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ABSTRACT 

Author: AlAbdi, Lama A. PhD 
Institution: Purdue University 
Degree Received: August 2019 
Title: Molecular Mechanisms that Govern Cellular Differentiation Using Stem Cell Models 
Committee Chair: Humaira Gowher 
 

Mammalian development is orchestrated by global transcriptional changes, which drive 

cellular differentiation, giving rise to diverse cell types. The mechanisms that mediate the temporal 

control of early differentiation can be studied using embryonic stem cell (ESCs) and embryonal 

carcinoma cells (ECCs) as model systems. In these stem cells, differentiation signals induce 

transcriptional repression of genes that maintain pluripotency (PpG) and activation of genes 

required for lineage specification. Expression of PpGs is controlled by these genes’ proximal and 

distal regulatory elements, promoters and enhancers, respectively. Previously published work from 

our laboratory showed that during differentiation of ESCs, the repression of PpGs is accompanied 

by enhancer silencing mediated by the Lsd1/Mi2-NuRD-Dnmt3a complex. The enzymes in this 

complex catalyze histone H3K27Ac deacetylation and H3K4me1/2 demethylation followed by a 

gain of DNA methylation mediated by the DNA methyltransferase, Dnmt3a. The absence of these 

chromatin changes at PpG enhancers during ESC differentiation leads to their incomplete 

repression. In cancer, abnormal expression of PpG is commonly observed. Our studies show that 

in differentiating F9 embryonal carcinoma cells (F9 ECCs), PpG maintain substantial expression 

concomitant with an absence of Lsd1-mediated H3K4me1 demethylation at their respective 

enhancers. The continued presence of H3K4me1 blocks the downstream activity of Dnmt3a, 

leading to the absence of DNA methylation at these sites. The absence of Lsd1 activity at PpG 

enhancers establishes a “primed” chromatin state distinguished by the absence of DNA 

methylation and the presence of H3K4me1. We further established that the activity of Lsd1 in 

these cells was inhibited by Oct3/4, which was partially repressed post-differentiation. Our data 

reveal that sustained expression of the pioneer pluripotency factor Oct3/4 disrupts the enhancer 

silencing mechanism. This generates an aberrant “primed” enhancer state, which is susceptible to 

activation and supports tumorigenicity.  
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As differentiation proceeds and multiple layers of cells are produced in the early embryo, 

the inner cells are depleted of O2, which triggers endothelial cell differentiation. These cells form 

vascular structures that allow transport of O2 and nutrients to cells. Using ESC differentiation to 

endothelial cells as a model system, studies covered in this thesis work elucidated a mechanism by 

which the transcription factor Vascular endothelial zinc finger 1 (Vezf1) regulates endothelial 

differentiation and formation of vascular structures. Our data show that Vezf1-deficient ESCs fail 

to upregulate the expression of pro-angiogenic genes in response to endothelial differentiation 

induction. This defect was shown to be the result of the elevated expression of the stemness factor 

Cbp/p300-interacting transactivator 2 (Cited2) at the onset of differentiation. The improper 

expression of Cited2 sequesters histone acetyltransferase p300 from depositing active histone 

modifications at the regulatory elements of angiogenesis-specific genes that, in turn, impedes their 

activation.  

Besides the discovery of epigenetic mechanisms that regulate gene expression during 

differentiation, our studies also include development of a sensitive method to identify activities of 

a specific DNA methyltransferase at genomic regions. In mammals, DNA methylation occurs at 

the C5 position of cytosine bases. The addition of this chemical modification is catalyzed by a 

family of enzymes called DNA methyltransferases (Dnmts). Current methodologies, which 

determine the distribution of Dnmts or DNA methylation levels in genomes, show the combined 

activity of multiple Dnmts at their target sites. To determine the activity of a particular Dnmt in 

response to an external stimulus, we developed a method, Transition State Covalent Crosslinking 

DNA Immunoprecipitation (TSCC-DIP), which traps catalytically active Dnmts at their transition 

state with the DNA substrate. Our goal is to produce a strategy that would enable the determination 

of the direct genomic targets of specific Dnmts, creating a valuable tool for studying the dynamic 

changes in DNA methylation in any biological process. 
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 INTRODUCTION 

1.1 Mammalian development 

1.1.1 Embryogenesis 

The peri-implantation stage of embryonic development is conserved across many 

organisms (1). It starts with fertilization of the oocyte by the sperm, followed by multiple steps of 

cell fate decisions that end in the formation of blastocyst. The blastocyst consists of three cell types: 

the trophectoderm, the extraembryonic primitive endoderm, and the embryonic epiblast (1-5). 

Studies have shown that pluripotency as a property arises from the epiblast (6). Newly emerging 

epiblast cells are thought to differentiate into all somatic and germ line cells that constitute an 

organism (7). The dynamic process of differentiation is orchestrated by meticulous and complex 

mechanisms of regulation that control different layers of organization. 

Owing to its complexity and transient nature, coupled with the inaccessibility of the 

embryonic sample for analysis, it is challenging to dissect the molecular mechanisms governing 

embryonic development. The development of stem cell models provided a breakthrough in our 

understanding of embryogenesis. These cell models retain the same pluripotent properties 

observed in the epiblast as they can differentiate to any lineage under similar environmental 

conditions (6). This was supported by in vivo experiments showing that these pluripotent cells 

contribute to normal development when injected into the early embryo (8, 9). Using these model 

cell lines, our understanding of early developmental stages as well as mechanisms regulating cell 

fate decisions and commitments has evolved.  
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Figure 1.1 Early stages of the mammalian embryonic development. 
 

The zygote is generated from the fertilization of the oocyte by the sperm. Two cell-fate decisions 
take place prior to implantation stage (E4.5). First, is the specification of the trophectoderm and 
inner cell mass. The second is when the primitive endoderm and the embryonic epiblast emerge 
from the inner cell mass. E: Embryonic day post-fertilization. The scale bars are 50 µm. Figure 

adapted from (10). 
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1.1.2 Embryonic stem cell models 

In an effort to study development, several cell lines were generated or derived from 

different stages of embryonic development. Teratocarcinoma were the first to be identified as 

pluripotent stem cells in culture (11). They are a highly aggressive germ line tumor with a 

heterogeneous population of cells, which include the pluripotent embryonal carcinoma cells (ECCs) 

(12). The hypothesis whether these cells had embryonic origin was tested by transplanting embryos 

into the testes of adult mice. Tumors derived from these transplantations were isolated and clonally 

expanded, giving rise to embryonal carcinoma cell lines (13). The stemness of these cell lines, 

including the murine F9 and P19 ECCs, was evident in their differentiation potential and their 

ability to contribute to normal embryonic development when injected back into a developing 

embryo (8, 11). These cell lines were used to investigate early developmental stages and 

mechanisms regulating differentiation prior to the isolation of embryonic stem cells (ESCs). 

In 1981, ESCs with full capacity of self-renewal and differentiation were derived from 

mouse embryos at the blastocyst-stage (14, 15). The isolation of these cells revolutionized our 

understanding of the molecular mechanisms that mediate maintenance of pluripotency and 

induction of differentiation. Experiments using ESCs supported their role as a model to study 

embryogenesis by demonstrating how they mimic early developmental stages and the 

transcriptional changes driving cell fate specifications (9). 

1.1.3 Endothelial cell differentiation and angiogenesis 

During embryonic development, primordial endothelial cells and blood vessels emerge 

from the extraembryonic yolk sac soon after gastrulation (16). This process is initiated by the 

recruitment of epiblast cells to the primitive streak where they undergo epithelial-mesenchymal 

transition. When these migratory cells reach the yolk sac, they form either mesoderm or definitive 

endoderm (17). The mesoderm layer then undergoes differentiation to form the first differentiated 

cell types in the embryo: primitive endothelial and hematopoietic cells. Together, these cells 

develop to generate a primitive network of tubules. Remodeling and maturation of these tubules 

give rise to the circulatory network. Concurrent with maturation of the vasculature is the induction 
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of hematopoiesis: the production of circulating blood cells. The key regulatory protein which 

controls vascular formation is vascular endothelial growth factor (VEGF) (18). 

 During embryogenesis, the cardiovascular system is the first functional organ to develop 

(19). This occurs as early as Embryonic day (E) 7.5 when hypoxic cues are detected. Vascular 

structures form following the induction of hypoxia-inducible factor 1 (HIF1-α), which binds to the 

regulatory elements of VEGF, activating its transcription (20, 21). Induced VEGF, in turn 

generates a signaling gradient directing the migration of endothelial cells and thus the orientation 

of vascular growth (21). Methods using VEGF signaling have been developed to induce 

differentiation of ESCs to endothelial cells and their remodeling to form vascular structures in 

tissue culture (22, 23). These experimental systems serve as a model to study mechanisms 

regulating endothelial cell differentiation and angiogenesis in vitro.  

1.2 Gene transcription 

In living cells, genetic information is stored in the DNA with genes being the basic 

structural units (24, 25). The expression of genetic information, initiated by gene transcription, is 

regulated by genomic regions identified as: 1) Proximal regulatory elements, known as promoters, 

2) Distal regulatory elements, or enhancers, and 3) Insulator elements.  

Whereas a promoter is proximal to its gene and functions as the site where the 

transcriptional machinery initially binds to generate a new transcript, enhancers can be remotely 

located relative to their target gene. Enhancers mediate the spatial and temporal control of gene 

expression in a tissue specific manner. (26, 27). They communicate with promoters by forming 

enhancer-promoter loops (28). Insulators can block the formation of these loops, hence protecting 

genes from inappropriate environmental signals (29). The formation of these loops creates another 

layer of gene expression regulation as well as higher-order chromatin structures.  

Gene expression starts by the transcription of DNA to its messenger molecule: RNA. This 

is initiated by the presence of DNA binding proteins, called transcription factors, which bind to 

their specific DNA sequences located at the enhancer and promoter regions (30). When 

transcription factors bind, they recruit the transcriptional machinery comprised of RNA 

polymerase II (RNA pol II) and its associated factors; this forms the transcriptional initiation 

complex that is localized to the promoter (31). The phosphorylation patterns on the C-terminal 

repeat domain (CTD) of RNA pol II determines which factors are bound as well as the 
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transcriptional function of the polymerase: paused, elongating, or terminating (32). In order to 

fine-tune and ensure proper gene transcription, there needs to be concerted regulation between 

transcription factor binding and epigenetic regulation (33).  

1.3 Transcription factors 

Transcription factors (TFs) are proteins that regulate transcription by directly binding to 

DNA in a sequence specific manner. Therefore, they are considered to be the first interpreters of 

the genomic code (34). Many of these proteins serve as “master regulators” or “pioneer factors” 

governing complex processes that control cell type specification, fate determination, and 

developmental patterning (35). In cell culture experiments, several reports demonstrated the power 

of TFs in driving differentiation, de-differentiation, and trans-differentiation (36). TF sequences, 

binding sites, and regulatory roles are highly conserved between organisms, indicating a 

conservation in functions (37). This conservation is supported by the observations that mutations 

in these analogous sequences are found in many diseases (38). Furthermore, aberrant expression 

of TFs has been noted in many cancers (39, 40). These observations highlight the critical 

physiological roles these proteins play in the spatiotemporal control of gene expression. 

Many studies demonstrated how TFs function as activators or repressors of gene 

transcription (41, 42). Upon their binding at regulatory elements, they can recruit coactivator or 

repressor complexes, including chromatin modifiers, to exert their catalytic functions on target 

genes. Studies have reported TFs, through their effector domains, directly binding to RNA pol II 

(43-45). Other mechanisms have been delineated where TFs, lacking an effector domain, function 

through sterically blocking the binding of other proteins to a genomic site (46). With most of the 

genomic sequence now annotated with regulatory functions, tremendous effort is currently 

employed to decode TFs functional interactions and their roles in modulating gene expression. 

1.4 Epigenetic regulation 

Epigenetics is defined as heritable, and reversible changes to gene expression without 

altering the DNA sequence (47). Epigenetic regulation takes place via chemical modifications on 

DNA or histones, non-coding RNA expression, and chromatin structural changes (48-52). In 

mammals, DNA methylation occurs by the deposition of a methylation mark on the fifth carbon 
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of cytosine, predominantly in a CpG context (53). DNA methylation at the regulatory elements is 

associated with stable gene repression as it prevents the binding of TFs and recruits methyl-binding 

proteins that help in chromatin condensation (54-57). The enzymes catalyzing this reaction are 

known as DNA methyltransferases (Dnmts). Histones can also alter gene expression by changes 

in their localization and compactness at regulatory elements (50, 52). Additionally, chemical 

changes to the histone tails create a code that recruits or averts the binding of epigenetic modifiers 

or readers (47, 51). This, in turn, marks a gene as active, primed, poised, or repressed (58). 

Epigenetic regulation also occurs via non-coding RNA in a cis- or trans- manner (49, 59). Several 

non-coding RNAs act as repressors or activators of transcription by binding to their target DNA 

or acting as a scaffold to recruit proteins to a particular site (60).  Finally, the spatial organization 

of the genome in the nucleus through enhancer-promoter looping, topologically associated 

domains (TADs), and lamina associated domains (LADs) functions to isolate certain loci that are 

active or repressed (61-63). This segregation helps in the rapid activation and recruitment of RNA 

pol II to a core promoter leading to the activation of a subset of genes in a tissue-specific manner 

(64).  

1.5 ATP-dependent chromatin remodeling 

Chromatin remodeling refers to the use of ATP hydrolysis as a source of energy to alter, 

evict, or restructure nucleosomes to modulate gene expression (65). This occurs by regulating the 

access of TFs to their cognate DNA binding motifs (66). Chromatin remodeling complexes contain 

a single ATPase subunit, which binds and hydrolyzes ATP for energy, and multiple regulatory 

subunits. These regulatory subunits modulate the catalytic activity of the ATPase and give rise to 

functional specificity (67). The combinatorial effect of the assembly of multiple tissue-specific 

regulatory subunits together with a different core ATPase subunit results in unique complexes of 

particular functional properties. The resulting complexes collaborate with TFs for tailored 

recruitment to regulatory regions of the genome and the control of gene expression (68).  

1.6 Post-translational modifications on histones 

 Histones are highly conserved proteins that package the DNA into nucleosomes. DNA is 

wrapped around the C-terminal globular domain of histones; thus mediating the interactions 
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between the different subunits, which then forms the nucleosome core (25). The N-terminal region 

forms a flexible tail which, together with some residues of the globular domain, can carry post-

translational modifications. These modifications influence DNA-histone interactions between and 

within nucleosomes, therefore affecting chromatin structure (69). These covalent modifications 

include: methylation, acetylation, phosphorylation, ubiquitination, sumoylation, and ADP 

ribosylation, all of which collaborate to alter transcription, cell cycle flow, DNA replication and 

repair (51). These modifications are either deposited by writers, removed by erasers, or identified 

by readers. 

1.6.1 Histone acetylation 

Histone acetylation is the transfer of an acetyl group from Acetyl-coenzyme A to specific 

lysine residues in histones (70). The addition of an acetyl group neutralizes the positive charge of 

lysine. It is speculated that this neutralization weakens DNA-histone interactions, allowing for an 

open chromatin state (71). Consequently, histone acetyltransferase (HAT) activity is typically 

observed in transcriptional coactivator complexes: Gcn5/PCAF and CBP/P300 as examples (72). 

Histone deacetylases (HDACs) are part of transcriptional corepressor complexes such as 

CoREST and NuRD/Mi-2 (73). HDACs catalyze the removal of the acetyl group, presenting an 

enzymatic regulatory network that modulates the acetylation levels, and therefore the 

transcriptional activity, at genomic loci (74). Histone deacetylation usually serves as the first 

enzymatic activity in a sequence of events that lead to the repression of enhancers and promoters 

(75). By removing acetyl groups from histone lysines, HDACs not only alter transcription, but also 

trigger other epigenetic activities that alter the chromatin state, such as methylation, ubiquitination, 

and sumoylation (75-79). Because it serves as an epigenetic switch for further enzymatic activity 

leading to transcriptional repression, HDAC activity is systematically controlled by many 

molecular mechanisms, which include protein–protein interactions and posttranslational 

modifications (80, 81) 

1.6.2 Histone methylation 

Histone methylation is the methylation on lysine or arginine residues (69). Lysine residues 

can be mono-, di-, or tri-methylated by SET-domain containing enzymes (82). In mammals, 

different methyltransferases may share the same substrate histones H3 and H4 lysine targets. 
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However, it is speculated that enzyme specificity lies in the genes they regulate and the biological 

processes that targets them to different regions of the genome (83). For example, H3K9 at the 

promoters of repressed genes is methylated by Suv39h1, G9A, and ESET. H3K27 is methylated 

by Ezh2 of the PRC2 repressive complex. Methylation can also be an active mark. The MLL family 

of enzymes catalyzes the methylation of H3K4 at the enhancers and promoters of active genes. 

Set2 methylates H3K36 at the bodies of actively transcribed genes (83, 84). H3K36me3 serves as 

a mark that recruits Dnmt3b to methylate gene bodies, preventing cryptic transcription from 

occurring (85). Histones H3- and H4-arginine residues are mono- and di-methylated by the 

coactivator arginine methyltransferase (CARM1) and protein arginine N-methyltransferase 1 

(PRMT1) (86). 

Histone methylation can be reversed by the activities of two families of demethylation 

enzymes: Lsd1, which mainly demethylates di- and mono- H3K4 and H3K9 marks, and JmjC 

family of enzymes which prefers trimethylated lysine and arginine residues as substrates (87). 

Lsd1 activity on its histone substrates is often regulated by its binding partners. For example, the 

CoREST complex positively regulates Lsd1 activity by promoting its stability in vivo as well as 

by providing a hypo-acetylated nucleosome, the preferred substrate for Lsd1 to act upon. Another 

Lsd1 interacting partner, BHC80, dampens Lsd1 activity by the physical interaction of its SNAG 

domain with the catalytic domain of Lsd1 (79, 88, 89). Additionally, Lsd1 is known to interact 

with a magnitude of TFs that either help with recruitment or regulate its activity (90-92). These 

findings suggest that the dynamic regulation of Lsd1 histone demethylation activity at the 

promoters and enhancers of genes is modulated by signaling pathways, which dictate Lsd1 binding 

partners.  

1.7 DNA methylation 

DNA methylation is the covalent addition of a methyl group to the fifth carbon position of 

cytosine (93). In the mammalian genome, this predominantly occurs in the palindromic CpG where 

the majority (~80%) are methylated (94, 95). Evaluation of DNA methylation distribution 

throughout the genome is indispensable for our interpretation of 5mC functions. When deposited 

at regulatory elements, DNA methylation is strongly associated with repression of transcription 

(96). Using genome-wide methylation profiling, methylation levels in somatic cells were identified 

across many genomic elements, with retroviral sequences and transposable elements showing the 
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highest methylation (97). Enigmatically, CpG islands (CGI) exhibit reduced methylation levels 

(94). CGI are often associated with promoter and enhancer regions where levels of 5mC range 

from 10% to 50%, respectively (57). Furthermore, whereas changes in CGI methylation are rarely 

observed in healthy tissue, aberrant CGI hyper-methylation is a hallmark of cancers (96). Genome-

wide methylome profiling studies illustrated that under physiological conditions, there is a 15 to 

21% change in the methylation status of CpGs, with sites either gaining or losing DNA methylation 

(98, 99). Interestingly, these tissue-specific differentially methylated regions (DMRs) are mainly 

found at enhancers or super enhancers (44, 99, 100). Depletion of 5mC is influenced by chromatin 

state. This is exemplified by the presence of methylated H3K4 at the promoters and enhancers, 

which inhibits the deposition of a methyl mark at these regulatory sites (101, 102). The binding of 

TFs or CXXC zinc finger-containing proteins protect CpGs from methylation (53). Moreover, the 

presence of pioneer TFs may cause epigenetic remodeling and depletion of DNA methylation at 

specific sites (103).  

DNA methylation can also occur at intragenic regions. Specifically, the presence of the histone 

mark H3K36me3, a predominant modification at gene bodies, recruits DNA methyltransferases to 

these sites (104, 105). Although 5mC is negatively correlated with transcription, in this context, 

this epigenetic mark has been demonstrated to function differently. Genes that are highly 

transcribed have abundant intragenic 5mC (96, 106). Correlation studies have demonstrated that 

the presence of 5mC at gene bodies functions to antagonize the activity of polycomb repressive 

complex (PRC2), hence, promoting transcription (107). Furthermore, it has been postulated that 

intragenic 5mC is required for the regulation of promoter use and alternative splicing events as 

well as precluding cryptic transcription initiation (96, 108, 109).  

1.7.1 DNA methyltransferases 

DNA methylation is an epigenetic modification catalyzed by two families of DNA 

methyltransferases (Dnmts): 1) maintenance DNA methyltransferase: Dnmt1, which has high 

affinity for hemimethylated DNA (110, 111). Dnmt1 associates with the replication fork to copy 

methylation patterns from the template strand to the newly synthesized strand, thus preserving 

methylation patterns throughout cellular division (112, 113). 2) De novo DNA methyltransferases: 

Dnmt3a and Dnmt3b establish new patterns of methylation. Dnmt1, however, does not exclusively 

maintain DNA methylation; rather, the activities of Dnmt3s are also required for maintenance of 
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established methylation (96, 114). In mammals, Dnmt1 and Dnmt3 enzymes methylate largely at 

CpG dinucleotides (115). Given the low sequence specificity of these enzymes, it is important to 

understand the mechanism(s) that regulate and recruit Dnmts to specific sites in the genome. 

1.7.2 Mechanisms regulating DNA methylation 

Post-fertilization, an epigenetic ground state is formed concomitantly with genome-wide 

erasure of methylation marks inherited from parental gametes (116-119). Erasure of 5mC marks 

is known to occur by active or passive mechanisms. Passive dilution of 5mC marks results from 

DNA replication and cell division. Active demethylation occurs by the enzymatic oxidation of 

5mC to 5-hydroxymethylcytosine (5hmC) catalyzed by the TET family of enzymes (120). 5hmC 

is the most abundant derivative of 5mC and is thought to carry its own regulatory roles. TETs are 

reported to be enriched at regulatory elements and are associated with TFs (121), indicating a role 

of TETs in modulating 5mC dynamics concurrent with TF binding. DNA demethylation is 

complete when TET oxidative activity is accompanied by base-excision repair following thymine 

DNA glycosylation (121). 

1.8 Epigenetic dysregulation in cancer 

1.8.1 Mechanisms of epigenetic dysregulation in cancer 

Numerous studies have provided evidence showing that epigenetic dysregulation is a 

common mechanism in cancer. This includes deregulation of DNA methylation (122-124), histone 

modifications, and chromatin remodeling machinery (125). Notably, epigenetic events are 

intercorrelated; a change in an epigenetic mark may influence the deposition or erasure of another. 

The interdependence between histone demethylation and gain of DNA methylation is an example 

(102, 126). Mutations in epigenetic factors are not the only drivers of cancer; dysregulation of their 

expression, activity, or recruitment may also contribute to the initiation or progression of the 

disease.  

1.8.2 Cancer stem cells 

Tumors are composed of a heterogeneous population of cells. It is speculated that this 

heterogeneity rises from phenotypic and epigenetic plasticity (70). The phenotypic plasticity 

theory posits that tumor heterogeneity results from the divergence and expansion of tumor 
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initiating clones (71). The more popular hypothesis of epigenetic stemness is supported by many 

studies demonstrating the aberrant expression of pluripotency factors within the tumor 

environment as well as the resemblance of cancer biology to development (70, 72). This has given 

rise to the concept of cancer stem cells (CSCs). CSCs are a subpopulation of cancer cells that are 

defined by an enhanced tumorigenicity and expression of PpG, making them resemble embryonic 

stem cells (73, 74). These cancer cells express genes critical for stemness and embryonic 

development. Moreover, when exposed to differentiation signals, they are able to differentiate to 

the corresponding cell types. These features further highlight the similarities between cancer and 

pluripotency (75-77). Importantly, CSCs have been identified and isolated from different types of 

cancers (78).  

1.9 Methods in DNA methylation 

1.9.1 Probing for DNA methylation 

Several methods have been developed and improved for the detection of DNA methylation. 

These detection methods can be segregated into two categories: A) Genome-wide profiling of 

DNA methylation, which include: HPLC-UV, LC-MS/MS, ELISA-based methods, methylation-

sensitive restriction digestion, or bisulfite conversion followed by sequencing, and luminometric 

methylation assay (LUMA), all of which vary in sensitivity, accessibility, and quantity/quality of 

sample required (127-131). B) Site-specific evaluation of DNA methylation state. These assays 

are not limited to chemical conversion of cytosine such as bisulfite conversion followed by PCR, 

pyrosequencing, bead array, or methylation-specific PCR, but also methylation sensitive digestion 

followed by PCR or qPCR, electrochemical biosensors, and optical biosensing strategies (127, 

132-134).  

1.9.2 Probing for Dnmts 

Dnmt activity has been extensively studied in vitro and in vivo. In vitro studies involve the 

use of recombinant enzymes where their activities and specificities are interrogated in the presence 

of DNA or nucleosomal substrates (135). The effect of pathological mutations on the enzymes’ 

stability, activity, and substrate preference has also been evaluated (136). The activities of Dnmts 

have been investigated in vivo using knockout mice and cell lines, luciferase reporter-based assays, 

and approaches utilizing small molecule inhibitors (137-143). Mechanisms that recruit Dnmts to 
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their target sites have been resolved by co-immunoprecipitation (Co-IP) experiments and 

chromatin immunoprecipitation assays (ChIP) (144, 145). These experiments also elucidated the 

redundancy and specificity of these enzymes to discrete genomic sites (146-148). 

1.9.3 Single-cell approaches 

In order to distinguish specific and distinct cellular epigenetic signatures from bulk 

populations of cells, single-cell high-resolution methylome assays were developed. Single-cell 

reduced representation bisulfite sequencing (scRRBS) and single-cell bisulfite sequencing (scBS-

seq) were among the first techniques to evolve (149). Since then, technological improvements 

were implemented to increase yield, resolution, and throughput. These include incorporation of 

multifaceted analyses of methylome, transcriptome, and chromatin accessibility (150-153). 

Several databases designated for single-cell datasets have been generated for many organisms and 

cell states (154). 

1.9.4 Manipulation of DNA methylation 

The discoveries made in the DNA methylation field have been tested and supported by 

genome-wide manipulations using genetic- and pharmacological-based methods (56, 95). Non-

targeted perturbation of this mark is unavoidably accompanied by pleiotropic effects that could 

lead to misinterpretation of the results. Due to the development and creative evolution of genome-

editing strategies, guided alteration of the 5mC state is feasible. Targeted methylation or 

demethylation of genomic DNA involves the use of Dnmt or TET proteins fused with a DNA 

binding domain, such as zinc fingers, transcription activator–like effectors (TALEs), and 

catalytically-dead Cas9 (dCas9) (155-157). These fusion remodelers have specific 5mC 

remodeling capacity (158). One of the potential pitfalls of the targeted approach is the presence of 

spurious off-target activity (155). To mitigate this issue, multiple molecules of the modulator 

proteins are tethered to a genomic locus. This is achieved by increasing the local concentration of 

the epigenetic regulator via SunTag or RNA scaffolding strategies (159, 160). 
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1.10 Summary 

1.10.1 Loss of Lsd1 regulation in carcinoma cells  

Our studies in differentiating F9 ECCs show that several PpG, including the pioneer 

transcription factor Oct3/4, maintain substantial levels of expression. We demonstrated that the 

enhancers of these PpG are not silenced by a gain of DNA methylation due to the retention of 

H3K4me1 post-differentiation. Interestingly, similar studies in differentiating P19 ECCs showed 

that the expression of Oct3/4 and Nanog were reduced by over 90%. We further observed histone 

H3K4me1 demethylation as well as a gain of DNA methylation at PpG enhancers in differentiating 

P19 ECCs but not F9 ECCs. Based on these observations and previously reported interactions 

between Lsd1 and Oct3/4 (161, 162), we investigated the effect of Lsd1-Oct3/4 interaction on 

Lsd1 catalytic activity. Using in vitro histone demethylation assays and recombinant proteins, our 

data show that in the presence of Oct3/4, the catalytic activity of Lsd1 is significantly reduced. 

These data suggest a mechanistic model that elucidates the regulation of Lsd1 activity by its 

interaction with Oct3/4 at PpG enhancers. In undifferentiated ESCs and ECCs, Lsd1-Oct3/4 

interaction at active PpG enhancers leads to Lsd1 inhibition, which is relieved post-ESC and P19 

ECC differentiation by the rapid downregulation of Oct3/4. However, in differentiating F9 ECCs, 

partial repression of Oct3/4 retains Lsd1 in an inhibited state. At regulatory sites, where H3K27Ac 

is deacetylated while the H3K4me1 mark is retained together with the absence of DNA 

methylation, creates a “primed” enhancer state. Therefore, our data suggest that aberrant 

expression of the pioneer pluripotency factor Oct3/4 in cancer cells could disrupt epigenetic 

regulation of enhancer silencing and induce a chromatin state that renders enhancers susceptible 

to reactivation.   

1.10.2 Trapping Dnmt3a and identifying its direct targets. 

The current methodologies employed to investigate the activity of DNA methyltransferases 

(Dnmts) using genome-wide profiles of DNA methylation or binding of Dnmts by chromatin 

immunoprecipitation experiments, provide limited information about the temporal activity of these 

enzymes. This is because Dnmts stay bound to chromatin irrespective of their need to be 

catalytically active at their binding sites (101). Identifying the spatiotemporal response of Dnmts 

under various stimuli will help unravel the dynamic regulation of DNA methylation and its role in 

controlling gene expression. Additionally, specific targets of multiple Dnmts can be identified, 
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thus classifying the individual contributions of these enzymes in setting patterns of DNA 

methylation across the genome. We aimed at developing a method that would facilitate the 

determination of the direct genomic targets undergoing active methylation via the catalytic 

activities of Dnmts. We implemented a catalysis-specific chemical crosslinking strategy that 

enabled the formation of stable Dnmt-DNA adducts. This was done by repurposing the suicide-

inhibitor drug 5-Aza-2′-deoxycytidine (5-Aza-dC), a 2′-deoxycytidine analog that is incorporated 

into the genome during replication. When a Dnmt is recruited to methylate a site where 5-Aza-dC 

is incorporated, the enzyme will not be able to release an intermediate of the reaction and it will 

remain in a locked position (163). Our data showed that this adduct can be immunoprecipitated 

and sequenced. Given that Dnmt3a is the principal Dnmt for PpG enhancer methylation in 

differentiating ESCs (102), we sought to standardize a protocol for ESC differentiation as a 

monolayer that would support 5-Aza-dC treatments (164). We were efficiently able to differentiate 

ESCs to a neuronal lineage where pluripotency genes are repressed and their enhancers are silenced 

by DNA methylation. Our data further illustrated 5-Aza-dC incorporation during differentiation, 

evident by Dnmt3a capture in dot blot assays. We aim at using the immunoprecipitated material 

from this differentiation as a proof of principle showing Dnmt3a captured at the enhancers of PpG. 

This technique will provide a valuable tool for studying the dynamic changes in DNA methylation 

in any biological or diseased state.  

1.10.3 Significance 

Considering the complexity of cancer biology, there has been an astonishing evolution in our 

understanding of cancer development and progression. Recent hypotheses in the field favor the 

concept of “Cancer Stem Cells” (CSCs); a rare population within the tumor environment that can 

proliferate indefinitely and give rise to different cell types constituting the heterogeneous 

populations found in cancers (165). Cancer reoccurrence and therapeutic resistance have been 

attributed to the existence of CSCs, which makes them an attractive target in our pursuit of the 

development of cancer therapeutics. Therefore, understanding the biology of these cells, and how 

they emerge, is paramount for our understanding of cancer biology. Because CSCs have many 

characteristics common with ESCs (166), comparing the molecular mechanisms of proliferation 

and differentiation will shed light into how these cells fail to repress (or how they re-activate) their 

pluripotency program. Our studies using F9 ECCs as a CSC model facilitated our understanding 
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of a mechanism underlying their defect in proper differentiation. Understanding how CSCs 

differentiate and dedifferentiate is crucial for the development of differentiation-inducing 

therapeutics which, in conjunction with other drugs, can be used for the permanent eradication of 

cancer. Furthermore, as aberrant regulation of DNA methyltransferases is widely reported in the 

cancers epigenetic landscape, we developed a method for the capture of Dnmts during catalysis. 

This technique will provide sensitive and precise reports of Dnmt activities in many biological 

contexts. As a valuable approach, this method will enable the dissection of the distinct biological 

functions of Dnmt3a and Dnmt3b, their enzymatic mechanisms, and the effect of disease-relevant 

mutations on their activity. Moreover, tracking the specific activities of Dnmts and comparing 

them to the dynamic changes in chromatin signatures and TFs binding profiles, could predict 

potential new mechanisms that regulate Dnmt activities during ESC differentiation. These 

mechanisms, conceivably, control distinct developmental programs during differentiation and 

embryogenesis, thus opening new prospects for future studies. 
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2.2 Abstract 

 Enhancer reactivation and pluripotency gene (PpG) expression were recently shown to 

induce stemness and enhance tumorigenicity in cancer stem cells. Silencing of PpG enhancers 

during embryonic stem cell differentiation involves changes in chromatin state, facilitated by the 

activity of Lsd1/Mi2-NuRD-Dnmt3a complex. In this study, we observed a widespread retention 

of H3K4me1 at PpG enhancers and only partial repression of PpGs in F9 embryonal carcinoma 

cells (ECCs) post-differentiation. The absence of H3K4me1 demethylation could not be rescued 

by Lsd1 overexpression. Based on the observation that H3K4me1 demethylation is accompanied 

by strong Oct3/4 repression in P19 ECCs, we tested if Lsd1-Oct3/4 interaction modulates Lsd1 
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activity. Our data show a dose-dependent inhibition of Lsd1 by Oct3/4 in vitro and retention of 

H3K4me1 at PpG enhancers post-differentiation in Oct3/4 overexpressing P19 ECCs. These data 

reinforce the idea that Lsd1-Oct3/4 interaction in cancer stem cells may establish a primed 

enhancer state that is susceptible to reactivation.   

2.3 Introduction 

Cell type specific gene expression is regulated by chromatin conformation, which 

facilitates the interaction of distally placed enhancer elements with the specific gene promoter 

(167-170). Enhancers house the majority of transcription factor binding sites and amplify basal 

transcription, thus playing a critical role in signal dependent transcriptional responses [summarized 

in (171)]. Epigenome profiling combined with the transcriptional activity in various cell types led 

to the identification of potential enhancers, which are annotated as silent, primed, or active based 

on their epigenetic features. These epigenetic features include histone modifications, DNA 

methylation, and enhancer-associated RNA (eRNA) (58, 172, 173). Whereas histone H3K4me1 

(monomethylation) and H3K4me2 (dimethylation) is present at both active and primed enhancers, 

active enhancers invariantly are marked by histone H3K27Ac (acetylation) and are transcribed to 

produce short read eRNA (174-178).  

During embryonic stem cell (ESC) differentiation, pluripotency gene (PpG) specific 

enhancers are silenced via changes in histone modifications and a gain of DNA methylation (102, 

179, 180). In response to the differentiation signal, the coactivator complex (Oct3/4, Sox2, Nanog, 

and Mediator complex) dissociates from the PpG enhancers followed by the activation of pre-

bound Lsd1-Mi2/NuRD enzymes. The histone demethylase Lsd1 demethylates H3K4me1, and the 

HDAC activity of the NuRD complex deacetylates H3K27Ac (179). Our previous studies have 

shown that the histone demethylation event is critical for the activation of DNA methyltransferase 

Dnmt3a, which interacts with the demethylated histone H3 tails through its chromatin-interacting 

ADD (ATRX-Dnmt3a-Dnmt3L) domain, allowing site-specific methylation at pluripotency gene 

enhancers (PpGe) (102). These studies also suggest that aberrant inhibition of Lsd1 activity could 

cause a failure to gain DNA methylation, leading to incomplete repression of PpGs.  

Several studies have reported on potential mechanisms that control site specific targeting 

and catalytic activity of Lsd1. Whereas Lsd1 interaction with CoREST ([co]repressor for element-

1-silencing transcription factor) activates the enzyme, BHC80 inhibits Lsd1 demethylation activity 
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(79). The substrate specificity of Lsd1 is regulated by its interaction with androgen receptor and 

estrogen related receptor α, or by alternative splicing which adds four or eight amino acids to the 

Lsd1 enzyme (181-185). Lsd1 is targeted to various genomic regions through its interaction with 

SNAG domain containing TFs, such as Snail and GFI1B (92, 186). The SNAG domain binds to 

the Lsd1 active site by mimicking the histone H3 tail and could potentially inhibit its activity (89). 

Interaction of the p53 C-terminal domain with the Lsd1 active site inhibits Lsd1 enzymatic activity 

(91). Lsd1 was also shown to be present in the Oct3/4 interaction network, and therefore could be 

targeted to Oct3/4-bound regulatory elements, which largely control pluripotency and stemness 

(161, 162).  

Studies by the Cancer Genome Anatomy Project (CGAP) show that one out of three 

cancers expresses PpGs, suggesting their role in dysregulated proliferation during tumorigenesis 

(187, 188). Further, expression of PpGs, Oct3/4, Sox2, and Nanog potentiates self-renewal of 

putative cancer stem cells (CSCs) (189-197). CSCs proliferate as well as differentiate to give rise 

to cancer cells of various lineages (165). However, in order to retain the ability to proliferate, many 

cancer cells maintain expression of PpGs (198, 199). This has led to the development of terminal 

differentiation therapy, which aims to limit the proliferating cancer cell population (200). 

Embryonal Carcinoma cells (ECCs) have been used as a model cell line to study CSCs. ECCs were 

derived from developing mouse embryos at E6-7.5 and share regulatory characteristics with ESCs, 

including their ability to differentiate into various somatic lineages (166, 201-203). To understand 

the mechanism by which cancer cells retain PpG expression, we investigated the mechanism of 

enhancer-mediated regulation of PpG expression in ECCs. Our data showed that in differentiating 

F9 ECCs, the PpGs are only partially repressed. This was concomitant with H3K27 deacetylation, 

but with an absence of Lsd1-mediated H3K4me1 demethylation at PpGe. The presence of 

H3K4me1 prevented Dnmt3a from methylating the DNA at these sites, potentially abrogating 

PpGe silencing. Drug-mediated inhibition as well as overexpression of Lsd1 had little or no effect 

on enhancer silencing and PpG repression, confirming a loss of Lsd1 dependence in differentiating 

F9 ECCs. Given that Oct3/4 was expressed at substantial levels in F9 ECCs post-differentiation, 

we investigated the effect of Lsd1-Oct3/4 interaction on Lsd1 catalytic activity. Using in vitro 

histone demethylation assays, we discovered that Lsd1-Oct3/4 interaction inhibits Lsd1 activity, 

potentially causing retention of H3K4me1 at PpGe in F9 ECCs. We tested this prediction in P19 

ECCs in which we observed H3K4me1 demethylation at PpGe, accompanied by loss of Oct3/4 
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expression post-differentiation. Overexpression of Oct3/4 in differentiating P19 ECCs led to 

retention of H3K4me1 at PpGe, confirming the role of Oct3/4-mediated Lsd1 inhibition at these 

sites. Taken together our data show that inhibition of Lsd1 and Dnmt3a activities leads to the 

establishment of a “primed” enhancer state, which is open for coactivator binding and prone to 

reactivation. We speculate that aberrant expression of Oct3/4 in CSCs facilitates the establishment 

of “primed” enhancers, reactivation of which support tumorigenicity.  

2.4 Materials and Methods 

2.4.1 Cell culture and differentiation 

F9 embryonal carcinoma cells (F9 ECCs), P19 embryonal carcinoma cells (P19 ECCs), 

and E14Tg2A Embryonic stem cells (ESCs) were cultured and maintained in gelatin-coated tissue 

culture plates. Differentiation of ECCs was induced by plating 20X106 cells in low attachment 15 

cm petri dishes and the addition of 1µM Retinoic acid (RA). ESCs were differentiated by the same 

method with a concurrent withdrawal of leukemia inhibitory factor (LIF). The medium was 

replenished every two days and samples were collected on Days 4 and 8 post-differentiation.  

Plasmids expressing Myc-Dnmt3a2 and FLAG-Lsd1 WT were transfected into F9 ECCs using 

Lipofectamine 2000. One day post-transfection, an undifferentiated (UD) sample was collected 

(D0) and transfected cells were induced to differentiate on gelatinized plates by the addition of RA. 

The next day, differentiated cells were trypsinized and plated on low adherence petri dishes. 

Samples were collected on Days 4 and 8 post-differentiation. Lsd1 inhibitor treatment was 

performed 6 hr prior to induction of differentiation as previously described (102). 

P19 ECCs were transfected with pCAG-Myc-Oct3/4 (Addgene 13460) (204) using 

Lipofectamine 2000 per the manufacturer’s instructions. Transfected cells were clonally 

propagated, and Myc-Oct3/4 expression was determined by Western blots with anti-cMyc 

antibody (Millipore, MABE282). 

2.4.2 Bisulfite sequencing 

Bisulfite conversion was performed using an EpiTect Fast Bisulfite Conversion Kit 

(Qiagen, 59802) according to the manufacturer’s protocol. PCR conditions for outer and inner 

amplifications were performed (102). The pooled samples were sequenced using NGS on a Wide-

Seq platform. The reads were assembled and analyzed by Bismark and Bowtie2. Methylated and 
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unmethylated CpGs for each target were quantified, averaged, and presented as percent CpG 

methylation. Data are represented as average of at least two biological replicates. The number of 

CpGs for regions tested is listed in Table 2.1. The total number of reads used to calculate percent 

CpG methylation are listed in Tables 2.2 and 2.3. Primer sequences can be found in Table 2.4. 

2.4.3 MethylRAD sequencing 

Genomic DNA was isolated using a standard phenol:chloroform extraction, followed by 

ethanol precipitation. DNA from various samples was digested with FspEI for 4hr at 37°C and 

subjected to electrophoresis through a 2% agarose gel. The generated 30 base pair fragments were 

cut out, purified, and adaptors were ligated at 4°C overnight (129). The ligated DNA was PCR 

amplified with index primers and sequenced using a NovaSeq 6000 platform. The primers used 

for PCR amplification are listed in Table 2.4. 

2.4.4 MethylRAD sequencing: Alignment and Quality Control 

A total of 258,987,008 single end 1x150 sequencing was performed sing a NovaSeq 6000 

platform for undifferentiated (UD) and day 4 post-differentiation (D4) F9 ECC samples. The 

program FastQC v. 0.11.7 was used to check data quality pre- and post-quality trimming/adapter 

removal (205).  Adapters were removed from reads using Trimmomatic v. 0.36 (206). 

Trimmomatic is a program that removes adapter sequences and trims short Illumina reads based 

on quality. Cutadapt version 2.2 was used to trim reads further, removing the first two and last two 

bases of each read (207).  Reads containing greater than 0 N’s were discarded. After trimming, a 

total of 112,289,569 reads remained in the UD and D4 samples. Reads, which do not have FspE1 

sites present anywhere in the read, were removed using ‘grep’, leaving a total of 71,730,977 reads. 

Finally, Bowtie2 version 2.3.3 was used to map reads to the ENSEMBL Mus musculus reference 

genome version GRCm38.93 (208, 209). A maximum of 1 mismatch was allowed in read mapping. 

The mapping rate of reads was 89%, with 64% of the reads mapped to the genome exactly 1 time 

and included in further analyses.  

2.4.5 MethylRAD sequencing: Data preprocessing 

Methylated sites were catalogued by iterating through all read sequences to find a matched 

pattern of methylation (i.e. CCGG, CCAGG, and CCTGG) and recording its location in the 

genome. The number of reads mapping to each methylated site was recorded and adjusted for 
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substitution, deletion, and insertion accordingly. Sites were also matched with the reference 

genome for verification. Sites that had less than 5 reads were removed from downstream analysis; 

counts from duplicate sites between patterns were summed as one site. Python and R scripts used 

in this analysis are included at www.github.com/natallah. 

2.4.6 MethylRAD sequencing: Annotation to LSD1 Enhancers 

Sites annotated as LSD1-bound enhancers in (179) were modified to include 1 kb up- and 

downstream of the identified start site. Both the UD and D4 differentiated F9 ECC samples were 

annotated to the modified LSD1 regions using BEDTools intersect. The total amount of 

methylation in a region was determined by combining the read counts of all sites in that region. 

Upper and lower quartiles were used in thresholding regions as gaining or losing methylation. 

Specifically, all regions with at least 22 counts more in undifferentiated than in day 4 differentiated 

samples were identified as losing DNA methylation as differentiation occurred. All regions with 

at least 30 counts more in D4 samples than in UD samples were identified as gaining DNA 

methylation. 

2.4.7 MethylRAD sequencing: Quantifying methylated regions 

The union of enhancers found in both the UD and D4 differentiated F9 ECC samples was 

determined. The difference in methylation for each combined enhancer regions were computed by 

subtracting the total methylation in D4 differentiated F9 ECC samples to that of the 

undifferentiated sample. Comparative figures were produced from these final data.   

2.4.8 MethylRAD sequencing: Determining methylation level of enhancers 

DNA sequences of all known enhancers for the ESC_J1 strain of mouse were downloaded 

from EnhancerAtlas V2.0 (210). Overlaps between MethylRAD sites and enhancers were found 

using BEDTools intersect. Reads that overlapped the enhancer for the same gene were then 

summed together. Raw counts were normalized for length. The average length of enhancers in the 

EnhancerAtlas database was computed for each gene. If different studies in the database reported 

variable lengths for enhancers, the average length of the enhancer was computed. Counts for each 

sample were then divided by the length of the enhancer and subsequently multiplied by 1000 (to 

enhance readability). The 25th and 75th percentiles were computed for all enhancers separately 

for UD and D4 samples and were used as cutoffs for low and intermediate methylation. Thus, for 
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UD samples, enhancers annotated as having low methylation have normalized counts between (0, 

24.57], intermediate methylation are between (24.57, 243.68], and high methylation have greater 

than 243.58 normalized counts. Enhancers in D4 samples are annotated as highly methylated if 

normalized counts are observed to be between (0, 24.06], intermediate counts are between (24.06, 

256.56], and high counts have greater than 256.56 normalized counts. 

2.4.9 Chromatin Immunoprecipitation and ChIP-Seq 

ChIP was performed as described (102). Chromatin was sheared by sonication using a 

Covaris E210 device, according to the manufacturer’s protocol. A total of 8 µg of sheared cross-

linked chromatin was incubated with 8 µg of antibody pre-loaded on a 1:1 ratio of protein A and 

protein G magnetic beads (Life Technologies, 10002D and 10004D, respectively). After washing 

the beads, the samples were eluted using 1% SDS, 10 mM EDTA, 50 mM Tris-HCl, pH 8.0. 

Crosslinking was reversed by incubation at 65°C for 30 min with shaking. Samples were treated 

with RNase (Roche, 11119915001) for 2 h at 37°C, and subsequently treated with Proteinase K 

(Worthington, LS004222) for 2 h at 55°C. DNA was purified by phenol:chloroform extraction 

followed by ethanol precipitation and quantified using PicoGreen (Life Technologies, P11495) 

and NanoDrop 3300 fluorospectrometer. qPCR was then performed using equal amounts of IN 

and IP samples. Fold enrichment was calculated as: 2^( Ct(IN)-Ct(IP)). Table 2.4 lists sequences 

of primers used.  

2.4.10 ChIP-Seq: Quality Control and Mapping 

Sequencing was performed using a NovaSeq 6000 to generate > 80 million paired-end 

(2x50) reads (>80 million) UD and D4 F9 ECC samples. Sequence data quality was determined 

using FastQC software and quality based trimming and filtering (minimum quality score 30 and 

minimum read-length 20) was performed through TrimGalore tool (205, 211) . Greater than 95% 

of the reads from all samples were retained after quality control and were used for the mapping. 

Mapping was performed against the mouse reference genome (GRCm38) using Bowtie2 with a 

maximum of 1 mismatch (209). The overall mapping rate was >97% for all samples. Bowtie2 

derived BAM files were further filtered to retain the reads with minimum MAPping Quality 

(MAPQ) 10. 
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2.4.11 ChIP-Seq: Peak-calling 

Peak calling was performed using epic2 for each Input-ChIP pair using the mouse reference 

genome (GRCm38) (212). The tool was run with MAPQ10 filtered BAM files and the default 

parameters (--falsediscovery-rate-cutoff 0.05, --binsize 200). 

2.4.12 ChIP-Seq: Peak-annotation 

Peak-annotation and visualization was performed with R-package ChIPseeker (213). 

Annotations were performed for all epic2 peaks called with default parameters. 

2.4.13 Pathway Analysis 

IPA (Ingenuity Pathway Analysis), (IPA, QIAGEN Redwood City, 

www.qiagen.com/ingenuity), was used in the annotation of genes and in performing the pathway 

analyses. 

2.4.14 Gene expression analysis  

RNA was isolated by using the TRIzol reagent (Invitrogen, 15596026) according to the 

manufacturer’s protocol. Samples were treated with DNAse (Roche, 04716728001) at 37°C, and 

then purified using a Quick-RNATM MiniPrep Plus Kit (ZymoReseach, R1057). Reverse-

transcription quantitative PCR was performed by using Verso One-Step RT-qPCR kits (Thermo 

Scientific, AB-4104A) with 1 µg of purified RNA. Gene expression was calculated as ΔCt which 

is Ct(Gene)- Ct(Gapdh). Change in gene expression is reported as fold change relative to that in 

undifferentiated cells, which was set to 1. Data were reported as average ± SEM (standard error of 

the mean) of at least two biological replicates. See Table 2.4 for primers used. 

2.4.15 Co-immunoprecipitation 

Co-immunoprecipitation experiments were performed as described (179). Briefly, 

undifferentiated F9 ECCs and ESCs were washed and harvested in cold 1XPBS. Cellular proteins 

were extracted using TNEN250 lysis buffer (50 mM Tris pH 7.5, 5 mM EDTA, 250 mM NaCl, 

0.1% NP-40) complemented with protease inhibitors at 4°C with rotation for 30 min. Complexes 

were then immunoprecipitated overnight at 4°C with rotation by incubating the supernatant 

solution supplemented with two volumes of TNENG (50 mM Tris pH 7.5, 5 mM EDTA, 100 mM 

NaCl, 0.1% NP-40, 10% glycerol) with Dynabeads® M280 (Life Technologies, 11203D) bound 
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to 5 µg of antibody. Beads were washed with TNEN125 (50 mM Tris pH 7.5, 5 mM EDTA, 125 

mM NaCl, 0.1% NP-40) and samples were eluted by boiling for 10 min in Laemmli’s loading 

buffer containing 100 mM DTT. Western blots were performed with NuPAGE 4-12% Tris-Bis 

gels. Antibodies used included: Lsd1 (abcam, ab17721), HDAC1 (abcam, ab7028), Mi-2b (abcam, 

ab72418). 

2.4.16 Microscopy 

Bright field images of Embryoid bodies (EBs) were obtained with a Zeiss microscope using 

a 10X objective. Alkaline phosphatase staining was performed using solutions supplied by an 

alkaline phosphatase staining kit (Sigma, AB0300). Cells were cross-linked with 1% formaldehyde 

for 5 min, followed by quenching with a final concentration of 150 mM glycine. Cells were washed 

twice with 1XPBS, then twice with combined staining solution (BCIP and NBT). The stain was 

developed in the dark for 5 min, and then washed three times with 1XPBS. SSEA-1 

immunofluorescence was performed using the following antibodies: anti-SSEA-1 (Millipore, 

MAB430) and AlexaFluor 555 nm (Life Technologies, A21422). SSEA-1 and Alkaline 

phosphatase staining were imaged using 20X objectives under Nikon Ts and Zeiss microscopes, 

respectively. 

2.4.17 In vitro Lsd1 demethylase activity assay 

An in vitro fluorometric assay was used to detect Lsd1 demethylase activity using an 

EpigenaseTM kit (Epigentek, P-0379) according to the manufacturer’s protocol. A total of 0.25 µM 

of Lsd1 (Sigma, SRP0122) was used together with 0.5 µM (or as indicated) of Oct3/4 (abcam, 

ab134876 and ab169842) or BSA (Sigma, A3059) or the catalytic domain of Dnmt3a (purified in-

house) or 0.1 mM of the Lsd1 inhibitor Tranylcypromine (TCP). Signals were measured using a 

CLARIOstar plate reader and analyzed using MARs software as described by the manufacturer. 

2.4.18 Histone demethylation assay 

Lsd1 histone demethylation assays were performed as described (214). A total of 30 µg of 

bulk histones (Sigma, H9250) in a histone demethylation buffer (50 mM Tris pH 8.5, 50 mM KCl, 

5 mM MgCl, 0.5% BSA, and 5% glycerol) were incubated with 0.25 µM of Lsd1 (Sigma, SRP0122) 

alone, or increasing concentrations (0.125 µM, 0.25 µM, 0.5 µM, 1 µM) of Oct3/4 (abcam, 

ab134876 and ab169842), or 0.1 µM TCP for 4 hr at 37°C. Lsd1 activity was monitored by 
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Western blot using anti-H3K4me2 antibody (abcam, ab32356). The membrane was stained by 

Ponceau S to determine equal loading of the reaction mix. 

2.4.19 Western blots 

Western blot analysis was performed using the standard method and the following 

antibodies and dilutions: anti-Dnmt3a, 1:1000 (Active Motif, 39206), Anti-Lsd1, 1:1000 (abcam, 

ab17721) and anti-β Actin, 1:1000 (Santa Cruz, sc8628), and anti-Rabbit, 1:10,000 (Jackson 

Immunoresearch, 111-035-003) or anti-Mouse, 1:10,000 (Jackson Immunoresearch, 115-035-003). 

Chemiluminescence was performed according to the manufacturer’s protocol (Thermo-Fisher 

Scientific, 34580).  
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Table 2.1  Number of CpGs at each site used for Bis-Seq DNA methylation analysis. 
Genomic element  No. of CpGs 

Enhancer 

Lefty1 4 
Lefty2 6 
Sall4 4 
Sox2 10 

Trim28 6 
Esrrb 6 

Oct3/4 4 

Promoter 

Lefty1 6 
Lefty2 9 
Sall4 10 
Sox2 18 

Trim28 19 
Esrrb 29 

Imprinted region H19 11 
The number of CpG sites used to compute percent methylation within the 
H19 imprinted region, PpG enhancers, and promoters. 
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Table 2.2  Number of reads for each enhancer used for Bis-Seq analysis. 
 

Sample Lefty1 Lefty2 Sall4 Sox2 Trim28 Esrrb Oct3/4 Total 
ESCs UD 28465 21981 2861 5826 17973 6034 1902 85042 
ESCs D4 401 275 216 881 269 5381 6322 13745 

F9 ECCs UD 57536 49939 27259 40357 14261 22395 6322 232670 
F9 ECCs D4 62876 38534 29204 32570 13304 21569 8865 214866 
F9 ECCs D6 62185 38590 30187 28239 10163 13059 6980 182422 

F9 
ECCs+Myc- 
Dnmt3a UD 

3733 2692 1308 2612 1249 24671 311 38969 

F9 
ECCs+Myc-
Dnmt3a D8 

2734 1637 1135 2665 1097 4316 350 24705 

F9 
ECCs+FLAG-

Lsd1 UD 
2513 2267 816 4204 820 24412 1791 43102 

F9 
ECCs+FLAG-

Lsd1 D8 
2819 1950 1946 4530 1169 21576 1601 42022 

         
P19 ECCs 

UD 26651 18427 10541 31377 9437 46154 7044 175098 

P19 ECCs 
D4 40376 30470 18198 27196 11267 56736 14506 241010 

P19 ECCs 
D8 4713 8696 5880 28944 6475 24128 4498 96640 

P19 
ECCs+Myc-
Oct3/4 UD 

23029 11988 11538 9324 7735 28746 7510 130029 

P19 
ECCs+Myc-
Oct3/4 D4 

35014 20519 14300 18022 13227 43559 14989 210333 

Total 353045 247965 156838 236746 108446 342735 76669 1522445 
 

The total number of reads from Wide-Seq runs that were used for data presented in this study. The number 
of reads was calculated for each sample and enhancer, along with the overall total number of reads.
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Table 2.3  Number of reads for promoters and imprinted regions used for Bis-Seq analysis. 
Sample Lefty1 Lefty2 Sall4 Sox2 Trim28 Esrrb H19 Total 

F9 ECCs UD 51 726 486 9556 7575 4191 11062 33647 
F9 ECCs D4 99 1590 1400 17431 16307 13865 9376 60068 

Total 150 2316 1886 26987 23882 18056 20438 93715 
 

The total number of reads from Wide-Seq runs that were used in this study. The number of reads was 
calculated for each sample, promoter site, and imprinted locus, as well as the overall total number of reads. 
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Table 2.4  Primers used in this study. 
 

For Bisulfite PCR 
(enhancers): Primer sequence 

Trim28 out HSO3 F ATGGATGTTTATGGAAGTAGTAGAAATA 
Trim28 out HSO3 R ACATCTAAATACTACCCAAAACCATTAC 
Trim28 in HSO3 F AATAGTTTAGGTTTTATTTTTTTTAAGATT 
Trim28 in HSO3 R AAACCATTACTTCAAAATAACTTTAAATTA 
Sall4 out HSO3  F AGGGATTATAATTTTTTGAGTTTTAGTTTATA 
Sall4 out HSO3  R AAAACCTCTAAAAAAACAATCAATACTCTTAA 
Sall4 in HSO3 F TATATAGAGAGGTTTAAATAAAGGGTTTTT 
Sall4  in HSO3 R TTTAAAACCACTAAACATATTAAAACATAA 
Sox2 out HSO3  F AGAAAATTGAGTTATTAAGGTAGTAATTATTT 
Sox2 out HSO3  R AAACCAAAAACCTTAACTACCAAACATAA 

Sox2 in HS03 F TAAAATTTTTATAGTTTTAATTGTTAAATA 
Sox2  in HSO3 R TATTATATCTAAAACCAACTAACAATATTAT 

Lefty2 out HSO3 F TTAGAAGTTTTTGGGGGAGAGGTTTGATTTA 
Lefty2 out HSO3 R TCAAAAATCATAACTCTTCCCACACCTCAAA 
Lefty2 in HSO3 F ATAATATGAGGGAGAGGTTTAGTTTTT 
Lefty2 in HSO3 R CACCTCAAACTCTATCTACTACTAACTTTA 
Esrrb out HSO3 F TTTGGAGAGGAAATATGTTAATTTTGAATA 
Esrrb out HSO3 R AAATCAACACACAAAATTCACTAAAAAAACA 
Esrrb in HSO3 F AATAGGGATTTTTTTTGGGATAGAAAT 
Esrrb in HSO3 R ATTCACTAAAAAAAAAAAAAATCTCAAA 

Lefty1 out HSO3 F AAATAAGGAGGTAGGGGTAGAGAATATTTGA 
Lefty1 out HSO3 R AAAAAACAATCTCCCTCCCACCTAACA 
Lefty1 in HSO3 F TTTAGAGGAGAAGTTAAGTTTAGTATAGAGAATA 
Lefty1 in HSO3 R ACACCTAATCAAACCCATTATACAAAAT 

Oct3/4  out HSO3 F TAATGGGATTTTTAGATTGGGTTTAGAAAA 
Oct3/4  out HSO3 R TAACCCTAAACAAATACTCAACCCTTAAAT 
Oct3/4  in HSO3 F TTTGAGGGTTATTTTTTTGTAAAGATAA 
Oct3/4  in HSO3 R AAAAAAAATATCTAACTTCAAATTCAAA 
H19  out HSO3 F GAGTATTTAGGAGGTATAAGAATT 
H19  out HSO3 R ATCAAAAACTAACATAAACCCT 
H19  in HSO3 F GTAAGGAGATTATGTTTATTTTTGG 
H19  in HSO3 R CCTCATTAATCCCATAACTAT 
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Table 2.4 continued 
For Bisulfite PCR 

(promoters): Primer sequence 

Sox2 out HSO3  F AAGGTTTTTTTTGAAATTGTTATTATTAAA 
Sox2 out HSO3  R AATATTAACTCTCTCTTAAATACATAA 

Sox2 in HS03 F AAAAATTTTTTTGTGTTAGGGTTGGGAGTTA 
Sox2 in HSO3 R ACTATCCAACTAATATTTCAAAAAACTAACAAA 

Esrrb out HSO3 F AATTTGTAAAAGATAGGGTTTTTGATTTGAAGTTTA 
Esrrb out HSO3 R TATAAACCAAAACCCCCACCCAAAACCTAAAT 
Esrrb in HSO3 F AATTTAAAGTTTTTTAGAATTTTGAAGT 
Esrrb in HSO3 R AATCCTCCATAATACCACTAATACAATCCT 

Trim28 out HSO3 F TTTATTTTGTTTTTGTGTTTTTGGTATTTTAAAG 
Trim28 out HSO3 R TCTAATCTAAAATAAAAAATAACAAAATCAAAT 
Trim28 in HSO3 F ATTATATTTTTTTTTTTTGAGGTAGGAAGT 
Trim28 in HSO3 R TTTCATCTCAAAAACAAAATCAATAT 
Lefty1 out HSO3 F ATAATAAAGGGTGGTTTTGTTGGAGAGTTAGGGAATA 
Lefty1 out HSO3 R TATCCTTTCCCTTTCTTACTATAAAAAAATT 
Lefty1 in HSO3 F TTTTATAATTTATTATGGTTTTTTTATTTAT 
Lefty1 in HSO3 R AAATCTACCCCATCCCAATCTCTAAACCAAAATACA 

Lefty2 out HSO3 F ATTTATTAAGTATTAAGATTTAGTTGTTGTAAA 
Lefty2 out HSO3 R AACTACAACTATATATCACTATACCAAACCTATTTAA 
Lefty2 in HSO3 F AGATTTGGTTTTTGGATGGTTTTTGTTTTTAA 
Lefty2 in HSO3 R ATTCTCCATAAACCAATAAAAATCTAAATTT 
Sall4 out HSO3  F TAAAGGAATAGAATTATATTATATAATGTTTTTTTTAA 
Sall4 out HSO3  R ATCTTTCTACTTTACATTTTCTTAATTAACTATTT 
Sall4 in HSO3 F TTTTTTGAGTTGTAAATTGTATATTTTTTTAGATTT 
Sall4  in HSO3 R AATAAATCAACTAAACCACAAATTTAATAT 
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Table 2.4 continued 

For RT-qPCR: Primer sequence 
Oct3/4 F TCTTTCCACCAGGCCCCCGGCTC 
Oct3/4 R TGCGGGCGGACATGGGGAGATCC 

Sox2 F ATGATGGAGACGGAGCTGAA 
Sox2 R TTGCTGATCTCCGAGTTGTG 
Esrrb F CCTCATCAACTGGGCCAAGC 
Esrrb R TACACGATGCCCAAGATGAGAATCT 
Nanog F ACCTGAGCTATAAGCAGGTTAAGAC 
Nanog F GTGCTGAGCCCTTCTGAATCAGAC 
Trim28 F GAGATGGAGAGCGAACAGTCTAC 
Trim28 R TGTCACAGCTCTCACAGAACAG 
Prdm14 F ACAGCCAAGCAATTTGCACTAC 
Prdm14 R TTACCTGGCATTTTCATTGCTC 
Lefty1 F CTACAACACAGCCATGCCAG 
Lefty1 R CTCCATTCCGAACACTAGCAGGT 
Lefty2 F GCAAGAGGTTCAGCCAGAATTT 
Lefty2 R GCTGCTCCATTCCGAACACTA 
Olig2 F CGCAGCGAGCACCTCAAATCTAA 
Olig2 R CCCAGGGATGATCTAAGCTCTCGAA 
Foxa2 F CTCTTCCGTGAGCAACATGA 
Foxa2 R GCGCCCACATAGGATGAC 
Gata6 F CTTGCGGGCTCTATATGAAACTCCAT 
Gata6 R TAGAAGAAGAGGAAGTAGGAGTCATAGGGACA 
Gata4 F CTCTATCACAAGATGAACGGCATCAAC 
Gata4 R TCTGGCAGTTGGCACAGGAGAG 
Cxc4 F GAAGTGGGGTCTGGAGACTAT 

Cxcr4 R TTGCCGACTATGCCAGTCAAG 
Fgf5 F GAAAAGACAGGCCGAGAGTG 
Fgf5 R GAAGTGGGTGGAGACGTGTT 
Sall4 F GTGCTCCAGTGAACTCCCC 
Sall4 R ACAGCATTTGTTGCAGATGTGA 

Dnmt3l F ATGGACAATCTGCTGCTGACTG 
Dnmt3l R CGCATAGCATTCTGGTAGTCTCTG 
Dnmt3a F GTCACACAGAAGCATATCCAGGAG 
Dnmt3a R GTTGACAATGGAGAGGTCATTGC 

Lsd1 F GATGGGATTTGGCAACCTTAACAAG 
Lsd1 R AAACAAATTGACACTTGGGTCCC 

Gapdh F CAAAATGGTGAAGGTCGGTGTGAA 
Gapdh R CAACAATCTCCACTTTGCCACTG 
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Table 2.4 continued 

 

For ChIP-qPCR: Primer sequence 
Sox2 F TGGCGAGTGGTTAAACAGAG 
Sox2 R TAGCGAGAACTAGCCAAGCA 
Esrrb F CGAGCTTCAGCTGGCTATTT 
Esrrb R GAGCTCCAGATCCCCTACAC 

Trim28 F GGTCTGCAATTGAAGGAAGG 
Trim28 R TTAAACAGCAGGGGGTAAGG 
Lefty1 F GTAGCCAGCAGACAGGACAA 
Lefty1 R ATCCCCAATCCACATTCACT 
Lefty2 F AGGCCTAGCTTTTGCATCAC 
Lefty2 R TCTCCCAGAGTCGATCTTCC 
Sall4 F GAAATAAACATCTGGGAGAAGGA 
Sall4 R GGAAACCCCAGATTGAGAGA 

Oct3/4 F TATAGGTGTGGCATTCCGCATC 
Oct3/4 R TGCCACAAACCACCTGTATTTTAG 

Ctrl F ACCTAAACCTCATAAAGACACAACA 
Ctrl R TGACGTGTTCTTGGATTCAGT 
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Table 2.4 continued 
MethylRAD- 
adaptor and 

index primers 
Primer sequence 

Adaptor-1 sense ACACTCTTTCCCTACACGACGCTCTTCCGATCT 
Adaptor-1 
antisense NNNNAGATCGGAAGAGC(AminoC6) 

Adaptor-2 sense GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT 
Adaptor-2 
antisense NNNNAGATCGGAAGAGC(AminoC6) 

P1 ACACTCTTTCCCTACACGACGCT 
P2 GTGACTGGAGTTCAGACGTGTGCT 

i5- UDA5073 AATGATACGGCGACCACCGAGATCTACACGATAACAAGTACACTCTTTCC 
CTACACGACGCT 

i5- UDA5074 AATGATACGGCGACCACCGAGATCTACACAGCGGTGGACACACTCTTTCC 
CTACACGACGCT 

i5- UDA5075 AATGATACGGCGACCACCGAGATCTACACGGTTATGCTAACACTCTTTCC 
CTACACGACGCT 

i5- UDA5076 AATGATACGGCGACCACCGAGATCTACACAACCGCATCGACACTCTTTCC 
CTACACGACGCT 

i7- UDA7120 CAAGCAGAAGACGGCATACGAGATGAACTTCCTTGTGACTGGAGTTCAG 
ACGTGT 

i7- UDA7119 CAAGCAGAAGACGGCATACGAGATAGGTCCTTCCGTGACTGGAGTTCAG 
ACGTGT 

i7- UDA7118 CAAGCAGAAGACGGCATACGAGATTATGGAGATTGTGACTGGAGTTCAG 
ACGTGT 

i7- UDA7117 CAAGCAGAAGACGGCATACGAGATCGCAAGAGCCGTGACTGGAGTTCAG 
ACGTGT 

A list of all PCR primers used in this study (5’ to 3’), separated by technique. The presence of an (AminoC6) 
modification at the 3’ end of the antisense oligonucleotide of each adaptor is used to block extension.
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2.5 Results 

2.5.1 PpGs are partially repressed in differentiating F9 ECCs 

ECCs share many characteristics with ESCs, including mechanisms governing regulation 

of gene expression and differentiation (201). Based on the observation that aberrant PpG 

expression is commonly found in cancers (187, 188), we compared the magnitude of PpG 

repression in F9 ECCs with that in ESCs pre- and post-differentiation. F9 ECCs and ESCs were 

induced to differentiate with retinoic acid (RA) and expression of eight PpGs at 4 and 8 days (D4 

and D8) post-induction was measured by RT-qPCR. The data show that in differentiating F9 ECCs, 

several PpGs were incompletely repressed, of which genes encoding the pioneer factors Oct3/4 

and Nanog showed only 50% loss of expression at D8 post-differentiation. In ESCs, the expression 

of most PpGs was reduced by more than 80% at D4 post-differentiation (Figures 2.1A and B). The 

expression of Sox2 and Trim28 was maintained post-differentiation as an anticipated response to 

RA signaling guiding ESCs towards neural lineage. A substantial increase in the expression of the 

genes Lefty1 and Lefty2 in F9 ECCs suggests potential activation of germ cell and testis 

developmental programs (215). Continued expression of PpGs in F9 ECCs was also evident by 

positive alkaline phosphatase staining and SSEA-1 immunofluorescence in differentiating F9 

ECCs that is completely lost in ESCs post-differentiation (Figures 2.1C and D). We asked if failure 

to exit pluripotency in F9 ECCs was caused by an inability to activate lineage-specific genes. Our 

data showed a 10 to 50-fold increase in expression of the lineage specific genes Gata4, FoxA2, 

Olig2, Gata6, Cxcr4, and Fgf5 (Figure 2.1E), reflecting a standard response to signal of 

differentiation. Given that previous studies in ESCs have established a critical role of enhancer 

silencing in complete PpG repression, we next investigated if PpGe were fully decommissioned in 

F9 ECCs post-differentiation.  
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Figure 2.1  Pluripotency genes are partially repressed in F9 embryonal carcinoma cells. 

 
UD: undifferentiated; D4, D8: Days post-induction of differentiation; ESCs: embryonic stem 

cells and F9 ECCs:  F9 embryonal carcinoma cells, PpGs: pluripotency genes. 
(A, B, and E) Gene expression analysis by RT-qPCR of PpGs in (A) F9 ECCs, (B) ESCs (E) 

lineage specific genes in F9 ECCs. The Ct values for each gene were normalized to Gapdh and 
expression is shown relative to that in undifferentiated cells (dotted line). In F9 ECCs, the 
lineage specific genes show a 40 to 60-fold induction of gene expression (E) whereas the 

expression of PpGs is on average reduced to about 50% post-differentiation. (B) Average and 
SEM of two biological replicates are shown for each gene. (C) Alkaline phosphatase staining and 

(D) SSEA-1 immunofluorescence of ESCs and F9 ECCs pre- and post-differentiation. Positive 
signal indicates pluripotency that is lost post-differentiation in ESCs. The scale bar is a 100 µm. 
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2.5.2 DNA methylation is not established at PpGe during F9 ECC differentiation 

We have previously reported that in differentiating ESCs, PpGe decommissioning involves 

gain of DNA methylation, which is required for complete PpG repression (102). We used bisulfite 

sequencing (Bis-Seq) (Tables 2.1 and 2.2) to compare DNA methylation changes at a subset of 

PpGe in F9 ECCs to that in ESCs post-differentiation. Whereas DNA methylation was 

significantly gained in ESCs within 4 days post-differentiation, the PpGe remained 

hypomethylated in F9 ECCs at 4 and 6 days post-differentiation (Figures 2.2A, B, and 2.3A). A 

similar hypomethylated state persisted at PpG promoters in F9 ECCs except the highly methylated 

Lefty2 promoter, where DNA methylation was partially lost post-differentiation (Figure 2.3B). 

This result is consistent with the observed partial repression of most PpGs and an induction of 

Lefty2 expression in these cells (Figure 2.1A).  

We confirmed that absence of DNA methylation at PpGe was not due to the low expression 

of Dnmt3a in F9 ECCs post-differentiation (Figures 2.3C and D). Based on the previous 

observations in cancers, that overexpression of DNA methyltransferases leads to DNA 

hypermethylation (115, 216-219); we tested if overexpression of Dnmt3a could rescue DNA 

methylation at PpGe. F9 ECCs were transfected with Myc-Dnmt3a and differentiated at 24 hr post-

transfection to ensure expression of recombinant Dnmt3a during differentiation (Figure 2.3E). 

However, we observed no gain in DNA methylation at PpGe and no additional decrease in the 

expression of PpGs when compared to untransfected cells at D8 post-differentiation (Figures 2.2C 

and D). These data indicate that the over-expression of Dnmt3a does not rescue the differentiation 

defects observed in F9 ECCs. 

  We next assayed DNA methylation genome-wide using MethylRAD sequencing to analyze 

changes at all PpGe in F9 ECCs pre- and post-differentiation (129). Similar to methylation 

dependent restriction assays, this method uses FspEI enzyme, which cuts DNA bidirectionally 

from mC to create 31-32 bp fragments (220, 221). The restriction fragments were isolated for 

library preparation and high throughput sequencing. Using this method, we captured DNA 

methylation at 1,370,254 cytosines genome-wide, with a required minimum read support of five 

reads. The reads were distributed among all chromosomes representing all annotated genomic 

elements (Figure 2.4A). DNA methylation levels at enhancers (low-intermediate-high) were 

calculated based on highest (75th percentile) and lowest (25th percentile) number of reads at all 

annotated enhancers in the genome, which were obtained from the EnhancerAtlas 2.0. We filtered 
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the data to focus our analysis on DNA methylation changes at 3840 PpGe previously annotated in 

ESCs as Lsd1 bound regions (179). Our method identified 1,865 PpGe in F9 ECCs. Compared to 

methylation levels at all other known enhancers, the PpGe cluster into the low/intermediate 

methylation group (Figure 2.4B). The difference in methylation for each PpGe region was 

computed by subtracting the DNA methylation level in D4 differentiated from that in 

undifferentiated F9 ECCs. The data show 1488 (82%) regions fail to gain DNA methylation post-

differentiation of F9 ECCs (no change in DNA methylation; NCDM PpGe) (Figure 2.2E). To 

determine the function of genes associated with NCDM PpGe, we performed Ingenuity pathway 

analysis (IPA)  (www.qiagen.com/ingenuity), which showed a significant enrichment of Oct3/4- 

and Nanog-regulated mammalian embryonic stem cell and molecular mechanisms of cancer 

pathways (Figure 2.2F). 

Given that DNA methylation by Dnmt3a at PpGe requires H3K27 deacetylation and H3K4 

demethylation by Lsd1/Mi2NurD complex (179), we anticipate a potential impediment in this 

process causing a widespread failure to acquire DNA methylation at PpGe. 
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Figure 2.2  Pluripotency gene enhancers do not gain DNA methylation in differentiating F9 
embryonal carcinoma cells. 

UD: undifferentiated; D4, D8: Days post-induction of differentiation; D8 UT: untransfected 
F9 ECCs differentiated for 8 days; D8+Myc-Dnmt3a: F9 ECCs overexpressing Myc-Dnmt3a 

and differentiated for 8 days; ESCs: embryonic stem cells and F9 ECCs:  F9 embryonal 
carcinoma cells; PpGe: pluripotency gene enhancers. 

(A, B, and C) DNA methylation analysis using Bis-Seq. Genomic DNA was treated with 
bisulfite and PpGe regions were amplified by PCR. The amplicons were sequenced on a high 

throughput-sequencing platform (Wide-Seq) and the data were analyzed using Bismark 
software. DNA methylation of PpGe in (A) ESCs (B) F9 ECCs pre- and post-differentiation. 

Less than 10% DNA methylation was recorded in F9 ECCs whereas the H19 imprinted 
region, used as a control, showed DNA methylation at 80%. At the same regions, DNA 

methylation increased up to 30% in ESCs. See also Figure S1A. 
(C) DNA methylation of PpGe in F9 ECCs overexpressing Myc-Dnmt3a. (D) Gene 

expression analysis by RT-qPCR PpGs in F9 ECCs overexpressing Myc-Dnmt3a pre- and 
post-differentiation. (C, D) show no significant increase in DNA methylation or gene 

repression 8 days post-differentiation The Ct values for each gene were normalized to Gapdh 
and expression is shown relative to that in undifferentiated cells (dotted line). Data for A, B, 

C and D are the average and SEM of two biological replicates. 
(E) Genome-wide DNA methylation analysis by MethylRAD sequencing. Genomic DNA 
was digested with the restriction enzyme FspEI that cuts methylated DNA into 31-32 bp 
fragments. The fragments were sequenced and mapped on mm10 mouse genome. The 
number of reads per region were used as a measure for extent of DNA methylation and 

compared between undifferentiated and D4 differentiated F9 ECCs. The waterfall plot shows 
DNA methylation changes at PpGe computed by subtracting normalized counts in D4 

samples from normalized counts in undifferentiated samples. Upper and lower quartiles were 
used in thresholding regions as gaining or losing methylation. The pie chart shows fractions 

of PpGe with increase, decrease or no change in DNA methylation (NCDM). See also Figure 
S2B. 

(F) Top ten statistically significant enriched canonical pathways amongst the genes 
associated with the NCDM enhancers, which showed no change. The x-axis shows the log10 

(adjusted p-value), with the p-value adjusted for multiple testing using the Benjamini-
Hochberg method. 
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Figure 2.3  Expression of epigenetic effectors in F9 ECCs. 
 

UD: undifferentiated. D4: Days post-differentiation. ESCs: embryonic stem cells and F9 
ECCs:  F9 embryonal carcinoma cells; PpGe: pluripotency gene enhancers.  

(A and B) Bis-Seq analysis of DNA methylation at PpG (A) enhancers and (B) promoters in 
F9 ECCs pre- and post-differentiation. The DNA methylation at PpGe remained under 10% 
even at 6 days post-differentiation. DNA methylation at PpG promoters is also low except 

Lefty2, which shows very high methylation in the UD state that is reduced post-
differentiation.  

(C) RT-qPCR comparing the changes in expression of DNA methyltransferase Dnmt3a and 
histone demethylase Lsd1 in ESCs with that in F9 ECCs pre- and post-differentiation. The Ct 

values are normalized to Gapdh and represented relative to expression in undifferentiated 
cells (dotted line). In both ESCs and ECCs, Lsd1 and Dnmt3a expression is maintained post-

differentiation.  
(D) Western blot. A total of 50 µg of total protein from undifferentiated and differentiated 
cells was loaded in each well. Left panel confirms comparable expression of Dnmt3a and 

Lsd1 pre- and post-differentiation in F9 ECCs. Right panel compares Lsd1 expression in F9 
ECCs with ESCs showing very similar levels in these cells. β-Actin is the loading control. 

(E) Gene expression analysis by RT-qPCR and Western blot confirming recombinant Myc-
Dnmt3a overexpression in F9 ECCs 24 hr post-differentiation (48 hr post-transfection). The 

data are normalized to a Gapdh control and shown relative to untransfected that is set to 1. β-
Actin is used as loading control for Western blot. 
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Figure 2.4  Distribution of MethylRAD peaks. 

 
(A) Fractional distribution of MethylRAD peaks in undifferentiated and differentiated F9 

ECCs across regulatory regions of the genome.  
(B) Pie charts show the level of methylation at PpGe in undifferentiated (grey) and D4 

differentiated (blue) samples. Most PpGe had low levels of methylation or to a lesser extent, 
intermediate levels of methylation, with none having high CpG methylation. 
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2.5.3 A “primed” PpGe state is established during F9 ECC differentiation 

We asked if the chromatin state at PpGe in F9 ECCs is impermissible to DNA methylation. 

Using chromatin immunoprecipitation followed by qPCR (ChIP-qPCR) we examined histone 

H3K27 deacetylation and our data showed a decrease in H3K27Ac at PpGe in F9 ECCs post-

differentiation. This result suggests that, similar to ESCs, PpGe are active in undifferentiated F9 

ECCs and initiate the decommissioning process post-differentiation (Figures 2.5A and 2.6A). 

Furthermore, deacetylation at Lefty1 and Lefty2 enhancers suggests enhancer-switching involving 

the potential use of germline-specific enhancers post-differentiation, leading to an observed 

increase in Lefty1 and Lefty2 expression (Figure 2.1A). Numerous studies have proposed that 

deacetylation of H3K27Ac followed by H3K27 methylation by the PRC2 enzyme complex 

establishes a silenced state (222-224). Our data showed no increase of H3K27me3 at the PpGe in 

both ESCs as well as F9 ECCs post-differentiation, suggesting that PRC2 activity is nonessential 

for PpGe silencing (Figures 2.6B and C). 

We next monitored H3K4me1 demethylation by Lsd1 at PpGe during F9 ECC 

differentiation. Surprisingly, we observed a retention or an increase in H3K4me1 at five out of 

seven tested PpGe post-differentiation (Figure 2.5B), suggesting a potential disruption of Lsd1 

activity. We verified similar expression levels of Lsd1 in F9 ECCs compared to ESCs (Figures 

2.2C and D). To examine if Lsd1 interacts with the Mi2/NuRD complex in F9 ECCs, we performed 

co-immunoprecipitation (Co-IP) experiments using whole cell extracts. Antibodies against Lsd1 

and HDAC1 were used for reciprocal Co-IP. The data show the presence of Chd4, HDAC1 and 

Lsd1 and no significant difference in protein complexes between ESCs and F9 ECCs (Figure 2.6D). 

To test its recruitment to PpGe, ChIP-qPCR showed similar enrichment of Lsd1 in F9 ECCs and 

ESCs at four tested enhancers (Figure 2.5C). These data suggest that retention of H3K4me1 at 

PpGe is not caused by the absence of the enzyme but rather due to lack of Lsd1 activity in F9 

ECCs post-differentiation. 

To confirm the above conclusion, we next tested the effect of Lsd1 overexpression or 

inhibition on PpGe silencing and PpG repression in differentiating F9 ECCs. F9 ECCs were 

transfected with a FLAG-Lsd1 overexpressing plasmid and differentiated at 24 hr post-transfection 

(Figure 2.7A). We observed no change in H3K4me1 at PpGs post-differentiation. Rather, we saw 

a small increase at some enhancers, suggesting an inhibitory mechanism which affects Lsd1 
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irrespective of the source of expression (Figure 2.5D). An increase in H3K4me1 post-

differentiation could result from partial activity of Lsd1 by which it demethylates H3K4me2 to 

H3K4me1 at these sites. Additionally, Lsd1 overexpression had no effect on PpG repression or 

DNA methylation at PpGe post-differentiation (Figures 2.7B and C). 

Previous studies in ESCs have shown that treatment with the Lsd1 inhibitors pargyline and 

TCP (tranylcypromine) at the onset of differentiation results in H3K4me1 retention at PpGe and 

incomplete repression of PpGs (179). F9 ECCs were treated with pargyline and TCP 6 hr prior to 

induction of differentiation. In contrast to 70-80% cell death caused by the Lsd1 inhibitor in ESCs, 

F9 ECCs remained largely viable upon treatment (Figure 2.7D). Expression analysis of PpGs 

showed a slight relief of PpG repression in treated cells, suggesting a partial Lsd1 activity at PpGe 

(Figure 2.7E). Interestingly, pargyline treatment affected the H3K4me1 enrichment gained post-

differentiation in untreated cells (WT and Lsd1 overexpressing), confirming the partial activity of 

Lsd1 at these sites (Figure 2.5E). To test if Lsd1 activity contributed to the generation of H3K4me1 

in the undifferentiated state, we transiently overexpressed Lsd1 in F9 ECCs and allowed cells to 

grow for 72 hr. ChIP-qPCR analysis showed no increase in H3K4me1 levels in Lsd1 

overexpressing cells (Figure 2.7F). This result suggests that, similar to our observation in ESCs, 

the deposition of H3K4me1 in the undifferentiated F9 ECCs is largely accomplished by MLL3/4 

histone methyltransferases, and Lsd1 activity at these sites is initiated only in response to a 

differentiation signal (196, 225).  

Taken together, these observations suggest that the restricted activity of Lsd1 at PpGe leads 

to retention of H3K4me1 post-differentiation. Moreover, following the deacetylation of H3K27, 

the absence of DNA methylation and the presence of H3K4me1 converts these enhancers to a 

“primed” state, prone to reactivation in the presence of a coactivator.  
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Figure 2.5  Changes in chromatin modifications establish a “primed” state at pluripotency gene 

enhancers in F9 embryonal carcinoma cells. 
 

UD: undifferentiated; D4: Days post-induction of differentiation; D4+FLAG-Lsd1: F9 ECCs 
overexpressing FLAG-Lsd1 and differentiated for 4 days; Prg: Pargyline; ESCs: embryonic 

stem cells and F9 ECCs:  F9 embryonal carcinoma cells; PpGe: pluripotency gene enhancers.  
(A-E) Chromatin immunoprecipitation (ChIP)-qPCR assays showing percent enrichment 

over input. Histone modifications at PpGe (A) H3K27Ac and (B) H3K4me1 in F9 ECCs pre- 
and D4 post-differentiation. Whereas deacetylation of PpGe is observed as a decrease in the 

H3K27Ac signal, histone H3K4me1 is retained post-differentiation.  
(C) Similar Lsd1 occupancy in undifferentiated ESCs and F9 ECCs. 

(D) Enrichment of H3K4me1 in F9 ECCs expressing recombinant FLAG-Lsd1 compared to 
untransfected cells at D4 post-differentiation. There is a slight increase in H3K4me1 at some 

PpGe. 
(E) Fold change in enrichment of H3K4me1 at PpGe in pargyline treated and untreated, WT, 

and FLAG-Lsd1 overexpressing F9 ECCs, at D4 post-differentiation. Fold change is 
represented as relative to enrichment in the undifferentiated state (dotted line). 
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Figure 2.6  H3K27 modification of PpGe in ESCs and F9 ECCs.  

 
UD: undifferentiated; D4: Days post-induction of differentiation; IP: immunoprecipitation 

(A, B, and C) ChIP-qPCR was used to determine the percent enrichment of histone 
modifications at PpGe. (A) H3K27Ac in ESCs (B) H3K27me3 in ESCs and (C) H3K27me3 
in F9 ECCs pre- and post-differentiation. Whereas deacetylation of PpGe is observed as a 

decrease in H3K27Ac signal post-differentiation in ESCs, there is no gain of H3K27me3 at 
these sites, neither in ESCs nor in F9 ECCs. As previously reported, we observed a decrease 
in H3K27me3 at the enhancers and promoters of Hoxa5 and mNr2f1 genes, consistent with 

their transcriptional activation in response to differentiation (226). 
(D) Co-IP was performed with anti-Lsd1 or anti-HDAC1 using whole cell extracts from 

undifferentiated ESCs and F9 ECCs. 20% of the input and eluate from Co-IP were probed for 
Lsd1-Mi2/NuRD subunits (Lsd1, HDAC1, and CHD4) on Western blot.  
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Figure 2.7  Overexpression or inhibition of Lsd1 has little to no effect on differentiation and 
PpGe silencing in F9 ECCs.  

 
UD: undifferentiated; D8: Days post-induction of differentiation; Prg: pargyline; TCP: 

Tranylcypromine. 
(A) Gene expression analysis by RT-qPCR and Western blot examining the expression of 

recombinant FLAG-Lsd1 in F9 ECCs 24 hr post-differentiation (48 hr post-transfection). The 
Ct values are normalized to Gapdh and represented relative to expression in untransfected 

cells (set to 1). β-Actin is used as loading control for Western blot  
(B) Gene expression analysis by RT-qPCR of PpGs in F9 ECCs expressing FLAG-Lsd1. 
Similar to the situation with untransfected WT F9 ECCs, PpGs are partially repressed in 

these cells, showing no effect of recombinant Lsd1 on PpG repression. 
(C)  Bis-Seq analysis of DNA methylation at PpGe in F9 ECCs expressing recombinant 

FLAG-Lsd1 showed no gain, corresponding to no loss of H3K4me1 at these sites. Data are 
an average and SEM of two biological replicates. 

(D) Bright field microscopy of ESCs and ECCs differentiated for 4 days in the presence of 
the Lsd1 inhibitors Prg or TCP. 80-90% cell death is observed in ESCs. Lsd1 inhibitors have 
no effect on F9 ECC differentiation as shown by a normal morphology of embryoid bodies. 

Scale bar is 100 µm. 
(E) Gene expression analysis of PpGs by RT-qPCR in differentiating F9 ECCs untreated or 
treated with Prg and TCP. A slight derepression of PpGs was observed in inhibitor treated 
cells post-differentiation. Gene expression was normalized to Gapdh and represented as 

relative change to gene expression in undifferentiated (dotted line). (F) Undifferentiated F9 
ECCs were transfected with FLAG-Lsd1 and cultured for 72 hr. H3K4me1 enrichment was 
determined using ChIP-qPCR. No change in H3K4me1 levels was observed compared to 

nontransfected (UT) cells. 
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2.5.4 High throughput analysis of changes in H3K4me1 at PpGe 

To identify and enumerate PpGe with aberrant retention of H3K4me1 post-differentiation, 

we performed ChIP-Seq analysis of H3K4me1 genome-wide in undifferentiated and D4 

differentiated F9 ECCs. Peak calling was performed using Epic2 for each input-ChIP pair and the 

list was filtered to calculate the number of peaks with cut off (FDR<=0.05 and Log2FC>=2) 

(Figure 2.9A). We analyzed the distribution of H3K4me1 peaks at the regulatory elements across 

the genome (Figure 2.9B). For further analysis, we identified 1425 H3K4me1 peaks found within 

1 kbp of PpGe previously annotated in ESCs (179).  The difference in peak enrichment (i.e. 

log2FoldChange) between differentiated and undifferentiated was calculated to score for changes 

in H3K4me1 post-differentiation. The data showed no change, increase, or decrease in 733, 510, 

and 182 PpGe, respectively. Therefore, 87% of PpGe showed no significant decrease in H3K4me1 

(no decrease in histone methylation; NDHM PpGe) (Figure 2.8A). We next computed the 

correlation between the three PpGe sub-groups and the 1792 PpGe that undergo H3K4me1 

demethylation in differentiating ESCs (179). The data showed that a significant fraction of NDHM 

PpGe, which exhibit an increase (74%) or no change (69%) in H3K4me1 in F9 ECCs, overlap 

with PpGe that are H3K4me1 demethylated in ESCs (Figures 2.8B, C, and 2.9C). These 

observations strongly support our previous conclusion that in F9 ECCs, Lsd1 activity is inhibited 

leading to retention of H3K4me1 at PpGe. IPA of NDHM PpGe–associated genes showed highest 

enrichment for Oct3/4-regulated and stem cell pathways. Comparatively, genes associated with 

PpGe that undergo H3K4me1 demethylation, show enrichment for signaling pathways (Figures 

2.8D and 2.9D). A correlation between NCDM and NCHM PpGe showed that 65% of the NDHM 

PpGe fail to acquire DNA methylation, underpinning the role of histone demethylation in the 

regulation of DNA methylation at PpGe (Figure 2.8E) (102).   
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Figure 2.8  Retention of H3K4me1 at most pluripotency gene enhancers in F9 ECCs post-
differentiation. 

 
ESCs: embryonic stem cells and F9 ECCs:  F9 embryonal carcinoma cells; PpGe: 

pluripotency gene enhancers; D4: Days post-induction of differentiation   
Genome-wide H3K4me1 levels in F9 ECCs pre- and post-differentiation were measured by 

ChIP-Seq. Peak calling was performed using Epic2 for each input-ChIP pair. 1425 H3K4me1 
peaks were identified in F9 ECCs within 1 kbp of previously annotated PpGe in ESCs (179). 
See also Figure S5A. Histone demethylation activity of Lsd1 was surmised by calculating the 

change in H3K4me1 peak enrichment at PpGe between D4 differentiated and 
undifferentiated samples.  

(A) Waterfall plot represents changes in H3K4me1, which were calculated as the difference 
between log2FC of D4 and undifferentiated samples, and transformed to Z-score. Z-score 
thresholds of +1 and -1 were used to define the fractions showing increase, no change, or 

decrease in H3K4me1 shown in the pie chart. Taken together, 87% PpGe show an increase or 
no change (NDCM) in H3K4me1 enrichment.  

(B, C) Venn diagram showing an overlap between PpGe that show (B) an increase, or (C) no 
change in peak enrichment in F9 ECCs but undergo histone H3K4me1 demethylation in 

ESCs post-differentiation (179).  
(D) Top ten statistically significant enriched canonical pathways amongst the genes 

associated with increase and no change in F9 ECCs. The x-axis shows the log10 (adjusted p-
value), with the p-value adjusted for multiple testing using the Benjamini-Hochberg method. 
(E) Overlap between the PpGe showing no change in DNA methylation (NDHM) and PpGe 

that show no decrease in H3K4me1 (NCDM). 
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Figure 2.9  Distribution of H3K4me1 ChIP-Seq peaks. 
 

(A) Summary of the overlapping LSD1 bound sites between H3K4me1 peaks in F9 ECCs 
and ESCs (179). To determine correct overlap, Whyte et al. peak coordinates were converted 

from mm8 to mm10 using CrossMap tool (227). 
(B) Fractional distribution of H3K4me1 peaks in undifferentiated and differentiated F9 ECCs 

throughout the genome.  
(C) Overlap of the sites that show decrease in H3K4me1 post-differentiation in ESCs (179), 

and F9 ECCs.  
(D) Top ten most statistically significant enriched canonical pathways amongst the genes 

associated with decrease in F9 ECCs. 
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2.5.5 Lsd1 activity at PpGe is inhibited by its interaction with Oct3/4 

Next, we sought to determine the mechanism that inhibits Lsd1 activity. Due to its 

continued expression in F9 ECCs post-differentiation, we assumed that Oct3/4 remains associated 

with PpGe, preventing the demethylation of H3K4me1. We tested this hypothesis in P19 ECCs in 

which Oct3/4 expression was reported to be strongly repressed post-differentiation (228). After 

confirming a 90% reduction in Oct3/4 expression (Figure 2.10A), we probed H3K4me1 

demethylation at PpGe during P19 ECC differentiation. Indeed, our data show decreased 

enrichment of H3K4me1 at PpGe 4 days post-differentiation (Figure 2.10B). Similar to ESCs, we 

also observed a massive cell death when P19 ECCs were exposed to the Lsd1 inhibitor during 

differentiation (Figure 2.12A). The change in the chromatin state was accompanied by a 40% gain 

of DNA methylation at these sites (Figure 2.10C).  

This observation, together with the IPA showing enrichment of Oct3/4-regulated genes in 

NCHM and NCDM enhancers, suggested that Oct3/4 might regulate the demethylase activity of 

Lsd1 at PpGe. Co-precipitation experiments using recombinant proteins, GST-Lsd1 and Oct3/4, 

confirmed a direct interaction between Oct3/4 and Lsd1 (Figure 2.11A). This report is concurrent 

with previous ones suggesting that Oct3/4 interacts with Lsd1 and the Mi2/NuRD complex in 

ESCs (161, 162). To test the effect of Oct3/4 interaction on Lsd1 catalytic activity, we performed 

in vitro Lsd1 demethylation assays using H3K4me2 peptide as a substrate. Our data showed that 

in the presence of Oct3/4, Lsd1 activity was reduced by 60-70% in a dose dependent manner. This 

reduction in activity was not observed in the presence of recombinant Dnmt3a protein (Figures 

2.11B and C). We also performed Lsd1 demethylation assays using purified histones as a substrate 

and detected H3K4me2 demethylation on a Western blot. The data clearly show reduced 

H3K4me2 signal in presence of Lsd1, which was rescued in the presence of 0.1 mM TCP. An 

accumulation of H3K4me2 signal with an increase in Oct3/4 concentration in the reaction mix 

clearly showed increased inhibition of Lsd1 activity by Oct3/4 (Figure 2.11D). These data suggest 

that in F9 ECCs, due to its continued expression post-differentiation, Oct3/4 remains bound at 

PpGe and inhibit Lsd1. We tested this prediction directly by stably expressing recombinant Oct3/4 

in P19 ECCs (Figure 2.12B). Following differentiation of Oct3/4-expressing P19 cells, 

examination of H3K4me1 showed retention of this mark at PpGe, indicating the inhibition of Lsd1 

by recombinant Oct3/4 (Figure 2.11E). This inhibition was accompanied by derepression of 
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several PpGs and reduced gain in DNA methylation at their respective enhancers (Figures 2.11F 

and G).  

Taken together we propose the following model to explain the regulation of Lsd1 activity 

at PpGe. At the active PpGe, Lsd1 activity is inhibited by its interaction with bound Oct3/4. Post-

differentiation, this inhibition is relieved by dissociation of Oct3/4 from its binding sites. However, 

in cancer cells where Oct3/4 expression is maintained, Lsd1 is held in its inhibited state, leading 

to incomplete demethylation. Retention of H3K4me1 in turn blocks the activation of Dnmt3a from 

its autoinhibited state, resulting in an absence of DNA methylation at PpGe. The absence of DNA 

methylation and the presence of H3K4me1 convert these enhancers to a “primed” state, prone to 

activation in the presence of a coactivator (Figure 2.13). Based on previous reports that Oct3/4 as 

well as Lsd1 are aberrantly expressed in several cancers (229-235), Oct3/4-Lsd1 interaction could 

mistarget Lsd1 activity, leading to aberrant gene expression. 
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Figure 2.10  PpGe are decommissioned in differentiating P19 ECCs. 

 
UD: undifferentiated; D4, D8: Days post-induction of differentiation; P19 ECCs:  P19 

embryonal carcinoma cells, PpGs: pluripotency genes; PpGe: Pluripotency gene enhancers.  
(A) Gene expression analysis by RT-qPCR of PpGs in P19 ECCs: The Ct values for each 

gene were normalized to Gapdh and expression is shown relative to that in undifferentiated 
cells (dotted line). Similar to the repression of PpGs in ESCs (Figure 1A), PpGs, especially 

Oct3/4 and Nanog, show more than 90% reduction in expression.  
(B) ChIP-qPCR showing H3K4me1 enrichment in UD and D4 differentiated P19 ECCs. A 

decrease in H3K4me1 was observed at all PpGe post-differentiation, showing histone 
demethylation activity.  

(C) DNA methylation analysis of PpGe using Bis-Seq in UD, D4, and D8 differentiated P19 
ECCs. A 40% increase in DNA methylation level was observed at PpGe post-differentiation. 

Average and SEM of two biological replicates are shown for each gene.  
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Figure 2.11  Oct3/4 directly interacts with Lsd1 and inhibits its catalytic activity. 
 

TCP: tranylcypromine; ECCs: embryonal carcinoma cells; PpGe: pluripotency gene 
enhancers D4: Days post-induction of differentiation.  

(A) GST-pull down experiment showing direct interaction between Lsd1 and Oct3/4. 
Recombinant GST-Lsd1 was incubated with Oct3/4 at about 1:2 molar ratio and precipitated 

using GST-Sepharose. The co-precipitated Oct3/4 is detected using anti-Oct3/4 antibody.  
(B) Lsd1 demethylase assay was performed using 0.25µM of Lsd1 and H3K4me2 peptide as 

substrate. Lsd1 demethylation activity was completely inhibited by 0.1 mM TCP 
(tranylcypromine) in the reaction. To test the effect of Oct3/4 on Lsd1 activity, 

demethylation assays were performed in the presence of 0.5 µM Oct3/4 at 1:2 (Lsd1:Oct3/4) 
molar ratio. The catalytic domain of Dnmt3a at the same molar ratio was used as a control.  
(C) Dose dependent inhibition assays were performed using increasing concentrations of 

Oct3/4 in the following molar ratios of Lsd1:Oct3/4, (1:0.5), (1:1), (1:2), (1:3), (1:4). Data 
are an average and SD of at least 5 experimental replicates. 

(D) Lsd1 demethylation assays were performed using 0.25 µM of Lsd1 and 30 µg bulk 
histones as substrate with increasing concentrations of Oct3/4 in the reaction. Upper Panel: 

Histone demethylation was detected by using anti H3K4me2 on Western blot showing a 
retention of signal in presence of increasing concentration of Oct3/4. Lower panels: Amount 

of Lsd1 enzyme and increasing amounts of Oct3/4 in the histone demethylation reaction. 
Ponceau S stain of bulk histones shows equal loading on the gel. 

(E) ChIP-qPCR showing percent enrichment of H3K4me1 at PpGe in P19 ECCs stably 
expressing recombinant Myc-Oct3/4 pre- and post-differentiation. The data show retention of 

H3K4me1 post-differentiation. 
(F) Gene expression analysis by RT-qPCR of PpGs in P19 ECCs expressing recombinant 
Myc-Oct3/4. The Ct values were normalized to Gapdh and expression is shown relative to 

that in undifferentiated cells (dotted line).  
(G) DNA methylation analysis of PpGe using Bis-Seq in UD and D4 differentiated P19 

ECCs WT and expressing recombinant Myc-Oct3/4. Oct3/4 expressing cells show failure to 
gain DNA methylation at PpGe post-differentiation compared to untransfected WT. Average 

and SEM of two biological replicates are shown. 
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Figure 2.12  P19 ECCs are sensitive to Lsd1 inhibitor. 
 

D4: Days post-induction of differentiation; Prg: pargyline; UT: untransfected control. 
(A) Bright field microscopy of P19 ECCs differentiated for 4 days in presence of Lsd1 

inhibitor, Prg. 80-90% cell death is observed in P19 ECCs indicating that Lsd1 activity at 
PpGe is required for differentiation. Scale bar is 100 µm. 

(C) Expression analysis by Western blot confirming recombinant Myc-Oct3/4 
overexpression in two independent clones of P19 ECCs. β-Actin is used as loading control 

for Western blot. Oct3/4 directly interacts with Lsd1 and inhibits its catalytic activity. 



73 
 

 

Figure 2.13  Model of epigenetic state at PpGe in F9 ECCs during differentiation.  
 

In an undifferentiated state, the PpGe are active, bound by the coactivator complex and 
containing chromatin modifications including H3K4m2/1 and H3K27Ac. In response to 
signal of differentiation, the dissociation of the coactivator complex including Oct3/4 is 

followed by the activity of the Lsd1-Mi2/NuRD complex, which facilitates enhancer 
silencing. The histone deacetylase (HDAC) removes H3K27Ac at PpGe, and Lsd1 

demethylates H3K4me1, followed by DNA methylation by Dnmt3a. However, in F9 ECCs, 
Lsd1 activity is inhibited in the presence of Oct3/4, causing retention of H3K4me1. The 

ADD domain of Dnmt3a cannot interact with H3K4 methylated histone tail and will 
potentially remain in the autoinhibited state, thus preventing DNA methylation at these sites. 
Consequently, PpGe instead of being silenced acquire a “primed” state. Black pins represent 

methylated CpGs.  
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2.6 Discussion  

The preservation of the epigenetic state of enhancers in various cell types indicates that 

aberrant changes could promote tumorigenesis, which is supported by recent studies revealing a 

crucial role for enhancer-mediated activation of oncogenes (236-240). Changes in H3K4me1 

levels and DNA accessibility at various enhancers have been reported to many cancers (241). Some 

studies also propose a role for changes in enhancer states in therapy resistance of cancer cells. 

These studies showed loss or gain of H3K4me1/2 at the enhancers in resistant breast cancer cells 

and loss of H3K27 acetylation at enhancers in T cell acute lymphoblastic leukemia (T-ALL) (242, 

243). In addition, DNA hypermethylation concomitant with overexpression of DNA 

methyltransferases is a hallmark of many cancers (115, 218). Changes in DNA methylation at 

enhancers occur in breast, lung, prostate, and cervical cancers (225, 244-246). These studies 

suggest that the chromatin state of enhancers can be used as a diagnostic to predict aberrant 

expression of tissue-specific genes in cancer. Our data showing a congruous response of PpGe to 

signals of differentiation in ESCs supports this prediction. During ESC differentiation, all tested 

PpGe undergo histone deacetylation and a gain of DNA methylation, irrespective of the 

transcriptional status of the associated gene. This observation is exemplified by H3K27Ac 

deacetylation and gain of DNA methylation at Sox2 and Trim28 enhancers despite the maintained 

expression of these genes.  

Our study reveals a mechanism by which developmental enhancers could acquire aberrant 

histone modification and DNA methylation states that affect gene expression. We show in F9 

ECCs compromised activity of the histone demethylase, Lsd1, results in the retention of H3K4me1 

and the absence of DNA methylation at the PpGe, leading to a primed state of enhancers. Unlike 

the silenced state, the “primed” enhancer state grants accessibility for coactivator binding which 

renders cells highly vulnerable to a small increase in the expression of oncogenic coactivators or 

master transcription factors (58, 247).  

We discovered that Lsd1 activity is inhibited by its interaction with the pioneer 

transcription factor Oct3/4, which is expressed at a substantial level in F9 ECCs post-

differentiation. Recently, a similar observation was reported from flow-cytometric analysis 

showing that compared to ESCs, a significantly higher number of F9 ECCs have persistent Oct3/4 

expression post-differentiation (248). Aberrant expression of Oct3/4, Sox2, and Nanog is 
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associated with tumor transformation, metastasis, and drug resistance (190, 249). We speculate 

that during differentiation of cancer stem cells, inhibition of Lsd1 by Oct3/4 leads to PpGe 

priming/reactivation, which enhances PpG expression. Our studies further highlight the versatility 

of Lsd1 binding and activity, which can be fine-tuned by its interaction with numerous factors, 

allowing the enzyme to function in various cellular processes including differentiation and disease. 
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 TRANSITION STATE COVALENT CROSSLINKING OF 
DNMT3A TO IDENTIFY ITS DIRECT TARGETS GENOME-WIDE 

Lama AlAbdi, Nicole Adkins, James Breedlove, and Humaira Gowher 

3.1 Declaration of collaborative work 

Dr. Humaira Gowher and Lama AlAbdi designed experiments. 

Lama AlAbdi, Nicole Adkins, and James A. Breedlove performed experiments. 

Nicole Adkins performed screening experiments for FLAG-Dnmt3a expressing cell lines. 

James A. Breedlove developed Dot blots and prepared buffers. 

All other experiments were performed by Lama AlAbdi. 

3.2 Abstract 

DNA methylation is an epigenetic modification necessary for stable gene repression. In 

mammals, it is catalyzed by DNA methyltransferases Dnmt1, Dnmt3a, and Dnmt3b. Current 

methodologies, which determine the distribution of DNA methylation in genomes, show the results 

of combined activities of multiple Dnmts at their target sites. To examine the activity of a particular 

Dnmt in response to an external stimulus, we developed a method, Transition State Covalent 

Crosslinking DNA Immunoprecipitation (TSCC-DIP), which traps catalytically active Dnmts in 

their transition state with the DNA substrate. The strength of our method lies in its ability to 

determine the direct genomic targets of specific Dnmts. Once fully developed, TSCC-DIP will be 

a valuable tool for studying the specific functions of Dnmts in establishing and maintaining the 

dynamic changes in DNA methylation during static or kinetic biological states. 

3.3 Introduction 

In mammals, DNA methylation involves the covalent deposition of a methyl group at the 

C5 position of cytosine bases. This chemical reaction is catalyzed by a group of enzymes called 

DNA methyltransferases (Dnmts) (118, 250-252). These enzymes are subdivided into two families 

based on their substrate preference: Dnmt1 is a maintenance methyltransferase with high affinity 

for hemi-methylated DNA. Dnmt1 is responsible for conserving methylation patterns during DNA 
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replication and untimely demethylation events (253). The de novo DNA methyltransferases 

Dnmt3a and Dnmt3b, together with their inactive homolog Dnmt3l, establish the genomic 

methylation patterns during early embryogenesis and cell fate decisions (252). As DNA 

methylation at regulatory elements is strongly associated with gene repression, deposition of this 

epigenetic mark is necessary for fine-tuning gene expression, especially in early developmental 

stages (96). Numerous studies have reported observations of altered DNA methylation patterns in 

many cancers (244, 245), suggesting a critical role in tumor initiation and/or progression.  

Functional redundancy among the different Dnmts is reflected by their high sequence 

similarities (254). However, specific targets for Dnmts have also been reported (104, 255). The 

activity of Dnmts is regulated via posttranslational modifications or interactions with other 

proteins (256). The active de novo DNA methyltransferases, Dnmt3a and Dnmt3b, have been 

reported to associate with TFs and epigenetic effectors that modulate their activities. For example, 

Dnmt3a can be targeted to specific genomic loci by interacting with TFs such as c-Myc, p53, and 

RP58 (257-259). Dnmt3s can also be recruited through interacting with epigenetic modifiers such 

as HP1, G9a, Suv39h1, and HDACs to promote a repressive chromatin environment (260-266). 

Furthermore, Dnmts have specialized domains that direct these enzymes to certain genomic 

regions via histone-Dnmt interactions (104, 126, 267-269). Many studies have also reported on the 

mechanisms regulating Dnmt3 catalytic activity. Such mechanisms include auto-inhibition and 

enhanced activation by homo- or hetero-dimerization/-oligomerization (101, 126, 267, 268, 270). 

Given the complexity of Dnmt regulation and biological functions, there is a need to 

understand the relationship between mechanisms regulating gene expression and the dynamic 

changes in DNA methylation in the context of a static or kinetic cellular state(s). To answer some 

of the questions addressing the functional relationship between DNA methylation and 

transcriptional regulation, it is important to tackle some technical limitations associated with the 

strategies used to address them. The gold standard assays in the field rely on either conventional 

(nonspecific) chemical crosslinking or harsh chemical conversion. To examine Dnmt occupancy 

profiles, chemical crosslinking and chromatin immunoprecipitation are usually the methods of 

choice (271). However, these approaches often lead to epitope masking as well as nonspecific 

association of Dnmts to genomic regions due to protein-protein interactions. These techniques 

usually suffer from high noise to signal ratio and false positive associations (272). Bisulfite 

conversion followed by sequencing is usually used to analyze DNA methylation levels (273). In 
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determining DNA methylation patterns, valuable information is lost because this approach sums 

the total methylation outcome of all Dnmts expressed in the biological sample analyzed.  

We developed a new method to investigate DNA methylation that relies on capturing a 

Dnmt in its transition state by covalently crosslinking it to DNA during catalysis. This method, 

termed Transition State Covalent Crosslinking followed by DNA Immunoprecipitation (TSCC-

DIP), will provide single-base resolution of specific genomic targets of Dnmts captured during 

their activity. Our approach is built on previous protocols such as the Rapid Assay of the DNA 

Adduct Response (RADAR), in which transient intermediates are trapped by drug treatments (274). 

We used a drug that specifically inhibited active Dnmts. These enzymes are trapped in the 

intermediate state and thus selectively chemically cross-linked. To capture Dnmts, we treated the 

cells with 5-Aza-2′-deoxycytidine (5-Aza-dC). This suicide-inhibitor is a 2′-deoxycytidine analog 

which undergoes random incorporation into the genome during replication (275). When a Dnmt is 

recruited to methylate 5-Aza-dC at a genomic locus, a stable transient intermediate is formed (163, 

276). Proteins that are part of the DNA-Dnmt adducts are then immunoprecipitated and the DNA 

sequenced to identify the sites subjected to Dnmt catalysis. 

To this end, we chose embryonic stem cells (ESCs) that express FLAG-Dnmt3a as a proof 

of concept model. The cells were treated with 50 μM 5-Aza-dC for 8 hr before collection. Next, 

gDNA was isolated using a RADAR lysis buffer, which preserves DNA-protein adducts while 

removing unbound Dnmts, thus ensuring specificity and sensitivity. Using dot blot assays, our data 

showed that we were able to enrich for Dnmt3a-DNA adducts in the 5-Aza-dC treated samples. 

We further demonstrated that this adduct can be immunoprecipitated and sequenced. To examine 

specific Dnmt functions in a dynamic state as the cells are undergoing fate decisions in response 

to stimuli, we standardized a protocol to differentiate ESCs as a monolayer. Our data provided 

evidence for the robustness of our differentiation protocol and demonstrated that PpG enhancers 

gained DNA methylation concomitant with their transcriptional repression. Dot blot assays 

provided evidence for 5-Aza-dC incorporation and Dnmt3a capture during the different stages of 

differentiation. Once completely developed, this method will provide a valuable tool for studying 

the dynamic changes in DNA methylation in any biological process. 



79 
 

3.4 Materials and Methods  

3.4.1 Cell culture and drug treatments 

E14tg2a embryonic stem cells (ESCs) grown on gelatinized dishes in the presence of 

leukemia inhibitory factor (LIF) as previously described, were co-transfected with pCAG-

3XFLAG-Dnmt3a-GFP and HSC1-GiP (Addgene 58254) (102). Clonal expansions were screened 

using anti-FLAG antibody and the transgenic cell line with the highest expression of FLAG-

Dnmt3a was selected. A sister cell line with puromycin (puro) resistance but lacking FLAG-

Dnmt3a expression was used as a control. Cells were grown to 80% confluency and treated with 

50 μM 5-Aza-2′-deoxycytidine (Millipore, 189825) for 8 hr (or as indicated) at 37oC and 5% CO2.  

3.4.2 Genomic DNA purification 

Cells were washed on the plate twice with 1XPBS and then lysed with RADAR assay 

buffer (1% Sacosyl, 2% IGEPAL, 10 mg/mL DTT, 20 mM EDTA, 20 mM Tris-HCl pH 8, 0.1M 

NaOAc, 2.5 M GTC, 4 M LiCl) (72). Genomic DNA (gDNA) was precipitated with isopropanol 

and resuspended in 8 mM NaOH. Samples were diluted with 1XTBS pH 7.4 and sheared using a 

probe sonicator with one second on and one second off for a total of five seconds at 30% amplitude. 

3.4.3 Dot blot assay 

Equal amounts of samples were applied to a nitrocellulose membrane under vacuum 

suction and washed with 1XTBST. The blot was probed with anti-FLAG 1:1000 (Sigma, F3165), 

anti-Dnmt3a, 1:1000 (Active Motif, 39206), anti-Dnmt1, 1:1000 (abcam, ab13537), followed by 

anti-Rabbit, 1:10,000 (Jackson Immunoresearch, 111-035-003) or anti-Mouse, 1:10,000 (Jackson 

Immunoresearch, 115-035-003 antisera). Chemiluminescence was performed according to the 

manufacturer’s protocol (Thermo-Fisher Scientific, 34580). 

3.4.4 Immunoprecipitation and sequencing 

  Equal amounts of sheared gDNA were incubated with Anti-FLAG G1 affinity resin 

(GenScript, L00432) overnight at 4oC with rotation. Complexes were eluted with FLAG peptide. 

Samples were incubated with Proteinase K, and the DNA was purified using a standard 

phenol:chloroform purification followed by ethanol precipitation. Yield was quantified using a 

nanodrop spectrophotometer. Samples were sequenced using NGS on a Wide-Seq platform. The 



80 
 

reads were assembled and visualized by IGV. Bedtools was used to remove any reads that 

overlapped between 5-Aza-2′-deoxycytidine treated and untreated samples. Mapped reads were 

compared to publically available Dnmt3a ChIP-seq performed using ESCs (104) 

(GSM1382257_MmES). 

3.4.5 Neuronal differentiation and drug treatments 

E14Tg2A ESCs expressing FLAG-Dnmt3a-Puro or Puro-only cells were maintained in 

media containing LIF and induced to differentiate to neuronal progenitors in a monolayer culture 

as described (164). Briefly, 10,500 cells per cm2 were plated in a 10 cm gelatinized plate containing 

N2B27 differentiation media comprised of (1:1 ratio of DMEM/F12: Neurobasal media 

supplemented with insulin (12.5 µg/mL), apo-transferrin (50 µg/mL), progesternone (1 ng/mL), 

putrescine (50 µM), sodium selenite (15 nM), bovine serum albumin (0.0025 %), 5 ml of B27 

supplement, 0.2 mM L-glutamine, and 0.1 mM 2-mercaptoethanol). The medium was changed 

every 24 hr and cells were treated with 50 µM 5-Aza-dC for 12 hr prior to collection. 

3.4.6 Expression analysis 

Cell pellets collected during differentiation were resuspended in TRIzol reagent 

(Invitrogen, 15596026) and RNA was isolated according to the manufacturer’s protocol. Samples 

were treated with DNAse (Roche, 04716728001) at 37°C, and then purified using Quick-RNATM 

MiniPrep Plus Kit (ZymoReseach, R1057). Complementary DNA (cDNA) was synthesized using 

Tetro Reverse Transcriptase (Bioline, BIO-65050) with gene specific primers and 1 µg of purified 

RNA as per the manufacturer’s instructions. Reverse-transcription quantitative PCR (RT-qPCR) 

was performed using the qPCR master mix EvaGreen following the manufacturer’s conditions 

(MidSci, BEQPCR-S). Gene expression was calculated as ΔCt which is Ct(Gene)-Ct(β-Actin). The 

change in gene expression is reported as fold change relative to that in undifferentiated cells, which 

was set to 1. See Table 3.1 for primers used. 

3.4.7 Bisulfite conversion 

Bisulfite sequencing was performed to detect changes in DNA methylation levels between 

undifferentiated and differentiated cells (UD, D1, D2, D3, and D4). Following bisulfite treatment 

using the EpiTect Fast Bisulfite Conversion Kit (Qiagen, 59802) and 1 µg of DNA as per the 
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manufacturer’s protocol, bisulfite-converted DNA was amplified using nested primers as reported 

(102). Inner PCR products of each sample were purified, pooled, and sequenced using a Wide-Seq 

platform. The reads were mapped by Bowtie2 and analyzed by Bismark for percent DNA 

methylation. Percent methylation for each enhancer was computed by taking the total average of 

percent methylation reported for each CpG within the region. See Table 3.1 for primers used for 

bisulfite sequencing, and Table 3.2 for the number of reads for each sample. 

3.4.8 Methylation-dependent PCR (MD-PCR) 

Genomic DNA was isolated using the conventional phenol:chloroform extraction protocol 

followed by isopropanol precipitation. MD-PCR was performed as described in (277). gDNA was 

digested with PvuII (for the analysis of β-globin, Pgk2, and Igf2r) or HindIII (for the analysis of 

ApoA1, and H19) either alone (denoted as Uncut) or with HpaII restriction enzyme (denoted as 

HpaII). Primers flanking the HpaII cut site were used to PCR amplify 20 ng of the digested gDNA. 

See Table 3.1 for primers used. PCR products were then resolved on 16% TBE-PAGE gels and 

visualized after ethidium bromide staining. 

3.4.9 Western blots 

Western blotting was performed using the standard method and the following antibodies 

and dilutions: anti-FLAG 1:1000 (Sigma, F3165), and anti-β Actin, 1:1000 (Santa Cruz, sc8628), 

followed by anti-Mouse, 1:10,000 (Jackson Immunoresearch, 115-035-003). Chemiluminescence 

was performed according to the manufacturer’s protocol (Thermo-Fisher Scientific, 34580). 
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Table 3.1  Primers used in this study. 
 

For RT-qPCR: Primer sequence (5’ to 3’) 
Oct3/4 F TCTTTCCACCAGGCCCCCGGCTC 

Oct3/4 R TGCGGGCGGACATGGGGAGATCC 

Sox1 F GCGATGCCAACTTTTGTATG 

Sox1 R AGAGGGGATTGCGGTATAAA 

Sox2 F ATGATGGAGACGGAGCTGAA 
Sox2 R TTGCTGATCTCCGAGTTGTG 

Β-Actin F CTATTGGCAACGAGCGGTTC 
Β-Actin R GCAGCTCAGTAACAGTCCGC 

  

For Bis-Seq: Primer sequence (5’ to 3’) 
Sox2 out HSO3  F AGAAAATTGAGTTATTAAGGTAGTAATTATTT 
Sox2 out HSO3  R AAACCAAAAACCTTAACTACCAAACATAA 

Sox2 in HS03 F TAAAATTTTTATAGTTTTAATTGTTAAATA 

Sox2  in HSO3 R TATTATATCTAAAACCAACTAACAATATTAT 

Lefty2 out HSO3 F TTAGAAGTTTTTGGGGGAGAGGTTTGATTTA 

Lefty2 out HSO3 R TCAAAAATCATAACTCTTCCCACACCTCAAA 

Lefty2 in HSO3 F ATAATATGAGGGAGAGGTTTAGTTTTT 

Lefty2 in HSO3 R CACCTCAAACTCTATCTACTACTAACTTTA 

Esrrb out HSO3 F TTTGGAGAGGAAATATGTTAATTTTGAATA 

Esrrb out HSO3 R AAATCAACACACAAAATTCACTAAAAAAACA 

Esrrb in HSO3 F AATAGGGATTTTTTTTGGGATAGAAAT 

Esrrb in HSO3 R ATTCACTAAAAAAAAAAAAAATCTCAAA 

Lefty1 out HSO3 F AAATAAGGAGGTAGGGGTAGAGAATATTTGA 

Lefty1 out HSO3 R AAAAAACAATCTCCCTCCCACCTAACA 

Lefty1 in HSO3 F TTTAGAGGAGAAGTTAAGTTTAGTATAGAGAATA 

Lefty1 in HSO3 R ACACCTAATCAAACCCATTATACAAAAT 

Oct3/4  out HSO3 F TAATGGGATTTTTAGATTGGGTTTAGAAAA 

Oct3/4  out HSO3 R TAACCCTAAACAAATACTCAACCCTTAAAT 

Oct3/4  in HSO3 F TTTGAGGGTTATTTTTTTGTAAAGATAA 

Oct3/4  in HSO3 R AAAAAAAATATCTAACTTCAAATTCAAA 
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Table 3.1 continued 
  

For MD-PCR: Primer sequence (5’ to 3’) 

β globin F CTTGGCAAGGATTTCACCCCCGCTGCAC 

β globin R ATAAAATGTAATCATAATGTAGTGTGTA 

Pgk2 F GGTGTAAAGATAGT 

Pgk2 R ATTTTACCTTCCAGAAGCTC 

Igf2r F AATCGCATTAAACCCTCCGAACCT 

Igf2r R TAGCACAACTCCAATTGTGCTGCG 

H19 F ATCCAGGAGGCATAAGAATTCTGCAAGG 

H19 R GGCTGTGTAGGGATGAGTCAAGTTCTC 

ApoAI F GATGGTGCAACTGCCTTA 

ApoAI R ATTCTGTTCTCTGTGCCC 

Snrpn F CCCTCTCCCACATAGTAAAAATCTGT 

Snrpn R CGTCCCAGGCAATGGCTGC 

List of all gene expression, bisulfite sequencing, and MD-PCR primers used in this study separated by 
technique. 
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Table 3.2  Wide-Seq reads reported for each sample and enhancer. 
 

Sample Lefty1 Lefty2 Sox2 Esrrb Oct3/4 Total 
FLAG-Dnmt3a UD 12855 11779 7151 15112 4586 51483 
FLAG-Dnmt3a D1 21179 18341 10939 14516 6598 71573 
FLAG-Dnmt3a D2 16294 13967 8509 12492 4550 55812 
FLAG-Dnmt3a D3 15076 13214 7466 13395 4679 53830 
FLAG-Dnmt3a D4 16020 14984 8400 12607 4462 56473 

Total 81424 72285 42465 68122 24875 289171 
 

The total number of reads from a Wide-Seq run used for data presented in this study. In this table, the 
number of reads is presented with respect to sample as well as enhancer. The total number of reads per 
sample and site are also shown, as well as the total number of reads. 
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3.5 Results 

3.5.1 Crosslinking active Dnmts during catalysis 

 Once transported inside the cells, 5-Aza-dC is first activated to 5-Aza-2′-deoxycytidine-

triphosphate. The activated form is then randomly incorporated into the genome as a substitute for 

cytosine by the replication machinery (278). 5-Aza-dC, in the Aza-guanine dinucleotide pair, is 

flipped into the enzyme’s active site as it is recognized by Dnmts as a substrate (279, 280). The 

acting enzyme will commence the methylation reaction by establishing a covalent bond between 

its catalytic cysteine residue and the C6 atom of the cytosine ring (281, 282). The covalent bond, 

which is normally resolved during cytosine methylation reactions, remains in place in Dnmt-Aza 

intermediates. This is due to the substitution of C5 by a nitrogen atom in 5-Aza-dC (Figure 3.1A). 

Hence, the methylation reaction is impeded and the Dnmt remains covalently linked to DNA, 

forming Dnmt-DNA adduct (Figure 3.1B). Due to the stability of the covalent intermediate, we 

sought to test the feasibility of immunoprecipitating these adducts by targeting specific Dnmts and 

sequencing the immunoprecipitated product (Figure 3.1C) 

It is important to note that under prolonged 5-Aza-dC treatment conditions, the formed 

adduct obstructs DNA functionality, which in turn triggers DNA damage signaling and base-

excision DNA repair. Stress induced accumulation of Dnmt-DNA adducts would then likely lead 

to cell death and apoptosis (283, 284). 
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Figure 3.1  Conceptual theory behind TSCC-DIP. 
 

(A) Comparison between the chemical structures of deoxycytidine (top) and 5-Aza-dC 
(bottom). The inhibitor drug 5-Aza-dC contains a nitrogen atom in place of C5 in deoxycytidine. 

(B) Model for adduct formation: When a Dnmt recognizes a cytosine substrate, the base is 
flipped into the active site making a transition intermediate. Upon the deposition of a methyl 
group to the C5 position of the cytosine, the product is formed following the enzyme-product 
release. In the case of 5-Aza-dC, the enzyme cannot complete the reaction and is fixed in the 
intermediate transition state. (C) Illustration detailing TSCC-DIP experimental design: plated 

cells are treated with a standardized amount of 5-Aza-dC. After they undergo at least one 
doubling, genomic DNA is harvested and extracted using RADAR lysis buffer. After gDNA 
fragmentation and validation of Dnmt trapping via dot blot, the Dnmt-DNA adduct can be 

immunoprecipitated with a Dnmt-specific antibody. A library is then constructed for the eluate to 
be sequenced and mapped. 
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3.5.2 Optimization of 5-Aza-dC treatment 

In order to assess the fidelity of our strategy, we first demonstrated that stable DNA-Dnmt 

adducts created by treatment with 5-Aza-dC can be isolated and detected by immunoblotting. To 

test this hypothesis, we performed a time-course treatement with 5-Aza-dC (Figure 3.2A). We 

argued that this would also assist in optimizing the treatment conditions, for each Dnmt, to get 

maximum Dnmt capture without compromising the cells’ viability due to prolonged exposure to 

the cytotoxic drug. Our data showed an increase in Dnmt1 and Dnmt3a enrichment over time as 

evaluated by dot blot assay. The highest signal was observed at 24 hr post-treatment (Figure 3.2B 

and C). However, when taking into account cellular morphology and viability, we observed that 

starting 12 hr post-treatment there is consedrable cell death (Figure 3.2D). In order to elimintate 

background contributions from autophagus cells, all future experiments were performed at 8 hr 

after 5-Aza-dC treatement. The difference in the observed crosslinking effeciency and enrichments 

between Dnmt1 and Dnmt3a is potentially due  to differences in their expression and/or activity in 

these cells.   
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Figure 3.2  Time-course experiment for TSCC-DIP optimization. 
 

(A) Schematic representation of the experimental design: ESCs were plated for 12 hr followed 
by 5-Aza-dC treatment. Genomic DNA samples were collected at different times (2, 4, 8, and 24 

hr) after lysing the cells using the RADAR lysis buffer. Equal amounts of gDNA were blotted 
using dot blot assays and probed with anti-Dnmt1 and anti-Dnmt3a antibodies to test for Dnmt 

trapping by 5-Aza-dC treatment compared to untreated control (0 hr). (B) Dot blot assays 
showing increase in Dnmt1 and Dnmt3a signal as a function of time (2, 4, 8, and 24 hr) after 5-
Aza-dC treatment compared to an untreated control (0 hr). (C) Quantification of the signal for 

each time-point normalized to that of background. The highest signal observed was at 24 hr post-
treatment. Analysis was performed using ImageJ. (D) Bright-field microscopy images of cells at 

different times post-5-Aza-dC treatment compared to untreated (0 hr) control. There is 
significant cell death observed at 12 and 24 hr post-treatment. 
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3.5.3 Dnmt3a-DNA adducts map to known Dnmt3a loci 

To increase the robustness of our assay, we used two transgenic cell lines: ESCs expressing 

FLAG-Dnmt3a (FLAG-Dnmt3a) as well as a vector only control (EV) (Figure 3.3A). We argued 

that the use of a tagged Dnmt3a would increase the enrichment and effeciency of 

immunoprecipitated material after 5-Aza-dC treatment. To validate that FLAG-Dnmt3a 

expression had no effect on methylation patterns compared to the EV control, we used 

methylation-dependednt PCR analysis (MD-PCR). Examination of DNA methylation status at the 

regulatory elements of tissue specific genes (β-globin and Pgk2), imprinted regions (H19, Igf2R, 

and Snrpn), and the house keeping gene (ApoA1) showed no difference in methylation status 

between the two cell lines (Figure 3.3B). These data suggest that the overall methylation is not 

perturbed due to the expression of FLAG-Dnmt3a, thus enabling the direct comparision of the two 

cell lines. 

We treated both cell lines with 5-Aza-dC for 8 hr, then blotted equal amounts of gDNA 

onto a nitrocellulose membrane. After probing with anti-Dnmt1 and anti-FLAG antibodies, we 

observed a signal enrichment for Dnmt1 and FLAG-Dnmt3a in the 5-Aza-dC treated sample 

compared to untreated control (Figure 3.4A and B). To assess the specificity of our assay we also 

blotted gDNA from EV control cells treated or untreated with 5-Aza-dC. Our data showed no 

signal for FLAG-Dnmt3a in the control EV cell line. These data further support our conclusion 

that the signal observed resulted from FLAG-Dnmt3a-DNA adducts. Because gDNA was 

sonicated prior to blotting, these observations also indicated that gDNA fragmentation did not 

disrupt the cross-linked Dnmt-DNA adducts (Figure 3.4C). 

After establishing that Dnmt3a-DNA adducts were stable for immunoblotting, we asked if 

they were stable for immunoprecipitation. Equal amounts of sonicated DNA, from 5-Aza-dC 

treated and untreated samples, were incubated with anti-FLAG Sepharose resin for 

immunoprecipitation. After quantifying the eluates, we noted a significant enrichment in DNA 

amounts in the treated sample compared to the untreated control (Figure 3.4D). Eluates were 

sequenced using a Wide-Seq platform, which generated a total number of 3,736 reads for the 

untreated sample, 3,388 of which mapped to the mouse genome (mm9), and 7,460 reads from 5-

Aza-dC treated eluate, where 6,779 mapped to the reference genome. To determine the sites of 

Dnmt3a activity, we subtracted the number of reads in the untreated control from the treated 
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sample for each site. A site was marked as occupied by active FLAG-Dnmt3a if the number of 

reads after substration were more than 1.  

We next compared our data to those of a previously published Dnmt3a ChIP-seq dataset 

performed in ESCs (104) (GSM1382257_MmES). Not only did we note a significant overlap 

between the two datasets, there was also higher signal/noise ratio using our capture method when 

compared to the conventional approach (ChIP-seq) (Figure 3.4E). Regions where Dnmt3a was 

detected in the ChIP-seq dataset but was either not represented in our “sites of Dnmt3a activity” 

or only found in our untreated control sample were annotated as sites of inactive Dnmt3a 

occupancy. Identifying sites of inactivity contribute to our understanding of how Dnmts are 

regulated by deciphering if they associate with these regions because they are primed for activity 

or as part of other chromatin modifying complexes (if not both).  
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Figure 3.3  Methylome analysis of the FLAG-Dnmt3a transgenic cell line and the EV control. 

 

(A) Western blot showing FLAG-Dnmt3a expression in the transgenic cell line. Empty 
vector (EV) was used as a negative control. β Actin is the loading control. (B) Methylome 
analysis of selected sites in ESCs expressing FLAG-Dnmt3a. Genomic DNA was digested 

with PvuII or HindIII alone (uncut) or together with HpaII (HpaII). PCR product from 
amplified cleaved gDNA samples collected from FLAG-Dnmt3a and EV transgenic cell lines 
were loaded onto 16% TBE-PAGE gels and were stained with ethidium bromide. There is no 

difference in the methylation status between EV and FLAG-Dnmt3a in the regulatory 
elements of β-globin and Pgk2 (Tissue-specific genes), Igf2r, H19, and Snrpn (Imprinted 

genes), nor ApoA1 (Housekeeping gene). 
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Figure 3.4  Mapping trapped FLAG-Dnmt3a sites using TSCC-DIP. 

 
(A) Cartoon representation of TSCC-DIP protocol: FLAG-Dnmt3a and EV were plated for 12 hr 
followed by 5-Aza-dC treatment for 8 hr. gDNA was collected and precipitated. Equal amounts 
of fragmented gDNA were blotted using a dot blot assays and probed with anti-Dnmt1 and anti-

FLAG antibodies to test for Dnmt trapping by 5-Aza-dC treatment compared to untreated 
control. Then, FLAG-Dnmt3a-DNA adducts were immunoprecipitated, quantified, and 

sequenced. (B) Dot blot assay showing increase in Dnmt1 and FLAG-Dnmt3a signal in 5-Aza-
dC treated sample compared to untreated control. (C) 1% agarose gel showing comparable 

shearing patterns of fragmented gDNA from sample and control. (D) Eluate quantification by 
nanodrop spectrophotometer demonstrating enrichment in the DNA amount in 5-Aza-dC treated 

sample compared to control. (E) IGV and UCSC screen shots showing overlap between the 
mapped Wide-seq reads from the 5-Aza-dC treated sample and published Dnmt3a ChIP-seq. 
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3.5.4 Dnmt3a-DNA adducts during neuronal differentiation 

 To provide further support for our proposed method, we sought to test if we could capture 

Dnmt3a during methylation deposition at previously identified sites in response to environmental 

signals. Our previous studies identified Dnmt3a as the principal Dnmt methylating and silencing 

pluripotency gene enhancers in ESCs induced to differentiate to the neuronal lineage in the 

presence of Retinoic acid (102). To test this hypothesis, we optimized a neuronal differentiation 

protocol that enabled the efficient differentiaiton of ESCs to neuronal prognitors in a monolayer 

culture (164). We reasoned that a monolayer culture would be more permissiple to 5-Aza-dC 

incorporation than are embryoid bodies (Figure 3.5A).  

To confirm the profiency of our differentiation, we analyzed the expression of pluripotency 

factors and neuronal markers pre- and post-differentiation by RT-qPCR. Our data showed 

complete repression of the pioneer pluripotency gene Oct3/4 and an induction of the neuronal 

markers Sox1 and Sox2 in both the FLAG-Dnmt3a expressing sample and in the EV control 

(Figure 3.5B). These results indicat that FLAG-Dnmt3a expression does not have an effect on 

differention and pluripotency gene repression. 

Next, we examined if the enhancers of pluripotency genes gain DNA methylation post-

differentiation using this differention method. Evaluation of five pluripotency gene enhancers by 

bisulfite conversion followed by sequencing (Bis-seq), showed a gradual increase in DNA 

methylation levels duing differentiation (Figure 3.5C). This result is in agreement with previous 

reports showing gain of DNA methylation at these enhancers by the enzymatic activity of Dnmt3a 

in response to a differentition signal (102). 

Dot blot assays probing for FLAG-Dnmt3a-DNA adducts in samples treated and untreated 

with 5-Aza-dC during the course of differentiation showed enrichment in FLAG-Dnmt3a signal 

only in the treated samples (Figure 3.5D). This result suggests that 5-Aza-dC was incorporated 

during differntiation and that these adducts can be detected by immunoblotting. Furthermore, 5-

Aza-dC did not seem to have a discernable effect on the differentiaiton process, as determined by 

examination of cellular morphology and viability during differentiation (Figure 3.5E).  
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Figure 3.5  Trapping FLAG-Dnmt3a during neuronal differentiation. 
 

(A) Schematic representation of the experimental design: ESCs were plated for 12 hr 
followed by 5-Aza-dC treatment. gDNA samples were collected after lysing the cells using a 

RADAR lysis buffer at different times post-differentiation. Equal amounts of gDNA were 
blotted using a dot blot apparatus and probed with anti-FLAG antibody to test for FLAG-

Dnmt3a trapping by 5-Aza-dC treatment compared to an untreated control. (B) Gene 
expression analysis by RT-qPCR of pluripotency genes and neuronal markers in FLAG-

Dnmt3a and EV ESCs induced to differentiate to neuronal lineage. The Ct values for each 
gene were normalized to β-actin and expression is shown relative to that of the corresponding 

untreated-undifferentiated (UD) cells, which is set to one. In both cell lines, we observed 
repression of Oct3/4 and induction of neuronal genes, attesting to the efficacy of the 

differentiation protocol. (C) gDNA from FLAG-Dnmt3a samples UD-untreated and D1-D4 
treated samples were treated with bisulfite and pluripotency gene enhancers were amplified 
by nested PCR. The amplicons were sequenced on a Wide-Seq platform and the data were 
analyzed using Bismark software. There is gain in DNA methylation post-differentiation 

induction compared to the untreated UD sample. No signal was observed from EV samples 
(D) Dot blot assay showing increase in FLAG-Dnmt3a signal during differentiation 

compared to untreated UD samples (E) Bright-field microscopy images of cells during 
differentiation and 5-Aza-dC treatments. There is no significant cell death cause by 5-Aza-
dC treatment compared to the untreated control. Images were taken at 20X magnification. 
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3.6 Discussion 

DNA methylation is a versatile epigenetic mark; it is associated with stable gene repression 

when deposited at regulatory elements and active transcription when present at gene bodies (96, 

106). Alterations in the DNA methylation landscape are associated with cancers and many 

developmental diseases (244, 245, 285). These abnormal changes in DNA methylation patterns 

could be attributed to genetic mutations in Dnmts or due to a disruption in mechanisms regulating 

their activities (147, 258). Therefore, the development of detection techniques, which allow for a 

robust and specific examination of the distinct, as well as redundant, activities of Dnmts could help 

in unravelling the biology of the diseased state. 

In the past, specific genomic targets of Dnmts were mapped using experiments that relied 

on their depletion followed by analysis of the regions that were affected by their loss (286). 

However, we argue that such studies cannot exclude the possibility of functional dependence and 

regulation by other Dnmts. For example, Dnmt3a can be the principal Dnmt methylating certain 

CpGs within a region. In its absence, Dnmt3b could compensate. Conversely, if Dnmt3b were 

required to be in a complex with Dnmt3a in order to be active at a specific site, depletion of Dnmt3a 

would likely demolish Dnmt3b-specific sites. 

Despite the numerous methods developed to detect Dnmt occupancy and their product of 

catalysis, the spatiotemporal information about their activities is often lost. Here, we show that 

TSCC-DIP enables the detection of Dnmts during their catalysis via locking the active enzyme 

with its substrate in the transition intermediate state. This method is simple to implement, 

inexpensive, and timesaving. However, this approach depends on the incorporation of the 2′-

deoxycytidine analog 5-Aza-2′-deoxycytidine in the genome during replication, restricting its 

implementation to living cells that are undergoing active replication. Additionally, the 

accumulation of Dnmt-DNA adducts as a result of prolonged 5-Aza-2-dC treatment triggers base-

excision DNA repair and cell apoptosis pathways. Therefore, treatment time and dosage must be 

optimized for every cell line according to doubling time. Another limitation of this technique is 

that 5-Aza-dC treatment could potentially affect cellular reactions to signaling pathways and alter 

their biological response. This is unlikely because 5-Aza-dC treatment should be optimized to be 

short and acute, in addition to the possibility of comparing the kinetics of transcriptional changes 

with that of an untreated control.  
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Taken together, TSCC-DIP is an adaptable tool that could be used together with other 

techniques that examine histone modifications, chromatin organization, and RNA expression to 

answer many open questions in the field. We are proposing this method as a novel approach to 

track the dynamic changes in DNA methylation by any Dnmt expressed during cell fate 

specification, disease state, and the specific activities during homeostasis.  

3.7 Future directions 

Given the low read numbers obtained from the Wide-Seq experiment, we are preparing 

libraries to be sequenced using the NovaSeq 6000 platform. Correlation and statistical studies can 

then be performed to analyze the sites actively methylated by Dnmt3a in the undifferentiated state 

and during differentiation.  
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 MISCELLANEOUS 

4.1 The effect of N-Myc expression on DNA methylation levels in Vezf1 KO cells 

4.1.1 Analysis of N-Myc regulation of Dnmt3b expression 

 Vascular endothelial zinc finger 1 (Vezf1) is a transcription factor implicated in 

angiogenesis and vascular development (287). Previous studies from our laboratory demonstrated 

a mechanism by which Vezf1 mediates the induction of endothelial markers post-ESC 

differentiation through the repression of a stem cell factor, Cbp/p300-interacting transactivator 2 

(Cited2) (288). These conclusions were drawn from experiments performed using Vezf1 KO ESCs 

which, interestingly, exhibit genome-wide hypomethylation concomitant with reduction in the 

expression of Dnmt3b (277). Mechanism(s) illustrating how Dnmt3b expression is affected by 

Vezf1 loss are not fully understood. 

By comparing previously published Microarray data from Vezf1 KO and WT ESCs (277), 

we noted an increase in the expression of N-Myc in the Vezf1 null cell line. Additionally, a 

tentative N-Myc binding site is located at Dnmt3b promoter. To test the direct regulation of 

Dnmt3b by N-Myc, we generated a doxycycline-inducible system for FLAG-N-Myc expression 

in ESCs. Experiments examining Dnmt3b expression in response to N-Myc induction could be 

performed. Anti-FLAG ChIP assays could further elucidate N-Myc-mediated regulation by its 

potential physical binding at Dnmt3b promoter.  

 The significance of Dnmt3b activity during early embryogenesis is supported by mouse 

studies demonstrating that a Dnmt3b KO is embryonic lethal (139, 289). Hence, understanding the 

mechanisms regulating the expression, which could reflect on the enzymatic activity, of this 

epigenetic modifier is not only vital to our increasing knowledge of developmental biology, but 

also to our interpretation of how these mechanisms are perturbed in the diseased state.  

4.1.2 Tet-inducible system for the controlled expression of N-Myc 

 ESCs were transfected with a tetracycline-controlled transactivator (tTA) expressing 

plasmid. Clones were screened for the highest expression and induction by using a luciferase 

expressing plasmid under the control of a tetracycline-dependent promoter (Figure 4.1A). Clones 

with the highest induction were tested for pluripotency via Alkaline Phosphatase (AP) staining and 
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the expression of Oct3/4 by RT-qPCR compared to WT ESCs (Figure 4.1B and C). The clone with 

the highest expression of the pioneer factor Oct3/4 was used for subsequent transfection with a 

FLAG-N-Myc expressing plasmid under the control of a tetracycline-dependent promoter. Clones 

were then screened for FLAG-N-Myc expression by drug induction. The clone with the highest 

expression of FLAG-N-Myc in response to doxycycline induction was expanded and stored for 

future experiments (Figure 4.1D). 
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Figure 4.1  Development of inducible FLAG-N-Myc ESC cell line. 
 

(A) Luciferase assay to screen for Tet-inducible expression of luciferase. Equal numbers of cells 
from each clone were plated as duplicates on a 96 well plate with one set treated with 2 µg/mL 
doxycycline while the other set was treated with H2O solvent. Luciferase activity was recorded 

for each clone using a luminometer 8 min after the addition of the luciferin substrate. S is 
scramble cell line, which is a pool of multiple clones. RLU is relative light units. (B and C) 

Analysis of the transgenic cell lines for pluripotency by (B) Alkaline Phosphatase (AP) stain 
where blue signal indicates pluripotency, and (C) Oct3/4 expression by RT-qPCR. The Ct values 

for each gene were normalized to Gapdh. The clone with the highest expression of Oct3/4 
(Clone# 11) was used for subsequent transfections. ESC WT is untransfected ESCs used as a 

control. (D) Western blot showing the induced expression of FLAG-N-Myc. Doxycycline 
uninduced cell lysate is the negative control and Gapdh is the loading control. Microscopy 

images are 10X magnification. 
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4.2 The effect of the dynamic changes of Dnmt3l expression on ESC differentiation 

 Dnmt3l is the catalytically inactive homologue of Dnmt3a and Dnmt3b in mammalian cells 

(252). Its biological function has been demonstrated by biochemical studies to enhance the 

activities of Dnmt3a and Dnmt3b by forming heterotetramers (270, 290). Cell culture based 

experiments showed that Dnmt3l is necessary for the stability of Dnmt3a in ESCs (291). Loss of 

function assays showed that although Dnmt3l KO mice are viable, they are sterile. Further analysis 

showed that Dnmt3l is essential for the methylation of imprinted regions by its functional 

interaction with the other catalytically competent Dnmt3 enzymes (292-294). Given the high 

sequence similarities between Dnmt3 proteins, in addition to the comparable loss of their 

expression post-ESC differentiation (295), the mechanism(s) dictating Dnmt3l-directed 

methylation of imprinted regions are not completely understood. Furthermore, it is unknown 

whether Dnmt3l plays a role in regulating Dnmt3a activity at PpGe in differentiating ESCs.   

4.2.1 Analysis of Dnmt3l expression on gain of DNA methylation at PpGe  

To test whether Dnmt3l plays a role in PpGe silencing during ESC differentiation, we 

induced the differentiation of Dnmt3l KO ESCs and rescue cell lines (291). Our preliminary data 

using bisulfite sequencing showed a disruption in DNA methylation gain at most PpGe post-

differentiation of ESCs depleted of Dnmt3l compared to WT control. This defect was rescued at 

most enhancers when Dnmt3l was re-expressed, indicating that the presence of Dnmt3l is required 

for PpGe silencing (Figure 4.2A). Defect the DNA methylation gain post-differentiation were not 

observed at the Sall4 enhancer. This observation suggests that DNA methylation regulation is 

independent of Dnmt3l at this site. These conclusions were further supported by gain of function 

studies where we recombinantly maintained the expression of Dnmt3l in differentiating ESCs 

(Figure 4.2B). DNA methylation analysis using ESCs expressing Myc-Dnmt3l showed enhanced 

gain of DNA methylation at PpGe post-differentiation compared to the empty vector (EV) control 

(Figure 4.2C). Interestingly, the Lefty2 enhancer was not significantly affected by Dnmt3l 

depletion or overexpression, suggesting that it undergoes a Dnmt3l-independent regulation of 

DNA methylation post-ESC differentiation. It is still unclear whether the effect of Dnmt3l 

expression on PpGe is due to its regulation of Dnmt3a stability or activity, or via recruitment of 

the catalytically active enzyme to these sites. DNA methylation analysis on differentiating ESC 
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cell lines expressing Dnmt3l with defective regulatory PHD domain (Dnmt3l-D124A, -I141W, or 

C-terminal domain only (126, 296)) or with mutations that would impeded its interaction with 

Dnmt3a (Dnmt3l-F261A (296, 297)) can be performed to uncouple these mechanistic pathways.  

4.2.2 Investigation of mechanisms dictating Dnmt3l regulation of DNA methylation at imprinted 
regions 

In vivo studies have shown that Dnmt3l is required for the maintenance of DNA 

methylation at imprinted regions (292-294). However, the mechanisms governing Dnmt3l-

mediated recruitment of other Dnmt3s to these sites are not fully understood. Our preliminary data 

show that, as expected, Dnmt3l KO ESCs exhibited hypomethylation of the H19 imprinted region. 

Surprisingly, restoration of Dnmt3l levels in these cells did not rescue the methylation status at the 

imprinted locus (Figure 4.2D). Overexpression of Dnmt3l in ESCs did not affect the levels of DNA 

methylation at these sites compared to the EV control (Figure 4.2E). These data suggest that the 

role of Dnmt3l in the methylation of imprinted regions is established early in development. The 

additional loss of DNA methylation at the H19 imprinted region in the Dnmt3l rescue cell line is 

potentially due to the expansion of the culture and the increase in cell divisions in the absence of 

Dnmt3l. This process could propagate the decline in DNA methylation levels via passive DNA 

demethylation, despite the increasing levels of Dnmt3l protein. An alternative hypothesis is that 

Dnmt3l is essential for the establishment, and not the maintenance, of DNA methylation at 

imprinted regions. This hypothesis can be tested by inducible Dnmt3l KD studies followed by 

DNA methylation analysis at imprinted loci. These studies would uncouple the effect of Dnmt3l 

depletion and cell passaging on loss of DNA methylation at imprinted regions.  
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Figure 4.2 Dnmt3l is required at PpGe in differentiating ESCs. 
 

(A, C, D, and E) DNA methylation analysis by Bis-Seq probing (A and B) the enhancers of PpG 
and (C and D) the H19 imprinted region. (A) Dnmt3l KO and rescue cell lines together with WT 

control were differentiated to Day 3 (D3) and Day 5 (D5) post-retinoic acid addition. 
Differentiating Dnmt3l KO cells exhibited defects in gain of DNA methylation at PpGe, with the 

exception of Lefty2 and Sall4, when compared to WT and rescue cell lines. (B) Western blot 
showing expression of Myc-Dnmt3l in ESCs compared to Empty vector control (ESC+EV). 

Actin was used as a loading control. (C) In contrast to KO studies, ESCs overexpressing Myc-
Dnmt3l showed enhanced methylation at PpGe, except for Lefty1, when compared to the EV 
control. (D) DNA methylation at the H19 imprinted region was reduced in Dnmt3l KO cells 

compared to WT control. Re-expression of Dnmt3l did not rescue DNA methylation levels. (E) 
Similar DNA methylation levels at the H19 locus in Dnmt3l overexpressing ESCs and EV 

control. 
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 PERSPECTIVES 

5.1 Outlook on the regulation of Lsd1 activity by transcription factors 

5.1.1 Conclusions  

 The enzymatic activity of the histone demethylase Lsd1 is critical for PpGe silencing post-

differentiation. Silencing occurs via the activation of Dnmt3a, which ensures stable gene 

repression (102). We demonstrated how the disruption of PpG repression leads to the emergence 

of primed enhancers in differentiating F9 ECCs that renders PpG vulnerable for re-expression 

upon binding of a coactivator. We predict that the activity of Lsd1 at the enhancers of PpG is 

governed by its interaction with Oct3/4 in the undifferentiated state. The repression of Oct3/4 post-

differentiation leads to the loss of Lsd1-Oct3/4 interaction and the activation of Lsd1 enzyme. The 

timely demethylation of H3K4me1 by Lsd1 generates an unmethylated H3K4me0 tail which 

interacts with the ADD domain of Dnmt3a, relieving it from its autoinhibited state (102). This 

study provided a mechanism by which the regulation of Lsd1 activity by Oct3/4 influences the 

epigenetic state of regulatory elements and controls PpG expression in two ways: 1) Lsd1-Oct3/4 

interaction at the enhancers of PpGs in the undifferentiated state curbs Lsd1 activity and maintains 

these enhancers as active, and 2) the dissociation of this interaction is critical for initiating the 

downstream epigenetic events necessary for stable gene repression by enhancer silencing. If this 

interaction were not disrupted, as is the case in differentiating F9 ECCs, these enhancers would 

switch to a primed state marked by H3K4me1 and lacking H3K27Ac and DNA methylation. 

Numerous studies speculate that enhancer priming aids in gene reactivation and the maintenance 

of an epigenetic memory of previous activations (298). Therefore, a primed enhancer is likely to 

be susceptible to aberrant activation in an anomalous cellular state. Moreover, retention of 

H3K4me1 blocks gain of DNA methylation at these regulatory elements. Several reports have 

highlighted the importance of DNA methylation in gene repression by showing that the targeted 

methylation of their respective promoters drives their transcriptional repression (155, 156, 299, 

300), thus reinforcing the role of DNA methylation in silencing regulatory elements and the 

concomitant stable gene repression. 

 We used F9 ECCs as a cancer stem cell model to study the dysregulation of mechanisms 

that safeguard PpGe silencing during differentiation. The next step would be to determine if this 
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is also observed in caner stem cells isolated from tumors that exhibit anti-cancer drug and radiation 

therapy resistance. Further studies could investigate the broad effect of this mechanism by tracking 

the changes in DNA methylation and histone modifications at PpGe before and after cancer 

resurgence. 

5.1.2 Mapping Lsd1-Oct3/4 interaction domains 

 As an epigenetic modifier with diverse catalytic functions, the fine-tuning of Lsd1 activity 

is achieved via a wide-range of mechanisms. Anomalous activity of Lsd1 could be attributed to its 

aberrant expression. For example, several studies reported high expression of Lsd1 in different 

cancers such as breast, prostate, bladder, neuroblastoma, and acute myeloid leukemia (301, 302). 

Lsd1 activity is regulated not only through transcript level regulation, but also through controlled 

protein degradation. Lsd1 levels are regulated by ubiquitination and deubiquitination which are 

critical for cell fate determination in ESCs (303, 304). Posttranslational modifications also 

influence the activity of the enzyme. SUMOlation by SUMO2 was reported to alter Lsd1 activity 

or localization, possibly by the generation of a new protein-protein interaction interface (305). 

Furthermore, Lsd1 catalytic activity or its localization to a genomic region can be mediated 

through binding with TFs or epigenetic modifiers (90-92, 306).  

Our study answered a key question in the field regarding Lsd1 association with PpGe in 

the undifferentiated state despite the absence of its enzymatic activity (179). We showed that 

through its direct interaction with Oct3/4, Lsd1 activity was inhibited. Although this mechanism 

is employed by healthy cells to keep their PpGe in the active state and prevent spurious activity of 

Lsd1 at these sites, this mechanism can also be hijacked by cancer cells to mark PpGe as primed 

for activation. TF-mediated targeting or allosteric regulation of Lsd1 has also been previously 

reported (90-92, 306). 

Given that our analysis of the Lsd1 interaction network in both ESCs and F9 ECCs includes 

a large number of TFs, we postulate that Lsd1 activity is also regulated by other zinc finger 

containing proteins. Preliminary studies using recombinant proteins showed that SP1 also inhibits 

Lsd1activity (Figure 5.1A). A screen for potential regulators of its demethylation activity, using 

an in vitro Lsd1 demethylation assay, would not only add to our understanding of how epigenetic 

modifiers are regulated, but also how these epigenetic events are chronologically and functionally 

linked. Epigenetic regulation is key for proper development and its dysregulation is evident in the 
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state of disease. Therefore, mapping regulators of epigenetic effectors and characterizing their 

functional and physical interactions are necessary for our interpretation of the dysregulated 

mechanisms that contribute to the emergence and progression of the disease state.   

Additionally, identifying Lsd1 interactors will aid in determining protein-protein 

interaction domains. Both Oct3/4 and p53 interact with Lsd1 and inhibit its activity (91). Protein 

sequence ligament analysis showed that there is 31% sequence similarity between the two proteins 

(Figure 5.1B). The p53 C-terminal domain interaction with Lsd1 has been crystalized. Using the 

crystal structure as a reference, a computational modeling approach can be used to map the residues 

mediating Oct3/4 interaction with Lsd1. Given that Lsd1 is reported to interact with a substantial 

number of TFs, characterizing these interactions, and how they affect Lsd1 recruitment and 

enzymatic activity in different biological contexts, will aid in highlighting the broader spectrum of 

epigenetic regulation. 
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Figure 5.1  Transcription factors modulate Lsd1 activity. 
 

(A) An Lsd1 demethylase assay was performed using 0.25 µM of Lsd1 and H3K4me2 peptide. 
Lsd1 activity was inhibited by the addition of TCP (tranylcypromine) (0.1 mM) to the reaction. 

To test whether SP1 inhibits Lsd1 activity, demethylation assays were performed in the presence 
of 0.5 µM SP1 at 1:2 (Lsd1:SP1) molar ratio. (B) Sequence alignments of human Oct3/4 (Oct) 

and human p53 proteins using T-COFFEE software (version 11.00.d625267). There is high 
sequence homology between the two proteins. “Good” alignment is generated between C-

terminal domains of Oct3/4 and p53 where Lsd1 was shown to interact (91):  
(AQAGKEPGGSRAHSSHLKSKKGQSTSRHKKLMFKTEGPDSD) 
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5.1.3 Regulation of Oct3/4 expression in differentiating F9 ECCs   

 Our study demonstrated that the partial repression of Oct3/4 in differentiating F9 ECCs 

facilitated the generation of a primed enhancer state by inhibiting Lsd1 demethylase activity. At 

the onset of ESC differentiation, Oct3/4 is marked for proteosomal degradation, alleviating this 

inhibition. Because F9 ECCs is a testicular teratoma stem cell line, it is reasonable to argue that 

during differentiation, Oct3/4 expression is not completely repressed because of these cells 

germline heritage (201, 307, 308). Uncoupling the tumorigenic factors from primordial germline 

development is key to understand the pathology of these cells. Given that differentiating ESCs and 

the analogous cell line P19 ECCs undergoes silencing of Oct3/4 regulatory elements, this provides 

evidence that supports the tumorigenic properties of F9 ECCs. Experiments designed to interrogate 

Oct3/4 regulatory elements coupled with genome-wide expression analyses during F9 ECC 

differentiation, compared to that of P19 ECCs, are warranted to determine whether this 

dysregulation in expression is initiated by a perturbation of an epigenetic mechanism. Moreover, 

careful examination of the activation of cell signaling pathways during differentiation would shed 

light into the possibility of a disruption of a signaling event.      

5.1.4 Differentiation-mediated drug development 

 Our study elucidated how Lsd1-Oct3/4 interaction post-differentiation prevents enhancer 

silencing. Instead, the abbreviated activity of Lsd1 leads to the development of primed enhancers. 

Given that enhancer silencing mediates PpG repression, which is critical for proper differentiation 

(102), we propose the disruption of Lsd1-Oct3/4 interaction as a target for the development of 

differentiation-inducing therapeutics. Small molecules that are able to interrupt this protein-protein 

interaction could be used in a screen with Lsd1 demethylase activity as a readout. The initial hits 

that could potentially alleviate the Oct3/4-Lsd1 inhibitory interaction could be further decorated 

to produce potent inhibitors. The directed decoration is achieved by solving the protein-protein 

interacting domains by crystallography and then identifying the amino acid residues critical for the 

interaction. The potential inhibitors can then be remodeled into the structure and altered to produce 

a better fit that would ensure the disruption of the interaction. In combination with other cytotoxic 

drugs, these differentiation-inducing drugs could help eradicate the cancer stem cell population. 
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5.2 Applications for TSCC-DIP 

5.2.1 Conclusions 

 Conventional methods used to detect Dnmt occupancy in the genome are unable to discern 

if the Dnmts are actively methylating the DNA or are associated with protein complexes that are 

modifying the chromatin state. We repurposed the Dnmt inhibitor 5-Aza-deoxycitidine, which is 

able to form a covalent intermediate with Dnmts (163). Because Dnmts cannot methylate this 2′-

deoxycytidine analogue, they become chemically cross-linked to DNA. By using a lysis buffer 

that preserves these Dnmt-DNA adducts, we were able to capture Dnmts by 5-Aza-dC treatment 

and demonstrated the accumulation these adducts as a function of time. We also showed that the 

Dnmt3a-DNA adducts can be stably immunoprecipitated and sequenced. This approach is less 

laborious than are conventional methods, and selectively captures Dnmts during their catalysis. 

5.2.2 TSCC-DIP to examine the effect of mutations on Dnmt activities 

Transition State Covalent Crosslinking followed by DNA Immunoprecipitation (TSCC-

DIP) could be used to determine the effect of pathological mutations on Dnmt activities or 

recruitment to certain genomic loci. We have performed preliminary in vitro experiments, which 

showed that an acute myeloid leukemia (AML) prevalent point mutation that occurs in a Dnmt3a 

catalytic domain causes a change in the enzyme’s substrate flanking sequence preference. This 

observation was further substantiated at some genomic regions by expressing this mutant in ESCs. 

Because of its selectivity, TSCC-DIP could be utilized to compare the changes in the substrate 

preference between WT and mutant Dnmt3a, and could shed light onto the enzymatic mechanism(s) 

of these enzymes in cellular context. Additionally, the consequence of functional interactions 

between Dnmts and other proteins could be established for each Dnmt under different 

physiological conditions. 

5.2.3 Evaluation of Dnmts functions during ESC differentiation 

Our study provided preliminary results indicating the feasibility of using 5-Aza-dC 

treatment to capture Dnmts in a dynamic system. We propose the use of TSCC-DIP to monitor 

systematically the changes in the DNA methylation landscape during cell fate commitment and 

under variable environmental stimuli. The role of DNA methylation in the regulation of gene 

expression is most evident during the early stages of development mimicked by ESC 
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differentiation (309). There are many genome-wide datasets investigating the patterns of DNA 

methylation and the functions of the different Dnmts during these fate-determining series of events 

(145, 310). Our study showed that TSCC-DIP could be a tool that uncouples the activities of these 

Dnmts at all the sites mapped. Because this approach relies on the capture of Dnmts during 

catalysis, determining the cause and effect of many transient epigenetic changes that occur at 

particular site is an integral function of this technique when coupled with histone modification 

analysis or chromatin organization assessment assays. 

TSCC-DIP can also be used to establish which sites show true functional redundancy 

among the different Dnmts. Several reports showed that when Dnmt3a or Dnmt3b are depleted 

from cells, certain regions maintain their methylation levels due to compensatory activity of the 

homologous Dnmt3 (311). We propose the use of TSCC-DIP to investigate if these shared regions 

are equally occupied by both enzymes, or if the functional compensation is due to cellular stress 

brought about by the absence of the principal Dnmt3. 
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