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ABSTRACT

Zhou, Dali Ph.D., Purdue University, August 2019. Massive Data K-means Clustering
and Bootstrapping via A-optimal Subsampling. Major Professors: Hanxiang Peng
and Fei Tan.

For massive data analysis, the computational bottlenecks exist in two ways. Firstly,

the data could be too large that it is not easy to store and read. Secondly, the

computation time could be too long. To tackle these problems, parallel computing

algorithms like Divide-and-Conquer were proposed, while one of its drawbacks is that

some correlations may be lost when the data is divided into chunks. Subsampling

is another way to simultaneously solve the problems of the massive data analysis

while taking correlation into consideration. The uniform sampling is simple and fast,

but it is inefficient, see detailed discussions in Mahoney (2011) and Peng and Tan

(2018). The bootstrap approach uses uniform sampling and is computing time in-

tensive, which will be enormously challenged when data size is massive. k-means

clustering is standard method in data analysis. This method does iterations to find

centroids, which would encounter difficulty when data size is massive. In this thesis,

we propose the approach of optimal subsampling for massive data bootstrapping and

massive data k-means clustering. We seek the sampling distribution which minimize

the trace of the variance co-variance matrix of the resulting subsampling estimators.

This is referred to as A-optimal in the literature. We define the optimal sampling

distribution by minimizing the sum of the component variances of the subsampling

estimators. We show the subsampling k-means centroids consistently approximates

the full data centroids, and prove the asymptotic normality using the empirical pro-

cess theory. We perform extensive simulation to evaluate the numerical performance

of the proposed optimal subsampling approach through the empirical MSE and the

running times. We also applied the subsampling approach to real data. For mas-
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sive data bootstrap, we conducted a large simulation study in the framework of the

linear regression based on the A-optimal theory proposed by Peng and Tan (2018).

We focus on the performance of confidence intervals computed from A-optimal sub-

sampling, including coverage probabilities, interval lengths and running times. In

both bootstrap and clustering we compared the A-optimal subsampling with uniform

subsampling.
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1. INTRODUCTION

1.1 K-means Clustering

Interests in partitioning of objects has risen in different fields, like statistics, com-

puter science and their intersect area: machine learning. There are two types of

models in machine learning: supervised learning models (in statistics we call clas-

sification models) and unsupervised learning models (in statistics we call clustering

models). k-means is a popular model of unsupervised learning. In the year of 1954, an

anthropological data analysis article (JSTOR) firstly used ”cluster analysis”, which

at that time was called ”grouping”.

Developed from signal processing originally, k-means clustering partitions the data

set into desired number of clusters, where each observation is assigned to the cluster

with nearest centroid (mean in general). The idea came from Steinhaus, the early

father of data science, in 1956. It was then firstly named ”k-means” and fully intro-

duced by MacQueen (1967), some consistency results were also provided. Hartingan

(1978) proved a central limit theorem and convergence in probability for partitioning

one dimensional data into two clusters. Pollard (1981,1982) extended the results and

gave strong consistency results and a central limit theorem for multidimensional case.

Even today, after 50 years of development of k-means clustering, there are still

much left for us to dig in. Steinley (2006) reviewed the problems solved and unsolved

in k-means, some challenges like how to choose initial centroids and how to deter-

mine the number of clusters k were pointed out. Besides theoretical research from

statisticians, to develop the most efficient algorithm of k-means has been also an im-

portant topic in computer science. Bock (2008) discussed the original algorithms and

extensions for k-means clustering analysis. Jain (2009) concluded the k-means data
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clustering and beyond, also pointed out the challenge of large-scale clustering in this

era of big data.

To implement k-means, several algorithms have been developed. The standard

algorithm is the EM algorithm, developed by Lloyd (1957, published 1982). Other

popular algorithms are the MacQueen (1967) algorithm, the Hartigan & Wong (1979)

algorithm and Elkan (2003) triangle inequality algorithm.

1.2 Bootstrapping

Bootstrap, introduced by Bradley Efron (1979) is a resampling method for ob-

taining statistical properties of estimates. It is a widely used method in different area

of statistics, traditionally in which the number of observations is too small that large

sample theories can not be applied (for example in clinical trial studies when sample

size is normally small because of expense), or in cases where the explicit theoretical

results are too complicated to be obtained. In last century, Bootstrap has become a

popular tool used to obtain variance, bias, confidence region of the estimators. As

artificial intelligence and data science become more and more important in today’s

world, bootstrap is also becoming important in machine learning and other comput-

ing areas, for example, in cross validation to prevent over fitting problems. Or more

generally, when the resampling sample size is not the same as original sample size

(which is called m-out-of-n bootstrap, Bickel (1997)), bootstrap can be used in big

data analysis when taking m much smaller than n.

The spirit of bootstrap method is to take a resample from the original data to

calculate the sampling distribution of the estimator that we are interested in. The

relationship between the resample and original sample can be used to mimic the

relationship between the sample and population. That is, by treating sample as the

”population”, resample as the ”sample”, we can take ”sample” from the ”population”

repeatedly to obtain a sampling distribution of the resampling estimator. Because of

the consistency of resampling estimator, we will be able to calculate standard error
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of the estimator and construct confidence region of of the true parameter. This is

supported by the asymptotic theories provided by Bickel and Freedman (1981), and

Singh (1981). Better bootstrap confidence intervals with an improvement that results

in second order correctness were provided by Efron (1987). The basic bootstrap

theoretical results, and their applications were mainly included in the books written

by Efron and Tibshirani (1994), Shao and Tu (1995) and Davison and Hinkley (1997).

There are different variations of bootstrap. Since regression models are essential

models in the statistics world. Bootstrap method is also applied to this simple while

powerful model in approximating the sampling distribution of regression estimators.

Freedman (1981) showed the validness of bootstrap approximation to the distribution

of regression least squares estimators. Wu (1986) studied resampling methods includ-

ing jackknife and bootstrap in regression models. There are basically two types of

bootstrap in regression models: paired bootstrap and residual bootstrap. Sometimes

they are also called resampling bootstrap and model-based bootstrap in regression

models, respectively.

Bootstrap is uniform resampling, which treats all the observations equally likely.

It could be therefore generalized to non-uniform resampling, which people also call

weighted bootstrap or generalized bootstrap. Bayesian bootstrap introduced by Ru-

bin (1981) is one type of weighted bootstrap, in which each observation is assigned

random resampling weight. Charterjee and Bose (2005) discussed theoretical results

of generalized bootstrap for estimating equations. In their paper, assumptions of the

weights and some examples of weights are given. For example, jackknife, delete-d

jackknife, m out of n bootstrap can all be considered as special cases of weighted

bootstrap. However, these weights above do not improve the bootstrap in the sense

of efficiency.

Typically, bootstrap is used for data with small sample size. As the fast develop-

ment of computer science, larger and larger data sets are generated and stored. How

to deal with large scaled data has now become a crucial problem. Bootstrap methods
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are also generalized to big data applications. Kleiner, el (2012) proposed a scalable

bootstrap for massive data, Bag of Little Bootstraps (BLB) to improve robustness.

1.3 A-optimal Subsampling in Big Data Analysis

Resampling techniques were developed last century but somewhat limited by the

computing ability of computers. With the fast development of technology, the com-

putationally intensive statistical resampling methods are brought back to the stage

even for large data sets.

In big data analysis, subsampling method is popular in solving the problems that

are hard for traditional models or computers. Normally, researchers use uniform sub-

sampling as a way to increase computing efficiency. However, this way of subsampling

treats all the observations equally likely, while different observations could be of dif-

ferent levels of importance. To settle this issue, statisticians choose to do weighted

subsampling, finding the weights of observations before statistical analysis, in this

way, the weighted subsample will contain more information than uniform subsample.

Hence, a more efficient and accurate estimator could be obtained.

Drineas et al(2006) introduced a weight for approximating matrix multiplica-

tion. Ping Ma, et al (2015) introduced a sampling weight for regression models using

leverage score, which works better than uniform subsample. Rong Zhu, et al(2015)

developed optimal subsampling approaches for large sample linear regression, by min-

imizing the trace of center of certain matrix. Peng and Tan (2018) improved their

result and developed the A-optimal sampling weights. Below are two examples of

A-optimal subsampling use.

1.3.1 Example: Matrix Multiplication Approximation via optimal Sub-

sampling

Drineas (2006) proposed the optimal sampling method for approximating matrix

multiplication. Here we perform an example to illustrate how optimal subsampling
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is betting than uniform subsampling. To be specific, given two input matrices Al×n

and Bn×p, to approximate the product AB in an efficient way, firstly, form matri-

ces Cl×c and Rc×p by sampling c columns of A with appropriate probability P on

{1, 2, ..., n} and using the same c rows of B. Then scale the sampled columns and

rows appropriately.

Algorithm 1: Optimal Subsampling Algorithm for

Matrix Multiplication Approximation

Input : A ∈ Rl×n, B ∈ Rn×p, c ∈ Z+ and 1 ≤ c ≤ n.

Output: C ∈ Rl×c and R ∈ Rc×p.

1 for t ∈ {1, . . . , c} do

2 Calculate sampling probabilities pk, k = 1, 2, ..., n.

3 Pick it ∈ {1, ..., n} using probabilities p1, ..., pn

independently with replacement;

4 Let C(t) = A(it)/
√
cpit and R(t) = B(it)/

√
cpit ,

where C(t) denote the tth column of C, and R(t)

denote the tth row of R;

5 end

6 Output CR.

7 end

The output product CR is an approximation of the matrix product AB. In this

algorithm, the choice of pk and the scaling of column and row are important features

that could make it a good approximation. In fact,

pk =
|A(k)||B(k)|∑n

k′=1 |A(k′)||B(k′)|

was proved to be the optimal choice that minimizes E
[
||AB−CR||2F

]
, where the

F -norm is define by

||AB−CR||F =

√√√√ l∑
i=1

p∑
j=1

(AB−CR)2
ij
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As can be seen, the spirit here is to minimize the norm of certain matrix to get the

optimal probability, which just provide us an idea on how to choose the appropriate

weight in the optimal subsampling.

To compare the optimal sampling method to uniform sampling in matrix multi-

plication approximation, a simulation example is constructed as below.

Let A be a 18× n matrix, B be a n× 60 matrix. The values of n are chosen to be 8,

16, 40, 100. For each given n, the values of r are selected to be 0.3∗n, 0.5∗n, 0.8∗n

and n (all are rounded down to the nearest integer). Three different types of matrices

are generated:

• Uniform Matrix, all elements of A and B are generated from Unif(0, 1), a

uniform distribution with parameters 0 and 1.

• Mixture Matrix, elements of A are evenly generated from 6 different distribu-

tions in the order of: Unif(20, 21), N(−10, 1), Exp(10), Unif(0, 1), N(−1000, 2)

and Exp(1). Matrix B is generated from N(−100, 1), Unif(2000000, 2000001),

Exp(100), Unif(0, 1), N(1000, 2) and integer sequence from 1 to 10n.

• Heavy Mixture Matrix, generated similarly with Mixture Matrix but with

even more different distribution parameters.

The norm ratios of the following form are compared in table (1.1):

E
[
||AB−CoptRopt||2F

]
E
[
||AB−CunifRunif ||2F

] .
From the output table, we can see that

• All the norm ratios are less than 1, which means the optimal subsampling is

more statistically accurate in matrix multiplication approximation.

• In Uniform Matrix column, norm ratios are close to 1. The difference between

two methods are not obvious. The reason is that the uniform matrices are

incoherent, and uniform subsampling works well in this situation.



7

• In Mixture Matrix column, since the matrices have large coherence, the norm

ratios are significantly less than 1 when n is small. As n becomes larger, the

differences fade away but are still larger than those under uniform matrices

situation.

• In Heavy Mixture Matrix column, the trend is more evident.

The simulation result shows that optimal subsampling method outperforms regular

uniform subsampling in all cases and if the matrices have large coherence, or, if the

matrices have quite different row norms, optimal subsampling method performs even

better.

Table 1.1.: Comparison of Norm Ratios in Matrix Multiplication Approximation

n r Uniform Matrix Mixture Matrix Heavy Mixture Matrix

8

2 0.9994 0.7572 0.5102

4 0.9999 0.7541 0.5660

6 0.9999 0.7561 0.5669

8 0.9999 0.7605 0.5612

16

4 0.9999 0.8938 0.7751

7 1.0000 0.8931 0.7681

12 1.0000 0.8933 0.7512

15 1.0000 0.8937 0.7499

40

12 1.0000 0.9839 0.9177

20 1.0000 0.9838 0.9223

32 1.0000 0.9840 0.9200

40 1.0000 0.9841 0.9217

100

30 1.0000 0.9970 0.9756

50 1.0000 0.9970 0.9765

80 1.0000 0.9970 0.9774

100 1.0000 0.9970 0.9770
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1.3.2 Example: Empirical Distribution Function Approximation via Op-

timal Subsampling

Empirical distribution function Fn(x) = 1
n

∑n
i=1 1[xi ≤ x], constructed using data

from sample {x1, x2, ..., xn} is an estimate of the CDF. It is a widely used non-

parametric function. In this example, we focus on finding the optimal sampling

weight for approximating the empirical distribution function by minimizing certain

term. Some interesting results are given in theorem 1.3.2.

Theorem 1.3.1 Let Fn(x) = 1
n

∑n
i=1 1[Xi ≤ x] be the empirical distribution func-

tion. Let F ∗r (x) = 1
r

∑r
j=1

1[X∗j≤x]

nπ∗j
be the subsampling empirical distribution based on a

subsample {X∗1 , X∗2 , ..., X∗r } drawn according to the sampling distribution {π1, π2, ..., πn}

on the data points. Then the optimal subsampling probabilities are

πoi =
1[Xi ≤ x]∑n
i=1 1[Xi ≤ x]

, i = 1, 2, ..., n.

Proof We will find the optimal sampling probabilities by minimizing the variance

of F ∗r given the data X1, X2, ..., Xn. For convenience, we write F ∗r (x) as F ∗r and write

Fn(x) as Fn in the proof. Also, for subsampling statistic T ∗, use E∗(T ∗) and V ∗(T ∗)

to denote the conditional expectation E(T ∗|X1, X2, ..., Xn) and conditional variance

V (T ∗|X1, X2, ..., Xn). We start with calculating the conditional expectation first.

E∗(F ∗r ) = E∗(
1

r

r∑
j=1

1[X∗j ≤ x]

nπ∗j
)

=
1

r

r∑
j=1

E∗(
1[X∗j ≤ x]

nπ∗j
)

= E∗(
1[X∗1 ≤ x]

nπ∗1
)

=
n∑
i=1

1[Xi ≤ x]

nπi
· πi

=
1

n

n∑
i=1

1[Xi ≤ x] = Fn.
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Then the conditional variance given data X1, X2, ..., Xn is

V ∗(F ∗r ) = V ∗(
1

r

r∑
j=1

1[X∗j ≤ x]

nπ∗j
)

=
1

r2
V ∗(

r∑
j=1

1[X∗j ≤ x]

nπ∗j
)

=
1

r2
· rV ∗(1[X∗1 ≤ x]

nπ∗1
)

=
1

r
[E∗[(

1[X∗1 ≤ x]

nπ∗1
)2]− E∗2(

1[X∗1 ≤ x]

nπ∗1
)]

=
1

r
[
n∑
i=1

1[Xi ≤ x]

nπ2
i

πi − F 2
n ]

=
1

r
[
n∑
i=1

1[Xi ≤ x]

nπi
− F 2

n ].

With the restrictions
∑n

i=1 πi = 1 and πi ≥ 0, we invoke the Lagrange multiplier and

solve for the optimal πi’s. The Lagrange function is

L(π1, ..., πn, λ) =
1

r
{

n∑
i=1

1[Xi ≤ x]

nπi
− F 2

n}+ λ(π1 + ...+ πn − 1)

Take partial derivative w.r.t πi,

∂L(π1, ..., πn, λ)

∂πi
= −1

r
· 1[Xi ≤ x]

nπ2
i

+ λ = 0.

Solve the above equation with restrictions for πi, we get the optimal subsampling

probabilities:

πoj =
1[Xj ≤ x]∑n
i=1 1[Xi ≤ x]

, j = 1, 2, ..., n.

Substituting the optimal subsampling probabilities obtained from Theorem 1.3.1,

we can get the optimal empirical distribution function estimator

F o∗
r (x) =

1

r

r∑
j=1

1[X∗j ≤ x]

nπo∗j
.

We have the following result for F o∗
r (x).
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Theorem 1.3.2 The empirical distribution function Fn(x) is A-optimal, i.e., F o∗
r (x) =

Fn(x), x ∈ R.

Proof For subsample X∗1 , X
∗
2 , ..., X

∗
r , the expression of the A-optimal subsampling

probabilities that corresponds to the subsampling points are

π∗j =
1[X∗j ≤ x]∑n
i=1 1[Xi ≤ x]

, j = 1, 2, ..., r.

It is worthwhile to note that, there is no star on the denominator of π∗j since the

denominators of πi, i = 1, 2, ..., n are all the same and are constants given x and

X1, X2, ..., Xn. In fact, we can write the optimal subsampling probabilities as

π∗j =
1[X∗j ≤ x]

nFn(x)
, j = 1, 2, ..., r.

Then,

F ∗r (x) =
1

r

r∑
j=1

1[X∗j ≤ x]

n
1[X∗j≤x]

nFn(x)

=
1

r

r∑
j=1

1[X∗j ≤ x]

1[X∗j ≤ x]
· Fn(x)

Let G∗r(x) = 1
r

∑r
j=1

1[X∗j≤x]

1[X∗j≤x]
. It is worth to note that the value of

1[X∗j≤x]

1[X∗j≤x]
depends

on x, it may not necessarily be 1 (could be defined as 0 when x < min(X∗1 , ..., X
∗
r )).

Now we have

F ∗r (x) = G∗r(x)Fn(x).

Let X(i) be the sorted sample points, i = 1, 2, ..., n, here we assume F (x) is

continuous so all the sample points are different. The discrete distribution case could

be proved similarly when taking ties of sample points into consideration.

For x < min(X1, X2, ..., Xn), Fn(x) = 0, 1[Xi ≤ x] = 0, i = 1, 2, ..., n0, no point

will be drawn, thus F ∗r (x) = 0 = Fn(x).

For X(k−1) ≤ x < X(k), k = 2, 3, ..., n. We have Fn(x) = k
n
, and

πi =
1[Xi ≤ x]

nFn(x)
=

 1
k
, x ≤ X(k)

0, o.w.
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Hence, only the sample points that are less than X(k) could be drawn, that being

said, 1[X∗j < x] = 1, j = 1, 2, ..., r. So G∗r(x) = 1
r

∑r
j=1 1 = 1. F ∗r (x) = G∗r(x)Fn(x) =

Fn(x)

For x ≥ X(n), Fn(x) = 1. Thus π = 1
n
, it becomes uniform sampling, and

1[X i < x] = 1,i = 1, 2, ..., n, 1[X∗j < x] = 1, j = 1, 2, ..., r. In this case, G∗r(x) =

1
r

∑r
j=1 1 = 1.

So we have proved for all x ∈ R, F ∗r (x) = Fn(x).

1.4 Our Work

The rest of this thesis is organized as follows. In chapter 2, we discuss massive

data k-means clustering via A-optimal subsampling. Consistency theorem and cen-

tral limit theorem are given, the A-optimal sampling distribution is also given. In

chapter 3, we discuss bootstrapping and propose massive data bootstrapping via A-

optimal subsampling. In chapter 4, massive data simulation for both k-means and

bootstrapping in A-optimal subsampling are performed and discussed. In chapter

5, we perform massive data k-means clustering via A-optimal subsampling in the

applications of natural language processing.
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2. K-MEANS CLUSTERING VIA A-OPTIMAL

SUBSMAPLING

2.1 K-means Clustering

The k-means clustering method is a classic and popular clustering algorithm in

machine learning. By minimizing the within cluster sum of squares, the centroids

with minimized within cluster sum of squares are obtained from iterated algorithm.

The distances of each observation to the centroids will then be calculated. The

observations closest to a centroid will belong to the same cluster. The number of

clusters is specified before the algorithm begins.

When sample size is large, the iteration in the clustering algorithm could be time

consuming. In extreme cases, the minimizer of the within cluster sum of squares may

not even be computable. To save computing time, or in the extreme case to make un-

doable problems doable, statisticians or data scientists will use subsampling method.

A subsample with sample size substantially smaller than the original sample size can

be obtained from uniform subsampling with replacement. In this case, researchers

will be able to apply k-means algorithm much faster. However, the drawback of uni-

form subsampling is that it is not statistically efficient enough. Uniform subsampling

method treats all the data points equally, instead of extracting information from

observations with higher importance.

To improve the uniform subsampling method for massive data k-means algorithm,

we propose the massive data k-means algorithm via A-optimal subsampling. In

our method, we calculate the sampling probabilities for observations by minimiz-

ing certain matrix, then a subsample is obtained from the original data using the

pre-calculated Probabilities. We will show that under this procedure we can get more

stable centroids with smaller MSE. Two cases are studied: the equal cluster size case
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and unequal cluster size case. In both cases the MSEs of centroids under proposed

method are smaller than those using uniform subsampling. Under unequal cluster

size case, our method largely outperforms uniform subsampling.

2.1.1 K-means Clustering Algorithms

Independent observations x1, ...,xn are made on the same probability distribution

P on Rd. In k-means procedure, the observations are partitioned into k clusters by

minimizing the within cluster sum of squares. Equivalently, to get the best partition,

we find a vector of centroids bn = (b>n1, ...,b
>
nk)
> ∈ Rkd that minimizes the within

cluster sum of squares

Wn(a) =
1

n

n∑
i=1

min
1≤l≤k

||xi − al||2, a = (a>1 , ..., a
>
k )> ∈ Rkd (2.1.1)

where k is the number of clusters, d is the dimension of each observation. To im-

plement the method, MacQueen gave the algorithm of k-means in 1967, which is

composed of steps below:

1. Select k points in the observation space as the initial cluster centroids.

2. For each observation, calculate the distances between that observation and the

k centroids. Assign the observation to the cluster with the closest centroid.

3. For each cluster, Calculate the new centroid.

4. Repeat step 2 and step 3 until convergence criterion is met. A convergence

criterion may be the norm of the difference of the centroids in the last two

iteration being less than some prespecified small number.

To be more specific, the k-means algorithm is given below:
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Algorithm 2: k-means Clustering Algorithm

Input : Data Xn×d = (x1, ...,xn)>, xi ∈ Rd. Number of

clusters k.

Output: Centroid vector bn, cluster label y.

1 init

2 Initialize cluster centroids b
(0)
n1 , ...,b

(0)
nk randomly;

3 repeat

4 In iteration t, do the following steps:

5 For each xi, set label y
(t)
i := arg min1≤l≤k||xi − b

(t−1)
nl ||2;

6 For each l, set b
(t)
nl :=

∑n
i=1 1{y

(t)
i =l}∗xi∑n

i=1 1{y
(t)
i =l}

;

7 until Convergence criterion is met ;

8 Output values from last iteration tl, bn = (b
(tl)>
n1 , ...,b

(tl)>
nk )>

and label y = (y
(tl)
1 , ..., y

(tl)
n )>

9 end

Consider the case of massive sample size n, when performing k-means for full

sample is too slow or even not doable, researchers perform the k-means clustering

by uniform subsampling, which is to select a random subsample from the full sample

with uniform sampling. In this way, every observation is treated equally likely. The

algorithm is given below:
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Algorithm 3: k-means Clustering Algorithm via Subsampling

Input : Data Xn×d = (x1, ...,xn)>, xi ∈ Rd. Number of

clusters k. Subsample size r;

Output: Centroid vector b∗, cluster label y;

1 subsampling

2 Take a uniform subsample X∗r×d = (x∗1, ...,x
∗
r)
> from Xn×d

of size r with replacement.

3 init

4 Initialize cluster centroids b
∗(0)
1 , ...,b

∗(0)
k randomly;

5 repeat

6 In iteration t, do the following steps:

7 For each x∗j , j = 1, 2, ..., r, set label

y
(t)
j := argmin1≤l≤k ||x∗j − b

∗(t−1)
l ||2;

8 For each l, set b
∗(t)
l :=

∑r
j=1 1{y

(t)
j =l}∗x∗j∑r

j=1 1{y
(t)
j =l}

;

9 until Convergence criterion is met ;

10 Output values from last iteration tl: b∗ = (b
∗(tl)>
1 , ...,b

∗(tl)>
k )>

and label y = (y
(tl)
1 , ..., y

(tl)
n )>, where

y
(tl)
i = argmin1≤l≤k ||xi − b

∗(tl)
l ||2, i = 1, 2, ..., n

11 end

Since uniform subsampling procedure treats all the observations with equal im-

portance, it does not extract important information from data, which may lead to

inefficient result. Therefore, we perform the A-optimal subsampling. We will show

that the estimator obtained from this way will have better properties than that from

uniform subsampling.

2.2 K-means Clustering via A-optimal Subsampling

Let π1, ..., πn denote a general weight distribution on the observations. Uniform

weight 1
n
, 1
n
, ..., 1

n
is one special case of the general weight when all weights are equal.
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Take a subsample x∗1, ...,x
∗
r with size r ≤≤ n using the weight distribution. We

now approximate bn by b∗ which minimizes

Ŵn(a) =
1

n

r∑
j=1

1

rπ∗j
min

1≤l≤k
||x∗j − al||2, a ∈ Rkd (2.2.1)

Our goal is to find the optimal weight such that the subsampling estimator (the

optimal cluster centroid vector in our case) has higher accuracy and efficiency. A

theorem about the optimal sampling distribution will be specified later, the explicit

formula and properties will also be provided. Here we propose the algorithm to

implement the method.
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Algorithm 4: k-means Clustering Algorithm via A-optimal

Subsampling

Input : Data Xn×d = (x1, ...,xn)>, xi ∈ Rd. Number of

clusters k. Subsample size r;

Output: Centroid vector b∗, cluster label y;

1 pre-calculation

2 Calculate sampling distribution π for Xn×d;

3 subsampling

4 Take a subsample X∗r×d = (x∗1, ...,x
∗
r)
> from Xn×d of size r

with with sampling probability vector π;

5 init

6 Initialize cluster centroids b
∗(0)
1 , ...,b

∗(0)
k randomly;

7 repeat

8 In iteration t, do the following steps:

9 For each x∗j , j = 1, 2, ..., r, set label

y
(t)
j := argmin1≤l≤k

1
nπ∗j
||x∗j − b

∗(t−1)
l ||;

10 For each l, set b
∗(t)
l :=

∑r
j=1 1{y

(t)
j =l}∗

x∗j
nπ∗
j∑r

j=1 1{y
(t)
j =l}

;

11 until Convergence criterion is met ;

12 Output values from last iteration tl: b∗ = (b
∗(tl)>
1 , ...,b

∗(tl)>
k )>

and label y = (y
(tl)
1 , ..., y

(tl)
n )>, where

y
(tl)
i = argmin1≤l≤k ||xi − b

∗(tl)
l ||2, i = 1, 2, ..., n

13 end

Remark 2.2.1 (Assumptions on π) The assumptions for different weights may be

different. Chatterjee, et al (2005) gave the assumptions of weights for the generalized

bootstrap for estimating equations: π exchangeable, all π have the same expectation

E( 1
πi

) = 1, and the same finite variance V ar(πi) = σ2 < ∞. For Wi = (πi − 1)/σn,

need σ2
n = o(n), E(WiWj) = O( 1

n
) and E(W 2

i W
2
j )→ 1 for i 6= j, and E(W 4

i ) <∞.
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In our case, the assumptions are different from Chatterjee’s in three parts: 1. πi’s

are not exchangeable. 2. V ar(πi) are not necessarily all equal for different i. 3. πi’s

are data driven, therefore not independent with X, since it contains information from

data.

2.3 Theorem of Consistency

MacQueen (1967) proved weak consistency of k-means algorithm. David Pollard

(1982) proved the strong consistency results. We will follow their ideas and prove

the consistency of k-means algorithm via A-optimal subsampling. We shall continue

using their notations.

As aforementioned, observations x1,x2, ...,xn ∈ Rd are made on probability dis-

tribution P . The corresponding empirical measure is denoted by Pn. Pollard defined

in a more generalized case that for arbitrary (finite) subset A of Rd and arbitrary

probability measure Q,

Φ(A,Q) :=

∫
min
a∈A

φ(||x− a||)Q(dx), (2.3.1)

and

mk(Q) := inf{Φ(A,Q) : #{A} ≥ k}, (2.3.2)

where φ is a positive non-decreasing function discussed in Remark(2.3.1), and #{A}

denotes the cardinality of set A. The population version of Φ is

Φ(A,P ) =

∫
min
a∈A

φ(||x− a||)P (dx). (2.3.3)

This can be estimated by the empirical version,

Φ(A,Pn) =
n∑
i=1

1

n
min
a∈A

φ(||xi − a||). (2.3.4)

In addition, given k, Ā = Ā(k) denotes the set of optimal cluster centroids for the

population, and An = An(k) denotes the set of optimal cluster centroids based on the

sample. Thus by the above definitions, we have Φ(Ā, P ) = mk(P ) and Φ(An, Pn) =

mk(Pn).
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Suppose x∗1,x
∗
2, ...,x

∗
r is a subsample taken from the full sample xi, i = 1, 2, ..., n

using sampling probabilities π1, π2, ..., πn. Let π∗j , j = 1, 2, ..., r be the correspond-

ing probabilities to the subsample. By putting probability mass 1
rnπ∗1

, 1
rnπ∗2

, ..., 1
rnπ∗r

on each subsample data points, we construct Hansen-Hurwitz estimate Φ(A, P̂n) to

approximate Φ(A,Pn) as follows:

Φ(A, P̂n) =
r∑
j=1

1

rnπ∗j
min
a∈A

φ(||x∗j − a||). (2.3.5)

This ensures the unbiasedness property:

E∗Φ(A, P̂n) = Φ(A,Pn).

Likewise,

mk(P̂n) := inf{Φ(A, P̂n) : #{A} ≥ k}. (2.3.6)

Let A∗r = A∗r(k) be the set of optimal cluster centroids based on the subsample,

that is Φ(A∗r, P̂n) = mk(P̂n), and let w = (w1, w2, ..., wn)> have a scaled Multinomial

distribution with number of trails r and parameter vector π, write w ∼ sMult(π, r),

so that

P (w1 =
k1

rπ1

, w2 =
k2

rπ2

, ..., wn =
kn
rπn

) =
r!∏n
i=1 ki!

n∏
i=1

πkii , ki ≥ 0,
n∑
i=1

ki = r. (2.3.7)

Pollard (1982) proved the almost sure convergence of An to Ā in Hausdorff metric,

i.e., dH(An, Ā) → 0, a.s., where the Hausdorff metric measures how far two sets are

from each other in a metric space. For two non-empty sets W and V , the Hausdorff

distance is defined as

dH(W,V ) = max{ sup
w∈W

inf
v∈V

d(W,V ), sup
v∈V

inf
w∈W

d(W,V )}.

Our goal is to show dH(A∗r, An) → 0 almost surely as r → 0. As pointed out by

Pollard (1982), by arranging the labeling into a suitable case, almost sure convergence

for individual cluster centroids can be obtained consequently.
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Remark 2.3.1 For φ(x) = x2, we have φ(||x−a||) = ||x−a||2, which is the criterion

used in the Within Sum of Squares from the standard method of k-means. In more

general cases, φ can be other functions. To make the proof rigorous, some assumptions

were specified by Pollard. First, φ needs to be non-decreasing and continuous, and

φ(0) = 0. Second, there exists some constant λ ∈ R such that φ(2x) ≤ λφ(x) for

every x ∈ R+. Third, as x→∞, φ(x)→∞. Throughout, these assumptions shall be

assumed.

Remark 2.3.2 The reason we use Φ(A, P̂n) =
∑r

j=1
1

rnπ∗j
mina∈A φ(||x∗j−a||) instead

of using Φ∗ = 1
r

∑r
j=1 mina∈A φ(||x∗j − a||) is that, Φ(A, P̂n) is a Hansen-Hurwitz

estimator, and that the probability masses on the subsample are not 1
n

but 1
rnπ∗j

,

j = 1, 2, ..., r. One property of the Hansen-Hurwitz estimator is that it is unbiased:

E∗(Φ(A, P̂n)) = Φ(A,Pn). Clearly, E∗(Φ∗) 6= Φ(A,Pn) except in the special case of

the uniform sampling, when all πi are equal to 1
n

. Hansen-Hurwitz estimator is a

generally used estimator and technique in weighted resampling problems.

Remark 2.3.3 The difference of our proof and that of Pollard’s is that we work on

the subsample. Also it is worthwhile to note that, for subsampling, r << n. As

r →∞, n will be forced to go to infinity.

Theorem 2.3.1 (The Uniform SLLN) Suppose B(5M) is a closed ball with ra-

dius 5M , centered at origin, Ek := {A ⊂ B(5M) : #{A} ≤ k}. For A ∈ Ek, let

gA(x) := mina∈A φ(||x−a||) be a P -integrable function on Rd, and let G be the family

of functions of the form gA(x). Then,

sup
g∈G

∣∣∣∣ ∫ gdP̂n −
∫
gdPn

∣∣∣∣→ 0, a.s. (2.3.8)

Proof Following Pollard (1982), we will prove a sufficient condition for (2.3.8): for

each ε > 0, there exists a finite class Gε that, to each g ∈ G, we can find functions ḡ, g

such that ḡ ≤ g ≤ g and
∫

(ḡ− g)dPn < ε. To prove the sufficient condition, we apply
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the SLLN to each function g in the countable class G1/2 ∪ G1/3 ∪ G1/4... with bound

given below for |
∫
gdP̂n −

∫
gdPn|,∫

(ḡ − g)dPn + max{|
∫
ḡdP̂n −

∫
ḡdPn|, |

∫
gdP̂n −

∫
gdPn|}.

In fact, all components of the above bound will converge to 0 as r →∞. The second

term max{|
∫
ḡdP̂n −

∫
ḡdPn|, |

∫
gdP̂n −

∫
gdPn|} will converge to 0 by the SLLN.

The first term will be proved later.

To find a Gε satisfies the condition above, we will need a δ-net for B(5M), Dδ,

which is a finite subset of B(5M) that every single element of B(5M) is of a distance

that is not longer than δ, with at least one point of Dδ. The value of δ will need to

satisfy some condition given later. Let Ek,δ = {A ∈ Ek;A ⊆ Dδ}. Then for A′ ∈ Ek,δ,

let Gε be the class of the functions in the form:

min
a∈A′

φ(||x− a||+ δ) or min
a∈A′

φ(||x− a|| − δ)

for anyA = {a1, a2, ..., ak} ∈ Ek, by the definition ofDδ, there existsA′ = {a′1, a′2, ..., a′k} ⊆

Dδ ∈ Ek,δ such that dH(A,A′) < δ. Now write

ḡA := min
a∈A′

φ(||x− a||+ δ) and g
A

:= min
a∈A′

φ(||x− a|| − δ)

in which define

φ(x) =

 φ(x), x ≥ 0

0, x < 0

Since ||ai − a′i|| < δ for i = 1, 2, ..., k, we have

||x− ai|| = ||x− a′i + a′i − ai|| ≤ ||x− a′i||+ ||a′i − ai|| ≤ ||x− a′i||+ δ

||x− ai|| = ||x− a′i + a′i − ai|| ≥ ||x− a′i|| − ||a′i − ai|| ≥ ||x− a′i|| − δ

for i = 1, 2, ..., k and each x ∈ Rd. And since φ is a non-decreasing function,

min
a′∈A′

φ(||x− a′|| − δ) ≤ min
a∈A

φ(||x− a||) ≤ min
a′∈A′

φ(||x− a′||+ δ)

which indicates g
A
≤ gA ≤ ḡA. Then for R > 5M + δ,∫

(ḡA(x)− g
A

)Pn(dx)
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=

∫
min
a∈A′

[φ(||x− a||+ δ)− φ(||x− a|| − δ)]Pn(dx)

≤
∫ k∑

i=1

[φ(||x− a′i||+ δ)− φ(||x− a′i|| − δ)]Pn(dx)

=

∫
||X||≤R

k∑
i=1

[φ(||x− a′i||+ δ)− φ(||x− a′i|| − δ)]Pn(dx)

+

∫
||X||≥R

k∑
i=1

[φ(||x− a′i||+ δ)− φ(||x− a′i|| − δ)]Pn(dx)

≤k sup
||X||≤R,

sup
a∈B(5M)

|φ(||x− a||+ δ)− φ(||x− a|| − δ)]|

+ k

∫
||X||≥R

[φ(||x||+ ||x||)]Pn(dx)

≤k sup
||X||≤R,

sup
a∈B(5M)

|φ(||x− a||+ δ)− φ(||x− a|| − δ)]|

+ k

∫
||X||≥R

λφ(||x||)d(Pn − P ) + k

∫
||X||≥R

λφ(||x||)P (dx)

(For the third to fourth step of the above inequality, since when ||x|| ≥ R > 5M + δ

we have ||x|| − δ > 5M ≥ ||a′i||, so ||x|| > ||a′i|| + δ, for a′i ∈ A′, i = 1, 2, .., k.) The

first term in the last step can be made smaller than ε/3 by finding a small enough

δ (this is how δ value is selected) because of the uniform continuity of φ on B(5M).

The second will be less than ε/3 for sufficiently large n by SLLN. The third term will

be smaller than ε/3 if R is large enough. The proof is complete.

Applying Theorem 2.3.1, we prove the following consistency result.

Theorem 2.3.2 (Consistency) Assume that
∫
φ(||x||)P (dx) < ∞ and that there

exist unique set Ā(j) for which Φ(Ā(j), P ) = mj(P ) = inf{Φ(A,P ) : #{A} ≤ j} for

each j = 1, 2, ..., k. Then dH(A∗r, An)→ 0 a.s., and Φ(A∗r, P̂n)−mk(Pn)→ 0 a.s.

Proof Following Pollard (1982), our proof consists of two stages: the first stage is

to show A∗r is included in some compact region of Rd; the second stage is to show that

W (A∗r, P̂n) −W (An, Pn) converges to zero uniformly over {A : #A ≤ k} ⊂ B(5M),

almost surely. To prove the first stage, the first step is to find an M large enough
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so that for the closed ball B(M) with radius M and the origin as the center, there

is at least one point of the set A∗r that is contained in the B(M) when n is large

enough. In the second step, we will prove that all of the points of A∗r are included in

the ball B(5M). Next, we will show that An is also included in this ball B(5M). The

second stage will be proved by applying the uniform SLLN Theorem (2.3.1). This

will complete the proof.

Choose the ball K centered at the origin with radius r0 which has positive P

measure. Select a large enough M such that φ(M − r0)P (K) >
∫
φ(||x||)P (dx). By

the law of large number, we have, as n→∞,

αn := φ(M − r0)Pn(K)→ α0 := φ(M − r0)P (K) a.s. (2.3.9)

βn :=

∫
φ(||x||)Pn(dx)→ β0 :=

∫
φ(||x||)P (dx) a.s. (2.3.10)

By (2.3.9), there exist an N1 that for n > N1, αn is in the neighborhood N1 =

(α0 − α0−β0
4

, α0 + α0−β0
4

) of α0. Also, by (2.3.10), we can also find a N2 such that for

n > N2, βn is in the neighborhood N2 = (β0 − α0−β0
4

, β0 + α0−β0
4

) of β0. Therefore,

when n > max(N1, N2), αn >
3α0+β0

4
> α0+β0

2
≥ α0+3β0

4
> βn.

By definition, Φ(A∗r, P̂n) ≤ Φ(A0, P̂n) holds for any set A0 with #{A0} ≤ k. Let

A0 = {0}, then as r →∞,

Φ(A0, P̂n)−
∫
φ(||x||)Pn(dx)→ 0 a.s. (2.3.11)

This holds along almost all sample paths.

If for n > max(N1, N2) (infinitely many n), B(M) does not contain any point of

A∗r, then

lim sup
r

Φ(A∗r, P̂n) = lim sup
r

∫
min
a∈A∗r

φ(||x− a||)P̂n(dx)

≥ lim sup
r

∫
K

min
a∈A∗r

φ(||x− a||)P̂n(dx)

≥ lim
r

∫
K

φ(|M − r0|)P̂n(dx)

= lim
n
φ(|M − r0|)Pn(K)
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= lim
n
αn

≥ 3α0 + β0

4

>
α0 + β0

2

≥ α0 + 3β0

4

≥ lim
n
βn

= lim sup
r

Φ(A0, P̂n)

The second to the third step is illustrated by the graph below:

Figure 2.1.: Ball K and Ball B(M)

The inequality above makes Φ(A∗r, P̂n) > Φ(A0, P̂n) happen infinitely often, which

conflicts with the definition that Φ(A∗r, P̂n) has the minimum value among all sets A

of k or fewer points. Thus, without loss of generality, we can assume that there is at

least one point of A∗r which is contained in B(M) almost surely.

Our second step is to show that all the points of A∗r are contained in the ball

B(5M) for r and n large enough, where B(5M) is the the ball centered at origin with
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radius 5M . In this step, the case k = 1 has already been proved. For k > 1, we will

prove by induction. Assume the result of the theorem holds for 1, 2, ..., k− 1 clusters,

we will show that the results also holds for k. If, not all the points of A∗r are contained

in ball B(5M) even for large r,, a contradiction will be shown as follows.

A second requirement for M is that, for ε > 0 which satisfies

ε+mk(P ) < mk−1(P ), (2.3.12)

M needs to be so large that

λ

∫
||x||≥2M

φ(||x||)P (dx) < ε, (2.3.13)

As we have proved in the first step, at least one point of A∗r is in B(M), let us name

this point a1. Then a1 ∈ A∗r ∩B(M). If we assume that A∗r is not included in the ball

B(5M),then there is at least one point of A∗r which is outside of the ball. If there is

only one point, let us name this point a2, then a2 ∈ A∗r/B(5M). The worse effect of

deleting the point a2 from A∗r is that all points that are in the cluster with centroid a2

are reassigned to the cluster with the centroid a1. These point are at least 2M from

the origin, otherwise these points would have been originally assigned to a1 instead

of a2. See figure (2.2).
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Figure 2.2.: A∗r and Ball B(5M)

If there are more than one centroids outside of B(5M), the problem is similar.

Then by deleting the centroid(s) outside B(5M), Φ(·, P̂n) will be increased by at most∫
||x||≥2M

φ(||x− a1||)P̂n(dx) ≤
∫
||x||≥2M

φ(||x||+ φ||a1||)P̂n(dx)

≤
∫
||x||≥2M

φ(2||x||)P̂n(dx)

≤ λ

∫
||x||≥2M

φ(||x||)P̂n(dx).

Assume B∗r = mk−1(P̂n), which is the optimal set for k − 1 clusters. Denote

Ã∗r = A∗r/B(5M), from which we can see Ã∗r is among the candidate sets of k − 1 or

fewer points that minimizes Φ(·, P̂n). Therefore,

Φ(Ã∗r, P̂n) ≥ Φ(B∗r , P̂n). (2.3.14)
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If there is a sub-sequence A∗ri of A∗r 6⊂ B(5M), then we have

0 ≤ lim
i

[
Φ(Ã∗ri , P̂n)− Φ(B∗r , P̂n)

]
≤ lim

r

[
Φ(A∗r, P̂n) + λ

∫
||x||≥2M

φ(||x||)P̂n(dx)− Φ(B∗r , P̂n)
]

≤ lim
r

[
Φ(A∗r, P̂n)− Φ(B∗r , P̂n)

]
+ λlim

r

[ ∫
||x||≥2M

φ(||x||)P̂n(dx)−
∫
||x||≥2M

φ(||x||)Pn(dx)
]

+ λ

∫
||x||≥2M

φ(||x||)P (dx)

≤ lim
r

[
Φ(A∗r, P̂n)− Φ(B∗r , P̂n)

]
+ λ

∫
||x||≥2M

φ(||x||)P (dx)

= lim
r

Φ(A, P̂n)− Φ(B̄, P ) + ε

for any fixed A with #{A} ≤ k.

(Add some explanation of the above equation here)

Let A = Ā(k), then the above inequality will indicate that

mk(P )−mk−1(P ) + ε ≥ 0 (2.3.15)

This contradicts with (2.3.12). Therefore, A∗r is included in B(5M).

In the third step of the first stage, assume M is so large that the class of sets

Ek := {A ⊂ B(5M) : #{A} ≤ k} contains Ā(k). Therefore the unique minimum of

function Φ(·, P ) is achieved inside B(5M) at Ā(k).

Since B(5M) is compact as we we assumed, Ek is also a compact set under the

topology induced by the Hausdorff metric. Pollard (1982) proved that the map A→

Φ(A,P ) is continuous on Ek, by definition and the uniform SLLN in Theorem 2.3.1,

we have

Φ(A∗r, P̂n)− Φ(An, Pn) ≤ Φ(An, P̂n)− Φ(An, Pn)→ 0, a.s.

On the other hand, we have

Φ(A∗r, P̂n)− Φ(An, Pn) = Φ(A∗r, P̂n)− Φ(A∗r, Pn) + Φ(A∗r, Pn)− Φ(An, Pn)

≥ Φ(A∗r, P̂n)− Φ(A∗r, Pn) + Φ(An, Pn)− Φ(An, Pn)
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= Φ(A∗r, P̂n)− Φ(A∗r, Pn)→ 0, a.s.

Therefore, Φ(A∗r, P̂n)− Φ(An, Pn)→ 0 almost surely as r →∞.

Now the rest is to prove that dH(A∗r, An) → 0, a.s.. Since Pollard has already

proved that dH(An, Ā) → 0, a.s., A sufficient condition is that dH(A∗r, Ā) → 0, a.s..

In fact, if we can prove this condition, then

dH(A∗r, An) ≤ dH(A∗r, Ā) + dH(An, Ā)→ 0 a.s.

Suppose dH(A∗r, Ā) does not converge to 0. Then either of the following cases will

happen: (1). There exists a subsequence A∗ri of A∗r that diverges; (2). There exists a

subsequence A∗ri of A∗r that converges to some fixed set C̄ that is not equal to Ā.

For the first case, the divergence of subsequence A∗ri will lead to the divergence of

A∗r. However, since A∗r is fully contained in the compact ball B(5M), it must converge:

a contradiction. For the second case, if A∗ri → C̄, a.s. then by the convergence result

of Φ(A∗r, P̂n) that we have proved,

Φ(A∗ri , P̂n)→ Φ(C̄, P ), a.s.

since

Φ(A∗ri , P̂n)→ Φ(Ā, P ), a.s.

we conclude

C̄ = Ā, a.s.

Thus we have obtained the contradiction. Therefore, the proof is now completed.

2.4 A Central Limit Theorem

2.4.1 Notation and Definitions

In this section, we will prove the central limit theorem for the optimal subsampling

k-means cluster centroids. We introduce now the notations.

Let Id denote the d× d matrix.
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Let X = (x1,x2, ...,xn)> be the full sample where xi ∈ Rd, i = 1, 2, ..., n, and

π = (π1, π2, ..., πn)> ∈ Rn be the sampling distribution supported on the data points

(assume π is known for now). Using π, let X∗ = (x∗1,x
∗
2, ...,x

∗
r)
> be the subsample

drawn with replacement from X and π∗ = (π∗1, π
∗
2, ..., π

∗
r)
> be the sampling probabil-

ities corresponding to each point of X∗.

Let µ be a kd-dimension vector consisting of the true but unknown centroids

µs ∈ Rd for s = 1, 2, ..., k. Let bn be the kd-dimension vector of optimal k-means

cluster centroids bns ∈ Rd for s = 1, 2, ..., k, based on sample X, and let b∗ be the

kd-dimension vector of optimal k-means cluster centroids b∗s ∈ Rd for s = 1, 2, ..., k,

based on the subsample.

In addition, let an be a sequence of centroids approaching µ, and let a∗ be a

sequence approaching bn.

Let Mn = {Mn1,Mn2, ...,Mnk} be the set of polyhedra associated with µ, let

Bn = {Bn1,Bn2, ...,Bnk} be the set of polyhedra associated with bn and let B∗ =

{B∗1,B∗2, ...,B∗k} be the set of polyhedra associated with b∗.

Let Gst denote the common face (possibly empty) of polyhedra Bns and Bnt, G
∗
st

denote the common face (possibly empty) of ployhedra B∗s and B∗t , s, t = 1, 2, ..., k,

s 6= t.

For x ∈ Rd and vector a = (a>1 , a
>
2 , ..., a

>
k )> ∈ Rkd, let A = {A1,A2, ...,Ak} be

the polyhedron associated with the centroid vector a. Define

φ(x, a) = min
1≤l≤k

||x− al||2.

We shall use the notation throughout.

Let P be a probability measure, Pn be the empirical measure obtained by putting

mass 1
n

on each data point of the full sample x1,x2, ...,xn. For a measurable set A,

Pn(A) =
n∑
i=1

1

n
1[xi ∈ A].

For function φ(x, a),

Pnφ(·, a) =
n∑
i=1

1

n
φ(xi, a).
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The associated empirical process is

Xn(·) =
√
n(Pn(·)− P (·)).

Let P̂n be the empirical measure by placing mass 1
rnπ∗1

, 1
rnπ∗2

,..., 1
rnπ∗r

on each point

of the subsample x∗1,x
∗
2, ...,x

∗
r. for a measurable set A,

P̂n(A) =
r∑
j=1

1

rnπ∗j
1[x∗j ∈ A].

For function φ(x, a),

P̂nφ(·, a) =
r∑
j=1

1

rnπ∗j
φ(x∗j , a).

The associated empirical process is

X̂n(·) =
√
r(P̂n(·)− Pn(·)).

In fact, P̂nφ(·, a) is a Hansen-Hurwitz estimate of Pnφ(·, a), and clearly it is an unbi-

ased estimator:

E∗(P̂nφ(·, a)) = Pnφ(·, a).

By definition, bn minimizes the within cluster sum of squares Wn(·), where

Wn(a) =
1

n

n∑
i=1

min
1≤l≤k

||xi − al||2.

b∗ minimizes the within cluster sum of squares Ŵn(·), and

Ŵn(a) =
1

r

r∑
j=1

1

nπ∗j
min

1≤l≤k
||x∗j − al||2.

Then the population within cluster sum of squares is

W (a) = Pφ(·, a) =

∫
A

φ(x, a)P (dx). (2.4.1)

For the full sample,

Wn(a) = Pnφ(·, a) = Pφ(·, a) +
1√
n
Xnφ(·, a). (2.4.2)

For the subsample,

Ŵn(a) = P̂nφ(·, a) = Pnφ(·, a) +
1√
r
X̂nφ(·, a). (2.4.3)
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Definition 2.4.1 (Quadratic mean differentiability) Let f(x, a) be defined on

Rd × Rkd, fix x ∈ Rd, f(x, a) is differentiable in quadratic mean at a if

E||f(x, a + h)− f(x, a)− ḟ(x, a)>h||2 = o(||h||2), as h→ 0

2.4.2 Theorems

By reformulating the Lemma A of Pollard(1982), we have

Lemma 2.4.1 Suppose P ||x||2 < ∞, and P gives zero measure to every hyperplane

in Rd. Then the map a→ φ(x, a) ∈ L2(P ) is differentiable in quadratic mean in the

sense

E||φ(x, a + h)− φ(x, a)− φ̇(x, a)>h||2 = o(||h||2).

And for every x ∈ Rd, the derivative of φ(x, a) at a is

φ̇(x, a) =
∂

∂a
φ(x, a) = (−2(x− a1)>1[x ∈ A1], ...,−2(x− ak)

>1[x ∈ Ak])
>.

Also, Hence, Eφ(x, a) is differentiable with derivative

γ(a) =
∂

∂a
Eφ(x, a) = E

∂

∂a
φ(x, a) = Eφ̇(x, a)

= (−2E(x− a1)>1[x ∈ A1], ...,−2E(x− ak)
>1[x ∈ Ak])

>.

Based on Lemma 2.4.1, we have

Proposition 2.4.1 Suppose the conditions in Lemma 2.4.1 hold, then it holds in

probability that Pnφ(·, a) is differentiable in quadratic mean with derivative Pnφ̇(·, a)

in the sense that the statement holds on an event whose probability (P ) converges to

1 as n goes to infinity, where

Pnφ̇(·, a) = (−2
n∑
i=1

(xi − a1)>1[xi ∈ A1], ...,−2
n∑
i=1

(xi − ak)
>1[xi ∈ Ak])

>.

Proof By Pollard(1982), for x ∈ intAj and small enough h,

φ(x, a + h) = ||x− aj − hj||2 = φ(x, a)− 2h>j (x− aj) + ||hj||2,
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Since the boundary of each Aj, j = 1, 2, ..., k has zero Pn measure, the function

φ(·, a + h) can be expanded into

φ(x, a + h) = φ(x, a) + h>φ̇(x, a) + ||h||R(x, a,h), for all x ∈ Rd (2.4.4)

where

R(x, a,h)→ 0 for almost all x as h→ 0.

Hence,

Pnφ(·, a + h) = Pnφ(·, a) + h>Pnφ̇(·, a) + Pn||h||R(x, a,h)

= Pnφ(·, a) + h>Pnφ̇(·, a) + ||h||PnR(·, a,h).

By simple algebra, we have

E||Pnφ(·, a + h)− Pnφ(·, a)− h>Pnφ̇(·, a)||2 = ||h||2E|| 1
n

n∑
i=1

R(xi, a,h)||2

≤ ||h||2 1

n

n∑
i=1

E||R(xi, a,h)||2

= ||h||2E||R(x, a,h)||2.

Since |R(x, a,h)| ∈ L2(P ) by Pollard(1982), andR(x, a,h)→ 0, a.s., we get E||R(x, a,h)||2 →

0 by Lebesgue’s Dominated Convergence Theorem. Thus

E||Pnφ(·, a + h)− Pnφ(·, a)− h>Pnφ̇(·, a)||2 = o(||h||2).

Therefore, Pnφ(·, a) is differentiable with derivative Pnφ̇(·, a) in probability.

Before giving the next Proposition, we introduce a few results first.

• Poissonization: suppose N ∼ Poisson(λ), and (xN1, xN2, ..., xNk|N = n) ∼

Mult(p1, p2, ..., pk, n). Then xN1, xN2, ..., xNk are independent with xNi ∼ Poisson(λπi);

• Packing number: Following Pollard (1990), we introduce the following. Define

the packing number D(ε, T0) for a subset T0 of a metric space as the largest m

such that there exist points t1, t2, ..., tm in T0 with d(ti, tj) < ε, for i 6= j;
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• Envelope function: an envelope F is a vector such that |fi| ≤ Fi for each fi ∈ F

and each i;

• Manageable: By Pollard (1990), we introduce the following. For each vector

α = (α1, ..., αn) of nonnegative constants, and each f ∈ Rn, define the pointwise

product α
⊙

f to be the vector in Rn with the ith coordinate αifi. Write α
⊙

F

as the set of all vectors α
⊙

f with f ∈ F.

Call a triangular array of processes {fni(w, t)} manageable w.r.t the envelops

Fn(w) if there exists a deterministic function λ such that

(i)
∫ 1

0

√
logλ(x)dx <∞,

(ii) D(x|α
⊙

Fn(w)|,α
⊙

Fn(w)) ≤ λ(x) for 0 < x ≤ 1, all w, all vectors α of

non-negative weights and all n.

Call a sequence of processes fi manageable if the array defined by fni = fi for

i ≤ n is manageable.

Proposition 2.4.2 Let {ân} be an arbitrary sequence of random vectors in Rkd that

satisfies ||ân − bn|| = op∗(1), given vector bn fixed. Assume conditions from Proposi-

tion (2.4.1) hold, and

(i)
∑n

i=1
2C2

n2rπ2
i
(1 + E||xi||2) = Op(1),

(ii)
maxi

ξRi
πi

(1+||xi||)√∑n
i=1

ξ2
ri
π2
i

(1+||xi||)2
= op(1), where R ∼ Poisson(r) and ξR1, ..., ξRn ∼ Poisson(1)

and are independent.

Then,

X̂nφ(·, ân) = X̂nφ(·,bn) + (ân − bn)>X̂nφ̇(·,bn) + α̂B (2.4.5)

where α̂B = op∗(||ân − bn||).

Proof Firstly, apply X̂n(·) to equation (2.4.4) with a = ân and h = hn := ân − bn

we have,

X̂nφ(·, ân)− X̂nφ(·,bn)− (ân − bn)>X̂nφ̇(·,bn)
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=||ân − bn||X̂nR(·,bn, ân − bn)

=||hn||X̂nR(·,bn,hn).

Now we need to prove that X̂nR(·,bn,hn) = op∗(1). By definition, X̂n(·) =
√
r(P̂n(·)−

Pn(·)), let R̄n = PnR(·,bn,hn) = 1
n

∑n
i=1R(xi,bn,hn), we have

X̂nR(·,bn,hn) =
√
r(P̂n − Pn)R(·,bn,hn)

=
√
r[

1

r

r∑
j=1

R(x∗j ,bn,hn)

nπ∗j
− R̄n]

=
√
r[

1

n

r∑
j=1

R(x∗j ,bn,hn)

rπ∗j
− R̄n]

d
=
√
r[

1

n

n∑
i=1

[wriR(xi,bn,hn)− R̄n]

where (wr1, wr2, ..., wrn) ∼ sMult(π, r), that is P (Wr1 = ξr1
rπ1
, ...,Wrn = ξrn

rπn
) =(

r
ξr1ξr2···ξrn

)
πξr11 · · · πξrnn , ξr1 + ξr2 + ...+ ξrn = r, ξr1 ≥ 0, ξr2 ≥ 0, ..., ξrn ≥ 0. Then we

can write

X̂nR(·,bn,hn) =
√
r

1

n

n∑
i=1

[
ξRiR(xi,bn,hn)

rπi
− R̄n]

=
n∑
i=1

[
ξRiR(xi,bn,hn)

n
√
rπi

−
√
rR̄n

n
]

By possionization, ξRi ∼ Poisson(1), i = 1, 2, ..., n. Therefore E(ξ2
Ri) = (E(ξRi))

2 +

V ar(ξRi) = 2.

Let fi(w, a) be a function of a for fixed xi ∈ Rd, i = 1, 2, ..., n, and Fn(w) =

{(f1(w, a), f2(w, a), ..., fn(w, a)) : a ∈ N(µ)}. Let Fn = (Fn1, Fn2, ..., Fnn)> be the

envelope function of (f1(w, a), ..., fn(w, a)), in which Fn will be specified later.

Pollard(1990) expanded the setting to cover triangular arrays of random processes,

{fni(w, t) : t ∈ T, 1 ≤ i ≤ n} for n = 1, 2, ...,

independent within each row. In our case

fni(w, a) =
ξRiR(xi,bn, a− bn)

n
√
rπi

.
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Pollard(1982) proved that for R(xi,µ, a − µ), the deterministic function λ(x) =

A(1/x)W for some constants A and W . Hence, R(x,µ, a − µ) is Euclidean process

and manageable with respect to the envelope function Fn. For bn and a in the

neighbourhood of µ, R(x,bn, a−bn) is also manageable (the packing number is also

bounded by λ(x) in the neighbourhood).

Next we specify the envelope function Fn from the inequality below. By Pol-

lard(1982), |R(x,bn,h)| ≤ C(1 + ||x||) for some constant C and h small enough, we

have

|fni(w, a)| = |ξRiR(xi,bn, a− bn)

n
√
rπi

|

=
ξRi

n
√
rπi
|R(xi,bn, a− bn)|

≤ ξRi
n
√
rπi

C(1 + ||xi||)

= Fni

Then we get,

P ||Fn||2 = E[
n∑
i=1

F 2
ni]

=
n∑
i=1

E[
ξ2
ri

n2rπ2
i

C2(1 + ||xi||)2]

=
n∑
i=1

C2E(ξ2
ri)

n2rπ2
i

E[(1 + ||xi||)2]

≤
n∑
i=1

2C2

n2rπ2
i

(1 + E||xi||2)

= Op(1)

Now we consider the function

Λn(
δn
||Fn||

) =

∫ δn
||Fn||

0

√
logλ(x)dx, δn = sup

Fn(w)

|f |,

where

δn
||Fn||

=
maxi |fni|√∑n

i=1 F
2
ni



36

=
maxi

ξRiR(xi,bn,a−bn)
n
√
rπi√∑n

i=1
ξ2ri

n2rπ2
i
C2(1 + ||xi||)2

≤
maxi

ξRi
n
√
rπi
C(1 + ||xi||)√∑n

i=1
ξ2ri

n2rπ2
i
C2(1 + ||xi||)2

= op(1).

Then Λn( δn
||Fn||) will converge to 0. Now we provide a sufficient condition for the last

step of the above equation to hold: E||x1||t <∞ for t > 2.

After truncation of the sampling probabilities πi,
1
πi

is bounded by some constant

d. So the last term is approximately equal to

ξRi√
n
(1 + ||xi||)√

1
n

∑n
i=1 ξ

2
ri(1 + ||xi||)2

.

For ∀ε > 0,

P (max
i
ξRi||xi|| > ε

√
n)

=1− P (ξRi||xi|| ≤ ε
√
n, i = 1, ..., n)

=1− [P (ξr1||x1|| ≤ ε
√
n)]n.

Denote ηn = [P (ξr1||x1|| ≤ ε
√
n)]n. Then,

| log ηn| = |n logP (ξr1||x1|| ≤ ε
√
n)|

≤ E(ξtr1||x1||t)
εtnt/2−1

=
Eξtr1E||x1||t

εtnt/2−1

Since ξr1 ∼ Poisson(1), Eξtr1 is bounded. Under the sufficient condition we specified

previously, | log ηn| = op(1) as n→∞. Therefore, the assumption (ii) hold.

Lastly, we applying the maximal inequality by Pollard(1990, section 7, inequality

(7.8)) for the case p = 2, there exists a constant C2 such that

P̂n sup
ân

|X̂nR(xi,bn, ân − bn)|2
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=P̂n sup
ân

|
n∑
i=1

fi(w, ân)−
√
rR̄n|2

≤(18C2)2P ||Fn||2Λn(δn/||Fn||2)

=op(1)

Proof complete.

Reformulating the Lemma C of Pollard(1982), we have

Lemma 2.4.2 Suppose P ||x||2 <∞, and P (·) has a continuous density f(·) w.r.t d

dimensional Lebesgue measure. Assume for i, j = 1, ..., k,

E{(x−m)(x−m)>1[x ∈ Gij]}

exists and is continuous in m ∈ Rd. Then, if a1, ..., ak are distinct, then Eφ(x, a) has

a second derivative Γ = ∂2

∂a>∂a
Eφ(x, a) made of d× d blocks:

Γij =

 2P (As)Id − 2
∑

α 6=i λ
−1
iα E{(x− ai)(x− ai)

>1[x ∈ Giα]} for i = j

−2
∑

i 6=j λ
−1
ij E{(x− ai)(x− aj)

>1[x ∈ Gij]} for i 6= j

where λij = ||ai − aj||.

By Lemma 2.4.2, we have the following proposition.

Proposition 2.4.3 Assume conditions in Lemma 2.4.2 hold, then Pnφ(·, a) = 1
n

∑n
i=1 φ(xi, a)

has second derivative Γn = ∂2

∂a>∂a
Pnφ(·, a) made of d× d blocks:

Γnij =

 2Pn(As)Id − 2
∑

α 6=i λ
−1
iα En{(x− ai)(x− ai)

>1[x ∈ G∗iα]} for i = j

−2
∑

i 6=j λ
−1
ij En{(x− ai)(x− aj)

>1[x ∈ G∗ij]} for i 6= j

where λij = ||ai − aj||, and

Pn(As) =
1

n

n∑
i=1

1[xi ∈ As].

This can be proved in the same way of Proposition (2.4.1) and Lemma 2.4.2.
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Proposition 2.4.4 Suppose bn minimizes Wn(·). Let {ân} be an arbitrary sequence

of random vectors in Rkd that satisfies ||ân − bn|| = op∗(1). Assume assumptions

in Lemma 2.4.2 hold, and assume Y∗j =
φ(x∗j ,bn)

nπ∗j
− Pnφ̇(·,bn), j = 1, 2, ..., r satisfies

Lindeberg’s condition: for ∀ε > 0,

n∑
i=1

πi||Yi||21[||Yi|| >
√
rε] = op(1), as r →∞.

Then,

Ŵn(ân) = Ŵn(bn)− 1√
r
Ẑ>n (ân − bn) +

1

2
(ân − bn)>Γn(ân − bn) + α∗D (2.4.6)

where α∗D = op∗(
λ∗√
r
)+op∗(λ

∗2), and λ∗ = ||ân−bn||. Also, Ṽ−1/2Ẑn has an asymptotic

distribution N(0, Ikd), in which Ṽ is given in the proof below.

Proof By Proposition (2.4.1) and Proposition (2.4.3), it holds in probability that,

Pnφ(·, a∗) =Pnφ(·,bn) + (a∗ − bn)>γ(bn)

+
1

2
(a∗ − bn)>Γn(a∗ − bn) + op∗(||a∗ − bn||2).

where both a∗ and bn are in the neighbourhood of µ. Since bn minimizes Wn(·), thus

the first derivative γ(bn) vanishes. Substitute a∗ with ân, we get

Pnφ(·, ân) = Pnφ(·,bn) +
1

2
(ân − bn)>Γn(ân − bn) + op∗(λ

∗2). (2.4.7)

By Proposition (2.4.2),

X̂nφ(·, ân) = X̂nφ(·,bn) + (ân − bn)>X̂nφ̇(·,bn) + op∗(||ân − bn||). (2.4.8)

Plugging equations (2.4.7) and (2.4.8) to (2.4.3), and rearranging the terms gives

Ŵn(ân) =Ŵn(bn) +
1√
r

(ân − bn)>X̂nφ̇(·,bn) + op∗(
λ∗√
r

)

+
1

2
(ân − bn)>Γn(ân − bn) + op∗(λ

∗2)

Now we need to show the asymptotic distribution of Ẑn = −X̂nφ̇(·, bn). By definition

of X̂n,

Ẑn = −
√
r[P̂nφ̇(·,bn)− Pnφ̇(·,bn)]
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= −
√
r[

1

r

r∑
j=1

1

nπ∗j
φ̇(x∗j ,bn)− Pnφ̇(·,bn)]

The expectation of Ẑn is

E∗(Ẑn) = −
√
r[

1

r

r∑
j=1

E∗(
1

nπ∗j
φ̇(x∗j ,bn))− Pnφ̇(·,bn)]

= −
√
r[

n∑
i=1

1

nπi
φ̇(xi,bn)πi − Pnφ̇(·,bn)]

= −
√
r[

1

n

n∑
i=1

φ̇(xi,bn)− Pnφ̇(·,bn)] = 0

The variance co-variance matrix of Ẑn is

Ṽ : = V ar∗(Ẑn)

= E∗(Ẑ⊗2
n )− [E∗(Ẑn)]⊗2

= rE∗([
1

r

r∑
j=1

1

nπ∗j
φ̇(x∗j ,bn)− Pnφ̇(·,bn)]⊗2)

= rE∗([
1

r

r∑
j=1

1

nπ∗j
φ̇(x∗j ,bn)][

1

r

r∑
j=1

1

nπ∗j
φ̇(x∗j ,bn)]>)

− 2rE∗(
1

r

r∑
j=1

1

nπ∗j
φ̇(x∗j ,bn)Pnφ̇(·,bn)>) + r[Pnφ̇(·,bn)]⊗2

= rE∗(
1

r2

r∑
i=1

r∑
j=1

1

nπ∗j
φ̇(x∗i ,bn)φ̇>(x∗j ,bn))

− 2r[Pnφ̇(·,bn)]⊗2 + r[Pnφ̇(·,bn)]⊗2

=
1

r

∑∑
i=j

E∗(
1

n2π∗2i
φ̇(x∗i ,bn)φ̇>(x∗i ,bn))

+
1

r

∑∑
i 6=j

E∗(
1

nπ∗j
φ̇(x∗i ,bn)φ̇>(x∗j ,bn))− r[Pnφ̇(·,bn)]⊗2

=
1

r

r

n2
E∗(

1

π∗2i
φ̇(x∗i ,bn)⊗2) +

1

r

r(r − 1)

n2
[E∗(

1

π∗i
φ̇(x∗i ,bn))]⊗2

− r[Pnφ̇(·,bn)]⊗2

=
1

n2

n∑
i=1

1

π2
i

φ̇(xi,bn)⊗2πi +
(r − 1)

n2
[Pnφ̇(·,bn)]⊗2
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− r[Pnφ̇(·,bn)]⊗2

=
1

n2

n∑
i=1

1

πi
φ̇(xi,bn)⊗2 +

r(n2 + 1)− 1

n2
[Pnφ̇(·,bn)]⊗2

Again, since bn minimizes Wn(·), thus the first derivative at bn, Pnφ̇(·,bn) vanishes.

Thus the (s, t)th block of matrix Ṽ is

1

n2

n∑
i=1

1

πi
φ̇(xi,bn)⊗2 =

4

n2

n∑
i=1

1[xi ∈ Bns]1[xi ∈ Bnt](xi − bns)(xi − bnt)
>

πi
. (2.4.9)

Since x can only belong to one cluster, we have 1[x ∈ Bns]1[x ∈ Bnt] = 0. Therefore

(2.4.9) reduces to

Ṽs =
4

n2

n∑
i=1

1[xi ∈ Bns](xi − bns)(xi − bnt)
>

πi
(2.4.10)

Since

Ẑn = −
√
r[

1

r

r∑
j=1

1

nπ∗j
φ̇(x∗j ,bn)− Pnφ̇(·,bn)]

= − 1√
r

r∑
j=1

[
1

nπ∗j
φ̇(x∗j ,bn)− Pnφ̇(·,bn)]

= − 1√
r
Y∗j ,

where Y∗1,Y
∗
2, ...,Y

∗
r are conditionally i.i.d.. Under Lindeberg’s condition, by central

limit theorem it holds in probability that Ẑn is asymptotically normal with mean zero

and variance co-variance matrix Ṽ.

Theorem 2.4.1 (Central Limit Theorem) Let bn be the vector of optimal k-means

cluster centroids for a random sample from a distribution P on Rd. Let b∗ be the vec-

tor of optimal k-means cluster centers from a subsample drawn using a sampling

distribution π1, ..., πn on the sample points. Suppose

(i) the vector µ which minimizes the population within cluster sum of squares W (·)

is unique up to relabeling of its coordinates;

(ii) Ep||x||2 <∞;
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(iii) P has continuous density f w.r.t. Lebesgue measure λ on Rd;

(iv) for ∀x ∈ Rd, there exists a dominating function g(x) such that f(x) ≤ g(||x||),

and that rdg(r) is integrable w.r.t. Lebesgue measure on R+;

(v) the second derivative matrix Γ = ∂2

∂a∂a>
Pφ(·, a) evaluated at a = µ is positive

definite;

(vi) Y∗j =
φ(x∗j ,bn)

nπ∗j
− Pnφ̇(·,bn), j = 1, 2, ..., r satisfies Lindeberg’s condition: for

∀ε > 0,
n∑
i=1

πi||Yi||21[||Yi|| >
√
rε] = op(1), as r →∞;

(vii)
∑n

i=1
2C2

n2rπ2
i
(1 + E||xi||2) = Op(1);

(viii)
maxi

ξRi
πi

(1+||xi||)√∑n
i=1

ξ2
ri
π2
i

(1+||xi||)2
= op(1), where R ∼ Poisson(r) and ξR1, ..., ξRn ∼ Poisson(1)

and are independent.

Then it holds in probability that,
√
rΓnṼ

−1/2(b∗ − bn) ⇒ N(0, Ikd), where Γn =

∂2

∂a∂a>
Pnφ(·, a) evaluated at a = bn, and Ṽ is the kd× kd diagonal matrix consists of

the block metrices

Ṽs =
4

n

n∑
j=1

(xj − bns)(xj − bns)
>1[xj ∈ Bns].

Here Bns is the set in Rd in which the points closer to bns than to other bnt for

s, t = 1, 2, ..., k

Proof Conditions (i) and (ii) are the conditions for the consistency of b∗. Pol-

lard(1982) proved that under conditions (iii) and (iv),
∫

(x−m)(x−m)>1[x ∈ Fst]dx

exists and depends on the location of the centroids continuously for each s, t = 1, 2..., k

and for each fixed m ∈ Rd. So the continuity assumption in Lemma 2.4.2 hold. Con-

dition (v) will be used later. Condition (vi) is the Lindeberg condition from Propo-

sition 2.4.4 to ensure the asymptotic normality of Z∗. Conditions (vii) and (viii) are

the moment assumption and poissonization assumption from Proposition 2.4.2. In
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fact, these two assumptions could be satisfied if xi’s have finite second moment, and

ξRi
πi

(1 + ||xi||) are stochastically bounded, i = 1, ..., n.

Let λ∗ = ||b∗ − bn||. By definition, b∗ minimizes Ŵn(·), thus,

Ŵn(b∗) ≤ Ŵn(bn),

Applying Proposition (2.4.4) with ân = b∗ we get,

Ŵn(b∗) = Ŵn(bn)− 1√
r
Ẑ>n (b∗ − bn) +

1

2
(b∗ − bn)>Γn(b∗ − bn) + α∗D

Therefore,

− 1√
r
Ẑ>n (b∗−bn) +

1

2
(b∗−bn)>Γn(b∗−bn) +α∗D ≤ Ŵn(b∗)− Ŵn(bn) ≤ 0 (2.4.11)

Since Γ is positive definite, by definition, for any vector y that ||y|| > 0, we have

y>Γy

||y||2
≥ λmin(Γ) > 0,

where λmin(Γ) is the minimum eigenvalue of Γ. By strong law of large number and

the consistency theorem (2.3.2), Γn converge to Γ. So there exist a number N that,

for n > N , y>Γny
||y||2 is in the neighbourhood of y>Γny

||y||2 , such that

y>Γny

||y||2
≥ λn =

λmin(Γ)

2
> 0,

Therefore, we can also get that ||Γ−1
n || is bounded by a positive value. By Proposition

(2.4.4), Ẑn converges in distribution, so Ẑn = Op∗(1). And α̂D = op∗(
λ∗√
r
) + op∗(λ

∗2)

Substitute the above terms in inequality (2.4.11),

op∗(
λ∗√
r

) + op∗(
λ∗√
r

) ≥ λmin(Γ)λ∗2, (2.4.12)

which forces

λ∗ = op∗(
1√
r

).

Hence α̂D = op∗(
1
r
). Set θ∗ =

√
r(b∗ − bn) and use simple algebra, we have

||Γ1/2
n θ∗ − Γ−1/2

n Ẑn||2 = (Γ1/2
n θ∗ − Γ−1/2

n Ẑn)>(Γ1/2
n θ∗ − Γ−1/2

n Ẑn)
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= (θ∗>Γ1/2>
n − Ẑ>nΓ−1/2>

n )(Γ1/2
n θ∗ − Γ−1/2

n Ẑn)

= θ∗>Γnθ
∗> − 2Ẑ>nθ

∗ + Ẑ>nΓ−1
n Ẑn.

Because ||Γ−1
n || is bounded, || 1√

r
Γ−1
n Ẑn||= 1√

r
||Γ−1

n || · ||Ẑn||= 1√
r
Op∗(1) = op∗(1). There-

fore we apply Proposition (2.4.4) to ân = bn + 1√
r
Γ−1
n Ẑn and get

Ŵn(bn +
1√
r

Γ−1
n Ẑn) = Ŵn(bn)− 1

r
Ẑ>nΓ−1

n Ẑn +
1

2r
Ẑ>nΓ−1>

n ΓnΓ−1
n Ẑn

+ op∗(
1

r
Ẑ>nΓ−>n Γ−1

n Ẑn)

= Ŵn(bn)− 1

2r
Ẑ>nΓ−1

n Ẑn + α̂D.

Now apply Proposition (2.4.4) again with ân = b∗, we have

Ŵn(b∗) = Ŵn(bn)− 1

r
Ẑ>nθ

∗ +
1

2
θ∗>Γnθ

∗ + α∗D

= Ŵn(bn)− 1

r
Ẑ>nθ

∗ +
1

2r
||Γ1/2

n θ∗ − Γ−1/2
n Ẑn||2 −

1

2n
Ẑ>nΓ−1

n Ẑn + α∗D

= Ŵn(bn +
1√
r

Γ−1
n Ẑn) +

1

2r
||Γ1/2

n θ∗ − Γ−1/2
n Ẑn||2 + α∗D.

By definition, Ŵn(b∗) ≤ Ŵn(bn + 1√
r
Γ−1
n Ẑn). Thus

1

2r
||Γ1/2

n θ∗ − Γ−1/2
n Ẑn||2 + α∗D ≤ 0,

which forces
1

2r
||Γ1/2

n θ∗ − Γ−1/2
n Ẑn||2 = α∗D = op∗(

1

r
)

or

||Γ1/2
n θ∗ − Γ−1/2

n Ẑn||2 = op∗(1),

which leads to
√
r(b∗ − bn) = θ∗ = Γ−1

n Ẑn + Γ−1/2
n op∗(1)

Thus,
√
rΓnṼ

−1/2(b∗ − bn) converges to normal distribution with mean zero and

variance co-variance kd× kd identity matrix when r → 0. This completes the proof.
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2.5 Optimal Sampling Probabilities

Since the variance matrix of b∗ is a function of π. We seek to minimize the

trace of the variance matrix Σ(π) = Γ−1
n Ṽ(π)Γ−1

n to find the optimal π such that

the subsample k-means cluster centroids b∗ have the minimum variance, therefore a

more sufficient estimator.

Theorem 2.5.1 In the subsampling k-means algorithm, the optimal sampling prob-

ability π is given by

πi ∝ ||Γ−1
n ψ(Bn(xi − bn)||, i = 1, 2, ..., n, (2.5.1)

where ψ(Bn(x− bn)) = (1[x ∈ Bn1](x− bn1)>, ...,1[x ∈ Bnk](x− bnk)
>)

Proof The variance matrix Σ(π) can be written in form of summation with function

ψ,

Σ(π) = Γ−1
n Ṽ(π)Γ−1

n =
4

n2

n∑
i=1

Γ−1
n ψ(Bn(xi − bn))ψ(Bn(xi − bn))>Γ−>n

πi
(2.5.2)

Then the trace of the variance matrix can be expressed as:

τ(π) = Tr(Σ(π)) =
4

n2

n∑
i=1

||Γ−1
n ψ(Bn(xi − bn))||2

πi
(2.5.3)

To find the optimal π that minimizes the summation above, we apply the Lagrange

multiplier method. Let λ be the Lagrange multiplier. Then in our case,

f(π1, π2, ..., πn) =
4

n2

n∑
i=1

||Γ−1
n ψ(Bn(xi − bn))||2

πi
,

g(π1, π2, ..., πn) = π1 + π2 + ...+ πn.

The constraint is π1 + π2 + ...+ πn = 1. So ∇f is a n dimension vector of

− 8

n2

||Γ−1
n ψ(Bn(xi − bn))||2

π2
i

, i = 1, 2, ...n

and

∇g = (1, 1, ..., 1).
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Now we need to solve the equations

− 8
n2

||Γ−1
n ψ(Bn(x1−bn))||2

π2
1

= λ

− 8
n2

||Γ−1
n ψ(Bn(x2−bn))||2

π2
2

= λ

...

− 8
n2

||Γ−1
n ψ(Bn(xn−bn))||2

π2
n

= λ

π1 + π2 + ...+ πn = 1

After some algebra, we get,

πi =
||Γ−1

n ψ(Bn(xi − bn))||∑n
i=1 ||Γ−1

n ψ(Bn(xi − bn))||
, i = 1, 2, ..., n (2.5.4)

To make it simple, we can write

πi ∝ ||Γ−1
n ψ(Bn(xi − bn))||, i = 1, 2, ..., n.

2.6 Optimal Scoring Method

Since bn is contained in the expression of π, to calculate sampling probabilities,

we need to computer bn first. However, bn is unknown and it is what we want to

estimate. Therefore we follow the A-optimal scoring method from Peng and Tan

(2018) to calculate sampling probability vector π. We will estimate bn by taking a

pre-subsample first. To be specific, take a pre-subsample X∗0 from the full sample

X with uniform sampling probabilities and small pre-subsample size r0. Then apply

k-means algorithm to X∗0 and get a pre-subsample estimate b∗0 of bn. Denote the set

of polyhedra associated with b∗0 as B∗0, then πi is calculated by

πi ∝ ||Γ−1
n ψ(B∗0(xi − b∗0))||, i = 1, 2, ..., n.

Then the rest is just to apply Algorithm 4: k-means clustering algorithm via A-

optimal subsampling. Using optimal scoring method, we have an updated version of

the k-means clustering via A-optimal subsampling algorithm below. Note that, when
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performing the algorithm, we need to truncate the sampling probabilities to satisfy

the assumptions. So we use the near A-optimal π,

πtri =

 π([np0]), ifπi ≤ π([np0])

πi, ifπi > π([np0]),

where p0 is the truncation proportion and π([np0]) is the [np0]th sorted πi, i = 1, 2, ..., n.

Algorithm 5: k-means Clustering Algorithm via Scoring

Method Optimal Subsampling

Input : Data Xn×d = (x1, ...,xn)>, xi ∈ Rd. Number of

clusters k, subsample size r and pre-sample size r0

in Z+;

Output: Centroid vector b∗, cluster label y;

1 pre-calculation

2 Take a pre-subsample with sample size r0,

3 Calculate pre-subsample k-means centroids vector b∗0,

4 Calculate sampling distribution

5 init

6 Initialize cluster centroids b
∗(0)
1 , ...,b

∗(0)
k randomly;

7 repeat

8 In iteration t, do the following steps:

9 For each x∗j , j = 1, 2, ..., r, set label

y
(t)
j := argmin1≤l≤k

1
nπ∗j
||x∗j − b

∗(t−1)
l ||;

10 For each l, set b
∗(t)
l :=

∑r
j=1 1{y

(t)
j =l}∗

x∗j
nπ∗
j∑r

j=1 1{y
(t)
j =l}

;

11 until Convergence criterion is met ;

12 Output values from last iteration tl: b∗ = (b
∗(tl)>
1 , ...,b

∗(tl)>
k )>

and label y = (y
(tl)
1 , ..., y

(tl)
n )>, where

y
(tl)
i = argmin1≤l≤k ||xi − b

∗(tl)
l ||2, i = 1, 2, ..., n

13 end
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3. BOOTSTRAPPING VIA A-OPTIMAL SUBSAMPLING

In this chapter, we will introduce bootstrapping and it’s generalization for massive

data via A-optimal subsampling. Theoretical results and algorithms are provided.

3.1 Bootstrap

Suppose data points x = (x1, x2, ..., xn)> are observed independently. Let θ(x)

be the statistic of interest. For example, θ(x) could be sample mean, median, bias,

or variance. To estimate the sampling distribution of θ(x), traditionally, statisticians

derive formulae and do statistical reference for those statistics. However, in some

cases when the form of θ(x) is too complicated, the explicit form of the distribution

of the statistics may be too difficult to derive, or may not even exist. In this case,

bootstrap, as a numerical method is widely applied.

To be specific, take a bootstrap sample x∗ = (x∗1, x
∗
2, ..., x

∗
n)> by sampling with

replacement from the original sample x, then repeat this sampling procedure B times.

Calculate the statistics θ(x∗) for each sample, then from θ(x∗1), θ(x∗2), ..., θ(x∗B) we can

get an empirical estimate of the distribution of θ(x). For example, to estimate the

sampling distribution of sample mean X̄.

3.1.1 Bootstrapping in linear Regression

Suppose in the linear regression model, y = (y1, y2, ..., yn)> is the response vector

and X = (x1,x2, ...,xn)> is the design matrix or covariate matrix with full rank p. yi

and xi satisfies

yi = β>xi + εi, i = 1, 2, ..., n. (3.1.1)
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where β is the regression coefficient parameter in Rp, ε1, ε2, ..., εn are random errors

with independent and identical distributions of mean 0 and positive finite variance

σ2.

The ordinary least square estimate of β is β̂ = (X>X)−1X>y, which is a common

estimate of regression coefficient in linear regression. Asymptotic result of β̂ is given

below:

V−1/2(β̂ − β) ∼ N (0, I), (3.1.2)

where

V = σ2(X>X)−1, (3.1.3)

and V can be approximated by the sandwitch estimator

V̂ = (X>X)−1X>Diag(ε̂2)X(X>X)−1. (3.1.4)

To estimate β in linear regression model and its sampling distribution using boot-

strapping, there are mainly two ways.

The first is paired bootstrap, sometimes also called empirical bootstrap. Take

a resample with replacement from the sample pairs (x1, y1), (x2, y2), ..., (xn, yn) with

probabilities P (xu∗j = xi, y
u∗
j = yi) = 1

n
, i = 1, 2, ..., n, one can get an i.i.d. bootstrap

sample

(xu∗1 , y
u∗
1 ), (xu∗2 , y

u∗
2 ), ..., (xu∗n , y

u∗
n ).

where u on the superscript denotes the ’uniform’ sampling. Repeatedly taking re-

samples B times, then B bootstrap samples

(Xu∗
1 ,y

u∗
1 ), (Xu∗

2 ,y
u∗
2 ), ..., (Xu∗

B ,y
u∗
B )

are obtained. For each bootstrap sample, calculate the OLSE β̂
u∗
b = (Xu∗>

b Xu∗
b )−1Xu∗>

b yu∗b ,

b = 1, 2, ..., B. Now we have a bootstrap sampling distribution

β̂
u∗
1 , β̂

u∗
2 , ..., β̂

u∗
B

of β̂.
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Freeman(1981) gave the following asymptotic properties for the estimate obtained

from paired bootstrap:

Vu∗−1/2(βu∗ − β̂) ∼ N (0, I) (3.1.5)

where

Vu∗ = (X>X)−1X>Diag(ε̂2)X(X>X)−1 +Op(
1

n
) (3.1.6)

Paired bootstrap may not work well when there are influential points in the ob-

servations, i.e., there exist xi’s that are far away from other observations. In the case

when these points are not selected in the bootstrap sample, the estimation of β could

be biased. Therefore, residual bootstrap, another way of bootstrapping the regression

models was proposed. The residuals of the linear model (3.1.1) can be denoted by

ei = yi − ŷi = yi − β̂
>
xi

In residual bootstrap, we take resample of the residuals e1, e2, ..., en with probabilities

P (ε̂∗j = ei) = 1
n
, i = 1, 2, ..., n and get

ε̂∗1, ε̂
∗
2, ..., ε̂

∗
n.

From this bootstrapped sample of residuals, we can construct the residual bootstrap

samples

(x∗i = xi, y
∗
i = β̂

>
xi + ε̂∗i ), i = 1, 2, ..., n.

For each sample, the residual bootstrap regression coefficient estimate can be calcu-

lated, and then we can use them to obtain the sampling distribution in a way similar

to that of the paired bootstrapping.

Based on residual bootstrap, the wild bootstrap for linear regression models was

proposed by Wu(1986). The difference between the two is that, the wild bootstrap

does not take resample from the residuals. Instead, the wild bootstrap multiplies each

residual with a normally distributed perturbation random variable on each residual

to get the bootstrap residual. After that, the sampling distribution of parameter

estimate is found in the same way.



50

In our research, we focus on the paired bootstrap (algorithm is given below) by

generalizing the sampling probabilities P (xu∗j = xi, y
u∗
j = yi) from uniform to non-

uniform. In this case, the influential points could be selected with larger probability.

In the future, we can generalize our work to the residual bootstrap and wild bootstrap.

Algorithm 6: Linear Regression Model Bootstrap-

ping Algorithm

Input : y ∈ Rn×1, X ∈ Rn×p. r, B ∈ Z+.

Output: β̂
∗ ∈ Rp×1

1 for b in 1 : B do

2 Draw r rows from (X,y) with replacement,

obtain the bootstrap sample (X∗,y∗);

3 For (X∗,y∗), calculate ordinary least squares

estimate β̂
∗
b = (X∗>X∗)−1X∗>y∗;

4 end

5 Now use β̂
∗

= 1
B

∑B
b=1 β̂

∗
b to estimate β̂ and use β̂

∗
b ,

b = 1, 2, ..., B to estimate the sampling distribution

of β̂.

6 end

3.1.2 Massive Data Bootstrapping

Bootstrapping is commonly used for small sample size. With the development of

internet, more and more data generated nowadays have large sample size n, or large

dimension of features p, or large product n × p. In this case, the matrix multiplica-

tion and inverse matrix calculation could be time consuming or even not possible for

regular computers. Methods like divide and conquer, subsampling, r out of n boot-

strap, bags of little bootstraps were proposed. Divide and conquer can use parallel

computing to save computing time, but it is hard to consider the association between

different computing clusters. Subsampling takes subsamples without replacement.

r out of n bootstrap takes bootstrap subsamples with replacement, and when r is
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smaller than n time is saved. Bags of little bootstrap was proposed to improve the

robustness. However, the methods above do not include the data information in

sampling probabilities.

Bootstrapping large samples have an advantage over bootstrapping small sam-

ples,As the sample size gets large, the higher order remainder terms in our theoretical

results could be negligible, thus we can apply theoretical results in bootstrap to save

time.

As mentioned before, uniform subsampling or bootstrapping is usually not the

best way of extracting important information as they treat all observations with

equal importance. Therefore, we calculate a sampling probability distribution before

taking the bootstrap sample in order to make better use of the more informative

observations hence improve efficiency of the estimation process.

3.2 Massive Data Bootstrapping via A-optimal Subsampling

In our work, we focus on improving the r out of n bootstrap, in which we choose

the bootstrap subsample size r << n, and calculate the optimal sampling probability

π which leads to an estimate with minimized MSE.

The idea can be considered as a weighted bootstrap with resample size r << n

and non-exchangeable data driven weights. To be specific, supposed a sampling

distribution π = (π1, π2, ..., πn)> on n data pairs (xi, yi), i = 1, 2, ..., n is calculated

before sampling. Take a bootstrap subsample of size r << n from the pairs

(x1, y1), (x2, y2), ..., (xn, yn)

with probability P (xo∗j = xi, y
o∗
j = yi) = πi, i = 1, 2, ..., n, one can get an i.i.d.

bootstrap sample

(xo∗1 , y
o∗
1 ), (xo∗2 , y

o∗
2 ), ..., (xo∗m , y

o∗
m ).

where o on the superscript denotes the ’optimal’ sampling. Also a diagonal matrix

W∗ = Diag( 1
nπ∗

) can be constructed, where π∗ is the probability vector corresponds
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to the weighted bootstrap subsample. Calculate the r out of n bootstrap subsample

weighted least square estimate β̂
o∗

= (Xo∗>
b W∗Xo∗

b )−1Xo∗>
b W∗yo∗b , which is a Hanson-

Hurwitz estimator of β̂. We use this estimator because the sample is drawn with

weight.

If πi = 1
n
, i = 1, 2, ..., n, the above becomes the regular r out of n bootstrap, and

β̂
o∗

becomes β̂
u∗

.

The algorithm is given below.

Algorithm 7: Massive Data Linear Regression Model

Bootstrapping via A-optimal Subsampling Algorithm

Input : y ∈ Rn×1, X ∈ Rn×p. r, B ∈ Z+.

Output: β̂
∗ ∈ Rp×1

1 init

2 Construct a sampling distribution π = (π1, ..., πn)

for the input data(X,y);

3 for b in 1 : B do

4 Draw r rows from (X,y) with replacement using

the sampling distribution of π ;

5 Formulate weight matrix W ∗ = Diag(1/rπ∗) of

the resample (X∗,y∗) with corresponding

probabilities π∗;

6 Calculate the resample weighted least squares

estimator β̂
∗
r,b = (X∗>W∗X∗)−1X∗>W∗y∗;

7 end

8 Now use β̂
∗

= 1
B

∑B
b=1 β̂

∗
b to estimate β̂.

9 end
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3.3 Asymptotic Theories

Firstly of all, the following conditions are introduced:

(M1) xi and εi, i = 1, 2, ..., n need to satisfy

1

n2

n∑
i=1

xix
>
i (ε2

i − σ2)

πn,i
= o(1), a.s.

(M21) There exists a p× p matrix M0 which is positive definite, such that

1

n

n∑
i=1

xix
>
i = M0 + o(1).

(M22) There exist constants b and B such that, the minimum eigenvalues and maxi-

mum eigenvalues of the matrix Ln(πn) := 1
n2

∑n
i=1

xix
>
i

πn,i
satisfy

0 < b ≤ λmin(Ln(πn))

and

λmin(Ln(πn)) ≤ B <∞

(M3) The double array ηn,i := xiεi/nπn,i, i = 1, 2, ..., n, n = 1, 2, ... satisfies the

Lindeberg condition: for every t > 0,

n∑
i=1

πn,i||ηn,i||21[||ηn,i||| ≥
√
rt] = o(1), a.s. r →∞.

(M4) πn,i and xi satisfy

1

n2

n∑
i=1

||xi||4

πn,i
, n = 1, 2, ....

The assumptions above are moment assumptions and Lindeberg condition from

Peng and Tan (2018), which are similar to the assumptions given by Zhu, et al.

(2015). Below we present three theorems from Peng and Tan (2018) about the limiting

property of β̂
∗
. Based on their theorems we give our theorem and proof at last.

Theorem 3.3.1 Expand β̂
∗

at the OLSE β̂, we have

β̂
∗

= β̂ +
1

r

n∑
j=1

(X>X)
−1x

∗
j ε̂
∗
j

π∗j
+ r∗, (3.3.1)
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where r∗ is given by

r∗ = r∗(ε̂∗) = ((X∗>W∗X∗)−1 − (X>X)−1)(X∗>W∗ε̂∗). (3.3.2)

Suppose (M1)-(M2) and (M4) hold. Then the remainder r∗ satisfies

r∗ = Op∗(
1

r
), a.s.

The empirical bias of β̂
∗

is

Bias∗(β̂
∗
) = E∗(β̂

∗
)− β̂ = −1

r

n∑
i=1

(X>X)−1hi,i
πi

xiε̂
∗
i + r1, (3.3.3)

where hi,i is the ith diagonal element of the hat matrix, i = 1, 2, ..., n. And r1 =

Op(
1

r3/2
). Moreover, the variance co-variance matrix of β̂

∗
can be expanded as

V∗ =
1

r
(X>X)−1X>Diag(

ε̂2

π
)X(X>X)−1 +Op(

1

r2
) (3.3.4)

Theorem (3.3.1) implies the following theorem,

Theorem 3.3.2 (Central Limit Theorem I) Assume(M1)-(M4) hold and for all

% > 0,

max
1≤i≤n

‖xi‖ = o(n1/2log−%(n)).

Assume there exists some ρ > 2 such that

E(|ε1|ρ) <∞.

Then β̂
∗

is asymptotically normal along almost all the sample path of the sequence

(x1, y1), (x2, y2), ...,

√
rV−1/2(π)(β̂

∗ − β̂)⇒ N(0, Ip), a.s. r →∞ (3.3.5)

where

V(π) = (X>X)−1X>Diag(
ε̂2

π
)X(X>X)−1 (3.3.6)

Based on the asymptotic normal distribution result, we can construct confidence of

β̂, which will be discussed in the next section. Now we give the optimal sample

probability in the following theorem.
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Theorem 3.3.3 πo given below is the optimal sampling probability vector that min-

imizes V(π),

πoi =
||(X>X)−1xi||∑n
j=1 ||(X>X)−1xj||

, i = 1, 2, ..., n

The optimal sampling probability π is obtained from the method of Lagrange mul-

tiplier. The above results are for (β̂
∗ − β) since β̂ is unknown and what we are

estimating in massive data linear regression model. However, the asymptotic results

for (β̂
∗ − β0) is also what we are interested in. Following Theorem (3.3.2), we focus

on inference on the true parameter β0 in massive data bootstrap and give the theorem

below.

Theorem 3.3.4 (Central Limit Theorem II) Assume the assumptions of Theo-

rem (3.3.2) hold, and r = o(n), then β̂
∗ − β0 is asymptotically normal,

√
rV−1/2(π)(β̂

∗ − β0)⇒ N(0, Ip), a.s. r →∞ (3.3.7)

where

V(π) = (X>X)−1X>Diag(
ε̂2

π
)X(X>X)−1 (3.3.8)

Proof We can rewrite β̂
∗ − β0 and get

√
r(β̂

∗ − β0) =
√
r(β̂

∗ − β̂ + β̂ − β0)

=
√
r(β̂

∗ − β̂) +
√
r(β̂ − β0)

=
√
r(β̂

∗ − β̂) +

√
r√
n

√
n(β̂ − β0)

Since
√
n(β̂−β0) converges in distribution, we have

√
n(β̂−β0) = Op(1). Apply the

assumption r = o(n),

√
r(β̂

∗ − β0) =
√
r(β̂

∗ − β̂) + o(1)⇒̇N(0, Ip), a.s. r →∞ and
r

n
→ 0.
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3.4 Massive Data Bootstrapping Confidence Interval

Interval estimate is as important as point estimate. These two types of statis-

tical estimates when combined together can be considered as a good guess of the

parameter. Efron(1993) concluded several ways of constructing bootstrap confidence

intervals. The simplest one is the bootstrap quantile interval. A more robust one is

the bootstrap-t confidence interval. We will modify the bootstrap-t confidence inter-

val and construct the Massive Data Bootstrap confidence interval. In multivariate

case, the confidence intervals become confidence region. In this section, we consider

confidence intervals for each component of the multiple linear regression coefficient

estimator. To not make the notations too complicated, without adding subscript, de-

note β̂ as one of the components of β̂, and denote β̂∗ as the corresponding component

of β̂
∗
.

The bootstrap-t confidence interval for β̂ is constructed as follows. Suppose we

get B bootstrap samples from the original data,

(Xu∗
1 ,y

u∗
1 ), (Xu∗

2 ,y
u∗
2 ), ..., (Xu∗

B ,y
u∗
B ).

For each bootstrap sample, we can calculate two terms, β̂u∗b and se∗b , where the former

is just the LSE from bootstrap sample (Xu∗
b ,y

u∗
b ), the latter is the bootstrap stan-

dard error of β̂u∗b , which can be obtained from the following second step bootstrap

procedure. Take B2 bootstrap samples from (Xu∗
b ,y

u∗
b ),

(Xu∗∗
1 ,yu∗∗1 ), (Xu∗∗

2 ,yu∗∗2 ), ..., (Xu∗∗
B2
,yu∗∗B2

),

calculate LSE β̂u∗∗b2
for each bootstrap sample (Xu∗∗

b2
,yu∗∗b2

), b2 = 1, 2, ..., B2. Then se∗b

can be obtained by

se∗b =

√√√√ 1

B2 − 1

B2∑
b2=1

(β̂∗∗b2 −
1

B2

B2∑
b2=1

β̂∗∗b2 )2.

Once β̂u∗b and se∗b are calculated, one can get the bootstrap-t distribution which

is an empirical distribution constructed by

F ∗B(x) =
1

B

B∑
b=1

1[t∗b < x]
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where

t∗b =
β̂u∗b − β̂
se∗b

.

And t∗α is such that

#{t∗ : t∗b ≤ t∗α, b = 1, 2, ..., B}/B = α. (3.4.1)

Now the bootstrap-t confidence interval for β0 with confidence level (1 − α) can be

constructed as

(β̂ − t∗1−α/2 ∗ ŝe, β̂ − t∗α/2 ∗ ŝe), (3.4.2)

where ŝe is calculated as

ŝe =

√√√√ 1

B − 1

B∑
b=1

(β̂∗b −
1

B

B∑
b=1

β̂∗b )
2.

As we can see from the bootstrap-t confidence interval, there are two stages of

bootstrap, the first stage has repetition B and second stage has repetition B2. This

is time consuming, hence intuitively not the best way in massive data. Compared

to traditional data, one advantage of massive data is that when we do subsampling

there is still large enough sample size for the asymptotic results to hold. Therefore,

we can apply the asymptotic results here to save time. Plus, in massive data case

our focus is different from that of traditional sample size case. While our final task is

still to estimate true parameter β0, due to β̂ being unknown, we are more interested

in estimating β̂ first. That is, we need to construct a (1− α) confidence interval for

β̂. When the conditions of theorem 3.3.4 is satisfied, the confidence interval will also

work for the true parameter value β0. The (1 − α) confidence for β̂ in massive data

bootstrap will be constructed as follows. For massive data sample

(x1, y1), (x2, y2), ..., (xn, yn),

draw a bootstrap sample with sampling probability π,

(x∗1, y
∗
1), (x∗2, y

∗
2), ..., (x∗m, y

∗
m)
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with sample size r << n. Calculate WLSE

β̂
∗

= (X∗>W∗X∗)−1X∗>W∗y∗

and corresponding theoretical variance co-variance matrix

V =

√
(X>X)−1X>Diag(

ε̂2

π
)X(X>X)−1, (3.4.3)

where X∗ = (x∗1,x
∗
2, ...,x

∗
m)>, y∗ = (y∗1, y

∗
2, ..., y

∗
m)>, ε̂ is the residual vector. Then

we can calculate ŝe by taking the square root of diagonal elements of the V for the

corresponding component of β̂
∗

and the confidence interval for the component β̂∗ is

constructed as

(β̂∗ − z1−α ∗ ŝe, β̂∗ − zα ∗ ŝe), (3.4.4)

When π = ( 1
n
, 1
n
, ..., 1

n
)>, (3.4.4) becomes

(β̂u∗ − z1−α ∗ ŝeu, β̂u∗ − zα ∗ ŝeu), (3.4.5)

when π is the optimal sampling probability, (3.4.4) becomes

(β̂o∗ − z1−α ∗ ŝeo, β̂o∗ − zα ∗ ŝeo). (3.4.6)
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4. SIMULATION STUDY

In this chapter, we perform numerical study of k-means clustering and bootstrapping

via optimal subsampling algorithms.

4.1 Simulation Study for Massive Data K-means Clustering

In this section, we compare the k-means clustering via uniform sampling and

optimal subsampling by presenting the MSE of both centroid vectors. Time ratio

is also presented in the tables and compared. The comparison is divided into two

sub-sections: equal cluster size case and unequal cluster size case.

4.1.1 Equal Cluster Size Case

In this case, data are simulated from isotropic Gaussian blobs using the make bulbs

function in Python3.7. Data are generated from different combinations of k and d.

k =3, 6, 9 and 12. d = 5, 15 and 25. Full sample size n = 1, 000, 000. Sub-

sample size r and presample size r0 vary in the following combinations: (r, r0) =

(0.2n, 0.05n), (0.1n, 0.05n), (0.05n, 0.05n), (0.05n, 0.01n) and (0.01n, 0.01n). Cluster

standard deviation σ is a hyper-parameter for generating the Gaussian blobs. The

data with smaller σ will have more separated blobs while the data with larger σ will

have blobs that cover each others’ area and are hard to be correctly clustered. In our

simulation study we choose three cases: σ=0.5, 1 and 1.5. The MSE’s of the centroid

vectors b∗ from uniform and A-optimal subsampling are compared, where

MSE(b∗) =
1

M

M∑
i=1

||b∗ − b̂||2,

M = 100 is the number of repetitions. Time ratio of the subsample calculation to full

sample calculation is also compared between the uniform and A-optimal subsampling.
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Table 4.1.: Massive Data k-means Clustering Comparison in Equal Cluster Size,

σ = 0.5, d = 5, n = 1, 000, 000

k d r
n

r0
n

MSE TimeRatio

Unif Opt Unif Opt

3 5 0.20 0.05 0.00005 0.00005 0.25641 0.49353

3 5 0.10 0.05 0.00011 0.00010 0.17685 0.41251

3 5 0.05 0.05 0.00023 0.00021 0.13964 0.37009

3 5 0.05 0.01 0.00024 0.00021 0.14133 0.34107

3 5 0.01 0.01 0.00113 0.00106 0.10856 0.29938

6 5 0.20 0.05 0.00022 0.00019 0.22602 0.39526

6 5 0.10 0.05 0.00044 0.00040 0.15848 0.33574

6 5 0.05 0.05 0.00092 0.00083 0.11685 0.28814

6 5 0.05 0.01 0.00084 0.00085 0.11441 0.25604

6 5 0.01 0.01 0.00446 0.00424 0.08808 0.23017

9 5 0.20 0.05 0.00051 0.00047 0.21124 0.34148

9 5 0.10 0.05 0.00102 0.00093 0.12270 0.24427

9 5 0.05 0.05 0.00200 0.00191 0.08908 0.21269

9 5 0.05 0.01 0.00205 0.00190 0.08834 0.18269

9 5 0.01 0.01 0.00992 0.00912 0.06075 0.15467

12 5 0.20 0.05 0.00088 0.00080 0.20503 0.32069

12 5 0.10 0.05 0.00175 0.00163 0.12245 0.23475

12 5 0.05 0.05 0.00355 0.00331 0.08240 0.19222

12 5 0.05 0.01 0.00373 0.00337 0.08285 0.16326

12 5 0.01 0.01 0.01765 0.01628 0.05465 0.13486
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Table 4.2.: Massive Data k-means Clustering Comparison in Equal Cluster Size,

σ = 1, d = 5, n = 1, 000, 000

k d r
n

r0
n

MSE TimeRatio

Unif Opt Unif Opt

3 5 0.20 0.05 0.00023 0.00019 0.25942 0.49726

3 5 0.10 0.05 0.00046 0.00040 0.17296 0.39689

3 5 0.05 0.05 0.00088 0.00075 0.13571 0.35885

3 5 0.05 0.01 0.00089 0.00079 0.13469 0.32504

3 5 0.01 0.01 0.00455 0.00409 0.10481 0.28930

6 5 0.20 0.05 0.00093 0.00081 0.23098 0.39426

6 5 0.10 0.05 0.00189 0.00172 0.14770 0.30858

6 5 0.05 0.05 0.00348 0.00317 0.10490 0.25794

6 5 0.05 0.01 0.00366 0.00317 0.09548 0.20451

6 5 0.01 0.01 0.01823 0.01586 0.07147 0.18571

9 5 0.20 0.05 0.00206 0.00187 0.21489 0.34099

9 5 0.10 0.05 0.00407 0.00350 0.12495 0.24472

9 5 0.05 0.05 0.00795 0.00756 0.08487 0.20057

9 5 0.05 0.01 0.00823 0.00749 0.08512 0.17156

9 5 0.01 0.01 0.03880 0.03587 0.05526 0.13809

12 5 0.20 0.05 0.00363 0.00324 0.20750 0.31979

12 5 0.10 0.05 0.00724 0.00629 0.11999 0.22693

12 5 0.05 0.05 0.01410 0.01280 0.07945 0.18324

12 5 0.05 0.01 0.01440 0.01314 0.08010 0.15357

12 5 0.01 0.01 0.07206 0.06560 0.04852 0.11975
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Table 4.3.: Massive Data k-means Clustering Comparison in Equal Cluster Size,

σ = 1.5, d = 5, n = 1, 000, 000

k d r
n

r0
n

MSE TimeRatio

Unif Opt Unif Opt

3 5 0.20 0.05 0.00050 0.00045 0.23199 0.42863

3 5 0.10 0.05 0.00104 0.00099 0.15493 0.34741

3 5 0.05 0.05 0.00193 0.00187 0.12020 0.30875

3 5 0.05 0.01 0.00208 0.00182 0.11931 0.27706

3 5 0.01 0.01 0.01122 0.00918 0.08802 0.24352

6 5 0.20 0.05 0.00197 0.00186 0.24717 0.39988

6 5 0.10 0.05 0.00389 0.00373 0.14464 0.28645

6 5 0.05 0.05 0.00811 0.00729 0.10148 0.24870

6 5 0.05 0.01 0.00821 0.00727 0.10059 0.20692

6 5 0.01 0.01 0.04078 0.03627 0.06435 0.16638

9 5 0.20 0.05 0.00450 0.00416 0.22010 0.33510

9 5 0.10 0.05 0.00945 0.00851 0.12684 0.23720

9 5 0.05 0.05 0.01816 0.01610 0.08059 0.18390

9 5 0.05 0.01 0.01876 0.01664 0.08328 0.15937

9 5 0.01 0.01 0.08771 0.08146 0.04878 0.12149

12 5 0.20 0.05 0.00821 0.00738 0.20443 0.31040

12 5 0.10 0.05 0.01626 0.01437 0.11698 0.21318

12 5 0.05 0.05 0.03279 0.02896 0.07172 0.16753

12 5 0.05 0.01 0.03240 0.02873 0.07285 0.13335

12 5 0.01 0.01 0.15746 0.14743 0.03995 0.09705
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Table 4.4.: Massive Data k-means Clustering Comparison in Equal Cluster Size,

σ = 0.5, d = 15, n = 1, 000, 000

k d r
n

r0
n

MSE TimeRatio

Unif Opt Unif Opt

3 15 0.20 0.05 0.00017 0.00016 0.24267 0.44565

3 15 0.10 0.05 0.00033 0.00032 0.15561 0.35308

3 15 0.05 0.05 0.00064 0.00066 0.11231 0.30970

3 15 0.05 0.01 0.00068 0.00067 0.10809 0.26705

3 15 0.01 0.01 0.00346 0.00316 0.07967 0.23895

6 15 0.20 0.05 0.00070 0.00067 0.23225 0.39124

6 15 0.10 0.05 0.00136 0.00130 0.13953 0.29295

6 15 0.05 0.05 0.00272 0.00267 0.09391 0.24520

6 15 0.05 0.01 0.00273 0.00264 0.09437 0.21199

6 15 0.01 0.01 0.01344 0.01312 0.05839 0.16653

9 15 0.20 0.05 0.00152 0.00142 0.21325 0.33815

9 15 0.10 0.05 0.00310 0.00292 0.12295 0.24360

9 15 0.05 0.05 0.00617 0.00583 0.08015 0.19754

9 15 0.05 0.01 0.00611 0.00574 0.07966 0.16700

9 15 0.01 0.01 0.03037 0.02927 0.04932 0.13383

12 15 0.20 0.05 0.00270 0.00265 0.20862 0.32126

12 15 0.10 0.05 0.00540 0.00521 0.11992 0.22704

12 15 0.05 0.05 0.01051 0.01037 0.07547 0.18078

12 15 0.05 0.01 0.01070 0.01050 0.07593 0.15151

12 15 0.01 0.01 0.05409 0.05181 0.04468 0.11748
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Table 4.5.: Massive Data k-means Clustering Comparison in Equal Cluster Size,

σ = 1, d = 15, n = 1, 000, 000

k d r
n

r0
n

MSE TimeRatio

Unif Opt Unif Opt

3 15 0.20 0.05 0.00068 0.00065 0.23936 0.44026

3 15 0.10 0.05 0.00138 0.00132 0.15409 0.34984

3 15 0.05 0.05 0.00266 0.00257 0.10733 0.29452

3 15 0.05 0.01 0.00283 0.00268 0.10849 0.26996

3 15 0.01 0.01 0.01309 0.01353 0.08090 0.24089

6 15 0.20 0.05 0.00272 0.00256 0.22930 0.38676

6 15 0.10 0.05 0.00560 0.00531 0.13774 0.28833

6 15 0.05 0.05 0.01079 0.01054 0.09615 0.24792

6 15 0.05 0.01 0.01051 0.01045 0.09351 0.21247

6 15 0.01 0.01 0.05350 0.05125 0.05998 0.17172

9 15 0.20 0.05 0.00604 0.00580 0.20876 0.33073

9 15 0.10 0.05 0.01208 0.01140 0.12815 0.25279

9 15 0.05 0.05 0.02402 0.02335 0.07952 0.19695

9 15 0.05 0.01 0.02431 0.02369 0.07886 0.16514

9 15 0.01 0.01 0.12025 0.11922 0.04880 0.13285

12 15 0.20 0.05 0.01070 0.01028 0.21273 0.32400

12 15 0.10 0.05 0.02114 0.02059 0.12257 0.23330

12 15 0.05 0.05 0.04315 0.04212 0.07629 0.18359

12 15 0.05 0.01 0.04267 0.04229 0.07801 0.15416

12 15 0.01 0.01 0.21314 0.20848 0.04658 0.12200
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Table 4.6.: Massive Data k-means Clustering Comparison in Equal Cluster Size,

σ = 1.5, d = 15, n = 1, 000, 000

k d r
n

r0
n

MSE TimeRatio

Unif Opt Unif Opt

3 15 0.20 0.05 0.00153 0.00145 0.23419 0.42452

3 15 0.10 0.05 0.00300 0.00286 0.13984 0.31451

3 15 0.05 0.05 0.00599 0.00613 0.10362 0.28566

3 15 0.05 0.01 0.00614 0.00596 0.10452 0.25502

3 15 0.01 0.01 0.03086 0.02905 0.07550 0.22583

6 15 0.20 0.05 0.00619 0.00595 0.23614 0.39261

6 15 0.10 0.05 0.01190 0.01137 0.14533 0.30129

6 15 0.05 0.05 0.02391 0.02355 0.09254 0.23771

6 15 0.05 0.01 0.02437 0.02328 0.09336 0.20834

6 15 0.01 0.01 0.12379 0.11791 0.06234 0.17748

9 15 0.20 0.05 0.01352 0.01311 0.22762 0.35315

9 15 0.10 0.05 0.02738 0.02592 0.13212 0.25861

9 15 0.05 0.05 0.05399 0.05233 0.08191 0.19979

9 15 0.05 0.01 0.05496 0.05258 0.08229 0.16782

9 15 0.01 0.01 0.27130 0.26505 0.04720 0.12794

12 15 0.20 0.05 0.02395 0.02356 0.23742 0.35552

12 15 0.10 0.05 0.04833 0.04692 0.13116 0.24607

12 15 0.05 0.05 0.09677 0.09300 0.08204 0.19513

12 15 0.05 0.01 0.09563 0.09463 0.08025 0.15286

12 15 0.01 0.01 0.47289 0.45823 0.04527 0.11815
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Table 4.7.: Massive Data k-means Clustering Comparison in Equal Cluster Size,

σ = 0.5, d = 25, n = 1, 000, 000

k d r
n

r0
n

MSE TimeRatio

Unif Opt Unif Opt

3 25 0.20 0.05 0.00028 0.00027 0.27032 0.45907

3 25 0.10 0.05 0.00056 0.00055 0.14559 0.32627

3 25 0.05 0.05 0.00113 0.00110 0.09778 0.27439

3 25 0.05 0.01 0.00112 0.00113 0.09732 0.24062

3 25 0.01 0.01 0.00570 0.00544 0.06556 0.20688

6 25 0.20 0.05 0.00113 0.00110 0.24696 0.39672

6 25 0.10 0.05 0.00222 0.00218 0.13215 0.27412

6 25 0.05 0.05 0.00448 0.00435 0.08473 0.22368

6 25 0.05 0.01 0.00448 0.00446 0.08656 0.19555

6 25 0.01 0.01 0.02274 0.02228 0.05350 0.16034

9 25 0.20 0.05 0.00253 0.00249 0.23328 0.35620

9 25 0.10 0.05 0.00501 0.00492 0.12077 0.23471

9 25 0.05 0.05 0.01010 0.00983 0.07465 0.18892

9 25 0.05 0.01 0.00995 0.00996 0.07640 0.16062

9 25 0.01 0.01 0.05149 0.04840 0.04411 0.12652

12 25 0.20 0.05 0.00449 0.00443 0.21276 0.31801

12 25 0.10 0.05 0.00906 0.00885 0.11880 0.22412

12 25 0.05 0.05 0.01790 0.01761 0.07193 0.17505

12 25 0.05 0.01 0.01796 0.01764 0.07147 0.14195

12 25 0.01 0.01 0.08969 0.08876 0.04057 0.11205
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Table 4.8.: Massive Data k-means Clustering Comparison in Equal Cluster Size,

σ = 1, d = 25, n = 1, 000, 000

k d r
n

r0
n

MSE TimeRatio

Unif Opt Unif Opt

3 25 0.20 0.05 0.00113 0.00110 0.25190 0.42810

3 25 0.10 0.05 0.00226 0.00221 0.14794 0.33192

3 25 0.05 0.05 0.00453 0.00442 0.09560 0.26957

3 25 0.05 0.01 0.00456 0.00443 0.09938 0.24529

3 25 0.01 0.01 0.02254 0.02144 0.06401 0.20214

6 25 0.20 0.05 0.00456 0.00441 0.23025 0.36803

6 25 0.10 0.05 0.00909 0.00883 0.12156 0.25337

6 25 0.05 0.05 0.01802 0.01743 0.08131 0.21435

6 25 0.05 0.01 0.01801 0.01786 0.08002 0.18127

6 25 0.01 0.01 0.08885 0.08622 0.05020 0.14973

9 25 0.20 0.05 0.00997 0.00981 0.23207 0.35312

9 25 0.10 0.05 0.02027 0.01957 0.12131 0.23860

9 25 0.05 0.05 0.04007 0.03972 0.07802 0.19605

9 25 0.05 0.01 0.04036 0.03996 0.07908 0.16444

9 25 0.01 0.01 0.20379 0.19925 0.04341 0.12487

12 25 0.20 0.05 0.01792 0.01760 0.21798 0.32774

12 25 0.10 0.05 0.03581 0.03525 0.11659 0.21936

12 25 0.05 0.05 0.07183 0.06996 0.07383 0.17904

12 25 0.05 0.01 0.07175 0.07094 0.07346 0.14464

12 25 0.01 0.01 0.35684 0.35129 0.03948 0.10918
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Table 4.9.: Massive Data k-means Clustering Comparison in Equal Cluster Size,

σ = 1.5, d = 25, n = 1, 000, 000

k d r
n

r0
n

MSE TimeRatio

Unif Opt Unif Opt

3 25 0.20 0.05 0.00255 0.00237 0.26990 0.45634

3 25 0.10 0.05 0.00522 0.00493 0.14820 0.33126

3 25 0.05 0.05 0.01017 0.00993 0.09468 0.26511

3 25 0.05 0.01 0.01009 0.00990 0.09781 0.24004

3 25 0.01 0.01 0.05162 0.05014 0.06338 0.20078

6 25 0.20 0.05 0.01010 0.00988 0.25985 0.40296

6 25 0.10 0.05 0.02007 0.01957 0.13630 0.27932

6 25 0.05 0.05 0.04019 0.03901 0.08768 0.22898

6 25 0.05 0.01 0.04029 0.03884 0.08858 0.19373

6 25 0.01 0.01 0.20096 0.19758 0.05197 0.15622

9 25 0.20 0.05 0.02249 0.02244 0.23920 0.36171

9 25 0.10 0.05 0.04571 0.04497 0.13096 0.24956

9 25 0.05 0.05 0.09091 0.08998 0.07992 0.19630

9 25 0.05 0.01 0.09065 0.09000 0.07891 0.16019

9 25 0.01 0.01 0.44923 0.44654 0.04336 0.12251

12 25 0.20 0.05 0.04071 0.03949 0.22706 0.33770

12 25 0.10 0.05 0.08123 0.07890 0.12272 0.22351

12 25 0.05 0.05 0.16084 0.15739 0.07362 0.17516

12 25 0.05 0.01 0.16235 0.15683 0.07039 0.13533

12 25 0.01 0.01 0.80132 0.78467 0.03627 0.09866

From the output table (4.1) to table (4.9), we can see that, for different k and com-

binations of r and r0, the MSE of the centroid estimator from A-optimal subsampling

is generally smaller than that of uniform subsampling. When comparing the time
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ratios, we can see the computation times of the A-optimal subsampling are longer

but acceptable. In conclusion, the A-optimal subsampling outperforms the uniform

subsampling in the k-means analysis with smaller MSE, while the computation times

are comparable.

4.1.2 Unequal Cluster Size Case

This is a more realistic case, for example, the clusters of different news topics may

contain different number of words. In this case, data are also simulated from isotropic

Gaussian blobs using the make bulbs function in Python3.7. Three different data are

generated. For purpose of better data visualization, we choose dimension d = 2 for

the three simulated data sets. Number of clusters k vary in 3, 4 and 5. Since the plot

of the data could be too massy if number of observations n is too large, we choose

the value n = 100, 000 and 1, 000, 000. Subsample size r and presample size r0 vary

in the following combinations: (r, r0) = (0.01n, 0.005n), (0.05n, 0.005n), (0.1n, 0.05n)

and (0.2n, 0.05n). The MSE’s of the centroid vectors b∗ from uniform and A-optimal

sampling are compared, where

MSE(b∗) =
1

M

M∑
i=1

||b∗ − b̂||2,

M = 100 is the number of repetitions. Time ratios of the subsample calculation

to full sample calculation are also compared between the uniform and A-optimal

subsampling.
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Table 4.10.: Massive Data k-means Clustering Comparison in Unequal Cluster Size,

k = 3, d = 2

n r r0

MSE TimeRatio

Unif Opt Unif Opt

100,000 1000 500 1.07833 0.80578 0.05269 0.10144

100,000 5000 500 0.90437 0.70793 0.08643 0.12825

100,000 10,000 5000 0.99572 0.62584 0.11707 0.18923

100,000 20,000 5000 0.87321 0.53229 0.20531 0.25758

1,000,000 10,000 5000 0.70149 0.26682 0.02878 0.07630

1,000,000 50,000 5000 0.41199 0.00012 0.06830 0.10084

1,000,000 100,000 50,000 0.14297 0.00005 0.12227 0.17950

1,000,000 200,000 50,000 0.26435 0.00004 0.21704 0.23332

Figure 4.1.: Massive Data k-means Clustering Visualization, k = 3, d = 2
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Table 4.11.: Massive Data k-means Clustering Comparison in Unequal Cluster Size,

k = 4, d = 2

n r r0

MSE TimeRatio

Unif Opt Unif Opt

100,000 1000 500 0.15489 0.10082 0.03000 0.05913

100,000 5000 500 0.03380 0.02936 0.05902 0.08457

100,000 10,000 5000 0.01704 0.00703 0.09185 0.14273

100,000 20,000 5000 0.00933 0.00457 0.21657 0.24049

1,000,000 10,000 5000 0.00129 0.00049 0.04286 0.11363

1,000,000 50,000 5000 0.00032 0.00011 0.09710 0.15758

1,000,000 100,000 50,000 0.00015 0.00006 0.16490 0.26183

1,000,000 200,000 50,000 0.00009 0.00003 0.30577 0.37170

Figure 4.2.: Massive Data k-means Clustering Visualization, k = 4, d = 2
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Table 4.12.: Massive Data k-means Clustering Comparison in Unequal Cluster Size,

k = 5, d = 2

n r r0

MSE TimeRatio

Unif Opt Unif Opt

100,000 1000 500 0.40595 0.07203 0.04740 0.09316

100,000 5000 500 0.14333 0.00122 0.08088 0.11970

100,000 10,000 5000 0.13703 0.00039 0.12454 0.18693

100,000 20,000 5000 0.24277 0.00018 0.26671 0.27604

1,000,000 10,000 5000 0.10143 0.00035 0.02288 0.05815

1,000,000 50,000 5000 0.08218 0.00006 0.05914 0.08066

1,000,000 100,000 50,000 0.10614 0.00003 0.11548 0.15951

1,000,000 200,000 50,000 0.12995 0.00002 0.21637 0.22689

Figure 4.3.: Massive Data k-means Clustering Visualization, k = 5, d = 2

From table (4.10), table (4.11) and table (4.12) we can see that that in the more

realistic situation of unequal cluster size, the MSE’s of the centroid vector from A-

optimal subsampling are always smaller than that of uniform subsampling. The dif-

ference becomes even larger when number of clusters increases from 3 to 5. Visualized

from figure (4.1), figure (4.2) and figure (4.3), the result is more clear: the k-means
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clusters from uniform subsampling deviate from full sample k-means clustering result

while A-optimal subsampling gives consistent result with full sample.

4.2 Simulation Study for Massive Data Bootstrapping

In this section, we perform the simulation study for massive data bootstrapping

via A-optimal subsampling. The coverage probabilities and lengths of confidence

intervals, the standard errors and running times are compared.

4.2.1 Confidence Interval Comparison

We focus on confidence interval constructions and compare lengths and coverage

probabilities of the confidence intervals while controlling the confidence level. To be

specific, set the nominal confidence level to 95%, we first compare the coverage prob-

abilities of both regular uniform bootstrapping method and the proposed A-optimal

bootstrapping method to the nominal confidence level. Only when the coverage prob-

abilities between the two methods are comparable and close to nominal, it makes sense

to further compare them in length of confidence intervals. If the coverage probabili-

ties of the confidence intervals from both methods are close to the nominal confidence

level, the shorter confidence interval will indicate a more efficient estimator. From

another perspective, the more efficient the estimator, the smaller the required sample

size for constructing confidence intervals of the same length.

Observations xi, i = 1, 2, ..., n are generated from three different p-dimension

multivariate distributions: GA(multivariate Gaussian distribution), LN(multivariate

Log-normal distribution) and T3(multivariate t distribution with 3 degrees of free-

dom). Error terms εi, i = 1, 2, ..., n are generated from four different distributions:

GA(Gaussian distribution), LN (Log-normal distribution), T3 (student t distribution

with 3 degrees of freedom) and LAP(Laplace distribution). All distributions men-

tioned above have the origin location parameter and unit valued scale parameter.

Sample size n vary in 100,000, 500,000 to 1,000,000. Dimension p vary in 10, 30 and
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50. The massive data bootstrap sample size m is from 1000, 5000 to 10,000. β0 is

a (p + 1) dimension vector, of which the first to ([p
2
] + 1)th components are 1, the

rest of the components are -1. The confidence intervals are constructed using Algo-

rithm 2 and 3, and formula (3.4.5) and (3.4.6), where the massive data bootstrap

uniform subsampling uses equal sampling probabilities and A-optimal subsampling

uses sampling probabilities from Theorem 3.3.3. And the tables are based on the sec-

ond components of β0 and β̂, denoted as β0 and β̂ (we keep the notation consistent

with Chapter 3).

Due to the large number of combinations from the above parameter values, we

divide the results into 12 tables, i.e., table (4.13) to table (4.24). In each table, the

meaning of the columns are:

• n: sample size of full data. Values: 100k, 500k, 1M;

• p: number of features of full data. Values: 10, 30, 50;

• m: massive data bootstrap sample size. Values: 1000, 5000, 10,000;

• CP β̂: coverage probabilities about β̂;

• CP β0:coverage probabilities about β0;

• len: length of confidence intervals;

• ŝe.th: theoretical standard error of β̂∗ from taking square root of the second

diagonal element of formula (3.4.3);

• ŝe.data: empirical standard error of β̂∗ from massive data bootstrap samples.

In each table, there are 27 rows, each row is a different scenario according to the

value of n, p and m. For every single scenario we compare massive data bootstrap

via uniform subsampling and that via A-optimal subsampling.

From table (4.13) to table (4.16), we can see that the coverage probabilities for β0

and β̂ are always close to 95% for massive data bootstrap with uniform subsampling.
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Under the A-optimal subsampling case, most of the coverage probabilities are close to

95% except for when m is too small compared to n (for example, n = 1, 000, 000,m =

1000, i.e. m = 0.001 ∗ n) or when the number of features p is very large (50). In

both cases the coverage probabilities for both β0 and β̂ could be slightly smaller than

the nominal level. There is a reason for this to happen: the A-optimal sampling

probability is obtained by minimizing the leading term of the asymptotic variance,

and our theory is based on fixed p. So in the case of large p, the higher order term

can not be ignored, and the variance could be underestimated. Our suggestion from

this simulation study is that, in order to get a good interval estimate of β0 and β̂ the

massive data bootstrap sample size m should be greater than 1% of the full sample

when the full sample size n is around one million, especially if p is large (for example,

50).
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Table 4.13.: Massive Data Bootstrapping Confidence Interval Comparison,

x ∼ GA, ε ∼ GA

n p m
CP β̂ CP β0 len ŝe.th ŝe.data

Unif Opt Unif Opt Unif Opt Unif Opt Unif Opt

100,000 10 1000 0.9486 0.9391 0.9477 0.9369 0.2073 0.1615 0.0529 0.0412 0.0531 0.0431

100,000 10 5000 0.9514 0.9479 0.9460 0.9369 0.0927 0.0725 0.0236 0.0185 0.0235 0.0187

100,000 10 10,000 0.9494 0.9473 0.9386 0.9316 0.0654 0.0512 0.0167 0.0131 0.0167 0.0132

100,000 30 1000 0.9461 0.9276 0.9449 0.9265 0.2076 0.1646 0.0530 0.0420 0.0538 0.0457

100,000 30 5000 0.9498 0.9451 0.9423 0.9319 0.0928 0.0737 0.0237 0.0188 0.0237 0.0191

100,000 30 10,000 0.9521 0.9484 0.9384 0.9290 0.0658 0.0521 0.0168 0.0133 0.0166 0.0134

100,000 50 1000 0.9460 0.9197 0.9449 0.9181 0.2083 0.1655 0.0531 0.0422 0.0539 0.0472

100,000 50 5000 0.9487 0.9441 0.9406 0.9325 0.0929 0.0741 0.0237 0.0189 0.0238 0.0194

100,000 50 10,000 0.9489 0.9448 0.9370 0.9255 0.0658 0.0522 0.0168 0.0133 0.0168 0.0136

500,000 10 1000 0.9499 0.9396 0.9503 0.9395 0.2068 0.1620 0.0528 0.0413 0.0529 0.0430

500,000 10 5000 0.9474 0.9488 0.9472 0.9472 0.0924 0.0725 0.0236 0.0185 0.0238 0.0187

500,000 10 10,000 0.9493 0.9473 0.9477 0.9441 0.0654 0.0512 0.0167 0.0131 0.0167 0.0131

500,000 30 1000 0.9454 0.9272 0.9457 0.9269 0.2065 0.1640 0.0527 0.0418 0.0535 0.0456

500,000 30 5000 0.9505 0.9432 0.9498 0.9411 0.0926 0.0734 0.0236 0.0187 0.0236 0.0192

500,000 30 10,000 0.9494 0.9471 0.9471 0.9420 0.0655 0.0519 0.0167 0.0132 0.0167 0.0134

500,000 50 1000 0.9442 0.9154 0.9440 0.9150 0.2068 0.1646 0.0528 0.0420 0.0539 0.0475

500,000 50 5000 0.9493 0.9403 0.9475 0.9390 0.0924 0.0736 0.0236 0.0188 0.0237 0.0194

500,000 50 10,000 0.9492 0.9452 0.9455 0.9395 0.0655 0.0520 0.0167 0.0133 0.0167 0.0135

1,000,000 10 1000 0.9473 0.9402 0.9469 0.9402 0.2066 0.1618 0.0527 0.0413 0.0532 0.0429

1,000,000 10 5000 0.9496 0.9470 0.9496 0.9459 0.0924 0.0723 0.0236 0.0185 0.0236 0.0187

1,000,000 10 10,000 0.9502 0.9484 0.9493 0.9471 0.0654 0.0511 0.0167 0.0130 0.0167 0.0131

1,000,000 30 1000 0.9453 0.9268 0.9452 0.9263 0.2065 0.1641 0.0527 0.0419 0.0538 0.0458

1,000,000 30 5000 0.9506 0.9447 0.9495 0.9433 0.0925 0.0734 0.0236 0.0187 0.0237 0.0192

1,000,000 30 10,000 0.9500 0.9478 0.9487 0.9469 0.0654 0.0519 0.0167 0.0132 0.0167 0.0133

1,000,000 50 1000 0.9419 0.9169 0.9420 0.9161 0.2068 0.1644 0.0528 0.0419 0.0543 0.0474

1,000,000 50 5000 0.9473 0.9410 0.9467 0.9410 0.0925 0.0736 0.0236 0.0188 0.0237 0.0194

1,000,000 50 10,000 0.9502 0.9460 0.9488 0.9435 0.0654 0.0520 0.0167 0.0133 0.0167 0.0135

From table (4.13) we can see with coverage probabilities close to the nominal

confidence level, the length of the A-optimal subsampling confidence interval of the

massive data bootstrap regression estimator is shorter than that of uniform subsam-
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pling. The standard error of the former is also smaller. Both methods’ empirical

standard errors are close to theoretical standard errors when m
p

is larger than 100.

Table 4.14.: Massive Data Bootstrapping Confidence Interval Comparison,

x ∼ GA, ε ∼ LN

n p m
CP β̂ CP β0 len ŝe.th ŝe.data

Unif Opt Unif Opt Unif Opt Unif Opt Unif Opt

100,000 10 1000 0.9488 0.9405 0.9472 0.9361 0.4475 0.2556 0.1142 0.0652 0.1146 0.0679

100,000 10 5000 0.9495 0.9475 0.9453 0.9320 0.2000 0.1146 0.0510 0.0292 0.0507 0.0296

100,000 10 10,000 0.9487 0.9486 0.9365 0.9125 0.1409 0.0811 0.0360 0.0207 0.0360 0.0208

100,000 30 1000 0.9450 0.9277 0.9442 0.9237 0.4465 0.2601 0.1139 0.0664 0.1156 0.0723

100,000 30 5000 0.9500 0.9455 0.9432 0.9221 0.1997 0.1166 0.0510 0.0298 0.0510 0.0304

100,000 30 10,000 0.9523 0.9477 0.9390 0.9132 0.1423 0.0825 0.0363 0.0210 0.0359 0.0212

100,000 50 1000 0.9437 0.9176 0.9426 0.9133 0.4499 0.2616 0.1148 0.0667 0.1174 0.0753

100,000 50 5000 0.9495 0.9445 0.9445 0.9299 0.2019 0.1174 0.0515 0.0300 0.0515 0.0307

100,000 50 10,000 0.9488 0.9443 0.9369 0.9090 0.1424 0.0827 0.0363 0.0211 0.0363 0.0215

500,000 10 1000 0.9487 0.9409 0.9483 0.9403 0.4471 0.2565 0.1141 0.0654 0.1144 0.0680

500,000 10 5000 0.9477 0.9479 0.9469 0.9443 0.1992 0.1147 0.0508 0.0293 0.0511 0.0294

500,000 10 10,000 0.9506 0.9498 0.9490 0.9439 0.1411 0.0809 0.0360 0.0207 0.0359 0.0206

500,000 30 1000 0.9471 0.9272 0.9471 0.9266 0.4468 0.2597 0.1140 0.0663 0.1155 0.0722

500,000 30 5000 0.9505 0.9437 0.9491 0.9392 0.2001 0.1161 0.0511 0.0296 0.0510 0.0303

500,000 30 10,000 0.9512 0.9455 0.9483 0.9392 0.1413 0.0821 0.0361 0.0210 0.0360 0.0212

500,000 50 1000 0.9439 0.9165 0.9437 0.9159 0.4476 0.2604 0.1142 0.0664 0.1170 0.0753

500,000 50 5000 0.9494 0.9418 0.9481 0.9396 0.1995 0.1165 0.0509 0.0297 0.0512 0.0307

500,000 50 10,000 0.9494 0.9458 0.9466 0.9370 0.1416 0.0823 0.0361 0.0210 0.0361 0.0214

1,000,000 10 1000 0.9476 0.9394 0.9473 0.9391 0.4475 0.2560 0.1142 0.0653 0.1149 0.0680

1,000,000 10 5000 0.9492 0.9463 0.9490 0.9449 0.1994 0.1145 0.0509 0.0292 0.0509 0.0295

1,000,000 10 10,000 0.9493 0.9490 0.9489 0.9452 0.1415 0.0809 0.0361 0.0207 0.0360 0.0208

1,000,000 30 1000 0.9446 0.9271 0.9446 0.9270 0.4463 0.2597 0.1139 0.0662 0.1157 0.0725

1,000,000 30 5000 0.9488 0.9444 0.9484 0.9419 0.1997 0.1161 0.0509 0.0296 0.0510 0.0303

1,000,000 30 10,000 0.9496 0.9471 0.9489 0.9454 0.1416 0.0821 0.0361 0.0210 0.0361 0.0212

1,000,000 50 1000 0.9435 0.9127 0.9433 0.9124 0.4477 0.2600 0.1142 0.0663 0.1178 0.0759

1,000,000 50 5000 0.9475 0.9421 0.9472 0.9402 0.2001 0.1166 0.0511 0.0297 0.0513 0.0308

1,000,000 50 10,000 0.9489 0.9442 0.9474 0.9415 0.1412 0.0823 0.0360 0.0210 0.0363 0.0215

The results and conclusions of table (4.14) are similar to those of table (4.13).
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Table 4.15.: Massive Data Bootstrapping Confidence Interval Comparison,

x ∼ GA, ε ∼ T3

n p m
CP β̂ CP β0 len ŝe.th ŝe.data

Unif Opt Unif Opt Unif Opt Unif Opt Unif Opt

100,000 10 1000 0.9490 0.9397 0.9484 0.9356 0.3557 0.2239 0.0907 0.0571 0.0914 0.0596

100,000 10 5000 0.9515 0.9470 0.9464 0.9328 0.1601 0.1001 0.0409 0.0255 0.0407 0.0259

100,000 10 10,000 0.9506 0.9504 0.9391 0.9237 0.1129 0.0709 0.0288 0.0181 0.0288 0.0181

100,000 30 1000 0.9458 0.9216 0.9452 0.9186 0.3584 0.2279 0.0914 0.0581 0.0932 0.0646

100,000 30 5000 0.9482 0.9439 0.9449 0.9341 0.1611 0.1016 0.0411 0.0259 0.0413 0.0266

100,000 30 10,000 0.9512 0.9480 0.9345 0.9079 0.1119 0.0720 0.0286 0.0184 0.0285 0.0185

100,000 50 1000 0.9455 0.9091 0.9450 0.9067 0.3601 0.2288 0.0919 0.0584 0.0935 0.0676

100,000 50 5000 0.9501 0.9392 0.9463 0.9264 0.1599 0.1022 0.0408 0.0261 0.0407 0.0272

100,000 50 10,000 0.9512 0.9465 0.9406 0.9174 0.1133 0.0724 0.0289 0.0185 0.0288 0.0188

500,000 10 1000 0.9484 0.9363 0.9480 0.9361 0.3556 0.2235 0.0907 0.0570 0.0915 0.0603

500,000 10 5000 0.9489 0.9467 0.9476 0.9430 0.1603 0.1000 0.0409 0.0255 0.0410 0.0259

500,000 10 10,000 0.9499 0.9474 0.9457 0.9387 0.1131 0.0707 0.0289 0.0180 0.0288 0.0182

500,000 30 1000 0.9466 0.9216 0.9465 0.9212 0.3576 0.2271 0.0912 0.0579 0.0923 0.0644

500,000 30 5000 0.9504 0.9412 0.9485 0.9391 0.1594 0.1015 0.0407 0.0259 0.0407 0.0267

500,000 30 10,000 0.9477 0.9456 0.9451 0.9378 0.1132 0.0718 0.0289 0.0183 0.0291 0.0187

500,000 50 1000 0.9441 0.9089 0.9439 0.9079 0.3598 0.2275 0.0918 0.0580 0.0947 0.0674

500,000 50 5000 0.9494 0.9390 0.9485 0.9366 0.1623 0.1018 0.0414 0.0260 0.0417 0.0271

500,000 50 10,000 0.9498 0.9452 0.9474 0.9390 0.1132 0.0720 0.0289 0.0184 0.0288 0.0189

1,000,000 10 1000 0.9491 0.9371 0.9488 0.9368 0.3573 0.2236 0.0912 0.0571 0.0916 0.0601

1,000,000 10 5000 0.9494 0.9455 0.9486 0.9432 0.1600 0.1000 0.0408 0.0255 0.0408 0.0259

1,000,000 10 10,000 0.9495 0.9489 0.9481 0.9445 0.1127 0.0707 0.0288 0.0180 0.0288 0.0182

1,000,000 30 1000 0.9457 0.9205 0.9460 0.9200 0.3567 0.2270 0.0910 0.0579 0.0924 0.0646

1,000,000 30 5000 0.9494 0.9422 0.9482 0.9409 0.1595 0.1014 0.0407 0.0259 0.0409 0.0267

1,000,000 30 10,000 0.9487 0.9458 0.9474 0.9425 0.1133 0.0717 0.0289 0.0183 0.0289 0.0187

1,000,000 50 1000 0.9440 0.9049 0.9440 0.9049 0.3581 0.2273 0.0914 0.0580 0.0945 0.0680

1,000,000 50 5000 0.9484 0.9383 0.9487 0.9373 0.1602 0.1017 0.0409 0.0260 0.0411 0.0271

1,000,000 50 10,000 0.9482 0.9435 0.9470 0.9414 0.1133 0.0719 0.0289 0.0183 0.0291 0.0189

In table (4.15) and (4.16), ε are from T3 and LAP distributions, the coverage

probabilities are slightly different from those of the previous tables but the trend and

conclusions are the same.
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Table 4.16.: Massive Data Bootstrapping Confidence Interval Comparison,

x ∼ GA, ε ∼ LAP

n p m
CP β̂ CP β0 len ŝe.th ŝe.data

Unif Opt Unif Opt Unif Opt Unif Opt Unif Opt

100,000 10 1000 0.9494 0.9361 0.9482 0.9336 0.2927 0.2030 0.0747 0.0518 0.0746 0.0548

100,000 10 5000 0.9506 0.9445 0.9464 0.9357 0.1311 0.0909 0.0334 0.0232 0.0334 0.0236

100,000 10 10,000 0.9494 0.9496 0.9398 0.9276 0.0927 0.0645 0.0237 0.0165 0.0236 0.0165

100,000 30 1000 0.9470 0.9200 0.9457 0.9164 0.2931 0.2066 0.0748 0.0527 0.0755 0.0590

100,000 30 5000 0.9505 0.9393 0.9448 0.9294 0.1314 0.0923 0.0335 0.0235 0.0334 0.0244

100,000 30 10,000 0.9517 0.9462 0.9435 0.9288 0.0930 0.0652 0.0237 0.0166 0.0236 0.0169

100,000 50 1000 0.9452 0.9070 0.9446 0.9045 0.2949 0.2083 0.0752 0.0531 0.0766 0.0620

100,000 50 5000 0.9501 0.9397 0.9469 0.9329 0.1315 0.0931 0.0336 0.0238 0.0334 0.0247

100,000 50 10,000 0.9514 0.9436 0.9424 0.9244 0.0932 0.0654 0.0238 0.0167 0.0237 0.0172

500,000 10 1000 0.9495 0.9363 0.9496 0.9361 0.2924 0.2028 0.0746 0.0517 0.0748 0.0545

500,000 10 5000 0.9504 0.9466 0.9491 0.9442 0.1309 0.0907 0.0334 0.0231 0.0333 0.0235

500,000 10 10,000 0.9495 0.9476 0.9471 0.9414 0.0924 0.0641 0.0236 0.0164 0.0236 0.0165

500,000 30 1000 0.9467 0.9181 0.9470 0.9177 0.2925 0.2056 0.0746 0.0524 0.0757 0.0590

500,000 30 5000 0.9483 0.9426 0.9470 0.9398 0.1307 0.0920 0.0333 0.0235 0.0335 0.0242

500,000 30 10,000 0.9494 0.9452 0.9464 0.9409 0.0924 0.0651 0.0236 0.0166 0.0237 0.0169

500,000 50 1000 0.9438 0.9038 0.9437 0.9024 0.2918 0.2062 0.0744 0.0526 0.0763 0.0621

500,000 50 5000 0.9484 0.9360 0.9470 0.9333 0.1309 0.0921 0.0334 0.0235 0.0336 0.0248

500,000 50 10,000 0.9523 0.9439 0.9498 0.9397 0.0925 0.0653 0.0236 0.0167 0.0235 0.0171

1,000,000 10 1000 0.9463 0.9351 0.9467 0.9348 0.2922 0.2027 0.0746 0.0517 0.0751 0.0548

1,000,000 10 5000 0.9489 0.9477 0.9484 0.9469 0.1306 0.0908 0.0333 0.0232 0.0333 0.0234

1,000,000 10 10,000 0.9490 0.9488 0.9477 0.9459 0.0924 0.0642 0.0236 0.0164 0.0237 0.0164

1,000,000 30 1000 0.9453 0.9189 0.9455 0.9190 0.2922 0.2057 0.0745 0.0525 0.0757 0.0591

1,000,000 30 5000 0.9494 0.9402 0.9493 0.9391 0.1306 0.0919 0.0333 0.0235 0.0333 0.0244

1,000,000 30 10,000 0.9490 0.9451 0.9480 0.9428 0.0924 0.0650 0.0236 0.0166 0.0236 0.0169

1,000,000 50 1000 0.9418 0.9051 0.9414 0.9046 0.2923 0.2061 0.0746 0.0526 0.0769 0.0619

1,000,000 50 5000 0.9494 0.9381 0.9491 0.9374 0.1308 0.0921 0.0334 0.0235 0.0334 0.0247

1,000,000 50 10,000 0.9506 0.9430 0.9495 0.9414 0.0925 0.0652 0.0236 0.0166 0.0236 0.0171

Table (4.17) to table (4.20) show that, when the design matrix is from multivariate

log normal distribution, even the coverage probabilities for β0 and β̂ based on uniform

subsampling could be under and not close to 95% when m
p

is less than 500. Under

the A-optimal subsampling case, most of the coverage probabilities are close to 95%
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except for when m is too small compared to n (for example, n = 1, 000, 000,m = 1000,

i.e. m = 0.001 ∗ n) or when the number of features p is too large (50), the coverage

probabilities for both β0 and β̂ could be smaller than the nominal level. This can be

explained by that, the A-optimal sampling carries more information from full sample,

hence the coverage probabilities could be closer to nominal confidence level if the

choice of m
p

is appropriate. Our suggestion from this simulation study is that, in

order to get a good interval estimate of β0 and β̂, the massive data bootstrap sample

size m should be greater than 5000, especially when p is large (for example, 50).

Specifically for table (4.17) the length of the A-optimal subsampling confidence

interval of the massive data bootstrap regression estimator is shorter than that of the

corresponding uniform subsampling method. The standard error of the former is also

smaller. Both methods’ empirical standard errors are close to theoretical standard

errors when m
p

is larger than 500.

The results and conclusions of table (4.18) are similar to those of table (4.17).

In table (4.19), when ε is from T3 distribution, the coverage probabilities are

slightly different from the previous tables. Larger sample size n and massive data

bootstrap subsample size m are needed to get nice result. However, the trend and

conclusions are still the same.

In table (4.20), when ε is from LAP distribution, in the case although the sample

size is large the choices of massive data bootstrap sample size m in our table are still

not large enough. Larger choices of m are needed.
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Table 4.17.: Massive Data Bootstrapping Confidence Interval Comparison,

x ∼ LN, ε ∼ GA

n p m
CP β̂ CP β0 len ŝe.th ŝe.data

Unif Opt Unif Opt Unif Opt Unif Opt Unif Opt

100,000 10 1000 0.9005 0.9301 0.8989 0.9257 0.1792 0.0769 0.0457 0.0196 0.0505 0.0197

100,000 10 5000 0.9345 0.9202 0.9293 0.8900 0.0799 0.0321 0.0204 0.0082 0.0197 0.0083

100,000 10 10,000 0.9357 0.9543 0.9275 0.9216 0.0535 0.0244 0.0137 0.0062 0.0133 0.0057

100,000 30 1000 0.9164 0.9127 0.9165 0.9107 0.1862 0.0995 0.0475 0.0254 0.0504 0.0265

100,000 30 5000 0.9393 0.9218 0.9343 0.9015 0.0804 0.0407 0.0205 0.0104 0.0197 0.0107

100,000 30 10,000 0.8977 0.9399 0.8837 0.8997 0.0542 0.0297 0.0138 0.0076 0.0137 0.0070

100,000 50 1000 0.8933 0.8727 0.8925 0.8704 0.1753 0.1014 0.0447 0.0259 0.0506 0.0314

100,000 50 5000 0.9281 0.9385 0.9230 0.9281 0.0783 0.0479 0.0200 0.0122 0.0196 0.0115

100,000 50 10,000 0.9373 0.9247 0.9237 0.8975 0.0591 0.0329 0.0151 0.0084 0.0137 0.0079

500,000 10 1000 0.8803 0.9216 0.8803 0.9206 0.1620 0.0718 0.0413 0.0183 0.0510 0.0196

500,000 10 5000 0.9238 0.9509 0.9230 0.9456 0.0749 0.0322 0.0191 0.0082 0.0198 0.0079

500,000 10 10,000 0.9281 0.9453 0.9259 0.9318 0.0508 0.0222 0.0130 0.0057 0.0136 0.0056

500,000 30 1000 0.8751 0.9035 0.8746 0.9030 0.1575 0.0882 0.0402 0.0225 0.0505 0.0260

500,000 30 5000 0.9191 0.9330 0.9178 0.9279 0.0726 0.0389 0.0185 0.0099 0.0199 0.0101

500,000 30 10,000 0.9433 0.9340 0.9418 0.9256 0.0544 0.0271 0.0139 0.0069 0.0137 0.0070

500,000 50 1000 0.8773 0.8710 0.8773 0.8711 0.1627 0.0943 0.0415 0.0241 0.0517 0.0310

500,000 50 5000 0.9275 0.9241 0.9266 0.9210 0.0746 0.0420 0.0190 0.0107 0.0200 0.0113

500,000 50 10,000 0.9323 0.9290 0.9297 0.9218 0.0521 0.0295 0.0133 0.0075 0.0136 0.0078

1,000,000 10 1000 0.8849 0.9123 0.8848 0.9117 0.1624 0.0684 0.0414 0.0175 0.0504 0.0196

1,000,000 10 5000 0.9280 0.9308 0.9278 0.9281 0.0729 0.0302 0.0186 0.0077 0.0197 0.0079

1,000,000 10 10,000 0.9263 0.9376 0.9248 0.9330 0.0496 0.0215 0.0127 0.0055 0.0135 0.0055

1,000,000 30 1000 0.8843 0.8977 0.8846 0.8973 0.1608 0.0863 0.0410 0.0220 0.0506 0.0263

1,000,000 30 5000 0.9206 0.9402 0.9203 0.9396 0.0718 0.0387 0.0183 0.0099 0.0200 0.0100

1,000,000 30 10,000 0.9367 0.9384 0.9356 0.9338 0.0525 0.0267 0.0134 0.0068 0.0136 0.0069

1,000,000 50 1000 0.8725 0.8852 0.8722 0.8849 0.1589 0.0953 0.0405 0.0243 0.0520 0.0302

1,000,000 50 5000 0.9233 0.9223 0.9228 0.9211 0.0729 0.0415 0.0186 0.0106 0.0200 0.0113

1,000,000 50 10,000 0.9388 0.9345 0.9375 0.9321 0.0518 0.0292 0.0132 0.0075 0.0135 0.0077
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Table 4.18.: Massive Data Bootstrapping Confidence Interval Comparison,

x ∼ LN, ε ∼ LN

n p m
CP β̂ CP β0 len ŝe.th ŝe.data

Unif Opt Unif Opt Unif Opt Unif Opt Unif Opt

100,000 10 1000 0.9076 0.9298 0.9073 0.9226 0.3863 0.1220 0.0986 0.0311 0.1106 0.0316

100,000 10 5000 0.9314 0.9219 0.9264 0.8871 0.1669 0.0508 0.0426 0.0130 0.0420 0.0130

100,000 10 10,000 0.9351 0.9561 0.9266 0.8987 0.1113 0.0386 0.0284 0.0098 0.0279 0.0089

100,000 30 1000 0.9208 0.9116 0.9200 0.9068 0.4054 0.1577 0.1034 0.0402 0.1093 0.0423

100,000 30 5000 0.9313 0.9239 0.9275 0.8895 0.1694 0.0643 0.0432 0.0164 0.0420 0.0168

100,000 30 10,000 0.8924 0.9393 0.8818 0.8665 0.1162 0.0470 0.0296 0.0120 0.0299 0.0112

100,000 50 1000 0.8934 0.8694 0.8920 0.8647 0.3610 0.1603 0.0921 0.0409 0.1085 0.0509

100,000 50 5000 0.9216 0.9383 0.9164 0.9200 0.1618 0.0759 0.0413 0.0194 0.0415 0.0183

100,000 50 10,000 0.9317 0.9268 0.9196 0.8826 0.1219 0.0521 0.0311 0.0133 0.0285 0.0125

500,000 10 1000 0.8934 0.9232 0.8926 0.9206 0.3472 0.1136 0.0886 0.0290 0.1085 0.0310

500,000 10 5000 0.9292 0.9494 0.9291 0.9430 0.1616 0.0509 0.0412 0.0130 0.0430 0.0125

500,000 10 10,000 0.9264 0.9446 0.9234 0.9227 0.1073 0.0351 0.0274 0.0090 0.0292 0.0089

500,000 30 1000 0.8855 0.8997 0.8855 0.8990 0.3366 0.1396 0.0859 0.0356 0.1085 0.0421

500,000 30 5000 0.9229 0.9315 0.9218 0.9236 0.1559 0.0615 0.0398 0.0157 0.0433 0.0160

500,000 30 10,000 0.9407 0.9316 0.9376 0.9181 0.1167 0.0429 0.0298 0.0109 0.0294 0.0112

500,000 50 1000 0.8877 0.8711 0.8871 0.8693 0.3504 0.1492 0.0894 0.0381 0.1127 0.0500

500,000 50 5000 0.9265 0.9248 0.9258 0.9188 0.1614 0.0666 0.0412 0.0170 0.0427 0.0179

500,000 50 10,000 0.9317 0.9284 0.9297 0.9158 0.1100 0.0466 0.0281 0.0119 0.0291 0.0125

1,000,000 10 1000 0.8929 0.9126 0.8928 0.9116 0.3394 0.1081 0.0866 0.0276 0.1072 0.0311

1,000,000 10 5000 0.9333 0.9322 0.9331 0.9246 0.1639 0.0478 0.0418 0.0122 0.0426 0.0126

1,000,000 10 10,000 0.9272 0.9383 0.9270 0.9307 0.1070 0.0340 0.0273 0.0087 0.0294 0.0088

1,000,000 30 1000 0.8978 0.8959 0.8977 0.8950 0.3442 0.1366 0.0878 0.0348 0.1096 0.0420

1,000,000 30 5000 0.9246 0.9371 0.9235 0.9328 0.1525 0.0612 0.0389 0.0156 0.0423 0.0160

1,000,000 30 10,000 0.9354 0.9393 0.9342 0.9315 0.1133 0.0423 0.0289 0.0108 0.0291 0.0110

1,000,000 50 1000 0.8794 0.8826 0.8786 0.8817 0.3383 0.1505 0.0863 0.0384 0.1114 0.0489

1,000,000 50 5000 0.9259 0.9230 0.9249 0.9205 0.1564 0.0656 0.0399 0.0167 0.0431 0.0179

1,000,000 50 10,000 0.9352 0.9366 0.9342 0.9313 0.1100 0.0462 0.0281 0.0118 0.0289 0.0122
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Table 4.19.: Massive Data Bootstrapping Confidence Interval Comparison,

x ∼ LN, ε ∼ T3

n p m
CP β̂ CP β0 len ŝe.th ŝe.data

Unif Opt Unif Opt Unif Opt Unif Opt Unif Opt

100,000 10 1000 0.9166 0.9152 0.9164 0.9094 0.3122 0.1051 0.0796 0.0268 0.0849 0.0278

100,000 10 5000 0.9151 0.9513 0.9091 0.9135 0.1277 0.0491 0.0326 0.0125 0.0336 0.0112

100,000 10 10,000 0.9066 0.9429 0.8962 0.8692 0.0882 0.0336 0.0225 0.0086 0.0233 0.0079

100,000 30 1000 0.8993 0.8838 0.8984 0.8790 0.3105 0.1293 0.0792 0.0330 0.0903 0.0396

100,000 30 5000 0.9330 0.9285 0.9276 0.9006 0.1403 0.0577 0.0358 0.0147 0.0330 0.0147

100,000 30 10,000 0.9392 0.9429 0.9223 0.8642 0.0928 0.0407 0.0237 0.0104 0.0225 0.0100

100,000 50 1000 0.8969 0.8820 0.8955 0.8769 0.2960 0.1453 0.0755 0.0371 0.0885 0.0446

100,000 50 5000 0.9431 0.9373 0.9397 0.9205 0.1387 0.0648 0.0354 0.0165 0.0334 0.0161

100,000 50 10,000 0.9366 0.9467 0.9290 0.9085 0.0988 0.0460 0.0252 0.0117 0.0241 0.0111

500,000 10 1000 0.8937 0.9109 0.8934 0.9092 0.2812 0.0974 0.0717 0.0248 0.0857 0.0278

500,000 10 5000 0.9239 0.9412 0.9226 0.9310 0.1237 0.0438 0.0316 0.0112 0.0344 0.0111

500,000 10 10,000 0.9377 0.9436 0.9353 0.9229 0.0902 0.0310 0.0230 0.0079 0.0232 0.0077

500,000 30 1000 0.8868 0.8723 0.8859 0.8710 0.2746 0.1166 0.0701 0.0297 0.0866 0.0383

500,000 30 5000 0.9238 0.9330 0.9231 0.9294 0.1235 0.0543 0.0315 0.0139 0.0338 0.0142

500,000 30 10,000 0.9401 0.9413 0.9377 0.9243 0.0915 0.0380 0.0233 0.0097 0.0234 0.0097

500,000 50 1000 0.8788 0.8501 0.8788 0.8492 0.2754 0.1288 0.0702 0.0329 0.0920 0.0451

500,000 50 5000 0.9302 0.9324 0.9299 0.9284 0.1280 0.0591 0.0327 0.0151 0.0344 0.0157

500,000 50 10,000 0.9257 0.9222 0.9242 0.9128 0.0872 0.0400 0.0222 0.0102 0.0227 0.0108

1,000,000 10 1000 0.8778 0.9124 0.8777 0.9110 0.2644 0.0952 0.0675 0.0243 0.0870 0.0274

1,000,000 10 5000 0.9230 0.9320 0.9224 0.9245 0.1228 0.0421 0.0313 0.0108 0.0340 0.0111

1,000,000 10 10,000 0.9361 0.9403 0.9337 0.9287 0.0881 0.0300 0.0225 0.0076 0.0236 0.0077

1,000,000 30 1000 0.8938 0.8696 0.8933 0.8693 0.2799 0.1145 0.0714 0.0292 0.0875 0.0381

1,000,000 30 5000 0.9264 0.9468 0.9263 0.9442 0.1266 0.0551 0.0323 0.0141 0.0345 0.0138

1,000,000 30 10,000 0.9342 0.9293 0.9331 0.9225 0.0876 0.0362 0.0224 0.0093 0.0233 0.0097

1,000,000 50 1000 0.8959 0.8550 0.8958 0.8539 0.2838 0.1271 0.0724 0.0324 0.0926 0.0441

1,000,000 50 5000 0.9266 0.9207 0.9262 0.9178 0.1251 0.0565 0.0319 0.0144 0.0344 0.0159

1,000,000 50 10,000 0.9204 0.9301 0.9194 0.9242 0.0874 0.0406 0.0223 0.0104 0.0234 0.0108
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Table 4.20.: Massive Data Bootstrapping Confidence Interval Comparison,

x ∼ LN, ε ∼ LAP

n p m
CP β̂ CP β0 len ŝe.th ŝe.data

Unif Opt Unif Opt Unif Opt Unif Opt Unif Opt

100,000 10 1000 0.8825 0.8932 0.8818 0.8876 0.2480 0.0931 0.0633 0.0238 0.0719 0.0261

100,000 10 5000 0.9438 0.9598 0.9410 0.9391 0.1172 0.0446 0.0299 0.0114 0.0282 0.0100

100,000 10 10,000 0.9429 0.9322 0.9328 0.8832 0.0773 0.0289 0.0197 0.0074 0.0189 0.0072

100,000 30 1000 0.9185 0.9015 0.9182 0.8974 0.2756 0.1221 0.0703 0.0312 0.0731 0.0351

100,000 30 5000 0.9333 0.9284 0.9269 0.9059 0.1100 0.0527 0.0281 0.0134 0.0278 0.0132

100,000 30 10,000 0.9393 0.9421 0.9322 0.9048 0.0784 0.0382 0.0200 0.0098 0.0192 0.0090

100,000 50 1000 0.8972 0.8854 0.8963 0.8819 0.2518 0.1334 0.0642 0.0340 0.0723 0.0408

100,000 50 5000 0.9426 0.8970 0.9389 0.8806 0.1145 0.0537 0.0292 0.0137 0.0279 0.0151

100,000 50 10,000 0.9289 0.9323 0.9208 0.9090 0.0767 0.0409 0.0196 0.0104 0.0192 0.0101

500,000 10 1000 0.8975 0.9056 0.8971 0.9048 0.2421 0.0876 0.0618 0.0224 0.0720 0.0254

500,000 10 5000 0.9327 0.9405 0.9310 0.9324 0.1063 0.0392 0.0271 0.0100 0.0279 0.0100

500,000 10 10,000 0.9353 0.9259 0.9337 0.9113 0.0735 0.0268 0.0188 0.0068 0.0191 0.0071

500,000 30 1000 0.8877 0.8760 0.8874 0.8750 0.2365 0.1073 0.0603 0.0274 0.0729 0.0350

500,000 30 5000 0.9131 0.9234 0.9124 0.9201 0.1027 0.0481 0.0262 0.0123 0.0281 0.0130

500,000 30 10,000 0.9366 0.9409 0.9345 0.9313 0.0748 0.0347 0.0191 0.0089 0.0192 0.0088

500,000 50 1000 0.8808 0.8576 0.8810 0.8564 0.2319 0.1175 0.0592 0.0300 0.0728 0.0405

500,000 50 5000 0.9183 0.9216 0.9177 0.9180 0.1026 0.0535 0.0262 0.0137 0.0282 0.0145

500,000 50 10,000 0.9293 0.9304 0.9258 0.9215 0.0721 0.0371 0.0184 0.0095 0.0191 0.0098

1,000,000 10 1000 0.8846 0.9000 0.8843 0.9001 0.2354 0.0846 0.0600 0.0216 0.0724 0.0251

1,000,000 10 5000 0.8963 0.9170 0.8964 0.9148 0.0969 0.0370 0.0247 0.0094 0.0281 0.0102

1,000,000 10 10,000 0.9159 0.9269 0.9141 0.9198 0.0695 0.0265 0.0177 0.0068 0.0192 0.0070

1,000,000 30 1000 0.8825 0.8700 0.8824 0.8697 0.2311 0.1061 0.0590 0.0271 0.0724 0.0348

1,000,000 30 5000 0.9235 0.9239 0.9234 0.9214 0.1024 0.0471 0.0261 0.0120 0.0281 0.0129

1,000,000 30 10,000 0.9324 0.9215 0.9315 0.9165 0.0735 0.0324 0.0187 0.0083 0.0193 0.0089

1,000,000 50 1000 0.8809 0.8575 0.8806 0.8566 0.2287 0.1159 0.0583 0.0296 0.0726 0.0401

1,000,000 50 5000 0.9210 0.9278 0.9206 0.9265 0.1015 0.0524 0.0259 0.0134 0.0281 0.0143

1,000,000 50 10,000 0.9384 0.9210 0.9380 0.9186 0.0736 0.0360 0.0188 0.0092 0.0192 0.0099

For table (4.21) to table (4.24), the design matrix is from T3 distribution which has

heavier tails compared to normal distribution. The results are similar to those of the

multivariate Gaussian distribution (i.e. tables (4.13)-(4.16)). We need an appropriate
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choice of m while taking into consideration values of n and p. Generally, if n or p

gets large then a larger m is needed in order to achieve the nominal confidence level.

Table 4.21.: Massive Data Bootstrapping Confidence Interval Comparison,

x ∼ T3, ε ∼ GA

n p m
CP β̂ CP β0 len ŝe.th ŝe.data

Unif Opt Unif Opt Unif Opt Unif Opt Unif Opt

100,000 10 1000 0.9379 0.9395 0.9363 0.9363 0.2127 0.1374 0.0543 0.0351 0.0564 0.0362

100,000 10 5000 0.9465 0.9493 0.9403 0.9356 0.0954 0.0608 0.0243 0.0155 0.0245 0.0153

100,000 10 10,000 0.9544 0.9520 0.9408 0.9166 0.0685 0.0426 0.0175 0.0109 0.0170 0.0107

100,000 30 1000 0.9366 0.9263 0.9358 0.9246 0.2204 0.1427 0.0562 0.0364 0.0590 0.0395

100,000 30 5000 0.9554 0.9515 0.9503 0.9398 0.1016 0.0646 0.0259 0.0165 0.0251 0.0162

100,000 30 10,000 0.9561 0.9536 0.9436 0.9244 0.0706 0.0445 0.0180 0.0114 0.0173 0.0111

100,000 50 1000 0.9313 0.9156 0.9306 0.9130 0.2256 0.1481 0.0576 0.0378 0.0616 0.0428

100,000 50 5000 0.9558 0.9568 0.9519 0.9479 0.1020 0.0665 0.0260 0.0170 0.0251 0.0164

100,000 50 10,000 0.9579 0.9590 0.9528 0.9461 0.0715 0.0469 0.0182 0.0120 0.0175 0.0114

500,000 10 1000 0.9340 0.9319 0.9338 0.9324 0.2110 0.1321 0.0538 0.0337 0.0568 0.0360

500,000 10 5000 0.9478 0.9487 0.9462 0.9461 0.0943 0.0593 0.0241 0.0151 0.0242 0.0152

500,000 10 10,000 0.9476 0.9522 0.9451 0.9456 0.0666 0.0419 0.0170 0.0107 0.0170 0.0105

500,000 30 1000 0.9258 0.9108 0.9252 0.9104 0.2139 0.1358 0.0546 0.0346 0.0597 0.0400

500,000 30 5000 0.9421 0.9426 0.9412 0.9394 0.0944 0.0605 0.0241 0.0154 0.0247 0.0159

500,000 30 10,000 0.9481 0.9476 0.9449 0.9415 0.0679 0.0432 0.0173 0.0110 0.0174 0.0111

500,000 50 1000 0.9162 0.8988 0.9161 0.8985 0.2149 0.1384 0.0548 0.0353 0.0619 0.0424

500,000 50 5000 0.9432 0.9404 0.9420 0.9376 0.0956 0.0614 0.0244 0.0157 0.0251 0.0163

500,000 50 10,000 0.9489 0.9479 0.9464 0.9424 0.0684 0.0440 0.0174 0.0112 0.0174 0.0113

1,000,000 10 1000 0.9293 0.9327 0.9293 0.9321 0.2070 0.1315 0.0528 0.0336 0.0569 0.0359

1,000,000 10 5000 0.9445 0.9464 0.9433 0.9445 0.0931 0.0587 0.0238 0.0150 0.0243 0.0152

1,000,000 10 10,000 0.9473 0.9463 0.9457 0.9440 0.0660 0.0413 0.0168 0.0105 0.0171 0.0106

1,000,000 30 1000 0.9242 0.9093 0.9242 0.9096 0.2115 0.1347 0.0540 0.0344 0.0595 0.0397

1,000,000 30 5000 0.9391 0.9406 0.9383 0.9393 0.0936 0.0600 0.0239 0.0153 0.0249 0.0159

1,000,000 30 10,000 0.9456 0.9462 0.9455 0.9434 0.0671 0.0428 0.0171 0.0109 0.0173 0.0111

1,000,000 50 1000 0.9129 0.8878 0.9130 0.8873 0.2142 0.1377 0.0547 0.0351 0.0624 0.0433

1,000,000 50 5000 0.9404 0.9354 0.9406 0.9343 0.0950 0.0608 0.0242 0.0155 0.0251 0.0164

1,000,000 50 10,000 0.9477 0.9456 0.9462 0.9438 0.0683 0.0438 0.0174 0.0112 0.0176 0.0113
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Table 4.22.: Massive Data Bootstrapping Confidence Interval Comparison,

x ∼ T3, ε ∼ LN

n p m
CP β̂ CP β0 len ŝe.th ŝe.data

Unif Opt Unif Opt Unif Opt Unif Opt Unif Opt

100,000 10 1000 0.9377 0.9402 0.9367 0.9339 0.4647 0.2175 0.1186 0.0555 0.1215 0.0570

100,000 10 5000 0.9451 0.9497 0.9395 0.9256 0.2062 0.0963 0.0526 0.0246 0.0530 0.0242

100,000 10 10,000 0.9529 0.9498 0.9430 0.8993 0.1472 0.0675 0.0376 0.0172 0.0365 0.0169

100,000 30 1000 0.9364 0.9259 0.9345 0.9200 0.4826 0.2260 0.1231 0.0577 0.1290 0.0630

100,000 30 5000 0.9533 0.9498 0.9482 0.9263 0.2183 0.1024 0.0557 0.0261 0.0542 0.0258

100,000 30 10,000 0.9541 0.9510 0.9450 0.9026 0.1543 0.0705 0.0394 0.0180 0.0379 0.0177

100,000 50 1000 0.9316 0.9131 0.9307 0.9072 0.4853 0.2342 0.1238 0.0598 0.1327 0.0683

100,000 50 5000 0.9524 0.9545 0.9480 0.9350 0.2173 0.1053 0.0554 0.0269 0.0541 0.0262

100,000 50 10,000 0.9575 0.9612 0.9503 0.9263 0.1534 0.0742 0.0391 0.0189 0.0376 0.0179

500,000 10 1000 0.9328 0.9313 0.9327 0.9304 0.4526 0.2092 0.1155 0.0534 0.1222 0.0571

500,000 10 5000 0.9454 0.9486 0.9447 0.9447 0.2024 0.0939 0.0516 0.0240 0.0523 0.0240

500,000 10 10,000 0.9481 0.9540 0.9450 0.9391 0.1471 0.0663 0.0375 0.0169 0.0367 0.0166

500,000 30 1000 0.9262 0.9102 0.9262 0.9089 0.4602 0.2148 0.1174 0.0548 0.1284 0.0631

500,000 30 5000 0.9434 0.9440 0.9418 0.9391 0.2040 0.0958 0.0520 0.0244 0.0533 0.0251

500,000 30 10,000 0.9478 0.9472 0.9455 0.9362 0.1465 0.0683 0.0374 0.0174 0.0375 0.0175

500,000 50 1000 0.9187 0.8931 0.9181 0.8921 0.4646 0.2191 0.1185 0.0559 0.1339 0.0679

500,000 50 5000 0.9408 0.9394 0.9409 0.9367 0.2050 0.0972 0.0523 0.0248 0.0540 0.0259

500,000 50 10,000 0.9473 0.9509 0.9451 0.9424 0.1479 0.0697 0.0377 0.0178 0.0379 0.0177

1,000,000 10 1000 0.9299 0.9315 0.9297 0.9317 0.4435 0.2081 0.1131 0.0531 0.1220 0.0568

1,000,000 10 5000 0.9447 0.9474 0.9438 0.9436 0.2038 0.0929 0.0520 0.0237 0.0523 0.0239

1,000,000 10 10,000 0.9449 0.9474 0.9446 0.9431 0.1413 0.0653 0.0360 0.0167 0.0365 0.0168

1,000,000 30 1000 0.9231 0.9105 0.9232 0.9096 0.4559 0.2132 0.1163 0.0544 0.1291 0.0630

1,000,000 30 5000 0.9394 0.9403 0.9387 0.9381 0.2012 0.0949 0.0513 0.0242 0.0534 0.0251

1,000,000 30 10,000 0.9461 0.9486 0.9448 0.9434 0.1453 0.0678 0.0371 0.0173 0.0371 0.0174

1,000,000 50 1000 0.9132 0.8856 0.9131 0.8854 0.4611 0.2179 0.1176 0.0556 0.1355 0.0687

1,000,000 50 5000 0.9402 0.9373 0.9403 0.9338 0.2064 0.0963 0.0526 0.0246 0.0546 0.0258

1,000,000 50 10,000 0.9452 0.9460 0.9443 0.9413 0.1474 0.0694 0.0376 0.0177 0.0382 0.0179
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Table 4.23.: Massive Data Bootstrapping Confidence Interval Comparison,

x ∼ T3, ε ∼ T3

n p m
CP β̂ CP β0 len ŝe.th ŝe.data

Unif Opt Unif Opt Unif Opt Unif Opt Unif Opt

100,000 10 1000 0.9403 0.9351 0.9394 0.9298 0.3751 0.1884 0.0957 0.0481 0.0991 0.0507

100,000 10 5000 0.9486 0.9499 0.9413 0.9219 0.1631 0.0835 0.0416 0.0213 0.0414 0.0211

100,000 10 10,000 0.9509 0.9532 0.9422 0.9154 0.1178 0.0600 0.0301 0.0153 0.0295 0.0149

100,000 30 1000 0.9375 0.9114 0.9367 0.9063 0.3829 0.1950 0.0977 0.0498 0.1016 0.0570

100,000 30 5000 0.9501 0.9521 0.9449 0.9298 0.1699 0.0887 0.0434 0.0226 0.0428 0.0223

100,000 30 10,000 0.9556 0.9546 0.9450 0.9129 0.1188 0.0622 0.0303 0.0159 0.0294 0.0155

100,000 50 1000 0.9327 0.9043 0.9320 0.9003 0.3911 0.2035 0.0998 0.0519 0.1063 0.0611

100,000 50 5000 0.9527 0.9471 0.9472 0.9281 0.1745 0.0907 0.0445 0.0231 0.0436 0.0233

100,000 50 10,000 0.9575 0.9527 0.9496 0.9278 0.1228 0.0639 0.0313 0.0163 0.0300 0.0159

500,000 10 1000 0.9336 0.9298 0.9331 0.9290 0.3576 0.1820 0.0912 0.0464 0.0974 0.0502

500,000 10 5000 0.9475 0.9447 0.9468 0.9407 0.1636 0.0811 0.0417 0.0207 0.0417 0.0210

500,000 10 10,000 0.9439 0.9473 0.9416 0.9401 0.1144 0.0573 0.0292 0.0146 0.0296 0.0148

500,000 30 1000 0.9281 0.9024 0.9282 0.9015 0.3674 0.1874 0.0937 0.0478 0.1032 0.0566

500,000 30 5000 0.9442 0.9422 0.9434 0.9383 0.1642 0.0839 0.0419 0.0214 0.0426 0.0221

500,000 30 10,000 0.9451 0.9446 0.9443 0.9378 0.1159 0.0590 0.0296 0.0151 0.0300 0.0154

500,000 50 1000 0.9216 0.8841 0.9218 0.8830 0.3707 0.1909 0.0946 0.0487 0.1062 0.0607

500,000 50 5000 0.9433 0.9331 0.9423 0.9286 0.1678 0.0848 0.0428 0.0216 0.0439 0.0231

500,000 50 10,000 0.9483 0.9455 0.9444 0.9358 0.1176 0.0597 0.0300 0.0152 0.0300 0.0155

1,000,000 10 1000 0.9366 0.9261 0.9364 0.9259 0.3605 0.1805 0.0920 0.0460 0.0973 0.0503

1,000,000 10 5000 0.9440 0.9447 0.9435 0.9412 0.1602 0.0807 0.0409 0.0206 0.0417 0.0210

1,000,000 10 10,000 0.9468 0.9527 0.9455 0.9484 0.1150 0.0583 0.0293 0.0149 0.0296 0.0147

1,000,000 30 1000 0.9257 0.9019 0.9255 0.9018 0.3660 0.1861 0.0934 0.0475 0.1039 0.0562

1,000,000 30 5000 0.9419 0.9371 0.9413 0.9353 0.1632 0.0834 0.0416 0.0213 0.0431 0.0223

1,000,000 30 10,000 0.9440 0.9469 0.9427 0.9406 0.1148 0.0590 0.0293 0.0151 0.0300 0.0152

1,000,000 50 1000 0.9197 0.8783 0.9197 0.8775 0.3850 0.1892 0.0982 0.0483 0.1064 0.0612

1,000,000 50 5000 0.9410 0.9356 0.9410 0.9332 0.1653 0.0845 0.0422 0.0216 0.0436 0.0228

1,000,000 50 10,000 0.9467 0.9431 0.9455 0.9376 0.1173 0.0596 0.0299 0.0152 0.0303 0.0156
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Table 4.24.: Massive Data Bootstrapping Confidence Interval Comparison,

x ∼ T3, ε ∼ LAP

n p m
CP β̂ CP β0 len ŝe.th ŝe.data

Unif Opt Unif Opt Unif Opt Unif Opt Unif Opt

100,000 10 1000 0.9395 0.9349 0.9380 0.9324 0.3026 0.1712 0.0772 0.0437 0.0797 0.0458

100,000 10 5000 0.9531 0.9480 0.9473 0.9270 0.1373 0.0757 0.0350 0.0193 0.0342 0.0192

100,000 10 10,000 0.9547 0.9530 0.9442 0.9212 0.0963 0.0538 0.0246 0.0137 0.0239 0.0134

100,000 30 1000 0.9353 0.9125 0.9343 0.9073 0.3136 0.1784 0.0800 0.0455 0.0841 0.0520

100,000 30 5000 0.9524 0.9481 0.9460 0.9290 0.1410 0.0798 0.0360 0.0204 0.0351 0.0204

100,000 30 10,000 0.9578 0.9550 0.9461 0.9200 0.1004 0.0568 0.0256 0.0145 0.0246 0.0141

100,000 50 1000 0.9318 0.8971 0.9309 0.8931 0.3191 0.1824 0.0814 0.0465 0.0870 0.0558

100,000 50 5000 0.9542 0.9468 0.9486 0.9312 0.1436 0.0825 0.0366 0.0211 0.0356 0.0212

100,000 50 10,000 0.9600 0.9576 0.9505 0.9304 0.1021 0.0588 0.0261 0.0150 0.0247 0.0144

500,000 10 1000 0.9378 0.9253 0.9376 0.9241 0.2981 0.1662 0.0760 0.0424 0.0795 0.0463

500,000 10 5000 0.9472 0.9443 0.9459 0.9405 0.1343 0.0742 0.0343 0.0189 0.0345 0.0193

500,000 10 10,000 0.9443 0.9433 0.9418 0.9369 0.0931 0.0520 0.0238 0.0133 0.0241 0.0135

500,000 30 1000 0.9243 0.9017 0.9247 0.9009 0.2988 0.1709 0.0762 0.0436 0.0837 0.0516

500,000 30 5000 0.9468 0.9410 0.9466 0.9376 0.1363 0.0767 0.0348 0.0196 0.0351 0.0202

500,000 30 10,000 0.9503 0.9487 0.9476 0.9416 0.0964 0.0544 0.0246 0.0139 0.0245 0.0139

500,000 50 1000 0.9167 0.8767 0.9165 0.8764 0.3029 0.1718 0.0773 0.0438 0.0869 0.0557

500,000 50 5000 0.9436 0.9370 0.9425 0.9322 0.1365 0.0771 0.0348 0.0197 0.0356 0.0208

500,000 50 10,000 0.9502 0.9437 0.9475 0.9337 0.0967 0.0548 0.0247 0.0140 0.0246 0.0143

1,000,000 10 1000 0.9340 0.9236 0.9339 0.9236 0.2948 0.1645 0.0752 0.0420 0.0798 0.0462

1,000,000 10 5000 0.9452 0.9447 0.9452 0.9429 0.1330 0.0735 0.0339 0.0187 0.0344 0.0192

1,000,000 10 10,000 0.9456 0.9472 0.9452 0.9450 0.0929 0.0519 0.0237 0.0132 0.0239 0.0134

1,000,000 30 1000 0.9276 0.8963 0.9274 0.8958 0.3008 0.1685 0.0767 0.0430 0.0838 0.0517

1,000,000 30 5000 0.9437 0.9382 0.9429 0.9373 0.1345 0.0758 0.0343 0.0193 0.0351 0.0202

1,000,000 30 10,000 0.9466 0.9458 0.9452 0.9419 0.0945 0.0535 0.0241 0.0137 0.0244 0.0138

1,000,000 50 1000 0.9168 0.8752 0.9165 0.8747 0.3004 0.1711 0.0766 0.0437 0.0867 0.0559

1,000,000 50 5000 0.9413 0.9330 0.9408 0.9326 0.1350 0.0762 0.0344 0.0195 0.0357 0.0209

1,000,000 50 10,000 0.9441 0.9423 0.9422 0.9379 0.0948 0.0540 0.0242 0.0138 0.0247 0.0143

The simulation results in this section support our theoretical findings, and show

that for massive data the proposed massive data bootstrapping via A-optimal sub-

sampling works better than uniform subsampling method.
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4.2.2 Running Time Comparison

Running time is compared and the results are shown in table (4.25). The choice

of n vary in 1,000,000, 2,000,000 and 3,000,000. The value of p varies among 10, 50,

100 and 200. The case with largest n× p is n = 3, 000, 000 and p = 200. In this case,

the size of design matrix is right under the limit of the memory of my office computer.

The massive data bootstrap sample size m vary in 0.01n, 0.05n to 0.1n. The full

sample running time and subsample running time are given in the table. As can be

seen, within each n and p combination the running time of subsampling method is

shorter than that of the full sample running time, and changes according to the choice

of m. The gain (saved running time) of proposed subsampling method becomes more

evident when n or p increases.

Table 4.25.: Massive Data Bootstrapping Computing Time Comparison

n p
MDB Sample Running Time

Full Sample Running Time
m = 0.01n m = 0.05n m = 0.1n

1,000,000 10 1.24 1.36 1.38 1.35

1,000,000 50 3.96 4.59 4.72 6.00

1,000,000 100 8.33 8.99 9.77 17.07

1,000,000 200 19.18 21.48 23.71 54.69

2,000,000 10 2.50 2.91 2.92 2.82

2,000,000 50 7.93 8.55 9.87 13.95

2,000,000 100 16.40 17.25 18.89 41.56

2,000,000 200 36.75 42.99 48.14 140.59

3,000,000 10 3.52 3.88 3.88 3.95

3,000,000 50 10.89 11.41 12.75 22.51

3,000,000 100 21.81 25.67 26.52 62.65

3,000,000 200 56.07 62.64 75.65 203.07
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5. REAL DATA APPLICATION IN NATURAL

LANGUAGE PROCESSING

In Natural Language Processing (NLP), clustering analysis is an important topic in

different types of problems. For example, grouping documents into different topics,

clustering words into different categories. In this analysis, we focus on the word level

clustering. Grouping words and finding the word similarities are useful for further

NLP tasks. We apply our k-means via A-optimal subsampling algorithm to group

the Word2Vec embedded word vectors.

Word2Vec is an algorithm developed by Google. Using two layers of neural net-

works, The input of Word2Vec is a large structured set of texts, the output is a

space of vector representation of words. This output word vector file could be used

as input matrix in natural language processing and machine learning models. One

way to investigate the output vector representations is to find the closest words for

a pre-specified word using the distance between word vectors. The other way is to

perform k-means clustering on the word vectors to find word classes on huge data

sets.

5.1 One Billion Word Benchmark Data

Ciprian Chelba, et al (2014) proposed a corpus which includes almost one billion

words from WMT 2011 News Crawl data. This data consist of 100 txt files. Each txt

file consists of different number of sentences from news, but each file is around 40 MB

in memory size. In our study, due to the limited resources, we use the first ten txt

files which in total contains around one hundred million words. The following text

data preprocessing steps were done in Python3.7 using the NLTK package before the
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clustering analysis. The Natural Language Tool Kit (NLTK) is a popular package in

Python for text analysis.

Firstly, the text data are tokenized into a list of sentences. Then each sentence

is tokenized into a list of words. Stop words such as ”a, an, the”, etc. are removed.

Numbers and punctuation marks are also removed. Then the words are embedded

into vectors through the Word2Vec function in the gensim package in Python3.7.

The dimension of each word vector is an input of Word2Vec function, here we

choose d = 50 and d = 100. By excluding the words that appear too few times we

can control the number of different words n. Here we choose to exclude words that

appear 5 or fewer times for d = 100, and 10 or fewer times for d = 50. As a result, we

get n = 133, 386 in the former, and n = 90, 636 in the later case. So the combinations

of n, d in this study are (n = 133, 386, d = 100) and (n = 90, 636, d = 50).

The selection of number of clusters k is still a ongoing research question in the

area of k-means clustering. However, it is not our research focus. In our case, we

assume it is either given by the professionals or automatically chosen by algorithms

like elbow method, gap statistics method, etc. We perform the elbow method here to

find the optimal k.

As can be seen from figure (5.1), the elbow (where the curve has a large changing

angle)is around 6 to 12. So we will perform the A-optimal k-means clustering with

k = 6, 8, 10, 12.
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Figure 5.1.: Elbow Method For Optimal k

Similar to the simulation study, the MSE and TimeRatio are compared in different

scenarios in table (5.1).

In addition, V-Measure, a widely used clustering evaluation measure in machine

learning area based on entropy, is also compared. The measure is written into the

Scikit-learn package in Python3.7 and widely used by data scientists. The V-Measure

is calculated as

v =
(1 + β) ∗ h ∗ c

(β ∗ h+ c)
,

in which h is the homogeneity and c is the completeness. ”h is maximized when

each cluster contains elements of as few different classes as possible. c aims to put

all elements of each class in single clusters”- more details can be found in RosenBerg

(2007). It evaluates how similar two clustering results are. Here, we apply the V-

Measure to evaluate how close the k-means clustering via subsampling is to the full

sample k-means clustering. Larger V-Measure value indicates higher similarity of the

two clustering results.
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The choice of r and r0 could also be a research topic that is worth further investi-

gation. Here we choose combinations ( r
n
, r0
n

) = (0.1, 0.1), (0.1, 0.05) and (0.05, 0.05).

Table 5.1.: One Billion Word Benchmark Data Analysis, n=133,386, p=100

k r
n

r0
n

MSE V-Measure TimeRatio

Unif Opt Unif Opt Unif Opt

6 0.1 0.1 13.28735 10.43175 0.73010 0.75839 0.06592 0.09816

6 0.1 0.05 13.39810 11.88511 0.72938 0.75969 0.06731 0.09650

6 0.05 0.05 71.29101 22.10437 0.63548 0.66704 0.03024 0.05413

8 0.1 0.1 28.75562 22.03969 0.69926 0.72883 0.06539 0.11145

8 0.1 0.05 33.88225 26.71326 0.69153 0.71052 0.06565 0.10549

8 0.05 0.05 162.33309 101.52292 0.61129 0.67721 0.03169 0.05669

10 0.1 0.1 133.48044 31.30001 0.66873 0.73680 0.06200 0.10207

10 0.1 0.05 119.36602 28.71909 0.68038 0.73252 0.06212 0.10869

10 0.05 0.05 473.63049 184.53649 0.60326 0.67374 0.02592 0.04870

12 0.1 0.1 247.04930 171.84341 0.64947 0.67873 0.07049 0.12572

12 0.1 0.05 207.34528 100.25191 0.64717 0.65472 0.07096 0.14888

12 0.05 0.05 603.00740 479.73410 0.60357 0.61900 0.03390 0.06285
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Table 5.2.: One Billion Word Benchmark Data Analysis, n=90,636, p=50

k r
n

r0
n

MSE V-Measure TimeRatio

Unif Opt Unif Opt Unif Opt

6 0.1 0.1 24.97588 21.23650 0.70092 0.73413 0.05542 0.07572

6 0.1 0.05 21.83849 20.50215 0.69058 0.69050 0.05385 0.07481

6 0.05 0.05 209.98194 75.18802 0.59624 0.64431 0.02517 0.03985

8 0.1 0.1 109.14436 21.94016 0.65127 0.69814 0.04880 0.07336

8 0.1 0.05 125.01828 60.67937 0.65109 0.66635 0.04950 0.07575

8 0.05 0.05 575.60486 72.86403 0.57675 0.61025 0.01965 0.03220

10 0.1 0.1 293.39433 328.22987 0.63814 0.65493 0.05849 0.09193

10 0.1 0.05 290.18361 297.08388 0.62949 0.63696 0.05821 0.08883

10 0.05 0.05 766.24854 140.43972 0.56934 0.60905 0.02310 0.03919

12 0.1 0.1 402.13529 106.67088 0.64180 0.66857 0.05536 0.09704

12 0.1 0.05 451.66719 151.64070 0.63925 0.65696 0.05222 0.08805

12 0.05 0.05 987.79380 376.29807 0.57528 0.61078 0.02084 0.03874

From table (5.1) and (5.2) we can see, under different scenarios, except for one or

two special cases, the MSE of A-optimal subsampling is always smaller than that of

uniform subsampling. The V-Measure of A-optimal subsampling being larger than

that of uniform subsampling tells us that the A-optimal subsampling result is closer

to the full sample result in this massive data example. The TimeRatio term columns

indicate A-optimal subsampling method takes more but reasonable time. When r is

smaller, the time ratio becomes smaller.

5.2 Google Word2Vec Data

In this section we apply k-means clustering via A-optimal subsampling to Google’s

trained Word2Vec word vectors and compare with its performance to that of the

uniform subsampling method.
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Google published a pre-trained vectors of Google News data set which includes

about 100 billion words. The model contains 3 million different words, each word is

represented by a 300-dimensional vector. So n = 3000000, p = 300. True number

of clusters k is unknown from our experience that the number of topics in news is

normally less than 20, for example, politics, sports, holidays, etc, and also based on

our analysis of One Billion Word Benchmark data, we also choose k = 6, 8, 10, 12.

Also we choose the following combinations of r and r0: (0.05n,0.01n), (0.01n,0.01n)

and (0.01n, 0.005n). The output comparing MSE, V-Measure and time ratio is shown

in table (5.3).

Table 5.3.: Google Word2Vec Data Analysis

k r
n

r0
n

MSE V-Measure TimeRatio

Unif Opt Unif Opt Unif Opt

6 0.05 0.01 0.01660 0.01003 0.93473 0.94194 0.06294 0.07300

6 0.01 0.01 0.05221 0.02578 0.87658 0.89023 0.01519 0.01828

6 0.01 0.005 0.05258 0.04220 0.87243 0.87815 0.01526 0.01736

8 0.05 0.01 0.26066 0.17668 0.86376 0.88786 0.05197 0.06276

8 0.01 0.01 0.43432 0.14358 0.80822 0.85351 0.01202 0.01481

8 0.01 0.005 0.40260 0.23743 0.80474 0.83254 0.01177 0.01380

10 0.05 0.01 0.09017 0.05717 0.90163 0.91549 0.04638 0.05517

10 0.01 0.01 0.64623 0.25518 0.77702 0.82814 0.00997 0.01259

10 0.01 0.005 0.36848 0.32515 0.78095 0.81395 0.00996 0.01362

12 0.05 0.01 0.32397 0.30562 0.80525 0.81311 0.04083 0.04911

12 0.01 0.01 1.39106 0.46060 0.71586 0.74465 0.00786 0.01047

12 0.01 0.005 3.75142 1.71544 0.69795 0.75010 0.00858 0.01056

From the table we can see, for different k and combinations of r and r0, the MSE

of the centroid estimator from A-optimal subsampling is always smaller than that

of uniform subsampling. By comparing the V-Measure we can see the A-optimal

subsampling method has higher V-Measure values, hence its clustering results are
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closer to those of the full sample compared to the uniform subsampling method..

As for time ratio, the computation times of the A-optimal subsampling method are

longer but acceptable. Although the difference in computation time becomes larger

when the number of clusters k gets larger, the computing time of proposed method is

still acceptable. In conclusion, the A-optimal subsampling outperforms the uniform

subsampling in the k-means analysis of this Google Word2Vec real data not only in

MSE, but also in V-Measure while the computational time cost is comparable.
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