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ABSTRACT

Gerber, Eric A. E. Ph.D., Purdue University, August 2019. A Mixed Effects Multino-
mial Logistic-Normal Model for Forecasting Baseball Performance. Major Professor:
Bruce A. Craig.

Prediction of player performance is a key component in the construction of base-

ball team rosters. Traditionally, the problem of predicting seasonal plate appearance

outcomes has been approached univariately. That is, focusing on each outcome sep-

arately rather than jointly modeling the collection of outcomes. More recently, there

has been a greater emphasis on joint modeling, thereby accounting for the correlations

between outcomes. However, most of these state of the art prediction models are the

proprietary property of teams or industrial sports entities and so little is available in

open publications.

This dissertation introduces a joint modeling approach to predict seasonal plate ap-

pearance outcome vectors using a mixed-effects multinomial logistic-normal model.

This model accounts for positive and negative correlations between outcomes both

across and within player seasons. It is also applied to the important, yet unad-

dressed, problem of predicting performance for players moving between the Japanese

and American major leagues.

This work begins by motivating the methodological choices through a comparison of

state of the art procedures followed by a detailed description of the modeling and

estimation approach that includes model fit assessments. We then apply the method

to longitudinal multinomial count data of baseball player-seasons for players moving

between the Japanese and American major leagues and discuss the results. Extensions

of this modeling framework to other similar data structures are also discussed.



1

1. MEASURING BASEBALL PLAYER PERFORMANCE

1.1 Introduction

Baseball is one of the most attended spectator sports in the world. Both Major

League Baseball (MLB) of the United States and Nippon Professional Baseball (NPB)

of Japan are the most attended sporting leagues in their respective countries. This

industry works with billions of US dollars and the smallest decisions, whether on

the field or in management, can have significant impacts on team and player perfor-

mances and profit. Since the reorganization of the NPB into its current form in 1950,

nearly every year at least one baseball player has transitioned between the two major

baseball leagues.

There is inherent risk involved in transitioning between the two leagues for both

player and team. MLB players transitioning from the US to Japan tend to cost NPB

teams more in salary than Japanese players. Players moving from NPB to MLB are

more often among the strongest in Japanese baseball, yet are coming from a league

most consider weaker than MLB. They also can cost MLB teams a non-trivial amount

simply for the rights to negotiate with them. In both directions of transition, it is

important for the team management to determine the worth and level of the added

investment.

Additionally, there are distinct cultural differences in how the two countries approach

the game. This “culture shock” presents another risk to players making the tran-

sition. Japanese teams are known for adhering to a much stricter practice routine

than their American counterparts. This differing level of expectations, as well as (in

both cases) not necessarily speaking the primary language of the country, can lead
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to discomfort on the player’s part that could affect performance. More practically,

the language barrier becomes a larger issue for pitchers and catchers, who must com-

municate throughout the game. Both MLB and NPB teams provide translators for

foreign players on their rosters, to help mitigate this issue. However, many players do

not choose to stay in the foreign league long simply due to not having the comforts

of home readily available.

Because of these risks, it becomes invaluable for teams from both leagues to have

reliable tools for predicting a player’s performance when moving between the United

States and Japan. Certainly the baseball operations departments of each team have

their own methods for predicting performance and access to proprietary data sets

that track not only the traditional baseball statistics but also advanced measures,

such as pitch spin and angle, batting launch angle, or spatial fielding metrics. To

this point, however, the question of predicting baseball player’s performance when

moving between MLB and NPB has not been addressed in an academic setting with

data that are publicly available.

The goal of this dissertation is to develop novel statistical methodology that will serve,

among other applications, to predict performance of baseball players moving between

the MLB and NPB leagues. In the remaining sections of this chapter, the current

state of baseball prediction literature is discussed and some traditional approaches to

modeling the data are presented. In the second chapter, our mixed-effects multino-

mial logistic-normal model is introduced, along with a Gibbs sampling algorithm for

estimation, tools for assessing model fit, prediction and assessing uncertainty about

those predictions. The third chapter describes our data, assesses our model-fitting

algorithm via a simulation study, and then applies the methodology to the real data

set that contains all players who have played in both Japan’s NPB and the United

States’ MLB leagues. The final chapter summarizes the statistical contributions of

this work and presents extensions and avenues for future research.
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1.2 Review of Baseball and Sports Performance Prediction Literature

Statistics have played a major role in the growth and popularity of baseball. They

have also evolved over time. What were once just simple summaries (e.g. runs, hits,

batting average) available in the newspaper box scores the following day are now

highly intricate and almost instantaneously available. For example, in a current tele-

vised broadcast of a baseball game, before each pitch, statistics describing a player’s

(pitcher and/or batter) performance in that situation are reported to the viewer. The

intention is to give the consumer a sense, using data, of the talent level of the players

they are watching and what might be expected from the players on the next pitch.

Statistics, like these, but often far more intricate, are used by the head coaches (called

managers) to make in-game decisions, such as player substitutions, pitch type and

location, or defensive shifts. Statistics are also used by team ownership to make eco-

nomic decisions; how large a contract to offer players, or to make their case in salary

arbitration.

Beginning with Frederick Mosteller’s (1952) work on predicting the winner of Ma-

jor League Baseball’s World Series, the sport of baseball has been fertile ground in

academia for the development of statistical forecasting systems. Most work in sports

prediction focuses on univariate and binary on-field performance metrics. One of the

earliest examples of player prediction comes from Lindsey (1959), who utilizes pro-

portion tests to predict a baseball player’s batting average based on the handedness

of the batter-pitcher match-up. Subsequently, in a seminal paper, Efron and Morris

(1975) use Stein’s estimator via empirical Bayes to predict batting averages for base-

ball players for the remainder of the 1970 season.

The focus on single continuous, or binary, outcomes continued for many years and is

still a motivating problem in sports, especially baseball. Bennet and Flueck (1983)

analyze run production metrics in terms of prediction of baseball team scoring uti-
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lizing linear model-building. Both Albert (1994) and Berry et al. (1999) use various

forms of logistic regression to predict the success of individual at-bats in baseball.

Albright (1993) compares first-order homogeneous Markov chain models and logistic

regression models to predict baseball at-bats as binary outcomes. Rosner, Mosteller,

and Youtz (1996) use truncated binomial regression to model baseball pitcher perfor-

mance in the form of the number of runs allowed. These examples serve to illustrate

the state of baseball prediction in academia over the 50 years since Mosteller’s work.

More recently, there has been a broader and more rich tapestry of statistical models

applied to the problem of prediction in baseball and other sports, including a greater

emphasis on hierarchical and non-parametric models. Berry et al. (1999) use a hier-

archical model to compare home run and batting average abilities across eras. In a

non-parametric setting, Chandler and Stevens (2012) use random forests to project

future success of minor-league baseball players, where their metric for success was

simply a binary outcome of playing in greater than 320 Major League games. Mod-

els with similar goals of predicting performance in sports other than baseball have

been developed for predicting squash victories via a first-order Markov chain model

of match-play (McGarry and Franks, 1994), modeling NFL quarterback performance

with negative binomial regression (Wolfson et al., 2011), and predicting average runs

for batsmen in cricket via a hierarchical linear mixed model (Wickramasinghe, 2014).

Within this realm of published academic research, however, there has been little fo-

cus on developing models that seek to predict the entire vector of plate appearance

outcomes. In other words, not just predicting whether the player gets a hit, but

whether the hit is a single, double, triple, or home run, whether the out is a strike

out, out in play and whether the player got a sacrifice or was walked, which are all

possible in baseball. Null (2009) defines 14 distinct outcomes for a baseball players

plate appearance and assumes each batter has some “true” probability vector for ex-

periencing each outcome. Null’s work also serves as an introduction to the class of
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nested Dirichlet models, used as an alternative to the Dirichlet or Generalized Dirich-

let for modeling multinomial data. Finally, Albert develops a Bayesian random effects

model for estimating component rates of batting outcomes in order to better predict

batting average (Albert, 2016). Albert’s work does treat the outcomes as multino-

mial in nature, but factorizes the multinomial likelihood into a product of conditional

binomial likelihoods. However, of these two, only Null attempts to include covariates,

using a fixed effects regression model to attempt capturing an age effect.

Outside the realm of academic journals, there is an ample and active sector of the

internet where baseball projection systems are developed and implemented. The rise

of fantasy baseball as a betting and leisure activity has given cause for not only large

corporations, but private individuals, to develop models for forecasting player perfor-

mance. These models seek to predict a player’s entire seasonal performance. Most of

the results of the projections from these models are published for free on the internet,

although betting fantasy websites require payment to access their predictions, and

are often concerned more with daily performance than seasonal performance.

Unfortunately, only one of the most common projection systems is completely open

source, with all others maintaining some proprietary ownership of the methodology

used. Not only that, but there is a relative dearth of uncertainty quantification as-

sociated with the resulting projections, which would allow for comparing the “floor”

and “ceiling” of different players. In a fantasy baseball setting, users often must

consider the trade-off between rewards for high- or low-risk moves, but this risk is

entirely based on the user’s perception of players and not on any quantity provided

with projections being used. In a team management setting, uncertainty facilitates

direct comparison of players when considering signing or trade moves.

Any discussion of forecasting systems for seasonal baseball performance would do

well in starting with the self-described most basic forecasting system. Claiming to



6

use as little intelligence as possible, The Marcel the Monkey Forecasting System (the

Marcels) was developed by Tom Tango and first published in 2001. The process for

predicting a player’s performance based on the Marcels is completely available on-

line, and consists mainly of a weighted average that utilizes the last three seasons of

a player’s career, including an age factor, and regressing to the mean for each compo-

nent by creating the same weighted average of the player’s league average and then

adding 1200 plate appearances at that weighted league average rate to the weighted

plate appearances from the player’s last three seasons (Tango, 2004).

Despite Tango declaring that he does not stand by the system, the Marcels tend

to perform competitively with many of the proprietary systems. Additionally, the

Marcels is one of the only systems with some level of uncertainty assessment, via a

singular value which describes the “reliability” of a prediction; simply the proportion

of the prediction which comes from player data as opposed to the regression to the

mean (e.g. a player who had a weighted total of 7000 plate appearances over three

years would have a reliability score of 7000
7000+1200

= 0.854). As Tango describes on his

website, players with no data, including minor league players and players coming from

Japan, will be predicted at the mean and have a reliability score of 0 (Tango, 2012).

More complicated projection systems also annually publish predictions for the up-

coming baseball season. While some of the methodology of these systems, or at least

choices which guide the methodology, are occasionally discussed on the internet, none

of the systems have been published and thus are maintained as proprietary. Among

the most popular of the projection systems is Steamer, originally developed in 2008

and currently maintained by Jared Cross, Dash Davidson, and Peter Rosenbloom.

PECOTA, or the Player Empirical Comparison and Optimization Test Algorithm,

is the proprietary system of Baseball Prospectus originally developed by Nate Silver

in 2002-2003. ZiPS, or the sZymborski Projection System, was developed by Dan

Szymborski while writing at the website Baseball Think Factory. Recently, in 2010
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Brian Cartwright developed Oliver, a relatively basic forecasting system more in the

vein of the Marcels, except that Cartwright developed his own Major League Equiv-

alencies for minor league players. KATOH, developed by Chris Mitchell in 2014, is

another proprietary system focused on forecasting major league hitting with minor

league statistics.

These represent some of the more popular and important projection systems that have

been developed. All MLB teams, and likely most NPB league teams have also de-

veloped their own in-house projection systems. There are many more systems which

currently exist, and many more will certainly be developed. The main advantages

to proposing the projection system described in this research are the open source

nature of the methodology, in which it is free for anyone to critique, tinker with, and

improve upon, and the ability to assess risk, the uncertainty quantification about the

predictions being made.

There has been minimal work in the literature of sports prediction in providing pre-

diction intervals, or accuracy scores for the outcomes being predicted. Mentioned

previously, the Marcels is one of the only projection systems to include a reliability

metric for the predictions, which he specifically notes gives a score of 0 for minor

league players and players coming from Japan (Tango, 2012) and thus the Japanese

player is predicted at the league average for their age. Will Larson, as described in

Section 2.5.3, has done some of the most work in assessing the predictive accuracy

of the results from online projection systems. In 2011, he published an article on

Fangraphs where he calculates the variance in forecasts of six projection system re-

sults published online (Larson, 2011). He compares that variance’s ability to predict

the absolute error for a particular players consensus forecast (defined as the average

among the six different forecasts) with the Marcels’ reliability measure.
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For these key reasons (lack of open source methods and lack of uncertainty quan-

tification) we feel adding our method to the lexicon of sports prediction is a useful

contribution. The following section begins laying the foundation for the method-

ological choices that drive the development of our proposed model. We describe the

multinomial random variable distribution and how the distribution itself is related

to baseball data, but fails to accurately describe such data by itself. We then briefly

describe three alternative hierarchical models that may be considered for predicting

baseball data.

1.3 Modeling Baseball Player Performance Data

The most readily available baseball performance data takes the form of seasonal per-

formance vectors of counts. Each time a batter or pitcher has a plate appearance (for

pitchers, instead of plate appearance the count is called “batter faced”), there are a

finite number of distinct outcomes that can occur. The outcome of a plate appearance

has an immediate impact on the state of the game. While baseball statisticians have

only recently, in the relative terms of the sport, begun to focus on outcomes on the

singular pitch level, historically analysis has been performed on a plate appearance

level. In assessing the performance of baseball players, it is natural to consider the

outcomes from the player’s seasons worth of plate appearances. It is usually on this

level that metrics for player valuation occur.

In predicting how a player will perform in the ensuing season, there are several strate-

gies, each aligning with a different goal. Singular metrics of player value are mostly

meant for ranking and comparing players in an inferential sense, not necessarily a

predictive context. Among these metrics, Wins Above Replacement (WAR) is the

most popular, though there are many different versions of WAR (Baumer et al., 2015).

These metrics convert the player’s performance in terms of outcomes first into how

many runs the individual player contributed to his team, and then into wins based on
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the number of wins a run is worth, and finally scaled so that a value of 0 represents a

“replacement” player. A more simple, but perhaps more popular metric, is On-Base

plus Slugging Percentage (OPS), where the calculation is simply the sum of two ratios.

In projection systems these singular metrics, while capable of being calculated, are

not the main goal. Instead the goal is the vector of outcome counts for the ensuing

season; the number of home runs, strikeouts, walks, or other potential outcomes of

each player. While the granularity of the number of outcomes can take many forms,

arguably the most relevant list of outcomes is made up of ten outcomes for a single

plate appearance:

• Base hits: (Single, Double, Triple, Home Run).

• Free passes: (Base on Balls, Hit-by-Pitch).

• Sacrifices: (Sacrifice Bunt, Sacrifice Fly).

• Outs: (Strikeout, Out-in-Play).

There are several projection models, that are published each year in the vein of pre-

dicting a vector’s worth of plate appearances. As summarized in Section 1.2, two

major drawbacks of the existing projection models are that many are proprietary,

and rarely do they provide a form of uncertainty quantification.

Baseball is as much a business as it is a game. Developing and providing some level of

uncertainty about predictions of player performance can greatly assist management

in evaluating the risk associated with paying players. Especially in a comparative

setting, if management is deciding between two players to pursue, a point estimate

of each player’s performance (their value) may suggest one player is better. However,

an estimate of uncertainty (their risk) may show that the other player has a higher

potential floor.
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Our method departs from many other methods by modeling additional uncertainty

about a player’s outcome probability vector. Specifically, given some covariates, we

assume there is still a distribution about each player’s probability vector. This ad-

ditional variability factors in components such as injury and what ball parks he pri-

marily plays in that could affect seasonal performance. This additional uncertainty

also allows us more flexibility in modeling the relationships among outcomes.

Based on estimates of this model for a predicted season, intervals describing the

uncertainty may be formed. Some major goals of this research are to contribute a

model in which prediction accuracy is competitive with existing models, is completely

open source, and provides credible intervals for the seasonal counts being predicted

which are comparable between players. To do so, we begin by defining a distributional

assumption about the seasonal player performance count vector. We then proceed to

developing a consistent narrative for modeling those data.

1.3.1 Multinomial Distributed Data

Probability theory provides a natural distribution, the multinomial distribution, for

modeling a vector of outcome counts, conditional on a probability vector associated

with those counts. The multinomial distribution in its most basic form relies on

two parameters, the number of independent trials N and the probability vector Π =

{π1, π2, . . . , πK}, where K represents the number of unique outcomes. We denote a

random vector W that follows the multinomial distribution as:

W ∼MultiK (N,Π)

Definition. A vector of counts, W following the multinomial distribution implies

the following joint probability mass function over the non-negative count vector, W :

f (w1, ..., wK |N,Π) =
N !

w1! · · ·wK !

K∏
k=1

πwkk (1.1)
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In this function, K is the number of categories, N is the number of trials, and

Π = (π1, ..., πK) is the vector of probabilities associated with these unique categories

such that
∑K

k=1 πk = 1. The multinomial distribution can also be described in terms

of each independent trial; Wt ∼MultiK (1,Π), where W =
∑N

t=1 Wt.

Several properties of the multinomial are straightforward extensions of binomial dis-

tribution properties. For example, the first and second moments of each count wk

produce familiar terms for the expected value and variance for the counts of each

outcome:

E [wk] = Nπk (1.2)

V ar (wk) = Nπk (1− πk) (1.3)

The remainder of the variance-covariance matrix (k 6= k′) is made up of the off-

diagonal covariance terms,

Cov (wk, wk′) = −Nπkπk′ (1.4)

Resulting in correlations:

Cor (wk, wk′) = −
√

πkπk′

(1− πk) (1− πk′)
(1.5)

When the vector of probabilities depend on some covariates, modeling of multinomial

data via multinomial logisitic regression, or the multinomial logit model, is most

common. Given K states, the probabilities of those states are described using K − 1

logit equations, where the inverse additive logistic transformation of the probabilities

produces log-odds, relative to a chosen baseline outcome (we will assume the final

category, K) which are each linked to a covariate vector X:

log
(
πk
πK

)
= Xβk for k = 1, ..., K − 1
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For the multinomial logit, this means that each of the probabilities is function of the

covariates as follows:

πk = eXβk

1+
∑K−1
k=1 eXβk

1.3.2 Baseball Data as Multinomial Data

Some arguments could be made that a baseball player’s plate appearances over the

course of a season are not independent. In each plate appearance, there are many

different factors which impact a batter or pitcher’s success; the specific opposition

being the most obvious, but other factors such as player health or weather. However,

there have been several studies examining streaky hitting in baseball (Albright, 1993;

Albert, 2008; Albert, 2013) with the general consensus that there is not a great deal

of difference between a player’s behaviour and a random model assuming constant

probability of success. This leads us to assume that it is not unreasonable to treat a

player’s seasonal plate appearances as a set of independent trials.

In general baseball terms, it is possible to define any level of granularity to the out-

comes, the dimensionality of the multinomial count vector, K. Traditionally in pre-

dicting player performance, the problem is reduced to a binomial setting; predicting a

single outcome. For predicting overall player performance, predicting each outcome in

this setting does not make practical sense, as it ignores correlations between outcomes

which may contribute significant information that may improve predictive accuracy.

We also wish to account for potential variability in the probability vector over seasons.

Note that within a player-season, assuming a given probability vector and multinomial

distribution, there is necessarily a negative correlation between each pair of outcomes

(Equation 1.5). As will be discussed in detail later in this chapter, there are several

outcomes in baseball that are known to be positively correlated within a player-

season. Even more basically, while we use covariates to allow the mean probability to
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differ across player-seasons, we expect there to be some variability about that mean,

or overdispersion. Addressing these issue drives, in large part, the methodological

choices in developing our model for baseball performance data. To account for varying

probabilities, we describe a model which augments the base multinomial model via a

hierarchical structure where Πij follows a distribution.

1.3.3 Hierarchical Structure of Baseball Data

The desire to account for variability in Πij, including potentially positive associations

among outcomes in the count vector, leads us to the following hierarchical structure

of the data model for player i season j:

Wij|Πij ∼MultiK (N,Πij)

Πij ∼ f (Πij)

In order to determine a reasonable distribution f (Πij), we turn to compositional data

analysis. Compositional data consists of non-negative vectors whose elements sum

to one; in essence, probability vectors. The modern discussion of modeling composi-

tional data begins with John Aitchison, who in the 1980s developed many of the tools

used today. In his original works Aitchison (1982, 1986) discusses two main classes of

models for modeling compositional data, the Dirichlet and logistic-normal classes. A

key difference arises in the modeling space. Dirichlet models for compositional data

conduct analysis directly on the simplex space SK where, due to the sum to one con-

straint, a compositional vector exists. Logistic-normal models propose transforming

the compositional vector via a log-transformation, converting from the simplex to

RK−1 Euclidean space. Aitchison leans towards the logistic-normal approach (Aitchi-

son, 1982), due to the strong internal independence structure of the Dirichlet. We

discuss this structural limitation in the next section.
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Keeping in mind the hierarchical structure of our data model, a strictly multinomial

model for the counts does not allow for positive correlations, nor does the multinomial-

Dirichlet distribution for counts that arises from modeling f (Πij) ∼ Dirichlet. The

distribution of counts produced from modeling a multinomial probability vector with

the logistic-normal distribution, f (Πij) ∼ LogitNormal, does allow for positive cor-

relations.

As early as 1966 (Good, 1966) the Dirichlet was being considered as a distribution for

compositional data. Connor and Mosimann (1969) developed a generalization of the

Dirichlet distribution in biological applications of modeling bone composition in rats

and scute growth in turtles. Later, Campbell and Mosimann (1987) more carefully

examined the process of modeling of compositional data with the Dirichlet via the

inclusion of covariates. Multinomial-Dirichlet regression has also been used in the

context of microbiome data analysis (Chen and Li, 2013). In a Bayesian framework,

the Dirichlet distribution has been popular as a conjugate prior to the multinomial

distribution (Good, 1966; Wong, 1998; Ocampo et al., 2019). In terms of multinomial

data, the multinomial-Dirichlet distribution is a marginal compound distribution for

count data, which results from modeling the probability vector of the multinomial via

a Dirichlet distribution. A related distribution is the nested Dirichlet, developed by

Null (2009), which is a generalized version of the Generalized Dirichlet distribution

developed by Connor and Mosimann. The nested Dirichlet was developed specifically

to account for some limitations of the regular Dirichlet. Both the Dirichlet and the

nested Dirichlet are discussed in more detail in Section 1.4.

Our work focuses on the logistic-normal distribution for modeling the compositional

vector that is the underlying probability of a player’s seasonal outcome vector. Use

of the logistic-normal to describe compositional data originates with Aitchison (1982)

and subsequent hierarchical modeling approaches have followed. Albert and Chib

(1993) discuss applying a Gibbs sampling approach to the multinomial probit model
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introduced by Aitchison and Bennet (1970). Logistic-normal regression has been

utlized in such fields as household purchasing behavior (Allenby and Lenk, 1994),

species composition (Billheimer et al., 2001), chemical markers in plants (Brewer

et al., 2005), and is very popular in modeling in the context of microbiome data anal-

ysis (Xia et al., 2013; Grantham et al., 2017; Ren et al., 2017; Li et al., 2018). Similar

to the multinomial-Dirichlet, the marginal distribution for multinomial count vectors

where the probabilities are modeled via the logistic-normal is the multinomial logistic-

normal distribution. Our main result concerns the multinomial logistic-normal being

the most appropriate model for baseball data.

The major deficiency in existing logistic-normal models for compositional data in-

volves hardly any emphasis on developing models focused on prediction, especially

in the context of longitudinal data. The flexibility in the logistic-normal to capture

potentially positive correlations between components of a compositional vector has

been discussed since Aitchison’s initial work, and we examine that in more detail,

specifically in the context of baseball outcomes, in Section 1.5. When data take on

a longitudinal structure, however, it is also important to account for correlation be-

tween components over time. In a species composition framework, it could be possible

that the proportion of one species at time t might be correlated with the proportion

of another species at time t+ 1. In baseball terms, home runs and strikeouts may not

only be correlated within a player-season, but also across a player’s career.

In baseball specifically, several outcomes are significantly positively correlated, leading

to the logistic-normal as a more natural choice for modeling the underlying composi-

tion than the Dirichlet. The next section describes the Dirichlet, nested Dirichlet, and

logistic-normal distributions as possible distributions for Πij, including discussion on

the implied correlation among counts corresponding to each distribution. The suc-

ceeding section uses a real data example to compare the three distributions in their
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ability to capture positive correlation between components of the composition (the

multinomial probability vector).

1.4 Hierarchical Models for Baseball Count Data

In this section we discuss three candidate hierarchical models for describing baseball

outcome data. Over the course a season, an individual player accrues plate appear-

ances the outcomes of which can be treated as draws from a multinomial distribution

given a probability vector representing that player’s ability. We express this as:

wij1, ..., wijK ∼MultiK (PAij,Πij)

where PAij is the number of plate appearances for player i’s season j, and K rep-

resents the total number of outcomes. Because we believe Πij to not be fixed, we

introduce the hierarchical structure with Πij described by some distribution.

The main focus in this section deals with how different distributions for the underlying

probability vector impact the distribution of the counts. For simplicity, we consider

the player-seasons to be independent and we only briefly discuss the framework for

including covariates.

1.4.1 Multinomial-Dirichlet Distribution

Modeling the underlying probability vector Π according to the Dirichlet allows for

additional variability in W over that of the strictly multinomial distribution.

Definition. A probability vector following the Dirichlet distribution with parameter

vector α, Π ∼ Dir(α1, ..., αK), implies the following joint probability distribution

function over the probability vector:

f (π1, ..., πK |α1, ..., αK) =
K∏
k=1

παk−1
k

B (α)
(1.6)
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where K is the number of categories, α = (α1, ..., αK), B (α) =
∏K
k=1 Γ(αk)

Γ(α0)
, and

α0 =
∑K

k=1 αk.

It is sometimes useful (e.g., in simulation) to consider the Dirichlet in terms of K

independently distributed Gamma distributions. Specifically, if

Ak ∼ Gamma (αk, θ)

and

A0 =
K∑
k=1

Ak

then

Π =

(
A1

A0

, ...,
AK
A0

)
∼ Dirichlet (α1, ..., αK)

The Dirichlet has the following properties in terms of expected value, variance and

covariance (when k 6= k′) of the probability vector terms:

E [πk] =
αk
α0

(1.7)

V ar (πk) =
αk (α0 − αk)
α2

0 (α0 + 1)
(1.8)

Cov (πk, πk′) =
−αkαk′

α2
0 (α0 + 1)

(1.9)

When considering W ∼ Multi(N,Π) and Π follows the Dirichlet distribution, the

resulting distribution of the counts is the multinomial-Dirichlet (Mosimann, 1962).
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Definition. For a vector of counts, W , distributed according to the multinomial

distribution, with probability vector Π distributed according to the Dirichlet distri-

bution, implies the following probability distribution function:

f (w1, ..., wK |α1, ..., αK) =
(N !) Γ (α0)

Γ (N + α0)

K∏
k=1

Γ (wk + αk)

(wk!) Γ (αk)
(1.10)

where K, α, and α0 are defined as in the Dirichlet, and the following expected values,

variances and covariances:

E [wk] = N

(
αk
α0

)
(1.11)

V ar (wk) = N

(
αk
α0

)(
1− αk

α0

)(
N + α0

1 + α0

)
(1.12)

Cov (wk, wk′) = −N
(
αkαk′

α2
0

)(
N + α0

1 + α0

)
(1.13)

The most important of these results for our purposes is that the correlation between

any two categories under the multinomial-Dirichlet distribution is necessarily nega-

tive.

Cor (wk, wk′) = −
√

αkαk′

(α0 − αk) (α0 − αk′)
(1.14)

In fact, we can see by comparing the multinomial-Dirichlet correlation (Equation

1.14) to the multinomial correlation (Equation 1.5), that the correlation is the same.

Modeling the probabilities according to a Dirichlet provides for increased variation

but does not alter the correlation structure.

Essentially, this negative correlation is entirely due to the sum to one constraint of

the probability vector. A probability vector of length K which follows a Dirichlet

distribution is equivalent to a composition formed from K independent gamma dis-

tributed components. As Aitchison (1982) describes, this is the strong independence

assumption the Dirichlet has for all outcomes. The sum to one constraint combined
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with the independence structure of the gamma components produces negative corre-

lations among all components. Regardless of the true relationship between any two

categories in the data, the multinomial-Dirichlet model cannot account for positive

correlations between outcomes.

Inclusion of covariates for modeling purposes can be approached by directly modeling

the Dirichlet parameters with fixed covariates via a log-link, which is equivalent to

modeling the log-odds in the multinomial logit model described in Section 1.3.1.

log (αk) = Xβk for k = 1, ..., K

The coefficients under the multinomial-Dirichlet covariate model have a slightly more

natural interpretation than under the nested Dirichlet or logistic-normal models.

However, the resulting maximisation of the likelihood defined by the inclusion of

covariates does not have a closed form (Campbell and Mosimann, 1987).

Campbell and Mosimann (1987) suggest that covariate models of the Dirichlet may

provide more flexibility in describing covariances between outcomes. As an alterna-

tive within the Dirichlet family, apart from the nested Dirichlet described in the next

section, Campbell and Mosimann also suggested finite mixtures of Dirichlet distri-

butions can account for any pairwise covariance, but noted that finite mixtures of

Dirichlet distributions are not identifiable.

The Dirichlet, although a conjugate prior for the multinomial distribution, is a very

restrictive distribution. In a Bayesian context, Albert (2016) showed that placing

independent beta priors on each component probability worked better in predicting

batting average than using a multinomial-Dirichlet model, noting the same lack of

flexibility of a Dirichlet prior that motivated Null (2009) to use the nested Dirichlet.
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1.4.2 Multinomial Nested Dirichlet Distribution

Null (2009) proposes the nested Dirichlet as an alternative model for the probabilities

in multinomial data. While the nested Dirichlet retains the desirable properties of

the regular Dirichlet, it also improves the flexibility of modeling relationships between

the outcomes by introducing a nesting structure which adds an additional n variables

under which original outcomes are nested. It thus adds an additional n parameters

to the K parameters already present in the simple Dirichlet.

Null suggests the simplest way to visualize the difference between the nested and

regular Dirichlet was via a nesting tree. In Figure 1.1, the right tree represents the

nesting for a regular Dirichlet distribution with K = 3, while the left adds an addi-

tional n = 1 nesting variable under which two of the original outcomes are nested.

This structure implies that the pair (π2, π3) have a Dirichlet distribution conditional

on π4, and the pair (π1, π4) have an unconditional Dirichlet distribution.

Figure 1.1. Comparing nested and regular Dirichlet distributions with
categories K = 3

Based on the ordering of the original outcomes in the first tree, there are a total of

3 possible nesting structures for the three category case, not including the regular

Dirichlet which could be considered a subset of the nested Dirichlet. The left tree

in Figure 1.1 is also a representation of the Generalized Dirichlet. The Generalized
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Dirichlet is a subset of the nested Dirichlet where there are two variables in each

nesting and at least one is an original outcome (Connor and Mosimann, 1969). While

in the three category case, the Generalized and nested Dirichlet are the same, as

more categories are included more nesting structures become possible in the nested

Dirichlet. This provides the lower bound for the number of possible nestings, K!
2

for

K ≥ 3.

Definition. As defined by Null, a nested Dirichlet distribution implies the following

joint probability distribution function over the probability vector:

f (π1, ..., πK |α1, ..., αK , αK+1, ..., αK+n) =

∏K
k=1 π

αk−1
k

∏n
k′=1 π

αK+k′−α0k′
K+k′∏n

k′=0 B (α∗k′)
(1.15)

where α∗k′ is the vector of parameters for the k′th nesting, with α∗0 the vector of pa-

rameters for the unnested outcomes, and α0k′ is the sum of all parameters in vector

α∗k′ .

For the specific nesting structure of the nested Dirichlet defined by the Generalized

Dirichlet, the covariance is straightforward to compute. Since we will be focusing on

the three category case for our example, and the Generalized and nested Dirichlet

share a common structure in that case, it suffices to describe general moment functions

(Wong, 1998) for three categories in the structure of the left nesting in Figure 1.1.

E [πr11 π
r2
2 ] =

2∏
k=1

Γ(α0k)Γ (αk + rk) Γ (γk + δk)

Γ (αk) Γ (γk) Γ (α0k + rk + δk)
(1.16)

E [πr11 π
r3
3 ] =

∏
k∈{1,3}

Γ (α0k) Γ (αk + rk) Γ (γk + δk)

Γ (αk) Γ (γk) Γ (α0k + rk + δk)
(1.17)

where γ1 = α4, γ2 = α3, γ3 = α2, and δk =
∑

k rk. And, for the joint expectation of

the two nested outcomes:

E [πr11 π
r2
2 π

r3
3 ] =

3∏
k=1

Γ (α0k) Γ (αk + rk) Γ (γk + δk)

Γ (αk) Γ (γk) Γ (α0k + rk + δk)
(1.18)



22

where r1 = 0, r2 = r3 = 1, δ1 = 2, δ2 = δ3 = 0. Extending to more categories, and

nestings that are not equivalent to the nesting structure of the Generalized Dirichlet,

complicates moment derivation. The general moment functions defined in Equations

1.16, 1.17, and 1.18 are enough to calculate expected values, variances, covariances

and correlations among three outcomes in a three category nested Dirichlet frame-

work (Connor and Mosimann, 1969; Wong, 1998) based on Figure 1.1.

For k = 1, 2, 3, γ1 = α4, γ2 = α3, and γ3 = α2:

E [πk] =
αk

αk + γk

k−1∏
l=1

γl
αl + γl

V ar (πk) = E [πk]

(
αk + 1

αk + γk + 1

k−1∏
l=1

γl + 1

αl + γl + 1
− E [πk]

)

Cov (πk, πk′) = E [πk]

(
αk

αk + γk + 1

k−1∏
l=1

γl + 1

αl + γl
− E [πk]

)

The resulting marginal multinomial nested Dirichlet distribution of the counts will,

depending on the nesting structure chosen, allow for positive correlations between

outcomes. One of the key features that Null (2009) espouses as a benefit of the

nested Dirichlet distribution is its conjugacy to the multinomial distribution. This

is a necessarily Bayesian result, implying that the resulting posterior distribution of

counts given the nested Dirichlet parameters is also of nested Dirichlet form. Null

(2009) does not provide formulation of this multinomial nested Dirichlet distribution.

Since the Generalized Dirichlet is a subset of the nested Dirichlet, and that distribu-

tion is well established (Connor and Mosimann, 1969; Wong, 1998; Bouguila, 2008),

we can define the multinomial Generalized Dirichlet distribution to give an idea of

what the multinomial nested Dirichlet looks like.
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Definition. For a vector of counts, W , distributed according to the multinomial dis-

tribution, with probability vector Π distributed according to the Generalized Dirichlet

distribution, implies the following probability distribution function:

f (w1, ..., wK |α1, ..., αK−1, γ1, ..., γK−1) =
N !

w1! · · ·wk!
×

K−1∏
k=1

Γ (αk + wk)

Γ (αk)

Γ (γk + zk+1)

Γ (γk)

Γ (αk + γk)

Γ (αk + γk + zk)

where in the context of the nested Dirichlet defined before, the values of γ are values

of α dependent upon the nesting structure, N =
∑K

k=1wk, and zk =
∑K

l=k wl.

Covariate inclusion is less straightforward in the nested Dirichlet than in the Dirichlet.

Null (2009) addressed modeling of the probabilities with a covariate by using a least

squares approach, directly relating the covariate to the K + n vector of probabilities

defined by the nesting structure, π̃:

π̃k = Xβk + ε for k = 1, ..., K + n

One of the complications Null identified was that the model allowed for probabilities

outside the viable range of [0, 1], indicating that the conjugacy of the nested Dirichlet

is lost via the inclusion of covariates. Null also noted that, under the proposed

covariate model, outcomes nested together will have opposite effects; in other words

a one unit increase in the covariate will impact outcomes nested together in an exactly

opposite way (Null, 2009).

1.4.3 Multinomial Logistic-Normal Distribution

The final data model we consider is the multinomial logistic-normal distribution. The

logistic-normal family of distributions provides a considerably more flexible covari-

ance structure due to the increase in number of unknown parameters, inherited from
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the multivariate logistic-normal distribution. This, like certain nestings of the nested

Dirichlet, is capable of preserving positive correlations between outcomes. Applying

the inverse additive logistic transformation to the probabilities, we move to the RK−1

space instead of the simplex SK . This mapping from the simplex to real space is a one-

to-one mapping, thus there is not too much interpretability lost. Most importantly

there is no longer the strong independence between all outcomes, and the uncon-

strained covariance structure of the multivariate logistic-normal allows for modeling

of positive pairwise correlations between outcomes. In the context of the logistic-

normal, this inverse additive logistic transformation of the underlying multinomial

probabilities produces log-odds which follow a multivariate normal distribution.

Definition. A probability vector following the logistic-normal distribution, Π ∼

LogitNormalK−1 (µ,Σ), may be transformed into log-odds which follow the multi-

variate normal distribution:

log

(
π1

πK

)
, ..., log

(
πK−1

πK

)
∼ NK−1 (µ,Σ)

where if we call Y the vector of log-odds which we expand to K dimensions by defining

the Kth coordinate to be 1, then we redefine the probability vector

Π =

(
exp (y1)

1 +
∑K−1

k=1 exp (yk)
, ...,

exp (yK−1)

1 +
∑K−1

k=1 exp (yk)
,

1

1 +
∑K−1

k=1 exp (yk)

)
(1.19)

It suffices to describe the joint probability distribution function of the probabilities

in terms of the multivariate normally distributed log-odds, Y ∼ NK−1 (µ,Σ):

f (y1, ..., yK−1|µ,Σ) =
exp

(
−1

2
(Y − µ)T Σ−1 (Y − µ)

)
√

(2π)K−1 |Σ|
(1.20)

The unconstrained covariance matrix allows for a much more flexible pairwise corre-

lation structure between outcomes, including allowing for positive correlation. The
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logistic-normal distribution’s ability to model positive correlation makes it an attrac-

tive alternative to the Dirichlet for certain applications. However, there is no analytic

solution for the mean and covariance matrix of the logistic normal distribution; the

integral expressions for moments of all positive orders are not reducible to any simple

form. Moments may instead be defined in terms of the logarithms of the ratio of the

logistic-normal variates (Aitchison and Shen, 1980), for categories k = 1, ..., K:

E

[
log

(
πk
πk′

)]
= µk − µk′

cov

[
log

(
πk
πk′′

,
πk′

πk′′

)]
= σkk′ + σk′k′′ − σkk′′ − σk′′k′

where σjk denotes the (j, k)th element of Σ and with µK = 0 and σjK = 0. Though

this formulation does not naturally describe the moments in terms of the probabili-

ties. For this, we may use simulation to show that for a fixed value of the mean, there

is a direct mapping of the logistic-normal correlation to the compositional correlations.

Consider the K = 3 case, where the resulting log-odds vector, y, is bivariate normal:

Y =

(
log

(
π1

π3

)
, log

(
π2

π3

))
∼ N2

µ1

µ2

,
 σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

 (1.21)

For fixed µ = (µ1, µ2) and σ1, σ2, we can vary ρ from −1 to 1, simulate a large number

of bivariate normal random variables at each value of ρ, transform them into com-

positions via the additive logistic transformation, and assess their correlation. While

the values of the mean vector µ and the standard deviations σ1 and σ2 will affect the

resulting correlations, there will always be a direct mapping from the logistic-normal

correlation to the compositional correlations.

More formally, our simulation proceeds as follows:
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1. For some choice of µ, σ1 and σ2, and for each of ρ = {ρ1, ρ2, ..., ρ999, ρ1000} =

{−1,−.998, ..., .998, 1}, simulate

Yij ∼ N2 (µ,Σi)

where Σi =

 σ2
1 ρiσ1σ2

ρiσ1σ2 σ2
2

 and j = 1, ..., 1000. This generates 1000 bivari-

ate normal samples of each of 1000 different correlations along the sequence

from −1 to 1.

2. For each correlation i and sample j, transform according to equation (1.19):

πij =

(
eyij1

1 + eyij1 + eyij2
,

eyij2

1 + eyij1 + eyij2
,

1

1 + eyij1 + eyij2

)
3. Plot ρ versus each pairwise correlation of π and fit a smooth curve

For the two plots (Figures 1.2 and 1.3) presented we set the standard deviations equal

to 1. The different figures correspond to different choices of the µ vector. While the

mean and variance will have an impact on the shape, the figures show that the logistic-

normal is capable of modeling positive correlation between compositional outcomes.

Definition. For a vector of counts, W , conditionally multinomially distributed with

probability vector Π distributed according to the logistic-normal distribution, implies

the following probability distribution function:

f (w1, ..., wK |y1, ..., yK−1, µ,Σ) ∝
K∏
k=1

[
exp (yk)

1 +
∑K

l=1 exp (yl)

]wk
×

exp

[
−1

2
(Y − µ)T Σ (Y − µ)

]

Since the likelihood above has no closed form, there is once again no analytic solution

to the moments of the multinomial logistic-normal distribution. A similar process to
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Figure 1.2. Resulting compositional correlations from simulating log-odds
from bivariate normal with mean vector (0, 0) and standard deviations
σ1 = σ2 = 1
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Figure 1.3. Resulting compositional correlations from simulating log-odds
from bivariate normal with mean vector (−1, 1) and standard deviations
σ1 = σ2 = 1
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the one used for the logistic-normal (Figures 1.2 and 1.3) may be used to simulate an

implied correlation structure for the distribution of counts which follow a multino-

mial logistic-normal distribution. The multinomial aspect of the model will slightly

diminish correlation from the logistic-normal distribution for the probabilities, but

given a large number of plate appearances, this difference is minimal.

Finally, inclusion of covariates follows the traditional multivariate regression setting,

where the covariates are regressed on the multivariate normal log-odds.

yk = Xβk + ε for k = 1, ..., K − 1

or, formatted another way,

Y ∼ NK−1 (Xβ,Σ)

where X is a n × p matrix of covariates, β is an p × (K − 1) matrix of coefficients,

and Σ is the (K − 1) × (K − 1) covariance matrix. This is the equivalent covariate

model to the multinomial logit covariate model described in Section 1.3.1 and the

multinomial-Dirichlet covariate model described in Section 1.4.1.

Just as in the Dirichlet covariate model, since there is no closed form of the result-

ing likelihood, we must use some approximation method to optimize the likelihood.

The unconstrained covariance matrix allows for better modeling of positive correla-

tions between outcomes than the multinomial-Dirichlet model. In comparison to the

multinomial nested Dirichlet, there is no need to impose a possibly suboptimal nest-

ing structure which may struggle to describe relationships between outcomes, and

there are subsequently no restrictions on the covariate effects, where in the nested

Dirichlet there were opposite effects within pairs of nested outcomes.
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1.5 Model Comparison Example in Baseball Player Performance

In this section we present a simplified example to illustrate the differences in ability

of the three models described in Section 1.4 to recover correlations. We simplify the

problem by ignoring the multinomial structure. In other words, we focus on modeling

the proportion (or rates) of each category. We also do not consider covariates. Our

argument here is that if we can show that the logistic-normal model for Π is preferred

over the Dirichlet and nested Dirichlet in modeling correlations among the probabil-

ities in this setting, we expect the multinomial logistic-normal model to be preferred

when considering the counts.

Using Major League Baseball data consisting of all qualified batters from 1961-2013

(Friendly, 2015), we focus on the categories home runs (HR), strike outs (SO), and

other. Those categories are chosen due to the common belief that home runs and

strike outs are positively correlated. We restrict this analysis to qualified batters,

(plate appearances or N > 501), to reduce the impact of differing plate appearances

on the rates. Figure 1.4 and Table 1.1 show that home run and strikeout rates are

positively correlated across player-seasons.

Of all 6437 qualified player-seasons in this data set, 95 resulted in no home runs.

Since both Dirichlet and logistic-normal analysis take place with the log-link, and

log(0) = −∞, we can remove these player-seasons from the data set before analysis.

The removal did not change any of the correlation coefficients of our three outcomes

by more than a percent in either direction. There are alternatives to removal however,

namely adding some negligible number ε to all zero counts, or “compressing” the data

symmetrically via transformation (Smithson and Verkuilen, 2006). In data sets with

a larger occurrence of zero counts, these can be employed to avoid too much loss

of information. A summary of the difference in choices for handling zero counts is

provided in Section 2.5.
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Figure 1.4. Positive Correlation between HR and SO rates

Table 1.1.
Observed correlation matrix for rates of three batting outcomes

outcome HR SO OTHER

HR 1 0.49 −0.69

SO 0.49 1 −0.97

OTHER −0.69 −0.97 1
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1.5.1 Implied Correlation Coefficients and Model Fits

In R, there are readily available packages to calculate maximum likelihood estimates of

the parameters for both the Dirichlet and multivariate normal distributions. For the

nested Dirichlet, since each nesting is conditionally independent (Null, 2009), we can

fit a Dirichlet distribution for each nesting to estimate the respective parameters. In R

the relevant functions are dirichlet.mle (Robitzsch, 2016) and mlest (Gross and Bates,

2012). It is also straightforward under each distribution to calculate the log-likelihood

under the maximum likelihood estimates of the model parameters, and subsequently

the Akaike information criterion (AIC) and Bayesian information criterion (BIC) in

order to compare the model fits.

Dirichlet

Fitting the Major League Baseball data of the three outcome rates with the Dirichlet

distribution results in three α parameters, one for each of the categories. Table 1.2

gives the maximum likelihood estimates for the Dirichlet distribution fit using the

dirichlet.mle function. It is straightforward to calculate the implied correlations (Ta-

ble 1.3) between the three outcome probabilities using Equation 1.14.

Table 1.2.
Maximum likelihood estimates for Dirichlet distribution fit to Major
League Baseball data of three categories

estimate value

αHR 1.6595

αSO 7.4384

αOTHER 44.5838
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Table 1.3.
Implied correlation matrix for rates of three batting outcomes under
Dirichlet model

outcome HR SO OTHER

HR 1 −0.07 −0.40

SO −0.07 1 −0.89

OTHER −0.40 −0.89 1

When we compare the implied Dirichlet correlation coefficients to the observed co-

efficients from the data (Table 1.1), we see the Dirichlet is woefully inadequate at

capturing the relationship between home run and strikeout rates, our two positively

correlated variables.

Nested Dirichlet

For the nested Dirichlet, since we are dealing with only three categories, there are

only 3!
2

= 3 possible nesting structures. The three possible nestings include nest-

ing πHR and πSO together, πHR and πOTHER, or πSO and πOTHER together. For

sake of brevity we refer to each nesting structure by its nested pair: 〈πHR, πSO〉,

〈πHR, πOTHER〉, 〈πSO, πOTHER〉 respectively. All nestings are also representations of

the Generalized Dirichlet and, as Connor and Mosimann (1969) note in their original

paper, the unnested probability will always be negatively correlated with any other

nested probability. This property makes the choice of nesting in this simple case obvi-

ous, though we will present results for all three for comparisons sake. Since we know

home runs and strikeouts are positively correlated, the most appropriate nesting pairs

those and leaves the other category unnested; 〈πHR, πSO〉.
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It is important to note that the choice becomes immediately less obvious as soon as a

single new outcome is added, and becomes progressively less feasible to intuit as the

dimension increases. This is why Null (2009) imposes constraints on nesting selection,

and even then admits derivation of a new algorithm to search through nestings would

be advisable.

For each of our three nestings, maximum likelihood estimation proceeds as follows:

1. Fit a Dirichlet distribution on the unnested outcome probability, π1, and the

sum of the nested probabilities, π4 = π2 + π3, this estimates nested Dirichlet

parameters α1 and α4

2. Fit a Dirichlet distribution on the nested outcome probabilities, π2 and π3, this

estimates nested Dirichlet parameters α2 and α3

Note that fitting a Dirichlet distribution to the two category case is equivalent to

fitting a Beta distribution. The Generalized Dirichlet is in essence a collection of

nestings conditionally distributed as Beta distributions. For more categories, some

nestings in the nested Dirichlet may have more than two outcomes, thus we say we

fit a Dirichlet, even in the three category case where we are really fitting two condi-

tionally independent Beta distributions.

The resulting maximum likelihood estimates for the three trees are presented in Ta-

ble 1.4, while the implied correlation matrices, calculated by using Equations 1.16

to 1.18 with each set of estimates from the three nesting structures, 〈πHR, πSO〉,

〈πHR, πOTHER〉, and 〈πSO, πOTHER〉 are presented in Table 1.5, Table 1.6, and Table

1.7 respectively.
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Table 1.4.
Maximum likelihood estimates for nested Dirichlet distribution fit to Ma-
jor League Baseball data of three categories, three different nesting struc-
tures

estimate 〈πHR, πSO〉 〈πHR, πOTHER〉 〈πSO, πOTHER〉

αHR 3.0942 1.9911 2.1479

αSO 15.6546 6.2536 5.9466

αOTHER 29.7058 56.6326 35.2388

α4 6.0136 38.4926 72.9318

Table 1.5.
Implied correlation matrix for rates of three batting outcomes under
nested Dirichlet model with 〈πHR, πSO〉 nesting structure

outcome HR SO OTHER

HR 1 0.54 −0.56

SO 0.54 1 −0.96

OTHER −0.56 −0.96 1



36

Table 1.6.
Implied correlation matrix for rates of three batting outcomes under
nested Dirichlet model with 〈πHR, πOTHER〉 nesting structure

outcome HR SO OTHER

HR 1 −0.09 0.08

SO −0.09 1 −0.93

OTHER 0.08 −0.93 1

Table 1.7.
Implied correlation matrix for rates of three batting outcomes under
nested Dirichlet model with 〈πSO, πOTHER〉 nesting structure

outcome HR SO OTHER

HR 1 −0.05 −0.30

SO −0.05 1 0.02

OTHER −0.30 0.02 1

While we see here the nested Dirichlet’s ability to account for positive correlations

between outcomes, we also begin to see how the choice of nesting can significantly

impact analysis. The only implied correlation matrix from our three nested Dirichlet

fits which resembles the observed matrix is from our intuited most appropriate nesting

structure, 〈πHR, πSO〉. This structure does a good job of capturing the relationships

between the outcomes. However, the other two nesting structures are almost useless

at describing the relationships between the outcomes, and subsequently produce worse

model fits. As we expand the number of categories the choice of nesting structure

quickly becomes a more pressing, and more difficult to handle, concern.
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Logistic-Normal

Fitting the logistic-normal to our data set of three outcomes will result in 1
2
(3−1)(3+

2) = 5 total parameters, a mean vector, µ of length 2 and a 2× 2 covariance matrix,

Σ. µ corresponds to the mean of the log-odds of the first two outcomes in relation to

the last, in this case OTHER, the most prevalent outcome. To calculate maximum

likelihood estimates for the logistic normal, we first transform the three outcomes

into the two log-odds; log
(

πHR
πOTHER

)
and log

(
πSO

πOTHER

)
which for sake of conciseness

we denote henceforth as lH/O and lS/O. We then calculate bivariate normal maximum

likelihood estimates for µ and Σ using the mlest function (Table 1.8).

Assessing the implied correlation between the three outcomes requires some simula-

tion as there is no explicit formula for the covariance of the outcome probabilities

based on the multivariate normal covariance matrix. Given maximum likelihood esti-

mates of µ and Σ we proceed as follows to assess the implied correlation (Table 1.9),

similar to the process outlined in Section 1.4.3:

1. Simulate 10000 bivariate normal random variables from N2

(
µ̂, Σ̂

)
where µ̂ and

Σ̂ are the maximum likelihood estimates.

2. Convert the resulting log-odds to probabilities via the additive logistic trans-

formation and find the correlation matrix.

We see here that the logistic-normal model works about as well as the optimal nesting

structure in the nested Dirichlet model, as far as recovering the correlation coefficients

between the three outcomes.

Via simulation, we have some evidence that it is also significantly more useful in

describing these relationships than the Dirichlet model or the suboptimal nestings of

the nested Dirichlet. When comparing AIC and BIC across the Dirichlet, best nested

Dirichlet, and logistic-normal (Table 1.10), we can see that in this simplified setting

that the logistic-normal is the best candidate model.
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Table 1.8.
Maximum likelihood estimates for logistic-normal distribution fit to Major
League Baseball data of three categories, on log-odds scale

estimate value

µlH/O −3.6111

µlS/O −1.8516

σlH/O 0.8557

σlS/O 0.4622

ρ 0.5778

Table 1.9.
Implied approximate correlation matrix for rates of three batting outcomes
under logistic-normal model

outcome HR SO OTHER

HR 1 0.39 −0.70

SO 0.39 1 −0.93

OTHER −0.70 −0.93 1

Table 1.10.
AIC and BIC for model fit of rates of three batting outcomes under Dirich-
let, best nested Dirichlet, and logistic-normal models

measure DIR NDIR LN

AIC −53570.15 -55564.76 -63083.56

BIC −53549.88 -55537.74 -63049.78
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1.6 Discussion

This chapter began with a review of the relevant literature surrounding prediction

in baseball, from which there are several takeaways. In academic research, there has

long been a focus on predicting singular outcomes as opposed to the entire vector of

seasonal outcomes. Most projection systems which provide results for the new season

are developed with proprietary methodology. Very few of these projections systems

also offer some form of uncertainty assessment. The chapter also discusses the value

of modeling seasonal outcome counts jointly, as well as the value of providing uncer-

tainty about the prediction.

A description of the multinomial distribution, and how it helps describe baseball data,

follows. This is succeeded by a brief introduction of compositional data analysis and

the history of approaches there-in. We introduce three data models based on a hierar-

chical structure for multinomial data with a varying probability vector, including the

multinomial-Dirichlet, multinomial nested Dirichlet and multinomial logistic-normal

distributions. The chapter discusses the need for allowing for positive correlation be-

tween outcomes in baseball data, and compares three different models based on the

Dirichlet, nested Dirichlet, and logistic-normal distributions for the probability vector

Π. Based on this preliminary work, we posit that a multinomial logistic-normal model

is the most appropriate for joint modeling of baseball outcomes. The multinomial-

Dirichlet model is not capable of describing positive correlations among outcomes and

the multinomial nested Dirichlet model relies on a predetermined nesting structure

the choice of which becomes non-trivial with more outcomes.

The main part of the discussion in this chapter also simplified the problem consider-

ably, ignoring the longitudinal nature of baseball data and largely ignoring handling

of covariate effects. In the following chapter, we introduce a Bayesian hierarchical

multinomial-logistic normal model which includes player-specific covariates, and ran-
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dom effects which serve to account for the longitudinal aspect of baseball player data

and model correlation over time. This is followed by a description of a corresponding

Gibbs sampling algorithm for fitting the model. It concludes by developing methods

for prediction, uncertainty assessment about predictions, and assessment of model fit.
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2. A MULTINOMIAL LOGISTIC-NORMAL MODEL FOR

FORECASTING BASEBALL PERFORMANCE

2.1 Introduction

In Chapter 1, we described several hierarchical models that could be used to fit base-

ball player season outcome vectors and argued that the multinomial logisitic-normal

model is the most appropriate for our data and prediction goals. It allows for the

straightforward inclusion of covariates, and we illustrated its ability to account for

positive and negative correlations between outcome categories.

Our data (e.g., multiple seasons per player), however, are also longitudinal, suggest-

ing the possibility of positive correlations over time. To account for this, we move to

a mixed effects framework. In this chapter, we describe this mixed-effects multino-

mial logistic-normal hierarchical model, our Bayesian framework for estimation and

prediction, as well as some novel diagnostic tools for assessing model fit.

The inclusion of random effects not only accounts for the longitudinal nature of the

data, but also makes sense practically. When considering a set of outcomes, or just

a single outcome, we would expect a distribution of player abilities in the sense that

certain players would be consistently above or below the average over the course of

their careers. With the fixed effects model, there is player-season variability, but it

assumes the same distribution for all players with the same set of covariates. In other

words, all players with the same covariates have the same ability. Thus, each season

a player is equally likely to have an above- or below-average season. With random

effects, players remain above/below average in ability across seasons beyond what is

captured in the covariates. This approach is similar in concept to the random effects
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model built for home runs by Berry et al. (1999) which seeks to characterize the

talent of each player with respect to the average home run rate.

The fixed-effects version of the multinomial logistic-normal model has been previously

used to model counts of microbial taxa. Xia et al. (2013) focus on the problem of

variable selection, proposing to use the multinomial logistic-normal model to relate

covariates to bacterial composition. Because their main interest is in selecting the co-

variates (nutrients) that are associated with the composition, they propose a MCEM

group `1 penalized likelihood estimation method. They report simulation study re-

sults indicating their variable selection method and model outperforms multinomial

logistic and multinomial-Dirichlet models. Since the focus of the paper is on develop-

ing a variable selection technique for gut bacterial composition, there is no emphasis

placed on prediction.

Mixed-effect versions have been used to model arthropod assemblages as well as mi-

crobiome data. Grantham et al. (2017) propose a Bayesian mixed-effects model

called MIMIX (MIcrobiome MIXed model) for use in designed experiments where the

goal is variable selection of covariates and inference of treatment effects on microbial

taxa. A spike-and-slab prior is placed on the fixed effects, leading to the ability to

perform a posterior test of the effect of treatment. Due to the high dimensionality

of microbiome compositions, Bayesian factor analysis (Rowe, 2002) is used to lower

the dimensional representation of the fixed and random effects. The application in

the paper identified K = 2662 operational taxonomic units (OTUs, or the number of

categories). The Bayesian factor analysis step reduces the dimension K, something

that is not necessary in our situation.

The focus of MIMIX is on inference of treatment effects and not prediction. It was

also developed with experimental data from a Randomized Complete Block design

(Grantham et al., 2017). Random effects were introduced to model the dependence
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structure of the taxa within blocks. The paper states MIMIX is not suited for han-

dling data from longitudinal studies. However, one could consider the samples within

blocks as repeated measures, and the corresponding covariance structure as build-

ing equal correlation over time. Still, MIMIX relies on balanced experimental design

data and is focused on tests for treatment effects. Grantham et al. (2017) choose

the multinomial logistic-normal, as Xia et al. (2013) did, to allow for a more flexi-

ble dependence structure among microbial taxa. It is not immediately clear whether

MIMIX could be used in our application; whether MIMIX would allow for an unbal-

anced “design” where samples (seasons) of blocks (players) range from 2 to 27, and

whether prediction under the MIMIX framework is straightforward.

The MIMIX mixed-effects framework is based on an earlier paper by Billheimer et al.

(2001) where random effects are introduced to the multinomial logistic-normal model

for analyzing experimental data concerning arthropod assemblages. In that paper

the goal is to also estimate treatment effects in a designed experiment setting. The

inclusion of random effects accommodates overdispersion. As opposed to MIMIX,

Billheimer et al. (2001) specify the random effects covariance structure instead of

estimating it in the model framework, a simplification which speeds up computation

time. The overall covariance matrix describes spatial dependencies, and the fixed ran-

dom covariance structure allows for overdispersion, but does not model dependencies.

Billheimer et al. (2001) follows work from an earlier technical report (Billheimer and

Guttorp, 1995) in which a multinomial logistic-normal state-space model is described

for modeling the ecological condition of the Delaware Bay estuary. In the 1995 re-

port, a conditional autoregressive Markov random field prior distribution is specified

for the compositions, and the inclusion of covariate effects, within the context of their

model, is demonstrated. This model more directly accounts for spacial dependencies

in a multinomial logistic-normal setting.
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In addition to a different focus (estimating treatment effects), there is also a great

deal of difference in the nature of the data across these studies and our baseball data.

Microbiome data typically involve a very large K, upwards of 2,700 taxa (Grantham

et al., 2017), with many counts being null and the total count in the thousands. The

arthropod data described in Billheimer et al. (2001) concerned itself with only three

categories of arthropod, with observed counts ranging from a minimum of 7 to a max-

imum of 34. Baseball data are somewhere in between, with a relatively reasonable

limit on the dimension of the outcome vector (usually K ≤ 14) and count totals that

are often zero and almost never over 500.

Also, in microbiome analysis, variable selection of covariates and dimension reduction

of K are important facets of the methodology due to the immense number of covari-

ates, which often exceed the sample size of the data. In our application, there is a

reasonable number of covariates of interest. The arthropod study (Billheimer et al.,

2001) discusses interpretation of fixed effects, but does not discuss estimation nor

include them in the final model, though Billheimer’s technical report on invertebrate

compositions in Delaware Bay does (Billheimer and Guttorp, 1995).

None of these methodological papers concerning this hierarchical model have been

concerned with the prediction of future counts, in any context. There has also been

little done in developing measures for diagnostic tools for overall model fit. This

chapter proceeds with a description of our mixed-effects multinomial logistic-normal

hierarchical model, which accounts for the longitudinal nature of baseball performance

data and the inclusion of covariates. The estimation via a Bayesian framework and

subsequent development of predictions and model fit diagnostics follow.
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2.2 A Mixed Effects Multinomial Logistic-Normal Model

In Chapter 1, we used a simplified baseball outcomes example to argue that the

logistic-normal distribution is most appropriate for modeling the underlying proba-

bilities due to its ability to allow for positive and negative correlations among outcome

probabilities and to easily include covariates. The only other distribution that allowed

positive correlations was the nested Dirichlet but the nesting structure is difficult to

determine and the inclusion of covariates is not straightforward. We now propose the

inclusion of random effects to correlate a player’s outcome vectors over time. The

resulting mixed-effects multinomial logistic-normal distribution of counts for player-

seasons constitutes our model for analysis.

We begin our description of this model with some notational additions to the one in-

troduced in Section 1.4.3. We still assume each observed K-dimensional count vector,

for player i ∈ {1, ...,m} and season j ∈ {1, ..., ni}, follows a multinomial distribution,

with parameters PAij, the known number of plate appearances, and Πij, the unknown

probability vector.

What differentiates this model from the one described in Section 1.4 is how we model

the probability vector, Πij. In the fixed model, this probability vector follows the

logistic-normal distribution, meaning the log-odds, Yij, calculated by applying the

additive log-ratio transformation function, alr (Πij), follow a multivariate normal dis-

tribution:

Yij =

(
log

(
πij1
πijK

)
, ..., log

(
πij(K−1)

πijK

))
∼ NK−1 (Xijβ,Σ)

In the random effects version, we include a random effect vector ψi in the determina-

tion of Yij, specifically:

Yij ∼ NK−1 (Xijβ + ψi,Σ) (2.1)
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Thus our mixed-effects multinomial logistic-normal model can be expressed

Wij ∼MultiK (PAij,Πij)

where

Πij = alr−1(Yij)

and

Yij = Xijβ + ψi + εij

with

ψi ∼ NK−1 (0,Φ)

εij ∼ NK−1 (0,Σ)

The inclusion of the random effect allows us to account for a player’s above- or below-

average talent level over time, which has been done in a univariate setting for baseball

(Berry et al., 1999).

Considering all sets of latent log-odds vectors from player i,

Yi = [Yi1, Yi2, · · ·Yini ]
T

our model says they are multivariate normal:

Yi|Xij, β,Σ,Φ ∼ N(K−1)ni




~Xi1β

~Xi2β
...

~Xiniβ

 ,


Φ + Σ Φ . . . Φ

Φ Φ + Σ Φ
...

. . .
...

Φ Φ . . . Φ + Σ



 (2.2)

This description better describes the assumed covariance structure among a player’s

seasonal outcome probabilities.

By explicitly defining a random effects design matrix, Z, multiple random effects

could be included. Call q the number of random effects of interest and, for notational

simplicity, move to denoting K−1 as d, the dimensionality of the latent log-odds, we
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can then define a random effects vector of length dq for each player. The change in

dimensionality, and some of the notation, follows:

Yij = Xijβ + Zijψi + εij

vec(ψi) ∼ Ndq (0,Φ)

Thus, given q player-specific random covariates, the log-odds latent variables have

the multivariate normal distribution:

Yij|Xij, β, ψi,Σ ∼ Nd (Xijβ + Zijψi,Σ)

And, unconditionally:

vec(Yi)|Xij, β,Σ ∼ Ndni

(
vec(Xiβ), Q−1

i

)
Where Q−1

i = (Zi ⊗ Id) Φ (Zi ⊗ Id)T + (Ini ⊗ Σ).

2.2.1 Implied Correlation Structure in the Counts

One of the drawbacks of the multinomial logistic-normal model is the lack of direct

translation from the covariance matrix on the log-odds scale to the count scale. It is

possible, however, to estimate the implied correlation matrix on the simplex space,

which represents the counts for a baseline set of covariates (defined by the fixed in-

tercept), from the covariance matrix on the real space where the log-odds reside.

We can use simulation to estimate the correlation structure of the outcomes based on

the true covariance matrices; Corr(WΛ), for Λ ∈ {Σ,Φ}:

1. Simulate a large number of multivariate normal random variables:

Y Λ ∼ Nd(β0,Λ)
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2. Transform via inverse-additive-logistic-ratio transformation to probabilities:

ΠΛ =

(
ey

Λ
1

1 +
∑d

k=1 e
yΛ
k

,
ey

Λ
2

1 +
∑d

k=1 e
yΛ
k

, ...,
1

1 +
∑d

k=1 e
yΛ
k

)
3. Simulate counts from a multinomial distribution for exposure PA and each of

the simulated probabilities:

WΛ ∼Multid+1

(
PA,ΠΛ

)
4. Compute the sample correlation matrix using the resulting counts.

While each of Σ and Φ are informative in their own right, of greater interest is likely

the unconditional correlation structure implied for the 2(d+1) vector of counts within

and between two seasons for player i: (Wij,Wij′), which can be found using the same

process as above, with Λ = ((Id ⊗ Σ) + (1d ⊗ Φ)) (see Equation 2.2).

2.2.2 Bayesian Mixed-Effects Multinomial Logistic-Normal Model

We take a Bayesian inferential approach to the estimation of this model. Bayesian

inference is a very popular and natural estimation approach for multilevel (hierarchi-

cal) models (Lindley and Smith, 1972; Smith, 1973; Kass and Steffey, 1989; Gelman,

2006). In the Bayesian setting, we can also simplify calculations by treating the la-

tent logit values as additional unknowns. Finally, a Bayesian framework allows for

us to easily incorporate prediction uncertainty using the model and joint posterior

distribution of the parameters.

To establish our model in a Bayesian context, we choose priors for the parameters of

the model. For the fixed effects (covariate) matrix, we consider an improper uniform

prior:

p(β) ∝ 1
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For the two covariance matrices, we place noninformative inverse-Wishart priors, with

fixed hyperparameters:

Σ ∼ Wishart−1
(
ν1 = d,Λ1 = Id + 1d1

T
d

)

Φ ∼ Wishart−1
(
ν2 = d,Λ2 = Id + 1d1

T
d

)
2.3 Estimation via Metropolis within Gibbs Algorithm

Due to the intractability of the multinomial logistic-normal conditional posterior like-

lihood for the latent variables (see Section 1.4.3), a Metropolis or Metropolis-Hastings

algorithm in the Gibbs step is used for updating the log-odds. Multiple proposal

schemes for this algorithm are possible, and three options with their advantages and

drawbacks are discussed. We begin this section by describing the full posterior like-

lihood of the multinomial logistic-normal model and proceed by outlining the Gibbs

algorithm used for estimation.

2.3.1 Full Posterior Log-Likelihood

Due to the absence of a closed form, we incorporate a Gibbs algorithm to sample

from the conditional posterior log-likelihood. However, given parameter values, it

is at least relatively straightforward to calculate the full posterior likelihood of the

multinomial logistic-normal model, at least proportional to the product of the data

likelihood and the priors on the parameters.

f (Y,Ψ, β,Φ,Σ|W ) ∝ p (W |Y,Ψ, β,Φ,Σ)× f (Y,Ψ, β,Φ,Σ)

Multid+1 (W |Y )Nd(Y |β,Φ,Σ)Wishart−1
d (Φ,Σ)

By taking the log, this can be broken into a sum of distinct parts. At each iteration,

the parameter values may be used to evaluate the full posterior log-likelihood. The
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first part of the full posterior log-likelihood, the data likelihood, can be written in

terms of the data given the latent variables:

l (W |Y,Ψ, β,Φ,Σ) = log (p (W |Y )) =
m∑
i=1

ni∑
j=1

log

(
Cij

d+1∏
k=1

Π (yijk)

)

where Cij =
PAij !

wij1!...wij(d+1)!
is the multinomial coefficient and

Π(Yij) =

(
eyij1

1 +
∑d

k=1 e
yijk

,
eyij2

1 +
∑d

k=1 e
yijk

, ...,
1

1 +
∑d

k=1 e
yijk

)

The subsequent log-likelihoods for the different parameters can be broken up further:

l (Y,Ψ, β,Φ,Σ) = l(Y |X,Ψ, β,Σ) + l(Ψ|Φ) + l(β) + l(Φ) + l(Σ)

In the multinomial logistic-normal setting, we define the distribution on the log-

odds to be a multivariate normal distribution. The form of the other parameter

log-likelihoods will depend on the defined prior distributions of those parameters; in

our context, the normal prior on the random effects, the improper uniform prior on

the fixed effects, and the inverse-Wishart priors on the covariance matrices.

2.3.2 Outline of Gibbs Sampler

We first describe the framework for the Gibbs sampler, allowing for a single random

intercept, q = 1. When multiple random effects are included in the model (q > 1),

some of the expressions are slightly complicated. These expressions are presented

after the simpler single random intercept framework.

(1) Initialize starting values, t− 1 = 0, Y 0
ij , β

0, ψ0
i , Σ0 and Φ0.

(2) Update of Yij (Metropolis step):
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Y t
ij|Xij, β

t−1, ψt−1
i ,Σt−1,Wij ∝ p(Wij|Y t

ij)

× f(Y t
ij|Xij, θ

t−1
i = (βt−1, ψt−1

i ,Σt−1))

p(Wij|Y t
ij)× f(Y t

ij|Xij, θ
t−1
i ) ∼Multid+1(PAij,Π(Y t

ij))

×Nd(Xijβ
t−1 + ψt−1

i ,Σt−1)

where Y t
ij is proposed from a normal approximation to the beta distribution (see

Section 2.3.3).

(3) Joint Update of β, ψi (Gibbs step):

βt, ψti |Xi,Σ
t−1,Φt−1, Y t

i ∝ f(βt|Xi,Σ
t−1,Φt−1, Y t

i )

× f(ψti |βt, Xi,Σ
t−1,Φt−1, Y t

i )

(a) Posterior of β without conditioning on ψi:

vec(βt)|Xi,Σ
t−1,Φt−1, Y t

i ∼ Nd(p+1)(µβ = vec(A−1b),Σβ = A−1)

where:

A =
m∑
i=1

(
(XT

i Xi)⊗ (niΦ
t−1 + Σt−1)−1

)
(2.3)

b = A

(
m∑
i=1

XT
i Xi

)−1( m∑
i=1

XT
i Y

t
i

)
(2.4)
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(b) Conditional posterior of ψi:

vec(ψti)|βt, Xi,Σ
t−1,Φt−1, Y t

i ∼ Nd(ψ̃i, Ui)

where:

ψ̃i = Ui

(
Σ(t−1)−1 ⊗ 1ni

)
vec
(
Y t
i −Xiβ

t
)

(2.5)

Ui =
(

Φ(t−1)−1

+
(

Σ(t−1)−1 ⊗ 1ni1
T
ni

))−1

(2.6)

(4) Update of Φ (Gibbs step):

Φt|Ψt ∼ Wishart−1
(
ν ′2 = ν2 +m,Λ′2 = Λ−1

2 + ΨtΨtT
)

where:

Ψt = (ψt1, ..., ψ
t
m)T (2.7)

(5) Update of Σ (Gibbs step):

Σt|Ψt, Y t ∼ Wishart−1
(
ν ′1 = ν1 +N,Λ′1 = Λ−1

1 + ε̂ε̂T
)

where:

Y t = (Y t
1 , ..., Y

t
m)T (2.8)

ε̂i = Y t
i −Xiβ̂t − ψti (2.9)

β̂t = (Y t − ZΨt)XT (XXT )−1 (2.10)

(6) Set t = t+ 1, repeat steps (2) - (5) until convergence criteria met.

When multiple random effects are of interest, it is straightforward to define a random

covariate design matrix, Z, made up of vectors Zi for players i = 1, ...,m. Most
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of the above algorithm can be represented the same way with this simple inclusion.

However, one of the steps is complicated. The expression in step (3)(a), the posterior

of β without conditioning on ψi, is a little more complex. Equation (2.3) must be

rewritten as an expression where 1ni is replaced by Zi:

A =
m∑
i=1

(Xi ⊗ Id)T Qi (Xi ⊗ Id)) (2.11)

Q−1
i = (Zi ⊗ Id) Φ(t−1) (Zi ⊗ Id)T +

(
Ini ⊗ Σ(t−1)

)
(2.12)

Convergence and Computation Time

While the individual parameters themselves may not converge at the same rate as

the full posterior log-likelihood, monitoring the posterior log-likelihood can provide

a useful tool for assessing convergence. When small changes in the parameters no

longer have a large impact on the posterior likelihood, it is reasonable to say the al-

gorithm has converged. Many papers, which implement MCMC sampling algorithms,

use visual inspection of the time series of realized values to determine if convergence

has been reached. Gelman et al. (2004) provide some stricter strategies for assess-

ing convergence, including computing potential scale reduction factors and effective

sample sizes.

Currently, we graphically assess the convergence of the posterior log-likelihood (see

Section 2.3.1), afterward setting a predetermined fixed number of iterations for the

algorithm. This is a rather ad hoc approach, and not ideal. Still, generally we see

convergence for relatively large data sets (at least 4000 player-seasons/observations)

stabilize in convergence after a few thousand iterations, regardless of dimensionality

of the count vector. After discarding burn-in and thinning we generally achieve good

mixing. As an example, in one simulation study, we ran our model algorithm for 2500

iterations, discard the first 20% and thin every 2nd, leaving us with 1000 MCMC real-
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izations of each parameter. The effective sample sizes of the parameter chains ranged

between approximately 173 and 885. Gelman et al. (2004) give a default rule of

having at least 10 independent draws per sequence.

Computing resources will impact computation time, but Gibbs sampling is a generally

inefficient Monte Carlo sampling method, as is the Metropolis algorithm. We briefly

discuss a potential alternative to using Metropolis, Hamiltonian Monte Carlo, as a

future improvement in Chapter 4. A run of the code (which will be published in an

R package subsequent to publication of this thesis) of 10000 iterations in R version

3.1.2, on an Intel Core i7-3770 3.40GHz processor takes approximately 15 hours for

the m = 500, N = 4991, p = 13, q = 1, and d = 9. The same data set, with d = 2,

takes approximately 10 hours. Since our main purpose is to predict performance for

new players, it would be somewhat prohibitive to refit the algorithm each time we

wish to make a prediction about a new player. We will discuss how we circumvent

this in Section 2.4.

2.3.3 Metropolis Normal Approximation to Beta Proposal

Due to the properties of the multinomial logistic-normal distribution, the conditional

posterior likelihood of the latent variables, f
(
Y t
ij|Xij, Zij, β

t−1, ψt−1
i ,Σt−1,Wij

)
, has

no closed-form expression. This motivates the use of a Metropolis or Metropolis-

Hastings algorithm in the Gibbs step. In such algorithms, values of the target distri-

bution are proposed from a different distribution, and a Metropolis acceptance ratio

is calculated based on the ratio of likelihoods (or difference in log-likelihoods). There

are numerous potential proposal distributions which could be used in step (2) of the

Gibbs Sampler described in the previous subsection. Here we describe our Metropo-

lis proposal distribution of choice, while alternatives are described in more detail in

Appendix B.
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Described in Appendix B.1, our initial choice for proposal distribution was a normal

random walk scheme where new values of the log-odds Yij were proposed from a

multivariate Gaussian centered at the previous value, with a proposal covariance

equal to a scaled version of Σ. This proposal scheme tended to produce poor mixing

of Yij. Instead we consider proposing based on probabilities the latent variables

imply. For the purposes of proposing, we begin by considering the counts Wij as

being generated through a series of conditionally binomial draws:

wijk| {wijl}l /∈{k,d+1} ∼ binomial

PAij − ∑
l /∈{k,d+1}

wijl, π
∗
ijk =

πijk
πijk + πij(d+1)


In Appendix B.2, we discuss a Metropolis-Hastings scheme for proposing new prob-

abilities π∗ijk from a beta proposal distribution, based on the current values of the

parameters, and then converting to log-odds. In essence, we assume a priori that π∗ijk

follows a beta distribution based on the current values of the parameters:

π∗ijk =
eyijk

1 + eyijk
∼ beta

(
α∗ijk, β

∗
ijk

)
(2.13)

with α∗
t−1

ijk = 1+e
µt−1
ijk

σ2t−1
k

+ e
µt−1
ijk

1+e
µt−1
ijk

, β∗
t−1

ijk = α∗
t−1

ijk e
−µt−1

ijk , µt−1
ijk = Xijβ

t−1
k + ψt−1

ik , and σ2t−1

k

is the (k, k)th element of Σt−1.

And thus given the data and current values of the parameters:

π∗
t

ijk|Wij, θ
t−1
ik ∼ beta

(
wijk + α∗

t−1

ijk , wij(d+1) + β∗
t−1

ijk

)
This Metropolis-Hastings beta proposal mixed much better than the normal random

walk proposal, but took more computation time. The proposal we settled on moves

back to a symmetric, Metropolis, proposal setting by proposing the logit of the beta

distributed probabilities (Equation 2.13) with a normal distribution.

In essence, since we know ytijk = logit(π∗
t

ijk), and, since π∗
t

ijk is beta distributed, then:
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E
[
logit(π∗

t

ijk)
]

= ψ0

(
wijk + α∗

t−1

ijk

)
− ψ0

(
wij(d+1) + β∗

t−1

ijk

)
(2.14)

var
[
logit(π∗

t

ijk)
]

= ψ1

(
wijk + α∗

t−1

ijk

)
+ ψ1

(
wij(d+1) + β∗

t−1

ijk

)
(2.15)

where ψ0(·) is the digamma function and ψ1(·) is the trigamma function.

We can then construct a proposal distribution such that:

(1) Propose Y t
ij|µt−1

π∗ ,Σ
t−1
π∗ ∼ Nd

(
µt−1
π∗ , cΣ

t−1
π∗

)
where µt−1

π∗ =
(
E
[
logit(π∗

t

ij1)
]
, ..., E

[
logit(π∗

t

ijd)
])

, σ2t−1

π∗k = var
[
logit(π∗

t

ijk)
]

is

the (k, k)th element of the diagonal matrix Σt−1
π∗ , c is a scalar used to control the

“step-size” of the random walk, and α∗
t−1

ijk and β∗
t−1

ijk are defined as previously.

(2) Accept with probability α = min

{
1,

f(Y tij |Xij ,θ
t−1
i ,Wij)

f(Y t−1
ij |Xij ,θt−1

i ,Wij)
× q(πt−1

ij |Xij ,θ
t−1
i ,Wij)

q(πtij |Xij ,θ
t−1
i ,Wij)

}
Where q

(
Y t
ij|Xij, θ

t−1
i ,Wij

)
∼ Nd

(
µt−1
π∗ , cΣ

t−1
π∗

)
.

2.4 Prediction of a New Player

Suppose an NPB team is in need of a catcher and is considering Kevin Plawecki,

former Purdue catcher and current catcher with the Cleveland Indians. Because he

has only played in the major leagues, he is not in our data set meaning we do not

have information regarding his ability (ψi) and therefore cannot make an accurate

prediction of his performance if he were to transition to NPB. This section discusses

how we approach this given that we have already generated samples from the joint

posterior distribution of β, Σ, and Φ. In this situation, we have a new individual,

i′ who is not present in the original data, and thus whose past latent variables and

subsequent random effect are unknown; Yi′1, ..., Yi′j′ , ψi′ . We could add his output

vectors to our data set are rerun our Metropolis-within-Gibbs sampler, but that is

going to take time.
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A faster alternative is to rerun the Metropolis-within-Gibbs sampler holding the β, Σ,

and Φ quantities fixed at their posterior means. In other words, using our algorithm

to only fit the latent variables and random effect for player i
′
. By using our algorithm,

we obtain a set of posterior values ψti′ for this new player and can use the posterior

mean for our prediction. This is a useful approach when we want to quickly generate

predictions for new players. A comparison of this approach with the posterior mean

of Ψi′ based on refitting the model with this player’s historical data revealed little

difference (for an illustration, see Figure 3.7 in the next Chapter). Thus, one might

consider updating the model annually and using this approach to make predictions

for players of interest during the year.

2.5 Methods for Assessing Model Fit and Prediction Uncertainty

Model diagnostics for Bayesian hierarchical models is an open research area (Crespi

and Boscardin, 2009; Yuan and Johnson, 2012). The most common form of model

checking is the use of posterior predictive distributions (Gelman et al., 2004; Gelman

and Hill, 2006). Graphical model fit assessments are also practical and useful.

In this section, we discuss a method for assessing overall model fit using squared

Mahalanobis distances of the log-transformed seasonal proportion vectors. We also

discuss model selection via the use of the deviance information criterion (DIC) (Gel-

man et al., 2004). Finally, we discuss methods for assessing predictive accuracy and

outline processes of quantifying uncertainty, in the form of prediction or credible

intervals, for our multinomial logistic-normal model.

2.5.1 Overall Model Fit

A convenient way to approach model fit diagnostics is to define a form of residual and

assess if it behaves as it should under the model being fit. For response data, which

exist on the simplex, Sd+1, many traditional distance measures can be misleading
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(Aitchison, 1986). Aitchison (1986) pioneered many of the techniques for measur-

ing distances on the simplex, including Aitchison’s distance (see Appendix C). These

measures generally involve a transformation of the composition or count vector via

some log-ratio, but are expressly designed to compare two points.

In our Bayesian framework, we are interested the joint behavior of the data relative

to the multinomial logistic-normal model. Because each count vector has a different

posterior predictive distribution, we are interested in whether the data jointly seem

to fit these distributions. In the univariate normal error case, this is accomplished

by computing the residuals, or deviation from the estimated mean, and comparing

their distribution to the normal distribution. For our case, we propose computing the

squared Mahalanobis distances (Mahalanobis, 1936) of the transformed counts into

log-odds and comparing their distribution to what is expected under our model.

We consider the Mahalanobis distance because it takes into account the covariance

structure among the counts, or transformed log-odds. The general form for the

squared Mahalanobis distance of a vector Y is:

MD2 = ((Y −M)TC(Y −M)) (2.16)

where M is the true or estimated location (mean) vector and C is the true or esti-

mated covariance matrix.

If our model implied the transformed count data were multivariate normal, we would

compare these squared distances to a chi-square distribution (Filzmoser et al., 2005).

For large N , this is approximately true under our model but it would be risky to

make that assumption here. Instead, we propose using simulation to form the empir-

ical distribution of squared Mahalanobis distances for each data vector and use those

distributions to assess if the data behave as expected.
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In the context of our framework, suppose we have fit the model and have parameter

estimates. For player i season j, we then generate L new count vectors W 1
ij, ...,W

L
ij ,

under the fitted model and transform them to the log-odds scale:

Ỹ l
ij =

(
log

(
wlij1

wlij(d+1)

)
, ..., log

(
wlijd

wlij(d+1)

))
, l = 1, 2, . . . , L (2.17)

Methods described in the following subsection can be used if there is the possibility

of zero counts.

Our goal is to determine how well the data are fitting the model so we calculate

the squared Mahalanobis distances of all model-generated log-odds,
{
Ỹij

}
, and our

observed log-odds, Y obs
ij , using:

MD2
ij =

((
Yij − ¯̃Yij

)T
Σ̂−1

Ỹij

(
(Yij − ¯̃Yij

))
(2.18)

where Yij is either Y obs
ij or Ỹij,

¯̃Yij is the sample mean of model-generated log-odds

and Σ̂Ỹij
is their sample covariance.

Using the model-generated MD2 values, we generate the empirical cumulative distri-

bution function, F , and compute the percentile of the observed squared Mahalanobis

distance, after correcting for the discreteness of the multinomial counts and the fact

that our empirical distribution is based on L values. If the data fit the model, we

would then expect these percentiles to be distributed uniformly.

Because the response vector are counts, the distribution of squared Mahalanobis

distances is discrete in nature. To consider the percentiles as uniform, some form of

continuity adjustment is needed. One option, explained in Dunn and Smyth (1996),

is to use randomization to smooth away the discreteness; we can randomly generate a

uniform random variable for the percentiles of the observed MD2
ij where the minimum

and maximum depend on the observed value’s ordered location among the model-

based M̃D
2

ij:
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(1) If the observed MD2
ij ≤ min

(
M̃D

2

ij

)
uij ∼ Unif

(
0,F

(
min

(
M̃D

2

ij

)))
(2) If the observed MD2

ij > max
(
M̃D

2

ij

)
uij ∼ Unif

(
F
(
max

(
M̃D

2

ij

))
, 1
)

(3) Otherwise,

uij ∼ Unif
(
F
(
MD2∗

ij

)
,F
(
observed MD2

ij

))
where MD2∗

ij = max
(
M̃D

2

ij < observed MD2
ij

)
Dunn and Smyth (1996) also propose back-transforming these percentiles to standard

normal values to serve as our residuals, rij. Normal quantile plots and residual plots

can the be used to assess fit.

This process can be seen as generating a form of Dunn-Smyth residual (Dunn and

Smyth, 1996). A R package, DHARMa (Hartig, 2019), has been published which ex-

tends this idea to creating residuals for results from fitted generalized linear mixed

models in a univariate context. Our multivariate extension, using the squared Maha-

lanobis distance, is straightforward to implement and provides a way to assess model

fit under our model; thus creating “conditional” residuals. It is also possible to gener-

ate the L new count vectors from the marginal distribution of Ỹij, though these would

not take into account the random effect’s impact on the mean. This Dunn-Smyth

type residual could also be used to assess prediction of a marginal count, if only one

outcome is of interest.

When calculating the residuals based off of new players i′ and new seasons j′, held

out of the initial run, we can view the squared Mahalanobis distances as a form of

residual where the independence assumption is more fully realized than when looking

at the residuals of the player-seasons used to fit the model.
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One drawback with this method is obvious; the data are necessarily finite, and there

will certainly be the occasional zero count. In the presence of a single zero count within

a vector of posterior predicted counts, there is no way to compute the associated log-

odds without somehow adjusting said count vector. Given enough player-seasons

with large exposure, we expect the impact these zero counts have to be somewhat

diminished.

Handling Zero Counts

In some cases, posterior predictive draws will return zero counts for some outcomes

or the observed player-season outcome vector will have zero counts. There are several

corrections which are well established in the literature for handling zero counts logistic

regression settings. One simple correction is to add a small error term, ε, to each zero

count, which does not dramatically effect the observed probability, and in re-scaling

when calculating the log-odds, allows for non-infinite values. For a count vector W ,

simply replace all zero counts with ε:

W ε = W [wk = 0→ wk = ε] (2.19)

The above approach however introduces the same bias for vectors with zero counts

regardless of the overall exposure, and some tuning to determine the optimal ε is

almost certainly needed. The correction we use instead is based on one proposed

by Smithson and Verkuilen (2006). It is possible to compress the data symmetrically

around 1
K

, penalizing vectors with less information. In other words, for a count vector

W of length K, with exposure N and in the presence of zero counts:

W comp =
W (N − 1) + 1

K

N
(2.20)

This is the same correction we can perform for the player-seasons before applying

the multinomial logistic-normal methodology in estimating the initial values of the

log-odds from the data. The benefits of this approach over the first approach are
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twofold. Firstly it does not require any tuning. Secondly, by penalizing vectors with

lower exposure, it limits the impact those vectors may have on the estimation of

parameters, allowing those vectors with more information to be the driving force in

model estimation. Obviously, with an abundance of zeros, a different strategy for

handling excessive sparsity would be necessary.

2.5.2 Comparing Models via DIC

Information criterion have played a large role historically in the comparison of model

fit. The most commonly used model selection criteria are the Akaike information

criterion (AIC) and the Bayesian (also called Schwarz) information criterion (BIC).

BIC, as described in Gelman et al. (2004) has a slightly different goal than AIC.

While AIC is an estimation of predictive fit, BIC is meant to approximate the

marginal probability density of the data. Since we are interested in predictive fit, an

AIC like criterion would be more appropriate.

Gelman et al. (2004) describes alternatives to AIC that can be calculated based

on posterior samples of the parameters. Deviance information criterion (DIC) is a

somewhat Bayesian version of AIC, while the Watanabe-Akaike information criterion

(WAIC) is more fully Bayesian. Gelman et al. prefer WAIC to DIC based on it not

conditioning on a point estimate. However, WAIC requires partitioning the data,

which becomes extremely non-trivial in longitudinal data settings such as ours. For

this reason, we focus on using the DIC as our measure of comparative model fit.

DIC, like AIC, is calculated from estimating the log posterior density as well as the

effective number of parameters, which serves as a penalty for over-fitting the data.

Essentially, any models which have produced posterior chains of the parameters for the

same data set may be compared using DIC, with the smaller model DIC indicating

a more appropriate model fit.
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The calculation of DIC begins with estimating the number of effective parameters,

pDIC , based on posterior samples t = 1, ..., l:

pDIC = 2

(
l
(
W |θ̂

)
− 1

l

l∑
t=1

l
(
W |θt

))
(2.21)

where W is the data, θ is the vector of parameters for which we have posterior sam-

ples, and θ̂ is the vector of posterior means of said parameters, θ̂ = 1
l

∑l
t=1 θ

t.

The DIC is then defined in terms of the deviance, similarly to AIC:

DIC = −2l
(
W |θ̂

)
+ 2pDIC (2.22)

Direct comparison of model fit to data sets follows immediately. We will use DIC in

Section 3.3 to compare data simulated under the multinomial logit and multinomial

logistic-normal settings. This will establish how DIC can help show the importance

of allowing for the additional variability the multinomial logistic-normal has over the

multinomial logit.

2.5.3 Predictive Accuracy and Uncertainty

In the previous two sections, we describe a process for assessing overall model fit via

Dunn-Smyth type residuals based on squared Mahalanobis distances, and the De-

viance information criterion for discriminating between models. As mentioned in the

previous section DIC, an AIC like criterion, is an estimation of overall predictive

fit, though is only useful in a comparative setting. The Dunn-Smyth residual plots

may assess if predictions are reasonable under the model fit. Neither are used for

assessing the accuracy of predictions. We discuss two measures traditionally used in

assessing predictive accuracy of compositional data in Appendix C, but neither of

these measures provide measures of uncertainty about a single prediction.
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In baseball projection systems specifically, there has already been some work done

online in terms of comparing existing projection systems. Starting in 2015, Will Lar-

son collected numerous projection results from different systems across the web at

The Baseball Projection Project (Larson, 2015b) and reviewed their performance on

the website Fangraphs (Larson, 2015a). In these reviews, Larson tested important

outcomes from each projection system received for error and predictive power via

root mean square error (RMSE) and R2. This is a fairly näıve approach that would

nonetheless be straightforward to use in comparing this model to existing projection

systems. Additionally, many comparisons of projections focus on comparing sum-

mary level statistics, especially on-base plus slugging percentage, or OPS (Smith,

2006; Tango et al., 2007) via metrics such as RMSE. Since it is straightforward

to calculate OPS from the posterior predictive means of our model fit, it would be

possible to compare this model to existing projection systems in this way.

However, none of the existing projection systems provide a useful level of uncertainty

quantification about individual projections of player-seasons. While direct compari-

son of our posterior predictive means to other projection results is possible, it is not

possible to adequately factor in the variability about the projection for competing

systems. We believe it to be extremely valuable to provide prediction or credible

intervals about the entire vector of predicted counts for individual player-seasons,

especially in terms of assessing the relative risks involved in a team’s management

choosing between players, depending on the team’s needs.

The following subsection discusses building of prediction and credible intervals based

on samples from the posterior predictive distribution generated from fitting the model.

Since the intervals are based on samples from a distribution, they can be built not

only for individual outcomes, but for summary level statistics as well, which are often

the baseball fan’s preferred method of immediately assessing a player’s worth.
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Uncertainty Quantification

There has been little work done in quantifying the uncertainty of predictions in base-

ball. What work has been done has been of the singular metric variety, providing a

single measure for the certainty of a projection. Part of this dearth of uncertainty

quantification comes from the simple truth that many intervals in a prediction setting

are not quite useful in baseball terms. Simultaneous intervals for multinomial count

vectors are often too wide as to be useful. However, when comparison between the

uncertainty of players is of interest, even intervals that would be useless on their own

provide some value.

Given the choice between similar players, i.e. players of similar age and position

and with similar point predictions, it is reasonable to assume a team would prefer

the player accompanied by less uncertainty about that point prediction. For our

purposes, it is straightforward to provide that quantification based on the posterior

predictive distributions of the player-seasons being predicted.

Point estimates are estimated in a straightforward manner as the mean of the MCMC

samples, t = 1, ..., l, of counts from the posterior predictive distribution, W 1
i′j′ , ...,W

l
i′j′ .

There can similarly be a point estimate for the underlying probability vector for the

posterior predictive distribution by taking the mean of the MCMC samples of the

probabilities defined by the log-odds, Y 1
i′j′ , ..., Y

l
i′j′ . Based on this mean posterior

predictive probability, a 95% prediction interval for the new player-season can be

constructed of the convex hull of the 95% most likely posterior predictive samples

under a multinomial distribution with probability vector equal to the mean posterior

predictive probability. While the resulting intervals will sometimes be too wide to be

very informative when direct comparison of two players is desirable, they are adequate

for assessing predictive accuracy on a single player-season basis. The issue of confi-

dence intervals in multinomial settings being overly conservative has been discussed
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before (Sison and Glaz, 1995), and the hierarchical structure of our model only adds

additional variability.

An alternative to the prediction interval created from the posterior predictive distri-

bution of counts would be a credible interval for the mean prediction, formed on the

based on samples from the posterior distribution of the random effects, ψ1
i′ , ..., ψ

l
i′ .

This, in essence, ignores seasonal variability and asks what the interval about a

player’s expected performance would be. A 95% credible interval for a new player-

season is constructed via selecting the 95% most likely (t∗ = 1, ..., l∗) random effects

for a new player under the posterior distribution of random effects ψt
∗

i′ , calculating

the expected log-odds for the new player-season Xi′j′β
t∗ +ψt

∗

i′ , and finally transform-

ing those into probabilities. Multiplying by the exposure represents an interval for

the vector of expected counts of a new player-season. These credible intervals are

narrower, and more useful for assessing risk between players. However, by ignoring

the seasonal variability that is present for each vector of counts, we cannot expect

the intervals to cover the observed counts 95% of the time.

The same process may also be used to create 95% credible intervals for singular

metrics, which might be of interest as a summary of player ability. One may take

the same set of 95% most likely posterior samples of random effects which produced

the credible intervals of all the categories and calculate the singular metric, be it

batting average (AVG), on-base plus slugging percentage (OPS), or other metrics

which may be calculated from the original vector of counts. This results in what can

be considered samples from a posterior predictive distribution of the metric, from

which a credible interval can be constructed.
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2.6 Discussion

In this chapter we introduced a mixed-effects Bayesian hierarchical multinomial logistic-

normal model for baseball performance data. We discussed methodological choices

in what features to include in the model, and pointed to adjustments which could be

made. Subsequently we described a Metropolis-within-Gibbs algorithm for sampling

from the conditional posterior distributions of our latent variables and parameters

which tends to converge within a few thousand iterations. We discussed the process

of forming predictions and assessing uncertainty about those predictions via predic-

tion or credible intervals constructed from posterior samples. We also spent some time

developing methods for assessing overall model fit and model diagnostic procedures,

including introducing a Dunn-Smyth type residual which conditions on the model fit

using squared Mahalanobis distances for transformed multivariate count response.

The ensuing chapter begins by providing context for the importance of our applica-

tion, followed by discussion of the data we have to work with. It continues with the

application of the model described in this chapter first in a simulation study, and then

to a real data set of all baseball players to have played in both Japan’s NPB and MLB

leagues up to and including the year 2014. In the simulation study, we show that in

the presence of sufficient additional uncertainty about probabilities, the mixed effects

multinomial logistic-normal model is preferred to the mixed effects multinomial logit,

and illustrate how predictions and uncertainty assessment proceeds. We follow with

the real data analysis and discuss the model fit of the real data and its predictive

performance.
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3. PREDICTING PERFORMANCE OF PLAYERS MOVING

BETWEEN NPB AND MLB

3.1 Introduction

Masanori Murakami was the first Japanese player to play in Major League Baseball.

His NPB team, the Nankai Hawks, sent him to the San Francisco Giants as a minor

league exchange player in 1964. Murakami was promoted to the Major Leagues that

year, and pitched for two seasons in MLB before returning to his NPB club.

Murakami, however, was not the first player to have played in both leagues. Over

a decade earlier, in 1953, MLB pitchers Leo Kiely and Phil Paine played in games

for the Mainichi Orions and Nishitetsu Lions, respectively, while completing their

military service in Japan. Both pitchers would return to the United States in 1954

after their military service ended. The year 1953 also saw the first position player

move from the United States to Japan. Larry Raines left the Negro Leagues to play

two seasons for the Hankyu Braves. In 1954, he became the first American player to

win a batting title in Japan. When Raines eventually played in the Major Leagues,

he made his debut with the Cleveland Indians in 1957, seven years before Murakami

joined the Giants.

The purpose of relating this history is to establish that players have been moving

between NPB and MLB for over sixty years. While most of the transitions across the

Pacific Ocean are MLB players moving to NPB, some of the most dynamic Japanese

players have also moved, including all-stars and at least one player, in Ichiro Suzuki,

who is all but certain to be inducted into MLB’s Hall of Fame.
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In both directions, money is a huge factor. NPB teams operate on modest budgets

compared to their MLB counterparts, and are only allowed an allotment of four for-

eign players on their active roster. In 2014, Andruw Jones $3.8 million contract made

up 14% of the Rakuten Golden Eagles’ entire payroll. For Japanese teams, recruiting

foreign players who fit their roster, are interested in playing in Japan, and can provide

appropriate value for their contract, is vital for success.

Meanwhile, Japanese players have three main avenues for coming to play in the United

States. The first is possible when they are young. Before entering the NPB draft, they

may sign as an amateur free agent with MLB teams. In doing so, the player is forced

to sit out two to three years before being able to return to play for an NPB club. One

notable player, Junichi Tazawa, took this route and remains in MLB today. The sec-

ond avenue is by accruing enough service time in NPB, nine years, to be considered a

free agent. While several successful players, such as Hideki Matsui, have come to MLB

in this way, they are often older and in less demand. The final avenue is via a posting

system, negotiated between NPB and MLB, where players who have yet to accrue the

nine years of service time are posted by their NPB teams. MLB teams pay a release

fee to the NPB team following negotiations with the player. While the exact nature

of the fee has changed over the years, this release fee has exceeded $50 million, as was

the case in 2006 when the Boston Red Sox paid to negotiate with Daisuke Matsuzaka.

In Chapter 1, the current state of publicly available baseball projections was discussed.

Many of the available projection systems provide estimates of seasonal counts for

players coming to MLB from NPB, but we are not aware of any that do the same going

from MLB to NPB. Furthermore, of all the available projections for MLB players,

only a few provide an estimate of uncertainty. Most are proprietary and the process

by which the uncertainty is quantified is unknonw. For the Marcels’ reliability score,

which is open source, Japanese players always have a score of 0 and are predicted at

the league average for their age.
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In this chapter, we use simulation studies to demonstrate our model’s ability to pre-

dict player counts and to construct informative credible intervals about the player’s

expected performance for years when the player switched leagues. We then apply

our mixed-effects Bayesian hierarchical multinomial logistic-normal model to predict

performance of players moving between the NPB and MLB leagues. We begin with

a description of the data used, then follow with results, including assessing model fit,

model comparison, and predictive performance with uncertainty quantification. We

end the chapter with a discussion of the model’s performance and use in this context.

3.2 Data Description

The data used in this project come from two main sources. Nippon Professional

Baseball player-season data were provided by Data Stadium, Inc., S-GATE Akasaka,

6-2-4, Akasaka, Minato-ku, Tokyo 107-0052. Major League Baseball player-season

data for relevant players, as well as their corresponding covariates, were taken from

the Lahman database available in R (Friendly, 2015). Some data augmentation was

necessary to collate the two data sources; from small matters such as converting weight

in pounds to weight in kilograms, to slightly more involved tasks such as identifying

discrepancies in recorded birth dates. Some artifacts of the different data sources,

such as slight differences in height and weight for the same players, still remain. We

also consider players switching between leagues in the middle of a season as two sea-

sons of data.

The data consist of all players who have played in both NPB and MLB before 2015.

For the batting data, this includes 605 players with 4991 player-seasons. While it is

possible to fit a pitching outcome model using our hierarchical approach (i.e., replace

at bats with batters faced), we focus only on modeling hitter outcomes here (so this

includes pitchers as batters).
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There is substantial variability in the length of careers for the 605 players, as well

as the amount of time spent in each league, and the number of plate appearances

in each season. All told, there were an average of 8.25 seasons per player, with an

average of 5.62 MLB seasons per player and 2.63 NPB seasons per player, with 225.3

plate appearances per season. Players moving from MLB to NPB averaged 5.82 years

before switching and 2.42 years after switching, while players moving from NPB to

MLB averaged 7.36 years before the switch and 3.40 years after the switch.

Tables 3.1 and 3.2 give nine rows of the collated batting data set to give a more

concrete taste of what the data look like. While Phil Paine was a pitcher and teams

would not be particularly interested in his bat, Paine and Larry Raines serve as an

illustration of the problem of interest. Paine moved from the National League to

Pacific League in 1953, Raines from the Pacific League to American League in 1957.

At the time, neither the Nishitetsu Lions nor the Cleveland Indians could know exactly

what performance to expect from the players, respectively. After sixty years, and an

average of 10 players switching leagues per year, there should be enough information

to better answer the question of player performance in another league.

3.2.1 Practical Considerations

Real data analysis is not conducted without making some assumptions or dealing with

some limitations. Among the covariates available in the data set, those chosen were

based on what might most help explain variability in performance. Height, weight,

age, and batting handedness all could reasonably impact the performance of certain

types of players; heavier players, for example, will be less likely to be slap hitters

looking to take advantage of their speed. A quadratic age term was included; there

have been studies that suggest the career trajectories of players’ performance are

quadratic in nature (Albert, 2002; Fair, 2008), though occasionally a more complex

aging effect is modeled, such as Berry et al. (1999) use of random spline curves.
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Table 3.1.
Covariate values over the careers of two of the first players to switch
leagues between NPB and MLB, representative of the real data set

name height (cm) weight (kg) bats year age league position

Phil Paine 188 81 R 1951 21 MLB-NL P

Phil Paine 185 81 R 1953 23 NPB-PL P

Phil Paine 188 81 R 1955 25 MLB-NL P

Phil Paine 188 81 R 1958 28 MLB-NL P

Larry Raines 179 75 R 1953 23 NPB-PL IF

Larry Raines 179 75 R 1954 24 NPB-PL IF

Larry Raines 178 74 R 1957 27 MLB-AL 3B

Larry Raines 178 74 R 1958 28 MLB-AL 2B

Larry Raines 179 75 R 1962 32 NPB-PL IF

Table 3.2.
Outcome counts over the careers of two of the first players to switch
leagues between NPB and MLB, representative of the real data set

name 1B 2B 3B HR SH SF BB HBP SO OIP

Phil Paine 0 0 0 0 0 0 0 0 1 3

Phil Paine 5 1 0 1 0 0 2 0 9 8

Phil Paine 1 0 0 0 0 0 0 0 0 2

Phil Paine 2 0 0 0 1 0 0 0 1 4

Larry Raines 99 21 16 8 3 0 41 2 53 306

Larry Raines 120 38 8 18 7 4 25 6 60 302

Larry Raines 48 14 0 2 2 0 19 1 40 140

Larry Raines 0 0 0 0 0 0 0 0 5 4

Larry Raines 43 6 1 5 6 2 18 0 46 117
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Including league as a fixed effect makes sense in that these are the only leagues we

are interested in players moving between (no leagues unaccounted for) and we expect

league to not be independent of age; players moving to NPB from MLB tend to be

older than the reverse, as indicated by the average age of 30.97 years for NPB player-

seasons and 27.89 years for MLB player-seasons in the data set. Finally, although

we did not include it in the simulation studies, we would expect that position could

explain some variability, especially given a typical batting line for a pitcher.

Choosing the granularity of the count vectors depends on the nature of the data

collected and the goals of the research. We think that our ten main outcomes are those

which on the whole give enough information to describe a player’s performance, while

being sufficient for calculating summary statistics, such as batting average or OPS.

They are, however, different than what others have used. Null (2009), for instance,

considers hit location (Ground Ball, Fly Ball) and the rare catcher’s interference event

in his outcome list, but not the more common sacrifice.

3.3 Simulation Results

Before applying the methodology to the real data problem, it is important to estab-

lish the performance of the method via simulation (i.e., proof of concept). In this

section, we summarize the results of our model fit to data simulated data under the

multinomial logistic-normal (MLN) model with known parameter settings, as well

as under the multinomial logit (M-Logit) model. In doing so, we describe how well

our approach recovers the various parameters, performs in terms of prediction, and

indicates good or poor model fit to the data. We conducted several simulation stud-

ies involving different parameter settings and different values of K, but only report

results from one involving the most basic three-category vector.
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3.3.1 Three-Category Simulation Model

As we did in our earlier example to justify the use of the logistic-normal distri-

bution (see Section 1.5), we consider a simulation study with K = 3 outcomes

where two of the three outcomes having a positive correlation. Our choice here is

(HR,BB,OTHER), which is slightly different from the one used earlier:

(HR,SO,OTHER).

To ensure the simulated data are as similar as possible in form to the real data, we use

the player covariates and season at bats from the real data set and base the parameter

settings on a trial run of our algorithm fit to the real data. Covariates included are:

height, weight, age, age2, handedness, and league. For model fit assessment, we also

simulate data using the multinomial logit model (see Appendix A). By fitting both

of these models to data sets generated under each model, we can compare model fits

and assess the robustness of each model to varying conditions.

The process of simulation for the MLN and multinomial logit models unfold like so:

• Set global parameters, Φ,Σ, β. Note that Σ is only used for the MLN model.

• For each player i, simulate a random effect vector; ψi ∼ N2(0,Φ).

• For each season, j = 1, ..., ni, use the player-season covariates to compute the

log-odds vector Yij = Xijβ+ψi. If generating data for the MLN model, simulate

an error vector; εij ∼ N2(0,Σ), and add this to the log-odds vector.

• Convert the resulting log-odds into probabilities Πij

• Simulate dataWij from a multinomial distribution given plate appearances PAij

and probability vector Πij.

The two data archetypes are easily delineated by how the Πij are modeled. The

multinomial logistic-normal model allows for variability in Πij based on the inclusion
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of error terms, while the multinomial logit model assumes these logits are constant.

The corresponding models in terms of the probability vector for player i, season j

are:

• Mixed effects multinomial logistic-normal:

Πij =

(
eyij1

1 + eyij1 + eyij2
,

eyij2

1 + eyij1 + eyij2
,

1

1 + eyij1 + eyij2

)

Yij = Xijβ + ψi + εij

• Mixed effects multinomial logit:

Πij =

(
eyij1

1 + eyij1 + eyij2
,

eyij2

1 + eyij1 + eyij2
,

1

1 + eyij1 + eyij2

)

Yij = Xijβ + ψi

Under the same parameter settings of β and Φ, the data archetypes have the same

mean probability vector for each player-season. The only difference is whether the

Πij are random or not.

Under each data archetype, we use the real data design matrix to simulate 605 players

and 4991 player-seasons. Due to the relative abundance of data, we fit our mixed ef-

fects multinomial logistic-normal model to 500 of the players, leaving out 105 players

and corresponding careers for a validation approach to assessing model fit and pre-

diction. While we have simulated data for every year of their career, for the 105 out

of sample players, only their career up until switching leagues from NPB to MLB or

vice versa is used to generate posterior chains of random effects, since this will mimic

the data we would like to predict in practice. The goal is then to generate posterior

predictive distributions of the 105 player-seasons representing the player’s switch in

leagues. These seasons will be predicted using the multinomial logistic-normal model



76

for both of the data archetypes, while the in-sample 500 player careers will be used

for fitting the same MLN model. For the multinomial logistic-normal data, we will

examine the MCMC posterior chains for the parameters to assess the performance

in terms of parameter recovery, as well as construct prediction and credible intervals

for a selected pair of players. Results for a single data set of each type fit under each

model are presented, and were indicative of results across several simulation studies.

Parameter Settings

Parameter settings were determined by a short trial run of the real data with the

Metropolis-within-Gibbs algorithm used to fit the mixed effects multinomial logistic-

normal model. Values of the parameters are below, but initially it is helpful to use

an example to gain intuition on how to interpret the fixed parameters.

Counts are simulated based on six covariates: height, weight, age, age2, handedness,

league, and the single player random effect. The fixed intercept, β0, is chosen so a

baseline player represents a player with average height, weight, age, is right handed

and in the American League of MLB. In essence, the continuous predictors are scaled,

while a baseline category is chosen for the categorical predictors. A change of 1 unit

of the continuous covariates thus represents the change in log-odds for a player a

standard deviation from the mean of those predictors. The indicator variables repre-

senting the categorical predictors can be seen as the shift in log-odds for a baseline

player when moving between handedness or league.

The player random effect can be interpreted as the individual player’s ability above

or below the average player with their covariates. While it is not unilaterally true, a

good rule of thumb for interpreting the random effects is if the player has a positive

random effect, they are above average in the category corresponding to the numerator

of the log-odds.
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For example, consider the fixed intercept, β0 = (−3.6269,−2.1937). Since this is on

the log-odds scale, it is often convenient to know what this baseline player’s outcome

composition looks like on the probability scale;

β0 = (−3.6269,−2.1937) =⇒ (HR0, BB0, Other0) = (0.023, 0.098, 0.879)

Now imagine a baseline player moving from the MLB American League to the NPB

Central League. Say; βCL = (.1813,−.1664). The corresponding resulting log-odds

for that player would be β0 + βCL = (−3.4456,−2.3601). The Central League effect

thus shifts the outcome probability vector to be on average (0.028, 0.084, 0.888). In

a 500 plate appearance season, this would translate to approximately 2 more home

runs and 7 fewer walks.

Tables 3.3 through 3.6 describe the full framework of parameter settings, including

the fixed effects, covariance matrices, and first four random effects (corresponding to

the first four players in the data set).

Table 3.3.
Within player career covariance matrix, Φ, setting for three-category sim-
ulation study, based on MLN model fit to real data

log-odds log
(

HR
OTHER

)
log
(

BB
OTHER

)
log
(

HR
OTHER

)
0.2032 0.0658

log
(

BB
OTHER

)
0.0945
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Table 3.4.
Across player-season covariance matrix, Σ, setting for three-category sim-
ulation study, based on MLN model fit to real data

log-odds log
(

HR
OTHER

)
log
(

BB
OTHER

)
log
(

HR
OTHER

)
0.1006 0.0389

log
(

BB
OTHER

)
0.1681

Table 3.5.
Fixed effects, β, settings for three-category simulation study, based on
MLN model fit to real data

parameter vector value

β0 (−3.6269,−2.1937)

βheight (0.0992, 0.0006)

βweight (0.1537, 0.0366)

βage (0.2041, 0.1955)

βage2 (−0.1201,−0.1070)

βhand=left (0.0519,−0.1167)

βhand=switch (0.0715,−0.2479)

βleague=CL (0.1813,−0.1664)

βleague=NL (−0.2030,−0.0377)

βleague=PL (0.2915,−0.0248)
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Table 3.6.
First four random effects, ψi’s, settings for three-category simulation
study, simulated via ψi ∼ N2(0,Φ)

player random effect vector value

ψ1 (0.2125, 0.3929)

ψ2 (−0.0993, 0.0761)

ψ3 (0.3194,−0.0810)

ψ4 (0.9468, 0.1454)

Results

For the 500 players simulated in the data set, consisting of 4159 player-seasons,

both algorithms showed convergence of the log-likelihood within 10000 iterations and

showed adequate mixing after discarding burn-in and thinning the posterior chains.

We begin by assessing parameter estimation under the multinomial logistic-normal

(MLN) model fits for the MLN data and multinomial logit (M-Logit) data. It is im-

portant to note that minor shifts in log-odds have even less an impact on the resulting

probability vector. This is apparent in the recovery of the fixed intercept term. The

graphs of the joint posterior distribution show that the MLN algorithm recovers the

intercept term well based on MLN data, but does not do so as well with M-Logit

data. A slight bias in the recovery of the parameters however, does not lead to a

great deal of difference in recovery when transformed to the simplex (Figures 3.1 and

3.2).
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Figure 3.1. Recovery of fixed intercept for MLN and M-Logit data under
MLN model fit, showing contours based on MCMC samples of the joint
posterior distribution. The red point represents the true value of β0 as
defined in the parameter settings section

Figure 3.2. Recovery of fixed intercept, transforming posterior samples
from log-odds to probability scale, for MLN and M-Logit Data under
MLN model fit. The red dot represents the true values of the baseline
probability vector, as defined in the parameter settings section.
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Table 3.7 reports the recovery in terms of comparing true values to the posterior

means of the MCMC samples (after discarding 35% burn-in) for the fixed effects, β

and covariance matrix terms, (σ1, σ12, σ2) ∈ Σ and (φ1, φ12, φ2) ∈ Φ, for both the

MLN and M-Logit data fit with the MLN model. The only apparent difference is

in the recovery of the age effects in terms of the fixed effects. The Σ covariance

matrix terms are also much smaller, as to be expected, for the M-Logit fit. Across

ten different runs with different data sets (five each of MLN and M-Logit simulated

data), there was a wide variability in the posterior mean of age effects recovered on

the log-odds scale.

However, on the probability scale, comparing the home run rate age trend for a base-

line player under the true parameter values versus the recovered MLN posterior means

shows there is not a great deal of difference, except perhaps at the tails (Figure 3.3).

Over five hundred plate appearances, the difference in rate for a 20 year old baseline

player is approximately 1 home run, indicating that even with the relatively poor

recovery, the recovered values do not shift the resulting probability from the truth a

great deal. This may explain why the effect struggled to be recovered across different

data sets.

To consider recovery of the covariance matrices on the probability scale, we can com-

pare the implied correlation structure of the outcome counts, W = (HR,BB,Other),

based on Σ vs. Σ̂, and Φ vs. Φ̂, as described in Section 2.2.2. First for the implied

correlations in the count based on the true values:

Corr(WΣ) =


1 0.07 −0.29

0.07 1 −0.97

−0.29 −0.97 1

 Corr(WΦ) =


1 0.28 −0.60

0.28 1 −0.94

−0.60 −0.94 1


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Table 3.7.
Comparing posterior means of MLN fit with true values for MLN and
M-Logit simulated data

parameter true value MLN post mean M-Logit post mean

β0 (-3.63, -2.19) (-3.61, -2.19) (-3.63, -2.15)

βheight (0.10, 0.00) (0.05, -0.01) (0.07, 0.01)

βweight (0.15, 0.04) (0.15, 0.03) (0.14, 0.01)

βage (0.20, 0.20) (-0.05, -0.22) (0.28, -0.08)

βage2 (-0.12, -0.11) (0.13, 0.29) (-0.20, 0.16)

βhand=left (0.05, -0.12) (-0.09, -0.17) (-0.05, -0.19)

βhand=switch (0.07, -0.25) (-0.13, -0.35) (-0.11, -0.33)

βleague=CL (0.18, -0.17) (0.16, -0.13) (0.13, -0.15)

βleague=NL (-0.20, -0.04) (-0.13, -0.04) (-0.10, -0.09)

βleague=PL (0.29, -0.02) (0.35, 0.00) (0.36, -0.02)

(σ2
1, σ12, σ

2
2) (0.11, 0.04, 0.17) MLN only (0.12, .05, 0.17) (0.06, 0.02, 0.03)

(φ2
1, φ12, φ

2
2) (0.20, 0.07, 0.09) (0.19, 0.06, 0.08) (0.19, 0.06, 0.09)

Figure 3.3. Baseline player home run rate age trend. Black line represents
age trend based on posterior mean of β from MLN fit to MLN data, while
the red line represents the age trend based on the true value of β
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Then for the MLN data fit with MLN:

Corr(W Σ̂) =


1 0.11 −0.34

0.11 1 −0.97

−0.34 −0.97 1

 Corr(W Φ̂) =


1 0.29 −0.59

0.29 1 −0.95

−0.59 −0.95 1


And finally for the M-Logit data fit with MLN, where although Σ does not truly

exist, the MLN model assumes it does:

Corr(W Σ̂) =


1 0.11 −0.50

0.11 1 −0.92

−0.50 −0.92 1

 Corr(W Φ̂) =


1 0.28 −0.59

0.28 1 −0.94

−0.59 −0.94 1


However, in order to properly interpret Φ, which builds correlation across years of a

player’s career, it is more relevant to look at the recovery of the block matrix with

Σ + Φ on the diagonal and Φ on the off-diagonals; i.e. the covariance matrix of the

unconditional log-odds (Equation 2.2) which we will denote Λ; and call the implied

correlation structure of the corresponding counts, Corr(WΛ
jj′). This larger matrix for

the MLN fit is supplied in Appendix D.

Generally, the MLN model does a good job of recovering the correlation structure

in the outcomes, both across player-seasons and within a player’s career. While the

individual covariance matrix terms may not be recovered perfectly (Table 3.7), our

goal of accounting for a possibly positive correlation structure is achieved. For the

M-Logit data, even with the MLN model estimating parameters, Σ, that were not

used to generate the data, the relationship implied by Φ is recovered fairly well.
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Comparing Model Fits

In this simulation study, we have separated the data into a training and test set of

500 and 105 players respectively. We can examine model fit with either of the data

sets; the 4159 player-seasons of the training data set used to fit either the MLN or

M-Logit models will have posterior predictive distributions we can compare observed

values to. We can also use the test set of 105 player-seasons (focusing on those seasons

where the players moved between leagues for the first time).

In this subsection, we conduct model diagnostics for the three-category simulation

study on both the MLN and M-Logit data sets, both training and test sets. We

begin by comparing the overall model fit of all four (MLN training, M-Logit training,

MLN test, M-Logit test) data sets with both methods via the residual plots of the

Dunn-Smyth type residual diagnostic detailed in Section 2.5.1.

The first set of residual plots (Figures 3.4 and 3.5) compare the MLN and M-Logit

model fits to the 4159 player-seasons of the training data for both the MLN and

M-Logit data archetypes. Under a good model fit, we expect these residuals to be

standard normal. M-Logit data when fit with the incorrect MLN model shows some

small lack of fit. The difference here is not terribly large, but the M-Logit data

residuals tend to have a lighter right tail than the MLN data residuals. This is an

indication that the observed quantiles for the M-Logit data are not large enough for

those under MLN. The real difference comes in examining model fit of the data under

the M-Logit fit, where the MLN data is clearly not a good fit.
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Figure 3.4. Standard normal QQ-plot of standardized MD2 percentile
residuals for MLN and M-Logit training data sets fit with MLN

Figure 3.5. Standard normal QQ-plot of standardized MD2 percentile
residuals for MLN and M-Logit training data sets fit with M-Logit
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While similar plots may be constructed for the 105 player-seasons to be predicted,

due to the shrinkage in estimating ψi′ for players who did not have much career data,

poorly predicted seasons will have an undue impact on the fit, whereas the QQ-plots

for the overall model fit illustrate our method works well on aggregate.

The deviance information criterion, or DIC (Section 2.5.2) is a method for comparing

model fit. Taking advantage of posterior chains of parameters, the DIC may be

calculated for any model fit, and includes the log-likelihood based on the posterior

mean of the parameters and an estimate of a model’s effective number of parameters

as part of its calculation. For both MLN and M-Logit training data sets, we calculate

the posterior log-likelihood estimate, l
(
W |θ̂

)
, effective number of parameters, pDIC ,

and DIC for each model fit, and present pDIC and DIC (Tables 3.8 and 3.9).

Table 3.8.
Effective number of parameters, pDIC , for training data simulated under
MLN and M-Logit models and fit with both

pDIC MLN Data M-Logit Data

MLN Fit 3764.99 2313.38

M-Logit Fit 736.20 711.97

Table 3.9.
Deviance information criterion, DIC, for training data simulated under
MLN and M-Logit models and fit with both

DIC MLN Data M-Logit Data

MLN Fit 41661.35 36306.78

M-Logit Fit 48344.03 35297.63
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A smaller DIC indicates a more appropriate model, and the results (Table 3.9) sug-

gest that the most appropriate model for each data set is the true model under the

data generating process. The additional parameters introduced by the presence of

Σ (Table 3.8) in the MLN model are unnecessary for M-Logit data. The M-Logit

model does not fit the MLN data particularly well, since it is unable to account for

the additional variability that is present in the MLN.

We also calculated two more measures of predictive accuracy based on the model

fit of the training data sets, Aitchison’s R2, or aR2, and the Sum of Compositional

Errors SCE. These results are presented in Appendix C for both the training and

test sets. The main drawback behind these measures is that neither take into account

the covariance structure; the key difference between the MLN and M-Logit models.

Model diagnostics for multinomial Bayesian hierarchical models will continue to be

an open problem, but the Dunn-Smyth residual type diagnostic presented here does

show promise in being able to discriminate between models and assess model fit in

a multivariate context. The residual plots capture the difference in data having the

additional uncertainty that the MLN model allows over that of the M-Logit.

Predictions and Uncertainty

Our main goal is to form predictions and uncertainty about those predictions for new

player-seasons. First we examine recovery of the random effects for the 105 new play-

ers, the posterior samples of which were generated based on their careers up until the

season they move and the posterior samples of the parameters from the initial run

of the algorithm. We can see (Figure 3.6) that based on the posterior means of the

random effects for the two log-odds, the recovery is not unreasonable, though clearly

shrunk towards zero.
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Figure 3.6. Recovery of ψi′1 and ψi′2 for new players i′ = 1, ..., 105 in MLN
test data, based on player’s career to the point of switching leagues and
posterior chains of other parameters under MLN model fit

As mentioned in Chapter 2, estimating the random effects of the held out players in

the prediction set by using the posterior means of the fitted parameters of the initial

run, instead of refitting them with the training data, saves time and does not greatly

impact recovery of the random effects, based on Bland Altman plots of the player’s

random effects (Figure 3.7).

Figure 3.7. Bland Altman plots for posterior means of ψi′1 and ψi′2 for new
players i′ = 1, ..., 105 in MLN test data under (in): MLN fit to combined
data set of training set and new players’ careers before switching, and
(out): Estimating new players’ random effects based on posterior means
of parameters from initial training set MLN fit
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The posterior chain of the random effects is then used in tandem with the poste-

rior chains of the parameters β,Σ,Φ to generate posterior predictive distributions.

Sampling from the posterior predictive distributions for individual player-seasons is

described in Section 2.4. Since there are 105 different players, we will focus first on

two of them, with relatively similar covariate values yet different lengths of career.

For players i′ = 1, 2 we will be predicting the count vector for seasons j′ = 10 and

j′ = 4, respectively (Tables 3.10 and 3.11).

Table 3.10.
Player 1’s career up to and including moving from MLB to NPB

j′ height (cm) weight (kg) age hand league HR BB Other

1 188 88 22 switch AL 0 0 2

2 188 88 23 switch AL 2 0 41

3 188 88 24 switch AL 8 18 444

4 188 88 25 switch AL 5 8 491

5 188 88 26 switch AL 3 12 411

6 188 88 27 switch AL 1 12 399

7 188 88 28 switch AL 0 0 18

8 188 88 28 switch NL 3 11 161

9 188 88 29 switch AL 0 2 64

10 190 95 30 switch CL 2 5 243

The two players are not a perfect match on covariates, but do share similarities.

They are close in height and weight, the same age when switching leagues, both

move from the American League to the Central League, and have similar numbers of
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plate appearances in their first year in NPB. Where they drastically differ is in their

histories, used to estimate their random effect; player 1 has 9 years of data, averaging

235 PA/year, while player 2 has only 3 years, averaging 18 PA/year.

Table 3.11.
Player 2’s career up to and including moving from MLB to NPB

j′ height (cm) weight (kg) age hand league HR BB Other

1 185 83 23 right AL 0 3 9

2 185 83 24 right AL 0 1 30

3 185 83 28 right AL 0 2 9

4 189 92 30 right CL 7 12 260

What we see in terms of the posterior predictive distributions is that the simplex

of player 1’s predicted counts shows a smaller spread than the simplex of player 2

(Figures 3.8 and 3.9), while the posterior predictive mean is also closer to the true

observed count for player 1 (Tables 3.12 and 3.13).

Figure 3.8. Posterior predictive samples of W , on the simplex, for player
1’s 10th season, the red dot represents the true value
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Figure 3.9. Posterior predictive samples of W , on the simplex, for player
2’s 4th season, the red dot represents the true value

Table 3.12.
Player 1’s 10th season posterior predicted mean versus observed counts

HR BB Other

post pred mean 4.42 9.82 235.76

true value 3 9 238

Table 3.13.
Player 2’s 4th season posterior predicted mean versus observed counts

HR BB Other

post pred mean 9.37 26.97 242.65

true value 2 18 259
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It is generally the case, though not a rule, that more data used to estimate the random

effect results in less variability in the posterior predictive distribution. The random

effect is only one source of variability. In this case, the players were similar enough

in other aspects that the largest source of the disparity is the amount of information.

While the posterior predicted mean serves as the point prediction for the new player-

season, we are also interested in the uncertainty about that prediction. From the

plots it is easy to see that in comparing these two players, player 1 has more certainty

about their prediction than player 2. However, it is useful to provide some quantita-

tive measure of that uncertainty. For this, we construct two types of intervals about

the posterior predicted mean, as described in Section 2.5.3. While interpreting the

intervals, it is important to realize that the lower bound and upper bound will not

necessarily sum to the exposure, as they are simply the marginal limits for the 95%

most likely outcomes based on a joint predictive posterior distribution. The convex

hull from which intervals will be formed contains combinations that sum to the num-

ber of plate appearances in the season being predicted.

The first type of interval is a prediction interval about the posterior predictive distri-

bution. In some cases, especially when moving to additional categories, these intervals

may be too wide to be useful for direct comparison between players, but do serve as

a measure of predictive accuracy on a single player basis. Several papers have dis-

cussed that simultaneous confidence intervals about multinomial counts tend to be

overly conservative (Quesenberry and Hurst, 1964; Sison and Glaz, 1995), and our

hierarchical model adds additional variability. Construction of the interval proceeds

as described in Section 2.5.3; 95% of the most likely posterior predictive count sam-

ples are chosen to form the convex hull that defines the interval. We do not present

prediction intervals here, though they are provided in Appendix E. In terms of direct

comparison of player’s ability, it may be more useful to concern ourselves with the

expected performance of the players, rather than the predicted count itself.
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We can construct credible intervals from samples of the posterior predictive distribu-

tion of the log-odds for the new player-season. The credible intervals on the log-odds

differ from the prediction interval on the counts in that are describing uncertainty

about a player’s expected performance. Narrower intervals can be more useful in

direct comparison of players, as opposed to assessing predictive power. We present

the 95% credible intervals for player 1 and 2 (Tables 3.14 and 3.15) which we can

compare to their observed and posterior mean counts (Tables 3.12 and 3.13).

Table 3.14.
95% credible interval for the expected performance of player 1’s 10th sea-
son

95% cred int HR BB Other

lower bound 2 6 230

upper bound 8 14 241

Table 3.15.
95% credible interval for the expected performance of player 2’s 4th season

95% cred int HR BB Other

lower bound 3 14 224

upper bound 20 42 260

While the additional variability in player 2 is still obvious, it is now much simpler to

draw direct comparisons between the two players based on the bounds of the credible

intervals as compared to the prediction intervals. For a team looking for a player

who can hit home runs or walk, player 1 does not represent a strong candidate. The

upper bounds for those two categories on the credible interval represent rather low
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numbers, especially for the walk rate, which is exactly the same as the lower bound

of player 2. Player 1 had 9 years to establish their performance level, and in terms of

home runs and walks it has been uninspiring. With the lower bounds for home run

rate being nearly identical, the intervals suggest that player 2 may be worth the risk.

In terms of actual performance, the home runs slightly favor player 1, while player 2

under-performed there but did walk at a much higher rate.

3.3.2 Ten-Category Simulation Study

We also completed a simulation run in a higher dimensional setting; data sets simu-

lated with the dimensionality of the real data, K = 10. While the K = 3 setting was

useful for examining the viability of the model in the most basic framework often, as

in our case, more outcomes are of interest. The baseball outcomes for the ten-category

setting are as described in Section 1.3, with abbreviations (1B, 2B, 3B,HR, SH,

SF,BB,HBP, SO,OIP ). From these ten outcomes, most singular value metrics

used in baseball may be calculated.

The process of simulation remains the same. Parameter settings are based on a trial

run of the algorithm. Data are generated from both the MLN and M-Logit models.

The only difference is in the dimensionality; for example, when simulating random ef-

fects for both data sets and error terms for the MLN data, they are now ψi ∼ N9 (0,Φ)

and εij ∼ N9 (0,Σ), respectively. We use the same covariates as in the three-category

case, with the same sample of 500 players representing the training data sets.

Results were much in line with those from the three-category case. The algorithms

converged within 10000 iterations, with decent mixing after discarding burn-in and

thinning of the chains. Parameters tended to be reasonably recovered, and the DIC

measure indicated that the data set generated under each of the models was more

appropriately fit by the corresponding model. Because of the quite large increase in
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parameters, from 26 to 180 (not including random effects and the log-odds), we do

not present all the results here. Computation time increased a small amount over

that of the three-category simulation study.

3.4 Real Data Results

As with the simulation studies in the previous section, we fit both a lower dimensional,

three-category model to the real data as well as a higher dimensional ten-category

model. Both the multinomial logistic-normal and multinomial logit mixed-effects

models are considered. In addition to the covariates used in the simulation stud-

ies, we also include position as a covariate. Since some of the player-seasons do not

distinguish player’s primary position outside of infield, outfield, designated hitter or

pitcher, those are the four levels of the covariate we utilize.

For the three-category model, we again consider (HR,BB,Other), since we expect

home runs and walks to be positively correlated. When discussing results for the ten-

category model, we occasionally narrow in on the relationship between HR and BB

for comparison purposes. In both cases, we will discuss interpretation of the intercept

and covariate effects.

This section will proceed by describing and discussing results from the three-category

analysis first, followed by the ten-category. In each subsection, we assess the posterior

log-likelihood convergence for the data under both the multinomial logistic-normal

(MLN) and multinomial logit (M-Logit) models and for both levels of dimensionality,

as well as discussing Markov chain mixing and parameter estimation of the same. We

then compare model fit of the MLN and M-Logit fits for both levels of dimensionality,

and finally assess predictive performance and discuss utility of the credible intervals

about the predictions.
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3.4.1 Three Categories

The three-category real data analysis produced results not too dissimilar from the

simulation study. Under the three-category setting, the multinomial logistic-normal

model fit the data well, and was a better fit than the multinomial logit model. As in

the simulation study, we separate the data into 500 players and 4159 player-seasons

which will be used as a training set to fit the model, and 105 out of sample players,

whose 105 player-seasons corresponding to their first year playing in a different league

will be used as a test set.

Convergence and Model Fit

Both the MLN and M-Logit model fits to the three-category training data set ap-

peared to converge well before 10000 iterations (Figure 3.10). After discarding 30%

burn-in and thinning the chains, both MCMC chains show decent mixing, though the

MLN algorithm mixes slightly better than the M-Logit.

To assess and compare model fits, we use the same metrics as in the simulation study.

We provide standardized squared Mahalanobis distance percentile residual plots of

the MLN fit, and calculate the deviance information criterion (DIC) under both MLN

and M-Logit fits.

The residual QQ-plot for the training data (Figure 3.11), shows a relatively good fit

to the MLN model, although there is a very slight tendency for smaller than expected

percentiles/residuals. On the other hand the fit to the M-Logit model (Figure 3.12)

shows larger than expected residuals and more deviation from the expected trend.
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Figure 3.10. Convergence of complete data posterior log-likelihood of
three-category real data fit with both MLN and M-Logit models

Figure 3.11. Histogram and standard normal QQ-plot of standardized
MD2 percentile residuals for MLN fit of three-category real data set
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Table 3.16.
Effective number of parameters and deviance information criterion for
three-category real data training set fit under MLN and M-Logit models

MLN Model Fit M-Logit Model Fit

pDIC 3014.15 682.76

DIC 37229.52 37808.39

Figure 3.12. Histogram and standard normal QQ-plot of standardized
MD2 percentile residuals for M-Logit fit of three-category real data set

In addition, a comparison on models using DIC shows the MLN is a better fit. While

the MLN model has a significantly larger effective number of parameters, the improved

fit means DIC favors MLN over M-Logit (Table 3.16). Because the MLN model is

favored under both assessments, we only summarize results for that fit in the next

subsection.
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Estimation and Prediction

In terms of parameter estimates, some of the results are quite a bit different from

what we saw in the simulation study (Table 3.17). The largest covariate effect in

magnitude is the indicator variable for the pitcher position, which makes some sense;

the coefficient is negative and pitchers are generally much worse hitters than position

players. Age and switching to the NPB leagues are the next largest effects based on

posterior means. However, examining the 95% credible ellipsoids around each of the

effects, four are not significantly away from zero: the Age effects, NL effect, and DH

effect (Figure 3.13). The rest of the effects all had ellipsoids which did not include

zero, with the pitcher effect, CL and PL effects being the farthest from (0, 0), respec-

tively.

Figure 3.13. Fixed effects with 95% credible ellipsoids including zero for
MLN fit of MLN simulated training data
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Table 3.17.
Posterior means of parameters under MLN model fit, discarding first 30%
of samples, thinning every 10th

parameter MLN post mean

β0 (−3.60,−2.41)

βheight (0.14, 0.02)

βweight (0.16, 0.05)

βage (0.34, 0.27)

βage2 (−0.26,−0.17)

βhand=left (−0.06, 0.14)

βhand=switch (−0.15, 0.22)

βleague=CL (0.32,−0.18)

βleague=NL (−0.10,−0.02)

βleague=PL (0.32,−0.03)

βpos=of (0.11,−0.06)

βpos=dh (−0.10,−0.10)

βpos=p (−1.93,−0.95)

(σ2
1, σ12, σ

2
2) (0.115, 0.037, 0.060)

(φ2
1, φ12, φ

2
2) (0.127, 0.039, 0.087)

Interpreting the covariate effects is as simple as transforming from the log-odds scale

to the probability scale. We first look at the intercept in order to understand the

baseline player’s expected outcome composition. A baseline player is one of average

height, weight and age, who bats right handed in the AL and is an infielder:

β0 = (−3.60,−2.41) =⇒

(HR0, BB0, Other0) = (0.024, 0.081, 0.895)
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Over 500 plate appearances, this means that a baseline player is expected to hit 12

HR and receive 40 walks.

Table 3.18.
Estimated covariate effects on the baseline player in terms of expected
perturbation from baseline over 500 plate appearances for a one unit in-
crease in each covariate. For height and weight, one unit is one standard
deviation above the mean height or weight

parameter effect HR BB Other

baseline 12 40 448

height 14 41 445

weight 14 42 444

left 11 46 443

switch 10 50 440

CL 17 34 449

NL 11 40 449

PL 17 39 444

OF 14 38 448

DH 11 37 452

P 2 17 481

Table 3.18 summarizes the covariate effects (except for age), in terms of deviation from

a baseline player (based on a one unit increase in the covariate). We see the covariate

that is most directly related to our problem of predicting player performance moving

between NPB and MLB, League, implies that the AL and NL are more difficult

leagues to succeed in (in terms of HR and BB) as a hitter. We can also see the

dramatic reduction in HRs and BBs for a pitcher. Age effects for the baseline player

is presented as a plot of expected HRs over the range of ages (Figure 3.14).
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Figure 3.14. Posterior distribution (grey) and mean (black) of baseline
player home run rate age trend per 500 plate appearances for MLN fit of
three-category real training data set

We next examine the implied correlation structure of the outcomes based on the two

covariance matrices. Since the covariates (mean) also factor into these covariances

(see Section 1.4), we consider the implied correlation matrices for a baseline player

(using the intercept as the mean). Using the posterior mean of each element, the

correlation matrices are:

Corr(W Σ̂) =


1 0.21 −0.58

0.21 1 −0.92

−0.58 −0.92 1

 Corr(W Φ̂) =


1 0.16 −0.52

0.16 1 −0.93

−0.52 −0.93 1


To better understand the correlation structure both within and across outcomes, we

combine the Σ and Φ matrices for a pair of outcomes. This results in a block matrix

with Σ + Φ on the diagonal and Φ on the off-diagonals (Equation 2.2). We denote

this matrix Λ; and call the implied correlation structure of the corresponding counts,

Corr(WΛ
jj′). The implied temporal correlation structure recovers positive correlations
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between home runs and walks both within (ρ = 0.22) and between (ρ = 0.11) seasons

for a baseline player.

Corr(W Λ̂
jj′) =



1 0.22 −0.43 0.38 0.11 −0.23

0.22 1 −0.70 0.11 0.48 −0.41

−0.43 −0.70 1 −0.23 −0.41 −0.04

0.38 0.11 −0.23 1 0.22 −0.43

0.11 0.48 −0.41 0.22 1 −0.70

−0.23 −0.41 −0.04 −0.43 −0.70 1



It is important to keep in mind the purpose of this methodology is prediction. For

assessing prediction, we have approached this real data analysis from a cross valida-

tion type framework. While the model estimation is done with 500 randomly selected

players, the main intention is to predict the counts for players moving to a new league

in the midst of their careers. The 105 players left out of the model estimation step will

thus have their careers split, with their careers leading up to their changing leagues

used to estimate their random effects and their first year in a new league used to

assess predictive accuracy. All seasons in a player’s career after their initial season in

a new league (either MLB or NPB) are discarded.

Practically, this approach mirrors the process of predicting for a group of players who

might be changing leagues in the ensuing season. Given a model fit, random effects

for any number of players potentially moving may be estimated and their performance

in the ensuing season predicted. For NPB and MLB teams deciding which players in

the opposing league to pursue, this process makes the most sense.

We apply the predictive assessment techniques described in Chapter 2 to the real

data in both three and ten-category frameworks, to illustrate our methods use in pre-



104

dicting baseball player performance for players moving between the leagues. We have

already seen that the Dunn-Smyth type, standardized squared Mahalanobis distance

percentile, residuals for the out of sample players appear to approximately follow the

standard normal distribution, lending some validity to the predictions.

Figure 3.15. Predicted versus observed counts of each category for out of
sample players from MLN fit

In terms of predictive accuracy, while not a perfect metric by any means, we may

plot the square root of the posterior predictive mean of the new player-seasons counts

versus the square root of their true value (Figure 3.15). This has been done to as-

sess predictions in similar contexts (Xia et al., 2013). Taking the square root helps

visualize the recovery of small counts which might otherwise look well recovered due

simply to low exposure. We see that the baseline outcome, OTHER, is seemingly

predicted well across the board, while home runs and walks are not unreasonable,

though struggle with predicting very small counts. While this is encouraging, we are

more interested in where the observed points fall in the respective posterior predictive

distributions.

It is also useful to look at individual players. The two players whose covariates were

used as examples from the test set in the simulation study were Mike Young (player

1) and Rod Allen (player 2), chosen because of the similarity in covariates but dissim-
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ilarity in career length and information prior to switching leagues. Young played nine

years as an outfielder in MLB, mostly for the Baltimore Orioles in the AL, averaging

235 PA/year, before moving to the Hiroshima Carp in the CL in 1990 at age 30. Rod

Allen played three years in the American League mostly as an outfielder, averaging

18 PA/year, before moving to the CL to play for the Carp in 1989, at the age of

30. In 1989, Allen hit 11 home runs and 25 walks in 279 plate appearances, while

in 1990 Young hit 11 home runs and walked 26 times in 250 plate appearances. We

sampled from both these player’s posterior predictive distributions for their first year

in the Central League, and constructed 95% credible intervals about their expected

performance.

Looking at the posterior predictive distribution of counts, it is not readily apparent

from the plots whether Rod Allen’s 1989 season or Mike Young’s 1990 season has a

larger spread (Figures 3.16 and 3.17). However, their 95% credible intervals are more

informative (Tables 3.19 and 3.20), and we see that the Young’s credible intervals is

much tighter than Allen’s, reflecting how much more information went into predicting

his performance compared to Allen. Both intervals covered the true values.

Table 3.19.
95% Credible interval, posterior mean, and observed value for Mike
Young’s 1990 season, based on MLN fit of three-category real test data

HR BB Other

CI lower bound 8 18 203

post pred mean 12.64 25.17 212.19

true value 11 26 213

CI upper bound 18 32 222
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Figure 3.16. Posterior predictive samples of W , on the simplex, for Mike
Young’s 1990 season, based on MLN fit of three-category real test data,
the red dot representing the true value

Figure 3.17. Posterior predictive samples of W , on the simplex, for Rod
Allen’s 1989 season, based on MLN fit of three-category real test data,
the red dot representing the true value



107

Table 3.20.
95% Credible interval, posterior mean, and observed value for Rod Allen’s
1989 season, based on MLN fit of three-category real test data

HR BB Other

CI lower bound 6 10 234

post pred mean 13.38 17.78 247.84

true value 11 25 243

CI upper bound 22 30 261

The main goal of these credible intervals is for player comparison. What we see here

is that, based on the bounds of the intervals, a team might be more likely to choose

Young over Allen; in fewer plate appearances, Young gives higher floors in both HR

and BB, and a higher ceiling in BB with a similar ceiling in HR on a rate basis,

when compared to Allen. In this case, focusing on three categories, the choice of

Young over Allen would be justified; though their numbers look similar, Young hit

the same number of home runs and walked once more than Allen, in 29 fewer plate

appearances. While this is only one example, it illustrates the power of having this

form of uncertainty assessment about a prediction.

3.4.2 Ten Categories

While the three-category study shows promise, we are interested in predicting not only

a player’s counts for a season, but also statistics, such as batting average or OPS,

from those counts. Moving to the ten categories identified in Section 1.3, allows us to

do this. We produce much of the same output as in the three-category study, except

due to the increase in dimensionality, some of the plotting becomes more difficult.

For example, it is not possible to plot all ten outcomes on a simplex, though groups

of three may be plotted at a time.
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Convergence and Model Fit

Both complete data log-likelihoods converge quickly. One thing of note is how quickly

the MLN fit seemed to converge compared to the M-Logit, though to a lower value;

the MLN fit reached its maximum posterior log-likelihood at iteration 304 and levels

off. One explanation is the MLN model being sensitive to tuning parameters, such

as step-size for the Metropolis proposal step. While the average acceptance ratio

over the iterations is not unreasonable (Figure 3.19), a higher rate, and thus more

exploration of the distribution space, might allow the log-likelihood under MLN to

converge to something higher.

Figure 3.18. Convergence of complete data posterior log-likelihood of ten-
category real data fit with mixed effects MLN Metropolis-within-Gibbs
algorithm

The ten-category results are less conclusive, but generally favor the M-Logit fit for

the data. First we examine the residual plots under the MLN fit based on our Dunn-

Smyth type residuals (Figure 3.20). In this case we see a much lighter right tail, more

in line with the M-Logit simulated data results, where now the pointwise confidence

envelope falls entirely below the reference line. However, the M-Logit fit (Figure 3.21)

does not look particularly good either, showing the same trend as MLN data fit with

M-Logit as in the simulation study. These results would to indicate that the data is

neither quite MLN or M-Logit in nature.
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Figure 3.19. Average Metropolis acceptance ratio for all player-seasons
log-odds (latent variables, Yij’s) over the MLN algorithm, ten-category
real data training set

The DIC supports the M-Logit as the better model (Table 3.21). The MLN model

in this case involves many more covariance parameters in Σ. With ten categories,

this produces over four times the number of effective parameters. If the additional

variability is relatively small in some outcome categories, or there are several weak

relationships among the categories, the added model complexity is not worth it.

Table 3.21.
Effective number of parameters and deviance information criterion for
ten-category real data training set fit under MLN and M-Logit models

MLN Model Fit M-Logit Model Fit

pDIC 10439.57 2225.30

DIC 145797.5 141057.0
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Figure 3.20. Histogram and standard normal QQ-lot of standardizedMD2

percentile residuals for MLN fit of ten-category real data set

Figure 3.21. Histogram and standard normal QQ-lot of standardizedMD2

percentile residuals for M-Logit fit of ten-category real data set
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However, based on the estimation of Σ, discussed in the next subsection, most of

the covariance terms recovered have posterior distributions that do not include zero.

Since we adopt the MLN model to help describe the correlation among outcomes,

it will also be useful to investigate what the covariance matrices imply about those

correlations. In the next section, we see there appears to be positive associations to

be recovered between outcomes.

Since DIC suggests the M-Logit fits the training data better, but the residual plots

are less conclusive, we will continue comparison of the models through the estimation

and prediction results.

Estimation and Prediction

With p = 13 (including the intercept) and d = 9, there are 117 covariate effects for

each of the model fits. Since it is unreasonable to delve into too much detail, we

will simply assess the recovery of the fixed effects in terms of the intercept and two

covariates, League and Age. Both 13 × 9 β fixed effect matrices for the MLN and

M-Logit fits to ten-category data are available as tables in the Appendix D.

Table 3.22 shows the intercept vector and Central League effect vector for both model

fits. The intercepts imply similar probability vectors for a baseline player, and not

too dissimilar implied values for HR and BB when compared with the three-category

results. Over 500 plate appearances, a baseline player in the MLN model will have

on average the following counts: (1B, 2B, 3B,HR, SH, SF,BB,HBP, SO,OIP ) =

(76, 21, 2, 12, 2, 4, 41, 3, 86, 253), and under the M-Logit model, the baseline player’s

expected performance is almost the same: (1B, 2B, 3B,HR, SH, SF,BB,HBP, SO,

OIP ) = (78, 21, 2, 12, 2, 4, 39, 3, 89, 250).
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Table 3.22.
Posterior mean of intercept and CL fixed effects over both the MLN and
M-Logit algorithms, ten-category real data training set

β1 β2 β3 β4 β5 β6 β7 β8 β9

MLN Intercept -1.21 -2.49 -4.99 -3.01 -5.10 -4.24 -1.82 -4.43 -1.08

MLN CL 0.03 -0.12 -0.49 0.27 -0.35 -0.29 -0.19 0.14 0.04

M-Logit Intercept -1.17 -2.48 -4.79 -3.04 -4.73 -4.23 -1.85 -4.45 -1.03

M-Logit CL 0.06 0.07 -0.39 0.60 -0.42 -0.08 0.04 0.43 0.10

The Central League effect is similar to what it was in the three-category results;

moving from the AL to CL provides an expected increase in home runs. However,

the overall performance increase is not as obvious with ten categories, since in both

model fits, there is a corresponding increase in expected strikeouts, and decrease in

triples. The corresponding expected outcomes over 500 plate appearances for baseline

players moving from AL to CL are, for MLN: (78, 19, 1, 16, 1, 3, 34, 3, 90, 254), and for

M-Logit: (78, 21, 1, 21, 1, 3, 39, 4, 93, 238). One way to summarize the results is with

OPS. A baseline AL player under MLN would be expected to have an OPS of 0.720

which would increase only a little to 0.723 in the CL. For the M-Logit, the baseline

OPS is 0.721 which increases more drastically to 0.812 in the CL.

Since age also plays an important role in our model, we will look at what the quadratic

age term implies about the trajectory of home runs and strikeouts over a baseline

player’s career in both models. The age effect on HR was almost exactly the same as

in the three-category models, and both models imply a convex shape for age’s impact

on strikeouts, but MLN estimates a much steeper overall decline in strikeouts from

age 20 to age 40 (Figures 3.22 and 3.23).
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Figure 3.22. Comparison of baseline player home run rate age trend per
500 plate appearances for MLN and M-Logit fits of ten-category real train-
ing data set

Figure 3.23. Comparison of baseline player strikeout rate age trend per 500
plate appearances for MLN and M-Logit fits of ten-category real training
data set

Instead of reporting all the covariance matrices, we will focus first on the recovered

posterior mean of the Σ matrix from the MLN fit, and then look at some implied

correlations among counts for both fits. By focusing on Σ, we can hone in on the

only difference between MLN and M-Logit simulated data, and perhaps gain some

understanding of which model better suits this data. DIC prefers the M-Logit fit,

possibly due to some of the small in magnitude covariance terms we see in the MLN
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fit for Σ, and the presence of random effects allows some variability that Σ might have

described to be explained by Φ. However, 26 of the 36 Σ covariance terms posterior

distributions did not include zero. This gives evidence in favor of Σ perhaps providing

some benefit to helping describe the covariance structure of the data.

Σ̂ =



0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.00

0.05 0.04 0.04 −0.01 0.03 0.02 0.04 0.01

0.27 0.04 0.09 0.06 0.02 0.04 0.01

0.15 −0.06 0.07 0.05 0.09 0.03

0.57 −0.01 −0.02 0.01 0.02

0.14 0.03 0.06 0.01

0.08 0.04 0.03

0.29 0.03

0.06



In terms of the implied correlation structure in the counts, the above matrix results

in several implied positive correlations among counts. We can investigate this for

both fits. For sake of brevity, we will focus in on a select few relationships that are

implied by the recovered covariance matrices, again only for a baseline player. First,

to compare against the three-category results, we will look at the recovered implied

relationship between HR and BB for each fit, with MLN fit correlations on the left,

M-Logit on the right:

Corr(W Σ̂
HR,W

Σ̂
BB) = 0.19

Corr(W Φ̂MLN
HR ,W Φ̂MLN

BB ) = 0.11

Corr(W Λ̂
jHR,W

Λ̂
jBB) = 0.19

Corr(W Φ̂MLOGIT
HR ,W Φ̂MLOGIT

BB ) = 0.21
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The implied correlation is diminished somewhat, but not dissimilar to the three-

category results. In the absence of Σ, the M-Logit algorithm relies on the random

effects covariance matrix to account for that additional variability, and it does tend

to be larger under the M-Logit fit than the MLN fit. We can look at other pairwise

correlations of interest, and determine if they make sense in the context of our data.

Another major pair of outcomes which are commonly thought to be relatively strongly

positively correlated in baseball, in addition to home runs and walks, are home runs

and strikeouts (see Section 1.5). Meanwhile, triples and home runs are thought to be

strongly negatively correlated, as are singles and strikeouts. To further flesh out our

understanding of the estimation of the two models, we will investigate the recovered

association of these pairs.

Corr(W Φ̂MLOGIT
HR ,W Φ̂MLOGIT

SO ) = 0.17

Corr(W Λ̂
jHR,W

Λ̂
jSO) = 0.12

Corr(W Φ̂MLOGIT
3B ,W Φ̂MLOGIT

HR ) = −0.15

Corr(W Λ̂
j3B,W

Λ̂
jHR) = −0.04

Corr(W Φ̂MLOGIT
1B ,W Φ̂MLOGIT

SO ) = −0.59

Corr(W Λ̂
j1B,W

Λ̂
jSO) = −0.52

In large part we see the relationships we expect, though perhaps not as strong a

positive correlation between home runs and strikeouts. In the unconditional implied

correlation structure based on Λ (and thus only in the MLN fit), the strongest within

season correlation is the −0.69 between (SO, OIP), followed by the −0.52 between

(1B, SO). The strongest positive correlations are 0.19 between (HR, SF) and (1B,

OIP).

These make quite a bit of sense; striking out and putting the ball in play are exactly

opposite outcomes, and players who hit a lot of singles are likely putting the ball in

play often as well, instead of striking out. Meanwhile, players often attempt to hit
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home runs when runners are on third base, assuming that even if they don’t get all

of the ball, a sacrifice fly will net the team a run. It seems, with the random effects

covariance matrix, that the M-Logit model is capable of describing the positive rela-

tionships much better for the ten-category setting than it was for the three-category.

This may be a major reason the M-Logit is the preferred fit for the training data; Σ

may not be as necessary to describe the positive associations which are present in the

data.

A collection of plots similar to Figure 3.15, where the square root of predicted counts

is compared to the square root of true counts, can be found in Appendix E; it shows

the MLN fit struggles somewhat with rarer events, such as triples and sacrifice hits,

but appears to do well with singles, doubles and strikeouts. On an individual player

basis, we will once again focus on Mike Young and Rod Allen’s first seasons in the

Central League in Japan. In this case, credible intervals are still useful for direct

player comparison, but we may also gain some utility by comparing summary statis-

tics, such as OPS.

Table 3.23.
95% Credible interval, posterior mean, and observed value for Mike
Young’s 1990 season, based on MLN fit of ten-category real test data

1B 2B 3B HR SH SF BB HBP SO OIP

CI LB 28 6 0 6 0 1 17 1 47 94

post pred mean 33.89 8.96 0.57 10.59 0.50 1.43 24.21 2.67 59.84 107.34

true value 30 11 0 11 0 0 26 2 65 105

CI UB 42 12 1 17 1 2 35 5 75 121
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Table 3.24.
95% Credible interval, posterior mean, and observed value for Rod Allen’s
1989 season, based on MLN fit of ten-category real test data

1B 2B 3B HR SH SF BB HBP SO OIP

CI LB 28 7 0 5 0 1 9 1 30 113

post pred mean 42.02 10.86 0.74 11.90 0.75 1.55 18.41 3.01 56.21 133.54

true value 50 12 1 11 0 3 25 4 47 126

CI UB 58 17 1 21 3 3 31 11 86 161

OPS is calculated by adding on-base percentage, OBP = H+BB
AB

, and slugging per-

centage, SLG = TB
AB

, and is popular as a summary of batting ability which incor-

porates both plate discipline and ability to hit for extra base hits. With ten cat-

egories, it is straightforward to calculate OPS, since H = 1B + 2B + 3B + HR,

TB = 1B+ 2(2B) + 3(3B) + 4(HR), and AB = H +SO+OIP . We present credible

intervals and posterior predictive means for both Mike Young and Rod Allen’s first

CL seasons.

Table 3.25.
Example of two predicted player-season OPS and their 95% credible in-
tervals, under MLN model fit

player-season OPS LB OPS PPM OPS True OPS UB

Mike Young ‘90 0.642 0.789 0.784 0.948

Rod Allen ‘89 0.572 0.775 0.891 0.939

The posterior means for HR and BB for both of these players are closer to the truth

now than they were in just the three-category results, though Allen’s BB rate is still

predicted at much lower than the truth. In this case, this has an impact on the OPS

estimate. While Young’s OPS is predicted very well, Allen’s undershot. Solely based



118

on the predicted OPS and corresponding interval, Young seems to be the preferred

player, since he has a higher floor, mean, ceiling, and a narrower interval. While

Allen ended up with a better OPS than Young, his observed OPS was not outside

the range of the credible interval.

While we have discussed utilizing the credible intervals as a form of risk assessment

when pursuing two players, all we have done so far is to compare the marginal bounds

of the outcomes. A singular metric, like OPS, is closer to what might be useful in

terms of immediately comparing players. A more formal exploration of risk would

involve assessing the range in monetary value a player might be worth.
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3.5 Discussion

The results in this chapter at once show that our methodology is promising in its abil-

ity to provide accurate predictions for baseball player seasons after switching leagues,

while also indicating that there is still work to be done to refine and improve the

model. When comparing models in terms of DIC, we found that the dimensionality

of the response had an impact on whether our model was preferred to the simpler

multinomial logit model. Even though DIC found the additional covariance matrix

terms to be unnecessary in the ten category study, the recovery of more than half

of the covariance posterior distributions were significantly different from zero in the

multinomial logistic-normal fit. The Dunn-Smyth residual QQ-plots agreed with DIC

in the three category model, but there was a less clear delineation of model fit when

moving to ten categories, showing that neither of our candidate models seemed to

fit the data perfectly. For these reasons, and the added flexibility gained from the

inclusion of the Σ covariance matrix, we still believe our model to be useful in this

context. Additionally, the framework we have developed for providing uncertainty

quantification for predictions of baseball seasonal count outcomes is a novel contri-

bution to the study of baseball performance.

The application in this chapter is itself untouched, and we established the benefit of

focusing on the movement of players between NPB and MLB. The estimation results

tend to coincide with traditional thinking about the difference in leagues; that it is

easier to succeed as a power hitter in the Japanese Leagues. In part because of this,

there could be a bias introduced in terms of a player’s estimated random effect when

only estimated based on their performance in another league. Including this, there

are certainly other practical considerations and improvements that could be discussed

and we will attempt to flesh out in the final chapter.
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4. SUMMARY AND FUTURE DIRECTIONS

4.1 Summary

Baseball is a sport that can be broken down into a series of events (at bats) that have

a finite set of unique outcomes (e.g., strike out, single, or home run). Predicting a

season of these at bats (or the underlying probability vector) is of great interest to

those who construct baseball team rosters. In academia, however, predicting seasonal

performance has been primarily done on a univariate level. Furthermore, proprietary

baseball projection systems that work on the multivariate level do not usually supply

uncertainty quantification. This dissertation fills those voids. We also focus on the

unexplored problem of predicting players moving from Japan’s NPB to Major League

Baseball, as well as in reverse.

In the modeling of multivariate count data, the multinomial logistic-normal distri-

bution has been shown to be a very flexible model because of its ability to describe

both positive and negative correlations between the counts. The multinomial logistic-

normal distribution has yet to be utilized in a prediction context with longitudinal

data, and there has been little discussed on ways of assessing model fit. We use a

Bayesian version of this model to predict a season of counts in a longitudinal setting

and provides uncertainty quantification in the form of credible intervals.

Chapter 1 focuses on summarizing the state of the art in sports prediction, espe-

cially baseball, and discusses why there is a place for this type of projection system.

Specifically, one that is open source and provides a richer framework of uncertainty

assessment. Of the published projection results, only one has a methodology that is

open source or any form of uncertainty quantification. In the context of our specific



121

problem, that system, the Marcels, only predicts Japanese players coming to MLB at

the league average with a reliability score of 0. To this point, there is no published

system we are aware of which provides projections for players moving from MLB to

Japan’s NPB.

Also in Chapter 1, we discuss the need for hierarchical models to describe baseball

outcome data. In Section 1.4 we describe three candidate models, the multinomial-

Dirichlet, multinomial-nested Dirichlet, and multinomial logistic-normal, and discuss

their relative correlation structures for the counts. We compare the fit of these models

to some baseball data in Section 1.5 and find that the multinomial logistic-normal

distribution fits the data better than either the multinomial-Dirichlet or multinomial-

nested Dirichlet. The multinomial-Dirichlet is incapable of modeling the positive cor-

relations among outcomes. The multinomial-nested Dirichlet is more flexible but it

relies on predetermining the nesting structure, which is non-trivial, especially for a

large number of outcomes. For these reasons, we focus on the multinomial logistic-

normal as the hierarchical model of choice for our application.

Chapter 2 introduces our mixed effects multinomial logistic-normal model and subse-

quent Bayesian framework for estimation. The inclusion of a random effect vector to

model autocorrelation is explained and our Metropolis or Metropolis-Hastings within

Gibbs algorithm for estimation is outlined. Chapter 2 continues by outlining the var-

ious strategies for making predictions under the model framework, assessing model

fit, predictive accuracy, and uncertainty about predictions.

The third chapter begins with description and presentation of results from a sim-

ulation study where data are simulated under both the mixed effects multinomial

logistic-normal and mixed effects multinomial logit. After fitting both data sets with

both models, we show that the deviance information criterion is capable of discern-

ing the appropriate model fit, and that in the presence of additional variability in
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the underlying probabilities, the multinomial logistic-normal model is a better fit for

the data than the multinomial logit. We also give examples from the model fits of

predictions and credible intervals for the expected predicted count vector.

Chapter 3 continues with our real data application of the model, using collated data

from NPB and MLB of all players to have played in both leagues from before 2015.

We discuss the importance and novelty of addressing the problem of predicting per-

formance for those players switching between the leagues, followed by results from

fitting both our multinomial logistic-normal model and the multinomial logit model

to the data given two levels of dimensionality in the response vector of counts. We

found that in the lower dimension setting, the multinomial logistic-normal model

provides a better fit than the multinomial logit when two of the three outcomes of

interest are positively correlated. In the higher, ten dimensional setting, the differ-

ence is less stark, though signs in evaluating the predictive performance point to the

multinomial logistic-normal giving a better estimate of uncertainty about expected

predicted performance than the multinomial logit.

We conclude in this chapter by discussing some of the work yet to be done in fully

realising the potential of this approach, including improvements to the methodology

as described in the earlier chapters, and extensions both within baseball and other

sports, and also other disciplines as well. We believe the model has merits in its

current form that further the state of prediction in baseball and contributes to the

development of hierarchical models for count vectors by describing the multinomial

logistic-normal distribution’s use in prediction of longitudinal data.
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4.2 Future Work/Directions

In this section we describe some possible improvements to our methodology as it

currently stands, followed by application extensions which may benefit from use of

the method.

4.2.1 Improvements to Methodology

Individual Aging Effects

In terms of our application to baseball prediction, there could be reason to believe

that different players age in different ways over the course of their careers, leading to

the natural question of including individual age effects instead of an overall effect as

we have done in this work.

In some baseball prediction research (Berry et al., 1999; Fair, 2008) it has been sug-

gested that players do not all age similarly in ability. In our application we restricted

aging to have a fixed quadratic relationship with the outcomes of interest. Our ran-

dom effect term allows players to be constantly above or below this average age trend,

but does not allow the shape of the trend to differ from player to player. Berry et

al. (1999) assumed a different aging function for each player i, where the function of

a player’s age is modeled with a flexible random curve. In their paper, they denote

g(a) the mean aging curve for the singular metric, for instance home run rate, and

define a peak age ǎ where they assume g (ǎ) = 0, and their aging function follows:

fi(a) =


g(a)ψ1i if a < aM

g(a) if aM ≤ a ≤ aD

g(a)ψ2i if a > aD

(4.1)
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where ψi = (ψ1i, ψ2i) represents player i’s variation from the mean aging curve, and

the values aM and aD correspond to cutoff ages for a “maturing” and “declining”

phase in the player’s career. In this way, players are assumed to mature at different

rates until they reach the peak age, and decline at different rates until the end of

their career. This does, however, imply at least an additional 2 parameters per

player per log-odds in the context of our multinomial logistic-normal model, and a

corresponding non-trivial addition to the computation time required to fit the model.

However, if that shortcoming could be overcome, the potential benefits of more flexibly

modeling the aging trajectory of player’s performance could prove to be quite valuable

in improving prediction.

Adjusting Random Effects

In our specific problem’s context, there are limitations in using a single random effect

vector to describe a player’s performance relative to the mean performance. It is

commonly accepted that the baseball played in NPB is on a slightly lower level than

that played in MLB, and our results in terms of the recovered league effects bear that

out to some extent. It is perhaps not reasonable to assume that a player whose ability

is above average in one league should similarly be equally above average in ability in

the other. While we expect there to be a fixed effect of league on player performance,

however, there may be some interaction between player and league.

This is especially a potential issue in the prediction of new players when switching

leagues. A single random effect vector per player describes that player’s performance

relative to the mean over their career, whether in one league or another. When

predicting new player’s however, they have not yet moved into a new league, so an

estimated random effect will only represent their performance relative to their initial

league. Our model thus assumes identical players moving to the same league from

different leagues will maintain their relative performance, and might tend to project
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the player from the weaker league to perform better than his identical counterpart.

We still believe this to be a more informative approach than not using a random effect

to predict new league performance. Generally, the league covariate effects are larger

in magnitude than the player random effects, so the changing in league drives most

of the change in performance while the random effect still does the job of building in

correlation among outcomes over time.

It could still be useful to investigate alternative approaches, one option could be to

initially estimate separate random effects for the players used to fit the model, whose

careers in both leagues are used. After the initial model is fit, and each player has

the number of random effects corresponding to each league, it could be possible to

identify which of those players are most similar to the out-of-sample player whose

season in a new league is being predicted. Once this “distribution” of similar players

is identified, one can define a subsequent distribution of random effects for the new

league based on these similar players from which the new player’s random effect in

the new league may be estimated. There are several options for identifying these sim-

ilar players, whether via some non-parameteric clustering algorithm, or something as

simple as a similarity score, such as one developed by Bill James (James, 1994), which

is currently used in baseball circles already to rank similar MLB players (Baseball-

Reference, 2019).

Another potential option would be to include a fixed inflation factor attached to

league that is modeled as part of a player’s random effect after they switch leagues.

In the simplest case, this would mean including two extra parameters, one for play-

ers moving from MLB to NPB, and one for NPB to MLB. Instead of a constant ψi,

the random effect in player-seasons after switching leagues would become γMLBψi for

NPB players moving to MLB and γNPBψi for the converse.
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Thus γLeague would be an inflation or deflation factor that is modeled on their perfor-

mance after switching leagues. This way, after a player’s random effect is estimated

based on their performance in their original league, the fixed inflation factor that was

estimated in the model could be brought in to scale the random effect corresponding

to the switch being made. The simplest case of MLB-NPB, NPB-MLB would bring

in only two new parameters, while accounting for moving between (or within) both

groups of sub-leagues (AL, NL) and (CL, PL) would mean eight (or 12).

Additional Covariates/Interactions

A simpler option to account for the possible effect discussed in the previous subsection

is to include a “home” covariate in the model, which identifies where the player comes

from. The idea being that where a player was trained, either in the NPB or MLB,

could have some impact on their performance throughout their career. We tried this

for the three category real data and the posterior distribution for the fixed effect was

significantly different from zero, while it had an impact on the significance of the age

effect terms. This is worth investigating further. This is just one of the additional

covariates that might be useful to include in a more fully realised addressing of the

problem.

Another interesting covariate could be an indicator representing whether a player has

previous international experience. This could help address the uneasily tested, but

certainly present culture shock issue. If a player has at some point in their life spent

time in another country, it could impact their ability to more seamlessly adapt to a

new cultural environment and aid in their success on the field. There is obviously

some limit to the data collection in terms of measuring this variable.

One option could be to simply look at whether a player has spent time in another

foreign league. Occasionally, both NPB and MLB teams send young players to play
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baseball over the winter either in the Dominican Republic, Mexico or Puerto Rico.

There are also professional and semi-professional leagues in many countries across the

globe in which players may have played before. Identifying players who have prior

international experience, and may be more inclined to be comfortable in another

country, could be beneficial to identifying future success.

Finally, the model fit in Chapter 3 is a strictly additive model, with the only non-

linear term being the quadratic age effect. It could be useful to investigate possible

interactions among the covariates, especially concerning the three covariates age,

league and position. It makes some sense that players age may impact performance

differently in different leagues or at different positions, and that players of certain

positions are more likely to succeed in a different league. The inclusion of additional

covariates and interactions necessarily increases computation time, however, which is

not a theoretical concern, but for the time being is a practical one.

Improving Computational Efficiency

Improving computational efficiency of Bayesian multinomial logistic-normal mod-

els themselves is an active area of research. To fit the model, we currently uti-

lize a Metropolis-within-Gibbs algorithm. On their own, both the Metropolis (or

Metropolis-Hastings) and Gibbs sampling algorithms, while guaranteed to converge,

can be quite inefficient, depending on a properly tuned step-size parameter to ade-

quately explore the entire distribution space. Hamiltonian Monte Carlo (HMC) was

devised (Duane et al., 1987) to reduce correlation between samples in MCMC and

improve mixing and efficiency. The reduction in correlation comes from the time

evolution of the Markov chain as defined by a set a set of derivative equations, which

form the Hamiltonian. We have not yet explored the feasibility of calculating the

Hamiltonian in our mixed-effects multinomial logistic-normal setting, though HMC

has been used in similar models (Äijö et al., 2017; Silvernamn et al., 2018), and there
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remains the potential that moving to a Hamiltonian MCMC approach instead of the

current Metropolis approach will speed up convergence of the overall chain. However,

there may be an even more efficient alternative to HMC.

A current working paper (Silverman et al., 2019) describes a framework for writing

MLN models as marginally latent matrix-t process (LTP) models. In their real data

analysis, they show their LTP approach with a Laplace approximation provided sim-

ilar estimates to a HMC approach, and did so more than 1000 times faster. This was

with a subset from data set studying the microbiome in Crohn’s disease patients, and

included 83 samples, 49 taxa (categories) and 4 covariates. In terms of our applica-

tion, baseball data involves data sets with greater number of observations and more

covariates (though fewer categories). Silverman et al. (2019) showed via simulation

study that the gains in efficiency of their Laplace approximation approach were con-

sistent as the number of samples, covariates and dimension of categories increased.

This LTP model framework thus promises to vastly improve computational efficiency

so that, in our methodology, prediction can occur at a faster rate.

4.2.2 Extensions in Sports Research

Minor and Other Foreign Baseball Leagues

Our main goal in application is to predict performance of baseball players moving

between NPB and MLB leagues while including quantification of uncertainty about

that prediction. A natural extension is to broaden the scope to include players from

the Minor Leagues in America, as there are many players who move to NPB, or other

foreign leagues, without ever playing in MLB. Japanese teams also often target the

best players in the minor leagues to recruit. Minor league players serve to make more

money in Japan than in the minor leagues, while playing at a higher level and in front

of more fans. NPB teams would certainly find a model which includes minor league

players to be beneficial. Given data access, this model would be easily extended to
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include the minor leagues, or even other foreign leagues such as the Korean Baseball

Organization (KBO) or Cuban Nacional Series (CNS). The top major leagues in

those two countries, both of which have seen star players move to MLB and succeed

(examples include Hyun-Jin Ryu from KBO and Jose Abreu from CNS), and within

which, especially the KBO, former MLB players have found great success (including

Eric Thames, who has since moved back to MLB from KBO).

Cricket

The man credited with inventing baseball’s box score, Henry Chadwick, adapted it

from a cricket scorecard. This underlies the connection between the two most popular

bat-and-ball games in the world; the only mainstream ball games where the defense

begins a possession with the ball. As in baseball, for each ball bowled (equivalent to

a pitch), the batsmen or striker attempts to strike the ball out of the reach of fielders

so his team may score runs. In cricket, there are fewer possible outcomes per ball

faced (the equivalent to a plate appearance) than in baseball, though the nature of

the game means that any number of runs may be scored per strike of the ball, as

opposed to baseball where the limit is four.

This is the main difference that may make this methodology’s application to cricket

less useful. Since any number of runs may be scored per ball faced, the main statistics

kept on batsmen deal with the number of runs per ball, which do not face the same

constraint of adding up to the number of balls faced (consider RBI in baseball). It

would still be possible to define outcomes with this constraint for batsmen, but they

may not be as useful as they are in baseball. For bowlers (or the equivalent of the

pitcher) however, there is a limit of ten ways in which a batter may be dismissed (be

put out, in baseball terms), and these directly impact the style and performance of

bowlers.
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There are, as in baseball, numerous leagues for Cricket players around the world, with

varying levels of skill in each. Predicting performance for players moving between

them during league off-seasons benefits the teams in those leagues.

Timed Sports

With sports that necessarily rely on a clock to determine length of play, and which

are less obviously discrete in nature than baseball or cricket, there is still a frame-

work within which outcomes could be defined. Consider in basketball, on a singular

possession for a player in a game, there are a discrete set of outcomes which could

occur: score 2 points, score 3 points, missed shot, assist a score, other pass, turnover,

commit offensive foul, draw defensive foul. Data of this granularity may be difficult

to come by, but even on a play-by-play basis, instead of possession, a discrete set of

outcomes may be defined. However, the clock is a major factor in the sport, and a

discrete set of mutually exclusive outcomes fails to incorporate time.

Likewise American football, the most popular sport in the United States, may be

delineated on a play-by-play basis by certain outcomes, but also has a time component

that would not be capable of being modeled in our context. In addition, each play in

football produces a spatial result, in the form of yardage. In single yard increments,

it would be possible to include these in a discretization of football outcomes, but it

would greatly expand the number of possible outcomes to account for the 100 yard

length of the football field.

4.2.3 Extensions to Other Disciplines

Clinical: Microbiome Composition

The field in which the multinomial logistic-normal distribution receives the most

attention, without a doubt, is the study of microbial taxa and their composition
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in the gut. Numerous papers in this research area have already been mentioned,

including some very recent and state of the art studies (Xia et al., 2013; Grantham

et al., 2017; Ren et al., 2017; Li et al., 2018; Silverman et al., 2019). The multinomial

logistic-normal model’s place in this field is firmly in place, but most of the research

in microbial composition analysis is focused on inference, even when data is collected

in a time series context (Äijö et al., 2017). Prediction is a secondary concern when

the main interest is examining treatment or covariate effects on compositions which

have a direct impact on health, but there could be a place for prediction of the

microbiome based on application of new treatments. Especially if hoping to predict

the effect a treatment may have on a patient’s microbial gut composition when moving

from an original treatment, our prediction scheme could serve as a stepping point for

improving that area of research.

Ecological: Species’ Habitat Composition

Much of the research done in modeling habitat composition has been focused on cross-

sectional experimental data (Billheimer and Guttorp, 1995; Billheimer et al., 2001;

Brewer et al., 2005). We provide a framework for making predictions in a longitudinal

observational data setting, which could easily be applied to the problem of modeling

species’ habitat composition. There are many factors which may have an impact on

the composition of species in an area of land or sea, which could change over time;

weather and proximity of human habitation being most obvious. The multinomial

logistic-normal model has already been used in this context due to its ability to

handle overdispersion of counts which is often found in ecological systems (Billheimer

et al., 2001). There are ways it may be useful to make predictions about such data,

including determining the ideal timing for species reintroduction to a habitat. Our

prediction and uncertainty quantification framework could be used to compare the

range of predicted species’ counts in two different ecological systems, which may help

make decisions related to human use of those systems.
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A. MIXED-EFFECTS MULTINOMIAL LOGIT MODEL

A.1 Bayesian Mixed-Effects Multinomial Logit Model

In order to properly benchmark the Bayesian mixed-effects multinomial logistic-

normal model framework described in this chapter, we establish an equivalent model

for data with a single random effect which does not include the additional variability

described by Σ. Data are generated under a mixed-effects multinomial logit model

following the same set-up as in the multinomial logistic-normal, except that the model

for the log-odds differs:

Yij = Xijβ + ψi (A.1)

This may seem a trivial change from the single random effect multinomial logistic-

normal model, but the removal of the ε error term in some ways makes computation a

less efficient task than in the multinomial logistic-normal. Mixed-effects multinomial

logistic regression has been addressed previously in both frequentist (Hartzel et al.,

2001; Hedeker, 2003) and Bayesian (Pettitt et al., 2006) settings. In order to properly

compare our multinomial logistic-normal model, we present a corresponding Bayesian

hierarchical model for the mixed-effects multinomial logit, with a single random effect.

The removal of Σ presents some issues in the sense that both fixed and random effects

may no longer be updated jointly, as they are the only two components that make

up the underlying log-odds. Due to this, it is convenient to treat the intercept as a

separate entity from the other fixed effects, and set it as the prior mean of the random

effects. We retain the improper uniform prior on the β parameters, and the disperse

inverse-Wishart prior on the random effects covariance matrix Φ, and set the prior
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mean of the random effects to be the overall intercept, which we will denote µ. So,

the log-odds are modeled with β not including an intercept:

ψi ∼ Nd (µ,Φ)

p(µ, β) ∝ 1

Φ ∼ Wishart−1
(
ν = d,Λ = Id + 1d1

T
d

)
Similar to the mixed-effects multinomial logistic-normal, either numerical integration

or MCMC methods are required to sample from the conditional posteriors of the

random and fixed effects.

A.2 Outline of Gibbs Sampler for Mixed-Effects Multinomial Logit Model

We describe a Metropolis-within-Gibbs sampler for fitting the mixed-effects multino-

mial logit model with a single random effect. This algorithm is used in comparing

model fit between data simulated under the two data archetypes, multinomial logistic-

normal versus multinomial logit, in the simulation studies in Chapter 3.

(1) Initialize starting values, t− 1 = 0, µ0, β0, ψ0
i , and Φ0.

(2) Update of ψi:

ψti |Xi, µ
t−1, βt−1,Φt−1,Wi ∝ p(Wi|Xi, µ

t−1, βt−1, ψti)

× f(ψti |Xij, θ
t−1
i = (µt−1, βt−1,Φt−1))

via Metropolis algorithm.

p(Wi|Xi, µ
t−1, βt−1, ψti)× f(ψti |Xij, θ

t−1
i ) ∼

ni∏
j=1

Multid+1(PAij,Π(Y t
ij))

×Nd(µ
t−1,Φt−1)
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Where Y t
ij = µt−1 +Xijβ

t−1 + ψti , and

Π(Y t
ij) =

(
ey

t
ij1

1 +
∑d

k=1 e
ytijk

, ...,
1

1 +
∑d

k=1 e
ytijk

)
(A.2)

With multivariate normal proposal distribution:

ψti ∼ Nd

(
ψt−1
i , cψΦt−1

)
Where cψ is a scalar used to control the “step-size” of the proposal distribution.

(3) Update of Φ:

Φt|Ψt ∼ Wishart−1
(
ν ′2 = ν2 +m,Λ′2 = Λ−1

2 + ΨtΨtT
)

Where:

Ψt = (ψt1, ..., ψ
t
m)T (A.3)

(4) Update of µ:

µt|Ψt,Φt ∼ Nd

(
Ψ̄t, Φt

m

)
Where:

Ψ̄t =
1

m

m∑
i=1

ψti (A.4)

(5) Update of β:

For each vector βk in the matrix β update given β−k, the matrix with column k

removed, corresponding to the conditional likelihood (Holmes and Held, 2006):

l
(
βtk|βt−1

−k ,Wijk, ψ
t
i

)
=

m∏
i=1

ni∏
j=1

(
eη

t−1
ijk

1 + eη
t−1
ijk

)Wijk (
1

1 + eη
t−1
ijk

)PAij−Wijk

(A.5)

Where:

ηt−1
ijk = Xijβ

t−1
k + ψti − Ct−1

ijk (A.6)

Ct−1
ijk = log

(
1 +

∑
l 6=k

eXijβ
t−1
l +ψti

)
(A.7)
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via Metropolis algorithm with multivariate normal proposal distribution of di-

mension p, the number of covariates (not including the intercept):

βtk ∼ Np

(
βt−1
k , cβΣt−1

β

)
Where cβ is a scalar used to control the “step-size” of the proposal distribution

Σt−1
β can be an proposal covariance matrix. One option is to use Pólya-Gamma

auxiliary variables (Polson et al., 2013) to estimate a reasonable shape of the

covariance matrix:

Σβ; t− 1 = XTΩt−1
k X (A.8)

Where Ωt−1
k = diag

(
{ωt−1

ijk }
)
, and ωt−1

ijk are Pólya-Gamma auxiliary variables

given βt−1
k :

ωt−1
ijk ∼ PG

(
PAij, η

t−1
ijk

)
(6) Set t = t+ 1, repeat steps (2) - (5) until convergence criteria met.

In practice, this Gibbs algorithm is somewhat slow mixing in the parameters, but the

complete data posterior log-likelihood tends to converge quickly.
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B. ALTERNATIVE PROPOSAL SCHEMES

B.1 Random Walk Normal Proposal

The first proposal scheme falls under a Metropolis framework, in which due to sym-

metry of the proposal distribution, detailed balance is natively satisfied. In essence,

each player-season’s latent variables are following a multivariate Gaussian random

walk, where the next value of Yij is determined only by the previous value. The

proposal scheme proceeds:

(1) Propose Y t
ij|Y t−1

ij ,Σt−1 ∼ Nd

(
Y t−1
ij , cΣt−1

)
Where c is a scalar used to control the “step-size” of the random walk.

(2) Accept with probability α = min

{
1,

f(Y tij |Xij ,Zij ,θ
t−1
i ,Wij)

f(Y t−1
ij |Xij ,Zij ,θt−1

i ,Wij)

}
.

The advantages of this proposal scheme involve the conceptual simplicity and a slight

computation time advantage over the schemes that follow. However, the gains in

computation time do not tend to make up for losses in correlation among the samples

from the target distribution. Auto-correlation functions can show that under the

same data set and same settings, this Normal Random Walk proposal scheme tends

to mix poorly.

B.2 Static Beta Proposal

Ignoring the correlation between outcomes when proposing, which the normal random

walk proposal does not do, or instead proposing based on probabilities the latent

variables imply rather than the latent variables themselves, can be shown to improve

mixing at a small cost of computation time. Thus the final two proposal schemes deal

with proposing log-odds or their corresponding probabilities based on independent

beta distributions for each probability.
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In the first case, we recognize that we can, for the purposes of proposing, redefine

each outcome count as having come from a conditional binomial distribution, and the

resulting probability from a beta distribution.

wijk| {wijl}l /∈{k,d+1} ∼ binomial

PAij − ∑
l /∈{k,d+1}

wijl, π
∗
ijk =

πijk
πijk + πij(d+1)



π∗ijk =
eyijk

1 + eyijk
∼ beta

(
α∗ijk, β

∗
ijk

)
(B.1)

This allows us to define our second proposal scheme, which will operate under a

Metropolis-Hastings framework to account for the non-symmetry of the beta proposal

distribution:

(1) Propose π∗
t

ijk|Xij, Zij, θ
t−1
ik ,Wij ∼ beta

(
wijk + α∗

t−1

ijk , wij(d+1) + β∗
t−1

ijk

)
Where α∗

t−1

ijk = 1+e
µt−1
ijk

cσ2t−1
k

+ e
µt−1
ijk

1+e
µt−1
ijk

, β∗
t−1

ijk = α∗
t−1

ijk e
−µt−1

ijk , µt−1
ijk = Xijβ

t−1
k + Zijψ

t−1
ik ,

σ2t−1

k is the (k, k)th element of Σt−1, and c is a scalar used to control the “step-

size” of the random walk.

(2) Convert ytijk = logit(π∗
t

ijk).

(3) Accept with probability α = min

{
1,

f(Y tij |Xij ,Zij ,θ
t−1
i ,Wij)

f(Y t−1
ij |Xij ,Zij ,θt−1

i ,Wij)
× q(πt−1

ij |Xij ,Zij ,θ
t−1
i ,Wij)

q(πtij |Xij ,Zij ,θ
t−1
i ,Wij)

}
Where q

(
πtij|Xij, θ

t−1
i ,Wij

)
∼
∏d

k=1 beta
(
wijk + α∗

t−1

ijk , wij(d+1) + β∗
t−1

ijk

)
.
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C. AITCHISON’S R2 AND SUM OF COMPOSITIONAL ERRORS

C.1 Formulation

It is possible to define distance metrics on the simplex, which can be used for assessing

predictive accuracy of competing models. Aitchison (1986) suggests two measures for

assessing the amount of explained variability in a model for compositional data. The

first is an R2 type measure which attempts to estimate the percentage of variation

explained by a proposed model. The second is based on Aitchison’s distance, a dis-

tance metric defined on the simplex, called the Sum of Compositional Errors (SCE).

In both cases, a log-transform is used on odds of observed data, necessitating an

adjustment for zero counts.

Aitchison’s R2, which we will denote aR2, is based on a measure of total variability

dependent on the variation matrix of the transformed log-odds:

T (W ) = [τkk′ ] =

[
var

(
log

(
wk
wk′

))]
(C.1)

where W is the data. This matrix is symmetric with zero diagonal elements. The

total variability measure Aitchison describes is defined:

t (W ) =
1

d

∑
k<k′

τkk′ =
1

2d

∑
T (W ) (C.2)

where d is the dimensionality of the compositional vector. Finally, Aitchison’s R2

measure is simply the ratio of total variability of the observed data and fitted data:

aR2 =
t(Ŵ )

t (W )
(C.3)
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where Ŵ is the fitted data. This measure is attractive in that the interpretation is

equivalent to that of R2 in traditional ordinary least squares.

The Sum of Compositional Errors, in contrast, is the analogue to the Sum of Squared

Errors (SSE) in traditional linear modeling. It is based on Aitchison’s distance, a

measure of distance between two compositional vectors on the simplex, which could

be considered as an alternative residual to the squared Mahalanobis distance, between

observed data W and fitted data Ŵ :

∆s

(
W, Ŵ

)
=

 d∑
k=1

(
log

(
ŵk

g(Ŵ )

)
− log

(
wk

g (W )

))2
 1

2

(C.4)

where g (W ) = (w1w2 · · ·wd)1/d is the geometric mean of the vector W . Thus, if this

measure can be considered the residual for player i in season j, the sum for all player-

seasons would be the analogue to the SSE, called SCE, which serves as a measure

of unexplained variability in the model:

SCE =
m∑
i=1

ni∑
j=1

∆s

(
Wij, Ŵij

)
(C.5)

In each of the above, the result will be the same whether working with the count

vector W or a probability vector Π. Based on posterior predictive mean count vec-

tors for each player-season being predicted, the above measures may be treated as

measures of predictive accuracy. Unlike the squared Mahalanobis distances described

in Chapter 2, these measures do not take into account the correlation which exists

between the outcomes. This has the potential to under-represent models which seek

to better account for that correlation, such as the multinomial logistic-normal.
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C.2 Simulation Study

Tables C.1 through C.4 report Aitchison’s measure of total variability for the observed

and fitted data, t(W ) and t(Ŵ ), Aitchison’s R2, aR2 and the Sum of Compositional

Errors, SCE respectively for the two training data sets and the two model fits.

Table C.1.
Estimated total variability in observed counts, t(W ) for training data sim-
ulated under MLN and M-Logit models

t(W ) MLN Data M-Logit Data

True Variability 0.7124 0.6206

Table C.2.

Total variability in posterior predicted mean counts, t(Ŵ ) for training data
simulated under MLN and M-Logit models and fit with both

t(Ŵ ) MLN Data M-Logit Data

MLN Fit 0.1129 0.1196

M-Logit Fit 0.1553 0.1342

Table C.3.
Aitchison’s R2, aR2, for training data simulated under MLN and M-Logit
models and fit with both.

aR2 MLN Data M-Logit Data

MLN Fit 0.1585 0.1927

M-Logit Fit 0.2180 0.2163
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Table C.4.
Sum of Compositional Errors, SCE, for training data simulated under MLN
and M-Logit models and fit with both.

SCE MLN Data M-Logit Data

MLN Fit 2907.82 2457.86

M-Logit Fit 2894.52 2452.80

These two measures of predictive accuracy do not find a great deal of difference

between the predictive accuracy of the posterior predicted means for the MLN or

M-Logit training data sets, though in both cases the measures tend to favor the M-

Logit fit of the data sets. However, for all the above, we are examining model fit

and predictive accuracy of data that was used to fit the models in question. A much

more interesting problem is how the above metrics perform with out-of-sample data,

namely the test sets constructed of the 105 player’s held out of the initial model fitting.

Finally, we can also investigate whether the Aitchison’s R2 and the Sum of Compo-

sitional Errors metrics tell us something about the predicted player-seasons.

Table C.5.
Aitchison’s R2, aR2, for the posterior predictive mean of 105 predicted
seasons of test data simulated under MLN and M-Logit models

aR2 MLN Data M-Logit Data

MLN Fit 0.1140 0.1712

M-Logit Fit 0.2077 0.2356
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Table C.6.
Sum of Compositional Errors, SCE, for the posterior predictive mean of 105
predicted seasons of test data simulated under MLN and M-Logit models

SCE MLN Data M-Logit Data

MLN Fit 66.68 54.38

M-Logit Fit 68.44 55.94

There is not a great deal of difference between the results of the two metrics for the

predicted player-seasons when compared to the results on the training data, except

perhaps that Aitchison’s R2 is somewhat larger for the M-Logit data being predicted

in both the MLN and M-Logit fits, and that the SCE for the both sets of data being

predicted is now smaller under the MLN fit than under the M-Logit fit. Recall that

these last two measures, aR2 and SCE, do not take into account the difference in

variability in the models the way DIC and the QQ-plot methods do.

C.3 Real Data Analysis

For the training data sets under both fits:

Table C.7.
Aitchison’s R2 and Sum of Compositional Errors for three category real
data training set fit under MLN and M-Logit models

MLN Model Fit M-Logit Model Fit

aR2 0.434 0.475

SCE 3232.73 3216.08

Using the posterior predicted means of the out-of-sample player-seasons, we may also

calculate aR2 and SCE for the two model fits.
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Table C.8.
Aitchison’s R2 and Sum of Compositional Errors for three category real
data test set under MLN and M-Logit models

MLN Model Fit M-Logit Model Fit

aR2 0.652 0.815

SCE 70.97 74.96

For the ten category training data:

Table C.9.
Aitchison’s R2 and Sum of Compositional Errors for ten category real data
training set fit under MLN and M-Logit models

MLN Model Fit M-Logit Model Fit

aR2 0.324 0.441

SCE 11222.54 11040.75

Ten category test data:

Table C.10.
Aitchison’s R2 and Sum of Compositional Errors for ten category real data
test set under MLN and M-Logit models

MLN Model Fit M-Logit Model Fit

aR2 0.345 0.388

SCE 273.48 282.35
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D. ADDITIONAL MODEL ESTIMATION RESULTS

D.1 Simulation Study

Implied Correlation Matrices

This represents, unconditional on the random effects, the covariance matrix of the

vector (WijHR,WijBB,WijOther,Wij′HR,Wij′BB,Wij′Other), for player i and seasons j

and j′.

Corr(WΛ
jj′) =



1 0.21 −0.46 0.64 0.16 −0.32

0.21 1 −0.96 0.16 0.34 −0.35

−0.46 −0.96 1 −0.32 −0.35 0.40

0.64 0.16 −0.32 1 0.21 −0.46

0.16 0.34 −0.35 0.21 1 −0.96

−0.32 −0.35 0.40 −0.46 −0.96 1



Corr(W Λ̂
jj′) =



1 0.20 −0.46 0.57 0.15 −0.29

0.20 1 −0.96 0.15 0.34 −0.35

−0.46 −0.96 1 −0.29 −0.35 0.40

0.57 0.15 −0.29 1 0.20 −0.46

0.15 0.34 −0.35 0.20 1 −0.96

−0.29 −0.35 0.40 −0.46 −0.96 1


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D.2 Real Data Analysis

Fixed Effects

Below we present first the posterior means for the fixed effects under the MLN model

fit, followed by the posterior means of the fixed effects under the M-Logit model fit,

for the ten category real data training set.

Table D.1.
Posterior mean of fixed effects under MLN fit of ten-category real data
training set

β.1 β.2 β.3 β.4 β.5 β.6 β.7 β.8 β.9

β0. -1.21 -2.49 -4.99 -3.01 -5.10 -4.24 -1.82 -4.43 -1.08

βheight. -0.01 0.02 -0.02 0.16 -0.19 0.08 0.05 0.00 0.10

βweight. 0.01 0.09 -0.15 0.17 -0.32 0.06 0.09 0.17 0.19

βage. -0.22 0.02 -0.68 0.19 -0.22 0.01 0.12 0.95 -0.41

βage2. 0.23 0.00 0.51 -0.12 0.05 0.04 -0.03 -0.92 0.37

βleft. -0.01 -0.09 0.10 -0.09 -0.15 0.00 0.12 -0.34 -0.03

βswitch. 0.02 0.02 0.28 -0.16 0.16 0.11 0.26 -0.11 0.10

βcl. 0.03 -0.12 -0.49 0.27 -0.35 -0.29 -0.19 0.14 0.04

βnl. 0.02 0.02 0.06 -0.11 0.03 -0.04 -0.02 0.01 -0.03

βpl. 0.03 -0.01 -0.49 0.36 -0.67 -0.17 -0.05 0.27 -0.05

βof. 0.03 0.04 0.22 0.11 -0.05 -0.02 -0.06 0.12 0.02

βdh. 0.01 0.11 -0.18 -0.07 -2.08 0.07 -0.04 0.18 0.36

βp. -0.15 -0.40 0.47 -1.12 3.87 -0.05 -0.57 -0.29 0.93
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Table D.2.
Posterior mean of fixed effects under M-Logit fit of ten-category real data
training set

β.1 β.2 β.3 β.4 β.5 β.6 β.7 β.8 β.9

β0. -1.17 -2.48 -4.79 -3.04 -4.73 -4.23 -1.85 -4.45 -1.03

βheight. -0.02 0.03 -0.02 0.18 -0.19 0.08 0.05 0.09 0.16

βweight. 0.03 0.06 -0.11 0.05 -0.22 -0.03 0.06 0.10 0.09

βage. 0.03 0.13 -0.15 0.58 -1.18 0.18 0.29 0.20 -0.20

βage2. -0.04 -0.16 -0.09 -0.59 1.03 -0.14 -0.27 -0.21 0.19

βleft. 0.00 -0.10 0.09 -0.09 -0.22 0.03 0.07 -0.16 -0.07

βswitch. -0.03 -0.06 0.06 -0.19 0.01 -0.03 0.10 -0.10 -0.13

βcl. 0.06 0.07 -0.39 0.60 -0.42 -0.08 0.04 0.43 0.10

βnl. -0.01 0.04 0.02 0.00 -0.14 0.02 0.07 0.09 0.03

βpl. 0.01 0.09 -0.43 0.58 -0.53 -0.08 0.14 0.47 0.02

βof. 0.00 -0.01 0.11 0.03 -0.08 -0.05 -0.06 0.04 0.01

βdh. 0.00 0.02 -0.06 -0.11 -0.18 0.10 0.08 0.07 0.14

βp. -0.24 -0.62 -1.16 -1.58 3.62 -1.19 -0.71 -1.03 0.82
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E. ADDITIONAL PREDICTION RESULTS

E.1 Simulation Study

Prediction intervals for player 1 and 2 are presented in table and radar chart form.

Table E.1.
95% prediction interval for the posterior predicted mean of new player i′ = 1
season j′ = 10

95% pred int HR BB Other

lower bound 0 1 222

upper bound 13 22 248

Figure E.1. Radar plot showing 95% prediction interval (blue dashed lines)
for the posterior predicted mean versus the observed count (solid red line)
of player i′ = 1
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Table E.2.
95% prediction interval for the posterior predicted mean of new player i′ = 2
season j′ = 4

95% pred int HR BB Other

lower bound 0 5 209

upper bound 29 57 270

Figure E.2. Radar plot showing 95% prediction interval (blue dashed lines)
for the posterior predicted mean versus the observed count (solid red line)
of player i′ = 2

For both players, the prediction interval covers the true value, and it is plain to see

the difference in uncertainty. However, the width of the interval is not terribly useful;

telling a manager that a player is predicted to hit between 0 and 29 home runs over

279 plate appearances this season is somewhat reductive. There is also quite a bit of

overlap between the two player’s prediction intervals, making comparing the relative

uncertainty difficult. This motivates our predominant use of the credible intervals

about the player’s expected performance.
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E.2 Real Data Analysis

Predicted versus Observed plots for the ten category study:

Figure E.3. Predicted versus observed counts of each category for out of
sample players from MLN fit of ten categories
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