
THE MYSTERY OF THE FAILING JOBS: INSIGHTS FROM OPERATIONAL

DATA FROM TWO UNIVERSITY-WIDE COMPUTING SYSTEMS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Rakesh Kumar

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

August 2019

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Prof. Saurabh Bagchi, Chair

School of Electrical and Computer Engineering

Prof. Jan P. Allebach

School of Electrical and Computer Engineering

Prof. Somali Chaterji

Agricultural and Biological Engineering

Prof. Felix X. Lin

School of Electrical and Computer Engineering

Approved by:

Dr. Dimitrios Peroulis, Head of the Graduate Program

School of Electrical and Computer Engineering

iii

ACKNOWLEDGMENTS

This thesis would not have been possible without the contribution of many people.

I thank all of them who made this possible and because of whom I have had a

memorable graduate research experience.

I want to express my gratitude to my advisor Prof. Saurabh Bagchi, for giving me

this opportunity to work on the research project and the freedom to experiment with

new ideas and explore new possibilities. I thank him for the inspiration, innovative

ideas, constant support, and encouragement throughout the project.

My heartfelt thanks to Ashraf Mahgoub and Natat Sombuntham, my colleagues at

Purdue, and Saurabh Jha from the University of Illinois at Urbana-Champaign whose

contributions to this project have been indispensable. I thank them for helping me

with various analyses in the project. I sincerely thank Prof. Ravishankar K. Iyer, Prof.

Zbigniew T. Kalbarczyk and Prof. William T. Kramer from the University of Illinois

at Urbana-Champaign for their invaluable inputs and timely help and advice. My

sincere thanks to Rajesh Kalyanam, Stephen L. Harrell and Dr. Carol X. Song, from

Information Technology at Purdue (ITaP), for helping us get access to the various

data sets in spite of their busy schedules.

I am also grateful to all my advisory committee members, Prof. Jan P. Allebach,

Prof. Somali Chaterji, and Prof. Felix X. Lin, for their various forms of help and

support during my graduate study. I appreciate the financial support from NSF that

funded the project discussed in this dissertation.

Finally, I would like to thank my parents, my family, and my friends. They have

been my constant support and strength in this process. Without their help, it would

not have been possible to reach this goal.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

ABSTRACT . viii

1 INTRODUCTION . 1

1.1 Categories of Analysis . 3

1.2 Key Results and Observations . 4

1.3 Why is it Challenging to Achieve High Reliability 8

1.3.1 Diversity of Users and Applications 8

1.3.2 Diversity of Execution Environments 9

1.3.3 Understaffing of HPC Departments 9

2 SYSTEM DETAILS . 11

2.1 Architecture Details . 12

2.2 Job Submission System . 13

2.3 Job Characteristics . 14

2.3.1 Job Type . 14

2.3.2 Job Size . 15

2.3.3 Job Duration and Job Node-seconds 16

2.4 System Management Practices . 16

3 DESCRIPTION OF DATA . 18

3.1 Job Accounting . 19

3.2 Resource Utilization Stats . 19

3.3 Node Failure Reports . 20

3.4 Liblist . 20

4 ANALYSIS OF NODE AND JOB FAILURES 22

v

Page

4.1 Node Downtime Distribution . 22

4.2 Job Categories Based on Exit Statuses 25

5 EFFECT OF RESOURCE USAGES ON JOB FAILURES 28

5.1 Memory . 30

5.2 Local I/O . 32

5.3 Network File System . 33

5.4 Network . 36

5.5 Job Node-seconds . 37

6 PREDICTING JOB FAILURES . 40

7 EFFECT OF LIBRARY UPDATES ON RELIABILITY 43

8 RELATED WORK . 45

9 THREATS TO VALIDITY . 46

10 SUMMARY . 47

REFERENCES . 48

A APPENDIX . 52

A.1 Resource Usage Correlation . 52

vi

LIST OF TABLES

Table Page

1.1 Summary of data analyzed for the two university-wide clusters at Research
U1 and Research U2. The percentages in parentheses refer to the raw
counts and node hours. 3

2.1 System Detail . 11

3.1 Dataset . 18

4.1 Sample of system wide outages (SWOs). These affect a significant number
of nodes and skew the node uptime/downtime statistics. 23

4.2 Breakdown of Node Failure Reasons in System B 24

4.3 Job categories based on exit codes. Percentages in brackets are based on
the total node hours . 26

5.1 Hypotheses results containing the Pearson correlation coefficients and their
corresponding p-values. All accepted hypotheses are in either green or red.
Green represents positive correlation while red represents negative correlation28

5.2 Estimated least square fit for failure rate (f) vs memory usage (x). Pa-
rameters are in the form a, b where f = 0 for x ≤ a else f = b(x− a). . . . 30

5.3 Estimated least square fit for failure rate (f) vs network file system usage
rate (x) in log scale. Parameters are in the form a, b where f = aebx. . . . 33

5.4 Estimated least square fit for failure rate (f) vs network usage rate (x) in
log scale. Parameters are in the form a, b where f = aebx. 36

6.1 Maximum net savings of prediction models 40

vii

LIST OF FIGURES

Figure Page

2.1 Characterisitcs of jobs running on System A (in brown, left in each sub-
figure) and System B (in green, right in each subfigure) 14

2.2 Characterisitcs of jobs running on System A (in brown, left in each sub-
figure) and System B (in green, right in each subfigure) 15

2.3 Characterisitcs of jobs running on System A (in brown, left in each sub-
figure) and System B (in green, right in each subfigure) 16

4.1 Node downtime distribution . 22

5.1 Failure rate distribution vs tail memory usages. 30

5.2 Failure rate distribution vs total tail local I/O rates 32

5.3 Failure rate distribution vs total tail network file system I/O rates 34

5.4 Failure rate distribution for different ranges of total tail network rates. . . 36

5.5 Failure rate distribution for different ranges of node-seconds. 38

6.1 ML model for job failure prediction . 40

6.2 Precision vs recall curves . 40

7.1 System A: Success rate of top ten application libraries and operating sys-
tem libraries with different versions. These are sorted by their job usage
counts with the most used library on the left of each plot. 43

A.1 Failure rate (OOM error) distribution with different metrics 52

viii

ABSTRACT

Kumar, Rakesh MS, Purdue University, August 2019. The Mystery of the Failing
Jobs: Insights from Operational Data from Two University-Wide Computing Sys-
tems. Major Professor: Saurabh Bagchi.

Node downtime and failed jobs in a computing cluster translate into wasted re-

sources and user dissatisfaction. Therefore understanding why nodes and jobs fail in

HPC clusters is essential. This paper provides analyses of node and job failures in

two university-wide computing clusters at two Tier I US research universities. We

analyzed approximately 3.0M job execution data of System A and 2.2M of System B

with data sources coming from accounting logs, resource usage for all primary local

and remote resources (memory, IO, network), and node failure data. We observe dif-

ferent kinds of correlations of failures with resource usages and propose a job failure

prediction model to trigger event-driven checkpointing and avoid wasted work. We

provide generalizable insights for cluster management to improve reliability, such as,

for some execution environments local contention dominates, while for others system-

wide contention dominates.

1

1. INTRODUCTION

Large-scale high performance computing (HPC) systems have become common in

academic, industrial, and government for compute-intensive applications, including

large-scale parallel applications. These HPC systems solve problems that would take

millennia on personal computers, but managing such large shared resources can be

challenging and requires administrators to balance requirements from a diverse set

of users. Large, focused organizations can afford to buy centralized resources, and

choose to manage and operate it at academic organizations through a central IT

organization. These are funded by federal funding agencies (like the National Science

Foundation in the US) and individual researchers write grant proposals to get access

to compute time on these systems. Examples of such systems include Comet at the

University of California San Diego, Blue Waters at the University of Illinois, and

Frontera at the University of Texas at Austin. In United States, these systems are

funded through National Science Foundation. In this model, academicians across the

country write research project proposals and submit to NSF for getting hours on the

system. NSF, using a panel of research scholars, competetively selects and allocates

system hours. University hosting the system gets a marginal share of system hours

which is also given out to researchers at the home university competetively.

Another trend in many universities’ IT acquisition is the adoption of the commu-

nity cluster model. Often, no single research group can maintain its own cluster—the

hardware and administrative costs would be too high. In this model, research groups

buy assets (nodes and other hardware) in a central computing cluster, which is then

assembled and managed by the central IT organization. These clusters have flexible

usage policies, such that partners in a community cluster have ready access to the

capacity they purchase, but they can use more resources when other groups’ nodes are

unused. This allows for opportunistic use for the end users and higher resource uti-

2

lization for the cluster managers. System administrators take care of security patches,

software installation and upgrades, and hardware repair, as well as space and cooling

requirements. Centralizing this expertise cuts costs and allows disparate groups to

buy large machines with competitive prices for volume purchases. Most importantly,

researchers can focus on their research while leaving the task of managing the com-

pute infrastructure to the IT wing of the university. The community cluster model

has become a foundation of the research cyber-infrastructure at many universities.

For example, Purdue has run such a program since 2006 with 10 generations of clus-

ters to date and in 2017 they provided 302M CPU hours. This model is also being

successfully used at the Universities of Rochester, Delaware, and Texas at Austin.

In this paper, we study the end reliability of the jobs that run on two clusters

that follow the two operational models introduced above. Our analyses are based on

two centrally managed computing clusters called System A and System B , at two US

Research I universities1. The System A cluster formed the main research computing

platform for the university U1 at the time of its deployment. The details of the source

data are provided in Table 1.1. For System A, which comprises 4,640 cores and 1,160

Xeon Phi acceleators, we consider a total of 3.0M jobs over a period of 28 months

(March 2015–June 2017). In this set, a majority (83%) are single node jobs, which

means they use less than 16 cores. Of the single node jobs, approximately 39% are

shared, meaning multiple jobs from different users share that node. We have released

the entire data used in the analyses in this paper into an open source repository

as part of an ongoing NSF project [1]. For System B , which consists of 396,000

CPU cores and 4,229 GPU accelerators, we analyze about 2.2M jobs over a period

of 5 months (February–June 2017) of which approximately 26% are multi-node jobs,

including some which are very large in execution scale reaching up to 358,400 cores.

This dataset represents the largest one that has been analyzed publicly to date for

failure characteristics, whether of a university compute infrastructure or otherwise.

1We will henceforth refer to the universities as Research U1 and Research U2 respectively. All names
are anonymized to respect the double blind policy.

3

Table 1.1.: Summary of data analyzed for the two university-wide clusters at Research
U1 and Research U2. The percentages in parentheses refer to the raw counts and node
hours.

Computing Cluster System A System B

Duration Mar 2015-Jun 2017 Feb-Jun 2017
jobs 2,968k 2,231k

shared

debug 0.137k (0.0%, 0.0%) -
single 1,125k (37.9%, 15.8%) -
multi 28k (1.0%, 1.9%) -

total 1,153k (38.9%, 17.7%) -

non-shared

debug 61k (2.0%, 0.1%) 12k (0.5%,0.0%)
single 1,348k (45.4%, 18.3%) 1,640k (73.5%, 5.3%)
multi 407k (13.7%, 63.9%) 580k (26%, 94.3 %)

total 1,815k (61.1%, 82.3%) 2,231k (100%)

unique users 617 467

1.1 Categories of Analysis

This paper presents the results of 4 different categories of analysis. In the first, we

show the breakdown of node failures into different categories and reason about the

corresponding up times and recovery times. In the second, we consider the failures

of individual jobs and reason about their root cause through examination of their

exit codes. The third analysis sheds light on the relation between resource usage

and job failure rates. We consider the 5 primary kinds of resources—memory on a

node, local IO, remote IO to the parallel file system, network, and runtime of a job

(in terms of node-seconds of execution). Finally, we present a job failure prediction

model which can help minimize resource wastage corresponding to job failures due

to system related issues. For all the analyses, we consider only production jobs, i.e.,

eliminating jobs that are submitted for debugging purposes.

4

1.2 Key Results and Observations

We present the following key results, the observations, and the implications for ad-

ministering central compute clusters with general-purpose needs. Wherever possible,

we separate the recommendation for cluster provider (P) and user (U).

� O1: Multi-node jobs consume the majority of computational time even though

their overall percentage by count is significantly less compared to single node

jobs. Their percentage by total node hours is 66% for System A and 95% for

System B while by total number, it is 15% for System A and 26% for System

B .

R1: (P) While making important decisions like required network capacity per

node, procurement practice should consider the multi-node case as it represents

the majority of node-seconds time in the system. For example, per node network

use in case of multi-node applications is 3X on median than non-shared single-

node case (1.8 vs 0.6 in MB/s) for System A while for System B, it is 8X (1.5

vs 0.18 in MB/s).

Refer: Table 1.1

� O2: Differences in hardware and software resiliency techniques can affect the

continuous node reachability of systems. The 95-th percentile data point for

System B is 92 days (2.2X) compared to 42 days for System A.

R2: (P) System B is more reliable by design partly because it uses expensive

hardware solutions such as chipkill memory and has more automated mecha-

nisms for failure logging, monitoring, and root cause analysis (such as Cray-

PAT [2], LogDiver [3]). Unlike System B , System A does not keep a record of

previous node failure root causes and mechanism of recovery. Such records can

help faster root cause identification and reduce downtime.

Refer: Sec 4.1

5

� O3: Jobs may fail due to system-related or user related errors. Their relative

frequencies differ in the two systems. System issues are responsible for over 53%

of the failed jobs in System A, while they only cause 4% of the failed jobs in

system B. Also, we notice that sharing a node among multiple jobs does not

increase the fraction of jobs that fail due to system issues (56% with shared-

single vs 57% with non-shared single). Both System A and System B have

significant user-related failures (33% and 48% of all failures).

R3: (P) Reliability in System A will increase with online monitoring of resource

usages of the jobs and detecting when resource exhaustion is being approached

such as in [4,5]. Failure prediction model similar to the one described in Sec. 6

can help minimize resource wastage by triggering a checkpoint when failure is

imminent. Moreover, exit code-based categorization can be used to identify

job failure category. This can help both user and system owner identify if a

failure is due to user fault or system issues (like resource exhaustion). (U)

User-related job failures can be minimized by using static analysis tools for

checking job scripts, environment setup, and user code as in [6–8] together with

user training. We also believe it will help if users compile and execute their

jobs in containerized environments, which simulate the cluster but at a smaller

scale.

Refer: Table 4.3

� O4: A significant fraction of total compute resources are used by jobs that hit

against the walltime for both System A (33%) and System B (43%). Walltime

is either the upper bound for the execution time specified by the job owner or

a system-wide upper bound: 336 hours (System A) and 48 hours (System B).

When a job has executed for the walltime, it is typically killed.

R4: Significant loss of work can happen when the program is terminated upon

hitting walltime. (P) Like System B, future systems should provide extra cycles

to enable an application to take a checkpoint when job termination is signaled

6

due to walltime. (U) To avoid the loss of resources, jobs should perform ap-

plication level checkpointing with reasonable frequency [9,10]. Various optimal

checkpointing estimation techniques [9, 11] do not take into account a dynami-

cally changing failure probability. A failure prediction model like ours in Sec. 6

can help minimize checkpointing overhead by dynamically reducing checkpoint-

ing frequency when failure likelihood is low. Users can also use any available

tooling to better estimate walltimes [12].

Refer: Table 4.3

� O5: Probability of job failure due to Out-of-Memory (OOM) error increases

with increasing memory utilization even when greater than 10 GB memory is

free on a node for System A. System B has a flat failure rate curve with a jump

close to the node memory limit.

R5: There are two root causes for this problem. First, users sometime mis-

takenly provide upper bound for the memory their job will require. Second,

when some heavy memory usage applications reach close to the upper bound,

they go into a “death spiral” whereby they cannot free memory while writing

out the memory to disk. This phenomenon has been reported previously with

the OOM killer in Linux [13]. (P) Provide tooling support to users to esti-

mate upper bound of memory usage [14]. Use user history based memory usage

prediction model [15] while making scheduling decisions for the shared jobs.

Monitor and start taking preemptive measures when the application gets close

to the memory capacity [16].

Refer: Sec 5.1

� O6: With respect to remote IO and network resources, System A shared single

jobs have positive correlation of failure rate with resource usage while non-

shared jobs have either negative correlation or no correlation. We also see

similar behavior in System B with network usage (all jobs in System B are

non-shared).

7

R6: Local contention is dominant for shared jobs while global contention is

dominant for non-shared. (P) Reliability for shared jobs can be improved by

deploying contention-aware schedulers [17, 18]. Additionally, since monitoring

all resources for all applications could add significant overhead, our results in-

dicate to monitor local resources for shared jobs and global resources for non-

shared jobs. For shared environment, we also recommend the admins to adopt

resource isolation technologies (such as containers [19]), which can reduce fail-

ures due to local contention. (U) User can reduce her job failure likelihood

by using tools for dynamic reconfiguration of applications based on current re-

source availability [5], such as reconfiguring the number of threads or network

timeout.

Refer: Sec 5.2, 5.3, 5.4

� O7: In several instances (35%) updating one of the 20 most widely used libraries

on System A causes job reliability to degrade.

R6: Prior studies already suggest to update libraries on the compute infrastruc-

ture after testing for unintended effects. Additionally, the system can allow the

user to specify which older versions can be used for their jobs to succeed. This

way, with the help of a method similar to one used in this paper 7 to estimate

library reliability, the system can decide to use the most reliable version of the

library for that user. Furthermore, use containers to minimize impact on other

jobs [8].

Refer: Sec 7

The analyses in this paper shed new light relative to prior studies of system

usage and failures in large-scale computing clusters in the following ways. First, this

looks at two acquisition and operation models for research computing clusters at

two large universities. The heterogeneity of jobs and the expertise level of the users

together with the relatively smaller size of the IT system administration staff for

maintaining such clusters have important implications for job reliability. For example,

8

the continuous node reachability in this environment is lower than reported in prior

studies of focused, dedicated computing clusters, such as, US Department of Energy-

run supercomputing clusters [20,21] or highly instrumented and highly managed cloud

clusters [22, 23]. Second, we consider fine-grained system usage data for the different

resources, local to a node as well as remote, and identify their implication for job

failures. In some cases, we see increased job failure due to local contention (such as,

for memory on a node) while in some cases we see the effect of remote resources (such

as, for networking bandwidth and parallel file system for non-shared jobs in System

A). For some cases, there is no correlation found (such as, for memory for multi-

node jobs). Taken in totality, our analyses indicate which job categories (single-node

vs multi-node, shared vs non-shared) put contention on which kinds of resources,

and correspondingly at what quantitative level, to the point of increasing job failure

rates. This can directly feed back into the acquisition and upgrade decisions made

by IT staff. More coarse-grained data and analysis, such as, aggregate job failure

rate [20, 24], coarse-grained resource utilization metrics [22], or the effect simply of

the execution time of the job on its failure probability [25, 26], cannot shed such

detailed light.

1.3 Why is it Challenging to Achieve High Reliability

Now let us consider the factors that make it challenging to ensure high reliability

for these shared computing clusters and the jobs that run on them.

1.3.1 Diversity of Users and Applications

The user base is composed of students, professors, and research scholars coming

from a diverse set of backgrounds, such as computer science, biology, physics, linguis-

tics, and having skills and understanding of computer systems that range from novice

to experts. These users execute many different types of applications. Some run a

large number of short single-core jobs (such as, parameter sweep for a short simula-

9

tion), and others execute long-running jobs using many hundreds of cores (such as

constructing the spatial configuration of lowest energy proteins). The jobs span the

spectrum of resource usage in terms of all local resources (memory, local IO) as well

as remote resources (remote IO, remote file system, network bandwidth). The job

scripts that are used to submit the jobs to the cluster wrap different applications and

are written in free form text. This makes it not amenable to automated parsing and

extracting relevant information such as what applications are included in the script.

1.3.2 Diversity of Execution Environments

It is challenging to create execution environments that are optimized for this

wide diversity of users and applications. The execution environment encompasses

the totality of hardware configurations (e.g., number of cores on a node, amount

of memory on a node, the network backplane, etc.) and software configurations.

Preinstalling applications and associated libraries is often the only viable solution as

the OS versions of packages are often very out of date and not usable as HPC codes

often depend on particular versions of libraries. However, this significantly increases

recurring work for the cluster administrators in updating these software packages and

ensuring that dependencies between them are preserved during any update process.

1.3.3 Understaffing of HPC Departments

Most HPC centers at universities are chronically understaffed, even when the over-

all IT department is not. To give some representative examples, user support team

at TACC@UT Austin has only ∼20-25 people supporting 10K users, RCAC@Purdue

has ∼20 technical staff supporting 12 central compute clusters. Thus, the user sup-

port system embraces automation and workload analytics to increase management

efficiency.

The rest of the paper is structured as follows. In Section 2, we provide details

of the two systems while in Section 3 we describe the data sources. In Section 4,

10

we analyze node and job failure categories and in Section 5, we analyze the impact

on job failures of resource usages. Finally, Section 6 presents a job failure prediction

model. We then discuss threats to validity, related work and conclude the paper.

11

2. SYSTEM DETAILS

Table 2.1 provides system specification summary of two university-based HPC Sys-

tem. System A is hosted at U1 and System B is hosted at U2. The two systems

vary significantly in their scale. System A comprises 580 nodes of 16-core Intel Xeon

E5-2670 processors and Xeon Phi accelerators, while System B has a total of 22,640

CPU-only nodes and 4,228 CPU + GPU nodes. The network and IO bandwidth

resources also scale accordingly, with the total compute power of System A as 1.34

PetaFlops and System B as 13.34 PetaFlops.

Table 2.1.: System Detail

Unit Spec System A System B

Compute

Node
Memory

580
64 GB/node

22,636 XE, 4,228 XK
64 GB/node

Processor Xeon E52670 + 2x Xeon Phi/node AMD 6276 Interlagos, NVIDIA
GK110

Resilience ECC-protected CPU & Xeon Phi
memory

Chipkill-protected CPU memory
modules, ECC-protected GPU
memory modules

Local I/O
I/O
band-
width

100MB/s Not present

Capacity 500 GB Not present
Type SATA Not present

Network I/O
I/O
band-
width

23GB/s 1.1 TB/s

Capacity 1.4 PB 26.4 PB
Resilience Disks: RAID 6, Index Disks:

RAID 1+ 0, OSS : Active-Active
HA pair, MDS: Active-Passive HA
pair

Data Disks: RAID 6, Index Disks:
RAID 1+ 0, OSS : Active-Active
HA pair, MDS: Active-Passive HA
pair

Network
Peak
node inj.

40Gb/s 76.8 Gb/s

Topology Fat Tree Cray Gemini 3D Torus [27]
Resilience Infiniband Forward Error Correc-

tion (FEC)
Packet: 16-bit packet CRC, links:
adaptive load balancing, routers:
quiesce and reroute

12

2.1 Architecture Details

U1 Community Cluster, System A, consists of nodes with two 8-core Intel Xeon

E5-2670 processors, two Xeon Phi accelerator cards and 64GB of memory. The 580

nodes of System A are connected through an FDR Infiniband network at 40Gb/s

in a fat-tree topology. Users are provided with a shared home directory as well as

a share for widely-used applications; both are available from each node via NFS at

approximately 2GB/s. These filesystems are accessed using IP over IB. The parallel

filesystem used by the jobs is a Lustre 2.4 [28] installation that can sustain up to

23GB/s and is connected via the above-mentioned IB network. All nodes run RedHat

Enterprise Linux (RHEL) [29] major version 6 and are regularly upgraded to the latest

minor version, currently 6.9. Along with default RHEL libraries, the environment also

provides many other important pre-installed libraries and applications which can be

loaded when needed. The nodes are administrated using RedHat Kickstart installers

integrated with Puppet configuration management software.

System B is an Open-Science massively parallel processing (MPP) system at U2.

It is composed of 288 Cray liquid-cooled cabinets hosting 22,640 XE (CPU-only nodes)

nodes and 4,228 XK (CPU + GPU) nodes running Cray Linux Environment (CLE)

OS. CLE OS includes Cray’s customized version of the SUSE Linux Enterprise Server

(SLES) 11 Service Pack 3 (SP3) operating system. Each cabinet is further composed

of three chassis, and each chassis contains eight blades. Each blade is composed of

four compute nodes (XE or XK) and two network switches (Gemini ASICs). A Cray

Gemini [27] is a 3D torus-based high-speed interconnection network that connects

network nodes within System B . The users have access to three Lustre-based remote

distributed filesystem –home, project and scratch, provide room for over 24 PB of

data with a combined 1.1 TB/s IO rate.

13

2.2 Job Submission System

Both System A and System B use Torque [30] for resource management and batch

scheduling. On System B , users can pack multiple application execution runs span-

ning one or more compute nodes. These applications are then placed on to the

compute nodes with required modules and environment settings using Cray Appli-

cation Level Placement Scheduler (ALPS) [31]. Cray ALPS is also responsible for

monitoring of node- and applications-health. Users on System A can also submit a

job packing multiple applications, each spanning single or multiple nodes. However,

accounting is done at a job level rather than application level. On System A, each

faculty who has purchased nodes in the cluster gets an “owner queue” that is the size

of their node purchase in cores. On the other hand, users have to write NSF-grant

or University-grant proposals to get node-hours on System B . Users can run jobs on

one or more nodes on System B as long as they do not run out of their allocated

node-hours.

The job submission scripts can be configured by the user to set number of pa-

rameters such as: i) number of nodes, ii) the number of cores, iii) job mapping on

system, and iv) the system walltime (i.e., requested clock time for the job). Jobs

are submitted to the scheduler and queued for batch run. In System A, jobs can be

flagged by their submitters as shared or non-shared; the former means that the job

can be executed together with other jobs on the same node. In System B , all jobs

execute in non-shared mode, without any co-location by another job on the same

node. System B puts a 48-hour walltime restriction, whereas System A has a restric-

tion of 336 hours. During the job run the stdout and stderr of the submission script

or application are written to disk and copied to the users working directory after

job completion. A job termination status is captured by the TORQUE log in both

systems, while for System B , ALPS also captures the exit code of each application

within a job.

14

2.3 Job Characteristics

In this section, we compare and contrast the job characteristics of System A and

System B in terms of i) job type, ii) job size, iii) job duration, and iv) job node

seconds. System A supports 2 kinds of execution environment for jobs i.e. shared

and non-shared. Sharing means the node is shared among multiple jobs while non-

shared denotes the entire node is used by a single node. System B always runs jobs

in non-shared environment.

2.3.1 Job Type

0 10 20 30 40
Percentage of total walltime

Nanotechnology
Ab Inito Chemistry

Other
Materials Engineering

Aeronautical Engineering
Molecular Dynamics

MCT Biomechanics
Climate Simulation

Seismology
Particle Physics

Finite Element Modeling

30.22
24.73

11.45
7.22
6.88

6.05
5.14

3.57
1.90
1.57
1.28

0 10 20 30
Percentage of total walltime

Astronomical Sciences

Geophysics

Astronomy & Astrophysics

Earth Sciences

Other

Molecular Biosciences

Biophysics

Materials Research

21.90

21.60

12.40

11.40

10.90

7.60

7.30

6.90

(a) Comparing wallclock time of scientific application domains

Fig. 2.1.: Characterisitcs of jobs running on System A (in brown, left in each subfigure)
and System B (in green, right in each subfigure)

The workloads on System A and System B predominantly consist of scientific

applications but distinct scientific disciplines are covered by the two systems. The

most prolific scientific fields researched on System A and System B are summarized

in Figure 2.1(a) in terms of node-hours. The top scientific discipline for System A

was found to be ‘Nanotechnology’ (30.7%) whereas it was ‘Astronomical Sciences’

(21.9%) on System B .

Definition 2.3.1 Node-seconds: is the product of the number of nodes and the

wallclock time (in seconds) used by a job. The metric captures the scale of the job’s

execution across space and time.

15

2.3.2 Job Size

0 20 40 60 80
Percentage of jobs

1
2-3
4-7

8-15
16-31
32-63

64-127
128-255
256-511

512-1023

No
de

s
85.0518

6.1577
5.3126

2.6056
0.8001
0.0596
0.0108
0.0011
0.0007
0.0000

0 20 40 60 80
Percentage of jobs

1
2-3
4-7

8-15
16-31
32-63

64-127
128-255
256-511

512-1023
1024-2047
2048-4095
4096-8191

8192-16383
16384-32767

No
de

s

73.8788
9.7313

2.4731
4.2587
4.7072

2.2163
1.4908
0.9619
0.1256
0.0626
0.0495
0.0201
0.0142
0.0071
0.0028

(a) Comparing job sizes in terms of number of nodes

0 10 20 30 40
Percentage by node-seconds

1
2-3
4-7

8-15
16-31
32-63

64-127
128-255
256-511

512-1023

No
de

s

34.1931
8.6796

20.6159
17.8548

15.1033
3.1328

0.3205
0.0720
0.0279
0.0000

0 5 10 15 20 25
Percentage by node-seconds

1
2-3
4-7

8-15
16-31
32-63

64-127
128-255
256-511

512-1023
1024-2047
2048-4095
4096-8191

8192-16383
16384-32767

No
de

s
5.3769

0.8859
1.6779

6.0087
15.4940

6.2288
14.3427

5.8346
6.7567
6.3906

10.0693
7.7832

8.6564
2.9821

1.5123

(b) Comparing percentage by node-seconds

Fig. 2.2.: Characterisitcs of jobs running on System A (in brown, left in each subfigure)
and System B (in green, right in each subfigure)

Figure 2.2(b) shows a bar plot of percentage by node-seconds (see Def. 2.3.1).

Most of the jobs on both System A and System B are single-node jobs, 87% and 73%

respectively. However, these jobs contribute just 38% (System A) and 5% (System

B) by node-seconds. If we look at the total contribution of multi-node jobs, they

contribute to 62% and 94% of the total node-hours on System A and System B

respectively even though the percentage of such jobs are much smaller (13% for System

A and 26% for System B) (Table 1.1). Furthermore, scale of jobs submitted on System

B is significantly larger than System A (refer Fig. 2.2(b)). Percentage distribution by

job count for System A and System B is provided in Figure 2.2(a).

16

101 103 105

Execution time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

 PDF
 CDF

0.0

0.2

0.4

0.6

0.8

PD
F

100 102 104 106

Execution time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

 PDF
 CDF

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

PD
F

(a) Comparing job wallclock execution time

101 103 105 107

Total node time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

 PDF
 CDF

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

PD
F

100 102 104 106 108

Total node time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

 PDF
 CDF

0.0

0.5

1.0

1.5

2.0

2.5

PD
F

(b) Comparing job node-seconds (#nodes× wallclock time)

Fig. 2.3.: Characterisitcs of jobs running on System A (in brown, left in each subfigure)
and System B (in green, right in each subfigure)

2.3.3 Job Duration and Job Node-seconds

Figure 2.3(a) shows CDF/PDF distribution of job wall clock execution time for

both System A and System B . On both System A and System B , 50% of the jobs run

for less than ∼ 103 seconds, however on System B the jobs run for as long as ∼ 109

node-seconds. Figure 2.3(b) shows the CDF/PDF distribution of node-seconds of the

jobs.

2.4 System Management Practices

System A is housed in a data center facility on the University U1 campus. It

is housed in water-cooled racks, which used rear-door heat exchangers to dissipate

heat. The operation of the system is performed with heavy reliance on a homegrown

automated configuration management system using Puppet. Warewolf NHC tools are

17

integrated into the Torque resource manager and Sensu is used to monitor the overall

health of the cluster. Splunk is also used to find and correlate disperate log messages

to help diagnose complex problems. The hardware repair staff consists of part-time

undergraduate students working under the direction of full-time staff.

System B is housed at a dedicated supercomputing facility equipped with special-

ized cooling cabinets and redundant power supply and has dedicated maintenance

staff at the facility. Further, System B employs dedicated system admins from Cray

and University U2 at an offsite location who monitor and manage system on a daily

basis using automated tools such as ISC, LDMS, CrayPAT, LogDiver, etc. Further-

more, System B employs a dedicated application team (consisting of 10 members)

that monitor application performance and failures, as well as help big customers of

the system to develop and run their code on the system.

18

3. DESCRIPTION OF DATA

Our analysis of job failure leverages data at various granularities from various system

monitoring resources. By analyzing the node, resource, and software utilization in

failed jobs; failure can potentially be tied to addressable issues with both job spec-

ifications and node health. In this section, we briefly describe these various data

resources, their collection and post-processing (if any) methods.

The data used in the analysis reported in this paper falls under four broad cat-

egories: job scheduler accounting logs, job-level resource utilization logs, node-level

health monitoring logs, and finally node-level software library specifications. Possible

explanations for job failure can be obtained by chaining together information from

these four sources. In particular, the job scheduler logs for a failed job point to the

error condition as well as the nodes that were employed for the job; both job-level

resource utilization logs and node-level health logs can be analyzed for what resources

on what nodes were used in the failing job. Next we describe each of the four data

sources and their processing steps.

Table 3.1.: Dataset

Data Source System A System B

Duration Mar 2015- Jun 2017 Feb-Jun 2017
Job accounting Torque logs Torque logs (stored in ISC [32])

[31.0 GB]
Performance
accounting

TACC stats LDMS logs ([33]) [10 TB]

Node-failure
reports∗

Kickstand DB (Jan - Dec 2015) Stored in ISC [60 MB]

Liblist lsof -

∗ Node-failure reports consists of syslogs and human-annotated reports

19

3.1 Job Accounting

Job accounting logs are obtained from TORQUE for both System A and System

B . TORQUE maintains a record of a batch job as it moves through the job submission

queue and eventual execution on the cluster. These records contain the event being

recorded (e.g., queuing, job start, job end), corresponding timestamps, the submitting

user or group, and resources requested and used. TORQUE accounting logs contain

these records organized by date; each line in an accounting log file corresponds to a

single event record for a job processed on that date. The accounting logs employ a

fixed format for these records:

<date> <timestamp>;<job event>;<jobID.node>;[<stats>]

where [<stats>] is an array of <key>=<value> pairs where the respective keys can

depend on the job event being recorded. For instance, a record of a queuing event

would only contain queue=debug; while a job start event would include the qtime,

start, and exec host keys representing the time the job was queued, the time the

job started running, and, the actual nodes the job was executed on, respectively. For

System A, we processed the raw TORQUE logs, however System B uses Integrated

System Console (ISC) [32] to parse and store the job records and its associated metrics

(performance and failure) in its database.

3.2 Resource Utilization Stats

System A uses TACC Stats [34] and System B uses light-weight distributed metric

service (LDMS) [33] for collecting resource utilization values. Both are widely used,

low-overhead infrastructure for collecting system-wide performance data at regular

intervals. TACC stat on System A is configured to collect data for each node at

5-minute granularity, whereas LDMS is configured at 1-minute granularity on System

B . This represents a pragmatic operational choice balancing the overhead incurred

with the fidelity of the monitoring data.

20

3.3 Node Failure Reports

In our analyses, we have collected all node-related failure reports from correspond-

ing management teams of System A and System B . Management team of System A

uses Kickstand, a database that contains information about the system infrastructure

and error/failure events. These event records can point to planned system outages, re-

boots, or alerts on unreachable nodes from the Sensu [35] and Nagios [36] monitoring

frameworks. The management team of System B uses ISC [32] for recording in-depth

information about each job and node of the system. We extract only node-events

(such as ‘admindown’, ‘up’, ‘down’, ‘suspect’, and ‘unknown’) from the databse for

getting node-failure reports. This information can then further be used to mark

system-wide outages (see Def. 3.3.1). For System A, this information is only available

for the year 2015.

Definition 3.3.1 System-wide Outage (SWO): is declared when more than 25%

of the nodes fail either due to scheduled maintenance or catastrophic failure (such as

power failure or file system failure).

3.4 Liblist

This data is only available for System A. A job’s failure can be related to the

use of a deprecated or buggy software library. Such scenarios can be analyzed by

studying the versions of shared libraries employed during a job’s execution. This

data is obtained by collating periodic snapshots of the shared libraries being utilized

by a job. These shared libraries (that are currently in use) are identified using the lsof

command on the cluster nodes during the job’s execution. For our dataset, this data

item is collected on each node at a frequency of once every 30 minutes. The library

lists are then organized by the username, jobID, date of execution and cluster node.

The shared libraries can be further divided into standard Linux operating system

libraries and scientific libraries from a specific module loaded in the job script. This

division is based on the path to the shared library; those originating in /apps are

21

typically scientific libraries, while those loaded from the standard paths, /usr/lib or

/lib or /usr/lib64 or /lib64 can be considered to be standard Linux libraries.

22

4. ANALYSIS OF NODE AND JOB FAILURES

In this section, we first analyze node downtime distribution and categorize the causes

for node downtime. Then we analyze the causes for job failure based on the job exit

status captured in the accounting logs. As before, we remove all debug jobs before

doing this analysis.

4.1 Node Downtime Distribution

101 103 105 107

Node downtime (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

 PDF
 CDF

0.0

0.2

0.4

0.6

0.8

1.0

1.2

PD
F

(a) System A

102 104 106

Node downtime (seconds)

0.0

0.2

0.4

0.6

0.8

1.0
CD

F
 PDF
 CDF

0

1

2

3

4

5

6

PD
F

(b) System B

Fig. 4.1.: Node downtime distribution

In this subsection, we analyze the distribution of node uptime and downtime dura-

tion. A node may become unreachable due to permanent failure, i.e. fail-stop failure

(such as memory or processor failure), or transient failure (e.g., network rerouting or

operating system hang due to high load). Permanent failure requires human operator

intervention for repair (e.g., 1-7 days for replacing nodes) whereas transient failures

are automatically repaired by the system relatively quickly (e.g., rerouting takes 1-15

minutes). For both System A and System B , node unreachability or reachability is

detected via heartbeats and recorded in a database that we used to characterize the

uptime and the downtime duration.

23

Fig. 4.1 shows the time duration it takes for a node to be repaired i.e., its “offline-

online” or downtime duration. A node may become unreachable in a transient manner

and become reachable without human intervention, or that may involve human in-

tervention. A node may become unreachable due to the node itself failing, a network

service on the node failing, or the network infrastructure to the node failing. Again,

the word “failing” may denote either a permanent (i.e., requiring human interven-

tion) or a transient failure. Fig. 4.1(b) shows this result. Due to wide-range of

recovery/repair time, we use logarithm scale to study node downtime. We observe

that the 50-th percentile value is 0.6 hours for System A and 3.3 hours for System

B while the 95-th percentile value is 24 hours for System A and 20 hours for System

B . For System A, this means that for 50% of the cases, the node becomes reachable

within 0.6 hours, while in 95% of the cases, it becomes reachable within 24 hours.

The data is skewed by the various system wide outage (SWO) events that affect a

significant number of nodes in the cluster. A sample of these SWOs is shown in Ta-

ble 4.1. There are a total of 13 SWOs for System A and 4 for System B during the

duration of the study (1 year and 5 months respectively). These events show up as

the pdf peaks in Fig. 4.1.

Table 4.1.: Sample of system wide outages (SWOs). These affect a significant number
of nodes and skew the node uptime/downtime statistics.

System # Nodes Date (Total time) Outage type

System A

100% 2015-02-05 (9 hrs) Maintenance
100% 2015-01-20 (24 hrs) Filesystem
100% 2015-11-04 (10 hrs) Unknown
100% 2015-11-28 (6 hrs) Filesystem

System B

100% 2017-02-11 (4.5 hrs) Site power interruption
31.1% 2017-03-25 (2 hrs) CLE/Lustre
100% 2017-03-28(25 hrs) Water Facility
100% 2017-06-29 (6 hrs) Emergency Maintenance

Next, we look at the time duration from when a node becomes reachable to when

it becomes unreachable, the “online-offline” or uptime duration. Overall, we observe

24

that for the 50-th percentile data point, the value is 4 days for System A and 31.3 days

for System B , while the 95-th percentile point is 42 days and 92 days respectively.

To understand the causes of node downtime, we analyzed the system logs in

consultation with System B management staff. Table 4.2 provides a breakdown of

node failure reasons for System B only1. We removed all SWO events for this analysis

as they would have skewed this result. For example, a single SWO in System B will

have more than 6.7K node events compared to 1K overall when we remove all SWOs.

As many as 41.2% of non-SWO related node-failures were caused by processor failures

whereas cooling accounts for 27.2% failures.

Table 4.2.: Breakdown of Node Failure Reasons in System B

Category Percentage

Processor 41%
Cooling 27.2%
CLE/Linux Kernel 13.1%
Memory 8.9%
CLE/Lustre 4.7%
Power Supply 1.2%
Other 3.8%

Total failures 1,058

Implications for System Design: Higher continuous uptime of nodes in System

B can be attributed to better resiliency features compared to System A (such as use of

chipkill-enabled memory modules over ECC) and use of vendor-provided monitoring

tools (such as Cray node-health checker). Additionally, unreachability for system A

is higher on median compared to system B, and the reason we suspect is longer time

needed by admins to reproduce the failure and identify the root cause. Better mon-

itoring and logging reduces the required human effort and lead to lower unreachable

time.

1System A does not maintain node failure root cause information.

25

4.2 Job Categories Based on Exit Statuses

Here we use the exit code information from TORQUE logs (System A and System

B) and ALPS logs (for System B) to find the probable job failure cause and catego-

rize them based on the approach used in LogDiver [37] used previously on thhe Blue

Waters supercomputer [26]. On a TORQUE-based system, a job upon termination

returns an exit code in the range -11 to 271. A successful job has exit status of 0

and any other exit status can be either walltime or denotes unsuccessful job termi-

nation where each exit status represents a different error. Exit reasons are classified

into the following categories: i) ‘success’, for applications completing without any er-

rors/failures, ii) ‘walltime’, for applications not completing within the allocated wall

clocktime, iii) ‘user’, job failures that are caused by issues that originate from the

submitter of the job or the developer of the code. These include mis-configuration

of job script or compilation/execution environment setup, job user action (such as

a control-C signal), command errors, missing module/file/directory, and wrong per-

missions, iv) ‘system’, when an application is terminated due to system hardware

and software errors and failures, and v) ‘user/system’, when an application is termi-

nated for reasons that can be related to either user or system events and it is not

possible to disambiguate, e.g., SIGTERM signal can be issued both by user (through

asssertions) or scheduler (on failing health check). A job exiting due to walltime does

not necessarily mean loss of production hours. Most of the jobs (especially large-scale

jobs) depend on checkpoint-restart mechanisms to start from previously checkpointed

state. On System B , developers can trap the kill signal (issued by scheduler on expiry

of requested walltime) and write checkpoint to the file system before exiting. It may

not always be possible to checkpoint at the time of walltime exit with the given win-

dow, as it may take several minutes to hours to build a consistent checkpoint [38,39].

Since, there is no information available to us about application-level checkpointing

events, we ignore walltime jobs from the rest of the study as we cannot disambiguate

26

jobs which wrote a checkpoint before being terminated (good case and little work is

lost) from the jobs which did not (undesirable case with work lost).

Table 4.3.: Job categories based on exit codes. Percentages in brackets are based on
the total node hours

Environment & Job Type
System A System B

shared non-shared overall non-shared overall
single multi single multi single multi

C
at

eg
or

y

Success 93.1% 87.6% 87.6% 61.8 % 86.1% (48.4%) 91.6% 64.0% 84.4% (44.4 %)
System 2.7% 6.5% 6.5% 8.8 % 5.3% (4.0%) 0.10% 1.0% 0.3% (1.4%)

User 1.6% 2.2% 3.5% 7.2% 3.3%(12.9%) 3.8% 3.0% 3.6% (2.7%)
User/System 0.6% 0.2% 0.4% 6.1% 1.3% (1.3%) 1.2% 0.8% 3.6% (8.0%)

Walltime 2.0% 3.5% 2.0% 16.1% 4.0% (33.4%) 3.7% 20.4% 8.0% (43.4%)
Total 1,125k 28k 1,348k 407k 2,908k 1,640k 579k 2,219k

Table 4.3 shows the categories distribution for both the systems. We have divided

the jobs based on execution environment (shared or non-shared) and job type (single

node or multi-node). On System A, a significant number of jobs failed due to system

related errors (5.1%) whereas most common failure category on System B is user

(3.6%). A significant fraction multi-node jobs on System A (16.1%) and System

B (20.4%) ran till expiry of requested walltime in non-shared environment. Only

61.8% (on System A) and 64.0% (on System B) of the multi-node jobs in non-shared

environment completed successfully. However, on System A 87.6% of the shared

multi-node jobs completed successfully. Higher success rate may to due to lesser

computing requirement as these jobs contributed just 1.8% of the total node hours of

System A.

Walltime category jobs contributed to 33% and 43% of total compute hours for

System A and System B respectively. We find empirically through a sub-sampled

set that a good number of these jobs checkpoint frequently. However, even in this

case, there is possible loss of computational time between last checkpoint and program

termination by the scheduler. The checkpointing interval should be determined based

on the MTBF metric and must be calculated on a regular basis to account for runtime

conditions like resource exhaustion and node ageing [40].

27

Implications for System Design: Contrary to common belief, we find that on

the smaller scale system (System A), job failures caused by system issues are more

frequent (53% for System A vs 4% for System B of all failures). Therefore, system

software even at the scale of System A needs careful monitoring and upgrades that take

into account dependencies. Both systems have non-trivial number of failures caused by

user-related issues (33% on System A and 48% on System B of all failures). We find

through inspection of a sub-sampled set that many errors can be avoided if software

infrastructure statically checks for common mis-configurations (such as if the files

referenced in the user-code are present in the file system, similar to the approaches

presented in [6,7]). We also believe it will help if users compile and execute their jobs

in containerized environments, which simulate the environment as the cluster, but at

a smaller scale. Thus reducing failures due to user issues.

28

5. EFFECT OF RESOURCE USAGES ON JOB FAILURES

The section studies the influence of resource usage on probability of job failure

Table 5.1.: Hypotheses results containing the Pearson correlation coefficients and
their corresponding p-values. All accepted hypotheses are in either green or red.
Green represents positive correlation while red represents negative correlation

Null Hypothesis: α > 0.01
Failure rate is not correlated with

System A System B
Referencenon-shared shared non-shared

single multi single single multi
H1

0 : Memory 0.83, 1.7e-28 0.17, 0.4 0.84, 7.2e-32 0.57, 3.2e-9 0.13, 0.2 5.1
H2

0 : Local I/O -0.41, 2.0e-4 0.12, 0.4 0.15, 0.2 - - 5.2
H3

0 : Network I/O -0.55, 3.3e-19 -0.57, 2.6e-11 0.42, 1.8e-7 -0.07, 0.4 0.45, 2.6e-6 5.3
H04: Network -0.31, 7.0e-7 0.11, 0.1 0.40, 1.0e-9 -0.21, 0.04 -0.56, 2.5e-9 5.4

H5
0 : Node-seconds -0.36, 9.8e-5 -0.25, 0.01 -0.31, 1.1e-2 0.04, 0.6 0.42, 2.1e-05 5.5

due to system errors. We consider the 5 primary kinds of resources, both local and

remote, namely, memory, local and remote IO, network and job node-seconds. The

CPU cores are never oversubscribed and therefore do not contribute to job failures.

As before, we calculate failure rate after removing all debug as well as walltimed jobs.

We define job failure rate as the fraction of jobs that fail due to system-related

issues. Our focus on system-related issues, as opposed to user-related issues, is due to

the fact that here we are analyzing the impact of system-provided resources: memory,

file system local I/O as well as remote parallel file system I/O and network usage.

User-related errors happen due to factors that have no discernible pattern, such as,

correctness bugs or misconfigurations in the user code. Hence, we do not consider job

failures due to user or user/system issues.

Errors in high-speed HPC systems quickly propagate through the system, hence

resource utilization values shortly before application failure provide a better under-

standing of the failure reason much more effectively than resource utilization value

captured throughout the application run. The job failure rate was statistically found

29

to be highly correlated to tail resource utilization compared to max, mean, or median

resource utilization. Moreover, the correlation between job failure rate and resource

utilization gets weaker as we move away from the tail toward the start. The quantita-

tive evidence for this is shown in Appendix. Therefore, in this section, all analyses

are conducted using tail resource utilization values.

Definition 5.0.1 Tail-usage: It is the total amount of resource consumed (or rate

of resource consumption for I/O and network) by the job in the last measurement

window. For System A measurement window is five minutes whereas for System B

the measurement window is one minute.

Since resource usages can vary widely across jobs, for all the analyses in this

section, we first define equal-sized bins across the range of given resource usages.

Jobs are grouped based on the bin’s resource usage ranges and then the failure rate

of each bin is calculated as the fraction of jobs that failed in that bin. For all analyses

here, we only consider data points or bins that have 100 or more jobs, in order to

maintain the statistical significance of the results. Additionally, job count is included

on the right y-axis to indicate the relative confidence level of all the data points. For

resources such as local I/O, network I/O and network, the monitoring tool collects

the read (receive for network) and write (transmit for network) data separately. We

derive the total I/O rate of a node by aggregating these read and write rates. Since

the rate range can vary anywhere from 0 to a very high value (23GB/s and 1.1 TB/s

for network file system I/O for System A and System B respectively), we map these

rates to a log, base 10, scale.

We do hypothesis testing for all results in this section. The null hypothesis is

of the form ”Job failure rate is not correlated with resource usage of resource X”.

So if the null hypothesis is rejected, then we can conclude that resource usage of

resource X is indeed implicated with job failures. The results of all the hypothesis

tests are given in Table 5.1. When the null hypothesis is rejected, in some cases, the

failure rate is positively correlated while in some others, it is negatively correlated.

30

We remove plots for inconclusive results to save space. Each figure with a plot has

at the top right a mark designating positive correlation (“+”), negative correlation

(“-”), or no statistically significant correlation (“0”). We do not present the analysis

for multi-node shared jobs for System A since their number is too small to draw any

statistically significant conclusions. Wherever applicable, We model the failure rate

plot using the best-fit statistical distribution and report the R2 value. Even where R2

is not significant, if the hypothesis testing is significant, then the effect is validated.

5.1 Memory

Null Hypothesis H1
0 : Job failure rate is not correlated with high memory utilization.

0 20 40 60
Tail memory usage in GB

0.00

0.05

0.10

0.15

0.20

0.25

Fa
ilu

re
 ra

te
 d

ue
 to

 m
em

or
y

er
ro

r +non-shared single
least square curve
Job count

102

103

104

105

Jo
b

co
un

t

(a) System A non-shared single

0 20 40 60
Tail memory usage in GB

0.0

0.1

0.2

0.3

0.4

Fa
ilu

re
 ra

te
 d

ue
 to

 m
em

or
y

er
ro

r +shared single
least square curve
Job count

102

103

104

Jo
b

co
un

t

(b) System A shared single

20 40 60
Tail memory usage in GB

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ilu

re
 ra

te
 d

ue
 to

 m
em

or
y

er
ro

r +non-shared single
least square curve
Job count

102

103

104

Jo
b

co
un

t

(c) System B non-shared single

Fig. 5.1.: Failure rate distribution vs tail memory usages.

Table 5.2.: Estimated least square fit for failure rate (f) vs memory usage (x). Pa-
rameters are in the form a, b where f = 0 for x ≤ a else f = b(x− a).

Category Reference Parameter R-square

System A non-shared single Fig. 5.1(a) 20.6, 6.2e-3 0.72
System A shared single Fig. 5.1(b) 32.6, 1.4e-2 0.93
System B non-shared single Fig. 5.1(c) 58.5, 2.1e-1 0.97

Memory related errors are common among failed jobs. In case of memory, we

know that exit code 137 corresponds to OOM (out of memory) error. Therefore, we

study the likelihood of failure due to OOM error for different range of memory usages.

31

Here the job failure rate is the fraction of jobs that fail with OOM error. By memory

usage, we capture the entire memory used on the node including use by system-level

processes and all user-level processes (corresponding to multiple user jobs if being

run in a shared environment). Fig. 5.1 shows the distribution of failure due to OOM

error for different amounts of node memory consumption in shared and non-shared

environments. The results of the hypothesis testing are shown in Table 5.1.

We observe that the failure due to memory error distribution is positively cor-

related with the tail memory usage of non-shared single and shared single jobs for

System A as well as single jobs for System B . Recollect that on System B , all jobs

run in non-shared mode. While the positive correlation is expected, it is quite sur-

prising to see the likelihood of failure increasing even when the available free memory

is more than half of the total node memory capacity for System A. In shared envi-

ronment, this memory usage is the aggregated memory usages of the jobs running

during the tail interval of a given job. System B exhibits the expected behavior where

the failure rate is flat till close to node memory capacity and then jumps quickly to

1. Neither System A nor System B ’s non-shared multi node jobs exhibit any such

positive correlation and due to higher p-value the null hypothesis was accepted.

There are two root causes for this OOM problem. First, users sometime mistakenly

provide upper bound for their memory limit. Second, when some heavy memory usage

applications reach close to the upper bound, they go into a “death spiral” whereby

they cannot free memory while writing out the memory to disk. This phenomenon

has been reported previously with the OOM killer in Linux [13]. (Table 5.2).

Implications for System Design: The analysis of System A job failures shows that

job failure rate caused by OOM error increases with increasing tail-memory utilization.

Application of data mining would help to determine when, in terms of its memory

utilization, a job should be pre-empted and moved to a larger node.

32

5.2 Local I/O

Null Hypothesis H2
0 : Job failure rate is not correlated with local I/O rate.

10 3 10 2 10 1 100 101 102

Total tail io rate in MB/sec

0.0

0.1

0.2

0.3

0.4

0.5

Fa
ilu

re
 ra

te
 d

ue
 to

 sy
st

em
 e

rro
r -non-shared single

least square curve
Job count

100

101

102

103

104

Jo
b

co
un

t

(a) System A non-shared single

10 1 100 101 102

Total tail io rate in MB/sec

0.05

0.10

0.15

0.20

0.25

0.30

Fa
ilu

re
 ra

te
 d

ue
 to

 sy
st

em
 e

rro
r onon-shared multi

Job count

103

104

Jo
b

co
un

t

(b) System A non-shared multi

10 3 10 2 10 1 100 101 102

Total tail io rate in MB/sec

0.00

0.02

0.04

0.06

0.08

Fa
ilu

re
 ra

te
 d

ue
 to

 sy
st

em
 e

rro
r oshared single

Job count

100

101

102

103

104

Jo
b

co
un

t

(c) System A shared single

Fig. 5.2.: Failure rate distribution vs total tail local I/O rates

In this section, we conducted an analysis to conclude if total I/O on a node impacts

job failure likelihood. Fig. 5.2 shows the results for System A. System B has no local

storage and always uses NFS for I/O; hence, this analysis is not applicable for System

B .

Fig. 5.2(a) corresponding to non-shared single jobs for System A, shows an overall

negative correlation which initially appears counter-intuitive. Any I/O related issues

usually restrict I/O usage and hence jobs fail with lower I/O rate. On the other hand

an I/O heavy job unimpeded by any system-related issues can perform the required

I/O operations at much higher rate. This analysis reveals that a good number jobs

are failing due to systems issues such as disk failure or faulty drivers that restrict

I/O usages. We also observe a peak in the failure rate around 6 MB/s which is

much lower than the specified operating I/O limit of available local discs (100 MB/s)

at nodes of System A. The least square fit in Fig. 5.2(a) corresponds to function

f = aebx where f is failure rate and x is resource usage in log scale. For fitted curve,

a = 0.04, b = −0.48 with R2 value of 0.16. The result is inconclusive (null hypothesis

accepted with p-value of 0.4) for non-shared multi jobs for System A.

Even though we cannot reject the null hypothesis for shared single jobs of System

A, a peak in the failure rate, similar to the one for non-shared single jobs, is observed

33

around 3 MB/s in Fig. 5.2(c). In case of shared environment, this total I/O rate is

the aggregated I/O rate of all the jobs running at the node during a given time. So as

the total I/O rate increases, interference between multiple jobs requiring I/O service

increases and that results in the higher failure rate. We see a dip in the job failure

rate to the right end of the Fig. 5.2(c). This higher I/O above the local I/O operating

limit is due to caching which is captured as I/O rate by the performance stats.

The high failure rate around 6 MB/s for non-shared single and 3 MB/s for shared

single is because random access rates are usually much slower (can be more than

100X slower [41, 42]) than sequential/specified access rates and such accesses are

more common in shared.

Implications for System Design: This kind of analysis can be useful for identifying

contention issues in the local I/O. A pattern like the peak in the job failure rate can

help in estimating the actual I/O usage bound for local storage which can be much

smaller than the rated capacity. For instance, the specified I/O limit is 100 MB/s for

System A local storage, however, we observe higher failure rate even at 6 MB/s and

3 MB/s in case of non-shared single and shared single jobs. For shared environment,

we recommend the admins of the system to adapt resource isolation technologies (such

as Docker [19]). This can reduce cascading failures due to local contention.

5.3 Network File System

Null Hypothesis H3
0 : Job failure rate is not correlated with network file system

usage rate.

Table 5.3.: Estimated least square fit for failure rate (f) vs network file system usage
rate (x) in log scale. Parameters are in the form a, b where f = aebx.

Category Reference Parameters R2

System A non-shared single Fig. 5.3(a) 0.05, -0.29 0.26
System A non-shared multi Fig. 5.3(b) 0.07, -0.25 0.32
System A shared single Fig. 5.3(c) 6.4e-4, 1.46 0.38

34

10 2 100 102

Total tail io rate in MB/sec

0.0

0.1

0.2

0.3

0.4

Fa
ilu

re
 ra

te
 d

ue
 to

 sy
st

em
 e

rro
r -non-shared single

least square curve
Job count

103

104

105

106

Jo
b

co
un

t

(a) System A non-shared single

10 2 100 102

Total tail io rate in MB/sec

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fa
ilu

re
 ra

te
 d

ue
 to

 sy
st

em
 e

rro
r -non-shared multi

least square curve
Job count

103

104

105

Jo
b

co
un

t

(b) System A non-shared multi

10 2 100 102 104

Total tail io rate in MB/sec

0.00

0.05

0.10

0.15

0.20

0.25

Fa
ilu

re
 ra

te
 d

ue
 to

 sy
st

em
 e

rro
r +shared single

least square curve
Job count

102

103

104

105

Jo
b

co
un

t

(c) System A shared single

10 2 100 102

Total tail io rate in MB/sec

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

Fa
ilu

re
 ra

te
 d

ue
 to

 sy
st

em
 e

rro
r onon-shared single

Job count

103

104

Jo
b

co
un

t

(d) System B non-shared single

10 2 100 102

Total tail io rate in MB/sec

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Fa
ilu

re
 ra

te
 d

ue
 to

 sy
st

em
 e

rro
r +non-shared multi

Job count

103

104

Jo
b

co
un

t

(e) System B non-shared multi

02
/0

2,
 1

5:
23

02
/0

8,
 1

4:
56

03
/2

2,
 1

8:
09

04
/1

0,
 1

0:
57

05
/1

0,
 1

4:
44

06
/0

8,
 0

6:
03

50

100

150

200

Fa
ile

d
jo

b
co

un
t

(f) System B ; exit code
107

Fig. 5.3.: Failure rate distribution vs total tail network file system I/O rates

This section studies job failure correlation with total remote storage usage rate.

Fig. 5.3 shows the results for System A and System B and the corresponding parame-

ters of least square curves are given in Table 5.3. Hypothesis testing gives statistically

significant negative correlation with respect to total tail remote usage rate for non-

shared single and non-shared multi jobs for System A in Fig. 5.3(a) and Fig. 5.3(b).

These results can both be explained by the fact that during congestion at the remote

storage server, jobs fail with low I/O usage rate. Bad network is another factor re-

sponsible for job failure with low tail I/O rate. However, for shared single jobs for

System A, the overall failure likelihood increases as total remote I/O rate increases

as shown in Fig. 5.3(c). Remember again that the resource usage in a shared mode

is the aggregated resource usage across all jobs running on the node at the given

time. Here the failure is triggered by interference among multiple jobs contending

for the remote storage service. At a high level, the contention for remote resources

with executing elements outside the node is predominant in non-shared environment,

35

while the contention with other jobs executing on that same node is paramount for a

shared environment. The metric being measured (total remote I/O) is per node and

therefore we see a negative correlation of failure rate in the non-shared environment

while we see a positive correlation in the shared environment.

In case of System B , no correlation is observed between failure rate and total

remote I/O usage rate for single-node jobs (Fig. 5.3(d)). Moreover, the failure rate

distribution is flat for the whole remote I/O range. This is expected for System B

since the peak read/write rate by a single node is 76.8 Gb/sec (limited by the network

interface card capacity) whereas the peak bandwidth supported by the file system is

much higher at 1.1 TB/sec. However, for multi-node jobs, we observe that the failure

rate is positively correlated with tail usage rate with a sharp peak close to 46 MB/sec

[46*25k(nodes)∼1.1TB/sec] (Fig. 5.3(e)). On investigating deeper and analyzing all

the failed job around the peak, we find that most of the jobs in that peak failed with

an exit code 107. Exit code 107 is returned when ‘transport endpoint is not connected’

indicating jobs are not able to connect to the network file system. Tellingly, 33% of

all system-related job failures across the study period are due to unreachability of

remote file system.

To understand the failures caused by unreachability of remote file system and its

system-wide impact, all jobs with exit code 107 are clustered using DBSCAN algo-

rithm [43] with parameters ε=300s and min job failure count=25. ε is the maximum

radius of the neighborhood from point p, where p represents a failed job with exit code

107. A total of 26 clusters are found using this approach and are shown in Fig. 5.3(f)

along with the total number of failures that belong to the cluster (on y-axis). The

median time between occurrence of these burst failures (i.e., more than 25 jobs fail-

ing within a short duration of 300s) is 3.3 days. A remote file system may become

unreachable due to: (i) remote file system failure (2 clusters), (ii) network failure

(4 clusters) and, (iii) congestion in the network and file system (remaining clusters).

The effect of network congestion on job failure is described later in Section 5.4.

36

Implications for System Design: Bandwidth to the parallel file system continues

to be a problem for large-scale systems. Where it is not possible to increase that

bandwidth, it is needed to carefully monitor net usage of this resource and to stagger

the I/O requests from different applications at times of contention.

5.4 Network

Null Hypothesis H4
0 : Job failure rate is not correlated with network usage rate.

10 2 100 102

Total tail network rate in MB/sec

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fa
ilu

re
 ra

te
 d

ue
 to

 sy
st

em
 e

rro
r -non-shared single

least square curve
Job count

102

103

104

Jo
b

co
un

t

(a) System A non-shared single

10 2 100 102 104

Total tail network rate in MB/sec

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fa
ilu

re
 ra

te
 d

ue
 to

 sy
st

em
 e

rro
r onon-shared multi

Job count

102

103

Jo
b

co
un

t

(b) System A non-shared multi

10 2 100 102

Total tail network rate in MB/sec

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Fa
ilu

re
 ra

te
 d

ue
 to

 sy
st

em
 e

rro
r +shared single

Job count

101

102

103

104

Jo
b

co
un

t

(c) System A shared single

10 1 100 101 102

Total tail network rate in MB/sec

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

Fa
ilu

re
 ra

te
 d

ue
 to

 sy
st

em
 e

rro
r onon-shared single

Job count

103

104

Jo
b

co
un

t

(d) System B non-shared single

100 102 104

Total tail network rate in MB/sec

0.00

0.05

0.10

0.15

0.20

0.25

Fa
ilu

re
 ra

te
 d

ue
 to

 sy
st

em
 e

rro
r -non-shared multi

least square curve
Job count

103 Jo
b

co
un

t

(e) System B non-shared multi

Fig. 5.4.: Failure rate distribution for different ranges of total tail network rates.

Table 5.4.: Estimated least square fit for failure rate (f) vs network usage rate (x) in
log scale. Parameters are in the form a, b where f = aebx.

Category Reference Parameter R-square

System A non-shared single Fig. 5.4(a) 0.04, -0.20 0.06
System B shared single Fig. 5.4(e) 0.04, -0.35 0.26

37

This section analyzes the failure rate distribution for different ranges of total

network rates at nodes. For System A, remote I/O traffic goes through the same

infrastructure as network and so the network usage includes the remote I/O usage

plus the network traffic of multi-node jobs. Fig. 5.4 shows the results for System A

and System B . No significant correlation is found for non-shared multi-node jobs of

System A and non-shared single-node jobs of System B . However, non-shared single

jobs for System A and non-shared multi jobs for System B are negatively correlated

with tail I/O usage rate. As discussed earlier, negative correlation implies system

issues such contention or bad network cause jobs to fail with low tail network usage.

We observe overall positive correlation for shared single-node jobs for System A with

a peak close to 30 MB/s.

5.5 Job Node-seconds

Null Hypothesis H5
0 : Job failure rate is not correlated with the total job node-

seconds.

Here we analyze the effect of the total node-seconds of a job (refer Sec. 2.3) on

the job failure rate. Prior studies have found that there is a positive correlation of

failure rate with the total execution time of an application [25,26]. For example, [26]

found that for extreme scale Blue Waters applications, both of CPU and CPU+GPU

kind, there was a linearly increasing relationship (in log-log scale) of the probability of

application failure and the application node hours (similar to our metric of job node

seconds, with a different time unit). Here we analyze to see if a similar qualitative

and quantitative relationship holds for System A and System B .

We find that for System A, the relation has a negative slope for all three categories

of jobs—non-shared single (Fig. 5.5(a)), non-shared multi (Fig. 5.5(b)), and shared

single (Negative correlation with distribution similar to Fig. 5.5(a). Plot omitted

to save space). This seemingly counter-intuitive relation can be explained by the

observation that many novice users submit jobs to System A. The allocation model is

38

101 103 105

Job node-seconds

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ilu

re
 ra

te
 d

ue
 to

 sy
st

em
 e

rro
r -non-shared single

least square curve
Job count

102

103

104

Jo
b

co
un

t

(a) System A non-shared single

102 103 104 105 106

Job node-seconds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fa
ilu

re
 ra

te
 d

ue
 to

 sy
st

em
 e

rro
r -non-shared multi

least square curve
Job count

103

104

Jo
b

co
un

t

(b) System A non-shared multi

101 102 103 104 105 106

Job node-seconds

0.00

0.05

0.10

0.15

0.20

Fa
ilu

re
 ra

te
 d

ue
 to

 sy
st

em
 e

rro
r -shared single

least square curve
Job count

103

104

Jo
b

co
un

t

(c) System A shared single

100 101 102 103 104 105

Job node-seconds

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

Fa
ilu

re
 ra

te
 d

ue
 to

 sy
st

em
 e

rro
r onon-shared single

Job count

103

104

105

Jo
b

co
un

t

(d) System B non-shared single

101 103 105 107

Job node-seconds

0.00

0.05

0.10

0.15

0.20

Fa
ilu

re
 ra

te
 d

ue
 to

 sy
st

em
 e

rro
r +non-shared multi

least square curve
Job count

101

102

103

104

Jo
b

co
un

t

(e) System B non-shared multi

Fig. 5.5.: Failure rate distribution for different ranges of node-seconds.

that any faculty member who purchases even one asset in the system can authorize

researchers from her group to execute on the cluster. Therefore, many poorly written

jobs get submitted, which on startup make huge demands on system resources (such

as loading huge datasets into memory) and fail quickly. Hence, the high failure rate

for low job execution times. On the other hand, jobs that have executed for a while are

unlikely to run into such problems. Further, they are not demanding enough in terms

of system resources (network fabric, memory, etc.) to create resource exhaustion due

to software ageing.

The trend for System B is the opposite. Here, long-running jobs do put pres-

sure on the system resources and hence have a higher likelihood of failing due to

system issues. Such jobs are exposed to more faults in space or time or both. In-

terestingly, a significant fraction of failed jobs (including all failure categories i.e.

‘user’,‘system’,‘user/system’) fail with job execution time less than 1 minute—34%

for System A and 45% for System B .

39

Implications for System Design: A high level insight we gather is that with ma-

ture codes, the job failure rate goes up the longer the job executes. However, with näıve

usage models, the failure rate is high for short jobs. These cause inefficient usage of

cluster resources due to the constant overhead of scheduling, initiating, and terminat-

ing execution. If such errors can be caught through static and dynamic analysis, this

would be beneficial for overall cluster utilization.

40

6. PREDICTING JOB FAILURES

Gradient boosted
decision trees

(XGBoost)
log10(x)

Memory (GB)

Local IO (MB/s)

Network (MB/s)

Network IO (MB/s)

Node-seconds (s)

log10(x)

log10(x)

log10(x)

Failure Probability

Fig. 6.1.: ML model for job failure prediction

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

shared-single | System A
non-shared single | System A
non-shared multi | System A
non-shared single | System B
non-shared multi | System B

Fig. 6.2.: Precision vs recall curves

Table 6.1.: Maximum net savings of prediction models

System A System B
shared non-shared non-shared
single single multi single multi

Max Saving 48% 61% 66% – 64%
Precision 0.38 0.39 0.45 – 0.41

Recall 0.66 0.81 0.85 – 0.85

41

The previous section shows that the job failure rate is correlated with different

resource usages. The question we pose ourselves is can we predict impending failures

so as to take mitigation actions, such as, taking a checkpoint and migrating the

process. This motivates us to explore different ML models to predict job failures

using the job usages for different resources as input features. After trying different

ML models such as linear regression, logistic regression, and decision trees, we find

that the gradient boosted decision trees performs the best based on their recall and

precision scores. Fig. 6.2 shows the precision recall curves for different execution

environments and job types for both systems. These models have been implemented

using the ’XGBoost’ package in Python (refer Figure 6.1). We observe that model

performance corresponding to the non-shared single job types of System B is not good

enough to be any value. This is expected as the number of jobs belonging to failure

category due to system issues is insignificant (0.1%, refer Table 4.3) to identify a

differentiating pattern between positive and negative classes. Additionally, precision

scores of multi job types are better than corresponding single job types. This we

suspect is because the diversity in the single node jobs is significantly higher than

in the multi node jobs. The number of unique users submitting single node jobs are

significantly more than that of multi node jobs. For instance, number of unique users

with non-shared single and non-shared multi job types are 569 and 338 respectively

for System A.

These job failure prediction models can help reduce resource wastage on these

systems by triggering a checkpoint when failure is imminent. The next analysis

shows how much saving can be achieved using these models. Let the number of total

failures be x, total number of failures predicted by the model be y, precision of the

model be P , recall of the model be R, average execution time of the job be tj and

checkpointing overhead of the job be Co. Checkpointing overhead of Co means that

the time spent in checkpointing state is Co% of the time of execution of the job

that has generated that state. Then, True Positive = Py = Rx or y = Rx
P

. Total

time in checkpointing, Tc = Coytj. Saving by model, Ts = Rxtj. Here saving is the

42

execution time that would be saved because we would predict the failure and initiate

checkpointing. Now, for saving to be greater than 0, Ts ≥ Tc ⇒ Rxtj ≥ Coytj ⇒

Rx ≥ Co
Rx
P
⇒ P ≥ Co i.e., net saving is greater than 0 whenever precision (P) of the

model is greater than checkpointing overhead (Co) of the job. So, for a checkpointing

overhead of 10%, there is a net saving whenever precision of the model is greater

than 0.1. Net saving, Ns = Ts− Tc = Rx
(
1− Co

P

)
tj. We now calculate the maximum

net savings over all possible (precision, recall) pairs, for Co = 10%. The results are

shown in Table 6.1, together with the precision and recall that achieved the maximum

savings (as percentage of total time wastage due to system related issues). The chosen

checkpointing overhead (Co = 10%) is a reasonably conservative assumption; consider

for example real production jobs have overhead in the range 3-5% [44].

43

7. EFFECT OF LIBRARY UPDATES ON RELIABILITY

libk5crypto libxml2 libmpllibhdf5libjpeglibpcrelibgfortranlibcom_errlibzlibstdc++

Applications Libraries (.so) and their versions

libglib-2.0 liblber-2.4 libgthread-2.0libibmadlibltdllibibumadlibldaplibclassadlibssllibcrypto

Operating System Libraries (.so) and their versions

Fig. 7.1.: System A: Success rate of top ten application libraries and operating system
libraries with different versions. These are sorted by their job usage counts with the
most used library on the left of each plot.

Upgrades to dynamic libraries may positively or negatively impact the reliability

of an HPC computing environment, as measured by the job failure rate for the jobs

that use that dynamic library. A dynamic library is said to be used by the job if

it is dynamically loaded during the execution of the job. We conducted an analysis

to study the relationship between job success rate and dynamic software libraries for

44

System A1. In this study, we ignored: i) all libraries for which only one version was

observed across all the studied jobs, and ii) library versions that were used less than

1,000 times for statistical reasons as well as to discard unstable or unpopular versions.

We have defined application libraries to be libraries that are installed under /apps

directory, while operating system libraries are those that are installed under /usr/lib,

/lib, /usr/lib64, or /lib64.

Fig. 7.1 demonstrates that job success rate, in general, increases with the in-

creasing library version number. For thirteen out of the top twenty libraries (of

both applications and operating system libraries), the job success rate monotonically

increases with increasing version number. Only three libraries, namely libibumad,

libltdl, libk5crypto, demonstrate decreasing job success rate with increasing version

number. The resulting trend could be due to both user script errors and library

implementation bugs. By Linux conventions, minor number changes (on the least

significant digits) indicate bug fixes, while major number changes (on the most sig-

nificant digits) indicate potential API changes [45]. Thus, it is reasonable for the

likelihood of library failure to decrease from minor number changes due to bug fixes,

as apparent in trends of libstdc++ and libcom err in Fig. 7.1. Furthermore, Fig. 7.1

shows more significant success rate gains from major number changes, as shown in

libcrypto, libssl, and libxml2. A possible explanation is that major changes often alter

the API of a library, leading to better developer interfaces and increased functional-

ity, which would, in turn, reduce the likelihood of user script errors. In a software

defects dataset compiled by Ullah et al. [46], it is shown that five out of seven major

open source applications (i.e., GNOME, C++ Standard Library, HTTP Server, XML

Beans, and ESME) have monotonically decreasing software defects with increasing

version number. Our empirical data validates this prior result in the different context

of dynamic libraries.

1This information was not available for jobs running on System B .

45

8. RELATED WORK

Failure analysis of large-scale computing systems [26,34,47–49] has been done in the

past on many scopes of analysis, such as job-level, application-level, node-level, or

system-level. Di Martino et al. [47] provided detailed characterization of system-

wide outages. Similarly, Schroeder et al. [20] used statistical properties, such as the

time between failures and the time to repair, to analyze node-level failures of clus-

ters. Gupta et al. [49] studied temporal recurrence relationship between failure types

on different systems. In contrast, Mitra et al. [48] performed investigations of jobs

submitted to a university cluster to understand their primary failure modes. How-

ever, our work focuses on finding the effect of resource usage on reliability of jobs

in community clusters. In a closely related work [26], authors conducted job failure

characterization study on more than 5 million HPC job runs. However, the analysis

was limited to one system and did not consider resource utilization characteristics for

job failure study. Our approach concretely shows that resource utilization character-

istics by a job play an important role in determining job success rate as it captures

both the impact of error/failure in the system as well interference among jobs.

46

9. THREATS TO VALIDITY

Inferring failure from exit statuses. Most of our failure analysis relies on exit

status either from a job (System A) or from individual applications within a job

(System B). While there is a guideline provided by TORQUE for exit status [50],

there is no compulsion for a job script or application developer to follow the guideline.

However, it is generally found by others [51,52] and us here that application developers

of the popular applications (which also contribute most data points in our dataset)

follow the guideline. The job script developer usually takes the exit code of the last

executable in the script and returns that and thus benefits from the standardization

of exit code status.

I/O Caching and Utilization. We determine the I/O utilization using the llite

counter. Not all ‘read bytes’ and ‘write bytes’ values recorded through llite result in

fetching of data from local or remote file system as the data may be cached in memory.

However, it is shown to be a good estimator of I/O load for the file system [33].

47

10. SUMMARY

We have analyzed extensive system usage and failure data from two centrally ad-

ministered computing clusters at two Tier 1 US Research universities. Our dataset

comprises a total of 3.0M and 2.2M jobs from the two clusters, which represents the

richest data source to be analyzed in the literature. The two clusters vary signif-

icantly in their scale, hardware resiliency characteristics, and systems management

practices shedding a comparative light on failure characteristics. Through analysis

of different kinds of data—job failures, node failures and recovery, and job resource

usages, and dynamic libraries —we bring out important insights into how the clus-

ters behave and implications for how they can be managed more effectively. Some

key findings are: (i) the continuous node availability is less than in previous studies

of dedicated commercial supercomputing clusters, while the differences in resiliency

practices among System A and System B makes the latter’s 95-th percentile avail-

ability 2.2X higher. (ii) A significant fraction of jobs hit against the walltime (33%

and 43% for the two systems) and therefore event-driven, efficient application-level

checkpointing is needed to avoid lost work. (iii) Resource pressure affects different

types of jobs differently. Sometime job failure rate is positively correlated with re-

source usage (such as local memory), while sometime it is negatively correlated with

remote resource pressure (such as network for both systems). These have different

implications for how resource contention should be handled. (iv) A significant frac-

tion of jobs terminate early due to user-related errors. This leads to lost overhead in

the clusters and should be avoided through static analysis of submitted job scripts

to identify incorrect usage. Our hope is that this study will trigger other studies by

researchers using data from their local organization’s compute clusters and we look

forward to seeing which insights will be shared and which will be distinct. We have

also publicly released the dataset on which the analyses are based.

REFERENCES

48

REFERENCES

[1] S. Bagchi, R. Kumar, R. Kalyanam, S. Harrell, C. A. Ellis, and C. Song,
“Fresco: Open source data repository for computational usage and failures,”
Jan 2019. [Online]. Available: http://www.purdue.edu/fresco/

[2] S. Kaufmann and B. Homer, “Craypat-cray x1 performance analysis tool,” Cray
User Group (May 2003), 2003.

[3] C. D. Martino, S. Jha, W. Kramer, Z. Kalbarczyk, and R. K. Iyer, “Logdiver:
A tool for measuring resilience of extreme-scale systems and applications,” in
Proceedings of the 5th Workshop on Fault Tolerance for HPC at eXtreme Scale.
ACM, 2015, pp. 11–18.

[4] K. Park and V. S. Pai, “Comon: a mostly-scalable monitoring system for planet-
lab,” ACM SIGOPS Operating Systems Review, vol. 40, no. 1, pp. 65–74, 2006.

[5] A. K. Maji, S. Mitra, B. Zhou, S. Bagchi, and A. Verma, “Mitigating interfer-
ence in cloud services by middleware reconfiguration,” in Proceedings of the 15th
International Middleware Conference. ACM, 2014, pp. 277–288.

[6] T. Xu, X. Jin, P. Huang, Y. Zhou, S. Lu, L. Jin, and S. Pasupathy, “Early
detection of configuration errors to reduce failure damage.” in OSDI, 2016, pp.
619–634.

[7] M. Attariyan and J. Flinn, “Automating configuration troubleshooting with dy-
namic information flow analysis.” in OSDI, vol. 10, no. 2010, 2010, pp. 1–14.

[8] D. Merkel, “Docker: lightweight linux containers for consistent development and
deployment,” Linux Journal, vol. 2014, no. 239, p. 2, 2014.

[9] J. T. Daly, “A higher order estimate of the optimum checkpoint interval for
restart dumps,” Future Gener. Comput. Syst., vol. 22, no. 3, pp. 303–312, Feb.
2006. [Online]. Available: http://dx.doi.org/10.1016/j.future.2004.11.016

[10] T. Z. Islam, K. Mohror, S. Bagchi, A. Moody, B. R. De Supinski, and R. Eigen-
mann, “Mcrengine: a scalable checkpointing system using data-aware aggrega-
tion and compression,” Scientific Programming, vol. 21, no. 3-4, pp. 149–163,
2013.

[11] Y. Liu, R. Nassar, C. Leangsuksun, N. Naksinehaboon, M. Paun, and S. L.
Scott, “An optimal checkpoint/restart model for a large scale high performance
computing system,” in 2008 IEEE International Symposium on Parallel and
Distributed Processing, April 2008, pp. 1–9.

[12] R. McKenna, S. N. Herbein, A. Moody, T. Gamblin, and M. Taufer, “Machine
learning predictions of runtime and IO traffic on high-end clusters,” in IEEE
Cluster, 2016, pp. 255–258.

49

[13] T. G. DIARY, “What is Out-of-Memory (OOM) Killer in Linux (Causes,
Troubleshooting, Mitigation),” https://www.thegeekdiary.com/what-is-out-of-
memory-oom-killer-in-linux-causes-troubleshooting-mitigation/.

[14] “Detecting and avoiding stack overflow in embedded systems,”
https://www.iar.com/support/resources/articles/detecting-and-avoiding-stack-
overflow-in-embedded-systems/.

[15] T. Taghavi, M. Lupetini, and Y. Kretchmer, “Compute job memory
recommender system using machine learning,” in Proceedings of the 22Nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
ser. KDD ’16. New York, NY, USA: ACM, 2016, pp. 609–616. [Online].
Available: http://doi.acm.org/10.1145/2939672.2939717

[16] J. Li, C. Pu, Y. Chen, V. Talwar, and D. Milojicic, “Improving preemptive
scheduling with application-transparent checkpointing in shared clusters,” 11
2015, pp. 222–234.

[17] H. Yang, A. Breslow, J. Mars, and L. Tang, “Bubble-flux: Precise online qos
management for increased utilization in warehouse scale computers,” in ACM
SIGARCH Computer Architecture News, vol. 41, no. 3. ACM, 2013, pp. 607–
618.

[18] C. Delimitrou and C. Kozyrakis, “Paragon: Qos-aware scheduling for heteroge-
neous datacenters,” in ACM SIGPLAN Notices, vol. 48, no. 4. ACM, 2013, pp.
77–88.

[19] “Docker,” https://docs.docker.com/.

[20] B. Schroeder and G. Gibson, “A large-scale study of failures in high-performance
computing systems,” IEEE Transactions on Dependable and Secure Computing,
vol. 7, no. 4, pp. 337–350, 2010.

[21] F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, and M. Snir, “Toward ex-
ascale resilience: 2014 update,” Supercomputing frontiers and innovations, vol. 1,
no. 1, pp. 5–28, 2014.

[22] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch, “Hetero-
geneity and dynamicity of clouds at scale: Google trace analysis,” in Proceedings
of the Third ACM Symposium on Cloud Computing. ACM, 2012, p. 7.

[23] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes,
“Large-scale cluster management at google with borg,” in Proceedings of the
Tenth European Conference on Computer Systems. ACM, 2015, p. 18.

[24] X. Chen, C.-D. Lu, and K. Pattabiraman, “Failure analysis of jobs in compute
clouds: A google cluster case study,” in Software Reliability Engineering (IS-
SRE), 2014 IEEE 25th International Symposium on. IEEE, 2014, pp. 167–177.

[25] D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo, “A survey of software
aging and rejuvenation studies,” ACM Journal on Emerging Technologies in
Computing Systems (JETC), vol. 10, no. 1, p. 8, 2014.

50

[26] C. Di Martino, W. Kramer, Z. Kalbarczyk, and R. Iyer, “Measuring and un-
derstanding extreme-scale application resilience: A field study of 5,000,000 hpc
application runs,” in Dependable Systems and Networks (DSN), 2015 45th An-
nual IEEE/IFIP International Conference on. IEEE, 2015, pp. 25–36.

[27] R. Alverson, D. Roweth, and L. Kaplan, “The gemini system interconnect,” in
2010 18th IEEE Symposium on High Performance Interconnects. IEEE, 2010,
pp. 83–87.

[28] P. J. Braam and P. Schwan, “Lustre: The intergalactic file system,” in Ottawa
Linux Symposium, 2002, p. 50.

[29] “https://www.redhat.com/en,” Accessed: 2018-09-24.

[30] G. Staples, “Torque resource manager,” in Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing, ser. SC ’06. New York, NY, USA: ACM, 2006.
[Online]. Available: http://doi.acm.org/10.1145/1188455.1188464

[31] M. Karo, R. Lagerstrom, M. Kohnke, and C. Albing, “The application level
placement scheduler,” in Cray User Group - CUG, 2008.

[32] J. Fullop et al., “A diagnostic utility for analyzing periods of degraded job per-
formance,” in Proc. Cray User Group, 2014.

[33] A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos, J. Fullop, A. Gentile,
S. Monk, N. Naksinehaboon, J. Ogden et al., “The lightweight distributed metric
service: a scalable infrastructure for continuous monitoring of large scale com-
puting systems and applications,” in High Performance Computing, Networking,
Storage and Analysis, SC14: International Conference for. IEEE, 2014, pp.
154–165.

[34] T. Evans, W. L. Barth, J. C. Browne, R. L. DeLeon, T. R. Furlani, S. M. Gallo,
M. D. Jones, and A. K. Patra, “Comprehensive resource use monitoring for hpc
systems with tacc stats,” in Proceedings of the First International Workshop on
HPC User Support Tools. IEEE Press, 2014, pp. 13–21.

[35] “Sensu,” http://www.sonian.com/cloud-monitoring-sensu/, 2018.

[36] “Nagios,” https://www.nagios.com, 2018.

[37] C. D. Martino, S. Jha, W. Kramer, Z. Kalbarczyk, and R. K. Iyer, “Logdiver:
a tool for measuring resilience of extreme-scale systems and applications,” in
Proceedings of the 5th Workshop on Fault Tolerance for HPC at eXtreme Scale.
ACM, 2015, pp. 11–18.

[38] K. M. Chandy and L. Lamport, “Distributed snapshots: Determining global
states of distributed systems,” ACM Transactions on Computer Systems
(TOCS), vol. 3, no. 1, pp. 63–75, 1985.

[39] A. Bouteiller, P. Lemarinier, G. Krawezik, and F. Cappello, “Coordinated check-
point versus message log for fault tolerant mpi,” in null. IEEE, 2003, p. 242.

[40] G.-A. Klutke, P. C. Kiessler, and M. A. Wortman, “A critical look at the bathtub
curve,” IEEE Transactions on reliability, vol. 52, no. 1, pp. 125–129, 2003.

51

[41] “Random vs Sequential,” https://blog.open-e.com/random-vs-sequential-
explained/.

[42] “Lies, Damn Lies And SSD Benchmark Test Result,”
https://www.seagate.com/tech-insights/lies-damn-lies-and-ssd-benchmark-
master-ti/.

[43] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based algorithm for
discovering clusters in large spatial databases with noise.” in Kdd, vol. 96, no. 34,
1996, pp. 226–231.

[44] R. Gupta, H. Naik, and P. Beckman, “Understanding checkpointing overheads
on massive-scale systems: Analysis on the ibm blue gene/p system,” IJHPCA,
vol. 25, pp. 180–192, 05 2011.

[45] P. Seebach, “Dissecting shared libraries,” Jan 2005. [Online]. Available:
https://www.ibm.com/developerworks/linux/library/l-shlibs/index.html

[46] N. Ullah, M. Morisio, and A. Vetrò, “Selecting the best reliability model to
predict residual defects in open source software,” Computer, vol. 48, no. 6, pp.
50–58, 2015.

[47] C. Di Martino, Z. Kalbarczyk, R. K. Iyer, F. Baccanico, J. Fullop, and
W. Kramer, “Lessons learned from the analysis of system failures at petascale:
The case of Blue Waters,” in Dependable Systems and Networks (DSN), 2014
44th Annual IEEE/IFIP International Conference on. IEEE, 2014, pp. 610–
621.

[48] S. Mitra, S. Javagal, A. K. Maji, T. Gamblin, A. Moody, S. Harrell, and
S. Bagchi, “A study of failures in community clusters: The case of conte,” in Soft-
ware Reliability Engineering Workshops (ISSREW), 2016 IEEE International
Symposium on. IEEE, 2016, pp. 189–196.

[49] S. Gupta, T. Patel, C. Engelmann, and D. Tiwari, “Failures in large scale
systems: Long-term measurement, analysis, and implications,” in Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’17. New York, NY, USA: ACM, 2017, pp.
44:1–44:12. [Online]. Available: http://doi.acm.org/10.1145/3126908.3126937

[50] U. of Michigan, “Interpreting Torque Return Codes,” https://arc-
ts.umich.edu/software/torque/return-codes/, 2018.

[51] M. Cooper, “Advanced Bash-Scripting Guide,”
http://tldp.org/LDP/abs/html/exitcodes.html, 2014.

[52] S. Overflow, “Are there any standard exit status codes in Linux?”
https://stackoverflow.com/questions/1101957/are-there-any-standard-exit-
status-codes-in-linux, 2012.

APPENDIX

52

A. APPENDIX

A.1 Resource Usage Correlation

0 20 40 60
Memory usage in GB at t=end

0.00

0.05

0.10

0.15

0.20

0.25

Fa
ilu

re
 ra

te
 d

ue
 to

 m
em

or
y

er
ro

r +non-shared single
Job count

102

103

104

105

Jo
b

co
un

t

(a) r=0.83, p=1.7e-28

0 20 40 60
Memory usage in GB at t=end-5

0.00

0.02

0.04

0.06

0.08

0.10

Fa
ilu

re
 ra

te
 d

ue
 to

 m
em

or
y

er
ro

r +non-shared single
Job count

103

104

105

Jo
b

co
un

t

(b) r=0.71, p=6.7e-21

0 20 40 60
Memory usage in GB at t=end-10

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Fa
ilu

re
 ra

te
 d

ue
 to

 m
em

or
y

er
ro

r +non-shared single
Job count

103

104

Jo
b

co
un

t

(c) r=0.67, p=5.5e-18

0 20 40 60
Memory usage in GB at t=end-15

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Fa
ilu

re
 ra

te
 d

ue
 to

 m
em

or
y

er
ro

r +non-shared single
Job count

103

104

Jo
b

co
un

t

(d) r=0.63, p=1.3e-15

0 20 40 60
Memory usage in GB at t=end-20

0.000

0.005

0.010

0.015

0.020

0.025

Fa
ilu

re
 ra

te
 d

ue
 to

 m
em

or
y

er
ro

r +non-shared single
Job count

103

104

Jo
b

co
un

t

(e) r=0.58, p=3.1e-13

0 20 40 60
Max memory usage in GB

0.00

0.02

0.04

0.06

0.08

0.10

Fa
ilu

re
 ra

te
 d

ue
 to

 m
em

or
y

er
ro

r +non-shared single
Job count

103

104

105

Jo
b

co
un

t

(f) r=0.73, p=1.4e-22

0 20 40 60
Mean memory usage in GB

0.00

0.02

0.04

0.06

0.08

Fa
ilu

re
 ra

te
 d

ue
 to

 m
em

or
y

er
ro

r +non-shared single
Job count

102

103

104

105

Jo
b

co
un

t

(g) r=0.59, p=1.3e-12

0 20 40 60
Median memory usage in GB

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Fa
ilu

re
 ra

te
 d

ue
 to

 m
em

or
y

er
ro

r +non-shared single
Job count

103

104

105

Jo
b

co
un

t

(h) r=0.47, p=1.4e-8

Fig. A.1.: Failure rate (OOM error) distribution with different metrics

This section provides experimental validation regarding the metric most suitable

for correlation study. The metrics are last 5 data points, max, mean and median

of node memory usages of each job. Fig. A.1 shows the failure rate distribution

53

with respect to each of above mentioned metric along with the Pearson correlation

coefficients and corresponding p-values for non-shared single node jobs for System A.

The study reveals the failure rate is most strongly correlated with the memory usage

at the end of jobs. The correlation coefficient decreases monotonically from 0.83 to

0.58 as the data point moves farther away from the end. Relatively weaker correlation

is also observed in case max (0.73), mean (0.59) and median (0.47) memory usages

as compared to memory usage at the tail (0.83).

