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ABSTRACT

Rou, Chen. Ph.D., Purdue University, August 2019. GPU Accelerated Lattice Boltzmann 
Analysis for Dynamics of Global Bubble Coalescence in the Microchannel. Major Profes-
sor: Huidan(Whitney) Yu and Pavlos P. Vlachos.

Underlying physics in bubble coalescence is critical for understanding bubble trans-

portation. It is one of the major mechanisms of microfluidics. Understanding the mecha-

nism has benefits in the design, development, and optimization of microfluidics for various

applications. The underlying physics in bubble coalescence is investigated numerically us-

ing the free energy-based lattice Boltzmann method by massive parametrization and clas-

sification.

Firstly, comprehensive GPU (Graphics Processing Unit) parallelization, convergence

check, and validation are carried out to ensure the computational efficiency and physical

accuracy for the numerical simulations.

Then, the liquid-gas system is characterized by an Ohnesorge number (Oh). Two dis-

tinct coalescence phenomena with and without oscillation, are separated by a criticalOh(≈

0.477) number. For the oscillation cases(Oh < 0.477), the mechanism of damped oscil-

lation in microbubble coalescence is explored in terms of the competition between driving

and resisting forces. Through an analogy to the conventional damped harmonic oscilla-

tor, the saddle-point trajectory over the entire oscillation can be well predicted analytically.

Without oscillation in the range of 0.5 < Oh < 1.0, we derive and validate a general

temporal power-law scaling correlating the normalized global coalescence time (T ∗) from

initial to steady state, versus size inequality γ, the radius ratio of two initial parent bubbles

T ∗ = A0γ
−n.

After that, the liquid-gas-solid interface is taken into consideration in the liquid-gas

system. Six cases based on the experiment set-ups are simulated first for validation of the
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computational results. Based on these, a hypothesis is established about critical factors to

determine if coalescence-induced microbubble detachment (CIMD) will occur. From the

eighteen experimental and computational cases, we conclude that when the radius ratio is

close to 1 and the father bubble is larger, then it will lead to CIMD.

Lastly, the effects of initial conditions on the coalescence of two equal-sized air mi-

crobubbles (R0) in water are investigated. In both initial scenarios, the neck bridge evolu-

tion exhibits a half power-law scaling, r/R0 = A0(t/ti)1/2 after development time. The

development time is caused by the significant bias between the capillary forces contributed

by the meniscus curvature and the neck bridge curvature. Meanwhile, the physical mecha-

nism behind each behavior has been explored.
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1. INTRODUCTION

Microfluidic systems, with dimensions ranging from tens to hundreds of microme-

ters [1], attract increasing attention in a myriad of applications [2] in advanced clinical

procedures [3, 4], biology [5, 6], and chemistry [7, 8]. Typically in microfluidic systems

fluids are manipulated to transport [9], mix [10, 11], and separate [12, 13]. Microfluidic

systems also enable the manipulation of living matter at microscales [14, 15]. Over the

last decade, there has been a significant process towards the development of control and

detection of chemical and biological reactions in microfluidic systems [16]. Unique fea-

tures of microfluidic systems include small quantities of sample, low cost, reduced expo-

sure of dangerous substances, and short time analysis thus they are useful in Point-of-care

Testing [17], DNA analysis [18, 19], and cell separation [20, 21]. In industry, the common

applications of microfluidic systems are ink-jet print-heads [22], micro-propulsion [23], hy-

drogenation [24,25] and electrochemical cells including solar water splitting cells [26–28]

and microbial electrolysis cells [29–31]. Controlling bubble transportation, including size

andmotion of air bubbles, can impact the behavior of flowwithinmicrofluidic systems [32].

Bubble coalescence is one of the fundamental phenomena in the microfluidic systems.

It is the process during which two or more parent bubbles, with their diameters from 1µm−

1mm, merge toward a single child bubble until a minimal surface area is reached. For the

purpose of controlling gas/liquid dynamics, the coalescence in some systems needs to be

prevented or suppressed to maintain a stable mixing condition between the gas and liquid

phase. For example, mass transfer processes in a rising bubble, bubble columns [33], gas-

liquid contactor [34], avoiding clogging in the microchannel [35], etc., whereas in other

systems, efficient coalescence might be desirable to enhance the phase separation process

[36]. Therefore, it is important to study the dynamics of microbubble coalescence under

various influences and understand its underlying physics for effective control of gas-liquid

systems.
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1.1 Literature Review

1.1.1 Microbubble Coalescence Dynamics

From two parent bubbles separated with a short distance, i.e., 10−6 −10−5m, to eventu-

ally a single coalesced child bubble, a bubble coalescence mainly consists of the following

five phenomena:

• Bubble collision Generally speaking, coalescence is the consequence of bubble–

bubble collision [37,38], which can be caused by a variety of mechanisms comprising

turbulence, eddy capture, velocity gradient in the mean flow, body forces and wake

entrainment. When a bubble is placed in a flowing liquid, it will experience destroy-

ing stress, which acts to deform and break it. On the other hand, a restoring force

provided by surface tension will prescribe a critical value that is required for a break-

up event to occur. Once the destroying stress exceeds the critical one, the bubble will

break up [39]. Otherwise, bubble collision traps a small amount of liquid between

them. This liquid then drains until the liquid film separating the bubbles reaches a

critical thickness. This behavior corresponds to Figure 1.1(a).

• Liquid film thinning and ruptureWhen two parent bubbles are apart within a short

distance, i.e., 10 − 200nm [40], the intermolecular force of the gas molecules will

attract them to approach, causing the liquid film thinning. A tangible touch of two

bubbles are rather unstable, and a small perturbation would cause a rupture of the

liquid film, see Figure 1.1(b)

• Growth of neck bridge When the liquid film is ruptured, the earliest neck bridge

is formed, and the merging of the two bubbles starts. The neck bridge growth is

governed by both resisting force (inertial force and viscous force) and driving force

(capillarity force) characterized by Ohnesorge number (viscous force versus inertial

and capillarity forces). Oh(≡ µh/
√

ρhσL) where L, µ, ρ, σ are the characteristic

length, e.g. droplet/bubble radius R0, viscosity, density, and surface tension respec-

tively. The subscript h means the heavier fluid. This stage is shown in Figure 1.1(c)
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• Shape oscillationDepending on the physical properties of the fluids and composition

of the interface, the coalescing bubble may exhibit shape oscillation shifting the ma-

jor/minor axis between horizontal and vertical directions. As seen in Figure 1.1(d),

this oscillation is damping. It has been found that correspond to different Oh num-

ber, the shape oscillation can be under damping, over damping (literally meaning no

oscillation), and critical damping.

• Single coalesced bubble The neck bridges grow rapidly toward a single coalesced

bubble until the surface area is minimized (Figure 1.1(e)).

These five phenomena can be characterized as three stages in terms of the coales-

cence process: pre-coalescence (collision and liquid film thinning and rupture), early stage

(growth of neck bridge), post-coalescence (toward a child bubble with a minimal surface

area with or without shape oscillation).

(c) (e)(d)(a) (b)

Figure 1.1: Five phenomena of microbubble coalescence: (a) bubble collision, (b) liquid

film thinning and rupture, (c) growth of neck bridge (d) shape oscillation, and (e) single

coalesced bubble.

There have been considerable efforts to explore the dynamics of pre-coalescence of bub-

ble coalescence and good understanding has been achieved. Many studies were on various

factors affecting the coalescence time through experiments, simulations, and the combina-

tion of both. The coalescence time is defined as the approaching time of two bubbles from

a distance of 10−6 − 10−5m to a contact. Experimental studies [41–43] focused on the

coalescence of multiple bubbles aiming to determine bubble size distribution, gas holdup,
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interfacial area, and bubble rise velocity in different solutes and electrolytes in order to con-

trol the formation and performance of bubbles in bubble columns and the distillation tower.

For example, it has been found that the coalescence time increases with solute concentration

and/or surface tension gradient [44, 45].

For the early stage of bubble coalescence, recent efforts have focused on the forma-

tion and growth of neck bridge via numerical, experimental, and theoretical studies. It

has been found that when viscous effect is negligible (i.e., Oh ≪ 1), the coalescence of

two identical droplets with radius R0 is dominated by inertial force with a coalescence

timescale ti =
√

ρhR3
0/σ (i.e., in the inertial regime) [46]. In this regime, it has been an-

alytically [47, 48], experimentally, [49, 50] and numerically [51–53] found that the time

evolution of the neck bridge radius r follows a power-law, r/R0 ∝ (t/ti)1/2. On the

other hand, when the viscous effect becomes significant (i.e., Oh > 1), the coalescence

timescale is characterized by tv = µR0/σ (i.e., in the viscous regime). Neck bridge evo-

lution is found r/R0 ∝ t/tvln(t/tv) [47]. Paulsen, et al [54] analytically predicted that

the neck bridge evolution of bubble coalescence follow the same half power-law scaling,

i.e., r/R0 ∝ (t/tc)1/2, in the inertial and viscous regimes where the characteristic time tc

corresponds to ti and tv respectively. This prediction was confirmed by their experiment

results as well. Meanwhile, they sophisticatedly studied the effect of dense surrounding

fluid on the coalescence of bubbles based on the formation of an infinitesimal neck bridge.

They discovered that outer fluid has a marginal effect on coalescence dynamics. A phase

diagram was developed, suggesting that the viscosity of the outer fluid may significantly

affect the coalescence dynamics.

For the post-coalescence, a few attempts were made on the phenomenon called damped

oscillation, switching the major axis of the coalescing bubble between horizontal and ver-

tical direction with reducing the amplitude of the major/minor axis ratio. The majority of

studies were on forced oscillation, specifically induced by various external sources such

as electrostatic force [55], acoustic trap [56], and laser light [57] for the purpose of con-

trolling bubble size and collapse in different engineering and biomedical systems [58, 59].

Whereas self-oscillation, driven by imbalance between the driven and resistant forces, has
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been rarely addressed. In the self-oscillation, the driving is from the surface tension at the

gas-liquid interface and the resistance is co-contributed by inertial and viscous effects in

the liquid side. Understanding the mechanism of self-oscillation [60, 61] is critically im-

portant in the design and development of forced oscillation required in many real-world

applications. Rayleigh [62] was the pioneer to study small-amplitude self-oscillation of an

inviscid droplet from a pure mathematical point of view in 1879. Since then, Rayleigh’s

work has been extended toward physical environments by exploring the density effects of

the surrounding fluid [63], the viscous effects [64], and the initial condition effects [65] on

the oscillation. A relationship between Ohnesorge number (Oh, a dimensionless number

that relates the viscous forces to inertial and surface tension forces) and critical damping

(corresponding to the shortest coalescence time) for a droplet, i.e., 0.71 < Oh < 0.76 was

found [66] in the early 1990s.

In the literature, most of the research focused on the individual stages of coalescence.

The global process of coalescence from the touch of two parent bubbles to a single child

bubble with minimal area surface has not focused. Important attempts through experimen-

tal [67, 68] and radiological measurements [69] have been on the fundamentals of coales-

cence dynamics associated with hydrodynamics andmass transport for the global process of

bubble coalescence, including the spatial scales. For the puzzling tendency of the coalesced

child bubble to be preferentially located closer to the larger of its two parent bubbles, named

coalescence preference, was observed in experimentation [69, 70]. It has been found that

the location of the merged bubble is linked by the parent bubble size ratio with a power-law

relationship. Stover et. al [71] were the first to experimentally study the microbubble os-

cillation and showed the effects of liquid viscosity and surface tension on the decay of the

damped oscillation. Recently, a benchmark study [72] showed the different morphological

evolution in the global coalescence from two equal-sized spherical droplets to a stable sin-

gle droplet with minimal surface energy when the viscosity ratio of two-fluids is either low

or high.

In this dissertation, we investigation bubble coalescence in the microchannel, focus-

ing on the global process, corresponding to Figure 1.1(c) to (e). Due to the delicate and
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ephemeral nature of microbubble coalescence, experimental exploration of the coalescence

mechanism is exceptionally challenging whereas numerical simulation provides a unique

and powerful alternative for parameterization to reveal fundamental physics of bubble co-

alescence with physical and computational advantages. It makes investigating possible in

the spatial and temporal characteristics of microbubble coalescence, which has not been

understood.

1.1.2 Lattice Boltzmann Method for Multiphase Flows

Historically, lattice BoltzmannMethod (LBM) was originated from lattice gas automata

(LGA) [73, 74]. The LGA is a simple computation model, in which space, time, and par-

ticle velocities are all discrete, for simulating fluid flows. Later it was rigorously proved

that the LBM is closely associated with Boltzmann equation. After an approximation of the

collision operator such as BGKmodel [75], the formulation of LBM can be derived through

a coherent discretization of the molecular phase space and time from the Boltzmann equa-

tion [76, 77]. In LBM, microscopic fluid physics is simplified to retain only the essential

elements (the local conservation laws and related symmetries) needed to guarantee accurate

macroscopic behavior. Same as the Boltzmann equation, the LBM recovers NS equation

in the limit of continuum flow regime [78].

The LBM is based on kinetic theory sometimes termed mesoscopic CFD. It was de-

veloped rapidly in the past decades and is widely used as a powerful numerical tool for

solving various complex flow systems [79,80]. The LBM is second-order accurate in time

and space and has advantages of good parallel performance, distinct physical image, simple

programming, and easy handling of complex geometries. The most attractive advantages of

the LBM for this research are its amenability for modeling the intermolecular interactions

at the two-phase interface without demanding computation cost for recovering the appro-

priate multi-phase dynamics and the suitability for scalable GPU (Graphic Processing Unit)

parallelization.
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In the past three decades, several multi-phase models using LBM have been developed,

including the color fluid model [81], the pseudo-potential model [82, 83], the mean-field

model et al. [84, 85], the phase-field model [86, 87], and the entropic LBM [88]. These

methods have been continuously refined and applied to simulate many multiphase flow

problems, see both general LBM reviews [79, 80] and specific multi-phase LBM reviews

[89, 90], and therein references. In spite of efforts and successful applications in various

flow systems, simulation ofmultiphase flowswith large density and viscosity ratios between

two fluids, as the current application targets.

When a multiphase flow involves large density ratio of liquid vs. gas, as well as the

solid-liquid-gas interface, is also developing in recent years. Themajor challenge is to over-

come the numerical instability due to the occurrence of parasitic current, a small-amplitude

artificial/nonphysical velocity field arising from an imbalance of discretized forces across

the interface. In general, to pursue low parasitic current, either the accuracy of the contact

angle in a certain region or the density ratio between two fluids have to be compromised.

For examples, insufficient accuracy at small, medium, and large contact angles have been

reported when the pseudo-potential model [91–93], the color fluid model [94], and the free-

energy-based model [95,96] were employed respectively. The interface tracking model can

cover the full range of the contact angle but is limited to a low-density ratio of two flu-

ids [97, 98]. Detail discussions about these models are referred to Huang’s book [99]. To

overcome the drawbacks, the Lee group integrated the interface tracking and free energy

models with the cubic polynomial boundary conditions [100]. This approach has been con-

tinuously developed and refined in the last 10 years [101–104], and it has been demonstrated

that this approach has eliminated the parasitic current without a compromise of inaccurate

contact angle [100, 104], which well fits the need of the current study.

1.1.3 GPU Parallelization for Lattice Boltzmann Method

The GPU acceleration for LBM has a short history but it develops rapidly due to the

increasing demands from computation of complex flows, especially when complex geom-
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etry, multi-scale, multiphase, and massive parametric study are involved. The first work

applying GPU acceleration for LBM [105] was in 2003. Li et al performed computations,

in which textures and render buffers were used. Based on this approach, Zhu et al devel-

oped GPU parallelism for two miscible fluids system and achieved speed three times faster

than serial CPU executions. In 2006, a parallel computing platform and application pro-

gramming interface (API) model created by NVIDIA [106] called CUDA was launched.

The first parallel implementation of D3Q19 on CUDA was done in 2008 [107], a sequen-

tial code (470.lbm) parallelized from the SPEC CPU2006 [108] on CUDA . After that, the

GPU acceleration for LBM in the stage of general purpose GPU (GPGPU) implementations

and optimization with CUDA. Optimization of GPU acceleration for LBM has been devel-

oped in three aspects: memory access patterns, register utilization, and overlap of memory

transfer and arithmetic operations.

Memory access pattern attracts the most attention in the literature through propagation

schemes, data layout, and memory addressing. Propagation schemes: GPU parallelization

of LBM mainly consists of two parts in each iteration: collision and streaming. Since the

collision occurs at the local nodes but steaming requires information from neighbouring

nodes, the efforts on the fast access to the memory have been on the development of propa-

gation schemes [109] for the streaming part. Shift algorithm with shared memory [110,111]

was applied at the beginning to avoid misaligned accessing at the expense of adding an ex-

tra kernel to exchange data through GeForce 8800 Ultra. The propagation scheme of the

A-A pattern (only one set of distribution functions (DFs) in memory) based on the shift al-

gorithm with shared memory was developed [112] in 2009. The A-A pattern reduced GPU

memory by 50% comparing with the A–B pattern (two sets of DFs in memory). Shortly

after, split propagation scheme (misaligned write), and reversed propagation (pull) scheme

(misaligned read) [113] were developed which have a 15% improvement compared with a

shared memory scheme with the GTX 295. Data layout: Two popular schemes of data lay-

out include array of structure (AoS) and structure of array (SoA). SoA switches from AoS

for the optimization of GPU parallelism [107]. It has 7-10 times speed increasing with Tesla

Kepler K20 [114]. Herschlag et al [115] applied more complex data layouts, i.e., collected
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SoA in the GPU architectures and accelerated computational speed by 5-20% compared

with SoA layout. Memory addressing: Indirect addressing and semi-addressing are two

common patterns of memory addressing that are original approach for CPUs. Compared

with direct address [115], they have 4-5 times acceleration for complex geometry problems.

Two other aspects are much less addressed. Accessing register memory consumes zero

clock cycles per instruction comparing to 400-600 cycles for global memory. Whereas, the

amount of register is limited. An NVIDIA compiler provides a flag to limit the register

usages for register utilization [116]. Meanwhile, there are two strategies for overlap of

memory transfer and arithmetic operations including tiling the 3D lattice grid into smaller

3D blocks and branch divergence removal [114].

In the case of multiphase flows, similar approaches of optimization are applied in dif-

ferent models. As reviewed [117]. the performance of LEE model [118], SC model [119],

and FE model [119] are 125.1, 210, 238 (MLUPS) respectively with C2050 GPU cards in

the float precision, where million lattice update per seconds (MLUPS) indicates the per-

formance of lattice Boltzmann simulations. If one uses double precision, the MLUPS will

be decreased about two times. Meanwhile, GPU hardware has been developed quickly.

For example, MLUPSs have increased 1.3 times with Tesla Kepler K20 and 1.7 times with

Tesla Kepler K40 respectively comparing with C2050 [119]. In the LEE model, Tesla P100

accelerated 10 and 680 times compared with Tesla M2070, serial CPU(i7-4930K) respec-

tively [120].

Development of the paralleization combined with GPU, CPU, and network is popular

in recent years to solve multi-scale, multi-physics research problems. The paralleization

include multi-GPU [121, 122], LBM code with CUDA and OpenMP (API that supports

multi-platform shared memory multiprocessing programming, i.e., CPU parallelism) for

multi-GPU clusters [123], LBM with CUDA and MPI (a standard API for message pass-

ing through networks/multi-node computer clusters) [124], and a multi-node MPI/OpenMP

LBM code with OpenACC (a programming standard that can simplify parallel program-

ming of heterogeneous CPU/GPU systems) [125].
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1.2 Research Objective

The objective of this dissertation is twofold :

• Unveil underlying physics of microbubble coalescence via massive parametrization

and classification.

1) To explore fundamental mechanisms of various phenomena global microbubble

coalescence.

2) To gain physical insights of various effects on the dynamics of global coalescence.

• Enhance computational skills through the realization of physically reliable and com-

putationally efficient lattice Boltzmann simulations for multiphase flows with large

density/viscosity ratio, focusing on GPU parallelization and optimization.

1.3 Outline of Dissertation

The remainder of the dissertation is organized as follows: Themethodology includes the

LBM, the LBM model for multiphase flows, and its GPU parallelization that is presented

in Chapter 2 and Chapter 3 respectively. The numerical results are presented in Chapters

4 through 6 for temporal/spatial behaviors of bubble coalescence, coalescence-induced de-

tachment, and initial condition effects on the bubble coalescence respectively. Summary

and future work are expressed in Chapters 7 and 8, respectively.
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2. LATTICE BOLTZMANNMETHOD FORMULTIPHASE FLOWS

2.1 General Description of Lattice Boltzmann Method

The lattice BGKmodel is the most widely used lattice Boltzmann models to date which

can be obtained as

f(xg + eα∆t, eα, tg + ∆t) − f(xg, eα, tg) = − 1
τ0

(f(xg, eα, tg) − f eq(xg, eα, tg)) (2.1)

Among the LBGK models, the representative DnQb lattice model developed by Qian is the

most popular, which denotes n dimensions and b lattice velocities. In DnQb lattice model,

the equilibrium distribution function is shown as

f eq
α = wαρ[1 + (eα · u)

c2
s

+ (eα · u)2

2c4
s

− u2

2c2
s

] (2.2)

where ωα is the weight associated with a particular discretized velocity eα, ρ and u are

macroscopic density and velocity respectively, c2
s =

√
RT is related to speed of sound, and

c = δx/δt = 1 in lattice units (i.e., δt = δx = 1). Pressure Pg = c2
sρg. There are several

DnQb lattice models in common use listed as Figure 2.1 with discrete velocity distribution

and weight coefficient.

2.1.1 The Relationship Between Computational Flow Field Based on LBMand Phys-

ical Flow Field

The flow motion in practical engineering problems is complex in general. And numer-

ical simulation is necessary to be applied when studying these problems. However, due to

the computational cost and limitations, the size of the numerical model is generally different

from the actual size. In order to compare the results of simulation with physics, the physical

quantities need to be dimensionless according to the similarity criterion. In the similarity

principle, comprehensive mechanical similarity refers to geometric similarity, kinematic
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Figure 2.1: DnQb lattice models with discrete velocity directions and weight coefficients.
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similarity, dynamic similarity, and similar initial and boundary conditions. To describe

flow field, there are five essential variables: x, u, P , ρ, µ which stands for space, velocity,

pressure, density, and dynamic viscosity respectively. Here select constant characteristic

propertied appropriate to the flow: Lp, Up, Pp are make physical variables dimensionless.

Hence, the dimensionless variables denotes them by an asterisk t∗ = tUp/Lp, x∗ = x/Lp,

U∗ = u/Up, P ∗ = (P − Pp)/ρU2
p . Based on the dimensionless variables, the dimension-

less governing equations ignoring external forces for viscous incompressible flow can be

obtained as following:

∇ · U∗ = 0 (2.3)

∂U∗

∂t∗ + (U∗ · ∇∗)U∗ = −∇∗P ∗ + 1
Re

∇∗2U∗ (2.4)

Different kind of dimensionless number will be applied in different study cases. It is

based on the main contradiction in the study problems. There are several similarity criteria

in multiphase flow as following:

• Gravitational similarity criterion (Froude modeling)

It is mainly applied to the problems in which gravity plays a leading role rather than

viscous force, such as hydraulic engineering, including ship movement, open chan-

nel flow, etc. The corresponding dimensionless number Froude denotes is Fr =

Up/
√

gLp =
√

ρU2
p L2

p/(ρgL3
p) =

√
inertial force/gravity force

• Viscous force similarity criterion (Reynolds modeling method)

It is an important physical parameter in the study of pipeline flow, hydraulic fluid,

fluid machinery, and boundary layer flow. Its corresponding dimensionless number

Reynolds is expressed asRe = UpLp/µ =
√

ρU2
p L2

p/(µUpL3
p) =inertial force/viscous

force. If the viscous forces of the two flows are similar, their Reynolds Numbers must

be equal, i.e., Re = Re′, and vice versa. In the channel flow, when the Reynolds

number is less than 2300, the fluid motion remains regular and stable in the laminar

flow state. When the Reynolds number is more than 4000, the fluid motion becomes

extremely unstable and irregular.
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• Surface tension similarity criterion

It is suitable for problems in which surface tension plays a major role, such as coales-

cence, boiling, and condensation. There are several dimensionless numbers applied in

the multiphase flow.The dimensionlessWeber number denotes asWe = ρU2
p Lp/σ =

ρU2
p L2

p/σLp =inertial force/surface tension force. It is especially for the multiphase

flow with a strongly curved surface. In the dynamics of capillary flow, Capillary

number Ca = µUp/σ =viscous force/surface tension force plays an important role.

Ohnesorge number Oh = µ/
√

ρσLp =viscous force/
√
inertia · surface tension is of-

ten used in the cases related to free surface fluid dynamics such as dispersion, spray

and coalescence. Additionally, there is a dimensionless number that is used to charac-

terize the shape of bubbles/droplets moving in the surrounding liquid: Bond number

Bo = ∆gL2
pσ =gravitational force/surface tension force.

Based on the similarity principle of fluids, in order to ensure the similarity between the

numerical and physical flow field, the Reynolds, Froude, and Ohnesoge numbers must be

equal. This is the way connect the physical unit with the lattice unit used in the simulation

based on the LBM. The characteristic length, velocity, time, dynamic viscosity, surface

tension in lattice unit is taken as Nx, Ug, tg, νg, σg respectively. So that the relationship

between physical and lattice unit is shown as following:

l0 = Lp/Nx (2.5)

Velocity is out of consideration in the initial and boundary condition in the study cases

of bubble coalescence, so that Ohnesorge number (Oh) is selected as the dimensionless

number to do the unit transfer. From the definition of the kinematic viscosity in the LBM

νg = (τ0 + 0.5)c2
s∆t and Oh = ν

√
ρ/σLp = νg

√
ρ/σNx, the relaxation time for LBM can

be derived as

τ0 = 1
2

+ νp

c2
s

√
ρσg

ρgσ
(2.6)

Meanwhile, from the relationship between physical and lattice unit of kinematic viscos-

ity νp/νl = l2
0/t0, t0 can be derived as

t0 = l2
0c2

s

√
ρσg

σl0ρg

(2.7)
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Because Up = Lp/t and Ug = Nx/tg, U0 can be obtained from t0, l0 as U0 = l0/t0. And

the relationship between pressure in lattice and physical unit is illustrated as

P − P0
1
2ρU2

p

=
Pg − P r

g
1
2ρgU2

g

(2.8)

Here P0 and P r
g is the reference pressure in physical and lattice unit respectively. Mean-

while, in the lattice Boltzmann model Pg = C2
s ρg, and ρr

g = 1 in general, so that the above

equation can be re-write as

P − P0 = c2
s(ρg − ρr

g)
ρU2

p

ρgU2
g

(2.9)

2.1.2 Boundary Conditions for LBM

One of the advantages of LBM is easy to handle complex boundaries with simple im-

plementation. There are several common boundary conditions are listed as following. Here

take D2Q9 lattice model as a sample for description.

• Periodic boundary condition

Periodic boundary [126] usually is applied when the study problems don’t take the ef-

fects of boundary condition into consideration. It means that if fluid particles leave the flow

field from one end boundary, the next time step it will enter the flow field from the other

end boundary. As Figure 2.2 shows the particle distribution functions of the outlet points

f1, f5 and f8 flowing out to the inlet, and f3, f6 and f7 flowing out of the inlet to outlet.

The format can be expressed as

f1,5,8(0, j) = f1,5,8(Nx, j)

f3,6,7(Nx + 1, j) = f3,6,7(1, j)
(2.10)

Here f1,5,8(0, j), f3,6,7(Nx +1, j) are the distribution functions in the virtual fluid nodes

(grey nodes in Figure 2.2), and f1,5,8(1, j), f3,6,7(Nx, j) are the distribution functions in the

fluid nodes (black nodes in Figure 2.2).

• Bounce-back boundary condition
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Inlet Outlet

f2 f5

f1

f8f4f7

f3

f6

f0

Figure 2.2: Periodic boundary condition

Standard bounce-back boundary condition [126] is usually applied in static no-slipwalls.

It assumes that particles on a fluid node reach the boundary node, and the next time step ve-

locity bounces back along the original route, as shown in Figure 2.3. So that the distribution

function after collision on the wall can be expressed as

f2,5,6(i, 1) = f4,7,8(i, 1) (2.11)

f4,7,8(i, 1) come from the distribution functions of near fluid nodes position i.e. f4(i, 2),

f7(i + 1, 2), f8(i − 1, 2) after streaming respectively.

• Non-equilibrium extrapolation model for boundary condition

Based on the extrapolation model of Chen [127] and Zou’s non-equilibrium bounce-

back model for boundary condition, Guo [128] et al. proposed a new boundary processing

method, namely non-equilibrium extrapolation model in 2002. The basic idea is to decom-

pose the unknown distribution function on the boundary lattice into two parts: equilibrium

and non-equilibrium fα = f eq
α + fneq

α . The equilibrium part can be obtained by the given

boundary condition, and the non-equilibrium part can be derived from the extrapolation

model. Here take the velocity boundary condition as an example. As Figure 2.4 shows, the
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f2 f5

f1

f8f4f7

f3

f6

f0

 Collision

Figure 2.3: Bounce-back boundary condi-

tion

f2 f5

f1

f8f4f7

f3

f6

f0xb

xf

Figure 2.4: Non equilibrium extrapolation

model

velocity of the solid node xb is Ub, and the density is unknown. The closet fluid node is

set as xf , in this case,the non-equilibrium extrapolation model can be expressed as

fα(xb, tg) = f eq
α (ρ(xb, tg), Ub) + [fα(xf , tg) − f eq

α (xf , tg)] (2.12)

2.2 Lattice Boltzmann Modeling and Formulations for Multiphase Flows

In the current work, We employ the free-energy modeling approach that originated by

He et al. [84, 85] based on the free-energy theory [129–131] first introduced by Swift et

al. [86,87]. This model has been continuously developed and refined in the last 10 years by

Lee’s group [101–104] and it has been claimed that the parasitic current has been eliminated

[104]. When the flow involves two fluids, the interfacial behavior arises as a result of

microscopic long-range interactions among the constituent molecules of the system [132].

As a result, accounting for interfacial dynamics over a broad range of length and time scales

is required in the modeling. There exists two critical issues in the modeling of multiphase

flow. First, fluid-fluid interface is a contact discontinuity, where the density is discontinuous

but the pressure and velocity are continuous across the interface. Thus, the state equation

of ideal gas, used in the LBMmodeling for single phase flow, is no longer valid. Non-ideal

effects must be introduced through the intermolecular forces between fluids. Second, the
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numerical instability caused by the density discontinuity across the interface would pose a

severe obstacle when the density ratio is large. It has been well understood that a parasitic

current introduced by a slight imbalance in the interfacial stresses due to truncation errors

is the key to suppressing parasitic current in the modeling of intermolecular forces [90].

2.2.1 Governing Equations for Diffusive Interface

Using a diffuse interface to separate phases is a popular technique in the modeling of

multiphase flow. The advantages include the ease of implementation even for complex

three-dimensional interfaces and the suitability to capture singular phenomena such as in-

terface rupture, coalescence, or phase change. For a binary flow, the continuity equation

for the species i of binary fluids can be written as

∂ρ̃i/∂t + ∇ · ρ̃iui = 0, i = 1, 2 (2.13)

where ρ̃i and ui denote the local density and velocity of species i. The total density, ρ(=

ρ̃1 + ρ̃2) is conserved in the entire domain. The local density ρ̃i and velocity ui are linked

to the volume averaged velocity u, the bulk density value ρi, and the volumetric diffusive

flux ji of species i (rate of volume flow across a unit area) by

ρiji = ρ̃i(ui − u), i = 1, 2 (2.14)

If the diffusive flow rate is not related to the densities but instead to the local composi-

tions of two species, j1 = −j2 = j can be assumed [133], yielding ∇ · u = 0. Furthermore,

if j is assumed to be proportional to a thermodynamic driving force – proportional to the

gradient of the chemical potential µc as j = −M∇µc with M > 0 the mobility [134], and

composition C is defined as C = ρ̃i/ρi, Equation (2.13) becomes

∂C/∂t + u · ∇C = ∇ · (M∇µc) (2.15)

where µc is the chemical potential defined as

µc = µc0 − κp∇2C (2.16)
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with µc0 the classical part of the chemical potential. In the vicinity of the critical point,

simplification of van der Waals EOS (equation of state) can be made [132] for the control

of interface thickness and surface tension at equilibrium. In this case, we assume that the

energy E0 takes the following form [135] of E0 = βC2(C − 1)2 with β being a constant.

As a result, µ0 = ∂E0/∂C = 2βC(C − 1)(2C − 1)). The equilibrium profile of C is

determined such that the energy E0 is minimized and reads µc = const in one dimension.

In an interface at equilibrium, the interface profile is

C(z) = 0.5 + 0.5 tanh (2z/D) (2.17)

where z is the distance normal to the interface and D is the interface thickness, which is

chosen based on accuracy and stability. Given D and β, one can compute the gradient

parameter κ = βD2/8 and the surface tension force σ =
√

2κβ/6.

For a binary flow, we introduce the intermolecular force [103] as F = 1
3∇ρc2 − ∇p1 −

C∇µc where p1 is the hydrodynamic pressure, whereas the thermodynamic pressure p0

is defined by p0 = C∂E0/∂C − E0 = βC2(C − 1)(3C − 1). The total pressure is p =

p0+p1−κC∇2C+κ|∇C|2/2. WhenMa is low, p1/p0 ∼ O(Ma2), and all thermodynamic

quantities are independent of the hydrodynamic pressure [136], meaning that the density

of the fluid does not depend on the hydrodynamic pressure. In the motionless flow, the

contribution from the hydrodynamic pressure p1 disappears, as do parasitic currents. The

momentum and pressure evolution equation are as following

∂p1/∂t + ρc2
s∇ · u = 0 (2.18)

ρ(∂u/∂t + u · ∇u) = −∇p1 + µc∇C + ∇ · µ(∇u + (∇u)T ) (2.19)

2.2.2 Lattice Boltzmann Equations for Binary Flow

In the study cases of multiphase flow, the lattice Boltzmann equation (LBE) (before the

time discretization) including the intermolecular force reads [84]

∂fα/∂t + eα · ∇fα = −(fα − f eq
α )/λ + 1

c2
s

(eα − ug) · Fgf eq
α (2.20)
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where λ is the relaxation time is related to the kinematic viscosity νg = c2
sλ. The equi-

librium distribution function is a function of local macroscopic density and velocity and is

formulated up to O(u2) as Equation 2.2

In the single-phase LBM modeling, the particle distribution function is closely associ-

ated with fluid density and momentum. Thus, the variation of density across the interface

will result in a variation of the particle distribution functions. When the density ratio of two

fluids is large, the large variation of the particle distribution functions will cause servers

numerical instability and jeopardize the simulation. To overcome this numerical problem,

He et al. [85] creatively introduced an incompressible transformation to change the particle

distribution function for density and momentum into that for pressure and momentum. As

pressure is continuous across the interface, the high variation of the particle distribution

function is avoided. Later, Lee and Lin [101] also adopted the same transformation tech-

nique and then Lee continuously refined it through a series of stable discretization schemes

to enhance numerical stability [102–104].

Define a new particle distribution function

gα = fαc2
s + (pg1 − ρgc2

s)Γeq
α , (2.21)

in which Γα(ug) = f eq
α /ρg. Taking the total derivative Dt = ∂t + eα · ∇ of gα results in

∂gα/∂t + eα · ∇gα = −(gα − geq
α )/λ + (eα − ug) · [∇ρgc2

s(Γα − Γeq
α ) − C∇µgcΓα] (2.22)

where the new equilibrium geq
α is

geq
α = ωα

[
pg1 + ρg((e · ug) + (eα · ug)2/2c2

s − u2
g)

]
(2.23)

Discretizing Equation (2.22) along characteristics over the time step δt, we obtain the LBE

for gα

ḡα(xg+eαδt, tg +δt)= ḡα(xg, t)−
(ḡα−ḡeq

α )|(xg,tg)

τ +0.5
+(eα−ug)·[δt∇MDρgc2

s(Γα(ug)

−Γeq
α )−Cδt∇MDµgcΓα]|(xg,tg)

(2.24)
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where ∇MD means mixed difference approximation, and ∇CD means central difference

approximation [104] and the non-dimensional relaxation time τ = λ/δt. In Equation (2.24),

the modified particle distribution function ḡα and the equilibrium distribution function ḡeq
α

are introduced to facilitate computation

ḡα = gα+(gα − geq
α )

2τ
− δt

2
(eα − ug)·

[
∇CDρgc2

s (Γα (u) −Γα (0)) − C∇CDµgcΓα

]
(2.25)

ḡeq
α = geq

α − 1
2

δt (eα − ug) ·
[
∇CDρgc2

s (Γα (ug) −Γα (0)) − C∇CDµgcΓα

]
(2.26)

The hydrodynamic pressure, and momentum can be computed by taking the zeroth and

first moments of ḡα

ρgug = 1
c2

s

∑
eαḡα − δt

2
C∇CDµgc (2.27)

pg1 =
∑

ḡα + δt

2
ug · ∇CDρgc2

s (2.28)

Thus the continuity equation is transformed into the constraint on the velocity field.

For the transformation of the composition C, a second distribution function is intro-

duced in a simple format of hα = (C/ρg)fα and heq
α = (C/ρg)f eq

α . Similarly, taking the

total derivative Dt of hα and utilizing Equation (2.15) yield

h̄α (xg+eαδt, tg +δt)= h̄α (xg, t)−

(
h̄α−h̄eq

α

)
|(xg, t)

τ +0.5
+ δt (eα−ug)·[∇MDC − C

ρgc2
s(

∇MDpg +C∇MDµgc

)
]Γα|(xg, t) +δtM∇2µgc Γα|(xg, t)

(2.29)

and the modified particle distribution function h̄α and h̄eq
α are defined as [104]

h̄α = hα + 1
2τ

(hα − heq
α ) − δt

2
(eα − ug) · [∇CDC − C

ρgc2
s

(∇CDpg + C∇CDµgc)]Γα (2.30)

h̄eq
α =heq

α − δt

2
(eα−ug)·[∇CDC− C

ρgc2
s

(∇CDpg +C∇CDµgc)]Γα (2.31)

The composition can be computed by taking the zeroth moment of h̄α

C =
∑

α

h̄α + 0.5δtM∇2µgc (2.32)
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As discussed in reference [103], the interfacial mobility M in Equation 2.32 plays a role

to suppress the nonphysical parasitic currents caused by the numerical discretization. M

should be chosen carefully large enough so that the diffusion maintain the interface near

its equilibrium state but small enough to avoid damping the flow near the interface. In

the present study, we set M(= 6.67) as constants as suggested. The density ρ and the

dimensionless relaxation frequency (1/τ ) are taken as linear functions of the composition

by

ρg(C) = Cρg1 + (1 − C)ρg2, 1/τ(C) = C/τ1 + (1 − C)/τ2 (2.33)

Boundary Conditions

If ignoring the effects of the boundary condition, the periodic boundary condition as

Sec.2.1.2 indicated will be applied in the simulation. However, taking the solid boundary

effects into consideration for lattice Boltzmann modeling of the gas-liquid flow, there are 4

different types of the boundary conditions as following.

1) Unknown particle distribution functions at boundary nodes are obtained from the bounce-

back scheme i.e. gα(xs, tg) = gα(xf , tg) and hα(xs, tg) = hα(xf , tg), xs is the node on

the boundary, xf = xs − eαδt is the node in the fluid.

2) The boundary for the∇ϕ is applied to prevent unphysical mass and momentum transfer

through the boundary nodes. ϕ is macroscopic variables such as p1, C, µc. The no

flux condition is presented as eα∇̇ϕ|s = 0. Discrete the no flux condition, it can be

simplified as ϕ(xs + eαδt) = ϕ(xs − eαδt), ϕ(xs + 2eαδt) = ϕ(xs − 2eαδt), where

the points (xs + eαδt), (xs + 2eαδt) are in the fluid domain, the points (xs − eαδt),

(xs − 2eαδt) are out of the fluid domain.

3) The boundary for ∇2µgc ensures no mass flux in the normal direction of the solid wall,

i.e

n · ∇µc|s = 0. (2.34)
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4) The boundary for ∇2C can be derived from minimizing the free surface energy Ψs =∫
S(ϕ0 −ϕ1Cs +ϕ2C

2
s −ϕ3C

3
s +. . .)dS caused by the interactions between the liquid-gas

interface and solid surface.

Minimizing the total energy by calculus of variations [137] leads to

n · ∇C|s = dΨs/dCs (2.35)

n is the unit vector in the normal direction of the solid wall. Retain higher-order terms in

Ψs can avoid the numerical instability. Hence, the cubic boundary condition is selected

[100] in this work, the condition for solid wall i.e. Equation 2.35 can be simplified as

n · ∇C|s = −ϕc/κg(Cs − C2
s ), (2.36)

ϕc = Ωc

√
2βgκg. Here Ωc is the wetting potential which related to the contact angle α

i.e. Ωc = cosα.

While the formation of LBEs in Section 2.2.2 seems complicated, the implementation of

flow chart is straightforward as Figure 2.5.
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Start

Parameters: fluid properties (ρ, υ, σ) and 

numerical setting (D, β, κ) 

Initial Conditions: p1=patm, u=0,  μc(Eq.2.20), 

C(Eq.2.21), g(Eq.2.30), h(Eq.2.35)

Collision operation: right-hand 

sides of Eq.2.28 and Eq.2.33

Boundary condition

Streaming operation: left-hand 

sides of Eq.2.28 and Eq.2.33

Hydrodynamics update: C (Eq.2.36), 

p1(Eq.2.32), ρu(Eq.2.31), μc(Eq.2.20), ρ(Eq.2.37)

Iteration Ends?

Results

End

Yes

No

Figure 2.5: Flow chart of LBM implementation
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3. GPU PARALLELISM AND ACCELERATION FOR LBM

Start

Define physical parameters and bubble 

position in host(CPU)

Copy information from host(CPU) to 

device(GPU) 

Declare variables and initialization

Collision operation

Boundary update kernel

Streaming operation

Hydrodynamics update

Iteration Ends?

Finial Result Copy information from 

device(GPU) to host(CPU)

End

Yes

No

Figure 3.1: Flow chart of GPU Im-

plementation

One of the advantages of the LBM is the suit-

ability for GPU parallelism. The GPU acceleration

has been practiced in our research group for a couple

years for different research areas such as turbulence

[138], biomedical flows [139] and porous media

flows [140,141]. The general flow chart of GPU im-

plementation is indicated in Figure 3.1. The differ-

ence between GPU parallel and CPU serial is the de-

vice used for the LBM implementation. To achieve

an efficient GPU-LBM algorithm, it is important to

combine feature of GPU with LBM. Firstly, an A-

B (2 sets of distribution functions) pattern is applied

before and after streaming to avoid data dependency,

then developed CUDA parallel algorithms are em-

ployed in our simulation that include dynamic al-

location, data layout, propagation scheme, register

utilization, branch divergence removal, and multi-

GPU.

3.1 Dynamic Allocation

By default, the compiled model for a code has a characteristic that the instructions and

parameters of the code must be linked in the 2GB static continuous address space. This lim-

itation takes the dominant effect in impeding the simulation of large scale problems. For

the multiphase flow, flow properties (density, velocity, pressure, chemical potential, and
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composition), two sets of distribution functions of lattice Boltzmann model are essential

arrays to be defined in the CPU host. From the experience of investigating the temporal

information of the global process of two bubbles coalescence in two-dimension (2D) space,

the mesh size should be around 800×800. Meanwhile, if the investigation is on the spa-

tial information of the bubble coalescence, the three-dimension (3D) model is needed. The

mesh size is around 220×120×220 for our calculations. Meanwhile, the mesh size is up to

280×140×280 due to the limitation of 2GB static continuous address space. All these ex-

periences are based on the two bubble coalescence. However, a bubbly problem especially

with the complex geometry, the needed memory must be larger than 2GB. Nowadays, a

single NVIDIA GPU card has up to 12GB of memory for computing. Hence, it is critical

to find a way to release this limitation. Dynamic memory (heap) instead of a static memory

(stack) was applied in our simulations. Dynamic memory (heap) randomly allocates por-

tions from a large pool of memory. The transmission array should be logically contiguous

when the data copy between CPU (host) to GPU (device). Hence, in our algorithm, a class

of the variable has been developed.

• The class can dynamically allocate memory in one dimension array, and each variable

only uses a total of 5×sizeof(float) or sizeof(double) on the stack. Each variable

includes three dimensions in different directions, one variable of fluid properties,

and data precision. The illustration likes Array3<precision; 3 dimensions in different

directions> variable of fluid property. Take composition C as an example, the class

is Array3<double; nx; ny; nz> C.

• All the other memory is allocated dynamically on the heap in orders in a continuous

block through properly overloading the copy constructor. The information which is

related to assignment operators will be swap and destroyed.

This class is to manage allocation, deallocation of memory, and utilize the full memory

capacity of the GPU cards easily.
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3.2 Memory Access Pattern

3.2.1 Propagation Scheme

Propagation in the LBM relates to streaming. During streaming, there is a problem

called misaligned access. There are two main strategies to address this issue in literature

as ‘push’ and ‘pull’ algorithms depending on the streaming direction, which is shown in

Figure 3.2 and 3.3. The streaming direction of the ‘push’ scheme is the same as usual

streaming which pushes particles from the current cell to the adjacent cells. In other words,

it has aligned read and misaligned write in the implementation. The distribution function

after the collision is stored in a lattice as Figure 3.2(a) indicates, then the post-streaming

values push to the adjacent cell as Figure 3.2(b) shows. Whereas the ‘pull’ scheme has

opposite streaming direction, it pulls particles from the adjacent cells to the current cell. In

the implementation, it yields to misaligned read and aligned write. The distribution function

read from the adjacent cells as Figure 3.3(a) shows. After streaming, the values propagate

to the local cell, as Figure 3.3(b) illustrates. Since misaligned read is faster than misaligned

write in the GPU [113], the ‘pull’ scheme is employed in our simulation.

(a) Aligned read (b) Misaligned write

Figure 3.2: Push scheme for propagation (a) the state before streaming with aligned read

(b) the state after streaming with misaligned write
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(a) Misaligned read (b) Aligned write

Figure 3.3: Pull scheme for propagation (a) the state before streaming with misaligned read

(b) the state after streaming with aligned write

3.2.2 Data Layout

Coalesced memory access is an efficient way to reduce the memory latency of a GPU

program that results in acceleration. Coalesced memory access means all the threads in a

block access memory address at the same time. Hence, the multiple dimensions arrays are

expanded into one dimension arrays. We take the D3Q19 model in Figure 2.1 and assume

the mesh size nx × ny × nz to show the data layout in the GPU. Regularly, the DF stores

as 4D array on the CPU such as f [x][y][z][i]. Here x, y, z represent the space; i ranges

from 0 to 18. Different structures of one-dimensional arrays in the GPU leads to different

effectiveness in the GPU acceleration. There are two main schemes for data layout: Array

of Structure (AoS) and Structure of Array (SoA).

• Array of Structure (AoS)

Nineteen distributions of each cell are arranged 19 consecutive elements of the 1D

array illustrated in the top panel of Figure 3.4. The one dimension array format is

f [z × ny × nx×19+y × nx× 19+z× 19+i]. This schema is preferred in the CPU

parallelization.

• Structure of Array (SoA)

The value of one distribution of all cells in whole computational domain occupies
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consecutive elements in memory, which is indicated in the bottom panel of Figure

3.4. The distribution functions are addressed as f [i × z × nz × ny × nx + z × ny ×

nx + y × nx + z]. In this scheme, the number of the thread of DFs within a wrap (32

threads) can access consecutive memory, so it has been reported that the SoA scheme

is suitable for the GPU acceleration [142].

f0 f1 f2 ... f17 f18 f0 f1 f2 ... f17 f18 f0 f1 f2 ... f17 f18 ...

Thread 0 Thread 1 Thread 2
AoS

SoA

f0 f0 f0 f0 f0 f0 ...

f1 f1 f1 f1 f1 f1 ...

f2 f2 f2 f2 f2 f2 ...

f18 f18 f18 f18 f18 f18 ...

...

Figure 3.4: Data layout: AoS and SoA

3.3 Register Utilization

CUDA provides a memory hierarchy, including device memory and on-chip memory,

as shown in Figure 3.5. Our attention is mainly on the following:

• Global Memory

Global memory is the main part of the device memory. Access of this memory has

a high latency of 400–600 cycles [143]. For a data-intensive numerical method like

LBM, a large amount of data would be fetched. This latency is of considerable im-

portance. In Fermi memory hierarchy, the access is cached by L1 and L2 caches by

default. Each L1 cache line has 128 bytes and would be matched with a continuous

segment of 128 bytes in global memory. To pursue high performance, it is important
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to pack the data sequentially. For example, make sure the 1D array in global memory

access is executed by a warp is coalesced and aligned to these sequential addresses.

Otherwise, data would be transferred, leading to a waste of bandwidth.

• Register

The register is a kind of on-chip resource distributed to each thread. It can be ac-

cessed as fast as 32 bits per cycle. The amount of registers may limit the number of

concurrent threads on each SM.

Device (GPU)

Grid

Block (Multiprocessor) N 

Block 2 

Block 1

Thread 

(Process) 1
Thread 2 Thread M...

Registers Registers Registers

Shared Memory

Global Memory

Local 

Memory

Local 

Memory

Local 

Memory

Constant/Texture Memory

Host (CPU)

Figure 3.5: Illustration of GPU device memory



31

• Shared Memory

Similar to the register, shared memory can be fast accessed but limited by its upper

bound of storage. However, the shared memory, like the L1 cache, is available to

all the threads in the same block. It enables efficient communication inside a block;

Shared memory is divided into 32 banks; It is noted that multiple accesses to the same

banks, such as a broadcast, would cause a conflict and serial execution.

• Local Memory

When registers or shared memory spill, the extra data will be stored in local memory.

The latency of this type of memory is similar to global memory. The maximum num-

ber of registers used by each thread may be manually set to invoke more concurrent

threads at the expense of accessing local memory. If carefully handled, this kind of

trade-off can improve performance.

In these kinds of conditions, register memory is better to be applied in the optimiza-

tion due to the low latency. Whereas the amount of registers is limited, a single streaming

multiprocessor contains 65,536 registers for Tesla K20, and the memory for each register

is 32-bit. While too many registers are assigned in each thread, it can’t take full utilization

in the memory. For example, 44 registers are needed in the D3Q19 per thread and 1024

threads in one block. 44K registers will be used in one block. In this case, the remaining

21K registers are unused, and only one block is applied in the simulation, then the registers

get approximate 60% utilization. Utilization of register memory effectively in each thread

is critical in the GPU optimization. Selection of the grid and block size is a scheme to get

higher register memory utilization.

3.4 Branch Divergence Removal

During the execution, all 32 threads inside one block sequentially compose a warp.

When one warp of threads is waiting for data transfer, other warps, which are ready for

executing instructions, would be selected out and executed. Therefore the time spent for

computation and data access can be overlapped, leading to latency hiding. For execution,
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CUDA adopts single instruction with multiple threads of architecture where groups of up

to eight threads will execute the same instruction in a thread processing array. If the threads

inside a warp are not on the same executive path, some data dependence of if-else branch

will be involved. In this case, the implementation of different branches has to be serialized.

In order to avoid using if-statements, the update of boundary condition is realized in another

kernel. Due to the stretch direction changes at the boundary, the choice of blocksize will be

changed.

3.5 Multi-GPU

CPU

Read

GPU 1

Write 

Padding

Halo

Halo

Padding

GPU 0

Halo

Padding

GPU 2

Padding

Halo

Figure 3.6: A schematic of data transfer be-

tween GPUs

The multi-GPU part of my research is

in the infant stage. Current programming is

based on the basic idea of the multi-GPU.

However, the performance improvement of

theGPU acceleration is obvious in the prob-

lems which need high resolution. The basic

idea of the multi-GPU is splitting the total

memory into several parts which depends

on the number of GPU cards, and then read

and written with these cards. Before doing

the multi-GPU parallel, two properties of

the device should be checked. Firstly, can

the device be able to do peer to peer com-

munication (P2P)? And then, how many

GPU cards can be applied in a calculation? As Figure 3.6 shows, there are three regions in

each GPU card, including internal (white region), halo (orange region), and padding part

(green region). First, compute the internal and halo parts in a stream, then exchange halo

data between neighboring GPUs in a different stream to update the data in different GPU de-

vices. For example, the halo regions in GPU 0 will be transferred to the beginning padding
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part of GPU 1, and the padding part in the GPU 0will get the information in the halo regions

in the GPU 1. Next, synchronize computation on all devices before proceeding to the next

iteration by the function of cudaDeviceSynchronize(). Last, the data from all the devices

will be written in the CPU part ignore the padding part.

3.6 Performance Test

In our research group, there are five computational resources with different types of

CPU and GPU cards, as Table 3.1 shows. We employed the CUDA parallel algorithm and

tested the speed-up with these four of five machines. The local PC usually is used for

debugging the programming. The same code is applied to different machines. The speed-

up between different machines with machine in the ME department is shown in the last

column of Table 3.1.

Table 3.1: Information on the resource used in the computation and speed-up between dif-

ferent machines with machine in ME Dept.

Machine Name CPU GPU Speed-up

1 MERESPGU (ME Dept) Intel(R) Xeon(R) E5645 Tesla C2050 1

2
PSC (Bridges) Intel Broadwell E5-2683 v4

P100 20

3 K80 5

4 DRAGON (Math Dept) Intel(R) Xeon(R) X5660 Tesla C2750 1

5 Local PC Intel(R) Xeon(R) E5-2609 v2 Quadro K4000 N/A

In this dissertation, there are three different cases needed to be tested: 2Dwith a liquid-

gas interface and periodic boundary condition by a single GPU (case 1), 3D with a liquid-

gas-solid interface and bounce-back boundary condition by a single GPU (case 2), and

multi-GPU (case 3). Case 1 and case 2 are tested with the machine 3. Machine 4 has four

GPU cards that is used to test the performance for case 3.
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• Case 1

The acceleration is indicated as Table 3.2 with different spatial resolutions 200×200,

400×400, 600×600, 800×800, 1000×1000. Here, MLUPS (Million Lattice Updates

Per Second) is applied to indicate the computation performance. Take resolution

1000×1000 as an example. The speed-up is 1164 between GPU parallel and serial

execution. In other words, the time for a complete simulation should be 583.2 hours

with serial execution, whereas, the time with the parallelism is only half an hour.

Table 3.2: Performance test of GPU parallel and CPU serial for case 1. The last column is a

comparison of parallel vs. serial wall-clock time for a global process of bubble coalescence.

Resolution
GPU parallel

(MLUPS)

Serial

(MLUPS)
Speed-up

Parallel vs. Serial

(in hour)

200×200 310 0.479 648 0.01/8.0

400×400 350 0.422 830 0.06/49.8

600×600 398 0.396 1004 0.15/151.2

800×800 418 0.378 1104 0.30/331.2

1000×1000 426 0.367 1164 0.50/583.2

• Case 2

The gas-liquid-solid interface is taken into consideration in the case 2. Table 3.3

exhibits the GPU acceleration with five different spatial resolutions 88 × 48 × 88,

132 × 72 × 132, 176 × 96 × 176, 220 × 120 × 220, 264 × 144 × 264. The speed-up

increases with resolution increases. Here, take the resolution 220 × 120 × 220 as an

example, the speed-up is 2110. A numerical case can be done within half an hour

with parallel execution, whereas it takes 44 days with serial execution.

• Case 3

Multi-GPU is applied in the case 3. Table 3.4 exhibits theGPU accelerationwith three

different spatial resolutions 45×54×108, 220×120×220 and 280×140×280 by one,
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Table 3.3: Performance test of GPU parallel and CPU serial for case 2. The last column is a

comparison of parallel vs. serial wall-clock time for a global process of bubble coalescence.

Resolution
GPU parallel

(MLUPS)

Serial

(MLUPS)
Speed-up

Parallel vs. Serial

(in hour)

88×48×88 181 0.13 1428 0.02/29

132×72×132 176 0.11 1653 0.08/132

176×96×176 200 0.11 1758 0.25/439

220×120×220 211 0.10 2110 0.50/1055

264×144×264 206 0.10 1994 1.25/2492

two, three, four GPU cards separately. Accelerating the performance by multi-GPU

is only existed when resolution is high. When the resolution is low, it is better to have

the implementation in the single GPU.

Table 3.4: Performance test of different numbers of GPU card.

Resolution 45×54×108 220×120×220 280×140×280

1 GPU (MLUPS) 9.6 10.6 14.0

2 GPUs (MLUPS) 8.5 18.4 20.3

3 GPUs (MLUPS) 5.7 26.6 29.3

4 GPUs (MLUPS) 5.7 34.5 37.3

Speed-up 1.0/0.88/0.59/0.59 1.0/1.74/2.52/3.27 1.0/1.45/2.10/2.67

In this dissertation, the total number of computational jobs is around 240. Correspond-

ing, the computational time is estimated at 5 years with a serial execution. The suitability

of LBM for parallel computing provides an excellent opportunity to overcome such a com-

putation bottleneck.
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4. TEMPORAL/SPATIAL BEHAVIORS OF BUBBLE
COALESCENCE

4.1 Introduction

Microbubble coalescence is referred to an evolving process from two (ormore) touched

parent bubbles, to one single child bubble. A global coalescence typically consists of two

stages. The first is the early coalescence during which neck bridges form and grow. The

second is the post coalescence toward a child bubble with a minimal surface area. Mi-

crobubble coalescence exists in many applications such as airlift bioreactors [144], targeted

drug and gene delivery [58], water and wastewater treatment [145], food storage [146], and

so on. In some cases, rapid coalescence might be desirable, for example, to control bubble

formation during gas injection from a micro-tube into the channel of a downward liquid

cross-flow [35]. While in other systems, coalescence needs to be prevented or suppressed

to avoid the loss of the total liquid-gas surface area. Therefore, it is of general interest to ex-

plore the dynamics of microbubble coalescence under various influences for better control

of various gas-fluid systems.

There have been efforts to investigate different factors on individual stages of mi-

crobubble coalescence through mathematical analysis, laboratory experiment, and numeri-

cal simulation. The majority efforts have been made to reveal various effects on the early

coalescence [47, 54, 147–149], during which a half power-law temporal scaling of neck

growth has been well derived and validated. Among those, Paulsen et al. [54] sophisti-

catedly studied the effects of dense surrounding fluid on the formation of an infinitesimal

neck bridge and discovered that outer fluid has a marginal impact on the dynamics of neck

bridge formation and evolution. Whereas, the post-coalescence stage has not been well ad-

dressed. An early attempt was on the mathematical modeling for an oscillating elliptic bub-

ble/droplet [64] and its numerical simulation [66] under characterized parameters. Based on
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these early works, Stover et al. [71] was the first to experimentally study the microbubble

oscillation focusing on the effects of liquid viscosity and surface tension on the decay of

the damped oscillation. But this study stopped well short of quantitative exploration of the

underlying physics of the oscillation. Unveiling post-coalescence is substantially meaning-

ful to industrial processes to control microbubbles as very different behavior could occur

in this stage such as damped oscillation [71, 150], shrinking [151], and off-center/head-on

separation [152], etc. However, there remain challenges to study global coalescence, espe-

cially unequal size bubbles, are involved due to the demanding computation cost and/or the

involvement of big data.

4.2 Computational Set-up

To study spatial and temporal behaviors of global process of two unequal microbubbles

coalescence in a square domain with the side length of 100 (µm). as schematized in Figure

4.1. To distinguish the parent bubbles, we denote the large bubble as a father (F) with radius

rF and the small one as a mother (M) with rM . The size inequality of the parent bubbles,

γ, is defined by the ratio of the radii, rF /rM . For the purpose of exploring the effects of

size inequality on bubble coalescence, we fix the size of the father bubble as rF =20(µm)

and vary rM from 5(µm) to 20(µm), resulting in a range of γ from 4 to 1, among which

γ=1 is a limited case corresponding to equal-size coalescence. The fluid is filled in the

domain. With the origin, (0,0) of a Cartesian coordinate system at the south-west corner

of the domain, F is placed at x =30(µm) and y =50(µm) and M is attached to F at the

same height. Thus, the mother bubble with radius rM is located at x = 50 + rM(µm)

and y =50(µm). The coalescence time (T ) is referred to the entire merging time from

two touched parent bubbles (solid circles) to one single child bubble (dash circle) with the

minimum area surface and the size inequality. Subscript of “h” and “l” denote the heavy

and light fluid respectively. The density and viscosity ratios of two fluids are defined as

ρ∗ = ρh/ρl and µ∗ = µh/µl respectively. The Ohnesorge number (Oh) is a dimensionless

number that relates the viscous forces to inertial and surface tension forces, and it is defined
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as Oh(≡ µh/
√

ρhσR). The gas is fixed to air with density ρl =1.28kg/m3 and dynamic

viscosity µl =1.74×10−5kg/(m · s). The density and viscosity ratios vary from 350-1361,

614-2130 respectively. And surface tension in the range of σ =(1.6-7.2)×10−2N/m. This

physical setting results in a range of Oh numbers from 0.039 to 1.543 when the initial bubble

radius R0 is 20µm. The corresponding parameters in lattice unit applied in simulation are

selected as ρgh =1.0, ρgl =1.0/ρ∗, σg = 10−3, D =4, βg =0.003.

4.3 Convergence Check & Verification

Mass Conservation Check As shown in Table 4.1, the relative mass changes before

and after 2000 time steps are compared for four inequality cases of γ =4, 2, 1.33, and 1. The

mass change per time step is about 5.0×10−8, which is acceptable for mass conservation.

Laplace-law Check Maintaining the physical size of the bubble and flow domain,

we use five spatial resolutions of 1002, 2002, 3002, 6002, and 8002 to simulate the father

Figure 4.1: Schematics for the coalescence of two unequal bubbles initially touched (solid

circles) toward one single bubble (dash circle) in a square domain
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Table 4.1: Mass conservation check

Ratio (γ) Mass change per time step

4 5.01−8

2 5.02×10−8

1.33 5.03×10−8

1 5.5×10−8

bubble starting from the initial conditions described above, respectively. When the bubble

reaches a steady state, the pressure difference across the air-water interface is calculated by

△p = po − pa in which po and pa are the pressure value where dp/dx ≃ 0.0 adjacent the

diffusive interface in air and oil sides respectively.It is found that the relative errors of △p

over the analytical prediction from Laplace theory, △p = σ/R =3.6kPa, corresponding

to the above resolution sequence are 12.1%, 1.95%, 1.1%, 0.63%, and 0.34%. We use

µ

∆

0.03 0.04 0.05

2.0

2.5

3.0

3.5

Figure 4.2: Pressure difference across the diffusive interface△p vs. inverse of radius (1/rF )

via simulation (symbols) and Laplace theory (solid line).
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6002 as the spatial resolution to produce the relationship between △p and rF and compare

with Laplace law as a validation. Six microbubbles with the radius from 20 - 40 (µm)

are simulated. The dependence of △p to 1/rF is shown in Figure 4.2. It is seen that the

simulation results (symbols) agree well with the analytical prediction (line), demonstrating

the validity of the LBM modeling and simulation.

Convergence Check of Oscillation CasesWe select the smallOh number case (Oh =

0.039) with oscillation in the post-coalescence: ρh = 1840kg/m3, ρl = 1.28kg/m3,

µh = 2.02×10−3 kg/(m ·s), µl = 1.74×10−5kg/(m ·s), σ = 3.2×10−2N/m, to conduct

a convergence check as the coalescence with oscillation (smaller Oh number) takes longer

time and has richer dynamics. Figure 4.3(a) shows the time evolution of the vertical axis,
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Figure 4.3: (a) Time evolution of half vertical axis (Dy), the distance from top point position

to centreline (b), in the coalescence of two equal microbubbles. The maximum Dy and the

time between the first two successive peaks are defined as amplitude and time period of the

oscillation respectively
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Dy, defined as the vertical distance from the bubble center to the top interface, as illustrated

in Figure 4.3(b). As shown in Figure 4.3(a), we select the maximum Dy as amplitude and

the time between the first two successive peaks as time period. By increasing the spatial

resolution from 100×100 to 900×900 with six levels, we list the corresponding peak ampli-

tude and the time period in Table 4.2, in which the third and fifth columns show the relative

difference between two successive resolutions respectively. The spatial convergence is

Table 4.2: Convergence check through amplitude and period defined in Figure 4.3(a).

Mesh Period(µs)
Relative difference

Period
Amplitude(µm)

Relative difference

Amplitude

100×100 72.0 33.0

200×200 66.4 7.78% 34.8 5.17%

400×400 65.4 1.51% 35.4 1.69%

600×600 64.8 0.92% 35.8 1.11%

800×800 64.6 0.31% 36.0 0.56%

900×900 64.6 0% 36.0 0%
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Figure 4.4: Time evolution of half vertical axis with different resolution 400×400,

600×600, 800×800, 900×900
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clearly seen in these two columns. The whole process of the time evolution of Dy has also

shown in Figure 4.4. Taking all of them into consideration, we select the spatial resolution

of 8002 to conduct the parametric study in this section, unless otherwise indicated.

4.4 Two Distinct Phenomenon of Bubble Coalescence

As schematized in Figure 4.5, Dx and Dy are the distances between the bubble edge

and the mass center O in the horizontal and vertical directions respectively. A shape factor,

defined as ∆ = Dy/Dx, is to track the interface of the coalescing bubble, starting from 0

(initial touched bubble) and ending at 1 (single coalesced bubble). Switching of the major

axis of the coalescing bubble between the horizontal and vertical directions was observed,

when theOh number is relatively small, in the post-coalescence corresponding to the period

from (c) to (g) in Figure 4.5. Since the amplitude of the shape factor∆ evolution is reducing,

this phenomenon is called damped oscillation. In general, the bubble coalescence can be

categorized into three types of damping: underdamping (with a visible oscillation of ∆),

overdamping (invisible oscillation of∆) and critical damping (invisible oscillation with the

shortest time to reach ∆ = 1).

In order to explore the effects of inertia, viscosity, and surface tension on the bub-

ble coalescence, the dimensionless variable Oh is employed to characterize these effects.
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Figure 4.5: A typical microbubble coalescence process with damped oscillation in a mi-

crofluidic channel from (a)initially touched bubbles to (b) neck bridge evolution through

(c)-(f) oscillation with damping axis ratio toward (g) a coalesced bubble with the minimum

surface area. ∆ is the shape factor of the coalescing bubble.
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When keeping the same density ratio ρ∗ =1000 and varying viscosity ratios of µ∗ =1361

and 100, resulting in Oh numbers 0.530 and 0.039 respectively, we observed two distinct

phenomena in the post-coalescence of two equal bubbles, shown in Figure 4.6. For the

case of the large Oh number, Figure 4.6(a) (Oh =0.530), the coalescence is quite straight-

forward from initially two touched parent microbubbles(1), through a successive change

of bubble outline, i.e. biconcave ellipse (2), ellipse (3), and nearly circle (4), eventually

to a single bubble with the minimal surface area (5). Whereas at small Oh, Figure 4.6(b)

(Oh =0.039), the post-coalescence after the neck bridge developed (1) exhibits damped os-

cillation. The major axis of the coalescing bubble switches between horizontal and vertical

directions with a damping amplitude, from (2) to (4), toward the final single round bubble

(5).

33.0µs

(3)

93.0µs

(5)

66.0µs

(4)

4µs

(1)

10.5µs

(2)

(a) µ∗ =1361, Oh =0.530

(2)

10.5µs 200µs

(5)(4)

66.0µs

(3)

33.0µs

(1)

4µs

(b) µ∗ =100, Oh =0.039

Figure 4.6: Two distinct coalescence phenomena indicated by the evolution of the bubble

outline at five time instants. (a) µ∗ =1361, Oh =0.530 and (b) µ∗ =100, Oh =0.039.

Except for the viscosity ratio, computational setup and physical properties are identical,

density ratio ρ∗ =1000. The bubble outline is determined by the composition contour line

C =0.5 inside the interface.
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Hence, when and how a damped oscillation occurs during a coalescence is investigated

through a systematic study. Table 4.3 shows the sixteen cases with identical physical and

computational conditions except for the fluid viscosity µh and corresponding different Oh

numbers. Figure 4.7 shows the time evaluation of the shape factor, ∆(= Dy/Dx), of 5

representative cases with Oh =0.039,0.177,0.477,0.675, and 0.964. The Oh value clearly

affects the coalescence style. On one side when Oh <0.477, the blue lines with solid

symbols exhibit damped oscillation, indicating the axis switching of the coalescing bubble

between horizontal and vertical directions with reducing the amplitude of ∆ toward a final

circular bubble. The smaller the Oh number, the stronger the oscillation. On the other

side when Oh >0.477, the green lines with empty symbols show asymptotic growth of the

shape factor toward the end of the coalescence when ∆ =1.0, implying that the coalescing

bubble retains its major axis on the horizontal direction in the entire process of coalescence

with no oscillation. In between, Oh =0.477 serves as the dividing edge for the two distinct

coalescence styles.

Another effect of Oh numbers on bubble coalescence is the coalescence time, denoted

as T in µs, from two equal, initially-touched bubbles to finally one circular bubble when

the minimum surface area, no matter with or without oscillations, as shown in Figure 4.8.

When the Oh number is small (in blue) where damped oscillation is involved, increasing

the Oh number can significantly reduce the coalescence time T . Whereas when the Oh

number is large (in green) with no oscillation, increasing that Oh number causes larger T

meaning longer coalescence process. For the Oh resolution selected in this study, there

Table 4.3: Sixteen cases with identical physical and computational conditions except for

the fluid viscosity µh, thus different Oh numbers.

Case 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

µh × 103

(kg/m · s)
2.0 3.5 6.5 9.2 13.7 18.0 21.0 24.7 27.5 35.0 40.0 45.0 50.0 55.0 70.0 80.0

Oh× 10 0.39 0.67 1.25 1.77 2.64 3.47 4.07 4.77 5.30 6.75 7.72 8.68 9.65 10.61 13.51 15.43
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Figure 4.7: Time evolution of shape factor (∆ = Dy/Dx) of 5 representative cases during

bubble coalescence. Two distinct coalescence phenomena, with and without oscillations

when Oh <0.477 and Oh >0.477 respectively, are identified. Oh =0.477 serves as the

dividing edge of them.

exists a critical Oh number, i.e., 0.477 (in red), that corresponds to the shortest coalescence

time. If considering a continuous Oh range, the critical Oh number should be identified in

the range from 0.407 to 0.530. A similar criterion for droplets was previously discovered,

from which the critical Oh number is believed to be between 0.71 to 0.76 [66].

In general, the bubble coalescence can be split into two categories to study the mech-

anism including Oh <0.477 with oscillation (Sec.4.5) and 0.477< Oh <1.0 without oscil-

lation (Sec.4.6) .
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Figure 4.8: Effects of Oh on the bubble coalescence time T . Blue/green lines correspond

to small/large Oh ranges. When Oh is small/large, increasing Oh reduces/increases coa-

lescence time. The critical Oh(=0.477) corresponds to the shortest coalescence time that

distinguishes the two distinct coalescence phenomena.

4.5 Mechanism of Damped Oscillation in Bubble Coalescence (Oh <0.477)

We now explore the mechanism behind these two distinct coalescence phenomena in

terms of the competition between driving and resisting forces at differentOh ranges. Since,

in all the study cases listed in Table 4.3, only liquid viscosity varies, causing the variation of

theOh number while all other parameters remain the same. We only consider the imbalance

of surface tension at the interface and viscous resistance from the liquid in this part. Surface

energy due to the surface tension can be divided into two parts. One is released to produce

kinetic energy to drive the coalescence, which can be called useful energy. The other part
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Figure 4.9: Kinematic energy distribution when Oh=0.067, 0.125, 0.177

is dissipated due to the viscous effect. The distribution of kinematic energy with different

Oh is shown in Figure 4.9

First, we focus on the left side (in blue) in Figure 4.8. In this regime, the viscosity is

relatively small. Thus the coalescence is dominated by surface tension. To better describe

the phenomenon, we stick to the top half of the coalescing bubble and the middle point of

the interface (called the saddle point). Once the neck is formed, see Figure 4.5(b), the sur-

face tension induces a strong acceleration of the saddle point away from the bubble center,

converting surface energy to kinetic energy. As Figure 4.9 shows, the initial acceleration

of kinematic energy is similar for different Oh, due to surface energy is fixed for all the

cases. When the interface gets flat, the velocity magnitude of the saddle point reaches the

maximum as all of the useful surface energy has been converted to the kinetic energy for

the interface motion. Due to the inertia, Dy continues to increase, and the interface be-

comes a convex shape, Figure 4.5(c), generating surface tension. The velocity of the saddle

point slows down as the kinetic energy is being converted to surface energy. When all
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the useful kinetic energy becomes surface energy, Dy reaches its peak and surface tension

gets to the maximum Figure 4.5(d). The process from (c) to (d) illustrates the switching of

the major axis from horizontal to vertical directions. The similar transformation between

surface energy and kinetic energy occurs to switch the major axis from vertical to horizon-

tal directions, Figure 4.5(d)-(e), in the opposite direction, completing the first cycle of the

oscillation. Because of the existence of the energy dissipation, useful energy is losing as

Figure 4.9 and the amplitude of Dy is reduced when the saddle point is back to its lowest

location. Such cycles repeat with smaller and smaller amplitudes until it reaches the final

stable coalesced bubble. In Figure 4.8 and 4.9, it is seen that smaller Oh results in faster

growth and a higher peak of ∆. This is because smaller energy dissipation permits more

useful surface energy to drive the bubble to coalesce.

If we consider that the surface tension acts as a restoring force, the surrounding fluid

acts as a mass, and viscosity damps the motion, the 1-D motion of the saddle point can be

modelled as a damped harmonic oscillator [71]

A′ρR3 d2D2
y

dt2 + B′ρνR
dDy

dt
+ C ′σDy = 0 (4.1)

where A′, B′, C ′ are dimensionless geometric parameters to be determined. The damped

oscillation of the saddle point can be derived as the solution of the Equation (4.1)

Dy = Ae
−Bνt

R2 sin(C
√

σ

ρR3 t) (4.2)

in which A (integral constant to be determined), B(= B′

2A′ , and C(=
√

C′

A′ − B′

A′
2 Oh2

4 ) cor-

respond to the amplitude coefficient, decay factor, and the oscillation period respectively.

We select three representative cases ofOh =0.067, 0.125, and 0.177, and use the numerical

results to determine A, B, and C respectively with the start point Dy = Re. As shown in

Figure 4.10, the oscillating trajectories of the saddle point with reduced amplitudes (sym-

bols) are well-captured by the damped harmonic oscillator model (solid lines).
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Figure 4.10: The oscillating trajectories of the saddle point, represented byDy, with reduced

amplitudes with Oh =0.067 (black), 0.125 (red), and 0.177(green). Symbols: numerical

results; solid lines: analytical solutions of Equation 4.2.

4.6 Spatial/Temporal Behaviours for Non-oscillation Phenomenon (Oh >0.477)

4.6.1 Spatial and Temporal Scaling of Air Bubbles in Oil

In this work, we simulate coalescence of two unequal air bubbles in oil. To study the

inequality effects on the bubble coalescence, twelve cases, among which γ =1 is a limited

case corresponding to equal-size coalescence are listed in Table 4.4.

The time evolution of bubble coalescence for the case of γ =1.6 in Table 4.4 is shown

in Figure 4.11. The air-oil interface is depicted by the contour line of C =0.5. The coa-

lescence takes 60µs evolving from two attached parent bubbles (a) to a coalesced perfect

bubble (f) going through asymmetrical dumbbell(b), egg(c), oval(d), and elliptical circle (e)

shape.
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Table 4.4: Studied cases of microbubble coalescence noticing γ =1 corresponds a limit

case of which the parent bubbles are equal.

Case 1 2 3 4 5 6 7 8 9 10 11 12

rM 3.75 5.0 6.25 7.50 8.75 10.0 11.25 12.50 13.75 15.0 17.50 20.0

γ 5.33 4.0 3.20 2.67 2.29 2.0 1.78 1.60 1.45 1.33 1.14 1.0

0µs

(a)

60µs

(f)

7µs

(c)

24µs

(e)

4µs

(b)

12µs

(d)

Figure 4.11: Bubble coalescence depicted by the contour line of ρ =0.5 for the case of

γ =1.6. The coalescence takes 60µs changing from initially two attached parent bubbles

(a) to a coalesced bubble (f) going through asymmetrical dumbbell(b), egg(c), oval(d), and

elliptical circle (e) shape.

Figure 4.12 shows bubble coalescence processes in a stacked format with four different

γs: (a) 4.0, (b) 2.0, (c) 1.33, and (d) 1.0. In each case, the bubble coalescence process from

initially two attached bubbles (black dash line) to finally one perfect coalesced bubble (black

solid). Three intermediate stages are denoted by red, green, and pink colors successively.

The time is indicated with the same color correspondingly.

While the time evolution of the air-oil interface of each case is seen similar to that

shown in Figure 4.11, there are two effects of size inequality on the coalescence. First,
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(a) γ = 4 (b) γ = 2

(c) γ =1.33 (d) γ =1

Figure 4.12: Coalescence from two attached parent bubbles (black dashed lines) to one per-

fectly coalesced bubble (black solid line) with four different radius ratios of parent bubbles:

γ=(a) 4.0, (b) 2.0, (c) 1.33, and (d) 1.0 through stacked contour lines of ρ =0.5 at repre-

sentative time instants. The initial (before coalescence) and final (fully merged) water-air

interfaces are recognized by the black dashed and solid lines. Three intermediate shapes

evolving successively are denoted in red, green, and pink respectively. The coalescence

time, seen as (a) 26µs, (b) 50µs, (c) 60µs, and (d) 90µs, increases when γ decreases.
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Figure 4.13: Schematics of coalescence geometry between before (dashed line) and after

(solid line) coalescence.

the perfected coalesced bubble (black solid line) merged from two unequal parent bubbles

(black dashed lines) tends to locate closer to the father bubble. This phenomenon is so called

coalescence preference, recently observed in experiments [69, 70]. The preference can be

quantified by the relative distance ratio of χ = dF C/dMC , in which dF C and dMC are the

distances of the centers of father bubble (OF ) and mother bubble (OM ) to coalesced bubble

respectively, as schematized in Figure 4.13. As obtained in the experiments, the preferential

distance ratio χ exhibits power-law relationship to the size inequality as χ ∼ γ−p. Such

a spatial power-law scaling is captured in the current numerical study. In Figure 4.14, red

and green symbols are experimental results from Figure 4 in [70] and Figure 2 in [69]

respectively, and black symbols are from the current simulation. Power-law fitting of the

three data sets result in p =3.992 (red [70]), 2.152(green [69]), and 1.794 (black).

The discrepancies among the three scaling are due to the different fluids and differ-

ent set-ups between experiments and current simulation. Another major reason is the 2D

simulation. If 3D bubbles are taken into consideration, the power-index of spatial scaling is
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Figure 4.14: Power-law spatial scaling of χ(= dL/dS) ∼ γ−p in log-log scale. Symbols

are experimental and simulation results and lines are power-law fitting corresponding the

same color. p =3.992 (red), 2.152 (green), and 1.794 (black, current simulation).
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close to 3, which can be derived from the center of mass theory [70]. However, the temporal

scaling of 2D and 3D simulation is very similar. This investigation will be a very interested

hypothesis to be verified through more cases.

As seen in Figure 4.11 and 4.12, larger γ corresponds to faster coalescence. The equal

size case shown in Figure 4.12(d) takes the longest time, i.e. T =90µs, to complete its

coalescence while the largest inequality case, γ =4 (Figure 4.12(a)), takes to shortest time,

T =21µs, to complete the coalescence. It is found that the coalescence time T from two-

parent bubbles to a coalesced perfect bubble also exhibits a power-law relationship to the

size inequality as T ∼ γ−q, as shown in Figure 4.15. The solid line is the trendline fitted by

power-law for the symbols obtained from the simulation with q =0.899, R2=0.9955. Such

a power-law relationship is believed to be the first time observation.

γ

T
(µ

s
)

1 2 3 4 5

20

40

60

80

100

Figure 4.15: Power-law temporal scaling of T ∼ γ−q in log-log scale. Symbols are simu-

lation results, and the line is from a power-law fitting with q = 0.899 and R2 = 0.9955.
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Dynamics of Air Bubble Coalescence in the Oil

To understand the underlying physics behind the power-law spatial and temporal scal-

ing of bubble coalescence, we look into the time evolution of coalescence for the case of

γ =1.6. The coalescence in terms of the air-water interface evolution has been shown and

interpreted in Figure 4.11. Figure 4.16 and 4.17 show the pressure and velocity fields at (a)

t=4 µs, (b) 9 µs, and (c) 24 µs. Shortly after the two parent bubbles are attached, i.e. (a)

t=4 µs, the interface exhibits an asymmetrical dumbbell shape with a neck at the location

where the two parent bubbles were originally attached. Large pressure at both edges of the

father and mother bubbles and the small pressure at the neck (Figure 4.16(a)) is seen, and

the pressure difference between the edge and neck is large. Air swarms from two edges

toward the neck in the horizontal direction, stronger from the mother bubble side than the

father. These two streams meet and interact inside the neck, spouting the flow along both

sides in the vertical direction (Figure 4.17(a)). Two pairs of attached and opposite vortices

are formed at the top and bottom interface, respectively. Such a flow pattern stretches the

neck in an opposite direction vertically, more on the mother bubble size than the father. At

an intermediate time, t =9µs, the asymmetrical dumbbell shape has been stretched as an

egg shape with a tip and a base at left and right respectively. Higher pressure is developed

at both the tip and base end, but the pressure difference between the two ends drops (Figure

4.16(b)). As seen in Figure 4.17(b), air continues to flow face to face horizontally, stronger

from the tip side than the base side.

Figure 4.16: Dynamics pressure fields at three representative time instants in the bubble

coalescence for the case of γ =1.6: (a) t = 4µs, (b) t = 9µs, and (c) t = 24µs.
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Figure 4.17: Velocity vector fields at three representative time instants in the bubble coa-

lescence for the case of γ =1.6: (a) t = 4µs, (b) t = 9µs, and (c) t = 24µs. The legend

indicates the velocity magnitude (V =
√

u2
x + u2

y). The uniform vector arrows only show

the flow direction.

Figure 4.18: Horizontal-component velocity (ux) fields at three representative time instants

in the bubble coalescence for the case of γ =1.6: (a) t = 4µs, (b) t = 9µs, and (c)t = 24µs.

The legend indicates the magnitude and direction of ux. Red means flowing to right and

blue means to left.
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Figure 4.19: Vertical-component velocity (uy) fields at three representative time instants in

the bubble coalescence for the case of γ =1.6: (a) t = 4µs, (b) t = 9µs, and (c) t = 24µs.

The legend indicates the magnitude and direction of uy. Red means flowing down and blue

means up.

Figure 4.20: Vorticity (ω = ∂uy/∂x−∂ux/∂y) fields at three representative time instants in

the bubble coalescence for the case of γ =1.6: (a) t = 4µs, (b) t = 9µs, and (c) t = 24µs.

The legend indicates the magnitude and direction of ω. Red means anti-clockwise rotation

and blue means clockwise rotation.

The location where horizontal flow streams meet and vertical streams leave are moved

to the left. The opposite vortices at the top and bottom move apart to the tip and base

area. Due to the unbalanced pressure and flow in horizontal direction, the interface is still

stretched along the vertical direction stronger in the tip than the base side, reducing the cur-

vature difference of the tip and base of the egg. At a later time, t =24 µs, additional larger

pressure is developed at the farmost horizontal interface with vanishing difference (Figure

4.16(c)). The interface appears as an elliptical circle with similar curvature horizontally

(Figure 4.17(c)). Two vortex pairs are formed similarly in both horizontal and vertical di-

rections. Horizontal streams meet at the center of the bubble and leave along both sides of



58

vertical direction with similar velocity. The interface is further stretched along both sides

of vertical direction toward minimum surface energy. Figure 4.18, 4.19, and 4.20 provide

the quantitative information regarding to the flow of dynamics in the coalescence.

4.6.2 General Power-law Temporal Scaling for Unequal Size Bubble Coalescence

Is the power-law temporal scaling investigated when air bubble in the oil suitable for

other cases as Oh >0.477. In this part, we show numerical results for unequal air bubbles

coalescence in various liquids and address if the power-law temporal scaling is general and

how the liquid phase affect the temporal scaling. To perform an effective parametric study,

we fix the density and viscosity of gas phase as ρl =1.28kg/m3 and µl =1.74×10−5kg/(m·

s) and surface tension as 0.032 N/m and vary the liquid density (ρh) and viscosity (µh)

from 448∼ 1482(kg/m3) and 0.0111∼ 0.0237(kg/(m · s)), respectively, resulting twelve

cases with the Oh number in the range of 0.509∼ 0.989. Thus, overdamping is involved

in the post-coalescence. The detail information is seen in Table 4.5. The parent bubble

size inequalities are chosen γ =4, 3, 2, 1.5, 1.2, 1, in which γ =1 corresponds to the equal

size parent bubble case. The Oh number is the ratio of viscous force versus inertial and

Table 4.5: Twelve study cases varying liquid density and viscosity with fixed gas density,

viscosity, and surface tension, resulting in the Oh number from 0.509 to 0.946.

Case 1 2 3 4 5 6 7 8 9 10 11 12

Oh 0.509 0.522 0.577 0.602 0.638 0.654 0.654 0.705 0.774 0.800 0.872 0.946

ρh(kg/m3) 896 1408 1152 640 1408 896 1480 1152 640 896 1152 640

µh × 10

(kg/m · s)
0.122 0.157 0.157 0.122 0.191 0.157 0.201 0.191 0.157 0.191 0.237 0.191

surface tension forces. To explore the effects of the liquid phase, we first fix the surface

tension. As indicated in the review paper for the coalescence of drops [46], whenOh <<1,

the viscous effect is insignificant and the coalescence is dominated by inertial force. When

Oh becomes of order unity, the inertial effect becomes insignificant and the coalescence is
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dominated by viscous force. For these two ends in theOh spectrum, two characteristic time

scales [49] have been introduced: ti =
√

ρhr3
F /σ and tv = µhrF /σ as inertial and viscous

time scale respectively. In between, i.e. 0.2 < Oh < 1, both inertial and viscous forces

contribute to the resisting force in the coalescence process and ti and tv have approximately

the same order. In the current study, the Oh number ranges from 0.5 to 1.0. We use ti to

normalize the coalescence time.

Figure 4.21 shows the numerical result (symbols) of normalized coalescence time T ∗

as a function of size inequality γ with three different Oh numbers. In each case, power-law

temporal scaling T ∗ = A0γ
−n (fitting line) is exhibited with the standard deviation and

correlation of numerical results vs. the fitting line are 0.115 and 0.999, 0.013 and 0.998,

γ

T
*

1 1.5 2 2.5 3 3.5 4

10

0.800

0.638

0.509

Oh

T/t
i
= 5.21 γ0.690

,  R
2
=0.995

T/t
i
=11.57γ0.902

,  R
2
=0.995

T/t
i
= 7.79 γ0.891

,  R
2
=0.993

Figure 4.21: Power-law temporal scaling of unequal sizemicrobubble coalescencewith four

different Oh numbers corresponding to cases 1, 5, and 10 in Table 4.5. Symbols: numer-

ical results; lines:power-law fitting. The standard deviation and correlation of numerical

results and the fitting line are 0.115 and 0.999, 0.013 and 0.998, and 0.011 and 0.999 for

Oh =0.509, 0.638, and 0.8 respectively. The corresponding 95% confidence band (dashed

line) for each Oh case is shown.
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and 0.011 and 0.999 for Oh =0.509, 0.638, and 0.8 respectively. The corresponding 95%

confidence bands (dashed lines) are shown, respectively. From bottom up, the prefactor

(A0) and power index (n) change as the Oh number increases. It is noticed that the surface

tension of these four cases stays the same (σ =0.032N/m). Thus, this result indicates

that the power-law temporal scaling is affected by the liquid phase characterized by the Oh

number.

Closely looking into the 12 cases, we show the quantitative effects of theOh number on

A0 and n in Figure 4.22 with symbols from the simulations. In the upper panel, the prefactor

A0 shows a linear relation withOh for the entireOh range, the standard deviation numerical

results from the fitting line is 0.21. And the corresponding correlation factor between them

is 0.997. Whereas in the bottom panel, the power index n is linear to Oh when Oh <0.66,

with standard deviation and correlation factor 0.002, and 0.996 respectively and remains

approximately a constant (0.9) when Oh >0.66 with a standard deviation of 0.0022. On

both plots, the dashed lines represent the 95% simultaneous confidence band, respectively.

From Figure 4.22, we can derive the following relationship between the normalized global

coalescence time T ∗ and inequality γ of parent bubbles parameterized by Oh as

T ∗ = A0γ
−n (4.3)

with

n =


1.35Oh + 0.01 : 0.5 < Oh < 0.66

0.9 : 0.66 < Oh < 1.0

This formulation indicates the existence of a general power-law scaling of microbubble coa-

lescence in the range ofOh from 0.5 to 1.0. Noticing the definitions ofOh(= ηh/
√

ρhσrF )

and ti(=
√

ρhr3
F /σ), we explore the physical insights of the general temporal scaling, i.e.

Eq. 4.3, in what follows.

From Equation 4.3, we obtain A0 = T ∗ = 21.2Oh − 5.6 when γ = 1, meaning that

the prefactor of the power-law scaling is the normalized coalescence time of two equal-size
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Figure 4.22: Effects ofOh number on prefactor (A0), top panel, and power index (n), down

panel withR2=0.983, in the temporal power-law scaling. Symbols: numerical results; lines:

fitting
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bubbles, which is linear to Oh. The power index n is determined by dT ∗/dγ at γ = 1.

Corresponding to two ranges of Oh in Equation 4.3, we have

dT ∗

dγ

∣∣∣∣
γ=1

=
28.38(Oh)2 − 7.35Oh − 0.06 : 0.5 < Oh < 0.66

19.08Oh − 5.04 : 0.66 < Oh < 1.0

(4.4)

showing that the quickness of the coalescence from equal to unequal size bubble coales-

cence is determined by Oh. These behaviors might be understood from the following as-

pects. First, size inequality γ reflects the initial driven mechanism, generated by the im-

balanced surface tension forces on the parent bubbles, of the bubble coalescence. Larger

imbalance of surface tension forces generates stronger inertia, resulting in shorter global

coalescence time. Second, when γ is fixed, larger Oh means stronger viscous effects in

the liquid, leading to longer global coalescence time. These two effects can be seen in Fig.

4.21. Third, when the Oh number is relatively large, the viscous effect from liquid domi-

nates the coalescence whereas the initially imbalanced surface tension forces and generates

inertia become insignificant, which leads to a constant power index.

Since the temporal scaling of microbubble coalescence is rarely addressed in open

literature, we select 11 new cases (Table 4.6), varying the fluid density, fluid viscosity, and

surface tension, with three Oh numbers: 0.509, 0.654 and 0.800 to evaluate the temporal

scaling formula, Equation 4.3.

Table 4.6: Eleven cases corresponding to three Oh numbers with the variation of fluid

density, fluid viscosity, and surface tension.

Case 13 14 15 16 17 18 19 20 21 22 23

Oh 0.509 0.509 0.509 0.509 0.654 0.654 0.654 0.800 0.800 0.800 0.800

ρh(kg/m3) 1197 896 1000 680 896 448 640 600 680 1482 896

µh × 10

(kg/m · s)
0.122 0.149 0.182 0.160 0.111 0.157 0.107 0.111 0.204 0.371 0.271

σ(N/m) 0.024 0.048 0.064 0.073 0.016 0.064 0.021 0.016 0.048 0.064 0.073
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Figure 4.23: General power-law temporal scaling for unequal size air microbubble coa-

lescence at Oh = (a) 0.509,(b) 0.654, and (c) 0.8. Symbols: simulation results; lines:

prediction from Equation 4.3



64

Figure 4.23: Continued
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We plot the power-law temporal scaling of unequal size air microbubble coalescence

in Figure 4.23. The symbols are simulation results and lines are predicted from Equation

4.3. Correspondingly, Table 4.7 shows the difference between the numerical and predictive

results quantitatively.

Corresponding toOh =0.509, 0.654, and 0.800, Equation 4.3 predicts the power index

of the power-law temporal scaling as 0.697, 0.893, and 0.900 respectively. The simulation

results agree well with the predictions in each of the three evaluations. Thus, Equation

4.3 is regarded as a general power-law temporal scaling of unequal size air microbubble

coalescence.

4.7 Conclusion

Using the GPU-accelerated LBM simulation, we are able to systematically investigate

the effects of Oh number on the global coalescence process in a microchannel. Sixteen



65

Table 4.7: The comparison between eleven cases from Table 4.6 and the prediction from

Equation 4.3

Case Oh
Prediction (Equation 4.3) Check cases Relative error

A0 n A0 n A0(%) n(%)

13

0.509 5.19 0.697

5.23 0.690 0.77 -1.00

14 5.28 0.703 1.73 0.86

15 5.27 0.709 1.54 1.72

16 5.21 0.684 0.39 -1.87

17

0.654 8.26 0.893

8.59 0.897 4.00 0.45

18 8.60 0.908 4.12 1.68

19 8.50 0.893 2.91 0

20

0.800 11.36 0.900

11.28 0.893 -0.70 -0.78

21 11.33 0.903 -0.26 0.33

22 11.2 0.901 -1.41 0.11

23 11.2 0.901 -1.41 0.11

cases with the Oh number from 0.039 to 1.543, by varying the liquid viscosity from 0.0020

to 0.08 kg/(m · s) while keeping other parameters unchanged, are studied. By tracking the

time evolution of the shape factor ∆, we identified two distinct coalescence phenomena.

In the region of Oh <0.477 , damped oscillation is observed. The oscillation is more

intensive whenOh is smaller, and resulting a longer time to complete the global oscillation.

While Oh >0.477, the shape factor asymptotically increases from 0 to 1 and the global

coalescence time increases with the increase of Oh. In between the two regimes, a critical

Oh =(0.477) number is identified, corresponding to the smallest coalescence time. Strictly

speaking, when consider a continuous Oh range, the critical Oh number should fall in the

range between 0.407 and 0.530. Such a criterion of with and without damped oscillation

determined by Oh number are consistent to the drop coalescence that has presented in open

data.
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For the oscillation cases, the mechanism behind the different coalescence behavior is

explored in terms of the competition of the surface tension driving and viscous resisting.

When Oh <0.477, the viscous force is small, thus energy dissipation is insignificant. The

bubble coalescence is dominated by the surface tension force. The transformation between

the surface energy and kinetic energy with energy dissipation causes the damped oscilla-

tion of microbubble coalescence. Smaller Oh number cases possess more useful surface

energy to drive stronger oscillation, resulting in longer coalescence time. The damped os-

cillation can be modeled as a damped harmonic oscillator that has an analytical solution.

The numerical simulation has a good agreement with the analytical prediction.

When Oh >0.477, there is no oscillation phenomenon in this range. From a study

case that air bubble in the oil, the coalescence preference that the coalesced bubble is located

closer to the larger parent bubble is well captured. The preferential location of the coalesced

bubble is a function of size inequality, the radius ratio of the father (large) to mother (small)

bubble γ = rF /rM . Systematical simulation of 12 cases varying the size inequality γ from

5.33 to 1 results in a power-law relation between the preferential relative distance χ and size

inequality γ as χ ∼ γ−1.794, which is consistent to the recent experimental observations,

although the power index is far from the experiment. It is caused by the different set-up and

2D simulations. If we want to find accurate quantitative results related to space, the bubble

should be simulated in 3D.Meanwhile, we found that the coalescence time is also correlated

to the size inequality through a power-law relation, T ∼ γ−0.899, implying that unequal-size

bubbles always coalesce faster than equal-size bubbles and that the larger the size inequality

is, the faster they coalesce. Such a temporal scaling of coalescence on inequality radius ratio

is believed to be a first time observation.

A general power-law time scaling of unequal size microbubble coalescence has been

derived when bubble coalescence without oscillation. The physical insights of both prefac-

tor and power index have been well understood:

1. The power-law temporal scaling of unequal size microbubble coalescence T ∗ =

A0γ
−n generally exists in the range of 0.5 < Oh < 1.0, where no oscillation is

involved in the post-coalescence.
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2. The prefactor A0 is linear to Oh. The power index n is linear to Oh in the range of

0.5 < Oh < 0.66 and remains a constant when Oh increases toward 1.0.

In an additional 11 cases which vary the fluid density, fluid viscosity, and surface tension,

resulted in three Oh numbers, Oh =0.509, 0.654, and 0.800. The power-law temporal

scaling of unequal size microbubble coalescence for each Oh number was captured from

the numerical simulation. All threeOh cases are in agreement with the predictions from the

formulation, Equation 4.3, demonstrating the reliability of this newly discovered general

power-law temporal scaling. This scaling was obtained when the gas phase was fixed.

Based on recent studies [54, 71, 153], the droplet coalescence is sensitive to the outer fluid

(heavy fluid) but insensitive to the inner fluid (light fluid). We expect this conclusion applies

to the current work. That is to say, the results of this work obtained from a fixed gas (air)

are applicable for different gases.
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5. COALESCENCE-INDUCED MICROBUBBLE DETACHMENT
IN MICROFUIDICS

5.1 Introduction

Bubble detachment in the microchannel is a common phenomenon during the bubble

oscillation stage when the bubble initially attaches on the solid surface. It can be observed

in many industrial and medical processes, such as electrochemical reaction in a microchan-

nel [25,154,155], thermalmanagement of semiconductor [156], self-cleaning formembrane

biofouling [157,158] and microbial colonization of dental surface [159], to name a few. In

general, external energy input and internal motion are two major mechanisms to drive the

bubble detachment from a surface. External energy through heat transfer [160,161], acous-

tic effects [162], and light irradiation [163] causes the growing of microbubbles and further

detaching from the surface. The research focuses on energy-driven bubble detachment have

been on the detachment criteria [164] and the optimization to balance between detachment

and unclogging in microchannels [156,165]. Bubble detachment caused by internal motion,

e.g., microbubble coalescence [166], is more fundamental and significant to understand the

underlying physics of bubble dynamics for the design and fabrication of microfluidics with

various applications. In spite of a few attempts made on revealing the effects of surface

conditions such as superhydrophobic, smooth surface [167,168], superhydrophobic, rough

surface [169], Leidenfrost surface [170], and initial conditions and radius inequality [171]

on the coalescence-induced detachment of droplets, the detachment dynamics due to mi-

crobubble coalescence has been rarely addressed.

The experiment was carried out inside a polymer microfluidic gas generation device

to study one of the phenomena in the post-coalescence of bubble coalescence. This device

is fabricated by aligning and sequentially stacking/thermopress bonding multiple layers of

patterned polystyrene (PS) film [172]. Figure 5.1(a) schematizes the cross-section view of
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the device. Hydrogen peroxide (H2O2) enters at the inlet and performs a catalytic decom-

position producing water (H2O) and oxygen (O2) on the layer of Pt catalyst. The oxygen

bubbles travel from left to right driven by imbalanced capillary force due to unequal chan-

nel heights and then trapped at the gas vent through a membrane. Right before the gas

vent, the inner walls of the micro-channel change from hydrophilic to hydrophobic sur-

faces. Whereas liquid, driven by the moving bubbles, leaves at the outlet. High-speed

X-ray imaging was conducted at the 32-ID-B beamline of the Advanced Photon Source

(APS) to visualize the bubble transport in the reaction channel, see a snapshot in Figure

5.1(b). The detail description of the design, fabrication, imaging acquisition of the experi-

ment is referred to as published papers [172, 173].

Figure 5.1: (a) Schematic of the cross-section view of the fabricated polymer microfluidic

gas generation and (b) high-speed X-ray images of the device

5.2 Computational Set-up

We looked into eight videos of bubble transport recorded from the experiment and

identified six cases, in each of which unequal bubble coalescence is observed. The same

initial set-up is required to recover the experimental bubble coalescence process by simu-

lation. We use ImageJ (National Institutes of Health) to measure the radii, rF and rM and
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center locations, OF and OM of the two initial parent bubbles after cropping the computa-

tional domain as small as possible. The process is indicated in Figure.5.2. Meanwhile, the

parameters for the initial set-ups are shown in Table 5.1.

Figure 5.2: The brief image process to get the centers and radii of two parent microbubbles

Table 5.1: Parameters of the initial set-ups in the experimental cases

Case# rF (µm) γ
OF

(µm, µm)

OM

(µm, µm)

1 19 1.27 (69, 15) (33, 13)

2 24 1.41 (80, 18) (37, 15)

3 39 1.34 (59, 35) (127, 21)

4 43 1.72 (71, 37) (137, 21)

5 55 1.06 (186, 39) (78, 44)

6 62 1.82 (88, 50) (185, 26)

As schematized in Figure.5.3, two parent oxygen bubbles (gray color) with the size

inequality (γ = rF /rM ) in the hydrogen peroxide solution merge into one single child

bubble with minimal area surface (red color). The center and radius of the single child

bubble are Oe and Re respectively. The size inequality is the radius ratio of large (father)

rF vs. small (mother) rM bubbles. The density and viscosity of oxygen and 30% hydrogen

peroxide are ρO2 = 1.3kg/m3, ρH2O2 = 1060kg/m3, µO2 = 1.92 × 10−5kg/(m · s),

µH2O2 = 1.06 × 10−3kg/(m · s) respectively. The numerical study is conducted in height

H =144 (µm) cuboid domain with periodic boundary in x and z directions. The length of
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the channel is L, which determined by the size of microbubbles varies from 100µm to 264

µm. And the width of the channel W (in the z-direction) is the same as the length. For all

cases, the equilibrium contact angle is set as 36◦.

Figure 5.3: Schematics of two oxygen bubbles coalescence in the hydrogen peroxide solu-

tion from initial state (gray) to steady state (red)

5.3 Convergence Check & Validation

The contact angle is simulated to find the appropriate spatial resolution for the numer-

ical analysis. We set an half-sphere bubble (i.e., αinitial = 90◦) with R =60µm initially sit

on a solid surface, and the targeted contact angle of the solid surface is 60◦. As Figure 5.4

shows, the initial bubble (gray color) with half sphere becomes the equilibrium state. In the

equilibrium state, the slice (black line) in the middle of x-direction is chosen to do the val-

idation and the liquid-vapor interface, which is represented by a contour level of C =0.5.

The simulated contact angle αeq can be calculated by Eq.5.1 through the measurement of

the height of liquid-vapor interface a and a base diameter of a bubble b on a solid surface

at equilibrium state.

αeq = 2arctan( b

2a
). (5.1)
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Figure 5.4: Schematics of the half sphere bubble initially sitting on the wetting surface

Convergence check and validation are done through the spatial resolution varies from

44×24×44 to 264×144×264 with six different levels which listed in Table 5.2. The fourth

and fifth columns of this table show the relative difference between simulated and targeted

contact angle and spatial convergence, respectively. Take computational cost and accuracy

into consideration, and we select the spatial resolution of 220×120×220 to conduct the

parametric study unless otherwise indicated.

Table 5.2: Convergence check and validation when targeted contact angle is 60◦.

Resolution
Simulated

contact angle

Targeted contact

angle

Relative

difference(%)

Convergence

(%)

44×24×44 53.00

60

11.67

88×48×88 56.88 5.20 6.82

132×72×132 58.10 3.17 2.10

176×96×176 59.22 1.30 1.89

220×120×220 59.58 0.70 0.60

264×144×264 59.84 0.27 0.43

To validate this numerical method suitable for a wide range of contact angles is very

important as well. Here the initial area of the bubble is kept constant that half sphere with
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60µm radius on a solid wetting surface as Figure 5.4 shows. A slice in the center of the

x-direction is selected to show the shape of the circular arc and calculated the simulated

contact angle in an equilibrium statewith the different wetting surface, i.e., different targeted

contact angle. Figure 5.5(a) presents the relationship between the equilibrium contact angle

and dimensionless wetting potential Ωc when the equilibrium contact angle varies from 40◦

and 150◦. The numerical result is well consistent with the analytical result. Two cases

selected from all the test cases to show the equilibrium profiles of a bubble sitting on a solid

surface with equilibrium contact angles of 150◦ and 45◦ are indicated in the Figure 5.5(b)

and Figure 5.5(c) respectively. The red point is the analytical circular arc, and the black

lines are the contour level of C =0.2, 0.5, 0.8, respectively. Compare the shape between

the analytical circular arc and the numerical equilibrium profile of the bubble, and the test

cases confirm that free-energy based LBM with cubic boundary condition is reliable.
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Figure 5.5: (a) The comparison of the relationship between equilibrium contact angle and

dimensionless wetting potential with analytical and numerical results. Equilibrium profiles

of the bubble on the solid surface of (b) αeq = 150◦ and (c) αeq = 45◦

5.4 Numerical and Experimental Study of Coalescence-induced Microbubble De-

tachment

Experimental cases are recorded by the high-speed camera with 90kHz or 100kHz,

which applied to investigate the bubble coalescence. From the six experimental cases show-

ing in Table 5.1, we find there are two distinct phenomena as Table 5.3 presents. Hence,
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we have a hypothesis that the coalescence-induced microbubble detachment phenomenon

(CIMD) occurs when the bubble radius ratio close to 1. Due to the fast speed of microbub-

ble coalescence and the uncontrollable bubble size in the experiment, the dynamic of the

coalescence and the conditions for CIMD can’t afford to be studied only from the exper-

imental cases. The parametric study of simulation is applied to confirm this hypothesis.

Table 5.3: The coalescence-induced detachment phenomenon can be observed or not in the

experimental cases.

Case# rF (µm) γ
Detachment

or not

1 19 1.27 No

2 24 1.41 No

3 39 1.34 No

4 43 1.72 No

5 55 1.06 Yes

6 62 1.82 No

Before confirming the hypothesis, the suitable of the methodology should be validated.

From the process of bubble coalescence in experimental cases, there is a big difference be-

tween case 5 and others. In case 5, CIMD can be observed in the animation of the exper-

imental results, but from the static image, there are lots of small bubble at bottom affects

the visual view. In other cases, the microbubble always attaches in the solid surface during

the global process of bubble coalescence. Hence, No. 5, and 6 cases are selected as two

representative cases to do the comparison between the experiment and simulation, which

is shown in Figure 5.6. For each case, there are two rows. The top row is the result of the

simulation at six instantaneous times, and the bottom row is the result of experiments with

the same time. We find the process of shape evolution between simulation and experiment

are quite similar in both cases. They start from the two parent microbubbles touched, gener-
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ation and growth of neck bridge; then bubble oscillates with a small amplitude; eventually

becomes a single child bubble. Meanwhile, the case for CIMD occurring is consistency

with experimental cases.

(a) Case 5

(b) Case 6

Figure 5.6: Time evolution of bubble coalescence: (a) case 5 and (b) case 6 are both pre-

sented the phenomenon from the simulation (top row) and experiment (bottom row) with

six specific times.

The process of CIMD is focused on the bubble radius ratio and bubble size. Therefore,

the bubble radius ratio varies as 1, 2, 3 and the radius of the father bubble rF =30, 36, 42,

48 µm are selected as study cases showing in the Table 5.4.

From the investigation of the experimental and numerical cases, we generated a phase

diagram showing as Figure 5.7 to investigate when the CIMD occurs. The black circle

symbols indicate the results are from the simulation, and the red rectangular symbols are

from experimental cases. The CIMD can be observed in the case marked with the solid

symbol. From the phase diagram, we find when the radius ratio is close to 1, and the radius

of the father bubble is larger than 40µm, the phenomenon will occur. That means the CIMD

does not only depends on the bubble radius ratio but also relates the size of themicrobubbles.

Why do these two conditions affect the occurring of CIMD?
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Table 5.4: Parameters of the initial set-ups in the experimental(mark with *) cases and

numerical cases of the parametric study

Case# rF (µm) γ
OF

(µm, µm)

OM

(µm, µm)

*1 19 1.27 (69, 15) (33, 13)

*2 24 1.41 (80, 18) (37, 15)

3

30

1

(101,29)

(161, 29)

4 1.93 (145, 15)

5 3.13 (137, 11)

6

36

1

(95,33)

(167,33)

7 2 (146, 18)

8 3 (138, 13)

*9 39 1.34 (59, 35) (127, 21)

10

42

1

(89,38)

(173, 38)

11 1.95 (150, 20)

12 2.92 (139, 14)

*13 43 1.72 (71, 37) (137, 21)

14

48

1

(83,44)

(179,44)

15 2 (152, 23)

16 3.07 (143, 17)

*17 55 1.06 (186, 39) (78, 44)

*18 62 1.82 (88, 50) (185, 26)
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Figure 5.7: The bubble radius ratio and radius of farther bubble effect on CIMD. The circle

symbols(black): numerical cases, the rectangular symbols(red): experimental cases. The

solid symbols: CIMD can be observed, empty symbols: no detachment phenomenon.
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Same father bubble size with different radius ratio

Figure 5.8 is represented to study the mechanism with two representative cases: dif-

ferent radius ratio (a) γ =1.94 and (b) γ =1.0 and same father bubble radius rF =42µm.

In each case, the velocity distribution of bubble coalescence is illustrated as three different

stages: (1) early stage (i.e., generation and growth of neck bridge), (2) intermediate stage

(i.e., the neck bridge continuous growth until two bubbles merge into one), (3) late stage

(i.e., bubble oscillation after two parent bubble merged into one). In stage 1 (T =4µs),

the bubble with a smaller radius has the larger surface tension force in the perpendicular

direction of the centerline to drive the bubbles coalescing. The time evolution in case (a) is

Figure 5.8: Instantaneous velocity fields with the velocity magnitude |V | =
√

v2
x + v2

y + v2
z

color map in three different stages: (1) early stage, (2) intermediate stage, (3) late stage

with two different cases (a) γ =1.94, (b) γ =1.0 with rF =42µm
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faster than the case (b), and the kinetic energy distribution of gas is different between these

two cases. In case (a), the larger kinetic energy in the side of the mother bubble, whereas,

it is in the neck bridge region of case (b). Hence, at T =19µs of stage 2, the mother bubble

detaches from the solid surface with larger kinetic energy. The father bubble almost keeps

the same as it is in the case (a). However, the process of bubble coalescence is symmetrical,

and two parent bubbles move on the solid surface for a similar bubble size in the case (b).

From stage 2 to 3, the vortexes develop in the direction along the surface of the sphere for

case (a), so that there is no extra force make the bubble detached from the solid surface.

Whereas, symmetrical development make the detachment easier in case (b).

Same radius ratio with different father bubble size

In order to investigate the condition caused by the different father bubble radii, the

cases are selected with same radius ratio γ =1.0, and two representative sizes of father
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Figure 5.9: Kinematic energy distribution with normalized time (t/ti) for two different

cases (b) rF =42µm, (c) rF =30µm, with γ =1.0
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bubble (b)rF =42µm and (c)rF =30µm. The kinetic energy distribution is indicated in

Figure 5.9. Comparing these two cases, the driving force of case (c) is larger than the

case (b) due to the small radius bubble have large capillary force. However, the energy

dissipation is larger in case (c) as Figure 5.9 presents. In other words, the resistant force

is much larger in the case (c) which is consistent with a smaller radius lead to the larger

resistant force.

Radius ratio close to 1 and the larger father bubble size are the two conditions for

observing the CIMD easily. These two conditions are consistent with the tendency in the

Ref. [174], which describe the criteria of the diameter of heated bubble detachment from

the solid surface, but the driving mechanism is different.

5.5 Conclusion

We have systematically studied CIMD in the process of microbubble coalescence by

six experimental cases recorded by the high-speed camera and eighteen numerical cases

including six cases with the same initial set-ups of the experiments and twelve cases with

different combinations of radius ratio and father bubble size. In this work, we imposed a

gas-liquid-solid interface in the code and did the validations through a half sphere bubble

sitting on the different wetting surfaces with targeted contact angles from 36◦ to 150◦. The

focus is on conditions to observe CIMD by the experimental and numerical investigation

when two-parent oxygen bubbles attached on the Pt surface with 36◦ contact angle in the

hydrogen peroxide solution. The results are summarized as follows:

• The phenomenon of microbubbles coalescence on the solid surface is consistent with

experimental capture.

• Both the size inequality and bubble size have effects on the CIMD. When the bubble

radius ratio is close to 1, and father bubble size is larger, the CIMD is observed easily.

Additionally, the velocity distribution during bubble coalescence process, including early

stage, intermediate stage, and late stage is applied to study the reasons for occurring of
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CIMD. For the same father bubble radius and different radius ratio, the mother bubble dom-

inate the effects of mechanism. The smaller mother bubble has a large capillary force for

driving that leads the mother bubble to detach from the solid surface. After the mother bub-

ble detaches from the solid surface, the energy dissipated and father bubble doesn’t have

enough energy to detach. Similar size bubble coalescence, the process is symmetrical, de-

tach from the solid surface is easier. While, the smaller bubble size with same radius ratio,

the resistant force caused by the viscous force is larger. It results in small radius bubble

have not enough energy detach from solid surface corresponding with larger radius bubble.
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6. EFFECTS OF INITIAL CONDITIONS ON THE
MICROBUBBLES COALESCENCE

6.1 Introduction

Coalescence is a common process in gas-liquid systems. When two bubbles/droplets

are close, a microscopic connecting neck bridge will form and rapidly grow tending to

merge and minimize the surface area. Studying the neck bridge (contact area) growth at the

early stage of coalescence is essential in understanding the dynamics of bubble/droplet co-

(a)

R
0

R
0

d

(b)

R
0

R
0

δ

r
0

Figure 6.1: Schematics of two initial scenarios for two equal bubbles with radius R0: (a)

separated bubbles with distance d and (b) connected bubbles with neck bridge radius r0 and

meniscus diameter δ. The meniscus curvature is Kδ = 2/δ.
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alescence [52,153,175–177]. Many efforts have been focused on the neck bridge evolution

of droplet coalescence through numerical [51, 53, 72], experimental [46, 50] and theoreti-

cal [47] studies. There are two common initial set-ups from simulations and experiments.

Separated with small distance d or connected with a small neck bridge radius r0, schema-

tized in Figure 6.1 (a) and (b) respectively, are two typical initial set-ups in the research

of bubble/droplet coalescence. In scenario (a), when the distance d is small enough, two

bubbles/droplets are attracted through Van de Waals attraction force till bubbles/droplets

touch when the coalescence starts [40, 67]. Whereas in scenario (b), the initial radius r0,

corresponding to a meniscus diameter δ thus meniscus curvature Kδ = 2/δ, is usually due

to small perturbation because the static touch of two bubbles/droplets are not stable and the

coalescence starts immediately. The effects of these two scenarios on droplet coalescence

have been studied numerically [177]. It has been observed that for scenario (a), the bridge

evolution is sensitive to the distance of the initial separation and for scenario (b), a slower

initial growth corresponds a larger initial neck bridge radius. The dynamics of microbubble

coalescence under various influences are needed to be systematically investigated.

6.2 Computational Set-up

The early-stage coalescence (t < 5µs) of two identical air micro-bubbles are studied,

R0(=20µm) sitting at the center of a square domain filled with water. The side length of

the domain is 100(µm). For the purpose of exploring the effects of initial conditions of the

bubbles on the bubble coalescence, two conditions are considered, as schematized in Figure

6.1. In case (a), the bubbles are separated by a distance d, as used in the experimental set-

up [40]. It is known [42, 67, 178] that when the separation of two bubbles is within the

effective range of intermolecular attraction force, the attraction force will drive the bubbles

moving inward. When the bubbles are touched, a bridge is formed, and then the bubble

coalescence starts. Figure 6.2 shows the instantaneous velocity vector fields right before

and right after the neck bridge forms. The small separation distance is selected to ensure the

occurrence of coalescence. The ratio of separation distance and bubble radius, γd(≡ d/R0),
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Figure 6.2: Instantaneous velocity fields right before (a) and right after (b) two bubbles are

connected forming a neck bridge.

varies from 0.008 to 0.042. In case (b), the bubbles are connected with an initial neck bridge

radius r0. The ratio of initial bridge neck radius and bubble radius, γr(≡ r0/R0) changes

from 0.16 to 0.38. The domain boundaries in vertical and horizontal directions are periodic.

The density and viscosity of the water and air are ρh = 103(kg/m3), ρl = 1.2(kg/m3) and
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µh = 10−3kg/(ms), µl = 1.98 × 10−5kg/(ms) respectively, resulting in the density ratio

833 and viscosity ratio 50.5 of water vs. air. The surface tension between water and air

is assumed σ = 7.2 × 10−2N/m. Such a physical set-up was used in this section unless

otherwise indicated.

6.3 Convergence Check & Verification

To investigate the effects of the initial conditions on the microbubbles coalescence,

we take power-law scaling of neck bridge time evolution as a validation test to find out an

appropriate resolution. Selecting Oh = µh/
√

ρhR0σ = 2.6 × 10−2 (inertial regime) and

varying five spatial resolutions of 2002, 4002, 6002, 8002, 10002 for the flow domain. It is

found that in all the five cases, the time evolution of neck bridge radius r follows power-

law r/R0 = A0(t/ts)1/2. There are two kinds of timescale for normalizing the time of this

process [46], ti =
√

ρhR3
0/σ when the coalescence process dominated by the competition

with capillary force and inertial force. When the effect of viscous forces on resisting the

process becomes important, the system follows another timescale, tv = µhrF /σ. 0.2 <

Oh < 1, both ti and tv have approximately the same values, which means that both the

inertial and viscous forces contribute to the resisting force in the coalescence process. In

this case, Oh = 2.6×10−2 < 0.2, so that ts = ti =
√

ρhR3
0/σ = 10.5µs, and t is measured

from the instant of bubble coalescence, with varying A0, as shown in Table 6.1. The neck

bridge radius r is determined through contour line of C =0.4. As the resolution increases,

A0 converges to 1.06 with reducing relative errors. To avoid high computation cost, 6002

is selected as the typical resolution to produce the results for the present study. The half

Table 6.1: Resolution convergence check and the relative error is to the finest resolution.

Resolution 2002 4002 6002 8002 10002

A0 0.9181 1.1017 1.050 1.056 1.060

Relative error 13.39% 4.06% 0.94% 0.37% ×



86

t/t
i

D
y
/R

0

0.1 0.2
0.1

0.2

0.3

0.4
r/R

0
=1.05(t/t

i
)
0.5

, R
2
=0.994

Numerical Result

Figure 6.3: The simulation results (symbols) agree well with the power-law (line), it is

demonstrating the validity of the modeling.

power-law scaling, r/R0 ∝ (t/ti)1/2, meets the analytical prediction [54]. The prefactor

A0 =1.05 for this resolution is within the range of experimental measurements [175, 179],

1.09± 0.08 for air bubbles coalescence in water.

The relationship between normalized neck bridge r/R0 and normalized time. It is

seen in Figure 6.3 that the simulation results (symbols) agree well with the analytic bridge

evolution in early time [47] (line) i.e. r/R0 ∝ (t/ti)0.5 with prefactor 1.05 andR2 = 0.994,

demonstrating the validity of the modeling.

6.4 Effects of Initial Neck Bridge Radius (r0) on Neck Bridge Evolution

In this part, five cases with the relative radii of the initial neck bridge, γr(= r0/R) =

0.16, 0.20, 0.28, 0.33, and 0.38, are investigated. Figure 6.4 shows the neck bridge evolution

of a representative case (γr = 0.28). It can be seen in Figure 6.4(a) that after a development
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time, the relative growth of neck bridge, (r − r0)/R0, becomes linear to (t/ti)1/2, which is

equivalent to the half power-law of (r−r0)/R0 = 0.81(t/ti)1/2. The half power-law scaling

has been predicted analytically [47], which has been confirmed in recent experiments [54].

The result is a numerical confirmation of the half power-law scaling. In order to understand

the underlying physics of the early neck growth, we should closely look into the driving

mechanism to the coalescence in this early stage. Figure 6.4(b) shows the neck bridge

development in the development time from a to d and half power-law scaling regime from

d to f indicated in Figure 6.4(a). As the neck bridge radius r increases gradually, pushing

the bottom of the neck up, the meniscus gradually rounds up with an increased diameter

of δ. Table 6.2 lists the curvature of meniscus (Kδ = 2/δ) vs. curvature of neck bridge

(Kr = 1/r) at the corresponding time sequence. At the initial time (point a), the neck

bridge radius is set to be small and corresponds a steep meniscus, resulting in the curvature

of the meniscus 5600 times larger than the curvature of the neck bridge. It implies that the

initial growth of the neck bridge is driven by the curvature of the meniscus. Within a very

short time period ( 0.01ti) from point a to d, the meniscus curvature Kδ rapidly reduces

29311% from 1000.0 to 3.4 µm−1 while the neck curvature Kr only reduces around 21%

from 0.179 to 0.147µm−1. In other words, toward a more balanced driving mechanism

contributed by both meniscus curvature and neck bridge curvature. In the period of half

power-law scaling from time point d to f, it is seen that the ratio of the two curvature is

around 15. Thus, the time development before the half-power law scaling is due to the

significantly unbalanced capillary force of the meniscus curvature and the neck curvature.

The time evolution of the neck bridgewith different initial neck bridge radius, is plotted

in Figure 6.5, distinguished by the dimensionless parameter γr(= r0/R0). The solid line

corresponds to the representative case discussed above. While each initial radius case has

a similar tendency of the neck growth to the representative case, it is seen that smaller γr

(from bottom up) results in faster growth of the neck bridge, meaning that smaller initial

neck bridge leads faster coalescence at the early stage. It is noticed that the plotted power-

law scaling as (r − r0)/R0 = A0(t/ti)1/2 for the purpose to compare different initial neck

bridge radius r0. Meanwhile, smaller γr exhibits faster neck bridge evolution. Smaller γr
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Figure 6.4: (a) A representative neck bridge evolution for the case of γr = 0.28. (b) Se-

quence of meniscus development and neck growth across development time (from a to d)

and half power-law scaling time (from d to f).
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Table 6.2: Curvature of meniscus (Kδ) vs. curvature of neck bridge (Kr) at representative

time points indicated in Figure 6.4(a). Units: δ and r – µm. Kδ and Kr – µm−1

Time Point δ r Kδ(= 2/δ) Kr = (1/r) Kδ/Kr

a 0.002 5.6 1000.0 0.179 5600

b 0.067 6.3 29.9 0.159 188

c 0.417 6.6 4.8 0.152 32

d 0.583 6.8 3.4 0.147 23

e 0.833 7.1 2.4 0.141 17

f 1.250 7.6 1.6 0.132 12

corresponds to larger initial curvature of the meniscus, resulting in large capillary force to

drive the neck growth, leading faster coalescence. Corresponding to the smallest γr = 0.16

(long-dash line), the initial curvature ofmeniscus a neck bridge is as high as 2985 as opposed

to 1000 of the representative case (solid line). These effects of initial neck bridge radius on

micro-bubble coalescence are similar to those on droplet coalescence [177].

6.5 Effects of Initial Separation Distance (d) on Neck Bridge Evolution

In this part, five cases with different initial separation distance d, distinguished by

γd(= d/R0) = 0.008, 0.017, 0.025, 0.033, 0.042, are investigated. Once again, the half

power-law scaling after development time is seen in each separation case, which is a nu-

merical confirmation for the analytical prediction [47]. The development time is defined

in Figure 6.6. The time evolution of the neck bridge is plotted in Figure 6.7. It is seen

that smaller separation distance (bottom-up) leads faster neck growth, thus faster coales-

cence, and shorter development time. Table 6.3 lists the development time for each case.

The smallest γd case starts the half power-law almost immediately when two bubbles attach

whereas the largest γd case takes 0.289ti before starting the half power-law. The develop-

ment time for this initial scene is the result of elongated neck formation, as explored in
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Figure 6.5: Effects of initial neck bridge radius (γr = r0/R0) on the growth of the neck

bridge radius (r/R0). The solid line corresponds to the representative case in Figure 6.4.

Table 6.3: Effect of γd on the development time.

γd 0.008 0.017 0.025 0.033 0.042

Development Time (t/ti) 0 0.0076 0.0196 0.0256 0.289

A0 1.05 1.08 1.12 1.12 1.13

a study of the effects of initial separation distance to the neck growth in droplet coales-

cence [177]. As the initial separation d is small enough, within the effective range of the

intermolecular attraction force, the attraction force between the two approaching surfaces

initiates the thinning and rupture of the liquid film between two bubbles and forms a gas

bridge. The film is thinning leads to an elongated neck bridge in the horizontal direction.
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As seen in Figure 6.8 for two initial separation distance cases with γ = 0.008 (a) and

0.042(b) respectively, smaller separation distance forms shorter neck bridge with larger

curvature of meniscus. The larger meniscus curvature leads to faster neck growth, thus

faster coalescence, as have been discussed above.

The prefactor A0 represents the relative neck bridge radius r/R0 at t = ti. Table

6.3 shows that for the varying initial separation distance cases, A0 varies marginally from

1.05 to 1.13. It is in good agreement with experimental results. Table 6.4 shows A0 values

of different liquids. The experimental cases are all in the inertial regime, the same as the

present study. It seems that A0 is closely related to the density of the liquid. Larger liquid

density leads to a smallerA0. The current work studies air bubble coalescence in water with

the liquid density of ρh = 1000kg/m3. The range of A0 in the present work agrees well

with the experimental results.
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Figure 6.7: Effects of initial separation distance (γd = d/R0) on the growth of the neck

bridge radius (r/R0).

Table 6.4: Table list of prefactor A0 from literature.

A0 ρh(kg/m3) µh(N · s/m2) σ(N/m2) R0(mm)

1.24 [175] 931 5.0 × 10−3 0.020 2.0

1.11 [175] 750 2.0 × 10−2 0.020 2.0

1.14 [175] 1000 1.0 × 10−3 0.073 2.0

1.29 ± 0.05 [179] 792 5.9 × 10−4 0.023 1.94

1.09 ± 0.08 [179] 1000 1.0 × 10−3 0.073 1.94

1.03 ± 0.07 [179] 1160 1.44 × 10−2 0.067 1.94
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Figure 6.8: Effects of initial separation distance on the formation of elongated neck bridge

in horizontal direction, (a) γd = 0.008 and (b) γd = 0.042

6.6 Conclusion

The effects of two initial set-ups, i.e., separated and connected bubbles have been stud-

ied respectively, on the neck bridge evolution using the LBM. Simulation results show the

two initial conditions have a significant influence on the neck growth, thus the coalescence

dynamics. In both initial scenarios, the neck bridge evolution exhibits half power-law scal-

ing, r/R0 = A0(t/ti)1/2 after development time. The half power-law agrees with the recent

analytical prediction and experimental results. It has been found that small initial separa-

tion distance or small initial neck bridge radius results in faster growth of neck bridge and

bubble coalescence, which is similar to the effects of these two initial scenarios on droplet

coalescence. The physical mechanism behind the development time is explored. For the

initial connected case, smaller neck bridge radius corresponds to a steeper meniscus at the

liquid side, leading significantly larger curvature of meniscus than that of neck bridge. The

development time is to lessen the significant bias and enable contributions from both cur-

vatures of meniscus and neck bridge to capillary forces. Whereas for the initial separated

case, the thinning of liquid film between two bubbles causes elongated neck bridge in the
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approaching direction of two bubbles due to the intermolecular attraction. In the range of

intermolecular attraction, smaller separation distance leads a steeper meniscus (equivalent

to larger curvature or larger capillary force. This explains why smaller separation distance

shows faster neck growth. Meanwhile, smaller separation distance forms smaller elongated

neck bridge, thus causes shorter development time to start the half power-law scaling. The

values of the prefactor A0 in the power-law scaling for all the cases are in good agreement

with experimental results. These simulation results are expected to provide informative

guidance for initial set-up of numerical simulation of bubble coalescence.
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7. SUMMARY

The objectives of dissertation include enhancing computational skills related to the

GPU parallel acceleration and understanding underlying physical of bubble coalescence in

the microchannel.

In the computational skills part, a framework of the GPU parallelism and acceleration

for a sophisticated free energy LBM model based on the Cahn-Hilliard diffuse interface

approach is developed. Compared with serial CPU, the acceleration is up to 1000 with

Tesla P100 GPU card. Meanwhile, the multi-GPU algorithm is developed for the cases

with high resolution. The acceleration rapidly increases compared with a single GPU.

We get several investigations in the global process of bubble coalescence of the phys-

ical analysis part.

• Spatial/Temporal behaviors of bubble coalescence: there are two distinct phenom-

ena of bubble coalescence, including oscillation (underdamping) and without oscilla-

tion (overdamping). From the test cases, the regimes for the different phenomenon is

investigated. Underdamping occurs when Oh < 0.477. Whereas, the overdamping

phenomena can be observed when Oh > 0.477.

– The mechanism for underdamping is explored in terms of the competition of the

surface tension driving and viscous resisting. When Oh < 0.477, the viscous

force is small, thus energy dissipation is insignificant. The bubble coalescence is

dominated by the surface tension force. The transformation between the surface

energy and kinetic energy with energy dissipation causes the damped oscillation

of microbubble coalescence. Smaller Oh number case possesses more useful

surface energy to drive stronger oscillation.

– There is a spatial power-law relation between the preferential relative distance

and size inequality for overdamping cases. Meanwhile, we found that the coa-
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lescence time is also correlated to the size inequality through a power-law rela-

tion presented as T/ti = A0γ
−n when the air bubble coalescence in the oil. The

temporal scaling is general for the global process of bubble coalescence. Both

the inertial and viscous affect the prefactor A0 (represents the coalescence time

of equal bubbles) and n(indicates the quickness of coalescence from equal to

unequal bubble coalescence) Oh number has a linear relationship with A0, and

n when Oh < 0.66. If Oh > 0.66, the power index tends to be a constant 0.9.

• Coalescence-induced detachment of bubble coalescence: coalescence-induced de-

tachment phenomena will be observed when taking the solid boundary into consider-

ation. Both the size inequality and father bubble size have effects on the coalescence-

induced detachment phenomena. When bubble size ratio is close to 1 and the father

bubble size is larger, the coalescence-induced detachment phenomena is easy to be

observed.

• Effects of the initial conditions: faster neck growth corresponding to smaller initial

neck radius is due to the significant bias between the capillary forces contributed by

the meniscus curvature and the neck bridge curvature; whereas in the case of the

initial separated scenario, faster growth corresponded to shorter separation distance

due to the formation of elongated neck bridge.
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