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ABSTRACT

M.S.A.A, Purdue University, August 2019. Multi-Target Tracking with uncertainty
in the probability of detection. Major Professor: Professor Carolin Frueh.

The space around the Earth is becoming increasingly populated with a growth in

number of launches and proliferation of debris. Currently, there are around 44,000

objects (with a minimum size of 10cm) orbiting the Earth as per the data made pub-

licly available by the US strategy command (USSTRATCOM). These objects include

active satellites and debris. The number of these objects are expected to increase

rapidly in future from launches by companies in the private sector. For example,

SpaceX is expected to deploy around 12000 new satellites in the LEO region to de-

velop a space-based internet communication system. Hence in order to protect active

space assets, tracking of all the objects is necessary. Probabilistic tracking methods

have become increasingly popular for solving the multi-target tracking problem in

Space Situational Awareness (SSA). This thesis studies one such technique known

as the GM-PHD filter, which is an algorithm which estimates the number of objects

and its states when non-perfect measurements (noisy measurements, false alarms)

are available. For Earth orbiting objects, especially those in Geostationary orbits,

ground based optical sensors are a cost-efficient way to gain information.In this case,

the likelihood of gaining target-generated measurements depend on the probability of

detection (pD) of the target.An accurate modeling of this quantity is essential for an

efficient performance of the filter. pD significantly depends on the amount of light re-

flected by the target towards the observer. The reflected light depends on the relative

position of the target with respect to the Sun and the observer, the shape, size and

reflectivity of the object and the relative orientation of the object towards Sun and

the observer. The estimation of the area and reflective properties of the object is in
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general, a difficult process. Uncontrolled objects, for example, start tumbling and no

information regarding the attitude motion can be obtained. In addition, the shape

can change because of disintegration and erosion of the materials. For the case of

controlled objects, given that the object is stable, some information on the attitude

can be obtained. But materials age in space which changes the reflective properties

of the materials. Also, exact shape models for these objects are rare. Moreover,, area

can never be estimated with optical measurements or any other measurements, as it

is always albedo-area i.e., reflectivity times area that can be measured.

The purpose of this work is to design a variation of the GM-PHD filter which accounts

for the uncertainty in pD as the original GM-PHD filter designed by Vo and Ma ( [1])

assumes pD as a constant. It is validated that the proposed method improves the

filter performance when there is an uncertainty in area(hence uncertainty in pD) of

the targets. In the tested cases, the uncertainty in pD was modeled as an uncertainty

in area while assuming that the targets are spherical and that the reflectivity of the

targets is constant. It is seen that a model mismatch in pD affects the filter perfor-

mance significantly and the proposed method improves the performance of the filter

in all cases.



1

1. INTRODUCTION

The space around Earth is becoming more crowded with increasing launches and the

proliferation of debris. Currently, there are around 44000 Earth-orbiting objects of a

minimum size of 10 centimeters (refer [2]). These objects are maintained in a pub-

licly available catalog maintained by the US Strategic Command (USSTRATCOM).

These objects consist of the active satellites and also space debris. Debris include

the inactive/dead satellites, mission related objects like the rocket upper stages and

also the objects created from the fragmentation of the materials of satellites and the

objects created from collisions. By definition, space debris consists of only human-

made objects. The number of objects is expected to increase rapidly in the coming

years. For example, SpaceX is expected to deploy around 12000 objects in the Low

Earth Orbits by mid 2020’s (refer [3]). Hence, sufficient information on the state

(position and velocity) of these objects is needed to protect and manage active space

assets. This can be achieved by tracking which is the process of estimating a required

quantity (like state, number of objects in a region) from measurements (like radar

measurements,optical measurements). Collisions not only result in losses of the space

assets but also increase the debris in space because of fragmentation of the objects

involved in the collision. Hence, tracking is an significant part of Space Situational

Awareness (SSA).

There are two major challenges in tracking in SSA. The first one is the problem of

detection of new objects and the second one is updating the orbits of known, cata-

logued objects. Hence, a tracking algorithm uses the measurements to estimate any

existing target’s state in a surveillance state and also define any new object entering

the scene which was previously undetected. The term cataloging is sometimes used

in the SSA community and is synonymous with tracking in this context. Tracking

involves various sub-parts which include measurement collection, initial orbit deter-
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mination (IOD), data association, clutter rejection and track identification. The

first step in tracking is to process the images obtained to extract the measurements.

IOD is the process of getting a initial estimate of a target’s orbit. This is used in

tracking algorithms to estimate an initial state of a target. Clutter rejection is done

to discern the target-generated measurements from the false measurements (Exam-

ple:Measurements generated because of cosmic rays). Data association is the process

of associating a measurement to an existing track/object or a new object which helps

to improve/update the state estimate of the target. Track labelling is done for the

unique identification of a target. An efficient tracking algorithm should provide all of

the above mentioned components. In single target tracking, only one object needs to

be tracked. This makes the data association step easier since only the clutter has to

be identified instead of clutter and the specific target-generated measurement. Multi-

Target Tracking methods, in comparison, deal with the tracking of multiple objects

simultaneously or quasi-simultaneously. Also, MTT algorithms need to model any

new objects entering a scene which is not the case with single target tracking. As

discussed before, in SSA, tracking existing objects and new, previously undetected

objects is necessary. Hence, the following section describes MTT and the various

approaches pursued to develop MTT techniques.

1.1 Multi-target Tracking (MTT)

MTT is done to obtain or estimate the number of objects and their states in a

surveillance scene from a set of observations which include noise and false alarms/clutter

measurements. Data fusion is the process of integrating multiple data sources to pro-

duce consistent, accurate and useful information about the entity which is being

observed. The MTT and data fusion literature has many techniques. [4] provides a

taxonomy of such methods and also details and compares the performance of various

MTT algorithms. Also, articles such as [5], [6], [7] and [8] and reference texts such

as [9], [10] and [11] provide further insight into MTT algorithms.The MTT problem
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has been explored by two major approaches, namely, track-based approaches and

population based approaches. The following sections give a brief overview of these

approaches.

1.1.1 Track-Based Approaches

As the name suggests these approaches keep track of individual targets separately.

Hence, this approach includes the data-association problem i.e., the measurements

are explicitly associated with the targets. Since the number of measurements and

the targets are in general not same (because of false alarms, missed detections), all

the possible measurement-to-track combinations are considered. Hence, an impor-

tant component considered here is the Global Association Likelihood (GAL) which is

a numerical quantity which quantifies how likely a combination occurs. The simplest

type of filter is the Single-Hypothesis Correlation (SHC) filter (for detailed discus-

sion, refer [12]). Based on the GAL, a SHC filter selects one measurement-to-track

association at every time step and estimates tracks for every target in the scene us-

ing the measurements. The performance of SHC filters declines when the targets

are closely spaced. This is because SHC filter decides a particular measurement-

to-track association as a correct one which might not be true when the targets are

closer. Multiple-Hypothesis Correlation (MHC) mitigate this by keeping track of all

the measurement-to-track associations i.e., in addition to keeping information on the

tracks, it also keeps track of different hypotheses. More precisely, at any time step, ev-

ery possible measurement-to-track association is stored and corresponding probability

is assigned to it depending on GAL. These probabilities are then used in estimating

the number of targets and their states. MHC filters answer the constraints of SHC fil-

ters but are computationally more complex and expensive. The Composite-hypothesis

Correlation (CHC) filters reduces the computation load by merging SHC and MHC.

In essence, CHC filters select a composite hypothesis at every time step.A measure-

ment is assumed to be associated to some extent to every target (detailed discussion
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in Chapter 10, [12]) i.e., a probability density is assigned to this using the hypothesis

density and then the data update step is carried out by taking a weighted average of

all the measurement-to-track associations . The most well known filter of this type is

the Joint Probabilistic Data Assosciation (JPDA) filter, introduced in [13], which is

used when the number of objects are known. Track-based approaches usually rely on

a heuristic approach (track pruning, creating, merging) and must be tuned according

to the filtering problem.

1.1.2 Population-Based Approaches

The second approach known as the Population-based approach considers the group

of targets as a single entity and hence doesn’t explicitly solve the data association

problem. As a result, a specific target track cannot be naturally estimated.Even

though some information is lost regarding the individual targets this approach is

comparatively less complex. In this approach, the information of the target states

is stored in a single random object known as Random Finite Sets (RFS) whose size

(number of targets) and also the elements (target states) are random. Also, in this

formulation the measurements consisting of the target-generated measurements and

false measurements (clutter) are also modeled as RFS. Modeling the measurements

and the states of the targets as sets allows the Multi-target filtering problem to be

looked in a Bayesian filtering framework. This can be done by using the concepts

and formulations in FISST (Finite Sets Statistics). The Multi-target Bayes filter can

then be obtained as a generalisation of the single target Bayes filter. This thesis

gives a systematic derivation of Multi-Target Bayes filter in the following chapters.

This approach was formally developed by Mahler in [12]. However, in many cases,

the Multi-target Bayes filter is computationally intractable (detailed discussion in

chapter 3). To alleviate this limitation, the PHD (probability density hypothesis)

filter (discussed in chapter 4) was developed which is a less computationally expensive

version of the Multi-target Bayes filter. The PHD filter propagates only the first-
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order statistical moment of the RFS which is a quantity analogous to the mean of a

random variable. Even though the complexity is increased the filter involves multiple

integrations which in general have no closed form solutions. To gain a closed form

solution to the filter additional assumptions are made and the GM-PHD filter was

designed by [1]. These assumption can be thought of an extension of the Kalman

filter to the multi-target regime. This thesis focuses on the application of GM-PHD

filter in SSA.

1.2 MTT Applications in SSA

Both the track-based and the population-based approaches have been applied in

the field of SSA. Frueh et al. [14] and Frueh [15] propose cosmic filters, which link

multiple non-resolved images belonging to a same object in the presence of cosmic

rays. The linked images are then used for initial orbit determination (IOD). Cosmic

rays provide false detections and are indistinguishable from the object detections. To

filter them out, multiple images are used to isolate the object images since the cosmic

rays are singular events and non-regular (refer [15]). The cosmic filters have a kind of

track based approach since there is explicit data association. Kelecy et al. [16], pro-

pose a MHC filter to track High Area-to-Mass Ratio (HAMR) objects in the vicinity

of Geostationary Orbits. This approach is used since the optical surveys from this

region result in large number of uncorrelated tracks and it is showed that the MHC

filter is an efficient approach to track these objects. Singh et al. [17] propose a MHT

filter to resolve uncorrelated tracks and uncorrelated optical observations.

Population-based approach or the FISST approach has also been used in the SSA

area. DeMars et al. [18], Gehly et al. [19], Jones et al. [20], [21], Cheng et al. [22], [23]

use random finite sets approach to find solutions in the SSA scenario. DeMars et

al. [18], propose a filter similar to the GM-PHD filter but instead of having Gaussian

assumptions in the PHD filter, the Gaussian assumptions are introduced directly in

the Multi-Bayes filter to reduce information loss resulting from the first order approx-
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imation in the PHD filter. Gehly et al. [19] utilizes the CPHD (Cardinalized PHD)

filter to propose a method to track GEO objects when there is a Field of View con-

straint for the measurements. CPHD filter is an extension of PHD filter in the sense

that it propagates the intensity function (PHD) and also the cardinality distribution

of the targets. Jones et al. [20] propose a method to initiate new objects entering a

surveillance scene in the CPHD filter. This method uses the measurements to initiate

and track unknown targets while simultaneously tracking the known objects. Jones

et al. [21] propose the multi-Bernoulli filter which allows for the identification of the

individual targets. This method alleviates the limitation of the population based

approaches which are not designed to track individual targets. Cheng et al. [22]

compares the performance of PHD and CPHD filters in the scenario of space object

tracking. The CPHD filter is shown to be more accurate in estimating the intensity

function as well as the number of objects but with more computational cost. Cheng

et al. [23] investigates the viability of the application of GM-PHD filter to space ob-

ject tracking. It proposes a filter which accounts for the non-linear effects obtained

because of long term propagation of the orbits. As mentioned previously, this thesis

focuses on the GM-PHD filter. The following section details the assumptions made

to obtain the GM-PHD filter.

1.3 Assumptions of GM-PHD Filter

The following points describe the major assumptions of the GM-PHD filter (refer

[1]).

• A1:Each target moves and generates measurements independently of each other.

In SSA, Target independence is a valid assumption for most of the cases. This

assumption is violated only in the case of collision event and in the case of

decaying objects and drag wake effects ( [24]). Measurement independence

is also a good assumption in the case of optical measurements (refer [24] for

detailed explanation). This thesis will work with optical measurements.
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• A2:Clutter is Poisson and independent of target-generated measurements.

A detailed explanation of this assumption is given in chapter 4. However, this

assumption is valid in SSA. The independence is established by the fact that

the physical processes leading to the target-generated and clutter measurements

are independent. Clutter is usually a result of cosmic ray events which are a

very good example of a Poisson process.

• A3:Predicted multiple-target RFS is Poisson.

This assumption too will be discussed in detail in chapter 4. Assuming the

predicted multi-target RFS to be Poisson implies that the actual number of

targets can be assumed to ”jump”. This is only the case when collisions are

involved and in general, the actual population, depending on a surveillance

scene, is not highly variable. Hence, this assumption cannot be readily made in

SSA.

• A4:Probability of survival (pS) and Probability of detection (pD) are constant.

Constant pS is a good assumption for the case of SSA (refer [24]). However,

constant pD assumption cannot be readily made in SSA regime. This thesis

focuses on finding an alternative version of the GM-PHD filter by not making

this assumption.

The following section details why constant pD is not a valid assumption in SSA

scenario and lists out the specific objectives of this research.

1.4 Objective

As will be seen in chapter 4 and as outlined above, GM-PHD filter in its basic

form assumes that pD is a constant and is not dependent on the state of the target.

This assumption was used to obtain a closed form solution for the PHD filter and

is assumed to be valid in many tracking algorithms [25], [10], [26], [27], [28]. For

example, in [27] the GM-PHD filter is used for visual people tracking where people
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are tracked from a set of images obtained from a video . The probability of detection

here can be assumed to be a constant depending on the quality of the camera used

to capture the video since whoever is in the Field of View (FOV) of the camera will

surely show up in the image. However, this assumption is not a very good one in the

space environment.

For Earth orbiting objects, especially those in Geostationary orbits, ground based op-

tical sensors are a cost-efficient way to gain information ( [29]). CCD (Charged couple

device) sensors are usually used to take the optical observations. In order to generate

a measurement, the target must reflect sufficient light to the sensor. The reflected

light received by the sensor depends on the relative position of the object with the

observer and the illumination source (Sun), the reflective properties of the object and

the attitude motion of the object. Light is also attenuated through transition through

the atmosphere in ground-based observations. This is known as atmospheric extinc-

tion. The sensor properties also determine the probability of detection. For example,

the aperture size decides how much light is taken in by the sensor. Increasing it would

increase pD, but it could also increase the clutter measurements. Hence, modeling pD

as a constant although it is highly variable, creates a model mismatch. [24] shows that

a model mismatch in probability of detection affects the performance of a simplified

cardinality-only PHD filter. The present work shows the effects of model mismatch

in pD in the full PHD filter.

As mentioned above, pD depends on the reflective area of the target. Moreover, over

93 percent of the catalogued objects are uncontrolled and non-operational space ob-

jects, so-called space debris. Since these objects are uncontrolled, the attitude motion

of these objects cannot be estimated accurately and hence their reflective area cannot

be modeled accurately. Also, over time, there is degradation of the surface materials

which changes the reflective properties of the object. The estimation of the shape of

these objects in itself is a very complex process. In the case of the controlled objects,

the reflected light mostly comes from the solar panels. In some cases, for example,

in the case of controlled satellites in high orbits, the solar panels always point to the
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Sun and the reflected light comes from the body of the satellite. This makes the

prediction of the reflective area very difficult. Moreover, pD is also time-dependent.

For example, consider an object which is initially between the Sun and the observer.

Here, since there is no light reflected to the sensor, pD should be zero. As the object

moves about its orbit, pD will slowly increase and can also be equal to one depending

on the reflected light to the sensor. Therefore, in the case of SSA, pD can attain its

maximum and minimum value within one time period of its orbit.

To summarize the previous paragraph, it can be seen that, in the space environment,

pD is a state (hence time)-dependent and an uncertain quantity. The time depen-

dence is a result of the attitude motion of the object and also the change in relative

position of the object with respect to the position of the Sun and the observer. The

pD uncertainty is introduced because of the degradation of materials in space, the

unknown shapes (areas) and attitude motion of debris.

Hence, all these factors introduce a level of uncertainty in pD. This has to be ac-

counted for in the filter because a model mismatch in pD will affect the filter perfor-

mance. pD uncertainty and aslo the state dependence is not considered in any of the

previous work mentioned in section 1.2. This work investigates the effects of model

mismatch in pD in SSA and shows that the effects are not negligible. A variation

of GM-PHD filter is developed, which models pD as a state (hence time)-dependent

quantity. And finally, a method which incorporates an uncertainty in pD resulting

from an uncertainty in area, into the GM-PHD filter is proposed and validated . The

following section gives an overview of the chapters in this thesis.

1.5 Overview

• Chapter 2: This chapter introduces the necessary background required to

apply FISST. This chapter reviews the basic models used in the single target

filtering and defines the single target Bayes filter. The concept of Random
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Finite Sets (RFS) is introduced and the necessary calculus required to derive

the multi-target Bayes filter is explored.

• Chapter 3: A formal derivation of Multi-Target Bayes filter is presented in

this chapter. The formulation of the Multi-target Measurement and State space

using RFS is shown. Using these, the Multi-target likelihood function and the

Multi-Target Markov density function are then defined and Bayes rule is applied

to define the Multi-Target Bayes filter.

• Chapter 4: This chapter introduces the first-order moment of a Random Finite

Set, namely, the Probability Hypothesis Density (PHD). A formal mathematical

definition of PHD is presented which is used to derive the PHD filter from the

Multi-Target Bayes Filter. The assumptions required for the derivation of the

GM-PHD filter are reviewed and the filter equations of the GM-PHD filter are

presented.

• Chapter 5: This chapter lists the motion models and measurement models

used in the simulations. A two-body motion model is assumed for the targets

in the space environment and the measurements are assumed to be optical

measurements. The Birth model in the space environment used to model the

new objects entering the FOV is reviewed. The concept of Admissible region is

reviewed for this purpose.

• Chapter 6: This chapter provides a analytical expression for pD of a space

object. It is seen that pD depends on the amount of light reflected by the object

and also the sensor properties. A variation of GM-PHD filter which incorporates

a state dependent pD is introduced. The last section proposes a methodology

to incorporate an uncertainty in pD because of an uncertainty in Area in the

GM-PHD filter.

• Chapter 7: This chapter includes the results of application of the basic GM-

PHD filter in SSA. The results obtained by introducing model mismatch in pD
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are displayed and analyzed. The model proposed to include uncertainty in pD

is validated with suitable simulations.
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2. BACKGROUND

As was mentioned in the introduction, Random Finite Sets(RFS) are used in the

formulation of the multi-target filtering problems.The purpose of using Finite Set

Statistics(FISST) is not because RFS are used to model the problem but rather it is

because random set techniques provide a systematic toolbox of techniques to address

many challenges of multi-target tracking. Fundamental to the development of this

thesis is the concept of the Bayes Filter, a well-developed approach to recursive state

estimation. The following section reviews the single-target recursive Bayes Filter( [9],

[30], [31], [32]) and then the Kalman filter is reviewed which is a closed form solution

to the single-target recursive bayes filter. This will act as a stepping stone to the

concepts of FISST and multi-target filtering.

2.1 Single-target Recursive Bayes Filter

The first step in any filtering problem is to mathematically model the dynamic

motion of the target and model the measurement. A general discrete model for the

motion of the target can be given by a Markov transition:

Xk+1 = Φk(x) + Vk (2.1)

where X is the state of the target and belongs to the vector space Rnx (nx is the

dimension of the state vector), Φ(x) is a vector valued function of x, V is the system

noise added to compensate for any modelling errors and k is any time instant. Markov

Transition means that the state of the body at any time step depends only on the

state at the previous time step. Alternatively, the time evolution of the state vector

can be described by a Markov transition density fk+1|k(.|.) where:

fk+1|k(xk+1|xk) (2.2)
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is the probability that the target has a state xk+1 at tk+1 given that he has a state

xk at tk.

Correspondingly, the measurement model is defined as:

Zk+1 = ηk+1(x) + Wk+1 (2.3)

where Z is the measurement and belongs to the vector space Rnz (nz is the dimension

of the measurement vector), η(x) is a vector valued function of x, W is the measure-

ment noise. Alternatively, the measurement model can be described by a likelihood

function fk+1(.|.) where

fk+1(z|x) (2.4)

is the probability that at time tk+1 state x generates a measurement z. Consider the

term fk+1|k(x|x′,Zk). This is known as the state transition density and it denotes the

probability density that the state x occurs at tk+1 given the measurement history till

tk i.e., Zk = (Z1, ...,Zk) and the state at tk(x
′). Then the probability density of the

state vector conditioned on the measurement history can be given by fk+1|k(x|Zk),

which is:

fk+1|k(x|Zk) =

∫
fk+1|k(x|x′,Zk).fk|k(x

′|Zk)dx′ (2.5)

Proof can be found in [12](page 61). Notice the term fk|k(x
′|Zk) in equation 2.5,

it gives the probability density of the state at tk conditioned on the measurement

history till tk. This is known as the posterior density or the filtering density. It

contains all the information about the state vector up to time k in the sense that it

encompasses the modelling information and uses all the measurements available at tk.

The posterior density can then be obtained by the Bayes’ rule. Proof can be found

in [12] (page 62).

fk+1|k+1(x|Zk+1) =
fk+1(zk+1|x,Zk).fk+1|k(x|Zk)

fk+1(zk+1|Zk)
(2.6)



15

equation 2.5 is called as the predictor equation and equation 2.6 is called as the

corrector equation and together they form the equations for the Bayes Recursive

filter given a initial density f0|0(x). The filter then propagates as follows:

f0|0(x|Z(0))→ f1|0(x|Z(0))→ f1|1(x|Z(1))→

...→ fk|k(x|Z(k))→ fk+1|k(x|Z(k))→ fk+1|k+1(x|Z(k+1))→ ...

The optimal state at every time step can then be obtained from the posterior distri-

bution. The common estimates are expected a posteriori (EAP) estimator and the

maximum a posteriori (MAP) estimator [12] (page 63). EAP is the expected value

whereas MAP is the state vector with highest probability.

Due to the multiple integrations in the Bayes recursion equations, a closed form solu-

tion is difficult to obtain until certain assumptions are made. Though it is possible to

find numerical solutions to the above equations they are computationally expensive

especially when the dimension of the state space is high. The following section reviews

the Kalman Filter which is a closed form solution to the Bayes Recursive filter.

2.2 Kalman Filter

The Kalman filter (refer [32], [12], [33]) is a closed form solution to Bayes Recur-

sion. The Kalman filter assumes that the dynamic model describing the motion and

measurement model are linear with additive Gaussian noise.

Xk+1 = Fkx + Vk (2.7)

Zk+1 = Hk+1x + Wk+1 (2.8)

where Fk is the transition matrix and Hk+1 is the observation matrix. Vk and Wk are

independent gaussian random variables with zero mean and covariances Qk and Rk

respectively. It is also assumed that the markov transition density and the measure-

ment likelihood are Gaussian and are given by:

fk+1|k(xk+1|xk) = N (xk+1;Fkxk, Qk) (2.9)

fk+1(zk+1|xk+1) = N (zk+1;Hk+1xk+1, Rk+1) (2.10)
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Substituting them in the Bayes recursion equations(2.5,2.6) we obtain the recursive

equations for the Kalman filter i.e., if at tk the posterior density has a Gaussian

distribution of the form:

fk|k(xk|Zk) = N (xk;mk, Pk) (2.11)

where the distribution is given by:

N (x;m,P ) =
1√

(2π)kdet(P )
e
−1
2

(x−m)TP (x−m) (2.12)

where k = nx, det(P ) is the determinant of P . Then the predicted density at tk+1 is

also a Gaussian and has the form:

fk+1|k(xk+1|Zk) = N (xk+1;mk+1|k, Pk+1|k) (2.13)

where the mean mk+1|k and the co-variance Pk+1|k of the predicted state xk+1|k is

given by:

mk+1|k = Fkxk (2.14)

Pk+1|k = FkPkF
T
k +Qk (2.15)

The corrector equation then results in a Gaussian posterior density which is given by:

fk+1|k+1(xk+1|Zk+1) = N (xk+1;mk+1, Pk+1) (2.16)

where,

mk+1 = mk+1|k +K(zk+1 −Hk+1xk+1|k) (2.17)

Pk+1 = [I−KHk]Pk+1|k (2.18)

K = Pk+1|kH
T
k+1S

−1 (2.19)

S = Rk+1 +Hk+1Pk+1|kH
T
k+1 (2.20)

The matrix K, zk+1−Hk+1xk+1|k, S are most commonly known as the Kalman Gain,

innovation and innovation matrix respectively. It is important to note that the filter
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has to be initialized with a Gaussian distribution i.e., f0|0 must be Gaussian since it

is one of the assumptions. Then the Kalman recursion ensures that the subsequent

posterior densities (f1|1, ..., fk|k, ...) are Gaussian. This is an important result of the

kalman filter since the posterior distribution at any time instant can be described by

mean and co-variance i.e., only the mean and co-variance need to be propagated or

updated at each time instant. Although the Kalman filter gives a closed form solution

to the Bayes recursive filter it is only applicable when the motion and the measurement

models can be represented by linear models and when the filter is initialized with a

Gaussian Mixture(i.e., f0|0 = N (x;m0|0, P0|0)).

But in any space problem i.e., in the analysis of Earth-orbiting objects the most simple

dynamic model is the two-body problem which is non-linear. In order to incorporate

this non-linearity an approximate technique called the Extended Kalman Filter [32]

is used. This method is briefly described in the next section.

2.3 Extended Kalman Filter

The Extended Kalman Filter (refer [32]) is a first order approximation of the

Kalman Filter i.e., the measurement and motion models are linearized using a Taylor

series expansion to approximate the predicted and posterior densities as Gaussian dis-

tributions. Linearization is important since a Gaussian distribution doesn’t remain

a Gaussian under non-linear transformation i.e., if xk|k is Gaussian then under the

transformation Φk(x),xk+1|k will not be a Gaussian if Φk is non-linear. Hence Φk is

linearized to preserve the Gaussian nature. Consider the motion and measurement

models described by the equations 2.1 and 2.3 where Φk and ηk are non-linear func-

tions of the state vector. Then if at tk the posterior density is a Gaussian of the

form:

fk|k(xk|Zk) = N (xk;mk, Pk) (2.21)

then the predicted density at tk+1 is also a Gaussian and has the form:

fk+1|k(xk+1|Zk) = N (xk+1;mk+1|k, Pk+1|k) (2.22)
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where the mean mk+1|k and the co-variance Pk+1|k of the predicted state xk+1|k is

given by:

mk+1|k = Φk(xk) (2.23)

Pk+1|k = FkPkF
T
k +Qk (2.24)

Fk =
∂Φk(x)

∂x

∣∣∣∣
x=mk

(2.25)

The Gaussian posterior density is then given by:

fk+1|k+1(xk+1|Zk+1) = N (xk+1;mk+1, Pk+1) (2.26)

where,

mk+1 = mk+1|k +K(zk+1 − ηk+1(xk+1|k)) (2.27)

Pk+1 = [I−KHk]Pk+1|k (2.28)

K = Pk+1|kH
T
k+1S

−1 (2.29)

S = Rk+1 +Hk+1Pk+1|kH
T
k+1 (2.30)

Hk =
∂ηk+1(x)

∂x

∣∣∣∣
x=mk+1|k

(2.31)

These equations will be revisited again in the derivation of the PHD filter in the later

chapters.

The tools and techniques used in the single-target filtering have been reviewed until

this point. The Bayes multi-target recursive filtering equations have the same form

as equations 2.5 and 2.6. But before these equations are introduced, the concept of

Random Finite sets have to be introduced first. This is because in the single target

case, the definition of the probability density and mathematical operations like the

differentiation and integration is straightforward. But in multi-target case where sets

are used in the modeling of the problem, the concepts like integrating over sets(set

integral), differentiation w.r.t a set (set derivative) have to be defined first i.e., calculus

of sets or the multi-object calculus has to introduced. The next section provides the

example of an application of a random finite set and then formally define a random

finite set, set integral , multi-object density function, etc.
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2.4 Random Finite Sets

Consider a case when a single sensor is taking observations(z) over a certain region

of space. The observation consists of the right-ascension(α) and declination(δ) of the

object(z = (α, δ)). At any instant of time the sensor collects multiple observations(z1, ..., zm)

which include the observations from actual targets(number of observations can be any

non-negative integer) and clutter observations which are false measurements gener-

ated from the sensor itself or can be from background sources in the field of view (Eg

: Stars). Also, even though measurement’s components have a fixed order(α, δ) the

detections (z1, ..., zm) have no inherent physical order. Then the measurement can be

represented by a finite observation set whose elements are the detections:

Z = {z1, ..., zm} = {(α1, δ1), ..., (αm, δm)} (2.32)

The measurement space M is the hyperspace of all finite subsets of an underlying

measurement space M0(here it’s R2). Not only are the components of a individual

measurement(zi) random, the number of detections (m) are also random. Thus a

measurement is a randomly varying set (Σ) whose elements belong to M0 i.e., the

various samples (instantiations) of Σ are:

Z = ∅ (no detections) (2.33)

Z = {z1} (a single detection z1 is collected) (2.34)

Z = {z1, z2} (two detections z1 6= z2 are collected) (2.35)

and a sample with m detections is given by:

Z = {z1, ..., zm} (m detections z1 6= ... 6= zm are collected) (2.36)

Therefore, Σ is an example of a Random Finite Set (RFS) and it’s instantiations are

random sets whose elements belong to the sensor measurement spaceM0. Now that

the concept of RFS is well-defined the following sections introduce the concepts of

Multi-object Calculus (set functions, set integrals). Set derivatives and set integrals
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are necessary to clearly state the multi-object probability distributions and also de-

rive the multi-object Markov densities(analogous to equation 2.2) and multi-target

likelihood function(analogous to equation 2.4) from the corresponding multi-object

motion models and multi-target measurement models which will be discussed in the

following chapters.

2.4.1 Set Function

A set function is a real-valued function φ(S) of a closed set variable S, whose ele-

ments belong to some vector space Q0. The following set functions are very important

in the multi-object filtering literature.

• Probability-mass function:If Q is a random vector on Q0, then:

pQ(S) ≡ Pr(Q ∈ S) (2.37)

where Pr(Q ∈ S) is the probability that Q belongs to the set S.

• Belief-mass function: Let Ψ be a RFS.Then the belief-mass function βΨ(S) is

defined as:

βΨ(S) ≡ Pr(Ψ ⊆ S) (2.38)

Later, in this chapters it will be seen that the multi-object probability densities

can be obtained from the belief-mass functions.

2.4.2 Set Integral

( [12],chapter 11)

Consider a set function f(Q) of a RFS Q. Then it’s set integral over a region S of

Q0 is: ∫
S

f(Q)δQ ≡
∞∑
m=0

1

m!

∫
S × ...× S︸ ︷︷ ︸

m

f({q1, ...,qm})dq1...dqm (2.39)

= f(∅) +

∫
S

f({q})dq +
1

2!

∫
S×S

f({q1,q2})dq + ... (2.40)
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Consider the function fm(q1, ...,qm) in m vector variables q1, ...,qm.

fm(q1, ...,qm) ≡


1
m!
f({q1, ...,qm}) if q1, ...,qm are distinct

0 if otherwise

(2.41)

The division by m! occurs because the elements of a RFS are unordered. Hence the

probability density of {q1, ...,qm} must be equally distributed among the m! possible

vectors (qσ1
, ...,qσm) for all permutations σ of 1, ...,m. Then each term in equation

2.39 is equivalent to:∫
S × ...× S︸ ︷︷ ︸

m

f({q1, ...,qm})dq1...dqm = m!

∫
S × ...× S︸ ︷︷ ︸

m

fm(q1, ...,qm)dq1...dqm

(2.42)

2.4.3 Multi-object Probability Distributions

The definition of multi-object probability density function is similar to probability

density function of of a random variable. The only difference is that here the function

is defined on sets. A multi-object density function f(Q) onQ0 is a real-valued function

of a finite set variable Q ⊆ Q0. A multi-object density function is a multi-object

probability density function if f(Q) ≥ 0 for all Q and if:∫
Q0

f(Q)δQ = 1 (2.43)

The Belief-mass function can then be defined in terms of the multi-object probability

density function by:

βΨ(S) = Pr(Ψ ⊆ S) =

∫
S

fΨ(Q)δQ (2.44)

where Ψ is a RFS on Q0. Also if S = Q0, we get
∫
S
fΨ(Q)δQ = Pr(Ψ ⊆ Q0) = 1
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2.4.4 Cardinality Distribution

The probability that a the RFS Ψ contains n elements is described by the cardi-

nality distribution.

pΨ(m) = Pr(|Ψ| = m) ≡ p|Ψ|(m) (2.45)

=

∫
S × ...× S︸ ︷︷ ︸

m

f({q1, ...,qm})dq1...dqm (2.46)

where S = Q0

2.5 Probability-Generating Functionals(p.g.fls)

A functional is a real-valued function of a function i.e., it maps functions to

real numbers. p.g.fls, as the name suggests, are functionals defined to reduce the

complexity of the equations in multi-target filtering. This will become much clearer

in the following chapters once the multi-target bayes filter equations are derived.

Consider a function h(y), which is a non-negative real-valued function of y ∈ Z0. This

is known as a test function. One important example of text function is the indicator

function 1S(y), where S ⊆ Z0 and is defined as:

1S(y) =

1 if y ∈ S

0 if otherwise

(2.47)

A functional F ”evaluated” at the function h can be represented as F [h]. A simple

example of a functional is the linear functional which is defined as:

f [h] ≡
∫
h(y)f(y)dy (2.48)

where f(y) is a density function on Z0. Then, the functional evaluated at 1S is

f [1S] =
∫
S
f(y)dy. Let Y ⊆ Z0 be a finite subset whose elements belong to the space

Z0. Then the power of the test function(h) w.r.t Y is defined as:

hY ≡

1 if Y = ∅∏
y∈Y h(y) if otherwise

(2.49)
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Then, the probability-generating functional of a probability density function fΨ(Y ) of

a RFS Ψ is defined as:

GΨ[h] ≡
∫
hY fΨ(Y )δY (2.50)

= fΨ(∅) +
∞∑
n=1

1

n!

∫ ( n∏
i=1

h(yi)

)
fΨ({y1, ...,yn})dy1...dyn (2.51)

= fΨ(∅) +
∞∑
n=1

∫ ( n∏
i=1

h(yi)

)
fΨ(y1, ...,yn)dy1...dyn (2.52)

(2.53)

Some important properties of a p.g.fl are given below:

• GΨ[0] = fΨ(∅)

• GΨ[1] =
∫
fΨ(Y )δY = 1

• If h(y)=y0 where y0 is a constant non-negative real number for all y, then,

GΨ[h] =

∫
yY0 fΨ(Y )δY (2.54)

= fΨ(∅) + y0

∫
fψ({y})dy +

y2
0

2!

∫
fψ({y1,y2})dy1dy2 + ... (2.55)

= pΨ(0) + ypΨ(1) + y2pΨ(2) + ... (2.56)

=
∞∑
n=0

ynpΨ(n) (2.57)

where pΨ(n) is the cardinality distribution of Ψ as discussed in section 2.4.4 .

• Belief-mass functions, defined in section 2.4.1 can ne obtained from p.g.fls in

the following manner.

βΨ(S) =

∫
S

fΨ(Y )δY =

∫
1
Y
S fΨ(Y )δY = GΨ[1S] (2.58)

Until now, some important properties and quantities required to describe a RFS

have been reviewed. The next section dwells into defining the concept of functional

derivatives and formally defines the notion of set derivative.
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2.6 Derivative of a Set

The concepts described in this section can be found in a detailed manner in (

[12],chapter 11).

The gradient derivative(also known as the Frechét/directional derivative) of a vector-

valued function τ(x) in the direction w is given by:

∂τ

∂w
(x) = lim

ε→0

τ(x + εw)− τ(x)

ε
(2.59)

Gradient derivative is reviewed here because a functional derivative is a special case of

gradient derivative and the set derivative is a special case of functional derivative.The

follwoing section reviews the concept of functional derivative and is followed by the

definition of set derivative.

2.6.1 Functional Derivative

A functional F [h] is a function which maps a function to a real number.Similar to

the gradient derivative one can think of a functional derivative of a functional F [h] at

a function h in the direction of a function g (denoted by δF
δg

[h]). Specifically, consider

g = δy where δ is a Dirac delta function and let F [h] be a functional on Z0 and let

y ∈ Z0. Then the functional derivative of F [h] at y is (refer [34]):

δF

δy
[h] ≡ lim

ε→0

F [h+ εδy]− F [h]

ε
(2.60)

Now, given y1, ...,ym ∈ Z0, higher order functional derivatives of F [h] at y1, ...,ym is

evaluated recursively by :

δmF

δym...δy1

[h] ≡ δ

δym

(
δm−1F

δym−1...δy1

)
[h] (2.61)

Hence, if Y is a finite subset whose elements belong to Z0 then the functional derivative

of F [h] w.r.t Y is:

δF

δY
[h] ≡

F [h] if Y = ∅

δmF
δym...δy1

[h] if Y = {y1, ...,ym}
(2.62)
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The derivative of a linear functional(defined in equation 2.48) can be then given by:

δf

δY
[h] =


f [h] if Y = ∅

f(y) if Y = {y}

0 if |Y | ≥ 2

(2.63)

A detailed proof can be found in [12], page 378

2.6.2 Set Derivatives

As mentioned above, a set derivative can be thought of as a special case of a

functional derivative.Every functional can give rise to a set function. For example,

consider the functional F [h]. Then a set function φ(S) can be defined as:

φF (S) ≡ F (1S) (2.64)

Then the set derivative of the set function φF (S) is defined as(refer [12], section

11.4.2):
δφF
δY

(S) ≡ δF

δY
[1S] (2.65)

where the functional derivative δF
δY

is defined as in equation 2.62. Applying equation

2.60, the functional derivative δF
δy

[1S] is:

δF

δy
[1S] = lim

ε→0

F [1S + εδy]− F [1S]

ε
(2.66)

= lim
|Dy|→0

F [1S + 1Dy ]− F [1S]

|Dy|
(2.67)

whereDy is a infinitesimal neighbourhood of y with the hypervolume |Dy| = ε.Assume

that S and Dy are disjoint.Then:

δF

δy
[1S] = lim

|Dy|→0

F [1S∪Dy ]− F [1S]

|Dy|
(2.68)

= lim
|Dy|→0

φF (S ∪Dy)− φF (S)

|Dy|
(2.69)
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Therefore, the derivative of a set function phi(S) can be formally defined as:

δφ

δy
(S) ≡ lim

|Dy|→0

φ(S ∪Dy)− φ(S)

|Dy|
(2.70)

Consequently the set derivative w.r.t to a finite set Y is given by:

δφ

δY
(S) ≡

φ(S) if Y = ∅

δmφ
δym...δy1

(S) if Y = {y1, ...,ym}
(2.71)

Now that the notion of a set derivative is established, the next section reviews some

important theorems in multi-object calculus and states the fundamental rules for set

differentiation analogous to the rules like the chain rule in vector calculus.

2.6.3 Radon-Nikodým Theorems

The fundamental theorem of multi-object calculus states that the set integral and

set derivative are inverse operations(refer [12], [35]).It is stated as follows:

φ(S) =

∫
S

δφ

δY
(∅)δY (2.72)[

δ

δY

∫
S

f(W )δW

]
S=∅

= f(Y ) (2.73)

The fundamental theorem applied on the belief-mass function(a set function as defined

in equation 2.38) gives rise to the first Radon-Nikodým theorem which is stated as

(refer [12], [35]): ∫
S

δβΨ

δY
(∅)δY = Pr(Ψ ⊆ S) = βΨ(S) (2.74)

The multi-object probability density function is related to the belief-mass function by

equation 2.44. Using this fact and the Radon-Nikodým theorem it can be seen that

the probability density function for a RFS Ψ can be obtained from the set derivatives

of the belief-mass function as:

βΨ(S) =

∫
S

fΨ(Y )δY, which implies, fΨ(Y ) =
δβΨ

δY
(∅) (2.75)
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Equation 2.75 is central to the development of the multi-target filtering equations.The

equation 2.75 can further be modified to express the set derivatives of βΨ(S) as

follows(refer [36]):
δβΨ

δY
(S) =

∫
S

fΨ(Y ∪W )δW (2.76)

It can be further generalised to p.g.fls as:

δGΨ

δY
[h] =

∫
hWfΨ(Y ∪W )δW (2.77)

The probability density function of a RFS can also be obtained as:

fΨ(Y ) =
δGΨ

δY
[0] (2.78)

2.6.4 Basic Differentiation Rules

The following rules(refer [12](section 11.6) and [35]) are fundamental to the deriva-

tion of the multi-target filtering equations.They are:

• Constant rule: Let φ(S) = K be a constant set function.Then the rule is stated

as:
δ

δY
K = 0 (2.79)

• Linear rule:Consider the set function(pf (S)) defined by pf (S) =
∫
S
f(y)dy for

all S.Then:

δ

δY
pf (S) =


pf (S) if Y = ∅

f(y) if Y = {y}

0 if |Y | ≥ 2

(2.80)

• Sum rule:φ1(S), φ2(S) are two set functions and a1, a2 are two real numbers.Then

the sum rule is:

δ

δY
(a1φ1(S) + a2φ2(S)) = a1

δφ1

δY
(S) + a2

δφ2

δY
(S) (2.81)

this can be extended to a sum of any number of set functions.



28

• Product Rule:Let φ1, ..., φm be m set functions.Then:

δ

δY
(φ1(S)...φm(S)) =

∑
W1∪...∪Wm=Y

δφ1

δW1

(S)...
δφm
δWm

(S) (2.82)

where the summation is taken over all the mutually disjoint subsets W1, ...,Wm

of Y whose union is Y .

• Chain rule: Let f(y1, ..., ym) be real-valued functions of the real variables

y1, ..., ym and φ1, ..., φm be m set funcitons.

δ

δy
f(φ1(S), ..., φm(S)) =

m∑
i=1

δf

δyi
(φ1(S), ..., φm(S))

δφi
δy

(S) (2.83)

• All the above rules are just special cases of rules of functional derivatives. For

example, the sum rule for functional derivatives is given as follows:

δ

δY
(a1F1[h] + a2F2[h]) = a1

δF

δY
[h] + a2

δF2

δY
[h] (2.84)

where F1, F2 are functionals and a2, a2 are real numbers.All the other

rules(constant,product,chain) can be given in a similar fashion.

2.7 Independent Random Finite Sets

The concept of independent RFS is widely used in multi-target filtering. In the

modeling of motion of targets, it is often assumed that targets move independent of

each other. In the case of measurements it is often assumed that the targets generate

measurements independently and also that the clutter is generated independently.

How these concepts manifest in terms of RFS will be seen in the following chap-

ter.Consider a RFS Ψ = Ψ1 ∪ ... ∪ Ψn where Ψ1, ...,Ψn are statistically independent

random finite subsets.The probability density of Ψ can be then given by:

fΨ(Y ) =
∑

W1∪...∪Wn=Y

fΨ1(W1)...fΨn(Wn) (2.85)
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where the summation is taken over all the mutually disjoint subsets W1, ...,Wn of

Y whose union is Y .This can be obtained by the direct application of the product

rule(equation 2.82) on the belief-mass functions,i.e.,:

δβΨ

δY
(S) =

∑
W1∪...∪Wn

δβΨ1

δW1

(S)...
δβΨn

δWn

(S) (2.86)

Then substituting S = ∅ and using the equation 2.75, the probability density function

fΨ can be given by:

fψ(Y ) =
δβΨ

δY
(∅) (2.87)

=
∑

W1∪...∪Wn

δβΨ1

δW1

(∅)...δβΨn

δWn

(∅) (2.88)

=
∑

W1∪...∪Wn

fΨ1(W1)...fΨn(Wn) (2.89)

The p.g.fl of Ψ is given by:

GΨ1∪...∪Ψn [h] = GΨ1 [h]...GΨn [h] (2.90)

This can be derived as follows:

GΨ1∪...∪Ψn [h] =

∫
hY .fΨ1∪...∪Ψn(Y )δY (2.91)

=

∫
hW1∪...∪Wn

( ∑
W1∪...∪Wn=Y

fΨ1(W1)...fΨn(Wn)

)
δY (2.92)

=

∫
hW1 ...hWn .fΨ1(W1)...fΨn(Wn)δW1...δWn (2.93)

The last equation is a consequence of equation 2.49 and the fact that the sets

W1, ...,Wn are mutually disjoint.Thus,

GΨ1∪...∪Ψn [h] =

(∫
hW1 .fΨ1(W1)δW1

)
...

(∫
hWn .fΨn(Wn)δWn

)
(2.94)

= GΨ1 [h]...GΨn [h] (2.95)

2.8 Examples of Random Finite Sets and their p.g.fls

This section introduces two important class of RFS which are often used in multi-

object filtering.
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2.8.1 Bernoulli RFS

A Bernoulli RFS is described by a parameter p where 0 ≤ p ≤ 1.Consider a RFS

Ψ such that:

|Ψ| =

0 with probability p

1 with probability 1-p

(2.96)

where |Ψ| is the cardinality of Ψ.Then Ψ can be expressed as:

Ψ = ∅p ∩ {Y} (2.97)

where Y is random vector belonging to a vector space Z0 and is defined by:

Pr(∅p = S) ≡


1− p if S=∅

p if S=Z0

0 otherwise

(2.98)

The belief-mass function (equation 2.38) is then given by( [12],page 351):

βΨ(S) = Pr(Ψ ⊆ S) (2.99)

= Pr(Ψ ⊆ S,Ψ 6= ∅) + Pr(Ψ ⊆ S,Ψ = ∅) (2.100)

= Pr(Ψ 6= ∅).P r(Ψ ⊆ S|Ψ 6= ∅) + Pr(Ψ = ∅) (2.101)

= p.Pr(Y ∈ S|Ψ 6= ∅) + 1− p (2.102)

= 1− p+ p

∫
S

fY(y)dy (2.103)

where fY(y) is the probability density function(pdf) of the random vector Y.The

probability density function of the RFS Ψ is defined as:

fψ(Y ) ≡


p.fY(y) if Y = {y}

1− p if Y = ∅

0 otherwise

(2.104)
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It is also seen that the relation between belief-mass function and the probability

density function(equation 2.44) is verified.Detailed proof can be found in [12](page

352).The p.g.fl of a Bernoulli RFS is can be derived as follows:

GΨ[h] =

∫
hY fΨ(Y )δY (2.105)

= fΨ(∅) +

∫
h(y)fΨ({y})dy (2.106)

= 1− p+ p

∫
h(y)fY(y)dy (2.107)

As will be seen in the following chapters Bernoulli RFS is an essential component in

multi-object filtering since it used to model the motion of a single object and also

describe the behaviour of a single measurement.

2.8.2 Poisson RFS

The Poisson RFS is analogous to the Poisson random vector.The number of ele-

ments in this RFS is described by a Poisson distribution and each element is indepen-

dently identically distributed(i.i.d) i.e. if a {y1, ...,yn} is a finite set, then y1, ..., yn

are independent to each other and have the same distribution f(y).The cardinality

distribution of a Poisson RFS Ψ is then given by:

p|Ψ|(n) =
e−λλn

n!
(2.108)

where λ ≥ 0 is a parameter(also the mean of p|Ψ|(n)).Let the probability density

function of the elements be f(y) where y ∈ Z0. Then the probability distribution

function of Ψ is given by:

fΨ(Y ) ≡ n!.p|Ψ|(n).f(y1)...f(yn) (2.109)

= e−λ.λn.f(y1)...f(yn) (2.110)
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where Y = {y1, ...,yn} with |Y | = n. It is easy to verify that fΨ(Y ) is a proba-

bility distribution by checking the condition
∫
fΨ(Y )δY = 1. Proof can be found

in [12](page 799). The belief mass function(equation 2.38) is then given by:

βΨ(S) =

∫
S

fΨ(Y )δY (2.111)

= fΨ(∅) +
∞∑
n=1

1

n!

∫
S×...×S

f({y1, ...,yn})dy1...dyn (2.112)

= e−λ + e−λ
∞∑
n=0

λn

n!

∫
S×...×S

f(y1)...f(yn)dy1...dyn (2.113)

= e−λ + e−λ
∞∑
n=0

λn

n!

(∫
S

f(y)dy

)n
(2.114)

= eλ
∫
S f(y)dy−λ = eλ(

∫
S f(y)dy−1) (2.115)

where the last equation is obtained by using the Taylor series expansion of a expo-

nential. The p.g.fl of the Poisson RFS Ψ can be derived as follows:

GΨ[h] =

∫
hY fΨ(Y )δY (2.116)

=
∑
n≥0

∫ ( n∏
i=1

h(yi)

)
e−λλn

n!

( n∏
i=1

f(yi)

)
dy1...dyn (2.117)

= e−λ
∑
n≥0

λn

n!

∫ ( n∏
i=1

h(yi)f(yi)

)
dy1...dyn (2.118)

= e−λ
∑
n≥0

λn

n!

∫ (
h(y)f(y)dy

)n
(2.119)

= e−λ
∑
n≥0

(λ
∫
h(y)f(y)dy)n

n!
(2.120)

= eλ(
∫
h(y)f(y)dy−1) (2.121)

where once again the last equation is obtained by using the Taylor series expansion

of ex.

This chapter has introduced the toolbox necessary to develop a systematic approach

to derive the multi-target filtering equations. Hence, in the next chapter the multi-

target Bayes filter will be formally derived.



33

3. THE MULTI-TARGET BAYES FILTER

Similar to the case of a single target filter, the first step is to model the dynamics

of the multiple targets and the measurements.The next step is to formulate them

in terms of random finite sets and use FISST (Finite Set Statistics) to construct the

multi-target Markov and likelihood densities. Finally, the Bayes rule is used to obtain

a recursive Multi-target Bayes Filter analogous to the single target case.

The following section models the multi-target measurements and methodically derives

the probability densities required to describe the multi-target measurements. The

derivation given in this chapter was obtained from [12].

3.1 Multi-Target Likelihood Functions

This section deals with the derivation of likelihood function for multi-target mea-

surements. The following steps detail the procedure to find the likelihood function.

• The first step is to define the RFS Σk+1(X), describing the randomly varying

measurement set collected by a single sensor at time step k + 1 given that the

targets have state X.

• The belief mass function (equation 2.38) corresponding to the RFS Σk+1(X)

completely characterizes statistics of the multi-target measurement set.

βk+1(T |X) = Pr(Σk+1 ⊆ T |X) (3.1)

• The probability density function of Σk+1 i.e., fk+1(Z|X) is then obtained from

belief mass function (equation 2.75) as follows:

fk+1(Z|X) =
δβk+1

δZ
(∅|X) (3.2)

=

[
δβk+1

δZ
(T |X)

]
T=∅

(3.3)
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The probability density fk+1(Z|X) is the true multi-target likelihood function.

3.1.1 Multi-target Measurement Space

The multi-target measurement space is identical to the example given in Section

2.4. As was mentioned before, a multi-target measurement is best represented by

a Random Finite Set. Let Z be a RFS representing the multi-target measurement,

then:

Z = {z1, ..., zm} (3.4)

is a instantiation (a sample) of the RFS where z1, ..., zm are elements of Z which

belong to a single-sensor measurement space Z0. Then the various instantiations of

Z can be given by:

Z = ∅ (no detections) (3.5)

Z = {z1} (a single detection z1 is collected) (3.6)

Z = {z1, z2} (two detections z1 6= z2 are collected) (3.7)

and a sample with m detections is given by:

Z = {z1, ..., zm} (m detections z1 6= ... 6= zm are collected) (3.8)

Then the single-sensor multi-target measurement space Z is the hyperspace of all the

finite sets whose elements belong to the single-sensor measurement space Z0.

3.1.2 Standard Measurement Model

The measurement set Z can be divided into two parts where one part consists of

measurements from the targets and the other part consists of the clutter measure-

ments. There are also certain assumptions to be made in order to derive the likelihood

function fk+1(Z|X). They are:



35

Figure 3.1. Standard Measurement Model

• A single sensor with state x̃ observes a scene with unknown number of targets

with the single target likelihood function:

fk+1(z|x, x̃) ≡ fk+1(z|x) = fWk+1
(z− ηk+1(x, x̃)) (3.9)

where ηk+1(x, x̃) + Wk+1(Wk+1 is measurement noise) is the single-target mea-

surement model i.e., measurement obtained from a target with state x and

sensor state x̃.

• All the measurements are unique i.e., no measurement is generated by more

than one target.

• A single target with a state x in the scene, either generates a measurement with

the probability pD(x) ≡ pD(x̃) or is undetected i.e., generates no measurement

with the probability 1−pD(x).It is assumed that individual target measurement

sets are Bernoulli RFS(section 2.8.1).

• The false measurements i.e., the clutter measurement is modeled as a Poisson

RFS C ≡ C(x̃)(Section 2.8.2) with a parameter λ ≡ λ(x̃) and the elements are

distributed in space according to the density c(z) ≡ c(z|x̃).

• It is also assumed that the clutter measurements(C) and the target generated

measurements(Υ(X)) are statistically independent.
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3.1.3 Measurement RFS

Let X = x1, ...,xn be a predicted multi-target state at time step tk+1. Then, the

measurement set(Σk+1) collected by the sensor at tk+1 will be of the form:

total measurement set

Σk+1 =
target detection set

Υ(X) ∪
clutter measurement set

C (3.10)

i.e., if Z is an instantiation of Σk+1,then:

total measurement set

Z =
target detection set

{z1, ..., zn′} ∪
clutter measurement set

{c1, ..., cm′} (3.11)

Furthermore, the target measurement set Υ(X) can be expressed as a union of n RFS

as follows:

target detection set

Υ(X) =
detection set from x1

Υ(x1) ∪ ... ∪
detection set from xn

Υ(xn) (3.12)

As mentioned in the assumptions, Υ(xi), i = 1, ..., n are modeled as Bernoulli RFS

and have the form:

Υ(xi) = ∅pD(xi) ∩ Zi (3.13)

where Zi = η(xi),Z ∈ Z0 is the sensor-measurement model and ∅pD(xi) is a discrete

RFS (section 2.8.1) defined as follows.

Pr(∅pD(xi) = T ) =


1− pD(xi) if T = ∅

pD(xi) if T = Z0

0 if otherwise

(3.14)

The probability density function of Υ(xi) is then by equation 2.104 as:

fΥ(xi)(Z) =


pD(xi).fk+1(z|xi) if Z = {z}

1− pD(xi) if Z = ∅

0 otherwise

(3.15)

The belief-mass function of Υ(xi) is then given by (equation 2.103):

βΥ(xi)(S) = 1− pD(xi) + pD(xi)

∫
S

fk+1(z|xi)dz (3.16)
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As mentioned before, it is assumed that C is a Poisson RFS(section 2.8.2) with the

parameter λ and spatial distribution c(z) = fC(z).Then if C = {c1, ..., cm′}, the

cardinality distribution of C(|C| = m′,m′ ≥ 0) is:

p|C|(m
′) =

e−λλm
′

m′!

and conditioned on |C| = m′,the elements c1, ..., cm′ are independent and identically

distributed (i.i.d) random vectors with probability density c(z) = fC(z).

Finally it is also assumed that Υ(x1), ...,Υ(xn), C are statistically independent RFS.

3.1.4 Derivation of likelihood function(fk+1(Z|X))

The derivation given here is obtained from [12], Appendix G.18

Consider the belief-mass function (defined as in equation 2.38) of Σk+1(T |X) where

X = {x1, ...,xn}. Then:

βk+1(T |X) = Pr(Υ(X) ∪ C ⊆ T |X) (3.17)

= Pr(Υ(X) ⊆ T |X,C ⊆ T |X) (3.18)

= Pr(Υ(X) ⊆ T |X).P r(C ⊆ T ) (3.19)

= βΥ(X)(T ).βC(T ) (3.20)

The assumption of independent RFS was used to obtain the above equations. Then,

using the product rule (equation 2.82), the derivative of βk+1 is obtained as:

δβk+1

δZ
(T |X) =

∑
W⊆Z

δβΥ(X)

δW
(T ).

δβC
δZ

(T ) (3.21)

Using equation 2.75 i.e.,setting T = ∅ we obtain the likelihood function fk+1(Z|X)

as:

fk+1(Z|X) =
δβk+1

δZ
(∅|X) (3.22)

=
∑
W⊆Z

fΥ(X)(W ).fC(Z −W ) (3.23)

where fΥ(X)(Z) and fC(Z) are the probability density functions of Υ(X) and C

respectively.
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Probability Density of Clutter RFS(fC(Z))

Since C is a Poisson RFS, it’s belief-mass function is given by (equation 2.115):

βC(T ) = Pr(C ⊆ T ) = eλpc(T )−λ (3.24)

where pc(T ) =
∫
T
c(z)dz. Then from equation 2.71, applying the set derivative on

βC(T ):

δβC
δZ

(T ) =
δ

δZ
eλpc(T )−λ =

δm

δzm...δz1

eλpc(T )−λ (3.25)

=
δm−1

δzm...δz2

δ

δz1

eλpc(T )−λ (3.26)

Using the chain rule (equation 2.83):

δβC
δZ

(T ) =
δm−1

δzm...δz2

δ

δz1

eλpc(T )−λ =
δm−1

δzm...δz2

eλpc(T )−λ δ

δz1

(λpc(T )− λ) (3.27)

Applying the linear rule (equation 2.80):

δ

δzi
(λpc(T )− λ) = λ.c(zi); i = 1, ...,m (3.28)

Then,

δβC
δZ

(T ) =
δm−1

δzm...δz2

eλpc(T )−λ δ

δz1

(λpc(T )− λ) (3.29)

= λ.c(z1).
δm−2

δzm...δz3

δ

δz2

eλpc(T )−λ (3.30)

= λ2.c(z1).c(z2)
δm−2

δzm...δz3

eλpc(T )−λ (3.31)

= ... = λm.c(z1)...c(zm).eλpc(T )−λ (3.32)

fC(T ) is given by (equation 2.75), i.e.:

fC(Z) =
δβC
δZ

(∅) (3.33)

= e−λλmc(z1)...c(zm) (3.34)
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Probability Density of target generated measurement RFS(fΥ(X)(Z))

Consider,

target detection set

Υ(X) =
detection set from x1

Υ(x1) ∪ ... ∪
detection set from xn

Υ(xn) (3.35)

where X = {x1, ...,xn}.Since Υ(x1), ...,Υ(xn) are independent RFS (assumption),

the fundamental convolution formula (equation 2.88) is applied to obtain:

fΥ(X)(Z) =
δβΥ(X)

δZ
(∅) =

∑
W1∪...∪Wn=Z

δp1

δW1

(∅)... δpn
δWn

(∅) (3.36)

where pi(S) is the belief-mass function of Υ(xi) (as given in equation 3.16), Z =

{z1, ..., zm},m ≤ n and W1, ...,Wn are mutually disjoint subsets of Z such that W1 ∪

...∪Wn = Z. Then, using the definition of set derivative (equation 2.71) and constant

rule (equation 2.79):

δpi
δ∅

(∅) = pi(∅) = 1− pD(xi) (3.37)

δpi
δ{z}

(∅) = pD(xi).fk+1(z|xi) (3.38)

δpi
δZ

= 0 if |Z| > 1 (3.39)

If Z = ∅ then the summation in equation 3.36 will involve only one term which has

W1 = ... = Wn = ∅. Then using equation 3.37,

fΥ(X)(∅) =
δp1

δ∅
(∅)...δpn

δ∅
(∅) (3.40)

=
n∏
i=1

(1− pD(xi)) (3.41)

If Z 6= ∅ i.e. Z = {z1, ..., zm},then:

fΥ(X)(Z) = fΥ(X)(∅)
∑

W1∪...∪Wn=Z

δp1

δW1
(∅)... δpn

δWn
(∅)∏n

i=1(1− pD(xi))
(3.42)

= fΥ(X)(∅)
∑

1≤i1 6=... 6=im≤n

δpi1
δz1

(∅)... δpim
δzm

(∅)
(1− pD(xi1))...(1− pD(xim))

(3.43)

(3.44)
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Using equation 3.38:

fΥ(X)(Z) = fΥ(X)(∅)
∑

1≤i1 6=... 6=im≤n

(
m∏
j=1

pD(xij).fk+1(zj|xij)
(1− pD(xij))

)
(3.45)

The summation is now over the m-tuple (i1, ..., im) with 1 ≤ i1 6= ... 6= im ≤ n

which defines a one-to-one function τ(j) = ij where τ : {1, ...,m} → {1, ..., n}.For

each one-to-one function, a inverse function θ can be defined as θ(i) = τ−(i) where

θ : {1, ..., n} → {0, 1, ...,m}.

• For every i = 1, ..., n if θ(i) = k, k > 0 then it means that the state xi uniquely

generates the measurement zk and if θ(i) = 0 then it means that the target

with state xi is not detected.

• This basically ensures that the condition ofW1∪...∪Wn = Y and thatW1, ...,Wn

are disjoint sets.

Therefore, for every m-tuple there exists an association θ as defined above and hence

the summation can be rewritten in terms of θ.Therefore,for X = {x1, ...,xn},fΥ(X)(Z)

is:

fΥ(X)(Z) =


∏n

i=1(1− pD(xi)) if Z = ∅

fΥ(X)(∅)
∑

θ

(∏
i:θ(i)>0

pD(xi).fk+1(zθ(i)|xi)
(1−pD(xi))

)
if Z = {z1, ..., zm}

(3.46)

Using equation 3.34, it can be seen that:

fC(Z −W ) = e−λ
∏

z∈Z−W

λc(z) (3.47)

From equation 3.46 it can be seen that if W = {w1, ...,we}, then fΥ(X)(Z) = 0 if

e > n, otherwise it is seen that:

fΥ(X)(W ) = fΥ(X)(∅)
∑
θ

( ∏
i:θ(i)>0

pD(xi).fk+1(zθ(i)|xi)
(1− pD(xi))

)
(3.48)



41

Here θ : {1, ..., n} → {0, 1, ..., e}. Substituting the above terms in equation in 3.23, it

is seen that:

fk+1(Z|X) =
∑

W⊆Z,|W |≤n

fΥ(X)(W ).fC(Z −W ) (3.49)

= e−λfΥ(X)(∅)
∑

W⊆Z,|W |≤n

(∑
θ

∏
i:θ(i)>0

pD(xi).fk+1(zθ(i)|xi)
(1− pD(xi))

)( ∏
z∈Z−W

λc(z)

)
(3.50)

= e−λfΥ(X)(∅)

(∏
z∈Z

λc(z)

) ∑
W⊆Z,|W |≤n

(∑
θ

∏
i:θ(i)>0

pD(xi).fk+1(zθ(i)|xi)
(1− pD(xi))λc(zθ(i))

)
(3.51)

Therefore, the true multi-target likelihood probability function is rewritten as:

fk+1(Z|X) = eλfk+1(∅|X)fC(Z)
∑
θ

( ∏
i:θ(i)>0

pD(xi).fk+1(zθ(i)|xi)
(1− pD(xi))λc(zθ(i))

)
(3.52)

where the summation is taken over all the association functions (hypotheses) θ :

{1, ..., n} → {0, 1, ...,m} and:

fC(Z) = e−λ
∏
z∈Z

λc(z) (3.53)

fk+1(∅|X) = e−λ
∏
x∈X

(1− pD(x)) (3.54)

The next section derives the p.g.fl form of the likelihood function which is an impor-

tant part in the derivation of PHD filter.

3.1.5 p.g.fls of Standard Measurement Model

Since the target generated measurement RFS (Υ(X)) and the clutter RFS(C)

are statistically independent RFS, from equation 2.95 the p.g.fl corresponding to the

likelihood function can be given as:

Gk+1[h|X] =

∫
hZfk+1(Z|X)δZ (3.55)

= GΥ(X)[h|X].GC [h] (3.56)
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The p.g.fl of the clutter RFS(GC [h]) can be found as follows:

GC [h] =

∫
hZfC(Z)δZ (3.57)

= e−λ
∞∑
m=0

1

m!

∫
h(z1)...h(zm)λmc(z1)...c(zm)dz1...dzm (3.58)

= e−λ
∞∑
m=0

λmc[h]m

m!
(3.59)

= eλc[h]−λ (3.60)

where c[h] =
∫
h(z)c(z)dz.

Since Υ(X) = Υ(x1) ∪ ... ∪ Υ(xn) where Υ(x1), ...,Υ(xn) are statistically indepen-

dent(assumption), from equation 2.95 it can be seen that:

GΥ(X)[h|X] =
n∏
i=1

GΥ(xi)[h] (3.61)

=
n∏
i=1

(1− pD(xi) + pD(xi) + pD(xi).ph(xi)) (3.62)

where ph(xi) =
∫
h(z)fk+1(z|xi)dz Since Υ(xi) is a Bernoulli RFS, GΥ(xi)[h] is ob-

tained from equation 2.105.The p.g.fl of likelihood function can then be written as:

Gk+1[h|X] = (1− pD + pDph)
X .eλc[h]−λ (3.63)

where (1− pD + pDph)
X =

∏n
i=1(1− pD(xi) + pD(xi) + pD(xi).ph(xi)).

The importance of p.g.fl can be seen here in the sense that p.g.fls greatly simplify

the equations and give a compact form for likelihood function.These equations will

be used in the derivation of the PHD filter (next chapter).

3.2 Multi-target Markov Density Function

The methodology to find the Markov density is very similar to the one followed

in the previous section.This is because of the following similarities:

• Target disappearance is mathematically analogous to missed detection
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• Target appearance is mathematically analogous to the generation of clutter

measurements

Hence, the procedure to find the Markov density is exactly analogous to the one given

in section 3.1.

• The first step is to define the RFS Ξk+1|k(X) = Γ(X ′), describing the randomly

varying state set at time tk+1 given that the target state set at tk is X ′ and Γ

is the RFS describing the multi-target state at tk.

• The belief mass function (equation 2.38) corresponding to the RFS Ξk+1|k com-

pletely characterizes statistics of the multi-target measurement set.

βk+1|k(S|X ′) = Pr(Ξk+1|k ⊆ S|X ′) (3.64)

• The probability density function of Ξk+1|k i.e., fk+1|k(X|X ′) is then obtained

from belief mass function(equation 2.75) as follows:

fk+1|k(X|X ′) =
δβk+1|k

δX
(∅|X ′) (3.65)

=

[
δβk+1|k

δX
(S|X ′)

]
S=∅

(3.66)

The probability density fk+1|k(X|X ′) is the true multi-target Markov density

function.

3.2.1 Multi-target State Space

The multi-target state space is similar to the multi-target measurement space.

multi-target state is best represented by a Random Finite Set since the states as well

as the number of targets vary. Let X be a RFS representing the multi-target state,

then:

X = {x1, ...,xn} (3.67)
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is a instantiation (a sample) of the RFS where x1, ...,xn are elements of X which

belong to a single target state space X0. Then the various instantiations of X can be

given by:

X = ∅ (no targets present) (3.68)

X = {x1} (single target with statex1 is present) (3.69)

X = {x1,x2} (two targets with states x1 6= x2 are present) (3.70)

and a sample with n targets is given by:

X = {x1, ...,xn} (n targets with states x1 6= ... 6= xn are present) (3.71)

Then the multi-target state space X is the hyperspace of all the finite sets whose

elements belong to the single-target state space X0.

3.2.2 Standard Motion Model

Figure 3.2. Standard State Model

The state set Ξk+1|k can be divided into two parts where one part consists of

states of the existing targets at time step tk and the other part consists of the states

of new objects entering the scene between tk and tk+1. Similar to the case of the

measurement model, some assumptions to be made in order to derive the Markov

density function fk+1|k(X|X ′). They are:
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• The probability that a target with state x′ at tk will propagate to a state x

at tk+1 is described by the single-target Markov transition density fk+1|k(x|x′)

which corresponds to the single-target motion model Xk+1|k = Φk(x
′) + Vk(Vk

is process noise).

• A target with a state x′ in the scene at tk, is alive at the time step tk+1 with a

probability pS(x′). Consequently, it is assumed that individual target state sets

are Bernoulli RFS (section 2.8.1).

pS(x) ≡ p
k+1|k
S (x′) (3.72)

• The appearance of new objects with state set X i.e., the birth objects is modeled

as a RFS B(X).

• It is also assumed that the target death, target birth and the target motion are

statistically independent.

3.2.3 State RFS

Let X ′ = x′1, ...,x
′
n be the multi-target state set at time step tk. Then, the

predicted state set(X) at tk+1 will be of the form:

predicted state set

Ξk+1|k =
existing targets set

Γ(X ′) ∪
Birth Targets set

B (3.73)

i.e., if X is an instantiation of Ξk+1|k, then:

predicted state set

X =
existing targets set

{x1, ...,xn′} ∪
Birth Targets set

{b1, ...,bm′} (3.74)

Furthermore, the existing targets set Γ(X ′) can be expressed as a union of n RFS as

follows:
existing targets set

Γ(X ′) =
state set from x′1

Γ(x′1) ∪ ... ∪
state set from x′n

Γ(x′n) (3.75)

As mentioned in the assumptions, Γ(x′i), i = 1, ..., n are modeled as Bernoulli RFS

and have the form:

Γ(x′i) = ∅pS(x′i) ∩Xi (3.76)
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where Xi = Φ(x′i),X ∈ X0 is the single-target motion model and ∅pS(x′i) is a discrete

RFS(section 2.8.1) defined as follows.

Pr(∅pS(x′i) = T ) =


1− pS(x′i) if T = ∅

pS(x′i) if T = X0

0 if otherwise

(3.77)

The probability density function of Γ(x′i) is then by equation 2.104 as:

fΥ(x′i)
(X) =


pS(x′i).fk+1|k(x|x′i) if X = {x}

1− pS(x′i) if X = ∅

0 otherwise

(3.78)

The belief-mass function of Γ(x′i) is then given by (equation 2.103):

βΓ(x′i)
(S) = 1− pS(x′i) + pS(x′i)

∫
S

fk+1|k(x|x′i)dx (3.79)

Finally it is also assumed that Γ(x′1), ...,Γ(x′n), B(X) are statistically independent

RFS.

3.2.4 Derivation of Markov density function (fk+1|k(X|X ′))

If it is also assumed that the birth RFS B(X) is assumed to be a Poisson RFS

(Section 2.8.2, with a parameter µ0 and elements distributed in space according to

the density b(x)), then the motion model is exactly analogous to the measurement

model. Then, if B = {b1, ...,bm′}, the cardinality distribution of B(|B| = m′,m′ ≥ 0)

is:

p|B|(m
′) =

e−µµm
′

m′!

and conditioned on |B| = m′, the elements b1, ...,bm′ are independent and identically

distributed (i.i.d) random vectors with probability density b(x) = fB(x).
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Hence, the formal derivation of fk+1|k(X|X ′) is exactly the same as in Section 3.1.4.

Therefore, the true Markov density can be written in analogous to equation 3.52.

fk+1|k(X|X ′) = eµfk+1|k(∅|X ′)fB(X)
∑
θ

( ∏
i:θ(i)>0

pS(x′i).fk+1|k(xθ(i)|x′i)
(1− pS(x′i))µ0b(xθ(i))

)
(3.80)

where the summation is taken over all the association functions(hypotheses) θ :

{1, ..., n′} → {0, 1, ..., n} and:

fB(X) = e−µ
∏
x∈X

µb(x) (3.81)

fk+1|k(∅|X ′) = e−µ
∏

x′∈X′
(1− pS(x′)) (3.82)

Similarly, the p.g.fl of the Markov density can be given analogously to equation 3.63.

Gk+1|k[h|X ′] = (1− pS + pSph)
X′ .eµb[h]−µ (3.83)

where (1−pS+pSph)
X′ =

∏n′

i=1(1−pS(x′i)+pS(x′i)+pS(x′i).ph(x
′
i)), b[h] =

∫
h(x)b(x)dx,

ph(x
′
i) =

∫
h(x)fk+1|k(x|x′i)dx.

The above p.g.fl is true when the birth RFS is assumed to be a Poisson RFS. This

assumption is not always required as will be seen in the case of PHD filter (Chapter

4). So, in the case when B(X) is not a Poisson RFS, the p.g.fl is given as follows:

Gk+1|k[h|X ′] = (1− pS + pSph)
X′ .GB[h] (3.84)

where GB[h] =
∫
hXb(X)δX(b(X) is the probability density of B(X)) is the p.g.fl

of the the birth RFS. This equation is a direct implementation of equation 2.95 and

using the fact that Γ(x′i) is a Bernoulli RFS.

3.3 Multi-target Bayes Filter

The previous sections gave a formal derivation of the true Markov and true like-

lihood density. The multi-target Bayes filter can then be defined analogously to the

single target case(Section 2.1).Let Z(k) : Z1, ..., Zk be the measurement sets obtained
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till time tk. If fk+1|k(X|X ′)(equation 3.80) and fk+1(Z|X))(equation 3.52) are the

multi-target Markov Density and the likelihood function respectively, then the pre-

dictor equation for multi-target Bayes filter is the analog of equation 2.5 and is given

by:

fk+1|k(X|Z(k)) =

∫
fk+1|k(X|X ′).fk|k(X ′|Z(k))δX ′ (3.85)

and the corrector equation is an analog to equation 2.6 and is given by:

fk+1|k+1(X|Z(k+1)) =
fk+1(Zk+1|X).fk+1|k(X|Z(k))

fk+1(Zk+1|Z(k))
(3.86)

where the Bayes normalization factor is given by:

fk+1(Zk+1|Z(k)) =

∫
fk+1(Zk+1|X).fk+1|k(X|Z(k))δX (3.87)

This filter then propagates through time as:

f0|0(X|Z(0))→ f1|0(X|Z(0))→ f1|1(X|Z(1))→

...→ fk|k(X|Z(k))→ fk+1|k(X|Z(k))→ fk+1|k+1(X|Z(k+1))→ ...

3.4 p.g.fl Multi-target Bayes Filter

The p.g.fl form of the Bayes filter is introduced here since it is fundamental for

the derivation of the PHD filter which is the topic of this thesis and will be discussed

in the next chapter.

3.4.1 p.g.fl Multi-target Predictor

The p.g.fl corresponding to the predictor posterior fk+1|k(X|Z(k)) is defined as:

Gk+1|k[h] =

∫
hX .fk+1|k(X|Z(k))δX ≡

∫
hX .fk+1|k(X)δX (3.88)
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where fk+1|k(X|Z(k)) is obtained from equation 3.85.Then:

Gk+1|k =

∫
hX .fk+1|k(X)δX (3.89)

=

∫
hX .

(∫
fk+1|k(X|X ′).fk|k(X ′)δX ′

)
δX (3.90)

=

∫ (∫
hX .fk+1|k(X|X ′)δX

)
.fk|k(X

′)δX ′ (3.91)

=

∫
Gk+1|k[h|X ′].fk|k(X ′)δX ′ (3.92)

Using equation 3.84,

Gk+1|k[h] = GB[h]

∫
(1− pS + pSph)

X′ .fk|k(X
′)δX ′ (3.93)

= GB[h].Gk|k[1− pS + pSph] (3.94)

The predicted multi-target posterior density can be obtained from it’s p.g.fl as (given

by equation 2.78) as:

fk+1|k(X|Z(k)) =
δGk+1|k

δX
[0] (3.95)

3.4.2 p.g.fl Multi-target Corrector

Consider the functional F [g, h] defined as follows:

F [g, h] =

∫
hX .Gk+1[g|X].fk+1|k(X)δX (3.96)

where Gk+1[g|X] is the p.g.fl of the likelihood function, which is:

Gk+1[g|X] =

∫
gZ .fk+1(Z|X)δZ (3.97)

From equation 3.63,it is seen that:

Gk+1[g|X] = (1− pD + pDpg)
X .eλc[g]−λ (3.98)
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where c[g] =
∫
g(z)c(z)dz, pg(x) =

∫
g(z).fk+1(z|x)dz.Then F [g, h] can be given as

follows:

F [g, h] =

∫
hX .Gk+1[g|X].fk+1|k(X)δX (3.99)

= eλc[g]−λ
∫
hX .(1− pD + pDpg)

X .fk+1|k(X)δX (3.100)

= eλc[g]−λ
∫

[h.(1− pD + pDpg)]
X .fk+1|k(X)δX (3.101)

= eλc[g]−λ.Gk+1|k[h.(qD + pDpg)] (3.102)

where qD(x) = 1− pd(x).

Using the Radon-Nikod’ym theorem for functional derivatives (equation 2.77), the

derivative δGk+1

δZ
can be written as:

δGk+1

δZ
[g|X] =

∫
gW .fk+1(Z ∪W |X)δW (3.103)

Then,

δF

δZ
[g, h] =

∫
hX .

(∫
gW .fk+1(Z ∪W |X)δW

)
.fk+1|k(X)δX (3.104)

=

∫
gW .

(∫
hX .fk+1(Z ∪W |X).fk+1|k(X)δX

)
δW (3.105)

This implies,

δF

δZ
[0, h] =

∫
hX .fk+1(Z|X).fk+1|k(X)δX (3.106)

δF

δZ
[0, 1] =

∫
fk+1(Z|X).fk+1|k(X)δX = fk+1(Z) (3.107)

The p.g.fl corresponding to the corrected posterior probability distribution (fk+1|k+1(X|Z(k+1)),

defined as in equation 3.86) can be written as:

Gk+1|k+1[h] =

∫
hX .fk+1|k+1(X)δX (3.108)

=

∫
hX .

fk+1(Zk+1|X).fk+1|k(X|Z(k))

fk+1(Zk+1|Z(k))
δX (3.109)

=

∫
hX .

fk+1(Z|X).fk+1|k(X))δX

fk+1(Z)
(3.110)

=

δF
δZk+1

[0, h]

δF
δZk+1

[0, 1]
(3.111)
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Equations 3.94 and 3.111 form the p.g.fl form of the Multi-target Bayes filter.

The Multi-target Bayes filter equations (equations 3.85 and 3.86), involve multiple

complex integrals since they are composed of set integrals and this makes the fil-

ter equations computationally intractable especially when the number of targets are

high. Also, the evaluation of the multi-target Markov density (equation 3.80) and the

likelihood function (equation 3.52) involve combinatorial calculations which are com-

putationally very expensive. The Bayes filter in its original form can still be applied

by a Monte-Carlo approximation technique for special cases where the target motion

is not complicated and the number of target are less (refer [37]).

The PHD filter is a first-order approximation of the Bayes filter, was developed to

overcome the computational intractability of the multi-target Bayes filter. The PHD

filter propagates only the first order statistical moment of the posterior density known

as the Probability Hypothesis Density (PHD) instead of propagating the complete pos-

terior density. This approximation is analogous to the Kalman Filter (section 2.2)

where the first and the second moment of the density were propagated instead of the

complete probability distribution. The next section formally derives the PHD filter.
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4. PHD FILTER

4.1 Probability Hypothesis Density (PHD)

Intuitively, PHD can be thought of as the multi-target counterpart of an expected

value.But the formally,PHD of a RFS Ξ is given by:

DΞ(x) = E[δΞ(x)] =

∫
δX(x)fΞ(X)δX (4.1)

where x ∈ X0,the single target state space and where:

δX(x) =

0 if X = ∅∑
w∈X δw(x) otherwise

(4.2)

It must be noted that PHD is not a probability density but rather a density func-

tion.The integral of DΞ(x) in any region S will result in the expected number of

objects with state x in that region i.e.,∫
S

DΞ(x)dx = E[ |S ∩ Ξ| ] (4.3)
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where | S ∩ Ξ | gives the number of objects or number of elements of Ξ in region

S.Equation 4.3 is obtained as follows:

E[ |S ∩ Ξ| ] =

∫
|X ∩ S|fΞ(X)δX (4.4)

=

∫ (∑
x∈X

1S(x)

)
fΞ(X)δX (4.5)

=
∑
n≥0

1

n!

∫
...

∫
︸ ︷︷ ︸

n

(1S(x1) + ...+ 1S(xn)).fΞ(X)dx1...dxn (4.6)

=
∑
n≥0

n

n!

∫
...

∫
︸ ︷︷ ︸

n

1S(xn).fΞ({x1, ...,xn})dx1...dxn (4.7)

=

∫
S

(∑
i≥0

1

i!

∫
...

∫
︸ ︷︷ ︸

i−1

fΞ({x1, ...,xi−1,xi})dx1...dxi−1

)
dxi (4.8)

=

∫
S

DΞ(xi)dxi =

∫
S

DΞ(x)dx (4.9)

The last equation is obtained from the relationship between the PHD and probability

density function which is shown in the following section.Hence, integrating DΞ over

the entire space i.e.,
∫
X0
DΞ(x)dx will not give 1 (property of a probability density

function) always but rather give the expected number of objects with state/element

x per unit volume.

PHD is also known as the intensity density or the first-moment density.The following

sections show the relationships between the PHD,probability distribution function

and p.g.fl.



55

4.1.1 Formulae for PHD

An alternate definition of PHD of a RFS Ξ can be derived in the following man-

ner(refer [12],chapter 16):

DΞ(x) =

∫
δX(x)fΞ(X)δX (4.10)

=
∑
n≥1

1

n!

∫
...

∫
︸ ︷︷ ︸

n

[δx1(x) + ...+ δxn(x)]fΞ(x1, ...,xn)dx1...dxn (4.11)

=
∑
n≥1

n

n!

∫
...

∫
︸ ︷︷ ︸
n−1

fΞ(x,w1, ...,wn−1)dw1...dwn−1 (4.12)

The last equation is obtained from:∫
...

∫
︸ ︷︷ ︸

n

δxifΞ(x1, ...,xn)dx1...dxn =

∫
...

∫
︸ ︷︷ ︸
n−1

fΞ(x1, ...,x...,xn−1)dx1...dxn−1 (4.13)

Then,

DΞ(x) =
∑
n≥1

1

(n− 1)!

∫
...

∫
︸ ︷︷ ︸
n−1

fΞ(x,w1, ...,wn−1)dw1...dwn−1 (4.14)

=
∑
i≥0

1

i!

∫
...

∫
︸ ︷︷ ︸

i

fΞ(x,w1, ...,wi)dw1...dwi (4.15)

=

∫
fΞ({x} ∪W )δW (4.16)

From the Radon-Nikodým theorem for functional differentiation it can be seen that(equation

2.78):
δGΞ

δX
[h] =

∫
hW .fΞ(X ∪W )δW (4.17)

Substituting h = 1, X = {x},
δGΞ

δx
[1] =

∫
fΞ({x} ∪W )δW = DΞ(x) (4.18)

4.1.2 PHD of a Poisson RFS

As was seen in the previous chapter, the modeling of the standard measurement

and the standard motion model included the application of Poisson RFS.This section
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formally derives the PHD of a Poisson RFS.

The PHD of a Poisson RFS(section 2.8.2) Ξ with parameter λ and distribution f(x)

is obtained by applying the equation 4.18 on the p.g.fl of a Poisson RFS(equation

2.121).The first functional derivative of the p.g.fl is given as(using the chain rule(equation

2.83) and the derivative of a linear functional(equation 2.63)):

δGΞ

δx
[h] = eλf [h]−λ.

δ

δx
λf [h] = eλf [h]−λ.λ.f(x) (4.19)

where f [h] =
∫
h(x)f(x)dx.Then it’s PHD is given by:

DΞ(x) =
δGΞ

δx
[1] = λ.f(x) (4.20)

Note that δGΞ

δx
[1] ≡ δGΞ[h]

δx

∣∣∣∣
h=1

4.2 The PHD Filter

The following sections detail the assumptions underlying the predictor and cor-

rector parts of the PHD filter and then formally derive the filter equations in each

section. The derivation presented in the following sections was obtained from [12].

4.2.1 PHD Filter Predictor

Assumptions

The PHD filter assumes all the assumptions that were described in the standard

multi-target motion model (section 3.2.2) i.e.,the targets are assumed to move inde-

pendent of each other,existing targets can disappear form the scene(pS) and new tar-

gets can enter the scene(birth) and these processes are independent of each other.The

overall assumptions can be stated as follows:

• fk+1|k(x|x′) is the single target Markov transition density.

• pS(x′) ≡ pS,k+1|k(x
′) is the probability that a target with state x′ at time tk will

survive at time tk+1
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• Bk+1|k(X) is the RFS that describes the new objects entering the scene between

time tk+1 and tk with the state set X.It’s PHD is then given by:

bk+1|k(x) =

∫
bk+1|k({x} ∪W )δW =

δGB

δx
[1] (4.21)

where bk+1|k(X) is the multi-object probability density of the birth RFS and

GB[h] is the p.g.fl of the birth RFS.

The following derivations for the predictor and corrector equations can also be found

in [38].

Predictor Equations

Based on the above assumptions, the p.g.fl of the prediction posterior density can

be written as(equation 3.94):

Gk+1|k[h|X ′] = GB[h].Gk|k(1− pS + pSph) (4.22)

Let T [h(x)] = 1−pS+pSph where 1−pS+pSph = 1−pS(x)+pS(x)
∫
h(x′)fk+1|k(x

′|x)dx′.

Then,

Gk+1|k[h|X ′] = GB[h].Gk|k(T [h]) (4.23)

The PHD filter prediction equation is then obtained by using the relationship in

equation 4.18 i.e.,

Dk|k+1(x) =
δGk|k+1

δx
[1] (4.24)

Using the product rule(equation 2.82),

Dk+1|k(x) =
δGB

δx
[1].Gk|K [T [1]] +GB[1].

δGk|k

δx
[T [1]] (4.25)

In order to evaluate the above expression the following chain rule(detailed proof can

be found in [12],page 806,807) will be used:

δ

δx
Gk|K [T [h]] =

∫
δT

δx
[h](w).

δGk|k

δw
[T [h]]dw (4.26)
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Then,
δT

δx
[h](w) = pS(w).fk+1|k(x|w) (4.27)

The above equation is obtained by the application of the linear rule and the constant

rule(equations 2.79 and 2.80).Also, T [1] = 1− pS + pS
∫
fk+1|k(x

′|x)dx′ = 1.Then,

δ

δx
Gk|K [T [1]] =

∫
pS(w).fk+1|k(x|w).

δGk|k

δw
[1]dw (4.28)

=

∫
pS(w).fk+1|k(x|w).Dk|k(w)dw (4.29)

Note that for any p.g.fl G,G[1] =
∫
fΨ(Y )δY = 1.Therefore, substituting all the

quantities in equation 4.25:

Dk+1|k(x) = bk+1|k(x).1 + 1.

∫
pS(w)fk+1|k(x|w)Dk|k(w)dw (4.30)

= bk+1|k(x) +

∫
pS(x′)fk+1|k(x|x′)Dk|k(x

′)dx′ (4.31)

Equation 4.31 is the PHD filter predictor equation.

4.2.2 PHD Filter Corrector

Similar to the prediction step, PHD filter assumes all the assumptions that were

made in the standard measurement model(section 3.1.2) i.e., no target generates more

than a single measurement, target generated measurement process is statistically

independent of clutter measurement process etc.They can be stated more precisely as

follows:

• The likelihood function is given by Lz(x) = fk+1(z|x) i.e., it is the probability

that a target with state x generates a measurement z.

• pD(x) ≡ pD,k+1(x) is the probability that a target with state x is detected at

time step tk+1.

• C(Z) is the RFS that describes the clutter measurement set Z.It is also assumed

that C is a Poisson RFS(section 2.8.2) with parameter λ ≡ λk+1 and the spatial

distribution of the elements c(z) ≡ ck+1(z).
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• An additional assumption made in the PHD filter is made on the predicted

posterior density i.e., it is assumed that fk+1|k(X|Z) is Poisson.More precisely,

the predicted multi-target RFS governed by fk+1|k(X|Z) is assumed to be Pois-

son RFS.This is a reasonable approximation when the interactions between

objects are negligible(refer [38]).Then the PHD of fk+1|k(X|Z(k)) is Dk|k+1(x) =

µs(x).And also,

Gk+1|k[h] = eµs[h]−µ, s[h] =

∫
h(x)s(x)dx (4.32)

where µ, s(x) are the Poisson parameters.

Corrector Equations

Based on the assumptions above, the p.g.fl of fk+1|k+1(X|Z(k+1)) is given by equa-

tion 3.111, which is:

Gk+1|k+1[h] =

δF
δZk+1

[0, h]

δF
δZk+1

[0, 1]
(4.33)

Then using the relationship between PHD and p.g.fl(equation 4.18),PHD of fk+1|k+1(X|Z(k+1))

is given by:

Dk+1|k+1(x) =

δm+1F
δzm...δz1δx

[0, h]

∣∣∣∣
h=1

δmF
δzm...δz1

[0, 1]
(4.34)

where Z(k+1) = {z1, ..., zm}.From equation 3.102,it can be seen that:

F [g, h] = eλc[g]−λ.Gk+1|k[h.(qD + pDpg)] (4.35)

Then,

F [g, h] = exp (λc[g]− λ+ µs[hqD] + µs[hpDpg]− µ) (4.36)

F [g, 1] = exp (λc[g]− λ− µs[pD] + µs[pDpg]) (4.37)

The denominator in equation 4.34 for Z(k+1) = ∅ is then given by:

F [0, 1] = e−λ−µs[pD] (4.38)
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For Z(k+1) = {z1},using the functional derivative rules(product rule(equation 2.82),linear

rule (equation 2.80)):

δF

δz1

[g, 1] = F [g, 1].
δ

δz1

(λc[g]− λ− µs[pD] + µs[pDpg])) (4.39)

= F [g, 1].(λc(z1) + µs[pDLz1 ])) (4.40)

δF

δz1

[0, 1] = e−λ−µs[pD].(λc(z1) + µs[pDLz1 ])) (4.41)

where Lz1 = fk+1(z1|x). Then if Z(k+1) = {z1, z2},

δ2F

δz2δz1

[g, 1] =

(
δ

δz2

F [g, 1]

)
.(λc(z1) + µs[pDLz1 ])) (4.42)

= F [g, 1].(λc(z2) + µs[pDLz2 ])).(λc(z1) + µs[pDLz1 ])) (4.43)

δ2F

δz2δz1

[0, 1] = e−λ−µs[pD].(λc(z1) + µs[pDLz1 ])).(λc(z2) + µs[pDLz2 ])) (4.44)

Using a similar process for Z(k+1) = {z1 ..., zm},

δmF

δzm...δz1

[0, 1] = e−λ−µs[pD].(λc(z1) + µs[pDLz1 ]))...(λc(zm) + µs[pDLzm ])) (4.45)

The numerator in equation 4.34 is obtained by first taking the functional derivative

of F [g, h] w.r.t x.Then,

δF

δx
[g, h] = F [g, h].

δ

δx
(λc[g]− λ+ µs[hqD] + µs[hpdpg]− µ) (4.46)

= F [g, h].(µqD(x)s(x) + µpD(x)pg(x)s(x)) (4.47)

δF

δx
[g, 1] = F [g, 1].(µqD(x)s(x) + µpD(x)pg(x)s(x)) (4.48)

The derivative of the numerator is evaluated in a similar manner to the one used to

evalute the derivative of the denominator.Consider Z = ∅,then:

δm+1F

δzm...δz1δx
[0, h]

∣∣∣∣
h=1

=
δF

δx
[0, 1] = F [0, 1].µqD(x)s(x) (4.49)

Similarly, for Z = {z1}:

δ2F

δz1δx
[g, 1] = F [g, 1].(λc(z1) + µs[pDLz1 ]).(µqD(x)s(x) + µpD(x)pg(x)s(x)) (4.50)

+ F [g, 1].µpD(x)Lz1(x)s(x)
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Then,

δm+1F

δzm...δz1δx
[0, h]

∣∣∣∣
h=1

=
δ2F

δz1δx
[0, 1] (4.51)

= e−λ−µs[pD].(λc(z1) + µs[pDLz1 ]).µqD(x)s(x) (4.52)

+ e−λ−µs[pD].µpD(x)Lz1(x)s(x)

If Z = {z1, z2},

δ3F

δz2δz1δx
[g, 1] =

(
δ

δz2

F [g, 1]

)
.(λc(z1) + µs[pDLz1 ]) (4.53)

.(µqD(x)s(x) + µpD(x)pg(x)s(x))

+ F [g, 1].(λc(z1) + µs[pDLz1 ])

.
δ

δz2

(µqD(x)s(x) + µpD(x)pg(x)s(x))

+

(
δ

δz2

F [g, 1]

)
.µpD(x)Lz1(x)s(x)

= F [g, 1].(λc(z2) + µs[pDLz2 ]) (4.54)

.(λc(z1) + µs[pDLz1 ])

.(µqD(x)s(x) + µpD(x)pg(x)s(x))

+ F [g, 1].(λc(z1) + µs[pDLz1 ])

.µpD(x)Lz2(x)s(x)

+ F [g, 1].(λc(z2) + µs[pDLz2 ]).

.µpD(x)Lz1(x)s(x)
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Therefore,for Z = {z1, z2},

δm+1F

δzm...δz1δx
[0, h]

∣∣∣∣
h=1

=
δ3F

δz2δz1δx
[0, 1] (4.55)

= e−λ−µs[pD].(λc(z2) + µs[pDLz2 ]) (4.56)

.(λc(z1) + µs[pDLz1 ]).µqD(x)s(x)

+ e−λ−µs[pD].(λc(z1) + µs[pDLz1 ])

.µpD(x)Lz2(x)s(x)

+ e−λ−µs[pD].(λc(z2) + µs[pDLz2 ]).

.µpD(x)Lz1(x)s(x)

Hence, by using a proof of induction,for Zk+1 = {z1, ..., zm} it can shown that,

δm+1F

δzm...δz1δx
[0, h]

∣∣∣∣
h=1

= e−λ−µs[pD].
∏

z∈Zk+1

(λc(z) + µs[pDLz]).µqD(x)s(x) (4.57)

+ e−λ−µs[pD].

( ∏
z∈Zk+1

(λc(z) + µs[pDLz])

)
+
∑

z∈Zk+1

µpD(x)Lz(x)s(x)

λc(z) + µs[pDLz]

Substituting equations 4.45,4.57 in equation 4.34,it can be seen that:

Dk+1|k+1(x) =

(
1− pD(x) +

∑
z∈Zk+1

pD(x)Lz(x)

λc(z) + µDk+1|k[pDLz]

)
Dk+1|k(x) (4.58)

Note that Dk+1|k(x) = µs(x),this was obtained as a result of the assumption that the

RFS described by fk+1|k(X) is a Poisson RFS.Hence ,given an initial PHD D0|0(x),

associated with the initial multi-object probability density f0|0(X),the posterior PHD

can be propagated in time via the following PHD recursion equations:

Dk+1|k(x) = bk+1|k(x) +

∫
pS(x′)fk+1|k(x|x′)Dk|k(x

′)dx′ (4.59)

Dk+1|k+1(x) =

(
1− pD(x) +

∑
z∈Zk+1

pD(x)Lz(x)

λc(z) + µDk+1|k[pDLz]

)
Dk+1|k(x) (4.60)

Since the PHD is a first order statistical moment of a RFS, there is a loss of informa-

tion if the PHD is propagated instead of the complete multi-object probability dis-

tribution.However, comparing the multi-target Bayes filter(equations 3.85 and 3.86)
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and the PHD recursive filter(equations 4.31 and 4.58),it is clear that the PHD filter

completely circumvents the combinatorial computations arising in the multi-target

Bayes filter.Moreover, since the PHD filter operates on the single target state space

X0 it is computationally less expensive than the Bayes filter which operates on sets.

Even though the complexity is greatly reduced by the PHD filter, there are no closed

form solutions available in general and the numerical integrations suffer from the

”curse of dimensionality”.Nonetheless, under certain additional assumptions the PHD

recursion (equations 4.31 and 4.58) admits closed form solution.The next section deals

with the derivation of the Gaussian Mixture Probability Hypothesis Density(GM-

PHD) filter which is the topic of this thesis.

4.3 GM-PHD Filter

It will be seen that for a certain class of multi-target models,the PHD recursion

admits a closed form solution. As discussed previously, the GM-PHD filter was de-

veloped by [1]. The following section details the additional assumptions (refer [1])

that are necessary to obtain the closed form solution.

4.3.1 Additional Assumptions

• Each target follows a linear Gaussian dynamic model and the sensor also follows

a linear Gaussian measurement model.The models can be given as follows:

fk+1|k(x|x′) = N (x;Fkx
′, Qk) (4.61)

fk+1(z|x) = N (z;Hk+1x, Rk+1) (4.62)

whereN (x;m,P ) is the Gaussian density function with mean m and co-variance

P as defined in equation 2.12,Fk is the state transition matrix,Qk is the process

noise co-variance,Hk+1 is the observation matrix,Rk+1 is the observation noise

co-variance and as mentioned before the subscripts k and k + 1 of a quantity

denote that the quantities are taken at time steps tk and tk+1.
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• The survival and detection probabilities are state independent, i.e.,

pS,k(x) = pS,k (4.63)

pD,k(x) = pD,k (4.64)

This assumption will be reviewed again in chapter 6.

• The birth PHD is assumed to be a Gaussian Mixture i.e.,

bk+1|k(x) =

Jb,k+1∑
i=1

w
(i)
b,k+1N (x;m

(i)
b,k+1, P

(i)
b,k+1) (4.65)

where Jb,k+1, w
(i)
b,k+1,m

(i)
b,k+1, P

(i)
b,k+1, i = 1, ..., Jb,k+1 determine the shape of the

birth intensity.Intuitively, this means thatm
(i)
b,k+1 are peaks of the birth intensity,

the weights w
(i)
b,k+1 give the expected number of new targets originating form

these locations and the co-varinces P
(i)
b,k+1 determine the spread of the birth

intensity in the vicinity of the peaks. This is a fairly good assumption since any

distribution can be approximated by a Gaussian Mixture.

4.3.2 GM-PHD Recursion Equations

Given that the initial PHD i.e., D0|0(x) is a Gaussian Mixture of form D0|0(x) =∑J0|0
i=0 w

(i)
0|0N (x;m

(i)
0|0, P

(i)
0|0) and implementing the above assumptions in equations 4.31

and 4.58,the GM-PHD Recursion equations can be given as follows (refer [1]).

GM-PHD prediction step

If the posterior intensity at time tk is a Gaussian Mixture of the form:

Dk|k(x) =

Jk∑
j=1

w
(j)
k N (x;m

(j)
k , P

(j)
k ) (4.66)

then,

Dk+1|k(x) = DS,k+1|k(x) + bk+1|k(x) (4.67)
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where bk+1|k(x) is given by equation 4.65 and:

DS,k+1|k(x) = pS,k+1

Jk∑
j=1

w
(j)
k N (x;m

(j)
S,k+1|k, P

(j)
S,k+1|k) (4.68)

m
(j)
S,k+1|k = Fkm

(j)
k (4.69)

P
(j)
S,k+1|k = Qk + FkP

(j)
k F T

k (4.70)

GM-PHD corrector step

Let Zk+1 = {z1, ..., zm} denote the measurement set at tk+1 and let the predicted

intensity at tk+1 obtained from the prediction step be given by :

Dk+1|k(x) =

Jk+1|k∑
i=1

w
(i)
k+1|kN (x;m

(i)
k+1|k, P

(i)
k+1|k) (4.71)

then the posterior intensity at tk+1 is a Gaussian Mixture which is given by:

Dk+1|k+1(x) = (1− pD,k+1)Dk+1|k(x) +
∑

z∈Zk+1

DD,k+1(x; z) (4.72)

where,

DD,k+1(x; z) =

Jk+1|k∑
j=1

w
(j)
k+1(z)N (x;m

(j)
k+1|k+1(z), P

(j)
k+1|k+1) (4.73)

w
(j)
k+1(z) =

pD,k+1w
(j)
k+1|kq

(j)
k+1(z)

κk+1(z) + pD,k+1

∑Jk+1|k
l=1 w

(l)
k+1|kq

(l)
k+1(z)

(4.74)

q
(j)
k+1(z) = N (z;Hk+1m

(j)
k+1|k, Rk+1 +Hk+1P

(j)
k+1|kH

T
k+1) (4.75)

m
(j)
k+1|k+1 = m

(j)
k+1|k +K

(j)
k+1(z−Hk+1m

(j)
k+1|k) (4.76)

P
(j)
k+1|k+1 = [I −K(j)

k+1Hk+1]P
(j)
k+1|k (4.77)

K
(j)
k+1 = P

(j)
k+1|kH

T
k+1(Hk+1P

(j)
k+1|kH

T
k+1 +Rk+1)−1 (4.78)

Summary

From the prediction and the corrector steps it is clear that if the initial prior in-

tensity D0|0(x) is a Gaussian Mixture and the assumptions in section 4.3.1 are made
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, then all the subsequent predicted intensities Dk+1|k(x) and the posterior intensities

Dk+1|k+1(x) are Gaussian Mixtures.Equation 4.67 gives a closed-form expressions for

evaluating the means,weights and co-variances for Dk+1|k(x) from the Gaussian Mix-

ture components of Dk(x) and equations 4.97-4.77 gives the closed-form expressions

for the weights,means and co-variances of Dk+1|k+1(x) from the measurement set Zk+1

at time tk+1 and Dk+1|k(x).

It can be seen that the predicted intensityDk+1|k(x) is sum of two terms where the first

term(DS,k+1|k(x)) accounts for the surviving targets and the second term(bk+1|k(x))

accounts for the new targets entering the scene.Similarly, the updated posterior in-

tensity consists of two terms where the first term accounts for missed detections of

targets((1 − pD,k+1)Dk|k−1(x)) and and the second term (DD,k+1(x; z)) accounts for

the detected objects.An important thing to note here is that the weights of the Gaus-

sian Components of the detection term(DD,k+1(x; z)) are calculated by taking into

account the association of every measurement with every predicted term.Consider the

weight term w
(j)
k+1(z) in equation 4.97.The numerator calculates the probability that

the target at mk+1|k(j) creates the measurement z and weighs it against the sum of

all such probabilities in the denominator which also includes the clutter term.Hence

the weight(w
(j)
k+1(z)) will be higher if the predicted intensity mean(mk+1|k(j)) creates

the measurement z.It can be seen that the recursion for means and co-variances of

DS,k+1|k(x) is the Kalman prediction step and the recursion for DD,k+1(x; z) is a

Kalman update.

The total number of targets at any time can be obtained by integrating the PHD

over the whole state space X0.In the case of GM-PHD filter the expected number of

targets N̂k+1|k and N̂k+1|k+1 by summing up the appropriate weights of the Gaussian

Mixture i.e.,

N̂k+1|k = pS,k+1N̂k +

Jk∑
j=1

w
(j)
k (4.79)

N̂k+1|k+1 = (1− pD,k+1)N̂k+1|k +
∑

z∈Zk+1

Jk+1|k∑
j=1

w
(j)
k+1(z) (4.80)
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These equations can be obtained by observing that
∫
X0
N (x;m,P )dx = 1.As was

discussed before , the expected number of predicted targets can be interpreted as the

sum of the expected number of surviving targets and new targets(birth).Similarly after

the GM-PHD update, the expected number of targets are the sum of non-detected

targets and the detected targets.

Implementation Issues

The GM-PHD filter becomes computationally expensive as time progresses. Con-

sider the term
∑

z∈Zk+1
DD,k+1(x; z) of the update step.For every measurement, this

term introduces Jk+1|k(see equation 4.96) new terms or new Gaussian components.Hence,

at time tk+1,GM-PHD filter requires (Jk + Jb,k+1)(1 + |Zk+1|) terms to represent

Dk+1|k+1(x) which increases as time progresses. In order to avoid this, procedures

known as pruning,merging and capping are used.Pruning approximates a Gaussian

Mixture by removing the terms with lowest weights i.e., a threshold for the weight is

set and the Gaussian components having weights below this threshold are removed

from the mixture.Capping is a similar process but instead of having a threshold on the

magnitude of a weight, a threshold on the number of components is set.For example

only the Gaussian components having the 100 highest weights can be retained at ev-

ery time step.Merging is the process of combining two or more Gaussian Components

if they are sufficiently close to each other.The following merging approach is used

in [1], [39], [40]. Let (w1,m1, P1), (w2,m2, P2) be the weights,means and co-varinaces

of two Gaussian Components.Consider the distance metric d1,2,

d1,2 = (m1 −m2)TP−1
1 (m1 −m2) (4.81)

This metric is known as the mahanalobis distance(refer [41]).This distance gives the

distance between a point and a Gaussian distribution taking into account the co-

variance of the distribution i.e., Consider a point which is far from the mean.It can

be ”close” to this distribution if the co-variance is high.The mahanalobis distance
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takes this property into account.If d1,2 is less than a specific threshold, then the

components are merged into a single component(w,m, P ),where:

w = w1 + w2 (4.82)

m =
w1m1 + w2m2

w1 + w2

(4.83)

P =
w1P1 + w2P2

w1 + w2

+ (m1 −m2)(m1 −m2)T (4.84)

A similar procedure can be applied when multiple Gaussian Components are to be

merged(refer [1]).

Extension to Non-linear Gaussian Models

The GM-PHD filter presented in the previous sections assume that the target and

birth models are linear. This section extends the GM-PHD filter to the non-linear

target models.A detailed proof can be found in [1].

Let the state and the measurement processes be given by the following:

xk+1 = Φ(xk, νk) (4.85)

zk+1 = hk+1(xk+1, εk+1) (4.86)

where Φk and hk+1 are non-linear functions and νk+1(Process Noise),εk+1(measurement

noise) are zero-mean Gaussian random variables with co-variances Qk and Rk+1 re-

spectively.Because of this non-linearity the predicted and posterior intensities will no

longer be Gaussian Mixtures even when the initial Gaussian Mixture(D0|0(x)) is a

Gaussian Mixture.In order to get a closed form solution in this case certain approx-

imations have to be made.The posterior intensity is approximated as a Gaussian by

locally linearizing the motion(Φk) and measurement models hk+1 and then applying

the Kalman recursions to it(as was seen in section 2.3).Using these approximations

the EK-PHD filter can be developed and the predicted and corrector step can be

given as follows(detailed proof in [1]).
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EK-PHD prediction step

If the posterior intensity at time tk is a Gaussian Mixture of the form:

Dk|k(x) =

Jk∑
j=1

w
(j)
k N (x;m

(j)
k , P

(j)
k ) (4.87)

then,

Dk+1|k(x) = DS,k+1|k(x) + bk+1|k(x) (4.88)

where bk+1|k(x) is given by equation 4.65 and:

DS,k+1|k(x) = pS,k+1

Jk∑
j=1

w
(j)
k N (x;m

(j)
S,k+1|k, P

(j)
S,k+1|k) (4.89)

m
(j)
S,k+1|k = Φk(m

(j)
k , 0) (4.90)

P
(j)
S,k+1|k = G

(j)
k Qk[G

(j)
k ]T + F

(j)
k P

(j)
k [F

(j)
k ]T (4.91)

F
(j)
k =

∂Φk(x
(j)
k , 0)

∂xk

∣∣∣∣
xk=m

(j)
k

(4.92)

G
(j)
k =

∂Φk(m
(j)
k , νk)

∂νk

∣∣∣∣
νk=0

(4.93)

GM-PHD corrector step

Let Zk+1 = {z1, ..., zm} denote the measurement set at tk+1 and let the predicted

intensity at tk+1 obtained from the prediction step be given by :

Dk+1|k(x) =

Jk+1|k∑
i=1

w
(i)
k+1|kN (x;m

(i)
k+1|k, P

(i)
k+1|k) (4.94)

then the posterior intensity at tk+1 is a Gaussian Mixture which is given by:

Dk+1|k+1(x) = (1− pD,k+1)Dk|k−1(x) +
∑

z∈Zk+1

DD,k+1(x; z) (4.95)
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where,

DD,k+1(x; z) =

Jk+1|k∑
j=1

w
(j)
k+1(z)N (x;m

(j)
k+1|k+1(z), P

(j)
k+1|k+1) (4.96)

w
(j)
k+1(z) =

pD,k+1w
(j)
k+1|kq

(j)
k+1(z)

κk+1(z) + pD,k+1

∑Jk+1|k
l=1 w

(l)
k+1|kq

(l)
k+1(z)

(4.97)

q
(j)
k+1(z) = N (z; η

(j)
k+1, S

(j)
k+1) (4.98)

m
(j)
k+1|k+1 = m

(j)
k+1|k +K

(j)
k+1(z− η(j)

k+1) (4.99)

η
(j)
k+1 = hk+1(m

(j)
k+1|k, 0) (4.100)

S
(j)
k+1 = U

(j)
k+1Rk+1[U

(j)
k+1]T +H

(j)
k+1P

(j)
k+1|k[H

(j)
k+1]T (4.101)

P
(j)
k+1|k+1 = [I −K(j)

k+1H
(j)
k+1]P

(j)
k+1|k (4.102)

K
(j)
k+1 = P

(j)
k+1|k[H

(j)
k+1]T [S

(j)
k+1]−1 (4.103)

H
(j)
k+1 =

∂hk+1(xk+1, 0)

∂xk+1

∣∣∣∣
xk+1=m

(j)
k+1|k

(4.104)

U
(j)
k+1 =

∂hk+1(m
(j)
k+1|k, εk+1)

∂εk+1

∣∣∣∣
εk+1=0

(4.105)

The target model used in this thesis is the two-body motion which is non-linear(described

in later sections).Hence, the EK-PHD filter will be used for this thesis.So, imple-

menting the EK-PHD filter will result in a Gaussian Mixture at ever time step.The

following section describes the method used to estimate the target states form the

Gaussian Mixture.

State Estimation

Since the posterior intensity (Dk+1|k+1(x)) is a Gaussian Mixture, the means of the

Gaussian components are the multi-target state estimates provided the components

are well separated(this is ensured by the pruning process).From equation 4.97,the

expected number of targets can be evaluated and selecting the N̂k+1|k+1 ”peaks” from

the Gaussian Mixture(Dk+1|k+1(x)) one can get the state estimate at any time. But

doing this is undesirable since this procedure would estimate a state corresponding
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to a Gaussian with weak weight.Consider a component which has a low weight.The

magnitude of the peak can still be high for this component since the height of each

peak depends on the weight and the co-variance.Then following the procedure de-

scribed above results in a bad state estimate since the expected number of targets

for that particular component is less (since weight is less).In order to avoid this, only

the means of the Gaussian components which have weights greater than a specific

threshold(say 0.5) are used as state estimates.A detailed explanation can be found

in [1].

The next section describes the target and the measurement models used in this re-

search to generate the results.
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5. SIMULATION MODELS

This chapter details the target motion model and the single sensor measurement

model which will be used in the application of the EK-PHD filter. Before the descrip-

tion of the motion and measurement model, some important coordinate systems are

described first. The description given below is obtained from [42].

5.1 Coordinate Systems

5.1.1 Geocentric Equitorial System

The defining characteristics of this frame are listed below:

• Origin:Center of the Earth

• Fundamental Plane(Plane defined by the x and y axes):Plane containing the

Equator at a fixed equinox.

• Reference direction(x axis direction):Vernal Equinox at a fixed direction.

• Right Handed Orthogonal coordinate system

• Coordinates : α(right-ascension), δ(declination), r(radial distance from the origin

or x,y, z

• The position vector can then be described as ~r = xêx + yêy + zêz or ~r =

r cos(δ) cos(α)êx + r cos(δ) sin(α)êy + r sin(δ)êz

The following figure illustrates the Geocentric Coordinate System.
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Figure 5.1. Geocentric Coordinate System (Image taken from [42])

The coordinates (r, α, δ) and (x,y, z) are related as follows:

x = r cos(δ) cos(α) (5.1)

y = r cos(δ) sin(α) (5.2)

z = r sin(δ) (5.3)

Then,

r =
√

x2 + y2 + z2 (5.4)

r̃ =
√

x2 + y2 (5.5)

δ =


π
2
, 0,−π

2
for r̃ = 0 and z > 0, z = 0, z < 0

arctan(z
r̃
) for r̃ 6= 0

(5.6)

φ = arctan(
y

|x|
) (5.7)

α =



0 for x = 0 and y = 0

φ for x ≥ 0 and y ≥ 0

2π + φ for x ≥ 0 and y ≤ 0

π − φ for x ≤ 0

(5.8)
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α denotes the in-plane angle which is angle made by the projection of the position

vector with the x-axis and δ is the angle made by the position vector with the z-axis.

The Geocentric Equitorial System is a good approximation of a inertial system and

hence it will be used to define the motion model of the targets.

5.1.2 Topocentric Equitorial System

Most of the observations are made from the surface of the Earth. Hence, it is

necessary to define a coordinate system with the observer’s location (also known as

topocenter) as the origin. Topocentric Coordinate system is obtained by shifting the

Geocentric Coordinate system to the topocenter. The main characteristics of this

system are:

• Origin:Topocenter(time-dependent)

• Fundamental Plane(Plane defined by the x and y axes):Plane containing the

Equator at a fixed equinox.

• Reference direction(x axis direction):Vernal Equinox at a fixed direction.

• Right Handed Orthogonal coordinate system

• Coordinates : α′(right-ascension), δ′(declination), ρ(radial distance from the topocen-

ter) where −π
2
≤ δ′ ≤ π

2
, 0 ≤ α′ ≤ 2π, ρ ≥ 0 or x′,y′, z′.

The origin of this system is time dependent and hence it’s tracked w.r.t the Geocentric

Equitorial System. Sidereal time (θ) is defined as the right-ascension of the topocenter

in the Geocentric frame. Hence, observers on the same longitude will have the same

sidereal time. Hour angle (τ) is defined as the difference between the sidereal time

and the right-ascension of object in the Geocentric frame (τ = θ− α). This quantity

will be useful in defining the local-horizon coordinate system which is discussed in

the next section. The relation between the angles(α′, δ′) and the coordinates x′,y′, z′

are identical to the ones given in previous section except the the coordinates x′,y′, z′

are taken w.r.t to the topocentric equitorial frame.
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5.1.3 Topocentric Local Horizon Coordinate System

This coordinate system can be used to determine if the target can be viewed from

a topocenter. Important characteristcs are listed below:

• Origin:Topocenter(time-dependent)

• Fundamental Plane(Plane defined by the x and y axes):Local Horizon

• Reference direction(x axis direction):South

• Left Handed Orthogonal coordinate system

• Coordinates : h(elevation), a(azimuth) where −π
2
≤ h ≤ π

2
, 0 ≤ a ≤ 2π

Let hour angle(τ)=θ−α, sidereal time=θ,geographic latitude of the topocenter(φ),topocentric

equitorial coordinates of the object=α′, δ′,Local horizon coordinates:a(azimuth), h(elevation).

The relation between the local horizon co-ordinates and the topocentric equitorial co-

ordinates is then given by:

cos(h)cos(a) = sin(φ)cos(δ′)cos(τ)− cos(φ)sin(δ′) (5.9)

cos(h)sin(a) = cos(δ′)sin(τ) (5.10)

sin(h) = sin(φ)sin(δ′) + cos(φ)cos(δ′)cos(τ) (5.11)

If the elevation angle h ≤ 0, it implies that the object is beneath the local horizon

plane which makes the object unobservable. Hence the object is has a chance of being

detected only if it’s above the local horizon plane i.e h ≥ 0.

5.2 Target Motion Model

The target motion model is assumed to be the Two-body motion model where

one body is the Earth and the other body is the target (debris,satellite). The motion

model can be expressed as follows:

~̈r = −µ⊕~r
|r|3

(5.12)
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where ~r = xêx + yêy + zêz, |r| =
√

x2 + y2 + z2 is position vector of the object

in the Geocentric Coordinate frame(section 5.1.1),µ⊕ is Gravitational parameter of

Earth . Let the state of the object be denoted by X = [x,y,z, ẋ, ẏ, ż]. Therefore, the

dimension of the state nx = 6. Then, the dynamic state equation can be given by:

Ẋ = A(X)X (5.13)

i.e.,
˙

x

y

z

ẋ

ẏ

ż


=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−µ⊕x
|r|3 0 0 0 0 0

0 −µ⊕y
|r|3 0 0 0 0

0 0 −µ⊕z
|r|3 0 0 0





x

y

z

ẋ

ẏ

ż


(5.14)

5.3 Sensor Measurement Model

Every measurement is taken in the Topocentric Equitorial Frame and assumed to

consist of the angles and the angle rates i.e., α, α̇, δ, δ̇ where the angles are given as

described previously(equations 5.6 and 5.8) and the angle rates are given by:

α̇ =
xẏ− yẋ

r̃2
(5.15)

δ̇ =
r̃

r2

(
ż− z(xẋ + yẏ)

r̃2

)
(5.16)

Therefore a measurement Z = [α, α̇, δ, δ̇] and the dimension of a measurement nz = 4.

Note that here x,y, z, ẋ, ẏ, ż are taken w.r.t the Topocentric Equitorial Frame. More

details regarding the topocenter and the number of measurements are given in the

results chapter(Chapter 7).

5.3.1 Field of View(FOV)

An optical measurement(angles and angle rates) is usually obtained with the help

of a telescope and hence there is always a field of view associated with it. For exam-
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ple,a satellite or a target cannot be observed if it is below the local horizon of the

observer. Also, the FOV is modeled differently for objects in GEO(Geostationary

Equitorial Orbit) and LEO(Low Earth Orbit). For the case of GEO objects, it is

assumed that the sensor has a FOV of x◦× y◦. This means that the objects will only

be in the FOV of the sensor if they satisfy the following conditions:

αobs −
x

2

◦
≤ αobj ≤ αobs +

x

2

◦
(5.17)

δobs −
y

2

◦
≤ δobj ≤ δobs +

y

2

◦
(5.18)

where αobs, δobs are the location of the observer in the Geocentric Equitorial Coordi-

nate frame and αobj, δobj are the coordinates of the object in Topocentric Equitorial

Coordinate system.

The same model cannot be used for the LEO objects since these move relatively fast

and are difficult to capture in a observer’s FOV for a long time whereas since the

GEO objects move with a particular location on Earth, the FOV model described

above is appropriate. Hence, in case of the LEO objects, the observing telescope is

assumed to follow a particular object and the FOV is then assumed to be a window

around that object with a FOV of ;x◦ × y◦ i.e., an object is observed if it satisfies

αref −
x

2

◦
≤ αobj ≤ αref +

x

2

◦
(5.19)

δref −
y

2

◦
≤ δobj ≤ δref +

y

2

◦
(5.20)

where αref , δref are the location of the reference object which the observer follows

in the Topocentric Equitorial Coordinate frame and αobj, δobj are the coordinates of

the observed objects in Topocentric Equitorial Coordinate system. Also, an object

is only observed if it is above the local horizon. Hence this condition should also

be checked in the case of LEO objects. This can be verified by the elevation co-

ordinate of the Topocentric Local Horizon Coordinate system i.e., an object can

be observed if h > 0 a certain threshold h0(taking the obstacles(buildings etc) into

account). Also, the FOV can be chenged by focussing another object in it’s present

FOV. The following figure depicts this process.
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Figure 5.2. FOV movement when observing LEO objects

In the above figure,the black dotted lines represent the movement of FOV with the

objects with FOV. It can also be seen that the FOV starts following object 3 at

around time step 80.

5.4 Birth Model

As discussed in the previous section, the GM-PHD filter assumes that the birth

intensity bk+1|k(x) is described by a Gaussian Mixture. If the state of the target

which enters the scene at any time instant is known with a certain uncertainty then

the birth Gaussian Mixture is defined in a straightforward manner. But in the space

problem it is difficult to identify when and where a object will enter the scene. Also,

since the GM-PHD filter doesn’t identify the objects it tracks, it makes it difficult to

identify new objects.

The only information present on the new and existing targets comes from the mea-

surements. Hence,the birth model which is defined in the next section is based on

the measurement. The concept of Admissible Region(AR) is used to obtain the Birth

Gaussian Mixture. AR defines all the regions of possible state space corresponding

to Earth-captured orbits given a measurement. These regions are then approximated

by a Gaussian Mixture to obtain the Birth Model. The next sections details these

steps.
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5.4.1 Admissible Region(AR)

The Admissible Region approach was developed by Milani et al. [43] and Tommei

et al. [44]. Given a measurement of angles(α, δ) and angle-rates(α̇, δ̇), AR gives a set

of possible range(ρ), range-rate(ρ̇) such that the resultant orbit is an Earth Captured

orbit. Note that the six variables are necessary to define the state of a target. It

can be either [x,y,z, ẋ, ẏ, ż] or [ρ, ρ̇, α, α̇, δ, δ̇]. Given a measurement(or a Admissible

region) and no additional region no single combination of range and range-rate can

be said to be more probable than the others. Hence,in a probabilistic sense it can be

said that the range,range-rate space or the AR can be described by a 2-D Uniform

Distribution. The final step is to approximate this uniform distribution by a Gaussian

Mixture to obtain the birth intensity. This process was developed in [45]. The next

section reviews the concept of admissible region(A detailed discussion can be found

in [44], [43]).

Review of Admissible Region

Let the measurement be given by Z = [α, α̇, δ, δ̇]. The Two-body energy can be

given by:

E =
‖~̇r‖2

2
−
µ⊕
‖~r‖

(5.21)

where ~r is the inertial position of the target(position vector w.r.t the Geocentric

Frame) and ~̇r is the inertial velocity of the target(velocity vector w.r.t the Geocentric

Frame). Since the measurements are made in the topocentric frame,~r and ~̇r are given

as:

~r = ~q + ~ρ (5.22)

~̇r = ~̇q + ~̇ρ (5.23)

where ~q, ~̇q are the inertial position and velocity of the observer in Geocentric Equito-

rial Frame and ~ρ, ~̇ρ are the inertial position and velocity of the target in Topocentric
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Equitorial Frame. Then, ρ = ‖~ρ‖, α, δ are the spherical co-ordinates of the target

with topocenter as the center. Then ~ρ and range-rate(~̇ρ) are given as:

~ρ = ρuρ (5.24)

~̇ρ = ρ̇uρ + ρα̇uα + ρδ̇uδ (5.25)

where uρ,uα,uδ are unit vectors given by:

uρ =


cos(α) cos(δ)

sin(α) cos(δ)

sin(δ)

 ,uα =


− sin(α) cos(δ)

cos(α) cos(δ)

0

 ,uα =


− cos(α) sin(δ)

− sin(α) sin(δ)

0


Let, w0 = ‖~q‖2, w1 = 2(~q.uρ), w2 = α̇2 cos(δ)2 + δ̇2, w3 = 2α̇(q̇.uα) + 2δ̇(q̇.uδ),

w4 = ‖~̇q‖2, and w5 = 2(~q.uρ).Then ‖~r‖, ‖~̇r‖ can be written as:

‖~r‖ = ρ2 + w5ρ+ w0 (5.26)

‖~̇r‖ = ρ̇2 + w1ρ̇+ w2ρ
2 + w3ρ+ w4 (5.27)

Then substituting the above equations in the Energy equation(equation 5.21),it can

be seen that:

ρ̇2 + w1ρ̇−F(ρ)− 2E = 0 (5.28)

where,

F(ρ) = w2ρ
2 + w3ρ+ w4 −

2µ⊕√
ρ2 + w5ρ+ w0

(5.29)

Therefore given a value of the range(ρ), the two(equation 5.28 is quadratic) possible

values of the range-rate(ρ̇) are given as:

ρ̇ = −w1

2
±

√(
w1

2

)2

−F(ρ) + 2E (5.30)

Using the above equation, the AR can be plotted given a measurement and observer

location. As an example, the following measurement and observer information will

be used throughout this section.

Z = [α, α̇, δ, δ̇] = [10◦, 15◦/hr,−2◦, 3◦/hr] (5.31)
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The topocenter(observer) has the following location(λ,latitude(declination) and φ,longitude(right-

ascension));

λ = 0◦, φ = 30◦ (5.32)

~
q, ~̇q are then given by:

~q = 5523.628êx + 3189.07êz km (5.33)

~̇q = ~w⊕ × ~q (5.34)

where ~w⊕ is the angular velocity vector of the Earth. The AR is then plotted as

follows:

Figure 5.3. Admissible Region

The region inside the blue boundary represents the set of all possible ρ, ρ̇ pairs such

that the resultant orbit is Earth Captured. From the figure it can be seen that after

ρ = 7.5R⊕, (R⊕ is radius of the Earth), there are no Earth captured orbits for this

particular measurement i.e., this results in Equation 5.28 having complex roots.

As was mentioned before, under no additional information any point in this region
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cannot be assumed to be more probable than the other points. Hence, this region

can be aptly represented to have a uniform distribution. The next section describes

the procedure to approximate a uniform distribution by a Gaussian Mixture.

5.4.2 Gaussian Mixture Approximation of an Admissible Region

The following details the procedure (developed by authors of [45]) to approximate

a uni-variate uniform distribution by a Gaussian mixture. This concept is applied to

the 2D case.

Gaussian Mixture Approximation of a Uni-variate Uniform Distribution

A uni-variate uniform distribution in the interval [a, b] can be described as follows:

p(x) =


1
b−a for x ∈ [a, b]

0 otherwise

(5.35)

This distribution is to be approximated by a GM of the form:

q(x) =
L∑
i=1

αiN (x;mi, Pi) (5.36)

where L is the number of Gaussian components and αi,mi, Pi are the weights,means

and co-variances of the Gaussian components respectively. The optimal approxima-

tion is obtained by minimizing the following integral (also known as L2 norm):

L2[p][q] =

∫
R

(p(x)− q(x))2dx (5.37)

where R is the real number space. The optimisation problem can be then stated as:

minL2[p][q] subject to αi ≥ 0 ∀i and
L∑
i=1

αi = 1 (5.38)
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The last constraint comes from the requirement that the probability over the entire

sample space(here it is R) should be 1. The L2 norm can be further simplied to the

following expression(for detailed proof,refer [45]):

L2[p][q] =
1

b− a
+

L∑
i=1

L∑
j=1

αiαjΓ(mi,mj, Pi, Pj)−
1

b− a

L∑
i=1

αi

[
erf

{
b−mi√

2Pi

}
−erf

{
a−mi√

2Pi

}]
(5.39)

where,

Γ(mi,mj, Pi, Pj) = |2π(Pi+Pj)
−1/2| exp

(
−1

2
(mi−mj)

T (Pi+Pj)
−1(mi−mj)

)
(5.40)

where erf is the error function. The optimisation function i.e., the L2 norm is ill-

conditioned due to the existence of large number of local minima. For example,

the GM components can be exchanged with no significant change in the L2 norm.

Also, the number of parameters to solve is also large as L increases(need to solve

for 3L variables(weights,means,co-variances) for L components). Hence, to reduce

the number of parameters and make the optimisation problem well conditioned, the

following assumptions are made.

• The weights(wi) are assumed to be equal for all the components.

• The Gaussian Mixture is assumed to be homoscedastic i.e., the co-variance(Pi)

is assumed to be same for all the components.

• Finally, the means(mi) are assumed to be evenly distributed across the support

of p(x) i.e., in the interval [a, b].

The optimisation function is then reduced to:

L2[p][q] =
1

b− a
+

α2

2
√
πσ

L∑
i=1

L∑
j=1

exp

{
−1

4

(
m1 −mj

σ

)2}
− α

b− a

L∑
i=1

αi[erf{Bi}−erf{Ai}]

(5.41)

where,

Ai =

(
a−mi√

2σ

)
and Bi =

(
b−mi√

2σ

)
(5.42)
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Hence,the optimisation problem is only solved for the parameter σ,given the number of

GM components(L). Without loss of generality, it can be assumed that a = 0, b = 1.

Then a standard library of solutions can be produced for the value of σ by varying

L,the number of components. According to the assumptions, the means and weights

can be definied as follows:

α =
1

L
and mi =

i

L+ 1
for i = {1, ..., L} (5.43)

Substituting these expressions into the L2 norm(equation 5.41) and solving the op-

timistion problem results in the optimal value of σ̃ for a particular value of L. The

following figure shows the σ̃ values for L = 1, ..., 15.

Figure 5.4. Standard Library(result reproduced from [45])

The above solutions are true for the case when a = 0, b = 1. For a general case the

Gaussian component parameters are given as follows:

αi =
1

L
, mi = a+

(b− a)i

L+ 1
and σ = (b− a)σ̃ ∀ i = {1, ..., L} (5.44)
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Application to Admissible Region

The pdf(probability density function) of the uniform distribution over the AR is

over 2 dimensions(range and range-rate). Hence, in order to use the GM approxima-

tion strategy developed in the previous section,the 2D approximation must be divided

into two 1D approximations. The first step is to approximate the range marginal pdf

by a Gaussian Mixture. Let pρ,ρ̇(ρ, ρ̇) denote the the uniform pdf over the Admissible

Region. Then the range marginal pdf(pρ(ρ)) is defined as:

pρ(ρ) =

∫ ∞
−∞

pρ,ρ̇(ρ, s)ds (5.45)

The admissible region boundaries for ρ can be determined directly by a numerical

procedure(using equation 5.28). Let the boundaries be a, b with a < b. Then, to use

the pre-computed standard library a design parameter σρ has to be defined. Using

σρ,the number of required Gaussian components can then be found by using the

relation σ̃(b− a) < σρ. The design parameter determines the level of accuracy of the

approximation. Lesser the value the more accurate the approximation becomes but

the number of components increase. Hence, this trade-off must be decided based on

the requirement. The weights,means and co-variances are then given as follows:

αi =
1

L
, mi = a+

(b− a)i

L+ 1
and Pi = ((b− a)σ̃)2 ∀ i = {1, ..., L} (5.46)

Note that the GM evaluated above approximates a uniform distribution over the range

support set and not the range marginal pdf(pρ(ρ)). However, the range marginal pdf

is not required to be a uniform pdf. Figure 5.5 shows the range marginal pdf for the

example discussed previously(Figure 5.4). It can be seen that pρ(ρ) is not uniform.

This can also deduced from Figure 5.4 as the AR is ”thicker” at lower values of ρ and

becomes ”thinner” as ρ increases.
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Figure 5.5. Range marginal pdf

To account for this, the weights of the GM components can be changed. The new

weights are evaluated using a least squares approach. The steps of this approach are

detailed below.

• Firstly,select M points in the range support set i.e., M points between a and b.

Let the points be denoted by ρi ∀ i = {1, ...,M}.

• Evaluate pρ(ρ) at these points using Equation 5.45. Let the probability be

denoted by pi = pρ(ρi) ∀ i = {1, ...,M}.let p be the vector of the probabilities

with the ith element as pi.

• Then the weights of the Gaussian components are evaluated by solving the

following optimisation problem.

min J = ‖p−Hα‖ subject to αi ≥ 0 ∀ i and
L∑
i=1

αi = 1 (5.47)

where H is a matrix with H(i, j) = N (ρi;mj, Pj) and α is the vector of GM

weights with the ith element as αi.
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Figure 5.6. Procedure for the GM approximation of Range Marginal pdf

Figure 5.6 illustrates the process described above. The design parameter σρ was

taken to be 1000 and the number of components was obtained as 32. From b) and

c) it can be seen that the least squares optimization increased the weights of the

components near the beginning to account for higher range marginal pdf and similarly

the weights become lower as ρ increases because of the decrease in range marginal

pdf.

The next step is to move on to the range rate direction. For any component in the GM

approximation of the range marginal pdf, no value of range-rate is more or less likely

i.e., the uncertainty of the range-rate can be assumed to be uniform. Therefore, a

bi-variate Gaussian Mixture marginal pdf can be obtained by applying the previously

described GM approximation technique of a univariate uniform pdf in the range-rate
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direction for every component of the GM range marginal pdf.

The range-marginal GM pdf is relabeled as follows:

pρ(ρ) =

Lρ∑
i=1

αρ,iN (ρ;mρ,i, Pρ,i) (5.48)

The next step is to determine the number of components. Analogous to the range

direction, a design parameter σρ̇ is defined which determines the accuracy of the

approximation. For each component of the GM range marginal pdf(mρ,i), let the

support set of range-rate be defined as ai, bi with ai < bi and the length of the support

set as ∆i = bi − ai. Then using the design parameter σρ̇,the support set and the

pre-computed library of solutions,the GM approximation for the range-rate uniform

pdf(corresponding to the ith component of GM range marginal pdf) is evaluated as:

αρ̇,i =
1

Lρ̇,i
,mρ̇,i = ai +

∆ii

Lρ̇,i + 1
and Pρ̇,i = (∆iσ̃

2) ∀ i ∈ {1, ..., Lρ̇,i} (5.49)

Consider the indexing variable il =
∑l−1

j=1 Lρ̇,j. Then, given the lth component of the

range marginal GM pdf and the corresponding k components of the range-rate GM

approximation the components of bi-variate GM approximation are given as:

αρ,ρ̇,il+k = αρ,lαρ̇,k, mρ,ρ̇,il+k =

mρ,l

mρ̇,k

 and Pρ,ρ̇,il+k =

Pρ,l 0

0 Pρ̇,k


where k ∈ {1, ..., Lρ̇,l}. The above procedure is applied for every component of the

range marginal GM pdf. The GM approximation of the Admissible Region is then

given by:

pρ,ρ̇(ρ, ρ̇) ≈
L∑
i=1

αρ,ρ̇,iN (ρ, ρ̇;mρ,ρ̇,i, Pρ,ρ̇,i) (5.50)
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Figure 5.7. Gaussian Mixture approximation of the Admissible Region

Figure 5.7 (a), shows the location of the components of the Gaussian Mixture

approximation. The design parameters used are σρ = 1000, σρ̇ = 0.95. Figure 5.7

(b),shows the probability distribution of the Gaussian Mixture. From the plot, it can

be seen that the approximation gives a uniform distribution.

5.4.3 Inclusion in the GM-PHD filter

Equation 5.50 gives the GM approximation of the Admissible Region. However,

this GM is defined in a 2D space(range,range-rate space) i.e., the means contain ρ, ρ̇.

In order to use this birth model in the GM-PHD filter the Gaussian components have

to be translated into the state space(see equation 4.65). The following steps details

the process to do that.

• A GM in the space of the variables Z = [α, α̇, δ, δ̇, ρ, ρ̇] can be obtained as

follows:

p(Z) =
L∑
i=1

αρ,ρ̇,iN (Z;mZ,i, PZ,i) (5.51)
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where

mZ,i =



α

δ

ρi

α̇

δ̇

ρ̇i


, PZ,i =



σ2
α 0 0 0 0 0

0 σ2
δ 0 0 0 0

0 0 Pρi 0 0 0

0 0 0 σ2
α̇ 0 0

0 0 0 0 σ2
δ̇

0

0 0 0 0 0 Pρ̇i


(5.52)

mρ,ρ̇,i =

ρi
ρ̇i

 , Pρ,ρ̇,i =

Pρi 0

0 Pρ̇i

 (5.53)

Note that the terms α, α̇, δ, δ̇ are obtained from the measurement and its error

is σ2
α, σ

2
δ , σ

2
α̇, σ

2
δ̇
.

• The next step is to translate this to the state space. Since the transformation

between Z and X(state) is non-linear,only an approximate GM in the state

space can be obtained by using a linear approximation(for complete proof of

the procedure,refer [46]). The birth PHD is then given as:

b(x) =
L∑
i=1

αρ,ρ̇,iN (x;mi, Pi) (5.54)

where mi, Pi are given as follows.

mi = f(Z) +
[
~q ~̇q

]T
(5.55)

f(Z) =



ρi cos(δ) cos(α)

ρi cos(δ) sin(α)

ρi sin(δ)

ρ̇i cos(δ) cos(α)− ρδ̇ sin(δ) cos(α)− ρα̇ cos(δ) sin(α)

ρ̇i cos(δ) sin(α)− ρδ̇ sin(δ) sin(α) + ρα̇ cos(δ) cos(α)

ρ̇i sin(δ) + ρδ̇ cos(δ)


(5.56)

Pi = JZ,XPZ,iJ
T
Z,X (5.57)

JZ,X =
∂f(Z)

∂Z
(5.58)
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The first matrix is obtained from directly from the relations between the vari-

ables Z and X. The state of the observer(

~q
~̇q

) is added since the states of

the targets have to be taken in a inertial frame i.e., the Geocentric Equitorial

frame. The matrix JZ,X is known as a Jacobian.

The above steps detail the procedure to obtain the Birth PHD from the GM approxi-

mation of an Admissible Region. The next step is to incorporate it into the GM-PHD

filter.

Am important point to note that is that the Birth-PHD GM components are all ob-

tained from the measurements. Hence if these are added in the prediction step as

shown in equation 4.67 the update step would increase the weights of these compo-

nents even if these components don’t represent the targets. This is because all the

components would in theory give the same predicted measurement which is equal to

the true measurement. Therefore to avoid this ambiguity, the Birth-PHD GM com-

ponents are added in the update step which is same as giving new initial components

at very time step. Technically, it is then equivalent to assume that there no new

objects entering the scene but the new targets(birth) are accounted by adding new

GM components(which have information on new objects) at each time step. The

GM-PHD filter equations can then be written as:

Dk+1|k(x) = DS,k+1|k(x) (5.59)

Dk+1|k+1(x) = (1− pD,k+1)Dk|k−1(x) +
∑

z∈Zk+1

DD,k+1(x; z) + bk+1|k(x) (5.60)

A complete definition of the above terms can be found in section 4.3.2. The next

chapter provides a method to incorporate the uncertainty in pD in GM-PHD filter,

the research focus of this thesis.
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6. UNCERTAINTY IN THE PROBABILITY OF

DETECTION

This chapter dives into an important component of the the GM-PHD filter, namely

the probability of detection(pD).As was discussed in the section 4.3.1, pD is assumed

to be constant in the GM-PHD filter. However, that is generally not the case in the

space problem.This is because pD depends on the amount of light reflected by the

targets and since the targets are always moving the amount of light reflected changes

and this leads to varying pD. Hence, to model the pD correctly, the light received by

the detector from the target and the signal conversion of this light by the detector is

taken into account. Currently, most of the optical measurements (angles and angle

rates: α, α̇, δ, δ̇) are taken with the help of CCD (Charged Couple Device) technology.

The following sections briefly describe the signal conversion in the CCD sensor and

finally give an analytical expression for pD. A detailed discussion of the following

material can be found in [47] and [24].

6.1 Analytical expression for pD

Figure 6.1. Signal Conversion in a CCD sensor(Images taken from [47])
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Figure 6.1 illustrates the signal conversion in a CCD sensor and also lists the var-

ious sources of noise in the process. The light collected by the CCD sensor falls on

semi-conductors present in the sensor which leads to electron emission. However, a

dark noise is added here because there is a small amount of extra electron emission

because of thermal energy of the sensor (since it is never at 0 K). The electrons are

then passed over some electronics and signal is amplified to estimate the number of

electrons emitted. A readout noise is added here in lieu of the electron losses or

spurious electron emissions because of flaws in the CCD sensor. The processed signal

then looks like Figure 6.1,(b). Note that the light collected by the sensor includes the

target signal and the light obtained from the background sources (Example: Stars).

Hence, the signal is further processed to eliminate the background sources.

In order to obtain a analytical expression for pD certain modelling assumptions cor-

responding to the intensity of the signals are made. They are:

• The number of electrons emitted is assumed to be a Poisson random variable.

Then, target signal has a Poisson parameter λobj, signal from the background

sources has a Poisson parameter λS and dark noise has a Poisson parameter λD.

• The readout noise (SR) is assumed to be a Gaussian random variable with 0

mean and variance σ2
R.

The probability of detection (pD) is then determined by taking the intensity in the

brightest pixel of the image and comparing it against a threshold. Therefore,

pD = 1− P (Sbrightest < t) (6.1)

where P (Sbrightest < t) is the probability that the intensity of the object signal in

the brightest pixel is less than the threshold t. The background signal is estimated

by using a average value of signal over the total number of pixels (say nB). The

Background signal for a large value of nB can then be approximated by a Gaussian

random variable with mean µB = λS+λD
g

and variance σ2
B = λS+λD

gnB
where g is the gain
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used to amplify the electron signal. A detailed procedure can be found in [47].Then,

the probability of detection can be given by:

pD = 1− 1

2

∞∑
n=−∞

Γ(n+ 1, λobj + λS + λD)

n!

(
erf

(
n+ 1− µε√
2g(σ2

B + σ2
R)

)
− erf

(
n− µε√

2g(σ2
B + σ2

R)

))
(6.2)

µε = tg + g/2 + λS + λD (6.3)

t = 3×N( threshold, usually equal to 3-5 N) (6.4)

N =

√
λobj + (1 + 1

n
)(λS + g2−1

12
)

g2
+ (1 +

1

n
)σ2

R (6.5)

where erf is the error function. A complete derivation can be found in [47]. Note :

The incomplete gamma function present in the above equation is numerically equal

to the cdf of a poisson random variable with parameter λ = λobj +λS +λD as follows:

Γ(n+ 1, λobj + λS + λD)

n!
=

n∑
k=0

exp (−λ)λk

k!
= cdf of poisson distribution = poisson.cdf(n, λ)

The next section provides a brief analysis of the object signal.

6.2 Object Irradiation

As discussed in the previous section, the amount of light reflected by a target de-

pends on the relative geometry between the object, the observer and the illumination

source (Sun) and the reflecting surface of the object. The object irradiation at the

location of observer(in W/m2) is then given by (refer [24]) :

Iobj =

∫
ISun(λ)

A

x2
topo

Ψ̄(λ)dλ ≡ I0AΨ

r2
topo

(6.6)

where ISun is the Sun’s intensity at the object’s location for a given wavelength λ.

Generally, ISun∆λ is approximated by the solar constant I0 = 1367.7W/m2 where λ is

taken as the mean wavelength. A is the total area of the reflecting surface, rtopo is the

topocentric distance (distance between the object and observer) and Ψ is the known as

the phase function. The phase function depends on the object properties, specifically
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the reflecting surface i.e., encapsulates the information of the shape and reflection

properties of the object. For a spherical object, Ψ is given as follows (refer [42] for

complete proof):

Ψsphere =
2Cd
3π

(sin(α) + (π − α) cos(α)) (6.7)

where Cd is the Lambertian Reflection co-efficient and α is the angle between the

relative position vector between Sun and the object and the relative position vector

between the object and the observer.Cd is generally assumed to be a constant and

value is taken at the mean wavelength. The objects for the purpose of this thesis are

assumed to spherical because of the analytical expression available for spheres.

6.2.1 CCD sensor response

When this irradiation passes through the optics in a CCD sensor, the expected

value for the signal function can be given as follows (refer [42]):

E(Iobj) =

∫
(D − d)

λ

hc
Iλobj(λ) exp(−τ(λ)R(ζ))dλ (6.8)

where D is the area of the aperture, d is the area of the obstruction of the aper-

ture(secondary mirror), c is the speed of light, h is the Planck’s constant, Iλobj(λ) is

the object irradiation for a wavelength λ,τ is the atmospheric extinction coefficient

and R is the atmospheric function (ζ is the elevation angle). The atmospheric model

used in this thesis is R = 1
cos(ζ)

. The equation is simplified by evaluating E(Iobj) at

the mean wavelength λ̄ and is given by:

E(Iobj) = (D − d)
λ̄

hc
Iobj(λ̄) exp(−τ(λ̄)R(ζ)) (6.9)

The number of electrons ejected i.e., λobj is then given by:

λobj = (D − d)
λ̄

hc
Iobj(λ̄) exp(−τ(λ̄)R(ζ))Q(λ̄)∆tg (6.10)

where Q is the quantum efficiency and g is the gain.λobj can be rewritten as:

λobj = kobjA (6.11)
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where kobj is a number which is independent of area and depends on the location of

the object, location of the sun, reflective properties of the object and the properties

of the sensor used to obtain the CCD image.

6.3 State Dependent pD

As discussed in the previous section, constant pD assumption is not valid in the

case of the space problem. From equation 6.10, it can be seen that λobj depends on

the state(position) of the object which implies that pD is state dependent. Hence,

in order to get a tractable form for the GM-PHD filter equations, [48] suggests an

alternative in which the the following assumption is made:

• pD is approximated as a constant around the mean of the considered Gaussian

component. This assumption is completely valid when when the probability

of detection(pD) varies slowly as compared to the Gaussian components of the

PHD in the update step(Dk+1|k+1(x)).

Consider the update step for a PHD filter is given by (equation 4.58):

Dk+1|k+1(x) =

(
1− pD(x) +

∑
z∈Zk+1

pD(x)fk+1(z|x)(x)

λc(z) +
∫
pD(ξ)Dk+1|k(ξ)fk+1(z|ξ)

)
Dk+1|k(x)

(6.12)

Then under the assumptions of the GM-PHD filter and the additional assumption

made above, the new GM-PHD filter update equation becomes (refer [48] for complete

proof):

Dk+1|k+1(x) = [1− pD]Dk+1|k(x) +
∑

z∈Zk+1

DD,k+1(x; z) (6.13)

where,

[1− pD]Dk+1|k(x) =

Jk+1|k∑
i=1

[1− pD,k+1(m
(i)
k+1|k)]w

(i)
k+1|kN (x;m

(i)
k+1|k, P

(i)
k+1|k) (6.14)

DD,k+1(x; z) =
pD,k+1(m

(i)
k+1|k)w

(i)
k+1|kq

(i)
k+1(z)

λc(z) + pD,k+1(m
(i)
k+1|k)

∑Jk+1|k
l=1 w

(l)
k+1|kq

(l)
k+1(z)

(6.15)

The following points briefly explain the derivation of the above equations.
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• In the first term ((1 − pD(x))Dk+1|k(x)) in equation 6.12, pD(x) converts to

pD(m) because, according to the assumption, pD varies slowly as compared to

the variation of the Gaussian term i.e., for locations farther from the mean of

the Gaussian the term pD(x)vk|k−1(x) is approximately zero because vk|k−1(x)

is approximately zero and pD is a value between 0 and 1.

• In the second term of equation 6.12, the numerator is obtained in a similar way

as described in the previous point. The denominator is obtained by using the

constant pD assumption in the following way :∫
pD(x)N (x;m,P )dx ≈ pD(m)

∫
N (x;m,P )dx (6.16)

• As discussed previously the pD,k+1(m
(i)
k+1|k) is then obtained by using the CCD

equation (equation 6.2). But if the FOV is restricted as described by section

5.3.1, then pD,k+1(m
(i)
k+1|k) is taken to be zero if the estimated position (obtained

from m
(i)
k+1|k) is not in the FOV.

6.4 Uncertainty in the Probability of Detection

This section provides a method to incorporate the uncertainty in pD in a GM-PHD

filter. From equations 6.2 and 6.10 it can be seen that pD depends on the area of the

reflecting surface. For the objects moving in space, especially the debris, since they

are in an uncontrolled motion, their orientation is difficult to evaluate and hence it

makes it difficult to estimate the reflecting area. This section introduces a method to

integrate the uncertainty in pD in the GM-PHD filter equations when the area of the

targets can be assumed to have a Gaussian distribution.

Let Area be a Gaussian random variable with a mean µA and variance σ2
A. Since

pD has a non-linear relationship with area, the probability distribution for pD is not
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exactly a Gaussian. Hence,the probability distribution of pD is linearly approximated

by a Gaussian distribution with parameters as follows:

µpD = pD(µA) ,i.e., use Area = µA to evaluate λobj (6.17)

σ2
pD

=

(
dpD
dA

∣∣∣∣
A=µA

σA

)2

(6.18)

dpD
dA

∣∣∣∣
A=µA

is known as the Jacobian and is calculated as follows:

• In order to simplify the process of finding the derivative, pD is divided into two

parts as follows:

pD = 1− 1

2

∞∑
n=−∞

P1.P2

P1 = poisson.cdf(n, λ) where λ = λobj + λS + λD

P2 = erf

(
n+ 1− µε√
2g(σ2

B + σ2
R)

)
− erf

(
n− µε√

2g(σ2
B + σ2

R)

)
Then, the derivative can be written as:

dpD
dA

= −0.5
∞∑

n=−∞

(
dP1

dA
P2 + P1

dP2

dA

)
• The term dP1

dA
is obtained by using the chain rule of derivation and is as follows:

dP1

dA
= kobj(poisson.cdf(n− 1, λ)− poisson.cdf(n, λ)) =

−kobj exp (λ)λn

n!

• The differentiation of P2 is a bit more involved since the area dependence is

through the threshold(t) term and also since it contains an error function.

Hence, the Leibnitz rule needs to be applied which is given as follows:

d

dx

(∫ b(x)

a(x)

f(x, t)dt

)
= f(x, b(x))

db(x)

dx
− f(x, a(x))

da(x)

dx
+

∫ b(x)

a(x)

∂

∂x
f(x, t)dt

• Before proceeding further, define:

c =
√

2g(σ2
B + σ2

R)

z1 =
n+ 1− µε

c

z2 =
n− µε
c
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Then the term P2 is:

P2 = erf(z1)− erf(z2)

• Applying the Leibnitz rule on the terms of P2 yields:

d(erf(z1))

dA
=

2√
π

exp(−z2
1)
dz1

dA
=

2√
π

exp(−z2
1)
−g
c

dt

dA

d(erf(z2))

dA
=

2√
π

exp(−z2
2)
dz2

dA
=

2√
π

exp(−z2
2)
−g
c

dt

dA

where:

dt

dA
=

1.5kobj
g2

(
λobj + (1 + 1

n
)(λS + g2−1

12
)

g2
+ (1 +

1

n
)σ2

R

)−0.5

• The Jacobian dpD
dA

can be found by combining all the equations above.

The following figure shows the variation of pD for an object in a Geostationary orbit

as it moves along it’s orbit. The object is assumed to be spherical and the Area is

assumed to be equal to 1.

Figure 6.2. pD vs time for a Geostationary object
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In order to verify the GM approximation of pD, a Monte-Carlo analysis is done.

The process is as follows:

• The probability distribution of the area is assumed to be Gaussian with µ, σ =

1, 0.3.

• To test how good the Gaussian distribution fits the pD distribution 1000 samples

of Area are drawn and pD is calculated for each of the sample. A histogram is

plotted using 10 bins where the bin intervals are [0-0.1,0.1-0.2,...,0.9-1.0].

• Then the probability of pD at the mid point of bin intervals [0.05,0.15,...,0.85,0.95]

is calculated by taking the ratio of the number of samples in each bin to the

total number of samples (1000).

• The cdf (cumulative distribution function, sum of the probabilities over a par-

ticular interval) of pD using the Gaussian model is also calculated in each of the

bin intervals and this value is assigned as the probability for the mid-point of

bin intervals. Also, since 0 ≤ pD ≤ 1 the pdf at pD = 0, 1 are modified in the

following way.

p(pD = 0.05) = p(pD = 0.05) + p(pD < 0) (6.19)

p(pD = 0.95) = p(pD = 0.95) + p(pD > 1) (6.20)

• The following figure (figure 6.3) shows the comparison of probability of pD at

the bin mid-points obtained via Monte-Carlo analysis and the Gaussian approx-

imation. It can be seen from the plots that the Gaussian approximation is a

very good one when pD(for Area = 1) is high i.e., at higher time steps (see figure

6.2).
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Figure 6.3. a) t = 10, b) t = 50, c) t = 150, d) t = 200

A better approximation is possible by splitting the Gaussian distribution of Area

into multiple Gaussians and then use the approximation strategy on the split Gaus-

sians. The following section gives a brief overview of that process.

6.4.1 Splitting a Gaussian distribution

The following points systematically describe the process to split a Gaussian dis-

tribution into a Gaussian Mixture.

• Let p(x) be the Gaussian distribution that is sought to be split. Without loss

of generality, it can be assumed that it is a standard normal distribution.

p(x) = N (x; 0, 1)
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• The objective is to approximate p(x) by a Gaussian mixture p̃(x) which is

expressed as:

p̃(x) =
n∑
i=1

αiN (x;µi, σ̃
2)

where n is the number of components of the Gaussian mixture.

• In order to reduce the number of variables to be evaluated it is assumed that

all the components have the same variance i.e., the Gaussian mixture is ho-

moscedastic.

• The parameters of the GMM are solved for by a posing a minimisation/optimisation

problem i.e., L2 norm (shown below) between p(x) and p̃(x) is minimised.

D =
1

2

∫ ∞
−∞

(p(x)− p̃(x))2dx

The L2 norm is chosen because the divergence (J) between p(x) and ˜p(x) can

be found in a closed form.

• Since the objective is to find GMM components with smaller variances a penalty

term λ is added which weighs the importance of minimising the divergence with

the minimising of variance (σ̃2).The optimisation problem is then stated as :

min J + λσ̃2 subject to
n∑
i=1

αi = 1

• By solving the above optimisation problem, splitting libraries can be formed by

varying n, λ. The following figure(figure 6.4 ) show the pre-computed results

from [49], [50] for n=3,4,5

• The following table shows the library of solution for n=4 which was computed

by authors of [50]
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Figure 6.4. Splitting Library(Source : pg 1051 of [49])

Figure 6.5. Splitting Library(Source: pg 183 of [50])

• It is important to note that the solution libraries that are obtained are for a

standard normal distribution. For a normal distribution with µ 6= 0, σ 6= 1, the

parameters of each component can be evaluated as follows:

µi = µ+ σ̃µ̃i

σi = σ̃iσ

αi = α̃i

• The following figures compare the results after splitting the Gaussian Mixture

into 3, 4 and 5 components.
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Figure 6.6. (a) n = 1,(b) n = 3,(c) n = 4,(d) n = 5 at t=10

Figure 6.7. (a) n = 1,(b) n = 3,(c) n = 4,(d) n = 5 at t=50
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Figure 6.8. (a) n = 1,(b) n = 3,(c) n = 4,(d) n = 5 at t=100

From the above results it can be seen that the Gaussian approximation gets better

as more components are used.

For the implementation in the GM-PHD filter, pD(m
(i)
k+1|k) in equations 6.14 and

6.15 is taken as the weighted average of the means of the Gaussian components

i.e., the splitted Gaussian components of Area are first transformed to pD space by

the method described in section 6.4 and the pD is assumed to then be equal to the

weighted average of the means of the components. More precisely, if the probability

distribution of pD for a particular state m
(i)
k+1|k is given by

∑n
i=1 αiN (pD;µi, σ

2
i ) then

pD(m
(i)
k+1|k) =

∑n
i=1 αiµi. The results of this method will be investigated in detail in

the next chapter. The following section introduces the OSPA metric which will be

used to validate the pD uncertainty model.

6.5 OSPA metric

In the GM-PHD filter two main quantities are estimated at each time step, i.e., the

cardinality and the state of the targets. Hence, the performance of the filter can be
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assessed accurately by considering the error in cardinality and the error in estimation

of state. In [51], many such metrics are looked at and the inconsistencies in each

metric are outlined and a metric (OSPA) which addresses the drawbacks of the other

multi-object performance evaluation metrics is proposed. The following expression

gives the OSPA metric(detailed discussion can be found in [51]) :

d̄(c)
p (X, Y ) :=

(
1

n

(
min
π∈Πn

m∑
i=1

d(c)(xi, yπ(i))
p + cp(n−m)

))1/p

In the above equation the first term(minπ∈Πn

∑m
i=1 d

(c)(xi, yπ(i))) is obtained by opti-

mal sub-pattern assignment which can be described as follows:

• Consider two sets X (truth) and Y (estimate) with cardinalities n and m re-

spectively (without loss of generality,assume m ≤ n). In this thesis, these sets

will contain the positions of the targets.

• The distances between the elements of each set can then be calculated and

matrix (size mxn) containing the distances can be obtained. Also, the parameter

c is defined to remove any outliers i.e, if any distance is greater than c the

calculated distance is replaced by c. The optimal sub-pattern assignment would

then be to assign the closest n out of m estimates to correspond to the n truths.

The first term is then the sum of these n distances.

• The second term calculates the error in cardinality by multiplying the difference

in number of estimated and true targets by the parameter c.

The choice of the parameters c, p is problem dependent. For the purposes of this

thesis, c = 10000, p = 1.
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7. RESULTS

The necessary background required for the implementation of the GM-PHD filter in

a SSA scenario has been discussed until now. It makes sense to use the GM-PHD

filter in a SSA scenario, because firstly, it provides a closed-form solution and is also

a computationally tractable and a less expensive algorithm. However, in its original

form, as developed by Vo et.al [1], has some limitations in the context of SSA. pD is

assumed to be state independent at any time i.e., it is assumed to be a constant. As

discussed in chapter 1 and chapter 6, in the space environment, pD is state depen-

dent and is also uncertain. It is state dependent because pD depends on the relative

position of the object with respect to the observer and the Sun and the uncertainty is

introduced because of the degradation of the surface materials and also the uncertain

estimation of the object’s reflecting area. Hence, a state dependent pD model, rele-

vant to SSA, was introduced in chapter 6. Using this model, variations of GM-PHD

filter which accommodate a state dependent pD (section 6.3) and a uncertainty in pD

(section 6.4) have been developed and their performance is tested in this section.

The models and assumptions used in the GM-PHD filter were described in chapter

5. A single ground based sensor is used as the source of measurements. Only optical

measurements are considered. The results including and excluding the clutter mea-

surements are shown. The target measurement model and the target motion model

have been described in chapter 5. For the track initialization, i.e., the birth model

for the GM-PHD filter (see section 4.3), Admissible Regions are used. A complete

description of this model is given in section 5.4.2. The OSPA metric used to validate

the pD uncertainty model is described in section 6.5.

This chapter is divided into four sections. Section 7.1 shows the application of the

basic GM-PHD filter on a SSA problem assuming that the probability of detection

is constant. Section 7.1 is further divided into two sections. In section 7.1.1, it is
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assumed that there is no FOV restriction i.e., the observer on the Earth can observe

any object at any time. Though the constant pD assumption and the unrestricted

FOV assumptions are unrealistic, section 7.1.1 is included to show the performance of

the GM-PHD filter with respect to the availability of measurements. In section 7.1.2,

the FOV restriction is included, which is more realistic and the filter performance is

assessed.

Section 7.2 presents the filter performance by changing the pD model, i.e., the prob-

ability of detection (pD) is assumed to be state dependent and uses a analytical

expression for pD taking various factors into account (described in detail in chapter

6).

Sections 7.1 and 7.2 assumes that there is model mismatch in the pD i.e., the filter

pD model is assumed to be the truth. This is not necessarily true always since it not

possible to model the reality perfectly. This section assesses the filter’s performance

in case of a model mismatch and signifies the need of introducing an uncertainty in

the GM-PHD filter.

Section 7.4 validates a pD model (introduced in section 6.4) which takes an uncer-

tainty in pD introduced by an uncertainty in Area into account and incorporates it

into the GM-PHD filter.

7.1 Constant pD GM-PHD filter

This section demonstrates the application of the GM-PHD filter assuming that

probability of detection is constant, there is no FOV restriction (targets generate

measurements always) and there is no model mismatch i.e., the true pD and the pD

that the filter uses are the same. This is a very simple case and PHD filter is known

to deal best with high pD and the unrestricted field of view allowed for continuous

measurements. The performance of the GM-PHD filter is studied by taking a low

(0.5) and a high (0.9) value of pD.
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7.1.1 Unrestricted Field of View

The simulation is run for five objects for a total of 300 time steps (each time

step is 60 seconds) where measurements are taken at every time step and the time

of ”birth” and ”death” of the targets are shown in figure 7.1.1. The orbital elements

of the targets are shown in figure 7.1.1. It is assumed that the measurements are

unconstrained i.e., there is no Field of View restriction and the observer’s i.e., the

ground based sensor’s Geocentric Equitorial coordinates at t = 0 are α = 0◦, δ = 45◦,

which is a location in France. Measurements are taken every 60 seconds and consist of

topocentric angles and angle-rates (α, δ, α̇, δ̇). It is assumed that the clutter Poisson

parameter is 4 (λ). To show the effect of clutter, the results assuming measurements

with no clutter are also presented in this section. Probability of survival is constant

and is assumed to be equal to 0.99. It is assumed that the probability of detection(pD)

is constant and there is no model mismatch i.e., pD for the truth and pD used in the

filter are the same. For the birth model, the design parameters are assumed as

σρ = 2750, σρ̇ = 1.2 (see section 5.4.2).

Figure 7.1. Target birth and death time steps
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Figure 7.2. Orbital Elements of the targets

pD=0.5, no clutter

Figure 7.3 shows the results when pD = 0.5 and there is no clutter. Since, it is

a unrestricted FOV, it means that at any given time, there is 50% chance that a

target generates a measurement. From the state estimate plot (part (b)) it can be

seen that 3 objects start getting tracked initially. This is because only object 1, 2

and 3 are in the scene initially. Objects 4 and 5 start getting estimated once they are

”born”. It can be seen that it takes some time for the objects to be estimated, since

sufficient measurements have to be obtained first for the objects to be selected as an

estimate (see section 4.3.2) i.e., the weight has to be greater than 0.5. Since there

are lesser target generated measurements because of low pD, the number of objects

are underestimated routinely (see part (a)). Also, it can be seen that sometimes the

number of objects are overestimated too, this is because the first term in the update

term which has 1-pD term in it (see equation 4.95), is counted as an estimate (if the

weight is around 1) and if there is a measurement from that particular target (50%

chance), the second term generates another estimate at the same location i.e., two

objects are estimated at same state instead of one. The cardinality estimates range

from 0 to 6 and on an average, the estimates are incorrect by 1. The state estimates

are very accurate after a certain period of time. This can be seen in part(b), at the

end of most of the tracks the red dots (estimates) directly overlap the true tracks

(black lines).
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Figure 7.3. For object ground-based tracking scenario, pD=0.5, no
clutter with object birth: a) Cardinality as a function of time, blue
the truth, in red the estimates; b) the state estimates of the objects,
in black the true tracks, in red the estimates displayed in position
x,y,z

pD=0.9, no clutter

Figure 7.4 shows the results when pD = 0.9. It can be seen that the estimates are

very close to the truth in this case. This is because of the continuous measurements

being available to the filter because of high probability of detection. From part (a) it

can be seen that the number of estimates are never overestimated since the first term

of equation 4.95, doesn’t result in an estimate because 1 − pD is much less and the

second term results in an estimate only when there is measurement available (which

in this case it is most of the time). The objects are underestimated only when there

are no measurements.
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Figure 7.4. For object ground-based tracking scenario, pD=0.9, no
clutter with object birth: a) Cardinality as a function of time, blue
the truth, in red the estimates; b) the state estimates of the objects,
in black the true tracks, in red the estimates displayed in position
x,y,z

pD=0.5,0.9, with clutter

The following figures (Figure 7.5 and Figure 7.6) show the results when clutter

is present. Since the Poisson paramter is 4, the average measurements rise by 4.

Hence, the filter has the additional task of removing the uncertainty in measurements

too. Clearly, the filter performance is better when there are no clutter measurements.

Consider the case when pD = 0.9. From part (a) of figures 7.4 and 7.9, it can be seen

that when clutter is included, there is a significant delay in initializing the track of

object 5. Also, the estimate of z coordinates have a higher deviation from the truth

when clutter is included.
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Figure 7.5. For object ground-based tracking scenario, pD=0.5, with
clutter and object birth: a) Cardinality as a function of time, blue the
truth, in red the estimates; b) the state estimates of the objects, in
black the true tracks, in red the estimates displayed in position x,y,z

Figure 7.6. For object ground-based tracking scenario, pD=0.9, with
clutter and object birth: a) Cardinality as a function of time, blue the
truth, in red the estimates; b) the state estimates of the objects, in
black the true tracks, in red the estimates displayed in position x,y,z
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It can be seen that the GM-PHD filter performs efficiently when pD is high.

However, low pD values are not uncommon in SSA observations. Low pD can occur

even for large objects too if it is not reflecting enough light because of the material’s

reflecting property. Smaller apertures also lead to lower pD.

An unrestricted FOV is unrealistic since the FOV is always restricted for a ground-

based observer taking optical measurements. For example, an object, can go below

the local horizon and there is no way of observing it from that location at that time.

To make the simulations more realistic, a constrained FOV is considered and this

assumption will be continued throughout the rest of this chapter.

7.1.2 Restricted Field of View

This section presents the results when the FOV is restricted as described in section

5.3.1. This simulation is run for 300 time steps with a step size of 1 minute. The

objects time in FOV is shown in figure 7.1.2. The orbit elements are shown in figure

7.1.2. The observer is assumed to be on the surface of the Earth at a−91.44◦ longitude

and −7.15◦ latitude and measurements are taken at every time step and consist of

topocentric angles and angle-rates (α, δ, α̇, δ̇). The FOV is assumed to be 4◦ × 4◦. It

is assumed that the clutter poisson parameter is 4. Probability of survival is constant

and is assumed to be equal to 0.99. It is assumed that the probability of detection

(pD) is constant and there is no model mismatch i.e., pD for the truth and pD used

in the filter are the same. For the birth model, the design parameters are assumed as

σρ = 2750, σρ̇ = 1.2 (see section 5.4.2).

Figure 7.7. Objects periods in FOV
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Figure 7.8. Orbital Elements of targets

Figure 7.9 shows the results for the case when pD is high, i.e., pD = 0.9. Form

part (a), it can be seen that initially since only object one is in the FOV, at most

one target generated measurement is available. This is reflected in the estimates too

since only one object is being estimated until the 80th time step. However, at the

80th time step, object 2 enters the FOV and the number of measurements indicate

this. Hence, because of high pD, measurements are readily available and the filter is

able to estimate it efficiently. Also, it can be seen that the filter briefly overshoots

(for 2 time steps) the number of objects when object 2 enters the FOV. Around the

147th time step, since object 2 exits the FOV, there are no more target generated

measurements from it and hence only object 1 is tracked until it exits the FOV. It

can be seen from the plot (a) that the estimates follow the number of measurements

90% of the time i.e., if there are continuous measurements, the filter works efficiently.

From the state estimate plot, it can be seen that the estimates are not good initially,

but as observations of object 1 increase the filter corrects itself. Also, it can be seen

that the x coordinate estimate has the highest deviation from the truth. This is

introduced because of the uncertainty of the Gaussian components.
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Figure 7.9. For object ground-based tracking scenario, with restricted
FOV, pD=0.9, with clutter and object birth: a) Cardinality as a func-
tion of time, blue line is the truth, in red the estimates and bright
blue point is the number of target generated measurements at that
time; b) the state estimates of the objects, in black the true tracks,
in red the estimates displayed in position x,y,z

Figure 7.10 shows the results for the same case but with a lower pD, i.e., pD = 0.5.

The estimates follow a similar trend as before but at a lower efficiency since there

are lesser target generated measurements. The objects are regularly underestimated.

This can be seen in the cardinality plot where the estimates routinely overshoot the

actual number of objects. Also, the state estimates are also less accurate (have greater

uncertainty) since measurements are not continuously available for the filter to update

the state. This can be seen in part (b), in the x coordinate estimate of object 2 (time

steps: 80-150), where the deviation from truth is comparatively higher than in part

(b) of figure 7.9.
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Figure 7.10. For object ground-based tracking scenario, with re-
stricted FOV, pD=0.5, with clutter and object birth: a) Cardinality
as a function of time, blue line is the truth, in red the estimates and
bright blue point is the number of target generated measurements at
that time; b) the state estimates of the objects, in black the true
tracks, in red the estimates displayed in position x,y,z

7.2 State Dependent pD

As was discussed in Chapter 1, pD should be modeled as a state-dependent quan-

tity in the space environment. This section shows the application of the method

shown in section 6.3 where pD is modeled as a state-dependent quantity. It must

be noted that there is no model mismatch considered here. This section shows the

application of the pD model in the GM-PHD filter.This simulation is run for 300 time

steps and only one object is considered. The object’s time in FOV and its orbital

elements are given in figure 7.11.The observer is assumed to be on the surface of

the Earth at a −91.44◦ longitude and −7.15◦ latitude and measurements are taken

at every time step and consist of topocentric angles and angle-rates (α, δ, α̇, δ̇). The

FOV is assumed to be 4◦ × 4◦. It is assumed that the clutter poisson parameter

is 4. Probability of survival is constant and is assumed to be equal to 0.99. pD is

modeled after the CCD equation (equation 6.2) and there is no model mismatch i.e.,

pD for the truth and pD used in the filter are the same. The object is assumed to be
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spherical with 1 m2 area. For the birth model, the design parameters are assumed as

σρ = 2750, σρ̇ = 1.2 (see section 5.4.2).

Figure 7.11. Results for state dependent pD

In figure 7.12, part (c) shows the cardinality estimate and also the number of target

generated measurements at each time, part (b) shows the state estimates. It can be

seen that initially no object is tracked. This is because of the lack of target generated

measurements. As the measurements are available regularly the filter responds effi-

ciently similar to the cases in previous sections. Also, in figure 7.12, part (a) shows

the estimated pD for the object at each time step. It can be seen that estimated pD

is comparatively lower than the truth initially and hence the estimated number of

objects are higher. This is because even though the target generated measurement

is available, because of the lower pD estimate, the filter assumes the measurements

to mostly consist of clutter and ends up overestimating the number of objects. The

estimates become more accurate as more measurements become available. And since

there are no measurements available after time step 196 (since the object is out

of FOV), the pD estimate is zero and the object is tracked until the weight of it’s

corresponding GM-PHD component goes less than 0.5 (weight reduces continuously

because pS = 0.99). It is important to note that that by using this method the object

is continued to be tracked even when it is not in the FOV.
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Figure 7.12. For object ground-based tracking scenario, with re-
stricted FOV, pD=0.5, with clutter and object birth: a) pD as a func-
tion of time, in orange is the truth and in blue is the estimate; b)
the state estimates of the objects, in black the true tracks, in red the
estimates displayed in position x,y,z; c) Cardinality as a function of
time, blue line is the truth, in red the estimates and bright blue point
is the number of target generated measurements at that time

7.3 Model Mismatch

This section shows the effect of model mismatch and signifies the need to consider

an uncertainty in pD as explained in chapter 1. More precisely, a model mismatch

between the true pD and the pD that the filter assumes. For this purpose, the GM-

PHD filter is run using only a single object. This simulation is run for 300 time steps

and only one object is considered. The object’s time in FOV and its orbital elements

are given in figure 7.11.The observer is assumed to be on the surface of the Earth at a

−91.44◦ longitude and −7.15◦ latitude and measurements are taken at every time step
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and consist of topocentric angles and angle-rates (α, δ, α̇, δ̇). The FOV is assumed

to be 4◦ × 4◦. It is assumed that the clutter poisson parameter is 4. Probability of

survival is constant and is assumed to be equal to 0.99. The object is assumed to be

spherical with 1 m2 area.For the birth model, the design parameters are assumed as

σρ = 2750, σρ̇ = 1.2 (see section 5.4.2).

7.3.1 Constant pD model

The constant pD model is assumed for the following cases for both the truth and

the filter but different values are assumed for each.

The case below (Figure 7.13) assumes that the true pD=0.5 and the filter pD = 0.9.

Part (a) shows the cardinality estimates and part (b) shows the state estimates. From

part (a), it can be seen that the target generated measurements are not continuously

available due to low pD. Also, the number of targets are routinely underestimated.

The results are as expected i.e, if the filter assumes a higher pD than the true pD,

then filter assumes that the measurements surely contain the measurements from the

targets. However, the measurements are mostly clutter and hence the filter tends to

underestimate the number of targets (lack of quality measurements). It can be seen

from part (b) that the state estimates, especially the x and z coordinates, have high

deviation from the truth. The average error in x-coordinate is in the order of 103

km and in z-coordinate its in the order of 102 km. This is because once the track

is initialized, there aren’t enough measurements to reduce the uncertainty. Also, the

track is initiated multiple times due to the model mismatch. The reason is that the

track is cutoff because there aren’t sufficient measurements (consequence of low true

pD) and also it is not continued by the 1−pD term because of the high filter pD. Also,

since the object is out of FOV after the 200th time step, the estimate and the truth

will be same since there are no incoming measurements. Hence, this model mismatch

clearly affects the performance of the filter.
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Figure 7.13. For object ground-based tracking scenario,constant pD
model with True pD=0.5 and filter pD = 0.9, with clutter and object
birth: a) Cardinality as a function of time, blue line is the truth, in red
the estimates and bright blue point is the number of target generated
measurements at that time; b) the state estimates of the objects, in
black the true tracks, in red the estimates displayed in position x,y,z

In the following case (figure 7.14), the pD values are reversed. Since the filter

assumes a lower pD value than the true pD value, it assumes that the measurements

contain less number of target measurements. However, since true pD is high (0.9),

target measurements are surely there and because of this the filter overestimates the

number of targets. This can be seen in the cardinality plot (Figure 7.14, (a)) where

the estimates show 2 objects at the same state instead of one. It can also be seen from

the state estimate plots (part (b)) that, there is high deviation in the x, z coordinate

estimates. The max deviation in x is in the order of 104 km and in z its in the order

of 103 km. Hence, the filter performance is affected in this case too.
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Figure 7.14. For object ground-based tracking scenario,constant pD
model with True pD=0.9 and filter pD = 0.5, with clutter and object
birth: a) Cardinality as a function of time, blue line is the truth, in red
the estimates and bright blue point is the number of target generated
measurements at that time; b) the state estimates of the objects, in
black the true tracks, in red the estimates displayed in position x,y,z

7.3.2 State dependent pD

In this section, the state dependent pD model is assumed for the truth whereas a

constant pD model is assumed for the filter and the results are analysed.
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Figure 7.15. For object ground-based tracking scenario, state depen-
dent pD model for the truth and constant pD model for the filter with
pD = 0.6, with clutter and object birth: a) pD as a function of time, in
orange is the truth and in blue is the estimate; b) the state estimates
of the objects, in black the true tracks, in red the estimates displayed
in position x,y,z; c) Cardinality as a function of time, blue line is the
truth, in red the estimates and bright blue point is the number of
target generated measurements at that time

Initially the filter pD is closer to the true pD and hence the estimates are closer to

the truth. But as time progresses, since the true pD is state dependent it increases

whereas the filter pD is constant at 0.6. Therefore, the filter overestimates the number

of targets since the filter pD is lower compared to the true pD. This shows that the

constant pD assumption in the GM-PHD filter is not a good assumption in the space

environment.
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7.4 Uncertainty in pD

As can be seen from the previous section a model mismatch in the probability of

detection affects the performance of the GM-PHD filter. Especially, over-predicting

the pD poses a greater concern since this leads to under-predicting the number of

targets and this leads to greater problems. For example, if the tracking is done to

avoid the collisions, under-predicting the targets is not desired. Hence, it is necessary

to incorporate an uncertainty in the probability of detection if there is one. The

model described in section 6.4 is used to for this purpose. As mentioned previously,

an uncertainty in Area results in the uncertainty in pD. The efficiency of this method

is established by comparing the performance of the filter which takes the uncertainty

into account with the filter which doesn’t take the uncertainty into account. The

following paragraph describe this process.

The area (A) of the targets is assumed to be a random variable with a Gaussian

Distribution. Then, a hundred samples of Area are taken and for each sample a truth

(measurements) is generated, i.e., the measurements differ for each sample since a

change in area results in a change in pD which affects the observations. Clutter

measurements are also included. The filter is run using three models of pD for 100

samples (100 sets of measurements) and the results are stored. For the first model,

namely ”M1”, the state dependent pD model (see section 6.3) is used where the Area

is assumed to be constant and equal to the mean of the Gaussian Distribution. The

model M1 doesn’t consider the uncertainty in the probability of detection. For the

second model ”M2”, the state dependent pD model is used but this time the value

of pD is taken as a weighted average i.e., 100 samples of areas are drawn (from the

Gaussian distribution) and pD is calculated for each sample and a histogram with 10

bins (0-0.1,0.1-0.2,...,0.9-1) is created, and, a weighted average using the centers of the

bins is calculated. The third model ”M3” is described in section 6.4. As mentioned

above, the filter is applied on the 100 sets of measurements and the results for the

state estimates and the cardinality (number of objects) estimates at each time step
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are stored. At each time step, an error is calculated using the Optimal Subpattern

Assignment metric, also known as OSPA (refer [51]). The error is then averaged at

each time step for the 100 samples for all the models and the error is plotted. The

model ”M3” can be validated if the error for ”M3” is less than the error for ”M1”.

Note that the model ”M2” uses a Monte-Carlo methodology which is a valid model,

but it is computationally expensive. This thesis provides an alternative method (M3)

which is closer in efficiency to ”M2” but is computationally less expensive.

7.4.1 Results for GEO objects

This section shows the error comparison for the models (M1,M2,M3) for a test case

where two GEO objects are tracked with a restricted FOV. For all of the following

results the clutter and the observer properties are same as the ones described in

section 7.1.2. It is assumed that the target’s area has a Gaussian Distribution with

mean 1 and a standard deviation of 0.3.

The following figure show the results when only object is considered (object 1 in

section 7.1.2).

Figure 7.16. Comparison of OSPA metric errors (Clutter included)
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As can be seen from figure 7.16, the error in M1 is the highest since it doesn’t take

the uncertainty into account and ends up either overestimating or underestimating

the number of targets as described in section 7.3. The model M3 performs efficiently

as compared to the model M1 and is as good as the model M2 which is a Monte

Carlo analysis. The errors are identical at the end since the object is out of the FOV

after the 200th time step and hence the three filter models for estimating pD work

the same.

The next figure shows the result when two objects are considered (object 1, object 2

in section 7.1.2). Clutter was not considered in this case. However, the trend will be

similar even if clutter is considered (figure 7.18).

Figure 7.17. Comparison of OSPA metric errors (Clutter not included)

The same conclusions can be drawn again. There is a jump around 80th time step

because object 2 enters the FOV at this time step and, this leads to higher error.

From figures 7.16 and 7.18 it can be seen that the model M3 performance is similar

to the performance of model M2. Also, from section 6.4.1, it can be seen that the pD

estimates obtained from model M2 and M3 are pretty close. Hence, for the rest of
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this section, the results for model M2 are not shown. The following figure shows the

result for two objects when clutter is considered.

Figure 7.18. Comparison of OSPA metric errors (with Clutter)

The results follow a similar trend as before. The following figures (figure 7.19,

figure 7.20, figure 7.21 and figure 7.22) show the cardinality and state plots for two

cases of area samples (area of objects = 0.6745, 0.9672). Part(a) shows the plots when

model M1 is applied and part (b) shows the results when model M3 (7 components)

is applied.

Figures 7.19 and 7.20 are obtained by assuming the area of the objects to be 0.6745.

Since model M1 assumes that the area is 1, there is a model mismatch here. This can

be reflected in the cardinality plots where the number of targets are overestimated

because the estimated pD is lower than the true pD. But the model M3 models pD as

a uncertain quantity and hence the results are more accurate.
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Figure 7.19. For object ground-based tracking scenario, with re-
stricted FOV, without clutter and with object birth, area of objects
= 0.6745, plots show cardinality as a function of time obtained by ap-
plication of models M1 and M3, blue line is the truth, in red (Model
M1) and green (Model M3) the estimates: a) pD estimate obtained
by model M1; b) pD estimate obtained by model M3

Figure 7.20. For object ground-based tracking scenario, with re-
stricted FOV, without clutter and with object birth, area of objects
= 0.6745, plots show state estimates (position x,y,z) as a function of
time obtained by application of pD models M1 and M3, black line is
the truth, in red (Model M1) and green (Model M3) the estimates:
a) pD estimate obtained by model M1; b) pD estimate obtained by
model M3
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Figures 7.21 and 7.22 are obtained by assuming the area of the objects to be

0.9672. In this case the performance of model M1 and model are similar because the

area assumed by the model M1 is close to the true value. Hence, the pD estimates

are similar in both the models and hence the performance is similar.

Figure 7.21. For object ground-based tracking scenario, with re-
stricted FOV, without clutter and with object birth, area of objects
= 0.9672, plots show cardinality as a function of time obtained by ap-
plication of models M1 and M3, blue line is the truth, in red (Model
M1) and green (Model M3) the estimates: a) pD estimate obtained
by model M1; b) pD estimate obtained by model M3

Figure 7.22. For object ground-based tracking scenario, with re-
stricted FOV, without clutter and with object birth, area of objects
= 0.9672, plots show state estimates (position x,y,z) as a function of
time obtained by application of pD models M1 and M3, black line is
the truth, in red (Model M1) and green (Model M3) the estimates:
a) pD estimate obtained by model M1; b) pD estimate obtained by
model M3
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The next section shows the results when LEO objects are considered.

7.4.2 Results for LEO objects

In this section, the targets are taken to be in LEO. This simulation is run for

135 time steps with a step size of 1 minute. The objects orbital elements are shown

in 7.1.2. The orbit elements are shown in figure 7.23. The observer is assumed

to be on the surface of the Earth at a −91.44◦ longitude and −7.15◦ latitude and

measurements are taken at every time step and consist of topocentric angles and

angle-rates (α, δ, α̇, δ̇). The FOV model used here is described in 5.3.1 and is assumed

to be 16◦ × 16◦. It is assumed that the clutter Poisson parameter is 4. Probability

of survival is constant and is assumed to be equal to 0.99. For the birth model,

the design parameters are changed to σρ = 200, σρ̇ = 0.5 (see section 5.4.2) since

the Admissible region shrinks as compared to GEO objects and hence smaller design

components have to be taken to have necessary number of GM components to fill out

the Admissible Region.

Figure 7.23. Orbital elements of the targets

The simulation is run for The FOV restriction for LEO objects was described in

section 5.3.1. The clutter is modeled similarly as described in the previous section.

The simulation is run for 135 time steps with each time step equal to 60 seconds.

The design parameters for the birth model are changed to σρ = 200, σρ̇ = 0.5 since

the Admissible region shrinks as compared to GEO objects and hence smaller design

components have to be taken to have necessary number of GM components to fill
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out the Admissible Region. The following figure shows the FOV movement for this

scenario. Figure 7.25 displays the results for this case.

Figure 7.24. Field of View movement

Figure 7.25. Comparison of Error

It can be seen from figure 7.25 that the model M3 works better compared to the

model M1. However, the error contrast at the end of the time interval (after the

40th time step) is not very high because the true pD of the LEO objects used in the

simulation is closer to one in the time interval considered (see figure 7.26) i.e., if the

objects’ area is equal to the mean of the Gaussian distribution (it is 1 here), their pD
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is mostly closer to one. Hence, a variation in area won’t affect the pD drastically and

both the models will give similar pD estimates. The following figure shows the true

pD for the objects at the mean area.

Figure 7.26. True pD of the objects at the mean area

The following figures (figure 7.27, figure 7.28, figure 7.29 and figure 7.30) show the

cardinality and state plots for two cases of area samples (area of objects = 0.6745,

0.9672). Part(a) shows the plots when model M1 is applied and part (b) shows the

results when model M3 (7 components) is applied. Figures 7.27, 7.28 show the results

when the area of the objects is 0.6745 whereas figures 7.29, 7.30 show results when

the area is 0.9762. It can be seen from the figures that the performance of model M1

and model M3 is similar. This is because the true pD (see figure 7.26) of the objects

at the mean area is closer to one. Hence, unless the area of the objects is much lesser

than 1, both the models will give the same pD estimates. This is one of the reason

why 100 cases of area are considered since less number of area samples don’t depict

the complete picture.
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Figure 7.27. For object ground-based tracking scenario, with re-
stricted FOV, without clutter and with object birth, area of objects
= 0.6745, plots show cardinality as a function of time obtained by ap-
plication of models M1 and M3, blue line is the truth, in red (Model
M1) and green (Model M3) the estimates: a) pD estimate obtained
by model M1; b) pD estimate obtained by model M3

Figure 7.28. For object ground-based tracking scenario, with re-
stricted FOV, without clutter and with object birth, area of objects
= 0.6745, plots show state estimates (position x,y,z) as a function of
time obtained by application of pD models M1 and M3, black line is
the truth, in red (Model M1) and green (Model M3) the estimates:
a) pD estimate obtained by model M1; b) pD estimate obtained by
model M3
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Figure 7.29. For object ground-based tracking scenario, with re-
stricted FOV, without clutter and with object birth, area of objects
= 0.9672, plots show cardinality as a function of time obtained by ap-
plication of models M1 and M3, blue line is the truth, in red (Model
M1) and green (Model M3) the estimates: a) pD estimate obtained
by model M1; b) pD estimate obtained by model M3

Figure 7.30. For object ground-based tracking scenario, with re-
stricted FOV, without clutter and with object birth, area of objects
= 0.9672, plots show state estimates (position x,y,z) as a function of
time obtained by application of pD models M1 and M3, black line is
the truth, in red (Model M1) and green (Model M3) the estimates:
a) pD estimate obtained by model M1; b) pD estimate obtained by
model M3



137

Therefore, it is seen that when there is an uncertainty in estimating the area of the

targets, the filter which doesn’t include the pD uncertainty (model M1) has a lesser

efficiency than the filters which take pD uncertainty into account (models M2,M3).

Also, model M3, i.e., the proposed method works as efficiently as the model M2,

which implements a Monte-Carlo methodology.
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8. SUMMARY AND RECOMMENDATIONS

8.1 Conclusions

Multi-target tracking is an integral part of Space Situational Awareness (SSA).

A method established in other tracking contexts, and also applied to SSA, is the

Gaussian Mixture Probability Hypothesis Density (GM-PHD) filter. An important

component of this algorithm is the probability of detection (pD) which determines

how likely the target generates a measurement. GM-PHD filter, in its original form,

models pD as a state-independent quantity i.e., a constant. It is seen that in SSA,

pD is a state-dependent quantity and also has some uncertainty associated with it.

This research successfully incorporated uncertainty in the pD and also modeled pD as

a state (and therefore) time dependent within the existing GM-PHD framework.

For the application in a SSA system, birth was modeled via admissible regions, and

an extended Kalman filter was used for orbit propagation and update. The objects

were assumed to follow a two-body motion model and for all the test cases, an optical

ground-based single sensor scenario has been used. A simulation scenario in SSA was

designed and the effects of model mismatch in pD in the GM-PHD filter was inves-

tigated. It is seen that the filter’s efficiency is reduced if there is a model mismatch

in pD i.e., if the true pD is state-dependent (as is the case in SSA) and if the filter

assumes pD as a constant, the error in the estimates are not negligible. The filter

either overestimates or underestimates the number of targets in the scene depending

on the mismatch. Also, pD was not modeled as a state-dependent quantity in any

of the previous research work done in SSA. Hence, a variation of the GM-PHD filter

which models pD as state-dependent and also which incorporates pD uncertainty was

developed. The uncertainty in pD was created from an uncertainty in the reflecting

area of objects. The area of objects was assumed to be a Gaussian random variable.
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Since the relationship between pD and area is non-linear, pD is linearly approximated

as a Gaussian Mixture.

The proposed method to incorporate uncertainty was validated with simulations and

it was seen that it performs better than the filter which doesn’t accommodate uncer-

tainty in pD.

8.2 Recommendations

There are still many variations that can be made to the GM-PHD filter to use it

in a typical SSA scenario. The proposed method can also be extended to the CPHD

filter which propagates the PHD as well as the cardinality density. As mentioned

before, the pD model used in this work is modeled as a function of the sensor proper-

ties and the amount of light reflected by the object. For the Earth-Orbiting objects,

especially the objects in LEO, the shadow of the Earth also has to be considered in

modeling pD since without the irradiation from the Sun there would be no reflection.

Also, the amount of reflected light from the objects also depends on the material

of the reflecting surface which is also very difficult to estimate without a complete

knowledge of the object. Hence, there is an uncertainty in the estimating the reflec-

tivity of the material too. A future work could look into exploring a new model for

pD which considers these factors.

All the objects considered in the simulations are assumed to be under a Two-Body

motion. However, in reality, space objects are influenced not only by Earth, but also

experience perturbations from gravitational pull of the Moon and Sun and solar radi-

ation pressure. These perturbations would influence the measurements obtained and

hence, to account for this, the motion model has to be changed.

As was discussed above, the Admissible Region (AR) was used to design the Birth

model for the GM-PHD filter. The AR considered here is an unconstrained one, i.e.,

the region lists all the possible Earth Captured orbits for a particular measurement.

However, in some cases, there is partial knowledge available on the objects to be
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tracked. For example, consider the case where some specific GEO objects are be-

ing tracked. Then, further constraints can be applied to the AR which reduces the

computational burden of the filter. In the case of GEO objects, a semi-major axis

constraint or a eccentricity constraint can be applied. Constrained Admissible region

methods are detailed in [43] and [44]. Future work can use the constrained admissible

regions for designing the birth model.
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