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ABSTRACT 
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In order to achieve broadening participation in computer science and other careers related to 

computing, middle school classrooms should provide students opportunities (tasks) to think like a 

computer scientist. Researchers in computing education promote the idea that programming skill 

should not be a pre-requisite for students to display computational thinking (CT). Thus, some tasks 

that aim to deliberately elicit students’ CT competency should be stand-alone tasks rather than 

coding fluency-oriented tasks. Guided by this approach, this assessment design process began by 

examining national standards in CT. A Q-matrix (i.e., item–attribute alignment table) was then 

developed and modified using (a) literature in CT, (b) input from subject-matter experts, and (c) 

cognitive interviews with a small sample of students. After multiple-choice item prototypes were 

written, pilot-tested, and revised, 15 of them were finally selected to be administered to 564 

students in two middle schools in the Mid-western US. Through cognitive diagnostic modeling, 

the estimation results yielded mastery classifications or subscores that can be used diagnostically 

by teachers. The results help teachers facilitate students’ mastery orientations, that is, to address 

the gap between what students know and what students need to know in order to meet desired 

learning goals. By equipping teachers with a diagnostic classification based assessment, this 

research has the capacity to inform instruction which, in turn, will enrich students’ learning 

experience in CT. 
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 INTRODUCTION 

1.1 Computational Thinking Overview 

Computational thinking (CT) refers to thinking recursively and abstractly as well as 

reasoning heuristically (Barr, Harrison, & Conery, 2011; Yaşar, 2018). It is a fundamental skill 

that, like reading or writing skills, every child should acquire. Wing (2006) was arguably the first 

scholar to emphasize the importance of CT for children and adolescents. Nationwide efforts have 

been made to integrate CT into K-12 education. For example, Computer Science Teachers 

Association (CSTA) and the International Society for Technology in Education (ISTE) jointly 

published an operational definition of CT for K-12 use (2011). The National Research Council 

recently (NRC, 2010; NRC, 2011) organized two workshops addressing the scope of CT, 

perspectives on how CT research should be conducted, and possible future directions for CT 

instruction. Lee et al. (2011) summarized the characteristics of several National Science 

Foundation-funded CT programs; they found that these programs emphasized CT development for 

high school and middle school students, with the most used context being computer game creation 

through programming.   

Other than programming instruction, a variety of applications or contexts can also foster 

CT because CT is a human expression (Deschryver & Yadav, 2015). Seoane-Pardo (2016) 

introduced a set of CT lesson plans in ethics classrooms in middle schools in Spain. The idea 

driving the project was that education with moral dilemmas is a useful context for CT development. 

Students were required to evaluate different scenarios involving unavoidable self-driving car 

crashes on the Moral Machine Platform developed by the MIT Media Lab. Students used “moral 

principles to decide how intelligent agents should behave, both in their interactions with humans 

and other machines and the environment” (p. 41). In the United States, research on K-12 teacher 
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education has explored how to best prepare future educators in CT awareness. Yadav, Stephenson, 

and Hong (2017) have repeated that CT is not merely synonymous with using computer 

technology. Pre-service teachers should learn how to integrate CT across content areas; teaching 

CT does not necessarily rely on a computer interface or a programming language. A necessary 

component in CT instruction is teaching students to be conscious about when and how to apply it 

(Yadav, Zhou, Mayfield, Hambrusch, & Korb, 2011). 

Indeed, CT is a way of thinking about activities, even in the absence of programming skills. 

This idea is not new in computing education. Scholars in computing education have identified key 

concepts in CT, such as abstraction, efficiency, and heuristics, which are also common themes in 

human activities. For example, Lu and Fletcher (2009) provided examples including an assembly 

line for automobile manufacturing and English grammatical rules. Research conducted by 

Lewandowski, Bouvier, McCartney, Sanders, and Simon (2010) showed that students employed 

CT in one daily activity: selling concert tickets. They asked students who had no prior knowledge 

about programming to figure out solutions. Students’ plans for selling the tickets provided 

information that was useful to assess their CT performance on objectives related to algorithm 

design.  

1.2 Overarching Research Goal 

Existing instruments to measure students’ CT reflect the range of instructional approaches 

implemented. There is no widely used assessment for CT across classrooms (or research-based 

programs). In the CT community, different assessment approaches highlighted different aspects of 

CT. A number of assessments have been developed, including artifacts-based interviews (e.g., 

Brennan & Resnick, 2012), coding projects (e.g., Grover, 2014), tasks in multiple-choice format 

(e.g., Yadav, Zhou, Mayfield, Hambrusch, & Korb, 2011), or tasks in open-ended format (e.g., 
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Tran, 2019). Most of them are content-specific, in that they require disciplinary knowledge (e.g., 

Bers, Flannery, Kazakoff, & Sullivan, 2014). Some are curriculum-specific, in that they require 

programming instruction (e.g., Mouza, Marzocchi, Pan, & Pollock. 2016). A few of them are 

stand-alone assessments (or at least contain some stand-alone questions, e.g., Gouws, Bradshaw, 

& Wentworth, 2013). (A comprehensive description of assessment will be provided later in the 

literature review section.) Among them, either a recommended scoring system was not available, 

or a single score was used to reflect students’ CT competency. 

In this research, a new instrument, Computational Thinking Competency Assessment 

(CTCA), is introduced. After specifying the test design, a set of multiple-choice (MC) items are 

developed for middle school students to solve. In the CTCA, the assessment design process, the 

analysis of students’ response data, and subscore reporting are all tied together by cognitive 

diagnostic modeling (CDM). CDM is a cognitive-psychometric modeling approach to measure a 

human performance domain (i.e., ability, trait, or competency). Throughout this research, subscore 

refers to the profile scores estimated through CDM representing students’ mastery status. It gives 

information to teachers about students’ strengths and weaknesses, who can in turn further influence 

students’ learning. In a broader sense, subscore reporting has the capacity to offer feedback to 

teachers while organizing the ongoing or next lesson. 

The main design feature for the CTCA is that it does not depend on any programming 

language context or specific disciplinary knowledge. So teachers across different classrooms can 

use it. The content used to develop items is drawn from everyday scenarios or graphs/tables 

commonly seen by middle school students, “positioning CT as a link to cognitive competencies 

involved not only in science and engineering but also in everyday life” (Yasar, 2018, p. 33). Yasar 

further suggested that a cognitive model, such as an information processing model, can possibly 



12 

 

be used to identify the characteristics of CT. Other than the information processing model (see 

Embretson & Wetzel, 1987), another widely used general cognitive model is the cognitive model 

of domain mastery. As Svetina, Gorin, and Tatsuoka (2011) described, “the domain mastery model 

is typically specified as a list of discrete skills, knowledge, or attributes assessed by the items on 

the test” (p. 3). For example, the model of domain mastery in reading comprehension constitutes 

multiple discrete attributes including location (locating the information in the text) and vocabulary 

(deploying his or her vocabulary while reading).  

In this research, the assessment design process involves establishing the formal cognitive 

structure of CT competency, namely, a CT model of domain mastery. Then, the formal cognitive 

structure and scoring model of the response data are tied together with the CDM approach. The 

CTCA also possesses the following design features: (1) CT researchers and teachers (practitioners) 

can use them without cost. (2) The quality of the assessment is evaluated by a series of validity 

evidence including psychometric properties of students’ response data. (3) The scoring system, 

along with score meaning, is explicitly articulated and presented. After students’ response data are 

collected, in this research, the following overarching questions will be answered:  

(1) What are the characteristics of mastery status in CT competency among middle 

school students?  

 

(2) Do female and male groups have different CT competency? 

1.3 General Considerations in Assessment Design 

Developing a stand-alone CT assessment does not indicate that CT should only be taught 

as a stand-alone course. It solely means that CT competency can be displayed without pre-

requisites (e.g., programming ability). The tasks designed to elicit CT competency are not related 
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to any content knowledge (e.g., the disciplinary knowledge in biology).This section is an overview 

of assessment design in order to answer the question below: 

As the literature in instructional practice has suggested, students’ CT can be fostered 

through various context or content knowledge. The reciprocal relationship is also true; that is, CT 

competency can deepen the understanding in disciplinary knowledge (e.g., biology or physics, e.g., 

Weintrop et al., 2016). In the CTCA, why the goal is to develop a stand-alone CT assessment 

rather than a content-specific CT assessment (e.g., programming or biology)?  

A stand-alone assessment was chosen because of the following factors: (1) reasonable cost 

of assessment development, (2) reasonable testing time, (3) relatively precise estimation of 

students’ latent scores, and (4) an explicit interpretation of scoring meaning. These factors are the 

important design decisions to be made by assessment developers (Gorin & Mislevy, 2013). They 

were considered in this research. Consider a case where CT instruction has been integrated into a 

six-week biology lesson plan in a middle school, and the disciplinary knowledge in question relates 

to molecules and organisms. Compared with a stand-alone CT competency assessment, a CT 

assessment for a substantive content, for example, an assessment of CT for scientific modeling in 

molecules and organisms, is likely to capture multiple constructs. An individual measurement task 

therefore is expected to measure all of the following areas: (1) CT (e.g., the ability to identify 

parallel processing), (2) scientific modeling (e.g., the ability to evaluate the evidence used to 

support a scientific claim), and (3) biology disciplinary knowledge (e.g., the ability to describe that 

a subsystem is composed of groups of cells interacting with other subsystems in the body). The 

defined construct may require complex scenario-based assessment, which has the following 

drawbacks, as stated by Gorin and Mislevy (2013): 
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“Current research on complex scenario-based assessment suggests that each task 

could require 30 to 45 minutes, which clearly places a limit on the number of 

independent tasks that can be administered and used to estimate student abilities. 

Without more information from a broader range of tasks, the possibility of any 

psychometric model producing generalizable results is low”. (p. 21) 

Moreover, the traditional items (tasks) on an assessment, along with existing psychometric 

models, require an explicit mapping between items and the latent variable (i.e., ability or 

competency). In contrast, the complex scenario-based tasks lack clear boundaries between the 

constructs assessed (Baker, Martin, & Rossi, 2016). Given current psychometric modeling 

development, the scoring results generated from these complex assessment fail to offer an explicit 

score interpretation. However, such interpretation is often what classroom teachers and multiple 

stakeholders seek. 

In a broader sense, scoring system and score interpretation are very important for an 

assessment because they are closely related to validity. This is found in the most recent Standards 

for Educational and Psychological Testing, jointly published by the American Educational 

Research Association, American Psychological Association, and National Council on 

Measurement in Education (hereafter, “the Standards;” AERA, APA, & NCME, 2014). The design 

methodology of the CTCA (see Chapter 3) will follow the Standards. In order to design a coherent 

assessment, multiple design decisions should be explicitly articulated. Validation, termed validity 

by design by Mislevy (2007), is not mechanically conducting a series of analyses after assessment 

administration, but rather intentionally structuring design activities “in such a way that validity 

evidence emerges” (p. 467).  
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In an assessment design language, the argument-based approach to validation, as termed 

by Kane (2013), refers to “the proposed score interpretations and uses that are validated not the 

test or test scores” (p. 1). Throughout this research, the validation process of the proposed score 

use and score interpretation involves both a systematic assessment design process and parametric 

psychometric modeling of students’ responses on the assessment. The proposed score use for 

CTCA is that practitioners (e.g., classroom teachers) will be informed about students’ CT 

competency. Students’ CT competency may often be of interest to teachers. For example, in a 

computing course, the instructors wonder, “What relevant knowledge and abilities do students 

without prior computing instruction (‘beginners’) bring to their first class?” (Lewandowski et al., 

2010, p. 60). Score interpretation for the CTCA will be described later in Chapter 3. 

The remainder of this study is outlined as following. In Chapter 2, the literature on CT in 

K-16 (most of the literature focuses on K-12) education is identified and synthesized regarding 

two areas: (1) how CT is implemented in teaching and learning; and (2) what kind of CT 

assessments have been developed. In Chapter 3, the design methodology of the CTCA is presented. 

Cognitive interviews with 10 middle school students are reported with the purpose that this item-

tryout procedure may contribute to the validity evidence. In Chapter 4, results from the analysis of 

both pilot data (79 students) and operational data (564 students) are reported. The scoring system 

is also described. In Chapters 5 and 6, discussions and conclusions are drawn in connection with 

both existing literature and the research questions. 

  



16 

 

 LITERATURE REVIEW 

This chapter consists of three sections synthesizing the literature in CT. The first section 

summarizes studies that emphasize the role of computing environments (e.g., programming 

instruction or computer interfaces) in fostering CT. The second section summarizes studies of how 

non-computing related courses or activities may foster students’ CT; studies in various contexts 

(e.g., science) are presented. The third section presents a set of CT assessments identified in the 

existing literature. 

2.1 CT and Digital Artifacts 

Many researchers have highlighted the role of programming skills in CT development.   

Some literature has blurred the line between CT competency and programming skills because these 

skills or the programming environment context can greatly foster students’ CT development. 

Brennan and Resnick (2012) arguably proposed the first CT framework for young learners. They 

described CT as having three strands: (1) computational concepts such as loops or iteration; (2) 

computational practices such as how young learners use these computational concepts to debug 

and remix work with block-based language; and (3) computational perspectives, that is, how young 

computational thinkers view the world around them and themselves. Such perspectives possess 

long-term value for young learners. The K-12 education community expects students to acquire 

knowledge and skills with long-term value, not only immediate applications to classroom 

assignments (Czerkawski & Lyman, 2015), and the computing community also aims to achieve 

this goal.  

The CT framework proposed by Brennan and Resnick is promising because it highlights 

the importance of computational perspectives. The perspectives enable young learners to use 
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computation as the medium to self-express or to create. The assessment associated with this 

framework can only be implemented when young learners engage with programming. The specific 

formats for assessment include project portfolio analysis as well as digital artifact-based 

interviews. Throughout their study, they used the Scratch (https://scratch.mit.edu/) programming 

interface; Scratch is an open-source, agent-based modeling platform, and block-based 

programming language. It allows users to translate blocks of code into storytelling on the screen. 

In keeping with the idea that programming environments can benefit CT development, 

Grover, Pea, and Cooper (2015) outlined that computing education as a new type of discipline-

based research in K-12 education, which differs from science, math, or technology education (e.g., 

Grover & Pea, 2013). They argued that early exposure to programming may enhance students’ CT 

competency, which in turn may further spur their interests to pursue computing-related professions 

(Cooper, Grover, Guzdial, & Simon, 2014). Grover (2014) developed a computing course for 

middle school students. The author highlighted that computer science instruction should be 

effectively structured in a way that students’ CT is deliberately fostered. The assessment to 

measure middle school students’ CT in that study will be described in detail later in this chapter.  

Consistent with the idea that early exposure to programming may enhance students’ CT 

competency, many empirical studies involving programming have been conducted at elementary 

schools. The underlying measurement principle for this type of research relies heavily on the 

ability to create digital artifacts (e.g., coding fluency). Bers, Flannery, Kazakoff, and Sullivan 

(2014) explored how a TangibleK robotics curriculum may help students develop CT. The research 

participants included 53 students, 23 of whom were enrolled in a religious-based private school, 

and the remaining students were enrolled in an urban public school. The curriculum covered six 

lessons of increasing difficulty: (1) the engineering design process; (2) robotics; (3) choosing and 
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sequencing programming instructions; (4) looping programs (control flow instructions-1); (5) 

sensors; and (6) branching programs (control flow instructions-2). They found that most children 

(75%) did well on the first three lessons, but that fewer children (56%) did well on the second half 

of the lessons. The learning outcomes they measured were related to programming concepts (i.e., 

debugging, control flow) rather than robotics knowledge (i.e., technological devices’ function).  

Children’s work products (e.g., the program or robot made by the child) were rated on a scale from 

0-5, with a 0 indicating that children did not attempt the task, and a score of 5 indicating the child 

had fully and effectively completed the tasks. 

Complementary to efforts undertaken in technology classes (which mainly focus on 

robotics), researchers also have used science and art classrooms to help students’ CT development. 

The learning outcome in such contexts has often been measured by students’ understanding of 

certain programming concepts. Sáez-López, Román-González, and Vázquez-Cano (2016) 

described the implementation of design-based research (DBR) in science and art classrooms. 107 

students in the 5th and 6th grades participated in the research. This 2-year intervention used Scratch 

and found that Scratch instruction was able to improve performance on computational concepts 

and computational perspectives within the experimental group. The assessment tool used in the 

research contained five scales. Scale 1 measured students’ active learning. Scale 2 measured the 

contents of art history. Scale 3 measured computational concepts. Scale 4 measured the perceived 

usefulness of the content to students. Scale 5 measured students’ enjoyment. All of these scales 

were attitudinal or affective scales except Scale 3, which was a competency scale related to CT. 

The content of the scale includes sequences, loops, conditional statements, parallel execution, 

coordination, event handling, and keyboard input. The scale development process or sample items 

was not reported in the publication.  
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In another application of DBR to CT of elementary students, Jun, Han, and Kim (2016) 

examined programming instruction using both Scratch and the Creative Computing Guidebook 

developed by MIT Media Lab. The curriculum they designed for the experimental group included 

the following content: (a) introduction of Scratch and art projects; (b) storytelling; (c) game 

programming; and (d) making game projects and reflecting through presentations. They defined 

CT competencies as (1) CT problem-solving ability; (2) self-efficacy; (3) interest; (4) self-CT; and 

(5) self-CT: computing perspectives. The Self-CT test included eight items, where “five items on 

the programming aspect-understanding codes, construction ability, enthusiasm for programming, 

and operating principles, three items on the computing aspect” (p. 47). They found the curriculum 

was an effective approach to improve the learning experience in CT for students. Details of the 

test content were not provided. 

Other than formal instruction in K-12 classrooms, as mentioned above, informal education 

programs (e.g., after-school programs) have also been designed to develop students’ CT using a 

programming environment. Mouza, Marzocchi, Pan, and Pollock (2016) designed an after-school 

computer science program for middle school students; they found the program had positive 

learning outcomes in both programming skill and attitudes toward computing. During the 9-week 

instruction, they combined college field experience with a partnership of local schools, in which 

undergraduate students offered one-to-one scaffolding to middle school students. Because CT was 

characterized as consisting of computer science (CS) concepts, computational practices, and 

attitudes toward computing, the learning outcomes were measured by using a Scratch coding 

project, attitude survey, and a CS concept test containing 10 Scratch coding knowledge items.  

Forty-one students received instruction, and completed both the attitude survey and CS 

concept test. In this test, the first item required students to choose the category for a Scratch block. 
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For questions 2 to 9, students were required to match a Scratch code to one of the following CS 

concepts: parallelism, variables, conditionals, loops, and knowing what a block of code does. 

Question 10 required student to predict the outcome given a block of code. No sample items were 

provided in their study. Gain scores calculated by using pre-and-post sum scores on the test 

indicated that students had gained understanding in CS concepts; no statistically significant 

difference was found between boys and girls on the attitude measure, the CS test, or the Scratch 

coding project.  

Also related to informal education, Fields, Giang, and Kafai (2014) explored an informal 

online programming community for 2,225 young Scratch users where the median age is 14. 

Compared with traditional classrooms, an informal learning environment may enhance computing 

participation, which, according to the authors, includes: (1) social participation, such as 

commenting on a coding project with peers; and (2) personal expression. They defined computing 

participation as part of CT; therefore, the informal programming environment may be a natural 

platform for fostering computing participation. After examining online users’ programming 

profiles, they found no association between a respondent’s level of participation and the level of 

programming sophistication. Only a small group of users who were highly engaged with 

programming tasks tend to use more complex programming concepts such as variables and 

operators. The authors noted that programming is easy for beginners but becomes exponentially 

difficult later. They pointed out that the evidence of learner engagement with advanced 

programming tasks is lacking. For example, girls made more comments about playing games rather 

than discussing programming in the online community. They recommended that future research 

should develop a mechanism of more meaningful computing participation to engage learners with 

more sophisticated tasks.  



21 

 

As noted in these research studies, the learning outcomes of CT are most often measured 

by students’ ability to produce digital artifacts or their understanding of programming concepts. 

Consequently, this indicates that the authors of various studies have implicitly endorsed the idea 

that teaching programming is teaching CT. But not all members of the CT community endorse 

this idea. Czerkawski and Lyman (2015), on behalf of the editorial board of Issues and Trends in 

Educational Technology, stated that “while CT and computer science are linked, computational 

thinking is not simply computer science; teaching CT should not be reduced merely to teaching 

Scratch or Alice” (p. 1). Therefore, in the next section, a different set of studies are presented. The 

learning outcome of interest is no longer about understanding computing concepts or ability in 

producing digital artifacts, although some studies may use computer interfaces (e.g., Scratch) as 

instruction-delivery tools.  

2.2 CT without Digital Artifacts 

In this section, a set of studies are presented. Some studies are position papers, whereas 

some are empirical studies. The studies presented in the previous section used the ability to produce 

digital artifacts as the learning outcome of CT. In contrast, the studies presented here stressed the 

following learning outcomes: (1) the understanding in disciplinary knowledge (e.g., biology) and 

(2) ability to think computationally in daily-life scenarios. 

Robotic Programming 

Chen et al. (2017) developed a robotic programming curriculum for elementary students. 

They endorsed the idea that teaching CT is more than teaching students to use a set of digital 

commands to make a robot turn left or right. Students’ CT competency is displayed not merely 

through coding fluency, but in various contexts. By using a pre-test and post-test design, they 

aimed to assess the effectiveness of the curriculum in enhancing CT for 5th grade students and, in 
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addition, provided psychometric properties of two different sets of measurement tasks. Based on 

students’ gain scores, they found that students did better in programming robotics tasks than daily-

life scenarios tasks and suggested that the future instruction should focus on (1) strengthening the 

connection between coding examples and daily life examples, and (2) encouraging students to 

deliberately convert everyday tasks to coding problems.  

Similar to the approach adopted by Chen et al. (2017), Berland and Wilensky (2015) 

studied robotic programming instruction in middle schools. For 78 students in the 8th grade, they 

explored whether a physical robotic-related simulation instructional unit and a virtual robotic-

related simulation instructional unit may lead to different levels of understanding for middle school 

students. Both simulations were embedded in the computer-based learning environment (VBOT), 

a graphical programming language. Learning outcomes were measured by four open-ended items; 

two human raters graded the questions on a scale of 0-3, each of which measured exactly one 

construct. The CT question, Question 2, was a stand-alone question that was not contingent on 

programming or robotics knowledge, which measured CT in a daily-life scenario.  Other questions 

measured complex systems thinking, robotic knowledge (technology content knowledge), which 

required students to write an essay, and students’ programming skill with VBOT in four scenarios. 

The pre- and post-test results suggested that two instructional units led to similar learning gains 

for these 4 target constructs. . 

In addition, Kazimoglu, Kiernan, Bacon, and Mackinnon (2012) also explicitly articulated 

that teaching CT should not be reduced to teaching programming concepts in robotics. They 

designed an educational computer game, Program Your Robot, as a framework to foster CT. Their 

study addressed the question: What tools can make CT accessible to everyone? Compared to many 

computer interfaces designed as programming tools, a CT tool should allow users to develop 
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solutions for CS related challenges where users have little or minimal programming backgrounds. 

In these authors’ view, CT consists of cognitive skills such as creating and applying algorithms 

for a particular problem or detecting logical errors. These skills are not equal to the ability to use 

computing concepts to create digital artifacts. However, many existing computer interfaces often 

make programming skills a prerequisite in order for users to display CT. The authors described the 

development of the framework and acknowledged that empirical evidence had not been collected. 

But the framework elaborates a clear distinction between CT competency and programming ability.  

Science Education 

As mentioned above, content knowledge is conceptually separate from CT competency. 

CT has been integrated not only in computing or technology education, but also in science 

education. Science is expected to be a natural context to foster CT. The current national K-12 

science standards—the New Generation Science Standards (NGSS, 2013)—considers CT a part 

of science practices, because scientists often practice debugging and testing. Such computational 

practice among scientists is captured as an emerging category to inform the new science standards 

(NGSS Lead States, 2013). Weintrop et al. (2016) provided a framework to define CT in science 

and math classrooms in high schools. The authors provided a taxonomy of the core areas of CT 

competencies in math and science, that is, data practices, modeling and simulation practices, 

computational problem-solving practices, and systems-thinking practices. Students must possess 

disciplinary knowledge (for example, in climate change) in order to display CT competencies. The 

instructional delivery is based on human-computer interactive virtual modules. In physics classes, 

for example, virtual modules about energy require students to complete a series of activities to 

build a roller coaster; a set of CT competencies therefore can be elicited or displayed, such as 

understanding the relationships within a system. When students keep track of energy 
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measurements four times, data practices are used. (No empirical evidence appears in the paper 

because its purpose is to propose a framework).  

Along this line, Sengupta, Kinnebrew, Basu, Biswas, and Clark (2013) developed an agent-

based computer instructional tool, Computational Thinking in Simulation and Modelling (CTSiM). 

The underlying idea is that a computer environment may foster CT through modeling and 

simulation while participants simultaneously acquire knowledge in physics and biology. Three 

modules were developed to provide instruction on kinematics in physics, and ecology in biology: 

The Construction World, The Enactment World, and The Envisionment World. The activities 

embedded in these modules introduced students to basic programming concepts (e.g., conditionals 

or logical operators). The participants were 24 sixth-grade students in a racially diverse middle 

school in the US, 15 of whom received one-on-one scaffolding guidance from research members 

while working on the CTSiM modules; the remaining students (the control group) received regular 

classroom instruction. To assess the effectiveness of the scaffolded CTSiM modules, content tests 

for both kinematics and ecology were used to measure students’ disciplinary knowledge. The test 

scores showed learning gains in both ecology and kinematics, particularly in the former.  

Subsequently, the same group of authors (i.e., Basu, Biswas, Sengupta, Dickes, Kinnebrew, 

& Clark, 2016) produced another empirical study using a learning-by-modeling paradigm of 

attaining disciplinary knowledge in middle school science classrooms. Students acquired 

disciplinary knowledge (e.g., kinematics and ecology) along with domain-general computational 

concepts (e.g., conditionals or logical operators) in the CTSiM user interface. Their study 

promoted the idea that a CT-based open-ended learning environment could facilitate students’ 

learning in science when in-person scaffolds were available to students.  
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Other Contexts 

The existing literature in robotic programming and science has emphasized students’ CT 

acquisition. But they are not the only contexts identified in the literature emphasizing students’ CT 

acquisition. This section highlights how other contexts are able to foster CT. Sanford and Naidu 

(2016) argued that spreadsheets are useful in connecting CT in algebra, and considered 

mathematical modeling as the core of CT. In their later position paper, they provided a few 

concrete examples in algebra for elementary mathematical concepts, and they detailed examples 

that are suitable for high school or early college (Sanford & Naidu, 2017). Each solution acts as a 

template that can be used for solutions of similar problems. By using spreadsheets to manipulate 

the parameters, students are guided to answer a “what if” question, given the template.  

The Scratch programming system is also a commonly used instruction-delivery tool. Wolz, 

Stone, Pearson, Pulimood, and Switzer (2011) wrote a research report describing how middle-

school level language arts content may foster CT using through poetry projects and research report 

projects. The tasks required students to write news stories, edit video, and develop animations in 

Scratch to support their storylines. Students and teachers in a New Jersey middle school were 

recruited to be part of the integration of CT in journalism; in total, 36 students participated in the 

project. The measurements used in the study included a computer usage survey, a computer 

efficacy test, a career decision-making survey, a math efficacy test, and a math interest survey. A 

story-telling/problem-solving activity was used to measure CT (the details of this activity are 

unavailable). By using non-parametric statistics, Wolz et al. found the experimental group (i.e., 

the students who completed the summer school) had no difference from the control group in CT, 

but they did find that both teachers and students gained positive attitudes about CT and 

programming by participating in the project. 
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2.3 Existing Assessments in CT 

In the previous two sections, the discussion of the literature centered around how CT is 

displayed and fostered. Namely, multiple meaningful contexts were used to foster students’ CT. 

In this section, CT assessment tools are reviewed in order to further examine the characteristics of 

CT. Table 1 below shows the identified 8 assessment tools in CT. One additional study, conducted 

by Korkmaz, Çakir, and Özden (2017), measured undergraduate students’ self-reported perception 

and confidence level on five CT competencies: creativity, algorithmic thinking, cooperativity, 

critical thinking, and problem solving, rather than CT competency itself, so was excluded here.  

Table 1 Eight Published Assessment Tools in Computational Thinking 

Study 

ID 

Authors Participants’ population   

1 Grover (2014) Middle school 

2 Yadav, Zhou, Mayfield, Hambrusch, & Korb (2011) Pre-service teachers 

3 Werner, Denner, Campe, & Kawamoto (2012) Middle school 

4 Román-González, Moreno-León, & Robles (2017) 5th grade to 10th grade  

5 AP Computer Science Exam by College Board (2017) High School 

6 Tran (2019) 3rd grade 

7 Zhong, Wang, Chen, & Li (2016) 6th grade 

8 Gouws, Bradshaw, & Wentworth (2013) First-year college students 

 

Study 1 was published by Grover (2014). The author designed a computer science course 

for middle school students and a set of items embedded in the course. One of the instructional 

objectives for the course was to increase students’ CT competency. The items can be summarized 

as three types. The first type is CT vocabulary. Students are required to write down the definitions 

of the key terms in programming (e.g., loop or algorithm). The second type of item is code 

execution. Two programming interfaces are used in this context: block-based code and text-based 

code. The item format includes both open-ended format and multiple-choice format. For example, 

a block of code is given, but one or more lines are missing from the code. Students are required to 
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choose one option from the given options to complete the block of code. Another example is that 

a complete block of code is given, and students are asked to choose one of five options to indicate 

what the result would be after executing the code. As for the open-ended items, a block of code is 

given, and students are required to write in plain English what the code does. The third type of 

item is a stand-alone item where no programming experience is needed. Such items are based on 

daily-life scenarios (e.g., card game), in which students are required to write down the card order 

after following a series of instructions. 

Study 2 was published by Yadav, Zhou, Mayfield, Hambrusch, and Korb (2011). It 

described a core course required for undergraduate students majoring in primary or secondary 

education. A CT module was part of the course and it aimed to introduce (1) computing concepts 

and (2) integration of CT across various disciplines. The main idea motivating the course design 

was that future teachers would be aware that CT instruction can be built upon activities that require 

no computers. The CT concepts covered in the course included: (a) abstraction, (b) logical thinking, 

(c) algorithms, and (d) debugging. A set of items were developed to align with the instruction. 

Most items measured teachers’ perceptions or attitude towards CT, such as the questions “In your 

view, what is computational thinking?” In addition, some items about CT concepts were based on 

daily scenarios (e.g., serving pizza). They did not depend on any programming knowledge or 

content areas. 

Study 3 was published by Werner, Denner, Campe, and Kawamoto (2012). It described the 

details of the Fairy assessment, a performance assessment in the 3D Alice environment. As part of 

computer game programming instruction, it was offered either in after-school programs or elective 

classes. CT competency was defined as including (1) thinking algorithmically as well as (2) 

making effective use of abstraction and modeling. Use-Modify-Create, a widely used programming 
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instruction, was used to teach students how to control the characters in Alice. The Fairy assessment 

gives learners incomplete blocks of code (i.e., 3D scenarios) and requires them to implement the 

solutions to achieve the outcomes. It contains three tasks, each of which is graded by two human 

raters on a 0-10 scale. The authors also promoted the idea that paired programming (two students 

coding a project together) is a useful approach to engage students in CT. They acknowledged that 

the generalizability of the results might be low for the studies that do not use the Alice environment, 

and recommended that the Fairy assessment could be easily adapted by other CT researchers.  

Study 4 was published by Román-González, Moreno-León, and Robles (2017). It described 

the development of a CT test consisting of 28 multiple-choice items for students from Grade 5 to 

Grade 10. The items were generated from seven CT competencies: basic directions and sequences, 

loops-repeat times, loops-repeat until, if-simple conditional, if/self-complex conditional, while- 

conditional, simple functions. Students were required to understand block-based programming 

language in order to solve CT items.   

Study 5 was published by the College Board (2017). The AP exam, a national testing 

program, is a 2-hour long exam that accounts for 60% of the AP Computer Science Principles final 

score. The item format contains (a) single-select multiple-choice items and (b) multiple-select 

multiple-choice items (students select two answers from four options). The content of the exam 

depends on the AP Computer Science curriculum framework, which is organized using seven “Big 

Ideas”: creativity, abstraction, data and information, algorithms, programming, the Internet, and 

global impact (College Board, 2017). Items were generated from each Big Idea (p. 84). Moreover, 

each item measures one of six areas in computational thinking practices: (1) connecting computing; 

(2) creating computational artifacts; (3) abstracting; (4) analyzing problems and artifacts; (5) 

communicating; and (6) collaborating. Among all the sample items listed on the document, most 
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items elicit students’ programming knowledge (i.e., text-based language) as required by the 

curriculum framework. Two items are the exception where no programming skills or experience 

are needed to solve the items; both were generated from (4) analyzing problems and artifacts. 

Because this exam is a commercial product, it is not freely available for use by teachers. 

Study 6 was published by Tran (2019). It describes how third-grade students’ CT 

competency changed after a 10-week computer science curriculum. The curriculum provided 

instruction in a block-based language. By working with university computer scientists, the author 

developed a Computational Thinking Assessment. This tool has 10 stand-alone items that were 

based on daily-life scenarios, such as exercising in the gym or the sequence of planting tomatoes. 

The item formats include (a) true/false selection format, (b) fill-in-the-blank, and (c) single or 

multiple multiple-choice. 10 items are evenly distributed across five computational concepts 

addressed in the assessment tool: sequence, algorithm, looping, debugging, and conditionals. For 

each item in sequence, a set of discrete stages of actions is given (i.e. “wake up” or “drive to 

school”), students are required to circle the wrong steps in the sequence first and then to rewrite 

the actions in the correct order.  

Study 7 was published by Zhong, Wang, Chen, and Li (2016). It describes the development 

of the Three-Dimensional Integrated Assessment (TDIA) framework in the 3D Alice environment. 

The assessed dimensions are computational concepts, computational practices, and computational 

perspectives. The TDIA contains six tasks to measure these dimensions. The tasks are written in 

two formats: (1) code completion and (2) error correction. For the first format, students are given 

the incomplete code and the goal. For the second format, a 3D interface is provided with a 

storytelling scenario (e.g., rabbits in the garden) along with the reflection report. On the report, a 

selection of errors are listed; for example, “the rabbit’s jumping is not looping”. Students are 



30 

 

required to fill out the report regarding (a) why the error occurs and (b) the solution to fix the error. 

In addition, detailed task-specific rubrics were developed. For tasks 1 to 4, the code is judged based 

on a 0-5 scale. For tasks 5 to 6, the code is judged based on a scale from 0-20. Specific criteria 

measured by tasks 5 and 6 included content, creativity, artistry, and technology. Based on the 

students’ scores, the findings indicated that students’ performance on the two different task formats 

did not vary much.   

Study 8 was published by Gouws, Bradshaw, and Wentworth (2013). It described the 

development of an assessment tool for first-year college students in an introductory computer 

science course. The score use had two purposes. The first purpose was that instructors can “assess 

the raw skills that students possess before they have learned anything as part of the formal 

academic course” (p. 273). The second purpose was that the same group of students took the test 

in the third term in college to observe score changes as they progressed through their degree 

program. In the assessment design process, design decisions were explicitly made before they 

characterized the content of the test. These decisions were: (a) the test should be a stand-alone test 

where no programming knowledge is required; (b) testing length should be reasonable, so it is easy 

to administer the test to classrooms; (c) items should be easy to score (i.e., no rubrics are needed). 

They defined CT as “how to think like a computer scientist, with a strong emphasis on problem 

solving” (p. 271).  

In their assessment, six areas were measured: (1) Processes and Transformations, (2) 

Models and Abstractions, (3) Patterns and Algorithms, (4) Tools and Resources, (5) Inference and 

Logic, (6) Evaluations and Improvements. 25 stand-alone items (e.g., frog jumps) are in the final 

test form. The item format includes multiple-choice and fill-in-the-blank modules. Five sample 

items are provided in the paper. Among 83 students, they found that high achievers (top 33%) on 
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the test also had good performance on the course exam (i.e., programming knowledge test). 

Although the psychometric properties of items (e.g., parametric modeling) were not reported in 

their paper, as the pioneering work in stand-alone CT assessment, this test highlighted the clear 

distinction between programming ability and CT competency 
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 ASSESSMENT DESIGN METHODOLOGY 

In this chapter, the design process for the CTCA is explicitly articulated. Simply put, as 

Mislevy (2007) has argued, validity by design  requires that assessment developers think of 

validating scores not as a process of mechanically conducting a series of analyses after assessment 

administration, but as several assessment design activities intentionally structured “in such a way 

that validity evidence emerges” (p. 467). 

3.1 Domain Analysis 

In assessment design methodology, domain analysis is a design activity in which 

assessment developers make decisions on how to obtain substantive information within the domain 

of interest (Mislevy & Riconscente, 2015). Currently, research on CT is limited, and its definitions 

are ambiguous and vary considerably from one study to another (Mouza, Marzocchi, Pan, & 

Pollock, 2016). As Kalelioglu, Gülbahar, and Kukul (2016) reported, “CT literature is at an early 

stage of maturity, and is far from either explaining what CT is, or how to teach and assess this 

skill” (p. 583). According to the Computer Science Teachers Association (CSTA) K-12 Computer 

Science Standards (2011), “developing an approach to computational thinking that is suitable for 

K-12 students is especially challenging in light of the fact that there is, as yet, no widely agreed 

upon definition of computational thinking” (p. 10). 

Previous research has explored characteristics of CT relating to communication, 

collaboration, and participation. To the authors of those studies, CT is more than mental operations 

required to solve problems, it is also about dispositions or practices. In a computer-based 

simulation model for high school science class, CT practices included collecting data and 

visualizing data about physics on computer (Weintrop et al, 2016). In contrast, in the CTCA, the 
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viewpoint that CT is a thought process is adopted; dispositions are not considered in this research. 

Also, as Lee (2016) described, CT is different from CT practices. For example, communicating 

results to peers, gathering data using computational tools (e.g., to copy and paste files on 

computers), and collaborating on computing activities are considered CT practices rather than CT. 

“While these are…valuable practices in CS education, they are not necessarily part of ‘formulating 

a problem and its solution so that the solution can be carried out a by computer’” (p. 4).  

The next design decision is to examine the details regarding CT is a thought process. Table 

2 (below) summarizes the definitions found in the existing CT literature. It includes (a) the source 

of the definition and (b) the main aspects emphasized in the definition. The definition proposed by 

Barr and Stephenson (2011), which was adopted for use in the national standards published by 

Computer Science Teacher Association (CSTA, 2011). By examining the definitions, a CT 

definition is proposed and used throughout this research (see below). This definition resembles the 

one proposed by Barr and Stephenson (2011). 

CT is a series of mental operations used to solve a problem, so the problem may be 

automated on a computer. CT competency is not equal to programming competency, 

although a programming environment may benefit a CT learner in terms of 

displaying CT competency. Programming knowledge is not a prerequisite for 

solving CT problems. 
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Table 2 Extracted Computational Thinking Definitions 

 Source  Definition Aspects 

Aho, 2011,  

p. 2 

“We consider computational thinking to be the thought 

processes involved in formulating problems so their 

solutions can be represented as computational steps and 

algorithms.” 

(1) mental operations  

Denning, 

2009,  

p. 28 

A mental orientation to formulating problems as 

conversions of some input to an output and looking for 

algorithms to perform the conversions.” 

(1) mental operations 

Barr & 

Stephenson, 

2011, p. 51 

“A problem-solving methodology that can be automated 

and transferred and applied across subject.”  

“An approach to solving problems in a way that can be 

implemented with a computer.” 

(1) mental operations 

(2) not content 

specific 

(3) the solutions can 

be carried out by a 

computer 

Lee, 2016, 

p. 3 

“CT refers to the human ability to formulate problems so 

that their solutions can be represented as computational 

steps or algorithms to be carried out by a computer.” 

(1) mental operations 

(2) the solutions can 

be carried out by a 

computer  

Voogt, 

Fisser, 

Good, 

Mishra, & 

Yadav, 

2015,  

p. 716 

“There is a history in both research and popular press of 

the use programming as a way to develop thinking skills. 

CT focuses on developing these thinking skills while 

within subjects beyond computer science. CT does not 

necessarily require the use of programming nor are CT 

scholars making the claim that programming has to be the 

context in which these skills are developed.”  

(1) mental operations 

(2) not content 

specific  

 

Lu & 

Fletcher, 

2009,  

p. 260 

“We argue that in the absence of programming, teaching 

CT should focus on establishing vocabularies and 

symbols that can be used to annotate and describe 

computation and abstraction, suggest information and 

execution, and provide notation around which mental 

models of processes can be built.” 

(1) mental operations 

(2) not content 

specific  

CSTA & 

ISTE,  

2011,  

p. 57 

● “(a) Formulating problems in a way that enables us to 

use a computer and other tools to help solve them;  

● (b) Logically organizing and analyzing data; (c) 

Representing data through abstractions such as models 

and simulations; (d) Automating solutions through 

algorithmic thinking (a series of ordered steps); (e) 

Identifying, analyzing, and implementing possible 

solutions with the goal of achieving the most efficient 

and effective combination of steps and resources;  

● Generalizing and transferring this problem solving 

process to a wide variety of problems.” 

(1) mental operations 

(2) not content 

specific  

 

Note: CSTA stands for the Computer Science Teachers Association; ISTE stands for the 

International Society for Technology in Education. 
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Based on the definition proposed in this research, the ability to troubleshoot a computer 

hardware problem, for example, does require a series of mental operations, but this problem 

solving process per se fails to be automated. Thus, this ability is not CT. Likewise, many other 

types of problem solving are not CT competency. For example, the Programme for International 

Student Assessment (PISA), a large-scale testing program across multiple countries, defined 

problem-solving competency and created an assessment to measure it (OECD, 2003; OECD, 2014). 

The resulting definition is “an individual’s capacity to engage in cognitive processing to 

understand and resolve problem situations where a method of solution is not immediately obvious” 

(OECD, 2014, p. 30). The problem-solving competency required in PISA highlights students’ 

ability for detecting faults.  

Also, mathematical problem-solving ability and CT competency share an emphasis on 

problem solving, but mathematics ability is not the same as CT competency. A tremendous amount 

of research has examined the characteristics of mathematical thinking. Researchers have explored 

the importance for mathematical thinking of problem representation skill, which Brenner et al 

(1997) defined as “constructing and using mathematical representations in words, graphs, tables, 

and equations” (p. 666). The same authors designed a ten-item test to measure students’ ability to 

convert a word problem to a table, equation, and graph. Blanton et al. (2015), who developed an 

algebra intervention for third-grade students, defined that representational skill as the “ability to 

navigate between different representations in a math expression” (p. 68).  STEM experts, though, 

describe CT as different from engineering design thinking or mathematical thinking (NRC, 2010). 

The purpose of presenting both PISA Problem Solving Competency test and the empirical 

research in math is to highlight CT as a unique way of thinking. After describing what CT is as 

well as what CT is not, the subsequent design activity for CTCA is to extract the key testable 
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elements in CT competency. Assessment developers must collaborate with subject-matter experts 

(SMEs) to identify the information that can be used for assessment design (Mislevy & Riconscente, 

2015). Throughout this research, in various design activities, multiple panel reviews were 

conducted to collect feedback or input from SMEs for item revisions. For each panel review, the 

meeting with SMEs was in person and lasted about 60-70 minutes. The decisions from each review 

took place by consensus. The review was structured as a meeting with each SME. The prompts 

were verbally given to the SMEs. For example, “Does this item confuse you” “Does this item 

require you to think computationally?” The prompts were not scripted. If possible, the SMEs also 

provided the feedback for revisions.  

The SMEs in CT 

Throughout this research, the expert panel consisted of three members in CT. A short 

biography of each member is shown below: 

(1) Mr. Troy Fisher earned a BS degree from Indiana State University in Industrial 

Technology Education. His first job was as an educator at Attica High School 

in 1985. He completed an MS degree in Industrial Technology Education in 

1989, and a second MS degree in Mechanical Computer-aided design (CAD) 

Drafting in 1991. In 2016, he took a position at Lafayette Tecumseh Junior High 

School as the inaugural Project Lead The Way (PLTW) Gateway instructor and 

robotics club sponsor. He received a PLTW Gateway Certificate in the summer 

of 2017 from Purdue University. He has taught technology, engineering, and 

integration of CT at Grade 7 and Grade 8. 
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(2) Dr. Ali Alshammari earned his PhD in 2018 in Learning Design and 

Technology at Purdue University. His research interests include instructional 

design theory for serious games and computer science pedagogy. Throughout 

his years at Purdue University, he worked on research projects in the Games 

Innovation Laboratory, as well as teaching undergraduate courses in computing.   

 

(3) Mr. Shengwei An is a doctoral student in the Department of Computer Science 

at Purdue University. He is a recipient of the Purdue Ross Fellowship, awarded 

to Purdue students for high academic achievement. He received his bachelor’s 

and Master’s degrees in Computer Science at Nanjing University, China. His 

research interests include dynamic software update and robust machine learning. 

The Performance Objectives Document 

National (or state) standards reflect what students should know and be able to do at certain 

grade(s), but are not a curriculum (Polikoff, 2017). Patel and Herick (2016) gave the specific steps 

to ensure instructional practices, assessment, and the standards are aligned. They used a sixth grade 

math standard selected from Common Core State Standards as the starting point to develop the 

classroom-based assessment.  

In the CTCA, in order to identify learning goals for students at middle school grades, the 

assessment design started by examining national standards. Computer Science Teacher 

Association (CSTA) K-12 Computer Science Standards (2011) is used. I chose the CSTA 

standards as a basis for the domain for several reasons. (1) The CSTA standards seemed popular 

among teachers (Chen, Shen, Barth-Cohen, Jiang, Huang, & Eltoukhy, 2017). Empirical research 

on CT conducted in K-12 has often used CSTA as the starting point in characterizing the 

curriculum or assessment (e.g., Chen et al., 2017; Tran, 2019).  (2) The standards contain three 
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different expectation levels: Level 1 is for elementary school grades, Level 2 for middle school 

grades, and Level 3 for high school grades.  

Other national standards (e.g., K-12 Computer Science Framework developed by K-12 

Computer Science Framework Steering Committee, 2016) offer general statements about CT, 

which only contain one level of expectation. Also, International Society for Technology in 

Education (ISTE, 2016) standards and CSTA standards share many commonalities in CT learning 

goals. But ISTE standards heavily emphasize the use of technological devices for students to 

display CT. In this research, due to the design decision made in the previous stage, the standpoint 

held in this research is that technological devices are unnecessary for students to display their CT 

competency. Thus, the ISTE standards were not chosen as the performance objective document. 

The CSTA standards have five strands: (1) computational thinking; (2) collaboration; (3) 

computing practice; (4) computers and communication devices; and (5) community, global, and 

ethical impact. The CTCA is developed to measure Level 2 in computational thinking strand, 

which contains 15 standard statements. Among 15 statements, nine of them require either (1) the 

use of a computer (e.g., “Analyze the degree to which a computer model accurately represents the 

real world”), or (2) the integration of CT in other content areas (e.g., “Interact with content-specific 

models and simulations to support learning and research”). These nine statements are not 

considered in this assessment design because they are not aligned with the design decisions made 

previously in the CTCA. 

The next design decision is: Among the remaining six standard statements, which ones 

should be selected to guide the next design activities (e.g., item development) for the CTCA? It is 

possible to use all six standard statements. However, more standards statements covered on the 

assessment will require more items. Considering the tradeoff between reasonable testing time and 



39 

 

a comprehensive test (i.e., more standards being covered), a literature review was hence conducted. 

The purpose of conducting the literature review is to ensure the content coverage, namely, to select 

standard statements that can reasonably represent the domain of CT in the design process of the 

CTCA. The summary of the literature review results is presented in Figure 1.The results showed 

that three of the CSTA standard statements (see below) were often emphasized in existing CT 

literature: 

Statement 1:  use visual representations of problem state, structures, and data. 

Statement 2:  describe and analyze a sequence of instructions being followed. 

Statement 3: examine connections between elements of mathematics and computer science 

including binary numbers, logic, sets, and functions. (p. 16) 

These three selected statements are further structured into claims, as shown below. In an 

achievement test design, a claim about score interpretation typically reflects students’ standing 

with respect to specific learning standards that have been put forth (Kane, 2013). For example, one 

possible claim in math is that “Students are able to identify when two expressions are equivalent” 

(e.g., x + x + x = 3x). The score interpretation on the math assessment, therefore, involves claims 

about students having some fluency on algebraic manipulation. In an argument-based approach to 

validation (Kane), what is valued in instruction (or standards), what the items are designed to elicit, 

and what their scores on the assessment represent are all tied together by such claims.  

In this research, the main claims about score interpretation hence refer to expected CT 

competency for students in middle schools:  

Claim 1: Students are able to use visual representations of problem state, structures, and data. 

Claim 2: Students are able to describe and analyze a sequence of instructions being followed. 
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Claim 3: Students are able to examine connections between elements of mathematics and computer 

science including binary numbers, logic, sets, and functions. 

3.2 Domain Modeling 

In the previous design activity, decisions were made in order to explicitly determine (a) 

what CT is and what CT is not; and (b) the claims used as the proposed score interpretation for the 

CTCA. In this section, a domain modeling design activity is carried out. The purpose of domain 

modeling is to examine how each claim is unfolded. At the end of this design activity, fine-grained 

testable elements (categories) are extracted from the claims. The existing literature is used in this 

design activity. Figure 1 is a summary of the literature. Each testable element was then treated as 

a latent attribute representing a type of CT competency, labeled below as A1, A2, and A3. 

A1: Students are able to identify the underlying corresponding pattern (e.g., trend or relation) in a 

given stimulus material. The material can include graphs, letters of the alphabet, or maps.  

A2: Students are able to execute steps in an algorithm. That is, a series of ordered steps is given in 

an algorithm in order to generate its output, in which none of the steps can be skipped.  

A3: Students are able to evaluate variables in an algorithm by examining the pre-defined 

conditions. 

The first round of panel review was conducted. The SMEs reviewed the summary of the 

literature review (i.e., the literature presented in Figure 1) and the three selected standard 

statements. They agreed that the selected standard statements can represent the domain of CT for 

the sake of content coverage. Namely, three claims can be reasonably used to represent what 

students can do and know in terms of CT competency. The SMEs also agreed that the extracted 

testable elements can reflect how claims are unfolded in terms of developing an assessment. 
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Figure 1 The literature used to identify claims and testable elements 

3.3 Item Prototype Writing 

Next, item prototypes are developed based on the testable elements. A few design decisions 

are made in this design activity. First, in what assessment mode, the questions should be presented 

to students. In daily instructional practice, teachers can use (1) observation and questioning 

strategies, or (2) paper-and-pencil test to measure CT competency. In the CTCA design, the mode 

is paper-and-pencil based. The reason to choose this is simply because students’ responses can be 

easily stored which in turn the larger scale of data can be collected. The answer a student writes 

down or the notes he/she takes on the answer sheet while solving CT problems can all be 

considered as the artifacts he/she produced. 

The next design decision is about the item format on the CTCA. Both open-ended (OE) 

items and multiple-choice (MC) items are reasonable formats. The decision made in this design 
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decision that all the items should be MC items. The rationale is found in the measurement literature. 

MC items can be easily and quickly scored (e.g., Haladyna, Downing, & Rodriguez, 2002). So, 

choosing MC items over OE items in this research is due to the fact that the scoring procedure will 

not take considerable time from teachers, the end-users of the assessment. Some sources have 

suggested that OE items can elicit higher-order thinking more than MC items can. However, as 

Attali, Laitusis, and Stone (2016) pointed out, “there are many reasons to believe that open-ended 

(OE) and multiple-choice (MC) items elicit different cognitive demands of students. However, 

empirical evidence that supports this view is lacking” (p. 787). The authors used math questions 

on a computer-based assessment where immediate feedback (i.e., right versus wrong) was 

available after each response was given by a student. The student was required to provide an 

answer until he/she reached the correct answer. This method is termed answer-until-correct. They 

found that the difference between MC items and OE items mainly relates to test-takers’ effortful 

engagement, rather than a different level of cognitive demand being captured. Specifically, 

students had more effort invested in the revisions for OE questions. “OE questions may provide a 

more conducive context for this effort by forcing the student to generate the response instead of 

selecting one” (p. 799). 

Hohensinn and Kubinger (2011) provided empirical evidence that no item format-specific 

dimension was found in students’ response data, indicating both OE items and MC items measured 

one targeted domain. Such a finding is not new. Decades ago, the findings in measurement 

literature have indicated that both OE and MC functioned similarly in terms of reflecting students’ 

latent ability. By using the GRE Quantitative Reasoning test, Bridgeman (1993) has compared the 

OE and MC item formats and found both “formats appeared to be comparable. Both formats ranked 

the relative abilities of students in the same order” (p. 25).  
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In order to develop quality items, the item development for the CTCA follows the 

guidelines provided by Haladyna, Downing, and Rodriguez (2002). As the authors underlined, 

“despite the increased emphasis on performance testing, the MC format continues to play an 

important role in classroom and large-scale assessments, and this importance is evident in all 27 

textbooks on educational measurement reviewed for this study” (p. 310). Their guidelines detail 

agreed best practices in MC item writing, for example, (1) readability of item stems indicates that 

language should be simple; (2) no opinion-based or trick items should be used; and (3) the option 

“All-of-the-above” or “None-of-the above” should not be used.  

At the end of this design activity, thirty-four item prototypes were developed. Each item 

was designed to measure one or more latent attributes. The CTCA design methodology is in Figure 

2 below. The assessment design started from the definition of CT, and three selected claims to 

represent CT competency. The brackets indicate the resources used in various design activities, 

for which moving to the right is synonymous with moving from general to specific. Three fine-

grained categories extracted from the literature were used to represent how claims are elaborated. 

Thus, the formal cognitive structure of CT is a list that contains these three discrete attributes 

(categories). In the third and fourth layers, the scoring model (parametric psychometric modeling) 

and CT competency are tied together by a “Q-matrix,” an alignment table between items and 

attributes. A Q-matrix is necessary for the specification of a cognitive diagnostic model to connect 

students’ item responses to the posited attributes of a domain (Tatsuoka, 1990). By convention, if 

an attribute is relevant to an item, 1 is used to indicate the relevance. Otherwise, 0 is used to 

indicate irrelevance. In other words, there is no quantity (e.g., 0, 1, 2,…) to indicate to what degree 

an attribute is relevant to each item.   
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Figure 2  CTCA design methodology 

 

A second round of panel review was conducted in this design stage. By examining the item 

prototypes and the CTCA design process (Figure 2) along with the draft Q-matrix, the SMEs were 

required to judge (1) the quality of Q-matrix, that is, the alignment between items and attributes, 

and (2) the quality of item prototypes. Table 3 below shows the panel’s feedback on how item 

prototypes should be revised. Category 1 indicates that some item prototypes should be deleted. 

Category 2 indicates that some should be re-structured or re-written. Five items are in Category 1; 

ten items are in Category 2. 

 

Table 3 Panel Decision on Item Prototypes Revision 

Category Problem Action needed 

1 Items fail to elicit CT competency.  

Very little room to improve. 

Delete  

2 Re-writing/reformulating the questions is needed, 

although the design rationale is prominent. 

Modify  
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For demonstration purposes, Table 4 below contains specific comments provided by the 

SMEs in terms of Category 1 and Category 2. Category 1 refers to items that fail to possess clear 

design rationale for CT. Category 2 refers to the items that possess a promising CT-related design 

rationale, but need to be better orchestrated. After receiving the feedback from the SMEs, the item 

prototypes were revised. Twenty-nine item prototypes were assembled and used in the next design 

activity, the cognitive lab protocol. 

3.4 Cognitive Lab Protocol 

A cognitive lab protocol can provide empirical evidence for item revisions (Winter, 

Kopriva, Chen, & Emick, 2006). Namely, verbal data collected during interviews, along with notes 

taken by students during the interviews can be used to guide item revisions. As Johnstone, 

Thompson, Bottsford-Miller, and Thurlow (2008) outlined,  

“Statistics can highlight which items may be problematic on a particular assessment,  

but provide little insight into why such items may be problematic. Think aloud 

techniques are an approach that allows assessment professionals to understand the 

thinking and problem-solving approaches students use when attempting test items. 

Insights gained from such approaches provide insights into how the language, 

presentation, or tasks associated with an item may distract, confuse, or 

appropriately challenge students.” (p. 32) 
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Table 4 Specific Comments Given by the Subject-matter Experts 

 

 

 

 

 

The Standards (AERA, APA, & NCME, 2014) explicitly state that validation processes 

should include evidence of response processes (e.g., verbal data, students’ artifacts). Subsequently, 

this piece of validity evidence enables assessment developers to capture the extent to which they 

can adequately model students’ response processes. The degree of certainty for this question can 

help CTCA preserve the proposed scoring interpretation. 
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Participants 

The students who participated in this research were drawn from the intended test-taker 

population for the CTCA - students in the middle school grades. With permission from Purdue 

University’s Institutional Review Board (IRB), recruitment flyers were posted across Purdue 

University West Lafayette campus. The IRB permission document is attached as Appendix A at 

the end of this research. Ten students voluntarily participated in the cognitive interviews. Table 5 

(below) contains the demographic information. In the first column, pseudonyms are used to label 

the students. All of them speak English as their first language. Five of them are in 7th grade; five 

of them are in 8th grade. In terms of self-identified race/ethnicity, seven of them identified as Asian, 

one as Kosovar, one as Brazilian, and one as White.  

Table 5 Demographic Information for 10 Subjects 

Name Gender Self-reported 

Race/ethnicity 

Grade First 

language  

Bryan M Asian 8th English 

Brandon M Brazilian  8th  English 

Bruce M White 7th  English 

Bruno M Asian 7th  English  

Bennet M Asian 7th English 

Bob M Kosovo 8th  English  

Gwen F Asian 8th English  

Grace F Asian 8th English 

Brayden M Asian  7th English  

Ben M Asian 7th English  

 

Procedures 

Each individual interview session was video recorded to ensure that problem-solving steps 

were captured in detail. These sessions were about 70 to 90 minutes in duration. The data were 

collected “in real time” by asking students to talk aloud while he/she was solving the problems; if 

students stopped verbalizing their thoughts for about four or five seconds, the researcher reminded 
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them to “keep talking.” Follow-up questions were unscripted, which is a common practice for 

cognitive lab protocols (e.g., Nitko, 2004). A sample follow-up question is that “Was there 

anything that confused you?” Before the interview session started, the instructions and examples 

were provided to the students so that he/she could gain familiarity with the cognitive interview 

format (see the material on Table 6 below). The researcher (i.e., the author of this research) 

explained to the student the following details: (1) the task that he/she was required to complete, 

and (2) his/her performance on the test was not being judged. 

 

Table 6 Instruction and Practice Examples 

You need to solve some questions. This is not a math test. No tricky questions. You can use a 

pencil to take notes on the test. Whatever you verbally tell me, is very important to me. I want to 

capture everything you say, so the recording device will be used. I do NOT judge how well you 

do on the test because getting the problems right or wrong is not the purpose of this research. And 

your performance on the test will not be graded. The purpose of this research is to capture your 

thought process. So please tell me everything going on your mind while you solve these problems. 

If you stop talking for like 4 or 5 seconds, I will remind you to “keep talking”.  I understand you 

are not used to this sort of activity. You always keep silence when you take a test or solve problems, 

right? So, let’s practice two examples. 

 

Example 1:   1+8÷4×3-2=? 

 

Example 2:  

A list has 3 words and 3 numbers: {Cat, Tree, Building, 6, 9, 14} 

Taking the actions below step-by-step. What does the new list look like?  

 

Step 1. If the 1st item has fewer letters than the 3rd item, switch two smallest numbers. 

Step 2. If the 3rd item has more letters than the 2nd item, switch these two items 

Step 3. If the 2nd item has more letters than the 1st item, no action is needed 

Step 4. End 

 

A. {Tree, Cat, Building, 14, 6, 9} 

B. {Cat, Building, Tree, 6, 9, 14} 

C. {Building, Tree, Cat, 14, 6, 9} 

D. {Cat, Building, Tree, 9, 6, 14} 
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Results 

The results based on the verbal data and the artifacts provided by the students during the 

interviews showed that test-takers’ response processes were adequately modeled by most of the 

item prototypes. Most of the prototypes were able to elicit students’ CT competency. However, 

the results also indicated that nine item prototypes should be revised because they had problems 

in one or more of three aspects: Aspect 1 involved reducing unnecessary information in item stems. 

Aspect 2 involved deleting problematic items. Aspect 3 involved restructuring the item stems. 

Table 7 below is a sample question, with artifacts are provided by three students. The artifacts 

show the item can elicit the intended attributes, because students consistently followed the 

intended step-to-step procedures to reach the correct answer. 
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Table 7  Digital Copies of Artifacts for a Sample Question (a) 

Subject Artifact 

 

Bruce 

 
Gwen 

 
Ben 
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Table 8 is an example where the item is designed to elicit students’ CT. It requires students to 

recognize the corresponding pattern horizontally, then, moving down to the next step. No step can 

be skipped in order to find the corresponding pattern for the final step. 

 

Table 8  Digital Copies of Artifacts for a Sample Question (b) 

Bruno Bryan 

  

 

Table 9 below shows an item revision in Aspect 1. The item stem contained too much 

information, so the revised version only contained the reduced information. Participants also 

commented, for example: 

“Round 1 and round 2 are not necessary” 

“What do round 1 and round 2 do for solving the problem?” 

Therefore, in the revised form, the item stem was shortened. Future test-takers can use the time 

allotted to solve the problem rather than to comprehend the information provided in the item stem. 
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Table 9  Another Sample Item in Aspect 1 

 

 

Item used 

during the 

interview 

 

 

 

 

 

 

 

 

 

 

 

Revised 

Item 
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Table 10 shows an example in Aspect 2 where a distractor has been revised. In a multiple-choice 

(MC) item, at least two options are given to students. One option is the answer key; all other options 

are distractors. Table 10 contains the artifact of Bob, who erred because he skipped one 

comparison in sorting. After Bob realized his answer was not one of the options, he solved the 

problem again and reached the correct answer. For Aspect 3, two types of items are deleted: (1) 

ones which students found confusing; and (2) ones for which the problem-solving process used by 

the students was different than the hypothesized process in the CTCA. 

Table 10  An Example in Aspect 2 

Bob’s artifact 

 
Item has been 

revised based 

on Bob’s 

mistake 
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Table 11 below is an example of an item that has been deleted. Based on the cognitive interview 

results, the students were confused by this item. They made the comments such as “Which way is 

the car turning?”  

Table 11  Deleted Item: Sample A 
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Table 12 below is an item that has been deleted. The design rationale for this item is that students 

will examine how 1 is changing row by row. The empirical evidence based on students’ verbal 

data showed the students used a short-cut to solve the item. Namely, they only examine vertically 

on the very right column (see the red color circle). They noticed the number is changing based on 

0,1,0,1 ordering. So the next element should end with 0. 

Table 12 Deleted Item: Sample B 
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Table 13 below shows an example of Aspect 4. The item used during the interviews did not specify 

at which cell the robot would stop. Students tended to guess where the robot stops. In the revised 

version, the starting and stopping cells are explicitly given on the map. 

Table 13 Sample Item in Aspect 4 

 

 

Item 

used 

during 

the 

cognitive 

interview 

 

 

 

 

 

 

 

 

 

Revised 

Item 
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The item prototypes revision was completed based on the results of the cognitive interviews. 

Then, a third round of panel reviews was conducted. The SMEs received the following material: 

(1) twenty-seven revised items; (2) the definitions of three latent attributes representing CT 

competency proposed previously in this research; and (3) the alignment table (Q-matrix) between 

items and latent attributes. Latent, in a sense, refers to a variable that cannot be measured directly. 

The table showed which items were designed to elicit each attribute; some items targeted multiple 

attributes. The SMEs were asked to judge (a) whether the wording of items was precise; (b) 

whether the answer key for each item was accurate and absolute; and (c) the alignment between 

items and the attributes. Finally, the SMEs reached a decision: no further revision was needed. The 

CTCA specification seemed reasonable, and the items seemed to possess desirable alignment with 

the Q-matrix. The final design of the CTCA yielded 27 MC items, which were ready to be tried 

out in a middle-school classroom.  
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 DATA ANALYSIS RESULTS 

In this chapter, two rounds of data collection are documented. The first round of data 

collection, with a sample size of 79 students, was a pilot test. The psychometric properties (e.g., 

statistical indices) were reported. The second round of data collection was conducted on a much 

larger scale, with a sample size of 564 students in two different school districts. Both data 

collections were conducted with permission from Purdue University’s Institutional Review Board 

(IRB). The IRB permission document is attached as Appendix A at the end of this document. 

Through cognitive diagnostic modeling (CDM), subscore reporting will be reported. Other 

psychometric properties from CDM are also reported.  

4.1 Pilot Test 

Data Collection Context  

The CTCA assessment contained 27 multiple-choice items that were pilot tested. The 

purpose of the pilot test was to empirically determine: (1) the testing time; (2) any non-functioning 

options across all items; and (3) the presence of bias in any item. The assessment was administered 

to 79 seventh-grade students in a Financial Literacy classroom at a middle school in the 

Midwestern US. The sample contained 44 male and 35 female students. The classroom teacher 

monitored the pilot test.  

Results 

According to the SMEs, the hypothesized testing time was 45 minutes for 27 items. Based on 

verbal feedback provided by the classroom teacher, this testing time was reasonable. A ‘non-

functioning option’ means no students chose that distractor in a given item. By examining the pilot 

data, all distractors appeared to be functioning well; namely, every distractor on the CTCA was 
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chosen by a certain number of students, meaning no further revision was needed. The total score 

was the observed sum score for each student. Figure 3 below shows the distribution of total scores 

across 79 students. Table 14 shows the item analysis statistics. The indices include the proportion 

correct for each item and the item-total score correlation, represented by a point biserial correlation 

coefficient. This set of indices provides an initial quantitative analysis of the items. It seemed the 

items are useful, and they are not too easy or too difficult. Among all the items, no negative item-

total correlation coefficient has been found. A negative coefficient would be a warning message 

that responses on a particular item are inconsistent with the averaged behavior of the other items. 

A package – psych, written by Revelle (2010) in R software (R Core Team, 2013) was used for 

conducting the analysis.  

 

 

Figure 3  Distribution of total scores  

 

A t-test was conducted using the vart.test function in R software to compare the mean of 

total scores for the female group and the male group, with a test for homogeneity of variance 
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conducted beforehand. According to Levene’s test, the null hypothesis is that the variance is equal 

across the two groups. The results show the null hypothesis should be retained. Then, the t-test is 

conducted. The results show that the difference of total scores between the two groups is not 

statistically significant: female (M=13.0, SD=5.44), and male (M=14.5, SD=4.70),  

t(77) = 1.38, p = 0.17 
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Table 14 Item Analysis Statistics 

Item  

ID 

Item-Total  

Correlation 

Proportion 

Correct 

1 0.25 0.63 

2 0.49 0.29 

3 0.61 0.62 

4 0.37 0.32 

5 0.52 0.71 

6 0.39 0.14 

7 0.45 0.76 

8 0.38 0.48 

9 0.15 0.62 

10 0.13 0.28 

11 0.21 0.53 

12 0.48 0.42 

13 0.43 0.62 

14 0.40 0.39 

15 0.53 0.35 

16 0.47 0.78 

17 0.30 0.27 

18 0.64 0.47 

19 0.46 0.63 

20 0.42 0.52 

21 0.62 0.42 

22 0.42 0.38 

23 0.23 0.85 

24 0.40 0.32 

25 0.33 0.90 

26 0.33 0.44 

27 0.46 0.71 

 

Furthermore, in order to examine whether any item showed bias towards either gender 

group, a differential item functioning (DIF) procedure was used. The DIF procedure involves 

statistically identifying the content of some items that is not central to the measured attribute and 

that may be less familiar to a particular group of students. Consequently, students with the same 

level of competency might receive different scores because of their group membership. Thus, the 

presence of DIF on any item may suggest that the item should be revised or deleted before future 
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use of the instrument (Walker, 2011). In the CTCA, a package in R software (psychotree, written 

by Zeileis, Strobl, Wickelmaier, & Kopf, 2012) was used to conduct the DIF procedure. This 

package employs a tree-based method with the recursive partitioning approach. This method 

provides a global test for DIF as well as an overall model fit test for the Rasch model. Unlike the 

parametric regression approach to detect DIF, in this method, the guide to interpretation suggests 

that if there is more than one terminal node in the tree, DIF may exist on a particular item. For this 

sample in the pilot test, only one terminal node was found. Thus, no DIF was found in any of the 

items. 

Design Decision from Pilot Test  

As mentioned above, the testing time for these 27 items was about 40-45 minutes. It seemed 

necessary to reduce the number of items, so that the assessment could easily be completed within 

about half of a typical class period (i.e., less than 25 minutes). It is common to shorten a classroom-

based assessment (e.g., Gogol et al., 2014) to make it more suitable for practical use. A panel 

review was conducted, and the Q-matrix was provided to SMEs to review. The SMEs made 

recommendations about reducing the number of items in the assessment. Finally, 15 items were 

selected because SMEs judged that these items possessed the strongest alignment to the testable 

elements. In other words, what the items were designed to elicit (shown in the Q-matrix) reflected 

what SMEs thought they were measuring. Figure 4 below is the Q-matrix associated with these 15 

items. Each cell is marked as 1 if the attribute was measured by that item, and 0 otherwise. These 

15 items are attached as Appendix B. 
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Figure 4  Q-matrix associated with the 15 items 

 

4.2 Operational Testing 

Data Collection Context 

The CTCA assessment contains 15 MC items, delivered to students in a pencil-and-paper 

format. To prevent fatigue or item order effects from influencing validation of the Q-matrix, six 

test forms with different item orders were produced. A sample of students from two middle schools 

in two different school districts in the Midwestern US completed the items on the CTCA. The 

percentages of students in the two schools who had free or reduced lunch plans were 75% and 

50%. Six teachers used about 25 minutes of their regular class time to administer the CTCA items. 

The subjects they teach include math (3), technology (1), English (1), and computer science (1). 

Because teachers were monitoring their students’ test-taking as well as collecting students’ answer 

sheets in person, the data collection process was constructed to avoid missing data. If a teacher 
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found that an answer sheet contained missing items, the teacher asked the corresponding student 

to complete the item (or items) and re-submit.  

In this research context, the six participating teachers reached a consensus that if students 

completed the test within five minutes, it indicated the students were not making serious effort, so 

the response data were not meaningful. To avoid gathering rapid guessing response data, teachers 

discarded any answer sheets submitted in less than five minutes. In total, 67 answer sheets were 

discarded. Furthermore, 19 students had an Individualized Education Program (IEP), so assistant 

teachers read the test aloud to them. Finally, this data collection procedure produced response data 

from 564 students as well as two variables provided by classroom teachers: (1) gender, a 

categorical variable taking on two values, and (2) current classroom academic percentage grade, a 

continuous variable on a scale from 1-100.    

Scoring System 

Once data were collected, they were entered into spreadsheet software on a computer. The 

scoring system was that a student received a score of 1 if he/she answered the item correctly, and 

a score of 0 otherwise. Item calibration and score report generation require psychometric modeling, 

in this case CDM. In this section, a short review of CDM psychometric models is presented. 

A traditional (one-dimensional) model in item response theory (IRT) locates a student’s 

ability on a latent continuous scale. Consider a two-parameter logistic (2PL) model below in 

Equation 1. Suppose that an assessment contains J items, where j = 1, 2, … J. The response data 

produced by student i on j items is denoted as 𝑦𝑖𝑗 , where 𝑦𝑖𝑗 = 1 is the scoring system for answering 

the item correctly, and 𝑦𝑖𝑗 = 0 for answering incorrectly. The following parameters are estimated 

in the model: the student’s latent variable, that is, the latent variable score, denoted as 𝜃𝑖; the item 

difficulty parameter, 𝜆0𝑘; and the item discrimination parameter, 𝜆1. 
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𝑃(𝑦𝑖𝑗 = 1|𝜃, 𝜆0𝑘 , 𝜆1) = 
𝑒𝑥𝑝[1.7 𝜆1(𝜃 − 𝜆0𝑘)]

1+𝑒𝑥𝑝[1.7 𝜆1(𝜃 − 𝜆0𝑘)]
                                                                     (1) 

A traditional IRT model estimates a single quantity associated with each student to 

represent a student’s ability score. In contrast, in CDM, a vector is estimated to represent the profile 

scores for a student. Specifically, the CDM uses a vector of 0 or 1 to express a student’s mastery 

status on each of a set of latent attributes. It is often termed as a profile of mastered attributes 

(Gierl, Cui, & Zhou, 2009). Recall that, in the previous chapter, the proposed purpose for CTCA 

is that teachers gain information about students’ CT competency. Thus, in CDM, the estimated 

profile scores as subscores are reported along with the observed total score for individual students. 

 An attribute in CDM is a generic term; it simply describes an identified thinking skill or 

knowledge state in educational assessment. In a simple algebra example, described below in Table 

15, these attributes are addition, subtraction, multiplication, and division. The implementation of 

CDM requires the implementation of a Q-matrix (Tatsuoka, 1990). A Q-matrix has J rows and K 

columns. The jk element is unity (i.e., 𝑞𝑖𝑘  = 1) if the kth attribute is necessary to be mastered for 

answering jth item correctly.  By the time that students’ response data are ready to be estimated, 

the Q-matrix should be relatively sound. Table 15 is an illustration example from the mathematics 

domain where the relevant Q-matrix is the formal cognitive model to describe the qualitative 

relationship among items. It specifies what attributes are needed for solving each item, because 

not all items measure all attributes in CDM (Rupp & Templin, 2008).  
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Table 15 A Toy Example in Math: Q-matrix in CDM 

                  Attribute 

Item ID 

Addition Subtraction Multiply Division 

001 6+2-3=? 1 1 0 0 

002 10/4=? 0 0 0 1 

003 (6+3)*(1/4)+2=? 1 0 1 1 

 

 In CDM terminology, each assessment is designed to measure a particular number of 

attributes. The number of attributes measured by an assessment is denoted as K, where k = 1, 2, 

…K. Compared with one quantity, 𝜃𝑖, estimated from an IRT model (Equation 1), the vector 𝛼𝑖 is 

estimated in CDM, because the student’s score now is indexed with k attributes, where 𝛼𝑖 = 

{𝛼𝑖1, 𝛼𝑖2, … , 𝛼𝑖𝑘}, . Consider the illustration example in Table 15, where the number of latent 

attributes that are being estimated is four. Thus, all possible combinations of attribute patterns are 

16 (24 = 16). In CDM, the number of attribute patterns is finite. Each pattern is sometimes referred 

to as the latent group. In a broader sense, CDM is a restricted latent class model (Haertel, 1989). 

Correspondingly, the estimated profile of scores for a student who took the test are expressed in 

Table 16 below, to illustrate the goal of subscore reporting. The information conveyed from Table 

16 serves as diagnostic information about this student’s mastery status on four pre-defined 

attributes, revealing information about his/her strengths and weaknesses. The scores suggest the 

student will need to practice multiplication and division for future learning. Teachers may use such 

information to adjust their ongoing instruction. The capacity for providing richer information about 

students’ latent competency is the main advantage in the use of CDM in educational assessment. 

A few models in CDM are introduced below.  

 Table 16 A Student’s Score File in Cognitive Diagnostic Modeling 

Student ID Addition Subtraction Multiplication Division 

001 1 1 0 0 
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The deterministic inputs, noisy “and” gate (DINA; Junker & Sijtsma, 2001) model is a 

conjunctive model, meaning that students must possess all the required attributes in an item j, in 

order to maximize their probability of getting a correct answer on item j. A student’s latent 

response 𝜂𝑖𝑗  is a deterministic term through equation 𝜂𝑖𝑗  = ∏ 𝛼𝑖𝑘
𝑞𝑖𝑘𝐾

𝑘=1 . If 𝜂𝑖𝑗 =1, it means that 

student i possess all the required attributes for item j. If 𝜂𝑖𝑗=0, student i has one or more attributes 

missing for successfully solving item j. Table 15 is an illustration of three items. For item 1: 𝜂𝑖1= 

𝛼𝑖1
1 × 𝛼𝑖2

1 × 𝛼𝑖3
0 × 𝛼𝑖4

0 = 𝛼𝑖1 × 𝛼𝑖2. For student i, 𝜂𝑖1 is equal to 1 when both attributes are 

present. The conditional distribution of y in relation to 𝛼 is Equation 2:  

 

P(y| 𝛼 ) = ∏ 𝑃( 𝑦𝑖|𝛼)𝐽
𝑗=1                                                                                                                (2) 

 

Moreover, in practice, a student may guess an item correctly when he or she does not 

possess the required attributes. Alternatively, he or she may get an answer wrong when he or she 

possesses all the required attributes for that item. Therefore, two item parameters are needed to 

categorize item j in the DINA model. The parameter 𝑠𝑗 is the probability of slipping on the answer, 

defined as 𝑠𝑗= P (𝑦𝑖𝑗= 0| 𝜂𝑖𝑗=1). The parameter 𝑔𝑗 is the probability of guessing the answer, which 

is defined as 𝑔𝑗= P (𝑦𝑖𝑗= 1| 𝜂𝑖𝑗= 0). The probability of getting item j correctly for person i is 

Equation 3: 

P(𝑦𝑖𝑗= 1| 𝛼𝑖) = (1 − 𝑠𝑗)𝜂𝑖𝑗(𝑔𝑗)1−𝜂𝑖𝑗                                                                                              (3) 

 

The likelihood function of the response vector of student i is Equation 4: 

 

 L (𝑦𝑖 | 𝛼𝑖) = ∑ 𝑃(𝑦𝑖𝑗 = 1|𝛼𝑖)
𝑦𝑖𝑗  [1 − 𝑃 (𝑦𝑖𝑗 = 1|𝛼𝑖)]1−𝑦𝑖𝑗𝐽

𝑗=1                                                      (4) 
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When using a logit function in the guessing parameter, the logit that a student answered an item 

correctly, but without the required attributes, becomes:  

 

logit P(𝑦𝑖𝑗= 1| 𝜂𝑖𝑗= 0)= 𝑓𝑗                                                                                                               (5) 

 

Using the logit function, a correct answer given by a student thus becomes: 

 

logit P(𝑦𝑖𝑗= 1| 𝜂𝑖𝑗= 1)= 𝑓𝑗  + 𝑑𝑗                                                                                                      (6) 

 

The parameter 𝑑𝑗  is the capacity of classification for item j, which is the item 

discrimination index; an item with greater magnitude on this index indicates a higher power to 

detect the students with or without the required attributes. Equation 5 and Equation 6 can be written 

in one model (see Equation 7): 

 

logit P(𝑦𝑖𝑗= 1| 𝜂𝑖𝑗)= 𝑓𝑗  + 𝑑𝑗𝜂𝑖𝑗                                                                                                      (7) 

 

Equation 7 is a logistic regression model with latent classes where item j is the detector of the 

required attributes. Equation 3 and Equation 7 are equivalent.  

After describing the conditional distribution of 𝑦𝑖𝑗 , given 𝛼𝑖, the probability distribution of 

𝛼𝑖  needs to be considered in the DINA model. The assumption is that all 𝛼𝑘  are independent from 

one another with 2𝐾 possible values for the saturated model. In the example provided in Table 15, 

under the DINA model, K = 4 can produce 16 possible attribute vectors. The attributes are 

unstructured, so all eight vectors are permissible as profile score patterns. However, cognitive 

scientists have pointed out that some cognitive processes should not be investigated in isolation 

(Kuhn, 2001). Such an approach makes practical sense, because the model can be understood as 
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measuring one’s general proficiency, along with measuring a set of specific attributes. In many 

assessment design situations, the SMEs define not only the latent attributes but also the latent 

relationship among them, for example, to explicitly put the constraints among the attributes in Q-

matrix construction. A higher-order DINA (HO-DINA) model is constructed by adding a high-

order continuous proficiency term in estimating students’ profile scores. The advantage of HO-

DINA is that it reduces the number of attributes in combination (de la Torre & Douglas, 2004). 

Figure 5 below shows an example higher-order structure when K = 3 latent attributes, along with 

the latent structure among them, are defined in the assessment. 

 

 

Figure 5  A graphical representation for higher-order DINA model. 

 

The higher-order latent proficiency term being added is denoted as 𝜃𝑖. The elements of 𝛼𝑖 

can be conditionally assumed as independently distributed given the high-order term 𝜃𝑖, where 

𝑃(𝜶| 𝜽) = 𝑃(α1, α2, …, αk| 𝜽) = ∏ 𝑃(𝜶𝑘| 𝜽)𝑘 . In the DINA model, the independence assumption 

related to 𝛼  is 𝑃 ( 𝛼 ) = 𝑃 ( 𝛼1 , 𝛼2 , …, 𝛼𝑘 ) = ∏ 𝑃(𝜶𝑘)𝑘 . The higher-order proficiency term 

determines the probability that the student possess each of the attributes. The parameterization of 

HO-DINA can be thought of as similar to the relationship between items and latent proficiency in 

the traditional IRT model shown in Equation 1. The formal HO-DINA model is shown in Equation 
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8 below. Students who have greater higher-order proficiency tend to possess lower-level attributes, 

where the attributes with larger magnitudes on 𝜆0𝑘  are regarded as more difficult to master. 

According to de la Torre, Hong, and Deng (2010), a one-parameter logistic (1PL) model can be 

employed, which is termed a restricted high-order DINA model, because 𝜆1  is assumed equal 

across all attributes.  

 

𝑃(𝛼𝑘| 𝜃) = 
𝑒𝑥𝑝[1.7 𝜆1(𝜃 − 𝜆0𝑘)]

1+𝑒𝑥𝑝[1.7 𝜆1(𝜃 − 𝜆0𝑘)]
                                                                                                      (8) 

 

Junker and Sijtsma (2001) proposed the noisy-input, deterministic-and-gate (NIDA) model, 

shown in Equation 9. It shares many similarities with the DINA model, except the slipping 

parameter and guessing parameters now are indexed with attribute k rather than with  item j. 

(Recall that the 𝜂𝑖𝑗  is a deterministic term in DINA models). The same concept is used in the NIDA 

model to define guessing parameter and slipping parameter. The interpretation has changed to the 

attribute level. That is, the slipping parameter: 𝑠𝑘= P (𝜂𝑖𝑗𝑘=0| 𝛼𝑖𝑘=1), represents the probability of 

incorrectly applying attribute k for item j while the attribute k is actually mastered. The guessing 

parameter is correctly applying attribute k for item i while the attribute is not mastered, which is 

expressed as 𝑔𝑘= P (𝜂𝑖𝑗𝑘  = 1| 𝛼𝑖𝑘=0).  

 

P(𝑦𝑖𝑗= 1|s, g, 𝜶)= ∏ 𝑃(𝜂𝑖𝑗𝑘 = 1|𝜶𝑘) 𝐾
𝑘=1 = ∏ [ (1 − 𝑠𝑘)𝑎𝑗𝑘𝑔𝑘

1−𝑎𝑗𝑘]𝑞𝑗𝑘𝐾
𝑘=1                                   (9) 

 

Templin and Henson (2006) proposed the DINO (deterministic input; noisy "or" gate) 

model. It is a disjunctive model, meaning that students can solve the item if they possess only one 

attribute required for the item; having more than one required attribute does not increase the 

probability of getting an correct answer. Compared with the DINA model, the deterministic term 
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is now denoted as 𝑤𝑖𝑗 , where 𝑤𝑖𝑗  = 1- ∏ (1 − 𝛼𝑖𝑘)𝑞𝑖𝑘𝐾
𝑘=1 . Unlike 𝜂𝑖𝑗  in the DINA model, 𝑤𝑖𝑗  can 

only become zero when none of the attributes is present. The slipping parameter and guessing 

parameter are defined as following: 𝑠𝑗= P(𝑦𝑖𝑗= 0| 𝑤𝑖𝑗=1);  𝑔𝑗= P(𝑦𝑖𝑗= 1| 𝑤𝑖𝑗=0). The DINO model, 

which can be compared with Equation 3 (i.e., DINA model). It is defined in Equation 10 as:  

 

P(𝑦𝑖𝑗= 1|𝑤𝑖𝑗) = (1 −  𝑠𝑗)𝑤𝑖𝑗(𝑔𝑗)1−𝑤𝑖𝑗                                                                                         (10) 

 

Henson, Templin, and Willse (2009) proposed a cognitive diagnosis model using a log-

linear model (i.e., LCDM). For item 1 in Table 16, two attributes are required: addition and 

subtraction, 𝛼𝑘= {𝛼1, 𝛼2}. Equation 11 shows the logit of answering item 1 correctly where three 

generic terms in log-linear model are defined in LCDM. If a student i possesses both 𝛼1 and 𝛼2, 

the logit for answering item 1 correctly can be defined with one main effect associated with 𝛼1, 

one main effect associated with 𝛼2, and the interaction between 𝛼1 and 𝛼2. Note that if an item 

requires more attributes, for example, item 3 requires three attributes, then, the higher-order 

interaction will be needed. So more parameters will be estimated.  

 

logit(𝑦𝑖𝑗= 1|𝛼𝑖) = 𝜆𝑖,0 + 𝜆𝑖,1,(1)𝛼𝑖1 + 𝜆𝑖,1,(2)𝛼𝑖2 + 𝜆𝑖,2,(1,2)𝛼𝑖1𝛼𝑖2                                                 (11) 

 

The main effect for attribute 𝛼1  is 𝜆𝑖,1,(1) . It represents the increase in the logit for 

mastering attribute 𝛼1 in student i who has not mastered attribute 𝛼2.The main effect for attribute 

𝛼2 is  𝜆𝑖,1,(2) . It represents the increase in the logit for mastering 𝛼2 in student i who has not 

mastered attribute 𝛼2. The additional change in the logit for mastering both attributes is 𝜆𝑖,2,(1,2). 

The intercept,  𝜆𝑖,0, represents the logit for the reference group, which is usually the students who 

have both attributes missing (that is, 𝛼𝑖1= 𝛼𝑖2= 0). 
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According to the preceding discussion, 2𝑘 is the total number of attribute vectors. If the 

example in Table 16 is used, there are 16 possible attribute vectors. Instead of having 2𝑘attribute 

vectors, the notion of reduced number of attribute vectors, 2𝐾𝑗
∗

 , is introduced, where  𝐾𝑗
∗ = 

∑ 𝑞𝑖𝑘
𝐾
𝑘=1  is the number of required attributes for item j (de la Torre, 2011). The reduced attribute 

vector for item j can be denoted as 𝛼𝑖𝑗
∗ , where the elements 𝛼𝑖𝑗1, 𝛼𝑖𝑗2,  ….𝛼𝑖𝑗𝐾𝑗

∗, show the required 

attributes for item j. The purpose of using the term 𝛼𝑖𝑗
∗  is to express the reduced number of latent 

attribute vectors from 2𝑘 to 2𝐾𝑗
∗

in the model. The notion of strict inequality describes the model, 

that is: 

𝛼𝑖𝑗
∗  < 𝛼𝑖′𝑗

∗ , if and only if the elements in the vectors satisfy 𝛼𝑖𝑘
∗  < 𝛼𝑖′𝑘

∗ . This implies the sum of the 

two vectors has the following property: ∑ 𝛼𝑖𝑗𝑘
∗𝐾𝑗

∗

𝑘=1
 < ∑ 𝛼𝑖′𝑗𝑘

∗𝐾𝑗
∗

𝑘=1
. This property does not imply that 

𝛼𝑖𝑘
∗  < 𝛼𝑖′𝑘

∗ .  The probability that a student with attribute pattern 𝛼𝑖𝑗
∗  correctly answers item j is 

P(𝑋𝑗 =1| 𝛼𝑖𝑗
∗ ) = P(𝛼𝑖𝑗

∗ ).  

Unlike the DINA model, the generalized DINA (G-DINA) model contains 2𝐾𝑗
∗

 parameters 

that need to be estimated for item j, with the constraint that P(𝛼𝑖𝑗
∗ ) ≤ P(𝛼𝑖′𝑗

∗ ). Equation 12 describes 

the G-DINA model, where P(𝛼𝑖𝑗
∗ ) is the sum of effects of attributes and the interactions among the 

attributes. When using the logit link function, the G-DINA model becomes a log-linear model 

described in Equation 13.  

 

P( 𝜶𝑖𝑗
∗ ) = 𝛿𝑗𝑜 + ∑ 𝛿𝑗𝑘

𝐾𝑗
∗

𝑘=1
𝛼𝑖𝑘  +  ∑ ∑ 𝛿𝑗𝑘𝑘′

𝐾𝑗
∗−1

𝑘=1

𝐾𝑗
∗

𝑘 ,=𝑘+1
𝛼𝑖𝑘𝛼𝑖𝑘′ … + 𝛿𝑗12…𝐾𝑗

∗  ∏ 𝛼𝑖𝑘

𝐾𝑗
∗

𝑘=1
                              

            (12) 
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logit[P(𝜶𝑖𝑗
∗ )]= 𝜆𝑗𝑜+ ∑ 𝜆𝑗𝑘

𝐾𝑗
∗

𝑘=1
𝛼𝑖𝑘+ ∑ ∑ 𝜆𝑗𝑘𝑘′

𝐾𝑗
∗−1

𝑘=1

𝐾𝑗
∗

𝑘 ,=𝑘+1
𝛼𝑖𝑘𝛼𝑖𝑘′….+ 𝜆𝑗12…𝐾𝑗

∗  ∏ 𝛼𝑖𝑘

𝐾𝑗
∗

𝑘=1
     

                                                                                                                                                     (13) 

 

The intercept for item j is 𝛿𝑗𝑜. The main effect coming from source 𝛼𝑘  is 𝛿𝑗𝑘 . The interaction 

between two attributes, 𝛼𝑘 and 𝛼𝑘′, is denoted as 𝛿𝑗𝑘𝑘′ . The higher order interaction among more 

than two attributes is denoted as 𝛿𝑗12…𝐾𝑗
∗.  

 The interpretation of the terms is the following: 𝛿𝑗𝑜  is the probability of answering item j 

correctly when all the required attributes for item j are missing. The term, 𝛿𝑘, is the change in the 

probability of answering item j correctly when one attribute (i.e., trait k) is present. The term,  𝛿𝑗𝑘𝑘′, 

is the change in the probability of answering item j correctly due to both attribute k and attribute 

𝑘′  being mastered. The G-DINA model will become the DINA model when the following 

constraints are applied: estimating 𝛿𝑗𝑜 and 𝛿𝑗12…𝐾𝑗
∗  but setting all other parameters at zero. This 

estimates a smaller number of parameters per item, that is, two parameters for each item. The 

guessing parameter 𝑔𝑗 in DINA is now 𝛿𝑗𝑜; 1-𝑠𝑗 is now equal to 𝛿𝑗𝑜+ 𝛿𝑗12…𝐾𝑗
∗ . 

Summary Statistics 

In the CTCA, the response data collected from operational testing came from 564 students, 

283 of whom were male and 281 of whom were female. Figure 5 (below) shows how the total 

scores are distributed across all students using a box plot.  
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Figure 6  The distribution of total scores 

 

A t-test is conducted for this sample. The results show that in terms of total scores, the difference 

between the two groups (male vs. female) is a marginally statistically significant: female (M=8.9, 

SD=2.89), male (M=9.4, SD=2.88), t(562) = 2.00, p = 0.05. In addition, for the sample in the 

operational testing, no DIF was found in any of the items. 

Parametric Psychometric Modeling 

The DINA model is chosen as the scoring model for the response data. In the CTCA, as 

described in the previous design activity, SMEs reviewed the Q-matrix and the content of items 

and hypothesized how students will correctly answer an item: (1) a student must master all the 

attributes required in that item in order to answer it correctly, and (2) attributes are equally 

important. To this end, the DINA model is chosen, given that Lee, Park, and Taylan (2011) have 

emphasized “when attributes required for an item are considered equally important, the DINA 

model is deemed appropriate (p. 149). Moreover, the “DINA model is a parsimonious and 

interpretable model that requires only two parameters for each item regardless of the number of 

attributes being considered” (de la Torre, 2009, p. 117). 
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In the CTCA, the estimation was conducted in the CDM package (Robitzsch, Kiefer, 

George, & Uenlue, 2018) in R. For the model-data fit criteria, the Standardized Root Mean Squared 

Residual (SRMSR) is 0.037. The SRMSR is an index for absolute fit statistic. The criterion is that 

if the magnitude is less than 0.09, it indicates a reasonable model-data fit (Maydeu-Olivares & Joe, 

2014). Thus, for this sample, the model-data fit is reasonably good. 

Total score reliability measure (Cronbach's alpha or omega index) commonly seen in the 

measurement literature is not applicable in CDM-based instruments. Such a measure is calculated 

based on the true-score theory, assuming some proportion of observed-score variance is traceable 

to a continuous underlying true-score. In contrast, CDM conceptualizes an examinee’s “true-score” 

as a categorical mastery profile. 

The CDM package provides two estimated item parameters of the DINA model: the 

guessing (g) and the slipping (s) probabilities for each item (see Equation 5 and Equation 6 above). 

In terms of interpretation, these two parameters are often used to reflect the item discrimination 

index (IDI, denoted as d), that is, the probability of correctly solving an item without the influence 

of guessing and slipping (i.e., d = 1 − g − s). There is no cut-point to judge the parameters’ 

magnitudes in the measurement literature. Table 17 below shows these three magnitudes across 15 

items on the CTCA. Item 1 has high magnitude on the guessing parameter. Item 10 has high 

magnitude on the slipping parameter. Thus, these two items possess very low IDI values, which 

may be used as indicator of poor quality of the assessment (e.g., items or the Q-matrix).    
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Table 17 Item Discrimination Index 

Item ID Guessing 

Parameter 

Slipping 

Parameter 

IDI 

1 0.88 0.03 0.09 

2 0.73 0.01 0.26 

3 0.48 0.06 0.46 

4 0.35 0.05 0.59 

5 0.20 0.47 0.33 

6 0.69 0.05 0.26 

7 0.53 0.16 0.31 

8 0.27 0.26 0.48 

9 0.38 0.21 0.41 

10 0.37 0.57 0.06 

11 0.66 0.08 0.26 

12 0.41 0.24 0.35 

13 0.35 0.26 0.39 

14 0.31 0.25 0.44 

15 0.13 0.55 0.32 

 

In the existing literature, one CDM-based instrument (Kuo, Chen, Yang, & Mok, 2016) 

that was developed using a DINA model. On that instrument, the item-level magnitudes on 

slipping parameter, guessing parameter or IDI were not reported. In the literature regarding 

retrofitting CDM, most studies also failed to provide such information (e.g., Garcia, Olea, & de la 

Torre, 2014; Chen & Chen, 2016). One article did provide these three indices which was written 

by Lee, Park, and Taylan (2011). They used DINA model to analyze the samples from 

Massachusetts, Minnesota, and the U.S. national sample for the 2007 the Trends in International 

Mathematics and Science Study (TIMSS) mathematics test. They reported these 3 indices for the 

three samples across 25 items. For the guessing parameter and slipping parameter, they ranged 

from 0.00 to 0.95. The IDI magnitude ranged from 0.00 to 0.95. The authors used the guessing 

parameter and slipping parameter to compare the differences among samples on a given item.      

Other than the model-data fit and item-level statistics reported above, scoring results for 

the CTCA provide additional psychometric properties. Because subscore reporting is part of an 
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instrument, psychometric properties about the distinctiveness of subscores are needed (Wainer, 

Sheehan, & Wang, 2000). The tetrachoric correlations among latent attributes were positive and 

moderate: the coefficient between A1 and A2 is 0.71; the coefficient between A2 and A3 is 0.46; 

the coefficient between A3 and A1 is 0.78. These positive correlations indicate that mastering one 

attribute heightens the possibility of mastering others. In the CDM literature, no criterion has been 

specified to judge the magnitude of the tetrachoric correlations for evaluating attribute separation. 

Jurich and Bradshaw (2014) reported the tetrachoric correlations in their newly developed CDM-

based instrument in higher education. The coefficients among four latent attributes ranged from 

0.56 to 0.94. They further pointed out that if the correlation coefficient is (nearly) perfect (e.g., 

0.94), it suggests that two attributes are inseparable. Bradshaw, Lzsak, Templin, and Jacobson 

(2014) reported tetrachoric correlations among the attributes in their newly developed CDM-based 

instrument. The range of the coefficients was from .626 to .781. Thus, the attributes in the CTCA 

seem to be reasonably separated because none of the two attributes was highly correlated.  

Figure 6 shows the distribution of pattern scores, which represents the mastery status across 

this sample of students. Recall that, in the DINA model, the number of latent patterns depends on 

how many latent attributes the test aims to elicit. In the CTCA, three latent attributes were extracted 

and defined as elements of students’ CT competency. Thus, a student can be classified in any one 

of eight latent groups to indicate his or her mastery status: {000}, {100}, {010}, {001}, {110}, 

{101}, {011}, or {111}. Mastery status on a particular attribute is indicated by a 1, and non-

mastered status by a 0. For example, the pattern score {100} represents the group of students who 

mastered A1, but failed to master the rest of the attributes.                                           
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Figure 7  Classification on latent pattern scores 

 

Because CDM uses a probability model to estimate mastery status, the estimated latent 

scores are expressed in a 0-1 scale, where magnitudes below 0.5 indicate an attribute has probably 

not been mastered. The results can also be expressed in a percentage fashion. For example, 

according to Figure 6, about 43% of students have mastered all three attributes of CT competency. 

For the remaining students, about 15% of students will need the most instructional support in their 

CT learning because they mastered none of the attributes; about 35% of students only mastered 

one attribute. Figure 7 shows the attribute-level mastery status across this sample. Among all 

students, about 50% of students mastered A1, 62% of them mastered A2, and 64% of them 

mastered A3.  
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Figure 8  Mastery status on each attribute 

 

For individual score reporting, the subscore, the latent mastery probability estimated by the 

DINA model, is reported to represent each student’s mastery status along with the total score (i.e., 

the observed sum scores). Figure 8 below is an example of a score report. This student is from the 

sample in operational test. The first row of the score report is the student ID, which the teacher is 

able to link it to the student’s name. The second row is the total score the student received. The 

third score includes further detail about the wrong and right answers, where 1 indicates the correct 

answer, 0 otherwise. The last row displays the indicators of mastery status provided by the DINA 

model estimation. The results shown in the example suggest that the student should practice more 

on A1 in future learning.
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Figure 9  Score report card for an individual student 

 

 In this research, score reports were not provided to the classroom teachers. However, the 

score report should be particularly useful, especially if a large-scale study is conducted in the future. 

For example, when a school district (which involves multiple classrooms or schools) adopts a CT 

curriculum, the CTCA can be administered to pre-assess students’ CT competency, and score 

reports can be distributed to teachers so that teachers may gain the understanding about the CT of 

their students.
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 DISCUSSION 

5.1 Discussion on the Development of the CTCA 

The emerging field of computational thinking (CT) has received international attention. A 

Computing at School (CAS) curriculum has been introduced to classrooms in the United Kingdom, 

with a focus on CT (Curzon, Dorling, Ng, Selby, & Woollard, 2014). In 2012, the Israeli Ministry 

of Education initiated a program to improve science and technology curricula through the addition 

of a CT component (Gal-Ezer & Stephenson, 2014). In the United States, National Science 

Foundation’s STEM+C (science, technology, engineering, mathematics and computing) program 

aims to incorporate CT research in K-12 education. The hope is that the computational preparation 

comes into play in cultivating the future generation for the nation's prosperity (National Science 

Foundation, 2018).  

Other than cultivating citizens in general, improved CT research and practices can also 

benefit the computing profession in particular. In the computing field, consistent low participation 

rates among particular subgroups are problematic. According to the College Board (2016), only 

21.9% of test-takers on the 2015 Advanced Placement (AP) Computer Science exam were female 

students, the lowest female participation among all AP exams. The same test recorded the 

following participation rates for racial or ethnic minority subgroups: 3.9% of Black or African 

American students, 9% of Hispanic or Latino students, and 0.4% of American Indian students. The 

possible explanation for this is that K-12 classrooms’ activities or tasks fail to promote 

computational participation. As Margolis, Ryoo, Sandoval, Lee, Goode, and Chapman (2012) 

commented, “Especially in schools with high numbers of African American and Latino/a students, 

computer classes too commonly offer only basic, rudimentary user skills rather than engaging 
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students with the problem-solving and computational thinking practices that are the foundation of 

computer science” (p. 73). 

Indeed, effective CT instruction (e.g., meaningful classroom activities) is the foundation to 

increase students’ interests in learning computer science or choosing computer science as a major. 

As Lu and Fletcher (2009) have argued, in CT instruction, “efforts must be made to lay the 

foundations of computational thinking long before students experience their first programming 

language” (p. 3). Along this line, many scholars in the CT community have underlined how CT 

instructions impact on students’ CT learning. Hsu, Chang, and Hung (2018) in their review paper 

provided a few of directions for future CT research. One of the directions is related to knowing 

about students’ learning status. “Teachers need to consider students’ learning status when teaching 

so as so guide the students through the CT training courses, or offer proper aid or feedback 

regarding different students” (p. 308).  

This research on the Computational Thinking Competency Assessment (CTCA) has 

yielded results that echo back to this direction.  The results produced from this research can inform 

teachers about students’ CT competency. Specifically, the model-based classification has reflected 

students’ mastery status on pre-defined attributes of CT (see Figure 8), with 0 or 1 was used as 

indicators to convey the mastery status. The pre-defined three attributes were:  

 

A1: Students are able to identify the underlying corresponding pattern (e.g., trend or relation), 

given material. The material can be graphs, letters, or maps.  

A2: Students are able to execute steps in an algorithm. That is, a series of ordered steps is 

given in an algorithm, in order to generate its output, none of the steps can be skipped.  

A3: Students are able to evaluate variables in an algorithm by examining the pre-defined 

conditions. 
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For the sake of brevity, these variables are: Attribute 1 refers to pattern recognition (A1), Attribute 

2 refers to sequence of instructions (A2), and Attribute 3 refers to evaluation of variables (A3).  

To answer Research Question 1, for middle school students, my findings suggest that 

mastery status in CT competency has the following characteristics: 

 

(1) About 15% of students showed struggles in CT competency because they mastered none 

of attributes - pattern recognition (A1), sequence of instructions (A2), or evaluation of 

variables (A3). This group of students may need the most instructional support. 

 

(2) Across all students, the most effort should be made on pattern recognition (A1). These 

efforts may include students studying this topic more or direct instruction on A1 being 

planned.  A few examples of relevant instructional activities are suggested below (to see a 

comprehensive list of examples about lesson plans and classroom activities, see the book 

edited by Kong and Abelson, 2019). 

 

(3) The mastery status on sequence of instructions (A2) or evaluation of variables (A3) is better 

than on A1. For A2, about 40% of students did not master it. A similar finding was evident 

for A3.  

 

(4) The three points mentioned above are described in detail at individual student level. Each 

student has his or her profile scores reporting about their mastery status. 

 

Turner (2014) presented details about how to create an assessment-centered classroom for 

middle school teachers. The goal is to both measure and promote learning. Turner pointed out that 
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effective instruction started by surveying what students bring in to the classroom. Teachers answer 

the questions before instruction begins. For example, (1) “What are students’ current levels of 

knowledge about this topic/unit? (2) Have some students mastered all or some of the topic/unit 

goals?” (p. 4). The answers for these questions can create more effective instruction. This research 

has the capacity to inform instruction by equipping teachers with one tool to pre-assess existing 

CT competency. The proposed score use for the CTCA is that teachers may gain information about 

students’ current CT competency before instruction begins.  

Moreover, this tool differs from other CT assessments reviewed and synthesized earlier in 

this research. Other assessments possess the capacity to measure CT learning. The CTCA is able 

to inform instruction because it can both measure and promote learning in CT. For example, the 

findings used to address Research Question 1 are the mastery status for each student, as well as 

classification rates on the three attributes. The findings may help teachers facilitate their students 

mastery orientations, that is, to address the gap between what students know and what students 

need to know in order to meet desired learning goals. 

When teachers address the gap, they communicate descriptive feedback to clarify learning 

for students. Feedback is goal-referenced information and actionable information (Hattie & 

Timperley, 2007). It is not an advice or praise from a teacher. Feedback is the foundation of 

effective instruction (Fund, 2010). Imagine that a piece of information provided by a teacher to 

his/her student: “your grade is B+”, or “out of 12 questions, you got 4 wrong.” This information 

is not feedback because this information fails to provide what specifically the student do next time 

with what goal in mind. But the results from the CTCA can be a basis for establishing a learning 

profile for each student where learning goal-referenced and actionable information are conveyed 

to the student. 
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Not only can each individual student benefit from the CTCA by receiving learning goal-

referenced and actionable information, but also teachers can benefit from the CTCA by using its 

results to adjust their ongoing instruction. For example, instead of giving same problem-solving 

sheets (activities) to all the students collectively in the class, a teacher can assign different 

problems (activities) for different students to practice. Teachers can do this with a deliberate focus. 

For example, for students who fail to master pattern recognition (A1), teachers can use English 

language grammar rules as the context for students to practice (see examples provided by Rich & 

Hodges, 2017). For students who fail to master sequence of instructions (A2), Yadav, Stephenson, 

and Hong (2017) have suggested that teachers can use computer-free classroom activities to 

highlight the steps involved, for example, during a lab experiment. Understanding a set of precise 

steps is a basis of understanding sequence of instructions. As another example, teachers can require 

students to write down the instruction about a cookie-making sequence (Barr & Stephenson, 2011).  

For students who fail to master evaluation of variables (A3), teachers can develop some 

activities for students to practice. For example, the activities can resemble Item 5 on the CTCA; 

students are required to evaluate how variable Y and variable Z change over time (A3). Teachers 

can also give students computer-based exercises (e.g., Scratch) to recognize that variables do not 

hold a value (data); variables point to it. Previous research (Hambrusch, Hoffmann, Korb, Haugan, 

& Hosking, 2009) suggested students had difficulty evaluating variables in CT because they 

treated variables in CT like variables in mathematics. In mathematics, variables (e.g., in an 

equation) are bound to a given value only once and then keep that value. In contrast, when 

evaluating a variable in CT, the variable should be treated like a storage box with a name. Its value 

can be changed over time.  
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To answer Research Question 2, the pilot and operational test results may suggest 

somewhat different conclusions. At the pilot test, the female and male groups had no statistical 

difference in total scores on the CTCA. At the operational test, the two groups had a marginally 

statistically-significant mean difference, where male group was slightly better. Existing literature 

generally suggests CT competency (or ability) is very similar across gender groups, although 

differences have been found in non-cognitive aspects (e.g., confidence). Weintrop et al. (2016) 

reported on integration of CT into science and math classrooms in high schools. The non-cognitive 

questions included students’ attitudes towards CT and their confidence in solving CT problems in 

math and science contexts. Compared with the male group, the female group felt that CT was less 

important, and showed less confidence in solving CT problems. However, on the score on the CT 

competency questions, the between-group difference was not statistically significant. Similarly, 

Hutchins, Zhang, and Biswas (2017) studied high school students’ CT development. They found 

that “while girls have a significantly lower confidence in CT applications, there is no difference in 

their ability to perform CT tasks when compared to their male counterparts” (p. 38). Mouza, 

Marzocchi, Pan, and Pollock (2016) designed an after-school computer science program for 

middle school students, where CT consisted of computer science concepts, computational 

practices, and attitudes toward computing. No statistical difference was found between gender 

groups for any of these areas.  

5.2 Limitations and Future Directions 

Some weaknesses in the current CTCA specification should be taken into consideration 

before future revisions or use of the instrument. As Mislevy (2007) has articulated, validation is 

an open-ended process. Validity evidence is constantly being collected, even for a test that has 

existed for years (e.g., Liu, Bridgeman, Gu, Xu, & Kong, 2015; Kleiger, Bridgeman, Tannenbaum, 
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& Olivera‐Aguilar, 2018). Similarly, future empirical data should be collected for the CTCA to 

further validate the score meaning and possibly revise the items (and Q-matrix). 

Recall the rising concern from the item parameters in Table 17. Two items possessed very 

low item discrimination index magnitudes because of high slipping and guessing parameter values. 

A consequence of high guessing and slipping parameters on the CDM-based instrument is that the 

classification accuracy is affected. An ideal model-based classification is that the mastery status 

provided by the scoring model can truly represent a student’s mastery of certain attributes.  

Multiple reasons can explain the presence of a high guessing parameter. First, students 

may answer the item correctly solely because of randomness (e.g., luck). Second, item design 

flaws may give away the answers (e.g., the stimuli on the item stem). Thirdly, students may have 

solved the item correctly because they used a different set of strategies (e.g., mental operations) 

that were not captured by the Q-matrix (or SMEs’ hypothesis), as described by de la Torre 

(2009). Two reasons can explain the presence of a high slipping parameter. First, the item design 

has flaws that caused confusion for students. Students who possess the required attributes then 

may not answer the item correctly. Secondly, if students were not careful, the slipping may occur 

because of random measurement error.  

By examining the CTCA items, no problematic patterns (e.g., stimuli) in the content of 

these two items were found. A possible explanation is that the item parameters are related to the 

students’ characteristics. If this is the case for the CTCA, future revisions should incorporate the 

sample’s characteristics. Using DINA model as the scoring model, each sample may have a 

different set of estimated item parameters (Lee, Park, & Taylan, 2011). An alternative scoring 

model, for example, could be the random-effect DINA model (developed by Huang and Wang, 

2014). This approach argues that slipping and guessing parameters should not be fixed values, 
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but rather depend on persons’ (students’) characteristics. “The level of slipping may depend on 

the person’s degree of caution, and the probability of a correct guess may be determined by the 

person’s ability to eliminate distractors among the options included in an item” (p. 75). This 

model approach emphasizes the estimation of variation in slipping and guessing across the entire 

sample of students. Thus, these two parameters would no longer be considered solely as item 

characteristics. 

In addition, according to the Q-matrix (Figure 4), no item solely measured A2. In future, 

if the testing time is still in a reasonable range, one or two items can be added in the CTCA to 

measure A2 specifically. Moreover, two open-ended items could also be added because the 

students’ responses to the open-ended items can be considered as educational artifacts to be 

further analyzed, which in turn may help researchers and practitioners understand students’ 

thinking process. In contrast, MC items provide little concrete evidence of students’ cognitive 

process.  

The CDM approach embedded in the CTCA is a tool to collect empirical evidence that may 

help the CT community better understand the domain of CT competency. Future classroom 

activities should be structured in a way to provide students with opportunities to think 

computationally. Future studies in CT instruction and CT learning should collect more empirical 

evidence about relevant cognitive aspects while students solve CT problems. For example, future 

studies should examine how CT competency is changing on a learning spectrum, perhaps 

particularly examining the trajectories of CT acquisition from sixth grade to eighth grade. After 

all, assessment and instruction should inform each other through empirical evidence, especially in 

light of the fact that the CT field is relatively new compared with traditional STEM domains.  
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 CONCLUSION 

The research reported here is a computational thinking competency assessment (CTCA) 

specification. A set of multiple-choice items were developed that can be used to assess students’ 

computational thinking competency by classroom teachers in middle schools. The main highlight 

for CTCA is subscore reporting, made available to practitioners because the scoring system 

harnessed the assessment design to provide information about students’ CT competency. The 

integration of CT into different contexts such as science or programming is rather common. 

Subsequently, different sets of measurement tasks are needed to most directly assess students’ 

substantive area and CT competencies. The CTCA is designed for wide usage. The reasonable 

testing time also strengthens its practical usability across middle school classrooms.  

This section underlines a few of the design features of CTCA. Firstly, throughout the 

assessment design, multiple types of validity evidence were collected, including using (1) national 

standards documents, (2) input from subject matter experts (SME), and (3) the existing literature. 

The design’s initial stages included an examination of national standards to ensure the feasibility 

of establishing a CTCA specification. Then, by examining the existing literature in CT, the 

standard statements were adapted into more fine-grained and latent attributes. Finally, by revising 

and refining the items and the testable elements, the CTCA specification produced subscores 

through CDM to reflect students’ CT competency. The alignment table (Q-matrix) was developed 

to indicate the explicit relationship between items and attributes. Multiple rounds of panel review 

were conducted to ensure the quality of the item prototypes and the soundness of Q-matrix. Also, 

by examining the summary statistics, the total scores were reasonably spread out. 

Secondly, empirical evidence was used to provide the validity evidence of response 

processes. This piece of validity evidence enables assessment developers to capture the extent to 
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which they can adequately model students’ response processes. In this context, the degree of 

certainty for this question can help CTCA preserve the proposed scoring interpretation. The 

evidence was extracted from the verbal data and artifacts produced by students during the cognitive 

interviews. Multiple item prototypes were deleted or revised because empirical evidence indicated 

they failed to elicit the hypothesized response process (i.e., the mental operations). Thirdly, other 

validity evidence also emerged through psychometric properties of the item response data, such as 

the correlation between the total scores and the academic grades for students. Differential item 

functioning (DIF) was used to examine the quality of items in terms of gender bias. The tetrachoric 

correlations among latent attributes indicated that the internal structure of the observed response 

data appeared consistent with the hypothesis that the assessment was measuring multiple discrete 

latent CT competency attributes.  

The subscore reporting design feature is highly likely to benefit the end-users of the 

assessment – classroom teachers. The CTCA design methodology took advantage of cognitive 

diagnostic modeling (CDM) approach to explore CT competency, which in turn can inform 

instructional practices in CT. The traditional measurement is usually a single reported score; for 

example, a total score or a single latent score estimated from item response theory (IRT) is useful 

for ranking students on a predefined continuum. In contrast, CDM provided model-based 

classifications as well as attribute-level mastery status (i.e., weakness or strength) which in turn 

involves placing instructional targets on students’ areas of weakness. 

The CTCA specification seeks to characterize CT competency in terms of improving 

students’ learning. Subscore reporting does not encourage a teacher merely to tell a student that 

he/she needs to answer two more items correctly in order to attain mastery. Subscore reporting is 

a tool (assessment) for teachers (instructional practice) to help students embody the meaning of 
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good work (learning) with the extracted learning goals (attributes or claims). By connecting 

instructional practices and assessment to inform each other to enrich students’ learning experience, 

the CTCA has enabled a modest but important innovation in the CT filed. 
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APPENDIX A. INSTITUTIONAL REVIEW BOARD (IRB) PERMISSION 
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APPENDIX B. CTCA ITEMS 

Instructions:  Please circle only one answer for each question. Feel free to mark on the answer 

sheet. 

 

Question 1 

The chart on the right shows that letters in blue  

can be represented by the letters or numbers in red. 

Can you fill in the blank? 

 

        ????  = EFD7  

 

 

 

A.                      B.                      C.                  D. 

DESK               DECK               HIKE            HIGH 

     

 

Question 2 

Which pair of words below have the same relationship as Pigeon--Bird? 

 

 

A.                                        B.                                         C.                                   D. 

Rose--Flower                     Stove--Kitchen                   Cat--Dog                     Fish--Lake 

 

 

Question 3 

 List A contains five numbers: { 3, 7, 10, 15, 20 }.    

 Step 1:  Move each number in List A that is smaller than 14 to a new list. Then, call the new list     

 List B. 

 Step 2:  Add 2 to every number in List B, then call it List C.  

 Step 3:  In List C, if the numbers are larger than 6, place them in a new list, then call the new list  

 List D.  

 Step 4:  The sum of all the numbers in List D.  

 

What is the result for Step 4? 

A.                     B.                     C.                     D.                

20                     21                    22                     23 

 

 

 

 

 

 

 

A=B    

B=C 

C=D 

D=E 

E=F 

F=G 

G=H 

H=I 

I=5 

J=6 

K=7 

L=8 
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Question 4 

A school requires students to pass BOTH a math exam AND an English exam to become a member 

of its choir. This table contains the information for four students. Can you fill in the blanks? 

 

Student ID Passed math 

exam? 

Passed English 

exam? 

Is the student a member of 

the choir? 

001 No No No 

002 No Yes Blank 1?? 

003 Yes No Blank 2?? 

004 Yes Yes Yes 

 

 

 

 

 

 

 

 

Question 5 

A computer takes in a number (X = 8), as shown in the chart below. What number will be displayed 

at the end? 

(Note: follow the arrows carefully)   

 

        
 

A.                     B.                      C.                  D.   

1                       0                        5                    8               

 

 

 

 

 

A. B. C. D. 

Blank 1:  Yes  

Blank 2:  No 

Blank 1:  Yes                       

Blank 2:  Yes 

Blank 1:   No             

Blank 2:   No  

Blank 1:  No    

Blank 2:  Yes                 
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Question 6 

This table shows how many boxes of cookies a store sold last May, June, and July. The graph on 

the right gives the same information.   

 

         
 

Based on this example, showing how many cups of coffee were sold in a store, fill out the blanks 

(??) for the table below. 

           
 

A.  20 cups      60 cups      65 cups                     C. 20 cups      60 cups      10 cups 

             

B.  20 cups     60 cups       40 cups                     D. 20 cups      40 cups      80 cups 

 

 

 

Question 7 

A list has the following numbers: {6   1   2   3   4   5}.  

 

The goal is to sort them in increasing order: {1  2  3  4  5  6}. Can you fill in the blank? 

 

Step 1 6  1  2  3  4  5 

Step 2 1  6  2  3  4  5 

Step 3 1  2  6  3  4  5 

Step 4 ?????? 

Step 5 1  2  3  4  6  5 

Step 6 1  2  3  4  5  6 

 

 

 

May June July 

12 boxes 16 boxes 20 boxes 

Friday Saturday Sunday 

?? ?? ?? 
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A.                                      B.                                        C.                                      D. 

1  2  3  6  4  5                    1  2  3  6  5  4                      1  3  6  2  4  5                   1  3  6  4  2  5       

Question 8 

Among the five words below, two rules lead you to ONLY the circled word.  

One rule is given; what is the second rule? 

 

Rule 1:  The length of the word is less than or equal to 

three letters. 

Rule 2:   ??? 

 

 

A.   The length of the word is two letters. 

B.   The length of the word is less than 6. 

C.   The word contains the letter I. 

D.   The word cannot contain the letter O. 

 

Question 9 

A robot takes one second to travel one cell. It departs from the 

blue cell with the command L2  U2  L3.  

That means the robot will travel 2 cells left, 2 cells up, and 3 

cells left (see the map on right). At the 7th second, the robot 

arrives at the blue star cell. 

 

 

 

One robot departs from the green cell with the 

command L3  U2  L4. It will arrive at the green 

star cell. (Please mark on chart). 

 

Another robot departs from the purple cell with 

the command L2  U6. It will arrive at the 

purple star cell. (Please mark on chart). 

 

They depart at same time. It takes both 

robots one second to travel one cell. At which 

second will they meet at the same cell? 

 

 

 A.                       B.                      C.                    D.                               

 2th                     4th                     3th                   Never 
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Question 10  

 

                                                                                         
 

The EIGHT blocks above look the same. But ONLY ONE of the blocks is heavier. By using the 

outline below, Juan has figured out which of the blocks is heaviest.  Please fill in the blanks.  

         

 
 

 

A.                                                                                                  B.  

 
 

 

 

      C.                                                                                                    D.  
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Question 11 

 

If                =       ,  

 

then          =      ??? 

 

 

 

A.        

 

B.      

 

C.        

 

D.        

 

 

Question 12 

Maria draws one card at a time in a game. She will receive two bonus points if the first three 

cards she draws meet the following requirements:                    

                                                                 The first card must be a yellow card. 

                                                                 The second card must be a blue card. 

                                                                The third card must NOT be a blue card. 

 

She played two rounds. Can you fill out the blanks in the table below? 

 Is the first 

card 

yellow? 

Is the second 

card blue? 

Is the third 

card blue? 

Result 

Round 1 Yes Yes Blank 1??? She received bonus points 

Round 2 Yes No No Blank 2??? 

 

 

 

 

A.  C. 

Blank 1 = No  Blank 1 = Yes 

Blank 2 = She received bonus points  Blank 2 = She received bonus points 
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B.  D. 

Blank 1 = No  Blank 1 = Yes 

Blank 2 = She did NOT receive bonus 

points 

 Blank 2 = She did NOT receive bonus 

points 

 

 

 

Question 13 

Please observe below that in every step, the picture on the left represents the graph at right.  

Fill out the blank for Step 4.    (Note: NOT Step 3) 

 

 

 

 

 

                      Picture                              Graph 

Step 1                                         

Step 2                                      

Step 3               

Step 4               

 

 

 

 

     ???                                                  
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  A.                                             B.                                                C.                                  D. 

    

 

 

 

 

Question 14 

Last Saturday was NOT a rainy day, Kyle received $6 allowance, and the museum was NOT open.  

Based on the sequence of events below, what did Kyle end up doing? (Note: read each statement 

carefully) 
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A.  Call Bob 

B.  Call both Bob and Tom       

C.  Call both Bob and David      

D.  Call Tom  

 

 

 

 

 

Question 15 

 

Blue Rabbit follows the instruction:   

left, down, down, down, left, left to arrive the blue cell. 

 

Yellow Rabbit follows the instruction:  

left, up, up, left, up, left to arrive the yellow cell.  

 

Note:  

Every time a rabbit passes through a cell, the light switch 

changes.  

(As you go, mark each move on the chart below). 

 

 

 

Final Destinations:  

For these four cells,  

can you tell whether the light switch is on or off on this map? 

 

 

 

 

 A.                                          B.                                        C.                                        D.  

 

 


