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Department of Physics and Astronomy

Dr. Leonid Rokhinson

Department of Physics and Astronomy

Dr. Rudra R. Biswas

Department of Physics and Astronomy

Dr. Chen-Lung Hung

Department of Physics and Astronomy

Approved by:

Dr. John P. Finley

Head of the Graduate Program



iii

Dedicated to my father



iv

ACKNOWLEDGMENTS

The journey towards getting this degree has been a long one and it would not

be possible without the support from many people. The most significant part was
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ABSTRACT

Shingla, Vidhi Ph.D. Candidate, Purdue University, August 2019. Magnetotransport
Studies of Diverse Electron Solids in a Two-Dimensional Electron Gas. Major
Professor: Gábor A. Csáthy.

The two dimensional electron gas subjected to a perpendicular magnetic field

is a model system that supports a variety of electronic phases. Perhaps the most

well-known are the fractional quantum Hall states, but in recent years there has

been an upsurge of interest in the charge ordered phases commonly referred to as

electron solids. These solids are a consequence of electron-electron interactions in a

magnetic field. While some solid phases form in the lowest Landau level, the charged

ordered phases are most abundant in the higher Landau levels. Examples of such

phases include the Wigner solids, electronic bubble phases and stripe or nematic

phases. Open questions surround the exact role of disorder, confinement potential,

temperature and the Landau level index in determining the stability and competition

of these phases with other ground states.

The interface of GaAs/AlGaAs remains the cleanest host for the two-dimensional

electron gas due to the extremely high quality of materials available and the advance-

ment in molecular beam epitaxy growth techniques. As a result, exceptionally high

electron mobilities in this system have been instrumental in the discovery of numerous

electron solids.

In this Thesis, I discuss the discovery and properties of several electron solids

that develop in such state-of-the-art two dimensional electron gases. These electron

solids often develop at ultra low temperatures, in the milliKelvin temperature range.

After an introduction to the physics of the quantum Hall effect in two dimensions, in

chapter 3, I discuss electron solids developing in the N=1 Landau level. While these

solids have been known for some time, details of the competition of these phases
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with the nearby fractional quantum Hall states remains elusive. A number of reports

observe new fractional quantum Hall states at filling factors where electron solids

are found in other experiments. We undertook a systematic study to answer some

of these unsettled questions. We see evidence for incipient fractional quantum Hall

states at 2+2/7 and 2+5/7 at intermediate temperatures which are overtaken by

the electronic bubble phases at lower temperatures. Several missing fractional states

including those at filling factors 2+3/5, 2+3/7, 2+4/9 highlight the relative stability

of the electronic solids called the bubble phases in the vicinity in our sample.

In chapter 4, I discuss a newly seen electron crystal which manifests itself in

transport measurements as a reentrant integer quantum Hall state. Reentrant integer

behavior is common in high Landau levels, but so far it was not observed in the

lowest Landau level in narrow quantum well samples. In contrast to high Landau

levels, where such reentrant integer behavior was associated with electronic bubbles,

we believe that the same signature in the N=0 Landau level is due to an electronic

Wigner crystal. The filling factors at which we observe such reentrance reveal that

it is a crystal of holes, rather than electrons. The discovery of this reentrant integer

state paints a complex picture of the interplay of the Wigner crystal and fractional

quantum Hall states.

Finally, in chapter 5, I discuss the observation of a novel phenomenon, that of

reentrant fractional quantum Hall effect. In the lowest Landau level, we observe a

fractional quantum Hall state, but as the field is increased, we see a deviation and

then a return to quantization in the Hall resistance. Such a behavior indicates a novel

electron solid. In contrast to the collective localization of electrons evidenced by the

reentrant integer quantum Hall effect, such reentrance to a fractional Hall resistance

clearly points to the involvement of composite fermion quasiparticles. This prop-

erty thus distinguishes the ground state we observed as a solid formed of composite

fermions. Such a solid phase is evidence for exotic electron-electron correlations at

play which are clearly different from those in the traditional Wigner solid of electrons.
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1. THE QUANTUM HALL EFFECT

Electrons confined to two-dimensions at the interface of semiconductor heterostruc-

tures has important technological applications in electronic components such as tran-

sistors, light emitting diodes (LEDs) and Hall sensors as few examples. The same

system when cooled to low temperatures in the presence of a perpendicular magnetic

field exhibit a variety of quantum-mechanical ground states. In this chapter, I will

introduce the physics of the two-dimensional electron gas in strong magnetic fields

including the quantum Hall effect resulting from confined dimensionality and discuss

the physics of the two-dimensional electron gas in GaAs/AlGaAs as the host material.

1.1 Integer Quantum Hall Effect

The Integer Quantum Hall Effect was discovered in 1980 by Klaus von Klitzing in

a Si-MOSFET (metal oxide-semiconductor field-effect transistor) at 1.5K subjected

to magnetic field of the order of 20T [1]. The basic Hall measurement setup is shown

in Figure 1.1. A 4-wire measurement of voltage transverse to the excitation current

yields the Hall resistance Rxy and likewise the magnetoresistance Rxx. The classical

picture predicts a linear dependence of Hall resistance on the magnetic field. However,

Klitzing’s experimental results as shown in Figure 1.2 show a plateau in Hall resis-

tance at h/ie2 where i is an integer with the longitudinal resistance Rxx vanishing at

those corresponding electron densities controlled by the gate voltage. This discovery

marks the first observation of topological phases of matter in contrast to the conven-

tional Landau phases which are understood in terms of different symmetries of the

Hamiltonian. These integer quantum Hall states possess the same symmetry of the

Hamiltonian. The different phases arise due to the existence of a discrete energy gap

unaffected by continuous small variations of the potential term in the Hamiltonian.
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These phases are therefore independent of local perturbations and are topologically

robust.

Figure 1.1. The basic measurement setup to determine the transport coefficients.

A magnetic field B is applied perpendicular to the applied current I. The voltage

measured along the direction of current then yields the longitudinal resistance Rxx =

Vxx/I and voltage measured in the transverse direction gives the Hall resistance Rxy =

Vxy/I.

The formation of the discrete energy levels is derived by solving the Schrödinger

equation of a single electron confined in two dimensions in a magnetic field. The

Hamiltonian of a spinless electron in a uniform magnetic field B characterized by a

vector potential ~A, given by [17]

H =

(
~p− e ~A

)2
2m

(1.1)

The above Hamiltonian is solved for the case of a perpendicular magnetic field in

the z-direction given by ~B = Bẑ. The vector potential is chosen to be the Landau

gauge given by ~A = Bxŷ. Solving this equation for the eigenvalues yields the familiar

simple harmonic oscillator energy values given,

En = ~ωc(n+
1

2
) (1.2)

where n is an integer and ωc = eB/m. The mass m is the mass of an electron which

in a condensed matter environment refers to the band mass. Each of these energy
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Figure 1.2. The original plot for the first discovery of the Integer Quantum Hall

Effect. Hall Voltage UH and longitudinal voltage Upp is plotted as function of gate

voltage Vg at temperature T = 1.5K. Inset show the sample sketch in a Hall bar

geometry. Reprinted figure with permission from K. von Klitzing et al., Phys. Rev.

Lett. 45, 494 (1980). Copyright 1980 by the American Physical Society.

levels is called a Landau Level with ~ωc, the cyclotron gap between each of these

levels. These Landau levels are degenerate with degeneracy given by D = eB/h. The

number of filled Landau levels is referred to as the filling factor denoted by ν and is

given by

ν = ns/D = nsh/eB (1.3)
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where ns is the 2DEG electron density. If in addition, the electron spin is included,

the Zeeman term appears in the Hamiltonian due to the coupling of the electron spin

to the external magnetic field B. This coupling is given by

HZ = −~µ · ~B (1.4)

where ~µ is the magnetic dipole moment of the electron given by ~µ = gµB ~S
~ . The

eigenvalues of this Hamiltonian for ~B = Bẑ is EZ = ±1
2
gµBB. In Figure 1.3, a

pictorial representation of the discrete Landau levels is shown. In addition to the

Figure 1.3. The discrete Landau levels with each level spin split due to the Zeeman

coupling.

spin degree of freedom, a valley degeneracy can further split the Landau levels which

is absent for the case of GaAs. Energy level shifts due to spin-orbit coupling play a

minor role in this system.

The quantization in Hall resistance can then be understood in terms of these

filling Landau levels with the filling factor denoted by ν. The confinement to two-

dimensions is essential for this discrete set of energy levels effect as the motion along

the magnetic field can add any amount of energy to the Landau levels and as a result,

there are no quantized levels in three dimensions.
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The Landau levels shown in Figure 1.3 denote the energy levels in the ideal limit

with no defects and impurities in the sample. However, realistic samples have a finite

disorder which broadens these levels in two ways. The defects in the sample cause

Anderson localization [2] which is schematically depicted in Figure 1.4 (a) as the

localized states in light blue. The other effect is broadening the center of the single

particle energy levels into extended states which exist throughout the sample.

Figure 1.4. (a) A sketch showing extended and localized states as a result of disorder.

Fermi energy at two different points while changing the magnetic field. (b) Integer

Quantum Effect in AlGaAs/GaAs with quantum states marked by integers. Figure

adapted from ref. [11].

This broadening of the Landau levels is the very reason for the long stretches

of quantized Hall values. When the Fermi level (EF ) moves through the extended

states, normal electron conduction takes place and we see Rxx increasing with B field

as indicated by the yellow star in Figure 1.4 (b). On reducing the magnetic field and

thereby changing the degeneracy of each level, EF moves through the localized states

which do not conduct leading to the wide plateaus in Rxy.

However, the natural question arises on why Rxx vanishes while the localized states

do not conduct. This brings the edge states into picture which are a hallmark of

topological phases, in general. As seen in the Figure 1.5a, the Fermi energy intersects

the confining potential due to the finite geometry of the sample which causes these
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edge modes to exist. From a semi-classical point of view, with a filled Landau level,

the cyclotron motion of the electrons causes the bulk to be insulating while at the

edges, skipping orbits form.

Figure 1.5. a) Edge states in a sample of length L showing the bending of Landau

levels due to the confinement potential of the sample geometry. The Fermi level

intersects these Landau level resulting in conducting states at the edges. Adapted

from [12].b) Semi-classical picture showing skipping cyclotron orbit at the edge of the

sample. Due to suppressed backscattering, these edge modes are dissipationless. [12].

Reprinted figure with permission from Büttiker et al., Phys. Rev. Lett., 48, 1559

(1982). Copyright 1982 by the American Physical Society. c) Single edge mode

conduction in a Hall bar configuration for ν = 1

As shown in figure 1.5b, the conduction in the edges is immune to back scattering

from impurities resulting in a vanishing Rxx. These edge modes are therefore dissi-

pationless causing the voltage drop along same edge to be almost zero leading to a

vanishing Rxx. In Figure 1.5 c, such an edge state is shown for a Hall bar geometry

for the case of ν = 1.
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The next obvious question is why the Hall resistance is quantized to these exact

values independent of the material and size? The RH is given by the precise values.

RH =
h

ie2
(1.5)

where ν = i and i takes on integer values. Landauer and Büttiker [12,13] formulated

a theoretical framework in which each conducting edge state contributes e2/h to the

total conductance through the device. Such a derivation can be followed in detail

from ref. [12, 13]. Therefore, at ν = 2, when the Fermi energy EF crosses above

the second spin split landau level, the total conductance contribution from the two

conducting edge states is 2e2/h. The 4-wire Hall voltage measured will then be equal

to Vxy = Ih/ie2 where i is the number of conducting edge modes. The Hall resistance

is then independent of the sample geometry and is given by Rxy = h
ie2

, dependent

just on the fundamental constants.

1.2 Fractional Quantum Hall Effect

Soon after the discovery by von Klitzing, Tsui, Stormer and Gossard [3] observed

a quantized Hall plateau at ν = 1/3 and a minima in longitudinal resistance in a

GaAs/AlGaAs sample as can be seen in Figure 1.6. The opening of a gap within a

Landau level was unexpected in the single particle physics of the integer quantum Hall

effect. With the observation of many other fractional states, it was soon realized that

that the inter-electron Coulomb interactions play a significant role in determining

these new ground states. With a brilliant insight, Robert Laughlin theorized a wave-

function for the newly observed fractional state which holds for states at ν = 1/m

where m is an odd integer [4].

ΨLaughlin
1/m =

∏
j<k

(zj − zk)m exp
[
− 1

4l2B

∑
i

| zi |2
]

(1.6)

where zi = xi + iyi is the complex coordinate of ith electron and lB =
√

~/eB is

the magnetic length which is a measure of the average distance between electrons
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at any given magnetic field. In addition, the requirement of antisymmetry on the

fermion wavefunction requires that m be an odd integer. This wavefunction describes

the odd-denominator states at filling factor ν = 1/m. However, many additional

fractional states were observed at ν = p/q corresponding to rational fractions which

could not be explained by Laughlin’s wavefunction. As a result, a new theoretical

framework was needed to explain these observations.

Figure 1.6. Original plot of the discovery of the first fractional state at ν = 1/3. The

Hall resistance is quantized to 3h/e2 and the longitudinal resistance nearly vanishes

at about 150kG magnetic field. Reprinted figure with permission from D.C. Tsui,

H.L. Stormer and A.C. Gossard, Phys. Rev. Lett., 48, 1559 (1982). Copyright 1982

by the American Physical Society.
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It was the ingenious composite fermion theory proposed by Jain [5] that fit the

Laughlin odd denominator states as well as the plethora of fractional states that were

observed later. In this picture, each electron is seen as attached to an even number of

Figure 1.7. On the left is a representation of electrons at filling factor ν = 1/3 where

green circles denote the electrons and the quantized vortices are marked by black

arrows. This is a strongly interacting system of electrons with three vortices for each

electron. On the right, Composite Fermions in a reduced magnetic field with one

vortex per CF. The CF filling factor is ν∗ = 1. This transformation maps a system

of strongly interacting electrons to those of weakly interacting composite fermions.

magnetic quantized vortices (φ0 = h/e). An electron going in a closed path around a

flux quantum acquires a phase of 2π. This union of an electron with even number of

quantized vortices is known as a composite fermion (CF). Since some of the magnetic

field is already tied up to the composite fermions, the effective magnetic field that

these CFs see is reduced according to the following relation

B∗ = B − 2nspφ0 (1.7)

where p is an integer and ns is the electron density. FQH states can then be viewed as

integer Hall states of these composite fermions in the reduced effective field B∗. This

formulation transforms the strongly interacting electrons to weakly interacting com-

posite fermions (CFs) which form Λ levels similar to the Landau levels for electrons

and well explains the sequence of observed incompressible states at

ν =
n

2pn± 1
(1.8)
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In terms of these CFs, the ν = 1/3 as seen in Figure 1.7 is equivalent to the ν = 1

IQHE of electrons with one Λ level filled. The above picture is formulated in terms of

electrons, however when particle-hole symmetry is exact, the same fractional states

can be understood as being depleted of electrons or filled with holes. States at filling

factor ν and 1 − ν are then related by particle-hole symmetry and in this case the

FQHS at 2/3 will be such an example.

1.2.1 N=0 Lowest Landau Level

The first fractional quantum Hall state at ν = 1/3 was discovered [3] in the N=0

Landau level. With improvement in sample quality and lower electron temperatures

achieved, the landscape in the N=0 level developed over the years.

Figure 1.8. Magnetoresistance in the N=0 lowest Landau level in the filling factor

range 2/3 < ν < 2/7 at 35mK. Prominent filling factors are marked by arrows.

The dashed line shows the Hall resistance at 7/11 and 4/11. Reprinted figure with

permission from W. Pan et al., Phys. Rev. Lett. 90, 016801 (2003). Copyright 2003

by the American Physical Society.
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In Figure 1.8 such a rich array of fully developed fractional states are shown

and many other developing states at filling factors such as 4/11, 5/13, 3/8 is shown

in the plot at 35mK. Most of the Jain odd denominator sequence states and their

particle-hole conjugates are observed in this region. Some exceptions and the recent

proliferation of electron solids will be discussed in a subsequent section.

Composite Fermi sea at ν = 1/2, 3/2

At half-filled Landau level, each electron attaches two quantized vortices resulting

in a residual magnetic field B∗ = 0. In the absence of CF interactions, the system

at this filling factor is expected to behave similar to electrons at B = 0. Indeed,

no fractional state is observed in the lowest Landau level (LLL) at half-filling. A

classical Hall resistance with a non-zero longitudinal resistance is reported. Numer-

ous experiments have been conducted around this filling factor so as to determine

the cyclotron radius of composite fermions through geometric resonance and sur-

face acoustic waves [30, 33, 34]. These experiments confirm the reality of composite

fermions as legitimate particles.

However, unlike in the N=0 Landau level at 1/2 and 3/2 (in single subband

occupation), fractional quantum Hall states have been observed at half-filling in the

higher Landau levels at ν = 5/2, 7/2 [21, 78]. In addition, anisotropic behavior is

reported at higher half-fillings at ν = 9/2, 11/2, 13/2 [75,76]and so on. It reminds us

that the physics at half filling is quite special.

Unconventional odd denominator fractional quantum Hall states

A large fraction of odd-denominator states in the lowest Landau level can be

explained as the integer quantum Hall effect of weakly interacting CFs. However,

there has been several reported odd denominator exotic composite fermion states

that may result from the residual CF-CF interaction. The FQHS at ν = 4/11, 5/13,

4/13, 7/11, 5/17, and 6/17 [29] in the N=0 Landau level do not belong the Jain
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sequence of Eq. 1.8. For example, the states at 4/11 and 5/13 is understood as

CF in the higher Landau level capturing additional flux vortices (due to the residual

CF-CF interaction) to turn into higher order CF (4CF) condensing into their own Λ

levels [14].

1.2.2 N=1 Second Landau level

The second Landau level (N = 1) corresponding to the filling factor range 4 < ν <

3 hosts many important set of ground states which are not expected from the simple

non-interacting CF picture. Unlike the lowest Landau level which hosts majority of

the conventional odd-denominator Jain sequence states, the first even denominator

FQHS at ν = 5/2 [21] was reported here. Even though the first evidence of quantiza-

tion was reported by Willett et al., the hallmark features of a FQHS were confirmed

when a high mobility sample was cooled in a 3He Immersion cell as shown in Figure

1.9 [77]. A deep minima in Rxx is accompanied by a well quantized plateau in Rxy

at 2h/5e2. The FQHS state at this filling factor requires extremely low temperatures

which were achieved by cooling the sample in the immersion cell.

Simple composite fermion picture expects a Fermi sea at this filling factor similar

to 1/2 and 3/2. It was the motivation from the Bardeen-Cooper-Schreiffer theory of

formation of Cooper pairs in superconductivity that lead Haldane and Rezayi to pro-

pose a wavefunction based on d-wave pairing of composite fermions [22]. Soon after,

Moore and Reed proposed a Pfaffian wavefunction for the 5/2 state [23] explained in

terms of triplet pairing of composite fermions. Numerical calculations by Morf [25]

support the Moore-Read state. Interestingly, this state was predicted to support non-

Abelian braiding statistics with a degenerate ground state [23, 35, 36]. Exchanging

two non-Abelian particles results in a different ground state which was predicted to be

useful for building topologically protected quantum computers [36–39]. Other candi-

date wavefunctions include Anti-Pffafian [26,27] which is a particle-hole conjugate of

the Pfaffian and likewise non-Abelian and the 331 state [24] which is predicted to be
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Abelian. Therefore, the question on the true ground state at 5/2 and the non-Abelian

statistics remain the subject of further novel experiments.

In addition to the 5/2 state, even denominator states at 7/2 [78] and 2+3/8 [79–81]

have been reported. Recent experiments under extremely high hydrostatic pressure at

7/2 [28] indicate the importance of electron-electron interactions in transition between

the isotropic FQHS and rotational symmetry broken anisotropic state. The 2 + 3/8

on the other hand is much more fragile with energy gaps as small as 5mK, requiring

extremely low electron temperatures. The interest in even denominator states has

been renewed due to the recent observations of such states in graphene [82, 83] and

ZnO [84].
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Figure 1.9. Rxx and Rxy in the second Landau level at T= 4mK. Well quantized

fractional state at 5/2 is observed with several other developing states marked by their

filling factor [77]. The Hall resistance is approaching the nearest integer values at some

filling factors representative of reentrant states. Reprinted figure with permission from

W. Pan et al., Phys. Rev. Lett. 83, 3530 (1999). Copyright 1999 by the American

Physical Society.

Some of the odd denominator states in the second Landau level that are of different

physical origin are the 2+2/5 [79] and the 2+6/13 state [80, 81]. Read and Rezayi
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proposed a wavefunction in terms of paired parafermions applicable at the ν = 2+2/5

state and its particle-hole conjugate at 2+3/5 for which there is no clear experimental

signature yet. In a later chapter, we discuss this state in light of our results in the

competition between different ground states in the second Landau level. Interest in

these FQHS arises from predictions of quasiparticles hosting Fibonacci anyons [86,87]

which are expected to allow for universal quantum computation.

1.3 Electron Solids

In addition to the fractional quantum Hall states, another important consequence

of the electron-electron interaction is the formation of solid phases. These phases

stabilized by the long range interactions have distinct signature in transport mea-

surements. In transport, it is dictated by insulating behavior which can be of two

different types. The first case is when all the particles in the system are pinned by

disorder leading to huge insulating peaks in Rxx. Such a case will be discussed briefly.

Another possibility is for the particles in the partially filled Landau (Λ) for electrons

(composite fermions) to be pinned and the transport exhibited by the underlying in-

teger (fractional) state. Reentrant integer quantum Hall states is one such example.

The schematic in Figure 1.10 shows some of these phases formed by electrons which

have been observed while the corresponding states for the composite fermions have

been predicted [145, 146] with few indications in experiments [129, 141, 143]. Solid

phases with more than one particle localized at each lattice site as shown in Figure

1.10 (b) and (d) are the charged density ordered phases. Such a phase comprising

of composite fermions has been predicted to exist theoretically [145] with no experi-

mental evidence. However, we discuss such a possibility in Chapter 5. Such density

modulation can also result in anisotropic transport such as the stripe or the nematic

phases [44, 75,76].
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Figure 1.10. Schematic of the various possible solids. (a) Wigner crystal of electrons.

(b) Bubble phase comprising electrons with three electrons per bubble in a triangular

lattice. (c) Wigner crystal of composite fermions. (d) A bubble crystal of compos-

ite fermions with three 2CFs (each electron is attached to two quantized vortices)

localized at each lattice site.
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1.3.1 Wigner Crystal and Exotic Electron Solids

The original motivation for the experiment by Tsui et al., was to look for the

Wigner Crystal (WC) of electrons predicted to form at extremely high magnetic

field [7]. This WC is expected to form when the Coulomb energy dominates the

kinetic energy in the N=0 LL. Such an insulating crystal of electrons was indeed

observed experimentally by Jiang et al. [138] near filling factor ν = 1/5 as shown in

Figure 1.11. As the filling factor approaches towards 1/5, a huge insulating peak in

Rxx is observed near ν ∼ 0.21 (highlighted in yellow) with a subsequent observation of

a well quantized state at ν = 1/5 corresponding to four quantized vortices attached

to each electron. For all filling factors less than 1/5, a rising exponential peak is

reported which is highlighted in blue in the figure. Such a reemergence of insulating

behavior below 1/5 and the highly insulating behavior at lower filling factors does not

indicate single particle localization. Subsequent measurements in samples with varied

disorder always exhibits this insulating characteristic which is taken as evidence for

collective pinning of electrons by the small ubiquitous disorder potential [113]. The

electrons are understood as forming a triangular lattice localized by the impurities in

the sample. There has been recent theoretical work indicating that the crystal phase

at these low fillings may not be a simple electron Wigner Crystal but may contain a

series of composite fermion crystals [144,147,149] as depicted schematically in Figure

1.10 (c). A Wigner Crystal comprising of composite fermions with either two or

four quantized vortices per electron has been considered theoretically with very little

experimental evidence [141]. An elaborate review of these solids in GaAs system is

well discussed by M. Shayegan in chapter 9 of the book in ref. [20].
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Figure 1.11. Observation of insulating behavior at extremely low filling factor near

1/5 shown on a plot of Rxx vs magnetic field at T = 90mK. The longitudinal resistance

peaks at ν ∼ 0.21 which is highlighted in yellow and rises exponentially for all filling

factors ν < 0.2 (highlighted in blue). Inset shows a calculation of the energy of the

solid and that of a liquid as a function of filling factor. Adapted from ref. [138].

Reprinted figure with permission from H.W. Jiang et al., Phys. Rev. Lett., 65, 633

(1990). Copyright 1990 by the American Physical Society.

1.3.2 Reentrant Integer Quantum Hall Effect

As seen in Figure 1.9, the Hall resistance landscape in the second Landau level

looks quite different from that in the lowest Landau level. Rxy approaches the nearest

integer value near while the longitudinal resistance almost vanishes. Such reentrance
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is understood as collective localization of electrons often associated with the formation

of electronic bubble phases [40, 43, 44]. These states were first reported in the third

and higher Landau levels [75, 76] and subsequently observed in the second Landau

level [78] as shown in Figure 1.12. Four reentrant states in the lower spin branch of

the N=1 Landau level are observed with two on either side of the ν = 5/2 FQHS.

The experimental signature of reentrant states in electronic transport measurements

is indicated by a vanishing Rxx = 0 and a quantized Hall resistance Rxy = h/ie2 where

i = which is explicit from Figure 1.13 measured in a 3He-Immersion cell [105] at an

extremely low temperature of 6.9mK. With improvement in sample quality and lower

electron temperatures achieved, these reentrant plateaus are very well developed.

Unlike the integer states, these phases are observed centered at non-integral Landau

filling factors. In the second Landau level, there is four such states in each spin branch

Figure 1.12. The first observation of RIQHS in N=1 Landau level with Hall resistance

quantized to h/2e2 and h/3e2 for the four reentrant phases observed in the lower spin

branch. Reprinted figure with permission from J.P. Eisenstein et al., Phys. Rev.

Lett. 88, 076801 (2002). Copyright 2002 by the American Physical Society.
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which appear at about 55mK. Each of these states develops with a precursor peak in

magnetoresistance which has been extensively studied [88,91].

Figure 1.13. Magnetotransport in the lower spin branch of the second Landau level

at an extremely low temperature of 6.9mK measured in a 3He Immersion cell. The

four RIQHS are marked. A deep minima at ν = 2 + 6/13 attests to the high sample

quality and low electron temperatures achieved [80]. Reprinted figure with permission

from A. Kumar et al., Phys. Rev. Lett., 105, 246808 (2010). Copyright 2010 by the

American Physical Society.

The above reentrant quantum Hall states in the higher Landau levels are associ-

ated with charge density ordered bubble phases. The electrons in the partially filled
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Landau level condense into bubbles at each lattice site in a triangular lattice pinned

by the disorder potential not contributing to conduction. The schematic in Figure

1.10(b) shows such a bubble phase of electrons even though the number of electrons

per site is a topic of current interest. Such solids exhibit isotropic transport unlike

the nematic phases which break rotational symmetry [40, 43, 75, 76]. Various experi-

ments have been performed to study characteristics of these bubble phase including

their electrical breakdown [45–50] which leads to a transition from an insulating to a

conducting state pointing to the depinning of the charge density waves (CDW) and

surface acoustic wave experiments [51,52] which highlight the attenuation from such

solid phases.

Microwave Absorption and Pinning Resonance Experiments

The existence of electron solids interpreted in terms of a crystal of electrons pinned

by the small disorder potential has been verified by another experimental technique.

The sample is excited at microwave radiation of about 1GHz which is absorbed and

the response of the real part of conductivity Re[σxx] is measured as a function of

frequency f . This technique is particularly useful to study the Wigner Solids in the

flanks of integer plateaus away from exact filling when there is dilute population of

quasiparticles in the next excited Landau level [115, 116]. In Figure 1.14, such reso-

nances in the microwave spectrum near ν = 1 is shown with clear resonance indicating

a solid phase. The frequency of the resonance fpk yields information about the un-

derlying disorder potential strength and correlation length [55]. Pinning resonances

of Wigner Crystal [117], charge density waves including electronic bubble phases in

the higher Landau levels [55,56] as well as the stripe phases near half fillings [57] has

been measured.
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Figure 1.14. The observation of microwave resonances near the integer plateau at

ν = 1 [115]. (A) The conductivity response is measured as a function of frequency at

different filling factors and each trace is offset for clarity. Figures (B) and (C) show

the peak frequency fpk and ∆f as a function of the electron filling factor. Reprinted

figure with permission from Y.P. Chen et al., Phys. Rev. Lett., 91, 016801 (2003).

Copyright 2003 by the American Physical Society
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1.4 Conclusion

Quantum Hall effect is indeed a hallmark phenomena leading to emergence of rich

physics driven by interactions of electrons in two dimensions. The toplogical states as

well as the Landau charge order phases are a manifestation of the emergent behavior.

As discussed above, the charge density waves predicted to form in the higher Landau

levels give rise to competing phases in the second Landau level. In the subsequent

chapters, I willl discuss some of our recent results which exhibit novel ordered phases

of electrons and composite fermions in the lowest Landau level.
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2. EXPERIMENTAL TOOL SET

The physics of the fractional quantum Hall effect is based on restricting motion of

electrons to two-dimensions. Molecular-beam epitaxy is used to grow these very

high mobility samples that I will briefly describe. To study some of the insulating

phases that I have described, we then need to cool these samples to extremely low

temperatures in a strong magnetic field. I will then describe the essential working

of a dilution refrigerator used to achieve such temperatures equipped with a super-

conducting magnet. In addition, the He-3 immersion cell was used for some of the

measurements in the second Landau level to thermalize the electrons to extremely

low and stable temperatures.

2.1 Two-dimensional electron gas and Molecular Beam Epitaxy

The advancement in technology leading to confinement of electrons in reduced

dimensions has been a cornerstone of modern condensed matter research. The quan-

tum mechanical effects at play have lead to the observation of novel physics such

as the fractional quantum Hall effect discussed. The recent proliferation of many

such available semiconductor host systems for 2DEGs include AlAs/GaAlAs [58],

Si/SiGe [60], Ge/SiGe [61,62], ZnO/MgZnO [63], CdTe/CdMgTe [59]. Advancement

of such platforms is enhanced with pioneering work in graphene [65] and other layered

materials such as transition metal dichalcogenides [66] and black phosphorus [67]. De-

spite the recent observations of FQHE in other material hosts such as graphene [68]

and ZnO [69], GaAs/AlGaAs quantum wells remain one of the cleanest systems with

electron mobilities of the order of µ = 36 million cm2/Vs [72] which have resulted in

many new phases exclusive to GaAs.
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The importance of molecular beam epitaxy (MBE) for growth of such high mobil-

ity samples cannot be overstated. The sample mobility achieved in these heterostruc-

tures is one of the highest with continued improvement as shown in Figure 2.1. MBE

is a ultra high-vacuum (UHV) evaporation technique which allows the for the thermal

evaporation of high quality thin-films of materials one layer at a time.

Figure 2.1. This shows the improvement in quality of 2DEGs in GaAs/AlGaAs mea-

sured in terms of sample mobility over several decades [72]. Reprinted figure with

permission from D.G. Schlom and L.N. Pfeiffer, Nature Materials 9, 881 (2010). Copy-

right 2010 by Nature Materials.

The next important tool for growth of highest quality samples is the sample struc-

ture and the choice of materials. The mobility given by µ = eτ/m∗ is naturally high
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for GaAs due to its low effective mass m∗. To confine the motion of electrons, two

semiconductors with difference in bandgap are stacked together trapping electrons

from the donor ions in a potential well. AlGaAs and GaAs make a good combination

due to very similar lattice constants causing minimal strain during layered growth

resulting in reduced interfacial scattering [19]. Such a sandwich of GaAs surrounded

by AlaGaAs as shown in Figure 2.2. The content of Al is controlled for optimizing

the structure of AlxGa1−xAs where x is the concentration of Al with x = 20 − 30%

for optimal results [19,70,71].

Figure 2.2. The conduction band minimum of GaAs/AlxGa1−xAs (red) growth profile

and the electron density (blue) of a quantum well structure. The Si dopants are grown

into narrow quantum wells (3nm) on both side of the 30 nm GaAs well which are

indicated by peaks in charge density profile. The main GaAs quantum well with the

2DEG is at about 200 nm from top surface (0 on the scale). From ref. [71].
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An important aspect of doping (Si for n-type) these high quality structures is a

technique called modulation doping [70], which reduces scattering with donor ions by

placement of donor ions at a distance of 50-100 nm away from the quantum well.

These doping quantum wells are evident from the peaks in charge density in Figure

2.2. Such a scheme has revolutionized the contemporary mobilities to the order of

107 million cm2/Vs.

To measure transport of the 2DEG underneath (200 nm below the surface), In/Sb

contacts are placed at the edges of the cleaved wafer which is usually a square piece

of 5mm by 5mm. These indium contacts are then annealed in a homemade rapid

thermal annealer at 450◦ for a few minutes within a chamber filled with forming gas

composed of H2 and N2.

2.2 Dilution Refrigerator

The dilution refrigerator based on the mixing of dilute 3He in a concentrated 4He is

a closed cycle system most commonly used to achieve milliKelvin (mK) temperatures.

The cooling based on the phase-diagram of these two isotopes of helium is at the heart

of the working of this refrigeration technique with many other essential components.

To understand the cooling mechanism achieved with a mixture of 3He and 4He, we

look at the phase diagram of temperature vs mixing concentration as shown in Figure

2.3. At a temperature of about ∼ 0.9K, the liquid undergoes a phase separation into

a concentrated He-3 rich phase and a dilute phase rich in He-4. The cooling power

relies on the entropy of mixing of the two isotopes. The He-3 is distilled away from

the mixture causing He-3 atoms to move from the concentrated phase to the dilute

phase resulting in absorption of heat and thus cooling. In order to run this in a closed

cycle, the evaporated He-3 is returned to the mixture via several steps which will be

discussed next.

A schematic of the dilution fridge is shown in Figure 2.4. The 4K stage of the

refrigeration is achieved by inserting the experimental probe in He-4 liquid. However,
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Figure 2.3. The temperature vs concentration phase diagram of liquid 3He -4He

mixture. Plot from ref. [15]

the incoming gaseous mixture cannot be liquefied with a 4K stage as He-3 condenses

at 3.4K. Therefore, a 1K pot stage is setup by pumping on the helium liquid which is

supplied continuously from the surrounding helium bath. This is the stage where the

condenser is located at which point the mixture first condenses into a liquid. There

is a number of heat exchangers which cool the incoming mixture before it reaches the

mixing chamber. The phase boundary is formed inside the mixing chamber which is

the coldest stage in the system. A stage called the still is where the He-3 gets pushed

due to osmotic pressure causing the He-3 atoms to cross the phase boundary and thus

cooling the system. The mixing chamber is heat sunk very well to a copper tail which

houses an assembly with the sample shown in dark tan in the Figure 2.4. The sample

sits at the center of the bore of the superconducting magnet. The magnet is a single

coil solenoid made with Niobium alloy with a superconducting transition below 7K
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Figure 2.4. Schematic of a dilution refrigerator showing the various cooling stages.

The sample (dark tan) is attached to the mixing chamber via a copper tail shown in

tan. The sample sits at the center of the bore of a superconducting magnet. Adapted

from ref. [74]
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and therefore is always kept cold in the helium bath at 4K. The coils of the magnet

can carry upto 100 A of current without dissipitation.

The temperature of the mixing chamber is monitored with a homemade resistive

thermometer which is sensitive to temperatures down to 5mK. There is several other

components to the functioning of the dilution refrigerator which include cold traps at

77K and 4K to absorb any air while the mixing is circulating in a closed cycle. It is

extremely important to keep an eye for any leaks as air leaks can cause the system

to warm up or hamper the movement of the mixture by creating icy obstructions.

2.3 He-3 Immersion cell

More often, even when the mixing chamber reaches single digit mK temperatures,

the electrons in the two-dimensional electron gas are much warmer due to the Kapitza

thermal resistance [73]. To resolve this issue, a He-3 immersion cell [105] was designed

for ensuring electron thermalization to the base temperature of our dilution refrig-

erator. The cell is made of a polycarbonate body with a threaded cap as shown on

the left in Figure 2.5. It is filled with He-3 liquid which provides excellent thermal

conductivity at mK temperatures and enables viscometry based temperatures mea-

surements. A schematic of the inside of the cell is shown on the right in Figure 2.5.

The sample sits on a copper base with silver sinters filled heatsinking wires for in-

creased area of thermal contact. A quartz tuning fork in red is used for temperature

measurements based on the temperature dependent viscosity of He-3. The challenge

for making this kind of setup is for it to be completely leak-tight.

Some of the data in the second Landau level that I discuss in the next chapter was

taken with the immersion cell. Electron temperatures as low as 6.9mK were achieved

which have been instrumental in observation of some very fragile fractional states

such as 2+3/8 and 2+6/13 [80].
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Figure 2.5. Left: Picture of the Immersion cell mounted on the mixing chamber

tail. Right: Schematic of the cell which shows the platform where the sample sit and

connected to the silver sintered wires. The tuning fork is shown in red which is used

for thermometry. The gray area inside is filled with He-3 liquid. Reprinted figure

with permission from N. Samkharadze et al., Rev. Sci. Instrum. 82, 053902 (2011).

Copyright 2011 by the American Institute of Physics.
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2.4 Copper Tail Mount

The results presented in chapter 3 were acquired with the sample mounted in the

immersion cell. However, experiments reported in chapter4 and 5 were performed

with the sample placed on a copper tail as shown in Figure 2.6. We measured two

samples in this cooldown with a LED for each one used for illumination at 10K and

for mK illumination discussed in chapter 4. The samples were attached to the copper

base with vacuum grease which provides a good thermal and mechanical contact.

The samples are cooled via the copper wires attached with indium solder for making

connection to the ohmic contacts seen as silver spots on the sample perimeter. The

Figure 2.6. A picture of the copper sample mount with two samples attached. Two

red light emitting diodes were used for low-temperature illumination. The electrical

wires soldered to the sample are attached to a header on the other end. A copper

radiation shield cap was attached to the copper tail before mounting in the fridge.
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two samples used in the study presented in this thesis will be denoted as Sample 1

with electrons confined is a 30nm quantum well, electron density n = 3.0× 1011/cm2

and mobility µ = 32 × 106cm2/Vs. Sample 2 from a different wafer has similar

characteristics in a 30nm quantum well with electron density n = 3.0× 1011/cm2 and

mobility µ = 28× 106cm2/Vs.

2.5 Conclusion

The essential tools for exploring the quantum effects of two-dimensional electron

systems needs both the state-of-art growth techniques and the cryogenic development

of the dilution refrigerator. With the novel-design of the He-3 immersion cell necessary

for achieving the lowest electron temperatures, we see some phenomenal states in the

second Landau level. In the rest of the document, I will discuss the results obtained

with this experimental toolkit.
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3. ELECTRON SOLIDS IN THE SECOND LANDAU

LEVEL AND THEIR COMPETITION WITH

FRACTIONAL QUANTUM HALL STATES

As described previously, the second Landau level witnesses numerous fractional quan-

tum Hall states (FQHSs) [21, 77–81]. Several of these FQHSs are thought to have

topological order and exotic quasiparticle excitations which cannot be realized in the

lowest Landau level [3]. Apart from the most well-known even denominator state at

ν = 5/2 = 2 + 1/2 [21, 77], which is believed to belong to the Pfaffian universality

class and to host Majorana-like excitations [23,85], the ν = 2 + 2/5 is another FQHS

of interest [79] as it is a candidate hosting Fibonacci anyons [86, 87]. In addition to

the many interesting FQHSs, the second Landau level also hosts a set of traditional

Landau phases with charge order. Examples of such charge order are the eight the

electronic bubble phases [40, 78, 88] that are observed. Therefore, the region of the

second Landau level stands out among other Landau levels in a prominent display

of phase competition between two classes of different phases: FQHSs and charge or-

dered phases [79]. As a result, there have been reports of weak local minima in the

magnetoresistance at ν = 2 + 3/5, 2 + 3/7, 2 + 4/9, 2 + 5/9, 2 + 5/7, and 2 + 5/8

which have opened the possibility of fractional quantum Hall states at these filling

factors. These features may be a result of a competition between the reentrant states

near these filling factors and fractional states developing.

In this chapter, I will discuss our study of the temperature dependence near these

features, where we find that these cannot be associated with fractional quantum

Hall states; instead they originate from magnetoresistive fingerprints of the electronic

bubble phases. We found only two exceptions: at ν = 2+2/7 and 2+5/7 where there

is evidence for incipient fractional quantum Hall states at intermediate temperatures.
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As the temperature is lowered, these fractional quantum Hall states collapse due to

a phase competition with the nearby bubble phases.

3.1 Temperature evolution of magnetoresistance in the Second Landau

Level

In many experiments, data in the second Landau level on the highest quality

samples exhibit a consistent set of fully developed FQHSs at ν = 2 + 1/2, 2 + 1/3,

2 + 2/3, 2 + 1/5, 2 + 4/5, and up to four bubble phases in the filling factor range

2 < ν < 3. In addition, in setups attaining the lowest temperatures, many developing

FQHSs are observed at ν = 2+3/8 [79–81,91,93–97,133], 2+6/13 [80,81,91,93,94,133],

2 + 2/9 [91], 2 + 7/9 [81,91,96] and 2 + 2/7 [79,95,98,133]. However, a careful review

of the literature reveals several additional minima in the longitudinal resistance, such

as the ones at ν = 2+5/8, 2+5/7 in Ref. [133], ν = 2+3/5, 2+3/7, 2+5/7, 2+4/9,

2 + 5/9, 2 + 5/8 in Ref. [95], and ν = 2 + 4/9, 2 + 5/9, 2 + 5/7 in Ref. [99]. Even

though these minima develop at filling factors compatible with FQHSs, they could

not be associated with FQHSs either due to of lack of Hall data [95, 133] or because

the quantization of the Hall resistance was inconsistent with that of a FQHS [99].

Furthermore, with the exception of ν = 2 + 5/8, other experiments report bubble

phases at either lower electron temperatures and/or in higher quality samples at the

filling factors of these additional minima [79–81,91,94,96,97].

There may be several reasons for the development of the above-mentioned addi-

tional local minima in Rxx in certain experiments but of bubble phases in others.

First, different growth parameters of samples alter the electron-electron interaction

that may result in a drastically different set of ground states. It is thus possible that,

with improvement in sample quality, the signatures seen in Refs [95, 99, 133] develop

into well quantized FQHSs. Secondly, the available data may indicate a temperature-

driven phase competition between the FQHSs and bubble phases. Indeed, there are

well-known FQHSs present at intermediate temperatures, which give way to a charge-
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ordered phase at the lowest accessible temperatures. A few examples of such FQHSs

are at ν = 1/7 [100,101] and 2/11 FQHSs [101] in the lowest Landau level, ν = 4+1/5

and 4 + 4/5 in the third Landau level [102], and ν = 2 + 2/7 in the second Landau

level [79]. Of these, the FQHSs observed at intermediate temperatures in the second

and third Landau levels transition into bubble phases as the temperature is lowered.

Here we examine whether the earlier seen minima in Rxx that could not be as-

sociated with a FQHS also develop in the second Landau level of a high quality

GaAs/AlGaAs sample. We examine previously unavailable detailed temperature de-

pendence to observe these phases at intermediate temperatures.

Sample 1 under study is a symmetrically doped 30nm quantum well sample with

electron density n = 3.0 × 1011/cm2 and mobility µ = 32 × 106cm2/Vs. Following

the procedure described in the Supplement of Ref. [104], the sample state was pre-

pared by a low temperature illumination with a red light emitting diode. The sample

is mounted in a He3 immersion cell which ensures electron thermalization to the

base temperature of our dilution refrigerator and enables a convenient setup for tem-

perature measurement through quartz tuning fork viscometry [105]. The excitation

current used for transport is 2nA.

Figure 3.1 captures the temperature evolution of magnetoresistance traces in the

second Landau level in the temperature range between T = 59 and 6.9 mK. We

observe several FQHSs among which the most prominent ones are at ν = 2 + 1/2, 2 +

1/3, 2 + 2/3, 2 + 1/5, and 2 + 4/5. Traces of Fig.1 appear very different from those

measured in the lowest Landau level [9] due to the presence of the reentrant integer

quantum Hall states [78,88]. These reentrant states are believed to be exotic electronic

solids called the bubble phases [40,75,76]. The bubble phases we observe are marked

by yellow shading in Fig.1. At the lowest temperatures, the bubble phases are signaled

by a vanishing Rxx and the Hall resistance Rxy quantized either to h/2e2 or h/3e2 (not

shown) [78]. Furthermore, these reentrant states are delimited by two distinct peaks

in Rxx, which can be seen near the edges of the shaded areas [88] in Fig.1. The size of

such peaks may exceed 1.8 kΩ, therefore, dominating the magnetoresistive landscape.
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Figure 3.1. Waterfall plot of the magnetoresistance in lower spin branch of the second

Landau level (2 < ν < 3). Filling factors of the five most prominent FQHSs are shown.

The shaded areas mark the bubble phases present. Arrows indicate precursors of

the bubble phases. Numbers on the side show the measured temperatures in mK.

Reprinted figure with permission from V. Shingla et al., Phys. Rev. B 97, 241105(R)

(2018). Copyright 2018 by the American Physical Society.
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It was found that as the temperature is raised, the two peaks encompassing a bubble

phase first merge into a single peak and this single peak then disappears as the

temperature is increased further. As the appearance of these singular peaks at the

highest temperature indicates the first signature of the bubble phases, they can be

thought of as the precursors of the bubble phases. In Fig. 3.1, there are several

examples marked by vertical arrows of these precursor peaks, such as the one at

B ' 5.37 T in the T = 55 mK trace. At lower temperatures, near B = 5.37 T there

are two distinct bubble phases, which will be discussed later.

3.2 The question of a fractional quantum Hall state at 2 + 3/5

We first focus at filling factors related by particle-hole conjugation ν = 2 + 3/5

and 2 + 2/5. Interest in these quantum numbers stems from proposals and numerical

evidence that these FQHSs have a unique topological order supporting non-Abelian

anyons of the Fibonacci type [86, 87]. Features in magnetotransport at these two

filling factors were first tentatively associated with FQHSs in Ref. [77]. However, no

quantized Hall resistance was observed; the Hall resistance instead had features which

were later attributed to the bubble phases. A fully developed ν = 2 + 2/5 FQHS was

observed in Ref. [79] and it is now routinely measured [79–81, 91, 93–98, 133]. In

contrast to the observations at ν = 2 + 2/5, at ν = 2 + 3/5 no FQHS was detected in

most experiments [79–81, 91, 93, 94, 96–98, 133]. The filling factor ν = 2 + 3/5 often

falls very close to the bubble phase R2c instead. We are aware of only one work,

in which a concave feature in Rxx was seen at ν = 2 + 3/5 [95] at a temperature of

T = 36 mK. We note that results in wide quantum wells are qualitatively different;

we defer discussing these results to a later paragraph.

In Fig. 3.2, a magnified view of the T = 6.9 and 59 mK traces is shown. We

focus on the T = 59 mK trace as this is the lowest temperature at which there are

no noticeable features of the bubble phases. On this trace, we marked several filling

factors of interest: the most prominent FQHSs at ν = 2+1/2, 2+1/3, 2+2/3, 2+1/5,
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lines. The shaded areas are bubble phases. Reprinted figure with permission from V.

Shingla et al., Phys. Rev. B 97, 241105(R) (2018). Copyright 2018 by the American

Physical Society.
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and 2 + 4/5. Additional features are seen at several other filling factors such as

relatively narrow depressions in Rxx at ν = 2 + 2/5, 2 + 2/7, 2 + 2/9, 2 + 7/9, 2 + 5/7

and 2 + 3/8. Other features are broader, such as those near ν = 2 + 3/5 and in the

vicinity of ν = 2 + 1/2, on each side. Of these features, only some of them develop

into a FQHS at lowest temperature of T = 6.9 mK. Indeed, in the T = 6.9 mK trace,

we identify fully developed FQHSs at ν = 2 + 1/2, 2 + 1/3, 2 + 2/3, 2 + 2/5 and less

developed FQHSs at ν = 2 + 6/13, 2 + 2/9, 2 + 7/9, and 2 + 3/8. In the following,

we will examine the temperature dependence of the additional features of Rxx shown

in the T = 59 mK trace of Fig.2. We will search, in particular, for signs of any

developing FQHSs which may be present at intermediate temperatures, but may not

survive to the lowest accessible temperatures.

As seen in Fig. 3.2, our trace at T = 6.9 mK in the vicinity of ν = 2 + 3/5 is

similar to that seen in Refs. [79–81,91,93,94,96,97], as ν = 2 + 3/5 falls near bubble

phase R2b. In the T = 59 mK trace of Fig.2, there is however, a slight curvature at

ν = 2 + 3/5. In order to establish whether this feature develops into a FQHS as the

temperature is lowered, in Fig. 3.3 we examine data at intermediate temperatures. At

a lower temperature at T = 50 mK, a resistance peak appears near B = 4.82 T. This

peak was associated with the bubble phase and can be thought of as the precursor

of the bubble phase labeled R2c. As the temperature is lowered to T = 46 mK, this

peak grows and eventually splits into two at T = 36 mK giving way to a pronounced

resistance minimum between them. Inspecting the data shown in Fig.3 we see that

the precursor peaks of the bubble phase at T = 46 and 50 mK have a concave

curvature on both sides, including one near ν = 2 + 3/5. These concave features,

however, cannot be associated with a developing FQHS. We thus conclude that, in

spite of a fully developed FQHS at ν = 2 + 2/5, in our sample we do not observe any

signs of fractional correlations at ν = 2 + 3/5. Recent theory work has significantly

strengthened the case for a Read-Rezayi state at ν = 2 + 2/5 [106–108] and has

addressed the experimentally asymmetry between the observation of ν = 2 + 2/5

and the missing 2 + 3/5. Two causes for the suppression of fractional correlations at
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ν = 2 + 3/5 were identified: an enhanced Landau level mixing [108] and an extremely

close energetic competition between the Read-Rezayi state and the bubble phase [107].

While in experiments both effects are likely to be present, results of Ref. [107] are

particularly relevant for our observations.

It is to be noted that different physics may be at play at ν = 2 + 2/5 and 2 + 3/5

in GaAs/AlGaAs electron gases with two electric subbands occupied, such as electron

gases confined to wide quantum wells. In contrast to samples with a single subband
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populated, it was shown that in these systems, the ν = 2+2/5 and 2+3/5 filling factors

can be achieved while the chemical potential is in the lowest Landau level [109,110].

Under such circumstances, FQHSs have been observed both at ν = 2+2/5 and 2+3/5.

These FQHSs, however, inherit the Laughlin-Jain correlations of the ν = 2/5 and 3/5

FQHSs commonly observed in the lowest Landau level. Furthermore, under such

conditions, no bubble phases were observed, therefore no such competition between

FQHSs and bubble phases takes place [109,110].

3.3 Incipient fractional quantum Hall states at 2+2/7

In this section, we examine the filling factor range from ν = 2 + 1/2 to 2 + 2/5.

There are several references that report either a bubble phase [78–80,88,91,96,97,111]

or a precursor to the bubble phase in this region [98,112]. The bubble phase is labeled

R2b in Fig. 3.4. Signatures of fractional correlations in this region were reported only

in a few experiments. A FQHS was reported at ν = 2 + 6/13 in Ref. [80]; this state

has since been seen in other high mobility samples [91,94,133]. In these experiments

no other FQHSs were observed in the 2 + 2/5 < ν < 2 + 1/2 region [80,91,94,133]. In

contrast, local minima were reported at ν = 2+3/7 and 2+4/9, but the bubble phase

R2b was not observed in Ref. [95]. In addition, in Ref. [99], a local minimum in Rxx

was also observed at ν = 2 + 4/9, although the Hall resistance at this filling factor

was not quantized. In our sample we observe a developing FQHS at ν = 2 + 6/13.

Furthermore, at T = 36, 40, 46 mK in our data, we observe precursor peaks associated

with the bubble phase R2b. These precursor peaks exhibit a concave curvature on

both of their sides, near ν = 2 + 4/9 and 2 + 3/7. However, the concave features

in our sample in the vicinity of these two filling factors cannot be associated with

a developing FQHS. We thus conclude, that in our sample, there is no evidence of

FQHSs at ν = 2 + 3/7, 2 + 4/9, 2 + 5/11 at any of the temperatures examined. From

Fig. 3.3, a similar conclusion can be drawn for filling factors ν = 2 + 7/13, 2 + 6/11,
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larger than 2 + 1/2. Vertical arrows mark the precursors of the bubble phases R2a

and R2b. Reprinted figure with permission from V. Shingla et al., Phys. Rev. B 97,

241105(R) (2018). Copyright 2018 by the American Physical Society.

2 + 5/9, 2 + 4/7, 2 + 3/5, and 2 + 5/8; of these filling factors a local minimum in Rxx

was seen at ν = 2 + 5/9 in Refs. [95,99] and at ν = 2 + 5/8 in Ref. [133].

We thus found that curvatures in the magnetoresistance of our sample at the filling

factors enumerated above cannot be associated with incipient fractional quantum

Hall states; instead they originate from magnetoresistive fingerprints of the electronic

bubble phases. In contrast to the behavior of the magnetoresistance at the filling

factors discussed above, the temperature evolution at ν = 2 + 2/7 is quite different.
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2+2/7 (panel a). The Hall resistance for the same range of filling factors (panel b) and

a magnified view of the Hall resistance (panel c). Shading marks the bubble phases

R2a and R2ã at 6.9 mK. These bubble phases are separated by a deep minimum

in Rxy seen at T = 29 and 32 mK, as shown in panel b. Quantization of the Hall

resistance at ν = 2+1/3 and at 2+2/7 is marked by horizontal dotted lines. Reprinted

figure with permission from V. Shingla et al., Phys. Rev. B 97, 241105(R) (2018).

Copyright 2018 by the American Physical Society.
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As discussed in Ref. [79], with the lowering of temperature, Rxx at this filling factor

decreases and Rxy approaches full quantization. Our sample shows a similar behavior.

Fig. 3.5a shows that at T = 46 mK, Rxx at ν = 2 + 2/7 reaches its lowest value.

As shown in both Fig. 3.5b and Fig. 3.5c, at this temperature and filling, Rxy

becomes equal to h/(2 + 2/7)e2 within our measurement error. In contrast to Refs.

[79, 95, 98, 133], transport at the lowest temperature in our sample at ν = 2 + 2/7

exhibits a fully developed reentrant insulator, i.e. Rxx = 0 and Rxy = h/2e2. As

reported earlier, near ν = 2 + 2/7 there are two distinct bubble phases [79, 88],

labeled R2a and R2ã in Fig. 3.5. Shading in this figure denotes the stability range

of these bubble phases at 6.9 mK; the two different bubbles are delimited by the

deep minimum in Rxy shown in Fig. 3.5b. It is interesting to note that this deep

minimum in Rxy is close to, but not at ν = 2 + 2/7. We find a similar behavior at

the related filling factor ν = 2 + 5/7. Indeed, in Fig. 3.2 we observe a conspicuous

minimum in Rxx at T = 59 mK at this filling factor. Such a local minimum was also

observed in Ref. [99] and it may indicate developing fractional correlations. However,

as shown in Fig. 3.3, this minimum at ν = 2 + 5/7 disappears with the lowering of

the temperature and the R2d bubble phase prevails.

Our observations are expected to be relevant for the two-dimensional electron gas

confined to bilayer graphene. Improvements in the quality of this system revealed an

increasing number of FQHSs, including even denominator FQHSs [82, 83]. Details,

such as the nature of the wavefunction in the N = 1 Landau level and the presence of

the valley degree of freedom in bilayer graphene, result in differences in the physics,

when compared to that in the GaAs/AlGaAs system [82,83]. Nonetheless, in addition

to FQHSs, the most recent measurements in bilayer graphene also reveal reentrant

integer quantum Hall effect commonly associated with bubble phases [103]. Bilayer

graphene is thus expected to similar display of phase competition between FQHSs

and bubble phases similar as seen in the GaAs/AlGaAs system.
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3.4 Conclusion

To conclude, the development of precursors of the electronic bubble phases in

the second Landau level of two-dimensional electron gases confers strong concave

features to the magnetoresistance. While in our sample we find peculiar features in

the magnetoresistance in the vicinity of the filling factors of interest ν = 2 + 3/5, 2 +

3/7, 2 + 4/9, 2 + 5/9, and 2 + 5/8, we cannot associate FQHSs with these filling

factors neither at the lowest nor at any finite higher temperatures. We show that

these features arise from the development of the magnetoresistive fingerprints of the

bubble phases. In contrast, at ν = 2 + 2/7 and 2 + 5/7, we observe incipient FQHSs

at intermediate temperatures, which yield to a bubble phase as the temperature is

lowered further. Such a study is timely, because of the conflicting results reported

in the second Landau level of the GaAs/AlGaAs system. Furthermore, our work is

expected to be relevant for studies of bilayer graphene, in which an increasing number

of FQHSs [82,83] as well as of bubble phases have been recently reported [103].
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4. OBSERVATION OF A NOVEL CRYSTAL OF

QUASILHOLES IN THE LOWEST LANDAU LEVEL

As discussed earlier, in the lowest Landau level, there is a transition from the fractional

quantum Hall states to a Wigner Crystal (WC) at extremely low filling factors (ν <

1/5) [138]. In this chapter, I discuss our recent results on the observation of a related

electron solid in the N=0 Landau level near higher filling factor 2−1/5 in an extremely

high mobility sample. Reentrance in Hall resistance to the nearest ν = 2 plateau is

observed. The partial electron filling at which such a reentrant state is observed

makes a strong case for similarity to a Wigner Crystal of the quasiholes pinned by

residual disorder. Our results in a narrow quantum well in an extremely low disorder

sample indicate that WCs occur more often than previously thought and hint at an

intricate competition of Wigner crystals and fractional quantum Hall states.

4.1 Reentrant Integer Quantum Hall State in the Lowest Landau level

The signature of reentrance observed in our data while uncommon in the N=0

Landau level, is evidence for an important set of ground states in higher Landau levels

such as N=1. In addition to the FQHs and exotic even and odd denominator states

such as 2+1/2 and 2+6/13 [80,81,91,93,94,133], there is numerous reentrant integer

quantum Hall states (RIQHS) [75, 76] that form. Density matrix renormalization

[136] and Hartree-Fock calculations [137] predict these states to be similar to WC

of electrons but with possibly one or more electrons localized at each node in the

crystal. Such ”bubble” phases are predicted to form only in higher Landau levels

(N≥1) [40]. Therefore, similar signature of localization in the N=0 level sheds light

on the importance of well-width and disorder driven phase formation of such WC like

solids.
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We show evidence for a reentrant state in an ultra clean 2DEGs in GaAs/AlGaAs

quantum well in the upper spin branch of the N=0 Landau level. It is is seen near

ν = 2−1/5 manifested by a ν = 2 reentrant integer quantum Hall state where the Hall

resistance returns to the nearest integer value of h/2e2 (where h is Planck’s constant

and e is the electron charge) and the longitudinal resistance Rxx nearly vanishes at

the lowest temperatures. The quasiholes in the partially filled Landau level appear

to be pinned and do not participate in conduction leading to a ν = 2 plateau in Hall

resistance. This report of a reentrant state in the upper spin branch in addition to the

few reports at lower filling factors points to the generality of such insulating phases

in the N=0 LL which were previously not expected. The partial filling factor of holes

in an otherwise filled Landau level makes a strong case for resemblance to a Wigner

Crystal rather than a charge density ordered phase.

Magnetotransport measurements were performed on the high quality GaAs/AlGaAs

modulation doped 30nm quantum well Sample 1. The sample is 5 mm × 5 mm square

with eight indium contacts diffused symmetrically on the perimeter. Previously, frag-

ile FQHS at ν = 2 + 6/13 and 3 + 1/3 have been reported [81] in the same sample,

attesting to the high quality of this sample. The He3 immersion cell [105] which was

used for the previous cooldown of this sample was rendered unsuable by a leak. In

order to keep the measurements going, we opted for mounting the sample on a copper

tail (shown in Figure 2.6). While this choice allowed us to continue our experiments,

the same ultra-low electron temperatures could no longer be achieved. Based on avail-

able data, we estimate the lowest electronic temperature in this setup is about 12mK.

A calibrated Speer thermometer was mounted on the mixing chamber for tempera-

ture measurements. AC measurements at frequency of 11Hz with lock-in techniques

were used to determine the transport coefficients reported here.

In Figure 4.1, we show the main finding of this study. A plot of longitudinal

resistance Rxx and the Hall resistance Rxy as a function of magnetic field at 23mK in

the filling factor range 2 < ν < 5/3. The narrow stretch of magnetic field captures

states of several types. The region highlighted in yellow shows a RIQHS R1 with a
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minima in Rxx and quantization in Rxy corresponding to ν = 2. This is the first such

report of a reentrant state at a much higher filling factor close to ν = 2 − 1/5 with

exact filling factor ν = 1.788. The peak in Rxx separating the plateau at ν = 2 from

the reentrant state R1 is a strong function of temperature as is shown in Fig. 2. At

the lowest temperature, these plateaus merge into one another. Unlike the higher

Landau levels, this reentrance in Rxy is a weaker feature which can be missed due to

any small mixing of Rxx and Rxy. Similar reentrance and isotropic nature was verified

in the orthogonal direction.

6 . 8 7 . 0 7 . 2 7 . 4 7 . 61 0

1 1

1 2

1 3

1 4

1 5

1 6
2-1

/5

1+
2/3

 

R xy [
kΩ

]

B  [ T ]

2 3 m K

1+
5/7

R1

0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

R xx [
kΩ

]
ν  =  2

h
2 e 2

( 1 + 5 / 7 ) e 2
h

Figure 4.1. Magnetoresistance and Hall resistance plots in the upper spin branch of

the lowest Landau level (2 < ν < 5/3). The shaded area marks the reentrant state

while the fillling factors for the other states is marked. Quantization in Rxy is marked

with a dashed line.
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In addition, a very well developed fractional state at ν = 1+2/3 is observed which

is related to the 1/3 state by particle-hole symmetry. This state form part of the

Jain sequence with two quantized vortices attached to each electron and therefore is

denoted as 2CF state. To the left at a lower field, we report observation of a fractional

state at filling factor ν = 1 + 5/7. Minima in Rxx is accompanied by a quantization

in Hall resistance at h/(1 + 5/7)e2. Despite several reports on the observation of the

5/7 state [119, 120] in the lower spin branch, there has been no reports of a FQHs

at this particular filling factor. Slight indications of a very weak minima in Rxx at

this filling factor were seen in [102] but no Hall resistance data was available. The

ground state at filling factor ν = 5/7 has been under experimental and theoretical

analysis [124–126]. Observation of a spin transition [120, 129] indicate that such a

state is comprised of interacting composite fermions. However, the wavefunction

written in terms of one filled Λ level of flux-four 4CF is equivalent as well [124, 125].

There is however no reports near the symmetric state at 1+5/7 which could either be

a symmetric state of the CF sequence 1−p/(4p+1) of four-flux per electron or similar

to the 5/7 comprising of interacting CFs. Our data is not sufficient to comment on

the underlying particles forming this incompressible state.

4.2 Finite temperature studies in the upper spin branch of the lowest

Landau level

In Figure 4.2, we show the temperature evolution of the reentrant state and the

FQHS at 1+5/7 up to 75mK. As seen in the figure, the first features of the reentrant

state begin to develop in Rxx with a splitting of a peak as seen in the trace at 75mK.

Clear return of Rxy towards the ν = 2 plateau is evident at this temperature. On fur-

ther lowering the temperature to 56mK, a well minima in Rxx begins to develop. This

evolution is similar to those of the reentrant states in the second and higher Landau

levels [88,91] indicating a collective localization. As the lowest temperature of 12mK,

the magnetoresistance nearly vanishes. Concomitantly, the Hall resistance approaches
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Figure 4.2. Temperature evolution of the longitudinal and Hall resistance is shown up

to 75mK in the filling factor range 2 < ν < 5/3. Filling factors of interest are marked.

At the lowest temperature of 12mK, the reentrant integer state is fully developed.
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h/2e2, corresponding to the nearest integer value. However, at this temperature, the

plateau at the ν = 2 integer state and the reentrant state merge.

On the other hand, the state at ν = 1+5/7 shows peculiar temperature dependence

as seen in the figure. The longitudinal resistance at this filling is indifferent to changes

in temperatures up to 75mK with both Rxx and Rxy showing features of a well-

developed FQHs. Contrary to the activated behavior of a FQHS given by Rxx ∝

exp(−∆/2kBT), the gap at filling factor ν = 1+5/7 is not activated for temperatures

upto 75mK. With a clear minimum in Rxx and a robust quantization in Rxy, this non-

activated behavior of the gap is very puzzling. This behavior cannot be associated

with lack of electron cooling as the plateau width at ν = 1 + 2/3 clearly increases

with lower temperatures in addition to the strong temperature dependence at adjacent

RIQHS shown in Figure 4.2, both serving as strong evidence for the lower electron

temperatures. The weakly developed FQHS at this filling factor likely is a consequence

of phase competition with the nearby electron solid at R1.

It is useful to examine the temperature evolution at the exact filling factor of

the RIQHS and compare it to the temperature evolution in both Rxx to those of

the RIQHS in the second Landau level [88] to predict the nature of the solid formed

leading to the reentrant behavior. In Figure 4.3, we show evolution with temperature

of the minima in longitudinal resistance Rxx and Hall resistance Rxy as a function of

temperature. A peak in Rxx at a temperature of about a 100mK is similar to those of

the reentrant states in the higher Landau levels such as the N=1 [88,91]. The peak at

R1 is much broader in comparison and falls off slowly as a function of temperature.

In the higher Landau levels, this peak is associated with the signature of collective

localization [88]. The Hall resistance on the other hand undergoes a transition from

the nearest integer quantized value to the classical Hall resistance h/νe2 which is

marked in the figure. We note that the Hall resistance almost approaches this value

within 60Ω. Both the evolution of Rxx and Rxy at R1 is qualitatively similar to those

of the reentrant states in the higher Landau levels. The reentrant states in the higher

Landau levels are understood as electron solids called bubble phases. However, in
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the N=0 Landau Level, such bubble phases are not expected [40–43]. Therefore, we

suggest the collective localization features to be indicative of a formation of a Wigner

crystal of electrons.
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Figure 4.3. (a) Temperature dependence of the minima inRxx at filling factor ν = 1.79

for temperatures upto 700mK. The peak observed near 100mK may indicate the first

correlations of a solid phase. (b) The evolution of Rxy at the RIQHS (Reentrant

Integer Quantum Hall State) from the quantized value at h/2e2 almost reaching the

classical value at the highest temperatures.

4.3 Density effects

As a further test of the R1 phase, we studied its evolution as a function of changing

electron density. We employed the technique used previously [139] of low tempera-

ture illumination where a red LED was used with low currents (∼ 1µA) at milliKelvin
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temperatures to decrease the sample density. In Figure 4.4, such a evolution with

decreasing density is shown. As the density is decreased to 2.88×1011cm−2, the quan-

tization features of this reentrant state begin to weaken and eventually wash out with

lowering the density further. In contrast to an earlier study near 4/5 [128] where the

fractional state at 4/5 is appears and disappears with changing density, we do not

see any quantization at the nearby filling factor 2− 1/5 in the range of electron den-

sities that were accessible. The mobility of the sample decreased by about a factor

of three from the highest in grown density to the lowest density of 2.6×1011cm−2.

Observations of the RIQHS labeled R1 at the sample filling factor over a range of

densities reinforce the association of this transport feature with a genuine ground

state, identified earlier as the WC.
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Figure 4.4. Waterfall plot of the magnetoresistance and Hall resistance plots as func-

tion of changing sample density plotted vs 1/ν with densities indicated in units of 1011

cm−2. The reentrant state R1 disappears as the density is decreased to 2.88 × 1011

cm−2 using low temperature sample illumination.

4.4 Discussion

For comparison with earlier reports of such insulating phases at lower filling fac-

tors, we compute the partial filling factors. For electrons in the filling factor range 2
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< ν < 1, ν = 2 ± ν∗ can be considered as two filled inert LLs plus excess electrons

or holes with filling factor ν∗ which may conduct. In our case near at ν = 1.79,

the excess particles is holes and therefore form a solid which does not contribute to

conduction, namely a solid of quasiholes.

There is a study which reports such reentrant states [127] between 2/3 and 3/5 and

its particle-hole conjugate state in between 1/3 and 2/5 for electrons which resides

in QW wells made with AlxGa1−xAs alloy. They interpret their insulating states as

pinned WC states due to the short-range (alloy) disorder. That interpretation does

not seem to explain the reentrant state we observe in an ultra-clean sample with

a much lower disorder. On the other hand, high frequency resonances have been

reported [115] near ν=1 and 2 indicating insulating behavior. These microwave reso-

nance has been interpreted as collective pinning of a Wigner Crystal phase. However,

the partial electron filling factors for such features is ν∗ < 0.15 which is smaller than

the ν∗ = 0.21 at which we observe the insulating phase.

The RIQHS we observe is at ν∗ ' 0.21 is remarkably close to one of the insulating

phases observed by Liu et. al [128] at ν∗ ' 0.22. This observation near ν = 1±1/5 in

a wide QW system which appears above a critical electron density nc is understood

as the large electron layer thickness inducing a WC formation. In their sample, the

QW width is several times the magnetic length given by W/lB which ranges from

4.6 to 6.0 for their critical density. In our sample, where we observed the RIQHS

at a fixed electron density in a 30nm well, the W/lB is ∼ 3.1 which is much lower

in comparison. However, the mobility of our sample is about 5 times higher making

the disorder potential very different and a direct comparison difficult. Also, we could

not access the region near ν = 1 in our sample due to the limitation on the magnetic

field available. The same group published another study [129] in which the insulating

phase near 4/5 is interpreted as a 2CF ferromagnetic crystal in a 65nm wide sample.

Such wide quantum well samples are often populated in the second electric subband

making the physics very different from single subband occupation [131]. The nature

of the electron wavefunction may play a significant role in the transition between
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different spin states that they report. We do not see any such transitions when the

density was lowered by more than 10% as seen in Figure 4.4.

To compare these reentrant states to the bubble phases observed in the higher

Landau levels, we compare the central filling factors ν∗ to that of R1. From ref.

32, the partial filling factors for the 8 states in N=1 and 4 reentrant states in N=2,

ν∗ > 0.288 which is much larger than the the partial filling factor for the reentrant

state in the LLL of 0.21. This, however is quite close to the filling factor near ν = 1/5

at which a WC has been observed. Therefore, there is conclusive evidence for the

renetrant state in the LLL to be a Wigner Crystal. Our interpretation is in agreement

with prior reports of such insulating phases seen elsewhere in the lowest Landau

level [127,128].

4.5 Conclusion

We have reported an observation of a reentrant integer quantum Hall state at a

high filling factor of 1.788 in an ultra high mobility GaAs/AlGaAs 30nm quantum

well. The temperature dependence of such a state in the lowest Landau level points

to a collective pinning mechanism of quasiholes forming a Wigner Crystal based on

the partial filling factor of electrons. Observation of yet more insulating phases in

the N=0 Landau level and new fractional states even after several decades points to

the rich electron physics that may continue to surface with improvements in sample

quality.
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5. OBSERVATION OF AN EXOTIC SOLID OF

COMPOSITE FERMIONS

The recent proliferation of two-dimensional materials has lead to renewed interest

in interactions driven emergent phenomena. Such interactions between fundamental

particles can drive the system to have non-trivial topological order in some cases. In

this chapter, we discuss a novel effect of interaction-driven quasiparticles (Composite

Fermions) forming charge density waves in the vicinity of ν = 1 + 2/3 fractional

quantum Hall state (FQHE) in an extremely high quality two-dimensional electron

system (2DES) in GaAs/AlGaAs quantum well. A minima is Rxx is accompanied

by quantization in Rxy at 3h/5e2 in the N=0 Landau level indicates that a exotic

electron solid of composite fermion quasiparticles is involved. This is the first such

observation of a reentrant fractional quantum Hall effect in transport measurements.

Interactions between fundamental particles in condensed matter systems play an

essential role in determining a variety of phases that form. Such strongly interact-

ing particles reorganize themselves to form new weakly interacting particles such as

Cooper pairs in superconductors, magnons in a magnet and phonons in a lattice as

few examples. Theoretically, one can then solve the problem in terms of these weakly

interacting quasiparticles. In the case of a two-dimensional electron gas, as a result

of strong Coulomb interactions between these electrons, composite fermions (CFs) [5]

emerge as the weakly interacting quasiparticles. In all such systems, one always won-

ders if these collective many-body entities have a real existence in the system or are

just a theoretical concept. It is of no doubt that such particles cannot exist in isolation

but may behave similarly to isolated particles in the interacting environment.
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5.1 Interacting Composite Fermions

One important aspect of these emergent quasiparticles is the nature of interactions

between them. In the simplest approximation, the interactions can be ignored and

an important class of ground states such as most of the odd-denominator FQHS

in the N=0 Landau level can be explained with this simple assumption. However,

under certain limits, just like electrons, these residual interactions between these

CFs become significant and cannot be ignored. Some such examples include the CF

pairing at the even denominator ν = 5/2 FQHS state [23, 77]. There has been a

growing number of reports in other materials such as graphene [134] and ZnO [135]

where such inter-CF interactions have lead to consequential experimental results.

5.2 Reentrant Fractional Quantum Hall Effect

Sample 1 used for this study is a high quality GaAs/AlGaAs modulation doped

30nm quantum well grown by molecular beam epitaxy. The setup as described in

Chapter 2 with a copper mount was used in this study. Low temperature illumination

of the sample at 10K with a red LED preceded prior to transport measurements.

AC measurements were performed at frequency of 11Hz with lock-in techniques to

determine the transport coefficients reported here.

In Fig. 5.1, we show the Hall resistance Rxy and the magnetoresistance Rxx trace

in the upper spin branch of the N=0 Landau level plotted as a function of magnetic

field B at T=12mK. Well quantized odd-denominator fractional quantum Hall states

on both sides of filling factor 1+1/2 are marked. The high quality of the sample is

evidenced by the deep minima in Rxx and well quantized plateaus in Rxy at many

Jain sequence states with two quantized vortices attached given by the symmetric

states of the sequence 1/2p± 1, where p is an integer. Robust FQHS at filling factors

1+2/3, 1+3/5, 1+4/7, 1+5/9, 1+6/11, 1+5/11, 1+4/9, 1+3/7, 1+ 2/5 and 1+1/3

with minima in Rxx and well developed plateau in Rxy are observed. At the higher

magnetic fields, two symmetric FQHS of the higher CF sequence 1/4p± 1 at 1 + 2/7
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Figure 5.1. Magnetoresistance Rxx and Hall resistance Rxy at 12mK as a function

of magnetic field B. Filling factors mark the fractional and integer quantum Hall

states as well as some filling factors of importance. The RIQHS (Reentrant Integer

Quantum Hall State) is marked while the RFQHS (Reentrant Fractional Quantum

Hall State) is shown with green shading.
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and 1 + 3/11 are observed. Observations of many FQHS warrants to the high quality

of the sample. The most interesting feature of this trace is highlighted in green

which shows a minima in Rxx accompanied by a quantization in Hall resistance to

the nearest fractional value of the 1+2/3 state.

To study this feature, we focus on this region in Fig. 5.2. The intriguing feature at

a slightly higher field from the 1+2/3 FQHS shows a minima in Rxx and a reentrance

in Rxy to the value of the adjacent fractional quantum Hall state corresponding to

h/(1+2/3)e2. This observation is in contrast to the Reentrant Integer Quantum Hall
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Figure 5.2. Magnified magnetoresitance and Hall trace at 23mK showing the reentrant

fractional state highlighted in green.
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states (RIQHE) where the quantization in Rxy is to the nearest integer value. We

therefore, term it as the Reentrant Fractional Quantum Hall Effect (RFQHE). This

is the first such observation of this effect. Since Rxy is quantized to a fractional value,

one can be sure that CF quasiparticles are involved in the formation of this electron

solid. Specifically, flux-two CFs are involved. Hence we are dealing with a very special

quantum solid, in which complex electron correlations play a fundamental role.

In order to examine the solid of CFs more closely, we will examine the filling

factor at which it forms. The electron filling factor at which this new phase RFQHS

is observed is ν = 1.63. The corresponding filling CF filling factor [14] is 1.42. This

filling factor can then be considered as one filled Λ level of composite fermions and

one partially filled level ν∗ = νf + νp = 1 + 0.42. The partial CF filling factor νp

is very close to those of the electron bubble phases observed in the higher (N≥1)

Landau levels [91]. This bubble phase of CFs is nestled between two FQHS liquid

states comprising of 2CF on the lower field and the higher field state at ν = 1 + 3/5

state. A transition to a solid like phase occurs between the two liquid phases.

As a further test for the new reentrant phase, we studied sample 2 which is similar

in density at n = 3.0×1011/cm2 and low-temperature mobility µ = 2.8×107 cm2/Vs.

As seen in Figure 5.3, the longitudinal resistance almost vanishes near the same filling

factor. However, no Hall resistance data was collected for this sample at the lowest

temperature of 12mK. The vanishing of Rxx at a very similar filling factor is extremely

convincing of a universal phenomena at play in extremely high quality samples.
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Figure 5.3. The magnetoresistance trace in sample 2 where the RFQHS (Reentrant

Fractional Quantum Hall State) is observed as well. The sample parameters are very

similar to the one shown in the main text. The same appearance of RFQHS in another

sample lends support to the universality of this phenomena which may be extremely

sensitive to the disorder potential.

5.3 Temperature dependence of the reentrant fractional quantum Hall

effect

To further investigate such reentrance in the lowest Landau level, we look at the

detailed temperature dependence in Figure 5.4. At the highest temperature of 100mK,

the Hall resistance almost has a plateau like appearance but with no quantization in

Rxx. The first features of this exotic crystal state begin to appear close to 56mK with

a slight depression in magnetoresistance. As the temperature is lowered, the Hall
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resistance approaches towards the plateau of the nearest fractional state at ν = 1+2/3

which a particle-hole of the 1/3 state in the other spin branch of the lowest Landau

level. Rxx at the lowest temperature of 12mK is few tens of ohm. However, the

Hall resistance at this temperature has a very small peak separating the reentrant

state and the plateau at the fractional state. Unlike the electron reentrant states in

the higher Landau levels, where huge peaks separate the reentrant states from the

adjacent fractional states, such a peak is much weaker in the case of RFQHS. the

first precursors of these ordered phases begins with a peak which eventually splits

into two giving way to the plateau in Rxx, we do not see such behavior for this phase

comprising the CFs. Due to the relatively weak CF-CF interactions as compared to

the electron-electron correlations, such signatures of a CF crystal are expected to be

suppressed in transport measurements [145].

5.4 Discussion

We begin with discussing some of the recent experiments which have indicated a

correlated CF Wigner Crystal (CFWC) in GaAs and compare with how our present

finding stands out adding another dimension to the current understanding of inter-

CF interactions. The first such report was in microwave resonance experiment by

Engel’s group [141] where resonances near the 1/3 FQHS state in the lowest Landau

level is associated with a type-II CFWC [148, 149]. The microwave signal at these

fillings factors was much smaller than those observed near integer fillings and they

report a drift in the data that was used to offset the resonance features. The partial

CF filling factors at which such microwave frequency resonance was reported is near

ν∗ ∼ ±0.15 which is about a factor of three smaller than out results at ν∗ = 0.42. Such

a stark difference in partial filling factors clearly points to CF solids of fundamentally

different nature in these two experiments. A type-II CFWC is expected to form [148]

at the filling factor they report where the CFs in the partially filled Λ level localize

in a Wigner Crystal arrangement due to residual CF-interactions. No such results in
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Figure 5.4. Temperature evolution in the vicinity of RFQHS (Reentrant Fractional

Quantum Hall State) in Rxx and Rxy from the lowest temperature of 12mK to 100mK.

The first features of the reentrant state begin to develop around 75mK.
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transport near these filling factors have been reported perhaps due to the weakness

of the localization. In addition, the sample under such study is a 50nm QW with

a mobility of 15 × 106 cm2/Vs. Our results in a 30nm QW have a higher confining

potential with only single subband occupation (which is verified with the observation

of a well quantized FQHS at ν = 5/2). In addition, our mobility is higher by a factor

of two making the disorder potential very different. Therefore, the filling factors and

the difference in sample parameters make a compelling case for the different physics

at play.

Another interesting study where a CF ferromagnetic WC is claimed [142] observe a

reentrance to the nearest integer state at near fractional filling factor 4/5. A transition

in the nearby FQHS state with changing density is taken to be evidence for the

formation of such a CF Crystal. However, they do not see reentrance in Hall resistance

to the nearest fractional value which makes our observation in line with those of

charge density ordered phase of CFs similar to the electron bubble phases in the

higher Landau level.

We next discuss the arguments on why our observation may be in agreement with

a charge density wave of composite fermions (a cluster of particles localized). The

RFQHS is observed at an electron filling factor of ν = 1.63 which corresponds to a

CF filling factor of ν∗ = 2.42. The partial CF filling factor expected from theoretical

studies for a bubble phase formation is ν∗ < 0.4 [145] which is very close to where

such reentrance is reported at ν∗ = 0.42. As a further evidence, this partial filling of

CFs is particularly close to those of reentrant electron bubble phases in the second

Landau level [75,76,91]. There is strong evidence of such electron reentrant states to

form bubbles (more than one electron) at each lattice lattice [88,91,140].

A natural question of which flavor of CF (either with two or four vortices attached)

comprising this novel solid phase arises. We try to understand this by looking at the

region where such a state forms in the lowest Landau level. The reentrance observed

is nearest to the FQHS at 1+2/3 which is a 2CF state with a filling factor of 1.67.

This filling factor range falls in the region of effective negative field experienced by
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the composite fermions. Therefore, as we move to higher magnetic fields towards

3/2, the occupancy of the CF Λ level increases. As the magnetic field is increased,

quasiparticle excitations from the last occupied Λ = 1 begin to populate the next Λ

level resulting in a partially filled level at CF filling factor 1.42. The next FQHS at

ν = 1+3/5 is also a 2CF state. Therefore, it is very likely for the partially filled state

to comprise of 2CF particles localizing as bubbles forming a triangular lattice.

There has been a very recent result discussing the effect of electron orbital wave-

function on the number of particles localized in the electron bubble formation in

N=3 Landau levels [140]. It is somewhat difficult to discuss the same for composite

fermions as the exact form of the wavefunctions are not known the the CF Λ levels. In

Ref. 9, a variational wavefunction for CFs is considered for solving the problem in a

partially filled Λ level in a planar geometry. They found that the inter-CF interaction

is attractive in most cases making a strong case for charge density waves. Several

works have concluded a stripe phase to be most favorable at half-filling of CF levels

with a periodicity which is several times the magnetic length. Therefore, at a filling

factor close to half-filling, it is only natural to expect a bubble phase (M > 1) which

then translates to a broken rotational symmetry at exact half filling.

5.5 Conclusion

In conclusion, we report the first evidence of a reentrant fractional quantum Hall

effect in the lowest Landau level of GaAs electron gas. Such a phase is indicative

of a exotic bubble crystal of composite fermions in contrast to the charge density

waves of electron crystals observed in higher Landau levels. The partial CF filling

factor is very close to those of the partial electron filling factors in the second Landau

level where such reentrant integer quantum Hall effect is routinely observed. Such

interaction-driven composite fermion crystal is an important milestone in the current

understanding of novel correlated electron solids.
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