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ABSTRACT

Agudelo, Luz M. MS, Purdue University, August 2019. Finite Element Modeling
of Buried Arched Pipes for the Estimation of Maximum Fill Covers. Major
Professor: Ghadir Haikal.

The Indiana Department of Transportation implements maximum soil fill covers
to ensure the safe installation and operation of buried pipes. Historically, fill cover
tables are provided by INDOT, but the methodology for calculating these covers is
not well documented. The finite element method enables a comprehensive analysis of
the soil-pipe system taking into account soil conditions, pipe type and geometry, and
conditions on the pipe-soil interface.

This thesis discusses the calculation of maximum fill covers for corrugated and
structural plate pipe-arches using the finite element software CANDE and compares
the results with previous estimates provided by INDOT. The CANDE software uses
the Finite Element Method, and the Load and Resistance Factored design based on a
two-dimensional culvert installation in a soil-pipe model. The model is set up under
plain strain conditions and is subjected to factored dead and live load, and provides an
analysis of the structure based on safety measures against all factored failure modes
associated with the structural material.

Significant issues were encountered when calculating the maximum fill covers for
pipe-arches in CANDE, including the inability of standard CANDE (Level 2 mesh)
to model pipe-arches, lack of convergence for nonlinear analysis, and fill cover re-
sults higher than expected. To solve these issues, the pipe-arches were modeled using
Level 3 solution in CANDE. The CANDE analyses were run using small-deformation

analysis after buckling was eliminated as a governing failure mode using parallel simu-
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lations in Abaqus. Numerical results were compared to analytical solutions following
ASTM standards.

The results showed that CANDE and INDOT calculations differ significantly,
with the CANDE results yielding higher fill covers than those provided in INDOT
specifications. These differences are attributed to the assumed loading pattern at
failure. While the CANDE results assume that the maximum fill cover height is
defined by the failure of the pipe considering the radial pressure (Pv), the INDOT
results are consistent with results obtained by limiting the bearing capacity of the

soil around the corner radius (Pc).



1. INTRODUCTION

The nation’s underground infrastructure is a 35-million-mile labyrinth of pipes, cables,
and conduits used to transport electricity, drinking water, wastewater, natural gas,
and drainage. Corrugated Metal Pipe-Aches and Structural Plate Metal Pipe-Arches
(an example is shown in Figure 1.1) have been successfully used in the infrastructure
for more than 100 years. Their wide range of shapes and sizes, mechanical and
geometrical properties that can handle fill heights over 50 ft, service life over 100 years,
cost-effectiveness, and recyclability, are proof of the versatility, structural strength,
and durability of these pipes.

Corrugated and Structural Plate Pipe-Arches are used in a variety of applications,
from drainage applications as sewers (as shown in Figure 1.2), to non-drainage ap-
plications such as underpasses for pedestrians and animals (as shown in Figure 1.3).
However, they are mostly used where headroom is limited, for improving hydraulic
capacity at low flows, due to their aesthetic shape and appearance, and lightweight
construction [1].

This project was initiated as a request from the Indiana Department of Trans-
portation (INDOT) to verify the maximum pipe fill covers to ensure the safe installa-
tion and operation of buried pipes. This thesis discusses the calculation of maximum
fill covers for corrugated and structural plate pipe-arches for different pipe spans and
corrugation profiles using the Finite Element Method in the software CANDE (Cul-
vert Analysis and Design) and compares the results with previous results obtained
by INDOT.

Minimum and maximum cover height limits are placed on buried pipes to ensure
the safety of the pipe during installation and throughout its service life, respectively.
Minimum fill heights are determined to ensure a minimum level of confinement for

the pipe and a sufficient distance for the transmission of high-stress concentration



caused by vehicular point loads during construction. Maximum fill covers represent
the maximum soil height that can be placed on a pipe for an embankment of trench
installation. This thesis will focus on maximum cover calculations, while minimum
fill covers will be assumed to follow INDOT specifications (2 feet).

The two-dimensional combined soil-pipe model shown in Figure 1.4 is used for
analyzing the behavior of the pipe under dead and live loading, and with appropriate
boundary conditions. Half of the model is used due to symmetry. The parameters
needed for the calculations include the pipe type, soil type, soil-pipe interface, and
their properties, in addition to live and dead loads, analysis methodology, and design
criteria.

Standard sizes and corrugations profiles for the Corrugated and Structural Plate
Pipe-Arches discussed in this thesis are summarized in Table 1.1. The soil type used
is gravelly sand, with 90% compaction (SW90). The analysis was carried out using
the Finite Element Method (FEM) in the software CANDE (Culvert Analysis and
Design) with a small deformation analysis and embankment installation, and criteria
determined by the Load and Resistance Factor Design (LRFD) method. Careful
consideration is required when selecting these parameters as each parameter can lead
to a significant change in the fill heights.

Katona et al. [2] developed the software CANDE, and were pioneers in applying
FEM to buried pipes problems. CANDE is a free software produced for the structural
analysis and design of buried culverts with different shapes, sizes, and materials.
The finite element formulation is static and displacement-based, with incremental
model buildup representing the embankment installation phases during construction.
Plain strain quadrilateral elements, beam elements, and interface elements are used
to represent the soil, pipe, and soil-pipe interface, respectively, assuming plain strain
conditions.

CANDE’s output provides an evaluation of the structural design based on safety
measures against all failure modes associated with the structural material, as de-

termined by the LRFD method. The LRFD method provides resistance factors for



four strength design criteria: wall area yielding due to thrust stress, global buckling,
seam strength, and plastic penetration; and one limit criterion: allowable deflection.
The factored capacities need to be higher or equal than the corresponding factored
demands for all the strength design criteria.

Significant issues were encountered when modeling pipe-arches. These issues in-
clude the inability of standard CANDE (level 2 mesh solution) to model pipe-arches
(e.g., generating the mesh for arch shapes and discretizing the model), and lack of
convergence for nonlinear analysis that leads to performing small deformation anal-
yses. To ensure that the buckling failure limit is adequately taken into account,
calculated fill cover heights were used to perform buckling failure analysis using the
finite element software, Abaqus. Results in CANDE showed that, fill cover results
were higher than expected. Load and resistant Factor Design (LRFD) calculations
based on ASTM standard practices were performed for comparison, to determine the
governing assumptions and load patterns. Fill covers were calculated for a total of 624
pipe-arches. The Abaqus buckling analyses and ASTM calculations were performed
by fellow students Chatuphat Saviganim and Devansh Gandhi, respectively.

The outline of the thesis is as follows: All the geometrical and mechanical inputs
for the pipe and soil, resistance factors, load factors, and general information about
the CANDE software and the Finite Element Method can be found in Chapter 2.
Chapter 3 discusses the assumptions made for the analysis and the justification behind
those assumptions, as well as some of the challenges that were encountered in the
project and the proposed solutions. Chapter 4 contains the calculated maximum fill
heights, and compares the finite element results with the existing INDOT fill heights
as well as with the results obtained using ASTM standards for pipe-arches, and those
obtained through the buckling failure mode analysis in Abaqus. Conclusions are

discussed in Chapter 5.



Fig. 1.1. Pipe-Arch [1].

Fig. 1.2. Pedestrian Underpass [1].



Fig. 1.3. Relining of a failed concrete box with corrugated steel pipe-

arch [1].

Table 1.1.

Sizes, corrugation profiles and thicknesses evaluated for corrugated and

structural plate pipes.

Corrugation  Thickness
Type of Pipe Span
Profile (in) Range (in)
17 in - 83 in 22/3x 1)2 0.064 - 0.168
Corrugated Steel
60 in - 142 in 3 x1 0.079 - 0.168
Pipe-Arch (CSPA)
60 in - 142 in 5 x1 0.109 - 0.168
Corrugated Aluminum 17in - 71 in 22/3x 1/ 0.060 - 0.164
Pipe-Arch (CAPA) 60 in - 112 in 3x1 0.075 - 0.164
Structural Plate Steel Pipe- 0.111, 0.140
6 ft - 20 ft 6 x 2
Arch (SPSPA) and 0.280
Structural Plate Aluminum
6 ft - 21 ft 9x 2L/ 0.100 - 0.250

Pipe-Arch (SPAPA)
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2. BACKGROUND

This chapter provides an overview of the terms and definitions used in this thesis.
Types and materials for the pipe and soil are summarized, and a general overview
of the methods and software tools used for the analysis is presented. Also, standard
practices for the structural design of buried pipes are detailed. Culverts custom
sizes and layout dimensions were extracted from The Modern Sewer Design [3], while

corrugation profiles, wall properties, and mechanical properties were obtained from

CANDE-2015 User Manual and Guideline [4].

2.1 Pipe-Arches Data

This thesis focuses on Corrugated Steel and Aluminum Pipe-Arches, and Struc-
tural Plate Steel and Aluminum Pipe-Arches. In this section, the geometrical and
mechanical properties needed for describing this types of pipes are illustrated. The
words culvert or pipe will be used to represent a buried pipe structure.

Corrugated Pipe-Arches and Structural Plate Pipe-Arches can be found in a vari-
ety of sizes and corrugation profiles that satisfy most requirements in buried systems.
They are an economical and reliable choice that provides optimal strength and dura-
bility. Corrugated pipes can be helical or annular, depending on if the corrugations
and seams run helically or annularly around the pipe respectively. Pipes with heli-
cal corrugation can be fabricated with a lock seam method, continuous welding of
the seams or attaching a helically corrugated sheet at the lock seam. Annular cor-
rugated pipes are fabricated by riveting, bolting or spot welding the seams. This
thesis analyzes corrugated pipes with lock seam or riveted fabrications. Structural

plate pipes are used for larger structures requiring field assembly. This type of pipe



is manufactured by hot dipping galvanized plates and assembled by bolting plates
together. [3]

The mechanical properties of steel and aluminum were selected based on the Cul-
vert Analysis and Design (CANDE) user manual [4], and are summarized in Table

2.1. Table 2.2 summarized the properties for longitudinal seam strength of corrugated

pipes.

Table 2.1.
Mechanical properties of steel and aluminum.

Mechanical Properties Steel Aluminum
Young’s Modulus (psi) 29,000,000 10,000,000
Yield Stress (psi) 33,000 24,000
Yield Stress of Pipe Seam (psi) - 24,000
Poisson’s Ratio 0.3 0.33
Density (pci) 0.284 0.0975

The geometry of a pipe-arch is defined by its span (S) and rise (R), and by its
radii, top radius (R;), bottom radius (R,) and corner radius (R.). Dimension B
describes the vertical distance between the measured center for R, and the bottom
of the pipe. The geometrical representation of pipe-arches is shown in Figure 2.1.

A corrugated profile is defined by its thickness (T'), pitch, depth, tangent length
(T'L) and tangent angle (A,°), as shown in Figure 2.2. For performing the required
analysis, the section properties (cross sectional area (PA), moment of inertia (PI)
and section modulus (P.S)) should be calculated using the previous dimensions.

The geometrical properties can be found in the appendix. Section A.0.1 lists the
sizes, layout and corrugation details for Corrugated Steel and Aluminum Pipe-Arches.
Similar details are given in, Section A.0.2 for Structural Plate Steel Pipe-Arches and

in Section A.0.3 for Structural Plate Aluminum Pipe-Arches.



Table 2.2.
Ultimate longitudinal seam strength of corrugated pipes.

Corrugation Steel
Profile (in) 3x1 hx1

Seam Strength Seam Strength

Thick I
ickness (in) Double (Ib/ft) Double (Ib/ft)

0.064 28700 28700
0.079 35700 35700
0.109 53000 53000
0.138 63700 63700
0.168 70700 70700
Corrugation Aluminum
Profile (in) 22/3x1/2 3x1

Seam Strength Seam Strength

Thick I
ickness (in) Double (Ib/ft) Double (Ib/ft)

0.060 14000 16500
0.075 18000 20500
0.105 31500 28000
0.135 33000 42000
0.164 34000 54500

2.2 Soil Data

The Duncan-Selig model is used for modeling the behavior of the soil, assuming
that the soil properties can be represented using a hyperbolic function. The param-
eters of the model can be found in Table 2.3 and were obtained from the CANDE
manual [4]. In this table, K is the dimensionless magnitude of initial Young’s modu-
lus, n is the power-law coefficient for initial modulus (these last two parameters are
nondimensionalized using the atmospheric pressure, F,), C' is the cohesion intercept
for failure, ¢¢ is the initial soil friction angle of failure surface, Ay is the reduction
of soil friction angle for 10-fold increase in the minimum compressive principal stress

(03), Ry is the failure ratio, defined to be the ratio of actual to model failure stress,
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Rise

Fig. 2.1. Geometrical representation of pipe-arches.

Pitch

Fig. 2.2. Geometrical representation of the corrugation profiles.

B;/P, is the ratio of initial tangent Bulk modulus to the atmospheric pressure and
€, is the ultimate volumetric strain at large hydrostatic stress. Further explanation
of the model is shown in Section 3.3. The type of soil used for the analysis is gravelly

sand with 90% of relative compaction (SW90) with embankment installation.
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Table 2.3.
Soil Parameters for the Duncan-Selig Model with gravelly sand of 90%
compaction. [4]

Soil Stiffness and Strength Bulk Modulus Density
Type| K n  C (psi) ¢ (deg) Ay (deg) Rr | Bi/P, Eu (Ib] ft3)
SW90 | 640 0.43 0 42 4 0.75 | 40.8 0.05 140

2.3 Finite Element Analysis

Modeling a continuum media with numerical methods, such as Finite Elements,
has been a problem of interest for many years. A continuum is characterized for
its infinitesimal subdivision that only can be solved by mathematical manipulations.
Finding an exact solution for the differential equations that represent the continuum
is complicated, since the mathematical techniques currently available are limited for
oversimplified conditions, and finding a closed-form solution of the partial differential
equations governing continuum media is a challenging task. Numerical approaches,
such as the finite element method (FEM), seek to find an approximate solution by
discretizing the continuum into smaller domains, therefore creating a numerical dis-
cretization or mesh in FEM, in which a unique solution for the boundary value prob-
lem can be found under specific conditions and in the limit of mesh refinement [5].

Although it is difficult to determine the precise beginning of the FEM, the earliest
work that uses the finite element terminology appears to be Clough [6]. The present-
day FEM was brought together from the development of variational finite differences
[7], piecewise continuous trial functions [8], and direct continuum elements [9]. A
detailed process of evolution for the FEM can be found in [5].

The structure of the FEM starts with the definition of a variation method for the
mathematical description of the behaviour of the system (Galerkin approximation),

continuing with the discretization of the geometry, a process that involves the gener-
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ation of a finite element mesh, the definition of shape functions that approximate the
geometry and deformation fields within each element, and ending with the solution
algorithms and post-processing of the data for extraction of the solution and error
estimates [10].

The CANDE software uses a static and displacement-based FEM for evaluating
the soil-structure interaction problem of underground pipes, with an incremental vir-
tual work approach that mimics the actual build-up of the soil-structure system using
the embankment installation. The embankment installation is the physical process of
construction by placing and compacting soil layers. This process involves incremental
solutions using successive finite element configurations, where each new configuration
contains additional soil elements. Material history is accrued during the build-up pro-
cess to simulate construction conditions in the field. Figure 2.3 shows the schematic of
a standard mesh in CANDE, where the different grey shades represent the soil layers
and the number inside the element is the construction increment. Further information

about the FEM code in CANDE is presented in Section 3.2.

2.4 Standard Practices for the Structural Design of Corrugated Pipes

Standard procedures for the structural design of pipes are based on either the
allowable stress design (ASD) or the load and resistance factor design (LRFD), with
trench or embankment installation, subjected to earth and live loads. These stan-
dards, are provided by ASTM A796/A796M, ”Standard Practice for Structural Design
of Corrugated Steel Pipe, Pipe-Arches, and Arches for Storm and Sanitary Sewers and
Other Buried Applications” for steel [11], and ASTM B790/B790M, ”Standard Prac-
tice for Structural Design of Corrugated Aluminum Pipe, Pipe-Arches, and Arches
for Culverts, Storm Sewers, and Other Buried Conduits” for Aluminum [12]. This
practices apply for structures installed according to practice ASTM A798/A798M,
"Practice for Installing Factory Made Corrugated Steel Pipe for Sewers and Other
Applications” [13] and ASTM A807/A807M, " Practice for Installing Corrugated Steel
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Fig. 2.3. Representation of FE Level 2 mesh (standard) in CANDE with
construction increments for the embankment installation [4].
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Structural Plate Pipe for Sewers and Other Applications” [14] for steel, and ASTM
B788/B788M, "Practice for Installing Factory Made Corrugated Aluminum Cul-
verts and Storm Sewer Pipe” [15] and ASTM B789/B789M, ”Practice for Installing
Corrugated Aluminum Structural Plate Pipe for Culverts and Sewers” [16] for alu-
minum. These standard practices provide the design considerations for determining
the strength requirements for wall strength, buckling strength and seam strength.
The formulations include the weight of the entire prism of soil over the pipe, flexibil-
ity factors for trench and embankment installation and details about acceptable soil
types [3]. For this thesis we considered the embankment installation and the LRFD
design methodology.

2.5 CANDE Software

CANDE is a public software developed for the structural analysis and design of
buried culverts with different shapes, sizes and materials, including corrugated metal,
reinforced concrete and thermoplastic materials. The software uses FEM based on
a two dimensional culvert installation with a soil-structure model subjected to dead
weight, incremental loading due to the addition of soil layers, temporary construc-
tion loads and surface loads due to vehicular traffic. CANDE’s output provide an
evaluation of the structural design based on safety measures against all failure modes
associated with the structural material. Under the sponsorship of the Federal Highway
Administration (FHWA) the software was released in 1976 and updated in 1980 and
1989. Sponsored by AASHTO, CANDE-2007 and CANDE-2011 were released. The
last update of the software was in 2019, maintained by Michael G Katona. CANDE
is very popular among state Department of Transportation (DOT’s), it also has a
variety of users ranging from designers to researchers. Figure 2.4 shows the over-
all organization of CANDE software, top-level selection and various choices for each
top-level category. Those include an execution mode choice (Analysis or Design),

a solution level choice (Level 1, 2 or 3, where Level 1 is a elasticity solution based
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Fig. 2.4. Major options for defining the top-level input data for CANDE
[4].

on Burns and Richard [17], Level 2 is a finite element solution with an automated
mesh for circular culverts, and Level 3 is a finite element solution with a user defined
mesh), pipe type choice (corrugated steel or aluminum, reinforced concrete, plastic or
basic), soil model choice (linear elastic, overburden dependent, and nonlinear hyper-
bolic model), and interface choice (bonded, frictionless, or friction at soil-structure

interface). [4]
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2.6 Design Criteria and Load Factors

CANDE uses the LRFD methodology, based on the AASHTO LRFD Bridge De-
sign Specifications [18]. The strength limit states, include the yield strength, ultimate
strain, or global buckling capacity of the soil-structure system. For this limit states,
the LRFD method assigns net multiplying factors to the service loads. For the result-
ing structural response to be satisfactory, the factored capacities need to be greater
or equal than the corresponding factored demands for all the strength-state design
criteria.

AASHTO LRFD has specific design criteria for different materials. Corrugated
metal pipes have four design criteria and one performance limit criterion. The design
criteria for corrugated metal pipes are: 1) Thrust stress; 2) Global Buckling; 3) Seam
strength; and 4) Plastic Penetration (considered as 0.9 for steel pipes and 0.85 for
aluminum pipes). The performance limit criterion is the allowable deflection consid-
ered as 5% for all pipe types. The resistance factor for each of these design criteria
is also incorporated in CANDE, and is based on the AASHTO LRFD specifications,
Table 2.4 shows the resistance factors applied to the strength values. Once a given
analysis is completed in CANDE, the user needs to check that, for each of the design
criteria, the factored capacities are greater or equal than the corresponding factored
demands (an evaluation ratio should be less than 1.0 for the design criterion to be
considered safe) and that the performance limit criteria are met (e.g. the maximum
deflection is below 5%). Table 2.5 lists the load factors for buried structures accord-
ing to AASHTO LRFD specifications [18], as stated in the CANDE user manual [4].
Where, Yz is the maximum standard load factor, 7., is the minimum standard

load factor, np¢ is the composite load modifier for DC, and ngp is the composite load

modifier for EB.



Table 2.4.

Resistance Factors () used in the Analysis. [4] [11] [12]

Type of Pipe

Limit State

Resistance Factor

Thrust Stress 1
CSPA and CAPA
Global Buckling 1
Lock Seam
Seam Strength 1
Thrust Stress 1
CSPA and CAPA
Global Buckling 1
Riveted
Seam Strength 0.67
Thrust Stress 1
SPSPA and
Global Buckling 1
SPAPA
Seam Strength 0.67

Table 2.5.

Load Factors and Modifiers Used in the Analysis. [4]

17

Dead Load Culvert | Earth fill Loading Live Load
Culvert Type EB LL
Ymaz  VYmin TIDC Ymaz  VYmin NEB Ymaz oL
Corrugated
1.25 0.9 1.05 1.95 0.9 1.05 1.75 1
metal arch
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3. METHODOLOGY
3.1 Solution Technique

As was discussed in Section 2.5 -Figure 2.4- the methodology in CANDE requires
selecting the type of analysis wanted for each top-level feature. Top-level options in-
clude execution mode, evaluation methodology, solution level, pipe types, and system
choices. In this section, we will discuss the options used for evaluating the perfor-

mance of buried pipe-arches under loading conditions.

3.1.1 Execution Mode

The Execution Mode top-level has the option of choosing between Design or Anal-
ysis. The design mode implies that CANDE will arrive to a design solution for the
culverts cross-sectional properties based on the desire safety factors, pipe shape, ma-
terials, and loading conditions.

For this project, the analysis mode is selected, since the main goal is assessing the
safe performance of a specific corrugated pipe-arch for all failure modes prescribed
by LRFD corresponding with the shape of the pipe and structural material. The
pipe and soil are defined in terms of geometry (shape and cross-sectional properties),
material properties and loading conditions, and the mesh is created by CANDE (Level

2) or through a custom user-defined procedure (Level 3), depending on solution level.

3.1.2 Evaluation Methodology

The CANDE software allows the user to select a service (working-stress) or fac-
tored (LRFD) load design method. The LRFD design method is used for the eval-

uation of the culverts performance. The solution is provided in terms of ratios of
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factored demand-to-factored capacities for each design criterion related to the pipe
type. For this solution, the user must assign load factors for every load step depending
on the type of load being applied (dead loads, earth loads, and live loads) as required
by AASHTO LRFD specifications.

3.1.3 Solution Level

The Level 2 mesh in CANDE is an option with an automatic generation of the
finite element mesh, i.e, the numbering and coordinates of the nodes, and connectivity
of elements. This solution level can be used with three different shapes of pipes,
round or elliptical, rectangular and arches culverts, by using the pipe-mesh, box-mesh
or arch-mesh options respectively. The input parameters include, pipe dimensions,
embankment or trench installation type, bedding dimensions, height of soil cover,
and the number of incremental construction layers. For performing an analysis on a
common shape culvert, this is usually the most convenient option [4].

Since the main focus of this work is on pipe-arches, the Level 2 arch-mesh options
was first considered. However, performing the analysis with Level 2 mesh option

encountered severe limitations, including:

e The standard CANDE capabilities, do not allow for the geometric properties of
pipe-arches (arc radii R., R, and R;, B, span and rise, described in Figure 2.1)

to be provided as input for Level 2 solution.

e Since CANDE uses built-in models for default geometric shapes, the pipe-arches
listed in Table 1.1 do not fall strictly within these default models, and therefore
simulation results for pipe-arch models created by modifying the regular pipe-

mesh in CANDE, may not be accurate.

e Furthermore, the software’s inability to accommodate mesh refinement raised
concerns about the accuracy of the results, especially for maximum fill covers

with flexible pipes.
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The majority of the problems were solved by using the Level 3 solution instead
of Level 2. Level 3 uses a user defined mesh with the same finite element solution
methodology as Level 2. With Level 3, one can model unlimited structural shapes,
soil systems and loading conditions. The process for creating and running the model,
includes the discretization of the mesh using another FEM software (Abaqus), then
a custom-made software created in Matlab is used to have the Abaqus output in a
format that can be read by CANDE, and finally the CANDE code created using Level

3 solution is run. Detailed information of the process used is described in Section 3.4.

3.1.4 Pipe Types

Corrugated Aluminum or Corrugated steel pipe-type is selected, along with
the material properties and wall properties (cross-sectional area, moment of inertia
and section modulus), listed in the CANDE manual [4] for a linear material and
commercial corrugation sizes. With this input information the initial stiffness of
the overall pipe is computed, then the pipe element stiffness properties are modified
during nonlinear iterations, and the design criteria are evaluated at the end of each
converged load step. Aluminum or steel material behavior is simulated in CANDE
with a bilinear stress-strain model, initially elastic until yield stress followed by the
plastic response (identical in tension and compression) and the unloading is assumed
to be linear elastic” [4]. The design criteria for metal pipes include thrust stress, global

buckling and seam strength, and a performance limit on the allowable defection.

3.1.5 System Choices

From the different soil models offered by CANDE, the hyperbolic Duncan Selig
model is selected. This model is available in the software with predefined parameters
that characterize sands, clays, silts, and crushed rock for a range of compaction

conditions. The user also may define the interface conditions (bonded or friction)
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between the pipe and the soil. A friction interface with coefficient of friction of 0.5
and tensile force of 101b/in is selected for the analysis.

Furthermore, one can choose to run a Small Deformations or a Large Deformations
analysis. The large deformation analysis allows evaluating large and flexible pipes
under heavy load. Additionally, it predicts the global buckling capacity of the soil-
structure system. When using the Large Deformation feature in CANDE, however
severe convergence problems were encountered, and fill heights for a large number
of pipes could not be obtained. After consultation with the project sponsors, it
was decided to obtain the fill heights using Small Deformation analysis. This
analysis option provides estimates for buckling capacity, but it was not clear from the
CANDE manual how these estimates were computed. To ensure that buckling was
not the cause of failure and that it was reasonably well captured in CANDE, selected
cases were verified separately for buckling capacity through large deformation analysis
using Abaqus. Further explanation of the Abaqus analysis is shown in Section 3.5.

Moreover, fill heights were checked against analytical solutions for all the cases
following analytical solutions provided by ASTM A796/A796M [9] for steel and ASTM
B790/B790M [10] for aluminum. Additional explanation is shown in Section 3.6.

3.2 Finite Element code CANDE

The FEM formulation described in CANDE Solution Methods and Formula-
tions [19] is a displacement-based static formulation, based on incremental virtual
work. This method allows the load to be applied in a sequence of steps representing
increments of overburden pressure and the culvert structure to be assembled. The
incremental virtual work is expressed in Equation 3.1, where the increment of inter-
nal virtual strain energy is equal to the increment of external virtual work of body
and traction loads when the system is subjected to a virtual displacement. Using

the incremental stress-strain equation (Ao = C'A¢), and writing strains in terms of
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displacement (Ae = AQ(u) = Q(Au)), the virtual work equation can be expressed

in terms of the global displacements as follows:

/ Q(6u)"CQ(Au)dV = / Sul ATdS + / Sul AfdVv (3.1)
\%4 S \%4

In this equation o is the stress vector, ¢ is the strain vector, u is the displacement
vector, 7 is the surface-traction vector, f the body-force vector, S is the surface area
of traction loads at load step ¢ + 1, V' is the volume of structural system at at load
step ¢ + 1, C' is the constitutive function, and () is the operator matrix composed of
partial derivatives. The last two components, C' and (), depend on the element type,
material behaviour and the kinematic assumptions.

CANDE employs quadrilateral solid elements for representing the soil, while in-
terface elements are used for the contact between the culvert and the soil and the
culvert structure is discretized by beam elements. The quadrilateral element con-
sists of a four-node quadrilateral with a 8 x 8 stiffness matrix, where each node has
two degrees of freedom for horizontal and vertical displacements. The interface el-
ement allows the parts connected to slip relative to each other and is composed of
three nodes with coordinates that share a common contact point, one associated to
the soil, the other one to the pipe, the third node carries the normal and tangential
interface forces; two nodes have two degrees of freedom for horizontal and vertical
displacements, producing a 6 x 6 stiffness matrix, the third node has 2 interface forces.
The beam element is defined by two nodes and three degrees of freedom per node,
rotation, horizontal and vertical displacements, bending and axial deformation are
approximated by a cubic and linear interpolation respectively. Figure 3.1 illustrates
these elements.

The equilibrium Equation 3.2 must be satisfied at every load step, is composed
of a set of linear algebraic equations that are solved for Aug in CANDE by the

computational method Gauss Elimination.
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K Atic = APg (3.2)

Where K, is the incremental global stiffness matrix, APy is the incremental global

load vector and At is the increment of global displacement vector.

3.3 Duncan/Selig Soil Model

The Duncan/Selig soil model formulated in CANDE Solutions Methods and For-
mulations [19] is based on the elasticity formulations of Duncan [20] for the Young’s
modulus and Selig [21] for the Bulk modulus, both stress dependent and based on
hyperbolic stress-strain relationships.

The Young’s modulus formulation developed by Duncan is based on experimental
observations of soil behavior from a tri-axial test. The experimental curve is approx-
imated to the deviatoric stress (o1 — 0,) with a hyperbolic function of axial strain.

The equation for the Tangent Young’s modulus that represents the soil behavior is:

_ Rp(1 —sinyp)(o1 — 03) 2

! 2(C cosp + o3sin )

(3.3)

Where the initial Young’s modulus (E;) is in Equation 3.4, and the angle of
internal friction (¢) is in Equation 3.5; 01 and o3 are the principal stresses, and P,
is the atmospheric pressure. See Table 2.3 in Section 2.2 for the material properties

specific values.

E = KPQ(%Y (3.4)
© = ¢o — Aplogy, (%) (3.5)

a

Selig’s Tangent Bulk modulus was developed based on hydrostatic tests, where the

soil specimen is compressed under increasing pressure applied equally in all directions.
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A hyperbolic equation describes the experimental curve that relates the mean stress

to the volumetric strain. The hyperbolic Selig form for the Tangent Bulk modulus is:

2
Bt:Bi[lJr U’”]

Bile,

Where o, is average stress, B; is the initial Tangent Bulk modulus and ¢, is the

(3.6)

ultimate volumetric strain. See Table 2.3 in Section 2.2 for specific values on the
material properties.

The Duncan/Selig equations described before are used to define the nonlinear
components of an isotropic and elasticity-based constitutive matrix for plane-strain
conditions, as shown in Equation 3.7. In this Equation, the stress increments in x
and y directions and shear components (Ac,, Ao,, AT, respectively) are related to
the strain increments in x and y directions and shear components (Ae,, Aeg,, Ay,
respectively) by the constitutive matrix of nonlinear components dependent on the
Young’s and Bulk modulus (C;, Ci2, Cs3). Equations 3.8 and 3.9 show the chord
moduli for the Tangent Young’s modulus (F.) and Bulk modulus (B,) respectively,
the chord moduli forms showed in these equations define the constitutive matrix
nonlinear components in average formulations, suitable for the iteration cycle. The
iteration cycle consists of determining the constitutive matrix (in Equation 3.7) of a
soil element, where the principal stresses from the last iteration are used to developed
closer estimations of the chord moduli (average formulations of constitutive matrix
components) until convergence occurs. The algorithm converges when two successive

iterations have a difference of less than 1%.

Aaz CH 012 0 Aéz
AO'y = 021 011 0 Aéfy (37)
AT 0 0 033 A’}/

Ec = (1 — T)Eti + rEti-H (38)
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Bc = (1 — T>Bti + TBti-H (39)

where, F;, and £y, is the Tangent Young’s modulus at step 7 and ¢+1 respectively,
By, and By, is the Tangent Bulk modulus at step 7 and 7 + 1 respectively, and r is

the averaging ratio (usually 0.5).

3.4 CANDE Level 3 Solution

The Level 3 mesh option requires providing a user-defined mesh for the soil-
structure system. Figure 3.2 illustrates the process needed for creating the finite
element mesh. First, the geometry of the model is generated and discretized in
Abaqus scripting (command interface of the FEM software Abaqus). The conceptual
2D soil-structure model under boundary conditions is shown in Figure 1.4 and the
conceptual mesh used with soil steps, dimension of the soil and boundary conditions
is shown in Figure 3.3. Only half the domain is modeled, thanks to symmetry. To
be able to obtain the mesh information (nodes coordinates and element connectivity)
the file created in Abaqus scripting should now be open in Abaqus Standard (graphic
interface of the FEM software Abaqus), then this input is written for obtaining the
mesh data. Moreover, a subroutine created in Matlab reads the data collected from
Abaqus Standard and writes this data with the commands, spaces, and parameters
understood by CANDE. Input commands C-1 and C-2 define the control variables,
command C-3 defines all nodal coordinates, and it should be at the beginning of
every line that contains nodal coordinates information. Similarly, command C-4 is
used repeatedly to describe all element properties, and finally, command C-5 defines

all displacement and load boundary conditions. [4]
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Details on CANDE input (.cid file) for Level 3 mesh are shown in Figures B.1

and B.2, and Table B.1 in Appendix B; where the specifications on the row number

belong to Mesh 2 (Table 3.1) and are used as an example. The row number varies

according to the mesh, the number of nodes, and elements used; typically for small

sizes of pipe-arches Mesh 1 is used, for medium sizes Mesh 2 and large sizes Mesh 3.

The column numbers remain the same for all pipe sizes regardless of the number of

nodes used. Moreover, in Table B.1 some specifications are made over the number

of nodes, elements, and boundary conditions, these specifications belong to Mesh 2

in Table 3.1 and also vary according to the mesh used. Lines beginning with D-1,

D-2, and E-1 in Table B.1, should be repeated as necessary for characterizing the soil

properties and LRFD factors per step thoroughly.

Mesh Sizes.

Table 3.1.

Mesh 1 - Small Pipes

Mesh 2 - Medium Pipes

Mesh 3 - Large Pipes

Span < 6ft

6ft < Span < 20ft

Span > 20ft

34 nodes around pipe

49 nodes around pipe

61 nodes around pipe
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3.5 Buckling Analysis in Abaqus

Buckling is one of the failure criteria in the finite element analysis via the CANDE
software, in the form of LRFD strength-limit ratios at the final step of each analysis.
This section intends to evaluate the CANDE buckling analysis using Abaqus finite
element software. Abaqus evaluation of the buckling failure mode was performed by
Chatuphat Savigamin, a Ph.D. student in Civil Engineering at Purdue University.
This analysis allowed the elimination of buckling as a critical failure mode in cases
studied in this thesis, which enabled the use of the small-deformation analysis in
CANDE.

For each Abaqus finite element model, the embankment mesh configuration is
built according to the CANDE-2017 User Manual and Guideline [4]. The maximum
fill heights obtained from the CANDE finite element analysis were used in the analysis.
The finite element meshes in Abaqus are built individually for each cross-section to
allow an appropriate mesh refinement as suitable for each specific geometry. Figure
3.4 shows an example of the mesh for 6 x 2 Structural Plate Steel Pipe-Arch (Bolted)
with 18 Re (in) and 7-8 Span (ft-in).

3.6 ASTM LRFD Design Methodology

The standard practices ASTM A796/A796M [11] for steel and ASTM B790/B790M
[12] for aluminum provide analytical estimates for pipe fill covers. Figure 3.6 summa-
rizes the process for finding the maximum fill cover. First the design pressure (Py) is
calculated using Equation 3.11 for two different approaches, using the radial pressure
(P,) that depends on the height and weight of the soil; and using the pressure at the
corners (P.), where the pressure is approximately inversely proportional to the radius
of curvature of the top (R;) and corner (R.) radius, as shown in Figure 3.5.

Next, the factored load (F'Py) is computed using the first part of Equation 3.12
(FP; = 1.95(P%)), multiplying the dead load (DL) by the load factor (calculated

using the factors in Table 2.6). The second part of this equation considers the Live
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Fig. 3.4. Abaqus finite element meshes for 6 x 2 Structural Plate Steel
Pipe-Arch (Bolted) with 18 Re (in.) and 7-8 Span (ft.-in.).

(LL) and Impact (IL) loads and is only used when the maximum fill cover is less
than 8ft.

Then, the Factored thrust (77) is computed with Equation 3.14 and the factored
resistances (Ry) with Equation 3.15. This analysis includes calculations for Wall
Resistance (R,,) in Equation 3.16, Resistance to buckling (f.) in Equation 3.13 and
Seam Resistance in Table 2.2. The resistances values should then be factored using
Equation 3.15. Finally, the minimum value of the factored resistances calculated
should be compared to the factored thrust, the factored resistance shall equal or
exceed the factored thrust Ry > T, and the required height is back calculated. The
ASTM fill cover heights were calculated by Devansh Gandhi, a Masters student in

Civil Engineering at Purdue University.



DL = Hw

P,=DL A. Considering the radial pressure
P =
P.= DL x R;/R. B. Considering the pressure at the corners

Fig. 3.5. Pressure on a pipe-arch.

FP; = 1.95(P;) + 1.75(LL + IL)

fu _ fu2(kS>2 if § < % 24F
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(3.10)

(3.11)

(3.12)

(3.13)
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Ty = P;S/2 (3.14)
Rf = (,DRn (315)
R, = f,PA (3.16)

In these equations, f, is the minimum tensile strength, k is the soil stiffness factor
taken as 0.22, r is the radius of gyration of corrugation, F is the Young’s modulus,

fy is the minimum yield strength, PA is the cross-sectional area, and S is the span.

Design by LRFD Method

l

Calculate Design Pressure (Py)
Determine Factored Load (1.95 x Py)
Compute Factored Thrust (Py x S/2

|

Consider as Factored Resistance the

minimum between Wall Resistant, Re-

sistant to Buckling and Seam Resistant

!

Based on Resistance

calculate required height

Fig. 3.6. Steps for performing an ASTM LRFD analysis according to [11]
and [12]
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4. RESULTS & DISCUSSION

This chapter includes the maximum fill heights of Corrugated Steel and Aluminum
Pipe-Arches, and Structural Plate Steel and Aluminum Pipe-Arches obtained with
CANDE. The finite element analysis in CANDE was performed with the resistance
factors shown in Table 2.4, a factor of 2.05 for the load, a coefficient of friction of
0.5, and a tensile force of 10 Ib/in. The maximum fill height tables include results
previously published by INDOT, results obtained with CANDE, ASTM calculations
considering the pressure around the corners (P.) and the overall pressure (P,). Tables
are color-coded according to the critical failure criterion, and results are plotted in
figures for better comparison. In these figures, the red curve represents INDOT
results, the grey curve shows the ASTM P, results, the blue curve is the ASTM P,
results, and the black curve represents CANDE results. Results obtained for specific
cases analyzed in Abaqus over the buckling failure mode are also shown.

The chapter is divided in three sections, Section 4.1 discusses the buckling anal-
ysis with Abaqus, Section 4.2 shows the CANDE results for Corrugated Steel and
Aluminum Pipe-Arches and Section 4.3 discusses results for Structural Plate Steel

and Aluminum Pipe-Arches.

4.1 Buckling Analysis via Abaqus Software

Three different cross sections of the 6 x 2 structural plate steel pipe-arch are
selected to perform the buckling analysis in Abaqus as detailed in Table 4.1. For each
cross-section, the study is done separately for three thicknesses: 0.111, 0.140, and
0.280 inches. The analysis was carried out using the maximum fill heights obtained

from the CANDE finite element analysis.
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Table 4.1.
Selected cross sections and thicknesses of 67 x 27 Structural Plate Steel
Pipe-Arch to perform Abaqus buckling analysis.

Re SPAN RISE

(in)  (ft-in)  (ft-in) A (sft) T (in)

18 6-1 4-7 22 0.111
18 6-1 4-7 22 0.140
18 6-1 4-7 22 0.280
18 7-8 5-5 33 0.111
18 7-8 5-5 33 0.140
18 7-8 5-5 33 0.280
31 18-7 12-0 172 0.111
31 18-7 12-0 172 0.140
31 18-7 12-0 172 0.280

The Abaqus buckling analysis results show that all the selected cross sections and
thicknesses do not fail due to buckling, which is in agreement with the CANDE results.
An example of the results is illustrated in Figure 4.1. The eigenvalues obtained for
each analysis were greater than one, indicating that the model did not fail because of
buckling. Furthermore, when performing buckling analysis in Abaqus, the equivalent
plastic strain was evaluated. Results helped in determining the amount of permanent
strain in the soil surrounding the pipe, as shown in Figure 4.2. The concentrated
equivalent plastic strain in the soil located at the corner radius of the pipe indicates
a significant effect on the overall strength of the pipe-soil interaction as a result of
the soil compaction at the corner area. In other words, if the soil compaction at the
corner radius of the pipe is not carried out properly, the bearing capacity of the soil

at the pipe-arch corner will limit the maximum fill height of soil over the pipe-arch.
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Buckling Analysis Results

for

6" x 2" Structural Plate Steel Pipe-Arch (Bolted)
Rc 18" Span 7°-8" Thickness 0.111"
Maximum-Calculated Fill Height from CANDE 34.50'

¥ QDB: Job-1_Height_34-5ft_Thickness_0-111_inch_Bucking odb  Abaqus/Standard 3DEXPERIEMCE R2018x

| Step: Applied_Pressure
X Mode 1: Bigenialue = 60424

Deformed Var: U Deformation Scale Factor: +1.0002+00

Fig. 4.1. Abaqus buckling analysis results for 6” x2” Structural Plate Steel
Pipe-Arch (Bolted) with 18 R, (in), 7-8 Span (ft-in), and 0.111 Thickness

(in).



FEEQ

(Awg: 75%)
+4,554e-01
+4,17 4e-01
+3.795e-01
+3.415e-01
+3.036e-01
+2.656e-01
+2.27 7e-01
+1.897&-01
+1.515e-01
+1.138e=-01
+ 7 590e=02
+3. 795e=-02

+0.000e 400

Equivalent Plastic Strain Results
for
6" x 2" Structural Plate Steel Pipe-Arch (Bolted)

Re 18" Span 7'-8" Thickness 0.111"
Maximun-Calculated Fill Height from CANDE 34.50°

¥ ODB: Job-1_Height_34-5ft_Thickness_0-111_inch.odb  Abaqus/Standard SDEXPERIEMCE R2018x

| Step: Applied_Pressure
X Increment  17: Step Time = 1.000

Primary WVar: PEEQ
Deformed Var: U Deformation Scale Factor: +1.000e+00

Fig. 4.2. Abaqus equivalent plastic strain results for 6”7 x 2” Structural
Plate Steel Pipe-Arch (Bolted) with 18 R.. (in), 7-8 Span (ft-in), and 0.111
Thickness (in).

37
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4.2 Corrugated Pipe-Arches

The mechanical and geometrical properties for CSPA and CAPA are summarized
in Table 2.1 and 2.2, and Section A.0.1.

From the results on 22/3” x 1/2” Corrugated Steel and Aluminum Pipe-Arch with
Riveted and Lock Seam, shown in Tables 4.2 and 4.5, one can see that previous results
determined by INDOT for steel and aluminum are identical, and also remain constant
for all corrugation thicknesses.

Even though it was not specified where these results came from, comparing these
heights with those calculated using Equation 4.1 listed in ASTM B790/B790M [12]
shows a general agreement for the structural design of corrugated aluminum pipes.
Since Equation 4.1 only depends on the span (S) and the corner radius (R.), the
INDOT calculated maximum fill heights do not vary when the cross-sectional cor-
rugation increases, neither when the fabrication differs (riveted or lock seam). This
result is counter-intuitive, as steel and aluminum results should vary since Equation

4.1 is only specified for aluminum pipes.

_ 66.7R,

H
S

(for 2tons/ ft*of soil bearing pressure) (4.1)

Similarly for 37 x 1”7 Corrugated Steel and Aluminum Pipe-Arch with Riveted
and Lock Seam, and for 5”7 x 1”7 Corrugated Steel Pipe-Arch with Lock Seam (shown
in Tables 4.3, 4.6 and 4.4) INDOT results were obtained using Equation 4.1.

In the plots shown in Figures 4.3, 4.4, the red curve represents INDOT results, the
grey curve the ASTM P. results, the blue curve ASTM P, results, and the black curve
CANDE calculations. The results determined using FEM in CANDE are higher than
INDOT results. Nonetheless, the results obtained in CANDE are closer to the results
calculated using Equation 3.11 for the radial pressure, and INDOT results are closer
to the results calculated using Equation 3.11 for the corner pressure. This behavior
repetitively appears in the results obtained for for 37 x 17 Corrugated Steel and

Aluminum Pipe-Arch with Riveted and Lock Seam, and for 5”7 x 1”7 Corrugated Steel
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Pipe-Arch with Lock Seam, shown in Figures 4.5, 4.6, 4.10 and 4.11 for 3” x 1” pipe-
arches, and Figure 4.7 for 5”7 x 17 pipe-arches. Some curves representing CANDE
results (black curve) are not smooth (a smooth curve is a curve with no peaks or
valleys). Non-smooth curves are due to the change in the mesh needed when varying
the pipe-arches dimensions; even though the number of nodes and elements in most
of the cases remain the same, the size of the elements does not remain constant,
affecting the smoothness of the results. The results were used to obtain smooth best
fit curve approximations in cases where the curve is not smooth; the best fit values
also appear in the tables.

Overall, the maximum fill cover decreases when increasing the span, and increases
when increasing corrugation thickness. Most of the cases failed because of the seam
strength failure mode, and only a few cases failed because of the vertical deflection.
Other failure modes (global buckling, wall yielding, and plastic penetration) were not
decisive for determining the maximum depth of pipe-arches. In addition, all Cor-
rugated Steel Pipe-Arches (CSPA) and Corrugated Aluminum Pipe-Arches (CAPA)
cases converged thanks to the sizes of these pipes, where the span of the biggest pipe-
arch is not higher than 7ft, allowing to run the analysis with Mesh 2 in Table 3.1 and

49 nodes around the pipe, which simplifies the analysis.
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22/3” x 1/2” Corrugated Steel Pipe-Arch Riveted
70 70
60 —-CANDE 60 —-CANDE
—-INDOT —-INDOT
= 50 —-Pc = 50 —Pc
= =
= 40 - ASTM Pv 5 40 ——ASTM Py
: :
O 30 3 30
= 20 :: Z 20 :
10 10
0 0
15 20 25 30 35 40 45 1S 20 25 30 35 40 45 50
Span [in] Span [in]
(a) Thickness 0.064 in. (b) Thickness 0.079 in.
100 60
——CANDE 50 —-CANDE
80 —-INDOT —-—INDOT
=) DRV Z 40 —Pc
= 60 ——ASTM Pv - ——ASTM Pv
A o
S g 30
=]
S 4 © 20
= = — R E—
= 20 b = 10 S T—— .,
0 0
10 20 30 40 50 60 70 30 35 40 45 50 55 60 65 70 75
Span [in] Span [in]
(¢) Thickness 0.109 in. (d) Thickness 0.138 in.
50
—--CANDE
40 --INDOT
——Pc
——ASTM Pv

w
<

Fill Cover [ft]
[\
(=]

}

(=]

35 45 58 65 75 85 95
Span [in]

(e) Thickness 0.168 in.

Fig. 4.3. Maximum Fill Cover. Comparison between CANDE, INDOT,
Pc and ASTM Pv for 22/3” x 1/2” Corrugated Steel Pipe-Arch Riveted
with Thicknesses of 0.064in (4.3(a)), 0.079 in (4.3(b)), 0.109 in (4.3(c)),
0.138 in (4.3(d)) and 0.168in (4.3(e)).



22/3” x 1/2” Corrugated Steel Pipe-Arch Lock Seam

42

40 s
20 :.\Z\X

e CANDE
——INDOT
—o—Pc

——ASTM Pv

15 20 25 30 35 40 45 S0

Span [in]

(b) Thickness 0.079 in.

60 -—CANDE
—-—INDOT

50 \
==ASTM Pv

40

o \\‘\‘

50 60 70
Span [in]

(d) Thickness 0.138 in.

100 120
e CANDE
80 --INDOT 100
= —-Pe E g0
= 60 -—ASTM Pv =
5 2 60
2 )
S 40 :
= =
= 20 b=
0 0
15 25 30 35 40 45
Span [in]
(a) Thickness 0.064 in.
150 70
e CANDE
120 —-—INDOT
E —o—Pc —
= 90 ——ASTM Py =)
@ S
z 2
o 60 8
E = 20
30 =
=10
0 0
10 30 40 50 60 70 30
Span [in]
(¢) Thickness 0.109 in.
60
-—-CANDE
S0 ~-INDOT
E ——Pc
— 40 ~—ASTM Py
L
z 30
Q
=
0
40 50 60 70 80

Span [in]

(e) Thickness 0.168 in.

Fig. 4.4. Maximum Fill Cover. Comparison between CANDE, INDOT,
Pc and ASTM Pv for 22/3” x 1/2” Corrugated Steel Pipe-Arch Lock Seam
with Thicknesses of 0.064in (4.4(a)), 0.079 in (4.4(b)), 0.109 in (4.4(c)),
0.138 in (4.4(d)) and 0.168in (4.4(e)).

80
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37 x 1”7 Corrugated Steel Pipe-Arch Riveted

40 60
--CANDE
50 —-—INDOT
=30 = --Pc
=) = ~-ASTM Py
= s
2 >
2 )
S 20 O 30
= = 20
10 10
55 60 65 70 75 80 85 90 95 100 55 65 75 85 95 105 115 125
Span [in] Span [in]
(a) Thickness 0.079 in. (b) Thickness 0.109 in.
70 80
-—-CANDE —-—-CANDE
60 ~-INDOT 70 —-INDOT
=) ¢ — 60 -e-Pc
w0 —-ASTM Pv & ~~ASTM Py
2 = 50
= 40 g
Q S 40
= 30 ©
= = 30
20 = 20
10 10
55 65 75 85 95 105 115 125 135 55 65 75 85 95 105 115 125 135 145
Span [in] Span [in]
(c¢) Thickness 0.138 in. (d) Thickness 0.168 in.

Fig. 4.5. Maximum Fill Cover. Comparison between CANDE, INDOT,
Pc and ASTM Pv for 3 x 17 Corrugated Steel Pipe-Arch Riveted with

Thicknesses of 0.079 in (4.5(a)), 0.109 in (4.5(b)), 0.138 in (4.5(c)) and
0.168in (4.3(c)).
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37 x 1”7 Corrugated Steel Pipe-Arch Lock Seam
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Fig. 4.6. Maximum Fill Cover. Comparison between CANDE, INDOT,

Pc and ASTM Pv for 37 x

1”7 Corrugated Steel Pipe-Arch Lock Seam

with Thicknesses of 0.079 in (4.6(a)), 0.109 in (4.6(b)), 0.138 in (4.6(c))

and 0.168in (4.6(d)).
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Fig. 4.7. Maximum Fill Cover. Comparison between CANDE, INDOT,
Pc and ASTM Pv for 57 x 1”7 Corrugated Steel Pipe-Arch Lock Seam with
Thicknesses of 0.109 in (4.7(a)), 0.138 in (4.7(b)) and 0.168in (4.7(c)).
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22/3” x 1/2” Corrugated Aluminum Pipe-Arch Riveted
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(e) Thickness 0.164 in.

Fig. 4.8. Maximum Fill Cover. Comparison between CANDE, INDOT, Pc
and ASTM Pv for 22/3” x 1/2” Corrugated Aluminum Pipe-Arch Riveted

with Thicknesses of 0.060in (4.8(a)), 0.075 in (4.8(b)), 0.105 in (4.8(c)),
0.135 in (4.8(d)) and 0.164in (4.8(e)).
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22/3” x 1/2” Corrugated Aluminum Pipe-Arch Lock Seam
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Fig. 4.9. Maximum Fill Cover. Comparison between CANDE, INDOT,
Pc and ASTM Pv for 22/3” x 1/2” Corrugated Aluminum Pipe-Arch Lock
Seam with Thicknesses of 0.060in (4.9(a)), 0.075 in (4.9(b)), 0.105 in
(4.9(c)), 0.135 in (4.9(d)) and 0.164in (4.9(e)).
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37 x 1”7 Corrugated Aluminum Pipe-Arch Riveted
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Fig. 4.10. Maximum Fill Cover. Comparison between CANDE, INDOT,
Pc and ASTM Pv for 37 x 1”7 Corrugated Aluminum Pipe-Arch Riveted

with Thicknesses of 0.075 in (4.10(a)), 0.105 in (4.10(b)), 0.135 in (4.10(c))
and 0.164in (4.10(d)).
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37 x 1”7 Corrugated Aluminum Pipe-Arch Lock Seam
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Fig. 4.11. Maximum Fill Cover. Comparison between CANDE, INDOT,
Pc and ASTM Pv for 37 x 17 Corrugated Aluminum Pipe-Arch Lock
Seam with Thicknesses of 0.075 in (4.11(a)), 0.105 in (4.11(b)), 0.135 in
(4.11(c)) and 0.164in (4.11(d)).

4.3 Structural Plate Pipe-Arches

The mechanical and geometrical properties for Structural Plate Steel Pipe-Arch
and Structural Plate Aluminum Pipe-Arch are summarized in Table 2.1 and, and
Section A.0.2.

INDOT maximum fill cover results for 6” x 2”7 Structural Plate Steel Pipe-Arch

(Bolted) shown in Tables 4.7 and 4.8, remain constant when increasing the corru-
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gation thicknesses. No background was given for INDOT calculations. Similarly,
for 97 x 21/2” Structural Plate Aluminum Pipe-Arch (shown in Tables 4.9 to 4.14),
the maximum cover results remain equal regardless the thickness of corrugation. In
these tables some cases did not converge (shown with red in the tables), making it
impossible to calculate the maximum fill height. Non-convergence may be due to
the magnitude of load increments, mesh changes for every pipe-arch case, number
of elements in the mesh, coefficient of friction and tensile force used. Every mesh
change to be made in CANDE is a laborious task, and thus the missing values were
interpolated according to the maximum fill cover obtained for the surrounding cases.
Also, all the cases failed because of seam strength failure mode or vertical deflection.
Other failure modes did not determine the maximum depth of pipe-arches.

Figures 4.12 and 4.13, show the results for 6”7 x 2” Structural Plate Steel Pipe-
Arches, and Figures 4.14 and 4.15 show the covers for 97 x 21/2” Structural Plate
Aluminum Pipe-Arches. In these figures, the red curve represents INDOT results,
the grey curve the ASTM P, results, the blue curve ASTM P, results, and the black
curve CANDE. These Figures show that for the first corrugation (0.111 in and 0.150
in), INDOT results are comparable to CANDE results. This is because INDOT
calculations seem to be estimated for the worst case scenario which is the smallest
thickness, and used identically for the other corrugations.

As the thickness corrugation increased, INDOT results became less comparable to
CANDE. In fact, CANDE results are more comparable to the results calculated using
Equation 3.11 for the radial pressure, and INDOT results can be compared to the
results computed using Equation 3.11 for the corner pressure. Additionally, fill covers
decreases when increasing span, and increases when increasing corrugation thickness.

Since some of the curves are not smooth, mainly because of the variation in ge-
ometry of the pipe-arches, changes in the failure mode from seam strength to vertical
deflection, and differences in the element size in every pipe-arch case, smooth best-fit
estimates were calculated from smoothed approximations of the results, and these

values also appear in the tables.
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Fig. 4.12. Maximum Fill Cover. Comparison between CANDE, INDOT,
Pcand ASTM Pv for 67 x2” Structural Plate Steel Pipe-Arch with Corner
Radius of 18 in and thicknesses of 0.111 in (4.12(a)), 0.140 in (4.12(b))
and 0.280 in (4.12(c)).
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Fig. 4.13. Maximum Fill Cover. Comparison between CANDE, INDOT,
Pc and ASTM Pv for 67 x 2”7 Structural Plate Steel Pipe-Arch with Corner
Radius of 31 in and thicknesses of 0.111 in (4.13(a)), 0.140 in (4.13(b))

and 0.280 in (4.13(c)).
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Table 4.11.
Maximum Soil Cover for 9”7 x 21/2” Structural Plate Aluminum Pipe-Arch
for a Corner Radius of 31.75 in, and Thickness of 0.200in.

0" x 2 1/2" Structural Plate Aluminum Allow Pipe-Arch (Steel Bolted) - Cover Limit (ft)
. Thickness (in)
Re SPAN RISE ARFA 0200
{im) (ft-in) | (ft-in) (sft)
INDOT | CANDE | BEST FIT Pc BEST FIT Pc | ASTM Py

31.75 6-7 58 29.6 26.70 48.00 40.16 41.87 30.36 54.73
31.75 6-11 5-9 319 25.40 46.40 47.07 37.84 35.71 52.09
31.75 7-3 5-11 34.3 24.20 44.40 45.05 34.60 32.54 49.69
31.75 7-8 6-0 36.8 22.70 42.80 42.16 28.60 28.53 46.49
31.75 81 6-1 3903 21.70 41.80 40.33 26.55 26.25 44.57
31.75 8-5 6-3 41.9 20.90 39.20 38.57 24.76 24.24 42.81
31.75 8-10 6-4 44.5 19.90 37.20 36.47 20.46 22.04 40.79
31.75 9-3 6-5 47.1 19.00 34.50 34.49 19.20 20.12 38.95
31.75 0-7 6-6 49.9 18.30 31.60 32.00 18.25 18.76 37.59
31.75 2-11 6-8 52.7 17.70 31.30 31.56 17.37 17.54 36.33
31.75 10-3 6-9 55.5 17.10 31.20 30.20 16.56 16.43 35.15
31.75 10-9 6-10 58.4 16.30 27.00 2831 13.73 14.96 33.51
31.75 11-1 7-0 G1.4 15.80 26.90 27.14 1327 14.08 32.51
31.75 11-5 7-1 64.4 15.40 25.70 26.04 12.81 13.28 31.56
31.75 11-9 7-2 67.5 14.90 23.00 25.01 12.37 12.55 30.66
31.75 12-3 7-3 70.5 14.30 21.95 23.62 10.28 11.56 20.41
31.75 12-7 7-5 73.7 13.90 21.60 22.78 10.04 10.96 28.63
31.75 12-11 7-6 77 13.60 21.20 22.01 0.80 10.41 27.89
31.75 13-1 82 83 13.40 24.48 1538 0.85 10.15 27.54
31.75 13-1 8-4 86.8 13.40 25.80 2538 10.70 10.15 27.54
31.75 13-11 8-5 90.3 12.00 22.40 23.61 8.19 8.99 25.89
31.75 14-0 8-7 94.2 11.90 23.73 23.44 9.05 5.88 25.73
31.75 13-11 0-5 101.5 1200 2223 23.61 0.42 8.90 15.58
31.75 14-3 9-7 105.7 11.70 22.80 22.95 9.21 8.58 25.28
31.75 14-8 9-8 109.9 11.30 21.50 22.15 8.58 8.10 24.56
31.75 14-11 9-10 114.2 11.10 20.66 21.70 8.35 7.84 24.15
31.75 15-4 10-0 118.6 10.70 20.56 20.97 7.66 742 23.50
31.75 15-7 10-2 123.1 10.50 19.63 20.55 7.45 7.19 23.12
31.75 16-1 10-4 127.6 10.10 18.92 19.76 6.90 6.76 22.40
31.75 16-4 10-6 132.3 9.90 19.10 19.38 6.74 6.55 22.06
31.75 16-9 10-8 136.9 09.60 17.54 18.79 .30 6.24 21.51
31.75 17-0 10-10 141.8 9.50 17.80 18.45 6.17 6.06 21.19
31.75 17-3 11-0 146.7 9.30 17.70 18.13 6.10 5.88 20.89
31.75 17-9 11-2 151.6 8.90 16.54 17.53 5.60 5.56 20.30
31.75 18-0 11-4 156.7 8.30 16.54 1725 5.50 5.41 20.02
31.75 18-5 11-6 161.7 8.50 15.95 16.82 514 517 19.56
31.75 18-8 11-8 167 8.40 15.38 16.58 5.07 5.04 19.30
31.75 19-2 11-9 172.2 8.00 NC 16.14 4.73 4.78 18.80
31.75 19-5 11-11 177.6 7.90 15.40 15.94 4.60 4.66 18.56
31.75 19-10 12-1 182.9 7.70 14.25 15.64 4.30 4.47 18.17
31.75 20-1 13-3 138.5 7.50 14.25 15.48 4.26 4.36 17.94

INDOT

Seam and Material Thrust

Buckling

Vertical Deflection

NC Not Converged
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Table 4.12.
Maximum Soil Cover for 9”7 x 21/2” Structural Plate Aluminum Pipe-Arch
for a Corner Radius of 31.75 in, and Thickness of 0.225in.

9" x 2 1/2" Structural Plate Aluminum Allow Pipe-Arch (Steel Bolted) - Cover Limit (ft)
R Thickness (in)
Re | SPAN | RISE \pra(sh) 0.225
(in) (ft-in) (ft-in)
INDOT | CANDE | BEST FIT Pc BEST FIT Pc | ASTM Py
3175 6-7 58 20.6 26.70 54.00 55.88 47.46 44.40 62.03
3175 6-11 59 319 2540 52.00 53.16 42.90 40.30 50.04
3L.75 7-3 5-11 343 24.20 50.00 50.55 3922 36.75 56.33
3175 7-9 6-0 36.8 22.70 48.20 46.81 32.42 3225 52.69
3175 81 6-1 303 21.70 46.80 44.45 30.09 20.69 50.52
3175 85 6-3 41.9 20.90 44.10 42.20 28.06 2743 48.52
3075 3-10 -4 44.5 19.90 38.60 30.52 2319 24.95 46.23
3175 9.3 6-5 47.1 19.00 35.70 37.00 2077 22.7% 44.15
3L75 0-7 6-6 40.9 18.30 3215 3510 20.69 21.26 42.61
3175 9-11 6-8 52.7 17.70 3235 33.30 19.69 19.88 41.18
3075 10-3 6-9 55.5 17.10 3100 3160 18.77 18.64 30.584
3175 10-9 6-10 58.4 16.30 27.60 2025 15.56 16.97 37.00
3175 11-1 7-0 61.4 15.80 2750 27.81 15.04 15.99 16.85
3L.75 11-5 7-1 64.4 15.40 26.30 26.48 14.52 15.09 35.77
3L75 11-9 72 67.5 14.90 2352 2524 14.02 14.26 34.76
3175 12.3 73 70.5 14.30 2245 23.58 11.66 13.14 3334
3175 12.7 71-5 73.7 13.90 22.10 22.61 1139 12.46 3245
3L.75 12-11 7-6 77 13.60 2150 26.75 1110 11.84 3l.62
3175 13-1 82 83 13.40 25.40 26.39 1116 11.55 31.21
3L75 13-1 84 86.8 13.40 27.50 26.30 12.13 11.55 3121
3175 13-11 8-5 20.3 12.00 22.70 24.71 9.28 10.22 20.34
3075 14-0 87 04.2 11.80 2538 24.56 10.26 10.11 2017
3175 13-11 9.5 101.5 12.00 2523 24.71 10.68 10.23 20.00
3L75 14-3 9-7 105.7 11.70 26.10 24.10 10.43 277 28.66
3L.75 14-8 9-8 109.9 11.30 2431 2337 9.73 9.23 27.84
3175 14-11 9-10 114.2 11.10 25.50 22.96 9.47 5.03 27.38
3175 154 10-0 118.6 10.70 23.50 2220 B.85 8.46 26.63
3175 157 10-2 1231 10.50 21.96 2191 8.63 820 26.21
3L.75 16-1 10-4 127.6 10.10 2L.64 2119 8.05 7.70 2539
3175 16-4 10-6 1323 9.90 21.88 20.85 7.72 747 25.00
3175 16-0 10-8 136.9 09.60 20.08 20.30 7.20 7.11 24.38
3175 17-0 10-10 1418 9.50 20.42 10.98 7.00 6.91 24.02
3L.75 17-3 11-0 146.7 9.30 20.35 19.67 6.80 6.71 23.67
3175 17-9 11-2 151.6 8.90 18.96 19.08 6.50 6.35 23.01
3L75 18-0 11-4 156.7 8.80 18.99 18.80 6.30 6.18 22.60
3175 18-5 11-6 161.7 8.50 18.30 18.35 5.80 5.91 2217
3075 15-8 11-8 167 5.40 17.68 18.09 5.80 5.75 21.58
3175 10-2 11-9 1722 .00 17.64 17.59 5.40 5.46 2131
3L75 19-5 11-11 177.6 7.00 17.75 17.35 5.30 532 2103
3L.75 19-10 12-1 182.9 7.70 16.40 16.96 5.00 511 20.59
3L75 20-1 12.3 188.5 T7.50 16.45 16.73 4.90 4.98 20.33
3175 20-1 12-6 194.4 T7.50 16.60 16.73 5.20 4.08 20.33
3175 20-10 12-.7 199.7 7.10 16.00 16.09 4.60 4.64 19.60
3L.75 21-1 12-9 205.5 T7.00 NC 15.89 4.50 4.53 19.37
3175 21-6 12-11 2112 6.70 14.60 15.56 4.20 4.36 18.99

INDOT
Seam and Material Thrust

Buckling
Vertical Deflection

NC Not Converged




Table 4.13.
Maximum Soil Cover for 9”7 x 21/2” Structural Plate Aluminum Pipe-Arch
for a Corner Radius of 31.75 in, and Thickness of 0.250in.

9" x 2 12" Structural Plate Aluminum Allow Pipe-Arch (Steel Bolted) - Cover Limit (ft)
R Thickness (in)
Re SPAN RISE AREA 0250
(im} (ft-im) | (f-im) | (s)
INDOT | CANDE | BEST FIT Pc BEST FIT Pc | ASTM Py

31.75 6-7 58 20.6 26.70 60.75 62.90 53.11 49.53 69.41
3175 6-11 5-9 3.9 25.40 58.60 59.22 48.00 44.97 66.07
3175 7-3 5-11 343 24.20 55.80 55.70 43.89 41.01 63.03
31.75 7-9 6-0 36.8 22.70 54.20 50.73 36.28 36.00 58.96
3175 31 6-1 393 2170 52.25 47.61 33.68 33.15 56.53
3175 8-5 6-3 41.9 20.90 46.70 44.66 3140 30.63 54.29
3175 8-10 6-4 44.5 19.90 39.95 41.19 25.95 27.87 51.73
3175 9-3 6-5 47.1 19.00 36.90 37.96 24.36 25.47 49.40
3175 9-7 6-6 49.9 18.30 33.70 35.57 23.15 23.76 47.68
31.75 9-11 6-8 52.7 17.70 33.30 3333 22.03 22.23 46.08
31.75 10-3 6-9 55.5 17.10 31.90 31.26 21.00 20.83 44.58
31.75 10-9 6-10 58.4 16.30 28.00 28.44 17.42 18.98 42.51
3175 11-1 7-0 61.4 15.80 28.10 26.76 16.83 17.88 41.23
3175 11-5 7-1 64.4 15.40 26.80 25.25 16.25 16.87 40.03
31.75 11-9 7-2 67.5 14.00 24.35 23.80 15.69 15.95 38.89
31.75 113 73 70.5 14.30 22.90 22.16 13.04 14.70 37.30
3175 1X-7 7-5 73.7 13.90 2225 21.20 12.74 13.95 36.32
3175 12-11 7-6 77 13.60 21.90 20.40 12.43 13.25 35.38
3175 13-1 8-2 83 13.40 25.68 28.69 12.49 12.93 34.93
3175 13-1 8-4 86.8 13.40 27.80 28.69 13.57 12.93 34.93
31.75 13-11 8-5 90.3 12.00 22.60 27.05 10.38 11.46 32.84
31.75 14-0 8-7 94.2 11.90 25.23 26.90 11.48 11.32 32.64
31.75 13-11 9-5 101.5 12.00 28.45 27.05 11.95 11.46 32.45
31.75 14-3 9-7 105.7 11.70 20.30 26.45 11.68 10.94 32.07
3175 148 9-8 109.9 11.30 27.42 25.73 10.88 10.34 3L16
3175 14-11 9-10 114.2 11.10 26.09 25.32 10.60 10.00 30.64
31.75 154 10-0 118.6 10.70 26.40 24.66 9,01 0.48 20.80
3175 15-7 10-2 123.1 10.50 25.23 24.29 9.66 02.18 2032
3175 16-1 10-4 127.6 10.10 24.39 2357 9.00 8.63 28.41
3175 16-4 10-6 1313 9.90 24.70 23.22 8.80 8.37 27.98
3175 16-9 10-8 136.9 9.60 22.73 22.67 815 7.97 2728
3175 17-0 10-10 141.8 9.50 23.06 2235 8.07 7.74 26.88
31.75 17-3 11-0 146.7 9.30 23.00 22.04 7.77 7.53 26.49
31.75 17-9 11-2 151.6 8.90 21.40 21.45 7.25 7.12 25.75
31.75 18-0 11-4 156.7 8.80 21.51 21.17 7.00 6.93 25.39
3175 18-5 11-6 161.7 8.50 20.65 20.71 6.63 6.62 24.81
3175 18-8 11-8 167 8.40 20.03 20.45 6.50 6.45 24.48
31.75 19-2 11-9 172.2 8.00 20.00 19.94 6.20 6.12 23.84
3175 19-5 11-11 177.6 7.90 20.12 19.69 5.70 5.07 23.54
3175 19-10 12-1 181.9 7.70 18.60 19.30 5.60 5.73 23.04
3175 20-1 12-3 188.5 7.50 18.72 19.07 5.60 5.59 22.75
3175 20-1 12-6 194.4 7.50 18.85 19.07 5.50 5.59 22.75
3175 20-10 12-7 199.7 7.10 18.20 18.42 520 5.20 21.93
31.75 21-1 12-9 205.5 7.00 NC 18.21 5.10 5.08 2167
31.75 21-6 12-11 211.2 6.70 16.50 17.87 4.80 4.89 21.25

INDOT

Seam and Material Thrust

Buckling

Vertical Deflection
NC Not Converged




Table 4.14.
Maximum Soil Cover for 9”7 x 21/2” Structural Plate Aluminum Pipe-Arch
for a Corner Radius of 47 in, and Thickness of 0.250in.

9" x 2 1/2" Structural Plate Aluminum Allow Pipe-Arch (Steel Bolted) - Cover Limit (ft)
Thickness (in)
Re SPAN RISE AREA
. . . 0.250
(in) (ft-in) (ft-in) (sft)
INDOT | CANDE Pc ASTM Pv
47 20-1 13-11 216.6 12.40 19.45 8.62 22.75
47 20-7 14-3 224 12.10 19.20 8.27 22.20
47 21-5 14-7 241.5 11.50 18.11 4.70 21.34
47 21-11 14-11 254.7 11.20 17.63 4.60 20.85
INDOT
Seam and Material Thrust
Buckling

Vertical Deflection
NC Not Converged
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Fig. 4.14. Maximum Fill Cover. Comparison between CANDE, INDOT,
Pc and ASTM Pv for 97 x 21/2” Structural Plate Aluminum Pipe-Arch
with Corner Radius of 31.75 in, and Thicknesses of 0.100 in (4.14(a)),
0.125 in (4.14(b)), 0.150 in (4.14(c)), 0.175 in (4.14(d)), 0.200 in (4.14(e))
and 0.225 in (4.14(f)).
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Fig. 4.15. Maximum Fill Cover. Comparison between CANDE, INDOT,
Pc and ASTM Pv for 97 x 21/2” Structural Plate Aluminum Pipe-Arch
with Corner Radius of 31.75 in, and Thicknesses of 0.250 in (4.15(a)); and
a Corner Radius of 47 in, and a of 0.250 in (4.15(b)).
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5. CONCLUSIONS

Six hundred twenty-four pipe-arches fill heights were calculated using the finite ele-
ment method at the software CANDE, 624 fill heights for pipe-arches were analytically
calculated using ASTM standards assuming two different design pressures, radial (P,)
and corner (P,) pressure, and 9 cases were verified using the finite element method at
Abaqus for the buckling failure mode. Overall, fill covers decreased when increasing
span, and increased when increasing the corrugation thickness.

The CANDE finite element results and INDOT calculations, differ significantly
due to different assumptions on pipe loading: the maximum height of the fill cover
is defined by the failure of the pipe due to radial soil pressure, or is defined the by
the maximum pressure that the pipe can exert on the soil surrounding it, where the
critical point is at the location of the corner radius of the pipe (R.). When assuming
the model will fail because of the pipe (determined by the critical mode of failure), the
results obtained with the analytical solution using ASTM calculations and considering
the radial pressure (P,) are in general agreement with those obtained using the finite
element solution in CANDE. If assuming the bearing capacity of the soil around the
corner radius will determine the maximum fill cover, the results obtained with the
analytical solution using ASTM calculations and considering the corner pressure (FP,)
will be smaller than those obtained considering the first approach, but aligned with
the INDOT tables.

Some of the analyses performed in CANDE assuming small deformations did not
converge. This nonconvergence may be caused because of the magnitude of load
increments, change in mesh for every pipe-arch case (same number of elements, but
different element sizes), or because the coefficient of friction and tensile force used.

The more reliable solutions for solving nonconvergence issues were: using more

load steps to define thinner soil layers for gravity loads or smaller force increments
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for boundary conditions, and refining the mesh (i.e., using Mesh 3 instead of Mesh 2
in Table 3.1). These solutions considered the fact that the coefficient of friction and
tensile force remain constant for all the analysis for ensuring the comparability of the
results and that varying the number of elements in the mesh for a Level 3 solution in
CANDE (use a different mesh from those shown in Table 3.1) is a difficult task.
After analyzing the results obtained in Abaqus for the global buckling failure
mode, it can be concluded that, for both approaches (pipe failing or bearing capacity
of the soil), buckling is not the failure mode governing the analysis and that the small
deformation approximation was adequate for evaluating maximum fill covers over
pipe-arches. When considering only the pipe failure, the seam strength due to thrust
stress and vertical deflection govern the analysis. Moreover, none of the cases failed
because of the wall yielding failure mode or the plastic penetration limit criterion.
The calculations performed are very sensitive to the assumption. Carefully con-
sideration should be made when selecting the type of installation to be used, gravelly
sand compaction, coefficient of friction, and tensile force for the soil-pipe interaction,
soil and pipe properties, analysis methodology and design criteria. Each parameter
can lead to significant changes in the maximum fill heights calculated in CANDE.
Specific considerations should be made if the soil to be used differs from gravelly
sand with 90% compaction. Furthermore, pipe-arches should be handled according
to to ASTM standards [11], [12]. The critical zone for the plastic strain of the soil is
the one surrounding the corner radius, an area where the soil compaction and quality

control are difficult, increasing the risk of failing because of soil bearing capacity.
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A. INPUTS

A.0.1 Geometrical properties of Corrugated Steel and Aluminum Pipe-

Arches

Table A.1.
CSPA and CAPA size and layout details 22/3” x 1/2” corrugation.

Rc SPAN RISE

(in) (in) (in) A (sft) B (in) Rt (in) Rb (in)

31/2 17 13 1.1 41/8 85/8 255/8
41/8 21 15 1.6 47/8 103/4 331/8
47/8 24 18 2.9 55/8 117/8 345/8
51/2 28 20 2.9 61/2 14 42 1/4
67/8 35 24 45 81/8 177/8 551/8
81/4 42 29 6.5 03/4 211/2 661/8
95/8 49 33 8.9 113/8 251/8 771/4
11 57 38 11.6 13 28 5/8 88 1/4
12 3/8 64 43 147  145/8 321/4 991/4
13 3/4 71 47 181  161/4 353/4 1101/4
15 1/8 77 52 219  177/8 393/8 1211/4

16 1/2 83 57 2 19 1/2 43 1321/4




Table A.2.
CSPA and CAPA size and layout details 3 x 17 and 5 x 17 corrugation.
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Nominal Rc Design
o . SPAN RISE A (sft) B(in) Rt (in) Rb (in)
Size(in) (in) ) i
(in) (in)
60 x 46 183/4 58 1/2  481/2 15.6 201/2 29 3/8 511/8
66 x 51 20 3/4 65 54 19.3 223/4 325/8 561/4
73x55  227/8 721/2 581/4 232 251/8 363/4 633/4
81 x 59 20 7/8 79 62 1/2 27.4 233/4 391/2 825/8
87x63  225/8 861/2 671/4 321  253/4 433/8 921/4
05x 67  243/8 931/2 713/4 37  273/4 47  1001/4
103 x 71 26 1/8 101 1/2 76 42.4 203/4 511/4 1115/8
112 x 75 27 3/4 108 1/2 801/2 48 315/8 54 7/8 120 1/4
117x 79 291/2 1161/2 843/4 54.2 335/8 593/8 1313/4
128x83  311/4 1231/2 891/4 605 355/8 631/4 1393/4
137 x 87 33 131 93 3/4 67.4 375/8 673/8 1491/2
142x 91  343/4 1381/2 98 745  391/2 TL5/8 162 3/8
Table A.3.

CSPA section properties details 22/3” x 1/2” 3x 1”7 and 5x 1”7 corrugation.

Corrugation Profile (in)

Corrugation 22/3x1/2 3x1 5x 1
Thickness (in) PA PI PS PA PI PS PA PI PS
(in’/in) (in'/in) (in®/in) | (in’/in) (in'/in) (in’/in) | (in’/in) (in'/in) (in’/in)
0.064 0.0646 0.00189 0.0067 | 0.0742 0.00866 0.01628 | 0.0662 0.00885 0.01664
0.079 0.0807 0.00239 0.00826 | 0.0928 0.01088 0.02017 | 0.8267 0.01109 0.02056
0.109 0.113  0.00342 0.01123 | 0.13  0.01546 0.0278% | 0.1158 0.01565 0.02822
0.138 0.1453  0.00453 0.0142 | 0.1673 0.02018 0.03547 | 0.149  0.02032 0.03571
0.168 0.1778 0.00573 0.01716 | 0.2048 0.02509 0.04296 | 0.1822 0.02509 0.04296




Table

A4

CAPA section properties details 22/3” x 14”7 and 3 x 1”7 corrugation.
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Corrugation Profile (in)

Corrugation 22/3x1/2 3x1
Thickness (in) PA PI PS PA PI PS
(in’/in) (in‘/in) (i®/in) | (in’/in) (in*/in) (in’/in)
0.060 0.06458 0.00189 0.00675 | 0.07416 0.00866 0.01634
0.075 0.08067 0.00239 0.00831 | 0.09317 0.01088 0.02024
0.105 0.11300 0.00342 0.01131 | 0.13000 0.01545 0.02796
0.135 0.14533  0.00453 0.01427 | 0.17400 0.02017 0.03554
0.164 0.17775 0.00573 0.01726 | 0.20483 0.02508 0.04309




A.0.2 Geometrical properties of Structural Plate Steel Pipe-Arches

Table A.5.
SPSPA size and layout details 6”7 x 2”7 corrugation - 18 in Corner Radius,
Re.

fff ‘E‘) (f::slfl‘) A (f2) B (in) Rt (ft) Rb (ft)
6-1 4-7 22 21 3.07 6.36
6-4 4-9 24 20.5 3.18 §.22
6-9 4-11 26 22 3.42 6.96
7-0 5-1 28 214 3.53 8.68
7-3 5-3 3l 20.8 3.63 11.35
7-8 5-5 33 224 3.88 9.15
7-11 5-7 35 21.7 3.98 11.49
8-2 5-9 38 20.9 4.08 15.24
8-7 5-11 40 22.7 4.33 11.75
8-10 6-1 43 21.8 4.42 14.89
0-4 6-3 46 23.8 4.68 12.05
0-6 6-5 49 22.9 4.78 14.79
0-9 6-7 52 21.9 4.86 18.98
10-3 6-9 55 23.9 5.13 14.86
10-8 6-11 58 26.1 5.41 12.77
10-11 7-1 61 25.1 5.49 15.03
11-5 7-3 64 274 5.78 13.16
11-7 7-5 67 26.3 5.85 15.27
11-10 -7 71 25.2 5.93 18.03
12-4 7-9 74 27.5 6.23 15.54
12-6 7-11 78 26.4 6.29 18.07
12-8 8-1 81 25.2 6.37 21.45
12-10 §-4 85 24 6.44 26.23




Table A.G.
SPSPA size and layout details 6” x 2”7 corrugation - 31 in corner radius,
Re.

SPAN RISE

(o) (fm A () B(m) Re(f) Rb ()

13-3 9-4 97 38.5 6.68 16.05
13-6 9-6 102 37.7 6.78 18.33
168 9-8 105 39.6 7.03 16.49
14-2 9-10 109 38.8 7.13 18.55
14-5 10-0 114 37.9 7.22 21.38
14-11 10-2 118 39.8 7.48 18.98
15-4 10-4 123 41.8 7.76 17.38
15-7 10-6 127 40.9 7.54 19.34
15-10 10-8 132 40 7.93 21.72
16-3 10-10 137 42.1 8.21 19.67
16-6 11-0 142 41.1 8.29 21.93
17-0 11-2 146 43.3 8.58 20.08
17-2 11-4 151 42.3 8.65 22.23
17-5 11-6 157 41.3 8.73 24.83
17-6 11-8 161 43.5 9.02 22.55
18-1 11-10 167 42 4 9.09 24.98
18-7 12-0 172 44.7 9.38 22.88
18-9 12-2 177 43.6 .46 25.19
19-3 12-4 182 45.9 9.75 23.22
19-6 12-6 188 44.8 9.83 25.43
19-8 12-8 194 43.7 9.9 28.04
19-11 12-10 200 42.5 0.98 31.19
20-5 13-0 205 44.9 10.27 28.18

20-7 13-2 211 43.7 10.33 31.13




Table A.7.

SPSPA section properties details 6” x 2”7 corrugation.

Corrugation PA PI PS
Thickness (in)  (in”/in) (in*/in) (in’/in)
0.111 0.1297  0.06041  0.05726
0.140 0.1669  0.07816  0.07305
0.280 0.3433  0.16583  0.14546
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A.0.3 Geometrical properties of Structural Plate Aluminum Pipe-Arches

Table A.8.
SPAPA size and layout details 9”7 x 21/2” Corrugation - 31.75 in corner
radius, Rec.
‘(Sfi)frll\; (1::_?[]3 A (sft) Rt (in) RbD (in) ‘(Sfl:?nN) (I;I_i]::) A (sft) Rt (in) Rb (in)
6-7 5-8 29.6 41.5 69.9
6-11 5-9 31.9 43.7 102.9 14-3 9-7 105.7 87.2 176.3
7-3 5-11 34.3 45.6 188.3 14-8 9-8 109.9 90.9 166.2
7-9 6-0 36.8 51.6 83.8 14-11 9-10 114.2 91.8 183
81 6-1 30.3 53.3 108.1 15-4 10-0 118.6 095.5 173
&5 6-3 41.9 54.9 150.1 15-7 10-2 123.1 96.4 189.6
8-10 6-4 44.5 63.3 93 16-1 10-4 127.6 100.2 179.7
9-3 6-5 47.1 64.4 112.6 16-4 10-6 132.3 101 196.1
9-7 6-6 49.9 65.4 141.6 16-9 10-8 136.9 105 186.5
9-11 6-8 52.7 66.4 188.7 17-0 10-10 141.8 105.7 202.5
10-3 6-9 55.5 67.4 278.8 17-3 11-0 146.7 106.5 221.7
10-9 6-10 58.4 7.5 139.6 17-9 11-2 151.6 110.4 208.9
11-1 7-0 61.4 77.8 172 18-0 11-4 156.7 111.1 227.3
11-5 7-1 64.4 78.2 222 18-5 11-6 161.7 115.8 215.3
11-9 7-2 67.5 T8.7 309.5 18-8 11-8 167 115.8 233.7
12-3 7-3 70.5 90.8 165.2 19-2 11-9 172.2 119.9 221.5
12-7 7-5 3.7 90.5 200 19-5 11-11 177.6 120.5 230.7
12-11 7-6 7 90.4 251.7 19-10 12-1 182.9 124.7 227.7
13-1 8-2 83 88.8 143.6 20-1 12-3 188.5 125.2 245.3
13-1 8-4 86.8 81.7 300.8 20-1 12-6 194.4 122.5 310.8
13-11 8-5 90.3 100.4 132 20-10 12-7 199.7 130 251.2
14-0 87 94.2 90.3 215.7 21-1 12-9 205.5 130.5 270.9
13-11 9-5 101.5 86.2 1590.3 21-6 12-11 211.2 134.8 257.3




Table A.9.
SPAPA size and layout details 9”7 x 21/2” in Corrugation - 47 in corner
radius, Rec.

SPAN RISE

(ft-im)  (fin) - ) Rt (n) Rb(in)

20-1 13-11 216.6 124 2254

20-7 14-3 224 1262 2576

21-5 14-7 2415 133 2386

21-11 14-11 2547 135 270
Table A.10.

SPAPA section properties details 97 x 21/2” in corrugation.

Corrugation PA PI PS
Thickness (in) (in’/in) (in*/in)  (in®/in)
0.100 0.1170 0.0831 0.0639
0.125 0.1458 0.1040 0.0793
0.150 0.1750 0.1249 0.0943
0.175 0.2041 0.1459 0.1091
0.200 0.2333 0.1670 0.1237
0.225 0.2624 0.1882 0.1381

0.250 0.2918 0.2094 0.1523

78



obnd Jzou uo panuuod G-0) 01 1-D ‘g ‘Y 1ed "USOIN € a0 (P1) ANV oy mnduy ojdurexsyy 1-g 81

79

N 7
ZZ S092¢€7 L- 0 0 FPFS Pi€ET"S-2 BEBT
Tz £59876E— -0 0 LBOT i LEBT
TC z59%9876c— 0 0 LEODT 9€BT
AN J
N )
TE S092€°L- v 0 EFS Pi€I"5-2 £€6LT
Te S09%E"L- 0 0 FPS - 1i€T°5-02 Z6LT
0g £5998762-" 0 0 LBOT ii€TI"S-2 TeLT
oe Z598762- 0 0 LEOT Ti€TI°5-2 06LT
A
N O N
oe S09€E"L- 0 0 EFS TIET S5-2 LFPLT
0z S09E°L- 0 0 ¥FS ii€T"5-2 QFLT
T 2 aF 0 S8TT 6F QETT TES Tii€T ¥#—2 SFLT
T 3 8F 0 ¥8TT 8F SETT 0EB " TiET"F-D FPFPLT
T 8 L¥ 0 E8TT LF FPETT 6Z8 PiET " §-2 EFLT
AN J
N )
0 T T F £9 Z9 £ £ Pi€T " F-2 LTe0
] T T £ €9 9 [ [ Pi€ET " ¥—2 9160
0 T T 4 T8 0s T T PieEl " F—0 ST60
ooo0o0-"0 0o0o00-"0 ] 0SZ9°FF 0000 °0 000 "SBITTIIiET E-D F160
ooo0o0-"0 00o00-"0 ] EQESVF ETES E 000 " ¥BIT ii€TI E-D ET60
oo0o0°0 oQ0o0°0 0 LOEE FF LTSO"L 000 "EBTT ii€T E-D 2160
O
N 7
00oo0°0 0oo00°T T FOFPT"FF—  FESOTL 000 - £ Piig€T " E-2 0100
ooo0°"0 ooo0°T T E0BS " F¥P— BEZESTC Qoo -2 PiET E-D 6000
00oo0°0 0o00°T T 0S92 " %¥¥%—- - 000070 000 - T Pii€T " €-2 2000
T 4 F 685 - TEB "SBTT T € 0 € o€ Pigl g-2 LODO
dEddii€I " T-2 2000
S 6570 T T T PiqagT"av¥- - 1==35"¢-49 S000
96ZF0°0 605Z0°0 0ZZ8T"0 ii¥ " T==2315 2-49 7000
0 T 0 0 F2E°0 9EELE oooeg £70 00000062 " iiT==35"1-d9 €000
aF TIILSi €1 2-¥ 2000
0 000T ST3T3-oTTI anduIl MeNT T € - SKTUNY||T-¥ 1000
AN J

(win I23D0BIBRD SY3 I91JE S31IBIS UNMTOD ISITF SYL "UNNTOD E- SE- SIUNCD - 10P AI=ad) 60L9SHETT SUIL[0O SMOI

HTJNVXA (AI1D’) dT1d LAdNI HANVD 9



30

| PUe  ‘G-D Med USO € (40T (P1) HANVD oy mduy opdwexy g-g Su

N N
dols LLEZ
0g¢ deis. peol I0F  I01DBAG(N T og 0gE iiT-d 9LET
§z4 dois pecT 0T I01DEIAS0T 62 - ' 6C iiT-2 L SLeg
N N
Z4-dels peOT- I0J I01DBASQ"Z z BFET
T4 -dejs peoT I0J AICIDEBIASQO T T L¥ET
0 0T 50 06 9¥EC
0 0 9 S¥ET
0 0T 570 06— FFEC
0 0 9 EVET
T S 0 cFEZ
0 06MSOFT € TFET
T S0 O¥ET
0 06MS0FT £ BEET
T S0 BEEC
0 06MSOFT £ LEEZ
T S0 9EET
0 0eMSOFT € SEET
0 T 0 FPEEZ
0 T o] EEEZ
0 o] T TEEZ
0 0 T TEEEZ
o] T T 0gEg
S J
0 1 1 L&6% - ii€T"5-D go£z
0 T T 96F PiET"5-0 LOEZ
0 0 T LBOT ii€TI 52 20€e
[ [ T 980T 1i€T"5—2 S0ET
0 0 T 96£  FI€T 5-D £5EC
0 0 T 9%% - T1€I75-D Zsee
0€ Z598°6Z- 0 0 LBOT 1i€T"G-D 1522
(o} > zs98 62— ' 0 0 LEOT §ii€T°5-D osze

(wie I23DEIED  B3Yl I23JE  S1IEIS UUMTOD  1SITI YL "UNMTOD B SE. SIUNOD- 0P AISAF) 60LO9CSHEFRT mQEH:OU ngM




81

Table B.1.: Detailed CANDE input for Pipe-Arches.

Parameter

(rows) (columns) (units)

Input Options and Description

A-1 Master Control Input Data

Design/Analysis
Parameter

(1) (01-08) (character)

Controls the decision of design or analysis mode.

Analysis mode is selected on the analysis.

Solution Level

(1) (09-10) (integer)

Defines between Level 1, 2 or 3, as Solution Level
to be used. For the analysis is used the Solution

Level 3 user define mesh.

Method of Analysis/
Design (LRFD)
(1) (11-12) (integer)

Choice of Working Stress or LRFD methodology
for analysis and design. LRFD design
methodology is used.

Number of Pipe Element
Groups
(1) (13-15) (integer)

Defines the number of pipe element groups
evaluated in the same analysis. For pipe-arches
every pipe is evaluated separated, and option

(=1) is selected representing one pipe group.

Heading for Output Files
(1) (16-75) (character)

Heading of the problem defined by the user.

Maximum Number of
Iterations per Step
(1) (76-80) (integer)

Defines the maximum number of iterations per

load step. Typically 1000 iterations per step.

Process ID
(1) (86-90) (integer)

Process identifier number for CANDE 2007

version. Default=0.

continued on next page
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Table B.1.: continued

Parameter

(rows) (columns) (units)

Input Options and Description

A-2.L3 Master Control Input Data

Pipe Type
(2) (01-10) (word)

Word defining type of pipe material. Either
ALUMINUM or STEEL is selected depending
on the pipe to be analyzed.

N° of Beam Elements

(2) (11-15) (word)

Number of connected beam elements. Typically

48 for pipe-arches.

B-1.ALUMINUM or B-1.STEEL

Aluminum or Steel Material and Control Parameters

Youngs Modulus
(3) (01-10) (Ib/in?)

Elastic Youngs Modulus of pipe material. See

Table 2.1 for specific values.

Poissons Ratio

(3) (11-20) (-)

Poissons ratio of pipe material. See Table 2.1 for

specific values.

Yield Stress of Pipe
(3) (21-30) (Ib/in?)

Yield stress of pipe. See Table 2.1 for specific

values.

Yield Strength of Seam
(3) (31-40) (Ib/in?)

Yield strength of pipe seam. See Table 2.2 for

specific values.

Density of Material
(3) (41-50) (Ib/in?)

Density of material. See Table 2.1 for specific

values.

Linear Material Behavior

(3) (61-65) (integer)

Code to select material behavior. Code (=1) is

used and represents a linear stress-strain analysis.

Buckling Indicator
(3) (66-70) (integer)

Code (=0) is used and represents a small

deformation analysis.

continued on next page
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Table B.1.: continued

Parameter

. Input Options and Description
(rows) (columns) (units)

B-2. ALUMINUM.A or B-2.STEEL.A

Aluminum or Steel analysis section properties

Area of pipe wall Area of pipe wall section per unit length (PA).
(4) (01-10) (in?/in?) See Annex A for specific values.
Moment of inertia Moment of inertia of pipe wall section per unit
(4) 11-20) (in*/in?) length (PI). See Annex A for specific values.
Section modulus Section modulus of pipe wall per unit length
(4) 21-30) (in*/in?) (PS). See Annex A for specific values.

B-3.ALUMINUM.AD.LRFD or B-3.StEEL.AD.LRFD

Resistance factors for LRFD limit states

Wall area yielding Resistance factor for wall area yielding due to
(5) (01-10) (-) thrust stress. See Table 2.4 for specific values.
Global buckling Resistance factor for global buckling due to
(5) (11-20) (-) thrust stress. See Table 2.4 for specific values.
Seam strength Resistance factor for seam strength due to thrust
(5) (21-30) (-) stress. See Table 2.4 for specific values.

. . Resistance factor for cross-section capacity for
Plastic-penetration

(5) (31-40) (-)

plastic-penetration. Defined as 0.9 for steel and

0.85 for aluminum .

Allowable deflection Allowable deflection at service load. For steel and

(5) (41-50) (-) aluminum is equal to 5%.

C-1.L3 Preparation (WORD), =PREP

(6) (01-04) (word) Required to continue inputting mesh data.

continued on next page
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Table B.1.: continued

Parameter

. Input Options and Description
(rows) (columns) (units)

C-2.L3 Element number and property array

The number of load steps to be executed,
Number of load steps

) Default=1. Typically 30 load steps for
(7) (01-05) (integer)

pipe-arches.

It controls the amount of mesh data to be written
at CANDE output file. Default=3 prints the

control information plus the created data, other
Mesh output

) options are printing only the control information
(7) (06-10) (integer)

(1), option (1) plus printing node and element
input is (2) and option (1) plus Laplace generated

nodes is (4). For pipe-arches is equal to 3.

Check the validity of the input data. Choices
Data check control include only to check the data and stop (1) or
(7) (11-15) (integer) run the solution (0), Default=0. For

pipe-arches is equal to 0.

Controls the plot files units 10 and 30. Default=3

creates units 10 and 30, where unit 10 contains
Plot file control

(7) (16-20) (integer)

all the finite element mesh and the structural
responses and unit 30 the pipe responses or each

load step. For pipe-arches is equal to 3.

Response data output The ”standard” option (=1) is used, where

(7) (21-25) (integer) pipe plus the soil-system responses are printed.

continued on next page
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Table B.1.: continued

Parameter

. Input Options and Description
(rows) (columns) (units)

The mumber of nodes used to create the mesh. If
Total number of nodes the numbering of nodes is not sequential, the
(7) (26-30) (integer) higher node number correspond to the number of

nodes. Typically 1185 for pipe-arches.

The number of elements used to create the mesh,

including the beam, continuum, and interface
Total number of elements

) elements for the pipe, soil, and interface,
(7) (31-35) (integer)

respectively. Typically 831 for biggest

pipe-arches.

Total number of boundary | The total number of boundary conditions for this

conditions problem. For pipe-arches typically is equal

(7) (36-40) (integer) to 589.

Total number of soil The total number of soil materials used, where
materials the minimum is four. For pipe-arches one soil
(7) (41-45) (integer) materials is defined for four different zones.

The total number of interface materials used.
Total number of interface | For pipe-arches, this number is defined as
materials 2; since the automatic generation of interface
(7) (46-50) (integer) materials is defined, only the first and last

element at —90° and 90°, respectively is needed.

Code to minimize This feature on CANDE internally rearranges the
bandwidth defined node numbering scheme to minimize the
(7) (51-55) (integer) bandwidth of the stiffness matrix. If it is set to 0,

continued on next page
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Table B.1.: continued

Parameter

. Input Options and Description
(rows) (columns) (units)

no action is performed, set to 1 minimize the
stiffness matrix and set to 2 minimize and print.

Typically is set to 1.

C-3.L3 Level 3 node input

Node
(8-914) (02-05) (integer)

The node number to be defined.

. It allows defining the coordinates based on
Special reference code

. previous coordinates. Set to 0, (standard input
(8-914) (06-08) (integer)

without nodal reference) for pipe-arches.

. . It allows defining nodal generation options. Set
Special generation code

. to 0, (no special generation modes are activated)
(8-914) (09-09) (integer)

for pipe-arches.

. . It controls the basic options for the nodal
Basic generation code

. generation of coordinates. Set to 0, (basic input,
(8-914) (10-10) (integer)

x and y coordinates will be specified).

X-coordinate

(8-914) (11-20) (inches)

X-coordinate value.

Y-coordinate

Y-coordinate value.
(8-914) (21-30) (inches)

Increment Increment added to generate nodes when

(8-914) (31-35) (integer) | numbering is not sequential. Default = 1.

continued on next page
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Table B.1.: continued

Parameter

(rows) (columns) (units)

Input Options and Description

Spacing
(8-914) (41-50) (ratio)

Spacing ratio for generated node lengths.
Default = 1, all nodes generated will be evenly

spaced.

Radius
(8-914) (51-60) (inches)

Controls the path for the generation of nodes.

Default = 0, the path is a straight line.

Limit

(914) (01-01) (letter)

Signal to indicate last node to be input, L.

C-4.L3 Level 3 element input

Element Number

(915-1745) (02-05) (int.)

Element number to be defined.

Node I
(915-1745) (06-10) (int.)

The first node in the element connectivity array.

Node J
(915-1745) (11-15) (int.)

The second node in the element connectivity

array.

Node K
(915-1745) (16-20) (int.)

The third node in the element connectivity array,

for interface and quadrilateral elements.

Node L
(915-1745) (21-25) (int.)

The fourth node in the element connectivity
array, only for quadrilateral elements For all

other element types set Node L=0 .

Material Number
(915-1745) (26-30) (int.)

It identifies the element type. The quadrilateral

elements for the soil use one as the material

continued on next page
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Table B.1.: continued

Parameter

(rows) (columns) (units)

Input Options and Description

identification number, beam elements for the
pipe use also 1. Every interface element uses a
different identification number, ranging between
1 and 99 since only the interface elements that
share the same friction coefficient, tension re-
sistance and angle of the interface can have the

same material number.

Load Step
(915-1745) (31-35) (int.)

Load step number where the element is
introduced into the system. When an element
enters the system, it stays there for the next

steps until the end of the analysis.

Interface

(915-1745) (36-40) (int.)

When it is set to 1, it distinguishes the interface
elements form the triangular elements.

Non-interface elements are set to 0.

Node increment added

(915-1745) (41-45) (int.)

Element increment added to compute node
connectivity when the numbering of elements is

not sequential. Default=1.

Node rows added
(915-1745) (46-50) (int.)

The number of element rows to be generated for
the computed node connectivity when the

numbering is not sequential. Default=1.

Node increment between

rows

It refers to the increment of node number

between element rows, typically is the number of

continued on next page
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Table B.1.: continued

Parameter

(rows) (columns) (units)

Input Options and Description

(915-1745) (51-55) (int.)

elements in the row plus 1.

Limit

(1745) (01-01) (letter)

Signal to indicate last element to be input, L.

C-5.L3 Boundary Condition Input

Node
(1746-2334) (02-05) (int.)

Node number where the boundary condition is

going to be applied.

X-code
(1746-2334) (06-10) (int.)

The boundary condition for the coordinate X.
Defined as 0 specified a force input with rotation
free. Defined as 1 specified a displacement input

with fix rotation.

Y-code
(1746-2334) (21-25) (int.)

The boundary condition for the coordinate Y.
Defined as 0 specified a force input with rotation
free. Defined as 1 specified a displacement input

with fix rotation.

Y-value

(1746-2334) (26-35) (int.)

Value of force for the specific node over the Y

coordinate.

Load Step
(1746-2334) (46-50) (int.)

Number of load step where the boundary

condition is applied.

D-1 Material control parameters

Material ID number

(2335) (02-05) (integer)

Material Zone ID. The soil is divided into 4

zones, all of them with the same soil properties.

continued on next page
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Table B.1.: continued

Parameter
. Input Options and Description
(rows) (columns) (units)

Select material model to be associated with
Model Type

] material zone. Defined as (=3) for the
(2335) (06-10) (integer)

Duncan/Selig model.

Density Density of material in zone. For gravelly sand

(2335) (11-20) (Ib/ft*) | with 90% compaction (SW90) is 140 Ib/ ft3.

Material name Name to characterize the selection of model

(2335) (21-40) (words) | parameters. For the analysis is SW90.

D-2.Duncan - Duncan fundamental controls

The LRFD control for material stiffness is set to
LRFD stiffness control | cero for adjusting the soil model to its stiffness
(2336) (01-05) (integer) based on service-load stresses, not the higher

factored stresses.

. . . Average of the tangent stiffness at the start and
Moduli averaging ratio

at the end of the load step. Set as 0.5 for an
(2336) (06-15) (—)

evenly balanced average.

Soil Model Is set to 1 for selecting the Duncan/Selig
(2336) (16-20) (integer) | formulation

D-2.Interface Interface angle, friction, and tensile breaking force

Angle from x-axis to For the first interface node (starting from the
normal of interface bottom of the pipe) is defined as —90°, for the

(2344) (01-10) (degrees) | last one is —90°.

continued on next page
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Table B.1.: continued

Parameter

. Input Options and Description
(rows) (columns) (units)

Coeflicient of friction

Coefficient of friction between nodes I and J. For
between nodes I and J

all pipe types defined as 0.5.
(2344) (11-20) (1) PIPe P

Tensile breaking force of | Force per unit length required to break the bond
contact nodes between nodes I and J. For all pipe types defined

(2344) (21-30) (Ib/in) | as 10 Ib/in.

E-1 LRFD net load factor per load step

Starting load step Starting load step number to apply the same load
(2347) (01-05) (integer) factor.

Last load step Last load step number to apply the same load
(2347) (06-10) (integer) | factor.

Load factor LRFD load factor applied to the load steps.
(2347) (11-20) (-) Usually 2.05 for metal pipes.




