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ABSTRACT

Kazemi, Amirreza. Purdue University, August 2019. Atomistic Study of the Effect of 
Magnesium Dopants on Nnanocrystalline Aluminium. Major Professor: Shengfeng 
Yang.

Atomistic simulations are used in this project to study the deformation mechanism 

of polycrystalline and bicrystal of pure Al and Al-Mg alloys. Voronoi Tessellation was 

used to create three-dimensional polycrystalline models. Monte Carlo and Molecular 

Dynamics simulations were used to achieve both mechanical and chemical equilibrium 

in all models. The first part of the results showed improved strength, which is included 

the yield strength and ultimate strength in the applied tensile loading through the 

addition of 5 at% Mg to nanocrystalline aluminum. By viewing atomic structures, it 

clearly shows the multiple strengthening mechanisms related to doping in Al-Mg 

alloys. The strength mechanism of dopants exhibits as dopant pinning grain boundary 

(GB) migration at the early deformation stage. At the late stage where it is close to the 

failure of nanocrystalline materials, Mg dopants can stop the initiation of intergranular 

cracks and also do not let propagation of existing cracks along the GBs. Therefore, the 

flow stress will improve in Al-Mg alloy compared to pure Al. In the second part of our 

results, in different bicrystal Al model, 
∑ 

3 model has higher strength than other 

models. This result indicates that GB structure can affect the strength of the material. 

When the Mg dopants were added to the Al material, the strength of sigma 5 bicrystal

 models was improved in the applied shear loading. 

However, it did not happen for
∑ 

3 model, which shows Mg dopants cannot affect the

behavior of this GB significantly. Analysis of GB movements shows that Mg dopants 

stopped GBs from moving in the
∑

5 models. However, in sigma 3 GBs, displacement

of  grain boundary planes was not affected by Mg dopants. Therefore, the strength and 

flow stress are improved by Mg dopants in 
∑ 

5 Al GBs, not in the 
∑ 

3 GB.
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1. INTRODUCTION

1.1 Background

Nanomaterials are widely using nowadays and have been a popular subject for

research in the field of material science. When compared nanomaterials with coarse-

grained materials, these nanomaterials have lots of excellent structural and functional

properties which are caused to be useful in different applications. One of the popular

nanomaterials which are used in most of the research is nanocrystalline aluminum

because of its application in different areas, such as solar back plants, design of cars,

and explosives.

Nanocrystalline materials have some physical, mechanical, and chemical proper-

ties that researchers are interested in using these materials. High strength, superior

hardness, and high wear resistance are some of the properties which are implemented

in different applications [1, 2].

Furthermore, besides high strength in materials, good ductility is another pa-

rameter which is required in nanomaterials to avoid catastrophic or failure in the

tests. However, there are some metallic materials which have high strength besides

low ductility [3, 4], which limits the utility of this material. Combination of these

both properties makes them the best materials for structural and functional applica-

tions such as medicine, energy, and transportation. The mechanisms to produce high

ductility material and analyze the approaches to get good ductility is important in

nanocrystalline alloys.

Many strategies are available to increase the strength and elasticity in Nanocrys-

talline materials that are deliberated in experimental and theoretical analysis. Ad-

dition of dopants is one of the best ways for improving the strength and hardness of

materials.
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1.2 Objective

In this first part of this study, we focus on using atomistic simulations to find

out the atomic-level mechanism of GB segregation strengthening of nanocrystalline

Al by doping Mg atoms. The main objective of this study is the effect of Mg on the

behavior of Al material in applied loading. We used three-dimensional polycrystalline

models for both Al and Al-5% Mg, and tensile loading was conducted on both Al and

Al-Mg alloys to explore the effect of Mg dopants on the mechanical properties of NC

Al. All tensile tests were conducted through atomistic simulation.

In the second part of this study, we used bicrystal models instead of polycrystal

models to explore the behavior of Mg dopants on the strength of NC Al. Models are

created for both Al and Al-3.5%Mg alloys. Shear loading was used on both models to

find out the effect of dopants on the strength of materials. The atomistic simulation

was used for both alloys in the atomic-level mechanisms.

This research consists of six chapters, and it is organized as follows. In the first

chapter, we introduce briefly about materials and properties that are used in dif-

ferent applications and explain what our goals in this study are. In chapter 2, we

review literature about Al alloys, polycrystal, and bicrystal materials, and deforma-

tion mechanisms of materials.

We describe molecular dynamics methods, Voronoi tessellation, and common

neighbor analysis, which are used in our models for creation and analysis parts in

the third chapter of this study. Chapter four and five are the main parts of this study

which show simulation details of our models in polycrystal and bicrystal models and

present results of models after loadings and discusses what are observed in MD simu-

lations. In the last part of this study, chapter 6, we explain the summary of our work

and directions for future work.
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2. LITERATURE REVIEW

2.1 Applications of Aluminum Alloys

Aluminum is one of the accessible materials which improve physical properties by

alloying with different materials to generate unique properties such as resistance to

failure or heat. More research needs for alloying elements, and it is not easy to process

for doing experimental and simulations for getting acceptable results. For example,

the effect of the addition of such elements can be explained here. Carbon can raise

tensile stress, hardness, and resistance, but it can reduce ductility and toughness when

adds to steel. Also, steel with chromium will increase strength, hardness, toughness,

and scaling at high temperatures [5].

Aluminum is a material that we used more in our experiment. Aluminum is a

lightweight metal that has excellent corrosion resistance, and anodizing can raise

scratch resistance [6]. Aluminum is not like carbon steel in toughness because in low

temperature can retain its toughness.

Aluminum is reflective, and that is why it is used in decorative applications or

in contact with foodstuffs. Aluminum is a perfect conductor of heat and electricity.

For example, comparing between copper and aluminum, conductivity in aluminum

is almost twice copper in the same weigh. Ready for recycling and a wide variety of

forming processes are excellent properties of this material.

2.2 Polycrystal Aluminum

Material properties such as high ultimate strength and superior hardness are im-

portant reasons widely usage of nanocrystalline (NC) materials in various applica-

tions, but we cannot ignore some behaviors which limited some applications of the
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material [7,8]. The large volume fraction of high-energy interfacial regions, low ther-

mal stability, and low ductility of NC materials are these properties which are caused

useless in some cases. Pun et al. [2]. In experimental test added Mg during mechanical

milling by low homologous temperature annealing treatments to add dopants without

grain growth. They showed that hardness of Al-7% Mg is almost three times more

than pure nanocrystalline Al and segregation caused the metal to become stronger

and lightweight metal [2]. Unstable metal alloys are one of the problems in some

materials that need to be solved. For example, Chookajorn worked enhancing the

stability of Ti by adding W in the high temperature. Addition of dopants helps the

low thermal stability of Ti to increase [3].

Embrittlement of materials can be controlled by interactions between grain bound-

aries. Segregation of dopants can change the behavior of grain boundaries. So by

changing behaviors of GBs, ductility of materials will be changed [4]. Alloying NC

materials with different elements is an effective way for improving thermal stability

at high temperatures, can increase ductility, and further increase strength. These

alloying elements will be distributed randomly in the grain interior as solid solutions

or grain boundaries. When dopants added to grain boundaries chemistry of GBs

changed, and as a result, it helped transformations in GB complexions [9–13] and

therefore, affect the material properties [5, 6, 14–17].

In the first part, we work on Al-Mg alloys; researchers find out that Mg dopants

can improve properties of materials through the solid solution strengthening [7, 8]

and precipitates pinning GBs [18, 19] which includes improving yield strength and

strain hardening. Lee [7] showed in his research small amount of Mg can affect

significantly higher strength and ductility compared pure Al, and he concluded that

both ductility and strength of Al-Mg alloys would improve by different amount of

Mg by using experimental tests and also confirmed completely by molecular dynamic

simulations how the high-strength alloys could exhibit high ductility. In addition,

pun et al [2]. worked on the effect of Mg on nanocrystalline Al, and they identified

that GB segregation strengthening could help improve the strength and hardness of
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Al-Mg alloys. Based on studies, it showed that Mg atoms like to segregate to GBs, so

GB segregation strengthening is more effective than solid solution strengthening in

Al-Mg alloys, but there is no research on the behavior of the effect of Mg dopants that

are segregated to GBs and improve the strength of NC Al in atomic level mechanisms.

Moreover, [18] showed Mg dopants could stabilize the grain growth when it is added

to NC Al at elevated temperature. They also showed coupled MC/MD simulation

guided experimental for improving resistance to thermally induced grain coarsening

in lightweight Al-Mg alloys and tried to extend the limited upper application of

nanocrystalline alloy in high temperature which used thermodynamic and kinetic

stabilization approach. However, it is still unknown the stabilization of the grain

sizes of NC Al during the deformation process when Mg atoms are added to materials.

Sauvage analyzed the segregation and precipitation mechanisms in Al-Mg alloys which

in room temperature formed mostly nanoscaled and at 200 c more uniformed structure

at severe plastic deformation (SPD) and concluded that segregation could contribute

to the strengthening of these alloys.

2.3 Bicrystal Aluminum

By comparing conventional coarser-grained materials and nanostructured materi-

als, we can understand that nanostructured material has superior mechanical proper-

ties, which are caused widely used in structural applications. These properties include

high yield and fracture strength, superior wear resistance, high fatigue resistance, etc.

these characters of nanostructured materials caused great interests for researchers to

do research on mechanical properties and specifically deformation mechanisms. As

mentioned, experimental work is difficult, and computer simulations are a power-

ful tool to gain more information in the fundamental knowledge based on atomistic

models.

Interfaces between two different oriented crystals of the same materials can create

grain boundaries. The structure and deformation characteristics of grain boundaries
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can be studied in both experimental and computational methods, which is impor-

tant by progress in tools in experimental like high-resolution transmission electron

microscope and molecular dynamics in computational mechanics.

Many types of research have been done in the properties and deformation mech-

anisms of nanocrystalline materials which are focused on the impact of grain size.

Grain size is a dominant effect on dislocation when the size of that is low, but stress

besides grain size is another parameter that can be the effect on mechanical structures

of nanocrystalline materials. Many of these studies have been done under uniaxial

tension or pure shear deformation which in reality they are under mixed loading, and

just a few researchers investigate behavior and deformation mechanisms under multi

loadings at the atomistic level [20].

The atomic structure and properties of GBs have been an important subject for

many years, but the previous work was primarily focused on symmetric GBs with

simple structures, and there is limited experiments and simulation worked on the

structure and mechanisms of asymmetric GBs. Experimental results show that GBs

can significantly affect material properties [21].

Mechanical and thermal properties of materials are dependent on grain bound-

aries. When the grain size reduced to the nanoscale, there are many features that

can be changed and impact on the bulk models. For example, many studies show

that when the grain size reaches less than 100 nm, the dislocation activities reduced

in the interior of grains [22].

Symmetric and asymmetric tilt GBs for both Cu and Al in the shear response

have been studied by Sansoz and Molinari [22], and in their reports, GB-operated

deformation mechanisms are related to GB sliding, nucleation of partial dislocations

and shear-coupled GB migration which all are GB structure.

Atomic structure of the GB is not unique when the misorientation and inclination

of the boundary plane are given. For instance, Cu
∑

5(310) in the MD simulation, the

GB change its structure by introducing vacancy effects or changing temperatures [21].

So the simulation models which are only based on the geometrical considerations such
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as misorientations and inclination angles are not enough to understand the nature of

GB motion. It needs more detail about the effect of GBs on mechanical and kinetic

behaviors.

A relaxed GB likes to change structure to the stable state under some conditions

like radiation, which may affect the deformation mechanisms and totally mechanical

properties of materials.

2.4 Grain Size Effect

Grain size is another factor that can be affected by the strength of the material.

Reducing this grain size can increase the number of grain boundaries which avoid

dislocation motion in the material. Grain sizes over 100 nm the plasticity are domi-

nated by dislocations which came from grain boundary sources. The grain boundary

is involved in the whole process when plasticity depends on dislocation motion [14].

Process of Grain boundary relaxation is energy storage, which is released during

grain boundary formed defects or disorder as the boundary transform towards an

equilibrium configuration. Study of Ni-W showed us hardness would increase hardness

up to 35% when the boundary relaxation happened. When the boundaries are relaxed

dislocation nucleation, and propagation became difficult and have a better resist grain

boundary, and molecular dynamics have confirmed these results.

Chemistry of grain boundary can affect on grain boundary structure, and segrega-

tion dopants to nanocrystalline alloys can improve thermal stability, and grain sizes

which are controlled by the production of this material and some researchers men-

tioned that adding dopants can decrease grain boundary energy. Reduction of grain

boundaries and the addition of dopants to nanocrystalline material have an influence

on the mechanical behavior of the material. Vo et al. confirmed by molecular dy-

namics simulation that high strength happens by doping in the grain boundaries [15].

Ozerinic, in his experimental tests, confirmed dopants could increase the strength of

materials on Cu and Cu-Fe films [16].
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2.5 Dopant Effects

Mechanical properties of the material give engineers wide ideas to use it in differ-

ent applications. For example, strengthening mechanisms of materials is one of the

properties that separate some materials from others for use in industry. The main

factor for causing strength are dislocations. Dislocations have contact with each other

by stress, which is available in the materials. Repulsive or attractive interactions can

impede dislocation motions some times. in different thermodynamic properties such

as temperature and pressure behavior of material will change significantly so grain

boundary can behave as a stable interfacial.

One way for strengthening is by adding solute atoms of one element to another,

that can see results in the crystal(figure). Yield stress of material increase by solute

atoms because they can cause lattice distortions and distortions impede dislocation

motion. Solute atoms base on their sizes can act as potential barriers in compressive

and tensile stresses to the lattice.

Polycrystalline materials and in this kind of materials, grain size has an essential

effect on the mechanical properties because of specific properties of grains such as

different orientations that can cause grain boundaries to grow. Grain sizes can effect

on yield stress and also by decreasing grain sizes, and yield stress will increase because,

in the lattice, we have more free volume.

Strength of material is one of the features of material which is caused the models

to be useful in different applications. Construction is evident and primary applicants

of this specific property of the material. We have a big building and bridges when we

have a durable frame for supporting different tension and compression loadings. For

example, steel that is used in the base frame of a building should be strong enough not

to bend under weighing of a building or different pressures. Many research needs to

be done for increasing strength of materials and expand useful applicant of material

in different fields.
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Computational simulation is a way for the process of strengthening materials that

model material for essential observation elements. When understanding atomistic

effects in experimental and information in textbooks about atomistic cannot give

us full details, many research turns to molecular dynamic simulation to understand

more and get information that is needed. The atomic interaction between atoms can

be shown by MD simulation, so dislocation of atoms in the material can be seen

in mechanical actions and reaction of atoms. The interatomic potential is used for

running simulation to estimate interactions.

These interactions are growing up to millions of atoms for simulating materials

more accurately. Molecular dynamics simulation show the results based on equations

that are available for increasing strength of the material. This way for getting results

is useful in action instead of wasting time and direct observation of experiments.

2.6 Deformation Mechanisms

Deformation mechanisms of nanocrystalline metals include GB sliding, grain ro-

tation, diffusional creep, GB migration, dislocation nucleation or absorption at GB.

The atomic structure of GBs has been studied for many years and also much

research has been done experimentally by transmission electron microscopy (TEM),

and this kind of studies are really hard specifically at high temperatures because low-

temperature structure and properties of GBs will be changed by diffusion phenomena

and interfacial transitions.

GB motion, which is coupled to shear deformation in both low and high misori-

entation angle GBs have been studied for many metallic materials. This migration of

GBs can be affected in grain growth, nucleation of new grains during recrystallization,

and process of material in thermal stability.
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    Most of the work focus on the sigma 3 because the most common sigma 3 GB 

is twin boundary with low boundary energy and they, saw it frequently in  

polycrystals. dislocation nucleation in McDowells investigation for sigma 3 

asymmetric boundaries under uniaxial tension showed properties of the material is 

related to the misorientation between grains and inclination of the GB plane.

Among all deformation mechanisms, shear-stress-induced GB motion, which is GB

sliding and GB migration studied more compared with others because it gives

deformation mechanisms which are related to exceptional strength and ductility. GB

migration is movement of GBs in the perpendicular to the boundary plane, and it is

important in atomic rearrangement because it can be effected on recrystallization,

grain growth and plasticity of the material. Kaya et al. [23] worked on stress-induced

migration for both low-angle and high-angle Al bicrystals at symmetrical (100) GBs

and as a result, find out that kinetic properties of GB motion are depended on the

misorientation angle.

The disadvantage of experimental investigation is time-consuming while the atom-

istic simulation is convenience and can be used by high-performance computers and

accurate interatomic potentials and especially GB motion is widely used by molecular

dynamics because deformation in the simulation is controllable at the atomic scale

more detail information can be obtained about deformation mechanisms.

Deformation of metal or alloys produce shear stress which happened by dislocation

slip or deformation twinning at low temperatures and low strain rate, but other

deformations happened in high temperatures and high strain rates, and it is a common

phenomenon that happens in alloys. Stacking faults energy causes twinning in FCC

metal. For instance, Wiatom is coarse-grained fcc metal which has high stacking fault

energy and deformed by dislocation slip, but Ag atoms have low stacking fault energy

and are deformed by twinning.

Two factors can increase the chance of twinning deformation first, high strain rate

and second, low deformation temperature. Twinning can happen in perfect or partial

dislocations. Interactions between twins and gliding dislocations can be observed by

molecular dynamics simulation or in experimental tests.



11

     Twinning effectively can increase the strength and ductility of material simultaneously. 

In the last decades, invaluable improvement happens for understanding the twinning 

deformations. One of the features of twinning is mirror symmetry of atomic

arrangement at across the grain boundary for FCC metal.

MD simulation has more advantages over experimental studies, which makes it

popular and powerful. To add more details, experimental cannot show the atomic level

of deformation although MD simulation can show this level by complete details or for

deformation behavior like twinning can be investigated in the real-time deformation

but this cannot happen experimentally.

Limitation of MD simulation for this part is the small size of models, and many

researchers use very small grain size for their models, and this can effect on defor-

mation mechanisms. For example, results that obtained by experimental and MD

simulation were not the same for NC Al, Cu, Ni that deformed by twinning. Effect of

grain size is so small, and twins are hard to form and time duration is short in MD

simulation and as a result strain rate is high while in experimental tests are much

higher and comparing these results become complex.
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3. METHOD

3.1 Molecular Dynamics Simulation

    Atomic-scale becomes popular these days because it is not easy to see the 

nanometer scale in the experimental tests, and this method is used to analyze and 

find out properties of different material in different tests.

    The physical movement of atoms and molecules can be investigated by molecular 

dynamics (MD), which is one of the important computer simulations. This method 

is used in different fields like biochemistry, nuclear technology, and material science. 

All the nuclear motion of the constituent particles should follow the classical 

mechanics in the MD simulation. 

    Dynamic behavior of material and finding out theoretical methods for the 

properties of the material in the first-principle calculation because size or number of 

atoms is limited. Interatomic potential can create millions of atoms in MD 

simulation, and it is used to find out the mechanical properties of the material and 

show deformation mechanisms of material. 

   Result of simulation becomes consistent with experimental results when the 

computing method is improved, and the atomic level is the basis of all simulations 

and methods in the material science field. When theoretical methods combined with 

supercomputers, lots of new information about the behavior of the material in the 

atomic-level are obtained, which is caused by the birth of  computational materials 

science [37].

    Developments in different fields like physics, chemistry, computer science, and 

graphics can help to have a powerful tool like fast computing systems for material 

calculations and designs this new technology will help experimental simulations the ability 

to predict and analyze the properties of the new structure before the creation of the model 

[38]. Developments of material calculation can improve material science into a scientific 

quantitative prediction part from the qualitative description of phases [39]. 
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   Monte Carlo, Lattice dynamics, and molecular dynamics [40] are a new branch of 

modern material science which is developed by improving in the material calculation, 

design, and computer. First person who is used molecular dynamics to study the state 

equation of gas and liquid in a sphere model was Alder and Wainwright [41] in 1957. 

They can find out the macroscopic properties of materials by MD simulation. Many 

research has been done by this method; many improvements need to be done in the 

future because of some limitations in memory and speed of computers in 

processing; the simulations are restricted.  Great improvements in molecular dynamics 

happened in the late 1980s with the quick developments of computer technology and 

multi-body potential function. MD simulations are not so exact in some cases, but 

the program is simple because of fewer calculations and larger atomic systems.

  The interaction between atoms is modeled by the interatomic potential. Therefore, 

choosing appropriate potential is important and can affect simulation results, and 

the reliability of simulation is completely related to the reality and accuracy of that 

potential. Many of these potentials are developed for metallic alloys and mostly used 

embedded atom method (EAM) in the MD simulation. More information about 

potentials is available at NIST interatomic potential repository (NIST,IPR) and the 

knowledge of interatomic models (OPENKIM) which has different potential for 

various structures.

 Stacking fault energy is responsible for the formation of perfect or part of 

dislocations and ability to cross slip of dislocation and formation of twins. All of 

these effects that happened by stacking fault energy can effect on strength and 

hardness of the material. Elastic constants show the response of materials in the 

elastic deformation stage, which have an influence on yield strength. Therefore, 

selecting accurate potential to simulate deformation behavior of material and as a 

result, produce fundamental physical properties of pure model or combination of 

different elements is important.
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3.2 Monte Carlo/Molecular Dynamics Simulation

Atomic-scale understanding is important to control the properties of processes in 

materials. Two main ways usually used, molecular dynamics (MD) and Monte Carlo 

(MC) simulations. MD simulations are used to show both static and dynamic properties 

of systems at the atomic level. So, this method is implemented for so many numbers of 

systems and processes by solving equations of motions to get the trajectory of the 

particles in phase space for all parts of the system. Therefore, solving the equations will 

help to yield the positions, velocities of particles, and the forces act on them. Interatomic 

potential derives forces that should be applied. There are two implications of this 

simulation. First, this method’s result is approximative because of inexact calculated 

forces. Second, this method is cheap and making calculations with millions of atoms are 

accessible and also, time that should be spent is longer than the timescale for exact 

approaches.

   MD simulations are limited and needed to be fixed in two parts. First, systems 

with millions of atoms represent a material on the nanometer to sub-micrometer scale 

at the solid and liquid state, which is not easy to study [38]. Timescale is the second 

problem that can be reached, and it makes it difficult when timescales well beyond this 

limit in the simulation. 

  The hybrid MC/MD is used for modeling chemical ordering and precipitation 

in different metal alloys for different heterogeneities like dislocations, grain boundaries, 

and surfaces. All atoms at the same time displaced in the hybrid MC/MD simulation 

but in MC only one or two parts are displaced at the same time to obtain high 

acceptance rate. The displacements in MD simulation are depended on time step 

because it should be small to conserve the total energy; however, displacements in 

MC simulation can be large and unphysical. 
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    Duane et al. [37] developed Hybrid MC/MD simulation to combine the advantages 

of both MD and MC at the same time. This method is time-reversible and uses 

the symplectic algorithm. The result of hybrid MC simulation is not always better 

than MD simulation, but sometimes hybrid MC might be better for structures which are 

not too large.
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3.3 Crytal Structures

In nature, there are 14 different types of crystal cell structures or lattice, whereas

many materials in the world have a unit cell and will be categorized in one of these

three types BCC, FCC or HCP. The main difference between all of these models is

the structure of the unit cell, for example, BCC structures have some properties,

but other structures do not have these features. Some of these features are like the

behavior of the material, deformation, density. When working with these materials,

understanding these structures are important. Below, we will explain more about

these structures.

FCC structures have atoms not only in the corner but also in the center of all cubic

faces. Like Bcc structure, the corner atoms are shared among 8 unit cells. In the Fcc

structures, the atoms can pack closer together than BCC structures. Packing factor

for Fcc structure is 0.74. Aluminum, iridium, copper, gold, lead nickel, platinum,

and silver are materials with Fcc structures. This structure is made up of layers of

octahedral type planes, and in a sequence of ABCABC and A, B, C are center relative

to a closed packed layer.

The number of equidistant nearest neighbors that an atom has is coordination

number. For Fcc structure, this number is 12 because the atom in the center of the

plane has 6 neighbors in the octahedral plane and 3 neighbors in the below plane.

So, total coordination number equals 12. The number for BCC structure is 8 because

there is no closed packed atoms and number of neighbors which are close to the center

of the unit cell is 8.

Hexagonal close-packed is another common structure unit. The atoms from one

layer nest themselves in the empty space between atoms of the adjacent layer just like

in the Fcc structure but instead of cubicles hexagon shape is used. This structure has

three layers. In the shape of this structure, there are 6 atoms which are arranged in

the shape of a hexagon, and the seventh atom is in the middle. The second layer in

the middle has three atoms. The coordination number of atoms in the structure is 12.
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6 atoms in the close-packed layer. 3 atoms are in the upper layer and 3 in the bottom

layer. The packing factor is the same as the FCC structure 0.74. beryllium, cadmium,

magnesium, titanium, and zinc are examples of atoms which has HCP structure.

3.4 Voronoi tessellation

Tessellation approached on Voronoi diagrams for creating different models and

using this is method is increased in the literature about computational mechanics

and computer graphics in recent years. Voronoi formalized the n-dimensional case

which now we call it Voronoi tessellation this diagram record information about

distances between sets of pints in any dimensional space.

First, William Son used this tessellation for modeling global atmospheric in 1968,

which vorticity equations were obtained. Voronoi diagrams can be used in a large

number of fields such as science and technology and art. Voronoi tessellation also can

be used in practical and theoretical applications like astronomy, epidemiology and

computer graphics. Recently they used it also in architecture. Material science used

tessellation methods on Voronoi diagrams for modeling structures.

These methods are also useful to obtain various statistics of the corresponding

models. They used it because it is a powerful method for modeling and simulating

structures with desirable metric and topological properties. There are many ways of

constructing Voronoi diagrams. This method that we are using is simple and efficient

compared with other methods. First, start with two points on the graph. Voronoi edge

is a perpendicular line between two points that are connected to each other. In other

cases, if we have three points. The procedures are the same. Calculate perpendicular

bisector between each point then remove each section of the perpendicular bisector

lines. Now the Voronoi diagram is created.
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Fig. 3.1. Voronoi Tessellation Model

By increasing the number of points, the number of sites will be increased and

also this method can be used for three or more dimensions. Voronoi tessellation is

consist of sites or generators that divides the plane. This diagram can be used to solve

problems from inside and outside the math world, and it is useful in computational

geometry, robotics, and quantization problems.

Fig. 3.2. Construction of Voronoi Tessellation
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3.5 Common Neighbor Analysis

This method is used to analyze structure that is more complex, high dimensional

signatures to see obviously arrangements of atoms to better understanding different

structures. This method is one of the popular methods for analysis. In this method,

the characteristic signature is computed from the topology of bonds that neighbor

atoms are connected to that. Usually, we call two atoms are neighbor when they

are within specified cutoff distance r of each other. A number of neighbor atoms are

an important parameter in the analysis method, which is mentioned by Tsuzuki et

al [29]. chemical species of common neighbors is added when the CNA extended to

binary atomic systems.

The common neighbor analysis is introduced by honey-cut and Anderson. the

CNA shows the structural ordering around pairs of a particle in terms of shared

neighboring particles. The CNA is an algorithm which is used to characterize the local

structural crystalline systems. The goal of this analyze is to understand precisely the

phase of atoms and defects that are associated with these atoms.

There are three different modes for common neighbor analysis:

1. Conventional CNA:

In this mode, for defining the pair of atoms is bonded or not, we should de-

termine cutoff distance. This is selected based on crystal structures. For Fcc

and Hcp structure this radius must lie between the first and second shell of

neighbors but for Bcc is between second and third neighbor shell. There is a

list of optimal cutoff distances for FCC and Bcc structures.

2. Adaptive CNA:

This method is used when it is difficult to choose the right cutoff radius for

the conventional CNA, specifically in multiphase systems, and that is a reason

adaptive CNA is developed. This method is proposed by Stokowski et al. to

determine the optimal cutoff for individual particles [30].
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3. Bond-based CNA:

Based on the existing network of bonds between the particles, the CNA indices

are computed. The bonds should be defined in this method. The modifier

outputs the computed per bond as a new bond property for using in further

statistical analyses. The modifier, according to the structure, categorized each

particle. The structural types are defined as integer numbers.

• 0 = Other, unknown coordination structure

• 1 = FCC, face-centered cubic

• 2 = HCP, hexagonal close-packed

• 3 = BCC, body-centered cubic

• 4 = ICO, icosahedral coordination

A complete set of input particles are needed to perform the analysis for CN modifier.

Fig. 3.3. Common Neighbor Analysis
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Ovito is an open scientific visualization tool which analyzes atomistic and particle

simulation data to obtain better what is happening in material and physical proper-

ties. This software has an open source license, and it is a powerful tool to analyze,

understand, and illustrate simulation results.

Modeling material with the atomic-scale resolution is MD,Ms static, and MC

simulation. The output of this simulation is atomistic configuration or trajectories,

which needs to analyze to produce new scientific views. Powerful analysis and vi-

sualization are important factors in analyze, and without that, key information will

remain unknown, undiscovered, inaccessible, and unused.

Ovito is a software to help scientist translate the raw atomic positions into a

meaningful graphical picture. Ovito is written in C++ that can be used in all major

operating system. For availability of this software for researchers and scientists, it

has been released under terms of GNV public license.

Therefore, Ovito can be used free, and everyone can contribute to the software,

extend, or newly developed. This software is developed by Dr. Alexander Stokowski

at the material department of Missouri state university.the first version of this software

was published in December 2009. nowadays, more than 10000 used it in different fields

such as computational physics, material science, and chemistry. We want to explain

the common analysis of this software in the following.

Fig. 3.4. Ovito Software
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4. SIMULATION OF POLYCRYSTALLINE ALUMINUM

4.1 Computational Details

Voronoi tessellation procedure is used here to create nanocrystalline Al. Voronoi

is a popular way that can make a different structure for different materials. We

explain this tessellation in the method part. Challenging part for this section is se-

lecting appropriate dimensions for simulation cube. The dimensions of the simulation

cube were selected to be 200 Å, 200 Å, and 200 Å along the x, y, and z directions,

respectively.

In this simulation box, we placed 12-grain centers randomly. In this part, the

crystal orientation for each grain was randomly assigned to model the average be-

havior of bulk polycrystalline samples effectively. Each grain according to its crystal

orientation are filled by Al atoms

After the creation of the model, the 3D polycrystal model contained 483,197

atoms, and the average grain size by using a spherical grain assumption was esti-

mated to be about 10 nm. Boundary conditions Periodic boundary conditions were

applied in all directions. In order to avoid unphysical interaction between neighboring

atoms, atoms that are closer than 0.2 Å from another atom were removed from the

model.

A Finnis-Sinclair (F-S) type of interatomic potential [31] was used to describe the

Al-Al, Mg-Mg, and Al-Mg interactions due to the better reproducibility of thermal

and mechanical properties of Al-Mg alloys. The bulk phase diagram of Al-Mg was

better reproduced by this potential than other available Al-Mg potentials [32, 33].

Specifically, the solidus and liquidus lines are correctly reproduced by this F-S poten-

tial at the Al-rich side of the phase diagram [31] and the composition of Al-5at.%Mg

for this work is within in this range.
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To create NC Al-Mg models with an equilibrium distribution of Mg atoms, we em-

ployed hybrid Monte Carlo/molecular dynamics (MC/MD) simulations to introduce

Mg atoms into the NC Al model, rather than directly placing the Mg atoms at the

GBs or the grain interior [34]. Hybrid MC/MD [35,36] has been a useful tool to help

to achieve an equilibrium distribution of dopants in matrix atoms. In hybrid MC/MD

simulations, the atomic structural relaxations are realized by MD running, and the

MC scheme samples the semi-grand canonical ensemble. MC swaps of Al atoms with

Mg atoms are performed, and the swap probability is dictated by the Metropolis cri-

terion in specified temperatures. All atoms move according to the regular MD time

integration, and the time step is 0.1 fs. The hybrid MC/MD simulation is considered

to reach equilibrium if the fluctuation of total energy over the last 10,000 steps is less

than 0.5%. A chemical potential difference of 1.9 eV between Mg and Al was used

in the hybrid MC/MD simulation to achieve 5 at.% Mg in our model. The 5 at.%

of Mg dopants was chosen in this study because Al-Mg alloys with an Mg content

in the range of 1-5 at.% have been widely used in practical engineering applications.

The model was relaxed to achieve both mechanical and chemical equilibrium while

keeping the system temperature at 300K and the pressure equal to zero. During

the uni-axial tensile simulation, straining was carried out along the x-direction, while

the other two directions were free to expand or shrink. A constant strain rate was

applied to both NC Al and Al-Mg alloys. A small time step of 0.1 fs was used for

time integration in solving the equation of motion during the simulations. The tensile

simulations were carried out using the NPT ensemble with the temperature of 300K

and zero pressure. All simulations were performed using the LAMMPS [37]. The

software of OVITO [38] was used for the visualization of the atomic structures.

4.2 Results

In this paper, we create a fully relaxed NC Al 5at% Mg model that is shown in Fig

4.1. We select different colors for different atoms. These colors are selected base on
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common neighbor analysis (CNA) Values. FCC structures like Al atoms are colored

in green, but Al atoms that are available in grain boundaries are colored in blue.

We select the red color for Mg dopants to view the distribution of Mg in the model

obviously as we mentioned in the introduction, our goal for this thesis is explaining

the effect of Mg dopants in the Nanocrystalline Al.

Mg distribution can be visible more by cutting the model in different slices. So,

in order to visualize the distribution of atoms a cross-section of 3D model is shown in

Fig 4.1b. in this figure density of Mg, atoms are selected to be large to see clearly the

distribution of atoms in this slice. Slices in the model show Mg atoms are distributed

more in the grain boundaries, but it is available in another part of grains. Next step

Fig. 4.1. A fully relaxed nanocrystalline Al-5at.%Mg alloy (a) 3D
model and (b) Slice II: a cross-section parallel to the x-y plane. The
Al atoms with fcc structure are colored green; the Al atoms at GBs
are colored blue, and the red atoms with a larger size are Mg atoms.

after the creation of both models, Al and Al-Mg alloys, is applying tension loading at

temperature 300 k. these loadings are applying in two different strain rates. Strain

rate 9 and 10 are chosen for this simulation to see and compare the effect of strain

rate on the results.

Fig 4.2 is shown stress-strain curves for all four samples in one graph. The color of

curves for pure Al models are black and for Al-Mg alloys are red. In this graph, solid

lines are selected for strain rate 9, while dash lines are chosen for strain rate 10. As
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the graph shows, Mg atoms can affect the strength of Nanocrystalline Al. ultimate

stress, the highest amount of stress is for Al-Mg 5% for strain rate 9. Strength stress

consisted of yield strength and ultimate strength, which stress-strain curves for Al-Mg

samples have higher value compare with Pure material. As it was mentioned in the

previous part, pun et al. s result have the same result in an experimental test with

our result in this simulation which Mg atoms can improve the strength of a material

when it is added to Nanocrystalline Al [2].

Fig. 4.2. Stress-strain curves obtained from tensile simulations of
nanocrystalline pure Al and Al-5%Mg alloy at two different strain
rates

Two different strain rate are selected for Al-Mg alloys to see the effect of Mg on

pure Al. strain rate 10 has a larger strength for both Al and Al-Mg alloys. Mg

dopants can increase the ultimate stress in both strain rates. Ultimate stress for pure

Al is almost 1.8 Gpa for strain rate 9 whereas adding Mg dopants to Al can increase

this strength up to 2 GPa. The similar finding can be obtained for strain rate 10.

Ultimate stress will increase from 2.2 in a pure model to .5 Gpa by adding 5at% Mg

to nanocrystalline Al.
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The strain is selected to be up to 0.4, and as it is showing the graphs for all

samples, ultimate stress happens before strain 0.15, and the behavior of materials

changes a lot after this point. For example, pure Al in strain rate 9 will drop quickly

and failing happens in the structure, but for the al-mg model in this strain rate, it

did not happen at all.

When we compare two different strain rate for single Al-Mg model, we can say

that stress is higher in strain rate 10 in different strains, so flow stress for strain rate

10 is larger than strain rate 9. The same result happens for pure Al, and strain rate

10 has larger stress compare with strain rate 9.

As stress-strain shows, the effect of Mg on Nanocrystalline Al is obvious. Simu-

lation from here and Lee and pun from experimental results confirmed that Al-Mg

alloys have better ductility and strength in compare with Pure Al. Here we can ex-

plain more about the effect of Mg dopants, two slices of our model were cut from Al

and Al-Mg 3D model alloys that are from strain rate 9. These slices in these strains

are selected to show the effect of dopants and behavior of materials when tension

loading applied to the model.

Tensile loading is applied in the Y direction for our models so, slices should be

cut in XY plane and Z direction. Two slices in two different positions of z-direction

are chosen for explaining more. Slice 1 is showing the position of z = −4 for both

materials. The thickness for this slice is 6 to view the structure of atoms obviously.

Figure 4.3 shows this slice in different strains for both Al and Al-Mg samples. The

top figure is for pure nanocrystalline Al in strains up to 0.2, and bottom pictures are

for Al-Mg in the same strains.

Colors for the atoms are selected based on common neighbor analysis (CAN)

values. The Al atoms have different colors in different structural properties of the

material in the model. FCC structures are green and HCP structures are brown and

blue color is selected for disordered structures. Larger atoms with red colors are Mg

atoms that are distributed in the models. Stacking faults with hcp structure have

brown colors in different figures in Al-Mg. amorphous regions are colored in blue.
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Pure model when the strain increase after reaching the ultimate point, stress quickly

drops, and by viewing that slice in that time we can see in figure C, fracture starts

to grow. In the following figures, this fracture increases in strain 0.2, and as a result

slope of stress-strain curve became negative and dropping so quickly.

Position of slice 2 is Z = −40 that is shown in figure 4.4 and same as figure 4.3 in

XY plane but applied strain is up to 0.4, and thickness for this slice is 10. Same colors

are used for this slice. We labeled three different grains for tracking the behavior of

models in different strains during tensile loadings. In this slice, fracture happens later

compare with slice z = 13. Strain 0.3 is the start point for both model that crack

starts in this slice, and it can continue as it is shown in figure D and H.

Fig 4.5a shows deformation twinning that happens in Al-Mg 5% in fig 4.4 that is

applied strain of 0.2 in slice 2. Figure 4.5b is a close view of showing twinning in the

structure

Fig. 4.3. Atomic structure for Slice I of the nanocrystalline pure Al
and Al-5at.%Mg alloy models at different applied strains
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Fig. 4.4. Atomic structure for Slice II of the nanocrystalline pure Al
and Al-5at.%Mg alloy models at different applied strains.

Fig. 4.5. Atomic structure of the observed deformation twinning in
Al-5at.%Mg alloy at the applied strain of 0.2: (a) Slice II in Fig.
4.4(f) which are rotated to clearly show the twinning, (b) a close-up
view of the deformation twin.

4.3 Discussion

In order to identify the mechanisms for improving the strength of NC Al through

doping Mg atoms, we monitored the motions and size changes of grains during the

tensile simulations. Different GB induced deformation mechanisms were identified,

including dislocation nucleation from GB and deformation twinning in both pure Al

and Al-Mg alloy. For example, Fig.4.5 shows the atomic structure of the deformation

twin observed in Al-5at%Mg alloy at the applied strain of 0.2. The results of pure Al



29

show that the GB migration was frequently observed in pure Al in order to accom-

modate the deformation during the tensile loading. However, it was difficult to find

GB migrations in the Al-Mg alloys. As shown in Fig. 4.3(a)-(d) for pure Al, the sizes

of Grain #1 and #3 increased with the increasing strain, while the size of Grain #2

decreased. The comparison of the sizes of these three grains clearly shows that the

size ratio between grains changed during the tensile loading due to the migrations of

GBs between the neighboring grains. However, for the same slice in the Al-Mg alloy

model shown in Fig. 4.3(e) to (h), the change in the size ratio between Grains #1,

#2, and #3 are very small and negligible.

Similar findings can be obtained from analyzing the results of a different slice

shown in Fig. 4.4. The size ratio between Grain #1 and Grain #2 changed for pure

Al by Fig. 4.4 (a)-(d) while the change in the size ratio is much smaller for the

Al-Mg alloy as shown in Fig.4.4(e)-(h). This dopant pinning effect on GB migration

agrees well with a study by Rahman et al. [39]. A simple tilt GB model was used

in their study, and artificial driving force (ADF) techniques were used to induce GB

motions. They found that a strong dopant pinning effect was observed at different

misorientations. In this study, we used fully 3D nanocrystalline models to reveal

the Mg dopant pinning effects on GB migration in NC Al. All these results clearly

indicate that the addition of Mg atoms can effectively impede the GB migration in

NC Al, and hence improve its strength at the early deformation stage up to a strain

of 0.2.

The analysis of the failure process of pure Al and Al-Mg indicates that Mg atoms

can also effectively prohibit the nucleation of intergranular cracks in NC Al. The

ultimate failure of both NC pure Al and Al-Mg alloy were caused by the initiation of

intergranular cracks from the regions close to triple junctions and their propagation

along the GBs in the materials. This failure mechanism agrees well with the finding

from a study by Hocker et al. [40]. They observed inter-granular fracture in both pure

Al and Al-Mg alloy but didnt find any difference in tensile strength between them.

However, in our study, we found that the strength of the Al-Mg alloy is higher than
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pure Al. The strengthening mechanism includes the effect of dopants on prohibiting

crack initiation in Al-Mg alloys. As shown in Fig. 4.3 (c) for pure Al at the applied

strain of 0.15, cracks nucleated at triple junctions near Grain #1 and #2 in pure

Al. However, no cracks were observed for Al-Mg alloys at the strain of 0.15 and even

up to 0.2, as shown in Fig. 4.3(g) and (h). The addition of Mg dopants leads to

the formation of a larger disorder GB region and triple junction region compared to

the pure Al model, as shown the comparison between Fig. 4.3(b) and 4.3(f). The

larger disorded triple junction region can better accommodate the deformation triple

junctions and hence prohibit the initiation of crack from triple junctions, as shown in

Fig. 4.3 (c) and Fig. 4.3 (g).

Moreover, Mg atoms segregated to GBs can affect the flow stress of NC Al through

impeding the propagation of existing intergranular cracks. As shown in Fig. 4.4 (c)

and (d), the crack near Grain #3 is propagating quickly in pure Al when the applied

strain increases from 0.3 to 0.4. Compared to pure Al, the propagation of the crack

between Grain #1 and #2 in Al-Mg alloys is much slower with the strain increased

from 0.3 to 0.4, as shown in Fig. 4.4(g) and (h). The larger amorphous GB regions

induced by segregation of Mg atoms act as stronger barriers to the propagating cracks

in the Al-Mg alloy. All these results suggest that Mg dopants segregated to GBs can

strengthen the NC Al through effectively prohibiting the nucleation of intergranular

cracks and impeding the propagation of existing cracks.

The stability of nanocrystalline materials can be improved by GB doping to sup-

press the driving force for grain coarsening. For example, the experiments of sputter-

deposited Al alloy [18] show that the grain size of Al-Mg alloys was found to be

much smaller than that of pure Al, though they were treated at the same conditions.

Doping with different elements have been widely used to stabilize the grain size of

nanocrystalline materials against the increase of temperature.
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In this study, we illus-trate that Mg dopants can effectively stabilize the grain size during 

the deformation process of NC Al due to the pinning effect of dopants on GB migrations. 

This result indicates that GB doping could be an effective strategy for controlling the grain

size of nanocrystalline materials during manufacturing processes that utilize 

deformations, such as severe plastic deformation (SPD) techniques.
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5. BICRYSTAL ALUMINUM

5.1 Computational Details

Simulations in this part are similar to previous part. The MD code LAMMPS is

used with the modified embedded-atom method potential for Al while MC simulation

used the parallel MC algorithms developed by Sadigh et al. [35]. The latter alternates

MC switches of atomic species (swaps) with MD runs which are used in LAMMPS.

When we put two different oriented crystal lattices together at a planar interface

parallel to one of the surfaces, the bicrystal model is created. In this part, we have

different bicrystal models in this part.
∑

5 and
∑

3 are two bicrystal model that we

are particulary interested in. For creating one of this model, for example,
∑

5, the

bottom grain rotates about the [001] tilt axis by θ/2 in a clockwise direction and the

top grain in the anticlockwise direction. The GB plane was the (110) for
∑

3 and

(211) for
∑

5 crystallographic plane of the bottom grain and the plane of (1 -10) and

(2-10) for bottom grain.

The dimensions of the simulation box were selected to be 10 10 and 10 along the

x, y and z directions, respectively. After the creation of this model, the 3D bicrystal

model contained 124,416 atoms. Boundary conditions were applied periodically in

the three directions; therefore, during system relaxation isobaric-isothermal (NPT)

is used in all three dimensions. In this study, the simulation temperature was set to

300K. before applying shear loading, it needs to remove some atoms that are close

to each other which here we tried to delete atoms that interact each other and delete

atoms that are closer than 0.2 to avoid unphysical interaction between neighboring

atoms.

There are many potentials that can be used for Al materials in the molecular

dynamics simulation, we choose the newest potential which is published in 2018 by



33

Dickel [41] because it can be useful for very large c/a ratio and allow the atomistic

modeling of a wide class of alloys containing material properties for the pure state

and MEAM potential foe Mg-Al-Zn system which allow modeling wide range of alloys

which contains Mg atoms. This potential can produce Al-Mg alloys, which contain 5

wt% Mg is within this range.

The bulk phase of Al-Mg was produced by this potential, which is new, and there

is not that much available research that used this potential before. This potential

cannot be used for a model that has an hcp ground state and c/a ratio greater than

ideal.

Both GBs consist of topologically identical structural units; their differences are

only in the distance which separates structural units and positions from the GB

plane. Bicrystal Al-Mg models for both models with an equilibrium distribution

of Mg atoms are made by using hybrid Monte Carlo/molecular dynamic (MC/MD)

simulation which here we introduce Mg atoms randomly instead of choosing an exact

position in pure Al model at the grain boundaries. Zhang et al. [42] also studied about∑
5 (310) GB structures in bicrystal Al and structure of GB on its mechanical and

kinetic properties under shear stress at low temperature (T = 10K) with different

deformation mechanisms and GB migration were also observed.

MD part is running to relax the atomistic structure, and MC scheme sampled the

semi-grand canonical ensemble. This simulation let the model determine the relaxed

concentration and atom distribution in the model for selected chemical potential

differences of the constituents. Structural relaxation and thermal vibrations are also

employed besides the exchange of atom types.

Time step is 0.1 fs, and all atoms change their positions in the MD time integration,

and figures show the distribution of Mg atoms in Al alloys in both models, and it

needs total energys fluctuation over last 10000 steps should be less than 0.5%.

The potential chemical difference in this model which change the number of seg-

regated atoms in the model is 2.1 eV between Mg and Al elements and used in the
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hybrid MC/MD simulation to achieve 3.5 at.% Mg. we choose this percentage because

potential recommend this range 1-8 wt% Mg should be distributed in Al models.

The applied strain rate for both models is 109, which is fixed in the process of

the running simulation. Equation of motion is solved during the small time step of

0.1 fs during this simulation. NPT ensemble during shear loading is implemented for

300k temperature and zero pressure. LAMMPS and OVITO are used for running

MD simulation and and analyzing results

5.2 Results

A fully relaxed bicrystal Al model is shown in Fig. 5.1 in which the atoms are

colored based on their common neighbor analysis (CNA) values. The green color is

for FCC structures of Al atoms. Red colors are HCP colors which are distributed in

grain boundary plane. We have two bicrystal models which cross- section of these

models,
∑

3 and
∑

5 are shown in Fig. 5.2. Figures of 5.2b and 5.2d clearly show

the distribution of Mg atoms in both upper and bottom grain boundaries. Blue

color shows Mg atoms in both models, and this observation showed Mg atoms also

could be distributed in the grain boundary plane. White color are atoms which are

not categorized as FCC or Hcp structures. As the figures showed, Mg atoms are

distributed randomly in the grain. Figure 5.2a shows the structure of the grain

boundary plane in
∑

3 and degree of between two grains is presented in the figure.

Figure 5.2b represents this structure in
∑

5 with a different angle between grains.

Brown and purple color show this structure in
∑

3 and
∑

5.

After creating the model and distribution of Mg in both models, we should apply

shear loading at temperature 300 k. The strain rate for all the models are fixed at

109. Here, Fig. 5.3 showed stress-strain curve for
∑

5 and
∑

3 for pure Al. The

orange line is for Al in
∑

5 structure, and blue color is selected to be the Al model

in
∑

3 structure. As it is shown in Fig. 5.3,
∑

3 has higher strength and ultimate

stress compared with
∑

5.
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Fig. 5.1. A Fully Relaxed
∑

3 Bicrystal Model

Fig. 5.2. structure of atoms in (a)
∑

5 (b)
∑

3
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Here, we compared different pure models that are created and applied shear stress

to see the behavior of materials in Fig. 5.4. We select a different color for different

models. Here the strain rate is also constant. The strain for this graph is up to 0.25,

and observation of this graph showed the behavior of
∑

3 is completely different from

other structures.

Fig. 5.3. Stress-Strain Curve Obtained from Shear Stress of Pure Al Models

Fig. 5.4. Stress-strain curve obtained from Shear loading of Al And
Al-Mg

∑
3 models
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Fig. 5.5. Stress-strain curve obtained from Shear loading of Al And
Al-Mg

∑
5 models

In this part, we showed figures that the effect of dopants on the nanocrystalline

model is shown. Figure 5.4 is for
∑

3 model, and Fig. 5.5 shows
∑

5 for both Al

and Al-Mg models. As it is shown in the figures, Mg dopants can increase strength

and ultimate stress in different strains in
∑

5 model, but this effect is not obvious in∑
3. The blue color is selected to be a pure Al model, and orange is shown Al-Mg

model.

We compare the effect of dopants in different models. Besides
∑

3 and
∑

5,

we also created other GBs, such as
∑

13,
∑

9,
∑

27 and
∑

29. All of them are

applied shear loading and strain is up to 0.25. Different colors are selected for different

models. As shown in Fig. 5.6, the behavior of some of these models are the same,

but
∑

3 has different behavior by adding this amount of Mg to Al.

Figure 5.7 below shows the movement of atoms in the
∑

3 model when the strain

increases and as it shows, selected atoms can pass grain boundary plane, which is

showing the effect of shear loading in moving atoms. Also, this happens for the
∑

5 model. This figures showed selected atoms before reaching grain boundary, on

the grain boundary and when these atoms passed grain boundary in applied shear

loadings.



38

Fig. 5.6. Stress-strain curve obtained from shear stress of Al-Mg Alloys

Fig. 5.7. Migration of atoms in
∑

3 bicrystal model

Fig. 5.8. Migration of atoms in
∑

5 bicrystal model
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Fig. 5.9. Atomic structure of Al
∑

3 at different applied strains (a)0
(b)0.05 (c)0.1 (d)0.15 (e)0.2

Fig. 5.10. Atomic structure of Al-Mg
∑

3 at different applied strains
(a)0 (b)0.05 (c)0.1 (d)0.15 (e)0.2

Fig. 5.11. Atomic structure of Al
∑

5 at different applied strains (a)0
(b)0.05 (c)0.1 (d)0.15 (e)0.2

Following figures wants to show Gb migration in different strains, which is for

both
∑

3 and
∑

5 both pure Al and Al-Mg samples. These figures clearly show the

effect of Mg dopants in these model and speed of migration when the shear loading

applied in all models.
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Fig. 5.12. Atomic structure of Al-Mg
∑

5 at different applied strains
(a)0 (b)0.05 (c)0.1 (d)0.15 (e)0.2

Fig. 5.13. Grain boundary displacement-Strain curve for bicrystal models

5.3 Discussion

To understand the behavior of material for the effect of dopants in the strength of pure 

Al models, we applied shear loading for all samples. Results of Fig.13 shows that before the 

addition of dopants to the material, because of the structure of the model and compact 

distribution of atoms, the ∑3 model has higher strength compared with other models. Flow 

stress is another point that can be observed in the stress-strain curves, and as it showed, 

the flow stress of ∑ 3 model is much greater than ∑ 5 model. 
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  To show the effect of the grain boundary plane in different bicrystal models, we 

examined different structures and understand the behavior of other models is similar to 

the behavior of ∑ 5. The arrangement of atoms at GBs is different from the ∑ 3 model 

because the atoms are so close to each other in this model, which can help improve stress 

in applied loading. As a result in the stress-strain curve, we can see the fluctuation of ∑ 3 

model because of the small size and closeness of atoms is more than others, which is 

normal in this case.

Similar findings can be obtained by adding dopants. We precisely see the stress-strain 

curves in Fig. 16 and it showed that Mg dopants could improve the strength of the 

material in another model, but this change in stress cannot reach to ultimate stress in the 

∑ 3 models with blue color in the figure. This graph also can confirm previous findings, 

which showed the behavior of other structures is not different from ∑ the 5 models in 

shear loading tests.

    If we compare both pure models and Al-Mg models for same material like ∑ 3, it can be 

visible that Mg dopants not only cannot effect on the strength of material but also in some 

strains have less amount of stress compared with Al model but influence of Mg dopants 

on ∑ 5 models showed it could improve stress significantly and huge fluctuation of the 

pure model removed when dopant added. Thus the structure of atoms and the position of 

big size dopants like Mg in the nanocrystalline Al can help changes in the behavior of the 

material in different tests.

   GB migration is shown to see the effect of shear loading on different strains. For pure 

models, it showed at the early deformation,  grain boundaries are stable in their positions, 

but at the last steps, these grain boundaries will become closer in the strain up to 0.2 for 

∑3 bicrystal model. When the Mg dopants added to NC Al, this happens again for ∑3, and 

the figures are not different from the pure model. 
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   In ∑5 model, the graph showed GB migration is faster than ∑3 which is shown 

deformation happened in the early stage of this material and when the dopants added to 

material the place of the grain boundary fixed and by increasing strain there is no 

movement in this plane, and just thickness of GB planes will increase which is caused 

improving strength of material compared with the pure model.

To explain more, we focus on the motion of GB in all samples, and the effect of adding 

dopants was realized by GB migration. The snapshots in figures 19-22 showed that Mg 

atoms could change the motion of GB. When Mg atoms added to ∑ 5 pure models, the 

thickness of GB will be increased although shear responses of the ∑ 5 pure model are 

completely different and distance between GBs decreases the when strain increases up to 

0.2. Based on structure and angle of atoms, when Mg dopants added to the pure model, 

the number of atoms in GB will increase. So, by increasing the number of atoms in GB, the 

thickness of GB will increase, and the stress of the material will improve; however, it did 

not happen in sigma 3 models.

   Fig.19 which is shown GB motion in different strains for pure model sigma 3 acts like 

sigma 5 model and GB planes become closer when shear loading applied to the 

models, but when we add dopants to sigma 3 models, changes in thickness and number of 

Mg dopants in GB are not more than another model.

   When we observe the Fig.19 GB plane start to move in Fig 19 (c) and velocity of GB 

plane increase rapidly in the following fig.19 (d) and (e). Also, at the same time GB 

movement happened for Al-Mg model in fig. 20. it will start to be close to another plane 

after strain 0.1. when we compare both pure model in different strains, we can find out GB 

plane movement in sigma 5 model start earlier than sigma 3 model. by comparing the last 

two models in strain 0.2, GB planes in sigma 3 models are closer than sigma5 

model because of the different structure and behavior of models in applied shear stress.

   The behavior of GB plane in Al-Mg sigma 5 model is not similar to sigma 3 model 

because instead of moving planes in this structure, distribution of Mg atoms increase in 

the grain boundaries and did not let the GB plane to move. it is caused  changing the 

behavior of the material in two different structures when dopants added to the pure 

model.
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   Fig 23 confirms our results for GB migration in all samples. When we calculate the 

distance between GB planes, Mg dopants cannot change the behavior of pure Al in sigma 

3 model, blue and red lines which are pure Al and Al-Mg model has similar GB 

displacements in different strains, but in sigma 5 model there is no displacement in Al-

Mg model. pure model this graph confirmed that velocity of GB displacement is more 

than another sigma 3 models

    Movement of dopant atoms in different structures can be seen in figures 20 and 22. 

When dopants added to the pure model in Fig.20, we can find out those atoms in the GB 

plane are more mobile than the pure model. It can be concluded that Mg atoms tended to 

be distributed in another part of the structure instead of the GB plane. However, for Al-

Mg model in Fig.22, when the thickness of GB increased, a number of atoms in GB will be 

increased, which showed number of Mg atoms go up in strain up to 0.2.

   We concluded that GB migration was sensitive to GB structure and behavior of bicrystal 

models in shear loading for selected structures are entirely different, and dopants in some 

cases based on properties of the material can be caused to have better structure.
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6. CONCLUSIONS AND FUTURE WORKS

6.1 Conclusions

The strength of NC Al can be improved by doping 5at% Mg from atomistic sim-

ulation results. Grain boundary migration can accommodate the deformation when

the tensile loading is applied to nanocrystalline Al. Simulation results show that Mg

dopants can help to stop GB migration in NC Al, which lead to the improved strength

of the material at the early deformation stage. Furthermore, another dopant effect is

that the dopants segregated to GBs can effectively prohibit nucleation of intergranu-

lar cracks, and also stop the propagation of existing intergranular cracks along GBs.

This effect can help the improvement of flow stress for Al-Mg compared with pure

Al. Controlling the grain size is the promising application of dopants, which improves

stability of nanocrystalline materials during deformation processes.

The results of bicrystal models show that grain boundaries character could affect

the strength of materials. The results indicate that the
∑

3 GB, which is a twin

boundary, has higher strength and flow stress than
∑

5 and other GBs. The results

also show that adding Mg dopants cam improve the strength and flow stress of
∑

5 and other GBs. Howver, this influence is not observed in the
∑

3 GB. Analysis

of atomic structures shows that adding Mg dopants stops GB migration in
∑

5 and

other GBs. However, it cannot impede GB migration in the
∑

3 GB.

6.2 Future Works

The effect of Mg dopants on the NC Al is studied in our study. However, it still

needs more work to be done for dopant effect on NC Al. Some of the issues and

challenges of the current study that needs further research are listed below:
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• We applied tensile loading for both polycrystalline materials, but compression

loading can be tested in the future and investigate the effect of dopants in the

compression loadings

• This study has been done for the effect of first dopants in the models but the

effect of second dopants can be studied in the future time especially the effect

of Zn dopants in the Al-Mg alloys

• In the bicrystal model part of our research, we can try to run the simulation

for tensile and compile loadings for both models and also the effect of second

dopants on the nanocrystalline Al can be investigated.
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