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ABSTRACT

Nassar, Huda PhD, Purdue University, August 2019. Low Rank Methods for Network
Alignment. Major Professor: David F. Gleich.

Network alignment is the problem of finding a common subgraph between two

graphs, and more generally k graphs. The results of network alignment are often

used for information transfer, which makes it a powerful tool for deducing informa-

tion or insight about networks. Network alignment is tightly related to the subgraph

isomorphism problem which is known to be NP-hard, this makes the network align-

ment problem supremely hard in practice. Some algorithms have been devised to

approach it via solving a form of a relaxed version of the NP-hard problem or by

defining certain heuristic measures. These algorithms normally work well for prob-

lems when there is some form of prior known similarity between the nodes of the

graphs to be aligned. The absence of such information makes the problem more chal-

lenging. In this scenario, these algorithms would often require much more time to

finish executing, and even fail sometimes. The version of network alignment that this

thesis tackles is the one when such prior similarity measures are absent. In this thesis,

we address three versions of network alignment: (i) multimoal network alignment, (ii)

standard pairwise network alignment, and (iii) multiple network alignment. A key

common component of the algorithms presented in this thesis is exploiting a low rank

structure in the network alignment problem and thus producing algorithms that run

much faster than classic network alignment algorithms.
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1 INTRODUCTION

As networks have become a more common way to represent data, processing and

making predictions on such types of data has become increasingly important. There

are many domains that utilize networks for their data representation and a common

example is social networks. For example, in social networks, users are encoded as

nodes and friendships are encoded as edges. It is standard practice to use the con-

nections of a certain user to make predictions about this user in the future. Network

science, thus, utilizes the topology of a graph (the way a graph is connected) to form

new predictions or make new conclusions about the data. For instance, link predic-

tion (Liben-Nowell and Kleinberg, 2007; Lü and Zhou, 2011), which is a common

problem in network science aims at using a node’s current connections in a network

to predict new links in the graph. Another problem, network alignment (Bayati et al.,

2013; Kollias et al., 2014; Nassar and Gleich, 2017; Malmi et al., 2017; Klau, 2009),

uses more than one network’s toplogy to predict similarities between two or more

nodes. This prediction of similarity across more than one graph can allow for the

deduction of a more complete version of a graph; this happens when the networks

aligned represent the same entity in reality but each network is missing some infor-

mation often attributed to collection errors.

Simply put, network alignment aims to identify pairs of nodes from two different

graphs as similar. Similarity here varies from one field to another. For instance,

biologists are often interested in pairing up nodes in two protein-protein interaction

(PPI) networks from two different species in the hope of learning new functions of

the proteins in the network belonging to the less studied species. Aligning two social

networks, in contrast, aims at finding nodes that represent the same individual, and

the goal here would be to find a more accurate global representation of an underlying

network. In general, network alignment is important for two main reasons.
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• Network alignment allows us to model transfer of information from one net-

work to another. If we are able to identify nodes that are, in fact, related in

two distinct graphs, we can infer deduce information about nodes between the

graphs.

• Network alignment can be used to suggest a more global structure of the graph

(and this can be thought of as predicting links to form a more complete version

of the graph). This is analogous to image registration assuming one has two

images of the same scene with some distorted pixels in each figure—in this case,

the two graphs are snapshots of the same underlying structure but each of them

has missing edges.

The network alignment problem is an extremely hard problem in practice due

to its tight relationship with the subgraph isomorphism problem (Klau, 2009; Nassar

et al., 2018). Nevertheless, multiple algorithms have been assigned for this task either

by introducing certain heuristics or relaxing some of the constraints. One common

component that a lot of network alignment algorithms rely on for their success is

a prior guess (e.g. (Klau, 2009; Bayati et al., 2013)). Often, network alignment

algorithms take as input the graphs to be aligned, as well as a set of possible node

matchings (or the prior guesses), and these guesses play a key role in guiding the

network alignment algorithm. It is indeed problematic for some algorithms when such

information is not available – as solving the problem may simply become infeasible

in terms of the required running time and memory requirement.

The key reason why the absence of the prior guesses becomes problematic is due to

forcing the network alignment algorithm to evaluate every possible pair of matchings.

These computations are often expensive, and the absence of a prior guess implies

computing |VA||VB| such evaluations (where |VA| and |VB| are the number of nodes in

the two graphs to be aligned). In the algorithms introduced in this thesis, we

focus on the case when this prior knowledge is not available. Yet, we avoid

computing pairwise similarity scores of every pair of nodes by exploiting
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a low rank structure in multiple formulations of the network alignment

problem.

Prior to our work on network alignment, there has been a number of network align-

ment algorithms that formulated network alignment using spectral methods which

identified a matrix that often encoded the pairwise scores of every pair of nodes from

two graphs. In our work, we theoretically prove that these matrices (or tensors in the

case of multiple network alignment) which store the similarity scores are in fact low

rank. We then use this low rank representation and introduce matching algorithms

that solve the matching problem on the low rank factors of this matrix or tensor

without explicitly forming any of these quantities.

The rest of this thesis is organized as follows

• Chapter 2 (Preliminaries) introduces the necessary concepts and notation used

throughout this thesis.

• Chapter 3 (Background) covers related work that has been done on network

alignment and discusses the IsoRank network alignment algorithm.

• Chapter 4 (Multimodal network alignment) studies the problem of network

alignment on a special kind of networks–multimodal networks.

• Chapter 5 (Low rank spectral network alignment) discusses a new fast and

memory efficient low rank method that solves the pairwise network alignment

problem.

• Chapter 6 (Multiple network alignment) addresses the problem of multiple

network alignment, and presents a new scalable multiple network alignment

method.

• Chapter 7 (Summary and further directions) serves as a summary of this thesis

and incorporates further findings related to network alignment and bipartite

matching and recommends future directions for research in this area.
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All work in this thesis has been conducted with multiple collaborators. The work

in Chapter 4 was in collaboration with my advisor David F. Gleich (Nassar and

Gleich, 2017). The work in Chapter 5 was a collaboration with Ananth Grama, Nate

Veldt, Shahin Mohammadi, and David F. Gleich (Nassar et al., 2018). The work

in Chapter 6 was a collaboration with Ananth Grama, Georgios Kollias, and David

F. Gleich (Nassar et al., 2018). A summary of the network alignment problems that

are addressed in this thesis is shown in Table 1.1.

Table 1.1.
Summary of the network alignment problems that we will address in this
thesis.

Pairwise
network
alignment
(Chapter 5)

maximize
P

∑
ij

∑
rsAijBrsP irP js

subject to
∑

iP ij ≤ 1 for all j∑
j P ij ≤ 1 for all i

P ij ∈ {0, 1}.

Multimodal
network
alignment
(Chapter 4)

maximize
P

∑m
k=1

∑
ij

∑
rsA

(k)
ij B

(k)
rs P irP js

subject to
∑

iP ij ≤ 1 for all j∑
j P ij ≤ 1 for all i

P ij ∈ {0, 1}.

Multiple
network
alignment
(Chapter 6)

maximize
X

∑
i1,i2,...,ik

∑
j1,j2,...,jk

A
(1)
i1j1

A
(2)
i2j2

. . .A
(k)
ikjk

Xi1,i2,...,ikXj1,j2,...,jk

subject to
∑

i2,...,ik
X i1,i2,...,ik ≤ 1 for all i1∑

i1,i3,...,ik
X i1,i2,...,ik ≤ 1 for all i2

. . .∑
i1,i2,...,ik−1

X i1,i2,...,ik ≤ 1 for all ik
X i1,i2,...,ik ∈ {0, 1}.
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2 PRELIMINARIES

Throughout this thesis, we will use the matrix representation of a graph GA =

(VA, EA) which contains n = |VA| nodes and m = |EA| edges to be the matrix

A, and we call A the adjacency matrix correspondng to GA. The dimension of A

is n × n and it has 2m nonzero entries when the graph GA is undirected. For an

unweighted graph, Aij = A[i, j] = 1 if nodes i and j are adjacent, and unless explic-

itly stated later in this thesis, we assume all graphs we deal with are undirected –

eventhough most of the concepts developed still apply to directed graphs. We denote

A[i, :] and A[:, j] to be the ith row and jth column of A respectively, and we use aj

to denote the jth column of A as well. A vector is denoted by a small bold letter

(e.g. x), the vector e is the vector of all ones and the vector ei is the ith column of

the identity matrix (i.e. ei[i] = 1 and ei[j] = 0 when j 6= i). Later in this thesis, we

use tensors which can be k-dimensional. We use the definition of a slice of a tensor

from (Kolda and Bader, 2009) to be a two dimensional section of a tensor defined by

fixing all but two indices. As an example, the ith slice in a three dimensional tensor

T , is T [:, :, i].

Another notion that we will repeatedly use throughout the thesis is the vec and

unvec operations. The operation vec applied on a matrix stacks the columns of the

matrix into a new vector as follows.

vec(A) = vec(


| | |

a1 a2 . . . ak

| | |

) =


a1

a2

...

ak
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And the vec operation applied on a tensor stacks the columns of each slice of the

tensor in order starting with the first slice. As an illustration, the vec operation

applied on a three dimensional tensor T can be expressed as follows.

vec(T ) =


vec(T [:, :, 1])

vec(T [:, :, 2])
...

vec(T [:, :, k])


The unvec operation in contrast is the inverse function of vec and it produces a tensor

or a matrix with the appropriate dimensions in the chapters to follow.

2.1 Kronecker products

Kronecker products are a recurent concept in this thesis, and we revisit them

briefly here. A Kronecker product of a matrix A of dimension n1 × n2 and another

matrix B of dimension m1×m2 produces a matrix C = A⊗B of dimension n1m1×

n2m2. For example, the Kronecker product of the following two matrices is:

A⊗B =


a11 a12

a21 a22

a31 a32

⊗B =


a11B a12B

a21B a22B

a31B a32B


The adjacency matrix of the product graph of two graphs whose adjacency ma-

trices are A and B is A⊗B. The product graph contains |VA||VB| nodes and every

node corresponds to a pair of nodes from the two previous graphs.
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2.1.1 A Kronecker product property

A Kronecker product property that is specifically popular in several domains and

is repeatedly used in this thesis is the following.

(BT ⊗A) vec(X) = vec(AXB)

where vec(X) is the vectorization operation described above. The proof follows from

the following simple fact.

(AXB)[:, k] = AXB[:, k] = A
∑

iX[:, i]B[i, k] = (B[:, k]T ⊗A)


X[:, 1]

X[:, 2]
...

X[:,m]


= (B[:, k]T ⊗A) vec(X)

Using the above derivation, we can conclude that

vec(AXB) =


(AXB)[:, 1]

...

(AXB)[:, n]

 =


(B[:, 1]T ⊗A)

...

(B[:, n]T ⊗A)

 vec(X) = (BT ⊗A) vec(X)

2.2 Low rank representations

In this thesis, we will repeatedly exploit the low rank structure of one of the

matrices used in the network alignment optimization problem and we use various

representations of this low rank matrix. In this section we revisit a few ways to

express a low rank matrix. A low rank n × n matrix is a summation of k rank-

1 matrices where k is considerably smaller than n. And this leads us to the first

representation.

X = X1 + X2 + . . .+ Xk =
k∑
i=1

X i
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Where each X i is a rank-1 matrix. Each X i can be represented as an outer product,

so if X i = uiv
T
i , then the above equation becomes

X =
k∑
i=1

uiv
T
i

Stacking the left vectors together and the right vectors leads to our third representa-

tion. Let U =
[
u1|u2| . . . |uk

]
and V =

[
v1|v2| . . . |vk

]
, then

X = UV T

The outer product of two vectors and the Kronecker product has tight connections

when the vec and unvec operations are employed. Using the fact that vec(uvT ) =

v ⊗ u, we can deduce a fourth representation of a low rank matrix.

vec(X) =
k∑
i=1

vi ⊗ ui

2.3 Bipartite matching

Another concept that is critical to this thesis is bipartite matching. A matching

between two sets is a one-to-one mapping between elements in these sets such that an

element in the first set can be matched with zero or one element in the second set. In

the context of graphs, maximum weight bipartite matching is the problem of pairing

up nodes between two sets such that the total edge weights of all matched pairs is

maximized (refer to equation (2.1)). A näıve algorithm to find the best matching

computes the overall weight from overy possible matching, but requires a runtime of

O(n!) when each set has O(n) nodes. A greedy algorithm, which runs by picking

the maximum possible weight at each step of the algorithm achieves a theoretical

2-approximation bound from the optimal bipartite matching. The greedy algorithm

runs in O(n2 log n) assuming that the bipartite graph is dense. The hungarian algo-

rithm (Kuhn, 1955) is one of the most well known algorithms for this problem as it
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solves the problem exactly and runs in O(n3). As it will be clear later, a standard

step in many existing network alignment algorithms is to solve a maximum weight

bipartite matching problem as a final step. In this thesis, we introduce the first class

of algorithms that can solve the maximum weight bipartite matching problem when

the matrix that stores edge scores is stored in its low rank factors.

maximize
P

∑
ij P ijX ij

subject to
∑

uP u,v ≤ 1 for all v∑
v P u,v ≤ 1 for all u

P u,v ∈ {0, 1}

(2.1)
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3 NETWORK ALIGNMENT

The goal of pairwise network alignment is to identify related nodes between two

distinct graphs that are expected to be similar or related. The relevance varies from

one discipline to another—for instance, aligning one social network to another aims

at identifying pairs of nodes from the two graphs that represent the same person,

whereas aligning protein protein interaction networks of one species to another entails

identifying proteins that are similar in function. In the standard formulation of

network alignment, the result is a formal one-to-one matching between nodes from the

first graph to nodes in the second graph, while the result of a local network alignment

algorithm can produce many-to-many pairings of nodes. Some applications of network

alignment include (i) finding similar nodes in social networks, (ii) social network

deanonymization (Korula and Lattanzi, 2014), (iii) pattern matching in graphs (Conte

et al., 2004), (iv) protein matching in Biology (Kelley et al., 2004; Singh et al., 2008;

Liao et al., 2009), (v) ontology alignment (Hu et al., 2008), and more.

3.1 Global versus local network alignment

There are two major approaches to network alignment problems (Atias and Sha-

ran, 2012): local network alignment, where the goal is to find multiple local regions of

both graphs that are similar to each other, and global network alignment, where the

goal is to find one global region that is similar in both graphs. Many approaches to

network alignment rely on solving an optimization problem to compute what amounts

to a topological similarity score between pairs of nodes in the two networks. Figure 3.1

illustrates the difference between global and local network alignment. As can be in-

ferred from the figure, local network alignment produces a many-to-many pairing

of nodes whereas global network alignment produces a set of one-to-one matchings.
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Figure 3.1. Global network alignment aims to find one set of one-to-
one matching between the two graphs to maximize the global overlap.
Local network alignment aims to find multiple matchings such that several
repeated local patterns are identified.

In this thesis, we focus on global alignment with the aim of producing one-to-one

matches between distinct graphs.

3.2 Network alignment formulation

We now turn our attention to define global pairwise network alignment more

rigorously. For two graphs with adjacency matrices A and B, the goal is to find a

permutation matrix P such that the objective below is maximized.

maximize
P

∑
ij[P

TAP ]ijBij

subject to
∑

iP [i, :] ≤ 1 for all i∑
j P [:, j] ≤ 1 for all j

P ij ∈ {0, 1}

(3.1)

This quantity is often referred to as the overlap. In words, this formulation aims to

find a re-labeling of the nodes in graph GA such that this new labeling will generate

the maximum possible overlap when the two graphs are overlayed on top of each

other. This specific formulation is an instance of the quadratic assignment problem

(QAP) (Burkard et al., 2012) and solves the maximum common subgraph problem.
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The goal of the maximum common subgraph problem is to find the largest possible

graph that will be isomorphic to a subgraph from GA and a subgraph from GB.

Network alignment stated as the above optimization problem generalizes the subgraph

isomorphism problem, which is known to be NP-hard.

Recent variations of this objective include an extension to overlapping trian-

gles (Mohammadi et al., 2016), an extension that combines edge overlapping with

prior similarity scores (Singh et al., 2008; Bayati et al., 2013), as well as an extension

specific to bipartite graphs (Koutra et al., 2013)

3.3 The network alignment pipeline

There exists a variety of algorithms for pairwise network alignment, and they

often have a similar pipeline (Feizi et al., 2016; Singh et al., 2008; Bayati et al.,

2013; Klau, 2009), and the pipeline consists of two steps. The first step is finding

pairwise scores for every pair of nodes from the two networks, and this step is the

distinguishing feature of network alignment algorithms. In IsoRank (Singh et al.,

2008) for instance, nodes that participate in aligning more edges recieve higher scores,

and in TAME (Mohammadi et al., 2016), nodes that participate in aligning more

triangles receive higher scores and other algorithms define other heuristics. Later in

this chapter, we will get into a more detailed discussion on IsoRank, and later in this

thesis we will discuss EigenAlign (Feizi et al., 2016) and TAME (Mohammadi et al.,

2016) in more detail.

Thus, the first step of many network alignment algorithms is to forming a scoring

algorithm f which gives the similarity scores. After all the similarity scores have been

computed and stored in a matrix X, the goal is to maximize the global similiarity

scores and thus, a maximum weight bipartite matching algorithm is run on X. This

produces the final one-to-one matchings.

f(A,B) = X → bipartite matching (X)
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The problematic aspect of this pipeline is that it requires a memory storage that is

quadratic in the size of the graphs.

3.4 Network alignment with a prior

Some applications also come with prior information about which nodes in one net-

work may be good matches for nodes of another network, which implicitly imposes a

restriction on the number of the similarity scores that must be computed and stored

in practice (Bayati et al., 2013) (and this makes the matrix X introduced more sparse

in practice). However, for problems that lack this prior, the data requirement for stor-

ing the similarity scores is quadratic, which severely limits the scalability of this class

of approaches to solve the problem (for example, the Lagrangian relaxation method

of Klau et al. (Klau, 2009) requires at least quadratic memory in this scenario and

is infeasible for large graphs). There do exist memory-scalable heuristics for solving

network alignment problems with no prior. One procedure designed for aligning net-

works without prior information is the the Graph Alignment tool (GRAAL) (Kuchaiev

et al., 2010). GRAAL computes the so-called graphlet degree signature for each node,

a vector that generalizes node degree and represents the topological structure of a

node’s local neighborhood. The method measures distances between graphlet degrees

to obtain similarity scores, and then uses a greedy seed and extend procedure for

matching nodes across two networks based on the scores. A number of algorithms

related to this method have been introduced, which extend the original technique by

considering other measures of topological similarity as well as different approaches to

rounding similarity scores into an alignment (Milenkovic et al., 2010; Kuchaiev and

Pržulj, 2011; Memisevic and Pržulj, 2012; Malod-Dognin and Pržulj, 2015). The seed-

and-extend alignment procedure was also employed by the GHOST algorithm (Patro

and Kingsford, 2012), which computes topological similarity scores based on a novel

spectral signature for each node. The GHOST procedure or the GRAAL algorithm

and its variants usually involve cubic or worse computation in terms of vertex neigh-
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borhoods in the graph (e.g. enumeration of all 5-node graphlets within a local region).

In this thesis, our focus is on alignment problems where the prior information about

matches is not present, yet, we avoid the quadratic memory requirement by employing

low rank methods.

3.5 Network alignment in Biology

Network alignment is a popular problem in biology (Kelley et al., 2004; Singh et al.,

2008; Liao et al., 2009; Memisevic and Pržulj, 2012; Milenkovic et al., 2010) due to its

ability to help extract new information about less studied biological entities. Often in

biology, one can extract valuable knowledge about proteins for which little information

is known by aligning a protein network with another protein network that has been

studied more. By doing so, one can draw conclusions about proteins in the first

network by understanding their similarities to proteins in the second (Kuchaiev et al.,

2010; Kuchaiev and Pržulj, 2011). For instance, if we understand how a particular

experiment disrupts a subnetwork of protein interactions in a mouse and we know

the related interactions in a human, we have evidence for the hypothesis that the

experiment would disrupt the mapped interactions in a human. Furthermore, network

alignment is used to compare the brain connectomes from fMRIs. The brain is one

of the most challenging human body components to understand the function of the

brain connectome, network alignment can be employed (Milano et al., 2016, 2017).

With the biological importance of this problem in mind, there have been several

biologically inspired algorithms for network alignment. These algorithms often build

the biological component into the algorithm itself. For instance, GHOST (Patro

and Kingsford, 2012) uses the protein sequence similarity scores (such as the ones

extracted from BLAST (Altschul et al., 1990)), and Magna (Vijayan et al., 2015)

uses a genetic algorithm and a crossover function aimed at producing an alignment

that takes into account the evolutionary changes of the nodes in the networks. Our

focus in this thesis is more generic to standard networks from any discipline.
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3.6 Multiple network alignment

So far we have been referring to the network alignment problem in terms of two

networks. The problem formulation extends neatly to multiple networks, but makes

the problem even more challenging to solve in practice. Chapter 6 is entirely concerned

with multiple network alignment and we defer the details to that chapter.

3.7 Literature review on network alignment algorithms

We now take a step back and review some of the existing network alignment meth-

ods that have been proposed for standard networks. The global network alignment

problem is almost always stated as an attempt to maximize the number of over-

lapped edges combined with maximizing domain-specific notions of apriori known

vertex similarity. Recently, (Mohammadi et al., 2016) introduced the notion of find-

ing an alignment that maximizes the number of preserved higher order structures

(such as triangles) across networks. This results in an integer programming problem

that can be approximated by the Triangular Alignment algorithm (TAME), which

obtains similarity scores by solving a tensor eigenvalue problem that relaxes the orig-

inal objective. And alternative approaches to improve network alignment include

active methods that allow users to select matches from a host of potential near equal

matches (Malmi et al., 2017).

There are two prominent classes of methods: (i) embedding and (ii) integer opti-

mization relaxations and heuristics. Embedding methods seek to compute a feature

vector for each node of GA and GB independently and then use relationships be-

tween the feature vectors to generate the matching. Using eigenvectors is common

for this task in pattern recognition (Knossow et al., 2009) and recent methods have

proposed graphlet counts (Kuchaiev et al., 2010), eigenvector histograms (Patro and

Kingsford, 2012), and one method generates the embeddings based on node and edge

types (Fraikin and van Dooren, 2007). Obtaining these feature vectors can be ex-

tremely expensive in terms of computation, but results in memory efficient methods.
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The second class of methods attempts to solve a relaxed version of the problem

shown in (3.1), perhaps with an additional term reflecting the vertex similarity. Iso-

Rank was one of the first methods in this class (Singh et al., 2008). Subsequent

techniques include belief propagation methods (Bayati et al., 2013), Lagrangian re-

laxations (Klau, 2009), spectral methods (Feizi et al., 2016), and tensor eigenvectors

for motif-alignment (Mohammadi et al., 2016). Essentially, all of these methods store

a dense, real-valued heuristic matrix X of size |VA| × |VB|. This needs memory that

is quadratic in the size of the networks and greatly limits scalability. One of the most

scalable methods results from a crucial analytical insight into the structure of the

IsoRank heuristic. The resulting method–network similarity decomposition (Kollias

et al., 2012)–can be considered a hybrid of embedding and integer optimization.

3.8 IsoRank

Now, we dive more into one of the methods mentioned earlier–IsoRank. IsoRank

is one of the earliest network alignment algorithms that tackles the global network

alginment problem (Singh et al., 2008), and it is used repeatedly in this thesis.

The intuition behind IsoRank is that two nodes i and j are good matches if the

neighbors of i can match the neighbors of j. A relevance score based on this idea can

be computed between every possible pair of nodes from two graphs GA and GB.

R(Ai,Bj) =
∑

u∈N(Ai)

∑
v∈N(Bj)

1

|N(u)||N(v)|
R(u, v)

Where N(w) is the set of all nodes that are adjacent to node w. Initially, the values

in R are uniform, and as the relevance scores are iteratively recomputed, R converges

to become the matrix that stores the similarities of every pair of nodes from the two

graphs.

We can derive a similar relationship via matrix notation. First, we form a new

matrix C which is the adjacency matrix of the product graph of A and B. Here,

C[sub2ind[Ai, Bk], sub2ind[Aj, Bl]] = 1 if (Ai,Aj) is an edge in GA and (Bk,Bl) is
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an edge in GB, where sub2ind is the function that converts a subscript to a linear

index. One iteration of solving for R is equivalent to solving for r = C̃r, where

r = vec(R) and C̃ is the column normalized matrix of C. Thus, finding R as

definded by IsoRank is equivalent to finding the dominant eigenvector of the matrix

C̃.

Nevertheless, as mentioned earlier, some network alignment problems come with

prior known similarity about the nodes in both graphs. This prior can be attributed

via a weighting parameter α. The final equation of IsoRank becomes equivalent to

solving for the PageRank vector on the weighted product graph. If we let Ã and B̃

be the column normalized versions of A and B respectively, then the IsoRank iterate

can be stated as follows.

x = αB̃ ⊗ Ãx + (1− α) vec(L)

where the entries in L, L[i, j], store the prior known similarity scores between node

i from GA and node j from GB. L is a normalized matrix where the sum of entries

add up to 1.
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4 MULTIMODAL NETWORK ALIGNMENT

In this chapter we discuss the network alignment problem on a special kind of net-

works, multimodal networks. The results presented in this chapter are from our paper

Multimodal Network Alignment (Nassar and Gleich, 2017).

A multimodal network encodes relationships between the same set of nodes in

multiple settings and in this chapter, we propose a method for multimodal network

alignment. This method computes a matrix which indicates the alignment, but pro-

duces the result as a low-rank factorization directly. We then propose new methods

to compute approximate maximum weight matchings of low-rank matrices to produce

an alignment. We evaluate our approach by applying it on synthetic networks and use

it to de-anonymize a multimodal transportation network. Our experiments show that

using a multimodal network alignment method is superior to employing a standard

network alignment method agnostically on multimodal graphs.

4.1 Motivation

Recently, much of the network data emerging in scientific applications and engi-

neering studies is multimodal and contains separate types of relational information

between vertices (Szell et al., 2010; Cardillo et al., 2013; Battiston et al., 2014; Nicosia

and Latora, 2015; Ni et al., 2014). For instance, transportation networks are often

described as multimodal when they feature multiple interconnecting but distinct net-

works, such as when subway lines reach airports and national train systems. In

biology, multimodal networks show different types of relationships that can occur be-

tween proteins and genes such as protein sequence similarity, co-occurrence in genes,

co-occurrence in scientific papers, experimental interaction and more.
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Figure 4.1. A multimodal network consists of a common set of vertices
identifiers (in this case, 1-7) and a set of modes that define edges. Below,
we illustrate the multimodal adjacency matrix, which we will use to align
the multimodal networks.

This motivates our work in this chapter. We seek to produce effective methods

to align a pair of multimodal networks. We will be more specific about our notion

of a multimodal network in the following section. For now, consider multimodal

networks in biology where proteins have many different types of relationships such

as the ones described above. We may, for instance, be interested in aligning these

networks generated from two species to infer related complexes and systems. In this

case, the modes of each multimodal network are shared between the two networks to

align. We propose a new method that takes in a pair of multimodal networks with

the same set of modes and produces an alignment between the vertices encoded in

the network with no apriori knowledge of the relationship between the vertices. As

stated earlier, network alignment problems are notoriously difficult from a theoretical

perspective and multimodal networks tend to be bigger in size, which makes the

multimodal network alignment problem even more challenging in practice.

Key difference with multiple network alignment. In multimodal network

alignment, the goal is to find one relabeling of nodes applied to all modes of one

multimodal network, such that the total overlap from every modal alignment is max-

imized. In contrast, multiple network alignment for k networks entails finding k − 1
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such relabelings, each corresponding to a network, such that when the k networks

are overlayed on top of each other according to the new labels, the total overlap is

maximized.

Several principled heuristic solutions are often used (Mohammadi et al., 2016;

Singh et al., 2008; Conte et al., 2004) to solve the network alignment problem, and in

this chapter, we develop a principled and effective heuristic method that generalizes

the ideas utilized in IsoRank (Singh et al., 2008) in concert with the insights from

the network similarity decomposition method (Kollias et al., 2014). Our method

is designed for multimodal networks with 10s-1000s of modes with 1,000-100,000

vertices.
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Figure 4.2. An illustration of the mul-
timodal alignment problem. The goal
is to identify the matching illustrated
between the node id’s given only the
multimodal networks A and B. We as-
sume the modes have a known align-
ment. The overlap of this matching is
20 (mode 1 contributes 6 overlapping
edges, mode 2 contributes 9 overlapping
edges, and mode 3 contributes 5 over-
lapping edges).

On top of this new method, we contribute a new theory about how to take the

output from our heuristics and efficiently turn it into a matching between the graphs.

This solves one of the key challenges in how to deal with multimodal networks and

alignment. Many good ideas result in a polynomial explosion in problem size. This
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causes methods that have been developed for the pairwise case to be nearly impossible

to use for the multimodal setup we propose (Bayati et al., 2013; Klau, 2009). More

specifically, this is a memory bottleneck: they would need terabytes of memory to

handle problems that start off as a megabyte of data. We state this new theory as an

independently useful primitive of finding a matching in a low-rank matrix. For this

problem, we investigate a highly efficient 1/k approximation for a rank-k matrix that

finds the matching by using the low rank factors of the matrix only.

When we seek to evaluate our new methods, we will do so in (i) detailed synthetic

experiments and (ii) a case-study and demonstration of our technique where we de-

anonymize a publicly released transportation network that lacks meaningful vertex

identifiers (Nicosia and Latora, 2015). The goal of the synthetic experiments is to

address the hypothesis that using multimodal alignment is better than straightfor-

ward generalizations of using existing network alignment methods to pairwise align

each mode or a combined network. In the case of the transportation data, only our

multimodal alignment method is able to completely map the data between the public

data and the original database with labels. Our goal with both of these experiments

is to reveal properties of our method and ideas that would be useful in any domain-

specific application of network alignment but without the engineering that tends to

occur in these applications. The rest of this chapter is divided as follows:

• Section 4.2 presents a precise statement of a multimodal network alignment

problem.

• Section 4.3 shows our method, multimodal similarity decomposition (MSD),

to solve multimodal network alignment problem that uses all the information

among the modes, and goes beyond baseline methods that align the modes

individually.

• Section 4.4 discusses independently useful results about how to approximate a

bipartite maximum weight matching where the matching matrix is low-rank.
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• Section 4.6 is a case study on synthetic graphs and demonstrates that simple

methods for multimodal alignment outperforms strong methods for pairwise

network alignment of the individual modes when there are many vertices missing

in each mode.

• Section 4.7 is a case-study with de-anonymizing a publicly released multimodal

network of airports and airlines (Nicosia and Latora, 2015) that cannot be de-

anonymized using state-of-the-art network alignment methods. We also study

the set of most helpful modes to find this alignment in this section.

4.2 Multimodal networks & Multimodal network alignment

In the context of this thesis, a multimodal network is a common set of vertex

labels (the set V ) and multiple sets of undirected edges over these vertices. Each set

of edges represents a mode, so we have E(1), . . . , E(m) for m modes and Figure 4.1

shows an example with three modes. Note that each mode can have a strict subset

of the nodes V and not necessarily the entire set.

To manipulate multimodal network data computationally, we use a multimodal

adjacency matrix. Our definition is in the spirit of how multislice, multiplex networks,

and temporal networks are represented (Mucha et al., 2010), although the details of

our specific construction differ. Let A1, . . . ,Am represent the adjacency matrices of

each mode. Then the multimodal adjacency matrix is:

MA =


A1 C12 . . . C1m

CT
12 A2 . . . C2m

...
. . . . . .

...

CT
1m . . . . . . Am

 . (4.1)

Here, the matrix Cij represents the cross-modal associations between mode i and

mode j. This is always a binary diagonal matrix where Cij(k, k) = 1 if vertex k is

present in both modes i and j. All other entries are 0. An example is illustrated in
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Figure 4.1. Note that MA is sparse, and the cross-modal edges do not introduce too

many new entries beyond the data. The goal of the multimodal network alignment

problem is to produce a matching between the vertices of two multimodal networks

that aligns the networks by maximizing the number of edges of each mode that are

preserved under the matching. Recall that a matching is a one-to-one relationship

between two sets. Let VA and VB be the vertex sets of multimodal networks GA and

GB respectively, and let MA and MB be the corresponding adjacency matrices of

the multimodal networks. We use v ↔ v′ to denote a matching between v ∈ VA and

v′ ∈ VB. Let E
(k)
A and E

(k)
B be the edge sets of the kth mode of GA and GB as well.

Then we seek a matching between VA and VB that maximizes

m∑
k=1

∑
(uA,vA)

∈E(k)
A

∑
(uB ,vB)

∈E(k)
B

1 if uA↔uB and
vA↔vB

0 otherwise.

(4.2)

Note that this is a single matching between the vertices that is then evaluated over

all the modes, which is possible because we assume that the correspondence between

each mode is known and mode k in network GA corresponds to mode k in network

GB. See Figure 4.2 for an example.

So far, the way we have defined our multimodal networks, the multimodal network

alignment problem can be stated as as generalization of the classic pairwise network

alignment problem presented in Chapter 3. If P is a matrix where the rows are

indexed by vertices in VA and columns by vertices in VB, then P (v, v′) = 1 if v ∈ VA
matches to v′ ∈ VB and 0 otherwise. Also, let {Ak} and {Bk} be the adjacency
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matrices for each mode of the multimodal networks A and B. Then the multimodal

network alignment problem is

maximize
P

1
2

∑m
k=1

∑
ij[P

TAkP ]ij[Bk]ij

subject to
∑

iP ij ≤ 1 for all j∑
j P ij ≤ 1 for all i

P ij ∈ {0, 1}.

(4.3)

As it is the case for the pairwise network alignment problem, this integer optimization

problem over the space of matrices is extremely challenging to solve exactly (note that

it is equivalent to the pairwise network alignment problem when m = 1).

4.3 Multimodal Similarity Decomposition: A multimodal generalization of IsoRank

and the Network Similarity Decomposition

We now present our approach to compute a multimodal network alignment. The

high level idea is that we are going to run the IsoRank method to align the multimodal

adjacency matrices MA and MB. Doing so will involve a number of new insights

about how the methods will behave on multimodal networks and exploiting the struc-

ture of the methods. The result of this section is a heuristic solution matrix YMN

that we describe how to turn into a multimodal alignment in Section 4.4. We begin

by reviewing the network similarity decomposition (Kollias et al., 2014) method.

4.3.1 IsoRank & the network similarity decomposition

Recall the IsoRank algorithm (Section 3.8) for pairwise network alignment. Iso-

Rank is equivalent to solving the PageRank problem on the product graph of the two

graphs to be aligned. Network Similarity Decomposition (NSD) (Kollias et al., 2014)
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uses a simple Kronecker product property (Chapter 2) to rewrite the key iterate of

IsoRank.

x = αB̃ ⊗ Ãx + (1− α) vec(L)↔X = αÃXB̃x + (1− α) vec(L) (4.4)

where vec(X) = x and L is the prior known similarity.

Note that when no prior similarity is known, this translates to making all the

entries in L constant, reflecting a uniform similarity. The insight in the network

similarity decomposition (NSD) is that if L is rank 1, as it would be in the case

of uniform similarity, then running t iterations of the power method to compute

the PageRank vector will result in a rank t + 1 matrix X. Moreover, the low-rank

factorization of X can be easily computed by running the power method for PageRank

on network GA and network GB independently. (In this sense, this is similar to

an embedding method, because we compute the PageRank iterates of each network

separately, then combine them.) This is easy to see when L = uvT then t iterations

of the power-method for (4.4) produce:

X(t) = (1− α)
t−1∑
k=0

αkÃ
k
uvT (B̃

T
)k + αtÃ

t
uvT (B̃

T
)t

This matrix is a sum of t+1 rank-1 matrices each of the form scalar·(Ãt
u)(B̃

t
v)T . In

this way, a low-rank factorization of the IsoRank solution can be computed extremely

efficiently. Run t steps of the power method for PageRank on networks GA and GB

separately and store the iterations.

4.3.2 Our Multimodal Similarity Decomposition

Our goals with the multimodal similarity decomposition and multimodal align-

ment closely mirror those of NSD and IsoRank. In our case, we want to allow align-

ment information to flow between modes of the network to reinforce alignments be-

tween vertices that are present in various modes. This intuition suggests that the
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IsoRank scores for the alignment of multimodal adjacency matrices will be an effec-

tive heuristic for our problem. This will flow alignment information between modes

via the cross-modal edges Cij.

Since we assume that the alignment between modes of the network are already

known, we can strengthen our heuristic by customizing the matrix L. Recall that

Lij is the apriori similarity of node i in GA and j in GB. The multimodal adjacency

matrix has m copies of each vertex identifier – one for each vertex in each of the m

modes. Thus, we use the matrix

L =


γ · ones 0 . . . 0

...
. . . . . .

...

0 . . . 0 γ · ones

 , (4.5)

where ones is a matrix of size |VA| × |VB| and γ is chosen such that all entries of

L sum to 1 (that is, γ = m−1|VA|−1|VB|−1). This choice of L corresponds to a

rank-m matrix, where each mode constitutes a single rank-1 factor suggesting that

nodes in mode 1 in multimodal network GA should correspond to nodes in mode 1

of multimodal network GB.

Let PA and PB correspond to degree-normalization (by columns) of MA and

MB. Thus, the heuristic X we compute solves:

X = αPAXP T
B + (1− α)L (4.6)

where L is the multimodal similarity (4.5). The result X gives a score for aligning

each node in each mode of A to each node in each mode B. This is not the type of

output we want, so in subsequent sections, we discuss how to turn this output into

the type of matching we expect (1− 1 matching between the set VA and VB).

At this point, we can utilize the same methodology underlying the network sim-

ilarity decomposition to efficiently compute a low-rank decomposition of X. Note

that the matrix L is rank-m. Thus, we can compute t iterations of the power method
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to solve (4.6) and the result is a rank (m) · (t+ 1) matrix X following the exact same

argument as expression for the network similarity decomposition. The pseudocode is

shown in Algorithm 1. One small detail is that we assumed in the derivation that

PA and PB have no empty rows or columns. If this is not the case, then each iterate

needs to be normalized to be a probability distribution as in the pseudocode.

Algorithm 1 Pseudocode for the multimodal similarity decomposition: m is the

number of modes of the multimodal networks GA and GB, and the column-

normalization computes: P [i, j] = M [i, j]/
∑

`MA[`, j]. The normalize func-

tion divides a vector by its sum. The reshaping occurs by column such that

U [:, 1] = Z[:, 0, 1]. We assume the reshaping happens the same way on U and V to

ensure the low-rank factors are aligned. The result U and V must still be matched

as in Section 4.4 to solve (4.3).

1: Input: Multimodal networks MA, MB, α, iteration t

2: Output: Matrices U and V such that X(t) = UV T

3: U =PageRankPowers(MA,α,t)

4: V =PageRankPowers(MB,α,t)

5:

6: PageRankPowers(M ,α,t)

7: Set P to be the column normalized matrix M .

8: Allocate Z as a |V | × (t+ 1)×m array

9: for k=1 to m do . the number of modes

10: for i=1 to |V |m do

11: Z[i, 0, k] =

(
√
m|V |)−1 i is an index in mode k

0 otherwise

12: end for

13: for j=1:t do

14: Z[:, j, k] = normalize(PZ[:, j − 1, k])

15: Z[:, j − 1, k] =
√

(1− α)αj−1Z[:, j − 1, k]

16: end for

17: Z[:, t, k] =
√
αtZ[:, t, k]

18: end for

19: return U as Z reshaped to |V | × (t+ 1)(m)
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4.4 Matching algorithms & Resolving conflicts

After the multimodal network decomposition (MSD), the next step is to produce

a matching between the vertices. A standard technique here is to run a max-weight

bipartite matching on the matrix X for the network alignment case (Singh et al.,

2008; Bayati et al., 2013). There are two issues with this step. The first is the size of

the resulting matrix X can be prohibitively large if we realize it as a dense matrix.

This is especially true if we have a large multimodal network with many modes. A

problem with 100 modes and 5000 vertices would produce a 500, 000× 500, 000 dense

matrix whereas the low-rank factors for 8 iterations would require two 500, 000× 900

matrices. Thus, we investigate memory-efficient matching routines that deal with X

via its low-rank decomposition. The second issue is that this output is a matching on

the rows of the multimodal adjacency matrix and not a matching on the vertex set

of the multimodal network. Aggregating them can result in conflicting matches and

we describe a few ways to resolve these.

4.4.1 Approximate matching via low-rank factors

Bipartite matching is a common subroutine that has a well-known polynomial

time algorithm (Kuhn, 1955). The problem with this algorithm is that it requires

the matrix of weights associated with each edge of the bipartite graph. For our case,

this matrix is large and dense, rendering the algorithm infeasible due to the memory

required. However, note that the bottleneck is the density of the matrix. Bipartite

matching is computationally tractable with sparse matrices of exactly the same size

because the algorithms utilize the sparsity to lower the memory requirement. For

the purposes of this section, let X = UV T be the matrix we wish to run a bipartite

matching on and U be m × k. We note that the low-rank factors from MSD are

non-negative, so we assume U ,V ≥ 0.

We begin with an extremely idealized case. If k = 1, then Y = uvT is rank-1,

and it is extremely easy to compute a maximum weight matching. This only involves
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sorting the vectors u and v in decreasing order and taking the largest feasible set of

components. (This fact is a simple corollary of the rearrangement inequality, so we

omit a formal statement and proof.)

For the remainder of this derivation, we’ll need one additional bit of notation: the

matrix inner product A •B =
∑

ij AijBij. Recall that a matching can be expressed

as a matrix where P ij = 1 if i is matched to j and all other entries are 0. Given

any matching P the weight of the matching is P •X. We now show that using the

best matching from each rank-1 factor of X gives a 1/k-approximation when X has

rank-k.

Theorem 4.4.1 Let X = UV T be a rank-k non-negative decomposition for X. Let

P i be the maximum weight matching corresponding to the rank-1 factor uiv
T
i , and

let fi = P i • (uiv
T
i ) be its weight. If f ∗ is the largest value of fi, and P i∗ is the

corresponding maximum weight matching, then P i∗ achieves a 1/k-approximation to

the maximum weight matching on X.

Proof Let P ∗ be any optimal maximum weight matching. Then

P ∗ •X︸ ︷︷ ︸
optimal matching

weight

=
∑k

i=1(P
∗ • uiv

T
i ) ≤

∑k
i=1 fi︸ ︷︷ ︸

fi is optimal for uiv
T
i

≤ kf ∗ ≤ kP i∗ui∗v
T
i∗ ≤ kP i∗ •X

While this provides a simple approximation bound, the value of k for our experi-

ments is often around 1000, rendering it rather pointless in terms of theory. However,

we find that a single factor often produces exceptionally good approximation factors–

far beyond what the theory from this result would show.

In practice, there are a few additional improvements we can make. Two of these

apply to general problems and also produce a 1/k approximation. The third improve-

ment is specific to the multimodal network alignment objective. We also discuss a

few other ideas suggested in the literature.
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Maximum weight 1/k. In the first variant, we compute the weight of the matching

P i in the full matrix X via M • P i. The runtime of this computation is nk and

it can be done entirely with the low-rank factors. Then we select the largest weight

among matchings P i. This is still a 1/k approximation because X •P i ≥ (uiv
T
i )•P i

due to the non-negativity.

Union of matchings. While we cannot always expect to solve the dense bipartite

matching problem, we are able to solve sparse bipartite matching problems on the

size of the vertex sets easily. In this case, we can take the union of edges produced by

the matchings P 1, . . . ,P k and find the best bipartite matching in this sparse subset

of the entries of X. Again, this can only make our approximation better and so we

still get 1/k.

Maximum overlap. The actual goal of our problem is to achieve the best align-

ment between two multimodal networks. Thus, rather than compute the weight of

the matching in the heuristic X, we directly evaluate the overlap produced by each of

the matchings P i between the multimodal adjacency matrices. (Note this is slightly

different from the matching we will consider after we resolve conflicts below.) This

picks the matching P i that corresponds with the true objective functions.

Other possibilities. In ref. (Kollias et al., 2014), they suggest computing Y a

row at a time and retaining the largest r entries as edges of a graph. This forms

a sparse graph that can be used in a parallel maximum weight bipartite matching.

Alternatively, it is feasible to run a greedy 1/2-approximate matching. We found

both of these underperformed our ideas in terms of final quality and were no faster.

Runtime & Memory All of these schemes keep the matrix X stored as factors

U and V . Each matching takes O(n) storage, so storing k matches requires O(nk)

memory, and this exactly mirrors the storage of the factors U and V themselves. We

provide a comparison of runtime in Table 4.1.
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Method Runtime

Simple 1/k nk log n
Max Weight 1/k nk log n+ nk2

Union 1/k nk log n+nk2+BM(nk)
Max Overlap nk log n+ |E|
r-Sparsified n2k + BM(nr)
Greedy 1/2 n3k

Table 4.1.
We compare runtimes of low rank ap-
proximate bipartite matching where U
and V are n × k for simplicity. Also,
BM(E) is the runtime for bipartite
matching on n nodes with E total en-
tries, and |E| is the number of edges in
the original networks.

Practical considerations. All of the approximations here are extremely fast to

compute for values of n up to a few million. So in our codes, we will usually compute

multiple matchings and choose the best based on the overall alignment scores after

we resolve conflicts as discussed next.

4.4.2 Resolving conflicts

So far, we have presented methods to derive a matching on a low-rank approx-

imation. In the context of multimodal networks, this matches at the level of the

row and column identifiers of the multimodal adjacency matrices. This is a problem

because each vertex id in the multimodal network occurs at m different rows of the

multimodal adjacency matrix. For instance, if multimodal network A consists of 3

modes, vertex 1 can be matched to three different vertices, one for each mode!

To resolve these conflicts, we have two methods and choose the best among them

based on the overlap of the alignment they produce. The first method is to greedily

examine the multimodal matching, project each match to nodes in VA and VB, and

accept it if it’s still feasible in the projected alignment. The second method is to

project the multimodal matchings to one bipartite network on VA and VB. Put

another way, we take the union of all matches induced by the single multimodal

matching. Each edge is weighted by the value in X (and duplicates are summed)
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that arose from the matching. Once we project all the matchings, we use a bipartite

matching to obtain the final matching.

4.5 Baseline methods

Before we describe our experiments, we explain how the multimodal alignment

problem can be addressed using existing methods for network alignment. These

methods do not take advantage of the multimodality of the data to guide the align-

ment, but nevertheless provide strong baselines. The first baseline is to smash the

networks together and look at an alignment of the unimodal networks with edge set

∪mk=1E
(k)
A and ∪mk=1E

(k)
B . We can use any existing network alignment tool for this

task. In the following experiments, we use Klau’s relaxation (Klau, 2009) because

it had the highest performance among a number of methods we evaluated. In ad-

dition to aligning the smashed unimodal networks, we can also compute a pairwise

alignment between each mode. Thus, we align the edges E
(k)
A to E

(k)
B , which provides

another matching. Note that each alignment produces exactly the type of output we

need and there is no need to resolve conflicts as we saw in the multimodal case. We

can then pick the best among these m + 1 alignments (1 alignment for each mode

and 1 alignment for the smashed network) based on the total overlap they induce in

the full multimodal network. We call these methods pairwise alignment rather than

multimodal alignment.

4.6 Synthetic experiments

In our first experiment, we want to understand when multimodal alignment results

in better alignment compared with using a strong algorithm for the pairwise case

(such as Klau’s relaxation method (Klau, 2009)). We use our multimodal method

with α = 0.9, 10 iterations, and then compute the dense matrix X to use with

bipartite matching because this test case is sufficiently small. We compare it against
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Figure 4.3. At left, the recovery results for our multimodal similarity de-
composition (MSD) show excellent performance even in the high vertex
deletion regime. In the middle, the best of any pairwise recovery result
shows good results in the high edge deletion, but worse results with high
vertex deletion. At right, the difference shows blue when MSD outper-
forms the best of the pairwise alignments by at least 5% recovery.
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Figure 4.4. At left, we show how the recovery rate changes as we add
modes when p = 0.1 and q = 0.2; at right we see p = 0.2 and q = 0.1.
The performance of our multimodal alignment increases as we add modes.
The line is the mean over 50 trials and the bands show the 10% and 90%
percentiles.
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Klau’s method (Klau, 2009) as a pairwise aligner as in Section 4.5. Klau’s algorithm

takes significantly longer than MSD.

We generate a multimodal network alignment problem with 36 nodes and 6 modes

as follows. We first create a 12-node Erdős-Rényi graph with average degree 3, and

then join copies into a single 36-node network. The purpose of combining the networks

is to put a degree of symmetry into the graph to make the alignment harder. This

is our reference graph. Next, we generate a mode by randomly deleting vertices with

probability p and randomly deleting edges with probability q/2. Then we generate

two instances of this modal graph with deleted edges again with probability q/2. One

instance goes to multimodal network GA and the other goes to multimodal network

GB. At the end, we have two multimodal networks GA and GB where each mode

shares a number of relationships.

In figure 4.3, we show the fraction of edges aligned using a method over the total

number of edges in the networks as we vary p and q for both MSD and the best of

pairwise alignments (Section 4.5). We do not use node-based recovery due to many

nodes of degree one, which cannot be resolved. The results are the mean over 50

trials, and they show a large regime where multimodal alignment is superior to any

pairwise alignment. Specifically, when the vertex deletion probability p is large, the

multimodal alignment is the only method to accurately align the networks. When

edge deletion is high, smashing the networks effectively reconstitutes the original

network and we see the superior performance of Klau’s pairwise method.

Next, in Figure 4.4, we show how the behavior of the methods change as we vary

the number of modes of the multimodal network. As expected, the performance of

our method increases with additional modes, whereas the performance of the pairwise

method is consistent (or even slightly decreasing).
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4.7 De-anonymizing transportation datasets

In this section we present a case-study with de-anonymizing a publicly released

dataset of airlines and airports, where we treat each airline as a mode. We show

in this section that only our proposed multimodal alignment method can fully de-

anonymize the network and align each edge. The anonymized network is the European

air network from ref. (Nicosia and Latora, 2015), which was released with anonymized

airport identifiers but with all airline identifiers. The data originally came from the

OpenFlights repository (http://openflights.org). We wanted to take the original

data and use it to restore identifiers to the anonymized data. We selected the May

2013 release based on the publication date of (Nicosia and Latora, 2015). These

networks have 594 airports and 175 airlines and 6468 edges, respectively. Our goal is

to align the multimodal network such that each edge is matched.

4.7.1 Performance at de-anonymization

We consider an alignment to de-anonymize the network if it is able to overlap

all 6468 edges through the matched vertex identifiers. In Table 4.7.2, we show the

overlap size for our multimodal methods and a number of different low-rank matching

techniques from Section 4.4. This time we are not able to run the full bipartite

matching unless we use a computer with 512GB of RAM and so we don’t report

those results. The best result from the baseline pairwise alignment methods miss 70

edges. All of our low-rank matching approximations achieve the full overlap score.

4.7.2 Which modes help multimodal alignment?

The final experiment seeks to understand which modes have the highest impact on

the de-anonymization performance. In many applications, collecting additional data

incurs a cost and this experiment is designed to provide insight as far as what type of

multimodal data would be most helpful to collect. Our goal is to use only a subset of
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the 175 modes to produce an alignment, and then compute the overlap that results

from using this alignment on all 175 modes. We sort the modes based on a number of

graph theoretic measures to produce interesting subsets. The per-mode measures are:

edge count, unique vertex count, average degree, triangle count, density. Figure 4.5

shows the results for these measures along with a few random orderings of the modes.

The goal is to align the highest fraction of edges using the fewest modes. Most of the

graph theoretic measures have similar performance, which suggests that any could be

a proxy for which data to collect. Density is a notable outlier as some of the modes

consist of a single edge, resulting in a high density, but little information about the

global alignment.

Type Method Overlap

Multimodal MSD Max Weight 1/k 6468
Multimodal MSD Union 1/k 6468
Multimodal MSD Max Overlap 6468

Pairwise smashed 6398
Pairwise best mode 3127

Table 4.2.
The multimodal airport net-
works have 6468 edges. All the
multimodal methods are able
to de-anonymize this network.
The best pairwise results come
from smashing the multimodal
structure and aligning the re-
sulting networks, which misses
70 edges compared to the mul-
timodal alignments and takes
more time.

4.8 Conclusions

In this chapter, we demonstrated that using multimodal features of data, when

they exist makes alignment problems easier. We compared our multimodal network

decomoposition method (MSD) against a carefully engineered method in pairwise

alignment (Klau’s). We also did all of the pairwise experiments reported here with

the IsoRank method instead of Klau’s and the results were uniformly worse as far as

the alignment quality. However, when we use the multimodal extension to IsoRank
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Figure 4.5. As we use more modes to
produce an alignment for the airport
data, the performance increases. This
experiment shows that using modes
that have many edges (edge count),
touch many unique vertices (vertex
count), have a high average degree (avg
degree), or have high triangle count (#
triangles) all outperform random selec-
tions. Alternatively, density does not
work as discussed in the main text.

we have proposed, accurate alignments are easy to obtain. For instance, note that in

Figure 4.4, MSD used the additional modes to improve the alignment, whereas the

pairwise method did not.

MSD marks the first network alignment that can align data represented in a mul-

timodal way. Taking advantage of modality proved to be useful and we believe that

using this new methodology, combined with particular domain specific adaptations,

will result in new insights about multimodal data specially in Bioninformatics re-

search.
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5 LOW RANK SPECTRAL NETWORK ALIGNMENT

We now bring our attention back to the standard network alignment problem pre-

sented in the beginning of this thesis. The aim of the standard pairwise network

alignment problem is to produce one-to-one matches between nodes from two graphs

such that the new alignment maximizes the number of overlapping edges. This chap-

ter reports on our paper “Low rank spectral network alignment” (Nassar et al., 2018).

In this chapter, we use a recently proposed and theoretically grounded method

(EigenAlign) as a building block. EigenAlign formulates the network alignment prob-

lem in a slightly different way than the standard maximization of overlap presented

in the beginning of this thesis. Our adaptation of the EigenAlign algorithm admits a

novel implementation which requires memory that is linear in the size of the graphs

to be aligned. The key step to this insight is identifying low-rank structure in the

node-similarity matrix used by EigenAlign for determining matches. With an exact,

closed-form low-rank structure, we then solve a maximum weight bipartite matching

problem on that low-rank matrix to produce the matching between the graphs. For

this task, we show a new, a-posteriori, approximation bound for a simple algorithm

to approximate a maximum weight bipartite matching problem on a low-rank ma-

trix. The combination of our two new methods then enables us to tackle much larger

network alignment problems than previously possible and to do so quickly. Problems

that take hours with existing methods take only seconds with our new algorithm. We

thoroughly validate our low-rank algorithm against the original EigenAlign approach.

We also compare a variety of existing algorithms on problems in bioinformatics and

social networks. Our approach can also be combined with existing algorithms to

improve their performance and speed.
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The IsoRank method is also based on eigenvectors, or more specifically, the PageR-

ank vector of the product-graph of the two networks was used for the same pur-

pose (Singh et al., 2008).

5.1 Motivation

EigenAlign (Feizi et al., 2016) approaches this problem in an innovative way. It

uses the dominant eigenvector of a matrix related to the product-graph between the

two networks in order to estimate the similarity. The eigenvector information is

rounded into a matching between the vertices of the graphs by solving a maximum-

weight bipartite matching problem on a dense bipartite graph (Feizi et al., 2016).

In contrast to IsoRank, which is also based on eigenvectors, the key innovation of

EigenAlign is that it explicitly models nodes that may not have a match in the

network. In this way, it is able to provably align many simple graph models such

as Erdős-Rényi when the graphs do not have too much noise. This gives it a firm

theoretical basis although it still suffers from the quadratic memory requirement.

We highlight a number of innovations that enable the EigenAlign methodology to

work without the quadratic memory requirement. We first show that the EigenAlign

solution can be expressed via low-rank factors, and we can compute these low-rank

factors exactly and explicitly using a simple procedure. A challenge in using low-rank

information here is that the low rank factors used are no longer non-negative (in

contrast to the previous chapter), and there are generally very few ideas on bipartite

matching with low rank data (Nassar and Gleich, 2017). One study analyzes the

locality of bipartite matching on low rank data (Liu and Teng, 2016), but there are

generally a scarcity of algorithms that can compute a bipartite matching on a low

rank matrix. We contribute a new analysis of a simple idea that improves our k-

approximation bound empirically. Our new improved algorithm gives a computable

a-posteriori approximation guarantee. In practice, this approximation guarantee is

extremely good: around 1.1. The rest of this chapter is divided as follows.
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• Section 5.2 shows an explicit expression for the solution of the EigenAlign eigen-

vector as a low-rank matrix (Theorem 5.3.1).

• Section 5.3 shows an O(n log n) method that will solve a maximum-weight bipar-

tite matching problem on a low-rank matrix with an a-posteriori approximation

guarantee (Algorithm 3, Theorem 5.4.1). In practice, these approximation guar-

antees are better than 1.1 for our experiments (Figure 5.5). This improves our

k-approximation algorithm from Chapter 1 (where k is the rank).

• Section 5.5.1 is a thorough evaluation of our methodology to show that there

appears to be little difference between the results of our low-rank methods and

the original EigenAlign (Section 5.5.1), and our methods are more scalable.

• Section 5.5.2 is a demonstration that our low-rank methods can be combined

with existing network alignment methods to yield better quality results.

• Section 5.5.3 is a demonstration that the methods are sufficiently scalable to

be run for all pairs of networks induced by the vertex neighborhoods of every

two connected nodes in a large graph. That is, we seek to align two vertex

neighborhoods together whenever the vertices have an edge. To validate the

alignments, we show that these track the Jaccard similarity between the set of

neighbors. (Figure 6.7).

5.2 Key differences in EigenAlign formulation

We now revisit standard network alignment algorithms and contrast them with

our specific setting and objective. A helpful illustration is shown in Figure 5.1. Recall

that the standard network alignment problem seeks to find a binary matrix P that

encodes a matching between the nodes of the networks and maximizes one of a few
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The goal of network alignment 

is to find a match between the 

nodes of two networks without 

any hints or prior information.  

Our method uses overlap, non-

informative, and conflict matching 

scores to compute a low-rank form 

of an eigenvector of a massive 

matrix of all pairwise alignments.

Overlap

Non-informative

Conflict 

Figure 5.1. Our setup for network alignment follows Feizi et. al. (Feizi
et al., 2016), where we seek to align two networks without any other
metadata. Possible alignments between pairs of any nodes (i, j) in GA

and (i′, j′) in GB are scored based on one of three cases and assembled
into a massive, but highly structured, alignment matrix M .

possible objective functions discussed below. The matrix P encodes a matching when

it satisfies the constraints

P u,v =

1 u is matched with v

0 otherwise.

,

∑
uP u,v ≤ 1 for all v,∑
v P u,v ≤ 1 for all u.

The inequality constraints guarantee that a node in the first network is only matched

with one or zero nodes in the other network. And this matrix P maximizes the

number of overlapping edges between GA and GB in the standard pairwise network

alignment problem, which we restate here for convenience.

maximize
P

∑
ij[P

TAP ]ij[B]ij

subject to
∑

uP u,v ≤ 1 for all v∑
v P u,v ≤ 1 for all u

P u,v ∈ {0, 1}.
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5.2.1 The EigenAlign Algorithm

One of the drawbacks to the previous objective functions is there is no downside

to matches that do not produce an overlap, i.e. edges in GA that are mapped to non-

edges in GB or vice versa. Neither do these objective functions consider the case where

non-edges in GA are mapped to non-edges in GB. The first problem was recognized

in Schellewald and Schnörr (2005) which proposed an SDP-based method to minimize

the number of conflicting matches. More recently, the EigenAlign objective (Feizi

et al., 2016) included explicit terms for these three cases: overlaps, non-informative

matches, and conflicts, see Figure 5.1. The alignment score corresponding to P in

this case is

AlignmentScore(P ) = sO(# overlaps) + sN(# non-informatives) + sC(# conflicts)

(5.1)

where sO, sN , and sC are weights for overlaps, non-informatives and conflicts. These

constants should be chosen such that sO > sN > sC . By setting sN and sC to zero

we recover the ordinary notion of maximizing the number of overlaps. Although it

may seem strange to maximize the number of conflicts, when the graphs have very

different sizes or numbers of edges, this term acts as regularization. The important

piece is that non-informatives are more valuable than conflicts.

This objective can be expressed formally by first introducing a massive alignment

matrix M defined as follows: for all pairs of nodes iA, jA in GA and all pairs i′B, j
′
B

in GB, if P (iA, i
′
B) = 1 and P (jA, j

′
B) = 1, then

M [(iA, i
′
B), (jA, j

′
B)] =


sO, if (iA, jA), (i′B, j

′
B) are overlaps

sN , if (iA, jA), (i′B, j
′
B) are noninformatives

sC , if (iA, jA), (i′B, j
′
B) are conflicts.

We are abusing notations a bit in this definition and using pairs iA and i′B to

index the rows and columns of this matrix. For a straightforward, canonical ordering
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of these pairs iA, i
′
B, the matrix M can be rewritten in terms of the adjacency matrices

of A and B:

M = c1(B ⊗A) + c2(EB ⊗A) + c2(B ⊗EA) + c3(EB ⊗EA)

where ⊗ denotes the Kronecker product, c1 = sO + sN − 2sC , c2 = sC − sN , c3 = sN

and EA, and EB are the matrices of all ones and of the same size as A and B

respectively. The matrix M is symmetric as long as GA and GB are undirected.

Maximizing the alignment score (5.1) is then equivalent to the following quadratic

assignment problem:

maximize
y

yTMy

subject to yi ∈ {0, 1}∑
u y[u, v] ≤ 1 for all v ∈ VB∑
v y[u, v] ≤ 1 for all u ∈ VA

(5.2)

where VA and VB are the node sets of GA and GB respectively. The vector y is really

just the vector of data representing the matching matrix P , and the constraints are

just the translation of the matching constraints from (5.2).

An empirically and theoretically successful method for optimizing this objective

is to solve an eigenvector equation instead of the quadratic program. This is exactly

the approach of EigenAlign, which computes network alignments using the following

two steps:

1. Find the eigenvector x of M that corresponds to the eigenvalue of largest mag-

nitude. Note, M is of dimension nAnB × nAnB, where nA and nB are the

number of nodes in GA and GB respectively; so, the eigenvector will be of di-

mension nAnB, and can be reshaped into an nA × nB matrix X where each

entry represents a score for every pair of nodes between the two graphs. We

call this a similarity matrix because it reflects the topological similarity between

vertices of GA and GB.
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2. Run a bipartite matching algorithm on the similarity matrix X that maximizes

the total weight of the final alignment.

In our work we extend the foundation laid by EigenAlign by considering improve-

ments to both steps. We first show that the similarity matrix X can be accurately

represented through an exact low-rank factorization. This allows us to avoid the

quadratic memory requirement of EigenAlign. We then present several new fast

techniques for bipartite matching problems on low-rank matrices. Together these

improvements yield a low-rank EigenAlign algorithm that is far more scalable in

practice.

Our work shares a number of similarities with the Network Similarity Decompo-

sition (NSD) (Kollias et al., 2012) (the technique based on a low-rank factorization

of the similarity matrix from IsoRank).

5.3 Low Rank Factors of EigenAlign

The first step of the EigenAlign algorithm is to compute the dominant eigenvector

of the symmetric matrix M . Feizi et al. suggest obtaining a similarity matrix X by

first forming M , performing a power iteration on this matrix, and reshaping the final

output eigenvector x into X (Feizi et al., 2016). Because of the Kronecker structure

in M , this can equivalently be formulated directly as the matrix X that satisfies:

maximize
X

X • (c1AXBT + c2AXET + c2EXBT + c3EXET )

subject to ‖X‖F = 1,X ∈ RnA×nB .
(5.3)

In this expression, X•Y =
∑

ij XijYij is the matrix inner-product and the translation

from the eigenvector of M follows from the Kronecker product property vec(AXBT ) =

(B ⊗A)vec(X). We also dropped the dimensions from the matrices E of all ones.

The eigenvector of M is the result of the vec operation on the matrix X, which

converts the matrix into a vector by concatenating columns.
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Our first major contribution is to show that if the matrix X is estimated with

the power-method starting from a rank 1 matrix, then the kth iteration of the power

method results in a rank k + 1 matrix that we can explicitly and exactly compute.

5.3.1 A Four Factor Low-Rank Decomposition

In the matrix form of problem (5.3), one step of the power method corresponds

to the iteration:

Xk+1 = c1AXkB
T + c2AXkE

T + c2EXkB
T + c3EXkE

T . (5.4)

If we begin with a rank-1 matrix X0 = uvT where u ∈ RnA and v ∈ RnB and let

U 0 = u, and V 0 = v so that X0 = U 0V
T
0 . We will first prove by induction that Xk

can be written as

Xk = U kV
T
k (5.5)

where

U k = [c1AU k−1 | c2EU k−1 | c2AU k−1 | c3EU k−1]

V k = [BV k−1 | BV k−1 | EV k−1 | EV k−1].

The base case of our induction follows directly from our definition of X0. Assume

now that the equivalence between (5.4) and (5.5) holds up to k and we will prove the
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equivalence for k + 1. We begin with equation (5.4) and plug in the decomposition

of Xk from (5.5):

Xk+1

= c1AXkB
T + c2AXkE

T + c2EXkB
T + c3EXkE

T

= c1AU kV
T
kB

T + c2AU kV
T
kE

T + c2EU kV
T
kB

T + c3EU kV
T
kE

T

= [c1AU k | c2EU k | c2AU k | c3EU k][BV k | BV k | EV k | EV k]
T

= U k+1V
T
k+1.

This form of the factorization is not yet helpful, because the matrix U k is of

dimension nA × 4k. To show that this is indeed a rank k + 1 matrix, we show

Xk = SkCkT
T
kR

T
k

where:

Sk = [Aku | Ak−1e | . . . | Ae | e]

Rk = [Bkv | Bk−1e | . . . | Be | e]

Ck =

c1Ck−1 0 c2Ck−1 0

0T c2r
T
kCk−1 0T c3r

T
kCk−1



T k =

T k−1 T k−1 0 0

0T 0T hTkT k−1 hTkT k−1

 .
In the above, 0 is the all zeros matrix or vector of appropriate size, and e is the all

ones vector. Also, C0 = T 0 = 1, and rk and hk are defined as follows:

rk = [ eTAk−1u eTAk−2e · · · eTA1e eTA0e ]T

hk = [ eTBk−1v eTBk−2e · · · eTB1e eTB0e ]T
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with r1 = [eTA0u] and h1 = [eTB0v]. Note that this form gives the rank k + 1

decomposition we desire because Sk and Rk both have k + 1 columns.

To complete our derivation, we show U k = SkCk again using induction. The base

case k = 0 is immediate from a simple expansion of the initial definitions, so assume

that the result holds for up to integer k. Then,

U k+1 = [c1AU k | c2EU k | c2AU k | c3EU k]

= [AU k | EU k]
[
c1I 0 c2I 0
0 c2I 0 c3I

]
= [ASkCk | ESkCk]

[
c1I 0 c2I 0
0 c2I 0 c3I

]
.

Now, note that ASk = Sk+1

[
I
0T

]
and ESk = Sk+1

[
0

rTk+1

]
. Thus

U k+1 = Sk+1

[
I 0
0T rTk+1

] [
Ck 0
0 Ck

] [
c1I 0 c2I 0
0 c2I 0 c3I

]
= Sk+1Ck+1

Applying the same set of steps again will yield that V k = RkT k.

5.3.2 Three and Two Factor Decompositions

While this four factor decomposition is useful for revealing the rank of Xk, we do

not wish to work with matrices Ck and T k in practice since each has 4k columns. We

now show that their product CkT
T
k yields a simple-to-compute matrix W k of size

(k + 1)× (k + 1), giving us a three-factor decomposition (3FD):

Xk = SkW kRk.

The matrix W k is defined iteratively by:

W k = CkT
T
k =

 c1W k−1 c2W k−1hk

c2r
T
kW k−1 c3r

T
kW k−1hk

 .
with W 0 = C0T

T
0 = 1 · 1 = 1. This follows from multiplying Ck with T T

k together.
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This decomposition is a step closer to our final goal but suffers from poor scaling

of numbers in the factors. Consequently, we can remedy this by using scaling diagonal

matrices in order to present our final well-scaled three factor decomposition of Xk,

which we present as a summarizing theorem:

Theorem 5.3.1 If X0 = uvT for vectors u ∈ RnA×1 and v ∈ RnB×1, then the kth

iteration of update (5.4) permits the following low-rank factorization:

Xk = Ũ kW̃ kṼ
T

k

where

Ũ k =
[

Aku
‖Aku‖∞

Ak−1e
‖Ak−1e‖∞

. . . Ae
‖Ae‖∞

e
‖e‖∞

]
Ṽ k =

[
Bku
‖Bku‖∞

Bk−1e
‖Bk−1e‖∞

. . . Be
‖Be‖∞

e
‖e‖∞

]
W̃ k = DuW kDv.

Here Du is a (k + 1)× (k + 1) diagonal matrix with entries

(‖Aku‖, ‖Ak−1e‖, . . . , ‖Ae‖, ‖e‖) on the diagonal, and Dv is a diagonal matrix with

entries (‖Bkv‖, ‖Bk−1e‖, . . . , ‖Be‖, ‖e‖).

The diagonal matrices in Theorem (5.3.1) are designed specifically to satisfy SkD
−1
u =

Ũ k, RkD
−1
v = Ṽ k, so the equivalence between the scaled and unscaled three factor

decompositions is straightforward. Note that the result is still unnormalized. How-

ever, we can easily normalize in practice by scaling the matrix W̃ k as we see fit.

Note that when computing this decomposition in practice, we do not simply con-

struct S,R, and W and then scale with Du and Dv. Instead, we form the scaled

factors recursively by noting the similarities between each factor at step k and the cor-

responding factor at step k + 1. A pseudo-code for our implementation that directly

computes these is shown in Algorithm 2.

As we shall see in the next section, we would ultimately like to express Xk in

terms of a just a left and a right low-rank factor in order to apply our techniques for
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Algorithm 2 The pseudocode of the algorithm to decompose X into two low-rank

matrices. Note that ◦ refers to the element-wise Hadamard product between two

vectors.
1: Input: A,B,u,v, c1, c2, c3, k

2: Output: Û and V̂ such that Xk = Û V̂
T

3: Compute Ũ k, Ṽ k and save norms in a[1], . . . , a[k+1]; b[1], . . . ,b[k+1].

4: Compute the terms necessary to build r1, . . . , rk and h1, . . . ,hk.

5: Define vectors ai = a[i+1]
a[1...i]

for i = 1, . . . , k

6: Define vectors bi = b[i+1]
b[1...i]

for i = 1, . . . , k

7: Set W̃ 0 = a[1]b[1]

8: for k=1 to k do

9: Update W̃ i =
[

c1W̃ i−1 c2W̃ i−1(bi◦hi)

c2(ri◦ai)
T W̃ i−1 c3(ri◦ai)

T W̃ i−1(bi◦hi)

]
10: end for

11: Compute UW ,SW ,V W = SVD(W̃ k) and set D = S
1/2
W

12: return Û = Ũ kUWD, V̂ = Ṽ kV WD

low-rank bipartite matching. It is preferable for our purposes to produce two factors

that have roughly equal scaling, so we accomplish this by factorizing W̃ k using an

SVD decomposition and splitting the pieces of W̃ k into the left and right terms. The

last steps of the Algorithm 2 accomplish this goal.

5.4 Low Rank Matching

In this section, we consider the problem of solving a maximum weight bipartite

matching problem on a low rank matrix with a useful a-posteriori approximation

guarantee. In our network alignment routine, our algorithm will be used on the low-

rank matrix from Algorithm 2. In this section, however, we proceed in terms of a
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general matrix Y with low rank factors Y = UV T . The matrix Y represents the

edge-weights of a bipartite graph, and so the max-weight matching problem is:

maximize
M

M • Y

subject to Mi,j ∈ {0, 1}∑
iMi,j ≤ 1 for all j,

∑
ijMi,j ≤ 1 for all i,

(5.6)

where • is the matrix inner-product (see (5.3)). The Mi,j entries represent a match

between node i on one side of the bipartite graph and node j on the other side. We

call any M that satisfies the matching constraints a matching matrix.

5.4.1 Optimal Matching on a Rank 1 Matrix

We begin by considering optimal matchings for a rank-1 matrix Y = uvT where

u,v ∈ Rn (these results are easily adapted for vectors of different lengths).

Case 1: u,v ∈ Rn
≥0 or u,v ∈ Rn

≤0 If u and v contain only non-negative entries, or

both contain only non-positive entries, the procedure for finding the optimal matching

is the same: we order the entries of both vectors by magnitude and pair up elements

as they appear in the sorted list. If any pair contributes a 0 weight, we do not

bother to match that pair since it doesn’t improve the overall matching score. The

optimality of this matching for these special cases can be seen as a direct result of

the rearrangement inequality.

Case 2: General u,v ∈ Rn If u and v have entries that can be positive, nega-

tive, or zero, we require a slightly more sophisticated method for finding the optimal

matching on Y . In this case, define Ỹ to be the matrix obtained by copying Y and

deleting all negative entries. To find the optimal matching of Y we would never pair

elements giving a negative weight, so the optimal matching for Ỹ is the same as for
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Y . Now let u+ and u− be the vectors that contain the strictly positive and negative

elements in u respectively, and define v+, and v− similarly for v. Then,

Ỹ = Ỹ 1 + Ỹ 2

where Ỹ 1 = u+vT+ and Ỹ 2 = u−vT−. Let M 1 and M 2 be the optimal matching

matrices for Ỹ 1 and Ỹ 2 respectively, obtained using the sorting techniques for case

1. Since u+,u−,v+ and v− will contain some entries that are zero, both M 1 and

M 2 may leave certain nodes unmatched. The following lemma shows that combining

these matchings yields the optimal result for Ỹ : The set of nodes matched by M 1

will be disjoint from the set of nodes matched by M 2. The matching M̃ defined by

combining these two matchings will be optimal for Y .

Proof We will prove by contradiction that there are no conflicts between M 1 and

M 2. Assume that M 1 contains the match (i, j) and M 2 contains a conflicting match

(i, k). Since M 1 contains the match (i, j), Ỹ 1(i, j) must be nonzero, implying that

u+(i) and v+(j) are both positive. Similarly, M 2 contains the pair (i, k), so u−(i)

and v−(k) are both negative. This is a contradiction, since at least one of u+(i) and

u−(i) must be zero.

We just need to show that M̃ is an optimal matching for Y . If this were not the

case, there would exist some matching M such that M • Ỹ > M̃ • Ỹ . If such an M

existed, we would have that

M • Ỹ 1 + M • Ỹ 2 > M̃ • Ỹ 1 + M̃ • Ỹ 2

However, M̃ • Ỹ 1 = M 1 • Ỹ 1 ≥M • Ỹ 1, and M̃ • Ỹ 2 = M 2 • Ỹ 2 ≥M • Ỹ 2. Thus,

a contradiction; M̃ is an optimal matching of Ỹ .
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5.4.2 Matchings on Low Rank Factors

Now we address the problem of finding a good matching for a matrix Y = UV T ,

where Y ∈ Rm×n, U ∈ Rm×k, and V ∈ Rn×k. Let ui and vi be the ith columns in

U and V , and let Y i = uiv
T
i , then Y =

∑k
i=1 Y i.

We can find the optimal matching on each Y i using the results from Section 5.4.1.

Let M i be the matching matrix corresponding to Y i, and let M ∗ be a matching

matrix that achieves an optimal maximum weight on Y . Note that M ∗ • Y i ≤

M i • Y i, and thus,

M ∗ • Y ≤
∑k

i=1M i • Y i. (5.7)

To analyze how good of a matching each M i is on the entire matrix Y , define the

following terms:

di,j = M i•Y i

Mj•Y i
dj = max

i
di,j D = min

j
dj (5.8)

and let j∗ = argminj dj, i.e. D = dj∗ . Note that for any fixed indices i, j, we have

di,j ≤ dj. Applying this to j = j∗ we have that for all i,

M i•Y i

Mj∗•Y i
= di,j∗ ≤ dj∗ = D =⇒ M i • Y i ≤ D(M j∗ • Y i) (5.9)

By combining (5.7) and (5.9) we have the following result.

Theorem 5.4.1 We can achieve a D-approximation for the bipartite matching prob-

lem by selecting an optimal matching for one of the low-rank factors of Y .

Proof M ∗•Y ≤
∑k

i=1 M i•Y i ≤
∑k

i=1DM j∗•Y i = D(M j∗•Y ).

This procedure (Algorithm 3) runs in O(k2n+ kn log n) where k is the rank, and

U and V have O(n) rows. The space requirement is O(nk). In practice, the approx-

imation factors D are less than 1.1 for our problems (see Figure 5.5). Algorithm 3

shows pseudocode to implement this matching algorithm.
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Algorithm 3 Pseudocode for finding a D-approximate matching from a low rank

matrix.
1: Input: U ,V such that Y = UV T

2: Output: Approximate max-weight matching M , approx value D

3: Find optimal matching Mi for each rank-1 matrix (see §5.4.1)

4: Evaluate the weight of the matching vi = Mi • Y i

5: Compute di,j = vi/(M j • Y i) for all i,j = {1, . . . , k}
6: Evaluate dj = max

i
di,j, D = minimum(dj), j

∗ = argmin(dj)

7: return M = M j∗ , D

5.4.3 Improved practical variations

Our method (Algorithm 3) can be improved without substantially changing its

runtime or memory requirement. The key idea is to create a sparse max-weight

bipartite matching problem that include the matching M j∗ and other helpful edges.

By optimally solving these, we will only improve the approximation. These incur the

cost of solving those problems optimally, but sparse max-weight matching solvers are

practical and fast for problems with millions of edges.

Union of matchings. The simplest improvement is to create a sparse graph

based on the full set of matches M 1, . . . ,M k. We can do this by transforming the

complete bipartite network defined by Y into a sparsified network Ŷ where edge (j, k)

is nonzero with weight Y j,k only if nodes (j, k) were matched by some M i. Then,

we solve a maximum bipartite matching problem on the sparse matrix Ŷ with O(nk)

non-zeros or edges. This only improves the approximation because we included the

matching M j∗ .

Expanding non-matchings on rank-1 factors. Since algorithm 3 relies on a

sorting procedure when building M i from the rank-1 factors, and since these numbers

may very likely be close to each other, we can choose to expand the set of possible
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matchings and let each node pair up with c closest values to it. By way of example,

if c = 3 and we had sorted indices

sorted u: i1 i2 i3 i4 i5

sorted v: j1 j2 j3 j4 j5

then we

add edges

(i1, j1) (i1, j2)

(i2, j1) (i2, j2) (i2, j3)

(i3, j2) . . .

We add all these edges to the sparse matrix Ŷ with their true values from Y and

solve a maximum bipartite matching problem on the resulting matrix. Again, this

includes all edges from M j∗ . After adding all the edges from set ui,vi, the final

number of edges is O(kcn), and thus, the resulting union of matchings matrix is a

sparse matrix when kc is o(n).

5.5 Experiments

To evaluate our method, we first study the relationship between the EigenAlign

algorithm and our Low Rank EigenAlign algorithm. The goal of these initial experi-

ments is to show (i) that we need about 8 iterations, which gives a rank 9 matrix, to

get equivalent results to EigenAlign (Figure 5.2), (ii) our method performs the same

over a variety of graph models (Figure 5.4), (iii) the method scales better (Figure 5.3),

and (iv) the computed approximation bounds are better than 1.1 (Figure 5.5). We

also compare against other scalable techniques in Figure 5.6, and see that our ap-

proach is the best. Next, we use a test-set of networks with known alignments from

Biology (Vijayan and Milenković, 2017) to evaluate our algorithms (Section 5.5.2).

Finally, we end our experiments with a study on a collaboration network where we

seek to align vertex neighborhoods (Section 5.5.3).

Our low-rank EigenAlign In all of these experiments, our low-rank techniques

use the expanded matching with c = 3 (Section 5.4.3) and uniform rank-1 factors:

v = u = e. Let α = 1 + nnz(A)nnz(B)

nnz(A)(n2
B−nnz(B))+nnz(B)(n2

A−nnz(A))
. This equals one plus

the ratio of possible overlaps divided by possible conflicts. Let γ = 0.001, then
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sO = α+ γ, sN = 1 + γ, sC = γ. These parameters correspond to those used in (Feizi

et al., 2016) as well. Finally, we set the number of iterations to be 8 for all experiments

except those where we explicitly vary the number of iterations.

Theoretical runtime. When we combine our low-rank computation and the

subsequent expanded low-rank matching, the runtime of our method is

O( nk2︸︷︷︸
low-rank factors

compute dij

+ k3︸︷︷︸
SVD

+ kn log n︸ ︷︷ ︸
sorting

+matching with ckn edges)

and O(nck) memory. (Note that k = 8 and c = 3 in our experiments.)

EigenAlign baseline. For EigenAlign, we use the same set of parameters

sO, sN , sC and use the power method with starting with the all ones vector. We

run the power method with normalization as described in (5.4) until we reach an

eigenvalue-eigenvector pair that achieves a residual value 10−12. This usually occurs

after a 15-20 iterations.

5.5.1 Erdős-Rényi and preferential attachment

The goal of our first experiment is to assess the performance of our method com-

pared to EigenAlign. These experiments are all done with respect to synthetic prob-

lems with a known alignment between the graphs. The metric we use to assess the

performance is recovery (Feizi et al., 2016), where we want large recovery values.

Recovery is between 0 and 1 and is defined

recovery(M) = 1− 1
2n
‖M −M true‖F . (5.10)

In words, recovery is the fraction of correct alignments.

Graph models. To generate the starting undirected network in the problem

(GA), we use either Erdős-Rényi with average degree ρ (where the edge probability
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Overlapped edges relative to
EigenAlign.

Recovery results relative to
EigenAlign.

Figure 5.2. At left, the number of overlapped edges in the alignment
computed by our low-rank method relative to EigenAlign’s alignment. A
value of 1.0 means that we get the same number as EigenAlign’s solution.
At right, the same ratio but with respect to the recovery. The recovery
results stop improving after around 8 iterations, so we fix this value in the
rest of our experiments.

is ρ/n) or preferential attachment with a random 6-node initial graph and adding θ

edges with each vertex.

Noise Model. Given a network GA, we add some noise to generate our second

network GB (Feizi et al., 2016). With probability pe1 , we remove an edge, and with

probability pe2 we add an edge. Then, algebraically, B can be written as A ◦ (1 −

Q1) + (1 − A) ◦ Q2, where Q1 and Q2 are undirected Erdős-Rényi graphs with

density pe1 and pe2 respectively and ◦ is the Hadamard (element-wise) product. We

fix pe2 = ppe1/(1 − p) where p is the density of GA. Because some algorithms have

a bias in the presence of multiple possible solutions, after B is generated, we relabel

the nodes in B in reverse order.

Eight iterations are enough. We first study the change in results with the

number of iterations. We use Erdős-Rényi graphs with average degree 20 and analyze
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Figure 5.3. These show the
average time over 10 trials.
The dashed line is the time re-
quired for the matching step.
The time required for Eige-
nAlign is an order of magni-
tude larger than our low-rank
formulation. Our low rank
EigenAlign solves 10,000 node
problems in about two min-
utes whereas EigenAlign re-
quires the same amount of time
to solve a 1000 node problem.

the performance of our method as iterations vary. Figure 5.2 shows the recovery (left)

and overlap (right) relative to the EigenAlign result so a value of 1.0 means the same

number as EigenAlign. After 8 iterations, the recovery stops increasing, and so we

perform the rest of our experiments with only 8 iterations.

Our Low-rank EigenAlign matches EigenAlign for Erdős-Rényi and

preferential attachment. We next test a variety of graphs as the noise level pe1

varies. For these experiments, we create Erdős-Rényi graphs with average degree 5

and 20 and preferential attachment graphs with θ = 4 and θ = 6 for graphs with 50

nodes. Figure 5.4 shows these results in terms of the recovery of the true alignment.

In the figure, the experimental results over 200 trials are essentially indistinguishable.

Our low-rank method is far more scalable. We next consider what happens

to the runtime of the two algorithms as the graphs get larger. Figure 5.3 shows these

results where we let each method run up to two minutes. We look at preferential

attachment graphs with θ = 4 and pe1 = 0.5/n. EigenAlign requires a little more

than two minutes to solve a problem of size 1000, whereas our low rank formulation

can solve a problem that is an order of magnitude bigger in the same amount of time.
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Erdős-Rényi, avg. deg. 5 Erdős-Rényi, avg. deg. 20

Preferential attachment θ = 4 Preferential attachment θ = 6

Figure 5.4. Thick lines are the median recovery fractions over 200 trials
and dashed lines are the 20th and 80th percentiles. These figures show
that there appears to be small and likely insignificant differences between
the alignment quality of EigenAlign and our low rank method.

Our matching approximations are high quality. We also evaluate the ef-

fectiveness of our D-approximation computed in Section 5.4.2. Here, we compare the

computed bound D we get to the actual approximation value of our algorithm and

to the actual approximation ration of a greedy matching algorithm. The greedy al-

gorithm can be implemented in a memory scalable fashion with a O(n3) runtime (or

O(n2 log n) with quadratic memory) and guarantees a 2-approximation whereas our D
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Figure 5.5. Over the experi-
ments from Figure 5.3, the top
figure shows the guaranteed
D-approximation value com-
puted by our algorithm. The
bound appears to be strong
and gives a better-than 1.1 ap-
proximation. The middle fig-
ure shows the true approxima-
tion value after solving the op-
timal matching using Low-rank
EigenAlign (LR), and the bot-
tom figure shows the true ap-
proximation value for a greedy
matching (GM) strategy, which
guarantees a 2-approximation.

value gives better theoretical bounds. Figure 5.5 shows these results. Our guaranteed

approximation factors are always less than 1.1 when the low-rank factors arise from

the problems in Figure 5.3. Surprisingly, greedy matching does exceptionally well in

terms of approximation, prompting our next experiment.

Our matching greatly outperforms greedy matching and other low-rank

techniques. NSD (Kollias et al., 2012) is another network alignment algorithm

which solves the network alignment problem via low-rank factors. In the previous

experiment, we saw that greedy matching consistently gave better than expected

approximation ratios. Here, we compare the low-rank EigenAlign formulations with

our low-rank matching scheme to greedy matching in terms of recovery. The results

are shown in Figure 5.6 and show that the low-rank EigenAlign strategy with our

low-rank matching outperforms the other scalable alternatives.
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Figure 5.6. Recovery scores achieved by
Low Rank EigenAlign and NSD (Kollias
et al., 2012). We use a greedy match-
ing (GM) and our low rank matching
algorithm (LR) on the low rank factors
of the similarity matrix from both algo-
rithms.

5.5.2 Biological networks

The MultiMagna dataset is a test case in bioinformatics that involves network

alignment (Vijayan and Milenković, 2017; Meng et al., 2016). It consists of a base

yeast network that has been modified in different ways to produce five related net-

works, which we can think of as different edge sets on the same set of 1004 nodes. This

results in 15 pairs of networks to align (6 choose 2). One unique aspect of this data

is that there is no side information provided to guide the alignment process, which

is exactly where our methods are most useful. In Figure 5.7, we show results for

aligning MultiMagna networks using low-rank EigenAlign, EigenAlign, belief propa-

gation (BP) (Bayati et al., 2013), and Klau’s method (Klau, 2009) in terms of two

biologically relevant measures:

F-Node Correctness (F-NC). This is the F-score (harmonic mean) of the pre-

cision and recall of the alignment.

NCV-Generalized S3. This shows how well the network structure correlates.

Let M be a matching matrix for graphs with nA and nB nodes. The node coverage

value of an alignment is NCV = 2nnz(M)/(nA + nB), where nnz(M ) counts the

number of nonzero entries in M . Let EO be the set of overlapping edges for an
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alignment M and EC be the set of conflicts, and define GS3 = |EO|/(|EO| + |EC |).

The NCV-GS3 score is the geometric mean of NCV and GS3.

Figure 5.7. These are violin plots over
the results of 15 problems. Klau and
BP are strong algorithms for network
alignment but they only perform well
when given a sparsified set of possi-
ble matches from our expanded low-
rank matchings (LR+BP, LR+Klau).
Larger scores are better.

In this experiment, we find that standard network alignment algorithms (BP and

Klau) perform dreadfully (F-NC) without any guidance about which nodes might

be good matches. Towards that end, we can take the output from our expanded

matchings from the low-rank factors and run the Klau and BP methods on this

restricted set of matchings. This enables them to run in a reasonable amount of time

with improved results. The idea here is that we are treating Klau and BP as the

matching algorithm rather than using bipartite matching for this step. This picks

a matching that also yields a good alignment. Our results are comparable with the

results in Meng et al. (2016), which is a recent paper that uses a number of other

algorithms on the same data. The timing results from these experiments are shown

in Table 5.1.

5.5.3 Collaboration network

We now use Low Rank EigenAlign to perform a study on a collaboration network

to understand what would be possible in terms of a fully anonymized network prob-

lem. We show that we could use our network alignment technique to identify edges
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Algorithm Time (sec)
min median max

LR 1.9553 2.1971 2.9173
EA 83.677 96.9938 194.36
BP 1985.2 2216.3 2744.3
Klau 3031.4 3856.0 4590.2
LR+BP 174.06 182.58 190.44
LR+Klau 257.59 301.86 318.83

Table 5.1.
Time required for
methods on the
MultiMagna data.

where the endpoints have a high Jaccard similarity. We do so by aligning the node

neighborhoods of each of the end points of each edge and observe that a high overlap

implies a high Jaccard similarity score.

In more detail, recall that the Jaccard similarity of two nodes (a and b) is defined

as |N(a)∩N(b)|
|N(a)∪N(b)| , where N(a) are the neighboring nodes of a. The vertex neighborhood

of node a is the induced subgraph of the node and all of its neighbors. Given an edge

(i, j), we then compute the Jaccard similarity between i and j, and also align the

vertex neighborhood of i to the vertex neighborhood of j using our technique.

We use the DBLP collaboration network from Esfandiar et al. (2010) and consider

pairs of nodes that have a sufficiently big neighborhood and are connected by an

edge. Specifically, we consider nodes that have 100 or more neighbors. In total, we

end up with 15187 such pairs. This is an easy experiment with our fast codes and

it takes less than five minutes. The results are in Figure 6.7. We score the network

alignments in terms of normalized overlap, which is the number of overlapped edges

to the maximum possible number for a pair of neighborhoods. What we observe is

that large Jaccard similarities and large overlap scores are equivalent. This means we

could have identified these results without any information on the actual identity of

the vertices.
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Figure 5.8. The edge overlap (nor-
malized so the maximum value is 1.0)
of alignments between vertex neighbor-
hoods of nodes in the DBLP dataset.
This shows that the Jaccard score of
two connected nodes in the network is
correlated to the overlap size.

5.6 Conclusion & Discussion

The low-rank spectral network alignment framework we introduce here offers a

number of exciting possibilities in new uses of network alignment methods. First,

it enables a new level of high-quality results with a scalable, principled method as

illustrated by our experiments. This is because it has near-linear runtime and mem-

ory requirements in the size of the input networks. Second, in the course of this

application, we developed a novel matching routine with high-quality a-posteriori

approximation guarantees that will likely be useful in other areas as well.

That said, there are a number of areas that merit further exploration. First, the

resulting low-rank factorization uses the matrix Sk, which is related to graph diffu-

sions. There are results in computational geometry that prove rigorous results about

using diffusions to align manifolds (Ovsjanikov et al., 2010). There are likely to be

useful connections to further explore here. Second, there are strong relationships

between our low-rank methods and fast algorithms for Sylvester and multi-term ma-

trix equations (Simoncini, 2016) of the form C1XD1 + C2XD2 + · · · = F . These

connections offer new possibilities to improve our methods.
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6 MULTIPLE NETWORK ALIGNMENT

So far in this thesis, we have discussed the network alignment problem in the context

of aligning two networks and in this chapter we focus on the network alignment

problem in the presence of three or more networks. This chapter shows our results

from our paper “Low rank methods for multiple network alignment” (Nassar et al.,

2018).

Multiple network alignment arises when we want to identify similar or related

regions in more than two networks. While there are a large number of effective tech-

niques for pairwise problems with two networks that scale in terms of edges (Bayati

et al., 2013; Feizi et al., 2016; Klau, 2009), these cannot be readily extended to align

multiple networks as the computational complexity will tend to grow exponentially

with the number of networks. In this chapter we introduce a new multiple network

alignment algorithm and framework that is effective at aligning thousands of networks

with thousands of nodes. The key enabling technique of our algorithm is identifying

an exact and easy to compute low-rank tensor structure inside of a generalized version

of IsoRank. This can be combined with a new algorithm for k-dimensional matching

problems on low-rank tensors to produce the alignment. At the end of this chapter,

we demonstrate results on synthetic and real-world problems that show our technique

(i) is as good or better in terms of quality as existing methods, when they work on

small problems, while running considerably faster and (ii) is able to scale to aligning

a number of networks unreachable by current methods. This chapter demonstrates

that our method is the realistic choice for aligning multiple networks when no prior

information is present.
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6.1 Introduction

A more general problem to the pairwise network network alignment (PNA) is that

of multiple global network alignment (MNA)) (Gligorijevic et al., 2016; Liao et al.,

2009; Malmi et al., 2017), where we are interested in finding a common subgraph

present in more than two input networks (illustrated in the top panel of Figure 6.1).

Applications of this problem arise in comparative proteomics (where the networks

are protein interactions from multiple species), entity resolution (where the networks

reflect different records), subject registration (where the networks reflect multiple

measured views), and other applied machine learning tasks.

Both PNA and MNA are related to the subgraph isomorphism problem which

is known to be NP-hard, with MNA being a harder problem in practice due to the

combinatorial explosion of possible aligned pairs. As an illustration of this point,

consider a common strategy in PNA algorithms (Klau, 2009; Kollias et al., 2012; Feizi

et al., 2016; Nassar et al., 2018; Bayati et al., 2013; Patro and Kingsford, 2012): (i)

score each potential matched pair of nodes between the graphs based on a topological

similarity measure; and (ii) perform a maximum weight bipartite matching (or a

closely related algorithm) on the set of scores. Simple extensions of these principled

procedures to MNA with k networks cannot easily scale to more than a handful of

networks because the set of data in step (i) becomes O(nk) when each network has

O(n) nodes, and the obvious generalization of max weight bipartite matching (step

(ii)) is k-dimensional matching, which is NP-complete for k ≥ 3 (Karp, 1972). As an

alternative, there are approximation algorithms for k-dimensional matching (Kann,

1991).

Despite the computational difficulty, there are a few algorithms that navigate the

computational and memory requirements. A straightforward solution is to consider

sequences of pairwise network alignment problems, or to use pairwise network align-

ment data to infer multi-network alignments. Another straightforward solution is to

restrict the set of possible alignments to those inferred through prior information or
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We build a similarity tensor for each possible set of aligned vertices via a novel 
genalization of the IsoRank method. We show, in theory, this is low-rank.

Tensor entries       represent an estimated similarity among nodes from each 
graph. 

+...++=

rank = t rank = 1 rank = 1 rank = 1

Section 3: Generalized IsoRank

We then use the 
low rank factors:

, , and
to solve a low-rank k-
dimensional matching 
problem

Section 4: K-dimensional matching

overlapped
edge

Multiple network alignment for 3 networks seeks an assignment between 
vertices that maximizes joint overlap. 

The alignment 
indicated by the 
vertex positions has 
7 overlapped edges.

Section 2: Multiple network alignment

Figure 6.1. A visulaization of the pipeline in this chapter. The multiple
network alignment problem is illustrated in the top panel and discussed
in Section 6.2. Our solution is to form a low rank representation of a
high dimensional tensor (middle panel, Section 6.3), and then perform
k − dimensional matching on the low rank factors (bottom panel, Sec-
tion 6.4).

.

metadata about the nodes. Such information often speeds up the computation dras-

tically and guides the algorithm to a meaningful solution (Malmi et al., 2017). In this

chapter as well, we focus on the case when such information is not present and there is

no reduction to pairwise alignments. To the best of our knowledge, the highest num-

ber of networks an existing MNA method aligns is 10 networks (Malmi et al., 2017),
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and ours is the first multiple network alignment algorithm that can scale to thousands

of networks with thousands of nodes in a reasonable runtime (about 3 hours for 1000

networks with 1000 nodes, Section 6.5.7). In this regime existing techniques take too

long, run out of memory, or give bad results. We note that a number of important

applications, e.g. aligning protein/gene interaction networks from specific tissues or

pathologies lie in this regime.

The two main technical innovations we present in this chapter are (i) a spe-

cific multi-network generalization of the pairwise network alignment algorithm Iso-

Rank (Singh et al., 2008) that enables us to compute a representation of the O(nk),

k-way alignment data efficiently, and (ii) an extremely efficient k-dimensional match-

ing algorithm which generalizes our results from the previous chapter to low-rank

tensors. In summary, this chapter addresses the following components.

• Section 6.3 generalizes the IsoRank algorithm to multiple networks and shows

that the solution can be represented by a multidimensional tensor that can

be explicitly written in terms of low-rank nonnegative factors that are easy to

compute.

• Section 6.4 presents a new k-dimensional matching algorithm for low-rank ten-

sors with an a-posteriori approximation bound.

• Section 6.5.3 shows experimentally that multiple network alignment is faster

and higher-quality compared to performing multiple pairwise alignments when

the number of networks grows.

• Section 6.5.5 extends the case study from the previous chapter on anonymized

data from the DBLP collaboration network, where we show that aligning anonymized

triplets of egonets can identify those triples with high Jaccard similarity, which

can only be accurately computed from the de-anonymized data.
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6.2 Related work

Existing MNA algorithms can be viewed in two classes. Biologically motivated

algorithms are often designed to align protein-protein interaction networks, whereas

topological algorithms are more generic and try to exploit the network structure.

6.2.1 Biological algorithms

In biology, there is a need to discover new relationships between proteins, and

MNA can be used as a tool to study these connections (Singh et al., 2008). The

networks to be aligned are often protein protein interaction networks (PPIs) of dif-

ferent species. In these cases, there are several measures to compare the proteins

independently of network interaction structure, such as by evaluating their sequence

similarity of their genetic codings. Biological algorithms are designed with this piece

of information in mind, such as PrimAlign (Kalecky and Cho, 2018). Another al-

gorithm, MultiMagna++ (Vijayan and Milenković, 2017), uses a genetic algorithm

that works directly with the multi-way alignment permutations and uses objective or

fitness functions that utilize the biological information. IsoRank (Singh et al., 2008)

and IsoRankN (Liao et al., 2009), which are two of the earliest MNA algorithms,

computed pairwise topological similarity scores between each pair of networks and

then assembled the result into a multiple alignment in a variety of ways. They can

be related back to a complete k-partite network representation of all the pairwise

alignment information. Another recent algorithm, FUSE (Gligorijevic et al., 2016)

uses protein similarity to build the k-partite representation of the problem and then

uses non-negative matrix trifactorization to incorporate network structure into the

overall alignment.
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6.2.2 Topological algorithms

There are two state of the art algorithms introduced in (Malmi et al., 2017):

FLAN and ProgNatalie++. The FLAN method is based on generalizing the concept

of the facility location problem and is a good way to utilize prior information about

possible relationships (such as in entity resolution in their case). We compare against

ProgNatalie++ in this chapter, which extends the PNA algorithm Natalie that was

proposed by Klau et al. (Klau, 2009). ProgNatalie++ proceeds by solving the multiple

network alignment problem progressively, by aligning the first two networks, and then

folding in the third network using the existing match, etc. This involves solving k−1

PNA problems.

6.2.3 The need for new methods

To run these algorithms on networks where no prior similarity measures are avail-

able, one can assume that all pairs of nodes are similar and assign them the same

score. Such an approach empirically fails in producing meaningful results for the al-

gorithms FUSE, IsoRankN, and MultiMagna++ (Gligorijevic et al., 2016; Liao et al.,

2009; Vijayan and Milenković, 2017). To motivate the need for new algorithms that

can run without prior known similarity, we demonstrate a simple MNA problem with

one of the most recent MNA methods, MultiMagna++ (Vijayan and Milenković,

2017). In the problem setup, we use three graphs of size n = 500. We generate the

three graphs as instances from an initial preferential attachement graph of size 500

and average degree 8 by randomly removing edges with a probability 0.5/n (more

detail on synthetic graph generation can be found in Section 6.5.3). MultiMagna++

does not produce any meaningful results, and the relative number of overlapped edges

(illustrated in the top panel of Figure 6.1) to the ground truth alignment’s overlapped

edges is consistently less than 1%. In contrast, our method, consistently produces a

relative overlap higher than 80%. ProgNatalie++ and FLAN are more resistant to

the absence of this information, but the running time of these algorithms is extreme,
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as they are using a Lagrangian relaxation approach to solve an NP-hard problem at

each step.

6.3 Multiple Network Alignment and An Exact Low Rank Method

The multiple network alignment problem can be formulated for three undirected

networks as:

maximize
∑

i,j,k

∑
r,s,tAirBjsCktXijkXrst

subject to
∑

j,kXijk ≤ 1 for all i;
∑

i,kXijk ≤ 1 for all j;
∑

i,j Xijk ≤ 1 for all k

Xi,j,k ∈ {0, 1} for all i, j, k.

(6.1)

Here Xijk = 1 indicates that node i in network A matches to node j in network

B and node k of network C, A,B,C are adjacency matrices for the three networks,

and the number of vertices of these networks give the summation limits in the above

expression. The objective function can be read as nodes i, j, k are matched and we

have edges (i, r) in A, (j, s) in B, and (k, t) in C which are all simultaneously preserved

if we also match r, s, t. That is, the product of all of these expressions is 1 when all

the edges exist and they match, and 0 otherwise. The extension to k networks will

be straightforward once we introduce some notation.

If we write x = vec(X), i.e x is the large vector representation of the tensor

data X, then the objective function is: xT (C ⊗ B ⊗ A)x. (This is an instance of

the mixed-product property for Kronecker products and tensors, see, e.g. equation

12.4.19 in Golub and van Loan (2013).) The constraints can be written in terms of

the tensor flattening or unfolding operator [j that turns X into a matrix by unfolding
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along dimension j (see Golub and van Loan (2013, Section 12.4.5) and Draisma and

Kuttler (2014)). Then, we have the three and k-network problems:

maximize xT (C ⊗B ⊗A)x

subject to [1(X)e ≤ e; [2(X)e ≤ e; [3(X)e ≤ e

Xi,j,k ∈ {0, 1} for all i, j, k.

maximize xT (Ak ⊗ · · · ⊗A1)x

subject to [1(X)e ≤ e; . . . ; [k(X)e ≤ e

Xi,j,...,k ∈ {0, 1} for all indices.

(6.2)

Here e is the vector of all ones of appropriate dimension. Throughout, we fre-

quently interchange between tensor representations of data X and their vectorized

representations x = vec(X).

Note that, if we were to relax to real-values and heuristically change the constraints

to ‖x‖2 = 1, then the solution is the eigenvector of C⊗B⊗A with largest eigenvalue.

This eigenvector could then be reshaped and input to a 3d matching routine to

produce a multiple network alignment. In practice, this technique needs a number of

improvements even for the pairwise case (Feizi et al., 2016), and these are non-trivial

to adapt to the multiple network case, which is discussed further in the conclusion.

Instead, we adapt the IsoRank methodology, and specifically, the network similarity

decomposition (NSD) method (Kollias et al., 2012) to compute IsoRank, which will

easily scale to multiple networks; we briefly review NSD below and generalize it to

multiple networks.

6.3.1 Network Similarity Decomposition (NSD)

The NSD method specializes IsoRank in the case when the prior similarity matrix

is a low-rank matrix (Kollias et al., 2012), such as when we are using the uniform

personalization term, i.e., L = 1
nAnB

ones(nA, nB) (where A has nA vertices and B has

nB vertices and e the vector of all ones of appropriate size). Thus, the relevant case for
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us is when L is rank-1. Then NSD computes an exact low-rank representation of X.

Let DA and DB be the diagonal degree matrices for graphs A and B and suppose we

initialize a fixed-point iteration for the PageRank linear system with X(0) = L = uvT

(because it is rank-1), and then tth iterate is given by:

X(t) = (1− α)
t−1∑
i=0

αi[(AD−1A )iu][(BD−1B )iv]T

+ αt[(AD−1A )tu][(BD−1B )tv]T .

With some reorganization, this can be written: X(t+1) = UV T for an n-by-(t + 1)

matrix U and an m-by-(t + 1) matrix V . The PageRank solution converges fast in

the regime α ∈ [0.7, 0.9] and usually only 10 iterations are enough. We now generalize

this insight to multiple networks to handle multiple network alignment.

For multiple networks, the above formulation extends straightforwardly. We need

to compute the PageRank vector on the network Ak⊗Ak−1⊗· · ·⊗A2⊗A1. Since we

have k networks, the analogue of the matrix Y is now a k dimensional tensor Y that

stores the PageRank measure between every possible combination k of nodes coming

from k distinct networks. In words, we have Y (i1, i2, . . . , ik) denote the PageRank

measure for the “node” representing an alignment between nodes i1 from the first

graph, i2 from the second, . . ., and node ik from the kth graph. Assume now that we

have k column stochastic adjacency matrices corresponding to k networks. Call them

P 1 = A1D
−1
1 ,P 2 = A2D

−1
2 , . . . ,P k = AkD

−1
k . (Where Di is the diagonal degree

matrix for the ith network.) The massive PageRank vector we are interested in is

given by:

y = α(P k ⊗ P k−1 ⊗ · · · ⊗ P 2 ⊗ P 1)y + (1− α)h. (6.3)

We note that a similar formulation is used in (Li et al., 2018), where the focus is on

the sparsity of the vector h and the solution. In our formulation, we note that the

matrix (P k ⊗ · · · ⊗ P 1), and the vector y are never formed explicitly.
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We study the case that h = uk ⊗ uk−1 ⊗ · · · ⊗ u1, which corresponds to assuming

that the tensor representation H would be rank 1. In this instance, we can proceed

akin to the NSD scenario. We also start the iteration with y(0) = h = uk ⊗ uk−1 ⊗

· · · ⊗ u1. Then, the first iterate is:

y(1) = α(P k ⊗ · · · ⊗ P 1)y
(0) + (1− α)y(0)

= α(P kuk ⊗ . . .⊗ P 1u1) + (1− α)(uk ⊗ uk−1 ⊗ . . .⊗ u1)

At step t, y(t) can be expressed as follows

y(t) = (1− α)
t−1∑
i=0

αi(P i
kuk ⊗ . . .⊗ P i

1u1) + αtP t
kuk ⊗ . . .⊗ P t

1u1

Next, we can decompose the above equation. Form k matrices U i, such that

U i =
[
c0P

0
iui c1P

1
iui . . . ct−1P

t−1
i ui ctP

t
iui

]
(6.4)

where each cj is ((1 − α)αj)1/k when j ≤ t − 1, and ct = αt/k. Hence, yt can be

rewritten as follows:

y(t) =
t∑
i=0

U k(:, i)⊗U k−1(:, i)⊗ . . .⊗U 1(:, i) =
t∑
i=0

ŷ(i)

where ŷ(i) = U k(:, i)⊗U k−1(:, i)⊗ . . .⊗U 1(:, i), and the notation F (:, i) corresponds

to the ith column of a matrix F . If we reshape into a tensor with vec(Y i) = ŷ(i),

and vec(Y (t)) = y(t), then Y (t) =
∑t

i=0 Y i. We can thus deduce that Y (t) is a sum

of t + 1 rank-1 tensors. (Formally, the matrices U 1, . . . ,U k are the CP factors of

Y (t) (Golub and van Loan, 2013, Section 12.5.4).) What remains in our procedure is

a way to turn this low rank representation into an alignment by running a matching

algorithm (Section 6.4).
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6.3.2 Optimizing hyper-permutations

We now show that the formulation in (6.2) is closely related to optimizing over

hyper-permutation matrices. Consider aligning three networks. The idea is to per-

mute symmetric C to match symmetric B and A, and permute B and A to match

C. This yields the objective:

min
P
‖P ×1 C − P ×2 B ×3 A‖2F =

min
P
‖(C ⊗ I ⊗ I)p− (I ⊗B ⊗A)p‖22

(6.5)

where p = vec(P ) and P is a hyper-permutation tensor and we use the vec equiva-

lences from (Golub and van Loan, 2013, Section 12.4.11). This can be reworked into

the objective −2pT (C⊗B⊗A)p+pT (C⊗I⊗I)2p+pT (I⊗B⊗A)2p. Minimizing

this objective can be related to the maximization problem in (6.2), specially when

the networks have a similar number of nodes and edges because the additive terms

pT (C ⊗ I ⊗ I)2p + pT (I ⊗B ⊗A)2p will be nearly constant. And thus, we get a

near equivalence between the formulation in (6.5) over hyper-matrices and ours if we

neglect these terms. This analysis extends to a variety of other ways to partition the

set of networks into two groups.

6.4 K-Dimensional Matching with Low-Rank Factors

In this section, we discuss two approaches to solve the k-dimensional matching

problem:

maximize
∑

i,j,...,` T (i, j, . . . , `)X(i, j, . . . , `)

subject to [1(X)e ≤ e; . . . ; [k(X)e ≤ e;X(i, j, . . . , `) ∈ {0, 1}
(6.6)
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when T is given by a non-negative rank-t representation:

T (i, j, . . . , `) =
∑r

t=1 U1(i, t)U2(j, t) · · ·Uk(`, t)

⇔ T =
∑t

i=1 T i where vec(T i) = U k(:, i)⊗U k−1(:, i)⊗ · · · ⊗U 1(:, i)
(6.7)

The first builds on an algorithm for low-rank bipartite matchings from Nassar et al.

(2018). The second builds on algorithms for progressive alignment (Malmi et al.,

2017) and k-partite alignment problems (Gligorijevic et al., 2016; He et al., 2000).

6.4.1 An a-posteriori approximation bound from the best single-rank alignment

We proceed to show a new k-dimensional matching algorithm that can be applied

on tensors represented as low-rank factors. The idea is that we use each rank-1 factor

T i to generate a single k-dimensional matching. Then we provide an a-posteriori

bound on the best alignment in this set. This extends our work on bipartite matching

from the previous chapter. In practice, these bounds are very good and provide

approximation factors around 1.08. Figure 6.2 is an illustration of the histogram

distribution of the values of the approximatin bound found.
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Figure 6.2. This figure shows
the D approximation values
from the experiment in sec-
tion 6.5.6. These numbers
show that the approximation
bound D is very close to 1 in
practice.

To do so, we first need a specific generalized rearrangement inequality for k se-

quences. Generalized forms of the rearrangement inequality are often posed as a

homework problem as their proof follows an extension to the proof by induction of

the inequality for two sequences. For completeness, we provide a full proof here.
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Generalized Rearrangement Inequality.. Assume that we have k sequences

of numbers that are all positive. Let x
(j)
i denote the ith element in the jth sequence and

assume that x
(j)
1 ≤ x

(j)
2 ≤ . . . x

(j)
n for all sequences. The generalized rearrangement

inequality guarantees that:

n∑
i=1

k∏
j=1

x
(j)
i ≥

n∑
i=1

x
(1)
i

k∏
j=2

x
(j)
σj(i)

where σj is any permutation function corresponding to the jth sequence.

Proof The proof follows a similar strategy as the proof of rearrangement inequality

on two sequences and we extend it here. We prove this by induction.

We first assume that we have k sequences with 2 elements each. We claim that

k∏
i=1

x
(i)
1 +

k∏
i=1

x
(i)
2 ≥ x

(1)
1

k∏
i=2

x
(i)
σi(1)

+ x
(1)
2

k∏
i=2

x
(i)
σi(2)

We prove this by contradiction. Assume that there exists a permutation σ such that

the above formula is incorrect. Let us expand the right hand side.

x
(1)
1

k∏
i=2

x
(i)
σ(1) + x

(1)
2

k∏
i=2

x
(i)
σ(2) =

x
(1)
1 x

(2)
σ2(1)

. . . x
(k)
σk(1)

+ x
(1)
2 x

(2)
σ2(2)

. . . x
(k)
σk(2)

Let P1 = x
(1)
1

∏
x
(j)
σj(1)
∀j such that σj(1) = 1. Let P2 =

∏
x
(j)
σj(1)
∀j such that σj(1) = 2.

Similarly, let Q1 =
∏
x
(j)
σj(2)
∀j such that σj(2) = 1, and Q2 = x

(1)
2

∏
x
(j)
σj(2)
∀j such that

σj(2) = 2. Then,

x
(1)
1

k∏
i=2

x
(i)
σ(1) + x

(1)
2

k∏
i=2

x
(i)
σ(2) = P1P2 +Q1Q2

Now observe that P2 ≥ Q1 and Q2 ≥ P1 by definition. Thus, using the rearrangement

inequality on two sequences, P2Q2 + P1Q1 must be ≥ P1P2 + Q1Q2, thus, a contra-
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diction and the best way to arrange the terms in these sequences is by grouping all

the bigger elements together and the smaller elements together.

Next, we assume that the property holds for k sequences with n − 1 elements

each. We now prove it for k sequences with n elements each. We prove this by

contradiction and assume that there exists k − 1 permutations (σ2, . . . σk) of size n

each which achieves the maximal pairing, i.e.

n∑
i=1

x
(1)
i

k∏
j=1

x
(j)
σj(i)

If this sum is the maximal sum, then there are two terms in this summation of the

form:

x
(1)
1 x

(2)
i2
x
(3)
i3
. . . x

(k)
ik

+ x
(1)
j1
x
(2)
1 x

(3)
j3
. . . x

(k)
jk

We can now apply the base case on the following k sequences with 2 elements:

{x(1)1 , x
(1)
j1
}, {x(2)1 , x

(2)
i2
}, {x(3)i3 , x

(3)
j3
}, . . . , {x(3)ik , x

(3)
jk
}

Without loss of generality, assume that x
(l)
il
≤ x

(l)
jl

for all 3 ≤ l ≤ k. Thus, by using the

base case, we know that x
(1)
1 x

(2)
1 x

(3)
i3
. . . x

(k)
ik

+x
(1)
j1
x
(2)
i2
x
(3)
j3
. . . x

(k)
jk
≥ x

(1)
1 x

(2)
i2
x
(3)
i3
. . . x

(k)
ik

+

x
(1)
j1
x
(2)
1 x

(3)
j3
. . . x

(k)
jk

. This means that we have just found a rearrangement of two terms

in the maximal summation that can be rearranged to achieve a higher weight, which

is a contradiction. We proceed with the same strategy to show that the permutations

should indeed be the identity permutations. Next, we consider the following two

terms:

x
(1)
1 x

(2)
1 x

(3)
i3
. . . x

(k)
ik

+ x
(1)
j1
x
(2)
j2
x
(3)
1 . . . x

(k)
jk

Similarly, and assuming that il ≤ jl, we can conclude that

x
(1)
1 x

(2)
1 x

(3)
1 . . . x

(k)
ik

+ x
(1)
j1
x
(2)
j2
x
(3)
j3
. . . x

(k)
jk
≥

x
(1)
1 x

(2)
1 x

(3)
i3
. . . x

(k)
ik

+ x
(1)
j1
x
(2)
j2
x
(3)
1 . . . x

(k)
jk
.
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If we proceed with the same strategy for all the remaining terms, we will achieve a

summation of the form

x
(1)
1 x

(2)
1 . . . x

(k)
1 +

n∑
i=2

x
(1)
i

k∏
j=1

x
(j)
σj(i)

By the inductive hypothesis, we know that
∑n

i=2 x
(1)
i

∏k
j=1 x

(j)
i ≥

∑n
i=2 x

(1)
i

∏k
j=1 x

(j)
σj(i)

,

and hence each of the permutations must be the identity permutation.

n∑
i=1

x
(1)
i

k∏
j=1

x
(j)
σj(i)

And with that, the rearrangement inequality for k sequences of size n each is proved.

For cases when the number of elements in each sequence is different, we set n to be

the size of the smallest sequence and pick the top n elements of each of the other

sequences. The reason we pick the top n can be viewed as a direct application of the

rearrangement inequality.

Now, assume that we have a k-dimensional tensor T of the form (6.7). For each

rank-1 tensor T i, the generalized rearrangement inequality guarantees the best match-

ing on it can be computed by sorting the vectors U 1(:, i), . . . ,U k(:, i) in decreasing

order and aligning the elements. (We find it helpful to think of the pairwise, matrix,

case where T i = uvT and the sorting is simple to see.) Let the binary-valued ten-

sors M i of size n1 × n2 × . . . nk store the matching corresponding to T i tensor, i.e.,

M(j1, j2, . . . , jk) = 1 if (j1, j2, . . . , jk) is a match, and 0 otherwise. Next, we prove

the following:

Result. Consider the best k-dimensional matching from the set M 1, . . . ,M t,

then this is a D-approximation to the best k-dimensional matching, where D is an

aposterori computable bound.

Define M i •T i = vec(M i)
T vec(T i) to be the weight of the matching M i applied

on the tensor T i. Also, let M ∗ to be the matching that achieves the maximum

possible weight on T .
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Define di,j =
M i•T i

Mj•T i
, and dj = maxi di,j. Let j∗ = argminjdj. Set D = dj∗ . Then,

M ∗ • T ≤ DM j∗ • T . The proof of this statement follows:

M ∗ • T = M ∗ •
∑t

i=1 T i ≤
∑t

i=1M i • T i

≤ D
∑t

i=1(M j∗ • T i) ≤ D(M j∗ • T ),

where we used M i • T i ≤ DM j∗ • T i by the definition of the quantities. Therefore,

the matching M j∗ achieves a D−approximation on the tensor T .

6.4.2 A progressive alignment

The bounds given by the low-rank matching algorithm (above) are often very

good (around 1.08). In practice we found the following procedure to give better

results in terms of the overall multiple network alignment objective. The inspiration

for this algorithm is the progressive nature of both ProgNatalie++ and FUSE (Malmi

et al., 2017; Gligorijevic et al., 2016), and a progressive algorithm for the k-partite

matching problem (He et al., 2000). For three networks (a three-mode tensor), the

idea is: align (via bipartite matching) the first two modes (networks). Then, use the

alignment between the first two modes to produce a new bipartite alignment problem

to fold in the third mode. That is, if we know that node i1 in network 1 matches

to i2 in network 2, then we can look at the entries T (i1, i2, :) to determine the best

match for (i1, i2) in the third network. These entries also have low-rank structure.

This can be done via k bipartite matching calls in our low-rank framework, and it is

easiest to state the overall procedure as an algorithm. We briefly studied optimizing

the ordering of alignment, but this did not seem to yield large differences.

6.5 Experiments

To evaluate our proposed algorithm, we perform a series of experiments (i) on

synthetically generated networks, where we can easily vary parameters to understand
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Algorithm 4 Pseudocode for the progressive k-dimensional matching algorithm.
1: Input: U 1,U 2, . . . ,U k

2: Output: Matching M with k columns and matches in rows

3: a,b = bipartitematching((U 1U
T
2 )) . match first two modes and return matches

a and b.

4: M[:,1:2] = [a,b]

5: for i = 3 to k do

6: U = U 1[M [:, 1], :]�U 2[M [:, 2], :]� · · ·� Ui−1[M[:,i],:] . generate the

matching information with i− 1 modes matched

7: a,b = bipartitematching(UUT
i ) . using element-wise/Hadamard product �

8: M = M[a,:];

9: M[:,i] = b . permute and extend the matching

10: end for

how the algorithms behave, (ii) on the problem of aligning snapshots of a temporally

evolving network of internet routers, and (iii) on inferring high triangle Jaccard sim-

ilarity in anonymized egonets, and (iv) a case study on large networks with about a

million nodes.

6.5.1 Methods

We precisely state the parameters of the various methods we consider here, includ-

ing some obvious baseline measures such as a random method and intuitive extensions

to pairwise methods. We also tried two software packages IsoRankN and FUSE for

these problems. These methods all returned empty alignments, which we believe is

due to our lack of prior or biological information to guide the method.

Pairwise. A simple way to align multiple networks is to run a pairwise network

alignment for all pairs of networks and extract any consistent alignment. For instance,

if the following three pairs appeared while aligning the three networks GA, GB, GC ,

(a1, b3), (b3, c9), (a1, c9), we treat the triplet (a1, b3, c9) as a match. For choosing the

right pairwise method to employ in this paradigm, we wanted a pairwise method that
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does not rely on prior similarity scores, thus we chose the recent low rank spectral

network alignment by Nassar et al. (2018).

By degree. This method is intuitive since we would expect that high degree

nodes match to each other. For each network, sort the nodes according to their

degrees, and then match the top degree nodes with each other until no more nodes

are left in one of the networks.

Progressive EigenAlign. We mention the recent pairwise network alignment

algorithm EigenAlign in Feizi et al. (2016), and its low rank formulation from Nas-

sar et al. (2018) to be strong pairwise network alignment algorithm when no prior

information about node similarity is present. Here, we suggest a simple extension to

this algorithm to adapt it to align multiple networks and we follow a progressive ap-

proach. We start with two networks to align them using the low rank formulation of

EigenAlign from Nassar et al. (2018). After the first two networks are aligned, we fold

them on top of each other by using the new matches to form a new network. Then,

we use this network to align it to the next network. For k networks, the pairwise

procedure would occur k − 1 times.

Random. Another method we choose to compare our existing methods to is a

random alignment. This is more of a sanity check experiment to make sure that

the algorithms we are using do not generate arbitrary matchings and that indeed a

random matching would not outperform any of the existing methods.

MultiLR-D. This is our algorithm, where we compute the matrices U i from (6.4)

with 8 iterations and α = 0.8 then the final alignment is extracted by our D-

approximation (Section 6.4.1). We support the choice of 8 iterations with a small

experiment shown in Figure 6.3.

MultiLR-Prog. This is our algorithm, where the U i are from (6.4) with 8

iterations and α = 0.8 and the final match is determined by the progressive method

(Algorithm 4). The bipartite matching problems are themselves solved via a low-rank

bipartite matching procedure from Nassar et al. (2018) (with parameter b = 10).
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MultiLR-Prog+. This is the same as MultiLR-Prog, but where we replace

the element-wise multiplication from Algorithm 4 (line 6) with a mixture model for

U . Specifically we use U = (1/2)U ∗/sum(U ∗) + (1/2)U+/sum(U+) where U ∗ is the

matrix computed on line 6 and U+ is the matrix computed on line 6 with element-wise

multiplication replaced with element-wise addition. Empirically (and by accident), we

found that this strategy performed more consistently with large numbers of networks;

theoretically, it is more akin to treating the alignment data as finding a combination

of k-dimensional matches and dense k-partite regions as in Gligorijevic et al. (2016);

Liao et al. (2009).

ProgNatalie++ and ProgNatalie++ with prior. We use ProgNatalie++

from Malmi et al. (2017) using a uniform prior for small problems. This does not scale

with a reasonable runtime (we ran problems with 100 nodes and 5 networks for a day

without completing), and so we also consider using the union of alignments produced

by our low-rank factors (Section 6.4.1) as the prior. In this case, the algorithms

complete in a reasonable amount of time (an hour for 5 networks with 100 nodes)

because of the constrained matching space.

In all experiments, we use 8 iterations, and below we run a small example to

conclude that 8 iterations are enough.

6.5.2 Evaluation

We use a few evaluation metrics to discuss the resulting alignments. When there

is a true alignment known among the set of networks, then we compute degree

weighted recovery, which is the number of correct pairs, scaled by the degrees of

the nodes in the network. We often found that the algorithms would align large

portions of the network well, but make mistakes on regions of ambiguous degree-1

nodes (or other automorphic regions of the graphs). Consequently, this measure places

more emphasis on high degree regions. The pairwise nature also protects against a

single mistake in, say, 100 networks ruining the other 99 correctly aligned results. The
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Figure 6.3. To make sure that 8 iterations of the power method are enough
to achieve a good result, we run our algorithm MultiLR-D for other itera-
tion values and discover that after 8 iterations essentially nothing changes.
The y-axis in these plots is the degree weighted recovery value relative to
the value at iteration 8; there are 6 curves for three different settings in
terms of the number of networks and the size of the networks that are all
indistinguishable.

formal measure involves some ancillary notation. Let Dj be the sum of all degrees in

network j. The weight of a pair of vertices in network j and k in a pair of networks is

w(vj, vk) = (degree(vj) + degree(vk))/(Dj +Dk); the expression correct(vj, vk) is one

if node v from network j should be aligned to node v from network k; the score of a

single alignment of vertices between all networks is:

score(v1, . . . , vk) =

(
k

2

)−1
(
k∑
j=1

k∑
h=j+1

w(vj, vh)correct(vj, vh)) (6.8)

The overall degree weighted recovery score is simply the sum of scores for each

alignment set. (These scores are scaled to sum to 1 for a perfect alignment of isomor-

phic networks.)
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The normalized overlap of a set of networks A1, . . . , Ak is the number of edges

in the conserved region after alignment scaled by the number of edges of the largest

graph. (Again, normalized overlap scores are between 0 and 1). If Ã1, . . . Ãk are

the adjacency matrices permuted via the alignment, then this is nnz(Ã1 � · · · �

Ãk)/max(nnz(Ai), . . . , nnz(Ak)) where � is the element-wise product.

6.5.3 Aligning Erdős-Rényi and preferential attachment graphs

In this first experiment, our goal is to study how well our algorithm recovers

solutions in a planted problem as we add more noise and how this changes as we vary

the number of networks to be aligned. We consider Erdős-Rényi and preferential

attachment graphs with average degree 8 as reference graphs, and then randomly

delete edges to generate k instances of the networks to align. In this case, the ground-

truth alignment is known (even though there are symmetries in these graphs, and thus

the ground-truth may be ambigious).

Graph Generation. For Erdős-Rényi, we set the edge probability such that

we achieve the expected degree d = 8 and n nodes. For preferential attachement,

to generate a graph with n edges, we start with a 5-node clique graph and add

θ edges from each new vertex following the preferential attachment model. The

expected degree is 2θ because each new edge gets counted twice in the average degree

computation. Then to generate k instances of these graphs, we generate one reference

graph, and then we then pick an edge deletion probability pe, and generate k instances

of the base graph, we allow each edge to be deleted according the the probability pe.

We repeat this process k times to reach k networks.

For our first experiment, we consider using 5 networks with 500 nodes and vary the

edge-deletion probability. The results from our methods and the baselines are shown

in Figure 6.4 (top two panels). In both types of graphs, both of our progressive low-

rank methods achieved the best results, whereas MultiLR-D did not perform well as

more edges were deleted. Although this method is the least expensive (see runtime
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discussion in section 6.5.7) and provides a theoretically strong bound on the matches

(here, the highest value of D was 1.07) the method relies on a sorting procedure,

which may mislead the matching when there are many numbers close to each other.

As edge deletion varies . . . As we add networks . . .
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Figure 6.4. (First two panels) As we increase the expected number of edges
removed while aligning 5 networks, all methods recover fewer true matches
and MultiLR-Prog and MultiLR-Prog+ are consistently the best where
MultiLR-D does not do well. Note that MultiLR-Prog and MultiLR-
Prog+ are overlapping here. (Last two panels) As we vary the number of
networks to be aligned, all methods decay in quality except for MultiLR-
Prog+ and MultiLR-D, with MultiLR-Prog+ consistently achieving the
best result (the two right most figures). In all figures, the shaded areas
represent the 20th and the 80th percentiles with these experiments run for
50 trials.

For the second experiment, we also consider 500 node networks again and consider

aligning a growing number of networks with a fixed edge deletion probability 0.5/n.

This corresponds to the case where we expect good accuracy. The results are shown

in Figure 6.4 (lower two panels) and show that MultiLR-Prog+ and MultiLR-D are

the only methods that are not sensitive to the number of networks. Because of this,

MultiLR-D becomes a competitive method for large numbers of networks. Figure 6.4

shows the results for these two experiments.

As the network sizes vary. In this experiment, we are interested in observing

how the alignment quality varies as we change the sizes of the networks to be aligned.
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(a): k = 5 networks (b): k = 20 networks (c): k = 100 networks
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Figure 6.5. These figures show the weighted recovery scores on preferential
attachment graphs as we vary the sizes of the networks, and the number
of networks to be aligned. We observe that when the number of networks
is small enough (5 networks) pairwise and multiple alignment methods
achieve similar results. Whereas when we increase the number of networks
to be aligned, multiple alignment sustains its result whereas the pairwise
method fails to do so. In all figures, the shaded areas represent the 20th

and the 80th percentiles with these experiments run for 50 trials.

Here, we use preferential attachment graphs and we fix the edge deletion probability

to pe = 0.5/n, as we vary n. We observe that all methods are essentially resistant to

the change in the network sizes whereas this behavior is not true when the number

of networks become much bigger (such as 100). From figure 6.5, we can conclude

that MultiLR-Prog+ is resistant to both changes in the network sizes, as well as the

number of networks to be aligned. Interestingly, MultiLR-D is also resistant to such

changes but with a worse recovery score.

6.5.4 Aligning real-world temporal graph snapshots

A representative use of our methods would be to align a set of snapshots of a

real-world graph over time. Here we consider a dataset from Leskovec et al. (2005)

which consists of snapshots of an Internet routers network at 733 time points. We
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Figure 6.6. We consider 50 trials of aligning 5 real-world router graphs
and show a violin plot (with the median flagged) of the degree weighted
recovery (blue) and normalized overlap (red) side by side for the pairwise
method. For the other methods, we show values relative to the pairwise
scores. These results show that we are almost as good as the existing
state of the art method ProgNatalie++ on the small problems, whereas
our methods run faster, and we can scale to larger problems.

consider two problems: aligning 5 random snapshots with the 25 highest degree nodes

(where we are able to run existing methods) and aligning 5 random snapshots with the

100 highest degree nodes (where we can still run ProgNatalie++ with our low-rank

generated prior).

In Figure 6.6, we show a violin plot of the distribution of our results in terms

of overlap and degree weighted recovery over 50 trials of 5 random snapshots. For

the small run, we get comparable results to ProgNatalie++, while running in less

than 2 seconds vs. 40 minutes (see more timing in section 6.5.7). For the larger run,
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MultiLR-Prog and MultiLR-Prog+ achieve results that consistently outperform the

pairwise baseline in terms of overlap.

6.5.5 Aligning anonymized egonets

Next, we use our multiple network alignment algorithm to align anonymized

egonets of the collaboration network DBLP (Esfandiar et al., 2010). This experiment

is inspired by the one in the previous chapter for pairs of networks (and from (Nas-

sar et al., 2018)). In DBLP, the nodes are authors, and edges represent coauthor-

ship (Leskovec et al., 2005). We consider whether or not multiple alignment could

infer whether a group of three mutual coauthors (i.e. a triangle in the network) has

high Jaccard similarity when we only know anonymized egonets from the original

network.

We use Jaccard(a, b, c) = N(a)∩N(b)∩N(c)
N(a)∪N(b)∪N(c)

where N(a) is the set of neighbors of node

a. For each triple of three coauthors with at least 100 other co-authors, we align

the egonets using the MultiLR-D method and measure the normalized overlap. The

results in Figure 6.7 show that we can easily infer high-Jaccard similarity whereas

pairwise techniques cannot. This experiment entails aligning 425,388 triplets of net-

works and MultiLR-D runs in about 1.5 hours whereas the pairwise method takes a

little over 4 hours to finish. To ensure that we could be confident that high-overlap im-

plies high-Jaccard, we show that random triples are unlikely to have high normalized

overlap in the final figure panel.

6.5.6 A case study on large graphs

In the previous sections, we note the scalability of our methods as we increase the

number of networks; here we want to study our methods on large graphs, specifically

graphs with more than one million nodes. We used 4 base networks from the SNAP

database that satisfy this criteria, namely three road networks roadNet-CA, roadNet-

PA, and roadNet-TX from Leskovec et al. (2008), and an Internet topology graph
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Figure 6.7. Figures a and b show the normalized overlap of the aligned
three egonets using multiple network alignment and pairwise respectively.
These two figures show that when using multiple network alignment, nor-
malized overlap track the Jaccard similarity scores whereas the pairwise
method fails to show that. Figure c shows that the opposite is true as
well. For a random set of three networks, the normalized overlap is is less
than 0.25 in the majority of experiments.

as-Skitter from Leskovec et al. (2005). The pipeline of the experiment is similar to

that in Section 6.5.3; we use the edge deletion probablity pe/n with pe = {0.1, 0.5}

and generate 5 instances of the graph.

Methods. All existing MNA methods render themselves infeasible for such kinds

of problems, mainly because of an intermediate step that involves solving a huge

bipartite matching procedure. From our methods, MultiLR-D is the most interesting

comparison as it runs extremely fast and only relies on a sorting procedure. We also

use the By Degree method described in Section 6.5, as it is the only other feasible

method, and provides a sanity check of how well MultiLR-D is performing.

Results and conclusions. We show the average results from 20 runs of this

experiment in Table 6.1. These problems were extremely challenging in practice, and

we account the main challenge to symmetries in these graphs (i.e. areas in the base

network looking topologically similar to other areas in the network). Nevertheless, we

note here that while existing methods can only scale to five or ten networks with 100s

of nodes, our method is the first feasible option for aligning large graphs specially
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Table 6.1.
Degree weighted recovery for large graphs from Section 6.5.6.

Dataset Nodes Edges MultiLR-D Degree

0.1 0.5 0.1 0.5

as-Skitter 1.6M 11M 0.90 0.78 0.15 0.15
roadNet-TX 1.3M 1.8M 0.98 0.43 10−5 10−5

roadNet-CA 1.9M 2.7M 0.67 0.42 10−5 10−5

roadNet-PA 1M 1.5M 0.66 0.31 10−5 10−5
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Figure 6.8. The runtime as we run MultiLR-D (top) and MultiLR-Prog+
(bottom) on the synthetic experiments on a wide variety of problem sizes
with Erdős-Rényi graphs.

when very little perturbation occured. We believe that the result in this challenging

scenario is not ideal, but is a demonstation that such low-rank methods expand the

scalability envelope for multiple network alignment problems.
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6.5.7 Runtime information

In Figure 6.8, we show runtime information for MultiLR-D and MultiLR-Prog+

for synthetic networks as we increase size and the number of networks up to thou-

sands. Then in Table 6.2, we show runtimes for the methods on the routers alignment

problems.

Table 6.2.
Runtimes for the 25-node 5-network router problem (columns 2-4), and
the 100-node 5-network router problem (columns 5-7).

Algorithm Time (sec)
25-node problem 100-node problem

median max median max

MultiLR-D 0.27 0.40 0.37 0.46
MultiLR-Prog 0.37 0.48 0.34 0.50
MultiLR-Prog+ 0.32 0.51 0.38 0.48
Degree 0.02 0.04 0.02 0.04
Random 0.01 0.02 0.01 0.02
ProgEigenAlign 1.39 1.48 2.44 2.59
Pairwise 5.86 6.21 5.04 5.37
ProgNatalie++ & prior 23.09 241.1 649.4 1451
ProgNatalie++ 852.0 2823 - -

6.6 Further discussion

Having a method that accurately and scalably aligns large numbers of networks

opens a number of new dimensions in applied machine learning. In ongoing work, we

are studying how to use this in terms of aligning graphs derived from functional MRI

data. In terms of the current method, we wish to gain a better understanding for

why MultiLR-Prog+ outperformed MultiLR-Prog. Our working hypothesis is that

the element-wise addition (compared with multiplication) gives the method resilience
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to mistakes made early in the progressive process. More broadly, the EigenAlign

framework (Feizi et al., 2016) is superior to the IsoRank framework for pairwise

alignment. The ideas here apply to a multi-network generalization of EigenAlign,

however, the analogous tensor Y would have a Tucker-style factorization instead of

the CP-factorization we get for MultiLR. Crucially, the Tucker factorization needs a

tk-element core that would limit scalability to small k, and we need new k-dimensional

matching methods for these.
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7 SUMMARY AND FUTURE DIRECTIONS

The work we introduce in this thesis addresses the network alignment problem when

no prior knowledge about node similarity is available. This is the first class of work

that produces multiple frameworks that handle this scenario—which is known to

be the hardest setting in network alignment problems. Througout the work in this

thesis, we were able to discover a number of findings about network alignment. We

first summarize the network alignment problems addressed.

7.1 Summary of network alignment problems addressed in this thesis

We approached three types of network alignment problem in this thesis. Here,

we standardize notation and summarize the three optimization problems in table 7.1.

Recall that all of these problems are formulated in terms of maximizing the global

overlap of the overlayed networks after relabeling the nodes—the pairwise network

alignment problem seeks to find a relabeling of the nodes in one graph, multimodal

network alignment seeks to find one relabeling in all modes of one multimodal graph,

and multiple network alignment seeks to find a relabeling of nodes in k − 1 net-

works (when aligning k) networks. In all our network alignment settings, we used

no prior known similarity about the node alignment and this setting is traditionally

the hardest setting in network alignment algorithms. The key enabling technique for

our methods was solving the problems in terms of low rank factors and developing

multiple approximate low rank matching algorithms.

Nevertheless, the absence of this prior knowledge can be viewed as a drawback of

our methods. For instance, we develop the first scalable multiple network alignment

method that is able to align 100s of networks when no prior is provided, but this does

not immediately extend to the case when prior knowledge is provided. One way to
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remedy this is by imposing restrictions on the matchings after the scoring procedure,

but this is a heuristic and does not incorporate the prior known similarities in the

scoring step. A natural idea to explore under this setting is to use a low rank approx-

imation of the prior similarity matrix as this will still guarantee a low rank structure

of the similarity matrix in the pairwise case. Tensor low rank approximations can

be a little more tricky but there are a host of methods to explore (Friedland and

Tammali, 2015).

Table 7.1.
Summary of the network alignment problems that we addressed in this
thesis. All of these problems are formulated in terms of maximizing the
edge overlap. One way of solving these problems is by relaxing the con-
straints to allow P and X to be non binary and dense, and then applying
a matching procedure. The key idea explored in all problems is provably
showing that the solution is low rank and providing low rank matching
procedures to accomplish this task.

Pairwise
network
alignment
(Chapter 5)

maximize
P

∑
ij

∑
rsAijBrsP irP js

subject to
∑

iP ij ≤ 1 for all j∑
j P ij ≤ 1 for all i

P ij ∈ {0, 1}.

Multimodal
network
alignment
(Chapter 4)

maximize
P

∑m
k=1

∑
ij

∑
rsA

(k)
ij B

(k)
rs P irP js

subject to
∑

iP ij ≤ 1 for all j∑
j P ij ≤ 1 for all i

P ij ∈ {0, 1}.

Multiple
network
alignment
(Chapter 6)

maximize
X

∑
i1,i2,...,ik

∑
j1,j2,...,jk

A
(1)
i1j1

A
(2)
i2j2

. . .A
(k)
ikjk

Xi1,i2,...,ikXj1,j2,...,jk

subject to
∑

i2,...,ik
X i1,i2,...,ik ≤ 1 for all i1∑

i1,i3,...,ik
X i1,i2,...,ik ≤ 1 for all i2

. . .∑
i1,i2,...,ik−1

X i1,i2,...,ik ≤ 1 for all ik
X i1,i2,...,ik ∈ {0, 1}.
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Figure 7.1. The TAME algo-
rithm solves the network align-
ment problem while aiming at
maximizing the number of tri-
angles overlapped when the
aligned graphs are overlayed on
top of each other. It does so by
forming a tensor for each graph
that encodes the triangles in
the graph. For instance, in this
toy example T [1, 2, 3] because
nodes 1, 2, and 3 form a trian-
gle in the green graph.

7.2 TAME is another algorithm that fits our pipeline

TAME by Mohammadi et al. (2016) introduces an innovative definition on the

network alignment problem, and that is, maximizing the number of triangles to be

aligned (in contrast to classic network alignment algorithms that maximize the num-

ber of edges aligned). Figure 7.2 illustrates the key goal of the TAME algorithm. We

have new theory that supports that in TAME as well, when the starting prior knowl-

edge is uniform (rank-1), the output similarity matrix is low rank as well. We briefly

go through an overview of why this holds. We use the notation used in Table 7.1 to

restate the TAME optimization problem.

maximize
P

∑
ij

∑
rs

∑
uv T iruHjsvP ijP rsP uv

subject to
∑

iP ij ≤ 1 for all j∑
j P ij ≤ 1 for all i

P ij ∈ {0, 1}.

where T and H are the tensors that encode the triangles in each of the graphs.

Relaxing this problem to allow P to be a similarity matrix translates to an eigenvector
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problem on the Kronecker product of these tensors. That is, the goal becomes to find

x such that

maximize (H ⊗ T )x3

subject to ‖x‖ = 1.

A standard way to solve this eigenvector problem on tensors is via the SS-HOPM

method (Kolda and Mayo, 2014). The main iteration of the SS-HOPM method is

similar to the power method on matrices, with a regularization factor β,

x̂k+1 = (H ⊗ T )x2
k + βxk

xk+1 =
x̂k+1

‖x̂k+1‖

Some of our recent work on tensors shows that the eigenvector of H ⊗ T associated

with the largest eigenvalue is rank-1, and in fact is, the Kronecker product of the

dominant eigenvectors of H and T . Using the SS-HOPM method with β = 0 and

combining it with our recent theory allows us to deduce that a low rank version

of TAME is possible and that the similarity matrix is in fact low rank. Further

explorations with β 6= 0 are possible too. For instance, Mohammadi et al. (2016)

recommend running TAME with three iterations only, which can be theoretically

shown to have a rank at most 10. We have preliminary work on the low rank version

of TAME with β = 0, and figure 7.2 shows these results.

In this experiment, we run 50 random experiments where we generate instances

of 500 node graphs of Erdős-Rényi graphs, and then modify the current instance by

either randomly removing edges only or by adding and removing randomly. Then,

we run the TAME algorithm with β = 0 and the low rank formulation which states

that the eigenvector of H ⊗T is the kronecker product of the eigenvectors of H and

T when β = 0. Then, we measure the recovery results since we have the groundtruth

alignment. The results are shown in figure 7.2. The TAME and Low-Rank TAME

algorithms achieves almost the same exact results, but the low rank version runs
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Figure 7.2. As we align pairs of 500 node graphs of Erdős-Rényi, the low
rank version of TAME achieves the same results in terms of node recovery.

considerably faster (the low rank version runs in less than one second whereas the

TAME algorithm requires around 400 seconds).

7.3 New low rank formulations

One more observation to point out is that three state of the art algorithms for

network alignment mentioned in this thesis—IsoRank (Singh et al., 2008), Eige-

nAlign (Feizi et al., 2016), and TAME (Mohammadi et al., 2016)—produce a sim-

ilarity scoring matrix that is provably low rank when the starting prior knowledge

matrix is uniform. This is independently interesting because each row or column in

the low rank factors can be interepreted as a signature or embedding of nodes in the

graphs, and these signatures often represent a diffusion procedure on the graphs in-

dependently. This property, coupled with our class of algorithms to perform low rank

matching can open the space for even more network alignment algorithms that rely

on using signatures of nodes from both graphs (or equivalently, finding a similarity
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matrix that is low rank). This translates to a network alignment problem, where the

binary matrix P is relaxed and restricted to be low rank, that can be stated as:

maximize
W

∑
ij(AXB)ijX ij

subject to X = UAWV B.

where UA and V B are embeddings of nodes in each of the graphs.

7.4 Matching

In addition to our low rank network alignment methods, we introduced the idea

of incorporating the several matchings we obtain while solving the low rank match-

ing problem with existing state of the art methods that are highly effective when a

prior knowledge is given (such as Klau’s method Natalie (Klau, 2009)). Also, we

saw in this thesis (Chapters 4 and 6) that adapting existing state of the art network

alignment algorithms on multimodal networks or multiple networks can often produce

worse results. We demonstrated this via a set of synthetic experiments where adapted

standard network alignment algorithms to multimodal network alignment or multiple

network alignment degrades in quality as the modes or networks present increases.

This supported the need for solving the multimodal network alignment problem and

the multiple network alignment problem via new methods that are specifically de-

signed for these tasks.

In the context of matching, we presented a number of matching algorithms with

theoretically grounded approximation bounds and our bounds were empirically very

close to 1. These methods can be used beyond network alignment scores, whenever

a low rank structure in the matrix is present. Since our simple low rank methods

produced high quality matchings, we didn’t dive into more detailed algorithms. Fur-

thermore, bipartite matching algorithms such as the Path Growing Algorithm (Vinke-

meier and Hougardy, 2005) or the greedy method (which both achieve a theoretical

2-approximation) can be adapted to use linear storage as well, but both would require
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a runtime larger than our low rank methods (O(n2k) for PGA when the rank is k

and the number of nodes is O(n), and O(n3 for the greedy method). Nevertheless,

these methods do not immediately extend to the k-dimensional matching scenario.

7.5 To end

To end, the work presented in this thesis was predominantly enabled by our low

rank techniques that were fast and scalable. And thus, our new low rank methods

for bipartite matching and k-dimensional matching opens the space for further explo-

rations of low rank structures in the network alignment problem. In this thesis, we

introduced the first formulation and solution for multimodal network alignment and

introduced the first multiple network alignment algorithm that can scale to 100s of

networks with 1000s of nodes, when the previous state of the art could only scale to

up to five networks.
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