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ABSTRACT

Cannelli, Loris PhD, Purdue University, August 2019. Asynchronous Parallel Algo-
rithms for Big-Data Nonconvex Optimization. Major Professor: Gesualdo Scutari.

The focus of this Dissertation is to provide a unified and efficient solution method

for an important class of nonconvex, nonsmooth, constrained optimization problems.

Specifically, we are interested in problems where the objective function can be written

as the sum of a smooth, nonconvex term, plus a convex, but possibly nonsmooth,

regularizer. It is also considered the presence of nonconvex constraints. This kind of

structure arises in many large-scale applications, as diverse as information processing,

genomics, machine learning, or imaging reconstruction.

We design the first parallel, asynchronous, algorithmic framework with conver-

gence guarantees to stationary points of the class of problems under exam. The

method we propose is based on Successive Convex Approximation techniques; it can

be implemented with both fixed and diminishing stepsizes; and enjoys sublinear con-

vergence rate in the general nonconvex case, and linear convergence case under strong

convexity or under less stringent standard error bound conditions. The algorithmic

framework we propose is very abstract and general and can be applied to different

computing architectures (e.g., message-passing systems, cluster of computers, shared-

memory environments), always converging under the same set of assumptions.

In the last Chapter we consider the case of distributed multi-agent systems. In-

deed, in many practical applications the objective function has a favorable separable

structure. In this case, we generalize our framework to take into consideration the

presence of different agents, where each one of them knows only a portion of the over-

all function, which they want cooperatively to minimize. The result is the first fully

decentralized asynchronous method for the setting described above. The proposed



x

method achieve sublinear convergence rate in the general case, and linear convergence

rate under standard error bound conditions.

Extensive simulation results on problems of practical interest (MRI reconstruction,

LASSO, matrix completion) show that the proposed methods compare favorably to

state-of-the art-schemes.
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1. INTRODUCTION

1.1 Motivation

In the last years a surge of interest has arisen in parallel and distributed optimiza-

tion methods for large-scale systems. Nowadays, nonconvex large-scale optimization

problems are found in a wide range of applications in different engineering areas as

diverse as information processing over networks (e.g., parameter estimation, detec-

tion, localization, graph signal processing), communication networks (e.g., resource

allocation in peer-to-peer/multi-cellular systems), sensor networks, recommendation

systems (including Facebook, Google, Amazon, and YouTube), swarm robotic, and

machine learning (e.g., nonlinear least squares, dictionary learning, PCA, tensor fac-

torization), just to name a few - see Figure 1.1. To design optimization models and

methods in order to deal with such complex systems requires the ability to solve a

number of different challenges.

• Big-Data - The applications mentioned above usually involve a massive amount

of data, leading to optimization problems with a huge number of variables. These

problems are often referred to as Big-Data. In order to solve these large problems in

a reasonable amount of time (real-time) and in order to cope with the curse of dimen-

sionality, it becomes mandatory to rely on solution methods that leverage hierarchical

computational architectures, and are parallel (e.g., clusters of computers, multi-cores

environments, cloud-based networks), if available. From this point of view, the main

challenge lies in the fact that the problems of interest are in general not separable in

the optimization variables, which makes the design of a parallel method not a trivial

goal.
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Figure 1.1. A general view of some relevant applications, which it is possi-
ble to write as nonconvex large-scale optimization problems over networks.
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• Nonconvexity - Many of the aforementioned applications give rise to nonconvex

optimization problems, where the nonconvexity can be present both at the level of the

objective function, and both at the level of the constraints. In general, computing the

global optimum solution of a nonconvex problem can be prohibitive in many appli-

cations of interest. Thus, the goal becomes to design (parallel/distributed) solution

methods capable to find stationary solutions (e.g., local optimal points) in an effi-

cient way, i.e. without requiring too many computational capabilities by the workers.

In order to deal with nonconvexity, a powerful tool is represented by the so-called

Successive Convex Approximation (SCA) techniques: according to this technique, a

complex nonconvex optimization problem is transformed in a sequence of convex sub-

problem, easier to be solved. The convex subproblems are proper approximations of

the original nonconvex problem, and it can be proved that solving a sequence of these

subproblems leads to local solutions of the starting problem. Given the fact that

the approximating subproblems can be constructed in several different ways, SCA

techniques are a flexible and powerful tool in order to tackle the complexity coming

from nonconvexity.

• In-network Optimization - Many applications of interest assume the presence

of several agents, spatially/virtually distributed over a large area, that try to solve a

problem cooperatively. Due to privacy/security reasons and due to the huge amount

of data that should be communicated, usually each agent in these networks knows

only a local portion of the information involved in the problem. The absence of a

central coordinator avoids also that the overall system will collapse, if a single point

crashes or goes under external attacks. So, the goal becomes to develop solution

schemes where the agents compensate for the lack of global knowledge by exchanging

information with their neighbors. The solution method should be flexible, in order

to be applicable to different topologies, possibly time-varying

• Asynchronous Optimization - In a multi-agent system the presence of a central

coordinator/clock can easily be a source of inefficiency. Indeed, what usually happens

in multi-agent environments is that the slowest agent is the bottleneck and determines
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the global speed of the overall system-see Figure 1.2. In order to face this issue and

avoid latencies and/or waiting times, asynchrony is needed. In an asynchronous

environment no agent must wait for the others in order to perform its operations.

The waiting times are highly reduced and the resulting system becomes more flexible

without the need for a central clock.

Figure 1.2. Multi-agent system. Left - synchronous environment: Core 3
and Core 1 have finished their own computations, but before going ahead
they must wait time t1 for Core 2 to finish its own computations too.
Right - asynchronous environment: the cores are not forced to wait for
each other anymore. Any core can perform its own computation without
coordination with the other. Waiting times disappear in the asynchronous
setting.

As a concrete example, consider the emerging field of in-network big-data ana-

lytics: the goal is to perform some, generally nonconvex, analytic tasks from a sheer

volume of data, distributed over a network-see Fig. 1.3-examples include machine

learning problems such as nonlinear least squares, dictionary learning, matrix comple-

tion, and tensor factorization, just to name a few. In these data-intensive applications,

the huge volume and spatial/temporal disparity of data render centralized processing

and storage a formidable task. This happens, for instance, whenever the volume of

data overwhelms the storage capacity of a single computing device. Moreover, col-

lecting sensor-network data, which are observed across a large number of spatially

scattered centers/servers/agents, and routing all this local information to centralized

processors, under energy, privacy constraints and/or link/hardware failures, is often

infeasible or inefficient.
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Figure 1.3. In-network big-data analytics: recent years witnessed the
spread of large-scale networks of agents that try to solve huge problems
in a distributed way. Classic optimization methods might be inapplicable
in these settings, and need to be rethought in a fully decentralized way.
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1.2 Research Contribution

The above challenges make clear that the classic optimization schemes are inappli-

cable or inefficient, thus calling for the development of new models and optimization

schemes that support parallel, asynchronous, nonconvex optimization over decentral-

ized architectures.

The major contribution of this Dissertation is to put forth a general, unified, al-

gorithmic framework, based on SCA techniques, for the parallel, asynchronous, and

distributed solution of a general class of nonconvex, nonsmooth, and constrained prob-

lems. Key novel features of the proposed framework are: i) is the first asynchronous

optimization method to achieve provable convergence to stationary solutions of the

class of problems under exam; ii) is guaranteed to achieve linear convergence rate on

a large class of interesting problems; iii) generalizes existing SCA methods, opening

the possibility of their parallel and/or distributed implementation and allowing the

control of stepsizes, computation/communication trade-offs, and choices of approxi-

mant functions; iv) outperforms existing state-of-the-art methods on experiments of

practical interest.

1.3 Outline of the Dissertation

This Dissertation is composed of three main Chapters, where we gradually build

an algorithmic framework capable of solving nonconvex and nonsmooth constrained

problems in a parallel, asynchronous, and distributed fashion.

In Chapter 2 the theory of SCA techniques, which will be a building block of the

proposed optimization method, is briefly reviewed. We contribute to the existing lit-

erature of SCA along the following directions: i) linear convergence rate of FLEXA, a

SCA-based parallel algorithm developed in [1], is proved under standard error bound

conditions or under strong convexity of the objective function; ii) a specific instance

of FLEXA is designed, tailored for the Magnetic Resonance Imaging (MRI) recon-
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struction problem. Experimental results show that the proposed version of FLEXA

outperforms state-of-the-art schemes and paves the way towards real-time MRI.

Building on the FLEXA framework, in Chapter 3, AsyFLEXA, the first asyn-

chronous, parallel algorithmic framework for nonconvex, nonsmooth optimization

problems is presented. Convergence to stationary solutions is proved when a di-

minishing stepsize sequence is employed; while iteration complexity is provided when

a fixed stepsize is used. Finally, near linear speed-up of AsyFLEXA, with respect to

the number of agents involved in the computations, is demonstrated. Experimental

results on convex and nonconvex practical problems show that AsyFLEXA compares

favorably to existing asynchronous approaches.

In Chapter 4 we generalize AsyFLEXA to distributed optimization problems with

a partitioned structure. Instances of this setting are multi-agent systems where, due

to the size of the problems, or due to privacy issues, each agent has knowledge of a

local portion of the objective function only. This kind of setting arises in, e.g., net-

work utility maximization and resource allocation problems, cooperative localization

in wireless network, or machine learning problems when a favorable sparsity structure

is present. DAsyFLEXA, the first distributed and asynchronous algorithmic frame-

work for nonconvex, nonsmooth, partitioned optimization problems, is presented in

this Chapter. The main contributions of this Chapter are: i) asymptotic convergence

to stationary solutions of DAsyFLEXA is derived when diminishing uncoordinated

stepsize sequences are employed; iteration complexity is provided too, for stepsizes

fixed and sufficiently small; ii) linear convergence rate of DAsyFLEXA is proved, when

a standard error bound condition is satisfied; iii) experimental results on convex and

nonconvex practical problems show that DAsyFLEXA performs more efficiently than

existing asynchronous, decentralized approaches.

• Notation - Throughout the Dissertation we will use the following notation.

Small bold letters x will denote vectors, while capital bold letters X will be used

for matrices. Subscripts xi, Xij will indicate, respectively, the ith component of a



8

vector x, and the element on the ith row and jth column of a matrix X. The gradient

of a smooth function f will be denoted by ∇f . A subscript will specify the block-

variable with respect to the gradient is taken. For instance, ∇xf(x) means that the

gradient vector is taken with respect to the whole vector x, while ∇xif(x) means

that the gradient is computed with respect to the block-variable xi only. For smooth

functions depending on multiple arguments, i.e. f(·; ·), we use the convention that

∇f(·; ·) will denote the partial gradient of f with respect to the first argument. For

a nonsmooth function g(x), ∂g(x) will denote the Clarke subdifferential of G [2].
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2. FLEXIBLE PARALLEL ALGORITHM (FLEXA)

In this Chapter we present the building blocks of the optimization methods that will

be developed in Chapter 3 and Chapter 4. Specifically, Section 2.1 describes the class

of problems of interest, together with some motivating example. In Section 2.2 we

first briefly review FLEXA [3], a parallel algorithmic framework based on SCA tech-

niques for nonconvex, and nonsmooth optimization. Then, we prove new convergence

results of FLEXA, namely: i) linear convergence rate under strong convexity; and ii)

linear convergence rate under a standard error bound assumption. Finally in Section

2.3 we design an instance of FLEXA tailored for a setting of practical interest, namely

the MRI reconstruction problem, and we show that FLEXA has a convergence speed

much higher than state-of-the-art schemes. The Appendix of this Chapter contains

a review of standard error bound conditions, commonly assumed in the literature to

prove linear convergence rate of iterative schemes.

The novel results of this Chapter have been published in

• Cannelli, L. and Scarponi, P. and Scutari, G. and Ying, L., “A Parallel Algo-

rithm for Compressed Sensing Dynamic MRI Reconstruction”, Proceedings of

the International Society for Magnetic Resonance in Medicine (ISMRM) Scien-

tific Meeting Exhibition (Toronto), 2015 [4].

A sample code, written in C++, of FLEXA for LASSO problems is available at

https://github.com/lcannell/Parallel-Asynchronous-Algorithms

-For-Nonconvex-Problems.
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2.1 Problem Formulation and Motivating Examples

The following optimization problem will be considered in the rest of this Chapter

min
x,[xi]Ni=1∈X⊆Rn

V (x) , F (x) +
N∑
i=1

gi(x)︸ ︷︷ ︸
,G(x)

,
(P)

satisfying the following assumptions

Assumption A (On Problem (P)).

(A1) X , X1 × . . .×XN , and each set Xi ⊆ Rni is nonempty, closed, and convex;

(A2) F is C1 and its gradients ∇xiF are globally L−Lipschitz on X ;

(A3) Each gi : Xi → R is convex;

(A4) V is bounded from below on X .

Assumption A is very general and encompasses a gamut of formulations, arising from

applications in several fields; many problems in areas as diverse as sensor networks,

imaging, machine learning, data analysis, genomics, and geophysics, can be formu-

lated as Problem (P) and satisfy Assumption A. Some illustrative examples are doc-

umented next.

Example #1−LASSO: Consider a linear regression task with p feature/outcome

pairs {(zi, ai)}pi=1, where ai ∈ Rm is a vector of features, and zi is the associated

outcome. Let z = (z1, . . . , zp)
T denote the p-dimensional vector of outcomes, and

A ∈ Rp×m be the matrix with ai in its ith row. Then, the renowned LASSO problem

[5] aims at finding a (sparse) vector of weights x ∈ Rm, and can be written as an

instance of Problem (P), by setting F (x) = ‖z − Ax‖2
2 and G(x) = λ‖x‖1, with

λ > 0.

Example #2−Group LASSO: In many regression tasks it is of interest to select

or omit all the coefficient within a group together. The group LASSO promotes this
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structure by using sums of (un-squared) `2-norm losses. Specifically, consider the

regression vector x = [xT1 , . . . ,x
T
n ]T , x ∈ Rm, possessing a group sparse pattern , i.e.,

all the elements of xi either take large values either they are close to zero [6]. A

popular group LASSO formulation is Problem (P), where F (x) = ‖z − Ax‖2
2 and

G(x) = λ
∑n

i=1 ‖xi‖2, with λ > 0.

Example #3−Sparse logistic regression: Given a training set {zi, wi}pi=1, where

zi ∈ Rm is the feature vector and wi ∈ {−1, 1} is the label of the ith sample, the

logistic regression problem consists in minimizing the negative log likelihood [7, 8]

F (x) = (1/p) ·
∑p

i=1 log(1 + e−wi·z
T
i x).It is possible to also use some regularizer, e.g.,

G(x) = λ‖x‖1 (or G(x) = λ
∑n

i=1 ‖xi‖2), with λ > 0. It is straightforward to see that

this formulation falls into the framework (P).

Example #4−Dictionary Learning (DL): Dictionary learning is an unsupervised

learning problem that consists in finding a matrix D ∈ Rp×m (the dictionary) such

that data zi ∈ Rp can be represented in a sparse fashion by coefficients xi ∈ Rm.

Let X ∈ Rm×I and Z ∈ Rp×I be the representation and data matrix whose columns

are the coefficients xi and the data vectors zi, respectively. The DL problem is

an instance of Problem (P), with F (D,X) = ‖Z − DX‖2
F and G(X) = λ‖X‖1,

X = {(D,X) ∈ Rp×m × Rm×I : ‖D ei‖2 ≤ αi,∀i = 1, . . . ,m}, where ei is the ith

canonical vector, and ‖X‖F and ‖X‖1 denote the Frobenius norm and the `1 matrix

norm of X, respectively. Note that F (D,X) is nonconvex, in fact is biconvex, i.e.,

convex in D and X separately.

Example #5−(Sparse) empirical risk minimization: Given a training set {Di}Ii=1,

the goal in an empirical risk minimization problem is to find a model h : Rm 3 X →

Rp, parameterized by the vector of variables x, that minimizes the risk
∑I

i=1 ` (h (x;Di)),

where ` : Rp → R is a loss function, measuring the mismatch between the data and

the model. This setting falls into the framework (P), with F (x) =
∑I

i=1 fi(x) and

fi(x) , `
(
h (x;Di)

)
. In order to impose some structure on the solution, as, for ex-

ample, sparsity, is it possible to add a regularizer function G in the objective. Note

that this setting contains the previous examples as special cases.
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2.2 The FLEXA Algorithm

The most natural approach for solving (P) in a parallel way is to act blockwise:

given a point xk, we update all the block-variables xi’s simultaneously in parallel by

solving the following subproblems

xk+1
i ∈ arg min

xi∈Xi

{
F (xi,x

k
−i) +G(xi,x

k
−i)
}
, ∀i ∈ N , {1, . . . , N}, (2.1)

Nevertheless, this approach has no convergence guarantees [9], even in the absence

of the nonsmooth term G. Furthermore, solving (2.1) is in general difficult, due

to the presence of the nonconvex term F . To cope with these two issues, FLEXA,

the approach presented in [1], consists in solving for each block xi the following

subproblem

x̂i(x
k) , argmin

xi∈Xi
F̃i(xi; x

k) + gi(xi), (2.2)

and then setting

xk+1
i = xki + γk

(
x̂i(x

k)− xki
)
. (2.3)

In (2.2), F̃i
(
·; xk

)
is a strongly convex surrogate function approximating F (·,xk−i),

and in (2.3) a stepsize γk ∈ (0, 1] is introduced to control the “length” of the update.

A stepsize is needed to have convergence, when F̃i
(
·; xk

)
is not a global upper bound

of F (·,xk−i) (as it is, instead, in the Majorization-Minimization algorithms [10,11]).

The surrogate function F̃i must satisfy the following assumptions (we recall that

∇F̃i denotes the partial gradient of F̃i with respect to the first argument).

Assumption B (On the surrogate functions F̃i’s). Each F̃i : Xi × X → R, is

chosen so that:

(B1) F̃i(·; y) is C1 and τ -strongly convex on Xi, for all y ∈ X ;

(B2) ∇F̃i(yi; y) = ∇yiF (y), for all y ∈ X ;

(B3) ∇F̃i(y; ·) is LA-Lipschitz continuous on X , for all y ∈ Xi.
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Assumption B requires that F̃i should be a (simple) strongly convex approximation

of F at the current point xk that preserves the first order properties of F . Some ex-

amples of possible common choices for the surrogate functions F̃i’s are discussed next.

• On the choice of the surrogate F̃i - FLEXA represents a gamut of parallel op-

timization schemes, each of them corresponding to a different choice of the surrogates

F̃i and stepsize rule.

Some examples of surrogate functions satisfying Assumption B are the following.

1) Block-wise convexity. Suppose F (x) is convex in each block xi separately, but not

necessarily jointly convex. A natural surrogate for F in this case can be constructed

by exploring its “partial” convexity: given y = [yi]
N
i=1 ∈ X ,

F̃ (x; y) ,
N∑
i=1

F̃i(xi; y), (2.4)

with each F̃i(xi; y) defined as

F̃i(xi; y) , F (xi,y−i) +
αi
2
〈xi − yi,Hi (xi − yi)〉 , (2.5)

where αi > 0, and Hi is any ni × ni positive definite matrix ( one can always choose

Hi = I). The quadratic term in (2.5) can be set to zero if F (·,y−i) is strongly convex

on Xi, for all y−i ∈ X−i , X1 × · · · × Xi−1 ×Xi+1 × · · · × XN .

An alternative choice to (2.5) could be

F̃i(xi; y)

= F (y) + 〈∇xiF (y),xi − yi〉+
1

2

〈
xi − yi,∇2

xixi
F (y)(xi − yi)

〉
+ α‖xi − yi‖2

2,

(2.6)

with α > 0, which, with respect to (2.5), should lead to simpler subproblems (2.2),

given the fact that in (2.6) we are saving less structure of the original F , by taking a

second-order approximation of it.
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2) (Proximal) gradient-like. If no convexity is present in F , a valid choice of F̃ that

can always be constructed, is the first order approximation of F (plus a quadratic

regularization). In this case, F̃ is given by (2.4), with:

F̃i(xi ; y) , 〈∇xiF (y),xi − yi〉+
αi
2
‖xi − yi‖2

2, (2.7)

where αi > 0. Note that when αi < L, F̃i in (2.7) is not a global upper bound of

F (·,x−i).

3) Difference of Convex (DC) functions. Suppose that F is the difference of two

convex functions f (1) and f (2), i.e., F (x) = f 1(x) − f 2(x). One can preserve the

partial convexity in F setting

F̃i(xi; y) = f (1)(xi,y−i)−
〈
∇xif

(2)(y),xi − yi
〉

+ τi ‖xi − yi‖2
2, (2.8)

where τi can be any positive number. As we will see in detail in Section 3.6.3,

this structure arises in regression problems where it is of interest to estimate sparse

solutions. Indeed, in order to impose sparsity in the solution it is possible to use

nonconvex regularizers (e.g., SCAD [12] or MCP [13]), which can be written as DC

functions.

4) Sum-utility. Suppose that F (x) ,
I∑
i=1

fi(x1, . . . , xN). This kind of structure arises

naturally in multi-agent systems wherein fi is the local function of each agent i, which

controls and updates its own block variables xi ∈ Xi. In many practical cases the cost

functions fi are convex with respect to the block-variables of some agent. In order to

leverage this partial convexity, we introduce the following set

C̃i , {j : fj(·,x−i) is convex, ∀x−i ∈ X−i} , (2.9)

which collects the indexes of all the functions fj that are convex in xi, for any x−i ∈

X−i; and let Ci ⊆ C̃i be any subset of C̃i. The following surrogate satisfies Assumption

B and preserves the partial convexity of F (if any): given y = [yi]
N
i=1 ∈ X ,

F̃ (x; y) =
I∑
i=1

F̃Ci(xi; y),
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with each F̃Ci defined as

F̃Ci(xi; y) ,
∑
j∈Ci

fj(xi,y−i) +
∑
`/∈Ci

〈∇xif`(y),xi − yi〉

+
αi
2
〈xi − yi,Hi (xi − yi)〉 ,

(2.10)

where αi > 0, and Hi is any ni × ni positive definite matrix. The above surrogate

function preserves the convex part of F w.r.t. xi while linearizes the nonconvex part.

For further examples we refer the interested reader to [1, 14], where these types of

approximations were extensively used.

• Updating only some blocks - When dealing with large-scale problems, updating

all the block variables xi, i ∈ N , in (2.2)-(2.3) at each iteration could be very ineffi-

cient, so FLEXA allows the parallel updates of subsets of block at a time. Specifically,

at each iteration k a properly chosen subset of blocks–say Sk ⊆ N –is selected and

updated by computing the solution x̂i(x
k) of the subproblem (2.2): given xk and Sk,

let

xk+1
i =

 xki + γk (x̂i(x
k)− xki ), if i ∈ Sk,

xki if i /∈ Sk.

Several options are possible for the block selection rule Sk (see [15] for details).

Specifically, in the rest of this work we will be interested in greedy-like schemes that

update at each iteration only the blocks that are “far away” from the optimum - an

idea which have been shown to be quite effective in practical applications.

Assumption C (On the block selection rule).

(C1) Greedy rule: Each Sk contains at least one index i such that

Ei
(
xk
)
≥ ρmax

j∈N
Ej(x

k),

where ρ ∈ (0, 1] and Ei
(
xk
)

is an error bound function satisfying

si · ‖x̂i(xk)− xki ‖2 ≤ Ei(x
k) ≤ s̄i · ‖x̂i(xk)− xki ‖2, (2.11)
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for some 0 < si ≤ s̄i < +∞.

Ei
(
xk
)

in C1 can be viewed as a local measure of the distance of block i from

optimality. Specifically, according to C1, one block that is within a fraction ρ from

the largest distance Ei
(
xk
)

should be updated. Some examples of valid error bound

functions Ei are discussed in [15].

We remark that it is always possible to select Sk = N , resulting in the simultane-

ous update of all the block-variables at each iteration. At the other extreme, one can

update only one block-variable at each iteration, thus obtaining a Gauss-Southwell

kind of method. One can also explore all the possibilities “in between”, by choosing

properly Sk and ρ in C1 to control the degree of parallelism.

The selection of the most efficient updating rule depends on the specific applica-

tion of interest, including the problem dimension, the computational environment, as

well as the communication network among the agents.

Th parallel selective SCA method described in this Section is summarized in Al-

gorithm 1, and termed “FLEXible parallel sca Algorithm” (FLEXA).

Algorithm 1: Flexible Parallel SCA algorithm (FLEXA)

Data : x0 ∈ X , {γk}. Set k = 0.

(S.1) If xk satisfies a termination criterion: STOP;

(S.2) Choose a set Sk satisfying C1;

(S.3) For all i ∈ Sk, solve (2.2) and then set

ẑki =

ẑi(x
k) i ∈ Sk,

xki i 6∈ Sk;

(S.4) Compute xk+1
i = xki + γk (ẑki − xki ), for any i ∈ N ;

(S.5) Update k ← k + 1, and go to (S.1).

To complete the description of the algorithm, we need to specify how to choose

the stepsize γk in (S.4). The following assumption is required.
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Assumption D (On the stepsize). The sequence {γk} ∈ (0, 1] satisfies any of the

following rules:

(D1) Bounded stepsize: 0 < lim infk→∞ γ
k ≤ lim supk→∞ γ

k < 2 τ/L;

(D2) Diminishing stepsize:
∑∞

k=0 γ
k = +∞ and

∑∞
k=0

(
γk
)2
< +∞.

Assumption D is quite standard in the optimization literature. In scenarios where

the knowledge of global problem parameters, e.g., L, is not available, one can use a

diminishing stepsize satisfying D2. Two examples of diminishing stepsize rules are:

γk = γk−1
(
1− ε γk−1

)
, k = 1, . . . , γ0 < 1/ε; (2.12)

γk =
γk−1 + α(k)

1 + β(k)
, k = 1, . . . , γ0 = 1; (2.13)

where in (2.12) ε ∈ (0, 1) is a given constant, whereas in (2.13) α(k) and β(k) are

two nonnegative real functions of k ≥ 1 such that: i) 0 ≤ α(k) ≤ β(k); and ii)

α(k)/β(k) → 0 as k → ∞ while
∑

k (α(k)/β(k)) = ∞. Standard choices for α(k)

and β(k) are: α(k) = α or α(k) = log(k)α, and β(k) = β · k or β(k) = β ·
√
k, with

α ∈ (0, 1), β ∈ (0, 1), and α ≤ β.

2.2.1 Convergence Analysis

The following Proposition characterizes the best-response map x̂(·) , [x̂i(·)]Ni=1,

with x̂i(·) defined in (2.2). This characterization will be used to derive the convergence

properties of FLEXA.

Proposition 2.2.1 Under Assumptions A-B, for any i ∈ N and y, z ∈ X

(a) [Optimality]〈
∇xiF (xk), x̂i(x

k)− xki
〉

+ gi(x̂i(x
k))− gi(xki ) ≤ −τ‖x̂i(xk)− xki ‖2

2. (2.14)

(b) [Lipschitz continuity]

‖x̂i(y)− x̂i(z)‖2 ≤
LA
τ
‖y − z‖2; (2.15)
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(c) [Fixed-point characterization] The set of fixed-points of x̂(·) coincides with

the set of stationary solutions of Problem (P). Therefore x̂(·) has at least one

fixed point.

Proof See [1].

The main convergence result of FLEXA is stated next.

Theorem 2.2.1 Given Problem (P) under Assumption A. Let {xk} be the sequence

generated by FLEXA, under Assumptions B-C. Then, the following holds:

(a) If the stepsize sequence {γk} satisfies D1, then it exists a subsequence of {xk}

such that any limit point of this subsequence is a stationary solution of problem P;

(b) If the stepsize sequence {γk} satisfies D2, then any limit point of {xk} is a sta-

tionary solution of problem P.

Proof See [1, 15].

The existence of a limit point of {xk} is guaranteed under standard extra conditions

on the feasible set X - e.g., boundedness - or on the objective function V -e.g., coer-

civity on X .

Linear Convergence Rate of FLEXA under strong convexity

When the objective function V possesses more structure, it is possible to obtain

stronger convergence results than those stated in Theorem 2.2.1. Specifically, in the

following we will prove linear convergence rate of FLEXA under the assumption of

V being strongly convex.

In the following we will assume that at each iteration k, all the block variables xi,

i ∈ N , are updated. This means Sk ≡ N , which satisfies C1.
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We will assume the presence of a fixed stepsize γk = γ, for any k ≥ 0, satisfying

D1 (see more details later in the proof).

• Notation - For ease of presentation, we will assume X ≡ Rn, unless otherwise

specified. In order to include the presence of constraints, then, we will assume that

G is an extended value function, so it can express the presence of constraints by

means of indicator functions. For ease of notation, we will use the following defini-

tion: ∆x̂k , x̂(xk)− xk, for any k ≥ 0.

In the rest of the proof we will use the following results, which hold true in the

aforementioned setting.

To prove linear convergence rate of FLEXA under strong convexity we rely on the

following two Lemmas.

Lemma 2.2.2 Let {xk} be the sequence generated by the FLEXA algorithm, under

Assumptions A-B. Suppose further that V is τ̃ -strongly convex. Set Sk ≡ N and

γk = γ ∈ (0; 1] for any k ≥ 0. Then, the following holds:

V (xk+1)− V ? ≤ (1− γ)
(
V (xk)− V ?

)
+
γ (L2 +NL2

A)

τ̃
‖∆x̂k‖2

2, (2.16)

with x? being the optimal solution of problem (P), and V ? = V (x?).
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Proof Since F is strongly convex, and by defining ĝk ∈ ∂G(x̂(xk)) we have, for any

k ≥ 0

V ? ≥ V (x̂(xk)) +
〈
∇xF (x̂(xk)) + ĝk,x? − x̂(xk)

〉
+
τ̃

2
‖x? − x̂(xk)‖2

2

(a)

≥ V (x̂(xk)) +
N∑
i=1

〈
∇F̃i

(
x̂i(x

k); x̂(xk
)
)−∇F̃i

(
x̂i(x

k); xk
)
,x?i − x̂i(x

k)
〉

+
τ̃

2
‖x? − x̂k(xk)‖2

2

= V (x̂(xk)) +
N∑
i=1

( τ̃
2
‖x?i − x̂i(x

k) +
1

τ̃

(
∇F̃i

(
x̂i(x

k); x̂(xk)
)

−∇F̃i
(
x̂i(x

k); xk
) )
‖2

2 −
1

2τ̃
‖∇F̃i

(
x̂i(x

k); x̂(xk)
)
−∇F̃i

(
x̂i(x

k); xk
)
‖2

2

)
≥ V (x̂(xk))− 1

2τ̃

N∑
i=1

‖∇F̃i
(
x̂i(x

k); x̂(xk)
)
−∇F̃i

(
x̂i(x

k); xk
)
‖2

2

(b)

≥ V (x̂(xk))− (L2 +NL2
A)

τ̃
‖∆x̂k‖2

2, (2.17)

where (a) follows from B2 and the optimality condition of x̂i(x
k), i.e.,

ĝki ∈ −∇F̃i(x̂i(xk); xk), (2.18)

while (b) follows from A2, B2, and B3.

Note that the following Lemma does not require strong convexity of V .

Lemma 2.2.3 Let {xk} be the sequence generated by the FLEXA algorithm, under

Assumptions A-B. Set Sk ≡ Nand γk = γ ∈ (0; 1] for any k ≥ 0. Then, the following

holds:

V (xk+1)− V (x?) ≤ V (xk)− V ? − γ
(
τ − Lγ

2

)
‖∆x̂k‖2

2. (2.19)

Proof For any k ≥ 0, the following holds:

V (xk+1) = F (xk+1) +G(xk+1)

(a)

≤ F (xk) +G(xk+1) + γ
〈
∇F (xk),∆x̂k

〉
+
Lγ2

2
‖∆x̂k‖2

2

(b)

≤ V (xk)− τγ‖∆x̂k‖2
2 +

Lγ2

2
‖∆x̂k‖2

2

≤ V (xk)− γ
(
τ − Lγ

2

)
‖∆x̂k‖2

2,
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where (a) follows from the Descent Lemma [9, Proposition A32] and A2; and (b)

follows from Proposition 2.2.1(a) and A3

By standard arguments and the fact that (P) is a strongly convex optimization

problem, for γ
τ
< 2

L
we can see from Lemma 2.2.3 that: i)

{
V (xk)

}
converges to

V ? ∈ R; ii) the sequences {V (xk)}, {xk} are bounded; and iii)

lim
k→+∞

‖∆x̂k‖2 = 0. (2.20)

Thanks to the continuity of x̂(·) (see Proposition 2.2.1(b)) and Proposition 2.2.1(c),

the above results implies that the limit point x∞ of {xk} is the optimal solution of

(P).

The linear convergence rate of FLEXA under strong convexity is established in

the following Theorem.

Theorem 2.2.4 (Convergence rates) Let {xk} be the sequence generated by the

FLEXA algorithm, under Assumptions A-B. Suppose further that V is τ̃ -strongly

convex. Set Sk ≡ N . If γk = γ ∈ (0; 1], and γ
τ
< 2

L
, the following hold:

(a) (Q-linear convergence of {V (xk)}):

V (xk+1)− V ? ≤ βγ
(
V (xk)− V ?

)
, (2.21)

with

βγ , 1− τ̃ γ (2τ − Lγ)

2(L2 +NL2
A) + τ̃ (2τ − Lγ)

(b) (R-linear convergence of {xk}):

‖xk − x?‖ = O(φk),

with

φ =
√
βγ.
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Proof (a): By multiplying (2.19) and (2.16) for
γ(L2+NL2

A)

τ̃
and γ

(
τ − Lγ

2

)
respec-

tively, and then summing them together, we get(
γ(L2 +NL2

A)

τ̃
+ γ

(
τ − Lγ

2

))(
V (xk+1)− V ?

)
≤
(

(1− γ)γ

(
τ − Lγ

2

)
+
γ(L2 +NL2

A)

τ̃

)(
V (xk)− V ?

)
.

By rearranging the terms, the result easily follows.

(b): Given that {V (xk)} is monotonically decreasing (cf. (2.19)), it must be

V (xk) ≥ V ?, ∀k. (2.22)

Then, we can write: for any k ≥ 0:

‖xk+1 − xk‖2 = γ‖∆x̂k‖2

(2.19)

≤ γ

√(
γ

(
τ − Lγ

2

))−1

|V (xk)− V (xk+1)|

≤ γ

√(
γ

(
τ − Lγ

2

))−1

(V (xk)− V ? + V (xk+1)− V ?),

(2.21)

≤ γ

√(
γ

(
τ − Lγ

2

))−1

(1 + βγ) (V (xk)− V ?)

≤ γ

√(
γ

(
τ − Lγ

2

))−1

(1 + βγ) βkγ (V (x0)− V ?). (2.23)

The above result proves that {xk} is a Cauchy sequence. We already proved that its

unique limit point x∞ is the optimal solution of (P). Finally, invoking again (2.23),

we have: for any k′ > k ≥ 0,

‖xk − xk
′‖2 ≤

k′−1∑
l=k

‖xl − xl+1‖2

≤ γ

√(
γ

(
τ − Lγ

2

))−1

(1 + βγ)(V (x0)− V ?)
k′−1∑
l=k

√
βlγ

= O(
√
βkγ ).
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By taking k′ → +∞ and using xk → x∞, we get:

‖xk − x∞‖2 = O
(√

βkγ

)
,

which proves (b).

2.2.2 Convergence under Error Bounds

Error bounds refer to inequalities that bound the distance of vectors in a test set

to a given set, by a residual function. Many structured optimization problems possess

objective functions which can be characterized by error bounds. This characterization

has been successfully leveraged as a tool to analyze the convergence rate of specific

iterative methods.

Specifically, if an objective function V satisfies some error bound property, then many

first order iterative schemes are guaranteed to reach a stationary point of V at a lin-

ear rate. We want to remark that the error bound properties are less stringent than

strong convexity, which is usually required to prove linear convergence rate of opti-

mization algorithms.

In the Appendix of this Chapter we report an extensive review about the most com-

mon error bounds, analyzing connections and relationships among them, and listing

the practical applications satisfying at least one of these conditions.

In the rest of this Section we will assume that V satisfies the well-known Kurdyka-

 Lojasiewicz (KL) property and we will prove linear convergence rate of FLEXA under

this additional assumption.
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Definition 2.2.1 (KL property [16]) A closed function φ : Rn → (−∞;∞] has

the KL property at x̄ ∈ dom ∂φ with an exponent of θ ∈ (0; 1] if there exist a neigh-

borhood C of x̄, η ∈ (0,+∞], such that:

dist (0, ∂φ(x)) ≥ c (φ(x)− φ(x̄))θ (2.24)

whenever x ∈ C and φ(x̄) < φ(x) < φ(x̄) + η.

If a function φ satisfies the KL property at all points in dom ∂φ, then φ is called

a KL function. If a function φ is a KL function and has the same exponent θ at any

x̄ ∈ ∂φ, then φ is a KL function with an exponent of θ.

The KL property is satisfied by many functions of practical interest, both in the

convex (i.e., quadratic loss functions, logistic function, l1 penalty function) and in the

nonconvex (i.e., SCAD penalty function, MCP penalty function) case. We refer the

reader to the Appendix of this Chapter for more details about the KL property and

the classes of problems covered.

As done in the strongly convex case, in the following we will assume that at each

iteration k, all the block variables xi, i ∈ N , are updated. This means Sk ≡ N ,

which satisfies C1.

We will also assume γ = 1. Consequently, we require the strong convexity pa-

rameter τ of the surrogate functions Fi’s to be greater than L/2, in order to satisfy

D1.

Finally, in order to claim convergence of the sequence {xk} we will also require V

to be coercive, which is slightly more stringent than A4.

• Notation - For ease of presentation, we will assume X ≡ Rn, unless otherwise

specified. In order to include the presence of constraints, then, we will assume that

G is an extended value function, so it can express the presence of constraints by

means of indicator functions. For ease of notation, we will use the following defini-
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tion: ∆x̂k , xk+1 − xk, for any k ≥ 0.

In order to prove linear rate we will need the following two Lemmas.

Lemma 2.2.5 Let {xk} be the sequence generated by the FLEXA algorithm, under

Assumptions A-B. Set γ = 1. There holds:

‖vk+1‖2
2 ≤ NL2

A‖xk+1 − xk‖2
2, (2.25)

where vk+1 ∈ ∂V (xk+1).

Proof According to the optimality condition of x̂i(x
k), the following holds

gk+1
i ∈ −∇F̃i(xk+1

i ; xk), (2.26)

where gk+1
i ∈ ∂gi(xk+1

i ). This result and B3 imply:

‖∇xiF (xk+1) + gk+1
i ‖2 ≤ LA‖xk+1 − xk‖2.

The desired result easily follows.

Lemma 2.2.6 Let {Λk}, with Λk ≥ 0, be a decreasing sequence. Assume that there

exist k̄ > 0, θ ∈ [0; 1) and α ∈ (0; +∞), such that, for every k ≥ k̄:

Λk ≤ Λk−1 − Λk + α
(
Λk−1 − Λk

) 1−θ
θ .

Then,

(i) If θ ∈ (0; 1
2
]

Λk ≤ λτ k,

with λ , Λ0 and τ , 1+α
2+α

.

(ii) If θ ∈ (0; 1)

Λk ≤ βk−
1−θ
2θ−1 ,

with β > 0.
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Proof See [17], Theorem 2.

As a first step, we demonstrate that FLEXA converges to stationary points of

Problem (P).

Theorem 2.2.7 Let {xk} be the sequence generated by the FLEXA algorithm, under

Assumptions A-B. Suppose further that V is coercive and satisfies the KL property

(2.24) with exponent θ. Set Sk ≡ N and γk = 1 for any k ≥ 0. If τ > L
2

, the sequence

converges to a stationary point x? of Problem (P).

Proof The statement of Lemma 2.2.3 still holds in setting, with γ = 1.

By standard arguments and the coercivity of V , for τ > L
2

we can see from Lemma

(2.2.3) that: i)
{
V (xk)

}
converges to V (x?) ∈ R; ii) the sequences {V (xk)}, {xk} are

bounded; and iii) (2.20) holds.

Thanks to the continuity of x̂(·) (see Proposition 2.2.1(b)) and Proposition 2.2.1(c),

(2.20) implies that the limit point of {xk} is a stationary point of (P).

From Lemma 2.2.3 we also have:(
τ − L

2

)
‖∆x̂k‖2

2 ≤
(
V (xk)− V (x?)

)
−
(
V (xk+1)− V (x?)

)
. (2.27)

Note that for a convex function φ(u) : [0; +∞) → [0; +∞), φ(u) , u
1

1−θ , with θ ∈

[0, 1), the following is true for any y, z ∈ [0; +∞):

φ(y)− φ(z) ≤ φ′(y)(y − z), (2.28)

which, after a change of variables, can be rewritten as

y − z ≤ (1− θ)−1yθ
(
y1−θ − z1−θ) . (2.29)

By choosing y = V (xk)− V (x?) and z = V (xk+1)− V (x?), (2.29) gives us:

(V (xk)− V (x?))− (V (xk+1)− V (x?)) ≤ (1− θ)−1(V (xk)− V (x?))θ∆k, (2.30)

with ∆k , (V (xk)− V (x?))1−θ − (V (xk+1)− V (x?))1−θ. Combining this latter result

with (2.27) we get

‖∆x̂k‖2
2 ≤

(
τ − L

2

)−1

(1− θ)−1(V (xk)− V (x?))θ∆k.
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Due to the KL inequality (2.24) and the fact that {V (xk)} is converging, we also

have:

‖∆x̂k‖2
2 ≤

(
τ − L

2

)−1

(1− θ)−1c−1‖vk‖2∆k,

where vk ∈ ∂V (xk). From Lemma 2.2.5 we also have:

‖∆x̂k‖2
2 ≤

(
τ − L

2

)−1

(1− θ)−1c−1
√
NLA‖∆x̂k−1‖2∆k. (2.31)

For any two scalars y, z ≥ 0 the following relationships is true:
√
yz ≤ 1

2
(y + z), so

we get from (2.31):

‖∆x̂k‖2 ≤
1

2

(
τ − L

2

)−1

(1− θ)−1c−1
√
NLA∆k +

1

2
‖∆x̂k−1‖2. (2.32)

According to:
+∞∑
k=k̄

∆k =
(
V (xk̄)− V (x?)

)1−θ
, (2.33)

{∆k} is a summable sequence, and, due to (2.32), {∆x̂k} is a summable sequence

too. This implies that {xk} is a Cauchy sequence.

Theorem 2.2.8 (Convergence rate) Let {xk} be the sequence generated by the

FLEXA algorithm, under Assumptions A-B. Suppose further that V is coercive and

satisfies the KL property (2.24) with exponent θ. Set Sk ≡ N and γk = 1 for any

k ≥ 0. Consider a stationary point x? of Problem (P) and define V ? , V (x?). If

τ > L
2

, for k sufficiently large, there hold:

(i) For θ ∈ (0; 1
2
]

‖xk − x?‖2 ≤ C1λ
k, (2.34)

V (xk)− V ? ≤ C2λ
k
θ ; (2.35)

with

C1 ,
+∞∑
t=0

‖xt+1 − xt‖2 < +∞, (2.36)

λ ,
1 +

(
τ − L

2

)−1
(1− θ)−1c−

1
θN

1
2θL

1
θ
A

2 +
(
τ − L

2

)−1
(1− θ)−1c−

1
θN

1
2θL

1
θ
A

, (2.37)

and

C2 , λ−
1
θC1c

− 1
θN

1
2θL

1
θ
A. (2.38)
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(ii) For θ ∈ (1
2
; 1)

‖xk − x?‖2 ≤ C3k
− 1−θ

2θ−1 , (2.39)

V (xk)− V ? ≤ C4(k − 1)−
1−θ

θ(2θ−1) ; (2.40)

with C3 > 0, and

C4 , C3c
− 1
θN

1
2θL

1
θ
A. (2.41)

(iii) For θ = 0 {xk} converges in a finite number of steps.

Proof For any k ≥ 0 the following hold:

‖xk − x?‖2 = ‖
+∞∑
t=k

(xt+1 − xt)‖2 ≤
+∞∑
t=k

‖∆x̂t‖ , Λk. (2.42)

Note that:

Λk

(2.32)

≤
+∞∑
t=k

(
1

2

(
τ − L

2

)−1

(1− θ)−1c−1
√
NLA∆t +

1

2
‖∆x̂t−1‖2

)
(2.33)

≤
+∞∑
t=k

1

2
‖∆x̂t−1‖2 +

1

2

(
τ − L

2

)−1

(1− θ)−1c−1
√
NLA

(
V (xk)− V ?

)1−θ
;

and consequently:

Λk ≤ Λk−1 − Λk +

(
τ − L

2

)−1

(1− θ)−1c−1
√
NL̃

(
V (xk)− V ?

)1−θ
. (2.43)

From Lemma 2.2.5 and the KL inequality (2.24) we know that:

c
(
V (xk)− V ?

)θ ≤ N
1
2LA‖∆x̂k−1‖2,

which implies:

(
V (xk)− V ?

)1−θ ≤ c−
1−θ
θ N

1−θ
2θ L

1−θ
θ

A ‖∆x̂k−1‖
1−θ
θ

2 . (2.44)

Combining this latter result with (2.43), we finally get:

Λk ≤ Λk−1 − Λk +

(
τ̃ − L

2

)−1

(1− θ)−1κ−
1
θN

1
2θ L̃

1
θ ‖∆x̂k−1‖

1−θ
θ

2 . (2.45)
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From the above result, Lemma 2.2.6 and (2.42), the convergence rates of {xk} stated

in (i) and (ii) easily follow.

Furthermore, we also have

V (xk)− V ?

(2.44)

≤ c−
1
θN

1
2θL

1
θ ‖∆x̂k−1‖

1
θ
2

= c−
1
θN

1
2θL

1
θ (Λk−1)

1
θ . (2.46)

From the above result, (2.44) and Lemma 2.2.6 the convergence rates of {V (xk)} in

(i) and (ii) easily follow.

Let us now consider the case θ = 0. Let us define the set I , {t ≥ 0 : xt+1 6= xt}

and let k be in I. We have:

V (xk+1)

(2.19)

≤ V (xk)−
(
L

2
− τ
)
‖∆x̂k‖2

2

(a)

≤ V (xk)−NL2
A

(
L

2
− τ
)
‖vk+1‖2

2

(2.24)

≤ V (xk)− c2NL2
A

(
L

2
− τ
)
, (2.47)

where in (a) we used Lemma 2.2.5 and we defined vk+1 ∈ ∂V (xk+1). Since we already

proved that {V (xk)} is converging to V ?, (iii) follows.

2.3 Case study: MRI

In this Section we apply FLEXA to a problem of practical interest: the MRI

reconstruction problem. Specifically, we show how to reconstruct a sequence of images

of a cardiac cycle from the noisy measurements collected by a MR scanner.

This Section is organized as follows: in Section 2.3.1 we first briefly review [18]

the physics behind the MRI procedure and we present a formulation of the MRI

reconstruction problem where FLEXA can be applied. In Section 2.3.2 we explain in
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detail how to design an instance of FLEXA for the MRI reconstruction problem.

Finally, in Section 3.38 we show experimental results and comparisons, obtained

by running FLEXA and other state-of-the-art schemes on a multi-core computing

architecture.

2.3.1 Problem Description

The main operating principle behind the MRI procedure is that the MR scanner

generates a large magnetic field b(r, t) = b0(r, t)ẑ in order to induce a net magnetiza-

tion m(r, t) , mx(r, t)x̂ +my(r, t)ŷ +mz(r, t)ẑ on the points of the body that we are

interested to represent; here r = (xx̂, yŷ, zẑ) denotes the Cartesian coordinates in R3,

x̂ŷẑ are the axis unit vectors, t denotes the time dependency, while b0(r) is the field

strength generated by the MR scanner. In principle b0(r) should be a uniform field,

but in practice it is spatially variable due to inhomogeneities and non-uniformities.

During the scan the magnetic field b(r, t) is varied in time from the user in order to

induce specific time-varying perturbations in the magnetization m(r, t). The effects

of this time-varying magnetic field b(r, t) on the magnetization m(r, t) will be differ-

ent according to the tissue under exam and according to what the user is interested

to represent. The goal is to collect the values of the magnetization m(r, t) and recon-

struct an image from it.

The MRI procedure is basically composed of two steps: excitation and readout. These

two steps are periodically repeated, because, usually, the region of interest is too big

to be scanned with a single excitation-readout step, so at each repetition the machine

collects samples from a different slice of the object.

During the excitation step the time varying magnetic field b(r, t) is applied in order

to bend the magnetization vector m(r, t) into the transversal (x, y) plane. It is in this

step that the position of the scanned slice is selected and changed. It is convenient

to describe the transverse magnetization as a complex function:

m̄(r, t) = mx(r, t) + jmy(r, t). (2.48)
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During the readout step the magnetic field b(r, t) is manipulated in order to generate

the desired effects on the transverse magnetization m̄(r, t), according to what is the

specific image that we are interested to obtain. Only the longitudinal component of

the magnetic field is usually changed, so it is possible to write b(r, t) as: b(r, t) =

bz(r, t)ẑ.

The relationship between m̄(r, t) and b(r, t) has been characterized in detail by

the Bloch equation [19], but for our purposes we can rely on some commonly used

simplification. The Bloch equation states that the transverse magnetization m̄(r, t)

will precess around the axis of the applied field with the so-called Larmor frequency

ω(r, t)

ω(r, t) = γbz(r, t), (2.49)

where γ is called gyromagnetic ratio and its value for hydrogen protons (which are

preponderant in the human body) is about 42.6 MHz/T. If we set t = 0 as the

starting time of the readout step, it is possible to describe evolution of the transverse

magnetization as

m̄(r, t) = m̄(r, 0)e−
t

T (r) exp

(
−j
∫ t

0

ω(r, t′)dt′
)

= f(r)e−
t

T (r) exp

(
−jγ

∫ t

0

bz(r, t
′)dt′

)
, (2.50)

where f(r) , m̄(r, 0) is the value of the transverse magnetization at the start of the

readout step, and T (r) is a known decay factor that depends on the kind of tissue

being scanned. T (r) varies spatially, but usually can be approximated as a constant

of the order of about 10 ms. Equation (2.50) is composed by three factors: the term

e−
t

T (r) it is a decaying factor that describes as the transverse magnetization disap-

pears as the time passes; the other exponential factor describes how the phase of the

transverse magnetization changes according to its instantaneous frequency (2.49); fi-

nally the term f(r) is what we are interested in. f(r) depends on the features of the

tissue being scanned, so we are interested in obtaining an image of it. It is worth to

be noticed that in this work it is assumed that f(r) is not time-varying, but in some
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recent applications also this case is considered.

According to the Faraday’s law of induction, the time-varying transverse magnetiza-

tion will generate an electromotive force in a coil which is inserted in the MRI device

to collect this signal. This potential v(t) may be written as

v(t) = real

(∫
r∈body

c(r)
∂

∂t
m̄(r, t)dr

)
, (2.51)

where
∫
r∈body

(·) is a volume integral on the body being scanned, real(·) is the real

part of a complex number and c(r) is a function that describes the coil response

pattern. It will be assumed in the following that only one coil will be used, even if it

is possible to generalize this process to the case of multiple coils. Given that T (r) is

in the order of milliseconds, while the frequency variations in (2.50) are many MHz,

it is possible [18] to do a narrow-band approximation of the time derivative in (2.51)

as: ∂
∂t

m̄(r, t) ≈ c0m̄(r, t). c0 is a constant that it is possible to absorb into c(r);

furthermore it will be assumed that the overall coil response pattern is uniform, i.e.

c(r) = 1 . So, after all these simplifications equation (2.51) becomes

v(t) = real

(∫
r∈body

m̄(r, t)dr

)
. (2.52)

The potential v(t) is then demodulated with center frequency ω0 = γb0 in order to

obtain the signal

s(t) =

∫
r∈body

f(r)e−
t

T (r) e−jφ(r,t)dr, (2.53)

where φ(r, t) is the space- and time-varying phase

φ(r, t) =

∫ t

0

(γbz(r, t
′)− ω0)dt′. (2.54)

Signal (2.53) is then sampled at different sampling times ti’s, i = 1, . . . ,m, evenly

spaced, in order to obtain the data

yi = s(ti) + εi i = 1, . . . ,m; (2.55)

where m denotes the total number of samples, and εi represents the measurement er-

ror, which is commonly described as complex additive white Gaussian noise (AWGN)
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noise.

In order to reconstruct the function f(r) from the samples y , [yi]
m
i=1, f(r) will be

represented through a finite series expansion, according to

f(r) =
n∑
j=1

xjl(r− rj), (2.56)

where l(·) is the object basis function, rj is the position in which the jth basis function

is centered, and n is the total number of coefficients xj’s used for the series expansion.

One common choice, the one that will be considered here, is to use rectangular basis

functions

l(r) = rect(r/∆), (2.57)

where ∆ is the dimension of a square pixel. According to this series expansion it is

possible to rewrite the signal (2.53) in a discrete way as

s(ti) =
n∑
j=1

Aijx̃j, (2.58)

with:

Aij =

∫
l(r− rj)e

− ti
T (r) e−jφ(r,ti)dr. (2.59)

In order to simplify the mathematical formulation, equation (2.59) is usually approx-

imated as

Aij ≈ ∆e−
ti
T (r) e−jφ(r,ti), (2.60)

which is the value at the center of the jth pixel. By denoting with A the m × n

matrix which contains all the elements Aij’s (i is the row index and j the column

one), and by putting together equations (2.55) and (2.58), the sampled signal can be

represented in a compact form as

y = Ax̃ + ε, (2.61)

where ε , [εi]
n
i=1 is the Gaussian noise vector, and x̃ , [x̃i]

n
i=1 is the image we want

to reconstruct from the measurement vector y.

It is possible to investigate in more detail the nature of the elements Aij’s in (2.60)
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in order to understand better the structure of A. First of all, it is possible to assume

that the total readout time tn − t1 is small with respect to T (r): this allows to make

the approximation e−
ti
T (r) ≈ e−

t1
T . Thus, it is possible to absorb the resulting constant

term e−
t1
T directly into the image f(r). For what concerns the time-varying magnetic

field b(r, t) during the readout step, it is possible to represent it as composed by two

main terms:

b(r, t) = bz(r, t) = b0 + g(t) · r, (2.62)

where g(t) , gx(t)x̂ + gy(t)ŷ + gz(t)ẑ is the vector of the field gradients. The field

gradients are three functions, controlled by the user that permits to modify the mag-

netic field in order to get specific results. By substituting (2.62) into (2.54), the phase

becomes:

φ(r, t) =

∫ t

0

γg(t) · rdt. (2.63)

According to this, it is possible to rewrite the elements of the matrix A in (2.60) as:

Aij ≈ e−j2πk(ti)·rj , (2.64)

where k(t) is the so-called k-space trajectory:

k(t) ,
1

2π

∫ t

0

γg(t)dt. (2.65)

If this trajectory is opportunely chosen, thanks to the gradient field vector g(t), then

the A matrix becomes a FFT matrix. From a practical point of view, it is fast, easy,

and efficient to perform FFTs on the data vectors.

According to the model (2.61), the MRI reconstruction problem may be casted as a

regularized least-squares optimization problem:

min
x̃
‖y−Ax̃‖2

2 + λR(x̃), (2.66)

where R(·) : Rn → R is a regularizer, and λ > 0 is the regularizing parameter. Differ-

ent type of regularizing functions have been proposed in order to deal with different

kinds of situations that may arise in the context of MRI (undersampling, artifacts
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remotion, a priori knowledge etc.).

In the experiment showed in this Chapter we are interested in reconstructing not only

a single image, but a series of images from a cardiac cycle. Consequently, y and x̃ will

denote in the following the stacked measurement vector and the stacked discretized

image content from all the different images to be reconstructed, respectively.

Given that the sequence of images to reconstruct comes from a cardiac cycle, it is

possible to assume a sort of time-periodicity in this representation. It is known that a

signal which has some periodicity in time is somehow sparse in the frequency domain.

For this reason it is useful to choose a regularizer R(·) which imposes some sparsity

in the optimal solution. As proposed in [5], the renowned l1 norm is a function which

meets this criterion and, being, convex it is easy to deal with. According to this, the

problem (2.66) may be reformulated as:

min
x̃
‖y−Ax̃‖2

2 + λ‖Ftx̃‖1, (2.67)

where Ft denotes a Fourier transformation with respect to the time-direction. In order

to obtain a more canonical representation of problem (2.67) it is convenient apply the

change of variable x , Ftx̃ in order to obtain the well-known LASSO formulation:

min
x
‖y−AF−1

t x‖2
2 + λ‖x‖1, (2.68)

where F−1
t is the inverse Fourier transform with respect to the frequency domain.

2.3.2 Solution algorithm

It is easy to recognize that the convex problem (2.68) falls into the framework

(P) with F (x) = ‖y −AF−1
t x‖2

2, G(x) = λ‖x‖1, gi(xi) = λ‖xi‖1, and X = Rn (see

Example #1 in Section 2.1). In this Section we explain in detail how to tailor FLEXA

to efficiently solve problem (2.68).
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• Computing architecture - Let us consider that we want to solve problem (2.68)

on a multi-core computing architecture with P cores that can work in parallel. Then,

for the specific formulation of problem (2.68), it is convenient to split the data ma-

trix Ã , AF−1
t among the P cores, so that each core has its own matrix Ãi, where

Ã ,
[
Ã1 . . . Ãi . . . ÃP

]
, and each Ãi has n/P columns. In this way, common op-

erations as computing the product Ãx (resp. the l1 norm ‖x‖1) may be performed

in parallel by computing separately Ãixi (‖xi‖1) and then summing up the partial

terms coming from the different cores.

We want to remark that, as we already noticed in Section 2.3.1, A is an FFT

matrix. So, all the matrix-matrix or matrix-vector products involving this matrix

can be performed efficiently in C++, using the specific libraries for signal processing.

• Surrogate functions - Let us denote with k the iteration index. We will use the

following structure for the surrogate functions F̃i’s (see also Example 1) in Section

2.2): for a given xk ∈ Rn and i = 1, . . . , n

F̃i(xi,x
k) = Pi(xi; x

k) +
τ ki
2
‖xi − xki ‖2

2 + gi(xi), (2.69)

where Pi(·; xk) must be a convex function satisfying B2-B3, while τ ki > 0, are proximal

parameters, tunable by the user in order to improve the speed of the algorithm.

An efficient choice for the surrogate functions is to set ni = 1 and consider

Pi(xi; x
k) = F (xi,x

k
−i) and gi(xi) =. In words, this means that each subproblem

i is a scalar instance of problem (2.68)), where the minimization is performed with

respect to a scalar variable xi only, assuming the other variables x−i to be fixed at

the current value xk−i.

• Solving the subproblems - It is well known that the minimization of F̃i, having

the structure described above, can be computed in closed form through the so-called

soft thresholding operator [20] Sα : R→ R

Sα(x) , (|x| − α)+sign(x), (2.70)
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where α ∈ R, and, for any z ∈ R, (z)+ = max(0, z), and

sign(z) ,


−1 if z < 0;

0 if z = 0;

1 if z > 0.

(2.71)

Specifically, for any given xk ∈ Rn, the solution x̂i(x
k) of each subproblem becomes

x̂i(x
k) = arg min

xi∈R

{
Pi(xi; x

k) +
τ ki
2
‖xi − xki ‖2

2 + gi(xi)

}
= arg min

xi∈R

{
F (xi,x

k
−i) +

τ ki
2
‖xi − xki ‖2

2 + gi(xi)

}
= arg min

xi∈R

{
‖y−

∑
j 6=i

ãjx
k
j − ãixi‖2

2 +
τ ki
2
‖xi − xki ‖2

2 + λ|xi|

}

= S λ

2‖ãi‖22+τk
i

(
xki −

∇xiF (xk)

2‖ãi‖2
2 + τ ki

)

=


xki −

∇xiF (xk)−λ
2‖ãi‖22+τki

, if xki −
∇xiF (xk)

2‖ãi‖22+τki
≥ λ

2‖ãi‖22+τki
;

xki −
∇xiF (xk)+λ

2‖ãi‖22+τki
, if xki −

∇xiF (xk)

2‖ãi‖22+τki
≤ − λ

2‖ãi‖22+τki
;

0 , otherwise;

(2.72)

where ãi, i = 1, . . . , n, is the ith column of Ã and

∇xiF (xk) = 2xki ‖ãi‖2
2 + 2

∑
j 6=i

xj 〈ãi, ãj〉+ 2
m∑
j=1

yj ãji. (2.73)

• Tunable parameters - For the stepsize sequence {γk}, we used the following

rule, similar to (2.12), which satisfies D2 and works well in practice:

γk+1 = γk
(

1−min

{
1,

10−4

‖Z(xk)‖∞

}
θγγ

k

)
, (2.74)

with γ0 = 0.9, θγ = 10−7, and Z : Rn → Rn defined as: for any x ∈ Rn and α ∈ R

Z(x) , ∇xF (x)−
∏

[−α,α]n

(∇xF (x)− x) (2.75)

where
∏

[−α,α]n
(·) is the Euclidean projection operator. Note that i) Z is a continu-

ous function which is 0 if and only if its argument is a stationary point of problem



38

(2.68), so ‖Z(xk)‖∞ is a valid measure of stationarity; and ii) the Euclidean pro-

jection
∏

[−α,α]n
(z), for any x ∈ Rn, can be easily computed by noticing that it acts

componentwise on z, given that [−α, α]n = [−α, α]× . . .× [−α, α].

For the proximal gains sequence {τ ki } we used the following heuristic: each τi

is initialized as the half of the mean of the eigenvalues of ∇2
xxF (x). Then, each

τ i is doubled if at a certain iteration the objective function does not decrease (the

associated iteration is discarded if this happens), while they are all halved if the

objective function decreases for ten consecutive iterations or ‖Z(xk)‖∞ is less than

10−2. See Table 2 for the pseudocode relative to this heuristic.

Algorithm 2: Heuristic for the update of the proximal gains τi

Data: τ 0
i = trace

(AF−1
t )T (AF−1

t )

2n
∀i, k, p ≥ 0, xk ∈ Rn.

(S.1) If V (xk+1) ≥ V (xk)

then τ k+1
i = 2τ ki ∀i

p = 0;

Else if (‖Z(xk+1)‖∞ ≤ 10−2 ∨ p == 9)

then τ k+1
i = τ ki /2 ∀i

p = 0;

(S.2) Update p← p+ 1.

• Block selection rule - As already discussed in Section 2.2, in order to speed up

the convergence rate of FLEXA, it is possible to implement a greedy selection of the

variables to update at each iteration. More specifically, at each iteration k, not all the

n variables are updated, but only those that are furthest from the optimal solution,

according to some metric. The metric used in this work, which satisfies C1 and it is

easy computable, is the distance of each variable xki at the current iterate from the

best-response (2.72) x̂ki (x
k).
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The overall algorithm is showed in Table 3 below.

Algorithm 3: FLEXA for MRI reconstruction

Data: {τ ki } given in Table 2, for i = 1, . . . , n, ρ ∈ [0, 1], x0 ∈ Rn, {γk} given in

(2.74). Set k = 0.

(S.1) If xk satisfies a termination criterion: STOP;

(S.2) Compute each x̂i(x
k) according to (2.72);

(S.3) Compute the maximum distance Mk , max
i∈N
{x̂i(xk)− xki };

(S.4) Define the set Sk = {i |x̂i(xk)− xki ≥ ρMk};

(S.5) Compute xk+1 according to:

xk+1
i = xki + γk

(
x̂i(x

k)− xki
)

i ∈ Sk

xk+1
i = xki i /∈ Sk

(S.6) Update k ← k + 1 and go to (S.1)

2.3.3 Experimental Results

All codes have been written in C++, and all algebra is performed by using the In-

tel Math Kernel Library (MKL). The algorithms were tested on the General Compute

Cluster of the Center for Computational Research at the SUNY Buffalo. In partic-

ular, we used a partition composed of 372 DELL 16x2.20GHz Intel E5-2660 “Sandy

Bridge” Xeon Processor computer nodes with 128 Gb of DDR4 main memory and

QDR InfiniBand 40Gb/s network card.

• Algorithms in the literature - We compared the instance of FLEXA presented

in Table 3 with the most competitive parallel and sequential algorithms proposed in

the literature to solve the MRI reconstruction problem. More specifically, we consider

the following schemes.
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- k-t FOCUSS: k-t FOCUSS [21] is a sequential algorithm specifically developed in

order to solve the MRI reconstruction problem. Key feature of the scheme is to use a

the covariance matrix of the data in order to construct a weight matrix that tries to

predict the sparsity of the solution in order to speed up the optimization procedure.

I

- FISTA: The Fast Iterative Shrinkage-Thresholding algorithm (FISTA) proposed

in [20] is a first order method and can be regarded as the benchmark algorithm

for LASSO problems. Building on the separability of the terms in the objective

function, this method can be easily parallelized and thus take advantage of a parallel

architecture. We implemented the parallel version that use a backtracking procedure

to estimate the Lipschitz constant of ∇xF

- SpaRSA: This is the first order method proposed in [22]; it is a popular spectral pro-

jected gradient method that uses a spectral step length together with a nonmonotone

line search to enhance convergence. Also this method can be easily parallelized, which

is the version implemented in our tests. In the experiments, we set the parameters of

SpaRSA as in [22]: M = 5, σ = 0.01, αmax = 1e30, and αmin = 1e− 30.

- GRock: GRock is a parallel algorithm proposed in [23] that performs well on sparse

least-squares problems. We tested the instance of GRock where the number of vari-

ables simultaneously updated is equal to the number of the parallel processors. It

is important to remark that the theoretical convergence properties of GRock are in

jeopardy as the number of variables updated in parallel increase.

Parallel algorithms have been tested using 16 parallel processes (2 nodes with 8

cores per each), while k-t FOCUSS ran on a single process (using thus a single core).

• Experiments - The experiment consists in the reconstruction of a series of 25

images collected by a 1.5T Phillips MR scanner from a cardiac cycle (66 bpm). Each

image is composed of 256× 256 samples. The fully sampled data have been used as

a reference. To make the problem harder, the data vector y has been generated by

randomly undersampling the original data with a 2/3 factor. The performance will
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be showed in terms of the Normalized Mean Square Error (NMSE), which, at any

iteration k, is defined as:

NMSE ,
‖xk − xtrue‖2

2

‖xtrue‖2
2

, (2.76)

where xtrue is the vector containing the values of the pixels of the true image in the

frequency domain.

Figure 2.1 shows the speed of convergence of the different algorithms in terms of

NMMSE with respect to the CPU time. It may be seen that the proposed approach

outperforms all the other schemes and it is worth to be noticed that GRock for this

problem does not convergence. In particular, we want to highlight that FLEXA after

Figure 2.1. NMSE versus CPU time.

just one second reaches a value of the NMSE that other algorithms, as SpaRSA or

k-t FOCUSS, reach only after tens or hundreds of seconds. Following this remark, in

the next figures we show results obtained by stopping the algorithms after only one

second of reconstruction process. Our aim is to show that the proposed approach,

unlike the others, achieves very good results in such a short amount time that could

easily lead to real-time implementation. Figure 2.2 shows the NMSE per each frame

after 1 second of reconstruction process: FLEXA has the best performances in this

case too.
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Figure 2.2. NMSE obtained on each frame after 1 second of processing.
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Figure 2.7 shows the reconstruction of the 13th frame after 1 second of processing.

It is very easy to see that FISTA and SpaRSA are still far from obtaining a good

quality of the image, since their results appears to be blurred and foggy. k-t FOCUSS

is the one that obtains a reconstruction quality which is near to the one reached by

FLEXA, but the image reconstructed by FLEXA has however a higher level of detail

and clearness.

Figure 2.3. FLEXA
Figure 2.4. k-t FO-
CUSS

Figure 2.5. FISTA Figure 2.6. SpaRSA

Figure 2.7. Reconstruction of the 13th frame after 1 second of processing.

Looking at the entire frame sequences, they show that FLEXA captures the dynamics

and the movements better than the other schemes. In order to highlight this feature,

Figure 2.13 shows the so-called intensity profiles, obtained by the algorithms after
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1 second of processing. This profiles show how the intensity values of one row of

the images (here we chose the 100th row) varies frame-by frame. Figure 2.13 shows

that FISTA and SpaRSA after 1 second are still far from having obtained a good

reconstruction result; k-t FOCUSS obtains a good quality, but, unlike FLEXA, does

not show any dynamic effect, which is instead present in the reference profile.

2.4 Conclusions

In this Chapter we first briefly reviewed FLEXA, a parallel algorithmic framework,

based on SCA, for the solution of nonconvex and nonsmooth optimization problems.

We then proved that FLEXA can achieve linear convergence rate when the optimiza-

tion problem is strongly convex or, more interestingly, when it satisfies more general

standard error bound conditions.

Finally, in the last part of this Chapter, we showed that the MRI reconstruction

problem falls into the class of applications where FLEXA can be applied. So, we

proposed a specific version of FLEXA tailored for the MRI problem and we showed

that the performances of our proposed algorithm outperform those of state-of-the-art

schemes.

2.5 Appendix: Error Bounds Review

As already mentioned in Section 2.2.2, many practical problems satisfy some error

bound condition, and it has been proved that usually this is a sufficient requirement

for first-order iterative schemes to convergence to stationary points of these problems

at a linear rate. In this Section we present several error bound conditions, analogous

to the KL property introduced in Section 2.2.2, we discuss equivalences and relation-

ships among them, and we list classes of practical problems for which these error

bounds hold true.
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• Notation - For ease of presentation, we will assume X ≡ Rn, unless otherwise

specified. In order to include the presence of constraints, then, we will assume that G

is an extended value function, so it can express the presence of constraints by means

of indicator functions.

In the following X ? will denote the set of stationary points of problem (P).

Specifically, in this Dissertation we will focus on the so-called Luo-Tseng error bound

condition, because in Chapter 4 we will be able to derive linear convergence rate of

our proposed algorithmic framework for problem settings satisfying this condition.

• Luo-Tseng error bound - In the seminal work [24], Luo and Tseng are among

the first to propose an error bound condition in order to analyze the convergence rate

of first-order descent methods for nonconvex smooth optimization.

In the subsequent years the Luo-Tseng condition has been generalized [25] in order

to characterize nonsmooth objective functions too.

By defining, for any convex function φ : Rn → (−∞; +∞] and γ > 0, the renowned

proximal operator Proxγφ(x) : Rn → Rn in the following way:

Proxγφ(x) , arg min
y∈Rn

{
φ(y) +

1

2γ
‖y − x‖2

2

}
, (2.77)

the Luo-Tseng error bound condition can be stated as

Definition 2.5.1 (Luo-Tseng global error bound [25]) Under Assumption A, for

every scalar η: inf
x∈Rn

V (x) ≤ η ≤ V (x), the Luo-Tseng global error bound condition

holds for V if there exist scalars δ, τ > 0 such that

dist(x,X ?) ≤ τ‖x− Prox1
g (x−∇xF (x)) ‖2,

whenever V (x) ≤ η and ‖x− Prox1
G (x−∇xF (x)) ‖2 ≤ δ;

where, for a given subset C ⊆ Rn and vector c ∈ C, we define dist(c, C) , inf {‖c− c′‖2 : c′ ∈ C}.
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In the following we will show that the Luo-Tseng error bound i) is satisfied for many

problems of practical interest; ii) is equivalent (or it is strictly related) to many others

well-studied error bound conditions, usually verified in practice.

Case 1: F,G convex

We start by considering Problem (P) under Assumptions A, and the additional

assumption of the convexity of F .

Relationships and equivalences among definitions as Luo-Tseng error bound, Quadratic

Growth (QG), KL inequality, Polyak- Lojasiewicz (PL) inequality, and metrical sub-

regularity will be shown.

Note that all the structural conditions defined in the following have been used to

prove linear convergence of iterative schemes.

• QG and PL inequality - In order to discuss the QG and PL properties, few

definitions are in order.

Definition 2.5.2 (Restricted Secant Inequality (RSI) [26]) A closed function

φ : Rn → (−∞;∞] satisfies the RSI if, for all x ∈ dom φ, and for a given κ > 0:

dist2(x,Φ?) ≤ κ 〈∇xφ(x),x− x?〉 ,

where x? = arg min
y∈Φ?

‖x − y‖2, and Φ? is the set of minimizers of φ, assumed to be

nonempty.

A function satisfying the RSI, is said to satisfy the Restricted Strong Convexity (RSC)

property if it is convex too.
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Definition 2.5.3 (Essential Strong Convexity (ESC) [26]) A closed smooth func-

tion φ : Rn → (−∞;∞] satisfies the ESC condition if, for all x,y ∈ dom φ such that

inf
z∈Φ?
‖x− z‖2 = inf

z∈Φ?
‖y − z‖2, and for a given κ > 0:

φ(y) ≥ φ(x) + 〈∇xφ(x),y − x〉+ κ‖y − x‖2
2,

where Φ? is the set of minimizers of φ, assumed to be nonempty.

Definition 2.5.4 (Weak Strong Convexity (WSC) [26]) A closed smooth func-

tion φ : Rn → (−∞;∞] satisfies the WSC condition if, for all x ∈ dom φ, and for a

given κ > 0:

min
x∈Rn

φ(x) ≥ φ(x) + 〈∇xφ(x),x? − x〉+ κdist2(x,Φ?),

where x? = arg min
y∈φ?

‖x − y‖2, and Φ? is the set of minimizers of φ, assumed to be

nonempty.

Definition 2.5.5 (PL inequality [26]) A closed smooth function φ : Rn → (−∞;∞]

satisfies the PL inequality if, for all x ∈ dom φ and a given κ > 0:

φ(x)− min
x∈Rn

φ(x) ≤ κ‖∇xφ(x)‖2
2,

where x? = arg min
y∈φ?

‖x − y‖2, and Φ? is the set of minimizers of φ, assumed to be

nonempty.

Definition 2.5.6 (QG [26]) A closed function φ : Rn → (−∞;∞] satisfies the QG

condition if, for all x ∈ dom φ, and for a given κ > 0:

κdist2(x,Φ?) ≤ φ(x)− min
x∈Rn

φ,

where Φ? is the set of minimizers of φ, assumed to be nonempty.

Note that the above definitions are valid for a general smooth function φ (in fact, QG

holds also for nonsmooth φ). The following Theorem instantiates connections among

these conditions, when a convex smooth function is considered.
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Proposition 2.5.1 (Equivalence under convexity and smoothness [26]) Under

Assumption A, if in addition F is convex and G = 0, the following hold:

1. Strong Convexity (SC) implies ESC;

2. ESC implies WSC;

3. WSC implies RSI;

4. RSI, PL inequality, QG, and the Luo-Tseng global error bound are all equivalent

conditions.

Other connections between QG and the Luo-Tseng error bound have been shown

in [27] under firm convexity.

Definition 2.5.7 (Firm convexity [27]) A closed convex function φ : Rn → (−∞; +∞]

is firmly convex relative to a vector y ∈ Rn if the tilted function φy(x) , φ(x)−〈y,x〉

satisfies the following QG condition, for any compact set Φ ⊂ Rn:

κdist2(x, (∂φy)−1(0)) + inf
x∈Rn

φy(x) ≤ φy(x), ∀x ∈ Φ,

for a suitable constant κ > 0.

A closed convex function φ is firmly convex if it is firmly convex for any y ∈ Rn, for

which (∂φy)−1(0) 6= {∅}.

In the following, the Fenchel conjugate of a convex function φ : Rn → (−∞; +∞]

will be denoted as the closed convex function φ? : Rn → (−∞; +∞] defined by:

φ?(y) = sup
x∈Rn

{〈y,x〉 − φ(x)} .

In light of these definitions, the following statement is in order.
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Proposition 2.5.2 (Firm convexity implies Luo-Tseng global error bound [27])

Under Assumption A3-A4, assume furthermore that: F is C1 (Lipschitzianity of ∇xF

is not needed), F = h(Ax), h : Rm → R, A ∈ Rm×n, and denoting as ȳ the optimal

solution of the dual problem

sup
y∈Rm

− Φ(y) , −F ?(y)−G?(−ATy);

then, the Luo-Tseng global error bound condition holds if the following conditions

hold:

1. (Compactness) X ?is bounded;

2. (a) or (b) holds:

(a) Dual nondegeneracy

0 ∈ AT ri (dom F ?) + ri (dom G?),

and dual strict complementarity

0 ∈ ri (Φ(ȳ));

(b) ∂G?(−AT ȳ) and ∂F ?(ȳ) are polyhedral;

3. (QG of components) F is convex on dom F and firmly convex relative to ȳ. G

is firmly convex relative to −AT ȳ.

Assumption 1 in Proposition 2.5.2 can be dropped if 2-(b) holds and F and G are

globally firmly convex.

• KL property - The KL property introduced in Section 2.2.2 is a specific instance

of the Generalized KL property.

Definition 2.5.8 (Generalized KL property [16]) A closed function φ : Rn →

(−∞;∞] has the Generalized KL property at x̄ ∈ dom ∂φ if there exist a neighborhood

C of x̄, η ∈ (0,+∞], and a continuous concave function Ψ : [0, η)→ R+ with Ψ(0) =

0, such that:
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i) Ψ is smooth on (0, η) with Ψ′ > 0 over (0, η);

ii) for all x ∈ C and φ(x̄) < φ(x) < φ(x̄) + η:

Ψ′ (φ(x)− φ(x̄)) dist (0, ∂φ(x)) ≥ 1.

If a function φ satisfies the Generalized KL property at all points in dom ∂φ is called

a KL function. Ψ in Definition 2.2.1 is called desingularizing function for φ. We

obtain (2.24) from Definition 2.5.8 for Ψ = c′s1−θ, with c′ > 0 and θ ∈ [0, 1).

The KL property is a well-studied error bound condition, because many iterative

schemes have been proved to obtain linear convergence rate on optimization problems

where the objective function has the KL property with an exponent between 0 and

1
2
. As we will see later, many practical problems of interest satisfy this requirement.

By leveraging the theory of functions with moderate behavior (defined in the

following), the authors of [28] were able to prove equivalence between QG and KL

property with an exponent of 1
2
.

Definition 2.5.9 (Function with moderate behavior [28]) A smooth closed func-

tion Ψ : [0, r) → R with Ψ(0) = 0 has a moderate behavior (near the origin) if, for

all s ∈ (0, r), and for given κ > 0 satisfies:

sΨ′(s) ≥ κΨ(s).

The following proposition will be instrumental to prove the interesting connection

between the QG and the KL property.

Proposition 2.5.3 (Equivalence between KL and moderate behavior [28])

Under Assumptions A3-A4, if in addition F is C1 and convex (Lipschitzianity of ∇xF

is not needed), the following implications hold for all x ∈ domV :

1. V is a KL function with desingularizing function Ψ⇒ dist(x,X ?) ≤ Ψ(V (x)−

minV );
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2. Ψ has a moderate behavior, and dist(x,X ?) ≤ Ψ

(
V (x)− min

x∈Rn
V (x)

)
⇒ V is a

KL function.

Note that Ψ(s) = γs
1
p , for p ≥ 1, γ > 0 is a function with moderate behavior.

Choosing this specific function as a desingularizing function, the following corollary

easily follows from Proposition 2.5.3.

Corollary 2.5.1 (Equivalence between KL and QG) Under Assumptions A3-

A4, if in addition F is C1 and convex (Lipschitzianity of ∇xF is not needed), the

following conditions are equivalent.

1. V has QG;

2. V has the KL property with an exponent of 1
2
.

So, in light of Proposition 2.5.1, Corollary 2.5.1 shows also an equivalence between

the KL property with an exponent of 1
2

and the Luo-Tseng global error bound, under

convexity.

• Metrical subregularity - By leveraging tools from variational analysis, other

connections between different structural conditions of optimization problems can be

shown.

Let Φ : Rn → Rq be a set-valued map (multifunction), its graph is defined by

graph(Φ) , {(x,y) ∈ Rn × Rq|y ∈ Φ(x)}, and its inverse mapping by

Φ−1(y) , {x ∈ Rn : y ∈ Φ(x)}, for all x ∈ Rq.

For any given ε > 0 and x ∈ Rn, Bε(x) , {y ∈ Rn : |y − x| < ε} will denote the

open ball around x with modulus ε.

Definition 2.5.10 (Metrical subregularity [29]) Λ : Rq → Rn is metrically sub-

regular at (ỹ, x̃) ∈ graph(Λ) if for some ε > 0 there exists κ ≥ 0 such that

dist
(
y,Λ−1(x̃)

)
≤ dist (x̃,Λ(y)) , ∀y ∈ Bε(ỹ). (2.78)
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Proposition 2.5.4 (Equivalence between L-T and metrical subregularity [27])

Under Assumptions A, the following conditions are equivalent.

1. The Luo-Tseng global error bound condition holds for V ;

2. The subdifferential ∂V is metrically subregular at (x?, 0), for any x? ∈ X ?.

A condition analogous to metrical subregularity is the calmness of a set.

Definition 2.5.11 (Calmness [30]) Φ : Rn → Rq is calm (or pseudo upper-Lipschitz

continuous) at (x̃, ỹ) ∈ graph(Φ) if there exist a neighborhood U of ỹ, a neighborhood

V of x̃, and κ ≥ 0 such that

Φ(x) ∩ U ⊆ Φ(x̃) + κ‖x̃− x‖2B̄, ∀x ∈ V, (2.79)

where B̄ denotes the closed unit ball centered at the origin.

Proposition 2.5.4 showed the connection between the Luo-Tseng error bound and

the metric subregularity of ∂V . In fact, the following Proposition connects the calm-

ness of a multifunction with the metrical subregularity of its inverse.

Proposition 2.5.5 (Equivalence between calmness and metrical subreg. [31])

Φ : Rn → Rq is calm at (x̃, ỹ) ∈ graph(Φ) if and only if its inverse Φ−1 is metrically

subregular at (ỹ, x̃).

Leveraging this property, in [32], the calmness of a specific set has been used to estab-

lish the global Luo-Tseng error bound condition for a number of convex optimization

problems, as it will be shown in Proposition 2.5.6. In order to state the Proposition,

the following definition is needed.

Definition 2.5.12 (Perturbed solution set [32]) Under Assumption A, and with

F (x) = h(Ax) + 〈w,x〉, h : Rm → (−∞; +∞] strongly convex smooth, A ∈ Rm×n,

w ∈ Rn. Assuming furthermore that X ? is compact, the perturbed solution set Γ :

Rm × Rn → Rn for any (y, z) ∈ Rm × Rn is defined as:

Γ(y, z) , {x ∈ Rn : Ax = y,−z ∈ ∂g(x)} . (2.80)
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In order to better understand the above definition, note that, under the setting of

Definition 2.5.12, it there exists a vector ȳ ∈ Rm, such that the solution set X ? of

(P) can also be written as [32]:

X ? = Γ (ȳ,A∇xh(ȳ) + w) . (2.81)

Proposition 2.5.6 (Calmness of Γ implies Luo-Tseng error bound [32]) Under

Assumption A, and with f(x) = h(Ax) + 〈w,x〉 with h : Rm → (−∞; +∞] strongly

convex smooth, ∇xh Lipschitz continuous, A ∈ Rm×n, w ∈ Rn. Assuming fur-

thermore that X ? is compact, the Luo-Tseng global error bound holds if the per-

turbed solution map Γ is calm at (ȳ,A∇xh(ȳ) + w) ∈ Rm × Rn for any x? ∈

Γ (ȳ,A∇xh(ȳ) + w) = X ?.

• Relevant problems under the Luo-Tseng error bound - Under Assumptions

A3-A4, and assuming convexity of F , many interesting problems have been proved

to satisfy the Luo-Tseng global error bound condition for the setting of problem (P).

We list some example in the following.

• (Strongly convex case [25]): F is strongly convex and ∇xF is Lipschitz contin-

uous.

• (Composite case (1) [33]): F (x) = h(Ax) + 〈w,x〉 with h : Rm → (−∞; +∞]

strongly convex smooth, ∇xh Lipschitz continuous, A ∈ Rm×n, w ∈ Rn. ∂G is

a polyhedral multifunction (i.e., set-valued mapping).

Examples

– Linear regression: F (x) = ‖Ax− b‖2
2, b ∈ Rm;

– Logistic regression loss function:

F (x) =
m∑
i=1

(log (1 + exp〈ai,x〉)− bi〈ai,x〉), ai ∈ Rn, bi ∈ {0; 1}, for all i;

and the Poisson regression loss function:

F (x) =
m∑
i=1

(−bix + exp(x)), bi ∈ N, for all i. Note that these two loss

functions are not strongly convex. The Luo-Tseng error bound condition
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in this case holds over any compact set (e.g., for practical purposes, the

linear convergence rate of an iterative scheme is preserved if it is possible

to assume that the iterates remain bounded);

– G polyhedral convex function [34]

∗ LASSO [5]: G(x) = λ‖x‖1, λ ≥ 0;

∗ l∞−norm regularizer: G(x) = λ‖x‖∞, λ ≥ 0;

∗ fused LASSO [35]: G(x) = λ1‖x‖1 + λ2

I∑
i=1

|xi − xi+1|, λ1, λ2 ≥ 0,

ni = 1, for all i;

∗ OSCAR [36]: G(x) = λ1‖x‖1 + λ2

∑
i<j

max {|xi|, |xj|}, λ1, λ2 ≥ 0, ni =

1, for all i;

– G convex piecewise linear-quadratic function [37].

• (Composite case (2) [38,39]): F (x) = h(Ax) with h : Rm → (−∞; +∞] strongly

convex smooth, ∇xh Lipschitz continuous, A ∈ Rm×n. G(x) =
I∑
i=1

wi‖xi‖ +

λ‖x‖1, with wi, λ ≥ 0, for all i. V coercive.

Examples

– Same loss functions F as in composite case (1);

– Group LASSO [6,8]: λ = 0.

• F (x) = h(Ax) with h : Rm → (−∞; +∞] strongly convex smooth, ∇xh

Lipschitz continuous, A ∈ Rm×n, w ∈ Rn. G(x) = iC(x), with the set

C ,
{

x :
m∑
i=1

wi‖x‖p ≤ σ

}
, where σ > 0, p ∈ [1, 2], wi > 0 for all i. Furthermore

the following must hold:

inf
x∈Rn

V (x) > inf
x∈Rn

h(Ax). (2.82)

Examples

– Indicator function of a closed ball centered in the origin, under (2.82).
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• (Nuclear norm regularizer): F (X) = h(AX) + 〈W,X〉F with X ∈ Rm×n, h :

Rl → (−∞; +∞] strongly convex smooth, ∇Xh Lipschitz continuous, A ∈

Rl×m, W ∈ Rm×n. X ? compact. G(X) = ‖X‖?. Furthermore, it must exist

X? ∈ X ? such that the following strict complementarity condition is satisfied:

0 ∈ ∇XF (X?) + ri (∂‖X?‖?) . (2.83)

Examples

– Low rank matrix optimization, under (2.83).

• (Dual functional case [40]): F (x) = max
y∈Y
{〈Ax,y〉 − h(y)} + 〈w,x〉, with h :

Rm → R strongly convex smooth, ∇xh Lipschitz continuous, A ∈ Rm×n, w ∈

Rn; and Y is a polyhedral set in Rn. g is the indicator function of a polyhedral

set.

Examples

– Elastic net penalty [41];

– Soft-insensitive loss [42].

Case 2: F nonconvex smooth, G convex nonsmooth

We study now Problem (P) under Assumption A, dropping the requirement on

the convexity of F , considered in the previous Section. It is easy to understand that

in this setting, less structured with respect to the convex setting of the previous Sec-

tion, connections and equivalences among the different conditions will be fewer.

• Generalized PL inequality and Luo-Tseng Lf−global error bound - The

authors of [26] proved many interesting result, by defining X ? as the set of minimizers

of V . The following Proposition covers the smooth case.
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Proposition 2.5.7 (Relationships in the smooth nonconvex setting [26]) Under

Assumption A, if in addition G = 0, and in all the previous definitions X ? denotes

the set of minimizers of V , the following hold:

1. SC implies ESC;

2. ESC implies WSC;

3. WSC implies RSI;

4. RSI implies the Luo-Tseng global error bound;

5. PL inequality and the Luo-Tseng global error bound are equivalent conditions;

6. PL inequality implies QG.

In order to cover the nonsmooth case, the authors of [26] propose generalizations of

the PL inequality and of the Luo-Tseng global error bound condition.

Definition 2.5.13 (Generalized PL inequality [26]) A function Λ(x) = φ(x) +

ψ(x), where φ : Rn → (−∞; +∞] is closed with L−Lipschitz continuous gradient,

and ψ : Rn → (−∞;∞] is closed and smooth, satisfies the generalized PL inequality

if it there exists a κ > 0 such that

1

2
Dψ(x, L) ≥ κ

(
Λ(x)− min

x∈Rn
Λ(x)

)
,

where

D(x, α) , −2αmin
y∈Rn

{
〈∇xφ(x),y − x〉+

α

2
‖y − x‖2

2 + ψ(y)− ψ(x)
}
.

Definition 2.5.14 (Luo-Tseng L−global error bound [26]) A function Λ(x) =

φ(x) + ψ(x), where φ : Rn → (−∞; +∞] is closed with L−Lipschitz continuous

gradient, and ψ : Rn → (−∞;∞] is closed and smooth, satisfies the Luo-Tseng

L−global error bound condition if for every scalar η: inf
x∈Rn

Λ(x) ≤ η ≤ Λ(x), and any

γ > 0, there exist scalars δ, τ > 0 such that

dist(x,Λ?) ≤ τ‖x− Prox
1/L
1
L
ψ

(
x− 1

L
∇xφ(x)

)
‖2,
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whenever Λ(x) ≤ η and ‖x − Prox
1/L
1
L
ψ

(
x− 1

L
∇xφ(x)

)
‖2 ≤ δ. Λ? denotes the set of

minimizers of Λ.

Leveraging the above definitions, the next Proposition covers the nonsmooth case.

Proposition 2.5.8 (Relationships in the composite nonconvex setting [26])

Under Assumption A, if in all the previous definitions X ? denotes the set of mini-

mizers of V , the following conditions are equivalent.

1. The Luo-Tseng L−global error bound condition holds for V ;

2. V satisfies the generalized PL inequality;

3. V has KL property with an exponent of 1
2
.

Differently from the above results, we go back now to the definition of X ? as the set

of stationary points of V in problem (P).

• Metrical subregularity and quadratic growth - For the composite optimiza-

tion problem (P) under Assumptions A, Proposition 2.5.4 holds too.

On the other hand, a relationship between QG and the Luo-Tseng error bound

holds only if V is robust to tilt-perturbations.

Definition 2.5.15 (Stable strong local minimizer [27]) x̄ is a stable strong lo-

cal minimizer with constant α > 0 of a function φ : Rn → (−∞; +∞] if there exists

a neighborhood Φ of x̄ so that for each vector y near the origin, there is a point

xy (necessarily unique) in Φ, with x0 = x̄, so that the for the perturbed function

φy , φ(·)− 〈y, ·〉 the inequality

φy(x) ≥ φy(xy) +
α

2
‖x− xy‖2

2.

holds for all x ∈ Φ.

The following Proposition relates QG and the Luo-Tseng error bound.
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Proposition 2.5.9 (QG robust to tilt-perturbations implies L-T err. bound [27])

Given a local minimizer x? of problem (P) under Assumption A, the following con-

ditions are equivalent

1. (Uniform quadratic growth) x? is a stable strong local minimizer of V ;

2. (Tilt-stability) There exists a neighborhood X of x? such that the set-valued

mapping

y→ arg min
x∈X

{V (x)− 〈y,x〉}

is single-valued and Lipschitz continuous on some neighborhood of the origin;

3. (Subdifferential strong regularity) There exist a neighborhood X of x? and Y of

ȳ = 0 so that (∂V )−1 : V → X is a single-valued Lipschitz continuous mapping.

Note that statement 3 in Theorem 2.5.9 implies the metrical subregularity of ∂V at

(x?, 0), which, in turn, due to Proposition 2.5.4 implies that the Luo-Tseng global

error bound holds for V .

The following Corollary summarizes the results of this subsection

Corollary 2.5.2 (Metrical subregularity, QG and Luo-Tseng error bound)

Under Assumption A, the following conditions are equivalent:

1. The Luo-Tseng global error bound condition holds;

2. The subdifferential ∂V is metrically subregular at (x?, 0), for any x? ∈ X ?.

Furthermore, if any x? ∈ X ? is a stable strong local minimizer, the Luo-Tseng global

error bound condition holds.

• KL property - In the nonconvex composite setting considered in this Section, the

equivalence between the KL property with an exponent of 1
2

and the Luo-Tseng error

bound condition does not hold straightforwardly anymore.
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The authors of [16] are able to connect the KL property and the Luo-Tseng error

bound under the following additional assumption.

Assumption E (Error bound condition for V )

(E1) (proper separation of isocost surfaces [24]) For any x? ∈ X ?, there exists δ > 0

so that V (y) = V (x?) whenever y ∈ X ? and ‖y − x?‖2 ≤ δ.

Note that under Assumptions A, E1 for problem (P) holds if, for example, V takes on

only a finite number of values on X ?. Thus, E1 holds if V is convex or F is quadratic

and G is the indicator function of a polyhedral set.

Proposition 2.5.10 (Luo-Tseng global error bound implies KL property [16])

Under Assumptions A-E, if the Luo-Tseng global error bound holds for V , then V is

a KL function with an exponent of 1
2
.

• Relevant problems under the Luo-Tseng error bound - Under Assumptions

A3-A4, the only relevant class of problems where the Luo-Tseng error bound condition

holds for the nonconvex setting of problem (P), different from the problems previously

listed above, is

• (Quadratic case [33, 43]) F is a smooth quadratic functions; G is the indicator

function of a polyhedral set (see previous examples for valid G’s).

More interestingly, we remark that the KL inequality with an exponent of 1
2

it has

been proved [16] to hold for nonconvex regularizers as the SCAD [12] or the MCP [13]

penalties.

Case 3: F,G nonconvex and nonsmooth

In this last Section we consider problem (P) in its most general setting, i.e., re-

moving the assumption A3 on the convexity of G too.



60

In the fully nonconvex setting the proximal operator, which characterizes the Luo-

Tseng error bound, is not properly defined.

The authors of [44] propose the following analogous stationarity measure in order

to replace the proximal operator.

Definition 2.5.16 (Generalized Luo-Tseng local error bound [44]) Assume A4,

F to be C1, and G being a closed function; then, the generalized Luo-Tseng local error

bound condition holds for V at x? ∈ X π if there exist scalars δ, τ > 0 such that

dist (x,X π) ≤ κdist

(
x, arg min

y∈Rn

{
G(y) +

1

2γ
‖y − x + γ∇xF (x)‖2

2

})
holds for all x ∈ Bε(x?), where X π is the set of proximal stationary points

X π , {x : 0 ∈ ∇xF (x) + ∂πG(x)} ,

and ∂πG is the proximal subdifferential of G (see, e.g. [37]).

A relationship between the generalized Luo-Tseng error bound and the KL property

with an exponent of 1
2

has been proved in [44], under the semi-convexity assumption.

Definition 2.5.17 (Semi-convexity [44]) A closed function φ : Rn → (−∞;∞] is

semi-convex around x̄ ∈ dom φ with modulus ρ > 0, if there exists κ > 0 such that

the function φ(x) + ρ
2
‖x‖2

2 is convex on Bη(x̄).

Proposition 2.5.11 (Generalized L-T local err. bound implies KL [44]) Assume

A4, F to be C1, and G being a closed function; if furthermore G is semi-convex around

x? ∈ X π, Assumption E holds too, and the generalized Luo-Tseng local error bound

condition holds at x?. Then, V satisfies the KL property with an exponent of 1
2

at x?.

On the other hand, the authors of [27] proposed the following stationarity measure,

called prox-gradient mapping in order to replace the proximal operator.
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Definition 2.5.18 (Prox-gradient mapping [27]) Assume A4, F and G being

closed functions; consider F (x) = h(c(x)), with c : Rn → Rm continuously differ-

entiable, and h : Rm → (−∞; +∞]; then the prox-gradient mapping Gt, for t > 0,

and any x ∈ Rn is defined as:

Gt(x) , t−1(x− St(x)),

where St is the stationary point map

St(x) , {z ∈ Rn : z is a stationary point of Vt(x, ·)} ,

and, for any y ∈ Rn, Vt is the quadratic perturbation

Vt(x; y) , G(y) + h (c(x) + 〈∇xc(x),y − x〉) +
1

2t
‖x− y‖2

2.

The following definition is also needed, and it will be instrumental to establish, as

already done in the previous sections, a connection between the subregularity of ∂V

and the Luo-Tseng error bound (which, as already said, will be replaced now by the

prox-gradient mapping Gt).

Definition 2.5.19 (Prox-regularity [45]) A closed function φ : Rn → (−∞; +∞]

is prox-regular at x̄ for v ∈ ∂φ(x̄) if there exist a neighborhood X of x̄ and V of v,

along with constants ε, r > 0 so that the inequality

φ(y) ≥ φ(x) + 〈v,y − x〉 − r

2
‖y − x‖2

2,

holds for all x,y ∈ X with |φ(x)−φ(x̄)| < ε, and for every subgradient v ∈ V∩∂φ(x).

The following Proposition has been proved in [27], and it is an attempt to describe

the structure of V through a condition similar to the Luo-Tseng error bound. This

characterization could be useful in the future to prove linear convergence rate of it-

erative methods for problem (P) in the fully nonconvex setting.

The missing definitions in Proposition 2.5.12 can be found in [27].
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Proposition 2.5.12 (Metrical subregularity and “L-T” error bound [27]) Assume

A4, and F being a closed function; consider G(x) = 0 (for ease of notation), F (x) =

h(c(x)), where c : Rn → Rm is continuously differentiable, h : Rm → (−∞; +∞]

is closed, and c is transverse to h at x̄, for a given x̄ ∈ X ?. If, furthermore, the

Jacobian ∇c is Lipschitz around x̄ and h is prox-regular at c(x̄) for every subgradi-

ent w ∈ ∂h(c(x̄)) satisfying 〈∇c?(x̄),w〉 = 0, for a given t > 0, the following two

conditions are equivalent:

1. It there exists a V−attentive localization of ∂V that is metrically subregular at

(x̄, 0).

2. It there exists a V−attentive localization of Gt that is metrically subregular at

(x̄, 0).

If, additionally, h is convex, the following two conditions are equivalent:

(a) ∂V is metrically subregular at (x̄, 0)

(b) Gt is metrically subregular at (x̄, 0)

Note that, in the setting of the previous Sections, condition (b) is equivalent to the

Luo-Tseng global error bound condition.
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Figure 2.8. Reference

Figure 2.9. FLEXA
Figure 2.10. k-t FO-
CUSS

Figure 2.11. FISTA Figure 2.12. SpaRSA

Figure 2.13. Intensity profiles of the 100th row after one second of pro-
cessing.
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3. ASYFLEXA: ASYNCHRONOUS PARALLEL

ALGORITHM FOR NONSMOOTH NONCONVEX

OPTIMIZATION

We propose a new asynchronous parallel block-descent algorithmic framework for the

minimization of the sum of a smooth, nonconvex function, and a nonsmooth, convex

one, subject to both convex and nonconvex constraints. The proposed framework

hinges on SCA techniques and a novel probabilistic model that captures key ele-

ments of modern computational architectures and asynchronous implementations in

a more faithful way than current state-of-the-art models. Other key features of the

framework are: i) it covers in a unified way several specific solution methods; ii) it

accommodates a variety of possible parallel computing architectures; and iii) it can

deal with nonconvex constraints. Almost sure convergence to stationary solutions is

proved, and theoretical complexity results are provided, showing nearly ideal linear

speedup when the number of workers is not too large.

Specifically, in Section 3.1 we present the optimization problem under exam, we ex-

plain the main challenges that motivated our research, we list the main contributions

of our work, and we discuss the related literature. In Section 3.2 we present our

proposed algorithmic framework AsyFLEXA. In Section 3.3 we discuss in detail the

probabilistic model underlying the proposed method. Section 3.4 presents the main

convergence results. Section 3.5 contains an extension of the results of this Chap-

ter to the case involving the presence of nonconvex constraints. Finally, Section 3.6

shows extensive experimental results. The proofs of the Theorems are collected in

the Appendix of this Chapter.
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The novel results of this Chapter have been published in

• Cannelli, L. and Facchinei, F. and Kungurtsev, V. and Scutari, G., “Asyn-

chronous Parallel Algorithms for Nonconvex Optimization”, Mathematical Pro-

gramming, pages 1-34, 2019 [46].

• Cannelli, L. and Facchinei, F. and Kungurtsev, V. and Scutari, G., “Asyn-

chronous Parallel Nonconvex Large-Scale Optimization”, IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 4706-

4710, 2017 [47].

• Cannelli, L. and Scutari, G. and Facchinei, F. and Kungurtsev, V., “Paral-

lel Asynchronous Lock-Free Algorithms for Nonconvex Big-Data Optimization”,

50th IEEE Asilomar Conference on Signals, Systems and Computers, pages

1009-1013, 2016 [48]. Best Paper Award Runner-up

A sample code, written in C++, of AsyFLEXA for LASSO problems is available at

https://github.com/lcannell/Parallel-Asynchronous-Algorithms

-For-Nonconvex-Problems.

3.1 Introduction

It is studied an asynchronous parallel block-descent methods for the following

class of nonconvex nonsmooth minimization problems:

min
x,[xi]Ni=1∈X⊆Rn

V (x) , F (x) +
N∑
i=1

gi(xi) (P)

where F is a smooth, possibly nonconvex function, gi are possibly nonsmooth, convex

functions, X , X1× . . .×XN , and each Xi ⊆ Rni is a closed, possibly nonconvex set.

Instances of Problem (P) arise in many fields, including compressed sensing, ma-

chine learning, data mining, and genomics, just to name a few. Typically, in data-

driven applications F might measure the misfit between the observations and the
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postulated model, parametrized on x, while the regularizers gi encode structural con-

straints on the solution, such as sparsity.

Many of the aforementioned applications give rise to extremely large-scale prob-

lems, which naturally call for asynchronous, parallel solution methods. In fact, well

suited to modern computational architectures, asynchronous methods reduce the idle

times of workers, mitigate communication and/or memory-access congestion, and

make algorithms more fault-tolerant. In this Chapter it is introduced a general asyn-

chronous block-descent algorithm for finding stationary solutions of Problem (P).

It is considered a generic multi-worker architecture (e.g., shared memory system,

message passing-based system, cluster computer, cloud federation) wherein multiple

workers, continuously and without coordination with each other, update a block-

variable by solving a strongly convex block-model of Problem (P). More specifically,

at iteration k, a worker updates a block-variable xk
ik

of xk to xk+1
ik

, with ik in the

set N , {1, . . . , N}, thus generating the vector xk+1. When updating block ik, in

general, the worker does not have access to the current vector xk, but it will use

instead the local estimate xk−d
k
, [x

k−dki
i ]Ni=1, where dk , [dki ]

N
i=1 is the “vector of

delays”, whose components dki are nonnegative integers. Note that xk−d
k

is nothing

else but a combination of delayed, block-variables. The way each worker forms its

own estimate xk−d
k

depends on the particular architecture under consideration and

it is immaterial to the analysis of the algorithm. It is only observed here that if all

delays dki are zeros, the model reduces to a standard synchronous one.

Given xk−d
k

and ik, block xk
ik

is updated by solving the following strongly convex

block-approximation of Problem (P):

x̂ik(x
k−dk) , argmin

x
ik
∈X̃

ik
(xk−dk )

F̃ik(xik ; x
k−dk) + gik(xik), (3.1)

and then setting

xk+1
ik

= xkik + γk
(
x̂ik(x

k−dk)− xkik
)
. (3.2)

In (3.1), F̃ik and X̃ik represent a strongly convex surrogate of F and a convex set

obtained replacing the nonconvex functions defining Xik by suitably chosen upper
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convex approximations, respectively; both F̃ik and X̃ik are built using the out-of-sync

information xk−d
k
. If the set Xik is convex, then it will be always taken X̃ik = Xik .

In (3.2), γk ∈ (0, 1] is the stepsize. Note that, in the above asynchronous model, the

worker that is in charge of the computation (3.1) and the consequent update (3.2) is

immaterial.

3.1.1 Major contributions

The major contribution of the research work presented in this Chapter are:

1. A new probabilistic model for asynchrony fixing some unresolved issues: Almost

all modern asynchronous algorithms for convex and nonconvex problems are modeled

in a probabilistic way. Here it is put forth a novel probabilistic model describing the

statistics of (ik,dk) that differs markedly from existing ones. This new model allows

not only to fix some important theoretical issues that mar most of the papers in the

field (see discussion below on related work), but it also permits to analyze for the first

time in a sound way several practically used and effective computing settings and new

asynchronous algorithms. For instance, it is widely accepted that in shared-memory

systems, the best performance are obtained by first partitioning the variables among

cores, and then letting each core update in an asynchronous fashion their own block-

variables, according to some randomized cyclic rule. To the best of my knowledge,

this is the first work proving convergence of such practically effective methods in an

asynchronous setting.

2. The ability to effectively deal with nonconvex constraints: All the works in the

literature but [49, 50] can deal only with unconstrained or convex constrained prob-

lems. On the other hand, the algorithms in [49, 50] require at each iteration the

computation of the global optimal solution of nonconvex subproblems, which, except

in few special cases, can be as difficult as solving the original nonconvex problem.

The proposed method is the first asynchronous method that allows one to deal (un-
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der adequate assumptions) with nonconvex constraints while solving only strongly

convex subproblems.

3. The possibility to leverage potentially complex, but effective subproblems (3.1):

Asynchronous methods so far are all built around a proximal linearization method,

which corresponds, in the proposed framework, to setting

F̃i(xik ; x
k−dk) =

〈
∇x

ik
F
(
xk−d

k
)
,xik − x

k−dk
ik

ik

〉
+ α ‖xik − x

k−dk
ik

ik
‖2

2,

for some constant α > 0. This choice often leads to efficient solution methods and,

in some cases, even to subproblems that admit a solution in closed-form. For in-

stance, it has been shown to be very efficient on composite quadratic problems, like

LASSO. However, moving to more nonlinear problems, one may want to use more

complex/higher order models. In fact, the more sophisticated the subproblem (3.1),

the better the overall behavior of the algorithm (at least in terms of iterations) is.

This happens at the price of computationally more expensive subproblems. But in

asynchronous and distributed methods, the bottleneck is often given by the com-

munication cost. In these cases, it might be desirable to reduce the communication

overhead at the price of more complex subproblems to solve. Furthermore, there are

many application for which one can define subproblems that, while not being proxi-

mal linearizations, still admit closed-form solutions (see. e.g., [51, 52]). Overall, the

ability to use more complex subproblems is an additional degree of freedom that one

may want to exploit to improve the performance of the algorithm.

4. Almost sure convergence and complexity analysis: It is proved: i) almost sure con-

vergence to stationary solutions of Problem (P); and ii) convergence to ε-stationary

solutions in an O(ε−1) number of iterations. It is remarked that the convergence

results presented here match similar ones in the literature [49,50,53–55], which how-

ever were obtained in a simplified setting (e.g., only for unconstrained or convex

constrained problems) and under unrealistic probabilistic assumptions on the pair

index-delay (ik,dk) (see discussion on related work). The analysis presented here

builds on an induction technique based on the proposed probabilistic model and a
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novel Lyapunov function that properly combines variable dynamics and their delayed

versions.

5. Fixed and diminishing stepsize: A fixed stepsize has been adopted universally

in almost all papers dealing with asynchronous methods. While we will use a fixed

stepsize for our complexity analysis results, it also has disadvantages. On the one

hand the proper choice of the stepsize usually requires the knowledge of unknown

constants and, on the other hand, and more importantly, the use of the stepsize that

gives theoretical convergence usually leads to extremely slow practical convergence.

In contrast to this situation we advocate the use of diminishing stepsize rules. This

choice frees us from the necessity of a tuning of the stepsize and, in all our numerical

experiments, has proven to be highly efficient.

6. A theoretical almost linear speedup for a wide range of number of cores: The holy

grail of asynchronous methods is the ideal linear speedup (with respect to the number

of workers). This theoretical limit is not achievable in practice; in fact, as the number

of workers increases, the effective speedup is always limited by associated overheads

(communication costs, conflicts, etc.), which make the linear growth impossible to

achieve for arbitrarily large number of workers. By using the number of iterations

needed to achieve an ε-stationary solution as a proxy for the computational time and

leveraging the new proposed Lyapunov function, it is possible to show almost linear

speedup in many settings of practical interest. This is the first theoretical result on

speedup, based on a realistic probabilistic model for asynchrony (see discussion in

contribution 1).

3.1.2 Related work

Although asynchronous block-methods have a long history (see, e.g., [9, 56–59]),

their revival and probabilistic analysis have taken place only in recent years; this is

mainly due to the current trend towards huge scale optimization and the availability

of ever more complex computational architectures that call for efficient and resilient
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algorithms. Indeed, asynchronous parallelism has been applied to many state-of-

the-art optimization algorithms, including stochastic gradient methods [60–66] and

ADMM-like schemes [67–69]. Block-Coordinate Descent (BCD) methods are part

of the folklore in optimization; more recently, they have been proven to be particu-

larly effective in solving very large-scale problems arising, e.g., from data-intensive

applications. Their asynchronous counterpart has been introduced and studied in the

seminal work [54], which motivated and oriented much of subsequent research in the

field, see e.g. [49, 50, 53, 55, 70]. The interested reader is referred to [71] and refer-

ences therein for a detailed overview of BCD methods. There are several differences

between the above methods and the framework proposed in this paper, as detailed

next.

• On the probabilistic model: All current probabilistic models for asynchronous BCD

methods are based on the (implicit or explicit) assumption that the random variables

ik and dk are independent; this greatly simplifies the convergence analysis. However,

in reality there is a strong dependence of the delays dk on the updated block ik.

Consider the setting where the variables are partitioned among two workers and each

worker updates only its own block-variables; let N1 and N2 be the index set of the

blocks controlled by worker 1 and 2, respectively. It is clear that in the updates of

worker 1 it will always be dki = 0, for all i ∈ N1 and k, while (at least some) delays

dki associated with the blocks i ∈ N2 will be positive; the opposite happens to worker

two. The independence assumption is unrealistic also in settings where all the work-

ers share all the variables. Blocks that are updated less frequently than others, when

updated, will have larger associated delays. This happens, for instance, in problems

where i) some blocks are more expensive to update than others, because they are

larger, bear more nonzero entries, or data retrieval requires longer times; or ii) the

updates are carried by heterogeneous workers (e.g., some are faster or busier than

others). This assumption have been tested, performing an asynchronous algorithm

on two different architectures and measuring the average delay corresponding to dif-

ferent blocks updated. The experiments were performed on a shared-memory system
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with 10 cores of an Intel E5-2699Av4 processor. An asynchronous algorithm was

applied to a LASSO problem [5] with 10000 variables, partitioned uniformly into 100

contiguous blocks; the Hessian matrix was generated with high sparsity on several

rows. All the cores can update any block, selected uniformly at random. It has been

found that blocks associated with the sparse rows of the Hessian have delays dk with

components between 0 and 3, while the delays of the other blocks were all bigger than

20. Even when the computing environment is homogeneous and/or the block updates

have the same cost, the aforementioned dependence persists. A message-passing sys-

tem on Purdue Community Cluster Snyder was simulated and two nodes of the cluster

were used, each of them equipped with 10 cores of an Intel Xeon-E5 processors and

its own shared memory. Every node can update every block, selected uniformly at

random. An asynchronous algorithm was run on the same LASSO problem described

above but now with a dense Hessian matrix. The blocks updated by node 1 have an

average delay of 12 while those updated by node 2 experience an average delay of 22.

This can be due to several uncontrollable factors, like operation system and memory

schedulers, buses controllers, etc., which are hard to rigorously model and analyze.

Another unrealistic assumption often made in the literature [49,53,54,61] is that

the block-indices ik are selected uniformly at random. While this assumption simpli-

fies the convergence analysis, it limits the applicability of the model; see Examples

4 and 5 in Section 3.3.1. In a nutshell, this assumption may be satisfied only if all

workers have the same computational power and have access to all variables.

Finally, this discussion on probabilistic models underlying asynchronous algo-

rithms is concluded by mentioning the line of work dealing with stochastic gradient

methods. Stochastic gradient methods are similar to block-descent approaches in that

at each iteration sampling is performed to determine the nature of the update, but

sampling is done among functions in an optimization problem minimizing the sum

of functions, as opposed to block variables. A related, albeit different, issue of inde-

pendence in the probabilistic models used in stochastic gradient methods was first

noted in the technical report [64], see also [65, 66] for further developments. These
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papers circumvent the issue by enforcing independence (a) using a particular manner

of labeling iterations as well as (b) reading the entire vector of variables regardless

of the sparsity pattern among the summand functions in the objective. However, the

analysis in [64–66] is (c) only performed in the context of strongly convex uncon-

strained problems, (d) involves uniform sampling and (e) is only applicable for the

shared memory setting. Thus, while the analysis and procedures described in the ref-

erences above are interesting, on the whole requirements (b)-(e) make these proposals

of marginal interest in the context of block-descent methods (even assuming they can

actually be adapted to our setting).

Differently from the aforementioned works, the more general and sophisticated

probabilistic model presented here neither postulates the independence between ik

and dk nor requires artificial changes in the algorithm [e.g., costly unnecessary read-

ings, as in (b)] to enforce it; it handles instead the potential dependency among

variables directly. By doing so, one can establish convergence without requiring any

of the restrictive conditions (b)-(e), and significantly enlarge the class of compu-

tational architecture falling within the model [e.g., going beyond (d) and (e)]−see

Section 3.3.1 for several examples.

• Nonconvex constraints : Another important feature of the presented algorithm is

the ability to handle nonconvex objective functions and nonconvex constraints by an

algorithm that only needs to solve, at each iteration, a strongly convex optimization

subproblem. Almost all asynchronous methods cited above can handle only convex

optimization problems or, in the case of fixed point problems, nonexpansive map-

pings. The exceptions are [62, 72] and, more relevant to our setting, [49, 50] that

study unconstrained and constrained nonconvex optimization problems, respectively.

However, the papers dealing with constrained problems, i.e. [49, 50], propose algo-

rithms that require, at each iteration, the global solution of nonconvex subproblems.

Except for few cases, the subproblems could be hard to solve and potentially as dif-

ficult as the original one.

• Successive Convex Approximation: All the asynchronous algorithms described so
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far use proximal linearization to define subproblems. As already pointed out, this

is the first paper where subproblem models able to capture more structure of the

objective functions are considered. This offers more freedom and flexibility to tailor

the minimization algorithm to the problem structure, in order to obtain more efficient

solution methods.

• Notation - Underlined symbols will denote random variables, e.g., xk, xk−d
k
,

whereas the same symbols with no underline are the corresponding realizations.

3.2 Asynchronous Algorithmic Framework

In this section we introduce the assumptions on Problem (P) along with the for-

mal description of the proposed algorithm. For simplicity of presentation, we begin

studying (P) assuming that there are only convex constraints, i.e., all Xi are convex.

This unnecessary assumption will be removed in Section 3.5.

Assumption A (On Problem (P)).

(A1) Each set Xi ⊆ Rni is nonempty, closed, and convex;

(A2) F is C1 and its gradients ∇xiF are globally L−Lipschitz on X ;

(A3) Each gi : Xi → R is convex;

(A4) V is coercive on X , i.e., lim
x∈X ,‖x‖→∞

V (x) = +∞.

As already discussed in Section 2.1, these assumptions are rather standard. For

example, A2 holds trivially if X is bounded and ∇xF is locally Lipschitz; while A4

guarantees the existence of a solution.

When considering the case of case diminishing stepsize γk, in order to prove asymp-

totic convergence of our proposed method, we will also need the following additional

assumption:

Assumption A? (On Problem (P)).
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(A5) Each gi is Lg-Lipschitz continuous on Xi.

Note that by assuming all gi’s to be continuous, we are not considering the case of

extended-valued functions. The use of extended-valued functions in the objective

functions is sometimes used to deal with constraints by formally reducing a con-

strained problem to an unconstrained one. However, in our approach we will need

to deal with constraints explicitly and therefore we avoid the extended-valued func-

tion formalism; consequently, in most practical cases the gi’s are norms or polyhedral

functions and A3-A5 are satisfied.

We introduce now our algorithmic asynchronous framework. The asynchronous

iterations performed by the workers are given in (3.1) and (3.2) [cf. Section 3.1].

However, the analysis of the algorithm based directly on (3.1)-(3.2) is not a simple

task. The key idea is then to introduce a “global view” of (3.1)-(3.2) that captures

through a unified, general, probabilistic model several specific computational archi-

tectures/systems and asynchronous modus operandi. The iteration k → k + 1 is

triggered when a block-component ik of the current xk is updated by some worker us-

ing (possibly) delayed information xk−d
k
, thus generating the new vector xk+1. Note

that, in this model, the worker that performs the update is immaterial. Given (3.1)

and (3.2), it is clear that the update xk → xk+1 is fully determined once ik and dk are

specified. In several asynchronous methods, the index ik is chosen randomly. Even

when this is not the case, the values of ik and dk are difficult to preview beforehand,

because they depend on several factors which are hard to model mathematically, such

as the computational architecture, the specific hardware, the communication protocol

employed by the workers, possible hardware failures, etc.. Therefore, we model the

sequence of pairs {(ik,dk)} generated by the algorithmic process as a realization of

a stochastic process; the probabilistic space associated to this stochastic process is

formally introduced in Section 3.3. The proposed general asynchronous model is sum-

marized in Algorithm 4, which we term Asynchronous FLexible ParallEl Algorithm

(AsyFLEXA).
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Algorithm 4: Asynchronous FLexible ParallEl Algorithm (AsyFLEXA)

Data : x0 ∈ X , {γk}. Set k = 0.

(S.1) If xk satisfies a termination criterion: STOP;

(S.2) The random variable (ik,dk) is realized as (ik,dk);

(S.3) x̂ik(x
k−dk) is computed:

x̂ik(x
k−dk) , arg minx

ik
∈X

ik
F̃ik(xik ; x

k−dk) + gik(xik); (3.3)

(S.4) xk
ik

is acquired;

(S.5) The block ik is updated:

xk+1
i =

xki + γk(x̂i(x
k−dk)− xki ), if i = ik

xki if i 6= ik;

(3.4)

(S.6) Update k ← k + 1, and go to (S.1).

• Discussion on Algorithm 4 - Several comments are in order.

1. On the generality of the model: Algorithm 4 represents a gamut of asynchronous

schemes and architectures, all captured in an abstract and unified way by the stochas-

tic process modeling the specific mechanism of generation of the delay vectors dk and

indices ik of the blocks to updates. For concreteness, we show next how Algorithm 4

customizes when modeling asynchrony in shared-memory and message passing-based

architectures.

Example 1: Shared-memory systems. Consider a shared-memory system wherein

multiple cores update in an asynchronous fashion blocks of the vector x, stored in a

shared memory. An iteration k → k+1 of Algorithm 4 is triggered when a core writes

the (block) update xk+1
ik

in the shared memory (Step 4). Note that the cores need

not know the global iteration index k. No memory lock is assumed, implying that

components of the variables may be written by some cores while other components
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Figure 3.1. AsyFLEXA modeling block asynchronous updates in a shared-
memory system: three cores, vector variables x ∈ R3, scalar blocks (ni = 1,
for all i).

are simultaneously read by others. This inconsistent read produces vectors xk−d
k

=

[x
k−dki
i ]Ni=1, to be used in the computation of x̂ik (Step 2), whose (block) component

x
k−dki
i is a (possibly) delayed version of block i read by the core that is going to

perform the update. Note that, while x
k−dki
i existed in the shared memory at some

point in time, the entire delayed vector xk−d
k

might have not at any time. Also, in

Step 4, it is tacitly assumed that the update of a block is atomic (the block is written

in the shared memory as a whole) and while a core is writing that block no other core

can modify the same block. This is minor requirement, which can be easily enforced

in modern architectures either by a block-coordinate look or using a dual-memory

writing approach, see [55, Section 1.2.1].

Figure 3.1 shows few iterations of the algorithm dynamics in the asynchronous setting

described above. The (continuous) time when operations (reading, writing, compu-

tation) are performed is indicated in the top horizontal axes whereas the global (dis-

crete) iteration counter is reported in the bottom axes. The asynchronous updates

happen as follows. At iteration k = 3, Core 3 writes x3
1; therefore, x3 differs from

x2 in the first component. Core 2 locks x2
3 to quickly read it and perform the linear
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combination with x̂3(x3−d3
) [cf. (3.4)], and updates x3; therefore x4 differs from x3

in just the 3rd component. Note that core 2 reads x2
3 which is equal to x3

3, so d3
3 = 0;

this is because between the lock and the writing of core 2, no other cores wrote x3

(core 3 updates x1). At iteration k = 5, core 3 writes x5
2. In this case x4−d4

, used to

compute x5
2 = (1− γk)x4

2 + γkx̂2(x4−d4
), is exactly equal to x4, since core 3 reads the

vector entirely after the last update, so d4 = 0. A different situation happens when

iteration k = 6 is triggered by core 1: the vector used by the core to perform its up-

date is x5−d5
, which is such that x5−d5

1 = x2
1 6= x3

1, x5−d5

2 = x2
2, and x5−d5

3 = x4
3 6= x2

3;

therefore, x5−d5
never existed in the shared memory at any time. It can be seen that

the vector of delays at k = 6 reads d5 = (3, 1, 0)T. Note that the delay vector dk

used at a given iteration may not be unique: different values for the components dki

may produce the same delayed vector xk−d
k
. For instance, in the example above, the

vector (3, 4, 0)T could have been used in place of d5.

Example 2: Message-passing systems. Consider the following distributed computa-

tional architecture as studied for example in [9] and [73]: multiple workers (e.g.,

clouds, cluster computers) are connected through a (directed) graph, modeling the

communication pattern among them. All the workers aim at cooperatively solve

Problem (P), in an asynchronous fashion. Each worker i knows F , gi and Xi in

(P), and is in charge of the update of the subset of variables xi; this means that

only worker i can update xi (possibly a subset of them at each iteration). However,

to solve its subproblem, each worker also needs to build a local estimate, possibly

outdated, of the variables of the other workers. This can be done via suitably de-

signed communication protocols, involving information exchange between immediate

neighboring nodes. Note that workers can perform their local computations as well

as communicate (possibly in parallel) with their neighbors at any time, without any

form of coordination or centralized scheduling. In this setting, xk−d
k

corresponds to

the most recent information a worker has received from the others at the time of its

update. Algorithm 4 can thus model also asynchronous updates and communications

in such distributed systems with no shared memory.
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There are of course other message-passing-based architectures where the proposed

asynchronous model cannot be directly applied. For instance, this is the case of some

multi-agent systems wherein the cost function V is the sum of the local objectives of

the agents, and each agent does not have access to the function of the others.

2. On the surrogate functions F̃i. A degree of freedom offered by the proposed

framework is the choice of the surrogate function used in the subproblems (3.3) solved

by the workers at each iteration. We consider the following general class of surrogate

functions (we recall that ∇F̃i denotes the partial gradient of F̃i with respect to the

first argument).

Assumption B (On the surrogate functions F̃i’s). Each F̃i : Xi × X → R, is

chosen so that:

(B1) F̃i(·; y) is C1 and τ -strongly convex on Xi, for all y ∈ X ;

(B2) ∇F̃i(yi; y) = ∇yiF (y), for all y ∈ X ;

(B3) ∇F̃i(y; ·) is LA-Lipschitz continuous on X , for all y ∈ Xi.

Assumption B is the same set of assumptions we already considered in Section 2.2,

rewrote here for ease of clarity. When we will be analyzing the iteration complexity of

AsyFLEXA, we will also require the following additional assumption on the surrogate

functions F̃i:

Assumption B? (On the surrogate functions F̃i’s). Each F̃i : Xi × X → R, is

chosen so that:

(B4) ∇F̃i(·; y) is LB-Lipschitz continuous on Xi, for all y ∈ X .

As we already discussed in Section 2.2, the surrogate F̃i(·; xk) should be regarded as

a (simple) strongly convex local approximation of F around xk ∈ X , that preserves

the first order properties of F at xk. Indeed, the key assumption B2 simply stipulates

the value of the gradient of F̃i(·; xk) computed at xki is equal to ∇xiF (xk). Finding

a surrogate F̃i that satisfies Assumption B-B? is in general non difficult; in any case,
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one can always choose F̃i(xi; x
k) =

〈
∇xiF (xk),xi − xki

〉
+ α‖xi − xki ‖2

2, where α is

a positive constant, which leads to the classical proximal-gradient update. However,

having the possibility to use a different F̃i may be useful to exploit some potential

structure in the problem; of course, a trade-off is expected: the more complex the

F̃i, the more information will be retained in x̂i(x
k), but also the more intensive its

computation is expected to be. On the other hand, the solution of more complex

subproblems will in general decrease the number of information exchanges in the

system, which may be a key advantage in many applications. Valid instances of F̃i’s

going beyond the proximal-gradient has already been discussed in Section 2.2.

3.3 AsyFLEXA: Probabilistic Model

In this section, we complete the description of AsyFLEXA, introducing the prob-

abilistic model underlying the generation of the pairs index-delays.

Given Problem (P) and an initial point x0, the pair (ik,dk) in Step 1 of Algo-

rithm 4, for each k, is a realization of a random vector ωk , (ik,dk), taking values

on N × D, where D is the set of all possible delay vectors. We anticipate that all

the delays dki are assumed to be bounded (Assumption C below), i.e., dki ≤ D, for

all k and i. Hence, D is contained in the set of all possible N -length vectors whose

components are integers between 0 and D. Let Ω be the sample space of all the

sequences ω , {(ik,dk)}.1 We will use the following shorthand notation: we set

ω0:k , (ω0,ω1, . . . ,ωk) (the first k + 1 random variables); ω0:k , (ω0,ω1, . . . ,ωk)

(k + 1 possible values for the random variables ω0:k); and ω0:k , (ω0,ω1, . . . ,ωk)

(the first k + 1 elements of ω). We introduce next the probability space that will be

used to build our probabilistic model.

The sample space is Ω. To define a σ-algebra on Ω, we consider, for k ≥ 0 and

every ω0:k ∈ N ×D, the cylinder

Ck(ω0:k) , {ω ∈ Ω : ω0:k = ω0:k},
1With a slight abuse of notation, we denote by ωk the k-th element of the sequence ω ∈ Ω, and by
ωk the value taken by the random variable ωk over ω, i.e. ωk(ω) = ωk.
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i.e., Ck(ω0:k) is the subset of Ω of all sequences ω whose first k elements are ω0, . . .ωk.

Let us denote by Ck the set of all possible Ck(ω0:k) when ωt, t = 0, . . . , k, takes all

possible values; note, for future reference, that Ck is a partition of Ω. Denoting by

σ
(
Ck
)

the σ-algebra generated by Ck, define for all k,

Fk , σ
(
Ck
)

and F , σ
(
∪∞t=0Ct

)
. (3.5)

We have Fk ⊆ Fk+1 ⊆ F for all k. The latter inclusion is obvious, the former derives

easily from the fact that any cylinder in Ck−1 can be obtained as a finite union of

cylinders in Ck.

The desired probability space is fully defined once P(Ck(ω0:k)), the probabilities of

all cylinders, are given. These probabilities should satisfy some very natural, minimal

consistency properties, namely: (i) the probabilities of the union of a finite number

of disjoint cylinders should be equal to the sum of the probabilities assigned to each

cylinder; and (ii) suppose that a cylinder Ck(ω0:k) is contained in the union U of

a countably infinite number of other cylinders, then P(Ck(ω0:k)) ≤ P (U). Suppose

now that such a P is given. Classical results (see, e.g., [74, Theorem 1.53]) ensure

that one can extend these probabilities to a probability measure P over (Ω,F), thus

defining our working probability space A , (Ω,F , P ). By appropriately choosing the

probabilities of the cylinders, we can model in a unified way many cases of practical

interest; several examples are given in Section 3.3.1.

Given A, we can finally define the discrete-time, discrete-value stochastic process

ω, where {ωk(ω)} is a sample path of the process. The k-th entry ωk(ω) of ω(ω)−the

k-th element of the sequence ω−is a realization of the random vector ωk = (ik,dk) :

Ω 7→ N ×D. This process fully describes the evolution of Algorithm 1. Indeed, given

an instance of Problem (P) and a starting point, the trajectories of the variables xk

and xk−d
k

are completely determined once a sample path {(ik,dk)} is drawn from ω.

Note that the joint probability

pω0:k(ω0:k) , P(ω0:k = ω0:k)
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is simply the probability of the corresponding cylinder: Ck(ω0:k). We will often

need to consider the conditional probabilities p((i,d) |ω0:k) , P(ωk+1 = (i,d)|ω0:k =

ω0:k). Note that we have

p((i,d) |ω0:k) =
P(Ck+1(ω0:k+1))

P(Ck(ω0:k))
, (3.6)

where we tacitly assume p((i,d) |ω0:k) = 0, if P(Ck(ω0:k)) = 0. We remark that these

probabilities need not be known in practice to implement the algorithm. They are

instead determined based on the particular system (hardware architecture, software

implementation, asynchrony, etc.) one is interested to model. Here, we make only

some minimal assumptions on these probabilities and stochastic model, as stated

next.

Assumption C (On the probabilistic model). Given AsyFLEXA and the

stochastic process ω, suppose that

(C1) There exists a D ≥ 0, such that dki ≤ D, for all i and k;

(C2) For all i ∈ N and ω ∈ Ω, there exists at least one t ∈ [0, . . . , B], with B > 0,

such that ∑
d∈D

p((i,d) |ω0:k+t−1) ≥ pmin, if pω0:k+t−1(ω0:k+t−1) > 0,

for some pmin > 0;

(C3) dk
ik

= 0, for any k ≥ 0.

These are quite reasonable assumptions, with very intuitive interpretations. C1 just

limits the age of the old information used in the updates. Condition C2 guarantees

that every B iterations each block-index i has a non negligible positive probability

to be updated. These are minimal requirements that are satisfied in practically all

computational environments. The condition dk
ik

= 0 means that when a worker

updates the ik-th block, it uses the most recent value of that block-variable. This

assumption is automatically satisfied, e.g., in a message passing-based system or in
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a shared memory-based architecture if the variables are partitioned and assigned to

different cores (see Example 6 in Section 3.3.1). If instead all the cores can update all

variables, dk
ik

= 0 can be simply enforced by a software lock on the ik−th block of the

shared memory: once a core c has read a block-variable xik , no other core can change

it, until c has performed its update. Note that in practice it is very unlikely that

this lock affects the performance of the algorithm, since usually the number of cores

is much smaller than the number of block-variables. Actually, in some systems, this

lock can bring in some benefits. For instance, consider two cores sharing all variables,

with one core much faster than the other. A lock on xk
ik

will prevent potentially

much older information to overwrite most recent updates of the faster core. Note

also that conditions similar to C3 are required by all block asynchronous methods in

the literature but [55]: they take the form of locking the variable to update before

performing a prox operation [54].

We will use Assumption C when considering AsyFLEXA equipped with a fixed

stepsize γ. When we are interested in proving convergence for diminishing stepsizes

rules we will replace Assumption C with the following set of similar assumptions.

Assumption C’ (On the probabilistic model). Given AsyFLEXA and the

stochastic process ω, suppose that

(C1’) There exists a D ≥ 0, such that dki ≤ D, for all i and k;

(C2’) For all i = 1, . . . , N and ω0:k−1 such that pω0:k−1(ω0:k−1) > 0, it holds∑
d∈D

p((i,d) |ω0:k−1) ≥ pmin,

for some pmin > 0;

(C3’) It holds that

P
({
ω ∈ Ω : lim inf

k→∞
p(ω |ω0:k−1) > 0

})
= 1.
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C1’ is a duplicate of C1, repeated here for ease of reference. C2 guarantees that

at each iteration every block-index i has a non negligible positive probability to be

updated. C3 simply says, roughly speaking, that the probability of the event that

comprises all ω such that for an infinite number of iterations the algorithm picks-up

a pair index-delay whose probability decreases to zero, must have zero probability.

Very loosely speaking, C3 requires that the overall probability of increasingly unlikely

possible evolutions of the algorithm be zero. A very simple case in which C2 and C3

are automatically satisfied is when the probabilities p((i,d) |ω0:k) are independent of

history ω0:k, for all k.

Remark The knowledge of the probability space A is by no means required from the

workers to perform the updates. One need not even specify explicitly the probability

distribution; it is sufficient to show that a probability space A satisfying Assumption C

exists for the specific system (e.g., computational architecture, asynchronous protocol,

etc.) under consideration. We show next how to do so for several schemes of practical

interest.

3.3.1 Examples and special cases

The proposed model encompasses a gamut of practical schemes, some of which

are discussed next. It is of note that our framework allows us to analyze in a unified

way not only randomized methods, but also deterministic algorithms.

1. Deterministic sequential cyclic BCD: In a deterministic, cyclic method there

is only one core that cyclically updates all block-variables; for simplicity we assume

the natural order, from 1 to N . Since there is only one core, the reading is always

consistent and there are no delays: D = {0}. To represent the cyclic choice it is now

enough to assign probability 1 too all cylinders of the type

Ck = {ω : ω0 = (1,0), ω1 = (2,0), . . . , ωk = ((k mod N) + 1,0)}

and probability zero to all others. It is easy to see that Assumption C (or Assumption

C’) is satisfied. This can be seen as a probabilistic model of the deterministic algo-
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rithm in [51]. The consequence however is that, by Theorems 3.4.1-3.4.2, convergence

can be claimed only in a probabilistic sense (a.s.). This is not surprising, as we are

describing a deterministic algorithm as limiting case of a probabilistic model.

2. Randomized sequential BCD: Suppose now that there is only one core selecting

at each iteration randomly an index i, with a positive probability. Therefore, at each

iteration, xk−d
k

= xk or, equivalently, D = {0}. This scheme can be described

by a stochastic process, where the cylinders are assigned arbitrary probabilities but

satisfying all the conditions given in previous subsection.

3. Randomized parallel BCD: Suppose that there are C cores and the block-

variables are partitioned in C groups I1, I2, . . . , IC ; each set Ic is assigned to one

core only, say c. Hence, if core c performs the update at iteration k, all variables

i ∈ Ic satisfy dki = 0. Denote by 0(c), 1(c), . . . , and (C − 1)(c), c = 1, . . . , C,

the N -length vectors whose components are zeros in the positions of the block-

variables in the set Ic and all 0, 1, . . . , C − 1 in the other positions, respectively.

Set D = {0(c),1(c), . . . , (C − 1)(c), c = 1 . . . , C}, and denote by ck the core per-

forming the update at iteration k. Assign to the cylinders the following probabilities:

∀i0, i1, . . . , i2C−1, . . . ∈ N ,

P(C0((i0,0(c0)))) = 1/N,

P(C1((i0,0(c0)), (i1,1(c1)))) = 1/N2,

. . .

P(CC−1((i0,0(c0)), (i1,1(c1)), . . . , (iC−1,C − 1(cC−1)))) = 1/NC ,

P(CC((i0,0(c0)), (i1,1(c1)), . . . , (iC−1,C − 1(cC−1)), (iC ,0(cC)))) = 1/NC+1,

P(CC+1((i0,0(c0)), (i1,1(c1)), . . . , (iC ,0(cC)), (iC+1,1(cC+1)))) = 1/NC+2,

. . .

P(C2C−1((i0,0(c0)), (i1,1(c1)), . . . , (i2C−1,C − 1(c2C−1)))) = 1/N2C ,

. . .
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In words, in the first C iterations (from k = 0 to k = C − 1), all updates are

performed using the same vector xk−d
k

= x0; and at each iteration any index has

uniform probability to be selected. This situation is then repeated for the next C

iterations, this time using xk−d
k

= xC , and so on. This model clearly corresponds

to a randomized parallel block-coordinate descent method wherein C cores update C

block-variables chosen uniformly at random. Note that Assumption C (or Assumption

C’) is trivially satisfied.

The example above clearly shows that defining probabilities by using the cylinders

can be quite tedious even in simple cases. Using (3.6) we can equivalently define the

probabilistic model by specifying the conditional probabilities p((i,d) |ω0:k), which

is particularly convenient when at every iteration k the probability that ωk takes

value (i,d) is independent of ω0:k−1. We exemplify this alternative approach in the

following examples.

4. Asynchronous BCD in shared memory systems: Consider a generic shared

memory system, under Assumption C3. Then, the set D is given by all the N -length

vectors whose components are non negative integers between 0 and D. Suppose

that, at every k, all cores select an index uniformly at random, but the probabilities

associated with the delays can be different. Then, for every k ≥ 0, given ω0:k, and

i ∈ N , we have

∑
d∈D

p((i,d) |ω0:k) =
1

N
.

This setting is consistent with the one studied in [49,50,54,62].

Our probabilistic model however is more general than that of [49, 50, 54, 62].

For instance, differently from [49, 50, 54, 62], we can easily model scenarios wherein∑
d∈D p((i,d) |ω0:k) are not uniform and/or depend on the iteration and/or on the

history of the algorithm. This possibility has important ramifications, since the as-

sumption that the indices are selected uniformly at random is extremely strong and

unrealistic. In fact, it is satisfied only if all cores have the same computational power

and have access to all variables. This is not the case, in most of practical settings.
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For instance, consider a computational architecture composed of two CPUs sharing

all the variables, with one CPU much faster than the other. If the recent history

exhibits iterations with a small value of ‖dk‖∞, then it is more likely that the slower

core will perform the next update, and vice versa. Similar situations are expected also

in other common settings, such as shared memory systems with variable partitioning

(see Example 5 below) and message passing-based architectures. This clearly shows

that our model captures realistic architectures more faithfully.

5. Asynchronous BCD in shared memory systems with variable partition-

ing: Consider the setting as in Example 4, but now partition the variables across

cores, as described in Example 3. This is the configuration most often used in numer-

ical experiments, since it has proven to be most effective in practice; it also models a

message passing architecture. In order to satisfy C3, it is enough to set, for all ω0:k

and i ∈ Ic,

p((i,d) |ω0:k) = 0, if some dj 6= 0, j ∈ Ic.

A variant of this setting is the without replacement updating scheme considered

in the numerical experiments of [54]: the block-variables are partitioned among the

cores and, at each “epoch”, variables in each partition are first randomly shuffled

and then updated cyclically by the core. This choice of the updates was shown to be

numerically very effective. While [54] cannot provide any theoretical analysis of such

a scheme, we can easily cover this case by just merging this example with Example

2.

Other examples: Several other examples can be considered, which we omit because

of space limitation. Here we only mention that it is quite straightforward to analyze

by our model also “hybrid” systems, which combine somehow two or more examples

described above. For instance, consider a cluster computer system wherein the opti-

mization variables are partitioned across the machines; let Im be the set of variables

controlled by machine m and stored in its internal shared memory. The update of the

variables in Im is performed by the processors/cores of machine m according to some

shared memory-based asynchronous scheme (e.g., subject to inconsistent read). The
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information on the variables not in Im is instead updated through communication

with the other processors (message passing)

3.4 AsyFLEXA: Convergence Results

We present now our main convergence theorems, in the setting described so far.

The extension to the case of nonconvex constraints is addressed in Sec. 3.5.

As already discussed in the Introduction of this Chapter, we consider for AsyFLEXA

both fixed and diminishing stepsizes.

3.4.1 AsyFLEXA with fixed stepsize γ

In the rest of this Section, we will use ‖MV (x)‖2 as a measure of optimality, with

MV (x) , x− arg min
y∈X

{
〈∇f(x),y − x〉+

N∑
i=1

gi(yi) +
1

2
‖y − x‖2

2

}
. (3.7)

This is a valid measure of stationarity becauseMV (x) is continuous and ‖MV (x)‖2 = 0

if and only if x is a stationary solution of Problem (P).

To state our major convergence result, we need to introduce first the following

intermediate definitions. Recalling the definition of B as in Assumption C2, let Kki
be the (random) set of iterations between k −D and k + B − 1 at which the block-

variable i has been updated, Kki , {t ∈ [k − D; k + B − 1] | it = i}, while K̄ki is

the subset of Kki containing only the elements of Kki (iterations) between k −D and

k−1. Our convergence results leverage a Lyapunov function Ṽ that suitably combines

present and past iterates, and it is defined as

Ṽ (xk, . . . ,xk−D) , V (xk) +D
L

2

(
k−1∑

l=k−D

(l − (k − 1) +D) ‖xl+1 − xl‖2
2

)
, (3.8)

where it is understood that xl = x0, if l < 0; therefore, Ṽ is well defined for any

k ≥ 0. Note that, by this convention, Ṽ (x0, . . . ,x0−D) = V (x0). Furthermore, we
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also have V ? , min
x∈X

V (x) ≤ min
[xk,...,xk−D]∈XD+1

Ṽ (xk, . . . ,xk−D). We are now ready to

state our major convergence result.

Theorem 3.4.1 Given Problem (P) under Assumptions A-B-B?-C, along with the

stochastic process ω. Let {xk} be the sequence generated by AsyFLEXA. Suppose that

the stepsize γk is fixed γk = γ ∈ (0; 1] for any k ≥ 0 and such that

γ <
τ

L+ D2L
2

. (3.9)

Define Tε to be the first iteration such that E
(
‖MV (xk)‖2

2

)
≤ ε. Then, the following

hold:

(a) Every limit point of {xk} is a stationary solution of (P) a.s.;

(b) The sequence of objective function values {V (xk)} converges a.s.;

(c) Tε ≤
C1(γ,D)(B + 1)(V (x0)− V ?)

ε
(3.10)

+
C2(γ,D)γ2

ε

Tε∑
k=0

E

 N∑
i=1

Mk
i

∑
t∈Kki

(
Ṽ (xt, . . . ,xt−D)− Ṽ (xt+1, . . . ,xt+1−D)

)
︸ ︷︷ ︸

B

,

where:

C1(γ,D) ,
2 (1 + (1 + LB)(1 + LA + LB) + γ2Npminα

−1(1 + (L+ 1)2))

γ
(
τ − γ

(
L+ D2L

2

))
(pmin − pminα)

, (3.11)

C2(γ,D) ,
2BLA(1 + LA + LB)

γ
(
τ − γ

(
L+ D2L

2

))
(pmin − pminα)

, (3.12)

α is an arbitrary fixed value in (0; 1), Mk
i , max

l=k,...,k+B
|K̄li| .

Proof See the Appendix of this Chapter.

The theorem states that convergence to stationary points occurs a.s. (the objective

function values converge too); it also gives an estimate of the number of iterations Tε

necessary to enforce E
(
‖MV (xk)‖2

2

)
≤ ε. Convergence is guaranteed if, in particular,

the stepsize is sufficiently small; the bound (3.9) makes this precise. Note that if
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the method is synchronous, D = 0, the bound in (3.9), going like the inverse of

the Lipschitz constant, becomes the renowned conditions used in many synchronous

(proximal-gradient-like) schemes. The term D2/2 in the denominator of (3.9) should

then be seen as the price to pay for asynchrony: the larger the possible delay D, the

smaller γ should be to tolerate such delays. Roughly speaking, this means that the

more chaotic the computational environment, the more conservative the step should

be, and consequently the smaller the steps of the algorithm are.

The interpretation of the bound (3.10) is not immediate, because of the presence

of the term B; we now elaborate on it. If there exists a (deterministic) bound C on

Mk
i , i.e., Mk

i ≤ C for all k and i, then one can write

B ≤ CE

 Tε∑
k=0

N∑
i=1

∑
t∈Kki

(
Ṽ (xt, . . . ,xt−D)− Ṽ (xt+1, . . . ,xt+1−D)

)
≤ C(B +D)(V (x0)− V ?).

Therefore, (3.10) can be upper bounded as

Tε ≤
[
C1(γ,D) · (B + 1) + C2(γ,D) · γ2 · C · (B +D)

] V (x0)− V ?

ε
. (3.13)

Recalling the definition of Mk
i and that |K̄ki | is a random variable counting the number

of times the index i has been updated in the iteration window [k−D, k−1], Mk
i ≤ D

always holds; therefore, one can always take C = D. Of course this is a very rough

approximation: it is hard to expect that in a given time window always the same

variable, ī, is updated and, even if this were the case, all other Mk
i , i 6= ī, would be

0 and not D. Consider for example the commonly analyzed “uniform case” where

the processing of every block-variable requires the same time. In this case one can

reasonably take C = 1 in (3.13) independently of the number of workers.

This intuition is corroborated by our experiments, which are summarized in Table

3.1. AsyFLEXA was ran on two different architectures, namely: a shared-memory

system with 10 cores, and a message passing architecture composed of two nodes, with

10 cores each. Two LASSO problems with 10, 000 variables each were considered,
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Table 3.1.
Average delay and maximum delay D for AsyFLEXA, ran on a multi-core
machine and on a message passing system.

Average Delay D # of cores

Multi-core Machine: Balanced Workload 1.11 3 10

Multi-core Machine: Unbalanced Workload 2.58 28 10

Message Passing System: Balanced Workload 1.87 30 10 per node

Message Passing System: Unbalanced Workload 3.01 36 10 per node

and the variables were equally partitioned across the workers. In the first LASSO

instance, the Hessian matrix was a dense matrix, which models situations where the

workload is equally distributed across the workers. In the second LASSO problem, the

Hessian matrix had many sparse rows, to create some unbalancedness in the workers’

workload. Table 3.1 shows the empirical average delay (the average is taken over

the components of the delay vector and time) and the maximum delay D, estimated

in 500 epochs (one epoch is triggered when all blocks have been updated once). As

expected, D is much larger than the experienced average delay, confirming that (3.13)

with C = D is a very conservative bound. While C can always be pessimistically

upper bounded by D, a tighter value can be found by tailoring the analysis to the

specific problem and architecture under consideration.

We remark the importance of the use, in the complexity analysis, of the M i
k,

counting the number of times the index i has been updated in a certain iteration

window. The use of these variables seems to be a new feature of our analysis. While

getting a sharp estimate for the upper bound C may be difficult in practice, the

bound (3.10) gives a good insight into the elements that really influence the algorithm,

showing that what really matters, in some expressions appearing in (3.10), is not D,

but the usually much smaller number of times the blocks are actually updated. The

use of these variables allows us to get a sharper bound with respect to the case in
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which one sets C = D. From this point of view, we believe that typical upper bounds,

as those obtained in [49,50,53–55], where D is the only considered “delay”, do not give

an accurate description of the actual worst-case scenario. Finally, we note that from

our numerical tests it seems that the theoretical upper bound on the stepsize as in

(3.9) is in general rather conservative. This is however not surprising and common to

this type of analysis, as several bounds are derived considering worst-case scenarios.

On the other hand, to the time of writing, this is the only available convergence result

of an asynchronous algorithm in the considered problem setting and under a realistic

probabilistic model.

Almost linear speedup: To study the speedup achievable by the proposed method,

we make two simplifying assumptions, consistent with those made in the literature,

namely: (a) D is proportional to the number of workers, which is reasonable in “sym-

metric” situations; and (b) Tε is a good proxy for the number of iterations performed

by the algorithm to reach the desired accuracy. Choose the stepsize γ to be small

enough so that (3.9) is always satisfied in the range of values of D under consider-

ation; then C1(γ,D) and C2(γ,D) can be taken to be constants. Consider now the

two summands in square brackets in (3.13). Without the second term, one would

have ideal linear speedup. However, since one can expect the second term to be much

smaller than the first (at least when D is not large), an almost linear speedup can be

anticipated. In fact, by (3.11) and (3.12), the second term is smaller than the first

one, if γ is sufficiently small. It is also interesting to consider the behavior of the

speedup when the number N of variables increases. To this end, note that, given a

fixed number of workers and the problem Lipschitz constants, C2(γ,D) is constant,

while C1(γ,D) is an increasing function of N , going to infinite as N goes to infinity.

Therefore, we can conclude that i) the larger the values of N , the smaller the negative

influence of the number of workers on the speedup; and ii) as N increases, almost

linear speedups should be expected for larger and larger ranges of number of workers.

To support the above statements, we measured the speedup achieved by AsyFLEXA

on the LASSO problem considered in the first row of Table 3.1. We ran AsyFLEXA
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Table 3.2.
Comparison between ideal and measured speedup of AsyFLEXA running
on a multi-core machine with 1-40 cores; LASSO problem from 5000 to
40000 variables; balanced workload; τ = 50, L = 10, and γ = 0.1; no
failures observed.

# of workers 1 2 4 8 10 20 30 40

Ideal speedup 1 2 4 8 10 20 30 40

Observed speedup 5k variables 1 1.6 3.7 6.7 8.9 19.1 24.6 30.4

Observed speedup 10k variables 1 1.8 4.1 7.9 8.5 18.7 26.3 32.3

Observed speedup 20k variables 1 1.9 3.9 7.8 8.5 19.3 28.9 35.9

Observed speedup 40k variables 1 1.9 3.9 7.9 9.3 18.9 29.4 37.7

using up to 40 cores and a stepsize γ satisfying the theoretical upper bound (3.9).

Table 3.2 shows the results of these experiments. Consistently with our previous ob-

servations, AsyFLEXA experiences a practical speedup which is reasonably close to

the ideal one, but, in some cases, deteriorates somewhat when the number of workers

increases, see in particular the results for 30 and 40 workers. Even more interestingly,

the results in Table 3.2 show that the speedup achieved by AsyFLEXA becomes closer

and closer to the ideal one as the number of variables N increases, supporting the

theoretical behavior expected from (3.13) and the considerations made above. Note

that the sometimes slightly more erratic behavior observed for a smaller number of

workers is explained by the fact that, for this case, almost ideal speedup is expected

for all values of N and so statistical fluctuations can play a significant role. Extensive

numerical simulations to investigate this trend will be the subject of future research;

the interested reader can find some preliminary experiments in Section 3.6.
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3.4.2 AsyFLEXA with diminishing stepsize γk

Algorithms with diminishing stepsizes usually work better in practical experi-

ments, because they do not need to be as small as usually required by the convergence

theory for fixed stepsizes. Furthermore, the choice of a fixed proper stepsize would

require the knowledge of unkwnown problem parameters, whose (generally loose) es-

timates might result in a very small value of the stepsize. In the rest of this Section,

we consider the following assumptions on the stepsize sequence {γk}.

Assumption D (On the stepsize). The sequence {γk} is chosen so that

(D1) γk ↓ 0;
∑∞

k=0 γ
k = +∞; and

∑∞
k=0(γk)2 < +∞;

(D2) γk+1

γk
≥ η ∈ (0, 1).

Conditions in D1 are standard and satisfied by most practical diminishing stepsize

rules; see, e.g., Section 2.2. D2 dictates that
∑κ

k=0 γ
k ≥ γ0(η0 + η1 + · · ·+ ηκ), that is

the partial sums
∑κ

k=0 γ
k must be minorized be a convergent geometric series. Given

that
∑∞

k=0 γ
k = +∞, D2 is clearly very mild and indeed it is also satisfied by most

classical diminishing stepsize rules. For example, (2.12) satisfies Assumption D and

has been found very effective in our experiments.

We can now provide the following convergence result of AsyFLEXA.

Theorem 3.4.2 Given Problem (P) under Assumptions A-A?-B-C’-D, along with

the stochastic process ω. Let {xk} be the sequence generated by AsyFLEXA. Suppose

that {xk} is bounded almost surely (a.s.). Then, the following hold:

(a) Every limit point of {xk} is a stationary solution of Problem (P) a.s.;

(b) The sequence of objective function values {V (xk)} converges a.s..

Proof See the Appendix of this Chapter.
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In addition to Assumptions A-A?-B-C’-D, Theorem 3.4.2 requires the sequence

{xk} to be bounded a.s.. The following corollary provides some concrete conditions

for this boundedness to hold.

Corollary 3.4.3 The same conclusions of Theorem 3.4.2 hold if the assumption on

the a.s. boundedness of {xk} is replaced by either of the following two:

i) {γk} is such that γk+1 ≤ γk, for sufficiently large k; and ‖∇xiF‖ ≤ L∇i on Xi,

for any i ∈ N ;

ii) C3 holds.

Proof See the Appendix of this Chapter.

3.5 Nonconvex Constraints

In this Section, we remove the assumption that all constraints are convex, and

study the following more general nonconvex constrained optimization problem:

min
x∈Rn

V (x) = F (x) +
N∑
i=1

gi(xi)

xi ∈ Xi, i = 1, . . . , N,

c1(x1) ≤ 0, . . . , cN(xN) ≤ 0,

 , K
(P′)

where ci(xi) ≤ 0 are nonconvex private constraints, with ci : Xi → Rmi ; let also define

Ki , {xi ∈ Xi : ci(xi) ≤ 0, }. Note that ci(xi) is a vector function, whose individual

component is denoted by ci,j, with j = 1, . . . ,mi. Problem (P′) is motivated by

several applications in signal processing, machine learning, and networking; see [75]

and references therein for some concrete examples.

To deal with nonconvex constraints, we need some regularity of the constraint

functions. Anticipating that all ci are assumed to be C1 on Xi, we will use the

Mangasarian-Fromovitz Constraint Qualification (MFCQ).
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Definition 3.5.1 A point x̄ ∈ K satisfies the MFCQ if the following implication is

satisfied:

0 ∈
N∑
i=1

∑
j∈J̄i

µi,j∇xci,j(x̄i) +NX (x̄)

µi,j ≥ 0, ∀j ∈ J̄i, ∀i ∈ N

⇒ µi,j = 0, ∀j ∈ J̄i, ∀i ∈ N , (3.14)

where NX (x̄) , {z ∈ X : zT(y− x̄) ≤ 0, ∀y ∈ X} is the normal cone to X at x̄, and

J̄i , {j : ci,j(x̄i) = 0} is the index set of nonconvex constraints that are active at x̄i.

We study Problem (P′) under the following assumptions.

Assumption A′ (On the problem model).

(A1′) Each set Xi ⊆ Rni is nonempty, closed, and convex;

(A2′) F is C1 and its gradients ∇xiF are globally L-Lipschitz continuous on K;

(A3′) Each gi : Xi → R is convex;

(A4′) K is a compact set;

(A5′) Each ci,j is C1;

(A6′) All feasible points of problem (P′) satisfy the MFCQ.

Assumptions A1′-A3′ are a duplication of A1-A3, repeated here for ease of reference;

A4′ is stronger than A4, and made here for the sake of simplicity (one could relax

it with A4); and A5′ is a standard differentiability assumption on the non convex

constraints ci,j.

• AsyFLEXA-NCC - We are now ready to introduce our asynchronous algorith-

mic framework for (P′), termed AsyFLEXA-NCC (where NCC stands for Non Convex

Constraints). The method is still given by Algorithm 4, with the only difference that

now also the nonconvex constraints are replaced by suitably chosen convex approxi-

mations; the probabilistic model concerning the choice of the the pair index-delays is

the same as the one we used in the case of convex constraints, see Section 3.3.
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More specifically, AsyFLEXA-NCC is given by Algorithm 4 (with fixed stepsize

γk = γ, as highlighted later) wherein the subproblem (3.3) in Step 2 is replaced by

x̂ik(x
k−dk) , arg min

x
ik
∈K

ik
(xk
ik

)

{
F̃ik(xi; x

k−dk) + gik(xi)
}
, (3.15)

where F̃ik is defined as in (3.3); Kik(xkik) is a convex approximation of Kik at xk−d
k
,

defined as

Kik(xkik) , {xi ∈ Xik : c̃ik,j(xi; x
k
ik) ≤ 0, j = 1, . . . ,mik};

and c̃ik,j : Xik×Kik → R is a suitably chosen surrogate of cik,j. Note that Kik depends

on xk
ik

and not on x
k−dk

ik

ik
, because of Assumption C3 (dk

ik
= 0).

The surrogate functions c̃ik,j can be chosen according to the following assumptions.

Assumption E (On the surrogate functions c̃i,j’s).

(E1) Each c̃i,j(·; y) is C1 on an open set containing Xi, and convex on Xi for all

y ∈ Ki;

(E2) c̃i,j(y; y) = ci(y), for all y ∈ Ki;

(E3) ci,j(z) ≤ c̃i,j(z; y) for all z ∈ Xi and y ∈ Ki;

(E4) c̃i,j(·; ·) is continuous on Xi ×Ki;

(E5) ∇yici,j(y) = ∇c̃i,j(y; y), for all y ∈ Ki;

(E6) ∇c̃i,j(·; ·) is continuous on Xi ×Ki;

(E7) Each c̃i,j(·; ·) is Lipschitz continuous on Xi ×Ki.

Roughly speaking, Assumption E requires c̃i,j to be an upper convex approximation of

ci,j having the same gradient of ci,j at the base point y. Finding such approximations

is less difficult than it might seem at a first sight. Two examples are given below,

while we refer the reader to [14,75] for a richer list.
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• Suppose ci,j has a L∇ci,j -Lipschitz continuous gradient on the (compact) set Ki. By

the Descent Lemma [9, Proposition A32], the following convex approximation satisfies

Assumption E:

c̃i,j(x; y) , ci,j(y) +∇xci,j(y)T (x− y) +
L∇ci,j

2
‖x− y‖2

2 ≥ ci,j(x).

• Suppose that ci,j has a DC structure, that is, ci,j(x) = c+
i,j(x)− c−i,j(x), c+

i,j and c−i,j

are two convex and continuously differentiable functions. By linearizing the concave

part −c−i,j and keeping the convex part c+
i,j unchanged, we obtain the following convex

upper approximation of ci,j that satisfies Assumption E:

c̃i,j(x; y) , c+
i,j(x)− c−i,j(y)−∇xc

−
i,j(y)T (x− y) ≥ ci,j(x).

Note that the former example is quite general and in principle can be applied to

practically all constraints, even if it could be numerically undesirable if L∇ci,j is too

large; the latter example covers, in a possibly more suitable way, the case of concave

constraints.

• AsyFLEXA-NCC: Convergence - In order to gauge convergence, we redefine

the stationarity measure MV , to account for the presence of nonconvex constraints.

We use ‖M c
V (x)‖2, with

M c
V (x) = x− arg min

y∈K1(x1)×...×KN (xN )

{
〈∇xf(x),y − x〉+ g(y) +

1

2
‖y − x‖2

2

}
.

This is is a valid merit function: ‖M c
V (x)‖2 is continuous and it is zero only at

stationary solutions of (P′) [76].

Theorem 3.5.1 Given Problem (P′) under Assumptions A’-B-B?-C-E, along with

the stochastic process ω. Let {xk} be the sequence generated by AsyFLEXA-NCC.

Suppose that the stepsize sequence {γk} is fixed γk = γ ∈ (0; 1] and chosen as in

(3.9). Define Tε to be the first iteration such that E
(
‖M c

V (xk)‖2
2

)
≤ ε. Then, the

following hold: i) xk ∈ K1(xk1)× . . .×KN(xN) ⊆ K for all k ≥ 0 (iterate feasibility);

and ii) all results in Theorem 3.4.1 hold with MV replaced by M c
V .
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Proof See the Appendix of this Chapter.

We are aware of only one other BCD-asynchronous method [49,50] able to deal with

nonconvex constraints. This method requires the ability to find global minima of

nonconvex subproblems while our scheme does not suffer from this drawbacks, as it

only calls for the solution of strongly convex subproblems. On the other hand, it

needs a feasible starting point and the ability to build approximations c̃i,j satisfying

Assumption E. While our requirements are easier to be met in practice (and our

analysis is based on a grounded probabilistic model), we think that the two approaches

complement each other and may cover different applications.

3.6 Numerical Results

In this section we test the diminshing-stepsize version of AsyFLEXA on (convex)

LASSO problems and on a nonconvex sparse learning problem, and compare it to

state-of-art methods. Results for the fixed-stepsize version of the method whose

complexity has been studied in Section 3.4.1 are not reported. Indeed, as usual for

these methods, if the theoretical stepsize (3.9) is used, the algorithm simply does not

make any practical progress towards optimality in a reasonable number of iterations.

If, on the other hand, we disregard the bound (3.9) that, we recall, is an upper

bound, and instead we use a “large” stepsize (in particular we found the value of 0.95

practically effective), the numerical results are essentially the same as those obtained

with the diminishing-stepsize version, for which we report the results. Since this

latter version, as shown in Theorem 3.4.2, has theoretical convergence guarantee for

the chosen stepsize rule, we present the experimental results only for this version of

the method.
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3.6.1 Implementation

All tested codes have been written in C++ using Open-MP. The algorithms were

tested on the Purdue’s Community Cluster Snyder on a machine with two 10-Core

Intel Xeon-E5 processors (20 cores in total) and 256 GB of RAM.

• textbfAsyFLEXA - We tested AsyFLEXA setting N = n, i.e. we considered scalar

subproblems. These subproblems, for the choice of F̃i that we used and that we

specify below for each class of problems, can be solved in closed form using the

soft-thresholding operator [20]. For the stepsize sequence {γk} we used the rule

γk+1 = γk(1− µγk) with γ0 = 1 and µ = 10−6.

We compared AsyFLEXA with the following state-of-the-art asynchronous schemes:

ASYSPCD and ARock. We underline that the theoretical stepsize rules required for

the convergence of ASYSPCD and ARock lead to practical non-convergence, since

they prescribe extremely small stepsizes. For both algorithms we made several at-

tempts to identify practical rules that bring the best numerical behavior, as detailed

below.

• ASYSPCD - This is the asynchronous parallel stochastic proximal gradient co-

ordinate descent algorithm for the minimization of convex and nonsmooth objective

functions presented in [54]. Since the algorithm was observed to perform poorly if

the stepsize γ is chosen according to [54, Th. 4.1]−the value guaranteeing theoretical

convergence−in our experiments we used γ = 1, which violates [54, Th. 4.1] but

was effective on our test problems. Note also that this is the value actually used in

the numerical tests reported in [54]. We underline that in order to implement the

algorithm it is also required to estimate some Lipschitz-like constants.

• ARock - ARock [55] is an asynchronous parallel algorithm proposed to compute

fixed-points of a nonexpansive operator. Thus it can be used to solve convex op-

timization problems. The algorithm requires a stepsize and the knowledge of the

Lipschitz constant of ∇f . Here, again, the use of stepsizes that guarantee theoretical

convergence leads to very poor practical performance. In this case we found that the
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most practical, effective version of the method could be obtained by using for the

stepsize the same rule employed in our AsyFLEXA, with a safeguard that guarantees

that the stepsize never becomes smaller than 0.1.

We also tested the stochastic version of Asynchronous PALM [49], an asynchronous

version of the Proximal Alternating Linearized Minimization (PALM) algorithm for

the minimization of nonsmooth and nonconvex objective functions. We did not report

the results, because its practical implementation (using unitary stepsize rather than

the one guaranteeing convergence, for the reasons explained above) basically coincides

with the one of ASYSPCD.

Before reporting the numerical results it is of interest to briefly contrast these

algorithms in order to better highlight some interesting properties of AsyFLEXA.

1. In all tests we partitioned the variables among the cores, with only one core

per partition. Therefore, each core is in charge of updating its assigned vari-

ables and no other core will update those variables. There is consensus in the

literature that this configuration brings better results experimentally in shared

memory architectures, see e.g. [54, 61]. Furthermore, if one is considering a

message passing architecture, this is actually the only possible choice. It is

then interesting to note that this choice is fully covered by our theory, while

the theory of ARock [55] requires that each core has access to all variables and

therefore can not handle it. The theory supporting ASYSPCD [54] requires that

at each iteration a variable is updated, with all variables selected with equal

probability. The equal probability requirement in the partitioned configuration

can not be theoretically excluded, but is totally unlikely: it would require that

all cpu are identical and that all subproblems require exactly the same amount

of time to be processed. In any case, even not considering the partitioned vari-

ables issue, the practical choice for the stepsizes adopted are not covered by the

theory in [54] and [55]. We believe this clearly shows our analysis to be robust

and well matched to practical computational architectures.
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2. It is of interest to note that we run experiments also on nonconvex problems.

Our algorithm has theoretical convergence guarantees for nonconvex problems

while neither ARock nor ASYSPCD has any such guarantees.

3. Both ASYSPCD and ARock (and also PALM) theoretically require, for their im-

plementation, the estimation of some Lipschitz constants of the problem func-

tions. Although in our test problems the estimations could be reasonably done,

this requirement in general can be extremely time consuming if at all possible

on other problems.

4. One last difference worth mentioning is that contrary to AsyFLEXA and ARock,

ASYSPCD and PALM require a memory lock of the variable(s) being updated

while the solution of the corresponding subproblems are computed. In the

partitioned configuration we adopted this is not an issue, because nobody else

can update the variables being updated by a given core. However, when other

configurations are chosen this can become a source of delays, especially if the

subproblems are complex and take some time to be solved. This could easily

happen, for example, if the subproblems involve more than one variable or if

they are nonconvex, as those that could appear in PALM

We are now ready to illustrate the numerical results.

3.6.2 LASSO

Consider the LASSO problem, i.e., Problem (P), with F (x) = 1
2
‖Ax − b‖2

2,

gi(xi) = λ‖xi‖1, i ∈ N , X = Rn, A ∈ Rm×n and b ∈ Rm. In all implementa-

tions of the algorithms, we precomputed the matrix ATA and the vector ATb offline.

In all the experiments, the starting point of all the algorithms was set to the zero

vector. For problems in which the optimal value V ? is not known, in order to compute

the relative error we estimated V ? by running a synchronous version of AsyFLEXA

until variations in the objective value were undetectable.
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For AsyFLEXA we set F̃i(xi; x
k−dk) = F (xi; x

k−dk
−i ) + τk

2
(xi − x

k−dki
i )2, where x−i

denotes the vector obtained from x by deleting the block xi. The sequence {τ k},

shared among all the cores, was updated every n iterations, according to the heuristic

proposed for FLEXA [1].

We run tests on LASSO problems generated according to three different methods;

all curves reported are averaged over five independent random problem realizations.

Gaussian problems [54]: In this setting we generated the LASSO problem according

to the procedure used in [54]; where the matrix A has samples taken from a Gaussian

N (0, 1) distribution, x̄ ∈ Rn is a sparse vector with s nonzeros and b = Ax̄ + e,

with e ∈ Rm ∼ N (0, σ2). In particular we chose m = 20000, n = 40000, s = 40

and σ = 0.01. For the regularization parameter we used the value suggested in [54]:

λ = 20
√
m log(n)σ. In Figure 3.2 we plot the relative error on the objective function

versus the CPU time, using 2 and 20 cores ((c) = cores). The figure shows that when

increasing the number of cores, all the algorithms converge quickly to the solution with

comparable performances. In this particular setting, and contrary to what happens

in all other problems, ASYSPCD has a slightly better behavior than AsyFLEXA but

it does not have convergence guarantees.

In order to quantify the scalability of the algorithms, in Figure 3.3 we plot the

speedup achieved by each of the algorithms versus the number of cores (of course

we run all algorithms also for values between c = 1 and c = 20, more precisely for

c = 1, 2, 4, 8, 10, 20). We defined the speedup as the ratio between the runtime on a

single core and the runtime on multiple cores. The runtimes we used are the CPU

times needed to reach a relative error strictly less than 10−4. The figure shows that

all the algorithms obtain a good gain in the performances by increasing the number

of cores which is not far from the ideal speedup.

Nesterov’s problems [77]: Here we generated a LASSO problem using the random

generator proposed by Nesterov in [77], which permits us to control the sparsity of the
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Figure 3.2. LASSO: compar-
ison in terms of relative er-
ror versus CPU time (in sec-
onds) for Liu and Wright’s
problems [54].
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Figure 3.3. LASSO: speedup
of the tested algorithms for
Liu and Wright’s problems
[54].

solution. We considered a problem with 40000 variables and matrix A having 20000

rows, and set λ = 1; the percentage of nonzero in the solution is 1%. In Figure 3.5 we

plot the relative error on the objective function (note that for Nesterov’s model the

optimal solution is known) versus the CPU time, using 2 and 20 cores. The figure

clearly shows that AsyFLEXA significantly outperforms all the other algorithms on

these problems. Moreover, the empirical convergence speed significantly increases

with the number of cores, which instead is not observed for the other algorithms, see

Figure 3.5, where we only report data for AsyFLEXA, given that the other algorithms

do not reach the prefixed threshold error value of 10−4 in one hour of computation

time.

Gondzio’s problem: We generated these LASSO problems using the generator pro-

posed by Gondzio in [78]. The key feature of this generator is the possibility of

choosing the condition number of ATA, and we set it to 104. We generated a ma-

trix A with 214 rows and d1.01ne columns, where the ceiling function d·e returns the

smallest integer greater than or equal to its argument. The sparsity in the solution is

0.1% and we set λ = 1. Figure 3.6 shows the relative error with respect to the CPU
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Figure 3.4. LASSO: compar-
ison in terms of relative error
versus CPU time (in seconds)
for Nesterov’s problems [77].
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Figure 3.5. LASSO: speedup
of AsyFLEXA for Nesterov’s
problems [77].

time for the different algorithms we tested, when using 2 and 16 cores. Figure 3.7

that shows the speedup achieved by our algorithm on these problems (in this case we

run the algorithm for c = 1, 2, 4, 8, 16). We see that the behavior of the algorithm is

qualitatively very similar to the one obtained for the previous set of problems.
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Figure 3.6. LASSO: compar-
ison in terms of relative error
versus CPU time (in seconds)
for Gondzio’s problems [78]
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Figure 3.7. LASSO: speedup
of AsyFLEXA for Gondzio’s
problems [78]
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3.6.3 Nonconvex Sparse Learning

We consider now the following nonconvex instance of problem (P):

min
x∈Rn

V (x) , ‖Ax− b‖2
2︸ ︷︷ ︸

=l(x)

+ λR(x),
(3.16)

where A ∈ Rm×n, b ∈ Rm, λ > 0 and R(x) is a regularizer used to balance the amount

of sparsity in the solution. (3.16) is a standard formulation used for doing regression

in order to recover a sparse signal from a noisy observation vector b [79]. Common

choices for the regularizer R are surrogates of the l0 norm, as the frequently used l1

norm (in this case we recover the LASSO problem of the previous section). However,

it is known that nonconvex surrogates of the l0 norm can provide better solutions

than the l1 norm, in terms of balance between compression and reconstruction error,

see e.g. [80]. For this reason we tested here two nonconvex regularizer functions: the

exponential one R(x) = Rexp(x) =
n∑
i=1

rexp(xi), with rexp(xi) = 1−e−θexp|xi| and θexp >

0, and the logarithmic one R(x) = Rlog(x) =
n∑
i=1

rlog(xi), with rlog(xi) =
log(1+θlog|xi|)

log(1+θlog)

and θlog > 0. Note that, given the fact that R is nonconvex and nonsmooth, Problem

(3.16) does not immediately appear to be in the format needed by our algorithm, i.e.

the sum of a smooth term and of a possibly nonsmooth convex one. Nevertheless, we

can put the problem in this form, as explained next. In both cases (rexp and rlog) the

function r possesses a DC structure (see Example 3) in Section 2.2) that allows us to

rewrite it as

r(x) = η(θ)|x|︸ ︷︷ ︸
,r+(x)

− η(θ)|x| − r(x)︸ ︷︷ ︸
,r−(x)

, (3.17)

with ηexp(θexp) = θexp and ηlog(θlog) =
θlog

log(1+θlog)
. It is easily verified that r+ is convex

and that, slightly more surprisingly, r− is continuously differentiable with a Lipschitz

gradient [80]. Given these facts, it is now easily seen that problem (3.16) can be

put in the setting of Problem (P), by setting F (x) = l(x)− λ
n∑
i=1

r−(xi) and gi(x) =

λr+(x). Following the idea of see Example 3) in Section 2.2, we can implement
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AsyFLEXA to solve problem (3.16) by considering scalar blocks (N = n) and the

following formulation for the best-response x̂i, i ∈ N :

x̂i(x
k−dk) =

arg min
xi∈R

{
l(xi,x

k−dk
−i )−

〈
∇r−(x

k−dki
i ), x− xk−d

k
i

i

〉
+ r+(xi) + τk

2
(xi − x

k−dki
i )2

}
.

(3.18)

As it is possible to see, in (3.18) we are preserving the convexity in l(x) and r+(x),

while linearizing the nonconvex term −r−(x). Note that, once again, the solution of

(3.18) can be computed in closed-form through the soft-thresholding operator [20].

For the positive constant τ k we use again the same heuristic rule used for the LASSO

problems.

In order to generate the 5 random instances of the problem we must specify how we

generate the quadratic function l(·). In order to favour ASYSPCD and ARock we use

the Liu and Wright’s generator used for the first set of LASSO problems discussed

above. In particular, we generated the underlying sparse linear model according

to: b = Ax̄ + e where A has 20000 rows (with values normalized to one) and

40000 columns. A, x̄ and e have i.i.d. elements coming from a Gaussian N (0, σ2)

distribution, with σ = 1 for A and x̄, and σ = 0.1 for the noise vector e. To impose

sparsity on x̄, we randomly set to zero 95% of its component.

Since (3.16) is nonconvex, we compared the performance of the algorithms us-

ing the following distance to stationarity: ‖x̂(xk) − xk‖∞. Note that this is a valid

stationarity measure: it is continuous and ‖x̂(x?) − x?‖∞ = 0 if and only if x? is

a stationary solution of (3.16). In Figure 3.8 we plot the stationarity measure ver-

sus the CPU time, for all the algorithms using 2 and 20 cores, for problem (3.16)

where R(x) = Rlog(x) with θlog = 20; the curves are averaged over 5 independent

realizations. All the algorithms were observed to converge to the same stationary

solution of (3.16) even if, we recall, ASYSPCD and ARock have no formal proof of

convergence in this nonconvex setting. The figure shows that, even in the nonconvex

case, AsyFLEXA has good performances and actually behaves better that all the

other algorithms while being also guaranteed to converge. As a side issue it is inter-
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Figure 3.8. Nonconvex problem: comparison in terms of relative error
versus CPU time (in seconds).

esting to illustrate the utility of our nonconvex regularizers with respect to the more

standard l1 norm regularizer. In Figure 3.9 and Figure 3.10 we show respectively

the Normalized Mean Square Error (NMSE) (defined as: NMSE, ‖x− x?‖2
2/‖x?‖2

2)

and the percentage of nonzeros obtained by solving the aforementioned problem with

AsyFLEXA, for different values of the regularization parameter λ and for different

surrogates of the l0 norm: the l1 norm, the exponential function (θexp = 20) and the

logarithmic function (θlog = 20). AsyFLEXA is terminated when the merit function

goes below 10−4 or after 100n iterations. These two figures interestingly show that

the two nonconvex regularizers obtain their lowest NMSE for a value of λ which cor-

responds to a good compression result, close to the number of nonzeros of the original

signal. On the other side, the l1 norm attains its lowest NMSE by reconstructing the

signal with more of 15% of nonzeros, much more than the original 5%. In order to

get close to the desired number of nonzeros in the reconstruction with the l1 norm,

it is necessary to increase the value of λ, but this leads to a worsening in terms of

NMSE of at least two times with respect to the minimum NMSE attainable.

A full understanding of the numerical behavior of our algorithm and its comparison

with existing alternatives certainly needs further numerical tests, on both larger and
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Figure 3.9. Nonconvex prob-
lem: NMSE for different val-
ues of the regularization pa-
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Figure 3.10. Nonconvex
problem: percentage of
nonzeros in the solution
for different values of the
regularization parameter λ
and for different surrogates
of the l0 norm.

more complex problems. But the substantial results already reported here seem to

clearly indicate that our method is reliable and robust and capable to efficiently

solve problems that other methods cannot tackle. The improved performance of

AsyFLEXA with respect to ASYSPCD and ARock on some classes of problems seems

due, in our experience, to the much wider flexibility we have in the choice of the

surrogates F̃i’s, which are not linked in any way to the Lipschitz constants of the

problem functions.

3.7 Conclusions

In this Chapter we proposed a novel model for the parallel block-descent asyn-

chronous minimization of the sum of a nonconvex smooth function and a convex

nonsmooth one, subject to nonconvex constraints. Our model captures the essential

features of modern multi-core architectures by providing a more realistic probabilistic

description of asynchrony that that offered by the state of the art. Building on our
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new probabilistic model, we proved sublinear convergence rate of our algorithm and

a near linear speedup when the number of workers is not too large. Experimental re-

sults on convex and nonconvex problems show that our algorithm compares favorably

to existing asynchronous schemes.

3.8 Appendix: Proofs of Theorems

In the rest of this Section, we simplify the notation with respect to the one used

in Chapter 3, by using x̃k , xk−d
k
.

3.8.1 Preliminaries

1. On conditional probabilities. In our developments, we will consider the

conditional expectation of random variables Z on Ω of the type E(Z|Fk). The fol-

lowing simple fact holds.

Proposition 3.8.1 Let Z be a random variable defined on Ω, and let Fk be defined

in (3.5). Then

E
(
Z|Fk

)
=

∑
(i,d)∈N×D

p ((i,d) |ω0:k)Z
(
(i,d),ω0:k

)
. (3.19)

Proof Recall that Fk is the σ-algebra generated by Ck, which is a finite partition

of Ω. Therefore, one can write [81, Example 5.1.3]

E
(
Z|Fk

)
=

E
(
Z;Ck(ω0:k)

)
P (Ck(ω0:k))

.

The thesis follows readily from (3.6) and the fact that Z depends only on ω0:k+1 and

takes a finite number of values.

2. Properties of the best response x̂(·). We introduce next some basic prop-

erties of the best-response maps defined in (3.3) and (3.15).

Proposition 3.8.2 ( [1]) Given the best-response map x̂(·) , [x̂i(·)]Ni=1, with x̂i(·)

defined in (3.3). Under Assumptions A-B, the following hold.
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(a) [Optimality]: For any i ∈ N and y ∈ X ,

〈x̂i(y)− yi,∇yif(y)〉+ gi(x̂i(y))− gi(yi) ≤ −τ‖x̂i(y)− yi‖2
2 ; (3.20)

(b) [Lipschitz continuity]: For any i ∈ N and y, z ∈ X ,

‖x̂i(y)− x̂i(z)‖2 ≤ L̃‖y − z‖2, (3.21)

with L̃ = LA/τ ;

(c) [Fixed-point characterization]: The set of fixed-points of x̂(·) coincides with

the set of stationary solutions of Problem (P). Therefore x̂(·) has at least one

fixed point.

(d) [Boundedness]: If ∇xif is bounded on Xi for some L∇i ∈ (0,+∞), then so

is:

‖x̂i(y)− yi‖2
2 ≤Mi (3.22)

for any i ∈ N and y ∈ X , with Mi =
L∇i+Lg

τ

Proposition 3.8.3 ( [76]) Given the best-response map x̂(·) , [x̂i(·)]Ni=1, with x̂i(·)

defined in (3.15). Under Assumptions A′-B-E, the following hold.

(a) [Optimality]: For any i ∈ N and y ∈ K,

〈x̂i(y)− yi,∇yif(y)〉+ gi(x̂i(y))− gi(yi) ≤ −τ‖x̂i(y)− yi‖2
2 ; (3.23)

(b) [Lipschitz continuity]: For any i ∈ N and y, z ∈ K,

‖x̂i(y)− x̂i(z)‖2 ≤ ˜̃L‖y − z‖1/2
2 , (3.24)

with ˜̃L > 0.

3. Representation of x̃k. Since at each iteration only one block of variables is

updated, x̃ki , i ∈ N , can be written as

x̃ki = xki +
∑
l∈Kki

(
xli − xl+1

i

)
, (3.25)

where Kki is defined in Section 3.4.
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4. Martingale Theorem. To prove our main convergence results, we leverage

the following standard convergence theorem for non-negative almost supermartin-

gales.

Theorem 3.8.1 ( [82]) Let (Ω, T ,P) be a probability space. Let T = {T k} be a

sequence of sub-sigma algebras of T such that ∀k ≥ 0, T k ⊂ T k+1. Define l+(T )

as the set of sequences of [0,+∞)-valued random variables {ξk}, where ξk is T k-

measurable, and l1+(T ) := {{ξk} ∈ l+(T )|
+∞∑
k=1

ξk < +∞ a.s.}. Let {αk}, {νk} ∈

l+(T ), and {ηk} ∈ l1+(T ) be such that

E(αk+1|T k) + νk ≤ αk + ηk. (3.26)

Then {νk} ∈ l1+(T ), and {αk} converges to a [0,+∞)-valued random variable almost

surely. �

5. Further definitions. In order to prove the statements of Theorem 3.4.2 we

introduce the following two sets. Given

ω = {(ik,dk)} ∈ Ω and some D(ω) > 0, let

Vk(ω) =
{

(i,d) ∈ N ×D : p
(
(i,d)|ω0:k−1

)
≥ D(ω)

}
, (3.27)

and

Ṽk(ω) ,
{

((j,dj))
N
j=1 ∈ Vk(ω) : (i,di) = (ik,dk) for some i

}
. (3.28)

Note that Ṽk(ω) is not uniquely defined when there exist multiple vectors dj such

that (j,dj) ∈ Vk(ω), with j 6= i. In such a case, the specific choice of dj is irrelevant

for our developments; however, to eliminate any ambiguity in the definition (3.28) we

tacitly assume that the aforementioned dj chosen in (3.28) is the one that maximizes

p((j, ·)|ω0:k−1).

Definition 3.8.1 The set Vk(ω) is said to cover N if (i,d) ∈ Vk(ω), for some d ∈ D

and all i ∈ N .

Note that under C3’, there exists a Ω̄ ⊆ Ω, with P(Ω̄) = 1, such that the following

holds: for every ω ∈ Ω̄, one can find a D(ω) > 0, such that the resulting Vk(ω) covers

N and consequently Ṽk(ω) has cardinality N .
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3.8.2 Proof of Theorem 3.4.1

In this section, the best-response map x̂(·) is the one defined in (3.3).

For any given realization ω ∈ Ω and k ≥ 0, the following holds:

V (xk+1) = f(xk+1) + g(xk+1)

(a)
= f(xk+1) +

∑
i 6=ik

gi(x
k
i ) + gik(x

k+1
ik

)

(b)

≤ f(xk) + γ
〈
∇x

ik
f(x̃k), x̂ik(x̃

k)− xkik
〉

+
∑
i 6=ik

gi(x
k
i ) + gik(x

k+1
ik

)

+ (∇x
ik
f(xk)−

〈
∇x

ik
f(x̃k)), γ(x̂ik(x̃

k)− xkik)
〉

+
γ2L

2
‖x̂ik(x̃k)− xkik‖

2
2

(c)

≤ f(xk) + γ
〈
∇x

ik
f(x̃k), x̂ik(x̃

k)− x̃kik
〉

+
〈
∇x

ik
f(xk)−∇x

ik
f(x̃k), γ(x̂ik(x̃

k)− x̃kik)
〉

+
γ2L

2
‖x̂ik(x̃k)− x̃kik‖

2
2

+
∑
i 6=ik

gi(x
k
i ) + γgik(x̂ik(x̃

k)) + gik(x
k
ik)− γgik(x̃

k
ik)

(d)

≤ V (xk)− γ
(
τ − γL

2

)
‖x̂ik(x̃k)− x̃kik‖

2
2

+ L ‖xk − x̃k‖2‖γ(x̂ik(x̃
k)− x̃kik)‖2

(e)

≤ V (xk)− γ (τ − γL) ‖x̂ik(x̃k)− x̃kik‖
2
2 +

L

2
‖xk − x̃k‖2

2

(f)
= V (xk)− γ (τ − γL) ‖x̂ik(x̃k)− xkik‖

2
2 +

L

2
‖xk − x̃k‖2

2, (3.29)

where (a) follows from the updating rule of AsyFLEXA; in (b) we used the Descent

Lemma [9, Proposition A32] on F ; (c) comes from A3 and C3; in (d) we used Propo-

sition 3.8.2 and A2; (e) is due to the Young’s inequality; and (f) is due to C3.
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We bound ‖xk − x̃k‖2
2 as follows:

‖xk − x̃k‖2
2

(a)

≤

(
k−1∑

l=k−D

‖xl+1 − xl‖2

)2
(b)

≤ D
k−1∑

l=k−D

‖xl+1 − xl‖2
2

= D

(
k−1∑

l=k−D

(l − (k − 1) +D) ‖xl+1 − xl‖2
2 −

k∑
l=k+1−D

(l − k +D) ‖xl+1 − xl‖2
2

)
(3.30)

+D2γ2 ‖x̂ik(x̃k)− xkik‖
2
2,

where (a) comes from (3.25); and (b) is due to the Jensen’s inequality.

Using (3.30) in (3.29), the Lyapunov function (3.8), and rearranging the terms,

the following holds: for all k ≥ 0,

Ṽ (xk+1 . . . ,xk+1−D)

≤ Ṽ (xk, . . . ,xk−D)− γ
(
τ − γ

(
L+

D2L

2

))
‖x̂ik(x̃k)− xkik‖

2
2; (3.31)

and

Ṽ (xk+B . . . ,xk+B−D) ≤ Ṽ (xk+B−1, . . . ,xk+B−1−D)

− γ
(
τ − γ

(
L+

D2L

2

))
‖x̂ik+B−1(x̃k+B−1)− xk+B−1

ik+B−1‖2
2

≤ Ṽ (xk, . . . ,xk−D)− γ
(
τ − γ

(
L+

D2L

2

)) k+B−1∑
t=k

‖x̂it(x̃t)− xtit‖2
2. (3.32)

Taking conditional expectation both sides we have that the following holds a.s.:

E
(
Ṽ (xk+B . . . ,xk+B−D)|Fk−1

)
≤ Ṽ (xk, . . . ,xk−D)

− γ
(
τ − γ

(
L+

D2L

2

)) k+B−1∑
t=k

E
(
‖x̂it(x̃t)− xtit‖

2
2|F t−1

)
. (3.33)

Using (3.9), (3.33), A4, and the Martingale’s theorem [82], we deduce that i) {Ṽ (xk, . . . ,xk−D)},

and thus {V (xk, . . . ,xk−D)} converge a.s., ii) {xk} is bounded on X a.s., and iii)

lim
k→+∞

k+B−1∑
t=k

E
(
‖x̂it(x̃t)− xtit‖2|F t−1

)
= 0, a.s.. (3.34)
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From (3.34), it follows that there exists a set Ω̄ ⊆ Ω, with P(Ω̄) = 1, such that for

any ω ∈ Ω̄,

k+B−1∑
t=k

E
(
‖x̂it(x̃t)− xtit‖

2
2|F t−1

)
(a)
=

k+B−1∑
t=k

∑
(i,d)∈N×D

p
(
(i,d)|ω0:t−1

)
‖x̂i(x̃t)− xti‖2

(b)

≥ pmin

N∑
i=1

‖x̂i(x̃k+tk(i))− x
k+tk(i)
i ‖2, (3.35)

where in (a) we used (3.19); and in (b) we used C2 and defined tk(i) , min{t ∈

[0;B]|p(i|ω0:t+k−1) ≥ pmin}. We also have:

‖x̂(xk)− xk‖2 ≤
N∑
i=1

‖x̂i(xk)− xki ‖2

(a)

≤
N∑
i=1

(
‖x̂i(x̃k+tk(i))− x

k+tk(i)
i ‖2 + (1 + Lx̂) ‖x̃k+tk(i) − xk‖2

)
(b)

≤
N∑
i=1

(
‖x̂i(x̃k+tk(i))− x

k+tk(i)
i ‖2 + (1 + Lx̂)

(
‖xk+tk(i) − xk‖2

+

k+tk(i)−1∑
l=k+tk(i)−D

‖xl+1 − xl‖2

))
(c)

≤
N∑
i=1

(
‖x̂i(x̃k+tk(i))− x

k+tk(i)
i ‖2 + 2γ(1 + Lx̂)

k+B−1∑
l=k−D

‖x̂il(x̃l)− xlil‖2

)
, (3.36)

where in (a) we used Proposition 3.8.2; (b) comes from (3.25); and (c) from the

updating rule of AsyFLEXA. We deduce from (3.34), (3.35), and (3.36), that

lim
k→+∞

‖x̂(xk)− xk‖2 = 0. (3.37)

Since the sequence {xk} is bounded, it has at least one limit point x̄ that belongs to

X . By the continuity of x̂(·) (see Proposition 3.8.2) and (3.37), it must be x̂(x̄) = x̄,

and thus by Proposition 3.8.2 x̄ is a stationary solution of Problem (P). Since (3.37)

holds for any ω ∈ Ω̄, the previous results hold a.s..

Let us now define:

ŷi(x
k) = argmin

yi∈Xi

{
∇xif(xk)T(yi − xki ) + gi(yi) +

1

2
‖yi − xki ‖2

2

}
, (3.38)
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and note that MV (x) = [xk1− ŷ1(xk), . . . ,xkN − ŷN(xk)]T. It is easy to check that ŷ(·)

is Lŷ-Lipschitz continuous on X , with Lŷ , L + 1. Fix a realization ω ∈ Ω. The

optimality of ŷik(x
k) along with the convexity of gik , leads

〈
∇x

ik
f(xk) + ŷik(x

k)− xkik , x̂ik(x̃
k)− ŷik(x

k)
〉

(3.39)

+ gik(x̂ik(x̃
k))− gik(ŷik(xk)) ≥ 0. (3.40)

Similarly, one can write for x̂ik(x̃
k):〈

∇f̃ik(x̂ik(x̃k); x̃k), ŷik(xk)− x̂ik(x̃
k)
〉

+ gik(ŷik(x
k))− gik(x̂ik(x̃k))) ≥ 0. (3.41)

Summing (3.40) and (3.41), adding and subtracting x̂ik(x̃
k), and using the gradient

consistency assumption B2, yields〈
∇f̃ik(xkik ; x

k)−∇f̃ik(x̂ik(x̃k); x̃k) + x̂ik(x̃
k)− xkik , x̂ik(x̃

k)− ŷik(x
k)
〉

≥ ‖x̂ik(x̃k)− ŷik(x
k)‖2

2. (3.42)

Summing and subtracting ∇f̃ik(x̂ik(x̃k); xk) and using the triangular inequality, the

LHS of (3.42) can be upper bounded as

‖∇f̃ik(x̂ik(x̃k); xk)−∇f̃ik(x̂ik(x̃k); x̃k)‖2

+ ‖∇f̃ik(xkik ; x
k)−∇f̃ik(x̂ik(x̃k); xk)‖2 + ‖x̂ik(x̃k)− xkik‖2 (3.43)

≥ ‖x̂ik(x̃k)− ŷik(x
k)‖2.

We can further upper-bound the left hand side invoking B3 and B4, and write:

‖x̂ik(x̃k)− ŷik(x
k)‖2 ≤ (1 + LB) ‖x̂ik(x̃k)− xkik‖2 + LA ‖xk − x̃k‖2 . (3.44)

Finally, squaring both sides, we get

‖x̂ik(x̃k)− ŷik(x
k)‖2

2 ≤ (1 + LB)2 ‖x̂ik(x̃k)− xkik‖
2
2 + L2

A ‖xk − x̃k‖2
2

+ 2LA(1 + LB) ‖x̂ik(x̃k)− xkik‖2 ‖xk − x̃k‖2. (3.45)
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We bound next the term ‖xk
ik
− ŷik(x

k)‖2
2. We write

‖xkik − ŷik(x
k)‖2

2 = ‖xkik − x̂ik(x̃
k) + x̂ik(x̃

k)− ŷik(x
k)‖2

2

≤ 2
(
‖x̂ik(x̃k)− xkik‖

2
2 + ‖x̂ik(x̃k)− ŷik(x

k)‖2
2

)
(a)

≤
(
2 + 2(1 + LB)2

)
‖x̂ik(x̃k)− xkik‖

2
2 + 2L2

A ‖xk − x̃k‖2
2

+ 4LA(1 + LB) ‖x̂ik(x̃k)− xkik‖2 ‖xk − x̃k‖2

(b)

≤ 2 (1 + (1 + LB)(1 + LA + LB)) ‖x̂ik(x̃k)− xkik‖
2
2

+ 2LA(1 + LA + LB) ‖xk − x̃k‖2
2, (3.46)

where (a) comes from (3.45); and (b) follows from the Young’s inequality. Note that

‖xk − x̃k‖2
2 =

N∑
i=1

‖xki − x̃ki ‖2
2

(a)

≤
N∑
i=1

∑
l∈K̄ki

‖xl+1 − xl‖2

2

(b)

≤
N∑
i=1

M̄k
i

∑
l∈K̄ki

‖xl+1 − xl‖2
2 = γ2

N∑
i=1

M̄k
i

∑
l∈K̄ki

‖x̂il(x̃l)− xlil‖
2
2, (3.47)

where (a) comes from (3.25); and in (b) we used the Jensen’s inequality and defined

M̄k
i , |K̄ki |. Combining (3.46) and (3.47), we get:

‖xkik − ŷik(x
k)‖2

2 ≤ 2 (1 + (1 + LB)(1 + LA + LB)) ‖x̂ik(x̃k)− xkik‖
2
2

+ 2γ2LA(1 + LA + LB)
N∑
i=1

M̄k
i

∑
l∈K̄ki

‖x̂il(x̃l)− xlil‖
2
2. (3.48)

We take now the conditional expectation of the term on the LHS of (3.48), and obtain

k+B∑
t=k

E
(
‖xtit − ŷit(x

t)‖2
2|F t−1

)
(ω)

(a)
=

k+B∑
t=k

N∑
i=1

p(i|ω0:t−1) ‖xti − ŷi(x
t)‖2

2

(b)

≥
N∑
i=1

pmin ‖xk+tk(i)
i − ŷi(x

k+tk(i))‖2
2 (3.49)

(c)

≥ pmin

N∑
i=1

(
‖xki − ŷi(x

k)‖2 − ‖xk+tk(i)
i − ŷi(x

k+tk(i))− xki + ŷi(x
k)‖2

)2

≥ pmin

N∑
i=1

(
‖xki − ŷi(x

k)‖2
2

− 2‖xki − ŷi(x
k)‖2 ‖xk+tk(i)

i − ŷi(x
k+tk(i))− xki + ŷi(x

k)‖2

)
,
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where in (a) we used (3.19); (b) follows from C2; and in (c) we used the reverse

triangle inequality. By (3.49) and (3.48), we obtain:

pmin

N∑
i=1

‖xki − ŷi(x
k)‖2

2 = pmin ‖MV (xk)‖2
2

≤
k+B∑
t=k

(
2 (1 + (1 + LB)(1 + LA + LB)) E

(
‖x̂it(x̃t)− xtit‖

2
2|F t−1

)
(ω)

+ 2γ2LA(1 + LA + LB)
N∑
i=1

M̄ t
i

∑
l∈K̄ti

‖x̂il(x̃l)− xlil‖
2
2

)

+ 2pmin

N∑
i=1

‖xki − ŷi(x
k)‖2 ‖xk+tk(i)

i − ŷi(x
k+tk(i))− xki + ŷi(x

k)‖2

(a)

≤ 2 (1 + (1 + LB)(1 + LA + LB))
k+B∑
t=k

E
(
‖x̂it(x̃t)− xtit‖

2
2|F t−1

)
(ω)

+ 2Bγ2LA(1 + LA + LB)
N∑
i=1

Mk
i

∑
l∈Kki

‖x̂il(x̃l)− xlil‖
2
2 + pminα ‖MV (xk)‖2

2

+ pminα
−1

N∑
i=1

‖xk+tk(i)
i − ŷi(x

k+tk(i))− xki + ŷi(x
k)‖2

2

(b)

≤ 2 (1 + (1 + LB)(1 + LA + LB))
k+B∑
t=k

E
(
‖x̂it(x̃t)− xtit‖

2
2|F t−1

)
(ω)

+ 2Bγ2LA(1 + LA + LB)
N∑
i=1

Mk
i

∑
l∈Kki

‖x̂il(x̃l)− xlil‖
2
2 + pminα ‖MV (xk)‖2

2

+ 2pminα
−1

N∑
i=1

(
‖xk+tk(i)

i − xki ‖2
2 + ‖ŷi(xk+tk(i))− ŷi(x

k)‖2
2

)
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(c)

≤ 2 (1 + (1 + LB)(1 + LA + LB))
k+B∑
t=k

E
(
‖x̂it(x̃t)− xtit‖

2
2|F t−1

)
(ω)

+ 2Bγ2LA(1 + LA + LB)
N∑
i=1

Mk
i

∑
l∈Kki

‖x̂il(x̃l)− xlil‖
2
2 + pminα ‖MV (xk)‖2

2

+ 2γ2pminα
−1(1 + L2

ŷ)
N∑
i=1

k+tk(i)−1∑
l=k

‖x̂il(x̃l)− xlil‖
2
2

≤ 2 (1 + (1 + LB)(1 + LA + LB))
k+B∑
t=k

E
(
‖x̂it(x̃t)− xtit‖

2
2|F t−1

)
(ω)

+ 2Bγ2LA(1 + LA + LB)
N∑
i=1

Mk
i

∑
l∈Kki

‖x̂il(x̃l)− xlil‖
2
2 + pminα ‖MV (xk)‖2

2

+ 2γ2pminα
−1(1 + L2

ŷ)N
k+B−1∑
l=k

‖x̂il(x̃l)− xlil‖
2
2, (3.50)

where in (a) we used the Young’s inequality and the definition of Mk
i (cf. Section 3.4);

in (b) we used the triangle and Jensen’s inequalities; and (c) comes from the updating

rule of the algorithm. Rearranging the terms and taking expectation of both sides,

we get:

E
(
‖MV (xk)‖2

2

)
≤

2
(

1 + (1 + LB)(1 + LA + LB) + γ2Npminα
−1(1 + L2

ŷ)
)

pmin − αpmin

k+B∑
t=k

E
(
‖x̂it(x̃t)− xtit‖

2
2

)

+
2Bγ2LA(1 + LA + LB)

pmin − αpmin

E

 N∑
i=1

Mk
i

∑
t∈Kki

‖x̂it(x̃t)− xtit‖
2
2

 . (3.51)

Invoking (3.9) and (3.31), we can write

‖x̂ik(x̃k)− xkik‖
2
2

≤ 1

γ
(
τ − γ

(
L+ D2L

2

)) (Ṽ (xk, . . . ,xk−D)− Ṽ (xk+1 . . . ,xk+1−D)
)
. (3.52)



119

Using this bound in (3.51), we get

E
(
‖MV (xk)‖2

2

)
≤ C1

k+B∑
t=k

E
(
Ṽ (xt, . . . ,xt−D)− Ṽ (xt+1, . . . ,xt+1−D)

)

+γ2C2 E

 N∑
i=1

Mk
i

∑
t∈Kki

(
Ṽ (xt, . . . ,xt−D)− Ṽ (xt+1, . . . ,xt+1−D)

) . (3.53)

Finally,

Tεε ≤
Tε∑
k=0

E
(
‖MV (xk)‖2

2

)
≤ C1

Tε∑
k=0

E
(
Ṽ (xk, . . . ,xk−D)− Ṽ (xk+B+1, . . . ,xk+B+1−D)

)

+ γ2C2 E

 N∑
i=1

Mk
i

∑
t∈Kki

(
Ṽ (xt, . . . ,xt−D)− Ṽ (xt+1, . . . ,xt+1−D)

)
≤ C1(B + 1)(V (x0)− V ?)

+ C2γ
2

Tε∑
k=0

E

 N∑
i=1

Mk
i

∑
t∈Kki

(
Ṽ (xt, . . . ,xt−D)− Ṽ (xt+1, . . . ,xt+1−D)

) .

(3.54)

This completes the proof.

3.8.3 Proof of Theorem 3.4.2

We prove the Theorem only under condition i) of Corollary 3.4.3. The proof of

Theorem 3.4.2 under condition ii) of Corollary 3.4.3 can be easily obtained combining

the following proof and the proof of Theorem 3.4.1 in the previous Section.

In this section, the best-response map x̂(·) is the one defined in (3.3).
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For any given realization ω ∈ Ω and k ≥ D, the following holds:

V (xk+1) = f(xk+1) + g(xk+1)
(a)
= f(xk+1) +

∑
i 6=ik

gi(x
k+1
i ) + gik(x

k+1
ik

)

(b)
= f(xk+1) +

∑
i 6=ik

gi(x
k
i ) + gik(x

k+1
ik

)

(c)

≤ f(xk) + γk
〈
∇x

ik
f(xk), x̂ik(x̃

k)− xkik
〉

+
(γk)2L

2
‖x̂ik(x̃k)− xkik‖

2
2

+
∑
i 6=ik

gi(x
k
i ) + gik(x

k+1
ik

) = f(xk) + γk
〈
∇x

ik
f(x̃k), x̂ik(x̃

k)− xkik
〉

(3.55)

+
〈
∇x

ik
f(xk)−∇x

ik
f(x̃k),xk+1

ik
− xkik

〉
+

(γk)2L

2
‖x̂ik(x̃k)− xkik‖

2
2

+
∑
i 6=ik

gi(x
k
i ) + gik(x

k+1
ik

)
(d)

≤ f(xk) + γk
〈
∇x

ik
f(x̃k), x̂ik(x̃

k)− x̃kik
〉

+
〈
∇x

ik
f(xk)−∇x

ik
f(x̃k),xk+1

ik
− xkik

〉
+ γk

〈
∇x

ik
f(x̃k), x̃kik − xkik

〉
+

(γk)2L

2
‖x̂ik(x̃k)− xkik‖

2
2 +

∑
i 6=ik

gi(x
k
i ) + γkgik(x̂ik(x̃

k)) + (1− γk)gik(xkik)

+ γk(gik(x̃
k
ik)− gik(x̃

k
ik))

(e)

≤ V (xk)− γkτ‖x̂ik(x̃k)− x̃kik‖
2
2 + L‖xk − x̃k‖2‖xk+1

ik
− xkik‖2

+ γk(L∇ + Lg)‖xk − x̃k‖2 +
(γk)2L

2
‖x̂ik(x̃k)− xkik‖

2
2

(f)

≤ V (xk)− γkτ‖x̂ik(x̃k)− x̃kik‖
2
2 +

L

2
‖xk − x̃k‖2

2 +
L

2
‖xk+1

ik
− xkik‖

2
2

+ γk(L∇ + Lg)‖xk − x̃k‖2 +
(γk)2L

2
‖x̂ik(x̃k)− xkik‖

2
2

= V (xk)− γkτ‖x̂ik(x̃k)− x̃kik‖
2
2 +

L

2
‖xk − x̃k‖2

2

+ (γk)2L‖x̂ik(x̃k)− xkik‖
2
2 + γk(L∇ + Lg)‖xk − x̃k‖2

where in (a) we used the separability of g; (b) follows from the updating rule

of AsyFLEXA; in (c) we applied the Descent Lemma [9, Proposition A32] on F ; (d)

comes from A3; in (e) we used Proposition 3.8.2, A2-A5, and condition i) of Corollary
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3.4.3, with L∇ = max
i∈N

L∇i ; and (f) is due to the Young’s inequality.

We bound now the term −‖x̂ik(x̃k)− x̃k
ik
‖2

2 in (3.55). We have:

−‖x̂ik(x̃k)− x̃k
ik
‖2

2 = −‖x̂ik(x̃k)− xk
ik

+ xk
ik
− x̃k

ik
‖2

2

≤−
(
‖x̂ik(x̃k)− xk

ik
‖2

2 + ‖xk
ik
− x̃k

ik
‖2

2

)
+ 2‖x̂ik(x̃k)− xk

ik
‖2‖xkik − x̃k

ik
‖2

≤− ‖x̂ik(x̃k)− xk
ik
‖2

2 + α‖x̂ik(x̃k)− xk
ik
‖2

2 + α−1‖xk
ik
− x̃k

ik
‖2

2,

(3.56)

where α is any given positive constant. Substituting (3.56) in (3.55) we have:

V (xk+1) ≤ V (xk)− γkτ(1− α)‖x̂ik(x̃k)− xkik‖
2
2 + γkτα−1‖xkik − x̃kik‖

2
2

+
L

2
‖xk − x̃k‖2

2 + (γk)2L‖x̂ik(x̃k)− xkik‖
2
2 + γk(L∇ + Lg)‖xk − x̃k‖2 (3.57)

≤ V (xk)− γk(τ(1− α)− γkL)‖x̂ik(x̃k)− xkik‖
2
2

+

(
L

2
+ γkτα−1

)
‖xk − x̃k‖2

2 + γk(L∇ + Lg)‖xk − x̃k‖2

We bound ‖xk − x̃k‖2
2 as follows:

‖xk − x̃k‖2
2

(a)

≤

(
k−1∑

l=k−D

‖xl+1 − xl‖2

)2
(b)

≤ D
k−1∑

l=k−D

‖xl+1 − xl‖2
2

= D

(
k−1∑

l=k−D

(l − (k − 1) +D)‖xl+1 − xl‖2
2 −

k∑
l=k+1−D

(l − k +D)‖xl+1 − xl‖2
2

)
+D2‖xk+1 − xk‖2

2 (3.58)

= D

(
k−1∑

l=k−D

(l − (k − 1) +D)‖xl+1 − xl‖2
2 −

k∑
l=k+1−D

(l − k +D)‖xl+1 − xl‖2
2

)
+D2(γk)2‖x̂ik(x̃k)− xkik‖

2
2
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where (a) comes from (3.25) and (b) is due to the Jensen’s inequality. Similarly we

have:

‖xk − x̃k‖2 ≤
k−1∑

l=k−D

‖xl − xl+1‖2

=
k−1∑

l=k−D

(l − (k − 1) +D)‖xl+1 − xl‖2 −
k∑

l=k+1−D

(l − k +D)‖xl+1 − xl‖2

+D‖xk+1 − xk‖2

=
k−1∑

l=k−D

(l − (k − 1) +D)‖xl+1 − xl‖2 −
k∑

l=k+1−D

(l − k +D)‖xl+1 − xl‖2 (3.59)

+Dγk‖x̂ik(x̃k)− xkik‖2

≤
k−1∑

l=k−D

(l − (k − 1) +D)‖xl+1 − xl‖2 −
k∑

l=k+1−D

(l − k +D)‖xl+1 − xl‖2

+Dγk‖x̂ik(x̃k)− x̃kik‖2 +Dγk‖xk − x̃k‖2

(a)

≤
k−1∑

l=k−D

(l − (k − 1) +D)‖xl+1 − xl‖2 −
k∑

l=k+1−D

(l − k +D)‖xl+1 − xl‖2 +DγkM

+Dγk‖xk − x̃k‖2,

where (a) comes from Proposition 3.8.2 with M = max
i∈N

Mi. We can rearrange the

terms in (3.59) to get:

(1−Dγk)‖xk − x̃k‖2

≤
k−1∑

l=k−D
(l − (k − 1) +D)‖xl+1 − xl‖2 −

k∑
l=k+1−D

(l − k +D)‖xl+1 − xl‖2 +DγkM

(3.60)
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Invoking D1, there exists a sufficiently large k, say k̄, such that:(1−Dγk̄−1) > 0. For

any k ≥ k̄ we also get: (1−Dγk) > (1−Dγk̄−1) > 0. From these considerations and

(3.60) we have:

‖xk − x̃k‖2 ≤ (1−Dγk)−1
( k−1∑
l=k−D

(l − (k − 1) +D)‖xl+1 − xl‖2

−
k∑

l=k+1−D

(l − k +D)‖xl+1 − xl‖2 +DγkM
)

≤ (1−Dγk−1)−1

k−1∑
l=k−D

(l − (k − 1) +D)‖xl+1 − xl‖2 (3.61)

− (1−Dγk)−1

k∑
l=k+1−D

(l − k +D)‖xl+1 − xl‖2 + (1−Dγk)−1DγkM

Let us now define the following Lyapunov function. Let k ≥ k̄:

Ṽ (xk, . . . ,xk−D) = V (xk) +D

(
L

2
+ τα−1

)( k−1∑
l=k−D

(l − (k − 1) +D)‖xl+1 − xl‖2
2

)

+ (L∇ + Lg)(1−Dγk−1)−1

k−1∑
l=k−D

(l − (k − 1) +D)‖xl+1 − xl‖2

Using (3.58) and (3.61) in (3.57) and rearranging the terms, the following holds almost

surely: for all k ≥ k̄

E(Ṽ (xk+1 . . . ,xk+1−D)|Fk−1) ≤ Ṽ (xk, . . . ,xk−D) (3.62)

− γk
(
τ(1− α)− γk

(
L+

D2L

2
+ γkD2τα−1

))
E(‖x̂ik(x̃k)− xkik‖

2
2|Fk−1) + Zk,

where Zk , (γk)2(L∇+Lg)DM

1−Dγk . Since: lim
k→+∞

Zk

(γk)2 = (L∇ + Lg)DM and
+∞∑
k=0

(γk)2 < +∞,

we note that:
+∞∑
k=0

Zk < +∞.

Invoking D1 and choosing α < 1, we have that for sufficiently large k there exists

some positive constant β1 such that the following holds almost surely:

E(Ṽ (xk+1, . . . ,xk+1−D)|Fk−1)

≤ Ṽ (xk, . . . ,xk−D)− β1γ
kE(‖x̂ik(x̃k)− xk

ik
‖2

2|Fk−1) + Zk.

(3.63)
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We can now apply Theorem 3.8.1 with the following identifications:

{αk} = {Ṽ (xk, . . . ,xk−D)}, {ηk} = {Zk} and

{νk} = {γkE(‖x̂ik(x̃k)−xk
ik
‖2

2|Fk−1)} (note that we assumed without loss of generality

that V (xk) ≥ 0; indeed, since is uniformly bounded from below, one can always

find a positive constant c and write instead V (xk) + c ≥ 0). We deduce that i)

{Ṽ (xk, . . . ,xk−D)} converges almost surely; and ii).

lim
k→+∞

k∑
t=k̄

(
γt E

(
‖x̂it(x̃t)− xtit‖

2
2|F t−1

))
< +∞ a. s.. (3.64)

Since Ṽ (xk, . . . ,xk−D) is coercive from A4, this implies that the sequence {xk} is

bounded almost surely.

Since
+∞∑
k=0

γk = +∞, it follows from (3.64) that there exists a Ω̄ ⊆ Ω, with P(Ω̄) = 1,

such that for any ω ∈ Ω̄:

lim inf
k→+∞

E
(
‖x̂ik(x̃k)− xkik‖

2
2|Fk−1

)
(ω) = 0. (3.65)

Since we have from Proposition 3.8.1:

E
(
‖x̂ik(x̃k)− xkik‖

2
2|Fk−1

)
(ω) =

∑
(i,d)∈N×D

p
(
(i,d)|ω0:k−1

)
‖x̂i(x̃k(d))− xki ‖2

2 (3.66)

(recall that we are using the shorthand notation:

xk = xk(ω) and x̃k(d) = (x̃k(d))(ω)), it follows from (3.65) that

lim inf
k→+∞

∑
(i,d)∈N×D

p
(
(i,d)|ω0:k−1

)
‖x̂i(x̃k(d))− xki ‖2

2 = 0. (3.67)

Under C3’, there exists a D(ω) > 0 such that [cf. (3.28)]

∑
(i,d)∈N×D

p
(
(i,d)|ω0:k−1

)
‖x̂i(x̃k(d))− xki ‖2

2 (3.68)

≥ D(ω)
∑

(i,d)∈Vk(ω)

‖x̂i(x̃k(d))− xki ‖2
2 ≥ D(ω)

∑
(i,d)∈Ṽk(ω)

‖x̂i(x̃k(d))− xki ‖2
2.

Using (3.67) and (3.68), we obtain lim inf
k→+∞

∑
(i,d)∈Ṽk(ω)

‖x̂i(x̃k(d))− xki ‖2 = 0. We prove

next that limk→+∞
∑

(i,d)∈Ṽk(ω)

‖x̂i(x̃k(d))− xki ‖2 = 0. To do so, it is sufficient to show
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that the limsup of the same quantity goes to zero. Let us set for notational simplicity

zk ,
∑

(i,d)∈Ṽk(ω)

‖x̂i(x̃k(d)) − xki ‖2. We show next that lim
k→+∞

zk = 0. Suppose by

contradiction that lim sup
k→+∞

zk > 0. Since it is also lim inf
k→+∞

zk = 0, there exists a υ > 0

such that zk > 2υ for infinitely many k and also zk < υ for infinitely many k.

Therefore, one can always find an infinite set of indexes, say S, having the following

properties: for any k ∈ S, there exists an integer jk > k such that

zk < υ, zjk > 2υ (3.69)

υ ≤ zj ≤ 2υ k < j < jk. (3.70)
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Given the above bounds, the following holds: for all k ∈ S,

υ < zjk − zk =
∑

(i,d)∈Ṽjk (ω)

‖x̂i(x̃jk(d))− xjki ‖2 −
∑

(i,d)∈Ṽk(ω)

‖x̂i(x̃k(d))− xki ‖2

(a)

≤
N∑
i=1

‖x̂i(x̃jk(d′i))− xjki − x̂i(x̃
k(di)) + xki ‖2

≤
N∑
i=1

‖xjki − xki ‖2 +
N∑
i=1

‖x̂i(x̃jk(d′i))− x̂i(x̃
k(di))‖2

(b)

≤ N‖xjk − xk‖2 + L̃

N∑
i=1

‖x̃jk(d′i)− x̃k(di)‖2
(c)
= N

jk−1∑
t=k

γt‖x̂it(x̃t(dt))− xtit‖2

+ L̃
N∑
i=1

‖xjk +
∑

l∈Kjk (d′i)

(xl − xl+1)− xk +
∑

h∈Kk(di)

(xh+1 − xh)‖2

≤ N

jk−1∑
t=k

γt‖x̂it(x̃t(dt))− xtit‖2 + L̃N‖xjk − xk‖2

+ L̃
N∑
i=1

 ∑
l∈Kjk (d′i)

‖xl+1 − xl‖2 +
∑

h∈Kk(di)

‖xh+1 − xh‖2


≤ (1 + L̃)N

jk−1∑
t=k

γt‖x̂it(x̃t(dt))− xtit‖2

+ L̃N

(
jk−1∑

l=jk−D

‖xl+1 − xl‖2 +
k−1∑

h=k−D

‖xh+1 − xh‖2

)
(d)

≤ 2(1 + L̃)Nυ

jk−1∑
t=k

γt

+ L̃N

(
jk−1∑

l=jk−D

γl‖x̂il(x̃l(dl))− xlil‖2 +
k−1∑

h=k−D

γh‖x̂ih(x̃h(dh))− xhih‖2

)
(e)

≤ 2(1 + L̃)Nυ

jk−1∑
t=k−D

γt + 2L̃NM̄

jk−1∑
t=k−D

γt

≤ 2N(υ(1 + L̃) + L̃M̄)

jk−1∑
t=k−D

γt, (3.71)

where in (a) we used the definition of the sets Ṽjk(ω) and Ṽk(ω) and we denoted by d′i

and di the d-component of the pairs (i,d′) ∈ Ṽjk(ω) and (i,d) ∈ Ṽk(ω), respectively;

in (b) we used Proposition 3.8.2; (c) follows from (3.25) and Step 4 of AsyFLEXA;

(d) is due to (3.69) and (3.70); and in (e) we used the the boundedness of the iterates
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implying ‖x̂ik(x̃k)−xk
ik
‖2 < M̄ , for some finite constant M̄ > 0, and any k. It follows

from (3.71) that

lim inf
k→+∞

jk−1∑
t=k−D

γt ≥ υ

2N(υ(1 + L̃) + L̃M̄)
> 0. (3.72)

Consider now the following term: for k ∈ S, let

zk+1 − zk ≤ N‖xk+1 − xk‖2

+L̃N

(
‖xk+1 − xk‖2 +

k∑
l=k−D+1

‖xl+1 − xl‖2 +
k−1∑

h=k−D
‖xh+1 − xh‖2

)

≤ N(1 + 2L̃)γk‖x̂ik(x̃k(dk))− xk
ik
‖2 + 2M̄L̃N

k−1∑
t=k−D

γt

(a)

≤ γkN(1 + 2L̃)

(
‖x̂ik(x̃k(dk))− xk

ik
‖2 + 2M̄L̃

1+2L̃

k−1∑
t=k−D

(
1
η

)k−t)
(b)
= γkN(1 + 2L̃)

(
‖x̂ik(x̃k(dk))− xk

ik
‖2 + 2M̄L̃

1+2L̃
θ
)

≤ γkN(1 + 2L̃)
(
zk + 2M̄L̃

1+2L̃
θ
)

;

(3.73)

where in (a) we used D2 and in (b) we defined θ ,
k−1∑

t=k−D

(
1
η

)k−t
=

D∑
l=1

(
1
η

)l
. It

turns out that for sufficiently large k ∈ S so that γkN(1 + 2L̃) < υ

υ+2 2M̄L̃
1+2L̃

θ
, it must

be zk ≥ υ/2; otherwise the condition zk+1 ≥ υ would be violated [cf.(3.70)]. In the

same way, using zk ≥ υ/2, one can now show that it must be zk−1 ≥ υ/4, otherwise

zk ≥ υ/2 would be violated. By applying iteratively this same reasoning one can

show that for each j ∈ [k−D, k]: zj ≥ υ/2k+1−j. For the ω we are considering, (3.64)

holds true; therefore, lim
k→+∞

jk−1∑
t=k−D

γtzt = 0, that together with (3.70) and the relation

zj ≥ υ/2k+1−j. just proved, implies lim
k→+∞

jk−1∑
t=k−D

γt = 0. But this equality contradicts

(3.72). Hence lim sup
k→+∞

zk = 0 and consequently lim
k→+∞

zk = 0.



128

Using C2’ and lim
k→+∞

zk = 0, let us prove now that lim
k→+∞

‖x̂(xk) − xk‖2 = 0. To

begin, notice that lim
k→+∞

zk = 0 implies lim
k→+∞

k∑
l=k−D

zl = 0. Let us now analyze the

following term

‖x̂(xk)− xk‖2 ≤
N∑
i=1

‖x̂i(xk)− xki ‖2

=
∑

(i,d)∈Ṽk(ω)

‖x̂i(xk) + x̂i(x̃
k(d))− x̂i(x̃

k(d))− xki ‖2

≤
∑

(i,d)∈Ṽk(ω)

‖x̂i(x̃k(d))− xki ‖2 + L̃

N∑
i=1

‖xk − x̃k(di)‖2 (3.74)

(a)

≤
∑

(i,d)∈Ṽk(ω)

‖x̂i(x̃k(d))− xki ‖2 +NL̃

k−1∑
l=k−D

‖x̂il(x̃l(dl))− xlil‖2

≤ zk +NL̃
k−1∑

l=k−D

zl ≤ β2

k∑
l=k−D

zl,

for some β2 > 0, where (a) follows from (3.25) and Step 4 of AsyFLEXA. The bound

(3.74) together with lim
k→+∞

k∑
l=k−D

zl = 0. leads to lim
k→+∞

‖x̂(xk) − xk‖2 = 0. Finally,

since the sequence {xk} is bounded, it has a limit point in X , denoted by x̄. By the

continuity of x̂(·) (cf. Proposition 3.8.2) and the equality lim
k→+∞

‖x̂(xk) − xk‖2 = 0.

we just proved, it must be x̂(x̄) = x̄. By Proposition 3.8.2, x̄ is also a stationary

solution of Problem (P).

The above result holds for any ω ∈ Ω̄, which completes the proof.

3.8.4 Proof of Theorem 3.5.1

In this section, the best-response map x̂(·) is the one defined in (3.15).

Statement (ii) of the theorem follow readily from the feasibility of x0 ∈ K and the

fact that xk+1
ik

= xk
ik

+γ(x̂ik(x̃
k)−xk

ik
) is a convex combinations of points in Kik(xkik).
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To prove statement (ii), let us fix a realization ω ∈ Ω. Following the steps from

(3.29) to (3.33), one can prove that the following holds a.s.:

E
(
Ṽ
(
xk+B . . . ,xk+B−D) |Fk−1

)
≤ Ṽ (xk, . . . ,xk−D)

− γ
(
τ − γ

(
L+

D2L

2

)) k+B−1∑
t=k

E
(
‖x̂it(x̃t)− xtit‖

2
2|F t−1

)
. (3.75)

Using (3.9), (3.75) and A4’, we deduce that i)
{
V (xk, . . . ,xk−D)

}
converges a.s.,

and ii)

lim
k→+∞

k+B−1∑
t=k

E
(
‖x̂it(x̃t)− xtit‖2|F t−1

)
= 0 a.s. (3.76)

It follows from (3.76) and C2 that

lim
k→+∞

N∑
i=1

‖x̂i(x̃k+tk(i))− x
k+tk(i)
i ‖2 = 0 a.s. (3.77)

Therefore, there exists a set Ω̄ ⊆ Ω, with P(Ω̄) = 1, such that, for any ω ∈ Ω̄,

‖x̂(xk)− xk‖2 ≤
N∑
i=1

‖x̂i(xk)− xki ‖2

(a)

≤
N∑
i=1

(
‖x̂i(x̃k+tk(i))− x

k+tk(i)
i ‖2

+ ‖x̃k+tk(i) − xk‖1/2
2

(
‖x̃k+tk(i) − xk‖1/2

2 + ˜̃L

))
(b)

≤
N∑
i=1

(
‖x̂i(x̃k+tk(i))− x

k+tk(i)
i ‖2 +

(
‖xk+tk(i) − xk‖1/2

2

+

k+tk(i)−1∑
l=k+tk(i)−D

‖xl+1 − xl‖1/2
2

)
(
‖xk+tk(i) − xk‖1/2

2 +

k+tk(i)−1∑
l=k+tk(i)−D

‖xl+1 − xl‖1/2
2 + ˜̃L

))
(c)

≤
N∑
i=1

(
‖x̂i(x̃k+tk(i))− x

k+tk(i)
i ‖2

+ 2
√
γ

k+B−1∑
l=k−D

‖x̂il(x̃l)− xlil‖
1/2
2

(
2
√
γ

k+B−1∑
l=k−D

‖x̂il(x̃l)− xlil‖
1/2
2 + ˜̃L

))
, (3.78)

where in (a) we used Proposition 3.8.3; (b) comes from (3.25); and in (c) we used the

updating rule of AsyFLEXA-NCC. Using (3.76), (3.77) and (3.78), we conclude that

lim
k→+∞

‖x̂(xk)− xk‖2 = 0. (3.79)
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A straightforward generalization of [76, Theorem 14] together with (3.79) proves that

every limit point of {xk} is a stationary solution of Problem (P′). Since (3.79) holds

for any given realization ω ∈ Ω̄, the above results hold a.s..

Iteration complexity can be proved following the steps (3.38)-(3.54) and using the

convexification of the nonconvex constraint sets where needed; details are omitted.
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4. DASYFLEXA: DISTRIBUTED ASYNCHRONOUS

ALGORITHM FOR NONSMOOTH NONCONVEX

OPTIMIZATION

We consider convex and nonconvex constrained optimization with a partially sepa-

rable objective function: agents minimize the sum of local objective functions, each

of which is known only by the associated agent and depends on the variables of that

agent and those of a few others. This partitioned setting arises in several applications

of practical interest. We propose the first distributed, asynchronous algorithm with

rate guarantees for this class of problems. When the objective function is nonconvex,

the algorithm provably converges to a stationary solution at a sublinear rate whereas

linear rate is achieved under the renowned Luo-Tseng error bound condition (which

is less stringent than strong convexity). Numerical results on matrix completion and

LASSO problems show the effectiveness of our method.

The rest of the Chapter is organized as follows. Section 4.1 presents the class of

problems under exam, together with the major contributions of this Chapter, and

a discussion of related works. Section 4.2 show some motivating application that

falls into the partitioned problem setting considered in this Chapter. The proposed

algorithm is introduced and analyzed in Section 4.3. Section 4.4 presents the main

convergence results. Section 3.5 contains an extension of the results of this Chapter to

the case involving the presence of nonconvex constraints. Finally, Section 3.6 shows

experimental results on convex and nonconvex problems. The proofs of the Theorems

are collected in the Appendix of this Chapter.

The novel results of this Chapter have been published in
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• Cannelli, L. and Facchinei, F. and Scutari, G., and Kungurtsev, V., “Asyn-

chronous Optimization over Graphs: Linear Convergence under Error Bound

Conditions”, submitted to IEEE Transactions on Automatic Control, 2019.

• Cannelli, L. and Facchinei, F. and Scutari, G., “Multi-agent asynchronous non-

convex large-scale optimization”, IEEE 7th International Workshop on Compu-

tational Advances in Multi-Sensor Adaptive Processing (CAMSAP), pages 1-5,

2017 [83].

• Cannelli, L. and Facchinei, F. and Kungurtsev, V. and Scutari, G., “Essentially

Cyclic Asynchronous Nonconvex Large-Scale Optimization”, IEEE 18th Inter-

national Workshop on Signal Processing Advances in Wireless Communications

(SPAWC) (Sapporo), pages 1-5, 2017 [84]. Best Paper Award Runner-up

4.1 Introduction

In this Chapter we study distributed, nonsmooth, nonconvex optimization with a

partially separable sum-cost function. Specifically, consider a set of N agents, each

of them controlling/updating a subset of the n variables x ∈ Rn. Partitioning x =

(xT1 , . . . ,x
T
N)T , xi ∈ Rni is the block of variables owned by agent i ∈ N , {1, . . . , N},

with
∑

i ni = n. All agents cooperatively aim at solving the following problem:

min
xi∈Xi,i∈N

V (x) ,
N∑
i=1

fi(xNi)︸ ︷︷ ︸
,F (x)

+
N∑
i=1

gi(xi)︸ ︷︷ ︸
,G(x)

,
(P)

where Ni denotes a small subset of N including the index i and xNi , [xj]j∈Ni

denotes the column vector containing the blocks of x indexed by Ni; Xi ⊆ Rni is a

closed convex set; fi is a smooth (nonconvex) function that depends only on xNi ; and

gi is a convex (nonsmooth) function, instrumental to encode structural constraints

on the solution, such as sparsity. Both fi and gi are assumed to be known only by

agent i.
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The above formulation is motivated by a variety of applications of practical interest

in different fields. For instance, natural loss functions arising from many machine

learning problems have the “sparse” pattern of V in (P): n and N are both very

large but each fi depends only on a very small number of components of x; i.e., each

subvector xNi contains just a few components of x. The same partitioned structure

in (P) is suitable also to model networked systems wherein agents are connected

through a physical communication network and can communicate only with their

immediate neighbors. In this setting, often Ni represents the set of neighbors of

agent i (including agent i itself). Examples of such applications include resource

allocation problems and network utility maximization [85], state estimation in power

networks [86], cooperative localization in wireless networks [87], and map building in

robotic networks. Some concrete instances of Problem (P) are discussed in Section

4.2.

4.1.1 Major Contributions

We focus on the design of distributed, asynchronous algorithms for (P), in the

following sense: i) Agents can update their block-variables at any time, without any

coordination; and ii) when updating their own variables, agents can use a delayed

out-of-sync information from the others. In (ii) no constraint is imposed on the

delay profiles: delays can be arbitrary, possibly time-varying (but bounded). This

model captures in a unified fashion several forms of asynchrony: some agents execute

more iterations than others; some agents communicate more frequently than others;

and inter-agent communications can be unreliable and/or subject to unpredictable,

unknown, time-varying delays.

While several forms of asynchrony have been studied in the literature–see Section

4.1.2 for an overview of most relevant results–we are not aware of any distributed

scheme that is compliant to the asynchronous model (i)-(ii) and tailored to the parti-

tioned (nonconvex) formulation (P). This Chapter fills this gap and proposes a general
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distributed, asynchronous algorithmic framework for convex and nonconvex instances

of (P). The algorithm builds on SCA techniques: agents solve asynchronously [in the

sense (i) and (ii) above] strongly convex approximations of the original problem (P)

by using (possibly) outdated information on the variables and the gradients of the

other agents. No specific activation mechanism for the agents’ updates, coordina-

tion, or communication protocol is assumed, but only some mild conditions ensuring

that information used in the updates does not become infinitely old. For nonconvex

instances of V , we prove that i) every limit point of the sequence generated by the

proposed asynchronous algorithm is a stationary solution of (P); and ii) a suitable

measure of stationarity vanishes at a sublinear rate. When V further satisfies the

Luo-Tseng error bound condition [24, 33], both the sequence and the objective value

converge at an R-linear rate. This error bound condition is weaker than strong con-

vexity and it is satisfied by a variety of problems of interest, such as LASSO, Group

LASSO, and Logistic Regression, just to name a few (cf. Section 4.3.1). While linear

convergence under error bounds has been proved in the literature for many centralized

algorithms [24,25,27,39,59], we are not aware of any such a result in the distributed

setting; current works require strong convexity to establish linear rate of synchronous

and asynchronous distributed algorithms (see, e.g., [88–91] and references therein).

This Chapter represents the first effort proving linear convergence of a distributed

asynchronous algorithm without invoking strong convexity. As a byproduct, our re-

sults provide a positive answer to the open question whether linear convergence could

be proved for distributed asynchronous algorithms solving highly dimensional empir-

ical risk minimization problems, such as LASSO and Logistic Regression, a fact that

was empirically observed but, to our knowledge, never proved.

4.1.2 Related Works

Since the seminal work [73], asynchronous parallelism has been applied to sev-

eral centralized solution methods, including (randomized) block-coordinate descent
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schemes [9, 46, 47, 49, 50, 53, 54, 59, 73], and stochastic gradient algorithms [61, 62, 92].

However, those methods are not applicable to Problem (P), since they would require

each agent to know the entire objective function V .

Distributed schemes exploring (some form of) asynchrony have been studied in

[55,67–69,93–109]; next, we group them based upon the asynchrony features (i) and

(ii).

(a) Random activation and no delays [68, 69, 93–98]: While substantially different in

the form of the updates performed by the agents, these schemes are all asynchronous

in the sense of feature (i) only–agents (or edge-connected agents) are randomly acti-

vated but, when performing their computations/updates, they must use the current

information from their neighbors. This means that no form of delay is allowed. Fur-

thermore, between two activations, agents are assumed to be in idle mode (i.e., able

to continuously receive information). Some form of coordination is thus needed to

enforce the above conditions. With the exception of [97], all the schemes in this

group can deal only with convex objectives; and none of the above works provide a

convergence rate or complexity analysis.

(b) Synchronous activation and delays [99–104]: These schemes consider synchronous

activation/updates of the agents, which can tolerate fixed computation delays (e.g.,

outdated gradient information) [99, 100] or fixed [101, 104] or time-varying [102, 103]

communication delays. However delays cannot be arbitrary, but must be such that

no loss can ever occur in the network: every agent’s message must reach its intended

destination within a finite time interval. Finally, all these algorithms are applicable

only to convex problems.

(c) Random/cyclic activations and some form of delay [55,67,105–109]: These schemes

allow for random [55,105, 106, 108] or deterministic uncoordinated [67, 107, 109] acti-

vation of the (edge-based) agents, together with the presence of some form of delay

in the updates/computations. Specifically, [105,106,109] can handle link failures–the

information sent by an agent to its neighbors either gets lost or received with no delay–

but cannot deal with other forms of delay (e.g., communication delays). In [55, 108]
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a probabilistic model is assumed whereby agents are randomly activated and update

their local variables using possibly delayed information. The model requires that

the random variables modeling the activation of the agents are i.i.d and independent

of the delay vector used by the agent to perform its update. While this assumption

makes the convergence analysis possible, in reality, there is a strong dependence of the

delays on the activation index, as also noted by the same authors [55,108]; see [46,47]

for a detailed discussion on this issue and several counter examples. Closer to our

setting are the asynchronous methods in [55, 67, 88, 107, 108]. These models however

assume that each function fi depends on the entire vector x. As a consequence, a

consensus mechanism on all the optimization variables is employed among the agents

at each iteration. Because of that, a direct application of these consensus-based al-

gorithms to the partitioned formulation (P) would lead to very inefficient schemes

calling for unnecessary computation and communication overheads. Finally, notice

that, with the exception of [67,88,106] (resp. [109]), all these schemes are applicable

to convex problems (resp. undirected graphs) only, with [105] further assuming that

all the functions fi have the same minimizer.

4.2 Motivating Examples

We discuss next two instances of Problem (P), which will be also used in our

numerical experiments to test our algorithms (cf. Section 4.5). The first case study

is the matrix completion problem–an example of large-scale nonconvex empirical risk

minimization. We show how to exploit the sparsity pattern in the data to rewrite the

problem in the form (P), so that efficient asynchronous algorithms levering multi-core

architectures can be developed. The second example deals with learning problems

from networked data sets; in this setting data are distributed across multiple nodes,

whose communication network is modeled as a (directed) graph. The goal here is to

design asynchronous algorithms that run on network, without requiring the presence

of a sink node collecting the information (or data) from all the agents.
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Example #1 –Matrix completion: The matrix completion problem consists of esti-

mating a low-rank matrix Z ∈ RM×N from a subset Ω ⊆ {1, . . . ,M} × {1, . . . , N} of

its entries. Postulating the low-rank factorization Z = XTY, with X ∈ Rr×M and

Y ∈ Rr×N , the optimization problem reads [110]:

min
X∈Rr×M
Y∈Rr×N

V (X,Y) ,
1

2

∥∥(XTY − Z)Ω

∥∥2

F
+
λ

2
‖X‖2

F +
ξ

2
‖Y‖2

F , (4.1)

where ‖·‖F is the Frobenius norm; (·)Ω is the projection operator, defined as [(X)Ω](i,j) =

X(i,j), if (i, j) ∈ Ω; and [(X)Ω](i,j) = 0 otherwise; and λ, ξ > 0 are regularization pa-

rameters. In many applications, the amount of data is so large that storage and

processing from a single agent (e.g., core, machine) is not efficient or even feasible.

The proposed approach is then to leverage multi-core machines by first casting (4.1)

in the form (P), and then employing the parallel asynchronous framework developed

in this paper.

Consider a distributed environment composed of N agents, and assume that the

known entries zmn, (m,n) ∈ Ω, are partitioned among the agents. This partition

along with the sparsity pattern of (Z)Ω induce naturally the following splitting of the

optimization variables X and Y across the agents. Let xm and yn denote the m-th and

the n-th column of X and Y, respectively; the agent owning zmn will control/update

the variables xm (or yn), and it is connected to the agent that optimizes the column

yn (or xm). By doing so, we minimize the overlapping across the block-variables

and, consequently, the communications among the agents. Problem (4.1) can be then

rewritten in the multi-agent form (P), setting

fi((X,Y)Ni) =
1

2

∑
(m,n)∈Ωi

(xTm yn − zmn)2 (4.2)

and

gi ({xm}m∈Xi , {yn}n∈Yi) =
λ

2

∑
m∈Xi

‖xm‖2
2 +

ξ

2

∑
n∈Yi

‖yn‖2
2, (4.3)

where Ωi ⊆ Ω contains the indices associated to the components of (Z)Ω owned by

agent i, and Xi (resp. Yi) is the set of the column indexes of X (resp. Y) controlled

by agent i.
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Example #2 – Empirical risk minimization over networks: Consider now a net-

work setting where data are distributed across N geographically separated nodes. As

concrete example, let us pick the renowned LASSO problem [5]:

min
x=(xT1 ,...,x

T
N )T∈Rn

‖Ax− b‖2
2 + λ‖x‖1, (4.4)

where A ∈ Rm×n,b ∈ Rm, and λ > 0 is a regularization parameter. Note that (4.4)

easily falls into Problem (P); for each i ∈ N , it is sufficient to set fi(x) = ‖Aix+bi‖2
2,

with Ai ∈ Rm×n and bi ∈ Rm such that A =
∑N

i=1 Ai and b =
∑N

i=1 bi; and

gi = ‖xi‖1. Ai and bi represent in fact the data stored at agent i’s side. Under

specific sparsity patterns in the data, the local matrices Ai may be (or constructed to

be) such that each local function fi depends only on some of the block variables xi.

These dependencies will define the sets Ni associated to each agent i. Note that Ni
need not coincide with the neighbors of agent i in the communication network (graph).

That is, the graph modeling the dependence across the block-variables–the one with

node set N and edge set E = {(i, j) : j ∈ Ni, for some i ∈ N}–might not coincide

with the communication graph. This can be desirable, e.g., when the communication

graph is populated by inefficient communication links, which one wants to avoid to

use.

4.3 Distributed Asynchronous Algorithm

In the proposed asynchronous model, agents update their block-variables without

any coordination. Let k be the iteration counter: the iteration k → k+ 1 is triggered

when an agent, say i, updates its own block xi from xki to xk+1
i . Hence, xk and xk+1

only differ in the ith block xi.

To perform its update, agent i minimizes a strongly convex approximation of∑
j∈Ni fj−the part of V that depends on xi−using possibly outdated information

collected from the other agents j ∈ Ni. To represent this situation, let x
k−dkj (i,i)

j ,

j ∈ Ni\{i}, denote the estimate held by agent i of agent j’s variable xkj , where

dkj (i, i) is a nonnegative (integer) delay (the reason for the double index (i, i) in dkj
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will become clear shortly). If dkj (i, i) = 0, agent i owns the most recent information

on the variable of agent j, otherwise x
k−dkj (i,i)

j is some delayed version of xkj . We

define as dk(i, i) , [dkl (i, i)]l∈Ni the delay vector collecting these delays; for ease of

notation dk(i, i) contains also the value dki (i, i), set to zero, as each agent has always

access to current values of its own variables. Using the above notation and recalling

that fi depends on xNi , agent i at iteration k solves the following strongly convex

subproblem:

x̂i(x̃
k(i)), arg min

xi∈Xi

{
f̃i

(
xi; x

k−dk(i,i)
Ni

)
+ (4.5)

∑
j∈Ni\{i}

〈
∇xifj

(
x
k−dk(i,j)
Nj

)
,xi−xki

〉
+ gi(xi)

}
,

where we defined x
k−dk(i,j)
Nj , [x

k−dkl (i,j)

l ]l∈Nj , j ∈ Ni, and

x̃k(i) ,
[
x
k−dk(i,j)
Nj

]
j∈Ni

. (4.6)

The term f̃i in (4.5) is a strongly convex surrogate that replaces the nonconvex

function fi known by agent i; an outdated value of the variables of the other agents is

used, x
k−dk(i,i)
Ni , to build this function. Examples of valid surrogates are discussed in

Sec. 4.3.1. The second term in (4.5) approximates
∑

j∈Ni\{i} fj by replacing each fj

by its first order approximation at (possibly outdated) x
k−dk(i,j)
Nj (with ∇xifj denoting

the gradient of fj with respect to the block xi), where dk(i, j) ,
[
dkl (i, j)

]
l∈Nj

, with

dkl (i, j) ≥ 0 representing the delay of the information that i knows about the gradient

∇xifj. This source of delay is due to two facts, namely: i) agents j ∈ Ni \ {i} may

communicate to i its gradient ∇xifj occasionally; and ii) ∇xifj is generally computed

at some outdated point, as agent j itself may not have access of the last information

of the variables of the agents in Nj \ {j}.

Once x̂i(x̃
k(i)) has been computed, agent i sets

xk+1
i = xki + γ

(
x̂i(x̃

k(i))− xki
)
, (4.7)

where γ ∈ (0; 1] is suitably chosen stepsize (cf. Sec. 4.3.1).
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The proposed distributed asynchronous algorithm, termed Distributed Asynchronous

FLexible ParallEl Algorithm (DAsyFLEXA), is formally described in Algorithm 1.

We set xti = x0
i , for all t < 0 and i ∈ N , without loss of generality.

Algorithm 1 Distributed Asynchronous FLexible ParallEl Algorithm

(DAsyFLEXA)

Initialization: k=0; x0∈X,
∏

iXi; xt=x0, t<0;γ ∈ (0; 1].

while a termination criterion is not met do

(S.1): Pick agent ik and delays {dk(ik, j)}j∈N
ik

;

(S.2): Compute x̂ik(x̃
k(ik)) according to (4.5);

(S.3): Update xk
ik

according to (3.2);

(S.4): Update the global iteration counter k ← k + 1;

end while

We stress that agents need know neither the iteration counter k nor the vector

of delays. No one “picks agent ik and the delays {dk(ik, j)}j∈N
ik

” in (S.1). This

is just an a posteriori view of the algorithm dynamics: all agents asynchronously

and continuously collect information from their neighbors and use it to update xi;

when one agent has completed an updated the iteration index k is increased and ik

is defined.

4.3.1 Assumptions

Before studying convergence of Algorithm 1, we state the main assumptions on

Problem (P) and the algorithmic choices.

On Problem (P). Below, we will use the following conventions: When a function

is said to be differentiable on a certain domain, it is understood that the function is

differentiable on an open set containing the domain. We say that fi is block-LC1 on

a set if it is continuously differentiable on that set and ∇xjfi are locally Lipschitz.
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We say V is coercive on X =
∏

iXi, if lim
‖x‖→+∞,x∈X

V (x) = +∞; this is equivalent to

requiring that all level sets of V in X are compact.

Assumption A (On Problem (P)):

(A1) Each set Xi ⊆ Rni is nonempty, closed, and convex;

(A2) At least one of the following conditions is satisfied

(a) L0 , {x ∈ X : V (x) ≤ V (x0)} is compact and all fi are block-LC1 on

XNi , Π
j∈Ni
Xj;

(b) All fi are C1 and their gradients ∇xjfi, j ∈ Ni, are globally Lipschitz on

XNi ;

(A3) Each gi : Xi → R is convex;

(A4) Problem (P) has a solution;

(A5) The communication graph G is undirected and connected.

The above assumptions are standard, and similar to those already considered

in Chapter 3 and Chapter 2. For instance, A2(a) holds if V is coercive on X and

all fi are block-LC1 on XNi . Note that Ex. 2 satisfies A2(b); A2(a) is motivated by

applications such as Ex. 1, which do not satisfy A2(b). A3 is a common assumption

in the literature of parallel and distributed methods for the class of problems (P);

two renowned examples are gi(xi) = ‖xi‖1 and gi(xi) = ‖xi‖2. Finally, A4 is satisfied

if, for example, V is coercive or if X is bounded.

Remark 4.3.1 Extensions to the case of directed graphs or the case where each agent

updates multiple block-variables are easy, but not discussed here for the sake of sim-

plicity.

The aim of Algorithm 1 is to find stationary solutions of (P), i.e. points x ∈ X

such that for some ξ ∈ ∂G(x) it holds

〈∇F (x) + ξ,y − x〉 ≥ 0, ∀y ∈ X . (4.8)
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Let X ? ⊆ Rn denote the set of such stationary solutions.

On an error bound condition. We prove linear convergence of Algorithm 1 under

the Luo-Tseng error bound condition, which is stated next. Recall the definition of

the proximal operator: given α > 0, define proxαG : Rn → Rn as

proxαG(z) , arg min
y∈X

{
αG(y) +

1

2
‖y − z‖2

2

}
. (4.9)

Furthermore, given x ∈ Rn, let

d(x,X ?) , min
x?∈X ?

‖x− x?‖2, PX ?(x) , argmin
x?∈X ?

‖x− x?‖2. (4.10)

Note that PX ?(x) 6= ∅, as X ? is closed.

Assumption B (Luo-Tseng error bound):

(B1) For any η > min
x∈X

V (x), there exist ε, κ > 0 such that:

V (x) ≤ η,

‖x− proxG (∇F (x)− x) ‖2 ≤ ε

⇒
d(x,X ?) ≤ κ ‖x− proxG (∇F (x)− x)‖2 ;

(B2) There exists δ > 0 such that

x,y ∈ X ?,

V (x) 6= V (y)

⇒ ‖x− y‖2 ≥ δ.

B1 is the Luo-Tseng error bound condition that we discussed in detail in Section 2.5.

B1 is a local Lipschitzian error bound: the distance of x from X ? is of the same order

of the norm of the residual x− proxG (∇F (x)− x) at x. It is not difficult to check,

that x ∈ X ? if and only if x − proxG (∇F (x)− x) = 0. Error bounds of this kind

have been extensively studied in the literature; see [24, 25] and references therein.

Examples of problems satisfying Assumption B include: LASSO, Group LASSO,

Logistic Regression, unconstrained optimization with smooth nonconvex quadratic

objective or F (Ax), with F being strongly convex and A being an arbitrary operator

(not necessarily full rank). B2 states that the level curves of V restricted to X ? are
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“properly separated”. B2 is trivially satisfied, e.g., if V is convex, if X is bounded,

or if (P) has a finite number of stationary solutions. To read more details about B2

we again refer the reader to Section 2.5, where we discussed B2 about Assumption E.

We state next the main assumptions concerning the free parameters in the algo-

rithm design.

On the subproblems (4.5). The surrogate functions f̃i satisfy the following fairly

standard conditions (∇f̃i denotes the partial gradient of f̃i w.r.t. the first argument).

Assumption C Each f̃i : Xi ×XNi → R is chosen so that

(C1) f̃i(·; y) is C1 and τ -strongly convex on Xi, for all y ∈ XNi ;

(C2) ∇f̃i(yi; yNi) = ∇yifi(yNi), for all y ∈ X ;

(C3) ∇f̃i(y; ·) is Li-Lipschitz continuous on XNi , for all y ∈ Xi.

A wide array of possible surrogate functions f̃i satisfying Assumption C can be found

in Section 2.2.

On the asynchronous/communication model. The way agent i builds its own

estimates x
k−dk(i,i)
Ni and ∇xifj(x

k−dk(i,j)
Nj ), j ∈ Ni\{i}, depends on the particular asyn-

chronous model and communication protocol under consideration and it is immaterial

to the convergence of Algorithm 1. This is a major departure from previous works,

such as [69,93,97,107], which instead enforce specific asynchrony and communication

protocols. We only require the following mild conditions.

Assumption D (On the asynchronous model):

(D1) Every block variable of x is updated at most every B ≥ N iterations, i.e.,

∪k+B−1
t=k it = N , for all k;

(D2) ∃D ∈ [0, B], such that every component of dk(i, j), i ∈ N , j ∈ Ni, is not

greater than D, for any k ≥ 0.1

1While (S.2) in Algorithm 1 is defined once dk(ik, j), j ∈ Nik is given, here we extend the definition
of the delay vectors dk(i, j) to all i, j ∈ N , whose values are set to the delays of the information
known by the associated agent on the variables and gradients of the others, at the time agent ik

performs its update. This will simplify the notation in some of the technical derivations.
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Assumption D is satisfied virtually in all practical scenarios. D1 controls the frequency

of the updates and is satisfied, for example, by any essentially cyclic rules, while

D2 limits the age of the old information used in the updates. D1 is very easy to

implement in practice: for instance it is automatically satisfied if each agent wakes

up and performs an update whenever some internal clock ticks, without any need

of centralized coordination. D2 imposes a mild condition on the communication

protocol employed by the agents: information used in the agents’ updates can not

become infinitely old. While this implies agents communicate sufficiently often, it

does not enforce any specific protocol on the activation/idle time/communication.

For instance, differently from several asynchronous schemes in the literature [68, 69,

93, 94, 97, 98, 105], agents need not be always in “idle mode” to continuously receive

messages from their neighbors. Notice that time varying delays satisfying D2 model

also packet losses.

4.4 DAsyFLEXA: Convergence Results

In this Section we state the main convergence results for DAsyFLEXA. As al-

ready done in Chapter 3, we will consider both fixed and diminishing stepsizes for

DAsyFLEXA. The former instrumental to obtain iteration complexity results of our

scheme -in particular linear convergence rate on a specific class of problems-, the

latter more efficient for practical implementations.

4.4.1 DAsyFLEXA with fixed stepsize γ

For nonconvex instances of (P), an appropriate measure of optimality is needed

to evaluate the progress of the algorithm towards stationarity. In order to define such

a measure, we first introduce the following quantities: for any k ≥ 0,

x̄k(i) , [xkNj ]j∈Ni , x̄k , [x̄k(i)]i∈N , (4.11)
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where the former vector can be seen as the “synchronous” instance of x̃k(i) wherein

all the delays dk(i, j) are 0. Convergence to stationarity is monitored by the following

merit function:

MV (xk) = ‖x̂(x̄k)− xk‖2
2, with x̂(x̄k) , [x̂l(x̄

k(l))]l∈N . (4.12)

Note that MV is a valid measure of stationarity, as MV is continuous and MV (xk) = 0

if and only if xk ∈ X ?.

The following theorem shows that, when the agents use a sufficiently small stepsize,

the sequence of the iterates produced by DAsyFLEXA converges to a stationary

solution of (P), driving MV (xk) to zero at a sublinear rate. In the theorem we use

two positive constants, L and C1, whose definition is given in the Appendix of this

Chapter [cf. (4.34)]. Suffices to say, here, that L is essentially a Lipschitz constant

for the partial gradients ∇xifi whose definition varies according to whether A2(a)

or A2(b) holds. In the latter case, L is simply the largest global Lipschitz constant

for all ∇xjfi’s. In the former case, the sequences {xk}, {x̃k}, x̃k , [x̃k(i)]i∈N , and

{x̂(x̃k)} are proved to be bounded [cf. Theorem 4.4.1(c)]; L is then the Lipschitz

constant of all ∇xjfi’s over the compact set confining these sequences.

Theorem 4.4.1 Given Problem (P) under Assumption A; let {xk} be the sequence

generated by DAsyFLEXA, under Assumptions C, and D. Choose γ ∈ (0, 1] such that

γ < 2τ
L(2+ρ2D2)

, with ρ , maxi∈N |Ni|. Then, there hold:

(a) Any limit point of {xk} is a stationary solution of (P);

(b) In at most Tε iterations, DAsyFLEXA drives the stationarity measure MV (xk)

below ε, ε > 0, where

Tε =

⌈
C1

(
V (x0)−min

x∈X
V (x)

)
· 1

ε

⌉
,

where C1 > 0 is a constant defined in Appendix 4.7.3 [cf. (4.34)], which depends

on ρ, Li, i ∈ N , L, τ, γ,N,B, and D.

(c) If, in particular A2(a) is satisfied, {xk} is bounded.
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Proof See the Appendix of this Chapter.

Theorem 4.4.1 provides a unified set of convergence conditions for a gamut of algo-

rithms, asynchronous models and communication protocols. Note that if the method

is synchronous, i.e. D = 0, the condition on γ, reduces to the renowned condition

used in the (proximal)-gradient algorithms. The term D2 in the denominator of

the upper-bound on γ should then be seen as the price to pay for asynchrony: the

larger the possible delay D, the smaller γ should be to make the algorithm robust to

asynchrony/delays.

Theorem 4.4.2 improves on the convergence of DAsyFLEXA, when V satisfies

the error bound condition in Assumption B. Specifically, convergence of the whole

sequence {xk} to a stationary solution x? is established (in contrast with subsequence

convergence in Theorem 4.4.1 (b)], and suitable subsequences that converge linearly

are identified.

Theorem 4.4.2 Given Problem (P) under Assumptions A and B, let {xk} be the

sequence generated by DAsyFLEXA, under Assumptions C and D. Suppose that γ/τ >

0 is sufficiently small. Then, {xt+kB} and {V (xt+kB)}, t ∈ {0, . . . , B − 1}, converge

at least R-linearly to x? and V ? = V (x?), respectively, with x? ∈ X ?:

V (xt+kB)− V ? = O
(
λt+kB

)
,

‖xt+kB − x?‖ = O
(√

λt+kB
)
,

where λ ∈ (0; 1) is a constant defined in Appendix 4.7.4 [cf. (4.44)], which depends

on ρ, Li, i ∈ N , L, τ, γ,N,B, and D.

Proof See the Appendix of this Chapter.

In essence, the theorem proves a B-steps linear convergence rate. To the best of our

knowledge, this is the first (linear) convergence rate result in the literature for an

asynchronous algorithm in the setting considered in this paper.
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4.4.2 DAsyFLEXA with diminishing stepsize γk

Note that since we strive for a fully distributed analysis it cannot be simply

assumed that γk is a classical diminishing stepsize sequence. Indeed, this would entail

that each agent should know the iteration counter k, which is physically impossible,

unless we introduce strong coordination requirements among the agents. Instead

we assume that each agent independently draws the stepsize from a local stepsize

sequence {αt} going through it as agent’s updates progress. We only require that all

the agents use the same sequence. Figure 4.1 shows an example of how the choice of

stepsizes could evolve with three agents when {αt} = {1/2, 1/3, . . .} Here it is possible

to see that the first update performed by the algorithm, for k = 0, is executed by

agent 1 which uses the first element α0 of its local sequence {αt}; after this, agent

2 updates two times its variables, using the first two elements α0 and α1 of its own

stepsize sequence; for k = 3, agent 3 performs the update and, since this is the

first update executed by agent 3, it uses the first element α0 of its local sequence.

So, the sequence of stepsizes used in the first four iterations of the algorithm is:

{α0, α0, α1, α0}, which coincides with the first four elements {γ0, γ1, γ2, γ3} of the

global stepsize sequence {γk} that appears in the updating rule (3.2).

The local common stepsize sequence must satisfy the following assumption.

Assumption E (On the stepsize). For any t ≥ 0

(E1) αt ↓ 0; and
∑∞

t=0 α
t = +∞;

(E2) αt+1 ≤ αt for sufficiently large t;

E1 is quite standard and satisfied by most of practical diminishing stepsize rules [9].

E2 is very mild and satisfied by classical choices of αt in diminishing stepsize methods.

For example, the following rule satisfies Assumption E and has been found very

effective in our experiments [1, 51]: αt+1 = αt (1− µαt) , α0 ∈ (0, 1] and µ ∈ (0, 1) .

We can now provide the convergence results for DAsyFLEXA when equipped with

diminshing stepsize.
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Figure 4.1. The global stepsize sequence {γk} is a composition of elements
coming from the local stepsize sequences {αt}.

Theorem 4.4.3 Given Problem (P) under Assumptions A-C-D-E, let {xk} be the

sequence generated by DAsyFLEXA. For any ε > 0, define Tε to be the first iteration

such that MV (xk) ≤ ε. Then, the following hold:

(a) Any limit point of {xk} is a stationary point of Problem (P);

(b) Tε ≤ inf

{
k ≥ 0|

k∑
t=0

γ̃t ≥ c
ε

}
, where c is a positive constant, and γ̃t , min

k∈[t−D;t+B−1]
γk;

(c) If A2(a) is satisfied, the sequence {xk} is bounded.

Proof See the Appendix of this Chapter.

In analogy to Theorem 4.4.1, Theorem 4.4.3 proves a sublinear convergence rate for

the proposed algorithmic framework.
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4.5 Nonconvex Constraints

In this section, we remove the assumption that all constraints are convex. For

ease of presentation, the same notation already used in the previous sections will be

kept for the quantities which are analogous to those already defined.

Specifically, we study the following more general nonconvex constrained optimiza-

tion problem

min
x

F (x) =
N∑
i=1

fi(xNi) +
N∑
i=1

gi(xi),

xi ∈ Xi, i = 1, . . . , N

c1(x1) ≤ 0, . . . , cN(xN) ≤ 0

 , K
(4.13)

where ci(xi) ≤ 0 are nonconvex private constraints, with ci : Xi → Rmi ; let also define

Ki , {xi ∈ Xi : ci(xi) ≤ 0}. Note that ci(xi) is a vector function, whose individual

component is denoted by ci,j, with j = 1, . . . ,mi. Problem (4.13) is motivated by

several applications in signal processing, machine learning, and networking; see, [111]

and references therein for some concrete examples.

We require on Problem (4.13) the following Assumption, similar to that already stated

for Problem (P).

Assumption A’ (On the problem model). Suppose that

(A1′) Each set Xi ⊆ Rni is nonempty, closed, and convex;

(A2′) At least one of the following conditions is satisfied

(a) L0 , {x ∈ X : V (x) ≤ V (x0)} is compact and all fi are block-LC1 on X

(b) All fi are C1 and their gradients ∇xjfi are globally Lipschitz on X for all

j ∈ Ni;

(A3′) Each gi : Xi → R is convex;

(A4′) K is a compact set;

(A5′) G is undirected and connected.
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(A6′) Each ci,j : Xi → R is C1;

(A7′) All feasible points of problem (P′) satisfy the MFCQ (see Definition 3.5.1).

A1′-A2′-A3′-A5′ are duplicate of A1-A2-A3-A5 and listed again for ease of reference.

A4′ guarantees the existence of a solution and it is now stronger than A4, and made

here for the sake of simplicity (one could relax it with A4, having a more involved

convergence proof). A6′ is a standard differentiability requirement on the nonconvex

constraints ci,j. Finally, we remark that one could relax A7′ and require regularity

only at specific points, but at the cost of more convoluted statements; we leave this

task to the reader.

The algorithm proposed for solving Problem (4.13) is a generalization of DAsyFLEXA:

SCA techniques are leveraged again and at each iteration, a suitably chosen “convex

approximation” of the original problem is solved. The difference with the method

introduced in Section 4.3 is that now also the nonconvex constraints will be approx-

imated. More specifically, the subproblem solved to update block i now becomes:

given x
k−dki
Ni , and ski,j for j ∈ Ni\{i}

x̂i(x̃
k(i))

, arg min
xi∈Ki(xki )

f̃i (xi; x
k−dk(i,i)
Ni

)
+

∑
j∈Ni\{i}

〈∇xifj

(
x
N k−dk(i,j)
i

)
,xi − xki 〉+ gi(xi)

 .

(4.14)

where f̃i : Xi × Π
j∈Ni
Kj → R is a strongly convex surrogate of fi, and Ki(xki ) is a

convex approximation of Ki at xki , defined as

Ki(xki ) , {xi ∈ Xi : c̃i,j(xi; x
k
i ) ≤ 0, j = 1, . . . ,mi},

and c̃i,j : Xi × Ki → R is a suitably chosen surrogate of ci,j. Note that Ki does not

depend on a delayed version of xki , because agent i always owns the most up-to-date

version of its block-variable, i.e. dki (i, i) = 0, for all i, k.

The assumptions required on the surrogate functions f̃i are the same already

stated in Assumption 3 in Section 4.3.
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The functions c̃i,j are chosen to satisfy the following assumptions (∇c̃i,j below

denotes the partial gradient of c̃i,j with respect to the first argument).

Assumption F (On the surrogate functions c̃i,j). Each c̃i,j : Xi × Ki → R is

chosen so that:

(F1) Each c̃i,j(·; y) is C1 and convex on Xi, for all y ∈ Ki;

(F2) c̃i,j(y; y) = ci(y), for all y ∈ Ki;

(F3) ci,j(z) ≤ c̃i,j(z; y) for all z ∈ Xi and y ∈ Ki;

(F4) c̃i,j(·; ·) is continuous on Xi ×Ki;

(F5) ∇yici,j(y) = ∇c̃i,j(y; y), for all y ∈ Ki;

(F6) ∇c̃i,j(·; ·) is continuous on Xi ×Ki;

(F7) Each c̃i,j(·; ·) is Lipschitz continuous on Xi ×Ki.

Roughly speaking, Assumption F requires c̃i,j to be an upper convex approximation of

ci,j having the same gradient of ci,j in the point in which the approximation is made.

We want to remark that it is quite easy to find suitable convex approximations c̃i,j

in most practical problems; we refer the reader to Chapter 3 and [112] for several

examples and applications.

DAsyFLEXA-NCC: The algorithm we propose to solve Problem (4.13) is DAsyFLEXA

wherein the best-response map in (S.2) is replaced by (4.14); we call this new al-

gorithmic framework DAsyFLEXA-NCC (where NCC stands for Non Convex Con-

straints). Convergence results analogous to those obtained for DAsyFLEXA are

stated in the following theorems.

Theorem 4.5.1 Given Problem (4.13) under Assumption A’-C-D-F, let {xk} be the

sequence generated by DAsyFLEXA-NCC. Suppose that the stepsize γk is fixed γk =

γ ∈ (0; 1] and chosen as in Theorem 4.4.1. Then, the following hold:
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(a) The sequence of the iterates is feasible: xk ∈ K1(xk1) × . . . × KN(xkN) ⊆ K for

all k ≥ 0;

(b) The same results of Theorem 4.4.2 hold;

Proof Proof of part (a) follows from Lemma 9 in [112]. We omit the proof of part

(b) because is a straightforward generalization of previous proofs presented in this

Dissertation. Specifically, to prove statement (b) it is sufficient to follow the steps of

the proof of Theorem 3.4.1, together with the results derived in the proof of Theorem

4.4.1.

In this Section we report some numerical results on the two problems described in

Section 4.2. We compare DAsyFLEXA with the PrimalDual asynchronous algo-

rithm in [108], which seems to be the closest distributed asynchronous scheme to

DAsyFLEXA. However, there are some important differences between these two al-

gorithms. First, the PrimalDual algorithm [108] does not exploit the sparsity pattern

of the objective function V ; every agent instead controls and updates a local copy of

the entire vector x, which requires employing a consensus mechanism to enforce an

agreement on such local copies. This leads to an unnecessary communication over-

head among the agents. Second, no explicit estimate of the gradients of the other

agents is employed; the lack of this knowledge is overcome by introducing additional

communication variables, which lead to contribute to increase the communication

cost. Third, the PrimalDual algorithm does not have convergence guarantees in the

nonconvex case. We tested the algorithms on the Archimedes1 cluster computer at

Purdue University, equipped with two 22-cores Intel E5-2699Av4 processors (44 cores

in total) and 512GB of RAM.

4.5.1 Distributed LASSO

We simulate the (convex) LASSO problem as stated in (4.4). The underlying

sparse linear model is generated as follows: b = Ax? + e, where A has 15000 rows
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and 30000 columns. A, x? and e have i.i.d. elements drawn from a Gaussian N (0, σ2)

distribution, with σ = 1 for A and x?, and σ = 0.1 for the noise vector e. Entries of

A are normalized by the spectral norm of A. To impose sparsity on x? and A, we

randomly set to zero 95% of their components. Finally, in (4.4), we set λ = 1.

We consider a fixed, undirected network composed of 50 agents; x ∈ R30000 is

partitioned in 50 block-variables xi ∈ R600, i ∈ {1, . . . , 50}, each of them controlled

by one agent. We define the local functions fi and gi as described in Sec. 4.2 (cf.

Ex. #2); each Ai (resp. bi) is all zeros but its ith row (resp. component), which

coincides with that of A (resp. b). This induces the following communication pattern

among the agents: each agent i is connected only to the agents js owning the xjs

corresponding to the nonzero column-entries of Ai.

We simulate DAsyFLEXA using the following surrogate functions (satisfying As-

sumption C):

f̃i

(
xi; x

k−dk(i,i)
Ni

)
(4.15)

=
〈
∇xifi

(
x
k−dk(i,i)
Ni

)
,xi − xki

〉
+
τi
2
‖xi − xki ‖2

2,

where τi > 0 is a tunable parameter, which is updated following the same heuristic

used in [47]. The stepsize γ is set to 0.9. Note that, using (4.15), problem (4.5) has

a closed-form solution via the renowned soft-thresholding operator.

We simulate the following asynchronous model. Each agent is activated peri-

odically, every time a local clock triggers. The agents’ local clocks have the same

frequency but different phase shift, which are selected uniformly at random within

[5, 50]. Based upon its activation, each agent: i) performs its update and then broad-

casts its gradient vector ∇xifi together with its own block-variable xi to the agents

in Ni\{i}; and ii) modifies the phase shift of its local clock by selecting uniformly at

random a new value in [5, 50].

The step sizes of the PrimalDual scheme [108] are tuned by hand in order to obtain

the best performances; specifically we set α = 0.9, and ηi = 1.5 for i = 1, . . . , 50
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(see [108] for details on these parameters). Both algorithms are initialized from the

same randomly chosen point, drawn from N (0, 1).

Figure 4.2 plots relative error (V (xk)− V ?)/V ? of the two algorithms versus the

number of iterations. Figure 4.3 shows the same function versus the number of

message exchanges, where each scalar variable sent from an agent to one of its neighbor

is counted as one message exchanged. All the curves are averaged over 10 independent

realizations.

Figure 4.2. LASSO problem: Relative error vs. # of iterations.

DAsyFLEXA outperforms the PrimalDual scheme [108]. Also, as anticipated,

PrimalDual requires much more communications than DAsyFLEXA.

4.5.2 Distributed Matrix Completion

In this section we consider the (nonconvex) Distributed Matrix Completion prob-

lem (4.1). We generate a 2500 × 2500 matrix Z with samples drawn from N (0, 1);

and we set λ = ξ = 1 and r = 4. We consider a fixed undirected network composed

of 50 agents, and we partitioned the columns of X uniformly among 25 agents, and

those of Y uniformly among the other 25 agents. We sampled uniformly at random
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Figure 4.3. LASSO problem: Relative error vs. # of message exchanges.

10% of the entries of Z, and distributed these samples zmn to the agents owing the

corresponding column xm of X or yn of Y, choosing randomly between the two.

We applied the following instance of DAsyFLEXA to (4.1). Consider one of the

agents that optimizes some columns of X, say agent i. Since each fi is biconvex in X

and Y, the following surrogate function satisfies Assumption C:

f̃i

(
{xm}m∈Xi ; (X,Y)

k−dk(i,i)
Ni

)
(4.16)

=
1

2

∑
(m,n)∈Ωi

(
xTmy

k−dk
j(n)

(i,i)
n −zmn

)2

+
τi
2

∑
(m,n)∈Ωi

‖xm−xkm‖2
2;

where j(n) is the index j ∈ Ni of the agent that controls yn, and τi > 0 is updated

following the same heuristic used in [47] (the surrogate function for the agents that

update columns of Y is the same as (4.16), with the obvious change of notation). Note

that (4.16) preserves the block-wise convexity present in the original function fi, which

contrasts with the common approach in the literature based on the linearization of fi.

We remark that, problem (4.5) with the surrogate (4.16) has a closed-form solution

(up to a matrix inversion).

The rest of the setup is the same as that described for the LASSO problem. Figure

4.4 and Figure 4.5 plot ‖x̂k − xk‖∞ (a valid measure of stationarity), with x̂i defined
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as in (4.5), obtained by DAsyFLEXA and the PrimalDual algorithm [108] versus the

number of iterations and message exchanges, respectively. On our tests, we observed

that all the algorithms converged to the same stationary solution. The results confirm

the behavior observed in the previous section for convex problems: DAsyFLEXA has

better performances than PrimalDual, and the difference is mostly significant is terms

of communication cost.

Figure 4.4. Matrix completion: stationarity distance vs. # of iterations.

4.6 Conclusions

We proposed a novel general asynchronous algorithmic framework for the con-

strained minimization of a nonconvex and nonsmooth sum-cost function in multi-

agent graph-partitioned networks. Sublinear convergence rate to stationary solutions

is proved. Linear convergence rate is established under the additional Luo-Tseng

error bound. Simulation results on distributed LASSO and matrix completion prob-

lems show that the proposed algorithm compares favorably on state-of-the-art asyn-

chronous schemes.
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Figure 4.5. Matrix completion: stationarity distance vs. # of message
exchanges.

4.7 Appendix: Proofs of Theorems

In this section we prove Theorems 4.4.1 and 4.4.2. We begin introducing some

notation and definitions instrumental for the proofs (cf. Section 4.7.1), followed by

some preliminary results (cf. Section 4.7.2). Theorems 4.4.1 and 4.4.2 are proved in

Section 4.7.3 and Section 4.7.4, respectively. Some miscellanea results supporting the

main proofs are given in Section 4.7.5.

4.7.1 Notation

Vectors x
k−dk(i,j)
Nj have different length. It is convenient to replace them with equal-

length vectors retaining of course the same information. This is done introducing the

following (column) vectors xk(i, j) , (xkl (i, j))
N
l=1 ∈ X , defined as:

[xkl (i, j)]l∈Nj , x
k−dk(i,j)
Nj , (4.17a)

xkl (i, j) = xkl , l /∈ Nj. (4.17b)
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In words, the blocks of xk(i, j) indexed by Nj coincide with x
k−dk(i,j)
Nj whereas the

other block-components, irrelevant to the proofs, are conveniently set to their most

up-to-date values. We will use the shorthand xkNj(i, j) , [xkl (i, j)]l∈Nj .

Since at each iteration k ≥ 0 only one block of xk is updated, and because of

Assumption D2, it is not difficult to check that the delayed vector xk(i, j) can be

written as

xk(i, j) = xk +
∑

l∈Kk(i,j)

(xl − xl+1), (4.18)

where Kk(i, j) is a subset of {k−D, . . . , k−1} whose elements depend on which block

variables have been updated in the window [max{0, k − D},max{0, k − 1}]. Recall

that it is assumed xt = x0, for t < 0.

Finally, let us introduce the following shorthands for the best-response map x̂i(·)

defined in (4.5) [recall also (4.6)]:

x̂k ,
[
x̂ki
]
i∈N , x̂ki , x̂i(x̃

k(i)); (4.19a)

∆x̂k ,
[
∆x̂ki

]
i∈N , ∆x̂ki , x̂ki − xki . (4.19b)

On the constant L. The proofs rely on some Lipschitz properties of ∇xjfi’s. To

provide a unified proof under either A2(a) or A2(b), we introduce a constant L > 0

whose value depends on whether A2(a) or A2(b) hold. Specifically:

• A2(a) holds: the gradients ∇xjfi’s are not globally Lipschitz on the sets XNi ’s;

our approach to study convergence is to ensure that they are Lipschitz continuous on

suitably defined sets containing the sequences generated by Algorithm 1. We define

these sets as follows. Define first the set Cube , {w ∈ X : ‖w‖∞ ≤ U}, where U is

positive constant that ensures L0 ⊆ Cube (note that U < +∞ because L0 is bounded).

Then, we define a proper widening L̄0 of L0: L̄0 , (L0 + ψB) ∩ X , where B is the

unitary ball centered in the origin, and ψ > 0 is a finite positive constant defined as

ψ , max
i∈N

max
w̃(i),[wNj (j)]j∈Ni

w(j)∈Cube

‖x̂i (w̃(i))−wi(i)‖2. (4.20)

Note that L̄0 is compact, because L0 is bounded and ψ < +∞ [given that Cube is

bounded and x̂(·) is continuous, due to (4.5), A2, A3, and C3]. Consider now any
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vector x ∈ L̄0. A2(a) and compactness of L̄0 imply that the gradients ∇xjfi’s are

globally Lipschitz over the sets containing the subvectors xNi ’s, with L being the

maximum value of the Lipschitz constant of all the gradients over these sets.

• A2(b) holds: In this case, L is simply the global Lipschitz constant ∇xifi over

the whole space.

Remark 4.7.1 To make sense of the complicated definition of L under A2(a), we

anticipate how this constant will be used. Our proof leverages the decent lemma to

majorize V (xk+1). To do so, each ∇xjfi needs to be globally Lipschitz on a convex set

containing xk and xk+1. This is what the convex set L̄0 is meant for: xk and xk+1

belong to L̄0 and thus ∇xjfi is L-Lipschitz continuous.

4.7.2 Preliminaries

We summarize next some properties of the map x̂ki in (4.5).

Proposition 4.7.1 Given Problem (P) under Assumption A, let {xk} be the se-

quence generated by DAsyFLEXA, under Assumptions B and C. Suppose also that

xk ∈ L̄0 for all k. There hold:

(a) [Optimality] For any i ∈ N and k ≥ 0,∑
j∈Ni

〈
∇xifj(x

k
Nj(i, j)),∆x̂ki

〉
+ gi(x̂

k
i )− gi(xki ) ≤ −τ‖∆x̂ki ‖2

2; (4.21)

(b) [Lipschitz continuity] For any i ∈ N and k, h ≥ 0,

‖x̂ki − x̂hi ‖2 ≤
Lm
τ
‖xk(i, i)− xh(i, i)‖2 +

L

τ

∑
j∈Ni\{i}

‖xk(i, j)− xk(i, j)‖2,

(4.22)

where Lm , max
i∈N

Li;

(c) [Fixed-points] x̂(x̄k) = xk if and only if xk is a stationary solutions of Problem

(P) (recall the definition (4.11) of x̄k);
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(d) [Error bound] For any k ≥ 0,

‖xk − proxG
(
xk −∇F (xk)

)
‖2 ≤ (1 + L+NLm)‖x̂(x̄k)− xk‖2. (4.23)

Proof We prove only (d); the proof of (a)-(c) follows similar steps of that in [1,

Proposition 8], and thus is omitted. Invoking the optimality of x̂(x̄k), we have〈
∇f̃i

(
x̂i(x̄

k(i)); xkNi
)

+
∑

j∈Ni\{i}

∇xifj

(
xkNj

)
, x̂i(x̄

k(i))− zi

〉

+ gi(x̂i(x̄
k(i)))− gi(zi) ≤ 0,

for all z ∈ X and i ∈ N . Setting x̌k , proxG
(
xk −∇F (xk)

)
, and invoking the

variational characterization of the proximal operator, we have〈
∇xF (xk) + x̌k − xk, x̌k −w

〉
+G(x̌k)−G(w) ≤ 0,

for all w ∈ X . Summing the two inequalities above, with z = x̌k, w = x̂(x̄k), and

using C1 and C2, yields

τ‖x̂(x̄k)− xk‖2
2 + ‖x̌k − xk‖2

2 ≤ ‖x̌k − xk‖2‖x̂(x̄k(i))− xk‖2

+
N∑
i=1

〈
∇f̃i(x̂i(x̄k(i)); xkNi)−∇f̃i(x

k
i ; x

k
Ni), x̌

k
i − xki

〉
A2,C2−C3

≤ ‖xk − x̌k‖2

(
(1 + L+NLm)‖x̂(x̄k)− xk‖2

)
.

4.7.3 Proof of Theorem 4.4.1

The proof is organized in the following steps:

Step 1–Lyapunov function & its descent: We define an appropriate Lyapunov

function Ṽ and prove that it is monotonically nonincreasing along the iterations. This

also proves Theorem 4.4.1(c);

Step 2–Vanishing x-stationarity: Building on the descent properties of the Lya-

punov function, we prove limk→+∞ ‖x̂(x̄k)− xk‖2 = 0 [Theorem 4.4.1(a)];
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Step 3–Convergence rate: We prove the sublinear convergence rate of {MV (xk)}

as stated in Theorem 4.4.1(c).

The above steps are proved under Assumptions A, C, and D.

Step 1–Lyapunov function & its descent

Introduce the following Lyapunov-like function:

Ṽ (xk, . . . ,xk−D) , V (xk) +
DLρ2

2

(
k−1∑

l=k−D

(l − (k − 1) +D) ‖xl+1 − xl‖2
2

)
, (4.24)

where L is defined in Sec.4.7.1. Note that

Ṽ ? , min
[yi∈X ]D+1

i=1

Ṽ (y1, . . . ,yD+1) = min
x∈X

V (x).

The following lemma establishes the descent properties of Ṽ and also proves The-

orem 4.4.1(c).

Lemma 4.7.2 Given Ṽ defined in (4.24), the following hold:

(a) For any k ≥ 0:

Ṽ (xk+1 . . . ,xk+1−D) ≤ Ṽ (xk, . . . ,xk−D)− γ
(
τ − γL (2 +D2ρ2)

2

)
‖∆x̂kik‖

2
2. (4.25)

(b) If, in particular, A2(a) is satisfied: xk ∈ L0, for all k ≥ 0.
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Proof We prove the two statements by induction. For k = 0,

V (x1) =
N∑
i=1

fi(x
1
Ni) + gi0(x1

i0) +
∑
i 6=i0

gi(x
1
i )

(4.7)
=

N∑
i=1

fi(x
1
Ni) + gi0(x1

i0) +
∑
i 6=i0

gi(x
0
i )

(a)

≤
N∑
i=1

fi(x
0
Ni) + γ

∑
j∈Ni0

〈
∇xi0

fj(x
0
Nj)

+∇xi0
fj

(
x0
Nj(i

0, j)
)
−∇xi0

fj

(
x0
Nj(i

0, j)
)
,∆x̂0

i0

〉
+
γ2L

2
‖∆x̂0

i0‖2
2 + gi0(x1

i0) +
∑
i 6=i0

gi(x
0
i )

A3

≤
N∑
i=1

fi(x
0
Ni) + γ

〈∑
j∈Ni0

∇xi0
fj

(
x0
Nj(i

0, j)
)
,∆x̂0

i0

〉

+ γ

〈∑
j∈Ni0

(
∇xi0

fj(x
0
Nj)−∇xi0

fj

(
x0
Nj(i

0, j)
))

,∆x̂0
i0

〉
+
γ2L

2
‖∆x̂0

i0‖2
2

+
N∑
i=1

gi(x
0
i ) + γgi0(x̂0

i0)− γgi0(x0
i0)

(4.21),A2

≤ V (x0)

− γ
(
τ − γL

2

)
‖∆x̂0

i0‖2
2 + γL‖∆x̂0

i0‖2

∑
j∈Ni0

‖x0 − x0(i0, j)‖2

(b)

≤ V (x0)− γ (τ − γL) ‖∆x̂0
i0‖2

2 +
Lρ

2

∑
j∈Ni0

‖x0 − x0(i0, j)‖2
2︸ ︷︷ ︸

term I

, (4.26)

where (a) follows from the descent lemma and the definition of L; and in (b) we used

Young’s inequality. Note that in (a) we used the fact that x0 and x1 belong to L̄0

(cf. Remark 4.7.1).
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We now bound term I in (4.26). It is convenient to study the more general term

‖xk − xk(ik, j)‖2
2, j ∈ Nik . There holds:

‖xk − xk(ik, j)‖2
2

(4.18)

≤

(
k−1∑

l=k−D

‖xl+1 − xl‖2

)2

≤ D

k−1∑
l=k−D

‖xl+1 − xl‖2
2

= D

(
k−1∑

l=k−D

(l − (k − 1) +D) ‖xl+1 − xl‖2
2

−
k∑

l=k+1−D

(l − k +D)‖xl+1 − xl‖2
2

)
+D2‖xk+1 − xk‖2

2. (4.27)

Combining (4.26) and (4.27) one can check that statements (a) and (b) of the lemma

hold at k = 0, that is, Ṽ (x1, . . . ,x0) ≤ Ṽ (x0, . . . ,x0), and V (x1) ≤ Ṽ (x1, . . . ,x0) ≤

Ṽ (x0, . . . ,x0) = V (x0), respectively.

Assume now that the two statements hold at iteration k. It is easy to check that the

analogous of (4.26) also holds at iteration k + 1 with the term
∑

j∈N
ik

‖xk − xk(ik, j)‖2

in the analogous of term I at iteration k, majorized using (4.27). Combining (4.26)

at k+1 with (4.27) one can check that statement (a) of the lemma holds at k+1. We

also get: V (xk+1) ≤ Ṽ
(
xk+1, . . . ,xk+1−D) (4.26)

≤ Ṽ
(
xk, . . . ,xk−D

)
≤ Ṽ (x0, . . . ,x0) =

V (x0), which proves statement (b) of the lemma at k + 1. This completes the proof.

Step 2 – Vanishing x-stationarity

It follows from A4 and Lemma 4.7.2 that, if γ < 2τ
L(2+ρ2D2)

, {Ṽ (xk−D, . . . ,xk)} and

thus {V (xk)} converge. Therefore,

lim
k→+∞

‖∆x̂kik‖2 = 0. (4.28)

The next lemma extends the vanishing properties of a single block ∆x̂k
ik

to the

entire vector ∆x̂k.

Lemma 4.7.3 For any i ∈ N , k ≥ 0, and h, t ∈ [k, k +B − 1], there hold:
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‖x̂i(x̃t(i))− x̂i(x̃
h(i))‖2

2 ≤ C2

k+B−2∑
l=k−D

‖∆x̂lil‖
2
2, (4.29)

‖∆x̂h‖2
2 ≤ 2

(
NC2 + 1

) k+B−1∑
l=k−D

‖∆x̂lil‖
2
2. (4.30)

with

C2 ,
3γ2(B + 2D −N + 1)ρ (L2

m + (ρ− 1)L2)

τ 2
.

Proof See Section 4.7.5.

Using (4.30) and (4.28) yields

lim
k→+∞

‖∆x̂k‖2 = 0. (4.31)

Furthermore, invoking (4.28), (4.29), and (4.31) together with ‖x̂(x̄k) − xk‖2 ≤

‖∆x̂k‖2 + ‖x̂(x̄k)− x̂k‖2, leads to

lim
k→+∞

‖x̂(x̄k)− xk‖2 = 0, (4.32)

which, together with Proposition 4.7.1(c), proves Theorem 4.4.1(a).
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Step 3 – Convergence rate

We use the Lyapunov function Ṽ to study the vanishing rate of {MV (xk)}. Due

to (4.32) and the definition of MV , we know that MV is converging to 0. Therefore

Tε is finite. Using MV (xk) > ε, for all k ∈ {0, . . . , Tε − 1}, we have

Tεε ≤
Tε−1∑
k=0

MV (xk) ≤ 2
Tε−1∑
k=0

(
‖∆x̂k‖2

2 + ‖x̂(x̄k)− x̂k‖2
2

)
(4.22),(4.30)

≤ 2
Tε−1∑
k=0

(
2 (NC2 + 1)

k+B−1∑
l=k−D

‖∆x̂lil‖
2
2

+
N∑
i=1

(
L2
mρ

τ 2
‖xk(i, i)− xk‖2

2

+
L2ρ

τ 2

∑
j∈Ni\{i}

‖xk(i, j)− xk‖2
2

))
(4.18)

≤ 2

(
2 (NC2 + 1) +

DC2

3(B + 2D −N + 1)

)
·
Tε−1∑
k=0

k+B−1∑
l=k−D

‖∆x̂lil‖
2
2

(a)

≤ C3

Tε−1∑
k=0

k+B−1∑
l=k−D

(
Ṽ
(
xl, . . . ,xl−D

)
− Ṽ

(
xl+1, . . . ,xl+1−D))

= C3

Tε−1∑
k=0

(
Ṽ
(
xk−D, . . . ,xk−2D

)
− Ṽ

(
xk+B, . . . ,xk+B−D))

≤ C3(B +D − 1)

(
V (x0)−min

x∈X
V (x)

)
, (4.33)

where in (a) we used (4.25) and defined C3 as

C3 ,
4
(

2 (NC2 + 1) + DC2

3(B+2D−N+1)

)
γ (2τ − γL (2 +D2ρ2))

.

Statement (b) of the theorem follows readily by defining

C1 , C3(B +D − 1). (4.34)
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4.7.4 Proof of Theorem 4.4.2

We study now convergence of Algorithm 1 under the additional Assumption B.

First of all, note that one can always find η, ε, κ > 0 such that B1 holds. In

fact, i) by Lemma 4.7.2, there exist some η and sufficiently small γ/τ such that

V (xk) ≤ η, for all k ≥ 0; and ii) since ‖xk−proxG
(
∇F (xk)− xk

)
‖2 is asymptotically

vanishing [Proposition 4.7.1(d) and (4.32)], one can always find some ε > 0 such that

‖xk − proxG
(
∇F (xk)− xk

)
‖2 ≤ ε, for all k ≥ 0.

The proof proceeds along the following steps. Step 1: We first show that the

liminf of
{
V (xk)

}
is a stationary point V ?, see (4.39). Step 2 shows that

{
V (xk)

}
approaches V ? linearly, up to an error of the order O

(
k+B−1∑
l=k−D

‖∆x̂lil‖
2
2

)
, see (4.43).

Finally, in Step 3 we show that the term
k+B−1∑
l=k−D

‖∆x̂lil‖
2
2 is overall vanishing at a

geometric rate, implying the convergence of
{
V (xk)

}
to V ? at a geometric rate.

Step 1

Pick any vector x?(xk) ∈ PX ?(xk), where PX ?(x) , arg minx?∈X ?‖x−x?‖2, x ∈ Rn.

Note that:

d(xk,X ?)=‖x?(xk)− xk‖2

B1

≤κ‖xk − proxG
(
∇xF (xk)−xk

)
‖2. (4.35)

Using (4.35), (4.32), and (4.23), yields

lim
k→+∞

‖x?(xk)− x?(xk+1)‖ = 0. (4.36)

This, together with B2, imply that there exists an index k̄ ≥ 0 and a scalar V ? such

that

V (x?(xk)) = V ?, ∀ k ≥ k̄. (4.37)
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By the Mean Value Theorem, there exists a vector ξk = βkx?(xk) + (1 − βk)xk, for

some βk ∈ (0; 1), such that, for any k ≥ k̄,

V ? − V (xk) =
〈
∇xF (ξk),x?(xk)− xk

〉
+G(x?(xk))

−G(xk) ≤
〈
∇xF (ξk)−∇xF (x?(xk)),x?(xk)− xk

〉
(a)

≤ N(ρ2L2 + 1)

2
‖x?(xk)− xk‖2

2

(4.23),(4.35)

≤ Nκ(ρ2L2 + 1)(1 + L+NLm)

2
‖x̂(x̄)k − xk‖2, (4.38)

where (a) follows from A2 and ‖ξk−x?(xk)‖2
2 = ‖βkx?(xk) + (1−βk)xk−x?(xk)‖2

2 ≤

‖x?(xk)− xk‖2
2.

By invoking (4.38), together with (4.32), we obtain

lim inf
k→+∞

V (xk) ≥ V ?. (4.39)

Step 2

We next show that V (xk) approaches V ? at a linear rate.

To this end, consider (4.26) with 0 and 1 replaced by k and k+ 1 respectively; we

have the following:

V (xk+1) ≤ V (xk)− γ (τ − γL) ‖∆x̂ik‖2
2

+
Lρ

2

∑
j∈N

ik

‖xk − xk(ik, j)‖2
2

(4.18)

≤ V (xk)

− γ (τ − γL) ‖∆x̂ik‖2
2 +

γ2DLρ2

2

k−1∑
l=k−D

‖∆x̂lil‖
2
2. (4.40)
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Is easy to see that, for any k ≥ k̄, (4.40) implies:

V (xk+B)− V ? ≤ V (xk)− V ?

− γ
(
τ − γL(2 +BDρ2)

2

) k+B−1∑
l=k

‖∆x̂lil‖
2
2

+
Bγ2DLρ2

2

k−1∑
l=k−D

‖∆x̂lil‖
2
2. (4.41)

To prove the desired result we will combine next (4.41) with the following lemma.

Lemma 4.7.4 For any k ≥ 0, there holds:

V (xk+B)− V (x?(xk)) ≤ (1− γ)
(
V (xk)− V (x?(xk))

)
+ γ (Nα1 + (B −N)α2)

k+B−1∑
l=k−D

‖∆x̂lil‖
2
2, (4.42)

where α1 and α2 are two positive constants defined in Appendix 4.7.5 [see (4.67) and

(4.69), respectively].

Proof See Section 4.7.5.

Multiplying the two sides of (4.41) and (4.42) by (Nα1 + (B − N)α2) and τ −

γL(2 +BDρ2)/2 respectively, and adding the two inequalities together, yields

V (xk+B)− V ? ≤ θ
(
V (xk)− V ?

)
+ ζ

k−1∑
l=k−D

‖∆x̂lil‖
2
2, (4.43)

for all k ≥ k̄, where

θ,
(1− γ)(2τ − γL(BDN 2

m + 2)) + 2Nα1 + 2(B −N)α2

2τ − γL(BDN 2
m + 2) + 2Nα1 + 2(B −N)α2

,

and

ζ,
(Nα1 + (B −N)α2)(2τ + γL(BDρ2(γ − 1) + 2))

2τ − γL(BDN 2
m + 2) + 2Nα1 + 2(B −N)α2

.
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Step 3

We can now apply Lemma 4.5 in [59] by noticing that (4.41), (4.39), and (4.43)

correspond, respectively, to (4.21), (4.22), and to the first inequality after (4.23)

in [59]. Theorem 4.4.2 readily follows, setting

λ ,1− γ2

2

2τ − γL(BDρ2 + 2)

2Nα1 + 2(B −N)α2 + γ(2− γ)(2τ − γL(BDρ2 + 2))
.

(4.44)

4.7.5 Miscellanea results

This section contains the proofs of Lemma 4.7.3 and Lemma 4.7.4.

Proof of Lemma 4.7.3: (i) Assume without loss of generality that t ≤ h. We

have

‖x̂i(x̃t(i))− x̂i(x̃
h(i))‖2

2

(4.22)

≤ ρL2
m

τ 2
‖xt(i, i)− xh(i, i)‖2

2

+
ρL2

τ 2

∑
j∈Ni\{i}

‖xt(i, j)− xh(i, j)‖2
2

(4.18),(4.7)

≤
(

3ρ (L2
m + (ρ− 1)L2)

τ 2

)(
γ2(B −N + 1)

h−1∑
l=t

‖∆x̂lil‖
2
2 +Dγ2

(
t−1∑

l=t−D

‖∆x̂lil‖
2
2 +

h−1∑
l=h−D

‖∆x̂lil‖
2
2

))
.

(ii) Define rh,ki , arg min
t∈[k;k+B−1]:it=i

|t− h|. We have:

‖∆x̂h‖2
2 ≤ 2

N∑
i=1

(
‖x̂hi − x̂

rh,ki
i ‖2

2 + ‖∆x̂
rh,ki
i ‖2

2

)
(4.45)

(4.29)

≤ 2
N∑
i=1

(
C2

k+B−2∑
l=k−D

‖∆x̂lil‖
2
2 + ‖∆x̂

rh,ki
i ‖2

2

)
.

Proof of Lemma 4.7.4: Define T ki +1 as the number of times agent i performs

its update within [k, k+B−1]; let lki,0, . . . , l
k
i,Tki

,be the iteration indexes of such updates.
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By the Mean Value Theorem, there exists a vector ξk = βkx?(xk) + (1 − βk)xk, for

some βk ∈ (0, 1), such that

V (xk+B)− V (x?(xk)) =
〈
∇xF (ξk),xk+B − x?(xk)

〉
+G(xk+B)−G(x?(xk))

=
N∑
i=1

(〈
∇xiF (ξk),x

lki,1
i − x?i (x

k)
〉

︸ ︷︷ ︸
term II

+

Tki −1∑
t=1

〈
∇xiF (ξk),x

lki,t+1

i − x
lki,t
i

〉
︸ ︷︷ ︸

term III

+

〈
∇xiF (ξk),xk+B

i − x
lk
i,Tk
i

i

〉
︸ ︷︷ ︸

term IV

)
+G(xk+B)−G(x?(xk)). (4.46)

To prove (4.42), it is then sufficient show that term II, term III, and term IV in

(4.46) converge at a geometric rate up to an error of the order O
(
k+B−1∑
l=k−D

‖∆x̂lil‖
2
2

)
. To

do this, we first show that term II, term III, and term IV converges at a geometric

rate up to the error terms aki,4, bki,t,4, and cki,4, respectively [see (4.47), (4.50), and

(4.53)]. Then, we prove that each of these errors is of the order O
(
k+B−1∑
l=k−D

‖∆x̂lil‖
2
2

)
,

as desired [see (4.66), and (4.68)].
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Term II can be upper bounded as〈
∇xiF (ξk),x

lki,1
i − x?i (x

k)
〉 A2

≤
〈
∇xiF

(
x̂l
k
i,0

)
,x

lki,1
i − x?i (x

k)
〉

+ ρL
∥∥∥x̂lki,0 − ξk∥∥∥

2

∥∥∥xlki,1i − x?i (x
k)
∥∥∥

2︸ ︷︷ ︸
,aki,1

A2,C2,C3

≤

〈
∇f̃i

(
x̂
lki,0
i ; x

lki,0
Ni (i, i)

)

+
∑

j∈Ni\{i}

∇xifj

(
x
lki,0
Nj (i, j)

)
,x

lki,1
i − x?i (x

k)

〉

+
∥∥∥xlki,1i − x?i (x

k)
∥∥∥

2

(
Li

∥∥∥x̂lki,0Ni − x
lki,0
Ni (i, i)

∥∥∥
2

+ L
∑

j∈Ni\{i}

∥∥∥x̂lki,0Nj − x
lki,0
Nj (i, j)

∥∥∥
2

)
+ aki,1

(a)

≤ (γ − 1)

〈
∇f̃i

(
x̂
lki,0
i ; x

lki,0
Ni (i, i)

)
+

∑
j∈Ni\{i}

∇xifj

(
x
lki,0
Nj (i, j)

)
,∆x̂

lki,0
i

〉

+ gi
(
x?i (x

k)
)
− gi

(
x̂
lki,0
i

)
+ aki,2

C2

≤ gi(x
?
i (x

k))− gi
(
x̂
lki,0
i

)
+ (γ − 1)

〈∑
j∈Ni

∇xifj

(
x
lki,0
Nj (i, j)

)
,∆x̂

lki,0
i

〉

+ (1− γ)

∥∥∥∥∥∇f̃i (x̂
lki,0
i ; x

lki,0
Ni (i, i)

)
−∇f̃i

(
x
lki,0
i ; x

lki,0
Ni (i, i)

)∥∥∥∥∥
2

·
∥∥∥∆x̂

lki,0
i

∥∥∥
2

+ aki,2
(b)

≤ gi
(
x?i (x

k)
)
− gi

(
x̂
lki,0
i

)
+

1− γ
γ

(
V
(
xl
k
i,0

)
− V

(
xl
k
i,0+1

))
+ (1− γ)

∥∥∥∥∥∑
j∈Ni

(
∇xifj

(
x
lki,0
Nj

)
−∇xifj

(
x
lki,0
Nj (i, j)

))∥∥∥∥∥
2

·
∥∥∥∆x̂

lki,0
i

∥∥∥
2

+
Lγ(1− γ)

2

∥∥∥∆x̂
lki,0
i

∥∥∥2

2
+ aki,3 + (1− γ)

(
gi

(
x̂
lki,0
i

)
− gi

(
x
lki,0
i

))
(c)
=

1− γ
γ

(
V
(
xl
k
i,0

)
− V

(
xl
k
i,0+1

))
+ gi

(
x?i (x

k)
)

+ (γ − 1)gi

(
x
lki,0
i

)
− γgi

(
x̂
lki,0
i

)
+ aki,4; (4.47)
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where the quantities aki,2 in (a), and aki,3 in (b) are defined in (4.48) and (4.49) at the

bottom of the next page, respectively; furthermore in (b) we used the descent lemma,

and in (c) we defined

aki,4 , aki,3 +
Lγ(1− γ)

2

∥∥∥∆x̂
lki,0
i

∥∥∥2

2
+ (1− γ)

·

∥∥∥∥∥∑
j∈Ni

(
∇xifj

(
x
lki,0
Nj

)
−∇xifj

(
x
lki,0
Nj (i, j)

))∥∥∥∥∥
2

∥∥∥∆x̂
lki,0
i

∥∥∥
2︸ ︷︷ ︸

term VII

.

aki,2 , aki,1 +
∥∥∥xlki,1i − x?i (x

k)
∥∥∥

2

Li ∥∥∥x̂lki,0Ni − x
lki,0
Ni (i, i)

∥∥∥
2

+ L
∑

j∈Ni\{i}

∥∥∥x̂lki,0Nj − x
lki,0
Nj (i, j)

∥∥∥
2


︸ ︷︷ ︸

term V

(4.48)

aki,3 , aki,2 + (1− γ)

∥∥∥∥∇f̃i (x̂
lki,0
i ; x

lki,0
Ni (i, i)

)
−∇f̃i

(
x
lki,0
i ; x

lki,0
Ni (i, i)

)∥∥∥∥
2

∥∥∥∆x̂
lki,0
i

∥∥∥
2︸ ︷︷ ︸

term VI

(4.49)
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Term III can be upper bounded as: for any i and t ∈ [1, T ki − 1],〈
∇xiF (ξk),x

lki,t+1

i − x
lki,t
i

〉 A2

≤
〈
∇xiF

(
x̂l
k
i,t

)
,x

lki,t+1

i − x
lki,t
i

〉
+ ρL

∥∥∥x̂lki,t − ξk∥∥∥
2

∥∥∥xlki,ti − x
lki,t+1

i

∥∥∥
2︸ ︷︷ ︸

,bki,t,1

A2,C2,C3

≤

〈
∇f̃i

(
x̂
lki,t
i ; x

lki,t
Ni (i, i)

)

+
∑

j∈Ni\{i}

∇xifj

(
x
lki,t
Nj(i, j)

)
,x

lki,t+1

i − x
lki,t
i

〉

+
∥∥∥xlki,ti − x

lki,t+1

i

∥∥∥
2

(
Li

∥∥∥x̂lki,tNi − x
lki,t
Ni (i, i)

∥∥∥
2

+ L
∑

j∈Ni\{i}

∥∥∥x̂lki,tNj − x
lki,t
Nj(i, j)

∥∥∥
2

)
+ bki,t,1

(a)

≤ (γ − 1)

〈
∇f̃i

(
x̂
lki,t
i ; x

lki,t
Ni (i, i)

)
+

∑
j∈Ni\{i}

∇xifj

(
x
lki,t
Nj(i, j)

)
,∆x̂

lki,t
i

〉

+ gi

(
x
lki,t
i

)
− gi

(
x̂
lki,t
i

)
+ bki,t,2

C2

≤ gi

(
x
lki,t
i

)
− gi

(
x̂
lki,t
i

)
+ (γ − 1)

〈∑
j∈Ni

∇xifj

(
x
lki,t
Nj(i, j)

)
,∆x̂

lki,t
i

〉

+ (1− γ)
∥∥∥∇f̃i (x̂

lki,t
i ; x

lki,t
Ni (i, i)

)
−∇f̃i

(
x
lki,t
i ; x

lki,t
Ni (i, i)

)∥∥∥
2

·
∥∥∥∆x̂

lki,t
i

∥∥∥
2

+ bki,t,2
(b)

≤ gi

(
x
lki,t
i

)
− gi

(
x̂
lki,t
i

)
+

1− γ
γ

(
V
(
xl
k
i,t

)
− V

(
xl
k
i,t+1

))
+ (1− γ)

∥∥∥∥∥∑
j∈Ni

(
∇xifj

(
x
lki,t
Nj

)
−∇xifj

(
x
lki,t
Nj(i, j)

))∥∥∥∥∥
2∥∥∥∆x̂

lki,t
i

∥∥∥
2

+
Lγ(1− γ)

2

∥∥∥∆x̂
lki,t
i

∥∥∥2

2
+ bki,t,3 + (1− γ)

(
gi

(
x̂
lki,t
i

)
− gi

(
x
lki,t
i

))
=

1− γ
γ

(
V
(
xl
k
i,t

)
− V

(
xl
k
i,t+1

))
+ γ

(
gi

(
x
lki,t
i

)
− gi

(
x̂
lki,t
i

))
+ bki,t,4; (4.50)
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where the quantities bki,t,2 in (a), and bki,t,3 in (b) are defined in (4.51) and (4.52) at

the bottom of the next page, respectively; furthermore in (b) we used the descent

lemma, and in (c) we defined

bki,t,4 , bki,t,3 +
Lγ(1− γ)

2

∥∥∥∆x̂
lki,t
i

∥∥∥2

2
+ (1− γ)

·

∥∥∥∥∥∑
j∈Ni

(
∇xifj

(
x
lki,t
Nj

)
−∇xifj

(
x
lki,t
Nj(i, j)

))∥∥∥∥∥
2

∥∥∥∆x̂
lki,t
i

∥∥∥
2︸ ︷︷ ︸

termVII

.

bki,t,2 , bki,t,1 +
∥∥∥xlki,ti − x

lki,t+1

i

∥∥∥
2

Li ∥∥∥x̂lki,tNi − x
lki,t
Ni (i, i)

∥∥∥
2

+ L
∑

j∈Ni\{i}

∥∥∥x̂lki,tNj − x
lki,t
Nj(i, j

∥∥∥
2


︸ ︷︷ ︸

term VIII

(4.51)

bki,t,3 , bki,t,2 + (1− γ)
∥∥∥∇f̃i (x̂

lki,t
i ; x

lki,t
Ni (i, i)

)
−∇f̃i

(
x
lki,t
i ; x

lki,t
Ni (i, i)

)∥∥∥
2

∥∥∥∆x̂
lki,t
i

∥∥∥
2︸ ︷︷ ︸

term VI

(4.52)
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Following similar steps, we can bound term IV, as〈
∇xiF (ξk),xk+B

i − x
lk
i,Tk
i

i

〉
A2

≤

〈
∇xiF

(
x̂
lk
i,Tk
i

)
,xk+B

i − x
lk
i,Tk
i

i

〉

+ ρL

∥∥∥∥x̂lki,Tki − ξk∥∥∥∥
2

∥∥∥∥∥xl
k

i,Tk
i

i − xk+B
i

∥∥∥∥∥
2︸ ︷︷ ︸

cki,1

A2,C2,C3

≤

〈
∇f̃i

(
x̂
lk
i,Tk
i

i ; x
lk
i,Tk
i

Ni (i, i)

)

+
∑

j∈Ni\{i}

∇xifj

(
x
lk
i,Tk
i

Nj (i, j)

)
,xk+B

i − x
lk
i,Tk
i

i

〉

+

∥∥∥∥∥xl
k

i,Tk
i

i − xk+B
i

∥∥∥∥∥
2

(
Li

∥∥∥∥∥x̂l
k

i,Tk
i

Ni − x
lk
i,Tk
i

Ni (i, i)

∥∥∥∥∥
2

+ L
∑

j∈Ni\{i}

∥∥∥∥∥x̂l
k

i,Tk
i

Nj − x
lk
i,Tk
i

Nj (i, j)

∥∥∥∥∥
2

)
+ cki,1

(a)

≤ (γ − 1)

〈
∇f̃i

(
x̂
lk
i,Tk
i

i ; x
lk
i,Tk
i

Ni (i, i)

)
+

∑
j∈Ni\{i}

∇xifj

(
x
lk
i,Tk
i

Nj (i, j)

)
,∆x̂

lk
i,Tk
i

i

〉

+ gi

(
x
lk
i,Tk
i

i

)
− gi

(
x̂
lk
i,Tk
i

i

)
+ cki,2

C2

≤ gi

(
x
lk
i,Tk
i

i

)
− gi

(
x̂
lk
i,Tk
i

i

)

+ (γ − 1)

〈∑
j∈Ni

∇xifj

(
x
lk
i,Tk
i

Nj (i, j)

)
,∆x̂

lk
i,Tk
i

i

〉

+ (1− γ)

∥∥∥∥∥∇f̃i
(

x̂
lk
i,Tk
i

i ; x
lk
i,Tk
i

Ni (i, i)

)
−

∇f̃i

(
x
lk
i,Tk
i

i ; x
lk
i,Tk
i

Ni (i, i)

)∥∥∥∥∥
2

∥∥∥∥∥∆x̂
lk
i,Tk
i

i

∥∥∥∥∥
2

+ cki,2
(b)

≤ gi

(
x
lk
i,Tk
i

i

)

− gi

(
x̂
lk
i,Tk
i

i

)
+

1− γ
γ

(
V

(
x
lk
i,Tk
i

)
− V

(
x
lk
i,Tk
i

+1
))

+ (1− γ)

∥∥∥∥∥∑
j∈Ni

(
∇xifj

(
x
lk
i,Tk
i

Nj

)
−∇xifj

(
x
lk
i,Tk
i

Nj (i, j)

))∥∥∥∥∥
2∥∥∥∥∥∆x̂

lk
i,Tk
i

i

∥∥∥∥∥
2

+
Lγ(1− γ)

2

∥∥∥∥∥∆x̂
lk
i,Tk
i

i

∥∥∥∥∥
2

2

+ cki,3 + (1− γ)

(
gi

(
x̂
lk
i,Tk
i

i

)
− gi

(
x
lk
i,Tk
i

i

))

=
1− γ
γ

(
V

(
x
lk
i,Tk
i

)
− V

(
x
lk
i,Tk
i

+1
))

+ γ

(
gi

(
x
lk
i,Tk
i

i

)
− gi

(
x̂
lk
i,Tk
i

i

))
+ cki,4;

(4.53)
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where the quantities cki,2 in (a), and cki,3 in (b) are defined in (4.54) and (4.55) at the

bottom of the next page, respectively; furthermore in (b) we used the descent lemma,

and in (c) we defined

cki,4 , cki,3 +
Lγ(1− γ)

2

∥∥∥∥∥∆x̂
lk
i,Tk
i

i

∥∥∥∥∥
2

2

+ (1− γ)

·

∥∥∥∥∥∑
j∈Ni

(
∇xifj

(
x
lk
i,Tk
i

Nj

)
−∇xifj

(
x
lk
i,Tk
i

Nj (i, j)

))∥∥∥∥∥
2

∥∥∥∥∥∆x̂
lk
i,Tk
i

i

∥∥∥∥∥
2︸ ︷︷ ︸

term VII

.

We now show that the error terms aki,4, bki,t,4, and cki,4, are of the orderO
(
k+B−1∑
l=k−D

‖∆x̂lil‖
2
2

)
.

To do so, in the following we properly upper bound each term inside aki,4, bki,t,4, and

cki,4.

We begin noticing that, by the definition of ξk, it follows

‖x̂h − ξk‖2 = ‖(1− βk)xk + βkx?(xk)− x̂h‖2

≤ ‖xk − x?(xk)‖2 + ‖x̂h − xk‖2

≤ ‖xk − x?(xk)‖2 + ‖∆x̂h‖+ ‖xh − xk‖, (4.56)

for all h ∈ [k; k +B − 1].

cki,2 , cki,1 +

∥∥∥∥∥xl
k

i,Tk
i

i − xk+B
i

∥∥∥∥∥
2

Li
∥∥∥∥∥x̂l

k

i,Tk
i

Ni − x
lk
i,Tk
i

Ni (i, i)

∥∥∥∥∥
2

+ L
∑

j∈Ni\{i}

∥∥∥∥∥x̂l
k

i,Tk
i

Nj − x
lk
i,Tk
i

Nj (i, j)

∥∥∥∥∥
2


︸ ︷︷ ︸

term IX

(4.54)

cki,3 , cki,2 + (1− γ)

∥∥∥∥∥∇f̃i
(

x̂
lk
i,Tk
i

i ; x
lk
i,Tk
i

Ni (i, i)

)
−∇f̃i

(
x
lk
i,Tk
i

i ; x
lk
i,Tk
i

Ni (i, i)

)∥∥∥∥∥
2

∥∥∥∥∥∆x̂
lk
i,Tk
i

i

∥∥∥∥∥
2︸ ︷︷ ︸

term VI

(4.55)
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1) Bounding aki,1: there holds

aki,1
(a)

≤ 3ρL

2

(
2‖xk − x?(xk)‖2

2 + (1 + γ2)‖∆x̂l
k
i,0‖2

2

+ 2‖xlki,0 − xk‖2
2

)
(b)

≤ 3ρL

(
κ2(1 + L+NLm)2

(
‖∆x̂k‖2

2

+ C2

k+B−2∑
l=k−D

‖∆x̂lil‖
2
2

)
+ (NC2 + 1)(1 + γ2)

k+B−1∑
l=k−D

‖∆x̂lil‖
2
2

+ γ2(B −N + 1)
k+B−2∑
l=k−D

‖∆x̂lil‖
2
2

)
(c)

≤ ρLβ1

k+B−1∑
l=k−D

‖∆x̂lil‖
2
2, (4.57)

where in (a) we used (4.56) and the Young’s inequality; (b) follows from (4.29), (4.30),

and the fact that, for any k ≥ 0,

‖xk − x?(xk)‖2

B1

≤ κ‖xk − proxG
(
∇xF (xk)− xk

)
‖2

(4.23)

≤ κ(1 + L+NLm)‖x̂(x̄k)− xk‖2

≤ κ(1 + L+NLm)
(
‖x̂(x̄k)− x̂k‖2 + ‖∆x̂k‖2

)
; (4.58)

and in (c) we used (4.30) and defined

β1 ,C2

(
κ2(1 + L+NLm)2(2N + 1) +N(1 + γ2)

)
+ κ2(1 + L+NLm)2 + 1 + γ2(B −N + 2).

2) Bounding bki,t,1 and cki,1: for t ∈ [1;T ki − 1],

bki,t,1
(a)

≤ ρL

2

(
3‖xk − x?(xk)‖2

2 + (3 + γ2)‖∆x̂l
k
i,t‖2

2

+ 3‖xlki,t − xk‖2
2

) (b)

≤ ρL

2

(
6κ2(1 + L+NLm)2

(
‖∆x̂k‖2

2

+ C2

k+B−2∑
l=k−D

‖∆x̂lil‖
2
2

)
+ 2(NC2 + 1)(3 + γ2)

k+B−1∑
l=k−D

‖∆x̂lil‖
2
2

+ 3γ2(B −N + 1)
k+B−2∑
l=k−D

‖∆x̂lil‖
2
2

)
(c)

≤ ρLβ2

k+B−1∑
l=k−D

‖∆x̂lil‖
2
2, (4.59)
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where in (a) we used (4.56) and the Young’s inequality; (b) follows from (4.29), (4.30),

(4.58); and in (c) we used (4.30) and defined

β2 ,C2

(
3κ2(1 + L+NLm)2(2N + 1) +N(3 + γ2)

)

+ 6κ2(1 + L+NLm)2 + 3 +
γ2

2
(3B − 3N + 5).

Following the same steps as in (4.59), it is not difficult to prove:

cki,1 ≤ ρLβ2

k+B−1∑
l=k−D

‖∆x̂lil‖
2
2. (4.60)

3) Bounding term V : there holds,

term III
(a)

≤ 2‖xk − x?(xk)‖2
2 + 2γ2

∥∥∥∆x̂
lki,0
i

∥∥∥2

2

+ (L2
i + L2(ρ− 1))

(
‖∆x̂l

k
i,0‖2

2 +Dγ2

lki,0−1∑
l=lki,0−D

‖∆x̂lil‖
2
2

))
(b)

≤ β4

k+B−1∑
l=k−D

‖∆x̂lil‖
2
2, (4.61)

where in (a) we used (4.18) and the Young’s inequality; and in (b) we used (4.29),

(4.30), (4.58), and defined

β4 ,2C2

(
2κ2(1 + L+NLm)2(2N + 1)

+N
(
L2
m + L2(ρ− 1)

))
+ 2κ2(1 + L+NLm)2

+
(
L2
m + L2(ρ− 1)

)
(1 +Dγ2) + 2γ2.

4) Bounding term VI : for t ∈ [0, T ki ],

term I
(a)

≤ (L2 + L2
i )‖xl

k
i,t(i, i)− x̂l

k
i,t‖2

2 +
1

2

∥∥∥∆x̂
lki,t
i

∥∥∥2

2

(4.18)

≤ (L2 + L2
i )

2
∥∥∥∆x̂l

k
i,t

∥∥∥2

2
+ 2Dγ2

lki,t−1∑
h=lki,t−D

‖∆x̂hih‖
2
2


+

1

2

∥∥∥∆x̂
lki,t
i

∥∥∥2

2

(b)

≤ β3

k+B−1∑
l=k−D

‖∆x̂lil‖
2
2, (4.62)
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where in (a) we used A2, B2, B3, and the Young’s inequality; and in (b) we used

(4.30) and defined

β3 , 2(L2 + L2
m)
(
2NC2 +Dγ2 + 1

)
+

1

2
.

5) Bounding term VII : for t ∈ [0, T ki ],

term II
(a)

≤ 1

2

(
ρL2

∑
j∈Ni

∥∥∥xlki,t − xl
k
i,t(i, j)

∥∥∥2

2
+
∥∥∥∆x̂

lki,t
i

∥∥∥2

2

)

(4.18)

≤ 1

2

ρ2L2D2γ2

lki,t−1∑
l=lki,t−D

‖∆x̂lil‖
2
2 +

∥∥∥∆x̂
lki,t
i

∥∥∥2

2


≤ ρ2L2D2γ2 + 1

2

k+B−2∑
l=k−D

‖∆x̂lil‖
2
2, (4.63)

where in (a) we used A2 and the Young’s inequality.

6) Bounding term VIII and term IX : for t ∈ [1, T ki − 1]

term IV
(a)

≤ γ2
∥∥∥∆x̂

lki,t
i

∥∥∥2

2
+ (L2

i + L2(ρ− 1))

(∥∥∥∆x̂l
k
i,t

∥∥∥2

2

+Dγ2

lki,t−1∑
l=lki,t−D

‖∆x̂lil‖
2
2

))
(b)

≤ β5

k+B−1∑
l=k−D

‖∆x̂lil‖
2
2, (4.64)

where in (a) we used (4.18) and the Young’s inequality; and in (b) we used (4.30),

and defined

β5 ,
(
L2
m + L2(ρ− 1)

) (
2NC2 +Dγ2 + 2

)
+ γ2.

As done in (4.64), it is easy to prove that

term V ≤ β5

k+B−1∑
l=k−D

‖∆x̂lil‖
2
2. (4.65)

Using the above results, we can bound aki,4, bki,t,4, and cki,4. According to definition

of aki,4, we have

aki,4
(4.57),(4.62)−(4.61)

≤ α1

k+B−1∑
l=k−D

‖∆x̂lil‖
2
2, (4.66)
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where

α1,

(
(1− γ)

(
β3 +

Lγ(ρ2LD2γ + 1) + 1

2

)
+ ρLβ1 + β4

)
. (4.67)

For bki,t,4 and cki,4, we have: t ∈ [1, T ki − 1],

bki,i,4; cki,4
(4.59)−(4.63),(4.64),(4.65)

≤ α2

k+B−1∑
l=k−D

‖∆x̂lil‖
2
2, (4.68)

where

α2 ,

(
(1− γ)

(
β3 +

Lγ(ρ2LD2γ + 1) + 1

2

)
+ ρLβ2 + β5

)
. (4.69)

Combining (4.46), (4.47), (4.50), (4.53), (4.66), and (4.68) yields:

V (xk+B)− V (x?(xk)) ≤ 1− γ
γ

(
V (xk)− V (xk+B)

)
+

N∑
i=1

(
γ

(
gi

(
x
lk
i,Tk
i

i

)
− gi

(
x̂
lk
i,Tk
i

i

))

+ γ

Tki −1∑
t=1

(
gi

(
x
lki,t
i

)
− gi

(
x̂
lki,t
i

))
+ (γ − 1)gi

(
x
lki,0
i

)
− γgi

(
x̂
lki,0
i

)
+ gi

(
xk+B
i

))
+ (Nα1

+ (B −N)α2)
k+B−1∑
l=k−D

‖∆x̂lil‖
2
2

A3

≤ 1− γ
γ

(
V (xk)

− V (xk+B)
)

+
N∑
i=1

(
γ

(
gi

(
x
lk
i,Tk
i

i

)
− gi

(
x̂
lk
i,Tk
i

i

))

+ γ

Tki −1∑
t=1

(
gi

(
x
lki,t
i

)
− gi

(
x̂
lki,t
i

))
+ (γ − 1)gi

(
x
lki,0
i

)
− γgi

(
x̂
lki,0
i

)
+ (1− γ)gi

(
x
lk
i,Tk
i

i

)
+ γgi

(
x̂
lk
i,Tk
i

i

))
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+ (Nα1 + (B −N)α2))
k+B−1∑
l=k−D

‖∆x̂lil‖
2
2

=
1− γ
γ

(
V (xk)− V (xk+B)

)
+

N∑
i=1

(
gi

(
x
lk
i,Tk
i

i

)

+ γ

Tki −1∑
t=1

(
gi

(
x
lki,t
i

)
− gi

(
x̂
lki,t
i

))
+ (γ − 1)gi

(
x
lki,0
i

)
− γgi

(
x̂
lki,0
i

)
+ (Nα1

+ (B −N)α2)
k+B−1∑
l=k−D

‖∆x̂lil‖
2
2

A3

≤ 1− γ
γ

(
V (xk)

− V (xk+B)
)

+
N∑
i=1

(
(1− γ)gi

(
x
lk
i,Tk
i
−1

i

)
+ γgi

(
x̂
lk
i,Tk
i
−1

i

)

+ γ

Tki −1∑
t=1

(
gi

(
x
lki,t
i

)
− gi

(
x̂
lki,t
i

))
+ (γ − 1)gi

(
x
lki,0
i

)
− γgi

(
x̂
lki,0
i

)
+ (Nα1 + (B −N)α2)

k+B−1∑
l=k−D

‖∆x̂lil‖
2
2

=
1− γ
γ

(
V (xk)− V (xk+B)

)
+

N∑
i=1

(
gi

(
x
lk
i,Tk
i
−1

i

)

+ γ

Tki −2∑
t=1

(
gi

(
x
lki,t
i

)
− gi

(
x̂
lki,t
i

))
+ (γ − 1)gi

(
x
lki,0
i

)
− γgi

(
x̂
lki,0
i

)
+ (Nα1 + (B −N)α2)

k+B−1∑
l=k−D

‖∆x̂lil‖
2
2 ≤

1− γ
γ

(
V (xk)

− V (xk+B)
)

+ (Nα1 + (B −N)α2)
k+B−1∑
l=k−D

‖∆x̂lil‖
2
2. (4.70)

4.7.6 Proof of Theorem 4.4.3

The proof of this Theorem will follow a path similar to that of the proof of The-

orem 4.4.1.
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First of all, we notice that the two statements of Lemma 4.7.2 holds in this setting

just by replacing γ with γk. The proof remains the same.

This implies that: i) statement c) of Theorem 4.4.3 holds true; ii) the following

holds: for any k ≥ 0

Ṽ (xk+1−D . . . ,xk+1) ≤ Ṽ (xk−D, . . . ,xk)− γk
(
τ − γkL (2 +D2N 2

m)

2

)
‖∆x̂kik‖

2
2.

(4.71)

Invoking E1, we have that for sufficiently large k there exists some positive constant

β1 such that the following holds:

Ṽ (xk+B−D . . . ,xk+B) ≤ Ṽ
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− β1γ

k+B−1‖∆x̂kik‖
2
2

≤ Ṽ
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This result implies that i)
{
Ṽ
(
xk−D, . . . ,xk

)}
, and thus

{
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}
, converge; and ii)
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From the above result and E2, we also have

lim
k→+∞

+∞∑
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By replacing γ with γk, it is easy to see that Lemma 4.7.3 holds. Following the same

steps done in (4.33) we can also prove that, for any k ≥ 0

+∞∑
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≤ c < +∞, (4.75)

where in (a) we defined

C4 , 2

(
2(NC2 + 1) +

DC2

2(B + 2D −N + 1)

)
; (4.76)
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while (b) comes from (4.74). In order to finish the proof, let us now define the quantity

Nε , inf

{
K ≥ 0|

K∑
k=0

γ̃k ≥ c
ε

}
and let us assume by contradiction that MV (xk) > ε

for k ∈ [0;Nε]. This would imply:

Nε∑
k=0

γ̃kMV (xk) > ε
Nε∑
k=0

γ̃k ≥ ε
c

ε
= c. (4.77)

This result contradicts (4.74), so it there exists Tε ∈ [0;Nε] such that MV (xk) ≤ ε

and this proves statement (b) of the Theorem. Statement (b) of Theorem 4.4.3 and

Proposition 4.7.1(c) prove that statement (c) of Theorem 4.4.3 holds true too.
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5. SUMMARY

The Dissertation provides an efficient, asynchronous, algorithmic framework for con-

strained, nonconvex, optimization problems, with nonsmooth regularizers. Both cen-

tralized and distributed settings are considered, and convergence to stationary points

is proved, enjoying a sublinear convergence rate in the general nonconvex case, and a

linear convergence rate when standard error bound conditions are satisfied. Extensive

simulation results show that the proposed framework is faster than state-of-the-art

schemes on problems of practical interests.

One research question that remains open is how to extend the algorithmic frame-

work proposed in Chapter 4 to a problem setting where each local function depends

on all the block-variables. Distributed asynchronous schemes that can deal with this

scenario exist in the literature, see, e.g., [108,113], but it is not clear whether, under

standard error bound conditions, as the KL property, they can achieve linear con-

vergence rate. The iteration complexity results derived in Chapter 2 suggest that

the theoretical approach that has been considered might get the desired convergence

results in a fully distributed setting too.

Another open question, always in the distributed setting, concerns the presence

of local coupling constraints. Indeed, in the problem setting considered in Chapter

4, the constraint sets have a separable Cartesian structure. It is not clear what

happens in a multi-agent scenario, where each agent knows a local constraint set,

which depends on the variables of the other agents too. Optimization methods have

been proposed to deal with this setting [114, 115], but, even in the strongly convex

case, linear convergence rate of these schemes has not been demonstrated.
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