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ABSTRACT

Wilfong, Gabriel J. Ph.D., Purdue University, August 2019. Modeling and Analysis of
Ground-based Autonomous Agricultural Vehicles. Major Professor: John Lumkes.

In the years to come, a growing global population will require more crop pro-

duction than ever before. As technological advances improve across all industries,

autonomous agricultural vehicles (AAVs) can be part of the solution to the rising de-

mand for food. By improving and transforming conventional farming methods, AAVs

have the potential to transform the way farming operations are completed. AAVs are

a class of robotic machines that have the ability to complete agricultural tasks with-

out requiring direct and constant control of a human operator. By removing the need

for an operator, these agricultural robotic machines allow for new vehicle designs and

new opportunities for different vehicle configurations and sizes.

A simulation model was developed that calculates the energy requirements of

AAVs operating on row crops. This deterministic model was used to quantify the

energy needs and energy expenditures of agricultural vehicles, and to investigate the

effects of using AAVs in lieu of conventional human-operated agricultural machinery.

The energy model was demonstrated using a pre-defined scenario of a typical row-

crop farming operation in the Midwest U.S. The purpose of the case study was to

compare a conventional crop production operation with operations that have imple-

mented autonomous machines. Four general vehicle configurations were chosen based

on the traction machine size: large tractors (e.g., greater than 60 kW), small tractors

(e.g., less than 60 kW), utility vehicles (e.g., John Deere Gator), and single row ma-

chines. The complete crop production operation was based on a farm size of 607 ha

(1,500 acre) with half the land devoted to corn production. The four main operations

were fertilizer application, pesticide spraying, no-till planting, and harvesting.
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First, the energy model was used to compare a whole farm operation with three

different machine configurations: using all conventional large machines, using all au-

tonomous large machines, and using all autonomous smaller machines (≈55 kW trac-

tor). The results show that from an energy standpoint, the most significant savings

comes from the decreased amount of agrochemical application associated with AAVs.

The total energy consumption of the large tractor AAV configuration is 36% less than

the conventional operation (11,081 MJ/ha vs. 7,090 MJ/ha).

In order to have a better perspective on the effects of using AAVs, further analysis

was conducted on an individual operation basis: fertilizing, pesticide spraying, no-till

planting, and harvesting. Because AAVs can work 24-hours per day, the fertilizing

operation for the single large tractor AAV could be completed in 1.6 working days,

as opposed 2.4 working days for the conventional machine. It only required two small

tractor AAVs to meet or exceed the performance of the conventional machine, yet for

the same amount of money, four to five small tractor AAVs could be purchased.

The greatest benefit to utilizing AAVs is the intelligent application of pesticide,

which can allow for 65–95% reduction in chemical use. The spraying operation high-

lighted the advantages of large machines (conventional and autonomous), namely

speed of operation and width. It takes two small tractor AAVs, seven utility AAVs,

or 12 single-row AAVs to match their performance.

For the no-till planting operation, two small tractor AAVs, seven utility AAVs, or

39 single-row AAVs are required to match the performance of conventional machinery.

However, for the same cost as the conventional machine, six small tractor AAVs, 16

utility AAVs, or 55 single-row AAVs could be purchased. The benefit of using higher

numbers of AAVs is seen in the amount of time required to complete the planting

task, where the swarms of AAVs could finish planting in nearly 1/4 of the time.

Harvesting was previously analyzed during the whole farm scenario. In general,

the energy consumption and costs are relatively the same between the conventional

machine and the large AAV. The advantage of the autonomous harvesting is that

is can operate continuously throughout the night. Continuous operation is possible
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for this scenario because corn can be harvested at night. However, soybeans cannot

because the onset of dew at dusk does not allow for proper processing of the crop.

Along with the energy model, crop production efficiency metrics were studied that

provided an objective method of analyzing the advantages and disadvantages asso-

ciated with replacing and/or augmenting conventional farming vehicles with AAVs.

Energy-per-unit-area shows the amount of energy that is consumed over the entire

field, regardless of the task time required. Because labor energy consumption is in-

significant compared to the other three inputs, energy-per-unit-area is also indepen-

dent of the number of machines simultaneously in use. Working days and machinery

capital cost are other metrics that proved beneficial when comparing AAVs to con-

ventional machines.

Finally, a modeling tool was developed and demonstrated that allows a user to

interact with the energy model in an intuitive way. Creating the modeling tool in

Microsoft Excel allows for easy distribution to a wide audience, as opposed to using

a more expensive software package. The energy model workbook is composed of five

spreadsheets that contain instructions, inputs, outputs, and supporting data tables.

A GUI was created using Microsoft Excel VBA that lets the user interact with an

event-driven program. Data sets can easily be created and modified for the purpose of

evaluating different farming operations. Additionally, options within the GUI allow

for parameter studies where multiple data sets can be instantly created in order to

analyze the effects of changing a single variable.



1

1. INTRODUCTION

In the years to come, a growing global population and an increase in biofuel con-

sumption will require more crop production than ever before. By the year 2050, it is

estimated that the global population will reach over 9 billion people and will require

approximately double the amount of rice, wheat, maize, and soybean compared to

2013 (Ray et al., 2013; Godfray et al., 2010). One approach to this problem is in-

creasing the amount of land used for food production. However, studies have shown

that increasing crop yields is a more sustainable way towards meeting future needs

and ensuring global food security.

As technological advances improve across all industries, autonomous agricultural

vehicles (AAVs) can be part of the solution to this crop production problem. By

improving and transforming conventional farming methods, AAVs have the potential

to greatly increase crop yields while also decreasing the overall environmental impact

of farming. AAVs are an emerging class of robotic machines that have the ability

to complete agricultural tasks without requiring the direct and constant control of

a human operator. By removing the need for a human operator, these agricultural

robotic machines allow for new vehicle designs and new opportunities for different ve-

hicle configurations and sizes. In the future, AAVs will be used for various tasks such

as intelligent weeding, targeted microspraying of fertilizer and pesticide, irrigation,

planting, harvesting, and transportation.

This research investigates the effects of agricultural robots on the production effi-

ciency of farming operations and proposes different robotic vehicle architectures that

will lead to increased crop yields, increased production efficiency, and reduced envi-

ronmental impact of farming. While machines are used for many different functions

and tasks on a typical crop farm, the scope of research has been narrowed to focus

on ground vehicles that operate primarily on row crops.
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By modeling the functions and tasks of a robotic vehicle, along with crop behav-

ior, the production efficiency can be calculated and compared to conventional farming

vehicle techniques. Examples of efficiency metrics could include crop yield per hu-

man capital or volume of irrigation water per field area. The purpose of calculating

various production efficiencies is to give a better overall picture of the advantages

or disadvantages associated with replacing and/or augmenting conventional farming

vehicles with AAVs. Once various models are formed, numerous parameters can be

changed in order to find optimized configurations and designs of robotic agricultural

machines.

Ultimately, there is a growing need for increasing global food production to pro-

vide for future generations. This work will assist in identifying key areas of vehicle

improvement and new farming methods that will result in increased crop yields, in-

creased production efficiency, and a reduction of the overall environmental impact of

farming.

1.1 Research Objectives

This research has three primary objectives. The first objective is to develop a sim-

ulation model of AAV energy requirements. This model will follow standard methods

of predicting and quantifying energy needs of agricultural vehicles, specifically ground

vehicles that operate primarily on row crops. A full energy balance will not be ana-

lyzed. Rather, the model will focus on the various inputs necessary for autonomous

and conventional agricultural vehicles to complete desired tasks. By quantifying these

energy requirements, a greater understanding of the design and capabilities of AAVs

will be known.

The second objective is to create crop production efficiency metrics to be used

when comparing conventional agricultural machines with AAVs. These efficiency

metrics provide an objective method of analyzing the advantages or disadvantages as-

sociated with replacing and/or augmenting conventional farming vehicles with AAVs.
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Finally, the third objective of this research is to develop and demonstrate a mod-

eling tool that allows users to employ new and efficient methods of using AAVs in

the crop production process. By leveraging the energy model and efficiency metrics,

parameter studies and what-if analysis will be performed in order to highlight the

best use conditions for employing AAVs on farming processes.

1.2 Motivation

Global food security and global food production are issues that affect everyone.

As the global population ever increases, measures must be taken now in order to en-

sure sufficient food production and crop availability in the decades to come. Multiple

studies have shown the impending shortfall of food supply if current processes and

methods are unchanged. In addition to the need to increase food production, the

environmental impact of farming must be minimized. Energy usage, chemical appli-

cations, and tillage lead to increased carbon emissions, harmful runoff, and erosion.

Finally, fewer agricultural workers are available and labor shortages will continue to

become more prevalent in the future to come. One critical way of addressing these fu-

ture needs is to research the effectiveness of autonomous agricultural vehicles (AAVs).

This advanced technology will allow for gains in efficiency and effectiveness of farm-

ing operations and help prepare crop production for future demands. This project

is significant because it will quantify the requirements of these new robotic farming

machines, create metrics to compare conventional agricultural vehicles with AAVs,

and introduce unique methods of using AAVs in the crop production process. This

research will build the foundation for AAV design and allow for AAVs to be a major

player in the effort to provide food for future generations while taking care of the

environment.
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1.2.1 Growing global demand for crop production

As the world population continues to grow, solutions to increased crop production

demands are necessary. It is estimated that the global population will reach over 9

billion people by 2050 (United Nations DESA, 2017). Along with increased global

population, overall socioeconomic level is expected to rise as well. These factors are

leading to an increased demand for more food and for higher quality food.

In the past 50 years, global population has grown from about 3.3 billion to 7.4

billion (Figure 1.1). Yet, global crop production has been able to keep pace and even

exceed population growth; in large part due to advanced farming practices and tech-

nologies along with an increased amount of arable land. With the world population

more than doubling in the last 50 years, total world crop production has increased

by 145% in that same time. This has resulted in an additional 25% more food per

person compared to 1960 (Pretty, 2008).

Figure 1.1. Total global population (United Nations DESA, 2017)

Despite this progress in the recent past, indicators are showing that the current

growth rate of crop production will not be able to keep pace with demands. Even

though the future population growth rate is decreasing, the growth rate for the de-

mand of crop production is continuing to be strong. In addition to increased popu-

lation, crop production demands are being spurred on through increased demand in
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meat and dairy consumption (Tilman et al., 2011). As the world slowly becomes more

prosperous and individual wealth increases, dietary demands begin to shift towards

meat, dairy, and more processed foods (Keyzer et al., 2005). This in turn increases

the demand of crops because livestock are primarily raised with inexpensive cereals

in industrialized countries (Pretty, 2008).

Additional crop demand also comes in the form of global biofuel consumption. The

production and use of biofuels began to quickly expand in the early 2000s (Araújo

et al., 2017; Alexandratos et al., 2012). Factors that contributed to this rapid growth

include initial government efforts and mandates to reduce greenhouse gas emissions,

along with improved energy security. Recent policy decisions have relaxed initial

targets, thus the growth rate of consumption has slowed considerably in recent years

(OECD, 2016). Yet, the demand for biofuels will continue to be present and exhibit

modest growth in the years to come (Figure 1.2).

Figure 1.2. Global biofuel consumption (OECD, 2016)

It is projected that global food demand in 2050 will require approximately double

the amount of rice, wheat, maize, and soybean compared to 2013. In order to meet

this target, a yield rate growth of ∼2.4% per year (non-compounding) is required.

Current global trends in yield rate growth for rice, wheat, maize, and soybean are

1.0%, 0.9%, 1.6%, and 1.3% per year (non-compounding), respectively. At these rates,
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global crop production would fall below the necessary levels to meet the projected

demands. One approach to closing this yield gap is to increase the amount of land

used for crop production. However, studies have shown that increasing crop yields

is a more sustainable way towards meeting future needs and ensuring global food

security (Ray et al., 2013; Godfray et al., 2010).

1.2.2 Labor Shortage

As demand for crops and food continues to increase, indicators are revealing a

growing farm labor shortage. As countries become more wealthy and per-capita

income increases, people shift from agricultural to non-agricultural jobs. For example,

Figure 1.3 shows the shift in farm labor from 1990 to 2010 for China, Mexico, and

the United States. This trend is seen in nearly every other country in the world

(Taylor et al., 2012). Governmental immigration policy is also part of the equation.

The estimated number of undocumented Mexican immigrants in the United States

has fallen by almost 13% since its peak in 2007 and roughly 46% of hired crop farm

workers come from this group (Hertz and Zahniser, 2012). Another example is the

labor shortages seen in the United Kingdom (UK) after they voted to leave the

European Union (EU) and made it harder to obtain immigration worker status. The

farming industry in the UK is heavily dependent on labors from elsewhere in the

EU. Recent consequences of labor shortages have come in the form of wasted crops

because there was not enough workers to harvest everything (Agerholm, 2018). With

fewer workers available, AAVs can reduce the need for laborers through mechanizing

and automating agricultural processes that are traditionally done by hand (Bonadies

et al., 2016).

1.2.3 Environmental Impact of Agriculture

As noted above, increased demands for crop production are beginning to highlight

a yield gap between the supply and demand of global food supplies. Yet the question
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Figure 1.3. Farm labor shift from 1990 to 2010 (Taylor et al., 2012)

remains as how to approach this supply-demand shortfall in a way that meets our

needs while protecting the environment. Agricultural practices can be a significant

source of harm to the environment, as discussed below.

1.2.3.1 Land Use

With the expansion of crop production since the 1960s, the total land area for

agricultural use has increased by 11% and now accounts for approximately 40% of

the world’s dry land (Ramankutty et al., 2008). This growth has begun to slow in

recent decades, yet loss of natural habits and biodiversity still occurs (Ramankutty

et al., 2018). Additionally, converting forests, grasslands, and savannahs into agri-

cultural land disrupts water and nutrient cycles and releases carbon dioxide into the

atmosphere. It is difficult to pinpoint exact numerical values for the upper limit of

suitable global land use for agricultural purposes due to the complex environmental

and ecological interactions worldwide. However, a generalized threshold for appropri-

ate global land use can be found by looking at how much more land conversion can

occur before permanent environmental damages are no longer acceptable. Research
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suggests that the expansion of agricultural land (i.e., pastures and cropland) should

stabilize by 2020 in order to prevent further biodiversity loss (Van Vuuren and Faber,

2009). If current expansion and practices are not curbed, cropland expansion would

surpass this target well before 2050 (UNEP, 2014). Increasing yields while maintain-

ing current levels of agricultural land use is a sustainable way forward in order to

meet global food demand while also protecting our environment (Ramankutty et al.,

2018).

1.2.3.2 Feed, Weed, and Irrigate

A major factor attributing to crop production more than doubling in the past

five decades is the advancement and use of synthetic fertilizers, specifically nitrogen

fertilizers. As crop production has escalated, overall fertilizer use has increased over

sixfold; with nitrogen based fertilizer usage increasing over ninefold (Figure 1.4).

Figure 1.4. Global agricultural fertilizer consumption (FAO, 2017; Pretty, 2008)

There is a clear relationship between increased fertilizer use and increased crop

production (Pretty, 2008). This has been beneficial in meeting the demands of global

crop production yet also shows a high dependence on their use. For example, 40–60%
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of crop yield in the United States and England can be attributed to fertilizer use

(Stewart et al., 2005). While fertilizer use has helped feed billions of people world-

wide, excessive use and over application can cause harmful effects on biodiversity, soil

health, and water quality.

Pesticide use follows a similar trend to that of fertilizers. In the past 25 years, pes-

ticide use and sale has nearly tripled worldwide (Figure 1.5); with 45% used in Europe

and 25% used in the United States (De et al., 2014). While pesticides have helped

boost productivity and crop yield, they have also had harmful effects on nontarget

plants and insects (Ramankutty et al., 2018).

Figure 1.5. Global pesticide consumption (FAO, 2017)

Total land area under irrigation has also doubled since the 1960s (Figure 1.6).

Over two-thirds of this area is found in China, India, Pakistan and the United States;

with India accounting for half of that area. Agricultural irrigation is responsible for

∼70% of global water withdrawals (Gleick et al., 2014). While the use and appli-

cation of irrigation has boosted crop productivity, especially in precipitation-limited

areas, much of irrigation water is used inefficiently. This excess usage can lead to

over-saturation of soils, erosion, and salinization (Pretty, 2008). Additionally, water

used for irrigation can negatively effect environmental water quality by transporting
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pesticides, excess nutrients, and livestock antibiotics into local ecosystems. There are

also instances of nitrogen and phosphorus fertilizer pollution causing algal blooms

and dead zones in freshwater and coastal marine systems (Ramankutty et al., 2018).

Figure 1.6. Global irrigated land area (FAO, 2017)

1.2.3.3 Fossil Fuel Usage

Increased productivity of cropland has also been driven by advances and increased

use of the mechanization of agriculture. The number of agricultural machines has

doubled since 1960 (Pretty, 2008). Benefits of agricultural mechanization include:

expanded cultivation area, timeliness of field operations for maximum production po-

tential, and the multi-functional capability of machines for use in all areas of agricul-

tural production (Mrema et al., 2015). While increased use of agricultural machines

has led to increased yield and greater crop production, it has also greatly increased the

amount of fossil fuels consumed (Figure 1.7). This in turn contributes to additional

greenhouse gas emissions as a result of fuel combustion.

Another major source of fossil fuel consumption in agriculture is due to the pro-

duction of fertilizer. The Haber-Bosch process was a major breakthrough in the
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Figure 1.7. Global agricultural diesel use (FAO, 2017)

development of synthetic fertilizers. Through the combination of nitrogen and hy-

drogen, ammonia is formed; which is a key ingredient to the majority of nitrogenous

fertilizers. Nitrogen is readily available in the atmosphere, whereas the key source

of hydrogen is natural gas (Gellings and Parmenter, 2009). As mentioned above and

shown in Figure 1.4, the use of nitrogen-based fertilizers has been rapidly growing.

Because of this increased use and demand, the production of fertilizers consumes ∼3%

of the world’s natural gas production and accounts for ∼1–3% of the world’s carbon

emissions (Zhang, 2016; Bellarby et al., 2008).

1.2.4 Sustainable Intensification

With the need for increased global crop production, and the clear environmental

effects of agricultural operations, more sustainable practices must be adopted. Simply

decreasing input use (e.g., fuel, water, fertilizers, pesticides) wrongly assumes that

this will lead to greater sustainability. In actuality, this short-sided approach can

result in agricultural systems that require more land in order to produce the same

amount of food output. Sustainable intensification is an alternate approach that aims
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at increasing yields and food supplies while minimizing or eliminating damage to the

environment (Pretty, 2008).

As this term has grown in popularity and use in policy discussions, a unified defini-

tion and description still remains somewhat unclear (Rockström et al., 2017; Petersen

and Snapp, 2015). However, a general definition and description of sustainable in-

tensification is increasing agricultural output to meet the increasing societal crop

production demands while decreasing inputs and protecting and eliminating harm to

the environment. Sustainable intensification can be achieved through the combined

use of careful ecological practices, state-of-the-art inputs, and innovative technologies

(Petersen and Snapp, 2015; Rockström et al., 2017; Friedrich and Kassam, 2016).

AAVs are poised to make a difference in agricultural and crop production practices.

By combining cutting-edge methods for navigation, guidance, decision making, and

operation, AAVs can bring about new vehicle design and implementation for the

purpose of increasing crop yields, increasing production efficiency, and reducing the

harmful environmental impacts of farming.

1.3 Primary Contributions

The primary contributions that will result from this research are listed below:

• Quantify energy costs of autonomous agricultural ground vehicles to provide

understanding of necessary power requirements

• Develop and compare crop farming production efficiency metrics between con-

ventional and autonomous agricultural vehicles

• Develop and demonstrate a modeling tool that allows users to employ novel

methods of effectively and efficiently using AAVs to augment and/or replace

conventional farming vehicles
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2. BACKGROUND

2.1 Autonomous Agricultural Vehicles

Autonomous agricultural vehicles (AAVs) are a class of machines that are able

to operate automatically without the need for human intervention. These machines

must not only be able to automatically steer or navigate, but also perform purposeful,

long-term tasks while being left unattended in real-world environments (Blackmore

and Griepentrog, 2006). The general function of AAVs starts with the assignment of

a given task, such as precision spraying, crop scouting, or soil sampling. Next, their

behavior or control algorithm determines the methods and actions used to complete

the given task. A key characteristic of AAVs is their ability to react to external and

unforeseen disturbances in intelligent ways so as to maintain focus on task completion

while simultaneously preventing damage or harm to their surroundings.

While the scope of this research focuses on ground-based AAVs operating primar-

ily on row crops, it is worth mentioning the ongoing research into autonomous agri-

cultural aircraft. In recent years, the use of small unmanned aerial vehicles (UAVs)

for agricultural applications has increased in popularity. These devices have given

rise to site-specific farming by using remote sensing to identify variations of crop and

soil conditions (Zhang and Kovacs, 2012). Early UAVs were either fixed-wing air-

craft or helicopters (Xiang and Tian, 2006; Schmale et al., 2008). Recently, quad-

and hexacopters have grown in popularity (Freeman and Freeland, 2015). Commonly

referred to as drones, these machines are battery powered, perform vertical takeoff

and landing, can precisely hover (even in the presence of strong winds), maneuver at

speeds of 50-65 kph, and climb to heights of 1000s of meters (DJI, 2018). The pri-

mary limitations to quad- and hexacopters are their limited flight time (i.e., battery

capacity) and limited payload capacity (up to 500 g for consumer quadcopter, 6 kg
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for professional hexacopter). Yet, even with these limitations, UAVs (especially quad-

and hexacopters) are actively being used in autonomous applications. For example,

Alsalam et al. (2017) developed a quadcopter that traverses a field, identifies weeds,

applies herbicide, and collects high resolution images.

2.2 Guidance Techniques of Ground Vehicles

Research into ground-based autonomous agricultural vehicles has been occurring

since the 1950s and 60s (Hague et al., 2000). This early work focused specifically on

automatic guidance and control of agricultural vehicles and was spurred on by the

advancements in control theory in the 1930s, 40s, and 50s. Initial research and effort

was directed towards vehicle guidance based on existing features that were formed on

a previous pass or operation (Wilson, 2000). Examples of these methods include a

mechanical steering linkage that used a furrow following device (Kirk, 1974), as seen

in Figure 2.1. This method produced stable results with maximum straight line front

wheel tracking error of 3.5 in while operating at a speed of 5.0 mph. Yet its usefulness

and stability was limited at higher speeds and required slower speeds while turning

(e.g., 2.5 mph for a turning radius of 15 ft).

(a) Furrow following arrangement (b) Tractor following a curve

Figure 2.1. Mechanical furrow-follower (Kirk, 1974)
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Spring-loaded mechanical fingers were used by Swetnam et al. (1981) to detect tobacco

plant stalks and greatly decreased effort required to harvest tobacco. Another example

of mechanical fingers is the work by Busse et al. (1977), where they were used for

detecting stalks on a corn harvester head. Harries and Ambler (1981) used optical

electronic sensors as a contactless furrow-following sensor (Figure 2.2). By shining

light on a pre-formed furrow, an optical sensor provided steering feedback to a tractor

as it traversed a field. This method proved successful in a wide range of conditions,

yet failed to produce reliable results when resuming work in the opposite direction

after completing a headland turn.

Figure 2.2. Setup of optical furrow-following sensor (Harries and Ambler, 1981)

Another common type of control system that was being explored at the time

was guidance with respect to user-generated fixed points in a field (Wilson, 2000).

Widden and Blair (1972) proposed a system with a buried cord just below the surface.

The cord was drawn up out of the ground and provided guidance and direction for

a tractor. It was then re-buried at an offset to provide guidance for the next pass.

Leader cables were also proposed for use in agriculture. These permanently installed

cables carry a low frequency signal and sensors are used to detect its associated

magnetic field for guidance (Tillett, 1991). Radio beacons and systems were also used
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for fixed-point guidance. For example, Searcy et al. (1990) implemented microwave

distance measurements for field location. However, accuracy was somewhat low (±1

m) and the system capability was limited to line-of-site. Other examples of early

vehicle guidance techniques include the use of lasers, infrared ranging, rudimentary

image analysis, ultrasonics, and dead reckoning (Tillett, 1991).

This early work mainly focused on guidance and steering of agricultural vehicles

and had limited applications due to lack of accuracy, lack of range, or being confined

to preprogrammed routes. While these methods can still be effective in some modern-

day applications (e.g., Pomeroy et al. (2014) successfully demonstrated the benefits

of a furrow-following machine for manually-intensive vegetable production), they are

unable to react to external environmental disturbances or perform obstacle avoidance.

After the advancements in control theory, the next major breakthrough that al-

lowed vehicle guidance and vehicle autonomy to progress forward was the widespread

availability and use of the global positioning system (GPS). GPS allowed for the loca-

tion of a vehicle to be determined without the need for cables, optical sensors, radio

beacons, or mechanical followers. GPS is a satellite-based positioning system that was

made available for civilian use in the 1980s, with agricultural research and use accel-

erating in the 1990s (Stafford, 2000). By using four or more satellites, a GPS receiver

collects signals and coverts location data in order to determine a position (Heraud

and Lange, 2009). The advent of GPS was very promising, yet it initially suffered

from two main limitations: consistent positional accuracy and signal processing delay

time due to hardware limitations (Wilson, 2000).

Typical GPS accuracy can be divided up into three categories, as seen in Table 2.1,

largely based on the cost of the GPS hardware. In addition to varying device capa-

bility, consistent positional accuracy can be affected by terrain and nearby obstacles

(e.g., tall buildings or rolling hills), atmospheric conditions, satellite configuration,

electromagnetic noise, or software filtering and smoothing (Heraud and Lange, 2009).

As technology progressed, new methods were developed to increase positional accu-

racy and decrease sources of error.
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Table 2.1.
Typical GPS Accuracy (Heraud and Lange, 2009)

Type Accuracy

WAAS Enabled 3 m or less

Differential (DGPS) 1 m or less

Real-Time Kinematic (RTK-GPS) 3 cm or less

To achieve the high positional accuracy required for autonomous vehicle naviga-

tion, most GPS receivers use differential correction. Differential GPS (DGPS) utilizes

an immobile base station in conjunction with four or more GPS satellites. The base

station is able to calculate an error with respect to its own GPS-indicated location

and transmit that error information to the mobile GPS receiver (Stombaugh, 2018).

The most accurate method of DGPS is called Real Time Kinematic (RTK) GPS.

With general DGPS use, the corrective base station is not necessarily close to the

GPS receiver. RTK GPS utilizes a base station that is usually within 10 km and

allows for much greater accuracy than typical DGPS techniques (Heraud and Lange,

2009).

While GPS positional accuracy continues to improve, it is only useful in certain

agricultural applications and tasks and is generally necessary but insufficient for true

autonomous vehicle operation. GPS guidance and positional information is effec-

tive for operations that use path planning where travel routes have been specified.

This would include farm-to-field or field-to-field vehicle travel where a navigational

software calculates routes based on the desired destination. Another example is the

various planned paths for machines as they traverse a field (Figure 2.3). Large-scale

operations such as tillage, planting, cultivation, spraying, and harvesting can use path

planning for automatic travel through a field. Yet, the level of precision afforded by

GPS is not enough for other aspects of autonomous vehicle operation, such as obstacle

avoidance or feature recognition.
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Figure 2.3. Example GPS guidance patterns (Heraud and Lange, 2009)

Autonomous guidance, navigation, and operation of agricultural machines begins

to take shape with the addition of machine vision. Machine vision uses image-based

recognition for feature identification that is used in decision making and vehicle guid-

ance. Research and use of machine vision for agriculture vehicle guidance has been

ongoing since the 1990s and continues to advance as image sensors and computational

processing power improves each year (Hague et al., 2000). A camera is used to collect

images that can be analyzed to determine the vehicle’s surroundings, such as rows of

crops or oncoming obstacles. Specific features in each image are determined in part

by varying levels of brightness, color, and contrast. A basic example of row identifi-

cation can be seen in Figure 2.4 where row lines are created using a black and white

image. First, the brightness and contrast of the image pixels are used to identify

the location of plants. With plant locations identified, the remaining pixel data is

removed, leaving dark dots that represent plants (Figure 2.4(a)). Then row lines are

created using regression fit of the dark dots. As the machine travels, the vanishing

point and pattern will move, and this movement information is used to make steering

or speed changes (Billingsley and Schoenfisch, 1997).

In addition to vehicle guidance, other applications of machine vision in agriculture

include mapping, precision actuation, and plant phenotyping. These supplementary
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(a) Plants appear as black dots (b) Row lines are regression fit image

Figure 2.4. Row identification from image (Billingsley and Schoenfisch, 1997)

functions allow an agricultural vehicle to not only have autonomous guidance and

travel, but also autonomously perform operations and tasks. Examples include weed

detection, crop health analysis, obstacle avoidance, and mapping of the environment

(Pajares et al., 2016).

GPS and machine vision are not the only state-of-the-art navigation methods.

Other common methods include inertia sensors, ultrasonic senors, encoders, and light

detection and ranging (LiDAR). These equipment can be used in conjunction with

GPS to provide plant-level control and navigation of agricultural vehicles. For exam-

ple, LiDAR can be used to locate and identify apple trees in an orchard in order to

automatically create an inventory of trees (Figure 2.5). LiDAR uses light pulses to

measure distances and create a precise point cloud of the surrounding environment.

By analyzing the points and distance data, trees can be recognized and counted (Bar-

goti et al., 2015).

2.3 Levels of Automation

A first step towards achieving autonomous agricultural vehicle operation begins

with successful automatic navigation and guidance. As the history of farm vehicle

guidance has been discussed above, it shows the progression of technology from basic

mechanical methods to the complex computational approaches of present-day. The

next phase is to implement automatic function and task performance for common

applications for autonomous ground vehicles. It is helpful at this time to discuss the
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Figure 2.5. Research ground vehicle traversing between two trellis
rows and scanning with LiDAR (Bargoti et al., 2015)

various levels of automation and their capabilities. SAE (2018) defines six levels of

automation for on-highway motor vehicles:

• Level 0: no driving automation

• Level 1: driver assistance

• Level 2: partial driving automation

• Level 3: conditional driving automation

• Level 4: high driving automation

• Level 5: full driving automation

Case IH (2018) has also developed definitions for five different levels of autonomous

operation (Figure 2.6). This list is more applicable to agricultural vehicles and will be

used for reference in this research. The ultimate goal for AAV operation is to achieve

full autonomy. While this milestone has yet to be achieved in commercial applications,

there is ongoing research and development in many different areas that show promise

for the future. Examples of these uses of agricultural robots are discussed in the

following section.
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Figure 2.6. Levels of agricultural vehicle autonomy (Case IH, 2018)

2.4 Common Machine Applications for Ground-Based AAVs

2.4.1 Plant Detection, Phenotyping, and Monitoring

Precision agriculture uses site-specific knowledge for the purpose of doing the

right thing, at the right place, at the right time (Bongiovanni and Lowenberg-Deboer,

2004). AAVs can be an integral part of this process by gathering information at a

subfield level, thus directing appropriate tasks based on specific conditions. Plant

detection, phenotyping, and monitoring provides insight into crop location, growth

stages, and health. BoniRob is an autonomous vehicle platform for plant phenotyp-

ing that has been in development as a cooperation between industry and academia

(Ruckelshausen et al., 2009). The vehicle is powered by four wheel hub motors and

allows for additional sensors and accessories to be easily added (Figure 2.7). Weiss

and Biber (2011) developed a novel BoniRob LiDAR sensor attachment for plant

identification and localizing. By imaging crop rows, plants and weeds can be identi-

fied and catalogued based on their field location. This information can be stored in

a central database for use with other farm tasks, such as spraying and harvesting.

Torres-Sospedra and Nebot (2014) recognized the need for reducing herbicide ap-

plication in orange groves and have developed a system for weed identification and
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Figure 2.7. BoniRob autonomous mobile platform (Bosch, 2017)

localization between rows. Weed detection was performed in a two stage operation.

First, images were processed by identifying the main features: sky, soil, trees, and

trunks. Second, weeds are identified by only looking in the areas labeled as soil.

The identification process was completed through neural networks that continually

trained and updated their algorithms. Weed location data could be used to analyze

the effectiveness of existing weeding methods or be employed by a weeding AAV.

2.4.2 Soil Sampling and Mapping

Localized soil conditions are another integral aspect of precision agriculture. Ex-

amples of soil sampling and mapping AAVs include an articulated mid-sized ground

vehicle that traverses a field and collects soil samples (Figure 2.8). Using guidance

and mapping software, and operator determines field boundaries and specifies way-

points that direct the robots navigation path, along with specific sampling locations.

Using the sampling data, a map can be built of various soil conditions across a given

field (e.g., compaction, moisture level, nutrient and contaminant content, pH levels).

Another example of automated soil sampling is the AutoProbe by Agrobotics. This

implement samples at a given interval to provide accurate and consistent soil analysis,
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and uses GPS location data to store site information for further reference (Suprem

et al., 2013). While the AutoProbe is merely an intelligent implement, it could easily

be towed by an AAV to provide full autonomous operation.

Figure 2.8. Articulated steering soil sampling AAV (Väljaots et al., 2018)

2.4.3 Mechanical Weeding

Autonomous mechanical weed control shows great potential for decreasing la-

bor costs and contributing to greater sustainability. Weeds are typically controlled

through broad application of herbicide; however, this method can be unavailable for

some farming operations (e.g., organic farming). Bakker et al. (2010) systematically

designed an autonomous robot for mechanical weeding of sugar beet farming oper-

ations. The weeds are identified using an infrared light sensor and removed with a

knife-equipped vertically spinning disc. Nørremark et al. (2012) developed an auto-

matic tillage system for inter- and intra-row weed control. A small autonomous tractor

traveled through a field using RTK-GPS navigation and engaged a cycloid hoe based

on known plant locations from precision seeded crops. Tillett et al. (2008) developed

another towed mechanical weeding implement that utilized a horizontally spinning

disc for intra-row cultivation (Figure 2.9). By using machine vision, the position of
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the spinning discs were adjusted to account for weed location versus crop location.

Additionally, the control scheme was able to adapt for crop spacing variability.

Figure 2.9. Machine vision rotary cultivator (Tillett et al., 2008)

2.4.4 Precision Spraying

Precision spraying may be one of the most attractive use cases for AAVs. The

key feature is the ability to positively identify targets and intelligently apply the

appropriate amount of solution (fertilizer or pesticide) in the most effective locations.

Outcomes of precision spraying include decreased chemical usage, reduced cost, and

improved safety of food products (Bonadies et al., 2016). Examples include work from

Gonzalez-de Soto et al. (2016) where a commercial agricultural tractor was modified

for autonomous operation and utilized a direct-injection patch spraying boom to apply

herbicide for cereal crops. Weed patches were identified using on-board cameras and

a controller automatically turned on specific sprayer nozzles at appropriate times.

Field tests demonstrated treatment was applied to ∼95% of the detected weeds while

using 66% less product compared to a conventional spraying system.

Rowbot Systems is a startup company that partnered with Carnegie Robotics,

LLC. to develop an AAV for intelligent nitrogen fertilizer application in corn fields
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(Talbot, 2014). The vehicle is an articulated four wheeled machine that uses LiDAR

and GPS to navigate between rows spaced 30 inch apart (Figure 2.10). They are

currently deploying four machines in partnership with Growmark, Inc. with the as-

pirations of having 2,000 machines in the field by 2022. Their business model is to

deploy a small number of machines and a recharge station to a field, allow the robots

to work for 24 hours, and then pack them up and move on to the next field after their

job is complete (Cavender-Bares, 2018).

Figure 2.10. Rowbot AAV (Grounds, 2014)

As mentioned previously, BoniRob is an autonomous vehicle platform that was

originally developed for field-based crop phenotyping. However, additional research

groups continue to develop add-on attachments, such as a precision sprayer (Scholz

et al., 2014). With a working width of 1.5 m, a precision spray module was tested

on row crops. The sprayer arm has 8 nozzles that can each be controlled for custom

application needs to site-specific weeds.

2.4.5 Harvesting

Automating harvesting is an appealing concept, particularly when applied to high-

value crops. Because labor makes up such a large component of these farming systems,
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AAVs show great promise in reducing necessary labor needs and therefore greatly

decreasing costs. A review of unmanned ground vehicles by Bonadies et al. (2016)

includes several examples of harvesting AAVs for use in high-value crops. Sakai et al.

(2008) developed an automatic watermelon harvester that demonstrated the heavy

lifting capabilities of mobile robots. The machine featured an overhung boom arm

with adjustable manipulator grip. Field testing demonstrated results with ∼87%

success rate and averaged 14 s to pick and place a watermelon. While this was slower

than a skilled worker (100% success rate and 10 s per watermelon), it shows promising

results for future research.

De-An et al. (2011) designed and tested an autonomous apple harvesting robot

that used an articulated arm with a spoon-shaped end-effector gripper. The tracked

vehicle utilized GPS for orchard navigation and a vision-based module for the identi-

fication of apples. Indoor and outdoor tests demonstrated a success rate of 77% and

and average harvesting time of 15 s per apple.

Iida et al. (2013) constructed an autonomous system for rice harvesting. A Mit-

subishi VY50CLAM four-row combine was retrofit with sensors and controls to allow

for autonomous navigation through rice paddy fields via RTK-GPS. While the ma-

chine did not have any special attachments or complicated manipulators, it demon-

strates the possibilities that are feasible with AAVs.

2.5 Modeling of Agricultural Vehicles

As described in the previous section, research and application of AAVs have been

demonstrated and are a growing area of interest and study. Yet, there is still an

exceptional amount of effort remaining until AAVs become prevalent among agricul-

tural operations. Common limiting factors contributing to the lack of widespread

adoption and success of AAVs include low crop production efficiency and lack of eco-

nomic justification (Bechar and Vigneault, 2016). Additionally, much of the research

being completed tends to omit discussion of the design process that was used in the
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development of the robotic vehicles. These systematic design practices aid in the

process of making well informed choices regarding the application and configuration

of AAVs.

Roldán et al. (2018) reviewed current applications of robots in agriculture and

found that few authors report or describe the design process of ground robots. While

many design choices can be made by referring to existing technology or vehicles, the

decisions on hardware and deployment will influence robot performance, complexity,

efficiency, and cost. Similarly, Bac et al. (2014) reviewed harvesting robots for high-

value crops and found that of the 50 harvesting robots analyzed, only six of the

authors reported using systematic design methods. Furthermore, only four of the

authors performed an economic analysis.

While there is an apparent lack of emphasis on modeling-based design, some

research has been shown to utilize system analysis and discuss the economic feasibility

of AAVs. Examples include Pedersen et al. (2006), who investigate the economic

feasibility of replacing conventional agricultural vehicles with AAVs in three different

applications: weeding in high value crops, field scouting of weeds in cereals, and grass

cutting on golf courses. In all three applications, the costs and potential benefits of

AAV use were compared with conventional machines. The economic model considered

varying inputs such as initial capital investment, labor costs, working hours, energy

consumption, speed, maintenance, and depreciation. The conclusions from these

studies showed mixed results. Autonomous weeding demonstrated a ∼15% reduction

of cost compared to conventional methods as long as the depreciation period was

greater than six years. Yet, autonomous weeding required more time in the field due

to the sprayer’s low capacity of only treating four rows simultaneously. Field scouting

of weeds also proved to be ∼20% less expensive so long as the cost of the machine

remained below the estimated range of $20,000. Finally, golf course grass cutting

proved to to be considerably more economical due to the elimination of high labor

costs.
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As mentioned earlier in Section 2.4.3, Bakker et al. (2010) systematically designed

an autonomous robot for mechanical weeding for sugar beet farming operations. By

breaking down the vehicle design process into different phases, the designer is forced

to systematically analyze the application requirements and all proposed solutions.

For example, one requirement was to determine where intra-row weeding has to be

performed. Solutions to this requirement include seed mapping, identifying weeds

via shape and color, pattern recognition, and spectral reluctance. Through careful

evaluation of the proposed options, pattern recognition was chosen because it was

reliable and could be used on other crops. The result of this design process approach

was a four-wheeled vehicle with a diesel engine, hydraulic transmission, and four-

wheel steering (Figure 2.11). While this method is not necessarily modeling-based,

the resulting design has undergone thorough review and several iterations were pro-

posed. This resulted in a vehicle that is not merely a retrofit of existing agricultural

machinery, but a custom robot that is appropriate for the specific agricultural tasks.

Figure 2.11. Autonomous vehicle platform for robotic weeding (Bakker et al., 2010)

The work by Väljaots (2017) is probably the closest example of an AAV design

process that is established through modeling-based procedures. The useful aspect of
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this research is the development of an energy consumption model, which utilizes a

typical vehicle dynamics model to calculate total power required for an unmanned

ground vehicle. While this work did not directly use modeling outputs for vehicle

design, it did develop a method for evaluating energy consumption and efficiency

with direct application to AAVs.

Sopegno et al. (2016) developed a computational model that estimated energy

requirements of miscanthus x giganteus production and transportation in Italy. The

tool accounts for the energy requirements of each individual operation and compiles

them into an overall energy demand. Specifically, the relationship between energy

requirements, field area, and field-to-storage distance was explored. This model was

built in order to provide results to be used in the design and evaluation of a specific

agricultural production system. Rodias et al. (2017) continued this research with an

extension to this model. This new computational tool was built for the analysis of

multi-crop systems and the energy requirements and efficiencies associated therein.

The specific example used looked at the production of miscanthus x giganteus, Arundo

donax, and switchgrass in Italy. Once again, this model demonstrated its usefulness

in evaluating the effects of different agricultural practices on energy requirements and

machine efficiency. Although this research attempts to quantify and discuss energy

requirements associated with various farming operations, its scope is limited and only

focuses on conventional agricultural vehicles.

There is a need for an all-encompassing model that can be applied to the design

and evaluation of AAVs. Although AAV research and applications are growing in

popularity, the majority of work is based off of arbitrary design choices or simply

adapted from existing conventional agricultural machines. The research presented

in this proposal fills in this gap and assists in the design, management, and market

adoption of AAVs. A simulation model to predict and quantify energy needs leads to

a greater understanding of the design and capabilities of AAVs. The resulting energy

requirement data would be directly used to evaluate the efficiency of AAVs. These

efficiency metrics allow for unbiased analysis of the advantages or disadvantages as-



30

sociated with replacing and/or augmenting conventional agricultural vehicles with

AAVs. The hypothesis among researchers is that AAVs will revolutionize agricul-

tural practices and bring about more efficient and environmentally friendly farming

methods. The goal of the research presented here is to test this theory using novel

energy and efficiency models in order to discover the future potentials of AAVs.
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3. ENERGY MODEL

The first objective of this research is to develop a simulation model of autonomous

agricultural vehicle (AAV) energy requirements. This deterministic model follows

standard methods of predicting and quantifying energy needs and energy expendi-

tures of agricultural vehicles, particularly ground vehicles that operate primarily on

row crops. This simulation model is not a full energy balance of agricultural processes.

Rather, the model focuses on the various inputs necessary for autonomous and con-

ventional agricultural vehicles to complete desired tasks. A greater understanding of

the design and capabilities of AAVs can be known through the quantification of these

energy requirements.

3.1 Energy Requirements of Farming Operations

There are four main energy inputs for agricultural vehicle field operations (Fig-

ure 3.1). The first input is the vehicle itself. Each agricultural vehicle and implement

contributes this input through its embodied energy. Embodied energy of a vehicle (or

implement) includes the energy of the raw materials used in the manufacturing pro-

cess, and the energy to transport the vehicle from the manufacturer to the customer.

Another field operation input is the vehicle’s energy source. For conventional farm

vehicles, this energy source is typically a petrochemical fuel, such as diesel. However,

there are other energy sources available that could power a farm vehicle (e.g., batter-

ies, biofuels, and fuel cells). A third input source is the agricultural material applied

to the field. Example field operations that apply material include planting, spraying,

and irrigation. The final energy input is the human labor necessary to complete a

given field operation. Using these four energy inputs, in conjunction with the total

time of operation, the total energy for a given agricultural operation is calculated.
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Figure 3.1. Four main energy sources

3.2 Operations of Machines

The operations and uses of agricultural field machines can generally be separated

into three different types (Bochtis and Srensen, 2009):

1. Neutral material flow: no material flow into the field during operation (e.g., till-

age, chopping)

2. Input material flow: material flows into the field during operation (e.g., planting,

spraying, irrigation)

3. Output material flow: material flows out of the field during operation (e.g., har-

vesting)

These operation types give a framework for three generalized use conditions for agri-

cultural field machines (Sopegno et al., 2016):

1. In-field operations: planting, spraying, harvesting, etc.

2. Roading operations: travel from farm-to-field, field-to-field, and field-to-farm

3. Biomass transport: material removed from field for further processing or sale
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These three generalized vehicle operations serve as a method of organizing the energy

model and help ensure that all energy sources are accounted for. In the following

subsections, the energy model and methodology are discussed.

3.3 Energy Model Structure

The energy model was created in Microsoft Excel, and the model architecture is

shown in Figure 3.2. The model is divided into different modules and uses user-input,

along with prior module data, to generate an output at each step along the way.

Field Dynamics
Field capac-
ity, task time

Field: area, soil, shape
TM: speed, width, qty

Motion Resistance
Soil and crop,

traction machine

Power
Total power required,
total power available

Available
Power
X < 1

Propulsion
Battery and fuel

consumption
Break

Embodied Energy

Agricultural Inputs
Labor, seed,

agrochemicals

Cost Incurred

Imp: weight, width, depth
Operation type

TM: weight, tire, efficiency

TM: throttle position

Fuel energy content
Efficiency

Labor, application rates

Machinery embodied
energies, life

Input costs
Note

TM: traction machine
Imp: implement

No Yes

Figure 3.2. Structure of energy model
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3.3.1 Field Dynamics Module

The field dynamics module calculates the field capacity and task time for a given

operation. The total time for a given field operation is dependent on the implement

working width, working speed, field efficiency, field area, and number of machines

(e.g., swarm of autonomous vehicles). Field efficiency is the ratio between the actual

productivity of a machine and the theoretical maximum productivity. Field efficiency

accounts for the inability to utilize the theoretical implement working width, field

characteristics, and lost time in the field. Common examples of lost time can include

turning and idle travel, cleaning clogged equipment, machine adjustment, and in-

field repair and maintenance. Field efficiency is not a constant value for a particular

machine or throughout a given field operation. It varies with the shape and size

of the field, pattern of field operation, crop yield, and other factors. All of these

considerations lead to the calculation of field capacity (ASABE, 2015b; Hunt and

Wilson, 2016):

Ca = swEfnmachines

10
(3.1)

where Ca is the field capacity (ha/hr), s is machine travel speed (km/hr), w is imple-

ment rated working width (m), Ef is field efficiency (decimal), and nmachines is the

number of traction machines. While the user can choose any value for field efficiency

and machine travel speed, typical ranges and values are automatically calculated

based on the chosen field operation and soil type and are displayed as suggestions.

These values can be found in ASAE D497.7, Clause 5 (ASABE, 2015a).
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Using the calculated field capacity and the field area, the total time for a given

field operation is found:

tfield = a

Ca

(3.2)

where a is the field area (ha).

3.3.2 Motion Resistance Module

The next module in the energy model quantifies the motion resistance associated

with the soil/crops and traction machine. Soil and crop motion resistance (MRSC)

is the total force parallel to the direction of travel that is required to propel the

implement (ASABE, 2015b). This does not take into account the motion resistance

of the implement wheels, which is typically very small compared to the soil and crop

motion resistance.

MRSC = Fi(A +Bs +Cs2)wT (3.3)

where A, B, and C are implement-specific parameters given in ASAE D497.7 Table 1

(ASABE, 2015a), Fi is the soil texture parameter given in ASAE D497.7 Table 1

(ASABE, 2015a), and T is the tillage depth (cm).

Traction machine motion resistance (MRTM) is the force required to overcome the

rolling resistance of the traction machine tires (ASABE, 2015a).

MRTM =WTMρ (3.4)

where WTM is traction machine weight (N) and ρ is motion resistance ratio (decimal).

Based on experimental test results, the equation for motion resistance ratio is slightly

different depending on tire type (Goering et al., 2003).

ρ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1.0

Bn

+ 0.04 + 0.5sl√
Bn

bias ply tires

0.9

Bn

+ 0.0325 + 0.5sl√
Bn

radial ply tires

(3.5)

where Bn is the mobility number (decimal) and sl is slip (decimal). Slip is not directly

calculated because the traction machine engine speed and transmission gear ratios are
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not required for the model. This allows the model to be used for a broader range of

agricultural vehicles, where transmission or engine information is lacking. Slip is the

percentage difference between theoretical travel speed and actual travel speed, and it

can be calculated through an iterative process using theoretical travel speed, drawbar

pull from traction machine, and total draft. For the model presented in this work,

slip is derived from the soil condition and assuming maximum tractive efficiency, as

discussed in ASAE EP496.3 Section 3.3 (ASABE, 2015b) and shown in Table 3.1.

Table 3.1.
Optimum Slip Ranges, sl (ASABE, 2015b)

Soil Condition Slip (%)

Concrete 4–8

Firm 8–10

Tilled 11–13

Soft 14–16

The mobility number is a dimensionless ratio and is calculated as follows (ASABE,

2015a):

Bn = CI bd

W
⋅
1 + 5

δ

h

1 + 3
b

d

(3.6)

where CI is the cone index for the soil (kPa), b is the unloaded tire section (m), d is

the unloaded overall tire diameter (m), W is the dynamic wheel load normal to soil

surface (N), δ is the tire deflection (m), and h is the tire section height (m).

Following the equations above, the total draft (i.e., total force) required to propel

the traction machine and implement is reached:

Dtotal =MRSC +MRTM (3.7)
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3.3.3 Power Module

The total power required for the desired field operation (Pop) is the sum of all ve-

hicle and implement power components converted to equivalent PTO power (ASABE,

2015b):

Pop = Pdb

EmEt

+ Ppto + Phyd + Pel (3.8)

where Pdb is the drawbar power (kW), Em is the mechanical efficiency of the tractor’s

power train and transmission (typically 0.96 for tractors with gear transmissions),

Et is the tractive efficiency (see Table 3.2), Ppto is the required PTO power by the

implement (kW), Phyd is the required hydraulic power by the implement (kW), and

Pel is the required electrical power (kW).

Table 3.2.
Tractive Efficiency, Et (ASABE, 2015a)

Tractor Type
Tractive Condition

Concrete Firm Tilled Soft

2WD 0.87 0.72 0.67 0.55

MFWD 0.87 0.76 0.72 0.64

4WD 0.88 0.77 0.75 0.72

Track 0.88 0.76 0.74 0.72

Drawbar power (kW) as required by the vehicle and implement is given by (ASABE,

2015b):

Pdb = Dtotals

3600
(3.9)

where s is the travel speed through the field (km/hr) and Dtotal is the total draft (N).

The PTO power (kW) that is delivered to the implement though the tractor’s

PTO shaft is given by (ASABE, 2015b):

Ppto = a + bw + cFmat (3.10)
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where a, b, and c are implement specific parameters given in ASAE D497.7 Table 2

(ASABE, 2015a) and Fmat is the material feed rate (t/hr wet basis).

The hydraulic power (kW) required by the implement is given by (ASABE, 2015b):

Phyd = pQhyd

60000
(3.11)

where p is fluid pressure (kPa) and Qhyd is fluid flow rate (L/min).

The electrical power required by the implement or additional vehicle electronics

(e.g., sensors and computers on an AAV) is given by:

Pel = iV

1000
(3.12)

where i is current draw (A) and V is voltage (V).

It is important to note that the engine power of the traction machine must be

greater than total required power (Equation 3.8) in order to account for factors such

as machine acceleration, changes in soil conditions and topography, and operator-

related requirements (e.g., air conditioning, lighting). These power requirements must

also be accounted for if they are significant in nature.

3.3.4 Propulsion Module

Using the current operation’s equivalent PTO power requirement (Equation 3.8),

the amount of energy necessary for propulsion can be calculated. The energy model

presented in this work focuses on conventional diesel-powered agricultural vehicles

as well as considering battery-powered agricultural vehicles. In future studies, this

energy model could be expanded to incorporate other power sources (e.g., fuel cells

or gasoline engines) or other powertrain architectures (e.g., hybridization).

3.3.4.1 Diesel-Power Vehicles

To calculate volumetric fuel usage of a diesel-powered agricultural vehicle, the

specific fuel consumption and the time duration of a field operation are needed. The
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specific fuel consumption for a typical diesel engine working at or below maximum

loading and operating at full and partial throttle is (ASABE, 2015a):

SFCv = (0.22 + 0.096

X
) ⋅PTM (3.13)

X = Pop

Prated

(3.14)

PTM = 1 − [(N − 1)(0.45X − 0.877)] (3.15)

where SFCv is volumetric specific fuel consumption (L/kW⋅hr), X is the fraction of

equivalent power take-off power available, Pop is the equivalent PTO power required by

the current operation (kW), Prated is the traction machine’s rated PTO power (kW),

and N is the engine throttle ratio (i.e., at operating load, the ratio of partial throttle

engine speed to full throttle engine speed). An alternative approach to calculate

fuel consumption would be to follow the methods shown by Grisso et al. (2008) where

tractor-specific coefficients are used from data published by the University of Nebraska

Tractor Test Laboratory (NTTL). While that method is able to utilize test data for

individual tractors, information is not available for all vehicles, certainly not for

hypothetical, yet-to-be-built vehicles. The procedure presented above in Equations

3.13–3.15 is based upon NTTL data and is able to depict the effects of partial throttle

and reduced loading; yet, it remains general enough to apply to a broad range of

vehicles.

Using the calculated volumetric specific fuel consumption, the fuel consumption

for the particular field operation is found:

Qfuel = SFCv ⋅ Pop (3.16)

where Qfuel is the fuel consumption rate for a particular operation (L/hr).

In addition to fossil fuel, engine crankcase oil is also consumed and is related

to tractor engine size. For a diesel engine, the lubrication consumption is given by

(ASABE, 2015a):

Qlube = 0.00059Prated + 0.02169 (3.17)
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where Qlube is the volumetric specific lubrication consumption rate (L/hr).

Once the fuel consumption rate is determined, the total energy consumption rate

associated with the consumed fuel from all the machines is given by:

Efuel = ufuelQfuel

Ca

⋅ nmachines (3.18)

where Efuel is the energy rate of the consumed fuel (MJ/ha) and ufuel is the energy

density of the fuel (MJ/L).

The total energy consumption rate associated with the consumed lubrication oil

from all the machines is given by:

Elube = ulubeQoil

Ca

⋅ nmachines (3.19)

where Elube is the energy rate of the consumed lubrication (MJ/ha) and ulube is the

energy density of the lubricant (MJ/L).

3.3.4.2 Battery-Powered Vehicles

While battery-powered agricultural machines are not yet a common component of

conventional agricultural operations, they are slowly gaining in popularity. The en-

ergy model presented in this work focuses on simulating smaller electric agricultural

vehicles, such as small tractors, utility vehicles, quad bikes, and experimental robotic

machines. A common approach to electric vehicle modeling is to follow the energy

flow shown in Figure 3.3. While efficiencies of individual components vary throughout

an agricultural in-field operation (e.g. electric motor efficiency varies with speed and

torque, and it also varies with motor type), constant efficiencies have been chosen

based on published literature in order to reduce complexity and the required infor-

mation regarding individual components of an electric vehicle (Hayes et al., 2011;

Redpath et al., 2011; Hofman and Dai, 2010; Campanari et al., 2009; Mecrow and

Jack, 2008; Williamson et al., 2006; Boglietti et al., 2003).

The energy flow begins as the vehicle’s battery is charged at the charging station.

This is equivalent to a refueling event for a diesel-powered vehicle. Once the battery’s
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Figure 3.3. Electric vehicle energy flow

state of charge is high enough for the application (e.g., 90–100%), the vehicle travels

to the field in order to complete the desired task. The amount of electrical energy

consumed is shown below:

Eelec = 3.6Pop

Caηcsηbattηmcηemηm
⋅ nmachines (3.20)

where Eelec is the electrical energy consumption rate (MJ/ha), ηcs is the efficiency of

the charging station (decimal), ηbatt is the battery charge/discharge efficiency (dec-

imal), ηmc is the motor controller efficiency (decimal), ηem is the electric motor ef-

ficiency (decimal), and ηm is the mechanical efficiency of the vehicle’s transmission,

differential, etc. (decimal).

3.3.5 Embodied Energy Module

Energy is directly consumed through the use of fuels, lubricants, and battery

power, as shown above. However, indirect energy usage must also be taken into

account in order to fully capture the total energy impact of farming operations.

The agricultural machinery that are used for any given in-field operation have some

amount of embodied energy associated with them. The raw material energy costs,

manufacturing energy costs, and transportation energy costs of the machinery all

account for the overall embodied energy. This parameter is typically reported in

MJ/kg⋅yr or MJ/kg and allows for incremental indirect energy consumption to be

attributed to each individual in-field operation, based on the amount of time spent

per operation. Various studies provide estimates for embodied energy of agricultural

machinery (Table 3.3) and can be used as reference for this energy model (Kitani

et al., 1999; Wells, 2001).
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Table 3.3.
Example Machinery Embodied Energy (Kitani et al., 1999)

Equipment Embodied Energy (MJ/kg)

Tractor 138

Plow 180

Disc harrow 149

Planter 133

Fertilizer 129

Rotary hoe 148

Combine 116

*Recycling and re-use of old machinery is taken into account

Each piece of machinery has a useful life associated with it, and every time that

it is used and accumulates work-hours, energy is consumed based on the machinery’s

embodied energy and the amount of time spent on a particular operation. For exam-

ple, a 7,000 kg tractor has a useful life of 16,000 hr, embodied energy of 138 MJ/kg,

and is operating at a field capacity of 2.4 ha/hr. For each hectare covered, 25.2 MJ

of embodied energy is consumed.

Eemb = eembmmachinerynmachines

Catlife
= 138 MJ

kg ⋅ 7000kg ⋅ 1
16000hr ⋅ 2.4 ha

hr

= 25.2
MJ

ha
(3.21)

where eemb is the embodied energy of the machinery (MJ/kg), mmachinery is the mass

of the machinery (kg), and tlife is the machinery’s estimated life (hr). At the end

of its useful life, machinery will typically get recycled and become a portion of the

raw material for new equipment. This re-use of material is taken into account when

determining the estimated embodied energy (Table 3.3).

It should be noted that the amount of consumed embodied energy calculated in

Equation 3.21 is dependant upon generalized factors that can lead to uncertainties.

For example, the standard life of a 4 wheel drive tractor is 16,000 hr (ASABE, 2015a);
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yet, it is not uncommon for machines to be used past their standard predicted life.

Additionally, the factors shown in Table 3.3 are based on estimations from evaluating

the overall supply chain and life cycle of a machine and its raw materials. Even with

these uncertainties, it is important to include the amount of consumed embodied

energy in the overall energy analysis of agricultural operations. While this information

may not be valuable to all stakeholders, such as design engineers and farmers, it

provides big-picture information that could be useful to policy makers and helps to

quantify the amount of energy being consumed.

3.3.6 Agricultural Inputs Module

The agricultural inputs module takes into account the input materials applied to

the field and the labor associated with the in-field operation.

3.3.6.1 Input Materials

As discussed in section 3.2, input material flow operations add material to the field

(e.g., planting and spraying). Just as machinery has an associated embodied energy,

these added materials also have an energy content sequestered within them. This

energy includes the amount required for production as well as the inherent energy of

the product. The energy associated with input material flow operations is determined

by the specified field operation and the particular material that is being applied.

During a planting operation, seeds (or other propagation methods, such as rhizomes,

bulbs, tubers, etc.) are planted at specific rates in order to achieve a desired plant

population. While the planting rate may vary across a particular field, the average

planting rate is used for this model. Embodied energy values for common production

seeds in the U.S. are shown in Table 3.4 and the embodied energy consumption rate

Eplanting is calculated in Equation 3.22.
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Table 3.4.
Embodied Energy of Production Seed in the U.S. (Pimentel, 2009;
Kitani et al., 1999)

Seed Embodied Energy (MJ/kg)

Corn 104

Wheat 15

Rice 17

Soybeans 34

Eplant = rplanteplant
ρplant

(3.22)

where rplant is the planting rate (seeds/ha), eplant is the embodied energy of the plant-

ing material (MJ/kg), and ρplant is the density of the planting material (seeds/kg).

The application of agrochemicals is a large contributor of energy consumption

in agriculture. Examples of agrochemicals applied to a field include fertilizers and

pesticides. Similar to planting operations, the application of agrochemicals can vary

throughout a field; however, the average application rate is used for this model.

Efert = rfertefert (3.23)

Epest = rpestepest (3.24)

where rfert is the fertilizer application rate (kg/ha), rpest is the pesticide application

rate (kg/ha), efert is the embodied energy of the fertilizer (MJ/kg), and epest is the

embodied energy of the pesticide (MJ/kg). Example embodied energy values of agro-

chemicals are shown in Table 3.5. The product values include the energy used for

obtaining raw material, production of product, and distribution to customers.

3.3.6.2 Labor

The labor associated with in-field operations has a measure of energy that is con-

sidered in the energy model presented in this work. It is the amount energy consumed
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Table 3.5.
Agrochemical Embodied Energy (Kitani et al., 1999)

Product Embodied Energy (MJ/kg)

Nitrogen Fertilizer 78

Phosphorus Fertilizer 17

Potassium Fertilizer 13

2,4-D 85

Glyphosate 454

by agricultural workers during the completion of their tasks. In conventional indus-

trialized agricultural operations, human labor is needed for each task, commonly for

machine operation and maintenance. In future farming operations, the need for labor

will decrease as AAVs become more prevalent. The responsibilities of human work-

ers will shift from directly operating machinery (e.g., one worker for each vehicle),

to supervising unmanned vehicles or a whole swarm of machines. This in turn will

decrease the amount of workers and labor required to complete a task.

The assessment and quantification of the amount of energy consumed in human

labor is a debatable issue for researchers. Methods and results vary widely depending

on the specified criteria and system constraints (Aguilera et al., 2015). While the

amount of energy associated with human labor is small compared to other contributors

(e.g., machinery), it is still a part of the overall energy assessment of agricultural

operations. This is especially true when considering the implications of reducing

human labor because of the increase of autonomous machinery.

There are several common methods of calculating the amount of energy expended

by human labor, and Aguilera et al. (2015) provide a thorough discussion of each

method. The various methods range from assessing muscular power output of a

worker, to accounting for dietary energy, to analysing the entirety of energy needed to

support the lifestyle pattern of a worker and their family. Likewise, the value assigned



46

to labor energy consumption ranges from 0.3 MJ/hr to 181 MJ/hr, depending on the

system boundaries and constraints. However, the majority of agricultural energy

analysis research follows the dietary energy consumption method. This approach

assess the energy metabolic requirements of the laborer and has a value of 2.2 MJ/hr

(Aguilera et al., 2015).

Along with the energy consumption rate of labor, the amount of work-hours for

each operation must be specified. In a conventional agricultural in-field operation, a

worker’s time will primarily be consumed with operating a traction machine, such as

a tractor, sprayer, or combine. This value of time was calculated in Equation 3.2. In

addition to this time, there will be pre- and post-operation time spent by the worker

completing other tasks related to the completed operation, such as travel, refueling,

and daily machine service. There are few documented studies, data, or standards

exploring the amount of non-field time that is required for an in-field operation. Much

of the research discussing labor hours provides a comprehensive view of work-hours

as they relate to an entire growing season. For example, Pimentel and Pimentel

(2008) discuss the amount of labor required per hectare for U.S. production corn

(11.4 hr), soybean (7.1 hr), wheat (7.8 hr), rice (24 hr), and other crops. Yet, their

numbers do not separate out the time spent for each in-field operation. This method is

repeated again and again by other researchers and they usually base their findings on

government labor statistics or surveys of farming operations (NASS, 2018; Ibarrola-

Rivas et al., 2016; Hunt and Wilson, 2016; Pimentel, 2009; Ali and McBride, 1994).

Other work will discuss the issue of total labor time versus field machine time, but they

make generalized claims about the amount of time spent out of the field. For example,

Edwards (2015) estimates that actual labor hours exceeds field machine hours by 10–

20%. while this estimation may work for some instances, it is an over-simplistic

approach that is not applicable to varying situations. In large field sizes, the long

field time would artificially inflate the amount of non-field labor time. Alternatively,

small field sizes have short machine field times and could underestimate the amount

of non-field labor that is required.
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With the absence of useful data and research on labor time consumed on non-task

activities, the approach taken in this research is to equate the amount of work-hours

to the total time given for a field operation, as calculated in Equations 3.1 and 3.2.

Introduced within these equations is field efficiency Ef , which is the ratio of theoretical

field time (machine operating at ideal forward speed using its full width of action) to

total time spent in the field. This efficiency factor is tabulated within ASABE D497.7,

where a typical value is indicated along with a common range (ASABE, 2015a). Hunt

and Wilson (2016) outline six items that are included within field efficiency:

1. Theoretical field time

2. Turning time and time crossing grass waterways

3. Time to load or unload machine containers, if not done on-the-go

4. Machine adjustment time, if not done on-the-go

5. Maintenance time (refueling, lubrication, chain tightening, etc., if not done on

the go; not including daily servicing)

6. Repair time (time spent in the field to repair or replace inoperable parts)

As seen in the list above, there are several items that are directly related to work-

hours being spent on non-task activities. While it would be ideal to capture the pre-

and post-task labor times, the method settled upon is sufficient for this research.

Additionally, this highlights the need for further research exploring the direct and

quantifiable link between total required labor and task time, especially how it relates

to emerging autonomous vehicle technologies.

The equations for calculating total labor time are different for conventional and

AAV operations. In conventional operations each machine is directly controlled by an

operator at all times. The equation for conventional total labor time is shown below.

tlabor,conv = tfield (3.25)

where tfield is the total time spent in-field for a given operation (hr). For AAV opera-

tions each machine is able to operate without the need for direct human intervention

or control. The level of human labor required is based on the level of autonomy
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of the AAV. Figure 2.6 shows general levels of autonomy for agricultural machines.

This present research adopts a level of autonomy that is a hybrid between Supervised

Autonomy and Full Autonomy. During a normal work day, the AAVs are supervised

in the field. The length of a normal work day is set at 12 hr. This value is based

on farmer interviews where a common in-field work day can range from 10-14 hr. If

the task time (tfield) is longer than 12 hr, then the AAVs will continue operation

un-supervised until the start of the next work day. The equation for AAV total labor

time is shown below.

tlabor,AAV = nmachines

nMpO

⎧⎪⎪⎨⎪⎪⎩
12 hr ⋅ INT [ tfield

24 hr
] +MIN[MOD[ tfield

24 hr
],12 hr]

⎫⎪⎪⎬⎪⎪⎭
(3.26)

where nMpO is the number of machines per operator (decimal), INT [ ] returns a

number rounded down to the nearest integer, MOD[ ] returns the remainder, and

MIN[ ] returns the minimum argument. For example, if the total task time is 16 hr,

the total labor time is 12 hr (the remaining four hours are completed unsupervised);

if the total task time is 28 hr, the total labor time is 16 hr (12 hr supervised + 12 hr

unsupervised + 4 hr supervised). Once the labor time is determined, the labor energy

consumption rate can be calculated.

Elabor = tlaborrlabor
a

(3.27)

where tlabor is the total labor time for a given field operation (hr), rlabor is labor energy

rate for a worker (MJ/hr), and a is the field area (ha).

3.3.7 Cost Incurred Module

The final module of the energy model calculates the financial cost of the four main

inputs and allows for an alternative perspective on the amount of inputs required to

complete a given in-field operation. The previous modules focused on calculating

the energy requirements (in terms of MJ/ha) for a given in-field task. Analyzing the

financial cost of an operation (in terms of $/ha) allows for a more thorough comparison
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between different machine configurations and can help illuminate any advantages or

disadvantages of utilizing AAVs.

The cost function for the amount of propulsion power required (Cprop) by either

a fossil fuel traction machine or an electric traction machine is as follows.

Cprop,fossil = Efuelpfuel
ufuel

Elubeplube
ulube

(3.28)

Cprop,elec = Eelecpelec
3.6

(3.29)

where pfuel is the fuel price ($/L), plube is the lubricant price ($/L), ufuel is the fuel

energy density (MJ/L), ulube is the lubricant energy density (MJ/L), and pelec is the

price of electricity ($/kW⋅hr).

The cost function for machinery use is seen below.

Cmach = [ pTM

tlife,TM

+ pimp

tlife,imp

]nmachines

Ca

(3.30)

where pTM is the traction machine purchase price ($), pimp is the implement purchase

price ($), tlife,TM is the traction machine estimated life (hr), and tlife,imp is the imple-

ment estimated life (hr). This equation uses a simple linear relationship between the

life of the machine and the purchase price in order to generate a dollar-per-hectare

value. A more detailed and nuanced approach would be to calculate the total cost of

ownership for the machinery. This method includes information regarding the cost

of machinery depreciation, interest, insurance, taxes, and housing/maintenance fa-

cilities. While the total cost of ownership approach will produce a more accurate

estimation of costs, it also requires more details on the machinery and its usage, such

as: age of machine when purchased, current age of machine, accumulated hours of

use, estimated annual use, interest rate, and tax rates (Edwards, 2015). Repair and

maintenance costs, as described in ASABE EP496.3 Section 6.3.1 (ASABE, 2015b),

are also not currently included in the model, which can add significant costs to the

machinery depending on the length of ownership and use of a vehicle.

The approach of the model presented herein is to capture the relevant processes

and costs, while understanding that some generalizations will have to be made. The



50

additional information required for estimating total cost of ownership would hinder

the modeling process and is outside the desired scope of this research at this time.

Future revisions and updates to the energy and cost model should include these added

economic considerations.

The cost function for input material usage is:

Cmatl = pplantrplant + pfertrfert + ppestrpest (3.31)

where pplant is the planting material price ($/kg), pfert is the fertilizer price ($/kg),

and ppest is the pesticide price ($/kg).

Finally, the labor cost function is:

Clabor = plabortlabor
a

(3.32)

where plabor is the labor wage ($/hr).

3.4 Limitations of the Model

The model presented in this chapter simulates the energy requirements of agri-

cultural operations and can be applied to conventional or autonomous vehicles. The

purpose of building the model is to investigate the various inputs and energy neces-

sary for autonomous and conventional agricultural vehicles to complete desired tasks.

By quantifying these energy requirements, a greater understanding of the design and

capabilities of AAVs can be known.

While this model is able to quantify energy and financial costs, it is important to

note some of the inherent limitations of the model. First, the model outputs are only

as good as the inputs that are provided. For the conventional operations, reliable

inputs can be found using manufacturing data, standards, published material, and

farmer interviews. This is not the case with some of the AAV inputs. Because AAVs

are not readily available or in use today, some generalizations or estimations must be

made. Examples include the machine purchase price, vehicle weight, or field efficiency.

Useful life is another important parameter that is especially difficult to predict for
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AAVs because there is not long term data to support the typical life of AAVs. In

addition to vehicle longevity, AAVs would have sensors or technologies that could

become outdated and need repaired or replaced. Furthermore, electric AAVs have

battery packs with a finite amount of life, and the energy and costs of replacement

are currently not captured within the model.

The model does not account for pre- and post-operation labor time required for

each task. As discussed in Section 3.3.6.2, because of the absence of useful data and

research on non-task labor time this model has omitted the amount of time spent

out of the field on other activities. Examples include field-to-field travel time, daily

service, organization and planning, maintenance and repair, and others. Without

additional reliable data, it is hard to give a definitive value to how much time is spent

on non-task activities. This highlights the need for more research on agricultural labor

time that could include farmer questionnaires or focus group sessions. Additionally,

the logistics of planning and organizing a large number of AAVs would not be a

trivial task. The effort and cost associated with this is also not captured in the model

presented above, yet it could be significant and is worth exploring in the future.

Another limitation of the model is the financial analysis of the total cost of own-

ership for the machinery. Additional required input parameters include (but are not

limited to): age of machine when purchased, current age of machine, accumulated

hours of use, estimated annual use, interest rates, tax rates, and repair and mainte-

nance factors. Additional financial analysis would provide a more complete picture

of the true costs by providing information and costs pertaining to depreciation, taxes

and insurance, repair and maintenance, and investment values. In addition to repair

and maintenance costs, the embodied energy associated with repaired or replacement

parts is not included in this model. Future revisions and updates to the model should

include all of these considerations.

Finally, the model does not currently have the flexibility to analyze non-traditional

machine configurations. An example of this would be a conventional machine working

in tandem with a few smaller AAVs or multiple sized AAVs working together. These
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configurations could prove to be a more effective use of AAVs and would be worth

investigating in the future. Likewise, the model is not currently able to analyze non-

traditional vehicle architectures, such as hybrid machines. Hybrid machines could

include a combination of electric, fossil fuel, fuel cell, or other power sources. The

ability to analyze these types of machines could be added to the model during future

work and could reveal more efficient methods of providing machinery propulsion.

3.5 Model Sensitivity Analysis

Along with considering the limitations of the model, a sensitivity analysis is a

helpful procedure that can highlight any inputs that could have a large influence

on output values. For the sensitivity analysis, a sample farming operation has been

chosen to provide a baseline. In conventional Midwest U.S. corn and soybean farming

operations, fertilizer is applied following the harvest (either in the fall or the spring).

The machinery for the example operation is a 187 kW (250 hp) tractor traveling

10.5 km/hr (6.5 mi/hr) with a field efficiency of 65% (e.g., John Deere 8295R T3

pulling a FAST 8300 liquid fertilizer applicator). The UAN28% application rate is

280 L/ha (30 gal/acre). The full list of input parameters for the baseline case is shown

in Appendix A.1. The two main outputs of the model are the energy consumption

(MJ/ha) and cost consumption ($/ha). Tables 3.6 and 3.7 show the results of the

baseline conventional fertilizing operation.

Table 3.6.
Sensitivity Analysis - Baseline Fertilize - Energy Consumption

Operation

Energy Consumption (MJ/ha)

Propulsion
Embodied

Labor Total
Machinery Material

Fertilize 218 134 7,800 0.3 8,153
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Table 3.7.
Sensitivity Analysis - Baseline Fertilize - Cost

Operation
Cost ($/ha)

Propulsion Machinery Material Labor Total

Fertilize 3.62 7.74 78.00 1.92 91.28

As described in Section 3.4, the model outputs are only as good as the inputs

that are provided. In the subsections that follow, sensitivity analysis is performed on

several inputs in order to demonstrate their influence on energy and cost consumption.

3.5.1 Field Efficiency

Field efficiency (Ef ) is the ratio of theoretical field time (machine operating at

ideal forward speed using its full width of action) to total time spent in the field.

This efficiency factor is tabulated within ASABE D497.7, where a typical value is

indicated along with a common range (ASABE, 2015a). Field efficiency is affected by

machinery turning time, machine adjustments, in-field repair and maintenance, and

more. Tables 3.8 and 3.9 show the effects of varying Ef . The baseline value of Ef is

0.65, and it is varied ±0.15 or ±23% (these limits were chosen based on the published

ranges). When Ef is decreased 23% (i.e., less efficient in the field), the propulsion

and machinery consumptions increase ≈30%; when increased 23%, the propulsion and

machinery consumptions decrease ≈18%.

3.5.2 Machinery Estimated Life

Machinery life (tlife) is the estimated useful lifetime of the machine. This value

is tabulated within ASABE D497.7 (ASABE, 2015a). However, it is not uncommon

for machines to be used past their standard predicted life. The baseline values for

the traction machine life and the implement life are 16,000 hr and 1,200 hr, respec-
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Table 3.8.
Sensitivity Analysis - Field Efficiency - Energy Consumption

Ef

Energy Consumption (MJ/ha)

Propulsion
Embodied

Labor Total
Machinery Material

0.50 284 175 7,800 0.4 8,259

0.65 218 134 7,800 0.3 8,153

0.80 177 109 7,800 0.2 8,087

Table 3.9.
Sensitivity Analysis - Field Efficiency - Cost

Ef

Cost ($/ha)

Propulsion Machinery Material Labor Total

0.50 4.71 10.07 78.00 2.50 95.28

0.65 3.62 7.74 78.00 1.92 91.28

0.80 2.94 6.29 78.00 1.56 88.79

tively. Tables 3.10 and 3.11 show the effects of varying tlife. Only machinery energy

consumption and cost consumption are affected by tlife. When tlife decreases 10%,

consumption increases ≈11%. When tlife increases 10%, consumption decreases ≈9%.

3.5.3 Machinery Mass

The mass/weight of machinery can be found by referencing the specifications sheet

provided by the machinery manufacturer. This data is readily available for conven-

tional machines; however, estimations have to be made for AAVs. Tables 3.12 and

3.13 show the effects of varying the machinery mass. Very little effect is seen by

changing the machinery mass ±10%. The propulsion energy and cost consumption

changes ≈2%. Changing the machinery mass ±10% also effects the machinery embod-
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Table 3.10.
Sensitivity Analysis - Machinery Life - Energy Consumption

tlife

Energy Consumption (MJ/ha)

Propulsion
Embodied

Labor Total
Machinery Material

-10% 218 149 7,800 0.3 8,168

Baseline 218 134 7,800 0.3 8,153

+10% 218 122 7,800 0.3 8,141

Table 3.11.
Sensitivity Analysis - Machinery Life - Cost

tlife
Cost ($/ha)

Propulsion Machinery Material Labor Total

-10% 3.62 8.61 78.00 1.92 92.15

Baseline 3.62 7.74 78.00 1.92 91.28

+10% 3.62 7.04 78.00 1.92 90.58

ied energy consumption ±10%. This is expected since machinery embodied energy is

directly proportional to machinery mass (see Equation 3.21).

Table 3.12.
Sensitivity Analysis - Machinery Mass - Energy Consumption

Mass

Energy Consumption (MJ/ha)

Propulsion
Embodied

Labor Total
Machinery Material

-10% 214 121 7,800 0.3 8,136

Baseline 218 134 7,800 0.3 8,153

+10% 222 148 7,800 0.3 8,171
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Table 3.13.
Sensitivity Analysis - Machinery Mass - Cost

Mass
Cost ($/ha)

Propulsion Machinery Material Labor Total

-10% 3.56 7.74 78.00 1.92 91.22

Baseline 3.62 7.74 78.00 1.92 91.28

+10% 3.69 7.74 78.00 1.92 91.35

3.5.4 Other Inputs

There are many other inputs that can be shown to have direct effects on the model

outputs. Propulsion energy and cost consumption is the least likely output that can

be effected by a single input because of the numerous parameters and equations used

to describe those values. On the other hand, machinery and material energy and

cost consumption are highly dependent on individual inputs, as shown in Section 3.3.

This is particularly troublesome because of the generalizations and estimations made

with embodied energy input parameters. The uncertainties and high sensitivity of

embodied energy consumption must be taken into account when making conclusions

and recommendations based on the model outputs.
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4. SIMULATION AND APPLICATION OF MODEL

In this chapter, the energy model will be demonstrated using a pre-defined scenario

of a typical row-crop farming operation in the Midwest U.S. The purpose of the case

study is to complete a comparison between a conventional crop production operation

and operations that have implemented autonomous machines. There are many differ-

ent configurations and combinations that can be selected when comparing different

farming operations. For this research, four general vehicle configurations have been

chosen, based on the traction machine size: large tractor (e.g., greater than 60 kW),

small tractor (e.g., less than 60 kW), utility vehicle (e.g., John Deere Gator), and

smaller machines (e.g., single row machines). An example of how different machine

architectures could be compared is shown in Table 4.1. In addition to the vehicles

described in Table 4.1, each type of autonomous vehicle could operate individually or

as a member of a fleet of other autonomous vehicles.

The case studies that follow will demonstrate how to use the energy model to

compare the different input requirements between conventional and autonomous agri-

cultural operations. First, the energy model will be used to compare a whole farm

operation consisting of fertilizing, spraying, planting, and harvesting. Three different

machine configurations will be analyzed: using all conventional large machines, using

all autonomous large machines, and using all autonomous smaller machines (e.g., ≈55

kW tractor). Next, crop production operations will be compared on an individual

basis. For example, as seen in Table 4.1, there are five different machine types that

could be used for a spraying operation (one conventional and four autonomous).
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Table 4.1.
Example General Categories for Comparison

Operation Conventional Autonomous

Fertilizing Large tractor, wide implement
Large tractor, wide imp.

Small tractor, narrow imp.

Spraying Large self-propelled sprayer

Large self-propelled sprayer

Small tractor with attachment

Utility vehicle with attachment

Single-row machine

Planting Large tractor, wide planter

Large tractor, wide planter

Small tractor, narrow planter

Utility vehicle with attachment

Single-row machine

Harvesting Large self-propelled combine
Large self-propelled combine

Small self-propelled combine

4.1 Crop Production Description

Conventional crop production operations in the Midwest U.S. are mainly geared

toward corn and soybeans. No two farming operations are alike, and there are many

different variables that could be chosen when specifying a typical farm (e.g., farm size,

type of crops planted, number of machines, size of machines, etc.). In order to develop

a generic Midwestern farming operation, practices and specifications were selected

based on interviews with farmers, information from university extension offices, and

other published guidelines. A common farm size is roughly 607 ha (1,500 acre), and

it is typical to allocate half the land to corn and half to soybeans. These case studies

will focus on corn production with a total field area of 300 ha (741 acre). The four
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main operations are no-till planting, fertilizer application, pesticide spraying, and

harvest. A general timeline of operations is shown below.

• Fall/Spring: post-harvest fertilizer

• Spring: pre-plant pesticide

• Spring: no-till planting

• Spring: post-emergence pesticide

• Fall: harvest

4.1.1 Conventional Machinery Sensitivity Analysis

The process of deciding upon a generic farming operation requires assumptions

and generalizations to be made regarding the location, total field size, machinery, and

operations. While there was general consensus regarding the fertilizing and harvesting

operations, the machinery used for the pesticide and planting operations need closer

examination. A common vehicle for applying pesticide is a self-propelled sprayer.

These machines are able to cover large areas because of their wide booms and fast

travel speeds. The total farm size in this example case study may not be quite large

enough to justify a common self-propelled sprayer with a 30.5 m (100 ft) boom. In

Tables 4.2 and 4.3 below, three machines are compared with each other. The first

machine is a 183 kW (245 hp) self-propelled sprayer with a 30.5 m (100 ft) boom

(e.g., John Deere 4730). The second machine is a 129 kW (173 hp) self-propelled

sprayer with a 18 m (60 ft) boom (e.g., John Deere R4023). The third machine is

a 55 kW (74 kW) tractor pulling a 12.2 m (40 ft) boom sprayer (e.g., John Deere

5085E tractor pulling a FAST Big Wheel sprayer). In terms of energy consumption,

the third option makes the most sense. This is mostly due to the lower propulsion

energy required. When looking at cost consumption, the large self-propelled sprayer

has a lower cost-per-field-area. Since the large self-propelled sprayer is able to travel

quickly and has a wide boom, the amount of time spent in the field is very short. A

downside of large self-propelled sprayers is their high cost. With a price over $350,000,
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it is hard to justify purchasing this machine for a farming operation with only 607 ha

(1,500 acre). While the smaller option costs more to operate, its lower initial capital

cost of about $120,000 makes it much more appealing.

Table 4.2.
Conventional Machinery Energy Analysis - Spraying

Width (m)

Energy Consumption (MJ/ha)

Propulsion
Embodied

Labor Total
Machinery Material

30.5 39 14 48 0.1 100

18 48 19 48 0.1 115

12.2 27 17 48 0.2 92

Table 4.3.
Conventional Machinery Cost Analysis - Spraying

Width (m)
Cost ($/ha)

Propulsion Machinery Material Labor Total

30.5 0.65 2.92 9.24 0.47 13.28

18 0.81 3.45 9.24 0.80 14.30

12.2 0.48 5.33 9.24 1.68 16.72

A similar analysis has been performed for the planting operation. In Tables 4.4

and 4.5, three planter configurations are compared with each other. For all three

configurations, the traction machine is a 187 kW (250 hp) tractor (e.g., John Deere

8295R T3). The three different planters used are a John Deere 1795 16 row planter,

a John Deere 1775 12 row planter, and a John Deere 1725NT 8 row planter. In terms

of energy, the 16 row planter configuration has the lowest consumption. With its

wide implement, this configuration is able to quickly cover all the land area. The
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configuration with the lowest cost consumption is the 12 row planter at 309.50 $/ha.

Because all three configurations are using the same traction machine, it is important

to consider the initial capital cost of the planter. An advantage of using a large

16 row planter is the ability to quickly complete the planting task, which can be

especially important when inclement weather is a factor. However, with a price just

over $200,000, the 16 row planter is about 60% more than the 12 row planter and

about 125% more than the 8 row planter. For this sample case scenario, the 12 row

planter will be used. While it has a higher initial cost, its lower operating cost and

faster task completion time make it more appealing.

Table 4.4.
Conventional Machinery Energy Analysis - Planting

No. of Rows

Energy Consumption (MJ/ha)

Propulsion
Embodied

Labor Total
Machinery Material

16 170 187 1,722 0.3 2,079

12 202 200 1,722 0.5 2,125

8 257 231 1,722 0.7 2,210

Table 4.5.
Conventional Machinery Cost Analysis - Planting

No. of Rows
Cost ($/ha)

Propulsion Machinery Material Labor Total

16 2.87 24.00 281.45 2.36 310.68

12 3.43 21.46 281.45 3.15 309.50

8 4.39 24.49 281.45 4.73 315.06
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4.2 Whole Farm Operation Study

4.2.1 Conventional Agricultural Operation

Following the fall harvest, fertilizer is applied to the field in the form of liquid

nitrogen fertilizer (UAN28%). This allows for soil nutrients to be replenished in

order to aid in the growth of the next season’s crops. Nitrogen can be applied in the

fall after the harvest or in the spring prior to planting. By applying fertilizer in the

fall, there is one less task to complete in the springtime and can allow planting to

occur earlier. However, for the purpose of this model, the timing does not affect the

results. The machinery for this operation is a 187 kW (250 hp) tractor traveling 10.5

km/hr (6.5 mi/hr) with a field efficiency of 65% (e.g., John Deere 8295R T3 pulling

a FAST 8300 liquid fertilizer applicator). The UAN28% application rate is 280 L/ha

(30 gal/acre). Using a UAN28% density of 1.27 kg/L (10.6 lb/gal), rfert is set at 100

kg N/ha (89 lb N/acre).

For this no-till corn production operation, it is important to eliminate weeds prior

to planting. This is done in the spring with a 2,4-D burndown in-field operation.

2,4-D was chosen to be applied using a 55 kW (74 hp) tractor pulling a 12.2 m (40 ft)

boom sprayer traveling 11.2 km/hr (7 mi/hr) with a field efficiency of 65% (e.g., John

Deere 5085E tractor pulling a FAST Big Wheel sprayer). The application rate is 0.50

lb ai/acre (0.56 kg ai/ha).

Next, corn is planted in 30 inch rows using a 187 kW (250 hp) tractor pulling a

12 row planter traveling 8 km/hr (5 mi/hr) with a field efficiency of 65% (e.g., John

Deere 8295R T3 pulling a John Deere 1775 12 row planter). The average population

rate for the seeding operation is 82,780 seeds/ha (33,500 seeds/acre).

After planting has finished, the final springtime in-field operation is a post-emergence

pesticide in order to control weeds. This weed control is beneficial because it reduces

competition between crops and weeds, and it will lead to higher yields. Once again,

2,4-D is applied using a 55 kW (74 kW) tractor pulling a 12.2 m (40 ft) boom sprayer

traveling 11.2 km/hr (7 mi/hr) with a field efficiency of 65% (e.g., John Deere 5085E
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tractor pulling a FAST Big Wheel sprayer). The application rate is 0.56 kg ai/ha

(0.50 lb ai/acre).

Finally, harvest takes place in the fall after the growing season. The traction

machine is a 240 kW (320 hp) combine harvester with a 12 row corn head traveling

6.6 km/hr (4 mi/hr) with a field efficiency of 70% (e.g., Gleaner S96).

A summary of the input parameters for the conventional agricultural operation

is shown in Table 4.6. Output results in terms of energy consumption (MJ/ha) and

cost ($/ha) are shown in Tables 4.7 and 4.8. Appendix A.1 contains all input values

used for this analysis.

Table 4.6.
Conventional Agricultural Operation Inputs

Name Units Fertilize Herbicide Planting Harvest

Operating Speed [km/hr] 10.5 11.3 8 6.6

Field Eff. [%] 65 65 65 70

Rated Width [m] 11.4 12.2 9.1 9.1

TM Drive [-] MFWD MFWD MFWD 2WD

TM Throttle [%] 80 75 80 100

TM Rated Power [kW] 187 54 187 240

TM Mass [kg] 11,678 4,205 11,678 23,000

TM Emb. Energy [MJ/kg] 138 138 138 116

TM Est. Life [hr] 16,000 16,000 16,000 3,000

Imp. Mass [kg] 8,820 1,325 9,610 -

Imp. Emb. Energy [MJ/kg] 129 129 133 -

Imp. Est. Life [hr] 1,200 1,500 1,500 -
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Table 4.7.
Conventional Agricultural Operation Results - Energy Consumption

Operation

Energy Consumption (MJ/ha)

Propulsion
Embodied

Labor Total
Machinery Material

Fertilize 218 134 7,800 0.3 8,153

Herbicide 27 17 48 0.2 92

Planting 202 200 1,722 0.5 2,125

Harvest 559 211 - 0.5 770

Table 4.8.
Conventional Agricultural Operation Results - Cost

Operation
Cost ($/ha)

Propulsion Machinery Material Labor Total

Fertilize 3.62 7.74 78.00 1.92 91.28

Herbicide 0.48 5.33 9.24 1.68 16.72

Planting 3.43 21.46 281.45 3.15 309.50

Harvest 9.25 33.93 - 3.55 46.73

4.2.2 Autonomous Configuration 1: Larger Machines

The first AAV configuration to be considered is one with larger machines similar

to those used in Section 4.2.1. While these machines are not yet available on the

market, an example can be seen in Figure 4.1. This Case IH autonomous concept

vehicle is able to navigate fields automatically and is powerful enough to complete

demanding tasks such as primary tillage operations.

Because AAVs do not need to accommodate a human operator, their design can

be altered. For example, the concept vehicle shown in Figure 4.1 does not have
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Figure 4.1. Case IH Autonomous Concept Tractor (Case IH, 2017)

a cab, thus reducing the weight of the machine and eliminating the need for air

conditioning, control linkages, display units, and user controls. This weight reduction

would decrease the power requirement of the machine and decrease the amount of

energy consumed for propulsion. The removal of air conditioning would also save

energy. Ružić and Časnji (2011) analyzed tractors with power ranges from 55-118

kW and concluded that the air conditioning unit consumes 2-6 kW.

The omitted components would also help to lower the cost of the machine because

fewer raw materials would be required. On the other hand, autonomy has additional

effects on the machine, such as increased cost from extra sensors and increased elec-

trical consumption. Reported energy consumption of on-highway vehicle automation

systems ranges from 200 W for SAE Level 2 automation (Baxter et al., 2018) to

1-3 kW for SAE Level 4 and 5 autonomous driving systems (Gawron et al., 2018;

Hawkins, 2017). If it is assumed that similar components are used in agricultural

vehicles that achieve supervised or full autonomy (see Section 2.3 and Figure 2.6),

this additional electrical load effectively cancels out the energy savings realized from

eliminating the traction machine’s cab.

Furthermore, the total machine cost would presumably increase because it would

be marketed as a premium product. The amount of price increase is hard to determine

exactly, but a 10% premium seems reasonable based on automotive consumer studies

(Larson et al., 2014).
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Following the farming operations outlined in Section 4.1, UAN28% is applied post-

harvest with a modified autonomous 187 kW (250 hp) tractor traveling 10.5 km/hr

(6.5 mi/hr) with a field efficiency of 65% (e.g., John Deere 8295R T3 pulling a FAST

8300 liquid fertilizer applicator). Based on interviews and analyzing donated machin-

ery, the estimated weight savings due to the traction machine modifications is about

10% of the overall traction machine weight; this 10% weight reduction is assumed

for all traction machines in this AAV configuration. Because of the machine intel-

ligence, the amount of fertilizer applied to the field can be more closely customized

in order to apply only the amounts necessary. A recent study highlights the overuse

of nitrogen fertilizer in the U.S. Midwest and uses non-commercial widely available

satellite remote sensing to estimate the amount of nitrogen uptake in corn fields. The

authors estimate that nitrogen fertilizer application could be reduced by half without

significantly affecting crop yields (Basso et al., 2019). Reducing the amount of ap-

plied fertilizer not only lowers costs but also helps eliminate environmental damages.

Based on this assumption, the application rate for UAN28% would be 140 L/ha (15

gal/acre), which equates to rfert set at 50 kg N/ha (44.5 lb N/acre).

Along with fertilizer reduction, the application of pesticide would decrease due to

the increased intelligence and automation of an autonomous self-propelled sprayer.

As discussed in Section 2.4.4, AAVs have the ability to positively identify weeds and

intelligently apply the appropriate amount of solution in the most effective locations.

It is estimated that the amount of pesticide can be reduced by 65-95%, depending on

the complexity of the system (Gonzalez-de Santos et al., 2017; Bechar and Vigneault,

2016; Gonzalez-de Soto et al., 2016). Based on a conservative assumption of a 65%

decrease in 2,4-D use, the pre-plant burndown and the post-emergence application

rate of 2,4-D is set at 0.20 kg ai/ha (0.18 lb ai/acre). The traction machine is a

modified autonomous 55 kW (74 hp) tractor pulling a 12.2 m (40 ft) boom sprayer

traveling 11.2 km/hr (7 mi/hr) with a field efficiency of 65% (e.g. John Deere 5085E

pulling a FAST Big Wheel sprayer).
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For the no-till planting operation, the traction machine is a modified autonomous

187 kW (250 hp) tractor pulling a 12 row planter traveling 8 km/hr (5 mi/hr) with

a field efficiency of 65% (e.g., John Deere 8295R T3 with a John Deere 1775 12

row planter). The average population rate is 82,780 seeds/ha (33,500 seeds/acre).

Finally, an autonomous 240 kW (320 hp) combine harvester with a 12 row corn head

traveling 6.6 km/hr (4 mi/hr) with a field capacity of 70% (e.g. Gleaner S96). For

each operation there is only one machine (i.e., the machines are not operating in a

swarm), and there is one supervising worker for each machine.

A summary of the input parameters for Autonomous Configuration 1 is shown in

Table 4.9. Output results in terms of energy consumption (MJ/ha) and cost ($/ha)

are shown in Tables 4.10 and 4.11. Appendix A.2 contains all input values used for

this analysis.

Table 4.9.
Autonomous Agricultural Operation Configuration 1 Inputs

Name Units Fertilize Herbicide Planting Harvest

Operating Speed [km/hr] 10.5 11.3 8 6.6

Field Eff. [%] 65 65 65 70

Rated Width [m] 11.4 12.2 9.1 9.1

TM Drive [-] MFWD MFWD MFWD 2WD

TM Throttle [%] 80 75 80 100

TM Rated Power [kW] 187 54 187 240

TM Mass [kg] 10,510 4,205 10,510 21,520

TM Emb. Energy [MJ/kg] 138 129 138 116

TM Est. Life [hr] 16,000 16,000 16,000 3,000

Imp. Mass [kg] 8,820 1,325 9,610 -

Imp. Emb. Energy [MJ/kg] 129 129 133 -

Imp. Est. Life [hr] 1,200 1,500 1,500 -



68

Table 4.10.
Autonomous Agricultural Operation Configuration 1 Results - Energy Consumption

Operation

Energy Consumption (MJ/ha)

Propulsion
Embodied

Labor Total
Machinery Material

Fertilize 214 133 3,900 0.3 4,247

Herbicide 27 17 17 0.1 61

Planting 198 198 1,722 0.3 2,118

Harvest 550 197 - 0.3 747

Table 4.11.
Autonomous Agricultural Operation Configuration 1 Results - Cost

Operation
Cost ($/ha)

Propulsion Machinery Material Labor Total

Fertilize 3.56 7.99 39.00 1.92 52.47

Herbicide 0.48 5.36 3.30 1.08 10.22

Planting 3.35 21.86 281.45 1.80 308.46

Harvest 9.11 37.32 - 1.80 48.23

4.2.3 Autonomous Configuration 2: Smaller Machines

The next configuration to be considered is one with smaller autonomous tractors

(30-60 kW) operating in small groups. Initial analysis will only focus on a single

machine working alone. In later sections the effects of operating in a swarm will be

considered. The fertilizing operation utilizes a modified autonomous 55 kW (74 hp)

tractor pulling a 5-knife liquid nitrogen applicator. The UAN28% application rate is

50 kg N/ha (44.5 lb N/acre).
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For pesticide application, a 3-point mounted liquid sprayer is used instead of a

self-propelled sprayer. The traction machine is a modified autonomous 55 kW (74

hp) tractor with a 7.6 m (25 ft) mounted sprayer. The 2,4-D application rate is 0.20

kg ai/ha (0.18 lb ai/acre).

Corn is planted using the same modified autonomous 55 kW (74 hp) tractor

pulling a four row planter. The average population rate is 82,780 seeds/ha (33,500

seeds/acre). For the harvesting operation, a modified autonomous 205 kW (275 hp)

combine harvesting with a four row corn head (e.g., Almaco R2). For each operation

there is only one machine (i.e., the machines are not operating in a swarm), and there

is one supervising worker for each machine.

A summary of the input parameters for Autonomous Configuration 2 is shown in

Table 4.12. Output results in terms of energy consumption (MJ/ha) and cost ($/ha)

are shown in Tables 4.13 and 4.14. Appendix A.3 contains all input values used for

this analysis.



70

Table 4.12.
Autonomous Agricultural Operation Configuration 2 Inputs

Name Units Fertilize Herbicide Planting Harvest

Operating Speed [km/hr] 10.5 11.3 8 6.6

Field Eff. [%] 65 65 65 70

Rated Width [m] 3.81 7.62 3.05 3.05

TM Drive [-] MFWD MFWD MFWD 2WD

TM Throttle [%] 75 75 50 95

TM Rated Power [kW] 54 54 54 205

TM Mass [kg] 2,880 2,880 2,880 15,830

TM Emb. Energy [MJ/kg] 138 138 138 116

TM Est. Life [hr] 16,000 16,000 16,000 3,000

Imp. Mass [kg] 4,333 1,325 1,200 -

Imp. Emb. Energy [MJ/kg] 129 129 133 -

Imp. Est. Life [h]r 1,200 1,500 1,500 -

Table 4.13.
Autonomous Agricultural Operation Configuration 2 Results - Energy Consumption

Operation

Energy Consumption (MJ/ha)

Propulsion
Embodied

Labor Total
Machinery Material

Fertilize 205 189 3900 0.8 4295

Herbicide 44 27 17 0.4 88

Planting 138 83 1722 1.4 1944

Harvest 1119 435 - 1.6 1556
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Table 4.14.
Autonomous Agricultural Operation Configuration 2 Results - Cost

Operation
Cost ($/ha)

Propulsion Machinery Material Labor Total

Fertilize 3.43 9.25 39.00 5.77 57.45

Herbicide 0.76 1.55 3.30 2.69 8.30

Planting 2.42 12.05 281.45 9.46 305.38

Harvest 18.65 82.85 - 10.65 112.15

4.2.4 Whole Farm Operation Study Results

A summary of the whole farm operation results can be seen below in Tables 4.15

and 4.16 and in Figures 4.2 and 4.3. In this present case study only focusing on

whole farm operations, the instance with the lowest energy consumption and cost

is when all autonomous large machines are used. From an energy stand point, the

biggest savings comes from decreasing the amount of post-harvest fertilizer from 7,800

MJ/ha to 3,900 MJ/ha, as shown in Figure 4.2(c). Additional savings is seen in

reduced pesticide use, but since the total amount of 2,4-D applied to the field is so

low, it does not make much of an impact to the overall energy and cost consumption.

Additionally, even though the total energy of the AAV Configuration 1 is 36% less

than the conventional configuration, its cost is only 11% less. The main driver for

cost is the planting material. At over 280 $/ha, the cost of corn seed outweighs all

other costs and diminishes the effects of the other operations.

Finally, it is worth discussing the poor performance of AAV Configuration 2. This

initial analysis only focused on a single machine working alone. In later sections the

effects of operating in a swarm will be considered. When using smaller AAV machines

working alone, their smaller engines results in lower fuel consumption; however, their

narrower widths result in much lower field capacities (2.8 to 4.0 times smaller). The

main reason why AAV Configuration 2 performed poorly is because of the smaller
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Table 4.15.
Whole Farm Operation Results - Energy Consumption

Operation

Energy Consumption (MJ/ha)

Propulsion
Embodied

Labor Total
Machinery Material

Conventional 1,034 579 9,617 1.8 11,232

AAV Config. 1 1,017 562 5,656 1.0 7,236

AAV Config. 2 1,549 760 5,656 4.6 7,968

Table 4.16.
Whole Farm Operation Results - Cost

Operation
Cost ($/ha)

Propulsion Machinery Material Labor Total

Conventional 17.25 73.79 377.93 11.99 480.96

AAV Config. 1 16.97 77.89 327.05 6.96 428.87

AAV Config. 2 26.02 107.25 327.05 31.26 491.58

combine harvester. At only four rows wide, the Almaco R2 combine is 1/3 the width

of a conventional 12 row combine; yet, it still has a 205 kW (275 hp) rated engine

and weighs 14,061 kg (31,000 lb) compared to a 240 kW (320 hp) rated engine of a

conventional large 12 row combine that weighs 18,048 kg (39,790 lb). This leads to

high propulsion energy cost and labor costs, see Figures 4.2(a), 4.2(d), 4.3(a), and

4.3(d). With the additional time spent in the field, this leads to high machinery

costs, see Figures 4.2(b) and 4.3(b). For the above analysis, the small combine price

is set at $350,000. This price was chosen predicting high volume pricing for smaller

combines and along with their smaller size/weight. In actuality, these small combine

harvesters are mainly used in research activities and cost $800,000 and up.

AAV Configuration 2 highlights the need to analyze each operation on an individ-

ual basis. Because of the poor performance of the small combine harvester, the entire
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(a) Propulsion Energy (b) Machinery Embodied Energy

(c) Input Material Embodied Energy (d) Labor Energy

Figure 4.2. Whole farm operation energy consumption rate

AAV Configure 2 would be disregarded as less efficient and more costly. However, if

the small four row autonomous combine harvester is replaced with an autonomous 12

row harvester, the total energy consumption drops from 7,968 MJ/ha to 7,183 MJ/ha

and the cost drops from 491.58 $/ha to 416.32 $/ha. In the next section, each task

will be analyzed on an individual basis in order to give a better understanding of the

most efficient and effective use of AAVs.
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(a) Propulsion Cost (b) Machinery Cost

(c) Input Material Cost (d) Labor Cost

Figure 4.3. Whole farm operation cost consumption rate

4.3 Individual Task Operation Study

The previous sections analyzed and compared conventional and single-machine

autonomous operations. In general, the propulsion energy/cost and the machinery

embodied energy/cost were roughly the same between three categories (single large

conventional, single large AAV, single smaller AAV). Major differences were seen in

the decreased use of fertilizer (50% reduction), pesticide (65% reduction), and the

increased labor cost of the single smaller AAV.

One potential advantage of using AAVs is their ability to work together in groups

or swarms of other vehicles to complete an in-field operation. The energy consumption
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(MJ/ha) and cost ($/ha) for propulsion, machinery, and input material is not effected

by the inclusion of additional machines to a swarm; on a per-hectare-basis, the amount

of fuel or embodied energy consumed will still be the same. For example, if there

are twice as many machines, each machine will only be operating for half the amount

of time. On the other hand, other factors are influenced when operating AAVs in a

group instead of alone, such as the labor cost and operation time. While labor energy

consumption (MJ/ha) is very small compared to the other three main energy sources,

its cost ($/ha) is comparable to the propulsion cost.

In order to have a better perspective on the effects of using AAVs, it is helpful

to introduce other performance metrics: task completion time and total costs. The

total task completion time is the number of working days required to finish an in-

field operation and is a function of machine speed, width, field efficiency, number of

machines, and length of work day. Based on farmer interviews, a common in-field work

day can range from 10-14 hours and can increase to 16-18 hours when timing becomes

critical (e.g., needing to finish an operation before inclement weather). Examples of

limiting factors to the length of work day include operator fatigue and poor visibility.

Fully autonomous vehicles are able to operate 24 hours a day which can greatly

decrease the number of working days required to finish an operation.

The total costs of an operation relevant to this analysis are shown below.

• Total machinery capital cost

◯ Initial purchase price of machinery

◯ (pTM + pimp)nmachines

• Total labor cost

◯ Total labor cost for operation

◯ Clabora

Each additional AAV that is added to a swarm will increase the overall initial capital

cost of machinery, but it will decrease the amount of time required to complete an

in-field operation.
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In the following sections, the four crop production operations (fertilizing, spraying,

planting, and harvesting) will be analyzed on an individual basis, with particular

emphasis on the effect of AAVs operating in groups.

4.3.1 Fertilizing

For the example case scenario (Midwest U.S. corn production, 300 ha), liquid

nitrogen fertilizer is applied below the soil surface using a drawn implement. Because

of the high draft requirements of this type of fertilizer application, this present analysis

is limited to the large tractors (187 kW John Deere 8295R T3 pulling a FAST 8300

liquid fertilizer applicator) and small tractors (54 kW John Deere 5085E pulling a 5-

knife liquid fertilizer applicator) introduced in Section 4.2. By increasing the number

of smaller autonomous tractors, more ground can be covered at once which decreases

the labor cost and the number of working days for each operation.

As mentioned in the previous section, the energy consumption (MJ/ha) and cost

($/ha) for propulsion, machinery, and input material is not effected by the inclusion

of additional machines to a swarm. These results are shown below in Tables 4.17 and

4.18. Labor energy consumption (MJ/ha) is very small compared to the other three

main inputs, that it has been omitted. Labor cost ($/ha) is shown in Figure 4.4.

Table 4.17.
Fertilizing Results - Energy Consumption

Operation

Energy Consumption (MJ/ha)

Propulsion
Embodied

Total(a)
Machinery Material

Conventional 218 134 7,800 8,152

Large Tractor AAV 214 133 3,900 4,247

Small Tractor AAV 205 189 3,900 4,294

(a)Labor energy consumption omitted
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Table 4.18.
Fertilizing Results - Cost

Operation
Cost ($/ha)

Propulsion Machinery Material Total(a)

Conventional 3.62 7.74 78.00 89.36

Large Tractor AAV 3.56 7.99 39.00 50.55

Small Tractor AAV 3.43 9.25 39.00 48.25

(a)Not including labor cost, see Figure 4.4

A comparison of the labor cost is shown in Figure 4.4. As the fertilizing oper-

ation transitions from large machines to small machines, the labor cost increases;

the amount of time required to complete a task with a single small machine is much

higher because of the narrower implement (15 row vs. 5 row). As more small AAVs

are added to the swarm, the labor costs decreases. Even though the small tractor

AAV implement width is narrower than the conventional machinery, the labor cost

breaks even after two AAVs, with diminishing returns as more machines are added.

Figure 4.4. Fertilizing labor cost comparison
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Figure 4.5 shows the total machinery capital cost for each configuration. Con-

ventional agricultural operations commonly utilize large, expensive machinery. Small

AAVs are an alternative approach, where smaller and less expensive machines are

used. Each small AAV that is added to the swarm will increase the overall machinery

capital cost. However, as seen in Figure 4.5, it takes more than four small AAVs in

order to surpass the cost of a single large conventional machine. The prices chosen

for this analysis are based on 2019 model year vehicles (see Appendices A.1–A.3).

Finally, Figure 4.6 shows the number of working days required to complete the

fertilizing task. The conventional operation assumes a working day of 16 hr and

the AAV operations assume a working day of 24 hr. For a conventional fertilizing

operation, the total time is 38.5 hr, which equates to 2.4 working days. Because

AAVs are able to work non-stop, it only requires two machines in order to complete

the task in the same amount of time as a conventional large machine. As additional

smaller AAVs are added to the swarm, the required work time continues to decrease.

With four and five AAVs working simultaneously, the amount of working days can

be decreased by more than half.

Figure 4.5. Fertilizing machinery capital cost comparison
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Figure 4.6. Fertilizing working days comparison

4.3.2 Spraying

The herbicide spraying operation occurs twice during this predefined crop pro-

duction scenario: pre-plant and post-emergence. In the whole farm operation study

(Section 4.2), a 55 kW (74 hp) tractor pulling a 12.2 m (40 ft) boom sprayer traveling

at 11.3 km/hr (7 mi/hr) was used for the conventional operation and the larger AAV

configuration. The smaller AAV configuration used the same tractor but a smaller

7.6 m (25 ft) mounted sprayer boom.

Two other AAV configurations for a spraying operation include a small utility

vehicle (e.g., John Deere Gator) and a single-row machine. The small utility vehicle

is based on research from Ball et al. (2015) where a modified autonomous electric

John Deere TE Gator was equipped with a 5.5 m (18 ft) sprayer boom (Figure 4.7).

This experimental machine was tested on a single 55 ha (136 acre) field with 12

simulated robots all working in coordination with each other. The single-row machine

is based on an AAV from a startup company called Rowbot Systems. The vehicle is

an articulated four wheeled machine that uses LiDAR and GPS to navigate between

30 inch rows (Figure 2.10).
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Figure 4.7. Autonomous electric John Deere TE Gator (Ball et al., 2015)

A summary of the input parameters for the utility AAV and the single-row AAV

are shown in Table 4.19. Appendices A.4 and A.5 contain all input values used for this

analysis. Tables 4.20 and 4.21 show the propulsion, machinery, and input material

energy consumption and cost.

A comparison of the labor cost is shown in Figure 4.8. As the spraying operation

transitions from larger machines to the utility and single-row machines, the labor cost

is considerably higher because the those two AAVs are much more narrow than the

larger machines. In general, labor costs are low for the conventional, large tractor

AAV, and small tractor AAV operations because of the wider machines can travel

quickly through the field; at 12.2 m wide traveling at 11.2 km/hr, the field capacity

is 8.9 ha/hr and total in-field operation time of 33.6 hr. Similar to the fertilizing

operation, as more small AAVs are added to a swarm, the labor costs decrease. For

small tractor AAVs (54 kW John Deere 5085E), the labor cost outperforms the large

tractor AAV once two machines are in use. The labor costs of utility AAVs match the

conventional operation once 3 machines are in use, and it takes 12 single-row AAVs

to achieve the same results.
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Table 4.19.
Utility AAV and Single-row AAV Inputs for Spraying Operation

Name Units Utility AAV Single-row AAV

Operating Speed [km/hr] 5 6.4

Field Eff. [%] 65 65

Rated Width [m] 5.5 1.5

TM Drive [-] 2WD 4WD

TM Throttle [%] 100 50

TM Rated Power [kW] 4.6 10

TM Mass [kg] 900 544

TM Emb. Energy [MJ/kg] 138 138

TM Est. Life [hr] 3,000 3,000

Table 4.20.
Spraying Results - Energy Consumption

Operation

Energy Consumption (MJ/ha)

Propulsion
Embodied

Total(a)
Machinery Material

Conventional 27 17 48 92

Large Tractor AAV 27 17 17 61

Small Tractor AAV 44 28 17 88

Utility Tractor AAV 6.0 23 17 46

Single-row AAV 48 39 17 104

(a)Labor energy consumption omitted

Figure 4.9 shows the total machinery capital cost for each configuration. The ini-

tial capital costs of a conventional machine and a large tractor AAV are $118,000 and

$120,000, respectively. In order to match the initial cost of a conventional machine,
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Table 4.21.
Spraying Results - Cost

Operation
Cost ($/ha)

Propulsion Machinery Material Total(a)

Conventional 0.48 5.33 9.24 15.04

Large Tractor AAV 0.48 5.36 3.30 9.14

Small Tractor AAV 0.76 1.55 3.30 5.61

Utility Tractor AAV 0.22 2.95 3.30 6.47

Single-row AAV 1.01 5.23 3.30 9.54

(a)Not including labor cost, see Figure 4.8

Figure 4.8. Spraying labor cost comparison

it would take more than two small tractor AAVs, more than seven utility AAVs, or

12 single-row AAVs.

Finally, Figure 4.10 shows the number of working days required to complete the

spraying task. The conventional operation assumes a working day of 16 hr. The large
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Figure 4.9. Spraying machinery capital cost comparison

tractor AAV, small tractor AAVs, and single-row AAVs all assume a working day of

24 hr because they are are powered by fossil fuel which allows for fast refueling. The

utility AAV is an electric vehicle with a battery pack that allows for eight hours of

continuous operation followed by a 12 hr recharge time. The total number of working

days for the utility AAV is calculated using Equation 4.1.

tworkDays =
(telec,op + telec,charge) ⋅ INT [ tfield

telec,op
] +MOD[ tfield

telec,op
]

24 hr
(4.1)

where telec,op is the electric machine’s continuous operation time (hr), telec,charge is the

electric machine’s charge time (hr), and tfield is the total field task time (hr). With

a total task time of 33.6 hr, the conventional spraying operation can be completed in

just over two working days. To achieve this same total work day time, it requires two

small tractor AAVs, seven utility AAVs, or 12 single-row AAVs.



84

Figure 4.10. Spraying working days comparison

4.3.3 Planting

Corn is planted in 30 inch rows utilizing a no-till planting operation. The conven-

tional operation is outlined above in Section 4.2.1 (187 kW traction machine pulling

a 12 row planter traveling at 8 km/hr). The large tractor AAV operation uses the

modified autonomous conventional machinery (see Section 4.2.2. The small AAV op-

eration is outlined above in Section 4.2.3 (54 kW traction machine pulling a four row

planter traveling at 8 km/hr).

Two other AAV configurations for the planting operation include a small utility

tractor and a single-row machine. The small utility tractor is based on the University

of Regina agBOT research vehicle that finished first place at the 2016 agBOT planting

competition. This machine is an autonomous Kubota L2501DT pulling a two row

Väderstad planter (Figure 4.11).

The single-row AAV is based on a concept machine from AGCO Fendt that is

called Xaver (Figure 4.12). These small electric machines work together with a cloud-
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Figure 4.11. The University of Regina agBOT seeder (Barker, 2016)

based system for precision corn planting. Each machine is powered by a 400 W electric

motor and weighs about 65 kg. Its battery pack allows a single machine to cover 0.1

ha/hr and the machine can operate for 2.5 hr continuously. When the battery is low,

a machine will automatically navigate back to the larger logistics unit for a 30 minute

recharge (Fendt, 2017).

A summary of the input parameters for the utility AAV and the single-row AAV

are shown in Table 4.22. Appendices A.6 and A.7 contain all the input values used

for this analysis. Tables 4.23 and 4.24 show the propulsion, machinery, and input

material energy consumption and cost.
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Figure 4.12. Fendt Xaver single-row seeder (Fendt, 2017)

Table 4.22.
Utility AAV and Single-row AAV Inputs for Planting Operation

Name Units Utility AAV Single-row AAV

Operating Speed [km/hr] 8 2

Field Eff. [%] 65 65

Rated Width [m] 1.5 0.76

TM Drive [-] MFWD 4WD

TM Throttle [%] 75 100

TM Rated Power [kW] 18.1 0.4

TM Mass [kg] 1,100 65

TM Emb. Energy [MJ/kg] 138 138

TM Est. Life [hr] 3,000 3,000
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Table 4.23.
Planting Results - Energy Consumption

Operation

Energy Consumption (MJ/ha)

Propulsion
Embodied

Total(a)
Machinery Material

Conventional 202 200 1,722 2,125

Large Tractor AAV 198 198 1,722 2,118

Small Tractor AAV 138 83 1,722 1,943

Utility Tractor AAV 167 96 1,722 1,985

Single-row AAV 35 30 1,722 1,787

(a)Labor energy consumption omitted

Table 4.24.
Planting Results - Cost

Operation
Cost ($/ha)

Propulsion Machinery Material Total(a)

Conventional 3.43 21.46 281.45 306.34

Large Tractor AAV 3.35 21.86 281.45 306.66

Small Tractor AAV 2.42 12.05 281.45 295.92

Utility Tractor AAV 2.93 11.45 281.45 295.83

Single-row AAV 1.28 22.99 281.45 305.72

(a)Not including labor cost, see Figure 4.13

A comparison of the labor cost is shown in Figure 4.13. As the planting operation

transitions from large machines to small machines, the labor cost is considerably

higher because the small AAVs are much more narrow than the larger machines. As

more small AAVs are grouped together, the labor costs decrease. For small tractor

AAVs (54 kW John Deere 5085E), the labor cost breaks even when more than two

tractors are used. The labor costs of utility AAVs match the conventional operation
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when more than four machines are in use, and it takes 26 single-row AAVs to achieve

the same results.

Figure 4.13. Planting labor cost comparison

Figure 4.14 shows the total machinery capital cost for each configuration. The

initial capital costs of the conventional machinery and a the large tractor AAV ma-

chinery are $425,000 and $455,000, respectively. In order to match the initial cost

of the conventional machinery, it would take more than six small AAVs, 16 utility

AAVs, or 55 single-row AAVs.
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Figure 4.14. Planting machinery capital cost comparison

Finally, Figure 4.15 shows the number of working days required to complete the

planting task. The conventional operation assumes a working day of 16 hr. The large

tractor AAV, small tractor AAVs, and utility AAVs all assume a working day of 24 hr

because they are powered by fossil fuel which allows for fast refueling. The single-row

AAV is an electric machine with a battery pack that allows for 2.5 hr of continuous

operation followed by 30 minute recharge time. The total number of working day for

the single-row AAV is calculated using Equation 4.1.

With a total task time of over 63 hr, the conventional planting operation requires

nearly four full working days. To achieve the same results, it requires two small

tractor AAVs, four utility AAVs, or 39 single-row AAVs.
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Figure 4.15. Planting working days comparison

4.3.4 Harvesting

The harvesting scenario only analyzes large and small combine harvesters. As

discussed in Section 4.2.4, the smaller four row combine harvester has very poor per-

formance compared to a conventional 12 row machine. Even though it is a smaller

machine, it still requires high amounts of propulsion energy and cost due to its engine

size, see Figures 4.2(a) and 4.3(a). Additionally, because the smaller combine har-

vester is only four rows wide, it would require at least two to three machines operating

non-stop in order to match the performance of a large harvester. The capital costs of

buying two to three smaller combines are enough to disregard this option compared

to the conventional or autonomous large combine harvesters.

The energy and cost results from conventional harvesters and large AAV har-

vesters is shown below in Tables 4.25 and 4.26. The biggest advantage to using an

autonomous harvester is the labor cost savings and the decreased amount of working

days that are required to complete a task. The 300 ha harvesting task requires just

over 71 hr to complete. This time equates to 4.4 working days for a conventional
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operation (16 hr work days). The autonomous large harvester is able to operate non-

stop, which allows the task to be completed in 3.0 work days. This 24-hour operation

is possible because corn can be harvested even at night. This is not the case for

soybean harvest, where nighttime harvest is limited because the onset of dew at dusk

does not allow for proper processing of the crop.

Table 4.25.
Harvesting Results - Energy Consumption

Operation

Energy Consumption (MJ/ha)

Propulsion
Embodied

Labor Total
Machinery Material

Conventional 559 210 - 0.5 770

Large Tractor AAV 550 197 - 0.3 747

Table 4.26.
Harvesting Results - Cost

Operation
Cost ($/ha)

Propulsion Machinery Material Labor Total

Conventional 9.25 33.93 - 3.55 46.73

Large Tractor AAV 9.11 37.32 - 1.80 48.23

4.3.5 Individual Task Operation Study Results and Conclusions

4.3.5.1 Fertilizing

The fertilizing operation looked at the outcome of using large conventional ma-

chinery, a large tractor AAV, and multiple small tractor AAVs. While the large

tractor AAV has a higher machinery cost, it is able to work around the clock, which

lowers the labor cost and allows the fertilizing operation to be completed in 1.6 work-
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ing days (as opposed to 2.4 working days with conventional machinery). The energy

and cost consumption for propulsion and machinery are nearly the same between

the conventional machinery and the large tractor AAV. The amount of energy and

cost associated with the input material is much lower with the AAVs because of the

intelligent application of fertilizer, which decreases excess application.

Small tractor AAVs have a slightly lower propulsion cost because of their smaller

engine and machine size. However, their machinery energy (MJ/ha) and costs ($/ha)

are higher due to their lower field capacity. Since the small tractor AAVs can work

together in a group, the labor costs and required working days can be decreased. It

only takes two small tractor AAVs to meet or exceed the labor cost and working day

performance of the conventional machinery. Yet, for the same amount of money as

a conventional machine, four to five small tractor AAVs could be purchased. With

a swarm of four AAVs, the labor cost drops to 0.84 $/ha (1.92 $/ha for conven-

tional) and the operation can be completed in 1.2 working days (2.4 working days for

conventional).

4.3.5.2 Spraying

The pesticide spraying operation introduced the utility AAV and the single-row

AAV. For this 300 ha corn operation, pesticide is applied twice per season. The

conventional machinery has a boom width of 12.2 m (40 ft) boom and travel speeds

of 11.3 km/hr (7 mi/hr), it takes 33.6 hr to complete the task (labor cost 1.68 $/ha).

The energy and cost consumption for propulsion and machinery are nearly the same

between the conventional and large tractor AAV. The greatest benefit to utilizing

AAVs is the intelligent application of pesticide, which can allow for 65–95% reduction

in chemical use. Small tractor AAVs have very similar energy consumption and costs

compared to large AAVs. In order to match the field capacity of the large machines,

two small tractor AAVs are required. These two machines can complete the spraying

task in 14.9 hr and cost roughly the same as a single conventional machine.
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The utility AAV offers a unique advantage in that it is electrically powered. This

greatly decreases the propulsion energy consumption and cost (6.0 MJ/ha, 0.22 $/ha)

compared to the conventional, large AAV, and small tractor AAVs (≈35 MJ/ha,

≈0.60 $/ha). Because the utility AAV is so narrow, it requires at least 3 machines

to match the labor cost of a conventional machine. Yet, it requires at least seven

machines to meet or exceed the task time performance of 2.1 working days. This

is because the battery pack of the utility AAV allows for eight hours of continuous

operation, followed by a 12 hour recharge time.

Finally, the single-row machine is designed to navigate between rows of corn and

apply pesticide where needed. Even through it is a low cost machine that is purpose

built to work in swarms, it does not meet the performance of the other four machine

types. Nine single-row AAVs need to be working together before the task time can

decrease to 2.1 working days. While the pricing information is not available for this

machine, $10,000 seems to be a reasonable price. At that price these 12 machines

could be purchased for the same price as the conventional machinery.

4.3.5.3 Planting

Corn is planted using a no-till planting operation. The conventional machinery

is able to complete the planting task in 63.0 hr, which equates to nearly four 16

hr work days. As is the case with the other in-field operations, the propulsion and

machinery energy consumption (MJ/ha) and cost ($/ha) are nearly identical for the

conventional machinery and the large tractor AAV. Because the planting rate (82,780

seeds/ha, 33,500 seeds/acre) is constant between all the different machine types, the

input material energy consumption and costs do not change.

Where the conventional and large tractor AAV use a 12-row implement, the small

tractor AAVs are only using a four-row implement. Yet, since the small tractor AAVs

can operation around the clock, it only requires two machines in order to match the

labor cost of the conventional machine (small tractor AAV: 2.40 $/ha; conventional:
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3.16 $/ha). In order to complete the planting task as fast as conventional machinery,

two small tractor AAVs are also required. This allows the working day time to

decrease to 3.9 working days. These two small tractor AAVs could complete the task

just as fast, yet their cost is nearly 60% less. Six small tractor AAVs can be purchased

with the same amount of machinery capital cost as the conventional operation. This

would decrease the labor cost to 0.98 $/ha (compared to 3.16 $/ha) and the operation

could be completed in 1.3 working days (compared to 3.9 working days).

The utility AAV shows a similar trend. While the machine is much more narrow

(two-row implement), it does not cost nearly as much as the conventional machinery.

It requires four utility AAVs to match the labor cost of the conventional machine and

to complete the planting task in the same amount of working days. At only ≈$29,000

per AAV, six utility AAVs cost 68% less than the conventional machinery. Fourteen

utility AAVs could be purchased with the same amount of machinery capital costs

as the conventional operation. The labor cost would decrease to 0.75 $/ha and the

operation could be completed in 1.1 working days.

The single-row AAV is battery powered and allows for 2.5 hr of continuous oper-

ation, followed by a 30 minute recharge. To complete the planting task in less than

four working days, 40 single-row AAVs are required. Yet only 39 single-row AAVs are

needed to meet the labor cost. The machinery capital costs of 40 single-row AAVs

are 38% lower than the conventional machinery costs, and 61 machines could be pur-

chased for the same amount as the conventional machinery. If 61 single-row AAVs

were utilized, the labor cost would decrease to 1.26 $/ha and the operation could be

completed in 2.44 working days.

4.3.5.4 Harvesting

As discussed in Section 4.3.4, only the conventional and large AAV are considered

in this analysis. In general, the energy consumption and costs are relatively the

same between the two machines. While the large AAV harvester will weigh less,
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its cost will be higher. The advantage of the autonomous harvester is that is can

operate continuously, whereas the conventional machine is limited by operator fatigue

or visibility. The small AAV harvester was omitted from the analysis because of

its poor performance. Because of its narrower width, it would require three small

AAV harvesters in order to meet the performance of one conventional machine. The

machinery capital costs and propulsion costs make this option impractical.

4.4 Production Efficiency Metrics

4.4.1 Energy-per-unit-area

As seen in the case study analysis above, there are many factors at play when

comparing the pros and cons between different vehicle configurations. The goal is to

present the data in a way that allows for an objective comparison between the different

agricultural operations. One metric that has been shown above is energy-per-unit-

area. This is displayed as MJ/ha, but it could be altered for other units. This metric

shows the amount of energy (direct or embodied/sequestered) that is consumed over

the entire field, regardless of the task time required for the operation. The energy

consumption (MJ/ha) for propulsion, machinery, and input material is independent

of the number of the machines simultaneously in use; on a per-hectare-basis, the

amount of fuel or embodied energy consumed will still be the same regardless of how

many machines are operating at once. The labor energy consumption does change

with the number of AAVs working together; however, the analysis above shows that

the labor energy consumption can be ignored because it is insignificant compared to

the other inputs (i.e., propulsion, machinery, and input material). Since labor energy

consumption can be omitted, energy-per-unit-area is a helpful metric to determine

energy consumption, regardless of how many machines are being used.

Looking only at energy-per-unit-area, there is little difference between conven-

tional large machines and large AAVs. The difference is seen in the reduced propulsion

needed, since large AAVs are lighter than their conventional counterparts. Addition-
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ally, AAVs are able to apply agrochemicals more efficiently and intelligently, and this

reduces the amount of input material embodied energy consumption. As machine size

decreases, sometimes it makes sense (from an energy standpoint) to use small tractor

AAVs instead of large machines; this is the case for fertilizing and planting. However,

during the spraying operation, a small tractor AAV consumes more propulsion en-

ergy than the large traction machines. Electric machines are by far the most efficient

choice in terms of energy-per-unit-area. This is due to the high efficiencies of electric

vehicles compared to fossil fuel machines. Some downsides of using electric machines

include the higher cost-per-unit-energy and the requirement to recharge batteries.

4.4.2 Energy-per-field-time

Reporting energy-per-field-time is a helpful metric to show the effects of multiple

AAVs working together. Once again, the results of the conventional operations are the

benchmarks to which the other operations are compared to. This metric is calculated

using Equation 4.2.

Ė = E ⋅Ca (4.2)

where E is energy consumption (MJ/ha) and Ca is field capacity (ha/hr). The re-

sulting values are expressed in terms of MJ/hr. While this could be equated to power

(kW = MJ
hr

1
3.6), it is more intuitive to express Ė in terms of MJ/hr, since power is

commonly associated with engines, torque/speed, etc. Example results are shown in

Tables 4.27 and 4.28. Once again, the labor is neglected because the insignificant

amount of energy that is consumed. While it is informative to know the energy con-

sumption per hour, it does not always reveal the whole picture. For example, while

Table 4.27 shows that two small tractor AAVs working together consume 37% less

energy per hour than conventional machines, it does not reveal that the field time of

two small AAVs is 58 hr compared to only 38 hr by the conventional operation.
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Table 4.27.
Fertilizing Results - Energy-per-field-time

Operation

Energy Consumption (MJ/hr)

Propulsion
Embodied

Total(a)
Machinery Material

Conventional 1,703 1,049 60,848 63,600

Large Tractor AAV 1,673 1,039 30,424 33,136

Small Tractor AAV(b) 1,065 981 30,424 32,470

(a)Labor energy consumption omitted

(b)Two AAVs used, matches conventional labor cost

Table 4.28.
Spraying Results - Energy-per-field-time

Operation

Energy Consumption (MJ/hr)

Propulsion
Embodied

Total(a)
Machinery Material

Conventional 234 146 425 806

Large Tractor AAV 244 150 152 546

Small Tractor(b) AAV 243 150 95 489

Utility AAV(c) 32 124 91 247

Single-row AAV(d) 363 300 130 793

(a)Labor energy consumption omitted

(b)One AAV used, matches conventional labor cost

(c)Three AAVs used, matches conventional labor cost

(d)Twelve AAVs used, matches conventional labor cost
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4.4.3 Cost-per-unit-area

Equations 3.28–3.32 calculate the cost in terms of $/ha for each of the four main

inputs (i.e., propulsion, machinery, input material, and labor). This performance

metric shows the financial cost that is accrued for the entire field area, regardless of

the task time required for the operation. The cost ($/ha) for propulsion, machinery,

and input material is independent of the number of machines working together. The

labor cost does change with the number of AAVs working together; and contrary

to the energy-per-unit-area metric, the labor costs are a meaningful portion of the

overall costs.

There is little cost difference between conventional and large tractor AAVs, except

for input material cost (because AAVs are able to apply agrochemicals intelligently).

Large tractor AAVs have lower labor costs (1.20 $/ha vs. 1.92 $/ha) because they

are able to operate around the clock and finish the task in less working days. Cost-

per-unit-area gives helpful perspective on the implications of using multiple AAVs

and electric machines. Labor cost is of similar magnitude to propulsion cost and is

decreased as more AAVs work together. Discussion on the effects of AAVs and labor

cost ($/ha) can be seen above in Section 4.3

4.4.4 Cost-per-field-time

Just like energy-per-field time, cost-per-field-time is a helpful metric to show the

effects of multiple AAVs working together. This metric is calculated using Equation

Ċ = C ⋅Ca (4.3)

where C is the cost consumption ($/ha) and Ca is field capacity (ha/hr). Example

results are shown in Tables 4.29 and 4.29.
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Table 4.29.
Fertilizing Results - Cost-per-field-time

Operation
Cost ($/hr)

Propulsion Machinery Material Labor Total

Conventional 28.26 60.42 608.48 15.00 712.15

Large Tractor AAV 27.77 62.29 304.24 9.36 403.66

Small Tractor AAV(a) 17.81 48.12 202.83 8.76 277.51

(a)Two AAVs used, matches conventional labor cost

Table 4.30.
Spraying Results - Cost-per-field-time

Operation
Cost ($/hr)

Propulsion Machinery Material Labor Total

Conventional 4.09 47.59 82.49 15.00 149.14

Large Tractor AAV 4.24 47.89 29.46 9.64 91.23

Small Tractor AAV(a) 4.24 8.62 18.43 8.30 59.59

Utility AAV(b) 1.15 15.8 17.69 8.57 43.21

Single-row AAV(c) 7.73 40.00 25.25 9.18 82.16

(a)One AAVs used, matches conventional labor cost

(b)Three AAVs used, matches conventional labor cost

(c)Twelve AAVs used, matches conventional labor cost

4.4.5 Working Days

Tracking the number of working days helps provide a better perspective on the

amount of time required to complete a task. The number of working days required

to finish a task is a function of machine speed, width, field efficiency, number of

machines, and length of work day. For a given task, a conventional operation may

require less field time but more working days because of the limits of human operators,
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such as operator fatigue or poor visibility. For the analysis in this chapter, the length

of work day for conventional operations was set at 16 hr, based on farmer interviews

(10–14 hr for a common in-field work day; 16–18 hr when timing is critical). AAVs

have the advantage of working non-stop with a 24 hr work day. This could allow even

a slower or more narrow machine to complete the task sooner than a conventional

operation.

4.4.6 Machinery Capital Cost

Finally, machinery capital cost is an important metric to use when comparing

conventional machines with AAVs. Conventional farming operations typically opt

for large, wide machines that are able to quickly travel through a field and cover

large swaths of ground in a short amount of time. As these machines increase in size

and complexity, their costs also increase. Analyzing the overall machinery capital

cost gives a helpful perspective on how effective these large machines are compared

to AAVs. There were four classes of AAVs that were analyzed in the previous sec-

tions: large traction machine, small traction machine, utility, and single-row. With

the three smaller classes of AAVs, multiple machines are needed in order to meet the

performance of a single conventional machine. In nearly every instance, for the same

amount of machinery capital cost, AAVs were able to exceed the performance of con-

ventional machinery. While capital costs do not provide the entire financial picture,

it is an effective starting point in helping compare AAVs to conventional machines.
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5. MODELING TOOL

The final objective of this research is to develop a modeling tool that allows users to

evaluate the use of AAVs in the crop production process. The modeling tool allows a

user to interact with the energy model in a user-friendly environment and allows for

parameter studies and what-if analysis to be performed.

5.1 Microsoft Excel Energy Model Workbook

The energy model and underlying equations were developed in Microsoft Excel.

This software was chosen because it allows for easy distribution to and evaluation by

a wide audience who may be deterred from using a more expensive software package.

The energy model spreadsheet is contained within a single Microsoft Excel workbook

that contains five sheets. The first sheet contains instructions about the workbook

and a button that launches the modeling tool graphical user interface (GUI). The

user may stop here and immediately begin to use the modeling tool GUI, or may

proceed to next sheet.

Figure 5.1. Microsoft Excel energy model Instructions sheet
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The Inputs sheet is the next worksheet and displays all the necessary inputs for the

energy model calculations. A partial view of the spreadsheet is shown in Figure 5.2;

the entire spreadsheet is shown in Appendix B.1. The sheet is organized in a 6-

column format which displays the parameter names, units, mathematical symbols,

values, comments, and cited literature sources. Data can be directly added to the

Inputs sheet or added via the GUI. Care has been taken to include ample information

and clarification about each input; however, the GUI provides more description and

helpful tips for entering correct values.

Multiple data sets can be added to the spreadsheet in order to analyze differ-

ent operations. Figure 5.2 displays one data set with its name ([Data Set Name])

given in cell D3. Any additional data sets can be manually added by inserting addi-

tional columns between the Symbol column (column C) and the Comment column

(column E). New data sets can also be added using the energy model GUI and are

automatically inserted in the correct locations.

Figure 5.2. Microsoft Excel energy model Inputs sheet

While the input values are being added, the Outputs sheet performs calculations

and displays the results. A partial view of the spreadsheet is shown in Figure 5.3;

the entire spreadsheet is shown in Appendix B.2. The sheet is organized in the same

6-column format. The outputs for each data set are displayed between the Symbol

column (column C) and the Comment column (column E). There is additional

information shown above the data set values to give helpful reference information for

the operation being evaluated (see cells D1, D2, and D3). If a new data set is manually

added to the Inputs sheet, an extra column must also be added to the Outputs sheet
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and formulas from the previous data set output column must be copied to the newly

inserted cells. When adding data sets via the energy model GUI, these operations

takes place automatically.

The Outputs sheet displays all outputs from the energy model, even if some of

them are irrelevant to the user. Towards the bottom of the sheet, the final output

values are displayed (such as energy consumption, costs, and task completion time).

Because this model is built within Microsoft Excel, it is trivial to add new outputs or

calculations. Graphs can also be created within the workbook to help visualize the

output of the energy model.

Figure 5.3. Microsoft Excel energy model Outputs sheet

The last two sheets, Misc Input Options and Help Tip Text, are used to support

the back end of the calculation spreadsheet and the energy model GUI. A partial view

of the Misc Input Options spreadsheet is shown in Figure 5.4; the entire spreadsheet

is shown in Appendix B.3. This sheet contains information for lookup tables that are

needed for the calculations on the Outputs sheet. This format is helpful because it

gives the opportunity to tweak values or add operations that may be missing from

typical datasheets or standards.

The Help Tip Text spreadsheet is shown below and a full view is given in Ap-

pendix B.4. This spreadsheet contains text that is displayed in the energy model

GUI that provides additional information or helpful tips on the a particular parame-

ter. Any additional information that is added to these cells will automatically appear

within the GUI, which is useful if additional clarity is necessary for a particular input

variable.
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Figure 5.4. Microsoft Excel energy model Misc Input Options sheet

Figure 5.5. Microsoft Excel energy model Help Tip Text sheet

5.2 Graphical User Interface

The energy model GUI is a custom-built application within the energy model

spreadsheet that is created using Visual Basic for Applications (VBA). Because VBA

is used, the file extension for the energy model spreadsheet is ‘.xlsm’. The GUI is an

event-driven program that is composed of over 1,000 lines of codes. Multiple windows

and dialog boxes are used to collect the necessary input data required to analyze a

particular agricultural operation.

The energy model GUI can be launched using a button on the Instructions, Inputs,

or Outputs spreadsheets. When the GUI is first launched and there is no prior data

entered on the Inputs sheet, a message box will prompt the user to enter a name for

the new data set (Figure 5.6). This name will be placed in cell D3 of the Inputs sheet.
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Figure 5.6. Energy model GUI new data set name prompt

Following the message box prompt, the energy model GUI will open to the first

tab (Figure 5.7(a)). The GUI is organized into tabs that help walk the user through

the process of entering the necessary data for the agricultural operation analysis;

the eight tabs are: Operation, Field, Traction Machine, Implement, Input Materials,

Labor, Electric, and Costs. Within each tab is a set of text boxes and drop down

boxes for entering data, along with a Help Tip text box that automatically provides

helpful information regarding any particular parameter that is being entered. When

data is finished being entered on a given tab, the user presses the Submit & Continue

to Next Tab button; this writes the data to the Inputs sheet and advances to the next

tab in the GUI.

(a) Energy model GUI Operations tab (b) Energy model GUI Field tab

Figure 5.7. Energy model GUI - tabs 1 and 2
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Data is continually entered as the user moves through the GUI. Some tabs have

sub-tabs that help organize the required data together (e.g., Figure 5.8(a)). The user

is able to move back forth through the tabs and update values, but the new values

will not be confirmed until the Submit & Continue to Next Tab button is pressed.

When data entry is complete, the energy model GUI can be closed and the results

can be viewed on the Outputs spreadsheet.

(a) Energy model GUI Traction Machine tab (b) Energy model GUI Implement tab

Figure 5.8. Energy model GUI - tabs 3 and 4

5.3 Working with Multiple Data Sets

The energy model Microsoft Excel workbook can be used to analyze multiple data

sets at the same time. Each data set is stored as a column on the Inputs and Outputs

spreadsheets. When the energy model workbook is opened for the first time, there

are no data sets pre-filled, and the GUI will prompt the user to enter a new data set

name (Figure 5.6). The best method for adding more data sets is by pressing the

Add New Data Set button located at the top of the GUI. This will launch the same

user prompt as shown in Figure 5.6. Once the name is confirmed, a new column will

be automatically added to the Inputs and Outputs spreadsheets. Data can then be

entered as described above and the results can be viewed.
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The inputs associated with each data set can be viewed within the GUI. Using

the drop down box at the top of the GUI, the user can select which data set to view

and the inputs will automatically populate the text boxes. Changes can be made to

these input parameters and saved in the same manner as described above.

Figure 5.9. Energy model GUI multiple data sets

5.4 Performing Parameter Studies

The final feature of the energy model GUI is to quickly perform parameter studies

based off an existing data set. A new parameter study is created by pressing the New

Parameter Study button at the top of the GUI which launches a new dialog window

(Figure 5.10).

Figure 5.10. Energy model GUI parameter study
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The user must first select an existing data set and its general information will

be displayed below. Next, a parameter is chosen that is to be varied. Currently,

the program is able to vary: number of machines, field efficiency, operating speed,

traction machine operating mass, and implement rated working width; however, ad-

ditional parameters could be added by editing the GUI. Once the desired parameter

is selected, the new parameter values are added in the indicated text box. A new

parameter set name is given, and then the data sets are automatically created once

the Submit button is pressed. In the example shown in Figure 5.10, the data set

named ‘Conventional, Fertilize, 1’ will be used as a reference for a parameter study

that varies the number of machines. Three additional data sets will be created where

the number of machines will be two, three, and four.

The results from all the data sets are displayed on the Outputs worksheet. The

method of analyzing and interpreting the results is left up to the user. Because

the energy model is built within Microsoft Excel, it is straightforward to create new

worksheets, graphs, and tables that can be used to analyze the data sets and results.
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6. CONCLUSIONS AND FUTURE WORK

In the years to come, a growing global population will require more crop production

than ever before. As technological advances improve across all industries, AAVs can

be part of the solution to the rising demand for food. By improving and transforming

conventional farming methods, AAVs have the potential to transform the way farming

operations are completed. AAVs are a class of robotic machines that have the ability

to complete agricultural tasks without requiring direct and constant control of a

human operator. By removing the need for an operator, these agricultural robotic

machines allow for new vehicle designs and new opportunities for different vehicle

configurations and sizes.

This work investigated the effects of AAVs on crop production processes and

how they can be used to effectively complete agricultural tasks. A simulation model

was developed that calculated the energy requirements of AAVs operating on row

crops. This deterministic model was used to quantify the energy needs and energy

expenditures of agricultural vehicles and was further used to investigate the effects of

using AAVs in lieu of conventional agricultural machinery.

The energy model was designed around four main energy sources for any given

in-field operation: traction machine energy source, machinery embodied energy, input

material embodied energy, and labor. The model is divided into seven different mod-

ules and utilizes user-input, along with prior module data, to generate an output at

each step along the way. The architecture of the energy model is shown in Figure 3.2.

The energy model was then demonstrated using a pre-defined scenario of a typ-

ical row-crop farming operation in the Midwest U.S. The purpose of the case study

was to compare a conventional crop production operation with operations that have

implemented autonomous machines. Four general vehicle configurations were chosen

based on the traction machine size: large tractor, small tractor, utility vehicle, and
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single row machines. The complete crop production operation was based on a farm

size of 607 ha (1,500 acre) with half the land devoted to corn production. The four

main operations were fertilizer application, pesticide spraying, no-till planting, and

harvesting.

First, the energy model was used to compare a whole farm operation with three

different machine configurations: using all conventional large machines, using all au-

tonomous large machines, and using all autonomous smaller machines (≈55 kW trac-

tor). The results show that from an energy standpoint, the most significant savings

comes from the decreased amount of agrochemical application associated with AAVs.

The total energy consumption of the large tractor AAV configuration is 36% less than

the conventional operation. Besides reduced agrochemical use, little difference is seen

between the conventional machinery and large tractor AAVs. Small tractor AAVs

fared worse due to the ineffectiveness of smaller combine harvesters. At only four

rows wide, the smaller harvester is 1/4 the width of a conventional large combine and

requires much more time in the field in order to complete the same task. Yet, the

machine size and fuel consumption are not proportionately smaller. Based on these

results, it is not recommended to blindly assume that simply switching from large

conventional machines to smaller AAVs is the most effective way to save energy and

costs.

In order to have a better perspective on the effects of using AAVs, further anal-

ysis was conducted on an individual operation basis. Table 4.1 shows the general

categories for comparison. The fertilizing operation looked at the outcome of using

large conventional machinery, a large tractor AAV, and multiple small tractor AAVs.

Because AAVs can work 24-hours per day, the fertilizing operation for the single large

tractor AAV could be completed in 1.6 working days, as opposed 2.4 working days for

the conventional machine. It only required two small tractor AAVs to meet or exceed

the performance of the conventional machine, yet for the same amount of money, four

to five small tractor AAVs could be purchased.
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The pesticide spraying operation compared five different types of machines. The

greatest benefit to utilizing AAVs is the intelligent application of pesticide, which

can allow for 65–95% reduction in chemical use. The spraying operation highlighted

the advantages of large machines (conventional and autonomous), namely speed of

operation and width. Because the large machines are so wide and travel so fast, it

takes two small tractor AAVs, seven utility AAVs, or 12 single-row AAVs to match

their performance.

The no-till planting operation also compared five different types of machines.

Two small tractor AAVs, seven utility AAVs, or 39 single-row AAVs are required to

match the performance of conventional machinery. However, for the same cost as

the conventional machine, six small tractor AAVs, 16 utility AAVs, or 55 single-row

AAVs could be purchased. The benefit of using higher numbers of AAVs is seen in the

amount of time required to complete the planting task, where the swarms of AAVs

could finish planting in nearly 1/4 of the time.

Harvesting was previously analyzed during the whole farm scenario. In general,

the energy consumption and costs are relatively the same between the conventional

machine and the large AAV. The advantage of the autonomous harvesting is that

is can operate continuously throughout the night. Continuous operation is possible

for this scenario because corn can be harvested at night. However, soybeans cannot

because the onset of dew at dusk does not allow for proper processing of the crop.

While the completed analysis gives insight and understanding to a common crop

production situation, more work is needed to investigate other scenarios. The work

presented herein only considered no-till corn production in the Midwest U.S. with

four in-field operations per growing season. Additional studies are needed that focus

on other crops, agricultural practices, and operations. Additionally, the model could

be expanded to include a more holistic analysis of costs and the economics of adopting

AAVs. Finally, it is worth noting that the logistics associated with employing AAVs

were not considered in this analysis and could play an important role in the decision

to utilize dozens of machines rather than a single conventional machine.
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Along with the energy model, crop production efficiency metrics were studied that

provided an objective method of analyzing the advantages and disadvantages asso-

ciated with replacing and/or augmenting conventional farming vehicles with AAVs.

Energy-per-unit-area shows the amount of energy that is consumed over the entire

field, regardless of the task time required. Because labor energy consumption is in-

significant compared to the other three inputs, energy-per-unit-area is also indepen-

dent of the number of machines simultaneously in use. Working days and machinery

capital cost are other metrics that proved beneficial when comparing AAVs to con-

ventional machines.

Finally, a modeling tool was developed and demonstrated that allows a user to

interact with the energy model in an intuitive way. Creating the modeling tool in

Microsoft Excel allows for easy distribution to a wide audience, as opposed to using

a more expensive software package. The energy model workbook is composed of five

spreadsheets that contain instructions, inputs, outputs, and supporting data tables.

A GUI was created using Microsoft Excel VBA that lets the user interact with an

event-driven program. Data sets can easily be created and modified for the purpose of

evaluating different farming operations. Additionally, options within the GUI allow

for parameter studies where multiple data sets can be instantly created in order

to analyze the effects of changing a single variable. Areas for improvement to the

spreadsheet and GUI could include additional parameters that are available to vary,

a method of automatically generating charts, or the process of creating tables to

succinctly summarize the results.

In the years to come, a growing global population indicate a need for increased crop

production. Societal elements, such as a decreased labor force, and environmental

effects show the importance of continuing to push the envelope and evolve farming

practices and machinery applications. This research identified key areas of vehicle

improvement and new farming methods for the purpose of increasing efficiencies,

reducing the overall environmental impact of farming, and taking advantage of the

next generation of agricultural machines.
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A. SIMULATION AND APPLICATION OF MODEL -

INPUT PARAMETERS

A.1 Whole Farm - Conventional Agricultural Operation

1
2
3
4
5

6

7
8
9
10
11

12
13
14
15
16
17
18

19

20

21

22

23
24

25

26

27
28

29

30
31
32

33

34
35
36

37
38

39

40

41
42
43
44
45
46
47

48
49
50
51

52

53
54
55

56

57

58

59

60

61

62
63

64

65

66

67

68
69

70

71

72

73

74

75
76

77

78

79

80

81

82

83

84

A B C D E F G

Name Units Symbol Fertilizer Herbicide Planting Harvest
 [--] [--] Conventional Conventional Conventional Conventional

No. of Machines [--] nmachines 1 1 1 1

Machines per Operator [--] nMpO 1 1 1 1

Soil/Ground Condition [--] [--] Firm Firm Firm Firm
Field Area [ha] a 300 300 300 300

Operation Type [--] [--] Miscellaneous Miscellaneous Planting Harvesting
Operation [--] [--] Liquid Fertilizer Applicator Boom-type sprayer Row crop planter Combine (SP)

Field Efficiency [--] Ef 0.65 0.65 0.65 0.7

Traction Machine Power Source [--] [--] Fossil Fuel Fossil Fuel Fossil Fuel Fossil Fuel
Traction Machine Drive Type [--] [--] MFWD MFWD MFWD 2WD

Traction Machine Operating Speed [km/h] s 10.5 11.2654 8 6.6
Traction Machine Engine Throttle Ratio [--] N 0.8 0.75 0.8 1
Traction Machine Mechanical Efficiency [--] Em 0.96 0.96 0.96 0.96

Traction Machine Rated Power [kW] Prated 187 54.35 187 240

Traction Machine Operating Mass [kg] mTM 11678 3784.5 11678 23000

Traction Machine Embodied Energy [MJ/kg] eemb,TM 138 138 138 116

Traction Machine Estimated Life [h] tlife,TM 16000 16000 16000 3000

Traction Machine Front Tire Type [--] [--] Radial Ply Radial Ply Radial Ply Radial Ply

Traction Machine Front Tire Configureation [--] [--] 1 1 1 2
Traction Machine Front Tire Section Width [mm] bTM,f 480 280 480 520

Traction Machine Front Tire Section Height [mm] hTM,f 336 238 336 442

Traction Machine Front Tire Overall Diameter [mm] dTM,f 1434 1111 1434 1950.8

Traction Machine Front Tire Deflection [mm] δTM,f 63.84 45.22 63.84 83.98
Traction Machine Front Static Load on Axle [kg] mTM,f 4831 1513.8 4831 13800

Traction Machine Front Cone Index of Soil [kN/m²] CIf 1200 1200 1200 1200

Traction Machine Rear Tire Type [--] [--] Radial Ply Radial Ply Radial Ply Radial Ply
 Traction Machine Rear Tire Configureation [--] [--] 2 1 2 1
 Traction Machine Rear Tire Section Width [mm] bTM,r 480 420 480 420

 Traction Machine Rear Tire Section Height [mm] hTM,r 384 357 384 357

 Traction Machine Rear Tire Overall Diameter [mm] dTM,r 1936.4 1476 1936.4 1374.4
 Traction Machine Rear Tire Deflection [mm] δTM,r 72.96 67.83 72.96 67.83

 Traction Machine Rear Static Load on Axle [kg] mTM,r 6847 2270.7 6847 9200

Implement Mass [kg] mimp 8820 1324.5 9610 0

Implement Embodied Energy [MJ/kg] eemb,imp 129 129 133 0

Implement Estimated Life [h] tlife,imp 1200 1500 1500 0

Implement Rated Working Width [m] w 11.43 12.192 9.144 9.144
Implement Electrical Current [A] i 0 0 0 0
Implement Electrical Voltage [V] V 0 0 0 0

Implement Hydraulic Fluid Flow [L/min] Q 0 0 0 0
Implement Hydraulic Pressure Drop [kPa] Δp 0 0 0 0

Implement Rotary Operation Machine [--] [--] None None None Combine, corn
Implement Material Feed Rate [t/h wb] Fmat 0 0 0 46.40332768

Implement Type [--] [--] Other Seeding None Row Crop Planter None
Implement [--] [--] Nitrogen Applicator No-till, Seeding only - 1 fluted coulter/row None

Implement Width Units [--] [--] rows
Implement Width [--] wimp 15 0 12 0

Implement Tillage Depth [cm] Tdepth 1 0 1 0

Soil Texture Type [--] [--] Medium Medium Medium Medium

Planting Rate [seed/ha] rplant 0 0 82780 0

Planting Material Density [seed/kg] ρplant 0 0 5000 0

Planting Energy Content [MJ/kg] eplant 0 0 104 0

Fertilizer Application Rate [kg/ha] rfert 100 0 0 0

Fertilizer Energy Content [MJ/kg] efert 78 0 0 0

Pesticide Application Rate [kg/ha] rpest 0 0.56 0 0

Pesticide Energy Content [MJ/kg] epest 0 85 0 0

Energy Density of Fuel [MJ/L] ufuel 41.2 41.2 41.2 41.2

Energy Density of Lubricant [MJ/L] ulube 46 46 46 46

Labor Energy Rate [MJ/h] rlabor 2.2 2.2 2.2 2.2

Length of Machine Work Day [h/work day] twork,mach 16 16 16 16

Length of Human Work Day [h/work day] twork,human 16 16 16 16

Charging Station Efficiency [--] ηcs 0.95 0.95 0.95 0.95

Efficiency of Battery [--] ηch 0.95 0.95 0.95 0.95

Motor Controller Efficiency [--] ηmc 0.8 0.8 0.8 0.8

Electric Motor Efficiency [--] ηem 0.7 0.7 0.7 0.7

Elec. Continuous Op. Time [h] telec,op

Electric Charge Time [h] telec,charge

Fuel Price [$/L] pfuel 0.665713886 0.665713886 0.665713886 0.67

Lubrication Price [$/L] plube 6.35 6.35 6.35 6.35

Electricity Price [$/kW·h] pelec 0.13 0.13 0.13 0.13

Traction Machine Price [$] pTM 300000 51590 300000 430000

Implement Price [$] pimp 50000 66511 124950 0

Planting Material Price [$/kg] pplant 17 17 17 17.00

Fertilizer Price [$/kg] pfert 0.78 0.78 0.78 0.78

Pesticide Price [$/kg] ppest 16.5 16.5 16.5 16.50

Labor Wage [$/h] plabor 15 15 15 15.00
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A.2 Whole Farm - AAV - Configuration 1
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A B C D E F G

Name Units Symbol Fertilizer Herbicide Planting Harvest
 [--] [--] Autonomous Autonomous Autonomous Autonomous

No. of Machines [--] nmachines 1 1 1 1

Machines per Operator [--] nMpO 1 1 1 1

Soil/Ground Condition [--] [--] Firm Firm Firm Firm
Field Area [ha] a 300 300 300 300

Operation Type [--] [--] Miscellaneous Miscellaneous Planting Harvesting
Operation [--] [--] Liquid Fertilizer Applicator Boom-type sprayer Row crop planter Combine (SP)

Field Efficiency [--] Ef 0.65 0.65 0.65 0.7

Traction Machine Power Source [--] [--] Fossil Fuel Fossil Fuel Fossil Fuel Fossil Fuel
Traction Machine Drive Type [--] [--] MFWD MFWD MFWD 2WD

Traction Machine Operating Speed [km/h] s 10.5 11.2654 8 6.6
Traction Machine Engine Throttle Ratio [--] N 0.8 0.75 0.8 1
Traction Machine Mechanical Efficiency [--] Em 0.96 0.96 0.96 0.96

Traction Machine Rated Power [kW] Prated 187 54.35 187 240

Traction Machine Operating Mass [kg] mTM 10510.2 4205 10510.2 21520.4

Traction Machine Embodied Energy [MJ/kg] eemb,TM 138 138 138 116

Traction Machine Estimated Life [h] tlife,TM 16000 16000 16000 3000

Traction Machine Front Tire Type [--] [--] Radial Ply Radial Ply Radial Ply Radial Ply

Traction Machine Front Tire Configureation [--] [--] 1 1 1 2
Traction Machine Front Tire Section Width [mm] bTM,f 480 280 480 520

Traction Machine Front Tire Section Height [mm] hTM,f 336 238 336 442

Traction Machine Front Tire Overall Diameter [mm] dTM,f 1434 1111 1434 1950.8

Traction Machine Front Tire Deflection [mm] δTM,f 63.84 45.22 63.84 83.98
Traction Machine Front Static Load on Axle [kg] mTM,f 4347.9 1682 4347.9 12912.24

Traction Machine Front Cone Index of Soil [kN/m²] CIf 1200 1200 1200 1200

Traction Machine Rear Tire Type [--] [--] Radial Ply Radial Ply Radial Ply Radial Ply
 Traction Machine Rear Tire Configureation [--] [--] 2 1 2 1
 Traction Machine Rear Tire Section Width [mm] bTM,r 480 420 480 420

 Traction Machine Rear Tire Section Height [mm] hTM,r 384 357 384 357

 Traction Machine Rear Tire Overall Diameter [mm] dTM,r 1936.4 1476 1936.4 1374.4
 Traction Machine Rear Tire Deflection [mm] δTM,r 72.96 67.83 72.96 67.83

 Traction Machine Rear Static Load on Axle [kg] mTM,r 6162.3 2523 6162.3 8608.16

Implement Mass [kg] mimp 8820 1324.5 9610 0

Implement Embodied Energy [MJ/kg] eemb,imp 129 129 133 0

Implement Estimated Life [h] tlife,imp 1200 1500 1500 0

Implement Rated Working Width [m] w 11.43 12.192 9.144 9.144
Implement Electrical Current [A] i 0 0 0 0
Implement Electrical Voltage [V] V 0 0 0 0

Implement Hydraulic Fluid Flow [L/min] Q 0 0 0 0
Implement Hydraulic Pressure Drop [kPa] Δp 0 0 0 0

Implement Rotary Operation Machine [--] [--] None None None Combine, corn
Implement Material Feed Rate [t/h wb] Fmat 0 0 0 46.40332768

Implement Type [--] [--] Other Seeding None Row Crop Planter None
Implement [--] [--] Nitrogen Applicator No-till, Seeding only - 1 fluted coulter/row None

Implement Width Units [--] [--]
Implement Width [--] wimp 15 0 12 0

Implement Tillage Depth [cm] Tdepth 1 0 1 0

Soil Texture Type [--] [--] Medium Medium Medium Medium

Planting Rate [seed/ha] rplant 0 0 82780 0

Planting Material Density [seed/kg] ρplant 0 0 5000 0

Planting Energy Content [MJ/kg] eplant 0 0 104 0

Fertilizer Application Rate [kg/ha] rfert 50 0 0 0

Fertilizer Energy Content [MJ/kg] efert 78 0 0 0

Pesticide Application Rate [kg/ha] rpest 0 0.2 0 0

Pesticide Energy Content [MJ/kg] epest 0 85 0 0

Energy Density of Fuel [MJ/L] ufuel 41.2 41.2 41.2 41.2

Energy Density of Lubricant [MJ/L] ulube 46 46 46 46

Labor Energy Rate [MJ/h] rlabor 2.2 2.2 2.2 2.2

Length of Machine Work Day [h/work day] twork,mach 24 24 24 24

Length of Human Work Day [h/work day] twork,human 12 12 12 12

Charging Station Efficiency [--] ηcs 0.95 0.95 0.95 0.95

Efficiency of Battery [--] ηch 0.95 0.95 0.95 0.95

Motor Controller Efficiency [--] ηmc 0.8 0.8 0.8 0.8

Electric Motor Efficiency [--] ηem 0.7 0.7 0.7 0.7

Elec. Continuous Op. Time [h] telec,op

Electric Charge Time [h] telec,charge

Fuel Price [$/L] pfuel 0.665713886 0.665713886 0.665713886 0.67

Lubrication Price [$/L] plube 6.35 6.35 6.35 6.35

Electricity Price [$/kW·h] pelec 0.13 0.13 0.13 0.13

Traction Machine Price [$] pTM 330000 56749 330000 473000

Implement Price [$] pimp 50000 66511 124950 0

Planting Material Price [$/kg] pplant 17 17 17 17.00

Fertilizer Price [$/kg] pfert 0.78 0.78 0.78 0.78

Pesticide Price [$/kg] ppest 16.5 16.5 16.5 16.50

Labor Wage [$/h] plabor 15 15 15 15.00
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A.3 Whole Farm - AAV - Configuration 2
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A B C D E F G

Name Units Symbol Fertilizer Herbicide Planting Harvest
Machine Type [--] [--] Autonomous Autonomous Autonomous Autonomous

No. of Machines [--] nmachines 1 1 1 1

Machines per Operator [--] nMpO 1 1 1 1

Soil/Ground Condition [--] [--] Firm Firm Firm Firm
Field Area [ha] a 300 300 300 300

Operation Type [--] [--] Miscellaneous Miscellaneous Planting Harvesting
Operation [--] [--] Liquid Fertilizer Applicator Boom-type sprayer Row crop planter Combine (SP)

Field Efficiency [--] Ef 0.65 0.65 0.65 0.7

Traction Machine Power Source [--] [--] Fossil Fuel Fossil Fuel Fossil Fuel Fossil Fuel
Traction Machine Drive Type [--] [--] MFWD MFWD MFWD 2WD

Traction Machine Operating Speed [km/h] s 10.5 11.2654 8 6.6
Traction Machine Engine Throttle Ratio [--] N 0.75 0.75 0.5 0.95
Traction Machine Mechanical Efficiency [--] Em 0.96 0.96 0.96 0.96

Traction Machine Rated Power [kW] Prated 54.35 54.35 54.35 205

Traction Machine Operating Mass [kg] mTM 2880 4205 2880 15830

Traction Machine Embodied Energy [MJ/kg] eemb,TM 138 138 138 116

Traction Machine Estimated Life [h] tlife,TM 16000 16000 16000 3000

Traction Machine Front Tire Type [--] [--] Radial Ply Radial Ply Radial Ply Radial Ply

Traction Machine Front Tire Configureation [--] [--] 1 1 1 1

Traction Machine Front Tire Section Width [mm] bTM,f 280 280 280 600

Traction Machine Front Tire Section Height [mm] hTM,f 238 238 238 390

Traction Machine Front Tire Overall Diameter [mm] dTM,f 1111 1111 1111 1745.2

Traction Machine Front Tire Deflection [mm] δTM,f 45.22 45.22 45.22 74.1
Traction Machine Front Static Load on Axle [kg] mTM,f 1682 1682 1682 9498

Traction Machine Front Cone Index of Soil [kN/m²] CIf 1200 1200 1200 1200

Traction Machine Rear Tire Type [--] [--] Radial Ply Radial Ply Radial Ply Radial Ply
 Traction Machine Rear Tire Configureation [--] [--] 1 1 1 1

 Traction Machine Rear Tire Section Width [mm] bTM,r 420 420 420 420

 Traction Machine Rear Tire Section Height [mm] hTM,r 357 357 357 357

 Traction Machine Rear Tire Overall Diameter [mm] dTM,r 1476 1476 1476 1374.4
 Traction Machine Rear Tire Deflection [mm] δTM,r 67.83 67.83 67.83 67.83

 Traction Machine Rear Static Load on Axle [kg] mTM,r 2523 2523 2523 6332

Implement Mass [kg] mimp 4333 1324.5 1200 0

Implement Embodied Energy [MJ/kg] eemb,imp 129 129 133 0

Implement Estimated Life [h] tlife,imp 1200 1500 1500 0

Implement Rated Working Width [m] w 3.81 7.62 3.048 3.048
Implement Electrical Current [A] i 0 0 0 0
Implement Electrical Voltage [V] V 0 0 0 0

Implement Hydraulic Fluid Flow [L/min] Q 0 0 0 0
Implement Hydraulic Pressure Drop [kPa] Δp 0 0 0 0

Implement Rotary Operation Machine [--] [--] None None None Combine, corn

Implement Material Feed Rate [t/h wb] Fmat 0 0 0 15.5

Implement Type [--] [--] Other Seeding None Row Crop Planter None
Implement [--] [--] Nitrogen Applicator None No-till, Seeding only - 1 fluted coulter/row None

Implement Width Units [--] [--]

Implement Width [--] wimp 5 0 4 0

Implement Tillage Depth [cm] Tdepth 1 0 1 0

Soil Texture Type [--] [--] Medium Medium Medium Medium

Planting Rate [seed/ha] rplant 0 0 82780 0

Planting Material Density [seed/kg] ρplant 0 0 5000 0

Planting Energy Content [MJ/kg] eplant 0 0 104 0

Fertilizer Application Rate [kg/ha] rfert 50 0 0 0

Fertilizer Energy Content [MJ/kg] efert 78 0 0 0

Pesticide Application Rate [kg/ha] rpest 0 0.2 0 0

Pesticide Energy Content [MJ/kg] epest 0 85 0 0

Energy Density of Fuel [MJ/L] ufuel 41.2 41.2 41.2 41.2

Energy Density of Lubricant [MJ/L] ulube 46 46 46 46

Labor Energy Rate [MJ/h] rlabor 2.2 2.2 2.2 2.2

Length of Machine Work Day [h/work day] twork,mach 24 24 24 24

Length of Human Work Day [h/work day] twork,human 12 12 12 12

Charging Station Efficiency [--] ηcs 0.95 0.95 0.95 0.95

Efficiency of Battery [--] ηch 0.95 0.95 0.95 0.95

Motor Controller Efficiency [--] ηmc 0.8 0.8 0.8 0.8

Electric Motor Efficiency [--] ηem 0.7 0.7 0.7 0.7

Elec. Continuous Op. Time [h] telec,op

Electric Charge Time [h] telec,charge

Fuel Price [$/L] pfuel 0.67 0.67 0.67 0.67

Lubrication Price [$/L] plube 6.35 6.35 6.35 6.35

Electricity Price [$/kW·h] pelec 0.13 0.13 0.13 0.13

Traction Machine Price [$] pTM 51590.00 51590.00 51590.00 350000.00

Implement Price [$] pimp 25000.00 8100.00 23820.00 0.00

Planting Material Price [$/kg] pplant 17.00 17.00 17.00 17.00

Fertilizer Price [$/kg] pfert 0.78 0.78 0.78 0.78

Pesticide Price [$/kg] ppest 16.50 16.50 16.50 16.50

Labor Wage [$/h] plabor 15.00 15.00 15.00 15.00
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A.4 Individual Task - Spraying - Utility AAV
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A B C D
Name Units Symbol Herbicide

Machine Type [--] [--] Autonomous
No. of Machines [--] nmachines 1

Machines per Operator [--] nMpO 1

Soil/Ground Condition [--] [--] Firm
Field Area [ha] a 300

Operation Type [--] [--] Miscellaneous
Operation [--] [--] Boom-type sprayer

Field Efficiency [--] Ef 0.65

Traction Machine Power Source [--] [--] Electric
Traction Machine Drive Type [--] [--] 2WD

Traction Machine Operating Speed [km/h] s 5
Traction Machine Engine Throttle Ratio [--] N 0.5
Traction Machine Mechanical Efficiency [--] Em 0.96

Traction Machine Rated Power [kW] Prated 4.6

Traction Machine Operating Mass [kg] mTM 900

Traction Machine Embodied Energy [MJ/kg] eemb,TM 138

Traction Machine Estimated Life [h] tlife,TM 3000

Traction Machine Front Tire Type [--] [--] Bias Ply

Traction Machine Front Tire Configureation [--] [--] 1
Traction Machine Front Tire Section Width [mm] bTM,f 214

Traction Machine Front Tire Section Height [mm] hTM,f 153

Traction Machine Front Tire Overall Diameter [mm] dTM,f 559

Traction Machine Front Tire Deflection [mm] δTM,f 29.07
Traction Machine Front Static Load on Axle [kg] mTM,f 450

Traction Machine Front Cone Index of Soil [kN/m²] CIf 1200

Traction Machine Rear Tire Type [--] [--] Bias Ply
 Traction Machine Rear Tire Configureation [--] [--] 1
 Traction Machine Rear Tire Section Width [mm] bTM,r 305

 Traction Machine Rear Tire Section Height [mm] hTM,r 178

 Traction Machine Rear Tire Overall Diameter [mm] dTM,r 610
 Traction Machine Rear Tire Deflection [mm] δTM,r 34

 Traction Machine Rear Static Load on Axle [kg] mTM,r 450

Implement Mass [kg] mimp 0

Implement Embodied Energy [MJ/kg] eemb,imp 0

Implement Estimated Life [h] tlife,imp 0

Implement Rated Working Width [m] w 5.5
Implement Electrical Current [A] i 10
Implement Electrical Voltage [V] V 48

Implement Hydraulic Fluid Flow [L/min] Q 0
Implement Hydraulic Pressure Drop [kPa] Δp 0

Implement Rotary Operation Machine [--] [--] None
Implement Material Feed Rate [t/h wb] Fmat 0

Implement Type [--] [--] None
Implement [--] [--] None

Implement Width Units [--] [--]
Implement Width [--] wimp 0

Implement Tillage Depth [cm] Tdepth 0

Soil Texture Type [--] [--] Medium

Planting Rate [seed/ha] rplant 0

Planting Material Density [seed/kg] ρplant 0

Planting Energy Content [MJ/kg] eplant 0

Fertilizer Application Rate [kg/ha] rfert 0

Fertilizer Energy Content [MJ/kg] efert 0

Pesticide Application Rate [kg/ha] rpest 0.2

Pesticide Energy Content [MJ/kg] epest 85

Energy Density of Fuel [MJ/L] ufuel 41.2

Energy Density of Lubricant [MJ/L] ulube 46

Labor Energy Rate [MJ/h] rlabor 2.2

Length of Machine Work Day [h/work day] twork,mach 24

Length of Human Work Day [h/work day] twork,human 12

Charging Station Efficiency [--] ηcs 0.95

Efficiency of Battery [--] ηch 0.95

Motor Controller Efficiency [--] ηmc 0.8

Electric Motor Efficiency [--] ηem 0.7

Elec. Continuous Op. Time [h] telec,op 8

Electric Charge Time [h] telec,charge 12

Fuel Price [$/L] pfuel 0.67

Lubrication Price [$/L] plube 6.35

Electricity Price [$/kW·h] pelec 0.13

Traction Machine Price [$] pTM 15800.00

Implement Price [$] pimp 0.00

Planting Material Price [$/kg] pplant 17.00

Fertilizer Price [$/kg] pfert 0.78

Pesticide Price [$/kg] ppest 16.50

Labor Wage [$/h] plabor 15.00
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A.5 Individual Task - Spraying - Single-row AAV
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A B C D
Name Units Symbol Herbicide

Machine Type [--] [--] Autonomous
No. of Machines [--] nmachines 1

Machines per Operator [--] nMpO 1

Soil/Ground Condition [--] [--] Firm
Field Area [ha] a 300

Operation Type [--] [--] Miscellaneous
Operation [--] [--] Boom-type sprayer

Field Efficiency [--] Ef 0.65

Traction Machine Power Source [--] [--] Fossil Fuel
Traction Machine Drive Type [--] [--] 4WD

Traction Machine Operating Speed [km/h] s 6.437
Traction Machine Engine Throttle Ratio [--] N 0.5
Traction Machine Mechanical Efficiency [--] Em 0.96

Traction Machine Rated Power [kW] Prated 10

Traction Machine Operating Mass [kg] mTM 544

Traction Machine Embodied Energy [MJ/kg] eemb,TM 138

Traction Machine Estimated Life [h] tlife,TM 3000

Traction Machine Front Tire Type [--] [--] Radial Ply

Traction Machine Front Tire Configureation [--] [--] 1
Traction Machine Front Tire Section Width [mm] bTM,f 165

Traction Machine Front Tire Section Height [mm] hTM,f 107.25

Traction Machine Front Tire Overall Diameter [mm] dTM,f 570.1

Traction Machine Front Tire Deflection [mm] δTM,f 20.4
Traction Machine Front Static Load on Axle [kg] mTM,f 217.6

Traction Machine Front Cone Index of Soil [kN/m²] CIf 1200

Traction Machine Rear Tire Type [--] [--] Radial Ply
 Traction Machine Rear Tire Configureation [--] [--] 1
 Traction Machine Rear Tire Section Width [mm] bTM,r 165

 Traction Machine Rear Tire Section Height [mm] hTM,r 107.25

 Traction Machine Rear Tire Overall Diameter [mm] dTM,r 570.1
 Traction Machine Rear Tire Deflection [mm] δTM,r 20.4

 Traction Machine Rear Static Load on Axle [kg] mTM,r 326.4

Implement Mass [kg] mimp

Implement Embodied Energy [MJ/kg] eemb,imp

Implement Estimated Life [h] tlife,imp

Implement Rated Working Width [m] w 1.524
Implement Electrical Current [A] i 10
Implement Electrical Voltage [V] V 48

Implement Hydraulic Fluid Flow [L/min] Q 0
Implement Hydraulic Pressure Drop [kPa] Δp 0

Implement Rotary Operation Machine [--] [--] None
Implement Material Feed Rate [t/h wb] Fmat 0

Implement Type [--] [--] None
Implement [--] [--] None

Implement Width Units [--] [--]
Implement Width [--] wimp 0

Implement Tillage Depth [cm] Tdepth 0

Soil Texture Type [--] [--] Medium

Planting Rate [seed/ha] rplant 0

Planting Material Density [seed/kg] ρplant 0

Planting Energy Content [MJ/kg] eplant 0

Fertilizer Application Rate [kg/ha] rfert 0

Fertilizer Energy Content [MJ/kg] efert 0

Pesticide Application Rate [kg/ha] rpest 0.2

Pesticide Energy Content [MJ/kg] epest 85

Energy Density of Fuel [MJ/L] ufuel 41.2

Energy Density of Lubricant [MJ/L] ulube 46

Labor Energy Rate [MJ/h] rlabor 2.2

Length of Machine Work Day [h/work day] twork,mach 24

Length of Human Work Day [h/work day] twork,human 12

Charging Station Efficiency [--] ηcs 0.95

Efficiency of Battery [--] ηch 0.95

Motor Controller Efficiency [--] ηmc 0.8

Electric Motor Efficiency [--] ηem 0.7

Elec. Continuous Op. Time [h] telec,op

Electric Charge Time [h] telec,charge

Fuel Price [$/L] pfuel 0.67

Lubrication Price [$/L] plube 6.35

Electricity Price [$/kW·h] pelec 0.13

Traction Machine Price [$] pTM 10000.00

Implement Price [$] pimp 0.00

Planting Material Price [$/kg] pplant 17.00

Fertilizer Price [$/kg] pfert 0.78

Pesticide Price [$/kg] ppest 16.50

Labor Wage [$/h] plabor 15.00
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A.6 Individual Task - Planting - Utility AAV

3
4
5

6

7
8
9
10
11

12
13
14
15
16
17
18

19

20

21

22

23
24

25

26

27
28

29

30
31
32

33

34
35
36

37
38

39

40

41
42
43
44
45
46
47

48
49
50
51

52

53
54
55

56

57

58

59

60

61

62
63

64

65

66

67

68
69

70

71

72

73

74

75
76

77

78

79

80

81

82

83

84

A B C D
Name Units Symbol Planting

Machine Type [--] [--] Autonomous
No. of Machines [--] nmachines 1

Machines per Operator [--] nMpO 1

Soil/Ground Condition [--] [--] Firm
Field Area [ha] a 300

Operation Type [--] [--] Planting
Operation [--] [--] Row crop planter

Field Efficiency [--] Ef 0.65

Traction Machine Power Source [--] [--] Fossil Fuel
Traction Machine Drive Type [--] [--] MFWD

Traction Machine Operating Speed [km/h] s 8
Traction Machine Engine Throttle Ratio [--] N 0.75
Traction Machine Mechanical Efficiency [--] Em 0.96

Traction Machine Rated Power [kW] Prated 18.1

Traction Machine Operating Mass [kg] mTM 1100

Traction Machine Embodied Energy [MJ/kg] eemb,TM 138

Traction Machine Estimated Life [h] tlife,TM 16000

Traction Machine Front Tire Type [--] [--] Radial Ply

Traction Machine Front Tire Configureation [--] [--] 1
Traction Machine Front Tire Section Width [mm] bTM,f 185

Traction Machine Front Tire Section Height [mm] hTM,f 157.25

Traction Machine Front Tire Overall Diameter [mm] dTM,f 749.3

Traction Machine Front Tire Deflection [mm] δTM,f 29.8775
Traction Machine Front Static Load on Axle [kg] mTM,f 440

Traction Machine Front Cone Index of Soil [kN/m²] CIf 1200

Traction Machine Rear Tire Type [--] [--] Radial Ply
 Traction Machine Rear Tire Configureation [--] [--] 1
 Traction Machine Rear Tire Section Width [mm] bTM,r 280

 Traction Machine Rear Tire Section Height [mm] hTM,r 238

 Traction Machine Rear Tire Overall Diameter [mm] dTM,r 1085.6
 Traction Machine Rear Tire Deflection [mm] δTM,r 45.22

 Traction Machine Rear Static Load on Axle [kg] mTM,r 660

Implement Mass [kg] mimp 750

Implement Embodied Energy [MJ/kg] eemb,imp 133

Implement Estimated Life [h] tlife,imp 1500

Implement Rated Working Width [m] w 1.524
Implement Electrical Current [A] i 0
Implement Electrical Voltage [V] V 0

Implement Hydraulic Fluid Flow [L/min] Q 0
Implement Hydraulic Pressure Drop [kPa] Δp 0

Implement Rotary Operation Machine [--] [--] None
Implement Material Feed Rate [t/h wb] Fmat 0

Implement Type [--] [--] Row Crop Planter
Implement [--] [--]No-till, Seeding only - 1 fluted coulter/row

Implement Width Units [--] [--]
Implement Width [--] wimp 4

Implement Tillage Depth [cm] Tdepth 1

Soil Texture Type [--] [--] Medium

Planting Rate [seed/ha] rplant 82780

Planting Material Density [seed/kg] ρplant 5000

Planting Energy Content [MJ/kg] eplant 104

Fertilizer Application Rate [kg/ha] rfert 0

Fertilizer Energy Content [MJ/kg] efert 0

Pesticide Application Rate [kg/ha] rpest 0

Pesticide Energy Content [MJ/kg] epest 0

Energy Density of Fuel [MJ/L] ufuel 41.2

Energy Density of Lubricant [MJ/L] ulube 46

Labor Energy Rate [MJ/h] rlabor 2.2

Length of Machine Work Day [h/work day] twork,mach 24

Length of Human Work Day [h/work day] twork,human 12

Charging Station Efficiency [--] ηcs 0.95

Efficiency of Battery [--] ηch 0.95

Motor Controller Efficiency [--] ηmc 0.8

Electric Motor Efficiency [--] ηem 0.7

Elec. Continuous Op. Time [h] telec,op

Electric Charge Time [h] telec,charge

Fuel Price [$/L] pfuel 0.67

Lubrication Price [$/L] plube 6.35

Electricity Price [$/kW·h] pelec 0.13

Traction Machine Price [$] pTM 17234.80

Implement Price [$] pimp 12000.00

Planting Material Price [$/kg] pplant 17.00

Fertilizer Price [$/kg] pfert 0.78

Pesticide Price [$/kg] ppest 16.50

Labor Wage [$/h] plabor 15.00
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A.7 Individual Task - Planting - Single-row AAV
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A B C D
Name Units Symbol Planting

Machine Type [--] [--] Autonomous
No. of Machines [--] nmachines 1

Machines per Operator [--] nMpO 1

Soil/Ground Condition [--] [--] Firm
Field Area [ha] a 300

Operation Type [--] [--] Planting
Operation [--] [--] Row crop planter

Field Efficiency [--] Ef 0.65

Traction Machine Power Source [--] [--] Electric
Traction Machine Drive Type [--] [--] 4WD

Traction Machine Operating Speed [km/h] s 2.02
Traction Machine Engine Throttle Ratio [--] N 1
Traction Machine Mechanical Efficiency [--] Em 0.96

Traction Machine Rated Power [kW] Prated 0.4

Traction Machine Operating Mass [kg] mTM 65

Traction Machine Embodied Energy [MJ/kg] eemb,TM 138

Traction Machine Estimated Life [h] tlife,TM 3000

Traction Machine Front Tire Type [--] [--] Radial

Traction Machine Front Tire Configureation [--] [--] 1
Traction Machine Front Tire Section Width [mm] bTM,f 152.4

Traction Machine Front Tire Section Height [mm] hTM,f 114.3

Traction Machine Front Tire Overall Diameter [mm] dTM,f 381

Traction Machine Front Tire Deflection [mm] δTM,f 11.43
Traction Machine Front Static Load on Axle [kg] mTM,f 32.5

Traction Machine Front Cone Index of Soil [kN/m²] CIf 1200

Traction Machine Rear Tire Type [--] [--] Radial
 Traction Machine Rear Tire Configureation [--] [--] 1
 Traction Machine Rear Tire Section Width [mm] bTM,r 152.4

 Traction Machine Rear Tire Section Height [mm] hTM,r 114.3

 Traction Machine Rear Tire Overall Diameter [mm] dTM,r 381
 Traction Machine Rear Tire Deflection [mm] δTM,r 11.43

 Traction Machine Rear Static Load on Axle [kg] mTM,r 32.5

Implement Mass [kg] mimp 0

Implement Embodied Energy [MJ/kg] eemb,imp 0

Implement Estimated Life [h] tlife,imp 0

Implement Rated Working Width [m] w 0.762
Implement Electrical Current [A] i 10
Implement Electrical Voltage [V] V 48

Implement Hydraulic Fluid Flow [L/min] Q 0
Implement Hydraulic Pressure Drop [kPa] Δp 0

Implement Rotary Operation Machine [--] [--] None
Implement Material Feed Rate [t/h wb] Fmat 0

Implement Type [--] [--] None
Implement [--] [--] None

Implement Width Units [--] [--]
Implement Width [--] wimp 0

Implement Tillage Depth [cm] Tdepth 0

Soil Texture Type [--] [--] Medium

Planting Rate [seed/ha] rplant 82780

Planting Material Density [seed/kg] ρplant 5000

Planting Energy Content [MJ/kg] eplant 104

Fertilizer Application Rate [kg/ha] rfert 0

Fertilizer Energy Content [MJ/kg] efert 0

Pesticide Application Rate [kg/ha] rpest 0

Pesticide Energy Content [MJ/kg] epest 0

Energy Density of Fuel [MJ/L] ufuel 41.2

Energy Density of Lubricant [MJ/L] ulube 46

Labor Energy Rate [MJ/h] rlabor 2.2

Length of Machine Work Day [h/work day] twork,mach 24

Length of Human Work Day [h/work day] twork,human 12

Charging Station Efficiency [--] ηcs 0.95

Efficiency of Battery [--] ηch 0.95

Motor Controller Efficiency [--] ηmc 0.8

Electric Motor Efficiency [--] ηem 0.7

Elec. Continuous Op. Time [h] telec,op 2.5

Electric Charge Time [h] telec,charge 0.5

Fuel Price [$/L] pfuel 0.67

Lubrication Price [$/L] plube 6.35

Electricity Price [$/kW·h] pelec 0.13

Traction Machine Price [$] pTM 6900.00

Implement Price [$] pimp 0.00

Planting Material Price [$/kg] pplant 17.00

Fertilizer Price [$/kg] pfert 0.78

Pesticide Price [$/kg] ppest 16.50

Labor Wage [$/h] plabor 15.00
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B. MICROSOFT EXCEL MODELING TOOL

B.1 ‘Inputs’ Sheet
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A B C D E F

Name Units Symbol [Data Set Name] Comment Source
 [--] [--] Conventional Conventional, Autonomous, Autonomous Swarm

No. of Machines [--] nmachines 1 Number of machines

Machines per Operator [--] nMpO 1 Number of machines per operator. 1 for conventional

Soil/Ground Condition [--] [--] Firm Concrete, Firm, Tilled, Soft [3] section 3.1 figure 1
Field Area [ha] a 300

Operation Type [--] [--] Miscellaneous
Operation [--] [--] Liquid Fertilizer Applicator

Field Efficiency [--] Ef 0.65 How efficient at time in field. Recommended value: [1] pg 5, [3] section 5

Traction Machine Power Source [--] [--] Fossil Fuel Fossil Fuel or Electric
Traction Machine Drive Type [--] [--] MFWD 2WD, MFWD, 4WD [3] section 3.1 figure 1

Traction Machine Operating Speed [km/h] s 10.5 Speed of traction machine Industry standards for each operation, [1] pg 5
Traction Machine Engine Throttle Ratio [--] N 0.8 Ratio of partial throttle engine speed to full throttle engine speed at operating load [3] section 3.3.3
Traction Machine Mechanical Efficiency [--] Em 0.96 Mechanical efficiciency of the transmission and power train [2] section 4.2

Traction Machine Rated Power [kW] Prated 187 for ICE: rated PTO power; for electric: rated motor power

Traction Machine Operating Mass [kg] mTM 11678

Traction Machine Embodied Energy [MJ/kg] eemb,TM 138 Energy sequestered in machine

Traction Machine Estimated Life [h] tlife,TM 16000 [3], table 3

Traction Machine Front Tire Type [--] [--] Radial Ply Bias Ply, Radial Ply [4], pg 370

Traction Machine Front Tire Configureation [--] [--] 1 1 = singles, 2 = duals
Traction Machine Front Tire Section Width [mm] bTM,f 480 Width of tire [4], pg 370

Traction Machine Front Tire Section Height [mm] hTM,f 336 Height of undeflected section; equals section width×aspect ratio [4], pg 370

Traction Machine Front Tire Overall Diameter [mm] dTM,f 1434 Undeflected overall tire diamter; equals rim diameter + 2×section height [4], pg 370

Traction Machine Front Tire Deflection [mm] δTM,f 63.84 Typically equals 0.19×section height [4], pg 370
Traction Machine Front Static Load on Axle [kg] mTM,f 4831 Determined by traction machine CG

Traction Machine Front Cone Index of Soil [kN/m²] CIf 1200 Note: the CI for the rear tires will be different due to compaction [3] section 4.2.1

Traction Machine Rear Tire Type [--] [--] Radial Ply Bias Ply, Radial Ply [4], pg 370
 Traction Machine Rear Tire Configureation [--] [--] 2 1 = singles, 2 = duals
 Traction Machine Rear Tire Section Width [mm] bTM,r 480 Width of tire [4], pg 370

 Traction Machine Rear Tire Section Height [mm] hTM,r 384 Height of undeflected section; equals section width×aspect ratio [4], pg 370

 Traction Machine Rear Tire Overall Diameter [mm] dTM,r 1936.4 Undeflected overall tire diamter; equals rim diameter + 2×section height [4], pg 370
 Traction Machine Rear Tire Deflection [mm] δTM,r 72.96 Equals 0.19×section height [4], pg 370

 Traction Machine Rear Static Load on Axle [kg] mTM,r 6847 Determined by traction machine CG

Implement Mass [kg] mimp 8820

Implement Embodied Energy [MJ/kg] eemb,imp 129 Energy sequestered in impliment

Implement Estimated Life [h] tlife,imp 1200

Implement Rated Working Width [m] w 11.43 Also called effective width
Implement Electrical Current [A] i 0 How much current the implement consumes
Implement Electrical Voltage [V] V 0 How much voltage the implement requires

Implement Hydraulic Fluid Flow [L/min] Q 0 Fluid flow rate required by implement
Implement Hydraulic Pressure Drop [kPa] Δp 0 Fluid pressure drop required by implement

Implement Rotary Operation Machine [--] [--] None
Implement Material Feed Rate [t/h wb] Fmat 0

Implement Type [--] [--] Other Seeding
Implement [--] [--] Nitrogen Applicator

Implement Width Units [--] [--]
Implement Width [--] wimp 15 NOTE: Units are automatically updated. Implement width, number of rows or tools. [3] section 4.1.1

Implement Tillage Depth [cm] Tdepth 1 Tillage depth for major tools, set to 1 for minor tillage tools and seeding implements [3] section 4.1.1

Soil Texture Type [--] [--] Medium Fine (high clay content), Medium (loamy soils), Coarse (sandy soils) [3] section 4.1.1
0

Planting Rate [seed/ha] rplant 0 Single machine planting material deposition rate (seed, rhizome, etc.)

Planting Material Density [seed/kg] ρplant 0

Planting Energy Content [MJ/kg] eplant 100 Energy content of planting material (seed, rhizome, etc.)

Fertilizer Application Rate [kg/ha] rfert 78 Single machine fertilizer application rate of active ingredient

Fertilizer Energy Content [MJ/kg] efert 0 Energy content of fertilizer active ingredient

Pesticide Application Rate [kg/ha] rpest 0 Single machine pesticide application rate of active ingredient

Pesticide Energy Content [MJ/kg] epest Energy content of pesticide active ingredient

41.2
Energy Density of Fuel [MJ/L] ufuel 46 Energy content of traction machine fuel

Energy Density of Lubricant [MJ/L] ulube 2.2 Energy content of traction machine lubrication

Labor Energy Rate [MJ/h] rlabor 16 A value of 2.2 MJ/h follows the dietary energy consumption method

Length of Machine Work Day [h/work day] twork,mach 16

Length of Human Work Day [h/work day] twork,human 0.95

0.95
Charging Station Efficiency [--] ηcs 0.8 Efficiency of transforming grid power to charging power

Efficiency of Battery [--] ηch 0.7 Ratio of energy charged into battery to energy discharged from battery

Motor Controller Efficiency [--] ηmc

Electric Motor Efficiency [--] ηem

Elec. Continuous Op. Time [h] telec,op

Electric Charge Time [h] telec,charge 0.665713886

6.35
Fuel Price [$/L] pfuel 0.13

Lubrication Price [$/L] plube 300000

Electricity Price [$/kW·h] pelec 50000

Traction Machine Price [$] pTM 17

Implement Price [$] pimp 0.78 [1] Farm Power & Machinery Management, 11 ed.

Planting Material Price [$/kg] pplant 16.5 [2] ASAE EP496.3 FEB2006 (R2015) Cor.1

Fertilizer Price [$/kg] pfert 15 Price of fertilizer active ingredient [3] ASAE D497.7 MAR2011 (R2015)

Pesticide Price [$/kg] ppest Price of pesticide active ingredient [4] Off-Road Vehicle Engineering Principles

Labor Wage [$/h] plabor [5] Brixius 1987

Launch Modeling Tool GUI



134

B.2 ‘Outputs’ Sheet
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A B C D E F
Conventional

1
Liquid Fertilizer Applicator

Name Units Symbol [Data Set Name] Comment Source
Tractive Efficiency [--] Et 0.76 Tractive condition; depends on tractor drive type and soil/ground condition [3] section 3.1 figure 1, [2] section 4.2

Rotary Power Parameter a [kW] apto 0 Machine specific parameter. For calculating rotary operation PTO power requirement [3] Table 2, [2] section 4.1.2

Rotary Power Parameter b [kW/m] bpto 0 Machine specific parameter. For calculating rotary operation PTO power requirement [3] Table 2, [2] section 4.1.2

Rotary Power Parameter c [kW·h/t] cpto 0 Machine specific parameter. For calculating rotary operation PTO power requirement [3] Table 2, [2] section 4.1.2

Soil Parameter [--] Fi 0.96 Depends on implement soil texture type (i.e. F1, F2, F3) [3] Table 1, section 4.1.1

Machine Parameter A [--] Aimp 1800 Machine specific parameter. For calculating implement draft [3] Table 1, section 4.1.1

Machine Parameter B [--] Bimp 0 Machine specific parameter. For calculating implement draft [3] Table 1, section 4.1.1

Machine Parameter C [--] Cimp 0 Machine specific parameter. For calculating implement draft [3] Table 1, section 4.1.1

Field Capacity [ha/h] Ca 7.80 Effective field capacity [2] section 5.2

Total Field Task Time [h] tfield 38.5 Time it takes to complete the desired task

Implement Soil and Crop Resistance [N] MRSC 25920.0 Total force parallel to direction of travel that is required to propel the implement [3] section 4.1.1, [2] section 4.1.1

Mobility Number, Front Tire [--] Bn,f 33.92 [3] section 3.2.1

Cone Index of Soil, Rear Tire [kN/m²] CIr 1252 [5]

Mobility Number, Rear Tire [--] Bn,r 77.49 [3] section 3.2.1

Slip [--] slip 0.09 Optimum slip ranges depending on soil condition [2] section 3.3
Motion Resistance Ratio, Front Tire [--] ρf 0.07 Ratio of motion resistance to dynamic wheel load [4] pg 371

Motion Resistance Ratio, Front Tire [--] ρr 0.05 Ratio of motion resistance to dynamic wheel load [4] pg 371

Motion Resistance, Front Axle [N] MRf 3164.1 [3] section 3.2.1.2

Motion Resistance, Rear Axle [N] MRr 3306.5 [3] section 3.2.1.2

Traction Machine Motion Reistance [N] MRTM 6470.6 Force required to overcome rolling resistance of the traction machine

Total Draft [N] Dtotal 32390.6 Total force required to propel machine and implement

Total Drawbar Power Req. [kW] Pdb 94.5 Power required to move implement and traction machine [2] section 4.1.13

Implement Rotary Power Req. [kW] Ppto 0.0 Power-takeoff power required by the implement [2] section 4.1.2

Implement Hydraulic Power Req. [kW] Phyd 0.0 Hydraulic power required by the implement [2] section 4.1.3

Implement Electrical Power Req. [kW] Pel 0.0 Electric power required by the implement [2] section 4.1.4

Current Op. Equiv. PTO Power Req. [kW] Pop 129.5 Equivalent total PTO power required by current operation [2] section 4.2

Available PTO Power Ratio [--] X 0.69 Fraction of equiv PTO power available [3] section 3.3.3
Partial Throttle Multiplier [--] PTM 0.89 [3] section 3.3.3

Spec. Fuel Consumption Vol. [L/kW·h] SFCv 0.32 [3] section 3.3.3

Current Op. Fuel Consump. Rate [L/h] Qfuel 41.2 How much fuel the current operation consumes

Current Op. Lube Consumption [L/h] Qlube 0.13 How much lubrication the current operation consumes

Energy Rate of Consumed Fuel [MJ/ha] Efuel 243

Energy Rate of Consumed Lube [MJ/ha] Elube 0.0

Fossil Energy Consumption Rate [MJ/ha] Efossil 243 Combined fuel and lubrication energy consumption rate

Energy Rate of Consumed Electricity [MJ/ha] Eelec #DIV/0!

Emb. Energy Consump - Trac Mach [MJ/ha] Eemb,TM 13

Emb. Energy Consump - Imp [MJ/ha] Eemb,imp 122

Emb. Energy Consumption Planting [MJ/ha] Eemb,planting 0

Emb. Energy Consumption Fertilizer [MJ/ha] Eemb,fert 0

Emb. Energy Consumption Pesticide [MJ/ha] Eemb,pest 0

Human Labor Time [h] tlabor 38.5 Total number of work-hours to complete task

Days to Complete Task [work day] ttask 2.40

Propulsion Energy Rate Consumption [MJ/ha] Eprop 243

Emb. Energy Consump. - Machinery [MJ/ha] Eemb,mach 134

Emb. Energy Consump. - Input Mat'l [MJ/ha] Eemb,matl 0

Labor Energy Consumption [MJ/ha] Elabor 2.1

Propulsion Pwr Source Cost - Fossil [$/ha] Cfossil 5077.74

Propulsion Pwr Source Cost - Elec [$/ha] Celec #DIV/0!

Propulsion Pwr Source Cost [$/ha] Cprop 5077.74

Machinery Cost [$/ha] Cmach 0.00

Input Material Cost [$/ha] Cmatl 1170.00

Labor Cost [$/ha] Clabor 0.00

Total Machinery Capital Cost [$] Ctotal,capital 17.78

Total Propulsion Pwr Source Cost [$] Ctotal,prop 1523323.21

Total Machinery Cost [$] Ctotal,mach 0.07

Total Input Material Cost [$] Ctotal,matl 351000.00

Total Labor Cost [$] Ctotal,labor 0.00

Required Gross Fossil Fuel Power [kW] Preq,fossil 526

Required Gross Electric Power [kW] Preq,elec #DIV/0!

[--] ηfossil 0.25

[--] ηelec #DIV/0!

Energy-per-field-time - propulsion [MJ/h] 1895
Energy-per-field-time - machinery [MJ/h] 1049
Energy-per-field-time - input mat'l [MJ/h] 0

Cost-per-field-time - propulsion [$/h] 39611.35
cost-per-field-time - machinery [$/h] 0.00
cost-per-field-time - input matl [$/h] 9127.14

cost-per-field-time - labor [$/h] 0.00

Machine Type:
No. of Machines:

Operation:
Launch Modeling Tool GUI
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B.3 ‘Misc Input Options’ Sheet
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A B C D E F G H I J K L M N O P Q R S

Tillage Range Typ. Type Concrete Firm Tilled Soft
Moldboard plow 0.7-0.9 85 2WD 87 72 67 55 Width Units A B C F1 F2 F3
Heavy-duty disk 0.7-0.9 85 MFWD 87 76 72 64 Major Tillage Tools Fine Medium Coarse

Tandem disk harrow 0.7-0.9 80 4WD 88 77 75 70 Subsoiler/manure injector - narrow point tools 226 0 1.8 1 0.7 0.45
(Coulter) chisel plow 0.7-0.9 85 Track 88 76 74 72 Subsoiler/manure injector - 30 cm winged point tools 294 0 2.4 1 0.7 0.45

Field cultivator 0.7-0.9 85 Moldboard plow m 652 0 5.1 1 0.7 0.45
Spring tooth harrow 0.7-0.9 85 Chisel plow - 5 cm straight point tools 91 5.4 0 1 0.85 0.65

Roller-packer 0.7-0.9 85 Chisel plow - 7.5 cm shovel/ 35 cm sweep tools 107 6.3 0 1 0.85 0.65
Mulcher-packer 0.7-0.9 80 Machine Type a b c Chisel plow - 10 cm twisted shovel tools 123 7.3 0 1 0.85 0.65

Rotary hoe 0.7-0.85 80 None 0 0 0 Sweep plow - primary tillage m 390 19 0 1 0.85 0.65
Row crop cultivator 0.7-0.9 80 Baler, small rectangular 2 0 1.02 Sweep plow - secondary tillage m 273 13.3 0 1 0.85 0.65

Baler, large rectangular bales 4 0 1.3 Disk, harrow, tandem - primary tillage m 309 16 0 1 0.88 0.78
Rotary tiller 0.7-0.9 85 Baler, large round (var. chamber) 4 0 1.1 Disk, harrow, tandem - secondary tillage m 216 11.2 0 1 0.88 0.78

Row crop planter 0.5-0.75 65 Baler, large round (fix. chamber) 2.5 0 1.8 Disk, harrow, offset - primary tillage m 364 18.8 0 1 0.88 0.78
Grain drill 0.55-0.8 70 Beet harvester 0 4.2 0 Disk, harrow, offset - secondary tillage m 254 13.2 0 1 0.88 0.78

Beet topper 0 7.3 0 Disk, gang, single - primary tillage m 124 6.4 0 1 0.88 0.78
Corn picker sheller 0.6-0.75 65 Combine, small grains 20 0 3.64 Disk, gang, single - secondary tillage m 86 4.5 0 1 0.88 0.78

Combine 0.6-0.75 65 Combine, corn 35 0 1.64 Coulters - smooth or ripple tools 55 2.7 0 1 0.88 0.78
Combine (SP) 0.65-0.8 70 Cotton picker 0 9.3 0 Coulters - bubble or flute tools 66 3.3 0 1 0.88 0.78

Mower 0.75-0.85 80 Cotton stripper 0 1.9 0 Field cultivator - primary tillage tools 46 2.8 0 1 0.85 0.65
Mower (rotary) 0.75-0.9 80 Feed mixer 0 0 2.3 Field cultivator - secondary tillage tools 32 1.9 0 1 0.85 0.65

Mower-conditioner 0.75-0.85 80 Forage blower 0 0 0.9 Row crop cultivator - S-tine rows 140 7 0 1 0.85 0.65
Mower-conditioner (rotary) 0.75-0.9 80 Flail harvester, direct-cut 10 0 1.1 Row crop cultivator - C-shank rows 260 13 0 1 0.85 0.65

Windrower (SP) 0.7-0.85 80 Forage harvester, corn silage 6 0 3.35 Row crop cultivator - no-till rows 435 21.8 0 1 0.85 0.65
Side delivery rake 0.7-0.9 80 Forage harvester, wilted alfalfa 6 0 4.05 Rod weeder m 210 10.7 0 1 0.85 0.65
Rectangular baler 0.6-0.85 75 Forage harvester, direct cut 6 0 5.75 Disk-bedder rows 185 9.5 0 1 0.85 0.78

Large rectangular baler 0.7-0.9 80 Forage wagon 0 0 0.3 Minor Tillage Tools
Large round baler 0.55-0.75 65 Grinder mixer 0 0 4 Rotary hoe m 600 0 0 1 1 1
Forage harvester 0.6-0.85 70 Manure spreader 0 0 0.2 Coil tine harrow m 250 0 0 1 1 1

Forage harvester (SP) 0.6-0.85 70 Mower, cutterbar 0 1.2 0 Spike tooth harrow m 600 0 0 1 1 1
Sugar beet harvester 0.5-0.7 60 Mower, disk 0 5 0 Spring tooth harrow m 2000 0 0 1 1 1

Potato harvester 0.55-0.7 60 Mower, flail 0 10 0 Roller packer m 600 0 0 1 1 1
Cotton picker (SP) 0.6-0.75 70 Mower-conditioner, cutterbar 0 4.5 0 Roller harrow m 2600 0 0 1 1 1

Mower-conditioner, disk 0 8 0 Land plane m 8000 0 0 1 1 1
Fertilizer spreader 0.6-0.8 70 Potato harvester 0 10.7 0 Row Crop Planter
Boom-type sprayer 0.5-0.8 65 Potato windrower 0 5.1 0 Prepared seedbed - mounted seeding only rows 500 0 0 1 1 1
Air-carrier sprayer 0.55-0.7 60 Rake, side delivery 0 0.4 0 Prepared seedbed - drawn seeding only rows 900 0 0 1 1 1

Bean puller-windrower 0.7-0.9 80 Rake, rotary 0 2 0 Prepared seedbed - Seed, fertilizer, herbicides (SFH) rows 1550 0 0 1 1 1
Beet topper/stalk chopper 0.7-0.9 80 Tedder 0 1.5 0 No-till, SFH - 1 fluted coulter/row rows 1820 0 0 1 0.96 0.92

Liquid Fertilizer Applicator 0.5-0.75 65 Tub grinder, straw 5 0 8.4 No-till, Seeding only - 1 fluted coulter/row rows 670 0 0 1 0.96 0.92
Other Tub grinder, alfalfa hay 5 0 3.8 Zone-till, SFH - 3 fluted coulters/row rows 3400 0 0 1 0.94 0.82

Windrower/swather, small grain 0 1.3 0 Grain Drill
w/ press wheels - <2.4 m drill width rows 400 0 0 1 1 1

w/ press wheels - 2.4 to 3.7 m drill width rows 300 0 0 1 1 1
w/ press wheels - >3.7 m drill width rows 200 0 0 1 1 1

No-till - 1 fluted coulter/row rows 720 0 0 1 0.92 0.79
Other Seeding

Hoe drill - primary tillage m 6100 0 0 1 1 1
Hoe drill - secondary tillage m 2900 0 0 1 1 1

Pneumatic drill m 3700 0 0 1 1 1
Nitrogen Applicator rows 1800 0 0 1 0.96 0.92

None
None 0 0 0 0 0 0

ImplementsField Efficiency Tractive Condition

Harvesting

Miscellaneous

Parameter
Rotary Power Requirement Parameters

Soil ParametersMachine Parameters

Planting
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B.4 ‘Help Tip Text’ Sheet

1

2

3

4

5

6

7

8

9

10

11

12

A B C D E F G H I J K L M
Operation Tab Field Tab Traction Machine Tab Traction Machine Axles Tab Implement Tab Input Materials Labor

Machine Type:

Conventional - typical 
machines, powered mostly by 
fossil fuels, directly operated 
by humans

Autonomous - robotic 
machines operating without 
direct human intervention and 
control

Autonomous Swarm - fleet of 
robotic machines operating in 
groups to maximize field 
coverage

Soil/Ground Condition:

Common cone index (CI) values:
 - Hard/Concrete: > 1800 kPa
 - Firm: 1200 kPa
 - Tilled: 900 kPa
 - Soft: 450 kPa

Throttle Setting:

Ratio of partial throttle engine 
speed to full throttle engine 
speed at operating load

Tire Section Height:

Height of undeflected section.

Equals [section width]  × [aspect 
ratio]

Embodied Energy:

The amount of energy sequestered in the 
implement.

Common values:
 - Plow: 180 MJ/kg
 - Disc harrow: 149 MJ/kg
 - Planter: 133 MJ/kg
 - Fertilizer: 129 MJ/kg
 - Rotary hoe: 148 MJ/kg

Planting Rate:

Planting material deposition 
rate (seed, rhizome, etc.)

Machines Per Operator:

Number of machines per 
operator.

1 for Conventional

Number of Machines:

Number of machines operating 
in 'Autonomous Swarm'

Automatically set to '1' for 
'Conventional' or 
'Autonomous' machine type

Field Efficiency:

Measure of how efficient machine 
time is spent effectively operating 
in the field.

Typical field efficiency for this 
operation has been auto-filled.

Mechanical Efficiency:

Mechanical efficiciency of the 
transmission and power train. 
Typically 96% for tractors with 
gear transmissions

Tire Overall Diameter:

Undeflected overall tire diameter.

Equals [rim diamter] + 2 × 
[section height]

Estimated Life:

The useful service life of an implement 
before it becomes unprofitable for its 
original purpose due to obsolescence or 
wear

Planting Energy Content:

Energy content of planting 
material (seed, rhizome, etc.)

Operator Efficiency:

Actual labor hours exceed 
field machine time because of 
travel, lubricate, service, etc. 
80-90% is a common value 
for conventional agricultural 
operations.

Machine Overlap:

When using an autonomous 
swarm, how much does each 
machine overlap with other 
machines.

0 % = no overlap

Cone Index of Front Tires:

Common cone index (CI) values:
 - Hard/Concrete: > 1800 kPa
 - Firm: 1200 kPa
 - Tilled: 900 kPa
 - Soft: 450 kPa

Rated Power:

Typical ICE: rated PTO power

Electric: rated motor power

Tire Deflection:

Typically 0.19 × [section height]

Rated Working Width:

Also referred to as effective width

Operating Weight:

Total weight of traction 
machine; including operator, 
ballast, fuel, etc.

Electrical Current:

Electrical current requirement for normal 
operation of the implement

Embodied Energy:

The amount of energy 
sequestered in the machine.

Common values: 
 - Tractor: 138 MJ/kg
 - Combine: 116 MJ/kg

Electrical Voltage:

Electrical voltage requirement for normal 
operation of the implement

Estimated Life:

The useful service life of a 
machine before it becomes 
unprofitable for its original 
purpose due to obsolescence or 
wear

Hydraulic Flow:

Fluid flow rate requirement for normal 
operation of the implement

Hydraulic Pressure:

Fluid pressure drop requirement for 
normal operation of the implement
Material Feed Rate:

Feed rate of rotary operation; reported in 
t/h wet basis
Impliment Width:

Width of implement in terms of [m], 
[rows], or [tools]. Units are automatically 
chosen based on selections made above.

Operation Depth:

Tillage depth for major tillage tools. 
Automatically set to 1 for other implement 
types
Soil Texture:

 - Fine: high in clay content
 - Medium: loamy soils
 - Coarse: sandy soils
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