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ABSTRACT 

Author: Novak, Lance, C. MS 

Institution: Purdue University 

Degree Received: August 2019 

Title: Network And Topological Analysis of Scholarly Meta-Data: A Platform To Model and 

 Predict Collaboration 

Committee Chair: Tamara Kinzer-Ursem; Pete Pascuzzi 

 

The scale of the scholarly community complicates searches within scholarly databases, 

necessitating keywords to index the topics of any given work. As a result, an author’s choice in 

keywords affects the visibility of each publication; making the sum of these choices a key 

representation of the author’s academic profile. As such the underlying network of investigators 

are often viewed through the lens of their keyword networks. Current keyword networks connect 

publications only if they use the exact same keyword, meaning uncontrolled keyword choice 

prevents connections despite semantic similarity. Computational understanding of semantic 

similarity has already been achieved through the process of word embedding, which transforms 

words to numerical vectors with context-correlated values. The resulting vectors preserve semantic 

relations and can be analyzed mathematically. Here we develop a model that uses embedded 

keywords to construct a network which circumvents the limitations caused by uncontrolled 

vocabulary. The model pipeline begins with a set of faculty, the publications and keywords of 

which are retrieved by SCOPUS API. These keywords are processed and then embedded. This 

work develops a novel method of network construction that leverages the interdisciplinarity of 

each publication, resulting in a unique network construction for any given set of publications. Post-

construction the network is visualized and analyzed with topological data analysis (TDA). TDA is 

used to calculate the connectivity and the holes within the network, referred to as the zero and first 

homology. These homologies inform how each author connects and where publication data is 

sparse. This platform has successfully modelled collaborations within the biomedical department 

at Purdue University and provides insight into potential future collaborations.  
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1. INTRODUCTION 

The cumulative work of researchers, scientists, and their collaborative work drive invention and 

innovation. The network of these collaborators is extensive, unpredictable, and not rooted in any 

institution or discipline. As such, the ability to discern ongoing and potential work within a field 

is complex and under consistent investigation. These investigations have been shown to provide 

industrial and academic gain [1]. Early in scholarly communication and publishing there was a 

need to identify and measure work within a field [2]. These measurements, called bibliometrics, 

result from the analysis of scholarly meta-data of any given work. The meta-data of a work consists 

of its citations, keywords, subject area, and other associated characteristics that define its place in 

a discipline. Bibliometrics provide insight into the local impact and evaluation of an article within 

its discipline but fails to capture the global direction and collaborations associated with that 

discipline. As a result, scholarly analysis has recently investigated the application of network 

analysis to understand the global landscape of a discipline [3]. The evolution of scholarly analysis 

has evolved dynamically with technology, and understanding this evolution lays the foundation 

for the next step in scholarly network analysis. 

 Bibliometrics and networks 

The industry of publishing is continuously growing, and with it the companies providing predictive 

bibliometrics have developed a market worth 10 billion USD in 2017 [4]. In academia, these same 

predictive metrics are being used to curate bibliographies for researchers and provide efficient 

search results to advance research. In both sectors there are many efforts to model the complex 

interactions of researchers. However, the importance of analyzing scholarly communication has 

not always been a priority and is an ever-evolving field.  

 

The first recorded measure of scholarly works is a study in 1917, where Cole and Eales developed 

the first systematic review in history [2]. Specifically, their goal was to outline the history of 

comparative anatomy from the sixteenth century to 1860, and then apply statistical methods to 

determine the impact of said works [5]. Others point to the work of Campbell, who studied 

grouping of subjects in chemistry publications in 1896 [6]. The investigation of bibliometrics 
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continued to evolve [2], however with the digitization of publications there was a paradigm shift 

in accessibility. Electronic resources provided accessible means to scientific output, and with this 

accessibility came an overwhelming need to organize them systematically. Scholarly databases 

rely on publishers, keywords, authors, and titles to catalogue literature; they continuously update 

citations for each piece of literature, track users, and relate articles by user popularity. These 

standard search engine procedures facilitate the correlation of papers, and the generation of new 

and proprietary bibliometrics [7]. Opposed to these proprietary metrics are open source tools. 

These tools range from classically simple, such as citation networks, to computationally complex, 

such as machine learning applications [3], [8], [9]. 

 

Common between all open source tools is the need to retrieve data and acknowledging the source 

of data is necessary for their evaluation and verification. Most scholarly data mining sources have 

a formal application programming interface (API). An API is a specified request for a developer 

to access data, especially so that the data mining can be formally monitored and not slow the 

normal use of the provider’s service [10]. There are many API systems available and some example 

sources include Elsevier, Clarivate, and PubMed. The efficiency and standardization of scholarly 

API requests enables the precise data acquisition for any and all meta-data types. These precise 

methods permit repeatable results, and the efficient retrieval of data. 

 

Recent co-authorship, citation, and keyword trends have been investigated by homologous and 

heterogeneous networks [3], [9], [11], where a homologous network consists of only one data type 

and a heterogeneous network consists of several. For instance, Sun et al show explore how authors 

can be linked by authorship, common collaborators, common venues, common publishers, and by 

citation [3]. In contrast, a citation network only consists publication nodes where edges indicate 

which article cited which. The complexity of the heterogeneous network provides an intricate view 

into scholarly communication but increases the computational complexity of network analysis. 

Likewise, the homogeneous network provides a simpler view of scholarly communication through 

a single lens but doesn’t explore all the features that result from scholarly communication. Both 

of these methods are being pursued in the current research landscape [3], [9], [11].  
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 Network analysis 

Publications are central to representing any scholar’s work, and their role in scholarly networks 

permeates through every subtype of network; citation, keyword, co-authorship, publisher, venue, 

and institutional networks all rely on publications. It follows that when representing an author’s 

academic profile, the most important factor is their body of publications. The current application 

of network analysis leverages the topology of the network to explore co-authorship and expert 

identification [3], [12]. These topics are explored by leveraging the connections formed by 

publishing. Each publication has a venue in which it’s discussed, a topic it covers, authors who 

write it, and other publications that it cites. The exploration of these systems gives insight into the 

current use of publication meta-data, and how each can be used to depict scholarly communication 

through the lens of publications.  

 

The use of network analysis to find co-authors uses a heterogeneous network that is composed of 

authors, publications, venues, and topics; it then applies machine learning to determine co-author 

relationshiops. Authors, publications, and venues are all retrieved from a scholarly database; 

conversely, the topics for each publication are determined by computationally extracting 

information from the title of the publication [3]. After the meta-data is curated and structured, the 

network is built by identifying how each publication connects to the authors, venues, and topics 

[3]. Next, Sun et al investigates the degree of separation between any two authors, otherwise 

known as the number edges between any two authors [3]. The paths that connect authors can 

include shared publications, venues, colleagues, and topics. These relationships are then fed to a 

supervised model to predict which authors are the most likely to be co-authors [3].  

 

More recently this group used network analysis to identify experts within a given discipline; this 

analysis furthers the complexity of the heterogeneous network by introducing keywords. As before, 

the heterogeneous network consists of authors, publications, and venues; however, the “topics” of 

the previous publication has been replaced with an object called “terms” [12]. “Terms” refers to 

the set of keywords for each publication and connects publications based on a method called 

concept hierarchy. In short, this work identifies the hierarchy of keywords and uses this to connect 

publications of varying concepts. For instance, the discipline of Biomedical Engineering has a sub-

discipline called Biomolecular Engineering, and normally it wouldn’t be possible for a computer 
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to understand this relationship. However, the local training of a word embedding makes it possible 

for computers to understand the hierarchy of disciplines [12]. For reference, the definition and 

explanation of a word embedding can be found in the technical introduction. Related concepts are 

connected to one another and the publications are connected to their terms, venues, and authors 

[12]. The resulting network is analyzed with a random walk. This analysis traverses the network 

by a random path and tracks the citation, number of edges, and interactions of each publication 

within the network [12]. This data and the concept hierarchy are then used to rank the authors 

within a discipline or sub-discipline. This implementation of keyword analysis facilitates the 

linking of semantically similar disciplines and achieving a higher resolution of expert 

identification [12].  

 Landscape summary and gap analysis 

The recorded evolution of bibliometrics and analysis of scholarly communication spans the last 

100 years of scientific investigation [2]; this ever-expanding investigation has recently begun to 

predict collaborations and experts within a field using publication meta-data [3], [12]. First 

beginning with a simple statistical analysis of subject clusters in Chemistry, bibliometrics have 

become an integral part of the publishing system [6]. Digital articles and API systems have since 

increased the accessibility for these analyses and laid the foundation for network analysis. Recent 

work in network analysis has developed both homogenous and heterogeneous networks that model 

scholarly communication [3], [9], [11], [12]. These models detect the underlying phenomenon by 

leveraging the existing connections between publications and their citations, venues, authors, and 

keywords. Of these meta-data types, only keywords are limited by semantic connections and 

meaning. Sun et al doesn’t address the use of keywords in their network, instead choosing to focus 

on topics that are generated from the title [3]. Conversely, the first investigation into connecting 

keywords based on semantics is accomplished by Gui et al [12]. Their solution of concept 

hierarchy is the latest step in understanding the use of keywords at the intersection of natural 

language and mathematics [12]. However, Gui et al only apply their concept hierarchy to 

disciplines, which precludes technique-, method-, and technology-based keywords from being 

considered in the analysis [12].  
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The current landscape of scholarly network analysis has set the stage for the development of a 

semantically defined keyword network; more specifically, this novel network connects authors 

through related disciplines, techniques, methods, and technologies. The topological investigation 

of topics by Sun et al is one of the few scholarly networks to explore the basic topology [3]. 

Likewise, Gui et al applies natural language processing to understand the semantic relationship of 

some terms within each publication’s keyword set [12]. In this work we will capitalize on this 

opportunity and advance the understanding of keyword networks by analyzing the semantic 

relationship between authors’ keywords. Our system is comprised of three basic components: the 

data retrieval system, the embedding of the keywords, and the mathematical analysis of the 

embedded set. The data retrieval system enables this work to apply to any set of faculty, which 

provides future scalability and investigation. After retrieval, the set of authors, their publications, 

and their keywords are formally structured, and the keywords are transformed to mathematical 

objects by a word embedding. Lastly, these mathematical objects are subjected to k-means 

clustering and topological data analysis, the details of which are all explored in the technical 

introduction. This system of three basic components can be seen below as a procedural pipeline in 

figure 1.  

 

Figure 1 System components and their contents. This work leverages word embeddings and 

topological data analysis to make a novel contribution to keyword network analysis. This 

processing method facilitates the connection of keywords by semantic proximity and 

results with a topological output that can be analyzed with mathematical tools. 
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2. TECHNICAL INTRODUCTION 

Keyword choice is at the discretion of the author in most fields; these uncontrolled vocabularies 

are prohibitive when linking any two authors because only identical words can form a connection. 

Some examples of uncontrolled terms are acronyms, plural and singular forms, typos, and 

synonyms. There is a clear need to combat uncontrolled vocabulary, and until recently it was only 

possible with supervised data cleaning and adding controlled terms after publishing [13]. 

Unsupervised language analysis has only recently become possible by machine learning, and more 

specifically the application of word embedding platforms [14].  

 Word embedding 

Word embedding is the process of mapping words to high dimensional numeric vectors, such that 

these vectors carry semantic information. Word embedding platforms must apply machine learning 

algorithms to capture semantic information and require a large volume of training literature [14], 

[15]. This training can take two forms, the first is when embedded vectors are changed 

continuously while the machine reads [15]. The second is when the embedded vectors are only 

defined after machine reading is completed [14]. This study leverages Global Vectors for Word 

Representation (GLoVe), a Stanford University platform for word embedding which defines the 

vectors post-reading [14]. The GLoVe platform provides several pre-trained embeddings for use 

in common natural language processing (NLP) problems, these sets are trained on all of Wikipedia, 

the common crawl, and Twitter. The common crawl is itself a platform that collects webpage 

information for the purposes of providing datasets to data mining and NLP [14]. However, it 

doesn’t filter any websites it pulls into its dataset or scrutinize the contents for accurate information. 

Our objective is to embed unique keywords that are applied in a scholarly context; both Twitter 

and the common crawl are unregulated and may result in detrimental correlations. Moving forward, 

Wikipedia is the only pre-trained embedding that is compatible with our work. Moreover, as an 

exploratory study of word embeddings on scholarly text, and with no such pre-trained embedding 

existing, we choose to employ the Wikipedia pre-trained 50-dimensional embedding [14]. 
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Figure 2. A word embedding takes a list of terms or phrases and converts them to numerical vectors 

whose position is determined by semantic relationships. Above the relationship to 

technology versus terrain is depicted graphically on two dimensions for a given vocabulary 

set, as more terms are added the need for more dimensions will increase to accommodate 

all semantic relationships. 

 

Embedding a vocabulary transforms each word to a numerical vector, these vectors must be a high 

dimension to accurately convey every meaning a word can have. As described in Figure 2, there 

is a set of 2-dimensional vectors that can be represented as scatter plot in 2-dimensional space. By 

adding a third axis, we can easily imagine how the additional dimension would facilitate the 

accurate embedding of more words. Even more so, adding more axes allows us to accurately 

represent the complex semantic relations of language. For example, a third axis may reveal that 

“landscape” is closer to terrain than technology in the third dimension. Consequently, each 

additional axis brings an additional dimension to the vectors, so when referring to a 50-dimensional 

embedding, this translates to a vector of the form <n1,n2,…,n50>. Like the 2-dimensional vector in 

2D space, a 50-dimensional vector is represented as a point in 50-dimensional space, and a set of 

vectors result in a point cloud.  

 

Transforming the data to a set of 50-dimensional vectors is pivotal to the analysis of the dataset 

and prepares them to be analyzed mathematically. The abstract relationship of each word is now 

formalized in the 50-dimensional Euclidian space. As an instance of a Euclidean n-space it carries 

all the functions and properties of a Euclidean space. Natural functions of this space include the 

Euclidean distance, arc cosine, dot product, and many more [16]. Note that the provided 

vocabulary is responsible for generating the point cloud and this vocabulary can be any set of 
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keywords, thus the point cloud has no defined orientation. With these properties in mind, we can 

begin to identify what analytical tools and frameworks are candidates for our point cloud analysis.  

 Clustering: k-means 

Since the data is unorientable, the natural first step is to detect any clusters within the point cloud; 

since each point corresponds to a keyword, their clustering may indicate disciplines or subgroups 

within the data. In our methods we will apply both k-means clustering, and k-means k optimization. 

The k-means clustering algorithm requires two inputs, the number of expected, k, clusters and the 

point cloud to be clustered [17]. Clustering begins by initializing k centroids randomly within the 

same space as the data. The data points nearest to any given centroid are designated to be part of 

that centroid’s cluster. The true center of each cluster is then calculated, and the centroid of that 

cluster is translated to its cluster’s true center. Once again, each data point’s cluster group changes 

to that of the closest centroid. The true center of each new group is calculated, and again its centroid 

is moved. This process continuously repeats until a given iteration. The validity of the clustering 

is verified by cluster groups remaining the same between iterations [17]. This process can be seen 

in figure 3.  

 

Figure 3 The process of k-means clustering where k = 3. (1) randomly position the three centroids 

on the graph. (2) group the points with the closest centroid by the Euclidian distance. (3) 

calculate the center of each group and reposition the centroid to those coordinates. (4) 

repeat steps (2) and (3) until the groups don’t change between iterations.  

 

(1) (2) (3) 

(4(2)) (4(3)) 
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In circumstances when k is not known, one must first determine the number of clusters 

algorithmically. This algorithm performs k-means clustering with a range of input k, and then 

calculates the sum of squared errors (SSE) of each k iteration [18]. Denote the number of data 

points as n, and say that k ranges from 1 to n. That is, the number of clusters will increase from 1 

to n clusters. It can be assumed that n > 2 because clustering 1 or 2 points is trivial. It’s also likely 

to be visually trivial for any relatively small n, however because it’s mathematically possible we 

will consider all n > 2. When k = 1, the entire point cloud is a single cluster and the SSE is at its 

maximum. As k increases to n the SSE will approach to zero, and finally when k = n the SSE will 

be zero for each cluster. This is because each cluster is composed of only a single point, and thus 

the SSE is 0. According to literature, the accepted method for determining the optimal k is the 

elbow method [18]. This method defines a line between the first and last point of the system. The 

elbow point is then determined to be the observed point of maximum curvature in relation to this 

line [18]. An outline of this process can be seen below in figure 4.  

 

Figure 4 The kneedle algorithm for k-means group optimization. The number of centroids varies 

from 1 to n, where n is the number of nodes. The optimal k is selected by finding macimum 

point of curvature in SSE as a function of k, shown in gold.  

 

 Topological data anlaysis  

The categorization of each word is useful for semantic clustering but limited in its ability to link 

authors by keywords. Recently, Temcinas et al showed the application of topological data analysis 

to be a useful tool for analyzing word embeddings [19].  

 



18 

 

Topological data analysis (TDA) is a relatively new mathematical tool that identifies topological 

features within data [20]. The classic example of a metric space is a Euclidean n-space [19]. Once 

converted, a simplicial complex is constructed on the data. A simplicial complex is a mathematical 

object that is made of points (0-simplex), edge (1-simplex), triangles (2-simplex), tetrahedrons (3-

simplex), and higher dimensional shapes (n-simplex) [20]. The n-simplex notation refers to the 

minimal dimension of that shape, for example a point exists in the 0-dimension, an edge in the 1-

dimension, and so on. When constructing a simplicial complex one can cutoff higher dimensional 

simplices, where the highest dimension is some number m. The resulting structure is then called 

an m-skeleton, for instance a 1-skeleton is a simplicial complex composed of only points (0-

simplices) and edges (1-simplices) [20]. Moreover, simplicial structures are related to each other 

in terms of boundaries, where the boundary of an n-simplex is the (n–1)-simplices that come 

together to form that n-simplex. The boundary of a 0-simplex is simply empty [20]. The 0 to 3 

simplices can be seen below in figure 5, as well as their relationships.  

 

Figure 5 Each simplex for the first three dimensions, notice the boundary (∂) of a tetrahedron is 4 

triangles, the boundary of a triangle is 3 edges, and the boundary of an edge are its two points. 

 

The construction of a simplicial complex on a point cloud can be achieved through several means. 

The most common methods in the literature are the Vietoris-Rips (VR) complex and the Cech 

complex [21], [22]. Both employ hyperspheres to construct their complex and are only 

differentiated by how they define the existence of n-simplices when n > 1. The VR complex will 

automatically form the highest possible simplex when the edges are available, so if 3 edges meet 

to form a triangle, then the VR complex will automatically add a 2-simplex to the complex. In 

contrast, the Cech complex will only form an n-simplex if every hypersphere needed intersects 

one another. In practical terms this means 3 edges could meet to form a triangle, but they would 
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not necessarily contain a 2-simplex. The differences of these two complexes are highlighted in 

figure 6.  

 

Figure 6 The distinction between the VR and Čech complex, a VR complex will always embed 

the highest dimensional feature it can on a set of edges; a Čech complex must have 

intersecting hyperspheres to form its highest dimensional feature. 

 

Notice that the diameter of the hypersphere, epsilon (ϵ), is the decisive element of the complex 

structure. Small diameters lead to less simplices, and the simplices formed are of lesser dimensions. 

Whereas larger diameters lead to more simplices and higher dimensions. The selection of a single 

diameter limits the scope of topological evaluation and no universal ϵ calculation exists. The 

solution is studying the persistent homology of the complex. Like the k-means k selection, a 

persistent homology is defined by varying the diameter of the hyperspheres from 0 to an arbitrary 

cutoff [20]. The persistent homology seeks to understand the evolution of the simplicial complex 

structure and quantifies the ‘persistence’ of a topological feature. An n-simplex’s birth is when it 

first appears in the complex, and its death is when it becomes the boundary of an (n+1)-simplex 

[20]. For instance, a hole of size could have a birth at ϵ = 63, and a new edge at ϵ = 100 forms an 

edge of a triangle. Since the edge has become a boundary of a 2-simplex, its death is ϵ = 100. It 

can then be stated that the edge was persistent for 37 units. Any n-simplex can be persistent for 0 

units, where the birth and death are equal; this means both the n-simplex and its (n+1) counterpart 

came into existence at the same time. A diagram that outlines persistent homology with a 

corresponding network can be seen below in figure 7, here we choose to depict the persistent 

homology with the barcode diagram.  
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Figure 7 A barcode diagram of an example network. H0 is the zero-dimensional homology and it 

reports the number of components for any given diameter by counting the bars vertically 

(e.g. ϵ = 20 has 8 components, ϵ = 60 has 2 components). H1 is the first-dimensional 

homology and it reports the number of holes in the network by bars counting vertically (e.g. 

ϵ = 80 has 1 hole). 

 

The barcode diagram is useful for identifying persistent structures and trends visually. The 

persistence diagram depicts this exact information but in the form of a scatter plot. A point is 

plotted for each simplicial complex, where birth is the x-axis and death the y-axis. Any point that 

lies on the line y = x is a simplex that had 0 persistence, and it’s not possible for any point to be 

less than y = x [20]. An example persistence diagram can be seen below in figure 8, the 

corresponding barcode from figure 7 is plotted to the left for convenience. 
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Figure 8 A persistence diagram is another method to visualize the lifespan of a network. Shown 

here is the barcode juxtaposed with its corresponding persistence diagram. The line y = x 

is displayed to show where simplices are born and die at the same time, this information 

isn’t displayed on barcode diagrams.  

 

In total, the persistence homology is used to identify meaningful structures within the data. 

Depending on the domain of the input, the result of TDA can vary [20]. Structures that tend to be 

interesting are stars, holes, and combined surfaces [20], [23]. A star is when a single node connects 

to many, and those it connected to only connect to it. A cycle is a series of nodes and edges, such 

that the ending and beginning node are the same, and any cycle greater than 3 is a hole. Lastly, a 

combined surface is when multiple triangles join to create a larger 2D object, as seen in the figure 

7 complex. Both the barcode and the persistence diagram are designed to help identify these types 

of structures. TDA can also be used to cluster data, and functions similarly to hierarchical 
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clustering. Specifically, one can observe how the data clusters topologically according to the 

chosen distance function [20].  

 

It’s necessary to benchmark TDA against current methods for clustering scholarly works. As stated 

above, the most analogous system currently in use is hierarchical clustering [17]. Specifically, 

agglomerative clustering is the most like topological data analysis. This is when each data point 

begins in its own category and clusters with its nearest neighbor, which itself becomes a category. 

This process repeats until only one category remains. Hierarchical clustering of keywords can 

leverage the Jaccard distance, which does not employ word embedding [24]. The Jaccard distance 

determines the commonality between two sets. First, take the intersection of the two sets and find 

its length, for a publication’s keywords this means find how many keywords the two have in 

common [24]. Next find the length of the union of the two sets. For publications this is the total 

number of keywords between the two, where no keyword is repeated. The Jaccard distance can 

then be defined as one minus the intersection length divided by the union length. Therefore, if two 

publications had 4 keywords in common and 6 keywords each, then the length of the intersection 

is 4 and the length of the union is 8 (6 + 6 – 4), so the Jaccard distance must be 0.50 (1 – 4 / 8). 

Note that if all the words are in common, then the Jaccard distance is 0 and if none are shared then 

its 1, but this limited interpretation predominantly links co-publishing faculty [24]. The ability to 

predict collaborations is predicated on identifying topics, methods, and technologies that combine 

the interests of unlinked faculty. Finally, the Jaccard distance is susceptible to the same pitfalls of 

the classic keyword network, where typos, acronyms, and uncontrolled vocabulary may result in 

missed connections [24]. Using NLP and TDA tools we seek to circumvent these issues and 

provide meaningful insight into how faculty collaborate, beginning with a test set of the Purdue 

BME faculty.  
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3. METHODS 

 Data retrieval 

Similar to a keyword network, our network initialization requires a set of faculty and the 

institutional affiliation of those faculty. Informed selections from teams, groups, or departments 

are the most representative and unambiguous sets, and are considered the standard input. The lower 

bound for the number of faculty is one, meaning the evolution of a single faculty can be observed. 

There are two optional date inputs that provide a lower and upper bound for publication retrieval. 

If neither field is filled, then all available publications will be retrieved.   

 

Our data is retrieved by SCOPUS API, a service provided by Elsevier [10]. Each author in the 

faculty set has their unique SCOPUS ID retrieved, where each ID is specific to the affiliated 

institution. Using this set of unique author ID’s, we query the SCOPUS abstract API to retrieve 

each author’s entire body of work accessible by SCOPUS. The results of this search return each 

publication’s meta-data, this meta-data is formally labelled with title, keywords, citations, and 

publication date. Each faculty profile is constructed by compiling their publications, and each 

publication is then represented by its set of keywords. As addressed previously, lack of controlled 

vocabulary limits the efficacy of keyword networks. To circumvent the issue of uncontrolled 

vocabularies, we consider a natural language processing approach to network generation.  

 Data metric and filter 

The first step in our natural language processing is to convert each word into high-dimensional 

vectors, a process that is called word embedding. Here we choose to leverage “global vectors for 

word representation” (GLoVe), a word embedding platform that provides pre-trained embeddings. 

Specifically, we selected the Wikipedia pre-trained embedding with 50-dimensions. This 

embedding covers a breadth of topics and contains over 400,000 words. The breadth of topics 

permits the user to input any faculty in any subject area, and the ability to process almost all 

keywords. The limitations of this word embedding will be addressed in the discussion.  
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The raw set of keywords from the data retrieval process are not yet ready to be embedded. Many 

authors use phrases, spaces, acronyms, hyphens, and other types of punctuation. These text 

decorators don’t always occur in the GLoVe dictionary and would prevent words from being 

embedded. The raw vocabulary is parsed and embedded using the following algorithms. Note that 

before each iteration of parsing, we check if the word is in GLoVe. If the word is in GLoVe, it 

won’t be parsed and instead embedded. This is done to ensure that the most complex version of 

the raw vocabulary is embedded.   

 

 

Figure 9 a) keywordEmbedding is the function that is responsible for calling the embedding 

workers, it iterates through each keyword within each publication by each author; it then 

checks and saves any parsed term that is longer than three letters and in the GLoVe 

dictionary. b) wordsetProcessing receives the raw keyword from keywordEmbedding, 

where it removes parenthesis and double spaces; then it iteratively calls word parsing for 

each pre-defined parser. c) wordParsing iterates through each word in wordSet, if the word 

can be embedded it is saved in that state, if it can’t be embedded it is parsed with the current 

parser in wordsetProcessing. 
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After parsing each word and defining the embedded vocabulary, each word can now be represented 

as a unique 50-dimensional vector. Similar to Temcinas et al. [19], we will denote the vector for 

word as vword. The complete set of these vectors is a point cloud in 50-dimensional space. This 

point cloud facilitates the computer’s understanding of context by proximity; however, it also 

results in information loss. For instance, it is no longer clear how many times a keyword is used 

because it can only be embedded once. However, through clustering and data analysis we can 

impose structures on the point cloud and model the hierarchical structure of our data.  

 

Before network construction, we perform k-means cluster group optimization and then k-means 

clustering. The k-means cluster optimization reveals approximately the number of groups that exist 

in the point cloud, and the clustering identifies what category each word is in. With each point in 

a cluster, this aids in the network coloring and visualization later in the platform. Next, we must 

construct the network to embed author centric features into the system. 

 Network construction 

Here we seek to begin network construction, and as such we appeal to topological data analysis 

(TDA). Recall that TDA requires both a dataset and a distance function that can relate any two 

data points in the dataset. Given our dataset is a point cloud in 50-dimensional space, a Euclidean 

n-space, we have access to several different measures of distance [19]. Of the options available, 

we choose the angle produced by any two data vectors in our dataset, otherwise known as the arc 

cosine. It has been shown that arc cosine better identifies semantic relationships between two 

embedded words than any other distance available in Euclidean space [14], [15], [25]. The 

combination of 50-dimensional space and distance function result in the necessary metric space 

that can be leveraged by TDA [19]. Recall that TDA builds a simplicial complex, which not only 

contains points and edges but also faces, tetrahedrons, and higher dimensional simplexes. If we 

remove the faces, tetrahedrons, and higher dimensional simplexes from our construction, then we 

are left with only points and edges; this is called the 1-skeleton of our simplicial complex. Since 

the components of a 1-skeleton are identical to a network, we will refer to the 1-skeleton as a 

network for simplicity.   
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As outlined in the introduction, there are several ways to construct a simplicial complex, and by 

extension a network. As a basis for our work, we consider the Vietoris-Rips (VR) filtration which 

doesn’t require oriented data and is computationally faster than the Cech filtration. As stated in the 

introduction, the VR complex constructs networks by expanding hyperspheres around each point, 

and when two intersect an edge is created. This method of construction, as well as its limitations, 

are outlined in figure 10. 

 

 

Figure 10 a) Canonical VR complex, as ϵ increases more connections will be formed. b) A 

Vietoris-Rips complex on the same point cloud, now with underlying subsets. c) Once 

again, the same point cloud, now formed by subsets that are distinctly different from (b). 

Notice that (b) and (c) have isomorphic topologies because the underlying subsets don’t 

affect hypersphere expansion. 

 

Since the VR filtration is unable to convey keyword subsets it will always construct identical 

networks for identical vocabularies. The underlying cause is twofold, and results from both word 

embeddings and the VR filtration. After training, GLoVe is like a dictionary, where each word 

corresponds to a unique vector in 50-dimensional space. Since the dictionary is pre-determined, 

then a given vocabulary will always be embedded to the same point cloud. The only methods to 

change this embedding are to retrain on a new dataset, or to fine tune the current embedding with 

supplementary texts. Both processes are computationally expensive and require the generation of 

new and unique training sets.  

 

Thus, we choose to consider how the VR filtration constructs a network. The VR hyperspheres 

expand uniformly and without regard to subsets, each having diameter ϵ (figure 10). However, if 
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ϵ could be variably weighted based on subsets, then each network generated would be unique to 

the set of faculty who created the vocabulary. 

 

Here we consider hyperspheres that expand at varying radii, where the radii is dependent on the 

distribution of the publication subspace. We define a publication subspace as the subset of a 

publication’s embedded keywords. To calculate the distribution, we find the distance between 

every point in the publication subspace, then calculate the mean distance and standard deviation. 

An example of this process can be seen in figure 11. Once every publication distribution for every 

author is calculated, we can then define the new data structure that will facilitate network 

construction.  

 

 

Figure 11 The distance between every point is calculated, then the mean and standard deviation 

are calculated. The subspace can now be constructed in terms of standard deviations from 

the mean. As shown above, filtering any edge larger than one deviation below the mean 

results in the leftmost network, which is simply the initial connections between the closest 

words. Following this, the central network filters an edge that is larger than zero deviations 

from the mean, resulting in a network that is just a single component and a 2-simplex (3, 

4, 5). Lastly, we show a network that filters any edge larger than one standard deviation 

above the mean, this network is composed of long connections and two 3-simplices (1,2,3,4) 

and (1,3,4,5).   
 

The resulting data structure is a list of authors who each have a set of publications and a corpus of 

keywords. Each publication has a set of keywords, a mean, and a standard deviation. The author’s 

corpus is defined as the set of keywords generated by the author’s publications. Each keyword has 

the mean and standard deviation of the publication that generates it. If a keyword is generated by 
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more than one publication, we only consider the maximum mean and standard deviation for that 

author’s use of the word. Lastly, we define the distance vector for each word in the author’s corpus. 

Notice, that the distance vector for any word can be redefined in terms of the author’s mean and 

standard deviation for that word. An example of the data structure and distance rescaling is shown 

in figure 12. 

 

 

Figure 12 A faux dataset for downstream examples, f is the transformation function that converts 

Euclidian distances to distributions from the mean. a) The vocabulary of the entire dataset, 

and their indices for the “distances” vector. b) An author profile designed to show that 

duplicate keywords are only redefined within the domain of an author (i.e. Dr. Pascuzzi’s 

data is unaffected by Dr. Kinzer-Ursem’s). c) An author profile designed to show how 

duplicate keywords used by the same author must select the most interdisciplinary paper 

(e.g. protein uses 9.1815 as its deviation). 

 

When considering how all authors contribute to a network it’s clear that subsequent edges between 

two points carry no topological meaning (i.e. once an edge is made by one author, any subsequent 

authors who make that same connection don’t contribute to the topology). However, these 
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subsequent edges still factor into the post analysis for each author’s individual networks and must 

be calculated. This can be depicted for the example data structure as concentric hyperspheres 

around each point, seen in figure 13. We do not consider loops in our analysis, which is an edge 

between a node and itself. 

 

 

Figure 13 Concentric hyperspheres of Dr. Pascuzzi and Dr. Kinzer-Ursem for the embedded 

enzymatic point, notice that Dr. Pascuzzi’s deviation for the word enzymatic (figure 12b) 

is smaller than Dr. Kinzer-Ursem’s (figure 12c), thus resulting in the different radii for the 

same word.  

 

After preparing the data structure and establishing the use of concentric hyperspheres, we can 

finally begin network construction. Notice that the transformed distances are now unique to their 

subsets, meaning the hyperspheres radii are distinctly different from the previous ϵ. As such, we 

now refer to the radius of each hypersphere as eta (η). Naturally, η is initialized at the smallest 

observed standard deviation where an edge occurs, and so we consider this minimal distance to 

correspond to η being zero. In other words, when η is zero there is only the minimal edge set in 

the network. By referring to the data structure in figure 12, we can observe the minimal edge to be 

between chemistry and engineering within Dr. Kinzer-Ursem’s corpus. In contrast, the maximum 

η could be bounded by the global maximal distance deviation; however, an η this large results in 

tenuous connections and the computational complexity exponentially increases. Instead we define 

the upper bound as zero deviations from the mean. In other words, η is 100 when each radius of 

every hypersphere is, at most, the mean distance of its publication subspace. All deviation 

distances between these bounds are linearly scaled to a number between 0 and 100, each with 2 

significant figures. This construction method is demonstrated in figure 14. 
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Figure 14 Continuing with the faux dataset, we now visualize the η method of network construction, 

Dr. Pascuzzi’s edges are colored orange and Dr. Kinzer-Ursem’s are blue. On the top left 

we visualize the network when η = 0 and there is only the minimal edge between vengineering 

and vchemistry, and the bottom left depicts the 1-skeleton of that connection. On the top right 

we visualize the network when η = 100 and all hyperspheres have a radius equal to their 

subset mean, again the bottom right depicts the 1-skeleton of this final structure. Notice the 

nested edges where Dr. Pascuzzi and Dr. Kinzer-Ursem overlap.  

 

This technique of construction determines how many deviations from the mean the radius, η, must 

be to form an edge. Since we know the radius at which every edge forms, we can bucket these 

edges into the corresponding η. The front-end bucketing of edges saves computational time for 

later analysis. For instance, consider the global minimal deviation for the example set, -2.9018, 

which corresponds to η equals 0. Now consider that 0, the upper bound for deviations, corresponds 

to η equals 100, we can interpolate that -1.4509 deviations from the mean corresponds to η equals 

50. The full network dataset is represented in figure 15.  
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Figure 15 The data structure that results from our construction. Where “nodes” is the vocabulary 

set, and each node contains the publication(s) that generated it. Authors is the set of authors 

we are interested in visualizing the connections between. Data contains the η buckets and 

each bucket corresponds to a set of edges that appears at that radius, where each edge has 

equal weight and the author who facilitated the connection.  

 

With the final data structure complete, we can now turn our attention to network analysis. In the 

next section we will consider network visualization, curating publications from networks, 

embedding higher dimensional topological features, and using those features to predict 

collaborations.  
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 Output 

3.4.1 Visualization tool 

In this section we seek to analyze and dynamically visualize the constructed network. We 

exclusively employ JavaScript with data visualization packages to facilitate network visualization 

and web-app development. The packages and their roles in the visualization are outlined here.  

1. D3: dynamic data representation in JavaScript for web app visualization [26] 

2. Three: enable the creation of unique geometries and scenes for animations [27] 

3. 3d-force-graph: a package that enables 3D force graph visualization; dependent on D3 and 

Three [28] 

To initialize a visualization, the 3d-force-graph engine requires a set of nodes and a set of edges. 

By default, this visualization is a static representation of the nodes and edges. The default settings 

allow the user to zoom, pan, and rotate the 3D environment. Other default features include 

automatic node and edge coloring, node and edge size, and node identity on mouse hover. 

In our visualization we retain these features. The nodes are colored per their k-means grouping, 

which gives a general sense of their proximity; the edges are colored to indicate which author 

generated them. In addition, we developed interactive systems to facilitate network exploration. 

Our visualization allows the user to filter edges that appear after a certain η, we refer to this tool 

as the η slider. By default, our visualization removes any node that doesn’t have an edge. The 

initialization of the graph is set to an η equal to 15, an arbitrary number that facilitates efficient 

rendering. The ability to filter edges and nodes is not native to 3d-force-graph and is a development 

of this project. We extend the ability to filter to authors as well, allowing the user to remove authors 

by checkbox. An instance of the visualization can be seen below in figure 16, where the η slider is 

set to 40.  
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Figure 16 An instance of the 3D 1-skeleton visualization. The bottom right corner contains the η 

slider, allowing full control over network connectivity. The top right corner contains a list 

of checkboxes that allows the permutation of authors and the display of the point cloud. 

Lastly, the top left corner contains a side menu where the user can save a custom 

vocabulary. 

 

As shown above, the visualization environment allows the user to customize the upper bound of 

η, the faculty who are displayed in the network, a unique vocabulary, and if the point cloud is 

displayed. The use of faculty selection, vocabulary generation, and point cloud display can be seen 

below in figure 17. 
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Figure 17 a) A visualization of when an author is removed from the figure, allowing the nodes to 

remain gives insight into the deleted author’s impact. b) A visualization of the entire point 

cloud, which helps the user understand the volume of connections still not made. c) An 

instance of adding a word to the custom vocabulary window, in the top left corner there is 

a download button for downstream analysis 

 

Each feature furthers the exploration of the network, allowing the user to view any author 

permutation from their chosen η filtration. Following the connectivity of the network, the user can 

identify keywords and save them to their custom vocabulary bank. This qualitative network 

analysis and exploration is limited by the user’s ability to traverse complex networks. For example, 

figure 17 analyzes how seven Purdue faculty connect with all the keywords used by the biomedical 

engineering department. This example network of 1,715 words quickly grows with η and any 

interesting connections become indiscernible to the human eye. As a result, we developed several 

computational methods to identify the connections that result in useful topologies. The first of 

which is the vocabulary download option seen in figure 17c.  



35 

 

3.4.2 Curating publications 

Once an interesting topological feature has been identified in the network, one can select nodes 

that generated it and save the corresponding keywords to the custom vocabulary bank; ultimately, 

this results in a curated stack of publications. Specifically, the option downloads all publications 

use at least one keyword in the custom vocabulary. Resulting in a set of uniquely filtered 

publications, which can’t be obtained by existing keyword search platforms for three distinct 

reasons. First, the set of publications is generated only by the faculty within the system, resulting 

in a narrowed scope of people within the institution. Second, each publication only needs one of 

its keywords saved to the custom vocabulary to be pulled, resulting in a wide spectrum of 

publications. Lastly, the set of nodes selected is a result of topological data analysis, the varying 

scope and features of which provide unique connections between publications. One such 

topological feature is a star, a network component where all but one nodes are exclusively 

connected to a central node. A star can be seen below in figure 18 and was generated using the 

augmented BME faculty test set. Once each term in the star is saved to the vocabulary list, we can 

calculate the Jaccard distance for each publication in the downloaded set. Recall from the 

introduction that the Jaccard distance calculates the number of shared terms divided by the number 

of all terms between any two publications. We calculate the Jaccard distance between all 

publications in the custom bibliography, which results in a Jaccard matrix. This matrix is processed 

to display the hierarchical clustering, allowing us to visually observe the similarity of each 

publication from our keyword selection, the clustering output will be discussed in more detail in 

the results.  

 

Figure 18 An example of a star from the BME test set shown in figures 14 and 15. Each keyword 

in the star is associated with a list of publications. 
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Here we choose to explore the star as a topological feature due to its significance within our system. 

In figure 18 and in our network, the central node of the star connects to eight different nodes. These 

orbital nodes exclusively connect to the central node, which is interpreted as all nodes being related 

only through that keyword. For example, in figure 18 all the orbital keywords are connected to 

“pathway” but not each other, this indicates that “pathway” is related to a diverse group of subjects 

that aren’t as semantically similar. This cluster of nodes shows the grouping of distinctly different 

subjects about one central idea.  

 

After clustering, the custom set of publications is converted to a MEDLINE format, which we 

confirmed to be compatible with bibliography software [29]. This bibliography is curated to group 

publications together based on the Jaccard distance, and these groups are then ordered from 

greatest to least by average citation. So, a group of 4 publications, where the average the number 

of citations is 10 will be placed above a group of 8 with average citation of 5.  

3.4.3 Topological Toolkit 

The first step in classifying topological structures is the ability to efficiently identify them. Similar 

to the visualization output described previously, the input to our topological toolkit will be the 

network data structure, e.g. the structure seen in figure 15. Most topological analysis toolkits are 

for the theoretical study of topological data analysis by mathematicians, and those that are for the 

use of the public are proprietary. Here we create a suite of topological analysis tools for the explicit 

use with our data structure, these tools are able to calculate the zero-dimensional homology and 

the first dimensional homology of our network (i.e. connectivity and 2D-faces).  

 

The 0D homology is simply how many components are in the network at a given time. For example, 

two nodes that are not connected are two separate components; if an edge is put between these 

nodes, then there is only one component. Therefore, when we initialize the network on n nodes 

(where n is the size of the vocabulary), and at η equals zero, then there are n-1 components because 

only one edge exists at η equals zero. As η is increased, each edge is added incrementally to the 

graph, and if the edge connects two separate components, then they are concatenated to one 

component. Since each η corresponds to a list of edges, each edge is added one-by-one in the order 
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of that list. If the new edge connects two nodes within the same component, then this doesn’t affect 

the 0D-homology. 

 

The purpose of the 1D homology is to identify cycles within the network. A cycle is only possible 

if the newly added edge connects two nodes that already had one pre-existing path between them. 

In other words, the 1D homology isn’t affected by edges that connect two separate components. 

Therefore, if the two nodes exist in the same component, the new edge results in at least one new 

cycle. More precisely, the number of pre-existing paths between two nodes, call this p, is exactly 

the number of cycles after adding the new edge, therefore the number of cycles is p. The process 

flow for 0D and 1D homology calculations can be seen in figure 19.  

 

Figure 19 When a new edge is added to the network it undergoes a test to determine if it will join 

two components, or if it will join two nodes in the same component. Notice the two 

components are labeled 14 and 6, the label of the resulting component will always take the 

“younger” component’s label. Notice the intra-component edge results in the creation of a 

new cycle, and a reduction of the existing cycle.  

 

While the inner mechanics of 0D homology calculations are adequately outlined in figure 19, the 

1D homology requires more intricate processes. Clearly intra-component connections result in 

cycles; however, simply counting these connections leaves the cycle size and elements unknown. 

Before we investigate the process, the following notation and functions in table I are critical to 

describing our method.  
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Table 1 The mathematical notation that to be used in figure 20. 

ej The new edge being added to our network 

S The component that contains ej 

u First node of edge ej 

v Second node of edge ej 

P The set of paths between u and v, excluding ej 

xPy The path from x to y 

pmin The path with minimal length in P 

N(x) Neighbor function, returns the next layer of neighbors for a given set of vertices 

x∩y Intersection function, returns the intersection of the sets x and y 

p∪ej The union of a path p with edge ej 

x∘y Difference function, remove x∩y from x and y and return the two distinct sets 

Assume that u and v are within the same component, else they can’t form a cycle but only a new 

edge between two separate components. Also note that u and v have no edge between them, else 

no new cycle would be created by their joining. Therefore, ej must be the first edge between u and 

v, and there must be at least one path that connects u and v. Next, we seek to identify a minimal 

path between u and v. The minimal path between u and v is found by recursively calling the 

neighbor function from both the u and v direction. The first instance in which the two outputs 

intersect is the set of minimal paths. We require only the first minimal path in the set, call this path 

pmin. Therefore, the addition of edge ej results in the newest minimal cycle of pmin∪ej, call this cycle 

C. Every cycle that contains the path pmin is reduced by taking the disjoint union with cycle C. In 

other words, by taking the disjoint union of C and all cycles that contains pmin we replace pmin with 

ej, thus reducing the cycles. The process of minimal cycle detection and disjoint cycle reduction is 

shown below in figure 20. 
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Figure 20 The detection of all cycles begins with an intra-component edge. Then a breadth-first-

search (BFS) algorithm is implemented symmetrically from both ends of the new edge. 

The first instance in which the two BFS trees intersect (e.g. the gold arrow) is midpoint 

between them, call it m. Then pmin is the union of the paths uPm and mPv; adding the edge 

ej to this shortest path creates a new minimal cycle. The minimal cycle is then used to 

reduce every other pre-existing cycle by taking the disjoint union of all cycles that contain 

path pmin.  

 

Now that our process of 0D and 1D homology computation is understood, we can leverage this 

information to observe connectivity, gaps, and author growth as a function of hypersphere radii. 

This information is further expanded on in our exploration of 0D and 1D homology application.  

3.4.4 Homology applications on networks 

Lastly, we investigate the 0D and 1D homology with barcode and persistent diagrams. We use a 

barcode diagram to visualize the 0D homology, where we can track how network connectivity 

increases as a function of hypersphere radius. Normally, a barcode diagram has a horizontal line 

spanning from the birth radius to the death radius for each component. However, we know that 

every node is born at radius zero, therefore the only relevant information is component death. 
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Therefore, we instead choose to plot a point at the death radius. The visual justification for this 

choice can be seen below in figure 21. 

 

Figure 21 All nodes are born at η = 0, therefore the bars of the barcode are unnecessary because 

the same information is shown by plotting the point of death for that component, shown by 

the line in black.   

 

The barcode diagram above shows how all the authors contribute to building a network on the 

point cloud of the embedded vocabulary. However, since we used concentric hyperspheres on an 

author-by-author basis, we can visualize how quickly individual authors connect to each node on 

the network when they are alone. An example of this diagram can be seen below in figure 22, the 

analysis of these figures will be discussed in the results section.  



41 

 

 

Figure 22 By plotting only the points of death for each component, we can visualize multiple 

network permutations at once. Shown above is the collective H0 for authors 1 through 4, 

as well as how each individual author would construct their H0 if they were alone. 

 

The 0D homology is better visualized by the barcode because of the uniform birth of its 

components. Meanwhile, the 1D homology has varying births and deaths. Visual inspection of a 

1D homology barcode diagram is possible when there are approximately 101–102 nodes, however 

our system requires analysis of networks on 102–103 nodes, call the number of nodes N. Since 

maximum number of cycles is ( )3
𝑁  the complexity of the 1D homology increases exponentially 

with N, which means the number of elements on the y-axis of the barcode also increase 

exponentially. Therefore, we instead consider the persistence diagram, which visualizes a 

homology on axes which are independent of N. An example persistence diagram can be seen below 

in figure 23 for our test dataset.  
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Figure 23 This is the H1 output for the collective authors (1-4) and for author 1 plotted on a 

persistence diagram. The density of the data is prohibitive for analysis, and we will explore 

a density plot of these diagrams in the results.  

 

Lastly, we explore the 0D homology with a weighted scoring. Until now we have analyzed the 

network from just an edge perspective, here we reorient and consider the interaction of nodes and 

edges. For notation, we will be using the term investigator to refer to a faculty member of interest, 

and the remaining faculty will be called members. The investigator and all members have their 

distinct corpuses, and the investigator has a dictionary of all the members and their scores, 

initialized at zero. Here we seek to rank the faculty set as collaborators of the investigator by 

determining how early and frequently the investigator forms edges with other members’ keywords. 

By iterating through the list of filtered edges we can see at what η an edge is formed between two 

words, and what investigator is responsible for the edge. The source node of this edge must belong 

to the investigator, while the target node belongs to at least one author. Should the target word 

only belong to the investigator, then we do nothing. However, if the target word belongs to other 

authors, then we add 100 – η to the score of the investigator-collaborator score defined earlier. 

Thereby ranking how the investigator connects with each member of the faculty set. Moreover, we 

track how each word contributes to the final scores between each investigator and collaborator, 

allowing the user to probe into what keywords resulted in the ranking. For the sake of consistency, 

each collaborator score is rescaled between 1 and 0 by dividing by the maximum score for the give 

investigator-collaborator relationship. The scoring process is shown below in figure 24.  
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Figure 24 Author 1 has a corpus with words “genomic” and “protein”, author 1 also has a list of 

the other faculty in the system and their respective corpuses. As connections are formed 

between author 1’s nodes and the others, we sum the scores of those connections. For 

authors who use the exact same word, we give them score that connection as 100. For 

example, vprotein is used by both author 1 and author 2, so they immediately share a score 

of 100. Then, vgenomic forms an edge with vprotein at η = 20, which results in an additional 80 

points for author 1’s scoring of author 2 (but not vice versa), for a total score of 180. This 

process continues until η = 100. After which, the scores are rescaled between 1 and 0 by 

dividing by the maximum. We are then able to plot a ranking of potential collaborators for 

author 1. In addition, we can also plot a rankings of the keywords used by another author 

as they pertain to author 1.  

 Results and discussion 

To demonstrate the application of TDA results in an accurate collaboration model we have selected 

a test dataset that is verifiable at the Purdue campus. This dataset is the most recently published 

Weldon School of Biomedical Engineering (BME) faculty list [30]. In addition to the BME faculty, 

we imported Pete Pascuzzi, Loran Nies, and Giulio Caviglia to investigate the impact of external 

authors. Recall that the SCOPUS API data retrieval is limited to faculty affiliated with Purdue, so 

faculty who have yet to publish with Purdue will be removed from the list. After data retrieval, the 

publications of each faculty member were processed with the methods described in section 2. 

When constructing the network, we only allow a small set of faculty to form edges. This subset is 
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known as the selected faculty set and allows us to understand the keyword network from their 

collaborative perspective. The investigation of these select faculty on the BME network allows us 

to understand how each member is related in the greater context of BME. For terminology, the 

BME point cloud is the keywords of all the BME faculty, and not that of just the selected faculty. 

The output of this processing was also shown in the methods, but the exact interpretation and 

relevance will be elaborated here.  

 

The first output to interpret is the custom keyword vocabulary from the network visualization tool. 

The custom vocabulary is the most subjective output of our system because it relies on user input. 

Since we seek to verify the system, we only consider the ideal use of the tool. Recall that figure 

18 contained a star, the structure where a single middle node exclusively connects to satellite nodes. 

Stars have been shown to be important points of intersection for data clusters [23]. Once each word 

in the star from figure 18 is saved, we retrieve all publications that use any word in the selected 

set. We consider the resulting set of publications as a topological cluster of articles. To benchmark 

this technique will investigate the topological cluster with classic clustering techniques. In figure 

25 we show the agglomerative clustering of this set with respect to the Jaccard distance.  



 

 

 

4
2
 

 

 

 

 

 

 

Figure 25 Agglomerative clustering of the publications who generated the star in figure 18. Blue indicates clustering above 0.9, and 

non-blue indicate clustering before 0.9. This figure is composed of the 23 publications that contained at least one keyword from figure 

18.  
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The limitations of hierarchical clustering are clearly depicted above. There are 23 publications 

shown above, 12 of which are works of a single author’s lab. This author, Dr. Ladisch, has a total 

of 21 publications affiliated with Purdue University at the time of this data collection. Meaning, 

the agglomerative clustering above shows no distinct clusters for over half his body of work at 

Purdue University. Naturally, this is a result of the Jaccard distance only considering words that 

are exactly the same, whereas our technique considers semantically similar words. This result is 

the first indication that meaningful data is embedded in the topology of embedded keyword 

networks. This single example of TDA capturing patterns, which were indiscernible to classic 

clustering, is justification for the further investigation of the topology. As such, we can move the 

discussion from subjective vocabulary selection to more concrete forms of topological analysis.  

The zero-dimensional homology (H0) is the measure of network connectivity over the step-wise 

increase of hypersphere radius η. Analysis of H0 is completed by visual inspection of the 

barcode.  Figure 22 was displayed in the results to show the necessity of the data as a line, that 

same data is the output of the BME test dataset. The authors displayed on this figure are the 

selected faculty. In other words, we are observing how the selected authors fit into the BME 

point cloud. 

 

Figure 26 A simplified barcode diagram that allows the evaluation of each individual network 

construction, as well as the collective network between the four faculty. The rapid convergence 

to zero indicates interdisciplinary work.  
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With H0 we observe how quickly the connectivity of the network converges to a single component. 

Not only can we observe the collective contributions to network construction, but also how 

individual authors construct their unique network on the BME point cloud. The differences and 

similarities between the sigmoidal trends are clear, and the network that connects every component 

at the smallest radius is unsurprisingly the collective network. In the context of individual networks, 

the degree of connectivity as a function of η clearly indicates how the author fits within the greater 

context of the BME dataset.  

 

For example, we notice that Dr. Kinzer-Ursem’s individual network converges to a single 

component before any other author’s network. We know Dr. Kinzer-Ursem develops tools that 

apply across an array of biomedical research topics and publishes in many sub-disciplines of BME. 

As described in the methods, interdisciplinary work allows an author form connections earlier 

because the larger deviation increases hypersphere expansion. Also, authors who publish in 

multiple sub-disciplines of BME are better able to seed the point cloud because they span more of 

the whole dataset. 

 

Conversely, Dr. Georgen, Dr. Linnes, and Dr. Irazoqui have more focused subjects and 

applications to their respective fields. As explained above, having a focused research interest in a 

single sub-discipline limits the reach and span of nodes for that author. The more focused topics 

result in smaller deviations for the hypersphere expansion, and the single sub-discipline of the 

author limits their entry point to form edges. The result is that more focused authors within the 

dataset converge to a single component at the slowest radius increment, and some authors don’t 

ever reach a single component in the given η boundaries.  

 

With the analysis of H0 complete, we turn our discussion to first-dimensional homology (H1). 

Recall that H1 investigates the holes within a network. Similar to the barcode discussed for H0, 

the analysis of the persistence diagram is visual inspection. Figure 23 shows the raw H1 persistence 

diagrams of two networks on the BME point cloud, a) the collective network, and b) Dr. Pascuzzi’s 

network. Notice, that the density of points is prohibitive for visual analysis of the diagram. As 

such, we depict the persistence diagram as a 2D Histogram (figure 27), a density plot of the data 

that depicts the concentration of gaps for any given lifespan.   
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Figure 27 H1 for the collective set of authors, and the individual permutations. The density of 

each homology is indicated by the intensity bar, which varies in scale. a) The collective network 

has more holes, but each are less persistent. b) Each individual author has a unique H1 profile; 

Dr. Irazoqui and Dr. Goergen both trend toward a dense center; conversely, Dr. Kinzer-Ursem 

and Dr. Linnes distribute the density across a broader spectrum of persistence. 
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The investigation of H1 is in its preliminary stages due to the lack of statistical methods for analysis 

of persistence data [20]. H1 analysis on 1715 input points is computationally taxing and a non-

deterministic polynomial time hard problem (np-hard). We accomplish local H1 construction of 

our system within the order of 104 seconds (2.7 hours) and return the points responsible for each 

hole. Knowing the point composition of each hole permits further investigation into the underlying 

cause of network gaps. However, due to the volume of holes, efficient gap inspection couldn’t be 

implemented. More tools must be developed to identify and analyze H1 results, such analysis is 

outside the scope of this work.  

 

While the computational filtering and extrapolation of H1 data is outside the scope of this project, 

the analysis of H0 is simpler and implemented for the modelling of collaboration. The conceptual 

process of this algorithm is outlined in figure 24, and here we explore the results of this analysis 

on the BME test dataset. Some example outputs of computational H0 analysis are shown below 

for varying faculty. The following set of figures that demonstrate this point are between pages 47 

and 52. 
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Figure 28 The weighted sum of connections for a faculty member results in a ranked list of faculty. Dr. Linnes’ ranking of faculty 

results from her connections with all other faculty in the BME test dataset. The known ground truth of the BME department confirms 

this ordering to be accurate, and known co-authorships are denoted with a gold bar. Notice Dr. Caviglia, a math professor, is the least 

likely to work with Dr. Linnes. Dr. Pascuzzi (ranked 28) and Dr. Nies (ranked 23) are not in the BME department, however, they 

publish on bioinformatics and water treatment, which is complementary with the work of Dr. Linnes, and justifies their position above 

other BME faculty. 
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Figure 29 Dr. Kinzer-Ursem’s faculty ranking uniquely shows how interdisciplinary work can be visualized by TDA. Once agaoin 

known co-authorships are denoted in gold. Notice that Dr. Delp is not a known co-author of Dr. Kinzer-Ursem, and their use of 

keywords indicates a possible overlap in interests. The potential collaboration between them is feasible given Dr. Delps computational 

work and Dr. Kinzer-Ursem’s study of computational modeling. This example highlights the possibility for spurring intra-

departmental connections that have yet to form.  
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Figure 30 The point cloud formed is predominately BME faculty, only Dr. Pascuzzi, Dr. Caviglia, and Dr. Nies are non-BME 

contributors to the embedded vocabulary. As such, Dr. Pascuzzi has no known co-authorships with this set of faculty, and this ranking 

is an indication of where he would fit into the department. Those who ranked highest with Dr. Pascuzzi work at the interface of 

computation and biology. Those who ranked lowest are Dr. Caviglia of the math department, and Cagri Savran, a joint-appointed 

BME professor whose main appointment is mechanical engineering. In total, this use-case serves to coordinate the evaluation of new 

faculty and model their impact on the perspective department. 



 

 

 

5
0
 

 

 

Figure 31 The ranking of faculty serves to distinguish overlapping interests and gaps in collaboration. Naturally, the further probing of 

these interactions yields a keyword ranking. Here we show the keyword corpus of Dr. Kinzer-Ursem ranked through the lens of Dr. 

Linnes’ work, and denote keywords from co-authored publications with gold bars. Their recent collaborations in blood born, bacterial, 

and water born pathogen DNA detection is apparent within the highest scoring group of keywords. Likewise, Dr. Kinzer-Ursem’s 

work with calmodulin and protein systems (e.g. adenylyl cyclase, agonism, angiotensin) are ranked low, indicating the divergence of 

interests between the two faculty.  
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Figure 32 Dr. Caviglia is the lowest ranking faculty for Dr. Linnes in figure 28, and since they aren’t co-authors there is no possibility 

for gold bars within the figure. Probing further into this interaction, we observe that Dr. Linnes ranks Dr. Caviglia’s keywords 

according to her BME expertise, an artifact of our algorithm design. This calls attention to the first limitation of our work, where 

ambiguous terms can have different meanings across disciplines. For instance, filtration can refer to a simplicial complex (as it does in 

this article), or to the filtration of objects and data. Similarly, Dr. Caviglia uses cellular in the context of high-dimensional geometries, 

whereas Dr. Linnes applies it in the traditional meaning. However, Dr. Caviglia’s ranking makes it clear that our system is robust to 

noise, and not affected by keyword homonyms. 
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Figure 33 Here we observe Dr. Caviglia’s vocabulary through the lens of Dr. Pascuzzi, neither of which are BME faculty. Once again, 

the ambiguous use of cellular is observed. In contrast, the potential computational relationship is made clear by the terms sequence, 

function, and linkage. In total, Dr. Caviglia’s niche position as a pure mathematician in a biomedical context is noted in his 

continually low ranking. Showing that we can not only detect readily made collaborations, but also which collaborations would 

require intermediate players or extensive dissemination.  
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4. CONCLUSION 

This work develops a novel application of TDA on highly structured keyword vocabularies and 

establishes a robust method of scholarly pattern identification. We submit that this method 

circumvents the limitations of classical keyword networks and Jaccard clustering through the 

implementation of word embedding tools. The embedding of our highly structured vocabulary to 

numerical vectors facilitates the identification of semantically similar keywords, thus quantifying 

the manifold of uncontrolled vocabulary. The resulting point cloud is equipped to undergo TDA, 

however, the data hierarchy is no longer intact due to the embedding process. This loss lead to the 

development of a novel simplicial complex that imposes and preserves subset hierarchy within the 

point cloud. The construction method is rescaled to reflect the distribution of the subsets, in 

practice this is the keyword set for a given publication.  

 

Following this construction, the zero and first homologies are calculated. The lack of TDA toolkits 

in the python environment required the development of custom H0 and H1 toolkits (figure 19, 

figure 20). The validity of these toolkits was confirmed by network inspection using our 3D 

visualization application. This same visualization application is used to create custom vocabularies 

for the investigation of topological structures. A proof of concept showed that these structures can 

identify underlying patterns, and it was shown that the agglomerative-Jaccard technique could not 

(figure 25). Lastly, we explored H0 by computationally scoring weighted connections. The results 

of this scoring yield an ordered list of suggested faculty who share interests with the selected author. 

The relationship between this investigator and their colleagues is further investigated by scoring 

the potential collaborator’s keywords through the investigator’s perspective. This allows an in-

depth view into how any two faculty may interact, what subjects they share an interest in, and how 

interdisciplinarity impacts the ranking of faculty. 

 

This work has several limitations that constrain its use and will need to be addressed in the future. 

First, the computational complexity of network construction and homology analysis are not 

efficient and require several hours to fully compute. This limitation is complicated further by the 

first homology having a dense distribution of points which limits visual analysis of persistent holes. 

Second, the selection of vocabulary in the web application allows a user to potentially ignore the 
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topological structures and randomly select a custom vocabulary. This limits the efficacy of the 

network construction and must be resolved for the accurate investigation of the topology. Lastly, 

the word embedding itself limits the network construction. Ambiguous words and shallow 

understanding of complex subjects prevent the embedding from capturing all semantic 

relationships between keywords. Each of these limitations have the potential to be resolved with 

future work. 

 Future technical development 

In future work, this project could develop more post-analyses of the homologies. Future analysis 

of the zero homology could identify the half max point of the sigmoidal curve and use this as an 

classify the interdisciplinarity of an author within the field. This more formalized analysis would 

show that interdisciplinary faculty have a lower half-max η than that of their more focused 

counterparts. Following the post-analysis of H0, the strengthening of analysis through integrating 

H1 data could lead to more accurate models and better identification of gaps within the research. 

This work would require the procedural filtering and cleaning of H1 data. In addition, the 

calculation of H1 is the most computationally expensive process in our system. Future work could 

seek to parallelize or optimize the hole detection algorithm. Once the H1 calculation is streamlined, 

the H2 calculation may be feasible to implement. The introduction of H2 would allow us to observe 

the 3D structures generated by the network construction.  

 

There is much work to be done regarding the visualization, user interface, and web application 

development; ultimately the identification of topological structures within the visualization will 

allow users to download interesting bibliographies. The visualization process is currently in 

development and not ready for laymen use. Further visualization and web-app improvements 

include the development of a front-end interface, the ability to select dates for retrieved 

publications, and the ability to filter publications by citation counts. Following these improvements, 

there’s a need to procedurally select structures in the visualization to mitigate the misuse of the 

application. Currently, a user could select nodes at random and still generate a curated bibliography. 

This misuse would negate the topological clustering of data and result in a meaningless insight 

into the dataset. In the future, work must be done to identify topological structures and classify 
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their meaning for a keyword network. After which, these classified structures can be used to 

autonomously find unknown clusters of publications within the network. 

 

Future work could investigate fine-tuned word embeddings, otherwise known as the local training 

of a word embedding that identifies specific meanings and contexts within a field. The use of the 

pre-trained Wikipedia embedding may not contain the depth necessary to capture all academic 

material. One could create a scholarly trained embedding, which would provide further insight into 

the semantic relationships between academic vocabulary or even train a new language for non-

English publications. Future work might look to post-training fine tuning, where a pre-trained 

embedding is further specified to a certain class or field for a more comprehensive embedding. 

Lastly, the mining of text could yield new keywords that improve the embedding accuracy and 

identifies keywords that may have been neglected by the author. The culmination of these changes 

would facilitate the downstream identification of sub-disciplines, specific technologies, and give 

context to ambiguous words.  

 

Finally, future work could explore the evolution of the network with respect to time, which would 

permit the investigation of research trends, departmental decisions, and the roster of faculty. 

Specifically, this could be accomplished by incrementally increasing the window for publication 

retrieval. Each iteration the set of publications and keywords would undergo embedding and TDA. 

The resulting homologies would then be compared across the varying years of publications to 

highlight the differences and trends within the faculty set. The culmination of these improvements 

could result in a valuable tool that applies across all scholarly work. 

 Future applications of this work 

The practical applications of this research began with a focus on predicting collaboration and 

facilitating the development of new fields. Over the course of development, other applications for 

this work have become clear. One such application is the prediction of new faculty interactions 

within an established department. The research landscape of a department can shift with the 

introduction of a single faculty and drive new collaborations and innovation. The ability to predict 

and identify these paradigm shifts could lead to academic progress and an institutional advantage.  
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Next, we consider the impact of this work on systematic reviews. A systematic review is a 

comprehensive literature search for a particular field or study. Like keyword networks, systematic 

reviews are hindered by uncontrolled vocabulary. Therefore, the visualized network of 

semantically close keywords may streamline the process identifying search terms. Even more so, 

the topological clustering of the publications may allow for rapid discovery of related topics and 

keywords. With this simplification, the crafting of intricate search queries may become a high 

throughput process and increase the efficiency of systematic review.  

 

Within the same domain, this work could improve the identification of medical developments and 

publications within a given field. Current medical practice requires the fast and accurate search of 

cutting-edge work to improve patient outcomes [31]. By leveraging the semantic relationship 

between keywords, we could craft medical search queries that specifically target certain topics 

within health sciences. The efficient and comprehensive nature of such queries could allow the 

physician to identify the latest developments within that field. The saved time and resources would 

benefit the patient with a timely response and permit the allocation of resources to more patients.  
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