
DEVELOPMENT AND DEPLOYMENT OF A FIELD BASED SOIL MAPPING

TOOL USING A COMPARATIVE EVALUATION OF GEOSTATISTICS AND

MACHINE LEARNING

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Jeff A. Fiechter

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Agricultural and Biological Engineering

August 2019

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Dharmendra Saraswat, Chair

Department of Agricultural and Biological Engineering

Dr. Dennis Buckmaster

Department of Agricultural and Biological Engineering

Dr. James Krogmeier

Department of Electrical and Computer Engineering

Approved by:

Dr. Nathan Mosier

Head of the Departmental Graduate Program

iii

ACKNOWLEDGMENTS

I’d like to first acknowledge the Foundation of Food and Agricultural Research

(FFAR), Indiana Soybean Alliance (ISA)/Indiana Corn Marketing Council (ICMC),

and Purdue University for supporting this work financially. Without funding, works

like this would never be able to be done, and I wouldn’t have been able to receive my

degree.

I’d like to also acknowledge my Advisor and Committee Chair, Dr. Dharmen-

dra Saraswat, for the time he spent in mentoring me during the research process.

His method-based convictions were firmly communicated to me, and forced me to

slow down, read thoroughly, and conduct experiments carefully. It is because of this

methods-based process that I feel confident in this work, and believe it to be a valid

contribution to the field.

I would also like to acknowledge my Committee members, Dr. Dennis Buckmaster

and Dr. James Krogmeier. They each took time to meet with me individually, gave

insightful criticisms of my work, and suggested changes to my plan of study. Their

breadth of expertise served to ensure my work had real depth.

Ben Hancock also played an indispensable role in getting the tool ready for the

world. His unbounded patience, coupled with his vast technical knowledge, cut untold

hours from my development process.

Along with these, I’d like to acknowledge my wife, Anna, for her continued support

as a I worked through this degree. Her wisdom, discernment, and penchant for

providing startlingly insightful advice and admonishments kept me balanced, focused,

and healthy. Without her empathy, partnership, or gentle corrections, I would never

have been able to do the work I’ve done in the time I’ve done it.

Lastly, I’d like to acknowledge Jeff Boyer, of the Davis-Purdue Agricultural Center,

for providing the soil data used as the case study in this work. The unique density of

iv

the dataset made it exceptionally rare, and not having to collect data for my research

cut the time down by months. Without this contribution, the research would have

been far more difficult and time consuming.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABSTRACT . xi

1 INTRODUCTION . 1

2 THEORETICAL BACKGROUND AND LITERATURE REVIEW 7

2.1 Current Interpolation Practices . 7

2.2 Machine Learning in Digital Soil Mapping 11

2.2.1 Common Algorithms . 11

2.2.2 Explanatory Variables . 16

2.3 Conclusion . 19

3 METHODS . 20

3.1 Objectives 1 & 2 . 20

3.1.1 The Case Study . 20

3.1.2 Public Data . 24

3.1.3 Benchmarking Methods . 25

3.1.4 Developing the Prediction Framework 27

3.1.5 Feature Data . 29

3.1.6 Validation and Testing . 34

3.2 Objective 3 . 37

4 RESULTS AND DISCUSSION . 42

4.1 Objective 1: Establishing a Baseline . 42

4.1.1 Applying A Field Average . 42

4.1.2 Applying A Grid Prediction . 44

4.1.3 Applying Ordinary Kriging . 47

vi

Page

4.2 Objective 2: Develop an Improved Method 56

4.2.1 Experiment 1: Spatial Position 57

4.2.2 Experiment 2: Relief . 66

4.2.3 Experiment 3: Spatial Position and Relief 77

4.3 Objective 3: Make Accessible . 81

4.3.1 User Input . 81

4.3.2 Processing . 90

4.3.3 Output . 91

5 CONCLUSIONS AND RECOMMENDATIONS 96

5.1 Objectives 1 & 2 . 96

5.2 Objective 3 . 98

LIST OF REFERENCES . 100

vii

LIST OF TABLES

Table Page

4.1 MAE Scores, The Standard Deviations of The Absolute Residual Sets,
MAPE Scores, and RMSE Scores . 42

4.2 A Key For Interpreting Table 4.3, Where Each Interpolation Is Assigned
A Unique Number. 45

4.3 Two Sample T-test Results For Every Model Comparison; Created Using
MEA And The Standard Deviation of The Absolute Errors. Any P-Values
Significant At A 5% Level For A Comparison Are Displayed In Bold. The
Null Hypothesis of The T-test Was That The Two Absolute Residual Sets
Had The Same Mean. 46

4.4 The Random Forest Model Parameters. 57

viii

LIST OF FIGURES

Figure Page

2.1 An Example Semi-Variogram with a Fitted Spherical Model and Nugget,
Range, and Sill Indicated. 9

2.2 An Example of One-Dimensional Linear Classifier. Shown with Split (Solid
Line) and All Possible Splits (Dashed Lines). 13

2.3 An Example of Recursive One-Dimensional Linear Classifier. Displays
Three Nodes of Recursive Splits, Shown as Solid Lines. 14

2.4 Example Regression Tree, Using the Landform Attributes Observed at
Percent OM Observation Locations to Predict Percent OM. 15

3.1 Site Boundary and Soil Sample Locations. Soil Percent Organic Matter
Values are Color-Mapped onto the Point Locations. 21

3.2 A Histogram of the 110 Percent OM Values. 23

3.3 Points Selected For Training, Validation Points, and Site Boundary. Points
Selected For Interpolation are Displayed in Red, While Points Kept For
Validation are Displayed in Blue. 24

3.4 Flow Chart Representing the Creation of Euclidean Distance Features. . . 32

3.5 Visual Representation of Grid Based Features and How Feature Values for
a Single Location Are Extracted. 33

3.6 An Example CSV File, Containing Columns For Latitude, Longitude, and
Properties of Interest. 39

4.1 Predicted Percent OM, Using The Field Average. 43

4.2 A Grid Based Prediction of Percent OM. 47

4.3 Histogram of The Percent OM Values of The 28 Points Used For Interpolation.48

4.4 Histogram of the Box-Cox Transformed Percent OM Values of The 28
Points Used For Interpolation. 49

4.5 Sampling Locations, Displaying Non-Clustered Layout. 50

ix

Figure Page

4.6 A Trend Analysis of The Percent OM Dataset, Revealing First and Second
Order Trends. The Three Dimensional Polynomial Is Shown As Two-
Dimensional Slices: Where It Intersects The Northern Boundary of The
Field (Green), and Where It Intersects The Eastern Boundary of The Field
(Blue). 51

4.7 A Voronoi Map of Entropy For The Percent OM Dataset. 52

4.8 Semi-Variogram and Accompanying Spherical Model of The 28 Percent
OM Samples. 53

4.9 Ordinary Kriging Percent OM Prediction. 55

4.10 Euclidean Distance To A Sample Point, Measured In Raster Cells. 58

4.11 Euclidean Distance To A Sample Point, Measured In Raster Cells. 59

4.12 Euclidean Distance To A Sample Point, Measured In Raster Cells. 60

4.13 Random Forests Percent OM Prediction, Based On Spatial Position only. . 64

4.14 Extra Trees Percent OM Prediction, Based On Spatial Position only. . . . 65

4.15 The Elevation of The Site (in Feet). 67

4.16 The Slope of The Site In Percent, Calculated At 7.6 m Resolution. Note:
While Slope Reaches 100% In Some Areas, Color Scale Has Been Set To
25% Max For Higher Contrast Viewing. 68

4.17 TThe Slope of The Site In Percent, Calculated At 174.8 m Resolution.
Note: Here Color Scale Is Set To True Value Range, Much Smaller Than
The Previous Figure. 69

4.18 The Profile Curvature, Calculated At A Scale of 83.6 m. 70

4.19 The Planform Curvature, Calculated At A Scale of 83.6 m. Note: Here
The Color Scale Is Set To -0.1-0.1 For Viewing Contrast, But The True
Value Range Is Much Larger. 71

4.20 The Profile Curvature, Calculated At a Scale of 174.8 m. 72

4.21 Random Forests Percent OM Prediction, Based On Relief Only. 75

4.22 Extra Trees Percent OM Prediction, Based On Relief Only. 76

4.23 Random Forests Percent OM Prediction, Based On Spatial Position And
Relief. 79

4.24 Extra Trees Percent OM Prediction, Based On Spatial Position And Relief. 80

4.25 The Landing Page of The UI. 82

x

Figure Page

4.26 The Shapefile Upload Page Of The UI. 84

4.27 The CSV Upload Page Of The UI. 86

4.28 The Field Boundary Creation Page Of The UI. 88

4.29 The Submission Page Of The UI. 89

4.30 The Status Display Page Of The UI. 93

4.31 The Output Display Page Of The UI. 95

xi

ABSTRACT

Fiechter, Jeff A. MS-ABE, Purdue University, August 2019. Development and De-
ployment of a Field Based Soil Mapping Tool Using A Comparative Evaluation of
Geostatistics and Machine Learning. Major Professor: Dharmendra Saraswat.

Soil property variability is a large component of the overall environmental vari-

ability that Precision Agriculture practices seek to address. Thus, the creation of

accurate field soil maps from field soil samples is of utmost importance to practition-

ers of Precision Agriculture, as understanding and characterizing variability is the first

step in addressing it. Today, growers often interpolate their soil maps in a black-box

fashion, and there is a need for an easy to use, accurate method of interpolation. In

this study, current interpolation practices are examined as a benchmark, a Random

Forest (RF) based prediction framework utilizes public data to aid predictions, and

the RF framework is exposed via a webtool. A high density (0.20 ha/sample) field

soil sample dataset provides 28 training points and 82 validation points to be used as

a case study. In the prediction of soil percent organic matter (OM), the grid and ordi-

nary kriging interpolations both had higher Mean Absolute Error (MAE) scores than

a field average prediction, though the difference was not statistically significant at a

5% confidence level. A RF framework interpolation utilizing a high resolution (1.52

m) DEM and distances to known points as the featureset had a significantly lower

MAE score than the field average, grid, and ordinary kriging interpolations. The

results suggest that for the study site, RF framework performed better compared to

a field average, a grid based, and an ordinary kriging interpolation methods.

1

1. INTRODUCTION

Field soil maps are one of the most frequently utilized spatial datasets in Precision

Agriculture. A recent survey estimated that field soil maps have been privately cre-

ated for over 50% of Midwestern cropland (Erickson and Widmar, 2015). Soil, as the

growing medium, is often the source of variability that Precision Agriculture attempts

to address (Atherton et al., 1999). For example, as soil organic matter (OM) provides

a source of nitrogen via mineralization, many producers use maps of percentage OM

while creating variable rate nitrogen prescriptions. In another case, as higher soil

cation exchange capacity (CEC) dampens the effect of lime application, both soil pH

and CEC maps must be used to create variable rate lime prescriptions. For a final ex-

ample, as water holding capacity varies strongly with soil texture, most variable rate

irrigation prescriptions attempt to tailor rates to maps of soil texture. As is the case

in these and any applications, the precision and accuracy of any custom prescription

is always limited by the base dataset. In the case of Precision Agriculture, access to

high quality soil data is crucial to the creation of high quality prescriptions. While

there are publicly available soil maps created by the NRCS, it is generally agreed that

these maps are either too inaccurate or too coarse for the ideals of modern Precision

Agriculture (Zhu et al., 2001). To compensate for this lack of high-quality public soil

maps, farmer’s have resorted to generating high quality soil sample datasets using

personal resources.

As direct measurements of soil properties are costly, most field soil maps are

based on a limited set of point samples (Wollenhaupt et al., 1997). While there

are many sampling protocols and strategies that ensure quality point samples, it

is through the process of interpolation that likely property values are assigned to

unsampled locations. A common interpolative practice today is to simply assume

that a point sample is representative of a certain zone: a block in an even grid or a

2

NRCS soil unit, for example (Erickson and Widmar, 2015). However, as the scale of

soil property variation is often smaller than the scale of typical soil sampling layouts

(Franzen and Peck, 1995), assuming a sample is representative of a zone has the

effect of creating non-continuous maps with sharp boundaries not present in a soil

catena. As an alternative to this practice, many interpolative methods attempt to

model the relationship between spatial position and soil property values, which allows

for the estimation of maps at a higher resolution than the soil sample grid. One

example is geostatistical methods, a family of interpolation practices that predict

using a weighted average of the known point values, with the weights assigned by

the distances from the unknown point to the known points. Geostatistical methods

have been used extensively in soil science since the 1980’s (Burgess and Webster,

1980), and are well proven in the field. However, while geostatistical methods have

a long pedigree and are still used today in soil mapping (Vaysse and Lagacherie,

2017; Ramcharan et al., 2018), there is still room for conceptually stronger models.

Geostatistical methods use distance as an explanatory variable, but distance is not the

only variable known to explain variations in soil properties (McBratney et al., 2003).

For instance, it has long been shown that relief is an effective explanatory variable for

soil properties (McBratney et al., 2003): hill-slopes typically have thinner soils than

lowlands, river bottoms have higher silt content than the ridges above, etc. Thus,

an interpolation method that utilizes both spatial position and relief as explanatory

variables could theoretically explain more variation in soil properties than a spatial

position only model. As a LIDAR generated, high-resolution (1.52 m) digital elevation

map (DEM) is publicly available in the state of Indiana, any field soil mapping effort

in the state could potentially utilize relief as an explanatory variable.

The creation of a multivariate model is bounded by the limited data nature of

field soil map creation. To illustrate this, many Midwestern fields are sampled at a

rate of 2.02 hectares, 1.01 hectares, or even 0.405 hectares per sample (Erickson and

Widmar, 2015), but the typical field in the US corn belt is less than 50 ha (Capellades

et al., 2009). If a 40 ha field was sampled at a density of 1.01 ha/sample, it would only

3

yield about 40 samples. Fitting any model to a dataset this small is quite difficult, as

models based on limited datasets often are unable to capture the relationships present

or become overfit to relationships only present in the sampled data (Schloeder et al.,

2001). Despite this limitation, and considering that most growers are untrained in

proper geostatistical modeling, geostatistically interpolated soil maps are typically

created in a ”Black Box” fashion. This implies that many private soil maps are

currently generated using limited data and with model parameters left at default

values. To improve on the current practice, any new multivariate model developed

and provided to growers would need to address the low data dilemma and do so with

limited user intervention.

A flexible alternative to geostatistical methods is the growing field of Machine

Learning (ML) methods. In recent decades, ML methods have grown in popularity

in the field of DSM (Heung et al., 2016). While there are many reasons for this,

the ability of certain ML algorithms to model non-linear, non-stationary empirical

relationships, with limited user intervention, has shown to be valuable in the field of

DSM. Additionally, though geostatistical methods are still widely used in the field,

a recent study found that a ML algorithm could match, and in some cases exceed,

the performance of geostatistical methods using both distance and distance coupled

with other variables (Hengl et al., 2018). While this makes ML a promising potential

method for creating private field soil maps, few studies have attempted to apply a

ML algorithm to this scope. Doubtless, there are many reasons for this, but chief

among them is again the limited data available to fit a model. Many ML algorithms

are best known for their uses in the field of Big Data, and as such are typically data

hungry. The smallest dataset utilized in the aforementioned study (Hengl et al., 2018)

had 155 samples for a 500 ha area; other DSM studies utilize up to 400,000 samples

to estimate a model the size of the contiguous US (Ramcharan et al., 2018). In a

review of the literature, the vast majority of ML DSM studies utilized more than

150 samples (most were far more); the only model that used less assumed strong

priors but required site specific expert input to build the model (Zhu et al., 2015).

4

In each of the cases described above, the sampling density (3.2 ha/sample to 2000

ha/sample) of the observations was lower than typical private field surveys, but as the

areas of interest were much larger than typical fields, there were far more observations

to fit to a model. Though the use of ML for building DSM models with less than

150 sample points is challenging, there are algorithms that can be tailored for a

limited data environment. One algorithm that has shown promise in a limited data

environment is Random Forests (RF), as it is highly tunable for a variety of data

conditions (Shaikhina et al., 2019; Gunduz and Fokoue, 2015). Additionally, RF is

well proven in the field of DSM, (Ramcharan et al., 2018; Hengl et al., 2017, 2018;

Heung et al., 2016; Vaysse and Lagacherie, 2017) and requires little user input once

the initial parameters are tuned for the general application.

Bearing all the above in mind, it is clear that there is a need for a better way for

growers to create field soil maps, but much work would have to be done before a new

method would fill the need. First a baseline performance would have to be set. As

there are currently methods of interpolation in use, there is an existing performance

standard that any new interpolation method must exceed. The simplest benchmark

would involve predicting the average value of the soil samples for the entire field,

still a common practice for many producers (Erickson and Widmar, 2015). A second

benchmark would mimic the current industry practice of assuming sample values

are representative of the particular zone or grid they were sampled from. The last

benchmark would need to mimic a more analytical interpolation, like ordinary kriging,

where missing soil property values for the unsampled locations are estimated by the

modeled relationship between spatial position and property values. This comparative

evaluation of common interpolation methods would serve as a performance baseline

against any proposed new interpolation method.

After the baseline performance was set, the next step would be to develop a new

interpolation method that could utilize publicly available datasets for predicting soil

property of interest. It would have to depend on either same or a lesser degree of

user intervention than existing interpolation methods, to ensure user friendliness.

5

Additionally, the data required from the user would have to be the same, i.e. soil

sample data and a field boundary. These conditions seem challenging, but could

conceivably be fulfilled by an implementation of the RF algorithm, optimized for

field soil interpolation. For validation, an evaluation of both the suitability of the RF

algorithm, and the viability of including additional public datasets as features would

need to be conducted. To be viable, any alternative interpolation method would need

to match or exceed the baseline performances of current methods.

If all this was done, the model would need to be prepared for real-world deploy-

ment. First, the interpolation model would need be integrated into an automated

prediction framework. Again, to limit user intervention, the framework would have

to automatically selectively download public datasets, prepare a feature set, train the

model, make a prediction, and write the prediction, only requiring soil data and a

field boundary from the user. Once the framework was automated, a User Interface

(UI) would need to be created to collect and display user data and serve as a user

friendly front-end to the framework. While this could be a stand-alone software, it

would be simpler for users if the UI was web-based and the framework processing was

in the cloud.

With the previous discussions serving as a motivation, the overall goal of this

study was to create a better way to interpolate field soil maps using the process laid

out above.

The actual study objectives were threefold:

1) Use a case study dataset and traditional interpolation methods to establish a

performance baseline.

2) Develop a RF based interpolation framework, testing the viability of the method

and the efficacy of including public datasets as features.

3) Automate the tested and finalized interpolation framework and deploy it through

a web-based UI.

Once all the three objectives are complete, a baseline of current interpolation

methods will have been established, an improved method will have been developed

6

and tested against baseline methods, and the improved method will have been exposed

to the intended users, i.e. growers.

7

2. THEORETICAL BACKGROUND AND LITERATURE

REVIEW

2.1 Current Interpolation Practices

For many years, most Midwestern growers did not estimate field soil maps, but

instead practiced whole field sampling. As recently as 2005, only an estimated 17% of

Midwestern acreage was either grid or zone sampled, with the remaining 83% either

whole field sampled or not sampled at all (Erickson and Widmar, 2015). In the years

since, the practice of tagging soil samples with a geolocation has grown steadily, with

an estimated 45% of Midwestern acres either grid or zone sampled (Erickson et al.,

2017). In the case of zone based sampling, the soil samples collected are used to

estimate the value of a certain management zone. These zones are defined in many

ways: classified yield maps, previous higher density grid sampling, grower knowledge,

soil mapping units, and even soil electrical conductivity (Nawar et al., 2017; Erickson

et al., 2017). This diverse collection of delineation methods, combined with the host

of sampling protocols accompanying them, make zone based soil mapping a highly

variable practice, and difficult to represent with a single example. Grid based soil

sampling and mapping, on the other hand, is far more uniformly practiced, as sug-

gested by the name. In fact, of agricultural service providers that offer soil sampling,

64% report offering sampling at a common density, 1.01 ha/sample (Erickson and

Widmar, 2015). After sampling, a map can be created in two ways. The simplest is

to assign the value of the sample to its grid block, which is effectively a nearest neigh-

bor interpolation. The second way is analytically-based, and results in a continuous

prediction: geostatistical interpolation.

The collection of methods known as geostatistics is unique in reference to other

field soil mapping methods, in that an explanatory variable is used to make a predic-

8

tion: the spatial position of the point of interest. The core assumption of this suite

of methods is the concept of spatial autocorrelation: observations of soil properties

that are nearer to each other are more related than observations that are far apart

(Goovaerts, 1999). Geostatistical methods apply this concept by comparing the loca-

tion of the point to be predicted relative to the location of known points. Then, the

point to be predicted is assigned a value based on the values of the known points near

it. Exactly how the value for a point is determined varies from method to method.

For example, one method (albeit not common in DSM), k - nearest neighbor (kNN),

uses the average value of the nearest k known points to the unknown point as the

predicted value, or, if k is set to 1, the predicted value is simply the value of the

nearest point (Heung et al., 2016).

One of the geostatistical methods commonly used for soil mapping is called kriging

(Minasny and McBratney, 2016). Kriging was developed in the 1950s and 60s in the

South African gold industry. Mines used predicted ore grade, based on sample cores,

to choose which areas to mine (Cressie, 1990), and kriging was developed as a more

accurate way to generate these predicted grades. In kriging, the value assigned to

each unknown point is a weighted average of the known values. The first step in

calculating weights is an analysis of the level of spatial autocorrelation present in the

data. This is accomplished by selecting sets of known points at a set distance apart,

and analyzing how related they are. This is repeated across all possible distances in

the dataset, and the results are plotted on a semi-variance graph: semi-variance on the

y-axis, and separating distance (or lag) on the x (fig. 2.1) (Oliver and Webster, 1986).

After the sample data has been plotted, a model is fitted to the data. The choice of

model is determined by the user, but a common choice is the spherical model (fig.

2.1). The fitted model is then used to calculate the weights of the weighted average

for every unknown point. Thus, the accuracy of the kriged result is dependent on the

goodness of fit of the semi-variogram model Burgess and Webster (1980).

9

Figure 2.1.: An Example Semi-Variogram with a Fitted Spherical Model and Nugget,

Range, and Sill Indicated.

In addition to setting the accuracy of the model, the semi-variogram also reveals

several important attributes of dataset: the nugget, range, and sill (fig. 2.1). The

nugget is the intercept of the fitted model, and it represents the amount of variation

unexplained by distance. The nugget effect takes its name from the mining industry:

it is possible for a gold nugget to be included in the sample core, and if there were, it

would be very likely that a core taken immediately adjacent would not contain this

super-high concentration of gold (Burgess and Webster, 1980). Variations in gold

seams occur at a far smaller scale than sampling operations, thus, there is a certain

amount of variation that cannot be explained by distance alone. Of course, in theory,

a perfect model would have such a fine scale (infinitely small steps) that the nugget

would always be zero, but this is of course impossible for physical sampling operations,

which are confined to a finite scale (Oliver and Webster, 1986). In addition to the

scale of the physical variation, the nugget is also affected by the sampling scheme and

subsequent modeling. If the sampling scheme is not sufficiently dense, there will be

10

few semi-variance values to fit to at lower distances, and the model is likely to have

a larger nugget effect, as more small scale variations will fall below the scale of the

sampling. Moving past the nugget, the next dataset features are the range and sill.

The range and sill, also indicated in figure 2.1 , both occur at the flattening inflection

point. The range, indicated as the lag on the x-axis where the model flattens out,

represents the point where distance no longer explains semi-variance between samples.

For example, in a field sized survey area, two points with a 10 meter lag would be

expected to be significantly correlated, but two points with a 500 meter lag would be

expected to show little correlation, if any. The range is then the lag beyond which

can be assumed that two points are essentially uncorrelated. The sill, on the other

hand, is the corresponding point on the y-axis where the model flattens out. The sill

is the maximum expected semi-variance between two data points beyond the range.

If the range is shown to be 100 meters, the maximum expected semi-variance between

points separated by 110 meters and 1000 meters is the same, the sill. Each feature,

the nugget, range, and sill, is useful to the modeler as an assessment of both the

physical structure of variation in the field and model performance.

As the entire product of kriging is based on the fitted model, a careful assessment

of the semi-variogram and fitted model is indeed prudent for the modeler. While

the features described above are useful metrics, the modeler must still have an under-

standing of the limitations of the model and data. As an example of model limitation,

the idea of a range and a sill assumes that there is a clearly observed point where

distance and semi-variance are no longer related, and that there is a well defined

maximum semi-variance in the data. This may or may not be a valid assumption.

For instance, a semi-variogram constructed for an agricultural field may not observe

a clearly defined sill, if the physical variation is at a large enough scale. If a spherical

model is fit to the data, there will be a range and sill, but this will not be representa-

tive of the observed data. In this case, another model type, like linear or exponential,

may be able to fit the data more closely. In other times, the experimental data may

not be dense enough to yield a strong representation of the area of interest, even

11

considering several types of models. In this case, the semi-variogram may still be a

useful tool, as it could inform a secondary field sampling effort. For instance, if the

nugget is very large, this could mean the sampling regime wasnt dense enough to

capture variation. If resources allow, the dataset, and subsequently the model, could

likely be improved by additional sampling (Mcbratney et al., 1981). While this is

often impractical in an agricultural context, just understanding the limitations of the

dataset, model and subsequent map is still very useful in any application. As with

any algorithm or model, using kriging or other geostatistical methods in a Black-box

mode is always precarious.

Since the soil science community first adopted kriging in the 1980’s (Burgess

and Webster, 1980), the method has enjoyed consistent usage (Hengl et al., 2017).

Presumably, this is due to the fact that under ideal dataset conditions, kriging is a

best linear unbiased predictor (BLUP) (Cressie, 1990). As the BLUP, kriging has

been used in a multitude of applications ranging from geology to climatology to

hydrology Hengl et al. (2017). Additionally, as it is the BLUP, kriging is often used

as the benchmarking method in DSM studies developing new interpolation models

(Ramcharan et al., 2018; Vaysse and Lagacherie, 2017; Hengl et al., 2018).

2.2 Machine Learning in Digital Soil Mapping

2.2.1 Common Algorithms

Many ML models have been utilized at some point in DSM studies: Logistic

Regression Models (Kempen et al., 2009), k-Nearest Neighbor (Mansuy et al., 2014).

and Artificial Neural Networks (Aitkenhead and Coull, 2016), to name a few. These

studies have estimated soil class membership (Kempen et al., 2009), percent OM,

bulk density, clay content, etc., (Mansuy et al., 2014), and even soil carbon stocks

at a variety of depths in a variety of forms (Aitkenhead and Coull, 2016). Though

many models have been used to estimate many things in DSM studies in the past,

one algorithm family is favored: tree-based algorithms (Heung et al., 2016). First

12

formalized in 1984 (Breiman et al., 1984), tree-based algorithms were applied to soil

mapping as early as 1999 (Bui et al., 1999), and have enjoyed continued popularity

in the field (Guo et al., 2015; Subburayalu et al., 2014; Taghizadeh-Mehrjardi et al.,

2014; Behrens et al., 2010). One particular variant, Random Forests (RF) (Breiman,

2001), has been shown to be among the best ML algorithms currently used by the

DSM community (Heung et al., 2016), and as such has been the core of many recent

works (Ramcharan et al., 2018; Hengl et al., 2017). Additionally, RF is a robust and

flexible algorithm that can be tuned to minimize model overfitting.

Advanced though it is, the heart of the RF algorithm is the first tree-based al-

gorithm: Classification and Regression Trees, or CART (Breiman et al., 1984). The

CART algorithm is essentially a recursive 1D linear classifier(fig. 2.2 & fig. 2.3). The

goal of the 1D classifier is to divide the dataset into two datasets that are as dissimilar

as possible to each other and as internally homogeneous as possible. Once the dataset

has been split along the explanatory variable (or feature) axis and value that meets

this requirement, the process is recursively continued on both resulting datasets and

their children (fig. 2.3). Once a child dataset reaches a desired purity or minimum

number of values, the splitting process is stopped and that child dataset becomes a

leaf on the tree. To make a prediction with the trained tree, the unlabeled data is

fed in, and according to the values of its features, follows the path of the splits, or

nodes, down to the terminal leaf. There, the values in the leaf are used to make a

prediction of the likely value of the unlabeled data. This is illustrated by figure 2.4,

where landform attributes at percent OM observation locations are used to predict

percent OM.

13

Figure 2.2.: An Example of One-Dimensional Linear Classifier. Shown with Split

(Solid Line) and All Possible Splits (Dashed Lines).

14

Figure 2.3.: An Example of Recursive One-Dimensional Linear Classifier. Displays

Three Nodes of Recursive Splits, Shown as Solid Lines.

15

Figure 2.4.: Example Regression Tree, Using the Landform Attributes Observed at

Percent OM Observation Locations to Predict Percent OM.

This process of recursive division gives the CART algorithm several useful prop-

erties. It is able to model non-linear, non-normal relationships, and additionally is

suited to capture interactions between predictor variables, where the response of the

predicted value to a change in a predictor is linked to the value of several other

predictors (Heung et al., 2016). These properties are very useful in DSM, as the

relationship of soil properties and environmental variables is often quite complex

(McBratney et al., 2003). The main limitation of the CART algorithm is that very

subtle relationships, present in only a subset of the data points or predictive variables,

may be overlooked, as other, stronger relationships will give more clean divisions at

the node. To combat this limitation, RF uses an ensemble, or Forest, of trees, all of

which are trained on a random subset of the training data and features. By training

each tree on a random subset of the data (drawn with replacement), and choosing

each split point from a random subset of the features, each tree detects slightly differ-

ent relationships in the data and outputs slightly different predictions for each data

16

entry. To make a prediction, RF simply averages all the predictions of all the trees,

and returns that as the output.

RF has a selection of user defined parameters that could affect the efficacy of

the model. The most obvious parameter the modeler can set is the number of trees

in the forest; the more trees, the better the algorithm detects subtle relationships.

The return does converge at some point, but in general, there is no harm (aside

from computational speed) in training more trees. Two related parameters are the

minimum number of observations that can be in a leaf, and the maximum depth of

splits allowed. These two protect the model from overfitting by forcing a degree of

heterogeneity into each terminal leaf. Lastly, there are two parameters that introduce

randomness into the creation of each tree: the size of the sub-sampled set used to

train each tree, and the number of features to consider when looking for a split. As

with all models, to generate a quality output, the parameters must be tuned carefully,

with a knowledge of the model limitations.

2.2.2 Explanatory Variables

In any predictive effort (in any field), a set of known independent variables with

a relationship to the variable of interest is required. In each case, the nature of the

correlation between the variable of interest and these independent variables is some-

how approximated, then used to make predictions of the variable of interest. As

these independent variables (called features in the field of ML) form the base of all

predictions, the selection of applicable features is of crucial to any predictive work.

Features useful to soil prediction in DSM are summarized in seven categories: other

soil attributes, climate, organisms, relief, parent material, age, and spatial position

(McBratney et al., 2003). While each of these categories of features has been shown

to have meaningful relationships with soil variation, not every category will have

available datasets at the scale of the work. For instance, clay content and percent

OM are highly related to CEC (Helling et al., 1964), but very seldom are these at-

17

tributes available at a higher density that CEC itself, rendering them unhelpful as

explanatory variables. Thus, studies at smaller scales and higher resolutions often

have fewer features available to them than studies at larger scales with coarser reso-

lutions. Additionally, the scale of variation of many of the feature categories (climate,

organisms, parent material and age) is often larger than the scale of smaller works;

rainfall (a climate proxy) is unlikely to change much over a field. So, not only do

smaller scale works have fewer features available, many of the features available may

be more or less constant over the area of interest. The observation is illustrated well

by the comparison of two recent studies. A 2017 study predicting soil properties at a

250 m resolution for the entire globe used over a hundred features, representing every

category but age and spatial position (Hengl et al., 2017). Conversely, a 2015 study

working at a watershed scale used only seven features, representing only relief and

organisms (Zhu et al., 2015).

One feature category that is consistently used in every scale is relief, as a base

dataset is typically available at higher resolutions and the scale of variation is typically

quite small. In addition to the base dataset, i.e. elevation, many previous studies in-

cluded other topographic derivatives (like slope, curvatures, and hydrologic features)

to help represent the various processes by which soil properties are influenced by relief

(Moore et al., 1993; Zhu et al., 1996; Hengl et al., 2004, 2017; Ramcharan et al., 2018).

For example, soil on a steeper slope (the first derivative of elevation) is likely to have

undergone more erosive processes during formation, and as such would be expected

to have thinner topsoil and lower fertility. However, if that same slope coincides with

concave curvatures (the second derivative of elevation, taken along various planes),

it might be the toeslope of a hill, which could result in more soil deposition over

time, thickening topsoil and increasing fertility despite the slope. Of course, these

topographic processes occur over many scales, often with overlapping effects; a gully

could be on hill which could be in a river valley. To compensate for these multi-

scaled, layered phenomenon, some studies have used slope and curvature calculated

at several different scales to increase the accuracy of DSM predictions (Smith et al.,

18

2006; Behrens et al., 2010; Zhu et al., 2008). These multi-scale DEM derivatives

were created by calculating slope and curvature for several raster neighborhood sizes

(3x3, 9x9, 27x27, etc.,). Additionally, water flow and retention (governed by relief

as well) also play an important role in local soil formation: a depressional area that

retains water is more likely to have a build up of organic material over time, which

would result in higher fertility and percent OM. Thus, many studies also use topo-

graphic wetness index (TWI), a DEM derivative representing the theoretical degree

of perpetual wetness of a raster cell, to represent hydrologic processes, in the hope of

explaining some observed variation in soil properties (Zhu et al., 2015; Hengl et al.,

2017; Ramcharan et al., 2018).

By comparison with relief, fewer ML DSM studies use spatial position as a fea-

ture, though inherently any geostatistical DSM study relies heavily on spatial posi-

tion. This is likely due to the fact that most ML DSM studies use algorithms that

inherently have no spatial context: RF, a commonly used algorithm, considers each

raster cell as a distinct individual, separate from it’s neighbors. Using spatial position

as a feature presents a challenge then, as it requires either a new algorithm or some

feature representing spatial position at each cell. One recent study attempted the

former, replacing more typical algorithms with a convolutional neural network, which

considers a neighborhood of raster cells when predicting the central cell (Padarian

et al., 2019). Another study attempted the latter, including indices of spatial po-

sition as features for a RF implementation (Hengl et al., 2018). The second study

experimented with two representations of spatial position: simply the latitude and

longitude, and distances to known points. Interestingly, it was found that the dis-

tances to known points features performed better than the geographic coordinates

features, as the coordinates features seemed to output strong linear artifacts in the

prediction. However, details aside, ML studies that have included spatial position

have seen noticeable decreases in prediction error.

19

2.3 Conclusion

Geostatistical methods, specifically Kriging, are numerically sound and well proven

in the field of DSM. However, to ensure numerical accuracy, they must be applied

carefully, and with an understanding of both the method and the data. ML algo-

rithms, on the other hand, are noted for their flexibility and ability to easily include

a host of features to aid in prediction. Despite the flexibility however, a ML model is

typically less interpretable than a comparable geostatistical model, which means the

output is less easily verified. That said, the results of both methods are of unknown

accuracy when applied in a ”black box fashion,” and the results of both methods

are exceptionally useful when applied knowledgeably. Bearing all this in mind, the

potential of well done ML predictive efforts are still being explored, and there is much

room for optimization and novel applications. No ML DSM studies were found in the

review of the literature that attempted to create private field soil maps from private

soil samples, as is done with geostatistical methods today. Thus, a novel scope ex-

ists for developing and evaluating an application of ML that uses publicly available

datasets for developing field soil maps.

20

3. METHODS

3.1 Objectives 1 & 2

3.1.1 The Case Study

The soil data used in this research was provided by the Davis-Purdue Agricultural

Center (DPAC). The 22.26 ha sampled site (fig. 3.1) is located in Randolph County,

in East Central Indiana. The elevation of the site ranges from 293.2 to 297.2 m, and

the landforms are gentle; the slope of the site averages 1.1 degrees, with a maximum

of 9.5 degrees. The parent material of the site is glacial till, and before the land was

cleared for agricultural use, the native landscape was deciduous forest. The site is

now entirely cultivated, aside from a constructed waterway on the southern side. The

field boundary of the site was not provided, but was created in ArcMap using satellite

imagery and the soil sample data to guide the selection of field boundaries (fig. 3.1).

21

Figure 3.1.: Site Boundary and Soil Sample Locations. Soil Percent Organic Matter

Values are Color-Mapped onto the Point Locations.

A total of 110 soil samples were collected with a density of about 0.20 ha per

sample (fig. 3.1). At each sample location, 0.15-0.20 m deep sample cores were

collected from several locations within a 3 m radius of the sample coordinates. These

cores were aggregated into a single representative sample, analyzed for a collection

of attributes of agricultural interest, and the sample values were attributed to the

sample location.

Of these available attributes, percent OM was selected as the variable of interest

for this study for three reasons. First, percent OM is of great agronomic importance.

For one, a certain amount of plant available nitrogen is mineralized from OM in the

soil every growing season, meaning some areas of the field require less fertilizer to

22

reach desirable nutrient levels (Ferguson et al., 2002). For another, percent OM has

a strong influence on the CEC of soil, a fertility measure that impacts the amount

of micro and macro nutrients that can be held in the soil (Helling et al., 1964). And

as a final example, OM in the soil acts as a buffer against pH change; thus, when

calculating lime application rates, both the soil pH and the percent OM must be con-

sidered (Keeney and Corey, 1963). The second reason was that percent OM is known

to vary greatly within fields, often at a scale well below practical sampling limits

(Wollenhaupt et al., 1997). This provides a modeling challenge, as much variation

was likely not captured by the soil samples, and requires a strong model. The third

reason is that while many ML DSM studies predict percent OM (Moore et al., 1993;

Hengl et al., 2017; Ramcharan et al., 2018), no studies were found that attempted to

predict percent OM using a higher resolution DEM than that available in the State

of Indiana (1.52 m). In this field, the percent OM varied from 2.3 to 7.5 (fig. 3.1),

with most points nearer the low range than the high (fig. 3.2). While the error of

these samples is unknown, a study conducted in Idaho found that on average, the

standard deviation of repeated soil percent OM samples was about 0.86% (percent

being the unit, not 0.86% of the value range) (Hoskinson et al., 2004). While this

seems large, considering the limited amount of variation visible in the point values

(fig 3.1), it does point out that there is some amount of error in this dataset that any

model must contend with.

23

Figure 3.2.: A Histogram of the 110 Percent OM Values.

Typical sampling densities in industry are much less dense than the case study

dataset: the most common sampling densities are 2.02 ha, 1.01 ha, and occasionally

0.40 ha per sample (Erickson and Widmar, 2015), whereas the sampling density of

this soil data was 0.20 ha per sample. To more closely mimic a typical industry

conditions, a smaller subgrid of 28 points was selected for interpolation from the

original 110 samples dataset. This subset (fig. 3.3, in red), approximately a quarter

of the overall data, reduced the sampling density to a more industry comparable

0.795 ha per sample while still preserving the grid sampling pattern. The remaining

82 sample points from the original set were withheld from the interpolation process

and later used for validation (fig. 3.3, in blue).

24

Figure 3.3.: Points Selected For Training, Validation Points, and Site Boundary.

Points Selected For Interpolation are Displayed in Red, While Points Kept For Vali-

dation are Displayed in Blue.

3.1.2 Public Data

The base dataset used to represent relief was a publicly available Digital Elevation

Model (DEM). While there was a range of DEM datasets available, the 2011-2013

LIDAR survey of the State of Indiana was chosen, due to it’s combination of coverage

and resolution (State of Indiana, 2011). As the State hosts the DEM tiles on Open-

Topography (https://opentopography.org/), the DEM for the case study location was

retrieved by manually selecting an area of interest in the selection User Interface (UI)

on the OpenTopography website. The DEM had a resolution of 1.52 m, and was

25

in the Indiana State Plane East projection, which uses US Survey feet as it official

horizontal measure. As it was desired to conduct analysis in meters, and as the it

was later planned to automate DEM downloading and processing for all of Indiana,

it was decided to reproject the DEM into UTM zone 16, which encompasses all of

Indiana. The reprojection was handled using a gdalwarp command line operation,

which made for simple automation for objective three.

3.1.3 Benchmarking Methods

The first benchmarking method of the study was a simple whole field average.

The first step in creating this baseline benchmark was to find the average percent

OM value of the 28 sample points. To do this, the attribute table of the dataset

was opened in ArcMap (Esri, 2018) and a window was opened with the summary

statistics of the percent OM column. Next, in a Python script, the Rasterio library

(Gillies and Perry, 2019) was used to open the elevation raster as a template. A

Numpy (NumFOCUS Foundation, 2019) array of the same shape as the elevation

array was created and filled with the average value. This average array was then

written out as a GeoTIFF file with the same resolution, shape, projection, and grid

orientation as the case study DEM. Finally, the gdalwarp command, part of the gdal

library (GDAL/OGR contributors, 2019), was used to constrain the DEM to the field

boundary.

The second benchmarking method was a substitute for grid interpolation, nearest-

neighbor. To create this prediction soil surface, a Python script first used the Rasterio

library to open every raster of euclidean distance to known points and load the values

as Numpy arrays. Next, a new array of the same shape was created and filled with

nodata values. Then, a function looped through each row and column of the arrays;

examining which distance array had the smallest value. If a euclidean distance array

had the smallest value, this meant that it was the closest sample point to that cell.

Thus, the value of that sample point was assumed to be value of the cell at that

26

index, as it was closest. Once every point had been evaluated, the resulting array was

written out as GeoTIFF file with the same metadata as the elevation raster, and the

gdalwarp library was used to constrain the DEM to the field boundary.

Since the third method, Ordinary Kriging (OK), attempted to fit a model to the

data, several assumptions about the dataset were examined. First, it was visually

checked that spatial autocorrelation was present in the data using a semi-variogram;

if this wasn’t valid, the model would’ve been very weak. Second, clustering of data

points was visually checked. Third, the dataset values were examined for a normal

distribution. Fourth was check for trends in the data (as OK assumes a constant,

unknown mean and estimates the residuals). Lastly, the data was examined for sta-

tionarity, or in other words, it was checked that the level of autocorrelation should be

the same throughout the map; there should not be large areas of uniform values and

small areas of highly variant values. As this list of assumptions was rather extensive,

some of these assumptions were violated, and required tailored corrections to be ap-

plied before applying OK. To streamline all assumption checks and corrections, each

was examined by using the explore data tab of the ArcMap geostatistical analyst

extension, as these pre-made tools limited human error. Additionally, once all as-

sumptions were complete, all corrections and model fitting were done in the ArcMap

geostatistical wizard, as this limited human error and allows for automatic parameter

optimization. After selecting the dataset and column value to krige and the type of

kriging, two dataset corrections were applied in the wizard: a transformation and

a trend removal. Next, after selecting the semi-variogram model type, the wizard

automatically optimized the model parameters (lag size, number of lags) to achieve

the best fit. After the wizard output a prediction layer, the result was exported as

a raster, with the same resolution, grid, and projection as the elevation dataset, and

clipped to the field boundary.

27

3.1.4 Developing the Prediction Framework

Machine Learning Implementation

The particular implementation of RF used in this study was the RandomFore-

stRegressor Python package published by scikit-learn (Pedregosa et al., 2011). This

particular package was chosen for a variety of reasons (ease of use, well proven, etc.,),

but the most significant reason was that a metric of feature importance could be re-

trieved from the trained model (Pedregosa et al., 2011). After the model was trained,

the Mean Decrease in Impurity (MDI) (Breiman et al., 1984) could be calculated for

each explanatory variable (or feature) and used to generate a rough metric of how

useful each feature was for dividing the dataset. This was very useful while prototyp-

ing which features would be included in the model featureset, as it provided a rapid

metric for each feature, and was much more objective than training and testing the

model with and without every possible feature. It is important to note that the size

of sub-sampled set for each tree in the scikit implementation was hard coded to the

size of the input set, but as this sub-sample was still generated by randomly drawing

with replacement, it was considered random enough (Pedregosa et al., 2011).

As the dataset size was smaller in comparison to most DSM studies, and overfitting

is a common issue with small datasets, it was decided to also implement another

RF variant that was potentially more resistant to model overfitting. This variant

was another Python package published by scikit-learn, ExtraTreesRegressor. It was

chosen because the two algorithm implementations were very similar, requiring the

same inputs and outputting data in the same way. This allowed for very simple

tuning, as the ExtraTrees implementation was similar enough that both algorithms

responded worked best with identical parameters. The difference between the two

was that the ExtraTrees implementation added another layer of randomness when

selecting split points. The first implementation, RandomForests, would check every

value of every feature for a potential split, then choose the feature and value that

returned the best split. ExtraTrees would randomly generate possible splitting values

28

for every feature, then choose the feature and random value that returned the best

split. While this potentially reduced the ability of the algorithm to fit the data,

it added another defense against fitting to exactly the values present in the limited

dataset. As these algorithms were to be fitted to a very small dataset, it seemed

worthwhile to include.

When tuning the models, the first objective in building the RF models was to

make sure both RF algorithms were robust to the low data conditions. To achieve

this, it was determined to tune the parameters (table 4.4) to keep the forests shallow

and wide. By keeping the fit of each tree shallow, the likelihood of fitting the model

too closely to relationships only found in the training data, or overfitting, is reduced.

This is done by restricting the minimum number of observations in any particular leaf

to a large (compared to the dataset) value, which limits the number of splits and forces

heterogeneity in the prediction nodes of every tree. However,the shallowness of the

individual trees limits the ability of any one tree to learn subtle relationships present;

to offset this, a very large (or wide, keeping with the metaphor) ensemble of trees

must be created. If each tree can detect a small portion of the subtle relationships,

then the ensemble captures every relationship that can be captured. The larger the

ensemble, the better the prediction.

As another check against overfitting, the picture of the data that each tree is built

on was randomized. The more random the subset of data used to train each tree,

the more likely each tree will detect a subtle relationship present in the data subset;

this makes the ensemble much less likely to overfit to obvious relationships present in

the training data (Breiman, 2001). Another parameter that introduces randomness

during training is limiting which features could be evaluated at each splitting node.

Randomly selecting a subset of features kept the trees from all splitting at identical

split points, and forced the ensemble away from the properties only present in the

sample observations.

29

3.1.5 Feature Data

Representing Relief

In addition to elevation, many studies found value in adding other DEM deriva-

tives to the feautureset, like slope, curvatures, and topographic wetness index (TWI)

(Moore et al., 1993; Zhu et al., 1996; Hengl et al., 2004, 2017; Ramcharan et al., 2018).

With this body of works in mind, it was determined to include elevation, slope, curva-

tures, and TWI in the initial featureset. In the case of the first derivatives, slope and

curvatures, some studies found value in calculating them over various neighborhood

sizes (Smith et al., 2006; Behrens et al., 2010; Zhu et al., 2008). Typical geospatial

softwares calculate these derivatives using the 3x3 neighborhood around each cell,

which the slope length of interest is set by the raster resolution (Smith et al., 2006).

Thus, if the resolution of the raster is 1.52 m, the slope is calculated at 4.56 m. This

neglects the complex nature of topography however; as a small rise can be in a low

area, which in turn could be in a valley, each contributing to the formation of the soil

there. To represent these multi-scale processes, a Python script had to be written to

calculate slope and curvatures over a varying neighborhoods. Before any the slopes

and curvatures could be calculated however, the DEM first needed prepared for the

sliding window operations needed to calculate the slopes and curvatures. In a sliding

window operation, the cells in a square ”neighborhood” around the cell of interest

are used to generate the value of the cell of interest. If a 9x9 neighborhood is used,

then the focal cell will be at the center of a neighborhood of cells nine wide and nine

high. The challenge of this operation is that cells near the edge of the DEM may

not have a full neighborhood: the cell on the edge won’t have other values to fill the

neighborhood, and therefore cannot be estimated. To be used as a feature, every cell

needed for the prediction should have real values, and therefore cannot be an edge

cell without a neighborhood. To make sure that every cell in the area of interest has

real values, the DEM needs to have a buffer of cells outside the area of interest, large

enough that every cell in the area of interest can have a full neighborhood.

30

To make sure the DEM had this buffer while still limiting the processing required

to create slope and curvatures, the DEM was clipped a bounding box with a large

buffer distance from the field boundary. To do this, the field boundary shapefile

was loaded into the Python library Geopandas (McBride et al., 2019), and a new,

boundary object was created with a 150 m buffer from the original boundary, using

the geopandas.buffer() function. Then, a new object was created to represent the

bounding box of this buffered boundary, using the geopandas.envelope function. This

rectangular bounding box, at minimum 150 m larger than the field boundary, was then

written out as a shapefile. This new shapefile was then used in a gdalwarp command

line operation to clip the DEM to an area at with edges at least 150 m away from

any point of interest. This prepossessing kept the original resolution, projection, and

grid orientation of the DEM, and made sure there was enough room on the edge

for every point of interest to have a full neighborhood for sliding window operation.

Additionally, all subsequent features were created at the resolution, projection, and

grid orientation as the buffered DEM.

In the Python script for calculating slope and curvatures at custom neighborhood

sizes, the DEM was first read in by the rasterio package as a 2-d numpy array, then,

a sliding X-x-X neighborhood around each cell, with X set by the neighborhood size,

was passed on for calculations. Then, the scikit-learn library, linalg (Pedregosa et al.,

2011), was used to fit a 3D quadratic function to the neighborhood (using ordinary

least squares (OLS) estimators). After the elevation surface was fitted, slope, profile

curvature, and plan curvature were calculated as described by Smith et al. (2018,

section 6.2) and attributed to the focal cell. Finally, after analysis was done, these

arrays were written out as GeoTIFF files with the same projection and grid as the

DEM. As a starting point, this was repeated at several neighborhood sizes, 5x5, 25x25,

75x75, & 115x115, and these were included as features in the initial feature set. In

contrast to the multi-neighborhood curvatures, there were already established tools to

calculate TWI, and ArcMap was used to calculate TWI rather than a custom Python

31

script. The TWI was calculated using the process flow described by Zimmerman and

Shallenberger (2016) and the equation given below.

(3.1)

Along with TWI, several other hydrologic features were included in the initial

feature set, as it was thought they could capture or better represent other hydrologic

processes. The first additional feature was flow accumulation (calculated using the Ar-

cMap toolbox), which was thought to represent perennial streams and gullies, rather

than wetness like TWI. The second was Horizontal Distance to Stream Network,

which was thought to represent possible erosive processes; the closer to concentrated

flow, the more erosion, so it was thought. This was calculated by thresholding the

flow accumulation raster in the ArcMap raster calculator to extract a stream network

raster (1 if a stream, 0 otherwise). Then, the eculidean distance tool in the ArcMap

toolbox was used to find the Euclidean distance to the stream network for each cell.

Once created, TWI, flow accumulation, and horizontal distance to stream network

were added to the initial featureset.

Representing Spatial Position

It was determined to represent spatial position by using rasters of euclidean dis-

tance to each known point, as described by (Hengl et al., 2018). To create a raster

for every point (fig. 3.4), the soil sample shapefile was read into a Python script

with the geopandas library. Next, each soil sample was individually selected from the

sample set and passed into a rasterizing function. Within the function, the Python

rasterio library used the features sub-library to rasterize the point into an array with

the same shape as the elevation feature. After the rasterized array was created, a

boolean mask was created using numpy logical functions, showing the rasterized point

as 1 and all nodata values as 0. This array was then written out to a GeoTIFF file

(with meta matching the elevation feature) with rasterio i/o functions. Once all the

32

points had been rasterized individually, a second script used the files as the base

for euclidean distance analysis. One by one, each file was passed as the input to

the gdal proximity.py command line script, which generated a second GeoTIFF file

of euclidean distance (measured in cells, for simplicity) to the single point. Finally,

once each of these files were created, all 28 distance rasters were added to the initial

featureset.

Figure 3.4.: Flow Chart Representing the Creation of Euclidean Distance Features.

Once the entire initial featureset had been created, the set of feature values cor-

responding to the location of each of the 28 training points was extracted (fig. 3.5).

Every feature was a raster, and every raster was of identical resolution, shape, and

snapped to the same grid, which allowed simple cell indexing. First, the exact position

of a rasterized point was determined by checking the index of the single true value in

the individual masked files. This cell index corresponded to the location of the ras-

33

terized point, and in turn, the value of each feature at that particular cell index was

extracted and added to the feature list for that particular point. This was repeated

for each sample location, and the resulting Python lists comprised the training set:

target values, and the feature values that corresponded to them. A similar process

was followed for creating a prediction set, except this set did not have target values.

Figure 3.5.: Visual Representation of Grid Based Features and How Feature Values

for a Single Location Are Extracted.

Refining the Featureset

The initial feature set served as a starting point, but the feature set was to be

iteratively modified and trimmed by training a prototype model and examining the

feature importances that the trained model output. The feature importance scores

output by the model were a measure of how decisive a feature was in splitting the

data at tree nodes: was it used often, and how cleanly did it split the data on those

34

occasions Breiman et al. (1984). To begin trimming the featureset, the model was

trained and feature importances would be examined, relative to each other. Typically,

some features stood out as strong predictors, and others stood out as poor predictors.

If a feature, TWI for example, scored poorly, several more models would be trained to

determine why. First the model would be trained again, but without features similar

to the poor scoring feature: in the case of TWI, the other hydrologic features would

be withheld. This would check if TWI was indeed a bad predictor, or if other features

explained the same things that TWI explained. The process of evaluating a feature

would be done iteratively, dropping other features, including them again, all at the

judgment of the modeler, in an attempt to evaluate if a feature was worthwhile to

include. In the end, it was the judgment of the modeler to include or remove a feature

after testing.

In the interest of automating the prediction framework, it was assumed that fea-

tures deemed useful in this particular case study would be useful to any field soil

interpolation in the future. While this may or may not be true in any given case,

(perhaps for soil pH, slope has no predictive power) it was assumed that by including

all features important to this case study, some features would always stand out as

predictive of the soil property.

3.1.6 Validation and Testing

After finalizing parameters for the RF and OK models and producing the grid-

based and field average predictions, a series of experiments was ran. The first experi-

ment was an even footing comparison of RF and OK: the RF feature set included only

distances to known points, with no topographic features. By building a spatial posi-

tion only RF model, the advantage of any other explanatory variable was removed.

This allowed for a direct comparison of RF and OK: any difference in accuracy had

nothing to do with extra data, simply the ability of the method to make a predic-

tion with the same data. The second experiment was an evaluation of relief alone

35

as a explanatory variable. The RF model was built using only relief-based features,

without any spatial position data. If the model performed well, it would show that

relief is related to soil property variation at a small scale, and would validate the use

of relief-based features. Also, building a relief based model would allow for a relative

comparison spatial position (the sole explanatory variable for experiment one) and

relief, to see which feature was stronger. The third and last experiment was an RF

model that used both the spatial position features from experiment one and the relief

features from experiment two. This tested the viability of including more than one

feature type in a field soil map prediction; an increase in prediction accuracy between

the first second experiment RF results and the third experiment RF results could

be directly linked to the inclusion of the relief features. Additionally, if spatial posi-

tion and relief explain different variations in the percent OM, it would seem that the

combined featureset model should make the strongest prediction seen in the study,

providing a best case scenario.

For each model, in each experiment, a prediction for the entire area of interest

based on the 28 training points was made. After the prediction was made, the raster

cells closest to the 82 validation points were selected as the prediction for that partic-

ular validation point. Using this set of predicted and measured values, four common

performance metrics were calculated: Mean Absolute Error (MAE), the standard de-

viation of the absolute Errors, Mean Absolute Percentage Error (MAPE), and Root

Mean Squared Error (RMSE). MAE, calculated using the equation below, is exactly

as it sounds: an average of the absolute errors, or absolute residuals. If a model had

zero error, the MAE would be zero, so the smaller the MAE score, the better the

performance.

36

(3.2)

The standard deviation of the absolute errors was calculated using the equation

below, to allow for statistical comparison between interpolation error sets. Using the

MAE and the standard deviation of the absolute errors from two interpolations, a two

sample t-test could then be ran between them, to test the null hypothesis that there

is no difference between the mean absolute error of the two models under comparison.

The statistical significance will be evaluated using p-value and the criteria that p at

or below 0.05 would result in the rejection of null hypothesis.

(3.3)

Mean Absolute Percentage Error (MAPE) calculated using the equation below,

is very similar to MAE, but rather than an average of the absolute errors, it is an

average of the absolute percent errors. While MAE is useful, it is not always simple

to get a grasp of the relative amount of error using it alone. By using the MAPE, an

estimate of the percentage error in the interpolation can be reviewed.

37

(3.4)

While the MAE might tend to average out a few outlying high errors, Root Mean

Squared Error (RMSE) calculated using the equation below, is particularly sensitive

to individual large errors, as all the errors used to calculated RMSE are first squared.

Because of this, it can be very interesting to compare RMSE and MAE; if the RMSE

is very large in comparison to the MAE, this may indicate that there are several errors

that are much larger than the rest.

(3.5)

3.2 Objective 3

In order to make a means of generating high quality interpolations accessible to

the public, a self serve webtool was created where users can upload their data and

retrieve interpolations made by the ML framework. One challenge in creating this

webtool was that the ML framework was not lightweight, either in processing or in

38

environmental constraints. Running on a desktop, the framework took between three

to five minutes to download elevation data, create a feature set, train, predict, and

write out data, depending on CPU load. This processing would use the entire core,

and often slow down other processes. If this heavy processing load was put on the

client’s browser, their device would likely experience the same symptoms, diminishing

the user experience. In the environmental sense, the framework required several

specific dependencies (like gdal command line utilities) on the host machine that were

unlikely to be available on a user device. To deal with this, the ML framework was

split from the client run UI and hosted on a Purdue Linux server with 4GB of memory

and 150 GB of disk space, running Ubuntu 14.04 and maintained by Purdue AgIT.

Additionally, to remove another burden from the user, the ML parameters were set

up for field soil mapping with limited sample data, which will aid the untrained user

in using the tool. The webtool requests a user’s geolocated soil sample data, either in

.shp or .csv format. If the user chooses to upload their data in .shp format, the webtool

requires them to include all required files, and allows them to select any numerical

data property as the property to be interpolated. If the user chooses to upload a

.csv, it has to include at least three columns of numerical data: latitude, longitude,

and a property to interpolate (fig. 3.6). The must define which row represents each

mandatory field, but the webtool checks the data to make sure they’re numerical.

39

Figure 3.6.: An Example CSV File, Containing Columns For Latitude, Longitude,

and Properties of Interest.

Once the soil data is uploaded and verified, the user has the opportunity to review

the data on a map. If the user is satisfied with the data, they draw their field boundary

and ask to submit. If their boundary and soil data is verified, they submit their

data to the server side, where it is processed and passed into the Python prediction

framework. They then receive an email with their request ID, and can check the

status of their request at any time using the webtool. Once their request is complete,

they receive an email, and they can view the prediction output. Finally, the user

downloads their interpolation as a GeoTIFF file.

The core framework of the webtool was the Reactjs JavaScript library (Facebook

Open Source Contributors, 2019). The React library was used to create the backbone

of the application because it has useful rendering properties, and can create a basic,

starting point application with useful boilerplate. However, managing application

state is somewhat complex with React alone, so Cerebraljs (CerebralJS Contributors,

2019) was used for state management. To save time and give the application a clean

40

cut look, Material-UI (Material-UI Contributors, 2019), another JavaScript library,

was used for application components and formatting. To show geospatial data inn

the UI, Leafletjs (LeafletJS Contributors, 2019) is a useful library, but as it typically

doesn’t work well alongside React, React-Leaflet (Le Cam, 2019), a library that wraps

Leaflet for React applications, was used primarily. Loading client files was difficult,

but Shapefile (Bostock, 2016), another Javascript library made to read shapefiles in

memory, made it simple to convert Shapefile data into GeoJSON format, a standard-

ized vector data format for the web. This then could then be passed to Turfjs (TurfJS

Contributors, 2019), a very useful geospatial library. Turf was used to validate user

provided data, checking for valid shapes, reasonable area sizes, reasonable boundary

lengths, and that all the sample points were within the field boundary. Finally, once

all data was collected from the user, the Axios library (Zabriskie and Uraltsev, 2019)

was used to communicate with the back-end.

The core framework of the back-end was a JavaScript Node Express application

(Node.js Foundation, 2019b,a) that managed user requests. To keep users from over-

loading the server, express-rate-limit (Friedly, 2019), a node package, checked how

frequently users submitted requests, and blocked fraudulent use. As the interpolation

was processing intense, it was decided to have the server run on it’s own, detached

from the webtool, and email users when their request was done. The emailing was

done using Nodemailer (Reinman, 2019), another package, and Google APIs (Google

Developers, 2019), which allowed the server to send an email to the user from a

professional looking account. The real machinery of the application however was a

Python script, ran as a child process of the Node Express app. The script first used

the Python geopandas library to perform similar checks on the user data as Turfjs

in the webtool: reasonable area, valid shape, etc. After the validation was finished,

the Requests Python library (Reitz, 2019) was used to fetch DEM tiles from the

OpenTopography server. A collection of gdal command line operation were used for

DEM processing, ran from the Python script with the subproccess Python library.

Once the DEM was processed, the Python library rasterio was used to load the DEM

41

in and write out other raster data. While the heart of rasterio was actually gdal

operations, rasterio had useful convenience functions that saved time when scripting.

Anytime the raster data needed accessed, the raster would be loaded in and the band

would be extracted as a numpy 2-D array, as numpy is exceptionally useful for array

based data indexing and analysis. As previously stated, various packages from the

scikit-learn library were used both for analysis and interpolation.

The entire development (the webtool, API, prediction framework scripts, and

database) was first developed locally in a developing environment. After everything

was complete, it was determined to containerize the entire application for deployment.

This was accomplished by creating a docker container and customizing the virtual

machine for the needs of the entire system (Docker Inc., 2019). A container that

came with gdal utilities pre-installed was used as the base container, and the rest

of the system dependencies were included in setup. Finally, after all development

was complete, the container was deployed to a Purdue server. A domain name,

https://precision.ag.purdue.edu/soilinterpolation/, was chosen, and the domain was

rerouted to the server port, exposing the webtool and server.

42

4. RESULTS AND DISCUSSION

4.1 Objective 1: Establishing a Baseline

4.1.1 Applying A Field Average

The numerical performance of the field average percent OM prediction held some

interesting points (table 4.1). In terms of percentage error, the MAPE was 23.9%,

so on average, the prediction was 23.9% off. Additionally, as the gap between the

RMSE and MAE was not dramatic, this would seem to imply a relatively even spread

of error values, rather than one or two large errors. As this was a prediction of the

field average, this made sense.

Table 4.1. MAE Scores, The Standard Deviations of The Absolute Residual Sets,

MAPE Scores, and RMSE Scores

Experiment MAE STDEV MAPE RMSE

Field Average 0.909 0.685 23.9% 1.136

Grid 0.973 1.005 24.4% 1.395

Ordinary Kriging 0.959 0.973 23.6% 1.362

Random Forest: Spatial features only 0.779 0.599 20.3% 0.981

Extra Trees: Spatial features only 0.779 0.604 20.3% 0.983

Random Forest: Relief features only 0.715 0.535 18.3% 0.891

Extra Trees: Relief features only 0.739 0.565 19.1% 0.928

Random Forest: Spatial and relief features 0.678 0.504 17.5% 0.843

Extra Trees: Spatial and relief features 0.688 0.524 17.9% 0.863

43

The visual prediction (fig. 4.1) offers little in the way of insights, as there is

no variation in the predicted value of percent OM, 3.957. However, it does show

the shape of the field, and offer a reference point for prediction comparisons (the

color-map for all predictions is set to the same scale).

Figure 4.1.: Predicted Percent OM, Using The Field Average.

44

4.1.2 Applying A Grid Prediction

The MAE, MAPE, and RMSE were larger for the grid prediction than for the

field average (table 4.1), though there was no significant difference in the absolute

residual sets between the models (table 4.2 & table 4.3), which implies no significant

performance difference. The gap between MAE and RMSE was a bit larger than the

gap for the field average prediction, which implies that a bit more of the error was

coming from larger values, but the amount was not alarming. These results implied

that predicting the average value provided at least equal, if not better results than

the nearest neighbor approach used in the grid interpolation. While this may not

be the case for every field, it seems that in this case study, the grid size used was

unable to pick up on the short scale variation present in the dataset. The points were

simply not similar enough to their neighbors for the nearest neighbor approach to

work well. While surprising, it seems as though, in this case, similar performance can

be expected by predicting the average and predicting with a grid based interpolation.

45

Table 4.2. A Key For Interpreting Table 4.3, Where Each Interpolation Is Assigned

A Unique Number.

Experiment Key

Field Average 1

Grid 2

Ordinary Kriging 3

Random Forest: Spatial features only 4

Extra Trees: Spatial features only 5

Random Forest: Relief features only 6

Extra Trees: Relief features only 7

Random Forest: Spatial and relief features 8

Extra Trees: Spatial and relief features 9

46

Table 4.3. Two Sample T-test Results For Every Model Comparison; Created Using

MEA And The Standard Deviation of The Absolute Errors. Any P-Values Significant

At A 5% Level For A Comparison Are Displayed In Bold. The Null Hypothesis of

The T-test Was That The Two Absolute Residual Sets Had The Same Mean.

1 2 3 4 5 6 7 8 9

1 1.00 X X X X X X X X

2 0.64 1.00 X X X X X X X

3 0.70 0.93 1.00 X X X X X X

4 0.20 0.15 0.16 1.00 X X X X X

5 0.20 0.14 0.16 1.00 1.00 X X X X

6 0.05 0.04 0.05 0.47 0.47 1.00 X X X

7 0.08 0.07 0.08 0.66 0.66 0.78 1.00 X X

8 0.02 0.02 0.02 0.24 0.25 0.65 0.46 1.00 X

9 0.02 0.02 0.03 0.30 0.30 0.74 0.55 0.90 1.00

An inspection of the visual prediction (fig. 4.2) reveals the characteristic grid

shape of the grid based interpolation, but with a few minor deviations. Rather than

a manually created grid, this prediction was created by assigning the value of the

sample point nearest the the unknown point. As the sample grid was not a perfect

rectangular grid, the prediction reflects this. For instance, two rows of samples in

the center of the prediction were slightly to the left and right of each other, which

resulted in a row of slightly diagonal grid boundaries through the center. Aside from

this however, the prediction holds to the idea of the grid based interpolation, and

provides a sound proxy.

47

Figure 4.2.: A Grid Based Prediction of Percent OM.

4.1.3 Applying Ordinary Kriging

The histogram created to test the OK normality assumption (fig. 4.3), shows a

positive skew in the data distribution of the 28 percent OM values. The skew was

confirmed by the summary statistics, which reported a median value (3.55) lower than

the mean (3.96).

48

Figure 4.3.: Histogram of The Percent OM Values of The 28 Points Used For Inter-

polation.

This strong skew violated the OK assumption of normal distribution. Therefore,

the test data was transformed using a Box-Cox transformation with a power of -1.6.

While the result was visually rough (fig. 4.4), this was found to nearly converge the

values of the mean (0.55) and median (0.54). With this numerical correction, the

value distribution was considered sufficiently normal.

49

Figure 4.4.: Histogram of the Box-Cox Transformed Percent OM Values of The 28

Points Used For Interpolation.

The second assumption of OK, the points to be interpolated are not spatially

clustered, was found valid as the points were sampled on a roughly even grid (fig.

4.5).

50

Figure 4.5.: Sampling Locations, Displaying Non-Clustered Layout.

To visually examine the third assumption of OK, that there are no spatial trends

in the dataset, several polynomials of different orders were OLS fitted to the data (fig.

4.6). A strong N-S first order trend and a strong E-W second order trend was found

in the testing data. To correct for this, a second order trend removal was conducted

before interpolation in the geostatistical wizard, followed by kriging. After kriging,

the second order trend was added back to the kriged result by the geostatistical

wizard.

51

Figure 4.6.: A Trend Analysis of The Percent OM Dataset, Revealing First and Sec-

ond Order Trends. The Three Dimensional Polynomial Is Shown As Two-Dimensional

Slices: Where It Intersects The Northern Boundary of The Field (Green), and Where

It Intersects The Eastern Boundary of The Field (Blue).

To check the assumption of stationarity, a Voronoi map of entropy was created

for the dataset (fig. 4.7). The Voronoi map revealed a moderate amount of non-

stationarity in the dataset. However, as there is no correction for non-stationarity,

no corrections were made.

52

Figure 4.7.: A Voronoi Map of Entropy For The Percent OM Dataset.

Lastly, a semi-variogram of the data was constructed to check the assumption of

spatial autocorrelation (fig. 4.8). The semi-variogram suggested the presence of low

spatial autocorrelation in the dataset, as the spherical model was nearly flat; the value

of the nugget (0.000195) seems to be the almost constant value of the model. While

there may be many processes at play, it is highly likely that the main cause of this

inability to easily model spatial autocorrelation with a spherical model is the direct

result of the limited samples at hand. While densely sampled compared to most DSM

efforts, the large nugget and almost non-existent partial sill (sill minus the nugget)

53

suggest that the samples are still taken at a resolution too coarse to capture the in

field variation. If the area of interest had been larger, providing more samples, then

it is possible the model would’ve been able to fit the spatial autocorrelation of the

site more cleanly, regardless of the coarse resolution. As it is, the point cloud does

seem to demonstrate lessening spatial autocorrelation as the lag increases, but four

high values at a small lag seem to skew the model. Again, more points over a larger

area would’ve likely reduced the impact of those outliers, which are likely caused by

a single point with a value very different from it’s four closest neighbors. The spatial

autocorrelation of the dataset, using a spherical model, was perhaps not the best fit.

However, the fitted model, with a nugget of 0.000195 and a range of 198 meters, was

still used as a basis for OK interpolation.

Figure 4.8.: Semi-Variogram and Accompanying Spherical Model of The 28 Percent

OM Samples.

54

The performance measures used for evaluating OK interpolation and the grid

interpolation were very similar. Also, the OK interpolation displayed a higher MAE,

MAPE, and RMSE than the average prediction (table 4.1), though no significant

difference in accuracy is detectable between the two (table 4.2 & table 4.3). Once

again, it seems that in this case, it’s just as good if not better to predict the average

than to use the OK interpolation. This serves to reveal how weakly OK was able to

model the data. As the semi-variogram spherical model was nearly flat at the value

of the nugget, it shouldn’t be a surprise that the model fitting was poor.

The visual results (fig. 4.9) at least seem to track with the general variation

observable in Figure 3.1 in the sections above: a strong belt of low percent OM in the

lower half of the field, increasing values in the top and bottom, and strong increases

along the upper sides. The model also seems to predict with the full range of values

in the dataset, from nearly 8 percent down to near 2 percent. On another note, there

are some interesting artifacts clearly visible in the prediction. Overlapping circles

of roughly similar sizes appear to layer and form the predicted values; these clearly

represent the dependence of the model on distances from known points. The circular

artifacts denote the range of influence that any one point has. It is likely that an

increase in the number of points to predict with would result in the smoothing out

of these artifacts, as limited nature of the prediction set seems to rely heavily on

individual points.

55

Figure 4.9.: Ordinary Kriging Percent OM Prediction.

The results of the OK and grid-based predictions indicate that both predictions

are not significantly different than the field average prediction based on the t-test

conducted using MAE and the standard deviation of the absolute residuals set (table

4.2 & able 4.3). In the case of the grid based prediction, it would seem that the

sampling density was simply not high enough to capture the real variability in the

field. If this is the case, the best way to make a sound grid-based prediction is higher

56

density sampling. In the case of OK, the prediction seems to have been hampered by

at least one outlying value, which, as the dataset size was limited, was not dampened

out. As there was evidence that several of the basic assumptions of OK (stationarity

and spatial autocorrelation) were violated by the dataset, an informed modeler would

likely experiment with other semi-variogram models, and perhaps even choose another

interpolation method with less stringent assumptions. However, in the case of an

average grower, it is likely that little data exploration would be done, and a grid

prediction or OK would be used in a black box fashion. Clearly, this is a dangerous

proposition, as this case study revealed that neither method guarantees a prediction

better than a simple field average.

4.2 Objective 2: Develop an Improved Method

After some model prototyping and calculations, the RF parameters were set (table

4.4). Both the maximum tree depth (number of child nodes) and minimum obser-

vations in a leaf were set to 4. Less than 4 values in the prediction nodes made

the prototype model more vulnerable to outlying values and increased the number

of artifacts seen in the visual predictions. Once the depth was set, it remained to

set the size of the ensemble: experimentation found that as few as 500 trees in pro-

totype models could provide consistent performance from model to model, and with

largely converged performance. However, as there was no downside to train a larger

ensemble, the largest forest computationally practical to train was used, 4,000 trees.

The last parameter, the maximum number of features considered for a split, was set

at 50 percent, as this provided a balance between overfitting and not being able to

model the data. Under 50%, the prototype model performance began to decrease,

and above 50%, stronger artifacts began to appear in the visual results. As both RF

variants were nearly identical, they both seemed optimized at the same parameter

values, and values discussed above were used for both variants.

57

Table 4.4. The Random Forest Model Parameters.

Parameter Value

Maximum Depth 4

Minimum number of observations in a node 4

Number of trees in the forest 4000

Maximum number of features used for a split 50%

4.2.1 Experiment 1: Spatial Position

To represent the spatial position, the euclidean distance of every raster cell to

every known point was used as the feature set. Figures 4.10, 4.11, and 4.12 are

examples of these 28 distance rasters.

58

Figure 4.10.: Euclidean Distance To A Sample Point, Measured In Raster Cells.

59

Figure 4.11.: Euclidean Distance To A Sample Point, Measured In Raster Cells.

60

Figure 4.12.: Euclidean Distance To A Sample Point, Measured In Raster Cells.

While both RF models bested the three benchmark methods in MAE, MAPE,

and RMSE (table 4.1), the performance difference between them was insignificant

at 5% (table 4.2 & table 4.3). The MAE revealed that the average prediction was

about 0.8 off, or in terms of percent error (MAPE), 20.3%. The gap between the

MAE and the RMSE for the variants was small, implying a relatively even amount

of error. As the field average made no insight into variability, any model that could

slightly follow the data trends would outperform it, which is what happened in this

case. The grid prediction was unable to compensate for variations occurring below

61

the scale of sampling, and it seems the RF models were able to detect overall trends

occurring below the dataset scale. OK, while typically the method of choice for DSM

benchmarking, did not meet basic modeling assumptions. Though normality and

trends were corrected, OK lacked mechanism to compensate for non-stationarity in

the dataset, as well as for undetectable spatial autocorrelation. Stationarity forms the

basis of all linear modeling, and in the absence thereof, there is no simple recourse.

This particular dataset had an area of relatively uniform values in the lower half,

coupled with an area of high variation in the upper half. Combined with a few

outlying values, this violated the assumption of distance/variation stationarity OK

required in order to model the relationship at hand and resulted in a fitted model with

almost no spatial variation explained by distance at all (fig. 4.8). The RF algorithms,

on the other hand, are not tied to assumptions of linearity, normality, trends, etc.

Of course, data that fits these criteria is simpler for any method to model, but the

nature of the RF algorithm allows it to adapt to non-stationary data. In this case,

this flexibility seems to have given RF a slight advantage over OK.

One second interesting insight is the fact that the performance between the two

RF models was virtually identical. Not only was the performance difference between

the two statistically insignificant, but the values were nearly the same as well. In this

case it would seem that one prediction is likely as good as the other.

The visual results also hold some interesting insights. Both the RandomForest

variant prediction (fig. 4.13),, and the ExtraTrees prediction (fig. 4.14), seem to hold

with the general flow of values visible in the points (refer to Figure 3.1). Additionally,

both predictions seem to generally agree with each other and the OK prediction (fig.

4.9). One key visual difference between the RF and OK predictions is the fact that

the RF results don’t predict the full range of sample values, while the OK results did.

In particular, the RF predictions seem to predict the lowest values, but never predict

up to the highest value, 7.5 (judging by the colormap). While this may be caused by

many things, it is likely a combination of the data value distribution and the nature

of the RF algorithm. As revealed in the histogram of the data values (fig. 4.3), the

62

data values had a strong positive skew, with a single outlier at 7.5. The nature of the

RF algorithm inadvertently muffles this outlier in several ways. First, the prediction

of a single tree is the average value of the sample values in the prediction node. As

this forest was tuned to allow no less than four training values in a prediction node,

the single high value would have always ended up in a prediction node with no less

that three other values, ergo, the averaging during prediction would have reduced the

predicted value. Additionally, as each tree was trained with a bootstrapped sample,

the outlier may not have been used in the construction of all trees. Then as all the

predictions of all the trees are averaged, the outlier would have been further diluted,

cutting the highest value of the prediction considerably. Conversely, at the lower

end of the values, as there were many points nearly equal the lowest value, the RF

models easily predicted the lowest value. This illustrates a noteworthy trait of the

RF algorithm: it can only predict values within the range of the training set, and

depending on the model parameters and the data value distribution, it may tend to

cut out values at the edge of the range (Hengl et al., 2018). Thus, when examining

the field average prediction (fig. 4.1) and the RF predictions (figs. 4.13 & 4.14) side

by side, it can be seen that the RF predictions are very like the average, but with a

few slight deviations in select areas, where the RF prediction seemingly follows the

trend of the data slightly.

Another point of interest is in the artifacts visible (and not visible) in the predic-

tions. The RandomForest prediction holds artifacts very similar to those found in the

OK prediction (fig. 4.9): overlapping circles. This clearly indicates their shared de-

pendence on distance to known points, as each circle centers on where a known point

would be. However, beyond the shape, the artifacts on each are very different. The

OK artifacts are roughly the same size, quite numerous, and no one artifact seems to

stand out much more than the others. However, the RandomForest prediction show-

cases fewer artifacts of differing sizes, obviously favoring some known points more than

others. This distinction results from the nature of the RF algorithm, and highlights

the ability of the algorithm to handle non-stationarity in the dataset. OK is forced

63

to assume all points are important and have similar effects at similar distances, while

the RF algorithm can detect that some points are highly predictive of an area and

others give little insight into their neighbors. The two very obvious artifacts in the

RandomForests prediction (fig. 4.13) correspond to two very important split points

in the data: the feature (distance to point X), and the value (the critical distance).

Any points within X distance of the lower point seems to have a higher likelihood of

being a low value, and any points within X distance of the upper point seems to have

a higher likelihood of having a high value. At this point, the lack of artifacts visible

in the ExtraTrees prediction becomes rather interesting. While the RandomForest

prediction displays clear split points as circular artifacts in the data, the ExtraTrees

prediction is smooth and void of similar artifacts. As the algorithms are identical

except for the choosing of split points, the smoothing effect must be derive from this.

This holds intuitively: ExtraTrees chooses split points from random values within the

range of each feature, and RandomForest chooses split points from observed values in

each variable. Thus, when the dataset is limited, RandomForest will have a limited

amount of split point to choose from, and important splits are bound to appear in

a good many trees, then in the prediction. However, as ExtraTrees can choose from

infinite values within the range of the feature, the chances that any one integer value

will become a common split point is greatly reduced. This had a dramatic smoothing

effect in this limited data case, and clearly illustrates the difference between the two

models. Despite the visual differences between the two predictions, it’s worth noting

that the two predictions are clearly very similar, as the very similar numerical results

attest.

64

Figure 4.13.: Random Forests Percent OM Prediction, Based On Spatial Position

only.

65

Figure 4.14.: Extra Trees Percent OM Prediction, Based On Spatial Position only.

66

4.2.2 Experiment 2: Relief

To examined the performance of relief as a feature relative to spatial position,

only features representing aspects of relief were included in the feature set of the

RF models. After the initial feature set had been created, the Feature Importance

output from the scikit-learn packages (discussed in methods) was used to evaluate

each feature and refine the feature set. The first focus was on the three hydrologic

features included in the initial feature set: TWI, Flow Accumulation, and Horizontal

Distance to Stream Network. Interestingly, each of the hydrologic features contributed

very little to the model, judging by the feature importances. Presumably, in the case

of this particular field, the hydrologic features included failed to represent the true

processes at hand, or perhaps hydrological processes did not have a strong spatially

variable impact on soil OM formation. This was unexpected, but lead to the removal

of all three hydrologic features from the final feature set. Elevation (fig. 4.15), on the

other hand, was consistently useful to the model, and was included in the final feature

set. In the case of slopes and curvatures, adding sets calculated at several different

neighborhood sizes seemed to partial out processes occurring at different scales, and

many of the neighborhoods (especially the larger neighborhoods) were very useful to

the model. After tuning, it was determined to use topographic derivatives created

at three neighborhood sizes: 5x5, 55x55, & 115x115. As the raster resolution was

1.52 m, the actual size of the neighborhoods considered was 7.6x7.6 m, 83.6x83.6

m, & 174.8x174.8 m. Figures 4.16 and 4.17 show slope calculated over the 5x5 and

115x115 neighborhoods. The final trimming of the feature set was determining which

types of curvatures to include in the feature set. After testing, it was determined that

tangential curvature was largely redundant, and only profile and planform curvatures

were included in the feature set. Figures 4.18, 4.19, and 4.20 are a selection of

the 6 curvature features included in the feature set. After all feature trimming was

complete, the relief-based feature set was comprised of 10 features: elevation, slope

at 7.6 m, profile curvature at 7.6 m, plan curvature at 7.6 m, slope at 83.6 m, profile

67

curvature at 83.6 m, plan curvature at 83.6 m, slope at 174.8 m, profile curvature at

174.8 m, and plan curvature at 174.8 m

Figure 4.15.: The Elevation of The Site (in Feet).

68

Figure 4.16.: The Slope of The Site In Percent, Calculated At 7.6 m Resolution.

Note: While Slope Reaches 100% In Some Areas, Color Scale Has Been Set To 25%

Max For Higher Contrast Viewing.

69

Figure 4.17.: TThe Slope of The Site In Percent, Calculated At 174.8 m Resolution.

Note: Here Color Scale Is Set To True Value Range, Much Smaller Than The Previous

Figure.

70

Figure 4.18.: The Profile Curvature, Calculated At A Scale of 83.6 m.

71

Figure 4.19.: The Planform Curvature, Calculated At A Scale of 83.6 m. Note: Here

The Color Scale Is Set To -0.1-0.1 For Viewing Contrast, But The True Value Range

Is Much Larger.

72

Figure 4.20.: The Profile Curvature, Calculated At a Scale of 174.8 m.

The results (table 4.1) revealed that the relief based models performed well, with

lower scores than the three benchmarking methods. This difference was significant,

in case of the RandomForest variant, and modestly significant (at 10%) in the case

of the ExtraTrees variant (table 4.2 & table 4.3). While they also outperformed

the spatial position based models from experiment one, the difference between them

was not significant. This result seems to demonstrate that relief was a stronger

explanatory variable of soil percent OM than spatial position, but only just. The

strong performance of relief was somewhat surprising, given how little obvious relief

the site in question had. Within the field boundary, the elevation had a maximum

73

change of only 4 m, with an average slope of 1.1 degrees. However, even these

gentle variations seem to have a strong relationship with percent OM in the soil, as

the relief based predictions lowered both the model error in comparison to previous

interpolations.

Another interesting observation is that there was a slight performance gap be-

tween the ExtraTrees and RandomForest variants (though the performance differ-

ence between them was still statistically insignificant). The under performance of the

ExtraTrees variant indicated that the extra randomness did seem to slightly impact

the ability of the model to fit the relationships at hand. This gap may be due to

the stronger relationships observable in the relief based features. In conditions where

features explain little of the property of interest, additional randomness holds the

model back from overfitting, but perhaps in better modeling conditions, this extra

caution is more of a liability. This illustrates the need to test several models before

using one exclusively, as each may be used to benchmark the others.

The visual results (figs. 4.21 & 4.22) again display interesting characteristics. Like

the predictions from experiment one, both predictions fail to predict the maximum

value present in the dataset, likely for the same reason discussed previously, that

RF is unable to predict outside the training value range (Hengl et al., 2018). Both

predictions again seem to follow the general flow of values present in the sample

points (fig. 3.1), the OK prediction (fig. 4.9), and the results from experiment one

(fig. 4.13 & 4.14). However, while the general flow of values seem to be the same

(higher values in the top and bottom, with a swathe of low values through the lower

half), the predictions seem to have more sharply defined transitions and zones. For

example, consider the ExtraTrees predictions from experiments one & two (figs. 4.14

& 4.22). While both predictions seem smooth, with no sharply defined boundaries

or artifacts, the experiment two prediction seems to display a much higher level of

detail. The upper half of the experiment one prediction for example, displays a sort

of wide band of higher values stretching across. While the experiment two prediction

generally agrees, the same area displays half a dozen distinct areas of variation. This

74

difference is likely driven by two phenomenon. The first is that the experiment two

results are simply more accurate than the experiment one results, and the experiment

two prediction better displays the short range variation present in the real world.

However ideal the first reason, the second cause is that both the experiment one

and two predictions display strong artifacts, which are derived directly from the base

features. The wide band of high values in experiment one looks very similar to the

even, sweeping values from the distance features (figs. 4.10, 4.11, & 4.12). The areas

of variation visible in the experiment two results, however, seem to track well with

the variation present in the 83.6 m curvatures (figs. 4.18 & 4.19).

Like before, the artifacts present in the predictions are stronger in the Random-

Forest variant and softer in the ExtraTrees variant, but in this case, both predictions

do display these artifacts more clearly. The most obvious of them all is the diagonal

band of high values that cuts across the top of the RandomForest prediction. This

seems to line up neatly with a similar structure visible the 83.6 m curvatures (figs.

4.18 & 4.19). In addition to this particular artifact, several others like it seem to

be present in the prediction. Additionally, the RandomForest prediction displays a

large number of much smaller linear artifacts that appear to run through the entire

prediction, even overlapping with the larger artifacts in many places. This is clear

evidence of important split points in the data, as the ExtraTrees prediction fails to

predict these smaller artifacts with such definition. However, while the softening ef-

fect of the ExtraTrees variant does improve the visual appeal of the prediction, the

RandomForest variant still outperformed. This issue of performance is a reminder

that a pretty result may not always be a better result, as in this case. In any case, the

results of this experiment are in line with previously reported results (Moore et al.

(1993); Zhu et al. (1996); Hengl et al. (2004, 2017); Ramcharan et al. (2018)), that

relief could be considered as a viable predictor for field soil mapping.

75

Figure 4.21.: Random Forests Percent OM Prediction, Based On Relief Only.

76

Figure 4.22.: Extra Trees Percent OM Prediction, Based On Relief Only.

77

4.2.3 Experiment 3: Spatial Position and Relief

Both variants performed better than any previous test in MAE, MAPE and RMSE

(table 4.1). The performance gap between the three benchmarking methods and both

variants were both significant, but as before, there was no significant variation be-

tween the RF experiments (table 4.2 & table 4.3). Like in experiment two, the Extra-

Trees variant slightly under performed when compared to the RandomForest variant

(though not significantly), which again points to a slightly weaker fit to the data.

Interestingly, though both variants outperformed the previous best MAE, MAPE,

and RMSE, the relief only models from experiment two were not far off. This was

unexpected, as it was thought that the inclusion of two explanatory variables would

explain much more of the value variation than one alone. The limited gains could

perhaps be explained by several factors. The first possible explanation is that there

were simply too many features in the feature set, which hampered model fitting.

There were 28 spatial position features from experiment one, and 10 relief features

from experiment two, so the number of features in the experiment three set, 38, well

outnumbered the number of training points: 28. Another explanation could be that

some of the same variations in the feature set were explained by both relief and spatial

position, which would cut down on the performance gains. Whatever the reason for

the modest gains, they still testify to the power of utilizing more than one explanatory

variable.

The visual results (figs. 4.23 & 4.24) look very familiar, as they boast a strong

resemblance to the visual results from experiment two. This resemblance is pro-

vided by the presence of the strong curvature artifacts present in each, and points

to relief as a stronger predictor than spatial position. That said, the RandomForest

variant displays at least one clearly visible circular artifact that corresponds to the

lower artifact visible in the RandomForest spatial position only prediction (fig. 4.13).

So, even if relief plays a stronger role in the prediction, artifacts alone show that

spatial position is still a strong predictor. Apart from the artifacts, the experiment

78

three predictions appear smoother than the experiment two predictions, with some

of the strong variation in the upper left tamed. The ExtraTrees prediction appears

smoother, and the effects of the combined feature set is far more obvious between it

and the ExtraTrees prediction from experiment two. The major relief artifacts in the

lower half of the ExtraTrees prediction are almost invisible, as are almost all of the

smaller relief artifacts that were visible in the experiment two prediction. Apart from

artifacts, the two predictions do seem to be a blend of the experimental results from

before, and, as the numerical results attest, this does seem to be a strength.

79

Figure 4.23.: Random Forests Percent OM Prediction, Based On Spatial Position

And Relief.

80

Figure 4.24.: Extra Trees Percent OM Prediction, Based On Spatial Position And

Relief.

81

4.3 Objective 3: Make Accessible

Once the RF framework was proven as a viable interpolation method, work on

a tool to make it accessible began. To be a drop-in replacement for OK or other

interpolation methods, the tool had to require only two inputs from the user: refer-

enced soil sample data, and a field boundary. In return, the user should receive only

a prediction back. It was determined to create a simple JavaScript webtool to handle

the inputs and output UI, and handle the computationally intense processing on the

server.

4.3.1 User Input

The landing page of the webtool (fig. 4.25), along with a brief introduction, offers

the user two choices: uploading soil data for a new interpolation, or checking the

status of a previous request. The application itself is a JavaScript React application,

and all the graphics seen in the UI are implementations of the Material-UI design

library. The React library provides a modular, low weight, UI with fast render times,

and has a strong online support base. The Material-UI library provides a suite of pre-

built HTML components like buttons, text blocks, cards, selection controls, etc. Using

pre-made components saved time and also allowed for simpler uniformity throughout

the application.

82

Figure 4.25.: The Landing Page of The UI.

To accept user soil data, the UI had to accept the two most common file types for

field soil samples: shapefiles, and .csv files. Shapefile data is comprised of several files:

geometry locations (.shp), geometry properties (.dbf), geometry projection (.prj), etc.

Thus, the shapefile upload page (fig. 4.26) required the user to upload more than one

83

file before continuing. To simplify the application, it was assumed (and stated) that

all data would be in the WGS84 projection, which is the projection most used for soil

sampling. This assumption meant that the only files required from the user were a

.shp file and a .dbf file. If the files were successfully loaded and of the correct type,

the application would then allow the user to select the soil property that they were

interested in interpolating. The application would then check that the property was

indeed a numerical value and that the geometry was valid (not too small an area, not

to large an area, enough points, etc.,) before allowing the user to continue.

84

Figure 4.26.: The Shapefile Upload Page Of The UI.

If the user elected to instead upload a .csv file, they were given another upload

page (fig. 4.27). The .csv format stores information about soil samples in a flat file

format: each line corresponds to a sample, with latitude, longitude, and property

values all in a row (fig. 3.6). After the user selected a file for upload, the application

85

checked that it met basic requirements (at least ten samples (the minimum for more

than one split when modeling), no missing columns in any rows, correct file type)

and the user was allowed to select if the file had a header or not. If the file had

a header, the selection fields displayed the column values of the first row; if not,

column indices were provided. The user was then prompted to select the columns

that corresponded to the point Latitude, Longitude, and the property they were

interested in interpolating. Upon the selection of each, the application verified that

the column values were numerical and within the correct value ranges for each field.

After all fields were selected, the application verified that the geometry was valid and

allowed the user to continue to field boundary creation.

86

Figure 4.27.: The CSV Upload Page Of The UI.

While many users would be able to upload shapefiles of their field boundary, it

was decided to streamline the application by simply asking users to draw their field

boundary on a map (fig. 4.28). As field boundaries are typically not highly complex,

this cut time and complexity from the user experience. Additionally, this allowed the

87

user to view their soil sample points and make sure they had rendered as expected.

If an error was spotted (ex: the latitude and longitude were switched), the user could

then return to the soil data upload page and correct the error. Once the user had

finished drawing their boundary, the application would verify the geometry (not too

big, not too small, no crosses, contains all points, etc.,).

88

Figure 4.28.: The Field Boundary Creation Page Of The UI.

Once everything had been verified, they would be allowed to submit their request

to the server. Figure 4.29 displays the page that verifies the entered email associated

with the request.

89

Figure 4.29.: The Submission Page Of The UI.

90

4.3.2 Processing

The first portion of the server encountered by a request is a Node Express based

api. This api verifies the legitimacy of the request by checking the items included,

creates a unique request id, then performs several tasks. The first task is the creation

of a task management document in a MongoDB database (MongoDB, Inc., 2019).

The MongoDB database holds the request data and information, like the time it was

received, the soil data, the user email, etc. This can be referenced at any time by the

server, and also serves as a log of activity for the administrator. After the successful

creation of a database document for the request, the api sends an email to the user,

informing them that their request had been received, giving them the request id, and

informing them that the request was currently being processed. The last short term

task was sending a response back to the webtool, informing the user that the request

had failed or was in process, and giving them the request id. This resolves the request

for the webtool, which then transitions to the status check page, (fig. 4.30), and the

the actual processing can begin. Thus, while processing continues on the server, the

user can prepare and submit other requests, leave the page, or even clear the browser

cache.

The processing begins after the status is sent back to the webtool. First, the

api starts the Python RF framework as a child process and passes it the request

id. The Python script uses this id to retrieve the soil and boundary data from the

database, and checks it over for validity. If at any time an error is caught, the error

is logged on the database and the child process is closed. If the data is valid, the

server uses the field boundary to determine which DEM tiles to download from the

OpenTopography public repository. This is done by performing a spatial check on all

the bounding boxes of all the raster tiles available for Indiana: if a buffered version of

the field boundary crosses or is within any tile, that tile is downloaded. All the tiles

are subsequently merged and clipped to the buffered field boundary bounding box.

This elevation raster is the first feature created by the framework, and is used as the

91

snap raster for all subsequent features. After the DEM feature is complete, it is used

as the basis to create the rest of the topographic features: the slope and curvatures

at differing scales. Once this is complete, the field soil sample points are rasterized

individually and used as the basis to create rasters of euclidean distance to each soil

sample, the second set of features. Once the entire feature set has been created, the

feature values corresponding to cells in the same position as the rasterized points are

extracted and stacked into a list of features and training values ready for training.

This training set is then used to train an instance of the ExtraTreesRegressor

(selected due to it’s caution against overfitting), which is tuned to the same parameter

values described in the experiments above. Once the model is trained, the feature

values corresponding to each cell position in the snap raster are pulled and stacked

into feature sets. This much larger set is fed into the model, which uses the feature

values at each cell to make a prediction. Once the predictions are complete, the list of

predictions is reshaped back into a 2-d array (of the same shape as the snap raster),

the prediction is clipped to the field boundary, projected to WGS84, and written out

as a .tif file into an exposed directory.

The Python script finishes by logging the results back into the database and

informing the parent process, the Node Express api, that it’s finished without errors.

After this, the api kills the Python script and emails the user, informing them that

the request they submitted is complete, their data can be retrieved, and reminding

them of their request id. Once this is finished, the api process finally ends.

4.3.3 Output

At any point during, after, or before the server processing, the user can look up

the status of a request using the Check Status page (fig. 4.30). Immediately after

a request has been submitted, that particular request id is displayed above an input

box, but the user can input any past request id they choose. Once the user submits

a check status request, the api begins it’s second process. Like the first, it checks the

92

validity of the request, and returns an error if something went wrong. If the request

is valid, it checks the database for a task management document corresponding to

the submitted request id. If one is found, it reads the document to check if processing

is complete, if the results have been pruned from the server, etc. The status of the

request is then returned to the webtool, along with a path to the output if the request

is complete. This status is then displayed to the user, who can then check again or

view the server output.

93

Figure 4.30.: The Status Display Page Of The UI.

After selecting to view their data, the user is given the output display page of the

webtool (fig. 4.31). Here, the user can visually review the output of the server, and

decide it they’d like to download the data or not. If they choose to download, the

download button will link them to their GeoTIFF file hosted on the server, which will

94

automatically be downloaded. After downloading is complete, the user can return to

the landing page (fig. 4.25), where they can choose to either submit a new request or

check another request status.

The dockerized source code for the webtool and server can be retrieved from

https://github.com/jafiecht/soil-docker.git.

95

Figure 4.31.: The Output Display Page Of The UI.

96

5. CONCLUSIONS AND RECOMMENDATIONS

5.1 Objectives 1 & 2

One of the first conclusions illustrated by this study is the challenge of creating

a quality interpolation from field soil samples. The process of fitting the OK model

revealed a host of problems associated with low data: outliers affected stationarity,

spatial autocorrelation between the points was limited, data values were skewed and

trending, etc. While these particular characteristics were unique to this percent OM

dataset, it’s likely that some field soil sample datasets display similar issues. In fact,

many fields are sampled at much lower densities, and may display these characteristics

even more strongly. Modeling complex datasets like this well enough to make a

sound interpolation is a challenge for any model, and for a model with a large set

of assumptions like OK, it can be even more difficult. That said, the application

of OK in this study had one considerable optimization ignored: the ability of the

modeler to fit and trail different semi-variogram models beyond spherical, like stable

or linear. It is possible that another model may have been able to pick up some

level of spatial autocorrelation, which could have improved the OK prediction. In

this particular study, the ability to change the model type was ignored in order to

somewhat mimic the ”black box” application of OK, where the user performs limited

model intervention. The results of this study question the widespread use of OK

for field soil interpolation if a user plans to leave all model parameters at a default.

Similar problems appeared with the use of a grid based interpolation. While low

data is not necessarily a problem for the grid based method, sparse sampling schemes

unable to pick up property variation are, as was seen with the prediction of percent

OM. Again, as many fields are sampled at even lower densities, the results of this

study prompt the modeler to pause and consider the dataset at hand before using

97

a grid based interpolation. Surprising though it is, in some cases, it may simply be

more accurate to predict a whole field average.

For a model with limited assumptions, experiment one showed the capability

of an RF algorithm tuned for low data. RF proved itself capable in the field soil

interpolation, as it outperformed the field average, the grid interpolation, and OK

in model error, and presented insignificant model bias. While by no means flawless

(unable to predict outside the training values, for one), RF seemed to present a viable

drop-in replacement for other interpolative methods. It’s flexibility and lack of need

for case by case tuning make it an ideal method for field soil map interpolation.

Additionally, experiment two and three proved the viability of relief as a predictor

of soil properties. Even in this case study, with it’s subtle topographic features, relief

proved to be a stronger predictor than even distance to known points. While untested

in this study, logic would say that relief would be an even stronger predictor in a site

with more dramatic relief. The results from this study, coupled with the availability of

high resolution elevation data in Indiana and elsewhere, suggests that models utilizing

relief, and possibly other public datasets, should be more widely used for field soil

interpolation. While this does add complexity to the modeling process, the higher

accuracy gained by inclusion seems worthwhile.

Future studies should more thoroughly evaluate RF models in other conditions

and sites. This study, for instance, focused on only one soil property, percent OM,

but the dataset used had more properties that could’ve potentially been tested. It’s

possible that other soil properties in this dataset would be more in line with the OK

assumptions, or presented less spatial variability, and could’ve behaved very differ-

ently during prediction. Another interesting study would be the performance of RF

at different dataset sizes (number of samples). Is there a threshold, high or low, where

RF loses the performance edge? And of course, changing sites entirely would be very

interesting: would a site with stronger topography yield a relief dataset more predic-

tive of soil properties? Or, how would the model perform in a site with more dramatic

soil property variation? A final interesting study would be a model comparison with

98

the soil sample scheme tailored to give traditional methods their best conditions. OK

kriging would have likely been able to detect more spatial autocorrelation if there

had been more sampled points within a short distance of each other. Or, perhaps,

rather than a grid based interpolation, triangular elements could be fitted to the data,

like LIDAR datasets or finite element analyses. These new methods would still be

linear, but would break the mold from another side. While RF did perform well in

this study, further benchmarking like these described would more fully validate it’s

performance.

5.2 Objective 3

As is the case for any program or software, there are many ways that the exposed

prediction framework could be improved. The lowest hanging fruit is of course the

inclusion of other DEM datasets. While the Indiana LIDAR generated DEM is high

resolution and ideal for precision agriculture, there are other, more widespread DEMs

available in different regions. A future improvement would be to catalog the best

DEMs available in the contiguous United States and make prediction possible beyond

just Indiana. This would of course require more extraction of tile boundaries and the

investigation of which sites have public tile repositories, but would greatly expand the

reach of the work. Another low hanging fruit is the optimization of the server-side

processing. The processing is computationally expensive, and takes a considerable

amount of time (¿ 5 minutes for the dataset described), but has never been greatly

optimized. For example of possible optimization, on a multi-core machine, the single

thread Python script will max one core, but leave the others at normal operating

loads. The Python scripts could be adapted to run some functions as multi-thread,

which could cut the processing time immensely.

Beyond these two, of course, the webtool does lack the polish of a professionally

developed site, and much time and energy could be expended into making the UI

more intuitive and user friendly. It would be feasible, for instance, to accept data in

99

other projections than WGS84, which could save some users quite a bit of headache.

Additionally, a more useful help page could better explain answers to frequently asked

questions. Above all, it should be extensively trialed by agronomists and growers with

real world experience and data. Incorporating more user feedback would truly refine

the tool to what users need.

100

REFERENCES

Aitkenhead, M. and Coull, M. (2016). Mapping soil carbon stocks across scotland

using a neural network model. Geoderma, 262:187–198.

http://dx.doi.org/10.1016/j.geoderma.2015.08.034.

Atherton, B., Morgan, M., Shearer, S., Stombaugh, T., and Ward, A. (1999).

Site-specific farming: A perspective on information needs, benefits, and

limitations. Journal of Soil and Water Conservation, 54(2):455–461.

Behrens, T., Zhu, A.-X., Schmidt, K., and Scholten, T. (2010). Multi-scale digital

terrain analysis and feature selection for digital soil mapping. Geoderma,

155(3-4):175–185. http://dx.doi.org/10.1016/j.geoderma.2009.07.010.

Bostock, M. (2016). Shapefile. https://github.com/mbostock/shapefile.

Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.

http://dx.doi.org/10.1023/A:1010933404324.

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification

and regression trees. Routledge, New York.

https://doi.org/10.1201/9781315139470.

Bui, E. N., Loughhead, A., and Corner, R. (1999). Extracting soil-landscape rules

from previous soil surveys. Soil Research, 37(3):495–508.

http://dx.doi.org/10.1071/s98047.

Burgess, T. M. and Webster, R. (1980). Optimal interpolation and isarithmic

mapping of soil properties. Journal of Soil Science, 31(2):333–341.

http://dx.doi.org/10.1111/j.1365-2389.1980.tb02085.x.

101

Capellades, M. A., Reigber, S., and Kunze, M. (2009). Storm damage assessment

support service in the u.s. corn belt using rapideye satellite imagery. Proceedings

of SPIE - The International Society for Optical Engineering, 7472.

http://dx.doi.org/10.1117/12.830393.

CerebralJS Contributors (2019). Cerebraljs. https://cerebraljs.com/.

Cressie, N. (1990). The origins of kriging. Mathematical Geology, 22(3):239–252.

http://dx.doi.org/10.1007/bf00889887.

Docker Inc. (2019). Docker. https://www.docker.com/.

Erickson, B., Lowenberg-DeBoer, J., and Bradford, J. (2017). 2017 precision

agriculture services dealership survey results. Retrieved from

https://agribusiness.purdue.edu/files/file/croplife-purdue-2017-precision-dealer-

survey-report.pdf.

Erickson, B. and Widmar, D. A. (2015). 2015 precision agriculture services

dealership survey results. Retrieved from

https://agribusiness.purdue.edu/files/resources/2015-crop-life-purdue-precision-

dealer-survey.pdf.

Esri (2018). Arcmap 10.6.1. http://desktop.arcgis.com/en/arcmap/.

Facebook Open Source Contributors (2019). Reactjs. https://reactjs.org/.

Ferguson, R., Hergert, G., Schepers, J., Gotway, C., Cahoon, J., and Peterson, T.

(2002). Site-specific nitrogen management of irrigated maize. Soil Science Society

of America Journal, 66(2):544–553. http://dx.doi.org/10.2136/sssaj2002.5440.

Franzen, D. W. and Peck, T. R. (1995). Field soil sampling density for variable rate

fertilization. Journal of Production Agriculture, 8(4):568–574.

http://dx.doi.org/10.2134/jpa1995.0568.

102

Friedly, N. (2019). express-rate-limit.

https://www.npmjs.com/package/express-rate-limit.

GDAL/OGR contributors (2019). GDAL/OGR geospatial data abstraction software

library. https://gdal.org/.

Gillies, S. and Perry, M. (2019). Rasterio.

https://rasterio.readthedocs.io/en/stable/.

Google Developers (2019). Google apis.

https://developers.google.com/apis-explorer/.

Goovaerts, P. (1999). Geostatistics in soil science: state-of-the-art and perspectives.

Geoderma, 89(1-2):1–45. http://dx.doi.org/10.1016/s0016-7061(98)00078-0.

Gunduz, N. and Fokoue, E. (2015). Robust classification of high dimension low

sample size data. arXiv e-prints.

https://ui.adsabs.harvard.edu/abs/2015arXiv150100592G.

Guo, P.-T., Li, M.-F., Luo, W., Tang, Q.-F., Liu, Z.-W., and Lin, Z.-M. (2015).

Digital mapping of soil organic matter for rubber plantation at regional scale: An

application of random forest plus residuals kriging approach. Geoderma,

237-238:49–59. http://dx.doi.org/10.1016/j.geoderma.2014.08.009.

Helling, C. S., Chesters, G., and Corey, R. B. (1964). Contribution of organic

matter and clay to soil cation-exchange capacity as affected by the ph of the

saturating solution1. Soil Science Society of America Journal, 28(4):517–520.

http://dx.doi.org/10.2136/sssaj1964.03615995002800040020x.

Hengl, T., Heuvelink, G. B., and Stein, A. (2004). A generic framework for spatial

prediction of soil variables based on regression-kriging. Geoderma, 120(1-2):75–93.

http://dx.doi.org/10.1016/j.geoderma.2003.08.018.

Hengl, T., Jesus, J. M. D., Heuvelink, G. B. M., Gonzalez, M. R., Kilibarda, M.,

Blagoti, A., Shangguan, W., Wright, M. N., Geng, X., Bauer-Marschallinger, B.,

103

and et al. (2017). Soilgrids250m: Global gridded soil information based on

machine learning. Plos One, 12(2):e0169748.

http://dx.doi.org/10.1371/journal.pone.0169748.

Hengl, T., Nussbaum, M., Wright, M. N., and Heuvelink, G. B. (2018). Random

forest as a generic framework for predictive modeling of spatial and

spatio-temporal variables. PeerJ, 6:e5518. http://dx.doi.org/10.7717/peerj.5518.

Heung, B., Ho, H. C., Zhang, J., Knudby, A., Bulmer, C. E., and Schmidt, M. G.

(2016). An overview and comparison of machine-learning techniques for

classification purposes in digital soil mapping. Geoderma, 265:62–77.

http://dx.doi.org/10.1016/j.geoderma.2015.11.014.

Hoskinson, R. L., Rope, R. C., Blackwood, L. G., Lee, R. D., and Fink, R. K.

(2004). The impact of soil sampling errors on variable rate fertilization.

International Precision Agriculture Conference.

Keeney, D. R. and Corey, R. B. (1963). Factors affecting the lime requirements of

wisconsin soils 1. Soil Science Society of America Journal, 27(3):277–280.

http://dx.doi.org/10.2136/sssaj2002.5440.

Kempen, B., Brus, D. J., Heuvelink, G. B., and Stoorvogel, J. J. (2009). Updating

the 1:50,000 dutch soil map using legacy soil data: A multinomial logistic

regression approach. Geoderma, 151(3-4):311–326.

http://dx.doi.org/10.1016/j.geoderma.2009.04.023.

Le Cam, P. (2019). React-leaflet. https://react-leaflet.js.org/.

LeafletJS Contributors (2019). Leafletjs. https://leafletjs.com/.

Mansuy, N., Thiffault, E., Par, D., Bernier, P., Guindon, L., Villemaire, P., Poirier,

V., and Beaudoin, A. (2014). Digital mapping of soil properties in canadian

managed forests at 250m of resolution using the k-nearest neighbor method.

Geoderma, 235-236:59–73. http://dx.doi.org/10.1016/j.geoderma.2014.06.032.

104

Material-UI Contributors (2019). Material-ui. https://material-ui.com/.

McBratney, A., Mendonca Santos, M., and Minasny, B. (2003). On digital soil

mapping. Geoderma, 117(1-2):3–52.

http://dx.doi.org/10.1016/S0016-7061(03)00223-4.

Mcbratney, A., Webster, R., and Burgess, T. (1981). The design of optimal

sampling schemes for local estimation and mapping of regionalized variablesi:

Theory and practice. Computers & Geosciences, 7(4):335–365.

http://dx.doi.org/10.1016/0098-3004(81)90078-9.

McBride, J., Van den Bossche, J., Wasserman, J., Jordahl, K., Wolf, L., and

Rocklin, M. (2019). Geopandas. http://geopandas.org/index.html.

Minasny, B. and McBratney, A. (2016). Digital soil mapping: A brief history and

some lessons. Geoderma, 264:301–311.

http://dx.doi.org/10.1016/j.geoderma.2015.07.017.

MongoDB, Inc. (2019). Mongodb. https://www.mongodb.com/.

Moore, I., Gessler, P., Nielsen, G., and Peterson, G. (1993). Soil attribute prediction

using terrain analysis. Soil Science Society of America Journal, 57(2).

http://dx.doi.org/10.2136/sssaj1993.572npb.

Nawar, S., Corstanje, R., Halcro, G., Mulla, D., and Mouazen, A. M. (2017).

Delineation of soil management zones for variable-rate fertilization. Advances in

Agronomy, 143:175–245. http://dx.doi.org/10.1016/bs.agron.2017.01.003.

Node.js Foundation (2019a). Expressjs. https://expressjs.com/.

Node.js Foundation (2019b). Nodejs. https://nodejs.org/en/.

NumFOCUS Foundation (2019). Numpy. https://numpy.org/.

105

Oliver, M. A. and Webster, R. (1986). Semi-variograms for modelling the spatial

pattern of landform and soil properties. Earth Surface Processes and Landforms,

11(5):491–504. http://dx.doi.org/10.1002/esp.3290110504.

Padarian, J., Minasny, B., and McBratney, A. B. (2019). Using deep learning for

digital soil mapping. SOIL, 5(1):79–89. http://dx.doi.org/10.5194/soil-5-79-2019.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,

Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn:

Machine learning in Python. Journal of Machine Learning Research,

12:2825–2830.

Ramcharan, A., Hengl, T., Nauman, T., Brungard, C., Waltman, S., Wills, S., and

Thompson, J. (2018). Soil property and class maps of the conterminous united

states at 100-meter spatial resolution. Soil Science Society of America Journal,

82(1):186–201. http://dx.doi.org/10.2136/sssaj2017.04.0122.

Reinman, A. (2019). Nodemailer. https://nodemailer.com/about/.

Reitz, K. (2019). Requests. https://2.python-requests.org/en/master/.

Schloeder, C., Zimmerman, N., and Jacobs, M. (2001). Comparison of methods for

interpolating soil properties using limited data. Soil Science Society of America

Journal, 65(2):470–479. http://dx.doi.org/10.2136/sssaj2001.652470x.

Shaikhina, T., Lowe, D., Daga, S., Briggs, D., Higgins, R., and Khovanova, N.

(2019). Decision tree and random forest models for outcome prediction in

antibody incompatible kidney transplantation. Biomedical Signal Processing and

Control, 52:456–462. http://dx.doi.org/10.1016/j.bspc.2017.01.012.

Smith, M., Goodchild, M., and Longley, P. (2018). Geospatial Analysis: A

Comprehensive Guide to Principles Techniques and Software Tools. Winchelsea

Press, Winchelsea.

106

Smith, M. P., Zhu, A.-X., Burt, J. E., and Stiles, C. (2006). The effects of dem

resolution and neighborhood size on digital soil survey. Geoderma,

137(1-2):58–69. http://dx.doi.org/10.1016/j.geoderma.2006.07.002.

State of Indiana (2011). 2011-2013 indiana statewide lidar. Retrieved from

http://dx.doi.org/10.5069/G9959FHZ.

Subburayalu, S., Jenhani, I., and Slater, B. (2014). Disaggregation of component

soil series on an ohio county soil survey map using possibilistic decision trees.

Geoderma, 213:334–345. http://dx.doi.org/10.1016/j.geoderma.2013.08.018.

Taghizadeh-Mehrjardi, R., Sarmadian, F., Minasny, B., Triantafilis, J., and Omid,

M. (2014). Digital mapping of soil classes using decision tree and auxiliary data

in the ardakan region, iran. Arid Land Research and Management, 28(2):147–168.

http://dx.doi.org/10.1080/15324982.2013.828801.

TurfJS Contributors (2019). Turfjs. https://turfjs.org/.

Vaysse, K. and Lagacherie, P. (2017). Using quantile regression forest to estimate

uncertainty of digital soil mapping products. Geoderma, 291:55–64.

http://dx.doi.org/10.1016/j.geoderma.2016.12.017.

Wollenhaupt, N. C., Mulla, D. J., and Crawford, C. G. (1997). Soil sampling and

interpolation techniques for mapping spatial variability of soil properties. In

Pierce, F. and Sadler, E., editors, The State of Site-Specific Management for

Agriculture, pages 19–53. American Society of Agronomy, Crop Science Society of

America, Soil Science Society of America, Madison, WI.

http://dx.doi.org/doi:10.2134/1997.stateofsitespecific.c2.

Zabriskie, M. and Uraltsev, N. (2019). Axios.

https://www.npmjs.com/package/axios.

107

Zhu, A.-X., Band, L. E., Dutton, B., and Nimlos, T. J. (1996). Automated soil

inference under fuzzy logic. Ecological Modelling, 90(2):123–145.

http://dx.doi.org/10.1016/0304-3800(95)00161-1.

Zhu, A.-X., Burt, J. E., Smith, M., Rongxun, W., and Jing, G. (2008). The impact

of neighbourhood size on terrain derivatives and digital soil mapping. In Zhou,

Q., Lees, B., and Tang, G.-a., editors, Advances in Digital Terrain Analysis, pages

333–348. Springer Berlin Heidelberg, Berlin, Heidelberg.

http://dx.doi.org/10.1007/978-3-540-77800-418.

Zhu, A. X., Hudson, B., Burt, J., Lubich, K., and Simonson, D. (2001). Soil mapping

using gis, expert knowledge, and fuzzy logic. Soil Science Society of America

Journal, 65(5):1463–1472. http://dx.doi.org/10.2136/sssaj2001.6551463x.

Zhu, A. X., Liu, J., Du, F., Zhang, S. J., Qin, C. Z., Burt, J., Behrens, T., and

Scholten, T. (2015). Predictive soil mapping with limited sample data. European

Journal of Soil Science, 66(3):535–547. http://dx.doi.org/10.1111/ejss.12244.

Zimmerman, J. and Shallenberger, J. (2016). Gis topographic wetness index (twi)

exercise steps. Retrieved from

https://www.srbc.net/pennsylvania-lidar-working-group/docs/twi-srbc.pdf.

