the file read will use a fresh taint, without waiting for the

computation of the set. The timestamps of the taint set (recorded to the log buffer at

the write event) and the fresh taint (introduced at the file read) would allow ProTracer

to infer the proper mapping between the set and the new taint during the offline causal

analysis.

• The design allows us to record not only the what provenance, but also the how

provenance. Traditional techniques based on standard tainting [24] can only record

the set of taint sources associated with an object, missing the history about how the

object was created and updated. With the current design, each time an object is

updated (i.e. written to the permanent storage), a log entry representing the set of

taints of the object is recorded.

Upon deleting a file (Rule 4), ProTracer not only resets the taint of f , but also removes

all the log entries in the buffer related to f if the process p is the exclusive owner of f ,

meaning f is a temporary file that does not escape the lifespan of its owner. We say the p is

the owner of f if p creates f and f is never read by another process. If p is not the owner,

the log entries related to f cannot be removed as the history of f may still be of interest.

For example, an APT attack may remove a malicious library generated in an earlier phase of

the attack (by another process) to cover its trail. The history of the malicious library is still

valuable although it is deleted. In addition, the deletion event itself needs to be logged as it

is part of the malicious behavior. The log buffer is flushed to the disk when it is close to

full. It often takes a long time for the log buffer to reach its capacity so that most temporary

file deletes happen before the buffer is flushed, allowing the pruning of dead log events

(Section 2.2) such as temporary file reads and writes.

IPC Operations. Processes may use IPC (e.g. pipes) to communicate with each other.

Upon an IPC write (Rule 6), a log entry is added to denote the write and the provenance of

28

the write, which is essentially the current unit taint set. Following the design policy of using

singleton taints to allow out-of-order processing, upon an IPC read a new taint consisting

of the IPC object and the current timestamp is created and added to the unit taint set of the

receiver process (Rule 5).

Network Operations and Process Spawn. Network operations are handled similar to file

operations. We consider a network session as a unique taint source. As such, each time

a session is created, a new taint ID is created and associated with the session. When a

process p receives packets from a session, the taint of the session is added to the unit taint

set of p (Rule 8). When p sends a packet through a session, the provenance of the network

send is denoted by the unit taint set of p. A log entry containing the taint set is recorded.

Such entries allow ProTracer to construct causality across hosts. When a process p1 spawns

another process p2 (Rule 10), the provenance of the child is the unit taint set of its parent. A

log entry is added to record the fork and the corresponding taint set.

Execution Unit Related Operations. These events are generated by selective program

instrumentation [26]. Application executables are instrumented in a very small number of

places to emit special syscalls to indicate the beginning and the end of an execution unit,

and memory operations that denote the high level workflow between units. ProTracer needs

to propagate taints through the memory object involved. Upon a write to a memory object,

the unit taint set is propagated to the object (Rule 11). Later, when the same memory object

is read in another unit, its taint set is inserted to the taint set of the new unit (Rule 12). As

mentioned in Section 2.2, execution units are considered autonomous and their correlations

are only through the workflow related memory objects explicitly monitored by ProTracer.

Therefore, when the execution leaves a unit and enters a new unit, the unit taint set is reset

to only containing the process itself (Rule 13).

Taint Source Operations. Upon events such as receiving an email, a new ID representing

the source is created and inserted to the unit taint set (Rule 14). Note that these events

may be at a higher level than syscalls. In our implementation, the corresponding protocol

libraries are instrumented to generate these high level events.

29

UnitEnter ();

MemWrite(q.tail())

UnitEnter();

MemRead(q.head());

UnitEnter();

MemWrite(buf);

MemRead(buf);

Program TimeStamp Event Rule OT[]/MT[] UT[] LB

1 UnitEnter(b) 13 UT[b]={OT[b]}={<b,->}

2 MemWrite(b,q[0]) 11 MT[q[0]]=UT[b]={<b,->}

3 UnitEnter(b) 13 UT[b]={OT[b]}={<b,->}

4 MemRead(b,q[0]) 12 UT[b]=UT[b] U MT[q[0]]={<b,->}

5 SessionCreate(b,x) 7 OT[x]=<t1,5>

6 SessionRead(b,x) 8 UT[b]=UT[b] U {OT[x]}={<b,->, <t1,5>}

7 FileWrite(b,f) 3 LB=<W,f,{<b,->,<t1,5>},7>

8 IPCWrite(b,c) 6

LB=<W,f,{<b,->,<t1,5>},7>;

 <W,c,{<b,->,<t1,5>},8>

9 FileDel(b,f) 4 OT[f]=nil LB= <W,c,{<b,->,<t1,5>},8>

10 UnitEnter(r) 13 UT[r]={OT[r]}={<r,->}

11 IPCRead(r,c) 7 OT[c]=<c,11> UT[r]=UT[r] U OT[c] ={<c,11>,<r,->}

12 MemWrite(r,buf) 11 MT[buf]=UT[r]={<c,11>,<r,->}

13 UnitEnter(r) 13 UT[r]={<r,->}

14 MemRead(r,buf) 12 UT[r]=UT[r] U MT[buf]={<c,11>,<r,->}

15 FileWrite(r,o) 3

LB=<W,c,{<b,->,<t2,5>},8>;

 <W,o,{<c,11>,<r,->},15>

Browser

Reader

Figure 2.7.: Example for the logging and tainting run-time. The shaded statements correspond to

syscalls. The statements in red are those instrumented by ProTracer to generate special events.

Example. Consider the example in Fig. 2.7. We have two programs running in the system:

a browser and a PDF reader. Parts of the code snippets of the two applications are shown.

Although the code snippets simulate the workflow in a real-world browser and a real-

world PDF reader, they are substantially simplified and abstracted to be consistent with our

definitions in Fig. 2.6. Specifically, the browser has two threads: the UI thread that handles

UI events and the worker thread that performs background operations such as downloading

a file. The event handling loop dominates the execution of the UI thread. The beginning of

the loop is instrumented by a function UnitEnter() that will produce an event denoting

the start of a unit. In lines 8-11, if the UI event is the click of a hyper link, the URL is

added to the work queue. Since the queue operations denote the workflow across units, the

enqueue operation is instrumented to generate a memory write event (line 9). The worker

30

thread execution is dominated by the loop in lines 22-36, which acquires a request from the

work queue and processes it. Lines 23-24 denote the unit instrumentation and the memory

read instrumentation. If the request is to access a URL, a temporary file “tmp” is created to

store the downloaded content. A session is created and used to download the resource (lines

28-29). The downloaded content is written to the file (line 30). An IPC object is created to

communicate with the PDF reader to display the PDF file (lines 32-33). The temporary file

is deleted at the end (line 34).

The PDF reader is also event driven. If it receives an IPC request to render a PDF file,

it acquires the file through IPC and saves it to buf (lines 56-57) before rendering it. If it

receives a UI request to save the PDF file, it creates a file and writes buf to the file (lines

62-64). ProTracer detects that buf carries workflow across units (i.e. the loop iterations

corresponding to the IPC and the save-as-a-file operations), the read and write of buf are

instrumented (lines 58 and 63).

Fig. 2.7 (c) shows a sample execution of the system, in which the user clicks a hyper

link denoting a remote PDF file, the file is then downloaded and rendered by the reader, and

finally the user further saves the file. The table shows the events generated by ProTracer

and how the run-time processes these events. The second column shows the timestamps;

the third column shows the events with process b and r denoting the browser and the reader,

respectively. The fourth column shows the rules applied and the last three columns show the

state of the various data structures.

Observe that in the first unit corresponding to the click of the hyper link, the UnitEnter

event causes the unit taint of b to be reset to {⟨b,−⟩}. Upon the MemWrite at 2, the taint of

the queue is updated to contain the taint of the current unit. The execution then proceeds to

the unit from the worker thread that downloads the file. At 3, the unit taint set is reset. At 4,

the taint set of the queue is unioned with the unit taint set. At 5, since a network session

is considered an external source, an ID t1 is generated to denote the source. The taint of

the session is inserted to the unit taint set at 6 due to the SessionRead event. At 7, the

downloaded content is saved to the temporary file f , and thus a log entry is inserted to the

log buffer LB to denote the write and the provenance. The file is further passed to the reader

31

through an IPC c. The IPCWrite event leads to another log entry at 8. At 9, the deletion of

f leads to the removal of the first log entry as f is a temporary file.

Timestamps 10-15 correspond to the execution of the reader, which consists of two units.

The first one renders the file and the second one saves the file. At 11, a new taint is created

to denote the provenance set of the IPC object c at timestamp 11, which essentially denotes

the set {⟨b,−⟩, ⟨t1, 5⟩}. The taint is inserted to the unit taint set of r. The unit taint set

is propagated to buf at 13. In the second unit (timestamps 13-15), the taint set of buf is

retrieved and inserted to the unit taint set. When the file is written, another log entry is added

to denote the write.

There are three important things that we need to point out. (1) Although there are 15

events, ProTracer only needs to log two of them, which are the two in LB at the end. In other

words, on-the-fly taint propagation avoids storing a lot of events. (2) ProTracer introduced a

new taint ⟨c, 11⟩ to denote the provenance set of c at 11 such that the processing of the reader

events and the processing of the browser events can be performed concurrently by different

threads. And from the timestamp 11 and the log, we know that ⟨c, 11⟩ must represent the

taint set in the first log entry. (3) The log entries reflect the history of the file, whereas

existing techniques only track the sources of the file.

2.4.3 Handling Global File Accesses

A long running execution can often be divided to three parts. The first one is the

start phase, which is responsible for loading configurations, allocating resources like file

descriptors for application log files. The second one is the event handling loop, which

handles a large number of external requests. The third one is the closing phase, where all

resources are deallocated before the process terminates. In the previous sections, we mainly

focus on the event handling loops, which dominate and generate units. However, handling

the other two phases, especially file operations in those phases, is equally important. Files

opened in the start phase are often used throughout the whole execution. For example, the

Apache httpd server opens its application log files (e.g. access log and error log) in the

32

start phase. The access log will be written within any unit that handles an external request.

This log file is a shared object across most of the units, which would cause unnecessary

dependence between units. To address this problem, we apply a special policy to objects

opened in the start phase. In particular, these objects are stated as global in the log. During

execution, they are not considered as shared objects and operations on these files are not

logged.

Unlike log files, which are opened in the start phase and not closed until the end phase,

some objects used in the start phase have a very short life time. They are usually opened,

read and then closed. Typical examples include configuration files and libraries used by

an application. Our policy is to log these events, because the data read from these files

can be possibly utilized for a malicious purpose. An example is that a malicious library

downloaded from a remote site is loaded by a normal application in the start phase.

Discussion: Completeness of ProTracer. As introduced in Section 2.1, we aim to capture

all the external and internal entities that affect a system object and their casual relations.

With the assumption that all the provenance related syscalls are intercepted by ProTracer,

we want to show that the alternation between tainting and logging and the pruning of events

(e.g., through file deletions) do not affect completeness. According to the rules in Table 2.1,

within a unit, all input events are captured and propagated to the taint set of the unit. With

the assumption that all the inter-unit workflows through memory accesses are captured1, the

taint set is properly propagated across units. Upon an outgoing syscall, the set is logged.

During offline analysis, causal edges are introduced by connecting a log entry containing

a taint (of an input file), such as taint F1 on edge 2 in Fig. 2.5, and a preceding log entry

containing the provenance set corresponding to the taint (e.g., the log entry generated by

the action on edge 1 in Fig. 2.5). This ensures not only that the set of external sources is

complete, but also the history of the object is captured (by the causal graph). The way that

ProTracer prunes log entries related to temporary files is safe because only the log entries

related to a file owned by the process are removed. When the file is owned, its information

cannot reach other processes. In the case that a temporary file is copied to another permanent

1We will discuss situations where our assumptions may not hold in Section 2.6.

33

file, its provenance is completely inherited by the permanent file so that the temporary file

log entries are no longer useful. ProTracer also precludes syscalls caused by application

logging as they introduce bogus causality across units. Note that application log usually

records a subset of what ProTracer is already recording and is hence redundant.

2.5 Evaluation

In this section, we will show the evaluation results of ProTracer. The experiments were

conducted on five identical machines with four cores and 4GB RAM. Most of the binaries

in our experiment machines have been instrumented by BEEP [26].

2.5.1 Effectiveness

Daily Usage: In the first experiment, we emulated the daily (24 hours including break time)

usage of five computer users, and collected logs. To compare the space consumption, we

run both ProTracer and BEEP [26] at the same time during the experiment. After the logs

were generated, we also applied LogGC [40] to garbage collect the BEEP logs to acquire

the reduced logs. To create workload diversity, we emulated users exhibiting different

usage patterns: User 1 uses the system to run a web server for a group project. An FTP

server is also running in the same system; User 2 is new to Linux. He just tries out various

applications in the system and accesses his personal emails and the Internet; User 3 is

preparing for an exam. She is mainly reading documents and watching video lectures; User

4 uses vim a lot to finish his course project report besides accessing the Internet; User 5

mainly uses the system for watching movies and communicating with friends. In addition,

we performed an extended 3-month emulation of user 1, whose machine is used as a server;

and user 4, who actively uses client programs.

We compare the number of log entries and the log file sizes for BEEP, LogGC, and

ProTracer. The results are presented in Table. 2.2. Columns 8 and 9 show the ratios between

the ProTracer logs and the BEEP logs, whereas the last two columns show the same ratios

between the LogGC logs and the BEEP logs. Observe that ProTracer can significantly

34

reduce the number of events that need to be logged. On average, ProTracer only needs to log

1.85%(Daily)/1.45%(3 months) of the entries in BEEP. Since ProTracer records taint IDs,

our log file format is slightly more efficient than BEEP and LogGC. On average, ProTracer’s

disk space consumption is only 1.28%(Daily)/1.02%(3 months) of BEEP’s. The results vary

for different users because of the different workloads and use patterns. Even in the worst

case (user 1 that hosted servers), ProTracer generated less than 4% of the log entries, and

consumed less than 2% of the disk space.

Compared to LogGC, ProTracer has better space efficiency in most cases. This is

reasonable because LogGC garbage-collects events based on their reachability from live

system objects. In other words, events that do not contribute to any live system objects

are removed. ProTracer not only avoids logging such dead events (Section 2.4), but also

precludes redundant events that affect live system objects (e.g. repetitive socket reads from

the same session and execution units that do not access any taint sources but rather serve

as part of the information flow path). In some cases, LogGC is more space efficient (e.g.

user 3). This is mainly due to temporary files. LogGC is an offline log reduction method,

which has sufficient information to precisely decide if a file is temporary. ProTracer uses

the log buffer to delay writing log entries to the disk, hoping that the temporary file related

entries will be removed by the time the buffer is flushed. However, some temporary files

related log entries will be flushed to disk if the files are not deleted by the time the buffer

is flushed. Besides, ProTracer also logs events that belong to the start and end phases of

an execution, whereas BEEP/LogGC ignores those events. For user 3, MPlayer and Xpdf

were frequently used and they produced a large number of temporary files. LogGC was able

to remove all the records that belong to these two programs, whereas ProTracer keeps some

of them. Also observe that on average, ProTracer only generates 13MB log per day, which

is very affordable.

Application Perspective: We also compare the space consumption of the different systems

on various applications. The logs specific to applications are extracted from the whole

system logs. The results are presented in the lower half of Table 2.2. Observe that the

ProTracer logs are significantly smaller compared to BEEP Logs. The number of records

35

Ta
bl

e
2.

2.
:C

om
pa

ri
so

n
of

E
ff

ec
tiv

en
es

s
of

V
ar

io
us

Pr
ov

en
an

ce
Sy

st
em

s

L
og

s
B

E
E

P
Pr

oT
ra

ce
r

L
og

G
C

Pr
oT

ra
ce

r/
B

E
E

P
L

og
G

C
/B

E
E

P

#
It

em
s

Si
ze

(K
B

)
#

It
em

s
Si

ze
(K

B
)

#
It

em
s

Si
ze

(K
B

)
#

It
em

Si
ze

#
It

em
Si

ze

3
M

on
th

s

Se
rv

er
27

4,
24

2,
87

4
15

7,
83

9,
15

8.
66

3,
37

1,
45

3
88

0,
58

4.
40

45
,4

29
,8

88
21

,3
11

,7
15

.0
8

1.
23

%
0.

56
%

16
.5

7%
13

.5
0%

C
lie

nt
50

0,
92

8,
29

4
16

8,
26

9,
68

7.
89

7,
84

4,
78

3
2,

43
7,

00
9.

51
30

,4
49

,3
39

10
,0

37
,4

72
.3

9
1.

57
%

1.
45

%
6.

08
%

5.
97

%

A
ve

ra
ge

38
7,

58
5,

58
4

16
3,

05
4,

42
3.

27
5,

60
8,

11
8

1,
65

8,
79

6.
95

37
,9

39
,6

14
15

,6
74

,5
93

.7
4

1.
45

%
1.

02
%

9.
79

%
9.

61
%

D
ai

ly

1
3,

61
0,

50
1

1,
67

3,
83

0.
40

13
3,

15
9

30
,8

30
.2

0
63

7,
59

6
28

0,
57

6.
00

3.
69

%
1.

84
%

17
.6

6%
16

.7
6%

2
1,

73
0,

33
9

58
1,

38
9.

08
37

,2
05

8,
87

3.
10

29
3,

95
7

98
,7

68
.7

3
2.

15
%

1.
53

%
16

.9
9%

16
.9

9%

3
2,

22
1,

66
2

74
3,

98
6.

67
9,

55
8

2,
24

5.
02

3,
38

2
1,

35
1.

68
0.

43
%

0.
33

%
0.

15
%

0.
18

%

4
3,

76
8,

78
3

1,
26

5,
99

3.
45

52
,0

09
16

,0
78

.0
2

18
3,

94
7

60
,1

39
.5

2
1.

38
%

1.
27

%
4.

88
%

4.
75

%

5
2,

47
1,

85
9

82
9,

96
8.

11
23

,9
98

7,
22

6.
04

22
,2

48
8,

97
0.

24
0.

97
%

0.
87

%
0.

90
%

1.
08

%

A
ve

ra
ge

2,
76

0,
62

9
10

19
03

3.
54

51
,1

86
13

,0
86

22
82

26
89

96
1.

23
1.

85
%

1.
28

%
8.

27
%

8.
83

%

A
pp

lic
at

io
ns

A
pa

ch
e

3,
26

2,
45

2
4,

57
0,

76
6.

23
47

,3
05

31
,3

80
.6

2
28

8,
48

2
40

4,
79

7.
44

1.
45

%
0.

69
%

8.
84

%
8.

86
%

V
im

1,
08

9,
73

2
37

0,
50

8.
82

11
,2

15
3,

05
3.

91
99

,4
52

34
,0

17
.2

8
1.

03
%

0.
82

%
9.

13
%

9.
18

%

Fi
re

fo
x

3,
67

2,
74

0
4,

65
5,

33
1.

54
30

2,
87

3
28

8,
34

4.
52

35
2,

58
7

44
7,

40
6.

08
7.

70
%

6.
62

%
9.

60
%

9.
61

%

W
3M

36
8,

75
2

25
9,

00
1.

72
25

,7
93

18
,0

68
.2

2
82

,9
59

57
,6

71
.6

8
6.

99
%

6.
98

%
22

.5
0%

22
.2

7%

Pr
oF

T
PD

48
,3

74
12

,1
83

.5
3

68
9

12
4.

80
4,

53
9

1,
22

8.
80

1.
42

%
1.

02
%

9.
38

%
10

.0
9%

W
ge

t
87

3,
20

5
18

9,
78

2.
34

7,
93

8
89

7.
81

42
12

,8
47

88
,8

11
.5

2
0.

91
%

0.
47

%
47

.2
8%

46
.8

0%

M
pl

ay
er

85
8,

23
6

18
8,

81
1.

93
24

0
16

.0
0

0
0.

00
0.

03
%

0.
01

%
0.

00
%

0.
00

%

Pi
ne

59
,1

25
21

,2
85

.7
2

64
8

28
6.

72
64

2
32

7.
68

1.
10

%
1.

35
%

1.
09

%
1.

54
%

X
pd

f
56

,0
83

9,
53

4.
20

64
16

.0
0

0
0.

00
0.

11
%

0.
17

%
0.

00
%

0.
00

%

M
C

7,
82

3
9,

02
6.

81
26

8.
00

0
0.

00
0.

33
%

0.
09

%
0.

15
%

0.
00

%

36

is reduced to less than 8%, and the log size shrinks to less than 7% for all programs. The

results vary across different applications due to the different behavioral patterns of the

applications. For browsers like Firefox, accessing a single web page can introduce many

taints as it may access the web server, advertisement server, image storage server and so on.

Since each resource request will cause a log entry, the log buffer is filled up much faster

and more frequently, compared to other applications. As a result, ProTracer records more

temporary files related events. Programs like Xpdf interact with files and the screen. There

is no outgoing information via sockets or other files. ProTracer only needs to record a small

number of events in the start and the end phases. For most programs, ProTracer occupies

less space than LogGC. But for some of them (e.g. Xpdf), LogGC performs better. This is

because LogGC ignores the events in the start and the end phases of a process. However,

the results also show that the overhead is minor for these applications.

2.5.2 Logging Overhead and Scalability

We also perform experiments to study the run-time overhead and scalability of ProTracer.

Fig. 2.8 shows the accumulated log size over time for user 1. The solid line shows the

growth of the BEEP log size over time, and the dashed line shows ProTracer’s. In general,

the growth is similar although the scales of the sizes are different. The sharpest growth

occurs in the 15th-20th hour, indicating the user was intensively using the system. Even in

this period, the growth of the ProTracer log is about 13MB, suggesting very good scalability.

There are some shape differences between the two lines near the 20th hour. This is mainly

because ProTracer has better log reduction for the applications used during that time period,

compared to other applications.

Fig. 2.9 and Fig. 2.10 show the run-time overhead comparison between ProTracer and

the default Linux Audit system, with the same set of syscalls monitored. Note BEEP is built

on the Linux Audit system and hence more expensive. We perform two sets of experiments.

The first one is for server programs. We use the Apache Benchmark [44] to test two

web servers Apache and MiniHttp, and ftpbench to test ProFTPD. We also test different

37

0 5 10 15 20 25
Time (h)

0

200

400

600

800

1000

1200

1400

1600

1800

Li
n
u
x
 a

u
d
it
(M

B
)
-
S
o
lid

 l
in

e

0

5000

10000

15000

20000

25000

30000

35000

P
ro

Tr
a
ce

r(
K
B
)
-
D
a
sh

 l
in

e

Figure 2.8.: Accumulated log size from the one-day execution of BEEP and ProTracer. Note the

size of BEEP log is measured by megabytes, whereas the ProTracer log is measured by kilobytes.

concurrency configurations, with the number of requests sent at the same time being 1, 2, 4,

and 8. The results are shown in Fig. 2.9. The benchmarks tend to give the system a lot of

pressure, which would cause higher overhead than regular usage. The baseline we use is the

native Linux system without running the Linux Audit system. Observe that the overhead

of ProTracer is less than 7%, whereas the Linux Audit system has a much more significant

overhead (more than 5 times larger).

We also perform experiments for client programs. We use standard benchmarks if they

are available such as SunSpider for Firefox. Otherwise, we use the batch mode for

programs like vim or W3M. We perform the experiments with ProTracer and with the Linux

Audit system. The baseline we use here is the native Linux system without any logging

system running. The results are shown in Fig. 2.10. Observe that ProTracer has less than

3.5% run-time overhead for all these programs, whereas the overhead of the Linux Audit

system is 7-8 times larger.

38

1 2 4 8
Number of thread(s)

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

R
u
n
 t
im

e
 o
v
e
rh
e
a
d

httpd

MiniHttp

ProFTPD

httpd-audit

MiniHttp-audit

ProFTPD-audit

Figure 2.9.: Run-time overhead with different concurrent thread(s) for server programs.

vim firefox wget w3m yafc
0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

R
u
n
 t

im
e
 o

v
e
rh

e
a
d
(%

)

ProTracer

audit

Figure 2.10.: Run-time overhead for client programs.

2.5.3 Attack Investigation Cases

In this section, we use a number of attack cases to show that the causal graphs generated

by ProTracer during attack analysis are smaller than those by BEEP, but equally informative,

39

and the time taken to generate the graphs is much less. We reproduce a few realistic attack

scenarios for our experiment. With each scenario, we perform two what-provenance queries

to understand the sources and the ramifications of the attacks, and also the how-provenance

query to understand the attack path (Section 2.1). We compare the query results by BEEP

and ProTracer, and also cross-check with our prior knowledge. To emulate real-world attack

scenarios, each experiment lasted for a few hours with the attack performed in the middle.

The first case is a backdoor attack. The attacker detected that the running FTP server

was ProFTPD-1.3.3c, which had a backdoor command [45]. He compromised the server,

and was able to get a bash shell. He then downloaded a backdoor program using wget, and

started this backdoor to get permanent access. A few days later, the administrator got a

warning that the FTP server had a backdoor, and decided to check if the backdoor had been

exploited. If so, what damages have been inflicted.

The second scenario is information theft [26]. An employee had a under-the-table deal

with one competitor of his own company: he copied some information from the company,

and leaked it to the competitor by pasting it to a public page via vim. When the company

found that the information was leaked, they should be able to pair the file that contained

the information with the web page that leaked the information, among thousands of files.

ProTracer shall also allow them to prove that the attacker leaked it among all the other

employees that have the access to the file.

The third scenario is illegal storage [27]. One of the server administrators wanted to store

some illegal files on a server. However, he did not want the files to be in his own directory.

Instead he created a directory under another user’s home directory, and downloaded the

illegal files to the directory. He replaced the ls program to hide the existence of this

directory. When the files were eventually found, the victim user was considered a suspect

because of the presence of those files in his/her directory. The investigator should be able to

identify that the administrator was the one that committed the crime. Note here we assume

that the administrator cannot tamper with the log file generated by ProTracer.

The forth scenario is cheating student [46]. An instructor’s password was stolen by

a student. The student downloaded a file containing midterm scores from Apache, and

40

uploaded a modified version. The instructor noticed that the average score became higher,

and started to suspect someone had modified the file. Luckily, students used static IP

addresses on campus and off-campus IPs were forbidden to connect to the server. So finding

the IP from which the current file was uploaded would help identify the student. Moreover,

the administrator should be able to find other suspicious activities of the student. In our case,

the student also downloaded a few files containing answers to future quizzes.

The fifth is phishing email [47] that was discussed in Section 2.2.

Parts of the results are shown in Table 2.3. The second column shows the experiment

duration. The next three columns show the size of the logs by different systems. Then we

show the time it takes to perform the queries. The last two columns show if BEEP and

ProTracer produce matched results for the two what-provenance queries (i.e., the backward

query for attack sources and the forward query for attack ramifications). For the first

scenario, the backward query is not applicable. Observe that ProTracer produces much

smaller logs and the query processing time is much shorter. The query results show no

qualitative differences and precisely disclose the provenance.

Table 2.3.: Effectiveness of ProTracer on Real-world Attack Scenarios

Scenario Duration
Log file size(KB) Run time(s) Investigation

BEEP LogGC ProTracer BEEP ProTracer Backward Forward

Backdoor attack 3h54min 832,753 174,693 79,834 74 11 - Match

Information theft 4h22min 587,494 94,759 13,938 39 5 Match Match

Illegal storage 2h58min 369,585 63,375 10,864 32 5 Match Match

Cheating student 1h17min 179,748 29,485 9,385 17 3 Match Match

Phishing email 4h36min 975,753 183,795 82,343 64 8 Match Match

Backward means backward what-provenance query; and forward means forward query; match means ProTracer

is able to precisely and concisely uncover the attack path.

To further compare the quality of the query results. We compare the causal graphs

generated by BEEP and ProTracer in answering the forward queries. The results are shown

in Table 2.4, which shows the number of taint sources, the number of processes (i.e. the

internal nodes along the attack path), the number of files affected by the attacks, and the

number of nodes in the graphs. Note that LogGC would produce the same graphs as BEEP.

41

Table 2.4.: Causal Graph Comparison (BEEP/ProTracer).

Scenario #source #process #file #nodes

Backdoor 33/33 23/23 37/66 580/128

Infor theft 1/1 4/4 21/36 148/82

Illegal storage 24/24 6/6 56/72 388/208

Student hacker 2/2 2/2 67/85 432/226

Phishing email 5/5 8/8 12/12 864/305

Observe that the two systems produce the same set of taint sources and processes. The

differences in the files are due to the fact that BEEP does not log file accesses in the start

and the end phases (e.g. loaded libraries). In this sense, we argue that the ProTracer-induced

graphs are more complete. Finally, the ProTracer-induced graphs are much smaller than

graphs generated by BEEP, reducing the human inspection efforts.

To acquire an intuitive understanding of the differences between ProTracer graphs and

BEEP graphs, we present parts of the graphs by BEEP and ProTracer for the forward query

in the backdoor attack case. The query aims to find all the reachable items from the external

IPs connected to the FTP server. There are three connections. The one from a.a.a.a

downloaded and uploaded a file, and exploited the backdoor. The one from b.b.b.b simply

downloaded and uploaded a file. The one from c.c.c.c lost its connection. Observe that

the ProTracer graph is a lot more concise and clear. This is because using tainting, ProTracer

avoids logging many events and generating nodes for those events. For example, the box on

the bottom of the BEEP graph shows a zoom-in view of part of the graph. It is reduced to a

single node (FTP-a0) in our graph. And our graph is still equally informative. Moreover,

the events related to c.c.c.c are precluded from our log in the first place as the taints did

not propagate to any permanent changes.

42

a.a.a.a

FTP listener
unit

FTP main

work queue

FTP
worker

FTP worker unit

bash

b.b.b.b c.c.c.c

432
nodes

68
nodes

476
nodes

Connection
is lost

(c) Merge multiple nodes in the graph generated by BEEP into one in our graph

FTP listener
unit

FTP
main

work queue FTP worker FTP worker unit

a.a.a.a

bash

nodes

(a) BEEP

a.a.a.a

FTP-a0 bash

Other nodes

FTP-a1: CMD_UPLOAD File-a1

FTP-a2: CMD_DOWNLOAD
File-a2

b.b.b.b

FTP-b0

FTP-b1

Other nodes

File-b1

File-b2

c.c.c.c connection lost

(b) ProTracer

Figure 2.11.: Part of the graphs generated by BEEP and ProTracer for the backdoor case.

2.6 Discussion

In this section, we will discuss the limitations of ProTracer.

(1) While the execution of many programs can be divided autonomous units which are only

connected through workflow memory dependencies, this may not hold for all programs. For

programs that do not have unit structure (i.e., does not have event handling loops), ProTracer

treats the entire execution as a unit, which may cause dependence explosion.

(2) Similar to BEEP [26], ProTracer relies on training runs to identify unit loops and work-

flow dependencies. However, the training may not be complete. If unit loops cannot be

properly identified, ProTracer treats the entire execution as a unit. Once a unit loop is identi-

fied, the corresponding workflow dependencies can be identified as they rarely change [26].

In theory, however, ProTracer may miss such dependencies hence the corresponding memory

accesses are not instrumented, leading to broken causal paths.

43

(3) Just like most audit logging systems, ProTracer requires that the kernel and the user

space daemon are not compromised. This limitation can be mitigated by porting ProTracer

to a hypervisor. Furthermore, if a system is clean to begin with and an attacker successfully

subverts the system at a later time, the initial subversion will be accurately captured by

ProTracer. But the log entries after the system’s subversion cannot be trusted.

(4) Similar to most logging systems, ProTracer excels at capturing provenance through

benign and commonly used applications, such as browsers and editors, as many attacks

leverage these applications. In contrast, malware usually makes use of various methods to

protect themselves such as obfuscation and self-modification, which may create trouble for

ProTracer’s analysis. As a result, ProTracer usually treats malware execution as a single

unit. We argue that this is reasonable because all malware actions are – by definition – of

interest (instead of noise) to attack investigation.

2.7 Related Work

System logging: Lots of works [24, 27, 48, 49, 50, 31, 51, 29, 30, 31, 52, 42, 10] have been

done in tracking provenance using system-level audit logs. However, many of them suffer

from dependence explosion and have high overhead. BEEP [26] and LogGC [40] are the

most closely related work. ProTracer uses similar unit partitioning to avoid dependence

explosion. Compared to BEEP and LogGC, ProTracer has much lower space and run-time

overhead, due to the new infrastructure and the integration of tainting and logging. The

graphs by ProTracer are also much more concise. Some of these techniques [29, 30, 31]

provide high performance. However, they do not perform any on-the-fly reduction but rather

simply store the whole traces. They may also be susceptible to dependence explosion.

Dynamic information flow tracking and tainting: Tainting and dynamic information flow

tracking [53, 54, 33, 55, 56, 57, 58, 59, 60, 61, 62] have been studied from different aspects

(e.g., file system, kernel object level, network flow) on different platforms (e.g., Linux,

Android) including some new operating system prototypes like Asbestos [53] or HiStar [54]

to precisely trace provenance. They can trace provenance with high precision. But their

44

run-time overhead tends to be on the high end, due to the heavy-weight instrumentation.

ProTracer borrows the basic concept of tainting, optimizes it at the unit level to avoid the

heavy-weight instrumentation used in existing approaches. Moreover, tainting alone cannot

answer how-queries.

Log storage and presentation: Provenance data can be represented as graphs, researchers

have done a lot of work [63, 64, 65] on reducing the size of these graphs by borrowing ideas

from Web graph compression and dictionary based encoding. In [66], researchers leverage

Mandatory Access Control (MAC) policies to reduce the storage cost of provenance based on

the Hi-Fi [29] system. We envision such policies can also be adopted in ProTracer to achieve

more sophisticated reduction. G2 [67] stores logs in databases, and provides execution

graphs that can be analyzed using LINQ queries or user-defined programs. However, it

depends on printed messages by the applications. Some techniques [40, 52] try to reduce

events offline. Since ProTracer performs online reduction, the whole trace is not visible to

ProTracer. Some reduction that is easy for offline analysis cannot be applied online. In other

words, these offline reduction techniques are complementary to ProTracer.

Log integrity: In [68], researchers proposed a real-time server/client audit model. The

client sends integrity-assured log to the server side for post-mortem detection of infections.

ProTracer can provide pre-analyzed logs with small size, which help [68] gain more accurate

results and better performance with lower network traffic. In [69], researchers proposed

a primitive that provides the integrity of execution trace. It works on instruction-level

execution traces. The same idea can be applied in ProTracer to guarantee the integrity of

the log and provide better attack resilience. Recently in [70], researchers propose a novel

generic framework for the development of provenance-aware systems based on LSM to

secure such systems. Other researchers also try to enhance the storage system to provide the

integrity of the provenance data. For example, [71] suggests using an isolated versioning

system – working at the disk level – to store provenance; [72] develops a storage system

that allows repetitive reads but only a single write to guarantee data integrity.

45

3 MPI: MULTIPLE PERSPECTIVE ATTACK INVESTIGATION WITH SEMANTIC

AWARE EXECUTION PARTITIONING

Traditional auditing techniques generate large and inaccurate causal graphs. To overcome

such limitations, researchers proposed to leverage execution partitioning to improve analysis

granularity and hence precision. However, these techniques rely on a low level programming

paradigm (i.e., event handling loops) to partition execution, which often results in low

level graphs with a lot of redundancy. This not only leads to space inefficiency and noises

in causal graphs, but also makes it difficult to understand attack provenance. Moreover,

these techniques require training to detect low level memory dependencies across partitions.

Achieving correctness and completeness in the training is highly challenging. In this

paper, we propose a semantics aware program annotation and instrumentation technique

to partition execution based on the application specific high level task structures. It avoids

training, generates execution partitions with rich semantic information and provides multiple

perspectives of an attack. We develop a prototype and integrate it with three different

provenance systems: the Linux Audit system, ProTracer and the LPM-HiFi system. The

evaluation results show that our technique generates cleaner attack graphs with rich high-

level semantics and has much lower space and time overheads, when compared with the

event loop based partitioning techniques BEEP and ProTracer.

3.1 Introduction

Provenance tracking is critical for attack investigation, especially for Advanced Persistent

Threats (APTs) that are backed by organizations such as alien governments and terrorists.

APT attacks often span a long duration of time with a low profile, and hence are difficult

to detect and investigate. A provenance tracking system records the causality of system

objects (e.g. files) and subjects (e.g. processes). Once an attack symptom is detected, the

46

analyst can utilize the provenance data to understand the attack including its root cause and

ramifications. Such inspection is critical for timely response to attacks and the protection of

target systems. Most existing techniques [25, 11, 30, 58, 28] entail hooking and recording

important system level events (e.g. file operations), and then correlating these events during

an offline investigation process. The correlations have multiple types: between two processes

such as a process creating a child process through sys_clone(); between a process and a

system object, e.g., a process reads a file through sys_read(). However, these techniques

suffer from the dependence explosion problem, especially for long running processes. The

reason is that a long running process may have dependencies with many objects and other

processes during its lifetime although only a small subset is attack related. For instance, a

Firefox process may visit numerous pages over its lifetime while only one page is related to

a drive-by-download attack.

Researchers proposed to partition execution to units so that only the events within a unit

are considered causally related [26, 11]. For instance, the execution of a long running server

is partitioned to individual units, each handling a request. Although existing execution

partitioning based systems such as BEEP [26] and ProTracer [11] have demonstrated great

potential, they partitioned execution based on event handling loops. That is, each iteration of

an event handling loop is considered a unit. Despite its generality, such a partitioning scheme

has inherent limitations. (1) Event loop iterations are too low level and cannot denote high

level task structure. For instance, in UI programs, an event loop iteration may be to handle

some user interaction. (2) There are often inter-dependencies across units. Therefore, BEEP

and ProTracer rely on a training phase to detect such dependencies in the form of low level

memory reads and writes. Achieving completeness in training is highly challenging. Note

that the problem could not be addressed even when source code is provided because there

are typically a lot of program dependencies across event loop iterations and only a subset

of them are important. (3) A high level task is often composed of many units (e.g., those

denoting event loop iterations in multiple worker threads that serve the same high level task).

Ideally, we would like to partition execution based on the high level task structure.

47

Note that high level task structure is application specific. Therefore, developers’ input

on what denotes a task/unit is necessary. We observe that a high level task/unit has its

corresponding data structure in the software. Our proposal is hence to allow the devel-

oper/user to inform our system what task/unit structure they desire by annotating a small

number of data structures (e.g., the tab data structure in Firefox). Our system MPI1 takes the

annotations and automatically instruments (a large number of) program locations that denote

unit boundaries through static program analysis. The analysis handles complex threading

models in which the executions of multiple tasks/units interleave. The instrumentation

emits special syscalls upon unit context switches so that the application specific task/unit

semantics is exposed to the underlying provenance tracking systems. MPI allows anno-

tating multiple task/unit structures simultaneously so that the forensic analyst can inspect

an execution from multiple perspectives (e.g., tab and domain perspectives for Firefox).

This is highly desirable for attack investigation as we will show later in the paper. Asking

for developers/users input in audit logging is a strategy adopted in practice. For example,

the audit system on Windows, Event Tracing for Windows (ETW) requires the developers

to explicitly plant auditing API calls in their source code if they would like to perform

any customized logging. Nonetheless, reducing manual efforts is critical to the real world

deployment of the technique. MPI is highly automated as the user only needs to annotate a

few data structures and then the invocations to logging commands are automatically inserted

through program analysis. Most of the programs we use in our experiment require only 2-3

annotations for each perspective. In addition, MPI provides a data structure profiler, called

the annotation miner, to recommend the potential data structures to annotate. As shown

in §3.4.3, it makes the correct recommendations in most cases.

MPI is a general execution partitioning scheme orthogonal to the underlying OS-level

provenance collection system. We integrate it with three different provenance collection

systems: the widely adopted Linux audit framework, and two state-of-the-art research

1MPI is short for “Multiple Perspective attack Investigation”

48

projects, ProTracer [11]2 and the LPM [70] enabled HiFi [29] system (LPM-HiFi) which

features secure audit logging.

In summary, we make the following contributions:

• We propose the novel idea of partitioning execution based on data structures to support

different granularities and facilitate multi-perspective, application-semantics-aware

attack investigation.

• We develop program analysis and runtime techniques to enable such partitioning.

Given a small number of annotations on data structure definitions, program analysis is

conducted to identify places that need to be instrumented to emit events at runtime

that denote unit boundaries and unit inheritance. The number of such places may be

very large, rendering manual instrumentation infeasible.

• We develop an annotation miner that can recommend the data structures to annotate

with high accuracy, substantially alleviating the manual efforts.

• We develop a prototype based on LLVM. The evaluation on a set of commonly used

Linux applications and three different provenance systems shows that our approach

can effectively partition program execution in different granularities. We also use a

number of case studies that simulate real-world attacks to demonstrate the strength of

the proposed technique, in comparison with BEEP [26] and ProTracer [11].

3.2 Motivation

In this section, we use an example to illustrate the differences between the classic

provenance tracking systems [30, 58, 29, 70], the existing event loop based execution

partitioning approaches [26, 11], and the proposed approach. This example simulates an

important kind of real-world attacks, watering hole attack [73],

2ProTracer is based on BEEP, we replace the BEEP with MPI.

49

3.2.1 Motivating Example

Watering hole is a popular attack strategy targeting large enterprises such as Apple [74]

and Google [75]. The adversaries do not directly attack the enterprise networks or websites,

which are well protected. Instead, they aim to compromise the websites that are frequently

visited by the employees of the target enterprise, which are usually much less protected.

Recently, there have been a number of real incidents of watering hole attacks, e.g., by

compromising Github [76] and CSDN [77]. There are exploit kits (e.g., BeEF [78]) to make

it easy to conduct such attacks.

In our example case, a developer in an enterprise opens Firefox, and then uses Bing to

look for a utility program for file copying. The search engine returns a number of relevant

links to technical forums, blogs, wikis and online articles. Some of these links further lead

to other relevant resources such as pages comparing similar programs. Some pages host

software for download. In many cases, the software was uploaded by other developers. After

intensive browsing and researching, the developer settles down on a forum that hosts not

only the wanted software, but also many other interesting resources, including torrents for

a few tutorial videos. The developer downloads the program and also a few torrents from

the forum. After the download, he starts to use the program. He also uses a p2p software

Transmission to download the videos described by the torrents.

Unfortunately, the forum website was compromised, targeting enterprises whose devel-

opers tend to use the forum for technical discussion and information sharing. The program

downloaded, fcopy, is malicious. In addition to the expected functionality, the malware

creates a reverse TCP connection and provides a shell to the remote attacker. The malware

causes unusual network bandwidth consumption and is eventually noticed by the administra-

tor of the enterprise. To understand the attack and prepare for response, the administrator

performs forensic analysis, trying to identify the root cause and assess the potential damage

to the system. At the very beginning, the binary file fcopy is the only evidence. Hence, the

creation of the file is used as the symptom event.

50

3.2.2 Traditional Solutions

Traditional techniques such as backtrackers [79, 25], audit systems [80] and provenance-

aware file systems [29, 30] track the lineage of system objects or subjects without being

aware by the applications. These techniques collect system subjects (e.g. processes and

threads) and objects (e.g. files, network sockets and pipes) information at run time with

system call hooking or Linux Security Modules (LSM) [81], and construct dependency

graph or causal graph for inspection. Note that these two terms are interchangeable in this

paper. While they use different approaches to trace system information, the graphs generated

by these systems are similar.

A general workflow for these techniques is as follows. Starting from the given symptom

subject or object, they identify all the subjects and objects that the symptom directly and

indirectly depends on using backtracking. They also allow identifying all the effects induced

by the root cause using forward tracking. For the case mentioned in §3.2.1, the administrator

identifies the Firefox process and all its data sources by backtracking, and then discloses

the downloaded files and the operations on these files with forward tracking. Figure 3.1

shows the simplified graph generated. In this graph and also the rest of the paper, we use

diamonds to represent sockets, oval nodes to represent files, and boxes to represent processes

or execution units. In Figure 3.1, many network sockets point to the Firefox process, and

the process points to a large number of files including the torrent files and others like fcopy,

which reflect the browsing and downloading behaviors of Firefox.

Firefox

t0.torrent t1.torrent t2.torrent t3.torrent t4.torrent obama.mp4.torrent fedora.iso.torrent ubuntu.torrent fcopy

Tranmission

m0.mp4 m1.mp4 m2.mp4 m3.mp4 m4.mp4 obama.mp4 Fedora.iso ubuntu.iso

a.a.a.a

Figure 3.1.: Simplified causal graph for case in §3.2.1 generated by traditional solutions

While we only show part of the original graph in Figure 3.1 for readability, the original

graph contains more than 500 nodes in total, with most files and network socket accesses

51

being (undesirably) associated with the Firefox and Transmission nodes. These bogus

dependencies make manual inspection extremely difficult.

3.2.3 Loop Based Partitioning Solutions

It was observed in [26] that the inaccuracy of traditional approaches is mainly caused

by long running processes, which interact with many other subjects and objects during

their lifetime. Traditional approaches consider the entire process execution as a node so

that all the input/output interactions become edges to/from the process node, resulting in

considerably large and inaccurate graphs. Take the Transmission process as an example.

It has dependencies with many torrent files and network sockets, obfuscating the true

causalities (e.g., a torrent file and the corresponding downloaded file).

Event loop based partitioning techniques [26, 10, 11] leverage the observation that

long running processes are usually event driven and the whole process execution can be

partitioned by the event handling loops (through binary instrumentation). They proposed

the concept of execution unit, which denotes one iteration of an event handling loop. This

fine-grained execution abstraction enables accurate tracing of dependency relationship. It

was shown that these techniques can generate much smaller and more accurate dependency

graphs. However, these techniques still have the following limitations that hinder their

application in the real-world.

Units Are Too Low Level. Assume the administrator applies BEEP/ProTracer to the

motivation case in §3.2.1. He constructs the causal graph starting from the file fcopy. He

acquires the download event in Firefox, which is associated with the web socket a.a.a.a.

Then, he traces back to the forum website, and eventually the search engine. As part of

the investigation, the administrator applies forward tracking from the search engine page

to understand if other (potentially malicious) pages were accessed and if other (potentially

malicious) programs were downloaded and used. Since the developer visited many links

returned by the search engine, the forward tracking includes many web pages and their

follow-ups in the resulting graph. The simplified graph is shown in Figure 3.2.

52

In this case, Firefox is used for 5 minutes with 11 tabs containing 7 websites. There are

thousands of nodes in the graph. This is because all user interactions like scrolling the web

pages, moving mouse pointer over a link and clicking links are processed by unique event

loop iterations, each leading to a unit/node. Moreover, Firefox has internal events including

timer events to refresh pages. As these events operate on DOM elements, they are connected

in the dependency graph due to memory dependencies, making the graph excessive.

The root cause of the limitation lies in that BEEP exposes very low level semantics (i.e.,

event loop iterations) in partitioning. The onus is on the user to chain low level units to

form high level tasks. Unfortunately, BEEP graphs have little information to facilitate this

process as they lack high level semantic information such as which high level task (e.g., tab)

a low level unit belongs to.

Figure 3.2.: Simplified backtracking causal graph for the case in §3.2.1 with event loop based

partitioning technique. It only shows the causal relationship within the Firefox process (runs for 5

minutes with 11 tabs and 7 websites)

Depending on Training. BEEP and ProTracer are training based due to the difficulty

of binary analysis. It requires intensive training to identify the event handling loops and

memory accesses that disclose dependencies across units (e.g., one event loop inserts a task

to the queue which is later loaded and processed by another event loop). The completeness

of the training inputs is hence critical. Otherwise, there may be missing or even wrong causal

relations. Note that providing source code does not address this problem as identifying event

handling loops and cross-unit dependencies requires in-depth understanding of low level

program semantics, which is much easier through dynamic analysis by observing concrete

states than static analysis, in which everything is abstract. Specifically, there are a large

number of loops in a program. Statically determining which ones are event handling loops

53

1 int main(int argc, char ** argv) {

2 // parse options and session, load torrents

3 torrents = tr_sessionLoadTorrents(mySession, ctor, NULL);

4 // event loop

5 while(!closing) {

6 tr_wait_msec(1000); /* sleep one second */

7 // update and log and so on

8 }

9 // close program and sessions

10 return 0;

11 }

Figure 3.3.: Event handling loop of Transmission (version 2.6)

is difficult. Furthermore, while static analysis can identify memory dependencies, a lot of

cross-unit dependencies should be ignored as they have nothing to do with the high level

work flow (e.g., those caused by memory management or statistics collection).

In our motivating example, we did not use the “Go back" button in the initial training of

Firefox. As a result, we were not able to get the full causal chain in Figure 3.2, which was

broken at one web page that contains a lot of clicking-link and going-back actions. We had

to enhance our training set by providing a going-back case.

Excessive Units. Partitioning based on event handling loops works nicely for server pro-

grams, in which one event loop iteration handles an external request and hence corresponds

to a high level task. However, in many complex programs, especially those that heavily use

threads to distribute workloads or involve intensive UI operations, event loop iterations do

not align well with the high level tasks. As a result, it generates excessive small units that

do not have much meaning. For example, in GUI programs, units are generated to denote

the large number of GUI events (e.g., key strokes), even though all these events may serve

the same high level task.

Consider the p2p program Transmission. Figure 3.3 shows its event handling loop in

the main function of the daemon process. After parsing options, loading settings and torrent

files (line 2-3), the daemon goes to a loop which exits only when the user closes the program

54

(i.e., set closing to TRUE). In each iteration of the loop, it waits for 1 second (line 6), updates

the torrent status and logs some information (line 7). Due to the nature of p2p protocol,

downloading a single file requires thousands of loop iterations, leading to thousands of units

in BEEP.

In many situations, there may not be any system events within these small units. For

example, GUI programs monitor and handle frequent events such as page scroll. However,

not all of them lead to system calls. Thus BEEP ends up with many “UNIT_ENTER” and

“UNIT_EXIT” events without any system calls in between. These useless units waste a lot

of space and CPU cycles. While existing techniques [40, 11, 66, 82] can remove redundant

events, they cannot prevent these events from being generated in the first place.

These limitations are rooted at the misalignment between the rigid and low level execu-

tion partitioning scheme based on event loops. Ideally, the units generated by a partitioning

scheme would precisely match with the high level logic tasks. MPI aims to achieve this

goal.

3.2.4 Our Approach

The overarching idea of this paper is that high level tasks are reflected as data structures.

MPI allows the user to annotate the data structures that correspond to such tasks. It

then leverages program analysis to instrument a set of places that indicate switches and

inheritances of tasks to achieve execution partitioning. Note that there may be multiple

perspectives of the high level tasks involved in an execution, denoted by different data struc-

tures. Hence, MPI allows annotating multiple data structures, each denoting an independent

perspective. To reduce the annotation efforts, MPI provides a profiler that can automatically

identify the critical data structures (Figure 3.3.2). Note that allowing developers/users to

insert logging related annotations/commands to software source code is a practical approach

for system auditing. The Windows auditing system, Event Tracing for Windows (ETW),

requires the developers to explicitly plan customized events to their software before deploy-

ment [83, 84]. These commands generate system events at runtime. In our design, we only

55

require the developer to annotate (a few) task oriented data structures, MPI automatically

instruments a much larger number of code places based on the annotations.

7: Process

6: Window

One Tab

3: Website Instance

1: Same Source

ElementElement

Page

Website Instance

PagePage

5: One Tab

Website Instance

PagePage

4: Website

Element

2: Page

6:
Window

Figure 3.4.: Different perspectives of Firefox partitioning

Figure 3.4 presents a few possible perspectives of Firefox execution. By annotating

the appropriate data structures, we can partition a Firefox execution into sub-executions of

various windows (perspective 6), tabs (perspective 5), websites/domains (perspective 4),

website instances (perspective 3), individual pages (perspective 2), and even the sources

of individual DOM elements (perspective 1). Observe that some of the perspectives are

cross-cutting. For instance, a tab may show pages from multiple domains whereas pages

from the same domain may appear in multiple tabs. A prominent benefit of such partitioning

is to expose the high level semantics of the application to the underlying provenance tracking

system.

forum

fcopy

Transmission

forum

ubuntu.iso.torrent

forum

t0.torrent

ubuntu.iso

Transmission

m0.mp4

Transmission

forum

Fedora.iso.torrent

Fedora.iso

Transmission

forum

t1.torrent

t1.mp4

Github

Bing

toptenreviewes

wordpress, forum

CNET

file:a

Digitaltrends

AddressBar

Figure 3.5.: Simplified MPI causal graph for the case in §3.2.1 (Firefox in tabs)

56

fcopy

forum

wordpress

Bing

Transmission

ubuntu.iso.torrent t0.torrent

ubuntu.iso

Transmission

m0.mp4

Transmission

Fedora.iso.torrent

Fedora.iso

Transmission

t1.torrent

t1.mp4

CNET Digitaltrends toptenreviewes

file:a

Github

Figure 3.6.: Simplified MPI causal graph for the case in §3.2.1 (Firefox in websites)

Figure 3.5 shows the causal graph for the attack example when we partition the execution

of Firefox by its tabs and Transmission by the files being downloaded. Each rectangle

represents the life time of a tab. Observe that the Bing tab leads to the wordpress tab, which

also shows the forum main page. A number of forum pages are displayed on separate

tabs, each of which leads to the download of a torrent file through a Transmission unit. In

contrast Figure 3.6 shows the causal graph when we partition the execution of Firefox by

the websites/domains it visits. Observe that all the forum tabs are now collapsed to a single

forum node. It clearly indicates that fcopy and the torrent files are downloaded from the

same domain. Compared to the BEEP graph in Figure 3.1, these graphs are much smaller

and cleaner, precisely capturing the high level workflow of the execution. Note that these

graphs cannot be generated by directly querying/operating-on the BEEP log, which has

only very low level semantic information (i.e., event loop iterations).

Advantages Over Event Loop Based Partitioning. We can clearly see data structure based

partitioning system MPI addresses the limitations of event loop based partitioning. 1 Units

are no longer based on low level loop iterations. The inspector does not need to manually

chain many such low level units to form a high level view of the execution. 2 Dependency

identification is made easy. Training is no longer needed. The memory dependencies that

are needed to chain the low level event loop units are no longer necessary because these

low level units are automatically classified to a high level unit in MPI. The incidents of

missing causality due to incomplete training can be avoided. For instance, Firefox uses

multiple threads to load and render the many elements on a page, which induces lots of

57

memory dependencies across event loop units. But if we look at the execution from the tab

perspective, these memory dependencies are no longer inter-unit dependencies that need to

be explicitly captured. 3 Excessive (small and non-informative) units are prevented from

being generated. All nodes representing timer event for Transmission will be merged into

one node. Moreover, MPI provides great flexibility for attack investigation by supporting

multiple perspectives. Enabling these perspectives is impossible if the appropriate semantic

information is not exposed through MPI.

One may argue that event loop based partitioning can be enhanced by annotating event

loops and cross-unit memory dependencies. However, such annotations are so low-level

that (1) they require a lot of human efforts due to the large number of places that need to be

annotated (e.g., the memory dependencies), and (2) they expose low-level and sometimes

non-informative semantics such as mouse moves and timer events. In addition, the partition-

ing is solely based on event handling and hence cannot provide multiple perspectives.

3.3 Design

3.3.1 Overview

The overall process of analysis and instrumentation is shown in Figure 3.7. The user first

annotates the program source code to indicate unit related data structures under the help of

the annotation miner, which is essentially a data structure profiler. The analysis component,

implemented as a LLVM pass, takes the annotations and analyzes the program to determine

the places to instrument (e.g., data structure accesses denoting unit boundaries). The graph

construction is using a standard algorithm, and details can be found in §3.3.6.

3.3.2 Annotations

Basic Annotations. Let us review how the Linux kernel conducts context switching

internally, which inspires our approach to unit switching. Specifically, 1 a task_struct with

a unique pid identifies an individual process; 2 a variable current is used to indicate the

58

Source code

Programmer

LLVM PASS

Compiler Chain

Executable

Miner

Figure 3.7.: MPI workflow

current active process. Processes can communicate through inter-process communication

(IPC) channels like pipes. In order to perform unit switching, we need to identify the unit

data structure that is analogous to task_struct and used to store per-unit information, a

field/expression that can be used to differentiate unit instances as the identifier, and a variable

that stores the current active unit. Note that there may not be an explicit task data structure in

a program. Any data structure that allows us to partition an execution to disjoint autonomous

units can serve as a unit data structure. Also, we need to know the variables that serve as

communication channels between different unit instances. Thus we need the following types

of annotations.

1 @indicator annotates the variable/field that is used to indicate the possible switches

between different unit data structure instances (similar to the variable current in Linux

kernel). The user can choose to annotate multiple indicator variables/fields, one for each

perspective. A unique id is assigned to each type of indicator.

2 @identifier is an expression used to differentiate the instances of a unit data structure

(similar to the data field pid). This expression can be a field in the data structure or

a compound operation over multiple fields. Since an identifier must be paired up with

the corresponding indicator, we allow providing an indicator id as part of the identifier

annotation.

59

3 @channel annotates the variables/fields that serve as “IPC channels” between two

different unit data structure instances (similar to pipes). It contains a unique id number, and

a parameter indicating which field stores the data that induces inter-unit dependencies.

□ Example. Vim is a tabbed editor with each tab containing one or multiple windows. Each

window is a viewpoint of a buffer, with each buffer containing the in-memory text of a

file [85]. A file buffer can be shared by multiple windows in the backend, and buffers are

organized as a linked list. A natural way to partition its execution is to partition according to

the file it is working on, each represented by a file_buffer data structure. Figure 3.8 shows a

piece of code which demonstrates our annotations. Vim uses the variable curbuf to represent

the current active buffer. Consequently, we use curbuf as our indicator variable. Line 2

shows the indicator annotation. The annotation has an id to distinguish different indicators

for various granularities/perspectives. The id is used to match with the corresponding

@identifier annotation. Vim creates a buffer for each file. We can hence use the absolute

file path in the OS to identify each file buffer instance. Line 8 shows the @identifier

annotation. It has two parts: 1 an expression used to differentiate instances; and 2 an

indicator id used to match with the corresponding @indicator annotation. In this case, field

b_ffname is the identifier with id 1. Vim maintains its own clip board to support internal

copy(cut)-and-paste operations. When the user cuts or copies data from a file_buffer, it sets

the field y_current→array. When the user performs a paste operation, it reads data from

the variable and puts the data to the expected position. In this case, y_current→array can

be considered as the IPC channel between the two different file_buffer instances. Line 25

shows the channel annotation. It contains a unique id for the channel (analogous to a file

descriptor), and the reference path to the field. Note that this is to support communication

using the Vim clip board. Our system also supports inter- or intra-process operations through

the system clip board by tracking system level events.

Threading Support. In order to improve responsiveness, modern complex applications

heavily rely on threads to perform asynchronous sub-tasks. More specifically, the main

thread divides a task into multiple subtasks that can proceed asynchronously and dispatches

them to various (background) worker threads. A worker thread receives sub-tasks from

60

1 // in file src/globals.h

2 @indicator=1

3 EXTERN buf_T*curbuf INIT(= NULL);

4

5 // in file src/structs.h

6 typedef struct file_buffer buf_T;

7 // buffer: structure that holds information about one file

8 @identifier=b_ffname, indicator=1

9 struct file_buffer{

10 // associated memline

11 memline_T b_ml;

12 // buffers are orgnized as a linked list

13 buf_T *b_next;

14 buf_T *b_prev;

15 char_u *b_ffname; // full path file name

16 // TRUE if the file has been changed and not written out

17 int b_changed;

18 // variables for specific commands or local options

19 char_u *b_u_line_ptr; // for 'U' command
20 int b_p_ai; // 'autoindent', local opts
21 // other data field like change time or so

22 }; /* file_buffer */

23

24 // in file src/ops.c

25 @channel=channelID, data=(y_current->array)

26 static struct yankreg *y_current;

27

28 while(True) {

29 e = fetch_pending_event();

30 switch(e) {

31 case MouseMove:

32 ...

33 break;

34 case MouseClick:

35 ...

36 break;

37 ...

38 }

39 }

Figure 3.8.: Vim data structure and our annotations

61

the main thread and also other threads and processes them in the order of reception. It can

also further break a sub-task to many smaller sub-tasks and dispatch them to other threads,

including itself. This advanced execution model makes partitioning challenging because we

need to attribute the interleaved sub-tasks to the appropriate top level units. In event loop

based partitioning techniques [26, 11], all the event handling loops from various threads

need to be recognized during training. More importantly, multiple event loop iterations

(across multiple threads but within an application) may be causally related as they belong

to the same task. The correlations are reflected by memory dependencies. As such, the

training process needs to discover all such dependencies. Otherwise, the provenance may be

broken. Unfortunately, memory dependencies are often path-sensitive and it is very difficult

to achieve good path coverage. It is hence highly desirable to directly recognize the logic

tasks, which are disclosed by corresponding data structures, instead of chaining low level

event loop based units belonging to a logic task through memory dependencies.

……..

Main Thread

DNS

Thread
Tab1: DNS(http://a.com)

Tab2: DNS(http://b.com)

Tab1: load(ImageA)
...

Tab1: JS snippet

Tab1: AsmJS-1

……

DNS(http://a.com)

DNS(https://b.com)

ImgDecode

Thread……

Decode(ImageA)

Socket

Thread
……

get(a.com)

get(b.com)

JS Helper

Thread……

DO(AsmJS-1)

Tab1: Fetch(ImgA, JS, CSS)

Tab2: Fetch(ImgB, JS, CSS)

...

...

...

1

2
3

4

5

6

7

...

Tab1: CSS Animation CA1
Compositor

Thread……

Draw(CA1)
8

Figure 3.9.: Simplified Firefox execution model

□ Example. Figure 3.9 illustrates a substantially simplified example of the Firefox execu-

tion model. It corresponds to an execution that loads two pages (in two respective tabs).

Specifically, each box represents a thread and each colored bar (inside a box) denotes an

62

iteration of the event handling loop (and hence a unit in BEEP/ProTracer). Observe that

at step 1 , the loading of tab1 first dispatches a Domain Name Server (DNS) query to a

DNS thread, and then (step 3) posts a connection request to the socket thread to download

the page. At step 4 , the socket thread informs the main thread that the data is ready. The

main thread leverages other threads such as the image decode thread, JS helper thread,

and compositor thread to decode/execute/render the individual page elements. Note that

every thread has interleaved sub-tasks belonging to various tabs. Edges denote memory

dependencies across sub-tasks that need to be disclosed during training and instrumented at

runtime in BEEP/ProTracer. □

Different from BEEP/ProTracer, our solution is to leverage annotations and static analysis

to partition directly according to the logic tasks (e.g. tabs). In order to precisely determine

the membership of a sub-task. We introduce the @delegator annotation. This annotation

is associated with a data structure to denote a sub-task (e.g., the HTTP connection request

posted to the socket thread). Intuitively, it is a delegator of a top level task (e.g., the HTTP

connection request delegates the unit of its owner tab). At runtime, upon the dispatching of

a delegator data structure instance (e.g., adding a sub-task to a worker thread event queue),

it inherits the current (top level) unit identification. Later when the delegator is used (in

a worker thread), the system knows which top level unit the current execution belongs to.

There could be multiple layers of delegation. Similar to a unit, a delegator data structure

also has an indicator, which is a variable like current whose updates may indicate delegation

switches. More details can be found in Section 3.3.3.

□ Example. Consider the Firefox execution model. The user can annotate a tab, a window,

and/or an iframe as a top level unit. Internally, these are all represented by the same

nsPIDOMWindow class. They are differentiated by the internal field values. Hence, we

provide multiple perspectives by annotating the nsPIDOMWindow data structure and using

different expressions in the identifier annotations to distinguish the perspectives. Figure 3.10

shows the annotations for tabs and windows. The indicator id 1 is for tabs and 2 for windows.

Any tab or window changes must entail the change of the mDoc field, which is used as the

indicator. The expressions in the corresponding identifier annotations mean that we can

63

1 @identifier=this->GetOuterWindow(2)->mWindowID, indicator=1

2 @identifier=this->GetTop()->mWindowID, indicator=2

3 class nsPIDOMWindow {

4 @indicator=1

5 @indicator=2

6 nsCOMPtr<nsIDocument> mDoc;

7 // Tracks activation state

8 bool mIsActive;

9 virtual already_AddRefed<nsPIDOMWindow> GetTop() = 0;

10 nsPIDOMWindow *GetOuterWindow()

11 { return mIsInnerWindow ? mOuterWindow.get() ? this; }

12 // The references between inner and outer windows

13 nsPIDOMWindow *mInnerWindow;

14 nsPIDOMWindow *mOuterWindow;

15 // A unique (64-bit counter)

16 // id for this window.

17 uint64_t mWindowID;

18 /* other methods and data fields */

19 };

Figure 3.10.: Tab and window annotations in Firefox

acquire the tab of any given window by getting the second layer outer window, and the top

level window by calling GetTop().

The connection request data structure (in the SocketThread), the image data structure (in

the image decoder thread), etc. are annotated as delegators. As such, when a connection

request is created in the main thread, the request inherits the current tab/window id. When

the request is used/handled in a SocketThread, the execution duration corresponding to the

request belongs to the owner tab/window of the request. An example is shown in Figure 3.11.

In Firefox, all delegator data structure classes have the same base class nsRunnable. As

such, we only need to annotate nsRunnable as the delegator class (box A). When the main

thread tries to load a new URI (step 1), it posts an nsConnEvent to the SocketThread (step 2)

by calling the PostEvent method (box C). Since nsConnEvent is a sub-class of nsRunnable

(box B), the delegator class, the newly created nsConnEvent inherits the tab/window id.

The nsRunnable class provides a function Run(), which is implemented by its child classes

64

to perform specific tasks. And each thread maintains its own work queue containing all

such class instances. Thus the size of the worker queue is annotated as the indicator of the

delegator. Whenever it changes, there may be a unit context switch. □

Main Thread Socket Thread

nsDocShell::LoadURI(string)

nsHttpConnectionMgr::PostEvent

nsresult nsHttpConnectionMgr::PostEvent(...) {
 …

 nsCOMPtr<nsIRunnable> event =
 new nsConnEvent(this, handler, iparam, vparam);
 rv = mSocketThreadTarget->Dispatch(event,
 NS_DISPATCH_NORMAL);

 …
}

class nsConnEvent: public nsRunnable {};

ProcessNextEvent

B

C

1

2

@delegator

class nsRunnable {};

A

@delegator.indicator
workQueue.size;

D

3

Figure 3.11.: Firefox main thread and socket thread communication example

Annotation Miner. We develop an annotation miner to recommend unit and delegator data

structures to annotate. The miner works as follows. The user provides a pair of executions

to denote an intended unit task, one execution containing one unit and the other containing

two units. Then, differential trace analysis is performed to prune data structures that are

common in both traces and hence irrelevant to the unit (e.g., global data structures). The

miner leverages the points-to relations between data structures to narrow down to the top

data structures (i.e., those that are not pointed-to by other data structures). PageRank is

further used to determine the significance of individual top data structures. A ranked list of

data structures is returned to the user. Note that this mining stage is much less demanding

than the training process in BEEP/ProTracer, which requires extracting code locations that

induce low level memory dependencies. Since we focus on identifying high level data

65

structures, which are covered by the provided inputs, completeness is not an issue for us in

practice.

Test 1: Google

Test 2: GDrive

Test 3: LocalFile

TA TB=2TA ΔT: { e | TB.numberOf(e) = 2*TA.numberOf(e) }

T1 T1’ ΔT1: { SocketIO, Tabs, ScrollPos, LogItem… }

T2 T2’ ΔT2: { SocketIO, DiskIO, Tabs, ScrollPos, LogItem… }

T3 T3’ ΔT3: { DiskIO, Tabs, ScrollPos, LogItem… }

Intersection(ΔT)

{ Tabs,
ScrollPos,
LogItem,

… }

Figure 3.12.: Example of annotation miner in MPI

Next, we show how to mine the tab data structure in Firefox (Figure 3.12). We first

use a pair of runs to visit the Google main page. T1 has one tab and T1’ has two tabs.

∆T shows the data structures in the trace differences. Note that there are data structures

specific to the page content but irrelevant to the intended unit, such as SocketIO. To further

prune those, we use another two pairs of executions that visit Google Drive and a local

file, respectively. The miner then takes the intersection of the trace differences to prune out

SocketIO and DiskIO. The resulting set contains the top level data structures and their

supporting meta data structures (e.g., the ScrollPos data structure to support scrolling

in a tab). The trace-based points-to analysis then filters out the low level supporting data

structures. There may be multiple top level data structures remained, many not related to

units (e.g., for logging). Hence in the last step, PageRank is used to rank the several top data

structures. In our case, the tab data structure is correctly ranked the top.

3.3.3 Runtime

Unit Context. At runtime, each thread maintains a vector called the unit context. Each

element of the vector denotes the current unit instance for each unit type (or each perspective).

Note that MPI allows partitioning an execution in different ways by annotating multiple

unit data structures. If the user has annotated n unit data structures (with n indicators and

n identifiers), there are n elements in the vector. Each time the indicator of a unit data

66

structure is updated, the identifier of the data structure is copied to the corresponding vector

element.

Delegation. MPI runtime provides a global hash map that is shared across all threads,

called the delegation table. The delegation table projects a delegator data structure instance

to a unit context vector value, denoting the membership of the delegator. Upon the cre-

ation/initialization of a delegator data structure instance, MPI inserts a key-value pair into

the delegation table associating the delegator to the current unit context. Upon an update

of the indicator of a delegator data structure (in a worker thread that handles the subtask

represented by the delegator), the unit context of the current thread is set to the unit context

of the delegator, which is looked up from the delegation table. Intuitively, it means the

following execution belongs to the unit of the delegator until a different delegator is loaded

to the indicator variable. The optimization of this process can be found in §3.3.5.

□ Example. Let us revisit the Firefox example in Figure 3.9. We want to attribute all

subtasks to their corresponding tabs (shown in different colors). In Figure 3.11, we show a

detailed workflow of the main thread posting the connection event to the socket thread. The

main thread first calls the LoadURI method (step 1), which invokes the PostEvent method.

Within PostEvent (box C), it creates an nsConnEvnet and posts it to the socket thread. Since

data structure nsRunnable (box A) is annotated as a delegator and the HTTP connection

request nsConnEvent (box B) is a subclass of nsRunnable, MPI propagates the current

unit id in the main thread to the worker thread, namely, the socket thread. Specifically, the

request is associated with the current unit context of the main thread in the delegation table.

Inside the socket thread that receives and processes the request (i.e., step 3), loading the

request from the task queue causes the change of the queue size indicating a possible unit

context switch. As a result, the current unit context of the socket thread is set to that of the

request, namely, tab1. With a chain of delegations, MPI is able to recognize all the tab1

subtasks performed by different threads, namely, all the red bars in Figure 3.9 belong to the

same tab1 unit. □

67

3.3.4 Analysis

The analysis component of MPI is a pass in LLVM responsible for adding instrumen-

tation to realize the runtime semantics mentioned earlier. It takes a program with the four

kinds of annotations mentioned in §3.3.2, and produces an instrumented version of the

program that emits additional syscall events denoting unit context switches and channel

operations.

MPI needs to identify the following a few kinds of code locations: (1) all the updates

(i.e., definitions) to indicator variables, including unit indicators and delegator indicators,

to add instrumentation for unit context updates; (2) all the creation/initialization locations

of delegator data structures to add instrumentation for the inheritance of unit context; (3)

reads/writes of channel variables/fields to add instrumentation for channel event emission

and redundancy detection; (4) all the system/library calls that may lead to system calls

to add instrumentation for unit event emission and redundancy detection. We use a type

based analysis to identify (2) and (3). For (4), we pre-define a list of library functions

(e.g., libc functions) that may lead to system calls of interest and then scan the LLVM

bitcode to identify all the system calls and the library calls on the list. Details are elided.

A naive solution to (1) is to perform a walk-through of the LLVM bitcode to identify all

definitions to indicator variables or to their aliases (using the default alias analysis in LLVM).

However, this may lead to redundant instrumentation. Specifically, an indicator may be

defined multiple times and there may not be any system calls (or library calls that can lead

to system calls) in between. As such, the unit context switch instrumentations for those

definitions are redundant.

□ Example. The function im_regexec_multi() in Figure 3.13 searches for a regular expression

in Vim. The indicator variable is updated at line 6, and then again at line 8. The operations

inside function vim_regexec_both() are all on memory. In other words, it does not make any

system calls directly or indirectly. As such, the instrumentation for line 6 is redundant. □

The problem is formulated as a reaching-definition problem, which determines the set of

definitions (of a variable) that can reach a program point. We say a definition of variable x

68

1 /* Match a regexp against multiple lines. */

2 long im_regexec_multi(...) {

3 buf_T *save_curbuf = curbuf;

4 // initilize local variables

5 // switch to buffer "buf" to make vim_iswordc() work

6 curbuf = buf;

7 r = vim_regexec_both(NULL, col, tm);

8 curbuf = save_curbuf;

9 return r;

10 }

Figure 3.13.: Instrumentation example (Vim, op_yank function)

can reach a program point ℓ, if x is not redefined along any paths from the definition to ℓ. In

our context, we only instrument the definitions that can reach a system call or a library call

that can lead to a system call. In Figure 3.13, the definition at line 6 cannot reach any point

beyond line 8. Since line 7 does not denote any system call, line 6 is not instrumented. §3.3.6

discusses how to construct attack graphs from MPI logs. The algorithm is elided.

3.3.5 Run Time Optimization

MPI emits special syscall events to denote unit context switches, and channel read-

s/writes. During causal graph construction §3.3.6, the unit context switch events are used

to derive unit boundaries and the channel events are used to derive inter-unit dependencies.

Note that channel operations are essentially memory reads and writes that need to be exposed

as system events. Otherwise, they are invisible to MPI. Inter-unit communication through

system resources such as files, sockets, and the system clipboard can be captured by the

default underlying system event tracking module without the intervention of MPI.

A naive solution is to emit a unit context switch event upon any indicator update and

a channel event upon any channel read/write. However in practice, we observe that (1) an

indicator update may not imply the change of the unit context and (2) even though the unit

context changes, there may not be any system events that happen in between the two unit

69

context switches. Both cases lead to redundant unit context switch events. Similarly, there

are often multiple accesses to the same channel object within the same unit. These accesses

must induce the same causality and hence cause redundancy. Since emitting an event entails

a system call and hence a context switch, preventing redundant event emission is critical to

the efficiency of MPI. We have two approaches to address this problem. One is through the

static analysis (§3.3.4) and the other is runtime optimization. MPI does not emit any event

upon an indicator update. Instead, it simply updates the current unit context (in memory),

which has much lower overhead compared to a system call. Upon a regular system call (e.g.,

file read), it checks if the current unit context is the same as the previous context that was

emitted. If not, it emits a unit context switch event right before the system call. Otherwise,

it does not emit. Similarly, upon a channel operation, MPI checks if a channel operation by

the same unit was logged before. If so, it avoids logging the channel operation.

3.3.6 Causal Graph Construction

In this section, we discuss the causal graph construction algorithms for backward

tracking starting from a symptom event and forward tracking starting from a root cause

event. Algorithm 1 shows how to generate the backward tracking causal graph for a

specific perspective with a given log file and a symptom event. Generating the graphs for all

perspectives only requires an easy extension.

We use an objs set to represent the system objects, subjects, and channels between

units that are directly or indirectly related to the symptom event. The overall procedure

of the algorithm is to traverse the log in a reverse order to populate the set and identifies

events causally related to the symptom by correlating to some entity in objs. At line 1, the

algorithm initializes the set to contain the system object accessed by the symptom event and

the system subject (i.e., the process of the event). It also marks the current unit as correlated

to the symptom (line 2). Then it traverses all the events in the log file in a reverse order,

starting from the symptom event (lines 3-17). If the current event e is not a unit context

switch event, the algorithm saves it in a temporary list of events for the current unit (line

70

Algorithm 1 Backward Causal Graph Construction

Input: L - the event log

l - unit type (i.e., perspective) given in the @indicator annotation

es - symptom event

Output: Gl - the generated causal graph for perspective l

Variable: objs - system objects/subjects relevant to es

se, pide - the system object/pid of event e

bUnit - if the current unit causally related with es

eventUnit[pid] - the events in the current unit of process pid

1: objs← { pides , ses}

2: bUnit← true

3: for each event e ∈ L in reverse order, starting from es do

4: if e is not a unit context switch event then

5: eventUnit[pid].add(e)

6: if e updates any object or subject in objs then

7: bUnit← true

8: if e is a unit context switch event then

9: if e does not switch to a l unit then

10: continue

11: else

12: if bUnit then

13: add events in eventUnit[pide] to Gl

14: add accessed objects/subjects in eventUnit[pide] to objs

15: eventUnit[pide]← ∅

16: bUnit← false

17: return Gl

4-5). If e updates an object (e.g., file and pipe) or spawns a subject (i.e., process) that was

identified as related to the symptom (and hence in the objs set), a flag is set to indicate that

the current unit is correlated (lines 6-7). If e is a unit context switch, the algorithm further

tests if e switches to a unit in the given perspective. If not, the switch event is irrelevant and

simply skipped (lines 9-10). Otherwise, it indicates a unit boundary of our interest. The

algorithm checks the flag to see if the current unit is causally related to the symptom (lines

71

11-12). If so, it adds all the events in the current unit to the result graph. It also updates

objs with all the objects read by any event in the current unit and all the subjects spawned

in the unit (lines 13-14). The temporary event list and the flag are then reset (lines 15-16).

Note that when the events are added to the graph, nodes are created and further connected

to existing nodes in the graph by the dependencies implied by the events. For example, a

file read event entails connecting to the (previously created) file node. Details are elided for

brevity.

□ Example. Figure 3.14 shows an example of constructing the backward causal graph. The

simplified log entries are shown on the left while the generated graph is shown on the right.

The graph is also annotated with events to explain why nodes/edges are introduced. The

algorithm generates the graph starting from the symptom event at line 8, which is a write

event to the socket a.a.a.a. It traverses back and reaches line 7, which is a unit context

switch (UCX) event whose indicator is 5 and the identifier value is 7. Two nodes are hence

created representing that a process (node) wrote to a socket (node) whose value is a.a.a.a.

Going backward, the algorithm further identifies another unit represented in lines 4-6 with

the indicator value 5 and the identifier value 3. This is a different unit instance of the same

type and it has no causal relation with the object set that currently contains the socket object

and the process. Therefore, all the events in this unit are dropped. The algorithm continues

to traverse backward and encounter another unit in lines 1-3. Line 2 indicates that it reads

file index.html, so the subgraph for lines 1-3 is file index.html being read by the process.

Note that the value of identifier indicates lines 1-3 and lines 7-8 belong to the same unit

(instance), which means that the application is working on the same task. Hence, the global

causal graph is updated by joining the two subgraphs. The result graph is shown on the right

hand side.

The forward graph construction algorithm is similar and hence omitted.

Essence of MPI and Memory Dependencies. From the graph construction Algorithm 1,

one can observe that all the events in a unit are considered correlated. If there is a single

event (within a unit) that has any direct/indirect dependency with the symptom, all the

events in the unit are added to the graph and all the objects/subjects accessed by the unit

72

UCX: IND=5, ID=7

FDR: index.html

……

UCX: IND=5, ID=3

FDR: about.html

……

UCX: IND=5, ID=7

SKW: a.a.a.a

1:

2:

3:

4:

5:

6:

7:

8:

Process

index.html

8: SKW

2: FDR

1: UCX

a.a.a.a

Process

index.html

8: SKW

2: FDR

1:UCX

7:UCX

a.a.a.a

Process7:UCX

Figure 3.14.: An example of constructing backward causal graph. (UCX is short for Unit Context

Switch, FDR is short for File Descriptor Read, and SKW is short for Socket Write.)

are considered correlated. As such, MPI does not need to track any fine-grained (memory)

dependencies within a unit. Dependencies across units are either captured through system

level dependencies (e.g., file/socket reads and writes) or explicitly indicated by the user

through the channel annotation.

3.4 Evaluation

In this section, we present the evaluation results including the annotation efforts needed,

the runtime and space overheads of the prototype, and a number of attack cases to show

the advantages of MPI compared to the event loop based partitioning technique in BEEP

[26] and ProTracer [11]. For comprehensive comparison, we integrate both MPI and event

loop based partitioning with three underlying provenance tracking systems, the Linux Audit

system, ProTracer and LPM-HiFi.

3.4.1 Overhead

Space overhead: We measure the space overhead of MPI and compare it with the

overhead of event loop based partitioning, on the aforementioned three provenance tracking

systems. We measure the overhead of MPI and BEEP on Linux Audit and LPM-HiFi

by comparing the logs generated by the original binaries and the instrumented binaries.

ProTracer requires unit information to eliminate redundant system events (e.g., multiple reads

73

Ta
bl

e
3.

1.
:

M
P

I
Sp

ac
e

O
ve

rh
ea

d

A
pp

lic
at

io
n

L
ev

el
B

E
E

P
Sp

ac
e

O
ve

rh
ea

d
M

P
I

Sp
ac

e
O

ve
rh

ea
d

B
E

E
P

M
P

I

L
in

ux
A

ud
it

L
PM

-H
iF

i(
R

aw
-G

zi
p)

L
in

ux
A

ud
it

L
PM

-H
iF

i(
R

aw
-G

zi
p)

Pr
oT

ra
ce

r(
M

B
)

A
pa

ch
e

H
T

T
P

C
on

ne
ct

io
n

15
.3

8%
12

.8
7%

0.
64

%
5.

37
%

3.
75

%
0.

16
%

22
.1

2
20

.0
8

B
as

h
C

om
m

an
d

0.
45

%
0.

34
%

0.
01

%
0.

41
%

0.
34

%
0.

01
%

1.
01

0.
78

E
vi

nc
e

D
oc

um
en

tF
ile

3.
72

%
4.

98
%

0.
25

%
0.

04
%

0.
04

%
0.

00
%

0.
22

0.
21

Fi
re

fo
x

Ta
b

42
.1

6%
38

.2
3%

1.
01

%
18

.2
0%

13
.2

4%
0.

52
%

59
3.

23
22

8.
54

K
ru

sa
de

r
C

om
m

an
d

26
.5

4%
24

.5
3%

0.
09

%
5.

71
%

4.
89

%
0.

24
%

2.
31

2.
31

W
ge

t
R

eq
ue

st
0.

43
%

0.
33

%
0.

01
%

0.
42

%
0.

33
%

0.
01

%
4.

33
4.

33

M
os

t
Fi

le
0.

05
%

0.
04

%
0.

00
%

0.
05

%
0.

04
%

0.
00

%
1.

78
1.

78

M
C

C
om

m
an

d
0.

93
%

0.
75

%
0.

01
%

0.
90

%
0.

75
%

0.
01

%
3.

43
1.

89

M
pl

ay
er

V
id

eo
Fi

le
0.

04
%

0.
04

%
0.

00
%

0.
04

%
0.

04
%

0.
00

%
0.

34
0.

34

M
PV

V
id

eo
Fi

le
0.

09
%

0.
03

%
0.

00
%

0.
09

%
0.

03
%

0.
00

%
0.

58
0.

58

N
an

o
Fi

le
0.

29
%

0.
11

%
0.

01
%

0.
01

%
0.

01
%

0.
00

%
8.

23
2.

46

Pi
ne

C
om

m
an

d
8.

11
%

6.
09

%
0.

27
%

7.
28

%
4.

09
%

0.
13

%
34

.2
3

14
.3

2

Pr
oF

T
Pd

FT
P

C
on

ne
ct

io
n

4.
61

%
3.

45
%

0.
17

%
2.

11
%

1.
27

%
0.

06
%

24
.9

8
20

.3
5

SK
O

D
FT

P
C

on
ne

ct
io

n
5.

99
%

3.
89

%
0.

17
%

2.
68

%
1.

99
%

0.
10

%
25

.3
5

22
.7

3

Ti
ny

H
T

T
Pd

H
T

T
P

C
on

ne
ct

io
n

8.
94

%
5.

32
%

0.
32

%
2.

72
%

1.
08

%
0.

04
%

43
.2

4
37

.4
8

Tr
an

sm
is

si
on

To
rr

en
tF

ile
18

.4
1%

18
.3

3%
1.

03
%

0.
12

%
0.

12
%

0.
01

%
8.

34
8.

23

V
im

Fi
le

2.
23

%
2.

32
%

0.
12

%
0.

13
%

0.
13

%
0.

01
%

17
.2

3
9.

48

W
3M

Ta
b

38
.7

4%
30

.4
5%

1.
07

%
24

.6
7%

18
.2

3%
0.

19
%

14
5.

26
73

.2
6

X
pd

f
D

oc
um

en
tF

ile
0.

03
%

0.
07

%
0.

00
%

0.
03

%
0.

07
%

0.
00

%
0.

45
0.

45

Y
af

c
FT

P
C

on
ne

ct
io

n
3.

44
%

1.
78

%
0.

09
%

2.
60

%
0.

87
%

0.
04

%
26

.3
4

18
.2

7

74

of a file within a unit). Therefore, it needs to work with an execution partitioning scheme.

We hence compare the ProTracer logs by BEEP and by MPI. Note that BEEP+ProTracer

is equivalent to the original ProTracer system [11] and in MPI+ProTracer we retain the

efficient runtime of the original ProTracer but replace the partitioning component with MPI.

Since BEEP supports only one low-level perspective, we only annotate one perspective in

MPI during comparison. The overhead of multiple perspectives is in §3.4.2.

The results are shown in Table 3.1. The table contains the following information (column

by column): 1) Application. 2) Perspective for partitioning. 3) Overhead of BEEP on Linux

Audit, i.e., comparing the Linux Audit log sizes with and without BEEP. 4) Overhead of

BEEP on LPM-HiFi with the raw log format. 5) Overhead of BEEP on LPM-HiFi with its

Gzip enabled user space reporter tool. 6-8) Overhead of MPI on BEEP and LPM-HiFi. 9)

Log size of BEEP on (original) ProTracer. 10) Log size of MPI on ProTracer. Note that

Linux Audit and LPM-HiFi have different provenance collection mechanisms, i.e. system

call interception for Linux Audit and LSM for LPM-HiFi. This leads to different space

overheads. LPM-HiFi provides different user space reporters, and the Gzip enabled reporter

has less space overhead.

Observe that for most programs our approach has less overhead on all the three platforms.

For programs like document readers and video players, both approaches show very little

overhead. These programs do not need to switch between different tasks frequently, which

means they rarely trigger the instrumented code. Our approach shows significant better

results for many programs like web browsers, P2P clients, HTTP and FTP programs

including servers and clients due to a few reasons. Firstly, in these programs, the events

handled by the event handling loop are at a very low level, whereas MPI can partition

execution at a much higher level. Thus there are fewer unit context switches in our system,

and multiple execution units in BEEP are grouped into one in our system without losing

precision. For example in Apache, a remote HTTP request can lead to redirection, and the

Apache server needs a few BEEP execution units to handle it. This triggers the instrumented

code several times. But in MPI, multiple requests, including their redirections, of a same

connection are grouped together. Thus, the instrumentation (for unit context switch) is

75

triggered less frequently. Another reason is that we avoid meaningless execution units.

For example in benchmark Transmission, BEEP execution units are based on time events,

leading to many redundant units. This is avoided in MPI. Firefox has high overhead in

both systems. When multiple tabs are opened, Firefox processes them in the background

with threads. Since most of the requests involve network or file I/O, a lot of system/unit

context switches are triggered, leading to the overhead. Despite this, the overhead of our

system is about one third of that of BEEP. Note that there is another advantage of MPI that

cannot be quantified –MPI does not require extensive training to detect low level memory

dependencies. During our experiments, we had to add test inputs to the training sets of

BEEP to ensure the provenance was not broken for a number of applications (e.g., Firefox).

We want to point out that with MPI, we can even reduce space overhead for the highly

efficient ProTracer system and the reduction is substantial for a few cases. This is because

MPI produces higher level execution units (compared to BEEP/ProTracer), leading to fewer

units, more events in each unit and hence more redundancies eliminated by the ProTracer

runtime. Also note that all the advantages of MPI over BEEP (e.g., without requiring

extensive training and rich high-level semantics) are also advantages over ProTracer as the

original ProTracer system relies on BEEP. We have ran MPI for 24 hours with a regular

workload. The generated audit log has 680MB with 80MB by MPI. Details can be found in

§3.4.2.

Run time overhead: We measure the run time overhead caused by our instrumentation.

For server programs, we use standard benchmarks. For example, for the Apache web server,

we use the ab [44] benchmark. For programs that do not have standard test benchmarks, but

support batch mode (e.g., Vim), we translate a number of typical use cases to test scripts to

drive the executions. We preclude highly interactive programs.

For each application, we choose the same perspectives as the previous experiment, and

the results are shown in Figure 3.15. For each program, we have eight bars. 1 MPI-Native:

the overhead of MPI without any provenance system over native run. 2 MPI-ProTracer:

the overhead of MPI over ProTracer. 3 MPI-LPM: the overhead of MPI over LPM-HiFi.

4 MPI-Audit: the overhead of MPI over Linux Audit. The other four bars denote the

76

Figure 3.15.: MPI: Run-time overhead for each application

overhead of BEEP. As we can see from the graph, most applications have less than 1% run

time overhead for all situations, which is acceptable. Comparing with BEEP, MPI shows

less overhead in all cases. The low run time overhead is due to the following factors. Firstly,

compared with the original program, the number of instrumented instructions is quite small.

Secondly, most of the instructions are rarely triggered. Thirdly, our instrumentation mainly

contains memory operations like comparing the newly assigned identifier value with the

cached value.

3.4.2 More Overhead Experimental Results

Window Tab Element Conn Request
 Firefox Apache

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

S
p
a
ce

 o
v
e
rh

e
a
d
(%

)

Figure 3.16.: MPI: Run-time overhead for different partitioning perspectives

We also conduct experiments to measure space overhead for the same application with

different partitioning choices, and the results are shown in Figure 3.16. We select two

77

programs, Firefox and Apache. For Firefox, we choose three different ways to instrument:

windows, i.e., a unit for a top level residence window for tabs (note that multiple windows

may be driven by the same Firefox process internally); tabs and elements (inside a page).

We do not show the numbers for each web site instance, because the instrumentations are

similar to those of tabs, and the only difference lies in the expressions used in the @identifier

annotation (see §3.3). For Apache, we use two ways to instrument: each connection

(each client instance), and each request. The results show that with different levels of

instrumentation, the overhead is significantly different. Instrumenting the applications at a

higher level causes less overhead. For both cases, a lower level suggests 2-3 times overhead

increase.

0 5 10 15 20 25
Time (h)

0

100

200

300

400

500

600

700

Lo
g
 S

iz
e
(M

B
)

Total Log Size
MPI-Log Size

Figure 3.17.: MPI: Space overhead for a whole day

The last space overhead experiment we did is to run the instrumented applications on our

machine for a whole day with Linux audit system enabled and measure the events generated

by MPI. The workload includes regular uses such as web surfing, checking and responding

emails. The result is shown in Figure 3.17. The black solid line shows the log size generated

by the Linux audit system, and the dashed blue line shows the log size generated by MPI.

From the graph, we can see that the log size generated by the Linux audit is more than 600

MB while our instrumentation issues less than 80 MB.

78

Table 3.2.: MPI Annotation Efforts

Application LOC
Annotation

Inst
ID IND Chann DEL

Vim 313,283 3 3 2 0 878

Yafc 22,823 2 3 0 1 111

Firefox 8,073,181 3 32 0 1 6,867

TuxPaint 41,682 2 2 0 0 121

Pine 353,665 2 2 2 0 746

Apache 168,801 2 2 0 1 2,437

MC 135,668 2 2 1 0 3,332

ProFTPd 307,050 3 3 0 1 4,905

Transmission 111,903 2 4 0 1 66

W3M 67,291 2 2 0 1 3,718

3.4.3 Annotation Efforts

In this experiment, we measure the effectiveness of the annotation miner and the number

of annotations eventually added. The annotation results are shown in Table 3.2. We only

show some representative programs as the others have similar results. We present the

applications in the first column, and their sizes (measured by SLOCCount [86]) in the

second column. In the next four columns, we show the number of annotations needed for

@identifier, @indicator, @channel, and @delegator. For each program, we provide two or

more perspectives, as denoted by the number of @identifier annotations. In the last column,

we show the instrumentation places automatically identified by our compiler pass. Less than

20% of these places were covered by our profiling runs. In other words, a training based

method like that in BEEP/ProTracer would not be able to cover all these places.

79

3.4.4 Annotation Miner

To evaluate the annotation miner, we use the 20 programs in Table 3.1. For each program,

we report the ranking of the unit/delegator data structures that we eventually choose to

annotate. There are totally 52 of them. All the 6 delegator data structures are correctly

ranked the top. That is because they are mainly used in worker threads, which have relatively

fewer data structures. For the 46 unit data structures that we eventually annotate, 36 of

them are ranked at the first place, 8 at the second place, and the remaining 2 at the third

place. Figure 3.18 shows the reported data structures for Vim, Firefox and HTTPd. Each

plane denotes the results for a perspective. The highlighted data structures are the ones that

we eventually choose to annotate. The reason why we do not always annotate the top data

structures is that they are typically the shadow data structures of the real unit data structures.

They usually store meta-data related to units, causing them to have higher ranks than the

real unit data structure. With the help of the miner, we spent minutes to hours to finalize

the annotations. We argue that such efforts are manageable. More importantly, they are

one-time efforts.

Vim
: F

ile

file_buffe
r

memfile

xfilemark

……

Vim
:W

indow

window_S

wininfo_S

winopt_T

……

Vim
:fr

ame

fra
me_S

…

window_S

……

Fire
fox: T

ab

nsG
lobal…

nsP
ID

om…

nsD
om…

……

Fire
fox: E

le

nsP
ID

om…

nsD
OM…

nsD
om…

……

Fx: W
indow

nsP
IW

indow

nsG
lobalW

…

nsD
om…

……

HTTP: R
eq

request_
rec

…req_info…

conn_red

……

HTTP: C
onn

conn_rec

……

request_
rec

……

Figure 3.18.: Annotation miner results

3.4.5 Attack Investigation

To evaluate MPI’s effectiveness in attack investigation, we apply it on 13 realistic attack

cases used in previous works [27, 26, 40, 11]. The results show that MPI is able to correctly

identify the root causes with very succinct causal graphs for all cases. Moreover, MPI

80

generates fewer execution units using the perspectives in Table 3.1, when compared to

BEEP/ProTracer. On average, the number of units generated by MPI is only 25% of that

by BEEP/ProTracer. For attacks involving GUI programs (e.g., Firefox), the number is 8%,

and in an extreme attack case involving Transmission, it is less than 1%. In terms of the

generated attack graphs, MPI can reduce the number of nodes to 92% and the number of

edges to 83% on average. Note that it is because these attacks have simple propagation

paths such that the BEEP/ProTracer graphs are quite succinct. For complicated cases, MPI

can reduce the graphs to 76%(nodes)/62%(edges). In addition, we evaluate it on a few other

realistic attack cases. Next, we show one such case. Two more cases are presented in §3.4.6

to demonstrate the advantages of MPI over BEEP/ProTracer in an insider threat and in

tracking complex browsing behaviors in Firefox.

Case: FTP Data Leak. Exploiting system misconfiguration to acquire valuable sensitive

information is a common attack vector [87, 88]. It is important to assess and control damages

once the problem is noticed. In the following incident, an FTP administrator accidentally

configured the root directory of many users to a folder containing classified files, and gave

them read accesses. After noticing the problem, he shut down the server and then conducted

investigation to figure out the significance of the potential information leak. In the duration

of the misconfiguration, there are thousands of connections from a large number of users.

The number of classified files is also large.

3: FTP Process

2: Session Session

4: Directory

download 1: CommandHelp download

 Session

5: User

Figure 3.19.: FTP server partitioning perspectives

In Figure 3.19, we show a number of possible investigation perspectives for the FTP

server application. Event loop based partitioning techniques are based on each command or

user request (box 1), and traditional auditing approaches are based on the whole process (box

81

3). MPI provides choices that align better with the logical structures of the application, such

as the session perspective (box 2), i.e., all the commands/requests from a session belong

to a unit, the directory perspective (box 4), i.e., all the commands on a given directory are

considered a unit, and the user perspective (box 5), i.e., all commands/requests from a user

(not limited to an IP address) belong to a unit. Note that all FTP commands are associated

with some file or directory as part of its context, and hence we can partition FTP execution

based on this information.

MF2

C1

MF0

C1

F0

C1

MF4

C0

F4

C2

MF1

C1

F1

C0

F7

C2

MF4

C0

Figure 3.20.: FTP server partitioned by BEEP

MF2 MF0

C1

F0 F7

C2

F4 F0

C3

MF4

C0

MF0 MF1

C1

F2

C2

F2

C0

F1F2

C2

F3

Figure 3.21.: FTP server partitioned by each connection

Part of the BEEP graph is shown in Figure 3.20. Observe that each user command

is captured as a unit. The simplified graph by MPI with connection based partitioning is

shown in Figure 3.21, and user based partitioning in Figure 3.22. The connection perspective

alleviates the inspector from going through the individual commands. The user perspective

can aggregate all the behaviors from a specific user over multiple sessions so that the

inspector can hold individual users for responsibilities. Note that a user can use various

IP addresses to connect to the server. Without MPI, such semantic information cannot be

exposed to the provenance tracking system. The number of nodes in the BEEP, connection

(MPI), and user (MPI) graphs are 962, 224, and 78, respectively. We want to point out that

the MPI graphs cannot be generated from the BEEP graph by post-processing because of

82

the subtask delegation in this program, i.e., it is difficult to attribute a sub-task to the top

level unit that it belongs to with only the low level semantic information in the BEEP graph.

Alice

MF0

C0

MF1

C2

F0

C3

Bob

MF2 MF3

C1

F4

C2

Carol

F7 F1

C2

Dan

F2 F3

C0

Figure 3.22.: FTP server partitioned by users

3.4.6 Case Studies

We have presented a watering hole attack through Firefox and Transmission in §3.2.

Next, we will present more attack cases and one scenario with complex user behaviors to

show the advantages of MPI. These are attacks simulating real stories. Note that since APT

attacks are staged (and hence last for a long time), involve many (vulnerable) applications

with some cannot be found any more, and rely on human mistakes, it is very difficult to

apprehend or reproduce real APT attacks. Therefore, we simulate attacks following the

same strategies used in real incidents. based on attack stories by repeating the similar

human behaviors (e.g., clicking phishing emails) and replacing unavailable apps with apps

with similar functionalities. This is consistent with the experiments conducted by existing

works [26, 11, 27].

Case: Insider Threat. In attacks such as watering hole and phishing emails, the adversaries

apply external influences and wait for the employees to make mistakes. However, it is also

very common that attacks are launched from inside the enterprise (e.g., by malicious or

former employees). In fact, a large number of such cases had been reported [89, 90, 91, 92].

Next, we simulate such an attack.

A computer game development company noticed that the graphical design of a to-be-

announced game was leaked on an online gaming forum. The company started investigation,

trying to understand how this design was leaked and who should be held responsible. The

83

investigator first conducted forward tracking from the design file but found that the file

was neither sent outside by any email nor copied by any employee to their own devices.

She further suspected that some old version of the file was leaked instead of the current

version. Even though the old versions of the design file did not explicitly exist any more, the

provenance of the file was tracked by the audit system.

She first conducted backward tracking to disclose all the past versions (with the name

“p_v” plus the version number) and then forward tracking to see how these versions were

propagated/used. Assume that she used BEEP first. She quickly noticed a number of

problems in the BEEP graph that makes manual inspection difficult.

p_v0.png

p_v12.png p_v13.png

p_v14.png

slogan.txt

title.txt

p_v19.png p_v20.png

p_v47.png

Figure 3.23.: Causal graph for insider attack using BEEP

The resulting graphs by BEEP are shown in Figure 3.23. White boxes represent units

for TuxPaint [93], gray boxes are for the editor, Vim, and red boxes are for other apps.

First of all, the graph is very large (containing 1832 nodes). This is because many people

had contributed to the file in the past using TuxPaint, a graph drawing tool. There were a

lot of interactions (e.g., copy & paste) among multiple image files, some of which were

from Internet. The various historic versions of the design file were propagated to other

places. Second, there are many “empty” execution units, which are execution units just

have boundary events. This is because many operations in UI intensive program TuxPaint

have no real effects on the provenance. These operations include, but are not limited to,

switching painting tools (frequently), clicking menu bars and so on. Third, she found that

most execution units for TuxPaint only have memory dependency events. This is because

84

TuxPaint stores the image buffers in memory, and flushes them to disk only when the

user clicks the save button. In the editing units (e.g., choosing tools and drawing figures),

TuxPaint only operates on the image buffers. These units are only connected by memory

dependency and do not invoke any system calls. However, these units are important as they

are responsible for chaining up the important behaviors.

After inspecting such a large graph, the inspector still could not spot any suspicious

behavior. The reason is that there are broken links in the graph such that some updates to

the design file are missing from the graph. Specifically, some of the editing actions were not

in the BEEP training set such that the corresponding memory dependencies are not visible,

leading to broken provenance, e.g., “p_v14.png” and “p_v20.png”.

p_v0.png

p_s.png

plan.txt
proposal.txt mv

p_v21.png p_v47.png

p_archive

bash
notice

pine

p_v20.png

Figure 3.24.: Causal graph for insider attack using MPI

The inspector switched to MPI. She used individual image files as the perspective.

The resulting (simplified) graph is in Figure 3.24. Now each white box represents all the

editing operations on a single file. It can be clearly seen that a version of the design file,

“p_v20.png”, was read by a TuxPaint unit that operated on file “p_s.png”, which was later

archived with a number of text files. The archive was renamed and sent through an email.

The link from the design file to file “p_s.png” was missed by BEEP because the attacker

opened the design file, conducted a few editing actions whose memory dependencies are

missed by BEEP such that the later save-as unit is disconnected from the file read unit. Note

that all these actions are individual units in BEEP that need to be chained up by memory

dependencies, whereas they belong to the same unit in MPI. Overall, the MPI graph is

precise, much smaller (152 nodes) and cleaner. We also want to point out that a graph similar

85

firefox: Bing

firefox: Search Result

firefox: LinkedIn

firefox

firefox
x.x.x.20

firefox

z.z.z.9

y.y.y.200

k.k.k.222

caffee.pdf

~/mpi-firefox/firefox-build/dist/bin/firefox

Figure 3.25.: Firefox in page perspective

to the MPI graph cannot be generated by post-processing the BEEP graph as the missing

links cannot be inferred and it is difficult to determine which low-level nodes belong to an

image file.

Case: Complex Browsing Behavior in Firefox. In this case study, we show how MPI

precisely captures the causality of complex browsing behavior of Firefox. During browsing,

the user first opened Bing from the bookmark bar, and searched a key word, and then used

different ways to open new pages including clicking links, choosing “open page in a new

tab/window” in the right-click menu, going back to the previous page, and opening new

pages from Javascript code automatically. In the end, the user downloaded a PDF file. We

collected the log with the page perspective and generated a causal graph by conducting

backward traversal starting from the PDF file. The graph is shown in Figure 3.25. Observe

that the entire browsing history is precisely captured by the graph, including visiting the

LinkedIn page from the search result page and then going back to the search result page. In

contrast, the BEEP’s graph only includes the page hosting the PDF file, missing all the other

pages along the causal chain, due to missing memory dependencies.

3.5 Discussion

Similar to many existing works [26, 40, 11, 70, 29], MPI trusts the Linux kernel and

the components associated with the audit logging system. Attacks that can bypass the

security mechanisms of these systems may cause problems for MPI. Moreover, attacks

that target the underlying audit system, such as audit log blurring and log filling, may

inject noise to logs, making log inspection difficult. As our system is built on top of

86

existing provenance and operating systems, MPI leverages existing features provided by

these systems to mitigate some of the problems. For example, operating systems like

Ubuntu now leverages Ubuntu Software Center to deliver trustworthy software which can be

used to protect the MPI binaries for benign software. Provenance systems like Hi-Fi uses

reference monitor guarantees to protect audit logs, and LPM provides a general framework

for trustworthy provenance collection. We argue these are orthogonal challenges to all

existing provenance tracking techniques and a complete solution to all these challenges is

not the focus of our paper. Instead, the emphasis of MPI is to address dependence explosion

caused by long running processes with accuracy and flexibility.

MPI is essentially an add-on service to the OS-level provenance collection system (e.g.

the Linux Audit system, LPM-HiFi, and ProTracer). System calls can be too coarse-grained.

Fine-grained events, such as library calls or even instruction level dependencies, may need

to be captured for some sophisticated attacks. We argue that the multiple perspective

partitioning enabled by MPI is orthogonal. It is independent of the granularity of the events

captured by the underlying provenance system. It can be easily integrated with systems of

various granularities.

MPI requires program source code. We believe that the semantic information needed

to enable multiple perspective partitioning is difficult to acquire through binary analysis

for complex programs such as Firefox. If it is necessary to partition the execution of a

binary, training and event loop based approaches such as BEEP could be used together with

MPI. In the worst cases, MPI treats the entire process execution as a unit. Note that this

approximation is only problematic for long running processes. Many malware executables

are likely not long running such that treating a whole process as a unit does not introduce a

lot of bogus dependencies. Also note that such approximation does not miss provenance so

that the attack path is still captured. It is just that more efforts may be needed to go through

the causal graph.

MPI relies on source code annotations, which are widely used in practice. Windows

developers explicitly plant logging commands in their software source code to customize

ETW auditing. Both GCC and LLVM provide advanced language features [94, 95, 96] that

87

are triggered by annotations. For example, Firefox has 926 different types of annotations.

The stack-only class annotation “NS_STACK_CLASS” has 406 uses through out the code

base. In contrast, we only introduce 36 annotations (of 4 types) in Firefox. As MPI is based

on source code level annotation and compiler instrumentation, it cannot find units within

dynamic code. However, in practice, we find that unit boundaries mostly lie in static code.

For example, JavaScript code can be grouped into different tabs. Thus, dynamic code can be

attributed to tab units.

3.6 Related work

Many approaches have been proposed for system level provenance tracking. Detailed

comparison of MPI with existing audit systems [10, 26, 40, 42, 80] can be found in §3.2.

Another important approach is to monitor the internal kernel objects (e.g., the file system [30,

52, 58, 28, 50, 71, 97], or LSM objects [27, 29, 70]) to track lineages. The capabilities of

these techniques are similar to those of the audit systems. Thus MPI is complementary

to such systems. For example in §3.4, we showed the integration of MPI and LPM-HiFi.

System wide record-and-replay techniques [79, 25, 49, 98] can also track provenance. These

systems record the inputs for all programs, and replay the whole system execution when

needed. Such systems require deterministic record-and-replay techniques, which are open

research problems, and cause more space overhead. Whole system tainting [31, 51, 54, 24]

is another method of tracking provenance. By tainting all inputs to a system and tracking

their propagation, such systems can record the needed provenance data. These techniques

need to deal with the granularity problem as the taint set may be explosive for a long living

system objects/subjects. MPI can be applied to such systems to overcome the dependency

explosion problem and enable multiple perspective inspection.

In [99], researchers propose to develop provenance aware applications. Muniswamy-

Reddy et. al. [58] provide a library with provenance tracking APIs so that programmers can

develop provenance aware applications. Such an approach relies on the programmers to

88

intensively modify their code to leverage the APIs. In contrast, MPI aims to address the

partitioning problem. Provenance tracking is through the underlying audit system.

Many works [40, 52, 66, 82] are proposed to reduce the space overhead of provenance

tracking based on reachability analysis, Mandatory Access Control (MAC) policies and

so on. Provenance visualization [100, 101, 102, 103, 104] and graph compression [63, 64,

65, 105, 67, 106] are also proposed to correlate events and reduce graph size to facilitate

investigation. These approaches work on generated graphs to compress them for better

visualization. As such, they are complementary to MPI, and can be directly applied

to MPI, its provenance logs and graphs. Researchers proposed many machine learning

methods [107, 108, 109, 110, 111, 112, 113] to investigate provenance data to find abnormal

behaviors. We envision that the multiple perspectives provided by MPI may substantially

improve their effectiveness.

89

4 NIC: DETECTING ADVERSARIAL SAMPLES WITH NEURAL NETWORK

INVARIANT CHECKING

Deep Neural Networks (DNN) are vulnerable to adversarial samples that are generated by

perturbing correctly classified inputs to cause DNN models to misbehave (e.g., misclassifi-

cation). This can potentially lead to disastrous consequences especially in security-sensitive

applications. Existing defense and detection techniques work well for specific attacks under

various assumptions (e.g., the set of possible attacks are known beforehand). However,

they are not sufficiently general to protect against a broader range of attacks. In this paper,

we analyze the internals of DNN models under various attacks and identify two common

exploitation channels: the provenance channel and the activation value distribution channel.

We then propose a novel technique to extract DNN invariants and use them to perform

runtime adversarial sample detection. Our experimental results of 11 different kinds of

attacks on popular datasets including ImageNet and 13 models show that our technique can

effectively detect all these attacks (over 90% accuracy) with limited false positives. We also

compare it with three state-of-the-art techniques including the Local Intrinsic Dimensionality

(LID) based method, denoiser based methods (i.e., MagNet and HGD), and the prediction

inconsistency based approach (i.e., feature squeezing). Our experiments show promising

results.

4.1 Introduction

Deep Neural Networks (DNNs) have achieved very noticeable success in many applica-

tions such as face recognition [114], self-driving cars [115], malware classification [116],

and private network connection attribution [117]. However, researchers found that DNNs are

vulnerable to adversarial samples [118]. Attackers can perturb a benign input (i.e., correctly

classified input) so that the DNN would misclassify the perturbed input. Existing attack

90

methods use two types of perturbation strategies: gradient based approach and content

based approach. In the gradient based approaches, attackers view generating an adversarial

sample as an optimization problem and conduct gradient guided search to find adversarial

samples [119, 120, 121, 122, 123] (§4.2.3). In the content based approaches, attackers craft

patches to inputs that are consistent with real world content of the inputs such as watermarks

on images and black spots caused by dirt on camera lens to perturb the inputs [5, 124]

(§4.2.3).

Real world applications, including many security critical applications, are trending to

integrate DNNs as part of their systems. For example, iPhone X uses a face recognition

system for authentication (unlocking phone, authenticating purchase, etc.). Many companies,

e.g., Google and Uber, are developing self-driving cars that use DNNs to replace human

drivers. However, the existence of adversarial examples is a fatal threat to the thriving

of these applications because misbehaved DNNs would incur severe consequences such

as identity theft, financial losses, and even endangering human lives. Thus detecting or

defending against DNN adversarial samples is an important and urgent challenge.

There are existing works aiming to defend against or detect adversarial samples. Defense

techniques try to harden DNNs using various methods such as adversarial training [119] and

gradient masking [125]. The former tries to include adversarial samples in the training set so

that the hardened models can recognize them. This technique is effective when the possible

attacks are known beforehand. The latter aims to mask gradients so that attackers can hardly

leverage them to construct adversarial samples. Recently, attackers have developed more

advanced attacks against this type of defense. Some other works [126, 127, 128, 129, 130]

do not aim to harden or change the models but rather detect adversarial samples during

operation. For example, Ma et al. [131] proposed to use the Local Intrinsic Dimensionality

(LID), a commonly used anomaly detection metric to detect adversarial samples. Xu et

al. [127] proposed to examine the prediction inconsistency on an original image and its

transformed version with carefully designed filters. MagNet [126] and HGD [132] propose

to train encoders and decoders to remove the added noises of the adversarial samples. More

91

detailed discussion of recent advances in defending and detecting adversarial samples is

presented later (§4.2.4).

In this paper, we analyze the internals of individual DNN layers under various attacks

and summarize that adversarial samples mainly exploit two attack channels: the provenance

channel and the activation value distribution channel. The former means that the model

is not stable so that small changes of the activation values of neurons in a layer may lead

to substantial changes of the set of activated neurons in the next layer, which eventually

leads to misclassification. The latter means that while the provenance changes slightly, the

activation values of a layer may be substantially different from those in the presence of

benign inputs. We then propose a method NIC (Neural-network Invariant Checking) that

extracts two kinds of invariants, the value invariants (V I) to guard the value channel and the

provenance invariants (PI) to guard the provenance channel. Due to the uncertain nature

of DNNs, neural network invariants are essentially probability distributions denoted by

models. Constructing DNN value invariants is to train a set of models for individual layers to

describe the activation value distributions of the layers from the benign inputs. Constructing

provenance invariants is to train a set of models, each describing the distribution of the

causality between the activated neurons across layers (i.e., how a set of activated neurons

in a layer lead to a set of activated neurons in the next layer). At runtime, given a test

input which may be adversarial, we run it through all the invariant models which provide

independent predictions about whether the input induces states that violate the invariant

distributions. The final result is a joint decision based on all these predictions.

We develop a prototype and evaluate it on 11 different attacks (including both gradi-

ent based attacks and content based attacks), 13 models, and various datasets including

MNIST [133], CIFAR-10 [134], ImageNet [135] and LFW [136]. The experimental results

show that we can effectively detect all the attacks considered on all the datasets and models,

with consistently over 90% detection accuracy (many having 100% accuracy) and an ac-

ceptable false positive rate (less than 4% for most cases and less than 15% for ImageNet,

a very large dataset). We also compare our approach with state-of-the-arts, LID [131],

MagNet [126]/HGD [132], and feature squeezing [127]. The results show that our proposed

92

method can achieve consistently high detection accuracy with few false positives, while the

other three detectors can achieve very good results on some attacks but cannot consistently

detect all different types of attacks. We make the following contributions:

• We analyze the internals of DNNs under various attacks and identify the two main

exploit channels: the provenance channel and the value channel.

• We propose a novel invariant based technique to detect adversarial samples, including

novel methods of extracting value invariants and provenance invariants.

• To the best of our knowledge, we are the first one to explore detecting content based

adversarial samples, which have significant different attack patterns.

• We also evaluate the robustness of our technique by designing a strong white-box

adaptive attack, in which the attacker has full knowledge of our technique. Compared

to existing techniques, NIC significantly increases the difficulty of constructing

adversarial samples, with 1.4x larger mean L2 distortion and 1200x longer construction

time for MNIST.

• We implement a prototype [137]. The evaluation results show that our method can

detect the 11 types of attacks considered with over 90% accuracy (many 100%) and

limited false positives. Comparing with three state-of-the-art detectors, NIC shows

consistently good results for all these attacks whereas other techniques perform well

on a subset.

4.2 Background and Related Work

4.2.1 Neural Networks

A DNN can be represented as a function F : X → Y , where X denotes the input

space and Y the output space. It consists of several connected layers, and links between

layers are weighted by a set of matrices, wF . The training phase of a DNN is to identify

the numerical values in wF . Data engineers provide a large set of known input-output

pairs (xi, yi) and define a loss function (or cost function) J(F (x), y∗) representing the

93

differences between a predicted result F (x) and the corresponding true label y∗. The

training phase is hence to minimize the loss function by updating the parameters using the

backpropagation technique [133]. The training phase is governed by hyper-parameters such

as the learning rate. In our settings (detecting adversarial inputs), models are given and

thus the hyper-parameters are fixed. In the testing phase, a trained model is provided with

unseen inputs Xt, and for each input xt ∈ Xt, the classification model assigns its label to be

C(xt) = argmaxiFi(xt), where Fi(xt) represents the probability of xt being recognized as

class i. The classification result is correct if the predicated result C(xt) is the same as the

correct label C∗(xt).

In this paper, we focus on m-class DNN classification models. For such models, a model

output is a vector with m elements, and each of them represents the probability of the input

being in a specific class. We use notations from previous papers [138, 122] to define a neural

network:

y = F (x) = softmax(Z(x))

, where x ∈ X and y ∈ Y . In such models, Z(x) is known as the logits and the softmax

function normalizes the values such that for an output vector y ∈ Rm, yi ∈ (0, 1) and∑
yi = 1, where yi represents the probability of the input being class i. The final output

will be the class with the highest probability.

4.2.2 Adversarial Samples

DNNs are vulnerable to adversarial samples [118]. Intuitively, an adversarial sample

is an input that is very similar to one of the correctly classified inputs (or benign inputs),

but the machine learning model produces different prediction outputs for these two inputs.

Existing works try to generate adversarial samples in two different kinds of approaches:

gradient based approach and content based approach.

Gradient based approach. Formally, given a correctly classified input x ∈ X with class

C(x) (notice that C∗(x) = C(x)), we call x′ an adversarial sample if

x′ ∈ X ∧ C(x′) ̸= C(x) ∧∆(x, x′) ≤ ϵ

94

, where ∆(·) denotes a distance function measuring the similarity of the two inputs and

ϵ is the adversarial strength threshold which limits the permissible transformations. The

equation means that x′ is a valid input (x′ ∈ X) which is very similar to x (∆(x, x′) ≤ ϵ),

but the model gives a different prediction output (C(x′) ̸= C(x)). Such adversarial samples

are usually referred to as untargeted adversarial samples. Another type of attack is known

as the targeted attack. In such attacks, the output of the adversarial sample C(x′) can be a

particularly wanted class. For a given correctly classified input x ∈ X (C(x) = C∗(x)) and

a target class t ̸= C(x), a targeted adversarial sample x′ satisfies

x′ ∈ X ∧ C(x) ̸= C(x′) ∧ C(x′) = t ∧∆(x, x′) ≤ ϵ.

Thus, finding/generating adversarial samples can be viewed as optimization problems:

min ∆(x, x′) s.t. C(x′) = t ∧ x′ ∈ X (Targeted)

min ∆(x, x′) s.t. C(x′) ̸= C(x) ∧ x′ ∈ X (Untargeted).

Recent and popular adversarial attacks usually use the Lp-norm distance metric as the

∆(·) function. Three p values are commonly used in adversarial attacks, leading to L0, L2

and L∞ attacks. Previous works [122, 127, 126] have detailed comparison between them. In

summary, (1) L0 distance limits the number of dimensions an adversarial sample can alter,

but does not limit the degree of change for each dimension. As a result, such adversarial

samples tend to have fewer perturbation regions, but the change of each region is significant.

(2) L∞ distance limits the maximum change in any dimension, but does not limit the number

of altered dimensions. That is to say, the generated adversarial samples tend to have a large

number of altered regions, but the change of each region is not substantial. (3) L2 distance

(Euclidean distance) bounds the accumulated change to achieve a balance of the number of

altered dimensions and the degree of change in each dimension.

Content based approach. Another way of generating adversarial samples is to leverage

the input content and provide semantically consistent/restrained perturbations on an original

input to simulate real world scenarios. For example, images may have black spots because

of dirt on camera lens and attackers can intentionally add multiple black spots to an image

95

(a) Original (b) FGSM (UT, L∞) (c) BIM (UT, L∞) (d) CW∞ (T, L∞)

(e) CW2 (T, L2) (f) CW0 (T, L0)

(g) JSMA (T, L0) (h) DeepFool (UT, L2) (i) Trojan (T, CB) (j) Dirt(UT,

CB)

(k) Lighting (UT, CB) (l) Rectangle Patching

(UT, CB)

Figure 4.1.: Adversarial images of different attacks on MNIST. T: targeted. UT: untargeted. L0,

L2 and L∞ stand for different distance metrics (gradient based attacks) and CB stands for content

based attacks. Captions are the attack names. For gradient based attacks, Figure 4.1(a) is the

original image. For each attack, the first image is adversarial and the second image highlights the

perturbations. For content based attacks, red boxes highlight the added contents.

to simulate this. Under such assumptions, the attackers do not need to calculate the ∆(·)

distance value, and avoid optimizing the distance. As such, many such adversarial samples

are human recognizable but have large ∆(·) distances. There are a number of such recent

attacks [124, 5, 139, 140].

96

4.2.3 Existing Attacks

In this section, we discuss 11 existing representative attacks for DNN models, including

both gradient based attacks and content based attacks. Note that while there are adversarial

attacks for machine learning models in general [141], we focus on adversarial samples on

DNN models in this paper. In Figure 4.1, we show sample images of various attacks using

the MNIST dataset [133] to facilitate intuitive understanding. For gradient based attacks, we

show the generated adversarial samples as well as the perturbations made (i.e., the colored

regions). We use yellow to highlight small changes and red to highlight large changes. The

lighter the color, the less the perturbation. For the content based attacks, the boxed regions

represent the newly added elements to the original image.

Fast Gradient Sign Method (FGSM): Goodfellow et al. proposed the fast gradient sign

method to efficiently find adversarial samples [119]. Existing DNNs usually use piece-wise

linear activation functions such as ReLU. These functions are easy to optimize, making it

feasible to train a DNN. For such models, any change of the input is propagated to later

hidden layers till the output layer. As such, errors on inputs can accumulate and lead to

misclassification. The FGSM attack is based on this analysis and assumes the same attack

strength at all dimensions and hence an L∞ attack. Also, it is an untargeted attack. Formally,

an adversarial sample is generated by using the following equation:

x′ = x− ϵ · sign(∇xJ(F (x)))

, where ∇ represents the gradient and J(·) is the cost function used to train the model.

Essentially, it changes all pixels simultaneously at a fix scale along the gradient direction. It

can quickly generate adversarial samples as it only needs the gradient sign which can be cal-

culated by backpropagation. An adversarial sample for the attack is shown in Figure 4.1(b).

Observe that it makes small changes to many pixels.

Basic Iterative Method (BIM): The basic iterative method [120] is an improved version

of the FGSM attack. It generates adversarial samples with many iterations, and in each

iteration it updates the generated sample with the following equation:

x′
i = x′

i−1 − clipϵ(α · sign(∇xJ(F (x′
i−1)))

97

, where x′
0 represents the original correctly classified input. In FGSM, a single step is taken

along the direction of the gradient sign. BIM takes multiple steps, and in each iteration,

it performs clipping to ensure the results are in the L∞ ϵ-neighborhood of the original

input. As such, it is also known as the Iterative FGSM (IFGSM). In practice, it can generate

superior results than FGSM (Figure 4.1(c)).

DeepFool: Moosavi et al. designed the DeepFool attack [123] by starting from the assump-

tion that models are fully linear. Under this assumption, there is a polyhedron that can

separate individual classes. Composing adversarial samples becomes a simpler problem,

because the boundaries of a class are linear planes and the whole region (for this class) is a

polyhedron. The DeepFool attack searches for adversarial samples with minimal perturba-

tions within a specific region by using the L2 distance. The authors also adopt methods from

geometry to guide the search. For cases where the model is not fully linear, the attack tries

to derive an approximated polyhedron by leveraging an iterative linearization procedure, and

it terminates the process when a true adversarial sample is found. In Figure 4.1(h), observe

that the changes are in the vicinity of the original object. It is an untargeted attack.

Jacobian-based Saliency Map Attack (JSMA): Papernot et al. proposed the Jacobian-

based Saliency Map Attack [121] which optimizes L0 distance using a greedy algorithm.

The attack is an iterative process, and in each iteration, it picks the most important pixel to

modify, and terminates when an adversarial sample is found. To measure the benefits of

changing pixels, the attack introduces the concept of saliency map, which calculates how

much each output class label will be affected when individual pixels are modified by using

the Jacobian matrix. The attack then changes the pixel with the largest benefits (getting the

target label). As an L0 attack, JSMA modifies a very small number of pixels as shown in

Figure 4.1(g), but the perturbation is more substantial than L∞ attacks such as FGSM or

BIM. In the mean time, it has very high computation cost (due to the need of computing the

Jacobian matrix), making it impractical for high dimension inputs, e.g., images from the

ImageNet dataset.

Carlini and Wagner Attack (CW): Carlini and Wagner proposed three different gradient

based attacks using different Lp norms, namely, L2, L∞ and L0. We refer to them as CW2,

98

CW∞ and CW0 attacks, respectively. In the CW2 attack, Carlini and Wagner are also

solving the (targeted) optimization problem using the L2-norm as the distance measurement.

However, it features a few new designs to make it very effective. First of all, they use the

logits Z(·) instead of the final prediction F (·) in the loss function. This design was shown

to be critical for the robustness of the attack against defensive distillation methods [122].

Secondly, they introduced a variable α (also known as the optimal constant) to control

the confidence of the adversarial samples so that they can get a better trade-off between

the prediction and distance values. Another key design in this attack is that it maps the

target variable to the argtanh space and then solves the optimization problem. This design

enables the attack to use modern optimization solvers such as the Adam solver [142]. These

techniques allow the CW2 attack to very efficiently generate superior adversarial samples as

shown in Figure 4.1(e). Comparing with the other L2 attack DeepFool, CW2 perturbs fewer

regions with smaller changes on most pixels. Most adaptive attacks are based on similar

approaches (see §4.4.5 and §4.5).

DeepXplore Attack: In [124], Pei et al. observed that not all neurons are activated during

testing, and these (inactivated) neurons can contain unexpected behaviors. Thus they

proposed a systematic way of generating adversarial samples to activate all neurons in the

network so that it can uncover unexpected behaviors in DNNs. The proposed attacks are

leveraging semantic information (known as domain-specific constraints) to perform the

perturbation. Specifically for the image type of inputs, they propose three methods: the

Lighting attack, Rectangle Patching attack and the Dirt attack.

In the Lighting attack, the attackers change all the pixels’ values by the same amount to

make them darker or brighter. This action simulates the images taken under different lighting

conditions (Figure 4.1(k)). In the Rectangle Patching attack, a single small rectangle patch

is placed on the original image to simulate that the camera lens are occluded. Notice that

in this attack, the content in the rectangle region are controlled by the adversary, and can

be different for different images (Figure 4.1(l)). The Dirt attack adds multiple tiny black

rectangles to the image for simulating the effects of dirt on camera lens (Figure 4.1(j)).

99

Trojan Attack and Adversarial Patch Attack: Liu et al. [5] proposed a systematic way to

perform Trojan attacks on DNNs. The attacker first reverse-engineers the DNN to generate a

well-crafted image patch (known as the Trojan trigger), and then retrains a limited number of

neurons with benign inputs and trojaned inputs (i.e., benign inputs patched with the Trojan

trigger, marked with the target output label) to construct the trojaned DNN. The trojaned

DNN will perform the trojaned behavior (i.e., misclassifying images to the target label)

for trojaned inputs, while retaining a comparable (sometimes even better) performance on

benign inputs. This attack essentially simulates many real world scenarios such as images

patched with watermarks or stamps.

Brown et al. [139] presented a method to create adversarial patches (conceptually

similar to Trojan triggers) which achieves similar effects with the Trojan attack mentioned

above. The difference is that it does not require retraining. From the perspective of detecting

adversarial samples, there is no difference between this attack and the Trojan attack, as we

are not aware if a model is trojaned and what the trigger is. Thus we consider them as the

same type of attack.

4.2.4 Existing Defense and Detection

Existing Defense. Defense techniques try to harden the NN models to prevent adversarial

sample attacks [143, 144]. Papernot et al. [145] comprehensively studied existing defense

mechanisms, and grouped them into two broad categories: adversarial training and gradient

masking. Goodfellow et al. introduced the idea of adversarial training [119]. It extends

the training dataset to include adversarial samples with ground truth labels. There are also

similar ideas that try to integrate existing adversarial sample generation methods into the

training process so that the trained model can easily defend such attacks [146]. However, it

requires prior knowledge of the possible attacks and hence may not be able to deal with new

attacks.

The basic idea of gradient masking is to enhance the training process by training the

model with small (e.g., close to 0) gradients so that the model will not be sensitive to

100

small changes in the input [125]. However, experiments showed that it may cause accuracy

degradation on benign inputs. Papernot et al. introduced defensive distillation to harden

DNN models [138]. It works by smoothing the prediction results from an existing DNN to

train the model and replacing the last softmax layer with a revised softmax-like function to

hide gradient information from attackers. However, it was reported that such models can be

broken by advanced attacks [122, 147, 148]. Athalye et al. [149] also shows that hardening

or obfuscating gradients can be circumvented by gradient approximation. Papernot et

al. [145] concluded that controlling gradient information in training has limited effects in

defending adversarial attacks due to the transferability of adversarial samples, which means

that adversarial samples generated from a model can be used to attack a different model.

Existing Detection. Adversarial sample detection is to determine if a specific input is

adversarial. Many previous researches have studied to build detection systems [150, 151,

152, 129, 130, 153, 154, 155, 156]. We classify existing state-of-the-art works into three

major categories.

Metric based approaches. Researchers have proposed to perform statistical measurement

of the inputs (and activation values) to detect adversarial samples. Feinman et al. [128]

proposed to use the Kernel Density estimation (KD) and Bayesian Uncertainty (BU) to

identify adversarial subspace to separate benign inputs and adversarial samples. Carlini

and Wagner [157] showed this method can be bypassed but also commented this method

to be one of the promising directions. Safetynet [158] quantizes activations in late-stage

ReLU neurons and use SVM-RBF to find the patterns that distinguish adversarial and natural

samples. This approach is only tested on FGSM, BIM and DeepFool and requires adversarial

samples to find the patterns. Inspired by ideas from the anomaly detection community, Ma

et al. [131] recently proposed to use a measurement called Local Intrinsic Dimensionality

(LID). For a given sample input, this method estimates a LID value which assesses its

space-filling capability of the region surrounding the sample by calculating the distance

distribution of the sample and a number of neighbors for individual layers. The authors

empirically show that adversarial samples tend to have large LID values. Their results

demonstrate that LID outperforms BU and KD in adversarial sample detection and currently

101

represents the state-of-the-art for this kind of detectors. A key challenge of these techniques

is how to define a high-quality statistical metric which can clearly tell the difference between

clean samples and adversarial samples. Lu et al. [159] have shown that LID is sensitive to

the confidence parameters deployed by an attack and vulnerable to transferred adversarial

samples. Our evaluation in §4.5 also shows that although LID is capable of detecting many

attacks, it does not perform well for a number of others.

Denoisers. Another way of detecting adversarial samples is to perform a pre-process

(denoiser) step for each input [126, 125, 160]. These approaches train a model or denoiser

(encoders and decoders) to filter the images so that it can highlight or emphasize the main

component in the image. Doing so, it can remove the noises of an image including those

added by attackers and thus correct the classification result. For example, MagNet [126]

uses detectors and reformers (trained auto-encoders and auto-decoders) to detect adversarial

samples. The method has been shown to work well on many attacks. But it is only tested on

small datasets like MNIST and CIFAR-10. Liao et al. [132] argued that these pixel guided

denoisers (e.g., MagNet) do not scale to large images such as those in the ImageNet dataset.

Thus they proposed a high-level representation guided denoiser (HGD) for large images

and achieved state-of-the-art results on ImageNet. A limitation of this kind of techniques

is that denoisers are essentially trained neural networks. Training them remains a highly

challenging problem (e.g., very time-consuming). Also, they are end-to-end differentiable,

making them potentially vulnerable to white-box attacks [127, 161]. Moreover, the quality

of denoisers depends on the training dataset and collecting a high-quality training set is also

very demanding.

Prediction inconsistency based approaches. Many other works are based on prediction

inconsistency [162, 163, 164]. Tao et al. [164] propose to detect adversarial examples by

measuring the inconsistency between original neural network and neural network enhanced

with human perceptible attributes. However, this approach requires human defined attributes

for detection. The state-of-the-art detection technique Feature Squeezing [127] achieves

very high detection rates for various attacks. The authors pointed out that DNNs have

unnecessarily large input feature space, which allows an adversary to produce adversarial

102

1

2

3

4

5

6

7

8

A

B

L1 L2 Output

Figure 4.2.: Input A

1

2

3

4

5

6

7

8

A

B

L1 L2 Output

Figure 4.3.: Input B

Activated Not activated

PIL1, L2:
1 2 3 6 7

2 3 4 7 8

1 2 3

6 7

VIL1: 2 3 4

7 8VIL2:

(A)

(B)

(A) (B)

(B)(A)

Figure 4.4.: PI and V I

1

2

3

4

5

6

7

8

A

B

L1 L2 Output

1 2 3 7 8OP(L1, L2, x’):

Not activated Activated

1 2 3OV(L1, x’):

7 8OV(L2, x’):

True label: A. Predicted label: B.

Figure 4.5.: Input that violates PI

1

2

3

4

5

6

7

8

A

B

L1 L2 Output

OP(L1, L2, x’): 2 3 4 7 8

Not activatedActivated

2 3 4OV(L1, x’):

OV(L2, x’): 87

True label: B. Predicted label: A.

Figure 4.6.: Input that violates V I

samples. They hence proposed to use squeezing techniques (i.e., reducing the color depth of

images and smoothing the images) to generate a few squeezed images based on the seed

input. Feature squeezing essentially limits the degree of freedom available to an adversary.

Then the DNN model takes all the squeezed images and the original seed image, and

makes predictions individually. Adversarial samples are detected by measuring the distance

between the prediction vectors of the original seed input and each of the squeezed images.

If one of the distances exceeds a threshold, the seed input is considered malicious. However,

according to [127] and our experiments in §4.5, the technique does not perform well on

FGSM, BIM and some content based attacks on CIFAR and ImageNet. This is because its

performance highly depends on the quality of the designed squeezers, which remains an

open research challenge.

Furthermore, most existing works focus on detecting gradient based attacks. It is unclear

if they can detect content based attacks such as DeepXplore and Trojaning.

103

4.3 Observations

In this section, we first explain existing attacks are essentially exploiting two channels

(§4.3.1). Then we discuss that guarding these channels can be achieved by invariant checking

(§4.3.2). Finally, we introduce our design details (§4.4).

4.3.1 Observations about DNN Attack Channels

We study the internals of individual layers of DNNs under the various kinds of attacks

discussed in §4.2.3. We identify they mostly exploit two channels in the models: the

provenance channel and the activation value distribution channel.

Exploiting the Provenance Channel. In our discussion, we say a neuron is activated if its

activation function (e.g., ReLU) returns a non-zero value. A (hidden) layer of a DNN can be

considered as a function that takes the activated neurons from the previous layer, performs

matrix multiplication with the weight values in the layer, and then applies an activation

function to determine what neurons are activated in the layer. We consider the relation that

the activated neurons in the preceding layer lead to the activated neurons in a given layer

the provenance of the layer.

Many attacks entail changing provenance. Intuitively, given an adversarial sample x′

that is similar to x of class A, if the goal is to make the model to misclassify x′ to B, the

provenance of x′ is often different from the typical provenance of A or B. This is usually

due to the internal instability of the model such that small changes lead to a different set of

activated neurons.

Figure 4.2 and Figure 4.3 present normal operations of a DNN. For simplicity, we only

show three layers, two hidden layers L1 and L2 and the output layer (that classifies A and B).

Figure 4.2 shows an input belonging to A and Figure 4.3 to B. The colored nodes represent

activated neurons, and white nodes represent the inactivated neurons. Darker colors denote

larger values. Observe that some neurons are only activated by inputs belonging to a certain

class [118, 165], such as nodes 1 and 6 for class A and nodes 4 and 8 for class B. There are

also a lot of neurons that are activated by both kinds of inputs such as neurons 2, 3, and

104

7. The gray regions across the first two layers denote the provenance. Observe that for A,

neurons 1, 2, and 3 in L1 lead to 6 and 7 in L2; for B, neurons 2, 3, 4 lead to 7 and 8. Note

that there are many possible provenance relations even for the same class. Our example is

just for illustration.

Figure 4.5 shows the operation of an adversarial sample which is very similar to A

although it is misclassified as B. Observe neurons 1, 2, 3 in L1 lead to 7 and 8 in L2 and

eventually the misclassified label B. Namely, the provenance is different from a typical

B provenance as in Figure 4.3. The root cause is that the model is very sensitive to small

changes of neuron 1.

Trojan attack [5] is an example attack that exploits the provenance channel. The objective

of the attack is that a trojaned model must not have performance degradation for benign

inputs and the model should misclassify any input with a Trojan trigger to the target class.

As such, it changes weight values at specific layers so that the provenance has substantial

deviation in the presence of the Trojan trigger. A case study can be found in §4.5.7. L0

attacks also tend to exploit the provenance channel. These attacks introduce substantial

changes to a limited number of elements in an input (see §4.2.3). As a result, different

neurons (features) got triggered but they are not typical neurons (features) for the target

class.

Exploiting Activation Value Distribution. Some attacks may not exploit the provenance

channel. In other words, the provenance of an adversarial sample is no different from that of

a benign input. In such cases, to cause misclassification, the activation value distribution of

the activated neurons has to be different from that of a benign input. The exploitation can be

illustrated by Figure 4.6, in which the adversarial input has the same provenance as a benign

B input (Figure 4.3). However, the substantially different activation values in L2 lead to the

output value of class A larger than B.

L∞ attacks (e.g., FGSM attack in Figure 4.1(b)) limit the change degree made to

individual dimensions but do not limit the number of changed dimensions. For example,

they tend to alter a lot of pixels, but the change of each pixel is small as shown in Figure 4.1.

Thus they lead to substantially different value distributions in the first few layers. Note that

105

in the first few layers, many neurons tend to be activated for both benign and adversarial

inputs so that their provenance relations do not differ much.

Some adversarial samples exploit both channels such as L2 attacks, which do not limit

the number of perturbations or the degree of each perturbation, but rather constrain the

total change using the Euclidean distance. Depending on the search procedure of an L2

attack, it may exploit either value or provenance. Some attacks (e.g., DeepXplore) even

exploit neurons that do not represent unique features for any class, leading to unique value

distribution.

4.3.2 Detection As Invariant Checking

The aforementioned DNN exploit channels are analogous to the ways that traditional

attacks exploit software defects. Exploiting the provenance channel shares similarity to

control flow hijacking [166], in which a regular execution path is hijacked and redirected

to malicious payload. Exploiting the activation value distribution is analogous to state

corruption [167], which represents a prominent kind of defective software behaviors that

cause incorrect outputs but not necessarily crashes.

A classic approach to detecting software attacks is invariant checking. Specifically, to

detect control flow hijacking, control flow integrity (CFI) techniques check control flow

invariants (i.e., the control flow predecessor of an instruction must be one of a predetermined

set of instructions). To detect state corruption, programmers explicitly add assertions to

01: def fib(n):

02: assert(n>=0)

03: assert(from line 6 or 10)

04: if n == 0 or n == 1:

05: return n

06: return fib(n-1)+fib(n-2)

07:

08: def main():

09: x = input('Input a number:')

10: print fib(x)

01: def dnn(x, M): # input:x, model:M

02: L = M.layers

03: for i in range(1, L.size):

04: L[i] = L.w[i]*L[i-1]+L.b[i]

05: for j in range(1, L[i].size):

06: if L[i][j] < 0:

07: L[i][j] = 0

08: assert(PI, L[i], L[i-1])

09: assert(VI, L[i])

10: return M

Figure 4.7.: Program invariant and DNN invariant

106

check pre- and post-conditions of individual program statements. Figure 4.7 shows an

example of program invariants. It is a program that computes Fibonacci number. Observe

that at line 2, the programmer uses an assert to ensure n cannot be negative. Line 3 ensures

that there are only two possible statements that can invoke the fib() function, namely,

statements 6 and 10. Note that in many cases, such invariants are merely approximation due

to various difficulties in program analysis (e.g., dealing with variable aliasing).

DNN computation is essentially a process of taking a model input and producing the

corresponding classification output, which has a program structure like the one on the right

of Figure 4.7. It iterates through the individual layers (lines 3 to 9). For each layer, it

computes the activation values (line 4) from those of the previous layer, the weight of this

layer (i.e., L.w[i]) and a bias factor L.b[i]. After that, an activation function (we use

ReLU as an example, line 6-7 in Figure 4.7) is applied and a conditional statement is used

to determine what neurons are activated in this layer (lines 5-7). Observe that exploiting

the provenance channel is essentially altering the branch outcome of the conditional (line 6)

while exploiting activation values is changing the distribution of the computed values at line

4.

Therefore, our overarching idea is to check invariant violations during DNN computation

(lines 8 and 9 on the right). Our invariants are approximate as they cannot be precisely

specified due to the uninterpretability of DNN. They are essentially probabilistic distributions

constructed through learning. Different from other learning based techniques that require

both benign and adversarial samples, our invariants are only learned from benign samples

and their computation, and hence can provide general protection against a wide spectrum of

attacks.

Intuitively, we define the distribution of the activation values of two consecutive layers

as the provenance invariant (PI) of the layers. Later in §4.4, we show that learning such

a distribution is too expensive so that we learn a reduced model. We further define the

activation value distribution of a given layer as its value invariant (V I). Figure 4.4 shows

the PIs and V Is for the sample DNN (derived from benign inputs). Observe that the PI

of L1 and L2 is denoted as two vectors, representing neurons 1, 2, 3 leading to neurons

107

6, 7 (for class A), and neurons 2, 3, 4 leading to 7 and 8 (for class B). In Figure 4.5, the

observed provenance (OP) for the adversarial input x′, which is misclassified as B, violates

the provenance invariant (i.e., does not fit the distribution). In Figure 4.6, the observed

values (OV) for layer L1 is substantially different from V IL1 (denoted by their different

colors), even though the OP is consistent with PI . Note that our V I technique is different

from estimating LID [131]. The estimated LID measures the distances between a sample and

a number of its neighbors whereas V I trains models to explicitly describe activation value

distributions. More importantly, as shown in the evaluation section, our PI and V I methods

are complementary, together constituting an effective and robust solution outperforming

LID.

4.4 System Design

4.4.1 Overview

Figure 4.8 shows the overview of our approach. It is a training based approach, and we

do not make any modification to the original trained model so that it does not affect the

performance of the original model. We only use the benign inputs as our training data so that

our technique is not specific to a certain attack. In step A (Figure 4.8), we collect activation

values in each layer for each training input. We then train a distribution for each layer for all

benign inputs. These distributions (e.g., V IL1 and V IL2) denote the value invariants.

Ideally for PIs, we would train on any two consecutive layers to construct distributions

of a concatenation of the activation values of the layers. However, a hidden layer may have

many neurons, (e.g., 802,816 in one of our evaluated models). Such a distribution is often

of high dimension (e.g., 2*802,816), very sparse and hence has limited predictive precision.

Thus we train a reduced model that is of lower dimension and denser. Particularly, in B , for

each layer l (e.g., L1, L2), we create a derived model by taking a sub-model from the input

layer to l and appending a new softmax layer with the same output labels as the original

model. Observe that L1’s derived model has the input layer, L1 of the original model and a

new softmax layer (dashed arrows). Then we freeze the sub-model weights, and re-train the

108

Training

Inputs

Original Trained Model

L1 Derived

Model

L2 Derived

Model

t

OP(L1, L2, t)OV(L1, t) OV(L2, t)

DL1 DL1,L2 DL2

VIL2VIL1 PIL1,L2 =

L1 L2

A A
B B

C
C

D

D

D

E

E

E

E

E

E

A

Figure 4.8.: Overview of NIC

109

softmax layer in the derived model. As it only trains one layer, it usually takes very limited

amount of time to train a derived model. Intuitively, a derived model of layer l is to predict

the output class label based on the features extracted at l. Hence, a derived model of an

earlier layer (e.g., L1) uses more primitive features while a derived model of a later layer

(e.g., L2) uses more abstract features.

In step C , we run each benign training input through all derived models, we collect

the final outputs of these models (i.e., the output probability values for individual classes).

For each pair of consecutive layers, we train a distribution for classification results of their

derived models. The trained distribution is the PI for these two layers. Essentially, we

leverage the softmax functions in derived models to reduce the dimensions of the PI models.

Intuitively, we are computing an approximate notion of the provenance, namely, how the

prediction results may change from using features in a specific layer to using features in the

next layer.

For example, assume in a model that predicts a bird, bat, or a dog, an early layer extracts

low level features such as beak, wing, tooth, feather, fur, tail, and claws whereas its next

layer extracts more abstract features such as four-leg and two-wing. The derived model of

the early layer would have a softmax that introduces strong connections from beak, feather,

claws to bird; from wing, tooth, fur to bat; and from tooth, fur, claws, tail to dog. The

derived model of the next layer associates four-leg to dog and two-wing to both bird and

bat. The PI model of the two layers hence would associate the prediction results of the

two respective layers such as ⟨bat, bat⟩ (meaning the derived models of both layers predict

bat), ⟨bat, bird⟩, and ⟨dog, dog⟩. Note that while the early layer may classify an input as

bat and then the next layer classifies it as bird, the PI model tells us that it is unlikely the

early layer says dog whereas the later layer says bird. Essentially, the PI model provides a

way of summarizing the correlations between the features across the two layers. Ideally, we

would like to train the PI models to associate the primitive features to the corresponding

abstract features (e.g., beak, feather to two-wing). However, such models would have input

space of very high dimensions, much higher than our current design. Our results in §4.5

indicate our design is very effective.

110

At runtime (step D), for each test input t (e.g., the image of 4 in Figure 4.8), besides

running the input through the original model, we also run it through all the derived mod-

els. We collect the activation values of each layer in the original model as the observed

values (OV) (e.g., OV (L1, t) on the bottom of Figure 4.8) and the classification results

of derived models of consecutive layers (in pairs) as the observed provenance (OP) (e.g.,

OP (L1, L2, t)). Then (step E), we compute the probabilities D that OV s and OP s fit the

distributions of the corresponding V Is and PIs. All these D values are aggregated to make

a joint prediction if t is adversarial.

In the remainder of the section, we discuss more details of individual components.

4.4.2 Extracting DNN Invariants

We extract two kinds of invariants: provenance invariants (PI) and activation value

invariants (V I) from the internals of the DNN on the benign training inputs. These invariants

are probabilistic, represented as distributions.

Recall that each layer of a DNN model is a function. We use fk to represent the k-th

layer, and fk = σ(xk · wT
k + bk) where σ is the activation function, wk is the model weight

metrics, bk is the bias and xk is the input to this layer. Using these notations, a DNN with

n+ 1 layers can be written as:

F = softmax ◦ fn ◦ . . . ◦ f1.

The output of layer l is denoted as fl(xl). The value invariant of layer l is a function

that describes the distribution of the activation values at l for benign inputs. Hence, 0 ≤

V Il(x) ≤ 1 predicts if a model input x is benign based on the activation values at layer

l . Hence, learning the weight w of the V Il model is to solve the following optimization

problem:

min
∑
x∈XB

J(fl ◦ fl−1 ◦ . . . ◦ f2 ◦ f1(x) · wT − 1)

, where XB represents the benign inputs and J(·) an error cost function. Intuitively, we aim

to maximize the chance that V Il(x) predicts 1 for a benign input x.

111

As mentioned in §4.4, to compute PIs, we leverage derived models to reduce learning

complexity and improve prediction accuracy. A derived model is constructed by taking the

first few layers of the original model and then appending them with a new softmax layer.

Thus the derived model Dl for layer l is the softmax layer, and Dl can be defined as follows:

Dl = softmax ◦ fl ◦ fl−1 ◦ . . . ◦ f2 ◦ f1.

P Il,l+1(x) predicts the probability of x being benign based on the classification outputs

of the derived models of l and l + 1 layers. Thus, training PIl,l+1 (i.e., deriving its weights

w) is an optimization problem as follows.

min
∑
x∈XB

J(concat(Dl(x), Dl+1(x)) · wT − 1)

, where concat() concatenates two vectors to a larger one.

4.4.3 Training Invariant Models

An important feature of our technique is that the invariant models (i.e., V Is and PIs) are

trained from only benign inputs, which makes our technique a general detection approach

different from existing training based approaches (see §4.2.4) that require adversarial

samples in training and hence prior knowledge about the attack(s).

We model the training problem without adversarial samples as a One-Class Classification

(OCC) problem. In OCC, most (or even all) training samples are positive (i.e., benign inputs

in our context), while there will be all types of inputs (e.g., adversarial samples from various

attacks in our context) during testing. OCC is a well studied problem [168, 169, 170]. Most

existing classification algorithms can be extended for OCC. While OCC in general is not

as accurate as techniques that leverage both positive and negative samples, it is sufficient

and particularly suitable in our context as we use multiple invariant models to make joint

decisions, which allows effectively mitigating inaccuracy in individual OCC models.

We use the One-class Support Vector Machine (OSVM) algorithm [169], which is the

most popular classification algorithm for OCC problems and has a lot of applications [171].

The basic idea of OSVM is to assume a shape of the border between different classes

112

(a) Linear (b) Ploy (c) RBF

Figure 4.9.: Effects of using different SVM kernels

(represented by different kernel functions), and calculate the parameters describing the

border shape. Figure 4.9(a) uses a linear kernel function and the border of a class is assumed

to be a line. Figure 4.9(b) uses a polynomial kernel and Figure 4.9(c) uses a radial basis

function kernel (RBF). For OSVMs, the most widely used kernel is RBF. In our case, since

most values in the input space are invalid (e.g., most random images are not realistic) and

the valid inputs cluster in small sub-spaces, using the RBF kernel to achieve good accuracy.

Moreover, although RBF is expensive, we train models for individual layers and consecutive

layer pairs, which essentially breaks the entire invariant space into sub-spaces that have

more regularity. While standard OSVM outputs a single number 0 or 1 to indicate if an

input belongs to a group, we change the algorithm to output the probability of membership.

In other words, we use the trained OSVM models to measure similarity.

During production runs, given an input x, we compute V Il(x) and PIl,l+1(x) for all

possible l. In other words, we collect the probabilities of any invariant violations across all

layers. A standard OSVM classifier is further used to determine if t is an adversarial sample

based on these probabilities and report the results. Details are elided.

4.4.4 Randomization

Adversarial samples may be transferable, meaning that some adversarial samples gener-

ated for a model may cause misclassification on another model as well [172, 173]. Such a

113

property makes it possible to attack a black-box system (assuming no knowledge about train-

ing data, method, process, hyper-parameters and trained weights). For example, Papernot et

al. [173, 148] proposed to use synthesized data that are labeled by querying the target model

to train a substitute model, and demonstrated that the generated adversarial samples for

the substitute model can be used to attack the target model. Moosavi-Dezfooli et al. [174]

found the existence of a universal perturbation across different images and demonstrated

that such images can transfer across different models of ImageNet. Liu et al. [175] proposed

an ensemble-based approach to generate transferable adversarial examples for large datasets

such as ImageNet. Intuitively, a DNN model is an approximation (or fitting) of the real

distribution. There is always a discrepancy between the approximation (the trained DNN

model) and reality, which is the space of adversarial samples.

While our invariant checker essentially prunes the adversarial space, the fact that our

checker is training based suggests that it is still an approximation. In other words, it is

susceptible to transferable adversarial samples just like other detection techniques. Note

that even proof-based techniques [176] suffer the same problem as they can only prove that

inputs must satisfy certain conditions. They cannot prove a model is precise as having a

precise model itself is intractable.

An effective and practical solution is to introduce randomization in the detectors. For

example, MagNet [126] trains multiple encoders beforehand, and at runtime, they randomly

select one encoder to use. In feature squeezing, Xu et al. also introduce random clip

operations in their squeezer to make the attack harder. Even though theoretically such

randomization mechanisms cannot prevent all possible attacks (especially when facing

adaptive adversaries), they were shown to be very effective in practice. With randomization,

attacks take much longer time and generate human unrecognizable inputs [126, 127].

As an integral part of our system, we also use randomization. Our randomization is based

on the observation that DNNs make decisions by looking at all activated neurons rather than

a subset of them [118, 165]. Due to the large number of contributing neurons, benign inputs

are more robust to small neuron value changes than adversarial samples. Thus when we train

V Is and PIs, we first apply a transformation function. It means that we use gl ◦ fl instead

114

of fl as the input to train V Is and PIs. We prefer non-differentiable gl functions. Because

if the attacker wants to craft adversarial samples under the assumption that the adversary

knows the presence of detector, non-differentiable functions would significantly increase the

difficulty [177] due to the lack of gradient information. In contrast, our technique directly

uses the output of gl ◦ fl to train V Is and PIs, thus the introduction of gl does not affect our

training. In this paper, typical gl functions include random scaling combined with discrete

floor and ceiling functions. At runtime, we randomly select a set of gl functions and the

corresponding trained invariant models in our detector. The results of randomization are

shown in §4.5.

4.4.5 Threat Model

We assume that the adversary knows everything about the original classifier including

the trained weights so that they can construct strong attacks such as the CW attacks, and the

detector is not aware of the methods used for generating the adversarial samples. Depending

on the information of the detector exposed to the adversary, there are multiple scenarios.

The weakest attack scenario is that the adversary knows nothing about the detector. In

this case, the adversary generates the attack purely based on the original classifier. In §4.5,

we show that our detector can successfully detect a wide spectrum of such attacks.

The strongest adversary has full knowledge of our detector. Since the detector itself is

also a classifier, this makes it vulnerable to adversarial samples too [178]. Note that this

limitation is not specific to our technique as other existing detection techniques suffer the

same problem too. Under such a strong threat model, our technique has better resilience

compared to other techniques. In particular, as discussed in §4.4.4, we introduce random-

ization in our detector to improve its robustness. During training of the detectors, we first

apply different transform functions gl on activated neurons to generate multiple randomized

activation vectors. This allows us to have the flexibility of generating multiple detectors. At

runtime, we can use different detectors (or their combinations) to detect adversarial samples.

This substantially elevates the difficulty level of generating adversarial samples. In §4.5,

115

we show the effects of using the randomization technique. Note that complete prevention

of adversarial samples is intractable for approximate models to which almost all practical

DNNs belong. Our goal is to have a general and practical solution to substantially raise the

bar for attackers.

4.5 Evaluation

In this section, we discuss the results of a large scale evaluation. Most experiments

were conducted on two servers. One is equipped with two Xeon E5-2667 2.3GHz 8-core

processors, 128 GB of RAM, 2 Tesla K40c GPU, 2 GeForce GTX TITAN X GPU and 4

TITAN Xp GPU cards. The other one has two Intel Xeon E5602 2.13GHz 4-core processors,

24 GB of RAM, and 2 NVIDIA Tesla C2075 GPU cards.

4.5.1 Setup

Datasets. For gradient based attacks, we performed our experiments on three popular image

datasets: MNIST [133], CIFAR-10 [134] and ImageNet [135]. MNIST is a grayscale image

dataset used for handwritten digits recognition. CIFAR-10 and ImageNet are colored image

datasets used for object recognition. For the ImageNet dataset, we used the ILSVRC2012

samples [179]. We chose these datasets because they were the most widely used datasets for

this task and most existing attacks were carried out on them.

For content based attacks, Liu et al. evaluated Trojan attack on different datasets [5]

(e.g., face recognition on LFW [136]). Besides using their face recognition data in our

case study, we also ported the attack to two MNIST models, one Carlini model [122] and

one Cleverhans model [180]. The trojaned Carlini model achieves 93% test accuracy on

normal images and 100% attack accuracy, and the trojaned Cleverhans model has around

95% test accuracy on the original dataset with 100% attack accuracy. The evaluation of

DeepXplore were conducted on their provided datasets (i.e., MNIST and ImageNet), their

pre-trained models (i.e., LeNet-1, LeNet-4 and LeNet-5 for MNIST, and VGG16, VGG19

and ResNet50 for ImageNet), and their pre-generated adversarial samples on Github [124].

116

Attack. We evaluated our detection method on all the eleven attacks described in §4.2.3.

For FGSM, BIM, and JSMA attacks, we used the implementations from the Cleverhans

library [180] to generate adversarial samples, and for the other attacks, we used implementa-

tions from the authors [122, 123, 124, 5]. For the four targeted gradient based attacks (JSMA

and three CW attacks), we evaluated on two different target settings: the next-class setting

(denoted as Next in result tables) in which the targeted label is the next of the original label

(e.g., misclassify an input of digit 2 to digit 3); and the least-likely class setting (denoted as

LL), in which the target label is the most dissimilar to the original label (e.g., misclassify 1

to 8). Besides the four targeted attacks, the other seven included three untargeted gradient

based attacks (FGSM, BIM and DeepFool) and four content based attacks (Trojaning, Dirt,

Lighting and Rectangle Patching, with the last three from DeepXplore).

By default, we reused the same attack parameters used in feature squeezing [127] to

construct attack images for gradient based attacks. DeepFool attack generates unrecogniz-

able adversarial examples for the MNIST dataset and it is ignored by feature squeezing.

As discussed in §4.2.3, the JSMA attack requires heavyweight computation and does not

scale to large datasets like ImageNet. Thus we cannot test it on ImageNet. To generate

Trojan triggers for the Trojan attack, we used the same configurations (e.g., size, shape and

transparency) in their original paper [5]. DeepXplore targets to cover inactivate neurons,

and it does not have extra attack parameters. For each dataset, we randomly partitioned the

whole dataset to training data (60%, for training the detector), validation data (20%, for

evaluating the detector with various g functions mentioned in §4.4.4) and test data (20%, to

test performance). For each attack, we generated 100 adversarial samples for each model.

Models. We evaluated our technique on thirteen popular models. These models are repre-

sentatives of their kinds and used in the attacks under study [122, 124, 5]. For the MNIST

dataset, we have collected six models from the work by Carlini et al. [122], the Clever-

hans library (2 models) [180], and three different DNNs in the LeNet family [133], i.e.,

LeNet-1, LeNet-4 and LeNet-5. For the CIFAR-10 dataset, we used two models, one from

Carlini and Wagner [122] and the other from DenseNet [181, 182]. For ImageNet, we

117

Table 4.1.: Performance of NIC on Gradient Based Attacks

Dataset Model OH FP FGSM BIM
CW∞

DF
CW2 CW0 JSMA

Next LL Next LL Next LL Next LL

MNIST

Cleverhans 4% 2.5% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Cleverhans2 3% 3.8% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Carlini 4% 3.7% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

CIFAR
Carlini 9% 4.2% 100% 100% 100% 100% 91% 96% 100% 98% 100% 94% 100%

DenseNet 8% 3.8% 100% 100% 100% 100% 93% 97% 100% 97% 100% 92% 99%

ImageNet

ResNet50 28% 14.6% 100% 100% 99% 100% 92% 96% 100% 95% 100% - -

VGG19 19% 9.9% 100% 100% 97% 100% 89% 93% 100% 100% 100% - -

Inceptionv3 21% 13.8% 100% 100% 99% 100% 90% 96% 100% 100% 100% - -

MobileNets 18% 7.2% 100% 100% 100% 100% 100% 100% 100% 100% 100% - -

used five models, ResNet50 [183], VGG16 [184], VGG19 [184], Inceptionv3 [185] and

MobileNets [186, 187].

Comparison. We also compared NIC with other state-of-the-art detectors. For the metric

based approach, we compared with LID [131]. Denoisers require a lot of parameter turning.

Thus we chose to compare with well-tuned models, MagNet [126] for MNIST and CIFAR-

10, and HGD [132] for ImageNet. For prediction inconsistency based techniques, we chose

to compare with feature squeezing [127]. This paper only shows part of the comparison

results due to the space limit. The remaining results are similar. For gradient based attacks

on ImageNet, we used the Inceptionv3 model, and for MNIST and CIFAR-10, we adopted

the same model used by Carlini and Wagner [122]. The Trojan attack on MNIST was also

based on this model and the one from Cleverhans, and the attack on LFW was evaluated on

the VGG19 model provided by the original authors. For DeepXplore attacks, the paper only

shows the results for LeNet-4 and LeNet-5 on MNIST and VGG19 on ImageNet.

4.5.2 Detecting Gradient Based Attacks

Table 4.1 shows the detection accuracy of our approach on gradient based attacks.

Columns 1 and 2 show datasets and models. Column 3 shows the runtime overhead. It is

118

Table 4.2.: Performance of NIC on Content Based Attacks

Dataset FP Model Dirt Lighting RP

MNIST

3.4% LeNet-1 100% 100% 100%

2.5% LeNet-4 100% 100% 100%

2.5% LeNet-5 100% 100% 100%

ImageNet

13.8% ResNet50 100% 100% 100%

15.2% VGG19 100% 100% 100%

15.9% VGG16 100% 100% 100%

Dataset FP Model Trojan - -

MNIST
3.7% Carlini 100% - -

2.5% Cleverhans 100% - -

LFW 2.4% VGG19 100% - -

measured by the average time used to run through the whole test dataset and adversarial

samples (over 10 runs). Note that since we reuse the inner layer activation values of the

original model when computing the results of V Is and PIs, invariant checking can be

largely parallel with the original model execution. Thus the overhead is not significant. As

shown in the table, for simple models (e.g., MNIST and CIFAR-10), we have less than 10%

overhead. For complex models (e.g., ImageNet), it is less than 30%. Considering that the

inference time for each image is very short (usually within a second), this is reasonable.

Column 4 presents the false positive rates (FP) using default settings on each model, i.e., the

number of benign inputs that are incorrectly detected as adversarial samples. The remaining

columns show the detection results for each attack.

As shown in Table 4.1, for the three MNIST models, NIC can detect all gradient based

attacks with 100% accuracy with less than 3.8% false positive rate on benign inputs. Also

the false positive rates of NIC on CIFAR-10 models are 3.8% and 4.2%, and the detection

rates are all over 90%. For L∞ attacks on CIFAR-10, our approach can get 100% detection

rates for all attack settings. For L2 attacks, NIC can achieve nearly 100% detection rate on

CW2 attacks, and 91%/93% detection rates on DeepFool. The results of DeepFool are not

100% because it is an untargeted attack, which has much smaller perturbations compared

119

to targeted attacks. For L0 attacks, we can detect CW0 and JSMA attacks with over 92%

success rate.

For the ImageNet dataset, the detection rates show a similar pattern as the CIFAR-10

dataset. The images have a larger size and are more diverse, which makes the detection

harder. For different models, the false positive rates range from 7.2% to 14.6%. In terms of

detection rate, our detector can still achieve very high accuracy (over 90% for most cases).

4.5.3 Detecting Content Based Attacks

We also evaluated our approach on content based approaches, namely the Trojan and

DeepXplore attacks. The results are summarized in Table 4.2. The above part shows the

results of DeepXplore attacks, and the bottom part shows the results of the Trojan attack.

The table has the same structure with Table 4.1. The runtime overhead is similar and hence

elided.

As shown in the table, NIC is able to detect all adversarial samples generated by the

Trojan attack and DeepXplore attacks (100% for all cases) with a relatively low false positive

rate (less than 4% on MNIST and LFW, less than 16% on ImageNet). More details of how

they can be detected are described in §4.5.4. Similar to the gradient based attacks, NIC has

relatively high false positive rate on ImageNet than other datasets (e.g., MNIST), because of

the large image size and content diversity. The results show that NIC is capable of detecting

such content based attacks with high confidence and effectiveness.

4.5.4 NIC Invariants and Comparison

In Table 4.3, we show the comparison between NIC and other detectors (with gray

background). Each row represents a detection method and the columns contain the results

for different types of attacks (including both gradient based and content based attacks). For

NIC, we also studied the effects of using only PIs or V Is on each attack to understand how

they work. The rows are marked as PI and V I in Table 4.3. From the table, we make the

following observations.

120

NIC Invariants. For most L∞ attacks, using V Is alone has better results than using PIs

alone, and using both produces the best results. This is because these attacks try to modify

a lot of pixels with a small degree of change. As a result, the OV s in the first few layers

violate V Is significantly, which makes it easy to detect. On the other hand, as the features

extracted by the first few layers are still very primitive, the generated PIs are not of high

quality. For most L0 attacks where the perturbations happen for a very limited number

of pixels, but the per-pixel change is more substantial, using PIs alone produces good

results. Using V Is are not as good because the number of activated neurons in each layer

is large but the ones perturbed are in a small number. As such, the distance between V Is

and OV s may not be sufficiently large. On the other hand, these perturbed neurons alter

the set of activated neurons in later layers, leading to PI violations. L2 attacks bound the

total Euclidean distance. As such, using PIs or V Is alone has mixed results, depending on

which channel is being exploited. Our results indicate that either of them is (or both are)

violated. Overall, using one kind of invariants alone is often not enough, and both kinds of

invariants are very important to detecting adversarial samples.

For the Trojan attack, the adversarial samples tend to have the same activation pattern

before the trojaned layer, and substantially change the prediction results at the trojaned layer,

allowing them to be detected by PIs. Thus, Trojan attacks often lead to substantial invariant

violations, which will be illustrated by a case study later in §4.5.7. The DeepXplore attacks

are designed to generate adversarial samples that try to activate inactivated neurons to

uncover hidden behaviors. Thus, it often significantly violates the invariants. In most cases,

such changes significantly alter the prediction results and violate the PIs. In the Lighting

and Rectangle Patching attacks, the perturbations are substantial, leading to significant

changes in the activation value distributions. Thus using V Is can detect most of them. In

contrast, the Dirt attack adds a limited number of black dots to the image, and some changes

are not significant. Thus using V Is alone cannot achieve very good performance.

Denoisers. Denoisers (i.e., MagNet and HGD) work well for L∞ attacks on all three

datasets. In the mean time, we found that they do not perform well on L0 attacks. This is

because these denoisers are not guaranteed to be able to remove all the noise in an image,

121

and the L0 constraint limits the number of modified pixels and lowers the chance of being

denoised. For most L2 attacks, its performance is also not very good due to the same reason.

As NIC also considers the effects of such noises (e.g., a few noisy pixels will change the

activation pattern and violate the PIs), it can detect them as adversarial samples when the

effects are amplified in hidden layers.

For content based attacks, this approach can detect all adversarial samples on MNIST

and the RP attacks on ImageNet. But it does not perform well on other attacks. For Dirt

attack which modifies relatively limited number of pixels, denoisers cannot remove some

of the noises. For the Lighting attack, the whole color scheme is shifted with the same

degree and denoisers do not perform well. In many cases they actually remove parts of

the real objects. We believe it is because these parts have color patterns that are rare in the

original training set, leading to some random behaviors of the denoisers. Denoisers show

relatively good performance on the Trojan attacks as they transform the trigger to another

representation, which lowers the chance to trigger the trojaned behaviors.

Denoisers tend to have relatively high false positive rates in most cases, meaning that

the trained encoders and decoders affect the clean images especially for the colored datasets

like ImageNet. Recall that denoisers are trained models. Training them is challenging and

time-consuming. It may take more time than training the original classifier. One advantage

of NIC is that it breaks the problem into small sub-problems. The detector consists of many

small models and training them is much easier, making it more practical.

LID. For the gradient based attacks, the results of LID show that it is an effective approach

for MNIST and CIFAR-10 with 93% and 90% average detection rates, respectively. However,

it does not scale well on ImageNet, with 82% average detection rate. For the content based

attacks, LID achieves relatively good results for both the Trojan attack and the DeepXplore

attacks on the MNIST dataset, but relatively bad results on ImageNet. This is because

images in ImageNet contain more noises and the clean images also have relatively large

distances. This makes it more difficult identifying the boundaries between clean images and

adversarial images. In the mean time, we observed that its false positive rates are relatively

122

Ta
bl

e
4.

3.
:

N
IC

:C
om

pa
ri

so
n

w
ith

St
at

e-
of

-t
he

-a
rt

D
et

ec
to

rs

G
ra

di
en

t-
ba

se
d

C
on

te
nt

-b
as

ed

C
W

∞
C

W
2

C
W

0
JS

M
A

D
ee

pX
pl

or
e

D
et

ec
to

r
D

at
as

et
FP

FG
SM

B
IM

N
ex

t
L

L
D

F
N

ex
t

L
L

N
ex

t
L

L
N

ex
t

L
L

D
at

as
et

M
od

el
FP

D
ir

t
L

ig
ht

in
g

R
P

D
at

as
et

M
od

el
FP

Tr
oj

an

P
I

1.
8%

84
%

92
%

94
%

99
%

95
%

99
%

96
%

10
0%

10
0%

10
0%

10
0%

1.
3%

10
0%

10
0%

10
0%

0.
5%

10
0%

V
I

1.
9%

10
0%

10
0%

10
0%

10
0%

93
%

10
0%

95
%

90
%

88
%

85
%

83
%

1.
2%

10
0%

10
0%

10
0%

3.
2%

76
%

N
IC

3.
7%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

2.
5%

10
0%

10
0%

10
0%

3.
7%

10
0%

M
ag

N
et

5.
1%

10
0%

10
0%

96
%

97
%

91
%

85
%

87
%

85
%

85
%

84
%

84
%

4.
3%

10
0%

10
0%

10
0%

5.
6%

10
0%

L
ID

4.
4%

97
%

96
%

93
%

92
%

92
%

92
%

91
%

92
%

92
%

96
%

96
%

4.
2%

10
0%

10
0%

10
0%

4.
5%

10
0%

FS

MNIST

4.
0%

10
0%

98
%

10
0%

10
0%

-
10

0%
10

0%
91

%
94

%
10

0%
10

0%

LeNet-4

3.
9%

97
%

39
%

72
%

Carlini

4.
0%

82
%

P
I

2.
6%

52
%

64
%

68
%

63
%

69
%

89
%

89
%

98
%

10
0%

94
%

10
0%

1.
6%

10
0%

10
0%

10
0%

0.
4%

10
0%

V
I

1.
2%

10
0%

10
0%

10
0%

10
0%

78
%

82
%

88
%

63
%

68
%

58
%

62
%

0.
9%

10
0%

10
0%

10
0%

2.
1%

72
%

N
IC

3.
8%

10
0%

10
0%

10
0%

10
0%

91
%

96
%

10
0%

98
%

10
0%

94
%

10
0%

2.
5%

10
0%

10
0%

10
0%

2.
5%

10
0%

M
ag

N
et

6.
4%

10
0%

10
0%

85
%

87
%

87
%

89
%

91
%

76
%

74
%

72
%

74
%

4.
2%

10
0%

10
0%

10
0%

5.
2%

99
%

L
ID

5.
6%

94
%

96
%

91
%

91
%

84
%

86
%

88
%

90
%

91
%

92
%

92
%

4.
0%

99
%

98
%

99
%

3.
9%

97
%

FS

CIFAR

4.
9%

21
%

55
%

98
%

10
0%

77
%

10
0%

10
0%

98
%

10
0%

84
%

89
%

MNIST

LeNet-5

3.
9%

96
%

41
%

71
%

MNIST

Cleverhans

3.
6%

78
%

P
I

5.
8%

30
%

25
%

53
%

49
%

81
%

84
%

86
%

10
0%

10
0%

-
-

1.
5%

97
%

95
%

10
0%

0.
2%

10
0%

V
I

1.
4%

99
%

10
0%

99
%

10
0%

53
%

90
%

92
%

29
%

12
%

-
-

1.
0%

43
%

10
0%

93
%

2.
2%

46
%

N
IC

7.
2%

10
0%

10
0%

99
%

10
0%

90
%

96
%

10
0%

10
0%

10
0%

-
-

2.
5%

10
0%

10
0%

10
0%

2.
4%

10
0%

H
G

D
9.

7%
97

%
95

%
92

%
92

%
83

%
83

%
85

%
81

%
82

%
-

-
6.

2%
88

%
69

%
10

0%
4.

7%
80

%

L
ID

14
.5

%
82

%
78

%
85

%
86

%
83

%
78

%
80

%
79

%
80

%
-

-
9.

6%
83

%
89

%
91

%
4.

8%
75

%

FS

ImageNet

8.
3%

43
%

64
%

98
%

10
0%

79
%

92
%

10
0%

98
%

10
0%

-
-

ImageNet

VGG19
3.

9%
89

%
40

%
82

%

LFW

VGG19

3.
3%

67
%

123

high for all cases (highest on ImageNet and LFW), meaning that it tends to mis-identify

clean images as adversarial samples, which makes the detection results less confident.

Feature Squeezing. For gradient based attacks, feature squeezing achieves very good

results for a set of attacks, but does not perform very well for FGSM, BIM and DeepFool

attacks on colored datasets (CIFAR-10 and ImageNet). For extreme cases like FGSM attacks

on CIFAR-10, the detection rate of feature squeezing is about 20%. According to [127], this

is likely because that the designed squeezers are not suitable for such attacks on colored

datasets. It illustrates a limitation of feature squeezing: requiring high quality squeezers for

various models. To this end, our approach is more general.

Feature squeezing does not perform well on the Trojan attack with the detection rate

ranging from 67% to 82%, which is much lower than using our method. Through manual

inspection, it appears that after applying the squeezers, the effects of the Trojan triggers

(which lead to mis-classification) are degraded but not eliminated. As a result, many

adversarial samples and their squeezed versions produce the same (malicious) classification

results. For DeepXplore attacks, feature squeezing can detect almost all the adversarial

samples generated by the Dirt attack, which adds black dots to the images to simulate

the effects of dirt. This attack is very similar to L0 attacks, on which feature squeezing

performs very well. It cannot handle the Lighting attacks and Rectangle Patching (RP)

attacks very well. The Rectangle Patching attack is very similar to the Trojan attack except

that it generates a unique rectangle for each adversarial sample. Lighting attacks are similar

to FGSM attacks but they change pixel values more aggressively. The changes can hardly

be squeezed away.

We notice that the false positive rates of feature squeezing is relatively low. This shows

that the designed squeezers are carefully chosen to avoid falsely recognize clean images as

adversarial samples, which makes its results more trustworthy.

124

4.5.5 Adaptive Adversaries

The experiments in the previous sections are to detect adversarial samples under the

assumption that the attacker is not aware of the existence of the detector (black-box attack).

As discussed in §4.4.4, we need to deal with a stronger threat model, in which the attacker

knows everything of the dataset, the trained model and the trained detector including the

method used to train them as well as the model parameters after training. Our method

against this attack model is to train multiple detectors using different g functions (§4.4.4).

At runtime, NIC randomly chooses the detector(s) to use for the final decision. During this

evaluation, we use three detectors and perform majority voting for the final decision.

We designed a CW2 based white-box attack. The basic idea is to view the two classifiers

(i.e., the original model and the detector) as a whole. In other words, we consider the output

of the detector as part of the loss function to generate adversarial samples. The original

CW2 attack tries to minimize the L2 distance of the generated adversarial sample and the

original benign image such that the two images will lead to different prediction results. With

the presence of NIC, the new attack modifies the optimization objective function. Now

we minimize the L2 distance of the two images as well as the L2 distance of the activation

neurons of the two images in each hidden layer and the prediction output vectors of the two

images from all derived models (intuitively, minimizing V I and PI violations). We choose

to make the attack untargeted, which tends to have less perturbation compared with targeted

Figure 4.10.: Adversarial Samples. 1st line shows seed inputs, 2nd line shows without detector,

3rd line shows with 1 detector. Gray boxes mean no adversarial samples found in 1000 iterations.

125

Table 4.4.: NIC: Effects of Different OCC Algorithms

Detector FGSM BIM \cwi Next \cwi LL DF \cwt Next \cwt LL \cwo Next \cwo LL JSMA JSMA

5NN 14% 11% 9% 10% 4% 5% 4% 3% 1% 1% 2%

Linear 22% 20% 17% 19% 8% 12% 15% 8% 12% 22% 24%

Poly 89% 86% 79% 82% 85% 88% 89% 84% 85% 84% 86%

RBF 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Detector Trojan Dirt Lighting RP

5NN 26% 12% 2% 24%

Linear 32% 34% 93% 45%

Poly 94% 89% 99% 95%

RBF 100% 1005 100% 100%

attacks. As the g functions are not differentiable, we leverage a random process to find an

adversarial sample that cannot be detected before the start of the optimization procedure.

If we limit the optimal constant (used to balance the amount of perturbation and the

adversarial strength) to a rationale range, [10−3, 106], the same settings used in LID [131],

the attack fails to generate adversarial images for all cases. This demonstrates that NIC is

robust to such normal confidence attacks even under such strong white-box attack model.

Without such limits, the attack can achieve 97% success rate on MNIST and CIFAR-10. The

mean L2 distortion of successful samples is 3.98 for MNIST and 2.76 for CIFAR-10, which

is higher compared with other detectors (e.g., the L2 distortion of feature squeezing is 2.80

on MNIST for adaptive, untargeted attacks [127]). This shows that our technique increases

the difficulty of constructing adversarial samples.

Because of the complexity of the optimization objective function, it takes significantly

longer time to generate adversarial samples. We performed an experiment on a desktop

equipped with an i7-3770 3.40GHz CPU and 28 GB of RAM. Specifically, generating

a normal adversarial sample (without a detector) takes about 1 second, while generating

an attack image takes about 420 seconds on average in the presence of one detector and

around 1200 seconds on average in the presence of three detectors. This shows that such

randomization approaches do increase the difficulty of generating adversarial samples. This

result is also consistent with the findings in [177, 127]. Furthermore, the adversarial samples

126

generated in the presence of a randomized detector usually have low confidence and are

human unrecognizable. Figure 4.10 shows some generated attack images. The first row is

the seed inputs, the second row shows the attack images without any detector and the last

row shows the attack images to bypass one NIC detector. We can see that many of the last

row images are not human recognizable.

4.5.6 Choice of One Class Classifiers

In this part, we evaluated the effects of using different OCC algorithms. We compared

four algorithms using the Carlini model on MNIST dataset: KNN-OCC (k=5), OSVM with

linear kernel, OSVM with poly kernel and OSVM with the RBF kernel. The results are

shown in Table 4.4. As we can see, KNN-OCC performs badly for this task, and the more

complex the kernel is, the better results the OSVM algorithm can achieve. This is because

complex kernels are more expressive and can identify the differences between clean images

and adversarial samples. Potentially, the model accuracy may be further improved with

better one-class classification algorithms.

4.5.7 Case Study

We use the Trojan attack on a face recognition model (with 2622 output labels) to

demonstrate invariant violations. The pre-trained VGG-face recognition model can be found

at [5]. We use the same datasets (VGG and LFW) to generate adversarial samples to be

consistent with the original paper [5]. Figure 4.11 shows the benign images (on the left

of each subfigure) and the image patched with the Trojan trigger (on the right of each

subfigure). The captions show the ground truth label. The trojaned model misclassifies all

the images with the Trojan trigger to the target label A.J. Buckley. The attack triggers

both value and provenance invariant violations at layer L18. The scale of the provenance

invariant violation is more substantial. Table 4.5 shows part of the PI for layers L17 and

L18 (rows 3,4), and the three OP s for the three images with the Trojan trigger (i.e., the

three rows on the bottom). Each row consists of the classification results of the derived

127

(a) Mark Pellegrino (b) Steven Weber (c) Carmine Giovinazzo

Figure 4.11.: Adversarial samples for the Trojan attack

A.J.

Buckley

Mark

Pellegrino

Steven

Weber

Carmine

Giovinazzo

PI

L17 0.0001 0.8857 0.0001 0.0004

L18 0.0001 0.9023 0.0001 0.0004

OP

L17 0.001 0.8734 0.0001 0.0004

L18 0.9273 0.0001 0.0001 0.0001

L17 0.0001 0.0001 0.7234 0.0001

L18 0.9736 0.0001 0.0001 0.0001

L17 0.0001 0.0001 0.0001 0.9243

L18 0.9652 0.0001 0.0001 0.0004

Table 4.5.: NIC: PI and OP s Figure 4.12.: NIC: V I and OV s

model of L17 and the results of L18. Since it is difficult to visualize PI , we show a typical

vector value in the PI instead. Observe that the OP s are substantially different from the PI

with the differences highlighted in red. Intuitively, the PI indicates that if L17 predicates

Mark with a high confidence, L18 very likely predicts Mark with high confidence (slightly

higher or lower than the previous layer result, no significant change) too. However, the first

OP says that L17 predicts Mark with a high confidence but L18 predicts A.J. Buckley

with a high confidence. This is a clear violation. The three adversarial samples cause value

invariant violations as well (Figure 4.12). The brown region describes the V I distribution

for L18. The adversarial samples (red dots) are clear outliers. However, NIC is not able to

distinguish Trajoned models from those are simply vulnerable.

128

4.6 Related Work

We have covered many adversarial sample attacks, defense and detection works in §4.2.

There are other types of attacks on machine learning models especially DNNs [188, 189, 190,

191, 192, 193]. Liu et al. [194] noticed that existing works study the perturbation problem

by assuming an ideal software-level DNN, and argued this is not enough. They investigated

adversarial samples by considering both perturbation and DNN model-reshaping (used by

many DNN hardware implementations). Xiao et al. [195] utilized generative adversarial

networks (GANs) to learn and approximate the distribution of original inputs so as to gen-

erate adversarial samples. Some works focus on applying poisoning attacks on machine

learning models [196, 197, 198, 199]. Poisoning attacks aim at downgrading or compro-

mising machine learning models by providing malicious training instances. Researchers

have also proposed attacks to steal the parameters or hyper-parameters of machine learning

models from open online services [200, 201]. Some works focus on studying the potential

privacy leakage issues of machine learning [189, 190, 202, 203, 204, 205]. Fredrickson

et al. [206, 207] proposed membership inference attacks on machine learning models by

reverse engineering models to infer information of training data. Sharif et al. [208] focused

on facial biometirc systems. They defined and investigated attacks that are physically realiz-

able and inconspicuous, and allow an attacker to evade recognition or impersonate anther

individual.

Recently, researchers proposed a few DNN verification frameworks [176, 209] that can

verify DNN properties. Katz et al. [209] proposed an SMT-solver based solution, Reluplex,

which can prove a network is δ-local-robust at input x, namely, for every x′ such that

||x− x′||∞ ≤ δ, the network always assigns the same output label. And Gehr et al. [176]

proposed AI2 based on abstract interpretation and over-approximation, and they also used

a similar local robustness property, namely, the network must assign the same label for a

region and the region is defined for the Lighting attack in DeepXplore [124]. While these

works demonstrate the potential of DNN verification, they aim to defend specific attacks.

For example, the δ-local-robustness property proposed by Reluplex may not handle attacks

129

beyond the L∞ attack category whereas the local robustness property used in AI2 was

mainly for the Lighting attack in DeepXplore. To prove the aforementioned properties, the

techniques require the knowledge of attack parameters, such as δ for Reluplex and the degree

of change in Lighting attacks in DeepXplore, which may not be feasible. Moreover, these

techniques prove that DNN does not misbehave for a specific given input. In practice, it is

difficult to enumerate all possible benign inputs. Due to the cost of verification, experiments

have been conducted on small datasets. It remains unclear if such techniques can scale to

larger sets such as the ImageNet. In contrast, our technique is more general and practical.

We use one class classification (OCC) in our technique. Researchers have extensively

studied OCC [168, 169, 210, 211, 212, 213]. The most widely used method is OSVM [169,

210]. The basic idea of OSVM is to fit the data into Support Vector Machine classifiers

to find the correct boundary between positive and negative samples. There are also many

works that try to use other classifiers for OCC, such as decision trees [211], k-nearest-

neighbors [212, 213] and neural networks [170].

130

5 CONCLUSION

Provenance collection and analysis is one of the most important methods for computer

forensic tasks and analyzing AI systems. In computer forensics analysis, recent APT

attacks are becoming more and more persistent and sophisticated, which calls for the new

provenance collection and analysis techniques to improve the effectiveness and efficiency of

such systems. In AI systems, deep learning model internal neuron activations potentially

can be used for adversarial sample detection. In this dissertation, I propose effective and

efficient computation system provenance tracking techniques to reduce the space and runtime

overheads and improve the dependency analysis results for enterprise environment cyber

attack forensics especially for APTs, and detecting adversarial samples in AI systems by

using internal neuron activation patterns as provenance.

In particular, we develop ProTracer, a cost-effective provenance tracing system that

features the capabilities of alternating between logging and unit-level taint propagation,

and event processing through a lightweight kernel module and a sophisticated concurrent

user space daemon. Our evaluation results show that ProTracer substantially improves

the state-of-the-art. In our experiments, it only generates 13MB audit log per day, and

0.84GB(Server)/2.32GB(Client) in 3 months with less than 7% overhead, while the generated

logs do not lose any attack-related information.

Also, we analyzed execution partitioning which is important for addressing dependency

explosion in audit logging. However, existing techniques are event loop based. They

generate too many small units, require training to detect dependencies across units, and

lack information about high level logic tasks. We propose MPI, a technique that partitions

based on high level tasks. It allows the user to annotate the data structures corresponding to

these task, and leverages compiler to instrument operations of the data structures in order to

capture unit context switches and delegations. We implemented a prototype and evaluated it

on three existing systems: Linux Audit, ProTracer and LPM-HiFi. The results show that

131

MPI generates much smaller graphs with lower overhead comparing to the state-of-the-art,

and avoids broken provenance due to incomplete training.

Lastly, we propose a novel invariant based detection technique eagainst DNN adversarial

samples, based on the observation that existing attacks are exploiting two common channels:

the provenance channel and the activation value distribution channel. We develop innovative

methods to extract provenance invariants and value invariants which can be checked at

runtime to guard the two channels. Our evaluation on 11 different attacks shows that our

technique can accurately detect these attacks with limited false positives, out-perform three

state-of-the-art techniques based on different techniques and significantly increases the

difficulty of constructing adversarial samples.

132

REFERENCES

[1] Wei You, Xuwei Liu, Shiqing Ma, David Mitchel Perry, Xiangyu Zhang, and Bin
Liang. SLF: fuzzing without valid seed inputs. In Gunter Mussbacher, Joanne M.
Atlee, and Tevfik Bultan, editors, Proceedings of the 41st International Conference
on Software Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019,
pages 712–723. IEEE / ACM, 2019.

[2] Wei You, Xueqiang Wang, Shiqing Ma, Jianjun Huang, Xiangyu Zhang, Xiaofeng
Wang, and Bin Liang. Profuzzer: On-the-fly input type probing for better zero-day
vulnerability discovery. In IEEE Security and Privacy 2019, 2019.

[3] Juan Zhai, Jianjun Huang, Shiqing Ma, Xiangyu Zhang, Lin Tan, Jianhua Zhao, and
Feng Qin. Automatic model generation from documentation for java API functions.
In Laura K. Dillon, Willem Visser, and Laurie Williams, editors, Proceedings of the
38th International Conference on Software Engineering, ICSE 2016, Austin, TX, USA,
May 14-22, 2016, pages 380–391. ACM, 2016.

[4] Zhenhao Tang, Juan Zhai, Minxue Pan, Yousra Aafer, Shiqing Ma, Xiangyu Zhang,
and Jianhua Zhao. Dual-force: understanding webview malware via cross-language
forced execution. In Marianne Huchard, Christian Kästner, and Gordon Fraser,
editors, Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering, ASE 2018, Montpellier, France, September 3-7, 2018, pages
714–725. ACM, 2018.

[5] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang,
and Xiangyu Zhang. Trojaning attack on neural networks. In 25nd Annual Network
and Distributed System Security Symposium, NDSS 2018, San Diego, California,
USA, February 18-221, 2018. The Internet Society, 2018.

[6] Wen-Chuan Lee, Yingqi Liu, Peng Liu, Shiqing Ma, Hongjun Choi, Xiangyu Zhang,
and Rajiv Gupta. White-box program tuning. In Mahmut Taylan Kandemir, Alexandra
Jimborean, and Tipp Moseley, editors, IEEE/ACM International Symposium on Code
Generation and Optimization, CGO 2019, Washington, DC, USA, February 16-20,
2019, pages 122–135. IEEE, 2019.

[7] Wen-Chuan Lee, Peng Liu, Yingqi Liu, Shiqing Ma, and Xiangyu Zhang. Program-
ming support for autonomizing software. In Kathryn S. McKinley and Kathleen
Fisher, editors, Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26,
2019., pages 702–716. ACM, 2019.

[8] Zhaogui Xu, Shiqing Ma, Xiangyu Zhang, Shuofei Zhu, and Baowen Xu. Debugging
with intelligence via probabilistic inference. In Michel Chaudron, Ivica Crnkovic,
Marsha Chechik, and Mark Harman, editors, Proceedings of the 40th International
Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden, May 27 -
June 03, 2018, pages 1171–1181. ACM, 2018.

133

[9] Yaozu Dong, Wei Ye, Yunhong Jiang, Ian Pratt, Shiqing Ma, Jian Li, and Haibing
Guan. COLO: coarse-grained lock-stepping virtual machines for non-stop service. In
Guy M. Lohman, editor, ACM Symposium on Cloud Computing, SOCC ’13, Santa
Clara, CA, USA, October 1-3, 2013, pages 3:1–3:16. ACM, 2013.

[10] Shiqing Ma, Kyu Hyung Lee, Chung Hwan Kim, Junghwan Rhee, Xiangyu Zhang,
and Dongyan Xu. Accurate, low cost and instrumentation-free security audit logging
for windows. ACSAC ’15.

[11] Shiqing Ma, Xiangyu Zhang, and Dongyan Xu. Protracer: towards practical prove-
nance tracing by alternating between logging and tainting. NDSS ’16.

[12] Shiqing Ma, Juan Zhai, Fei Wang, Kyu Hyung Lee, Xiangyu Zhang, and Dongyan
Xu. {MPI}: Multiple perspective attack investigation with semantic aware execution
partitioning. In 26th {USENIX} Security Symposium ({USENIX} Security 17), pages
1111–1128, 2017.

[13] Kexin Pei, Zhongshu Gu, Brendan Saltaformaggio, Shiqing Ma, Fei Wang, Zhiwei
Zhang, Luo Si, Xiangyu Zhang, and Dongyan Xu. Hercule: Attack story reconstruc-
tion via community discovery on correlated log graph. In Proceedings of the 32Nd
Annual Conference on Computer Security Applications, ACSAC ’16, pages 583–595,
New York, NY, USA, 2016. ACM.

[14] Yonghwi Kwon, Fei Wang, Weihang Wang, Kyu Hyung Lee, Wen-Chuan Lee,
Shiqing Ma, Xiangyu Zhang, Dongyan Xu, Somesh Jha, Gabriela F. Ciocarlie, Ashish
Gehani, and Vinod Yegneswaran. MCI : Modeling-based causality inference in audit
logging for attack investigation. In 25th Annual Network and Distributed System
Security Symposium, NDSS 2018, San Diego, California, USA, February 18-21, 2018.
The Internet Society, 2018.

[15] Shiqing Ma, Juan Zhai, Yonghwi Kwon, Kyu Hyung Lee, Xiangyu Zhang, Gabriela F.
Ciocarlie, Ashish Gehani, Vinod Yegneswaran, Dongyan Xu, and Somesh Jha. Kernel-
supported cost-effective audit logging for causality tracking. In Haryadi S. Gunawi
and Benjamin Reed, editors, 2018 USENIX Annual Technical Conference, USENIX
ATC 2018, Boston, MA, USA, July 11-13, 2018., pages 241–254. USENIX Associa-
tion, 2018.

[16] Fei Wang, Yonghwi Kwon, Shiqing Ma, Xiangyu Zhang, and Dongyan Xu. Lprov:
Practical library-aware provenance tracing. In Proceedings of the 34th Annual
Computer Security Applications Conference, ACSAC 2018, San Juan, PR, USA,
December 03-07, 2018, pages 605–617. ACM, 2018.

[17] Chonghua Wang, Shiqing Ma, Xiangyu Zhang, Junghwan Rhee, Xiaochun Yun, and
Zhiyu Hao. A hypervisor level provenance system to reconstruct attack story caused
by kernel malware. In Xiaodong Lin, Ali Ghorbani, Kui Ren, Sencun Zhu, and
Aiqing Zhang, editors, Security and Privacy in Communication Networks - 13th
International Conference, SecureComm 2017, Niagara Falls, ON, Canada, October
22-25, 2017, Proceedings, volume 238 of Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications Engineering, pages 778–792.
Springer, 2017.

[18] Shiqing Ma, Yingqi Liu, Guanhong Tao, Wen-Chuan Lee, and Xiangyu Zhang.
NIC: detecting adversarial samples with neural network invariant checking. In 26th
Annual Network and Distributed System Security Symposium, NDSS 2019, San Diego,
California, USA, February 24-27, 2019. The Internet Society, 2019.

134

[19] Guanhong Tao, Shiqing Ma, Yingqi Liu, and Xiangyu Zhang. Attacks meet inter-
pretability: Attribute-steered detection of adversarial samples. In Samy Bengio,
Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and
Roman Garnett, editors, Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018,
3-8 December 2018, Montréal, Canada., pages 7728–7739, 2018.

[20] Shiqing Ma, Yingqi Liu, Wen-Chuan Lee, Xiangyu Zhang, and Ananth Grama.
MODE: automated neural network model debugging via state differential analysis
and input selection. In Gary T. Leavens, Alessandro Garcia, and Corina S. Pasareanu,
editors, Proceedings of the 2018 ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November 04-09, 2018,
pages 175–186. ACM, 2018.

[21] Shiqing Ma, Yousra Aafer, Zhaogui Xu, Wen-Chuan Lee, Juan Zhai, Yingqi Liu,
and Xiangyu Zhang. LAMP: data provenance for graph based machine learning
algorithms through derivative computation. In Eric Bodden, Wilhelm Schäfer, Arie
van Deursen, and Andrea Zisman, editors, Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2017, Paderborn, Germany,
September 4-8, 2017, pages 786–797. ACM, 2017.

[22] S. Miles, P. Groth, M. Branco, and L. Moreau. The requirements of recording and
using provenance in e-science experiments. Journal of Grid Computing.

[23] P. Groth, S. Miles, W. Fang, S. C. Wong, K. P. Zauner, and L. Moreau. HPDC’05.

[24] Xuxian Jiang, AAron Walters, Dongyan Xu, Eugene H. Spafford, Florian Buchholz,
and Yi-Min Wang. Provenance-aware tracing of worm break-in and contaminations:
A process coloring approach. ICDCS.

[25] Samuel T. King and Peter M. Chen. Backtracking intrusions. SOSP ’03.

[26] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. High accuracy attack provenance
via binary-based execution partition. NDSS ’13.

[27] Ashvin Goel, Kenneth Po, Kamran Farhadi, Zheng Li, and Eyal de Lara. The taser
intrusion recovery system. SOSP ’05.

[28] Sriranjani Sitaraman and S. Venkatesan. Forensic analysis of file system intrusions
using improved backtracking. IWIA ’05.

[29] Devin J. Pohly, Stephen McLaughlin, Patrick McDaniel, and Kevin Butler. Hi-fi:
Collecting high-fidelity whole-system provenance. ACSAC ’12.

[30] Kiran-Kumar Muniswamy-Reddy, David A Holland, Uri Braun, and Margo I Seltzer.
Provenance-aware storage systems. Usenix ATC ’06.

[31] James Newsome and Dawn Xiaodong Song. Dynamic taint analysis for automatic
detection, analysis, and signaturegeneration of exploits on commodity software.
NDSS’05.

[32] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager, Min Gyung Kang,
Zhenkai Liang, James Newsome, Pongsin Poosankam, and Prateek Saxena. Bitblaze:
A new approach to computer security via binary analysis. ICISS ’08.

135

[33] Vasileios P. Kemerlis, Georgios Portokalidis, Kangkook Jee, and Angelos D.
Keromytis. Libdft: Practical dynamic data flow tracking for commodity systems.
VEE ’12.

[34] James Clause, Wanchun Li, and Alessandro Orso. Dytan: A generic dynamic taint
analysis framework. ISSTA ’07.

[35] Erik Bosman, Asia Slowinska, and Herbert Bos. Minemu: The world’s fastest taint
tracker. RAID’11, 2011.

[36] Feng Qin, Cheng Wang, Zhenmin Li, Ho-seop Kim, Yuanyuan Zhou, and Youfeng
Wu. Lift: A low-overhead practical information flow tracking system for detecting
security attacks. MICRO 39.

[37] Stephen McCamant and Michael D. Ernst. Quantitative information flow as network
flow capacity. PLDI ’08.

[38] Min Gyung Kang, Stephen McCamant, Pongsin Poosankam, and Dawn Song. Dta++:
Dynamic taint analysis with targeted control-flow propagation. NDSS’11.

[39] Mingwu Zhang, Xiangyu Zhang, Xiang Zhang, and Sunil Prabhakar. Tracing lineage
beyond relational operators. VLDB ’07.

[40] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. Loggc: garbage collecting audit
log. CCS ’13.

[41] Wes Masri, Andy Podgurski, and David Leon. Detecting and debugging insecure
information flows. ISSRE ’04.

[42] Ashish Gehani and Dawood Tariq. Spade: Support for provenance auditing in
distributed environments. Middleware ’12.

[43] Tracepoints. https://www.kernel.org/doc/Documentation/trace/
tracepoints.txt.

[44] Apache benchmark. https://goo.gl/L7bGOK.

[45] Proftp backdoor. http://www.osvdb.org/69562.

[46] Student hacker. http://www.huffingtonpost.com/2014/03/05/student-
hacking_n_4907344.html.

[47] Irs phishing email. https://www.spamstopshere.com/blog/spam-news/
alert-irs-scam-email-links-malicious-code.

[48] Samuel T King, Zhuoqing Morley Mao, Dominic G Lucchetti, and Peter M Chen.
Enriching intrusion alerts through multi-host causality. NDSS’05.

[49] Taesoo Kim, Xi Wang, Nickolai Zeldovich, and M. Frans Kaashoek. Intrusion
recovery using selective re-execution. OSDI’10.

[50] Ningning Zhu and Tzi-cker Chiueh. Design, implementation, and evaluation of
repairable file service. DSN’13.

[51] Jim Chow, Ben Pfaff, Tal Garfinkel, Kevin Christopher, and Mendel Rosenblum.
Understanding data lifetime via whole system simulation. USENIX SSYM’04.

https://www.kernel.org/doc/Documentation/trace/tracepoints.txt
https://www.kernel.org/doc/Documentation/trace/tracepoints.txt
https://goo.gl/L7bGOK
http://www.osvdb.org/69562
http://www.huffingtonpost.com/2014/03/05/student-hacking_n_4907344.html
http://www.huffingtonpost.com/2014/03/05/student-hacking_n_4907344.html
https://www.spamstopshere.com/blog/spam-news/alert-irs-scam-email-links-malicious-code
https://www.spamstopshere.com/blog/spam-news/alert-irs-scam-email-links-malicious-code

136

[52] Uri Braun, Simson Garfinkel, David A Holland, Kiran-Kumar Muniswamy-Reddy,
and Margo I Seltzer. Issues in automatic provenance collection. In Provenance and
annotation of data.

[53] Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff Frey, David Ziegler,
Eddie Kohler, David Mazieres, Frans Kaashoek, and Robert Morris. Labels and event
processes in the asbestos operating system. SOSP ’05.

[54] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières. Making
information flow explicit in histar. OSDI ’06.

[55] Kangkook Jee, Georgios Portokalidis, Vasileios P. Kemerlis, Soumyadeep Ghosh,
David I. August, and Angelos D. Keromytis. A general approach for effciently
accelerating software-based dynamicdata flow tracking on commodity hardware.
NSDI’12.

[56] Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin Kirda.
Panorama: capturing system-wide information flow for malware detection and analy-
sis. CCS ’07.

[57] Byung Chul Tak, Chunqiang Tang, Chun Zhang, Sriram Govindan, Bhuvan Ur-
gaonkar, and Rong N. Chang. vpath: precise discovery of request processing paths
from black-box observations of thread and network activities. USENIX ATC’09.

[58] Kiran-Kumar Muniswamy-Reddy, Uri Braun, David A. Holland, Peter Macko, Diana
Maclean, Daniel Margo, Margo Seltzer, and Robin Smogor. Layering in provenance
systems. USENIX ATC’09.

[59] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon Chun,
Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth. Taintdroid: an
information-flow tracking system for realtime privacy monitoring on smartphones.
ACM Transactions on Computer Systems (TOCS), 32, 2014.

[60] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick
McDaniel, and Anmol N. Sheth. Taintdroid: An information-flow tracking system
for realtime privacy monitoring on smartphones. OSDI’10.

[61] Kui Xu, Huijun Xiong, Chehai Wu, Deian Stefan, and Danfeng Yao. Data-provenance
verification for secure hosts. Dependable and Secure Computing, IEEE Transactions
on, 9(2), 2012.

[62] Hao Zhang, Danfeng Daphne Yao, and Naren Ramakrishnan. Detection of stealthy
malware activities with traffic causality and scalable triggering relation discovery.
ACSAC’14.

[63] Yulai Xie, Kiran-Kumar Muniswamy-Reddy, Darrell DE Long, Ahmed Amer, Dan
Feng, and Zhipeng Tan. Compressing provenance graphs. TaPP’11.

[64] Yulai Xie, Dan Feng, Zhipeng Tan, Lei Chen, Kiran-Kumar Muniswamy-Reddy, Yan
Li, and Darrell DE Long. A hybrid approach for efficient provenance storage. CIKM
’12.

[65] Yulai Xie, Kiran-Kumar Muniswamy-Reddy, Dan Feng, Yan Li, and Darrell DE Long.
Evaluation of a hybrid approach for efficient provenance storage. ACM Transactions
on Storage (TOS), 9(4):14, 2013.

137

[66] Adam Bates, Kevin R.B. Butler, and Thomas Moyer. Take only what you need:
Leveraging mandatory access control policy to reduce provenance storage costs.
TaPP ’15.

[67] Zhenyu Guo, Dong Zhou, Haoxiang Lin, Mao Yang, Fan Long, Chaoqiang Deng,
Changshu Liu, and Lidong Zhou. G2: A graph processing system for diagnosing
distributed systems. USENIX ATC’11.

[68] Markus Jakobsson and Ari Juels. Server-side detection of malware infection. NSPW
’09.

[69] Amit Vasudevan, Ning Qu, and Adrian Perrig. Xtrec: Secure real-time execution
trace recording on commodity platforms. HICSS’11.

[70] Adam Bates, Dave (Jing) Tian, Kevin R.B. Butler, and Thomas Moyer. Trustworthy
whole-system provenance for the linux kernel. Usenix Security’15.

[71] Swaminathan Sundararaman, Gopalan Sivathanu, and Erez Zadok. Selective version-
ing in a secure disk system. Usenix Security’08.

[72] Radu Sion. Strong worm. ICDCS’08.

[73] Watering hole attack. https://goo.gl/aw1t9l.

[74] Many watering holes, targets in hacks that netted facebook, twitter and apple. https:
//goo.gl/NIg2Va.

[75] More details on "operation aurora". https://goo.gl/p76ovs.

[76] Github hacked, millions of projects at risk of being modified or deleted. https:
//goo.gl/EdguGO.

[77] Chinese hacker arrested for leaking 6 million logins. https://goo.gl/AO2Qlz.

[78] The browser exploitation framework. http://beefproject.com/.

[79] Samuel T King, Zhuoqing Morley Mao, Dominic G Lucchetti, and Peter M Chen.
Enriching intrusion alerts through multi-host causality. NDSS ’05.

[80] Linux audit subsystem. https://goo.gl/WSwnJB.

[81] Chris Wright, Crispin Cowan, Stephen Smalley, James Morris, and Greg Kroah-
Hartman. Linux security modules: General security support for the linux kernel. In
Proceedings of the 11th USENIX Security Symposium, pages 17–31, Berkeley, CA,
USA, 2002. USENIX Association.

[82] Zhang Xu, Zhenyu Wu, Zhichun Li, Kangkook Jee, Junghwan Rhee, Xusheng Xiao,
Fengyuan Xu, Haining Wang, and Guofei Jiang. High fidelity data reduction for big
data security dependency analysis. CCS ’16.

[83] Event tracing for windows (etw). http://msdn.microsoft.com/en-us/
library/windows/desktop/aa363668(v=vs.85).aspx.

[84] Windows event log. https://msdn.microsoft.com/en-us/library/
windows/desktop/aa385780(v=vs.85).aspx.

https://goo.gl/aw1t9l
https://goo.gl/NIg2Va
https://goo.gl/NIg2Va
https://goo.gl/p76ovs
https://goo.gl/EdguGO
https://goo.gl/EdguGO
https://goo.gl/AO2Qlz
http://beefproject.com/
https://goo.gl/WSwnJB
http://msdn.microsoft.com/en-us/library/ windows/desktop/aa363668(v=vs.85).aspx.
http://msdn.microsoft.com/en-us/library/ windows/desktop/aa363668(v=vs.85).aspx.
https://msdn.microsoft.com/en-us/library/windows/desktop/aa385780(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa385780(v=vs.85).aspx

138

[85] Vim document: windows. https://goo.gl/Lqp9Gb.

[86] Sloccount. http://www.dwheeler.com/sloccount/.

[87] Leaked data. https://haveibeenpwned.com/.

[88] The sony hack. https://goo.gl/B4G7Pl.

[89] Adam Cummings, Todd Lewellen, David McIntire, Andrew P Moore, and Randall
Trzeciak. Insider threat study: Illicit cyber activity involving fraud in the us financial
services sector. Technical report, DTIC Document, 2012.

[90] Marisa R Randazzo, Michelle Keeney, Eileen Kowalski, Dawn Cappelli, and Andrew
Moore. Insider threat study: Illicit cyber activity in the banking and finance sector.
Technical report, DTIC Document, 2005.

[91] Michelle Keeney, Eileen Kowalski, Dawn Cappelli, Andrew Moore, Timothy
Shimeall, Stephanie Rogers, et al. Insider threat study: Computer system sabo-
tage in critical infrastructure sectors. US Secret Service and CERT Coordination
Center/SEI, 2005.

[92] Eileen Kowalski, Tara Conway, Susan Keverline, Megan Williams, Dawn Cappelli,
Bradford Willke, and Andrew Moore. Insider threat study: Illicit cyber activity in
the government sector. US Department of Homeland Security, US Secret Service,
CERT, and the Software Engineering Institute (Carnegie Mellon University), Tech.
Rep, 2008.

[93] Tuxpaint. www.tuxpaint.org.

[94] Extensions to the c language family. https://goo.gl/evrruW.

[95] Extensions to the c++ language. https://goo.gl/pn19Np.

[96] Clang language extensions. https://goo.gl/UpniZC.

[97] Dave (Jing) Tian, Adam Bates, Kevin R.B. Butler, and Raju Rangaswami. Provusb:
Block-level provenance-based data protection for usb storage devices. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’16, pages 242–253, New York, NY, USA, 2016. ACM.

[98] David Devecsery, Michael Chow, Xianzheng Dou, Jason Flinn, and Peter M Chen.
Eidetic systems. In 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14), pages 525–540, 2014.

[99] Simon Miles, Paul Groth, Steve Munroe, and Luc Moreau. Prime: A methodology
for developing provenance-aware applications. ACM Transactions on Software
Engineering and Methodology (TOSEM), 20(3):8, 2011.

[100] Michelle A. Borkin, Chelsea S. Yeh, Madelaine Boyd, Peter Macko, Krzysztof Z.
Gajos, Margo Seltzer, and Hanspeter Pfister. Evaluation of filesystem provenance
visualization tools. IEEE Transactions on Visualization and Computer Graphics,
19(12):2476–2485, December 2013.

[101] Charles F Bevan and R Michael Young. Planning Attack Graphs. In ACSAC, 2011.

https://goo.gl/Lqp9Gb
http://www.dwheeler.com/sloccount/
https://haveibeenpwned.com/
https://goo.gl/B4G7Pl
www.tuxpaint.org
https://goo.gl/evrruW
https://goo.gl/pn19Np
https://goo.gl/UpniZC

139

[102] Vaibhav Mehta, Constantinos Bartzis, Haifeng Zhu, Edmund Clarke, and Jeannette
Wing. Ranking Attack Graphs. 9th International Symposium on Recent Advances in
Intrusion Detection (RAID’06), 4219:127–144, 2006.

[103] Xinming Ou, Wayne F. Boyer, and Miles a. McQueen. A scalable approach to attack
graph generation. In Proceedings of the 13th ACM conference on Computer and
communications security - CCS ’06, page 336, 2006.

[104] Reginald E. Sawilla and Xinming Ou. Identifying critical attack assets in dependency
attack graphs. In Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 5283
LNCS, pages 18–34, 2008.

[105] Xinming Ou, Sudhakar Govindavajhala, and Aw Appel. MulVAL: A logic-based
network security analyzer. 14th USENIX Security . . . , (August):8, 2005.

[106] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing. Automated generation
and analysis of attack graphs. In Proceedings - IEEE Symposium on Security and
Privacy, volume 2002-January, pages 273–284, 2002.

[107] Clemens Kolbitsch, Paolo Milani Comparetti, Christopher Kruegel, Engin Kirda,
Xiao-yong Zhou, and XiaoFeng Wang. Effective and efficient malware detection at
the end host. USENIX’09.

[108] Z. Gu, K. Pei, Q. Wang, L. Si, X. Zhang, and D. Xu. Leaps: Detecting camouflaged
attacks with statistical learning guided by program analysis. In 2015 45th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks, pages
57–68, June 2015.

[109] Clemens Kolbitsch, Engin Kirda, and Christopher Kruegel. The power of procras-
tination: Detection and mitigation of execution-stalling malicious code. CCS ’11.
ACM.

[110] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, and Konrad Rieck.
Drebin: Effective and explainable detection of android malware in your pocket.
NDSS’14.

[111] Ivan Beschastnikh, Yuriy Brun, Sigurd Schneider, Michael Sloan, and Michael D
Ernst. Leveraging existing instrumentation to automatically infer invariant-
constrained models. ESEC/FSE’11.

[112] Karthik Nagaraj, Charles Killian, and Jennifer Neville. Structured comparative
analysis of systems logs to diagnose performance problems. NSDI’12.

[113] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I Jordan. Detecting
large-scale system problems by mining console logs. SOSP’09.

[114] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[115] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat
Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Ji-
akai Zhang, et al. End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316, 2016.

140

[116] George E Dahl, Jack W Stokes, Li Deng, and Dong Yu. Large-scale malware
classification using random projections and neural networks. In Acoustics, Speech
and Signal Processing (ICASSP), 2013 IEEE International Conference on, pages
3422–3426. IEEE, 2013.

[117] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai. Kitsune: An
ensemble of autoencoders for online network intrusion detection. arXiv preprint
arXiv:1802.09089, 2018.

[118] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv
preprint arXiv:1312.6199, 2013.

[119] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[120] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the
physical world. arXiv preprint arXiv:1607.02533, 2016.

[121] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik,
and Ananthram Swami. The limitations of deep learning in adversarial settings.
In Security and Privacy (EuroS&P), 2016 IEEE European Symposium on, pages
372–387. IEEE, 2016.

[122] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural
networks. In Security and Privacy (SP), 2017 IEEE Symposium on, pages 39–57.
IEEE, 2017.

[123] Seyed Mohsen Moosavi Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool:
a simple and accurate method to fool deep neural networks. In Proceedings of 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), number
EPFL-CONF-218057, 2016.

[124] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. Deepxplore: Automated
whitebox testing of deep learning systems. In Proceedings of the 26th Symposium on
Operating Systems Principles, pages 1–18. ACM, 2017.

[125] Shixiang Gu and Luca Rigazio. Towards deep neural network architectures robust to
adversarial examples. arXiv preprint arXiv:1412.5068, 2014.

[126] Dongyu Meng and Hao Chen. Magnet: a two-pronged defense against adversarial
examples. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 135–147. ACM, 2017.

[127] Weilin Xu, David Evans, and Yanjun Qi. Feature Squeezing: Detecting Adversarial
Examples in Deep Neural Networks. In Proceedings of the 2018 Network and
Distributed Systems Security Symposium (NDSS), 2018.

[128] Reuben Feinman, Ryan R Curtin, Saurabh Shintre, and Andrew B Gardner. Detecting
adversarial samples from artifacts. arXiv preprint arXiv:1703.00410, 2017.

[129] Kathrin Grosse, Praveen Manoharan, Nicolas Papernot, Michael Backes, and Patrick
McDaniel. On the (statistical) detection of adversarial examples. arXiv preprint
arXiv:1702.06280, 2017.

141

[130] Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and Bastian Bischoff. On
detecting adversarial perturbations. arXiv preprint arXiv:1702.04267, 2017.

[131] Xingjun Ma, Bo Li, Yisen Wang, Sarah M Erfani, Sudanthi Wijewickrema, Michael E
Houle, Grant Schoenebeck, Dawn Song, and James Bailey. Characterizing adversarial
subspaces using local intrinsic dimensionality. 2018.

[132] Fangzhou Liao, Ming Liang, Yinpeng Dong, Tianyu Pang, Jun Zhu, and Xiaolin Hu.
Defense against adversarial attacks using high-level representation guided denoiser.
arXiv preprint arXiv:1712.02976, 2017.

[133] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[134] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny
images. 2009.

[135] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV), 115(3):211–252, 2015.

[136] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. Labeled faces
in the wild: A database for studying face recognition in unconstrained environments.
Technical Report 07-49, University of Massachusetts, Amherst, October 2007.

[137] DNNInvariant. Dnninvariant/nninvariant. https://github.com/DNNInvariant/
nninvariant, 2018.

[138] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami.
Distillation as a defense to adversarial perturbations against deep neural networks. In
Security and Privacy (SP), 2016 IEEE Symposium on, pages 582–597. IEEE, 2016.

[139] Tom B Brown, Dandelion Mané, Aurko Roy, Martín Abadi, and Justin Gilmer.
Adversarial patch. arXiv preprint arXiv:1712.09665, 2017.

[140] Ivan Evtimov, Kevin Eykholt, Earlence Fernandes, Tadayoshi Kohno, Bo Li, Atul
Prakash, Amir Rahmati, and Dawn Song. Robust physical-world attacks on deep
learning models. arXiv preprint arXiv:1707.08945, 1, 2017.

[141] Battista Biggio and Fabio Roli. Wild patterns: Ten years after the rise of adversarial
machine learning. arXiv preprint arXiv:1712.03141, 2017.

[142] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[143] Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Ermon, and Nate Kushman. Pix-
eldefend: Leveraging generative models to understand and defend against adversarial
examples. 2018.

[144] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and Alan Yuille. Mitigating
adversarial effects through randomization. 2018.

https://github.com/DNNInvariant/nninvariant
https://github.com/DNNInvariant/nninvariant

142

[145] Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and Michael Wellman. To-
wards the science of security and privacy in machine learning. arXiv preprint
arXiv:1611.03814, 2016.

[146] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks. In
International Conference on Learning Representations, 2018.

[147] Nicholas Carlini and David Wagner. Defensive distillation is not robust to adversarial
examples. arXiv preprint arXiv:1607.04311, 2016.

[148] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik,
and Ananthram Swami. Practical black-box attacks against machine learning. In
Proceedings of the 2017 ACM on Asia Conference on Computer and Communications
Security, pages 506–519. ACM, 2017.

[149] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give
a false sense of security: Circumventing defenses to adversarial examples. arXiv
preprint arXiv:1802.00420, 2018.

[150] Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled:
High confidence predictions for unrecognizable images. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 427–436, 2015.

[151] Arjun Nitin Bhagoji, Daniel Cullina, and Prateek Mittal. Dimensionality reduction
as a defense against evasion attacks on machine learning classifiers. arXiv preprint
arXiv:1704.02654, 2017.

[152] Zhitao Gong, Wenlu Wang, and Wei-Shinn Ku. Adversarial and clean data are not
twins. arXiv preprint arXiv:1704.04960, 2017.

[153] Dan Hendrycks and Kevin Gimpel. Early methods for detecting adversarial images.
2017.

[154] Xin Li and Fuxin Li. Adversarial examples detection in deep networks with convolu-
tional filter statistics. CoRR, abs/1612.07767, 7, 2016.

[155] Nicolas Papernot and Patrick McDaniel. Deep k-nearest neighbors: Towards con-
fident, interpretable and robust deep learning. arXiv preprint arXiv:1803.04765,
2018.

[156] Bita Rouhani, Mohammad Samragh, Tara Javidi, and Farinaz Koushanfar. Safe
machine learning and defeating adversarial attacks. To appear in IEEE Security and
Privacy (S&P) Magazine, 2018.

[157] Nicholas Carlini and David Wagner. Adversarial examples are not easily detected:
Bypassing ten detection methods. In Proceedings of the 10th ACM Workshop on
Artificial Intelligence and Security, AISec ’17, pages 3–14, New York, NY, USA,
2017. ACM.

[158] Jiajun Lu, Theerasit Issaranon, and David Forsyth. Safetynet: Detecting and rejecting
adversarial examples robustly. In 2017 IEEE International Conference on Computer
Vision (ICCV), pages 446–454. IEEE, 2017.

143

[159] Pei-Hsuan Lu, Pin-Yu Chen, and Chia-Mu Yu. On the limitation of local intrinsic
dimensionality for characterizing the subspaces of adversarial examples. arXiv
preprint arXiv:1803.09638, 2018.

[160] Pouya Samangouei, Maya Kabkab, and Rama Chellappa. Defense-gan: Protecting
classifiers against adversarial attacks using generative models. In International
Conference on Learning Representations, 2018.

[161] Anish Athalye and Nicholas Carlini. On the robustness of the cvpr 2018 white-box
adversarial example defenses. arXiv preprint arXiv:1804.03286, 2018.

[162] Chuan Guo, Mayank Rana, Moustapha Cissé, and Laurens van der Maaten. Counter-
ing adversarial images using input transformations. 2018.

[163] Guneet S Dhillon, Kamyar Azizzadenesheli, Zachary C Lipton, Jeremy Bernstein,
Jean Kossaifi, Aran Khanna, and Anima Anandkumar. Stochastic activation pruning
for robust adversarial defense. 2018.

[164] Guanhong Tao, Shiqing Ma, Yingqi Liu, and Xiangyu Zhang. Attacks meet inter-
pretability: Attribute-steered detection of adversarial samples. In Advances in Neural
Information Processing Systems, pages 7727–7738, 2018.

[165] Ari S Morcos, David GT Barrett, Neil C Rabinowitz, and Matthew Botvinick. On the
importance of single directions for generalization. arXiv preprint arXiv:1803.06959,
2018.

[166] Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. Control-flow integrity.
In Proceedings of the 12th ACM conference on Computer and communications
security, pages 340–353. ACM, 2005.

[167] Mei-Chen Hsueh, Timothy K Tsai, and Ravishankar K Iyer. Fault injection techniques
and tools. Computer, 30(4):75–82, 1997.

[168] David MJ Tax and Robert PW Duin. Data domain description using support vectors.
In ESANN, volume 99, pages 251–256, 1999.

[169] David MJ Tax and Robert PW Duin. Support vector domain description. Pattern
recognition letters, 20(11-13):1191–1199, 1999.

[170] Pramuditha Perera and Vishal M Patel. Learning deep features for one-class classifi-
cation. arXiv preprint arXiv:1801.05365, 2018.

[171] Marco AF Pimentel, David A Clifton, Lei Clifton, and Lionel Tarassenko. A review
of novelty detection. Signal Processing, 99:215–249, 2014.

[172] Florian Tramèr, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick McDaniel.
The space of transferable adversarial examples. arXiv preprint arXiv:1704.03453,
2017.

[173] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transferability in machine
learning: from phenomena to black-box attacks using adversarial samples. arXiv
preprint arXiv:1605.07277, 2016.

[174] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal
Frossard. Universal adversarial perturbations. arXiv preprint, 2017.

144

[175] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into transferable
adversarial examples and black-box attacks. arXiv preprint arXiv:1611.02770, 2016.

[176] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and M. Vechev.
Ai2: Safety and robustness certification of neural networks with abstract interpretation.
In 2018 IEEE Symposium on Security and Privacy (SP), volume 00, pages 948–963.
IEEE, 2018.

[177] Warren He, James Wei, Xinyun Chen, Nicholas Carlini, and Dawn Song. Adversarial
example defense: Ensembles of weak defenses are not strong. In 11th USENIX
Workshop on Offensive Technologies (WOOT 17), Vancouver, BC, 2017. USENIX
Association.

[178] Justin Gilmer, Luke Metz, Fartash Faghri, Samuel S Schoenholz, Maithra Raghu,
Martin Wattenberg, and Ian Goodfellow. Adversarial spheres. arXiv preprint
arXiv:1801.02774, 2018.

[179] ImageNet. Imagenet large scale visual recognition competition 2012 (ilsvrc2012).
http://www.image-net.org/challenges/LSVRC/2012/, 2018.

[180] Nicolas Papernot, Nicholas Carlini, Ian Goodfellow, Reuben Feinman, Fartash Faghri,
Alexander Matyasko, Karen Hambardzumyan, Yi-Lin Juang, Alexey Kurakin, Ryan
Sheatsley, et al. cleverhans v2.0.0: an adversarial machine learning library. arXiv
preprint arXiv:1610.00768, 2016.

[181] DenseNet. Densenet implementation in keras, 2018.

[182] Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Laurens van der Maaten. Densely
connected convolutional networks. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, volume 1, page 3, 2017.

[183] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[184] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[185] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. Rethinking the inception architecture for computer vision. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 2818–2826,
2016.

[186] MobileNet. Keras implementation of mobile networks, 2018.

[187] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Effi-
cient convolutional neural networks for mobile vision applications. arXiv preprint
arXiv:1704.04861, 2017.

[188] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K Reiter. Adversarial
generative nets: Neural network attacks on state-of-the-art face recognition. arXiv
preprint arXiv:1801.00349, 2017.

http://www.image-net.org/challenges/LSVRC/2012/

145

[189] Adam Smith, Abhradeep Thakurta, and Jalaj Upadhyay. Is interaction necessary for
distributed private learning? In Security and Privacy (SP), 2017 IEEE Symposium on,
pages 58–77. IEEE, 2017.

[190] Briland Hitaj, Giuseppe Ateniese, and Fernando Pérez-Cruz. Deep models under the
gan: information leakage from collaborative deep learning. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, pages
603–618. ACM, 2017.

[191] Congzheng Song, Thomas Ristenpart, and Vitaly Shmatikov. Machine learning mod-
els that remember too much. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, pages 587–601. ACM, 2017.

[192] Chaowei Xiao, Jun-Yan Zhu, Bo Li, Warren He, Mingyan Liu, and Dawn Song.
Spatially transformed adversarial examples. 2018.

[193] Warren He, Bo Li, and Dawn Song. Decision boundary analysis of adversarial
examples. 2018.

[194] Qi Liu, Tao Liu, Zihao Liu, Yanzhi Wang, Yier Jin, and Wujie Wen. Security analysis
and enhancement of model compressed deep learning systems under adversarial
attacks. In Proceedings of the 23rd Asia and South Pacific Design Automation
Conference, pages 721–726. IEEE Press, 2018.

[195] Chaowei Xiao, Bo Li, Jun-Yan Zhu, Warren He, Mingyan Liu, and Dawn
Song. Generating adversarial examples with adversarial networks. arXiv preprint
arXiv:1801.02610, 2018.

[196] Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu, Cristina Nita-Rotaru,
and Bo Li. Manipulating machine learning: Poisoning attacks and countermeasures
for regression learning. arXiv preprint arXiv:1804.00308, 2018.

[197] Octavian Suciu, Radu Mărginean, Yiğitcan Kaya, Hal Daumé III, and Tudor Dumi-
traş. When does machine learning fail? generalized transferability for evasion and
poisoning attacks. arXiv preprint arXiv:1803.06975, 2018.

[198] Chang Liu, Bo Li, Yevgeniy Vorobeychik, and Alina Oprea. Robust linear regression
against training data poisoning. In Proceedings of the 10th ACM Workshop on
Artificial Intelligence and Security, pages 91–102. ACM, 2017.

[199] Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer,
Tudor Dumitras, and Tom Goldstein. Poison frogs! targeted clean-label poisoning
attacks on neural networks. arXiv preprint arXiv:1804.00792, 2018.

[200] Binghui Wang and Neil Zhenqiang Gong. Stealing hyperparameters in machine
learning. arXiv preprint arXiv:1802.05351, 2018.

[201] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart.
Stealing machine learning models via prediction apis. In USENIX Security Sympo-
sium, pages 601–618, 2016.

[202] Yunhui Long, Vincent Bindschaedler, Lei Wang, Diyue Bu, Xiaofeng Wang, Haixu
Tang, Carl A Gunter, and Kai Chen. Understanding membership inferences on
well-generalized learning models. arXiv preprint arXiv:1802.04889, 2018.

146

[203] Jinyuan Jia and Neil Zhenqiang Gong. Attriguard: A practical defense against
attribute inference attacks via adversarial machine learning. arXiv preprint
arXiv:1805.04810, 2018.

[204] Milad Nasr, Reza Shokri, and Amir Houmansadr. Machine learning with membership
privacy using adversarial regularization. arXiv preprint arXiv:1807.05852, 2018.

[205] M Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M Songhori,
Thomas Schneider, and Farinaz Koushanfar. Chameleon: A hybrid secure compu-
tation framework for machine learning applications. In Proceedings of the 2018 on
Asia Conference on Computer and Communications Security, pages 707–721. ACM,
2018.

[206] Matthew Fredrikson, Eric Lantz, Somesh Jha, Simon Lin, David Page, and Thomas
Ristenpart. Privacy in pharmacogenetics: An end-to-end case study of personalized
warfarin dosing. In 23rd USENIX Security Symposium (USENIX Security 14), pages
17–32, San Diego, CA, 2014. USENIX Association.

[207] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that
exploit confidence information and basic countermeasures. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security, pages
1322–1333. ACM, 2015.

[208] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K. Reiter. Accessorize
to a crime: Real and stealthy attacks on state-of-the-art face recognition. In Pro-
ceedings of the 23rd ACM SIGSAC Conference on Computer and Communications
Security, October 2016.

[209] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer.
Reluplex: An efficient smt solver for verifying deep neural networks. In International
Conference on Computer Aided Verification, pages 97–117. Springer, 2017.

[210] Bernhard Schölkopf, Robert C Williamson, Alex J Smola, John Shawe-Taylor, and
John C Platt. Support vector method for novelty detection. In Advances in neural
information processing systems, pages 582–588, 2000.

[211] Fabien Letouzey, François Denis, and Rémi Gilleron. Learning from positive and
unlabeled examples. In International Conference on Algorithmic Learning Theory,
pages 71–85. Springer, 2000.

[212] George G Cabral, Adriano LI Oliveira, and Carlos BG Cahu. A novel method for
one-class classification based on the nearest neighbor data description and structural
risk minimization. In Neural Networks, 2007. IJCNN 2007. International Joint
Conference on, pages 1976–1981. IEEE, 2007.

[213] George G Cabral, Adriano LI Oliveira, and Carlos BG Cahú. Combining nearest
neighbor data description and structural risk minimization for one-class classification.
Neural Computing and Applications, 18(2):175–183, 2009.

147

VITA

Shiqing Ma attended Purdue University for his Ph.D. study under the guidance of his

advisor Professor Xiangyu Zhang and co-advisor Professor Dongyan Xu from Fall 2013 to

Summer 2019. Before that, he earned his Bachelor of Engineering in Software Engineering

from the Shanghai Jiao Tong University in Shanghai, China. His research interests lie in

computer system security especially system and software security and artificial intelligence

security, programming languages and software engineering. His work has been awarded the

Distinguished Paper Awards at USENIX Security 2017 and ISOC NDSS 2016. His Ph.D.

research has been partially funded via the Purdue Bilsland Dissertation Fellowship in the

academic year of 2018-2019. In the Fall of 2019, he will join the Department of Computer

Science at Rutgers University to be an Assistant Professor.

	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	Introduction
	Dissertation Statement
	Contributions
	Dissertation Organization
	Dissertation Overview
	Provenance System in Enterprise Environment for Attack Forensics
	Provenance in Deep Learning Based Artificial Intelligence Systems for Adversarial Sample Detection

	ProTracer: Towards Practical Provenance Tracing by Alternating Between Logging and Tainting
	Introduction
	Motivation
	System Architecture
	Tainting and Logging in the User Space Daemon
	Definitions
	Run-time Operation Rules
	Handling Global File Accesses

	Evaluation
	Effectiveness
	Logging Overhead and Scalability
	Attack Investigation Cases

	Discussion
	Related Work

	MPI: Multiple Perspective Attack Investigation with Semantic Aware Execution Partitioning
	Introduction
	Motivation
	Motivating Example
	Traditional Solutions
	Loop Based Partitioning Solutions
	Our Approach

	Design
	Overview
	Annotations
	Runtime
	Analysis
	Run Time Optimization
	Causal Graph Construction

	Evaluation
	Overhead
	More Overhead Experimental Results
	Annotation Efforts
	Annotation Miner
	Attack Investigation
	Case Studies

	Discussion
	Related work

	NIC: Detecting Adversarial Samples with Neural Network Invariant Checking
	Introduction
	Background and Related Work
	Neural Networks
	Adversarial Samples
	Existing Attacks
	Existing Defense and Detection

	Observations
	Observations about DNN Attack Channels
	Detection As Invariant Checking

	System Design
	Overview
	Extracting DNN Invariants
	Training Invariant Models
	Randomization
	Threat Model

	Evaluation
	Setup
	Detecting Gradient Based Attacks
	Detecting Content Based Attacks
	NIC Invariants and Comparison
	Adaptive Adversaries
	Choice of One Class Classifiers
	Case Study

	Related Work

	Conclusion
	REFERENCES
	VITA

