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ABSTRACT

He, Taotao Ph.D., Purdue University, August 2019. New Relaxations for Composite
Functions. Major Professor: Mohit Tawarmalani.

Mixed-integer nonlinear programs are typically solved using branch-and-bound

algorithms. A key determinant of the success of such methods is their ability to con-

struct tight and tractable relaxations. The predominant relaxation strategy used by

most state-of-the-art solvers is the factorable programming technique. This technique

recursively traverses the expression tree for each nonlinear function and relaxes each

operator over a bounding box that covers the ranges for all the operands. While

it is versatile, and allows finer control over the number of introduced variables, the

factorable programming technique often leads to weak relaxations because it ignores

operand structure while constructing the relaxation for the operator.

In this thesis, we introduce new relaxations, called composite relaxations, for

composite functions by convexifying the outer-function over a polytope, which mod-

els an ordering structure of outer-approximators of inner functions. We devise a fast

combinatorial algorithm to separate the hypograph of concave-extendable supermod-

ular outer-functions over the polytope, although the separation problem is NP-Hard

in general. As a consequence, we obtain large classes of inequalities that tighten

prevalent factorable programming relaxations. The limiting composite relaxation ob-

tained with infinitely many outer-approximators for each inner-function is shown to

be related to the solution of an optimal transport problem. Moreover, composite re-

laxations can be seamlessly embedded into a discretization scheme to relax nonlinear

programs with mixed-integer linear programs. Combined with linearization, com-

posite relaxations provide a framework for deriving cutting planes used in relaxation

hierarchies and more.
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1. INTRODUCTION

A wide variety of problems involving managerial decisions, engineering design, and

government policy in diverse domains such as energy, healthcare, and economics can

be naturally formulated as mathematical optimization problems. Among these, a

prominent and heavily researched class of problems is the mixed-integer nonlinear

programs (MINLPs), a class of optimization problems that involve nonlinearities and

discrete choices. Nonlinearities arise from models that capture the underlying sci-

ence, human behavior, or the prevalent uncertainty. Discrete variables often model

combinatorial choices, piecewise functions, or indivisibilities.

MINLPs are typically solved using branch-and-bound (B&B); an algorithm that,

in the branching step, refines a partition of the variable domains and then, in the

bounding step, chooses one partition element to construct a relaxation for the prob-

lem. A key determinant of the success of such method is their ability to construct

tight and tractable relaxations. The predominant relaxation strategy used by most

state-of-the-art solvers [1–4] is the factorable programming (FP) technique. This tech-

nique recursively traverses the expression tree for each nonlinear function and relaxes

each operator over a bounding box that covers the ranges for all the operands. More

specifically, FP treats each function as a recursive sum and/or product of univariate

functions. The technique then relaxes bilinear terms over variable bounds using Mc-

Cormick envelopes [5] and relaxes each univariate function using its function-specific

structure over the range of the independent variable.

The following three features of the factorable relaxation scheme have resulted in its

widespread adoption. First, as the partition size is refined, the relaxation converges

asymptotically to the original function, a property needed for its successful use in

a convergent B&B algorithms [6]. Second, the scheme imposes few restrictions on

the types of functions that can be relaxed, besides boundedness, making it suitable
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for automatically relaxing large classes of MINLPs. Third, the number of variables

introduced in the relaxation is in direct correspondence with the nonlinearities in the

problem, and, as a result, the size of relaxations is not much larger than the original

MINLP formulation.

Nevertheless, the primary deficiency of factorable programming is that it often

produces weak relaxations [7, 8]. Significant research has been devoted to argument,

rather than supplant, the basic factorable programming by exploiting special struc-

ture. For various types of multilinear functions [9–13], the fractional terms [14], and

other useful functions [15–18], envelopes have been derived. Valid inequalities and

cutting planes for multilinear functions have been proposed in [19–24]. Tighter convex

relaxations for structured sets have been derived in [25–31].

Two general-purpose (structure-free) techniques are available to improve the FP

relaxations. The first strategy is to construct relaxation hierarchies [32–34], doing

so increases the relaxation size considerably because hierarchies introduce additional

product operators and require variables to linearize the products. The second strategy

is to discretize the box domain of each operator into a collection of sub-boxes and

to outer-approximate the operator over each sub-box [35–37]. Then, the resulting

relaxation is modeled as a union of polyhedra, and, thus, can be represented as a

mixed integer linear program (MIP).

All above mentioned general-purpose techniques ignore operand structure while

constructing relaxations for an operator. In this thesis, we provide a general-purpose

relaxation framework that extracts operand structure to improve factorable program-

ming relaxations, relaxation hierarchies, and MIP relaxations.

Example 1.0.1 Consider a monomial x2
1x

2
2x

2
3 over the box [1, 2]3, and consider an

expression tree depicted in Figure 1.1a, whose edges are labeled with lower and upper

bounds of tail nodes. Using information that the function x2
i is bounded from below

(resp. above) by 1(resp. 4) over [1, 2], factorable programming yields a convex under-

estimator for the root node’s left child, that is, x2
1x

2
2 ≥ max

{
x2

1+x2
2−1, 4x2

1+4x2
2−16

}
.
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Then, ignoring descendant structure of the root node but bounds of its children, fac-

torable programming constructs the following convex underestimator for the root node:

x2
1x

2
2x

2
3 ≥ max

 max{x2
1 + x2

2 − 1, 4x2
1 + 4x2

2 − 16}+ x2
3 − 1

4 max
{
x2

1 + x2
2 − 1, 4x2

1 + 4x2
2 − 16

}
+ 16x2

3 − 64

 .

However, exploiting a certain ordering relation between the right child of the root node

and its underestimators, e.g., x2
1 +x2

2−1 ≤ x2
1x

2
2 and x2

1 +x2
2−1 ≤ 7 for all x ∈ [1, 2]3,

this thesis produces a new convex underestimator 16x2
1 +16x2

2 +7x2
3−64, which is not

majorized by the factorable one.

∗

∧

2x3

(1, 2)
∗

∧

2x2

(1, 2)
∧

2x1

(1, 2)

(1, 4) (1, 4)

(1, 16) (1, 4)

(a) Bound propagation in expression tree

∗

∧

2x3

(1, 2)
∗

∧

2x2

(1, 2)
∧

2x1

(1, 2)

(
u1(x), a1

) (
u2(x), a2

)
(
e(x), eU

) (
u3(x), a3

)

(b) Estimator propagation in expression tree

More generally, consider an expression tree depicted in Figure 1.1b, whose edges

are labeled with underestimators of tail nodes and their upper bounds over the box

domain [1, 2]2, where for i ∈ {1, 2, 3}, ui(x) denotes (1, 2xi − 1, x2
i ) and ai denotes

(1, 3, 4). Exploiting a certain ordering relation in pairs
(
u1(x), a1

)
and

(
u2(x), a2

)
,

our relaxation techniques produce the following underestimators for the left child of

the root node:

x2
1x

2
2 ≥ max



e0(x) := 1

e1(x) := u12(x) + u22(x)− 1

e2(x) := 2u11(x) + u12(x) + 2u21(x) + u22(x)− 9

e3(x) := 3u11(x) + u12(x) + 3u22(x)− 12

e4(x) := 3u12(x) + 3u21(x) + u22(x)− 12

e5(x) := u11(x) + 3u12(x) + u21(x) + 3u22(x)− 15

e6(x) := max
{
e0, . . . , e5, 4u12(x) + 4u22(x)− 16

}



.
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Notice that, for i ∈ {0, . . . , 6} and for x ∈ [1, 2]3, we obtain that ei(x) ≤ eUi , where

eU := (1, 7, 11, 13, 13, 15, 16). Using an ordering structure in pairs
(
e(x), eU

)
and(

u3(x), a3

)
, this thesis generates fruitful convex underestimators for the root node:

x2
1x

2
2x

3
3 ≥ max



e6(x) + u32(x)− 1

2e1(x) + e6(x) + 6u31(x) + u32(x)− 21

3e1(x) + e6(x) + 7u32(x)− 28

e2(x) + e6(x) + 10u31(x) + u32(x)− 33

max{e3(x), e4(x)}+ e6(x) + 12u31(x) + u32(x)− 39

e1(x) + 2e2(x) + e6(x) + 4u31(x) + 7u32(x)− 40

3e2(x) + e6(x) + 11u32(x)− 44

2e5(x) + e6(x) + 14u31(x) + u32(x)− 45

e1(x) + 2 max{e3(x), e4(x)}+ e6(x) + 6u31(x) + 7u32(x)− 46

3e6(x) + 15u31(x) + u32(x)− 48

e2(x) + 2 max{e3(x), e4(x)}+ e6(x) + 2u31(x) + 11u32(x)− 50

e1(x) + 2e5(x) + e6(x) + 8u31(x) + 7u32(x)− 52

3 max{e3(x), e4(x)}+ e6(x) + 13u32(x)− 52

e1(x) + 3e6(x) + 9u31(x) + 7u32(x)− 55

e2(x) + e5(x) + e6(x) + 4u31(x) + 11u32(x)− 56

max{e3(x), e4(x)}+ 2e5(x) + e6(x) + 2u31(x) + 13u32(x)− 58

e2(x) + 3e6(x) + 5u31(x) + 11u32(x)− 59

3e5(x) + e6(x) + 15u32(x)− 60

max{e3(x), e4(x)}+ 3e6(x) + 3u31(x) + 13u32(x)− 61

e5(x) + 3e6(x) + u31(x) + 15u32(x)− 63

4e6(x) + 16u32(x)− 64



.

(1.1)
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Next, consider the degree-6 RLT relaxation for the graph of x2
1x

2
2x

2
3 over [1, 2]3,

which is obtained by linearizing monomials in the following polynomial constraints

with new variables:

(x1 − 1)α1 · · · (x3 − 1)α3(2− x1)β1 · · · (2− x3)β3 ≥ 0 for
3∑
i=1

(αi + βi) ≤ 6.

It can be verified that the degree-6 RLT does not implies some inequalities in (1.1),

e.g. x2
1x

2
2x

2
3 ≥ 2e1(x) + e6(x) + 6u31(x) + u32(x)− 21.

Now, suppose we discretize the range [1, 16] of the root node’s left child x2
1x

2
2 along

points {1, 13, 16}, and let

G1 :=
{

(x, µ)
∣∣ µ ≥ fx2

3, f = x2
1x

2
2, 1 ≤ f ≤ 13, x ∈ [1, 2]3

}
,

G2 :=
{

(x, µ)
∣∣ µ ≥ fx2

3, f = x2
1x

2
2, 13 ≤ f ≤ 16, x ∈ [1, 2]3

}
.

The standard strategy constructs relaxation Ri for Gi using factorable programming,

where

R1 :=

(x, µ)

∣∣∣∣∣∣
µ ≥ max

{
f + u32(x)− 1, 4f + 13u32(x)− 52

}
, x ∈ [1, 2]3

u6(x) ≤ f, 1 ≤ f ≤ 13

 ,

R2 :=

(x, µ)

∣∣∣∣∣∣
µ ≥ max

{
f + 13u32(x)− 13, 4f + 16u32(x)− 64

}
, x ∈ [1, 2]3

u6(x) ≤ f, 13 ≤ f ≤ 16

 .

As discussed above, our approach, exploiting structure regarding underestimators,

yields a relaxation for Gi that is tighter than Ri.

1.1 Outline and contributions

In Chapter 2, we introduce a new relaxation framework for MINLPs. These new

relaxations, called composite relaxations, are tighter than factorable programming

relaxations while using the same set of auxiliary variables. Consider the composite

function φ ◦ (f1, . . . , fd) where, we refer to φ : Rd 7→ R as the outer-function and

(f1, . . . , fd) as the inner-functions. Our relaxation procedure, first, encodes the inner-

functions f(·) into a polytope P in a generic fashion, and, then, relaxes the graph
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of the outer-function φ(·) over this polytope P into a convex set. We derive the in-

equalities explicitly for the case where the outer-function is a bilinear term and there

is only one non-trivial underestimator for each inner-function. Instead of the four

inequalities that describe the McCormick envelopes, we obtain 12 non-redundant in-

equalities for the bilinear term. This result shows factorable programming relaxations

can be easily tightened without introducing new variables. The main theoretical re-

sult in this chapter is the polynomial-time equivalence of separations between the

convex hull of the outer-function φ(·) over P and that over a structured subset Q of

P . When d, the number of inner-functions, is constant and the convex hull of the

graph of φ(·) is determined by its value at extreme points of Q, we derive an LP

formulation for the separation problem over Q, which is polynomially-sized in terms

of the number of estimators due to a favorable vertex structure of Q. In contrast,

a direct LP formulation for the separation problem over P is exponentially-sized in

terms of the number of estimators.

The sole example of composite relaxations in Chapter 2 for which explicit inequal-

ities are available concerns the product of two bounded functions each furnished with

an underestimator. In Chapter 3, we describe ways in which we extend these results

beyond the above example setting. First, we treat a larger class of outer-functions, in

particular, those that are supermodular and concave-extendable over Q. Second, we

allow arbitrarily many estimators for each inner-function. Though numerous, since

these inequalities are generated using a fast combinatorial separation algorithm, they

can be derived iteratively, with little computational overhead, to cut off infeasible

regions from MINLP relaxations. Third, we extend our algorithm to allow simulta-

neous separation of a vector of composite functions, each with an outer-function that

is supermodular and concave-extendable over Q. Fourth, we consider infinitely many

estimators for each inner-function, assuming additionally that the outer-function is

convex when all but one of its arguments are fixed. We show that, in this case, the

composite relaxation arises as the solution of an optimal transport problem [38].
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Composite relaxations not only improve factorable programming relaxations but

also lay a foundation for improving relaxation hierarchies and MIP relaxations. In

Chapter 4, we show that composite relaxations are not implied by the reformulation-

linearization technique (RLT) [39]. Furthermore, combined with linearization, com-

posite relaxations provide a framework for deriving cutting planes used in relaxation

hierarchies and more. Last, we argue that the composite relaxations are particu-

larly well-suited for constructing MIP relaxations via a discretization scheme. Our

proposed MIP relaxations are obtained by reinterpreting the incremental formula-

tion [35] and combining it with the composite relaxations, and are provable to be

tighter than the standard ones in [36, 37]. For composite functions with discrete do-

mains and univariate inner-functions, we obtain ideal logarithmic MIP formulations

for their graphs. In contrast, the state-of-the-art formulation from [40] is not ideal.

By exploiting our results for discrete domains, we show that, for certain compositions

of univariate functions, we can construct a sequence of polyhedral relaxations that

converge, in the limit, to the concave envelope.
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2. A NEW FRAMEWORK TO RELAX COMPOSITE

FUNCTIONS IN NONLINEAR PROGRAMS

In this chapter, we consider the composite function φ ◦ (f1, . . . , fd) where, we refer

to φ : Rd 7→ R as the outer function and (f1, . . . , fd) as the inner functions. We

outer-approximate the graph of fi with n estimators and derive bounds for estima-

tors. Then, we relax φ(·) over a polytope, P , that models the ordering relationship

between the functions, their estimators, and the bounds. Although P ’s structure is

quite complex, it has as its subset a product of simplices, Q, which captures all the

interesting structure of the convex hull of φ(·) over P . We give a fast combinatorial

algorithm, with complexity O(dn) and a separation oracle call for the convex hull of

φ(·) over Q, that solves the separation problem for the graph of φ(·) over P . More-

over, when d is constant, and the convex hull of the graph of φ(·) is determined by its

value at extreme points of Q, we derive an LP formulation for the separation problem,

which is polynomially-sized in terms of the number of estimators.

We derive the inequalities explicitly for the case of a bilinear term, where d = 2

and there is only one non-trivial underestimator. Instead of the four inequalities

that describe the McCormick envelopes, we obtain 12 non-redundant inequalities

for the bilinear term. This result shows factorable programming relaxations can be

easily tightened without introducing new variables. We also show that access to a

separation oracle that generates facet-defining inequalities for the graph of φ(·) over

Q and its faces, which are affinely isomorphic to Q and obtained by ignoring some

of the estimators, can be used to generate facet-defining inequalities that separate a

point from the convex hull of graph of φ(·) over P . Finally, we show that these results

extend to simultaneous convexification of composite functions.
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2.1 Improving factorable relaxations using outer-approximations

Factorable programming (FP) expresses each function as a recursive sum and

product of constituent functions, where the key step involves relaxing a product of

two functions. Consider a function h : X 7→ R, where X is a convex subset of

Rm, expressible as h(x) = f1(x)f2(x) and consider its epigraph defined as epi(h) :={
(x, µ)

∣∣ µ ≥ f1(x)f2(x), x ∈ X
}

. FP assumes that, for i = 1, 2, there are a convex

function cfi(x) and a concave function Cfi(x) and constants fLi and fUi so that, for

x ∈ X, fLi ≤ fi(x) ≤ fUi and cfi(x) ≤ fi(x) ≤ Cfi(x). Assume, without loss of

generality, that fLi ≤ cfi(x) and Cfi(x) ≤ fUi . Then, FP relaxes the epigraph of h(x),

by introducing variables f1 and f2, as follows:(x, f, µ)

∣∣∣∣∣∣
µ ≥ max

{
fL1 f2 + f1f

L
2 − fL1 fL2 , fU1 f2 + f1f

U
2 − fU1 fU2

}
cfi(x) ≤ fi ≤ Cfi(x), x ∈ X

 .

The relaxation technique currently used in most global optimization solvers augments

the above relaxation with results for specially structured problems; see [2–4,41].

In this section, we improve FP relaxation of f1(x)f2(x), when fi(x) ∈ [fLi , f
U
i ] for

all x ∈ X. We begin by assuming that fLi ≥ 0. If the functions can be negative, fi(x)−

fLi can be used instead. Information on fi(x) will be captured using underestimators

vij(x) and any upper bounds aij available for them.

Example 2.1.1 Consider the function x2
1x

2
2 over [0, 2] × [0, 2] and, for j ∈ J , let

p(j) ∈ [0, 2] for j ∈ J . The epigraph of x2
i satisfies the tangent inequality x2

i ≥ vij :=

p(j)2 +2p(j)
(
xj−p(j)

)
. The inequality x2

1x
2
2 ≥ v1j1(x1)v2j2(x2) does not hold, in gen-

eral. For example, x2
1 ≥ 2x1−1 and x2

2 ≥ 2x2−1 but x2
1x

2
2 ≥ (2x1−1)(2x2−1) is vio-

lated at (0, 0). Nevertheless, if uiji(x) = max{0, viji(x)}. then x2
1x

2
2 ≥ u1j1(x)u2j2(x).

From the definition of uiji(x), 0 ≤ uiji(x) ≤ p(ji)
(
4− p(ji)

)
≤ 4. Let ai,ji = p(ji)

(
4−

p(ji)
)
. Then, McCormick inequalities can be used to underestimate u1j1(x)u2j2(x) over∏

i=1,2

[
0, aiji

]
to obtain x2

1x
2
2 ≥ u1j1(x)u2j2(x) ≥ max

{
0, a1j1u2j2(x) + a2j2u1j1(x) −

a1j1a2j2

}
≥ a1j1v2j2(x) + a2j2v1j1(x) − a1j1a2j2. For p(j1) = p(j2) = 1, this reduces to

x2
1x

2
2 ≥ 6x1 + 6x2 − 15. It can be easily verified that x1 = 1.5, x2 = 1.5 and µ = 2
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satisfies the factorable relaxation, {(x, y, µ) | 0 ≤ µ, 4x2 + 4y2 − 16 ≤ µ, 0 ≤ x ≤

2, 0 ≤ y ≤ 2}, but not µ ≥ 6x1 + 6x2 − 15.

Example 2.1.1 used a two-step procedure, where we first relaxed x2
i using its lower

bound and a tangent inequality. Then, in the second step, we relaxed the product

of underestimators using McCormick envelopes. We concluded that the resulting in-

equality is not implied by using McCormick envelopes on the original product x2
1x

2
2,

the one-step procedure typically used in factorable relaxations. This two-step proce-

dure improves the quality of relaxation when the outer-function is monotonic, which is

guaranteed in Example 2.1.1 by non-negativity of inner functions. Now, we consider

a generalization that does not require the monotonicity assumption. We will con-

sider a special case first, which already improves the factorable programming scheme.

More specifically, we consider the bilinear term, f1f2, in the presence of non-trivial

underestimator ui(x) for fi(x), for i = 1, 2.

Theorem 2.1.1 Let fL1 ≤ a1 ≤ fU2 and fL2 ≤ a2 ≤ fU2 . Then, consider the set:

P =
{

(u, f)
∣∣ fL1 ≤ u1 ≤ min{f1, a1}, f1 ≤ fU1 , f

L
2 ≤ u2 ≤ min{f2, a2}, f2 ≤ fU2

}
.

The following linear inequalities are valid for the epigraph of f1f2 over P :

f1f2 ≥ max



e1 := f1f
U
2 + f2f

U
1 − fU1 fU2

e2 := (fU2 − a2)u1 + (fU1 − a1)u2 + a2f1 + a1f2 + a1a2 − a1f
U
2 − fU1 a2

e3 := (fU2 − fL2 )u1 + fL2 f1 + a1f2 − a1f
U
2

e4 := (fU1 − fL1 )u2 + a2f1 + fL1 f2 − fU1 a2

e5 := (a2 − fL2 )u1 + (a1 − fL1 )u2 + fL2 f1 + fL1 f2 − a1a2

e6 := fL1 f2 + f1f
L
2 − fL1 fL2



.
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Proof We show that e3, e4, and e5 are valid underestimators for f1f2 over P using

the procedure in Example 2.1.1. That e3 underestimates f1f2 follows from:

f1f2 = (f1 − fL1 )(f2 − fL2 ) + fL1 f2 + fL2 f1 − fL1 fL2

≥ (u1 − fL1 )(f2 − fL2 ) + fL1 f2 + fL2 f1 − fL1 fL2

≥ (u1 − fL1 )(fU2 − fL2 ) + (a1 − fL1 )(f2 − fL2 )− (a1 − fL1 )(fU2 − fL2 )

+ fL2 f1 + fL1 f2 − fL1 fL2

= e3,

where the first equality shifts f1 and f2 so that we relax a product of non-negative

functions, the first inequality underestimates the product (f1 − fL1 )(f2 − fL2 ), and

the second inequality uses the McCormick relaxation for (u1 − fL1 )(f2 − fL2 ). The

derivation for e4 is symmetric, with the role of f1 and f2 is interchanged. Similarly,

to show that e5 is an underestimator:

f1f2 = (f1 − fL1 )(f2 − fL2 ) + fL1 f2 + fL2 f1 − fL1 fL2

≥ (u1 − fL1 )(u2 − fL2 ) + fL1 f2 + fL2 f1 − fL1 fL2

≥ (u1 − fL1 )(a2 − fL2 ) + (a1 − fL1 )(u2 − fL2 )− (a1 − fL1 )(a2 − fL2 )

+ fL2 f1 + fL1 f2 − fL1 fL2

= e5.

Observe that e1 and e6 are derived by using the functions f1 and f2 themselves as

their underestimators.

To show the second inequality is valid, define s2 = max
{
u2, f

L
2 +

a2−fL2
fU2 −fL2

(f2− fL2 )
}

and note that a2 − s2 + f2 − fU2 =
f2−fU2
fU2 −fL2

(fU2 − a2) ≤ 0. Then, f1f2 = e2 + (s2 −

u2)(fU1 −a1)+(u1−a1)(a2−s2 +f2−fU2 )+(f1−u1)(f2−s2)+(f1−fU1 )(s2−a2) ≥ e2,

completing the proof.

If ai ∈ {fLi , fUi } for i ∈ {1, 2}, the factorable relaxation is the convex hull of

the epigraph of f1f2 over P . Thus, to improve the factorable relaxation using The-

orem 2.1.1, ai < fUi for at least some i. We show in [42] that the inequalities in
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Theorem 2.1.1 describe the convex envelope of f1f2 over P . Observe that the in-

equalities in Theorem 2.1.1 share many properties of the FP relaxations. First, they

apply to all factorable programming problems. Second, the coefficients of ui in the

inequalities are non-negative. Therefore, ui can be substituted with any convex un-

derestimator of their defining relation, ui(x), to yield convex inequalities. Third, if

there are ni estimators of f1, Theorem 2.1.1 yields 2n1n2 + n1 + n2 + 2 inequalities

underestimating f1f2 instead of the two inequalities typically used in FP.

The underestimator e2 is not obtained using the two-step procedure in Exam-

ple 2.1.1. In the next example, we demonstrate that underestimator e2 is not domi-

nated by other inequalities.

Example 2.1.2 Consider again the monomial x2
1x

2
2 over [0, 2]2. Then, let ui =

max{0, 2xi − 1}. Then, Theorem 2.1.1 yields the following relaxation, after sub-

stitutions:
(x, y, µ)

∣∣∣∣∣∣∣∣∣∣∣∣∣

µ ≥ e1 = 4x2
1 + 4x2

2 − 16, µ ≥ e2 = 2x1 + 2x2 + 3x2
1 + 3x2

2 − 17

µ ≥ e3 = 8x1 + 3x2
2 − 16, µ ≥ e4 = 3x2

1 + 8x2 − 16

µ ≥ e5 = 6x1 + 6x2 − 15, µ ≥ e6 = 0

x ∈ [0, 2]2


.

Observe that the inequalities µ ≥ e3, µ ≥ e4, and µ ≥ e5 can be obtained by first

underestimating x2
1 and x2

2 and then using the McCormick inequalities. However, the

inequality µ ≥ e2 is not obtained using the two-step procedure and is not redundant.

For example, at (x1, x2) = (1.6, 1.6), the highest underestimator is e2 which equals

4.76, while the remaining underestimators are below 4.5.

We remark that we use x2y2 over [0, 2]2 only to illustrate our techniques and that

for x2y2 over [0, 2]2, an explicit formulation of the convex hull is available [43]. Exis-

tence of e2 shows that the epigraph of f1f2 over P satisfies inequalities besides those

obtained using the two-step procedure. In the rest of this chapter, we will study a

significant generalization of P introduced above by including one or more underesti-

mating and/or overestimating inequalities.
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2.2 A relaxation framework for composite functions

In this section, we introduce the generalized version of the setup in Theorem 2.1.1,

which will be subject of study for most of the remaining chapter. In the following, we

shall denote the convex hull of set S by conv(S), the convex (resp. concave) envelope

of f(x) over S by convS(f) (resp. concS(f)), the projection of a set S to the space

of x variables by projx(S), the extreme points of S by vert(S), the dimension of the

affine hull of S by dim(S), and the relative interior of S by ri(S).

Our setup will generalize that of Theorem 2.1.1 in the following way. First, we

replace the bilinear term with an arbitrary function, φ, and consider relaxations of

φ ◦ f : X ⊆ Rm 7→ R, where f : X 7→ Rd is a vector of bounded functions over X.

We shall write f(x) :=
(
f1(x), . . . , fd(x)

)
and refer to f as inner functions while φ

will be referred to as the outer function. Second, we will be derive convex relaxations

for the graph of φ ◦ f (instead of just the epigraph). Formally, we will relax the

set: gr(φ ◦ f) =
{

(x, φ)
∣∣ φ = φ(f(x)), x ∈ X

}
. We describe the generalization of

polytope P in Section 2.2.1.

2.2.1 Polyhedral abstraction of outer-approximation

Let
(
n(1), . . . , n(d)

)
∈ Zd. We consider a vector of bounded functions u : Rm 7→

R
∑d
i=1

(
n(i)+1

)
defined as u(x) = (u1(x), . . . , ud(x)), where ui(x) : Rm 7→ Rn(i)+1, and

a vector a = (a1, . . . , ad) ∈ R
∑d
i=1

(
n(i)+1

)
, where ai ∈ Rn(i)+1. For all i and for every

x ∈ X, assume that fi(x) ∈ [ai0, aini ] and the pair
(
u(x), a

)
satisfies the following

inequalities:

aLi ≤ ai0 ≤ · · · ain(i) ≤ aUi ,

for each j ∈ Ai : aLi ≤ uij(x) ≤ min{fi(x), aij},

for each j ∈ Bi : max
{
fi(x), aij

}
≤ uij(x) ≤ aUi ,

ui0(x) = ai0, uin(i)(x) = fi(x),

(2.1)

where the pair (Ai, Bi) is a partition of {0, . . . , n(i)} so that {0, n(i)} ⊆ Ai. The

first requirement that the elements of ai are ordered in a non-decreasing order and
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contained within [aLi , a
U
i ] is only for notational convenience. The second (resp. third)

requirement states that for j ∈ Ai (resp j ∈ Bi), uij(x) is an underestimator (resp.

overestimator) for fi(x), which is bounded from above (resp. below) by aij, a value

no larger (resp. smaller) than ain(i) (resp. ai0), the upper bound (resp. lower bound)

for fi(x). Finally, the fourth requirement states that ui0(x) is a constant function

matching the lower bound on fi(x) and uin(i) is the function fi(x) itself.

Notice that we do not explicitly specify different lower bounds for the underes-

timators and upper bounds for the overestimators. This is because they are not

important in constructing the relaxations and do not change the quality of the re-

laxation. We will show in Proposition 2.2.1 that, without loss of generality, aLi and

aUi can be set to be the lower bound ai0 for fi(x) and upper bound ain(i) for fi(x)

respectively. We remark that, for j ∈ Ai (resp. j ∈ Bi), aij need not be the tightest

upper (resp. lower) bound of uij(x) over X. Tighter bounds for estimators and/or

inner-functions can be obtained using the techniques of discussed in [44, 45]. Last,

although the number of estimators for each function can be different, we will assume

without loss of generality and for notational simplicity that n(1) = · · · = n(d).

Now, we describe our generalization of P formally. The polytope P is denoted,

in general, as P (a, aL, aU , B) :=
∏d

i=1 Pi(ai, a
L
i , a

U
i , Bi), where B =

∏d
i=1Bi, a

L =

(aL1 , . . . , a
L
d ) and aU = (aU1 , . . . , a

U
d )

Pi(ai, a
L
i , a

U
i , Bi) :=

ui
∣∣∣∣∣∣∣∣∣∣

for each j ∈ Ai : uij ≤ uin and aLi ≤ uij ≤ aij

for each j ∈ Bi : uin ≤ uij and aij ≤ uij ≤ aUi

ui0 = ai0, ai0 ≤ uin ≤ ain

 . (2.2)

We will typically not write the arguments of Pi and P since they will be apparent from

the context. We will refer to the polytope Pi as the abstraction of outer-approximators

of function fi and P as the abstraction of outer-approximators for vector of functions

f . Essentially, the polytope Pi is obtained by introducing a variable uij for the

estimator uij(x) and replacing the ordering relationships between the functions with

those between the introduced variables.



15

We remark that our construction treats estimators of inner functions abstractly,

and exploits various bounding relationships while being oblivious of the precise depen-

dence on x. Thus, our methods apply to general nonlinear programming problems

while providing flexibility, which can be tailored to exploit specific problem struc-

ture, e.g. properties of the outer function φ(·). The rest of the chapter will focus on

studying the graph, ΦP , of φ(·) over the polytope P , and its convex hull, where:

ΦP =
{

(u, φ)
∣∣ φ = φ(u1n, . . . , udn), u ∈ P

}
.

2.2.2 An overview of the main polynomial equivalence result

Since P generalizes the standard hypercube [0, 1]d, by considering the special case

where φ is a bilinear function, it follows that there does not exist a polynomial time

algorithm to solve the separation problem for ΦP , unless P = NP. But, Theorem 2.1.1

shows that special instances of this problem are solvable, sometimes in closed-form,

which improve relaxations for nonlinear programs. We now describe the main struc-

tural insights, we derive for ΦP , in this chapter. We will show that convexifying ΦP

is polynomially equivalent to convexifying a simpler object ΦQ, the graph of φ over a

subset of P , which is termed Q here onwards and described formally in Section 2.3.

We remark that this equivalence is not just a mapping of hard instances of ΦP to

hard instances of ΦQ. Clearly, existence of such a mapping follows from NP-Hardness

of these problems. Rather, this equivalence will provide an algorithm to convexify

ΦP using an oracle to convexify a specific related instance of ΦQ. In [42], we will

show that there is a large family of tractable instances for ΦQ, which will then, by

our results here, yield a tractable separation algorithm for the corresponding family

of ΦP .

To show this polynomial equivalence, we devise a separation oracle for conv(ΦP )

by augmenting the separation oracle for conv(ΦQ) with a fast-polynomial-time com-

binatorial algorithm. The key ingredient of the combinatorial algorithm is a lifting

procedure that lifts ΦP into a higher dimensional space, a problem, we show, is equiv-
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alent to solving d two-dimensional convexification problems. A direct consequence

of our results will be that the problem of convexifying ΦP , when its extreme points

project to the extreme points of P , is polynomially solvable in n, when the dimension

d is fixed. This result is interesting for practice because compositions often involve

only a few functions or can be recursively decomposed as such while each inner func-

tion has many outer-approximators. Instead, a direct formulation of the convex hull

of ΦP would be exponential because, even for a fixed d, the number of extreme points

of P is exponential in n.

The resulting algorithm has many interesting features besides tractability. Con-

sider the family of polytopes of the form Q that result when subsets of the outer-

approximators of fi(x) are considered. Assume, for the purpose of illustration, that φ

is a multilinear function, which would imply that ΦP and ΦQ are polyhedral sets [9].

If for each Q in this family, we have access to a separation oracle that separates from

ΦQ by generating a facet-defining inequality, the combinatorial algorithm can be used

to devise an algorithm that separates points from ΦP by facet-defining inequalities.

Moreover, the polynomial equivalence carries over to the problem of simultaneously

convexifying a collection of functions and, so does the property of generating facet-

defining inequalities.

2.2.3 Projecting out introduced estimator variables

The convex hull of ΦP is the intersection of the epigraph of the convex envelope

and hypograph of concave envelope of φ(u1n, . . . , udn) over P , that is,

conv(ΦP ) =
{

(u, φ)
∣∣ convP (φ)(u) ≤ φ ≤ concP (φ)(u), u ∈ P

}
. (2.3)

Observe that although the function φ depends only on (u1n, . . . , udn), the functions

convP (φ) and concP (φ) depend on all the variables u. In the following lemma, we

consider the concave envelope concP (φ)(u) and establish certain monotonicity prop-

erties for it. A similar property, albeit reversed in direction, can be obtained for

convP (φ)(u) since convP (φ)(u) = − concP (−φ)(u).
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Lemma 2.2.1 If the concave envelope concP (φ)(u) is closed then it is non-increasing

in uij for all i and j ∈ Ai \ {0, n} and non-decreasing in uij for all i and j ∈ Bi.

Proof We will only prove that concP (φ)(u) is non-increasing in uij for all i and

j ∈ Ai \ {0, n} since a similar argument shows that it is non-decreasing in uij for

all i and j ∈ Bi. Let φ ≤ 〈α, u〉 + b be a valid inequality of concP (φ)(u). Let

Ji := {j′ ∈ Ai \ {0, n} | αij′ > 0}. By considering (α̃, b′), where α̃ij = 0 for all i and

j ∈ Ji, α̃ij = αij otherwise, and b′ = b +
∑d

i=1

∑
j∈Ji αija

L
i , it is easy to construct

a valid inequality φ ≤ 〈α̃, u〉 + b′ of concP (φ)(u) such that α̃ij ≤ 0 for all i and

j ∈ Ai \ {0, n}, and 〈α̃, u〉+ b′ ≤ 〈α, u〉+ b for every u ∈ P .

Now assume that concP (φ)(u) is closed. For any function ξ(α), we will denote

its convex conjugate by ξ∗(α). We prove that concP (φ)(u) = ψ(u), where ψ(u) :=

infα
{
〈α, u〉 + (−φ)∗P (−α)

∣∣ αij ≤ 0 ∀i ∈ {1, . . . , d} ∀j ∈ Ai \ {0, n}
}

. This will show

what we seek to prove since, by definition, ψ(u) is non-increasing in uij for all i and

j ∈ Ai\{0, n}, being the infimum over α of linear functions 〈α, u〉+(−φ)∗P (−α), all of

which satisfy this property. Since concP (φ)(u) is assumed to be closed, by Theorem

1.3.5 in [46], we have

concP (φ)(u) = inf
α

{
〈α, u〉+ (−φ)∗P (−α)

}
. (2.4)

It follows readily that ψ(u) ≥ concP (φ)(u) because ψ(u) ≥ infα
{
〈α, u〉+(−φ)∗P (−α)

}
.

To show concP (φ)(u) ≥ ψ(u), we consider a point ū ∈ P . By (2.4), there exists a

sequence ᾱk so that the inequality concP (φ)(u) ≤ 〈ᾱk, u〉 + (−φ)∗P (−ᾱk) is valid for

all k and limk→∞〈ᾱk, ū〉 + (−φ)∗P (−ᾱk) = convP (φ)(ū). If ᾱkij > 0 for some i and

j ∈ Ai \ {0, n}, we have shown that there exists a valid inequality φ ≤ 〈α̃k, u〉+ b′ of

concP (φ)(u) such that 〈α̃k, u〉+ b′ ≤ 〈ᾱk, u〉+ (−φ)∗P (−ᾱk) for all u ∈ P and α̃kij ≤ 0

for all i and j ∈ Ai \ {0, n}. Therefore, we have

concP (φ)(ū) = lim
k→∞
〈ᾱk, ū〉+ (−φ)∗P (−ᾱk) ≥ lim

k→∞
〈α̃k, ū〉+ b′

≥ lim
k→∞
〈α̃k, ū〉+ (−φ)∗P (−α̃k) ≥ ψ(ū),

where first equality and first inequality are established above, second inequality fol-

lows because the validity of φ ≤ 〈α̃k, u〉 + b′ for u ∈ P implies (−φ)∗P (−α̃k) =
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supu∈P
{
φ(u) − 〈α̃k, u〉

}
≤ b′, and the last inequality holds since α̃k ≤ 0 for all i

and j ∈ Ai \ {0, n} implies α̃ is feasible in the optimization problem defining ψ(ū).

Thus, the proof is complete.

We now use monotonicity of concP (φ)(u) and convP (φ)(u) to construct relaxations

for gr(φ ◦ f) in the space of (x, φ, u·n) variables, where u·n = (u1n, . . . , udn), by sub-

stituting the convex underestimators and concave overestimators with their defining

relationships in the cuts valid for conv(ΦP ).

Theorem 2.2.1 Let φ◦f be a composite function, where φ : Rd 7→ R is a continuous

function and f : Rm 7→ Rd is a vector of functions which are bounded over X ⊆ Rm.

Given a pair
(
a, u(x)

)
satisfying (2.1), we have gr(φ ◦ f) ⊆ proj(x,φ)(R), where

R :=
{

(x, u·n, φ)
∣∣∣ (ũ1(x, u1n), . . . , ũd(x, udn), φ

)
∈ conv(ΦP ), u·n = f(x), x ∈ X

}
,

and ũi(x, uin) =
(
ui0(x), . . . , ui(n−1)(x), uin

)
. The relaxation is convex if uij(x) is

convex for j ∈ Ai \ {n} and concave for j ∈ Bi and {u·n = f(x), x ∈ X} is outer-

approximated by a convex set.

Proof Define H̃ :=
{

(x, u, φ)
∣∣ convP (φ)(u) ≤ φ ≤ concP (φ)(u), u·n = f(x), (x, u) ∈

U
}

, where U :=
{

(x, u)
∣∣ ui0 = ai0, uij(x) ≤ uij ∀j ∈ Aij \ {n}, uij ≤ uij(x) ∀j ∈

Bij, x ∈ X
}

. We first show that R = proj(x,u·n,φ)(H̃). Clearly, R ⊆ proj(x,u·n,φ)(H̃)

because, given (x, u·n, φ) ∈ R, we may define ui := ũi(x, uin) for all i and obtain

(x, u, φ) ∈ H̃. We show proj(x,u·n,φ)(H̃) ⊆ R by considering a point (x, u, φ) ∈ H̃ and

proving that (x, u·n, φ) ∈ R. Clearly, u·n = f(x) and x ∈ X. Since φ(u1n, . . . , udn) is

continuous over P , we have

φ ≤ concP (φ)(u1, . . . , ud) ≤ concP (φ)
(
ũ1(x, u1n), . . . , ũd(x, udn)

)
,

where the second inequality holds because of the monotonicity of concP (φ)(u) shown

in Lemma 2.2.1, and uij(x) ≤ uij for j ∈ Aij \ {n}, uij ≤ uij(x) for j ∈ Bij, and

because the last component of ũi(x, uin) equals uin. Similarly, we obtain that

convP
(
ũ1(x, u1n), . . . , ũd(x, udn)

)
≤ φ.
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Then, by (2.3) we conclude that
(
ũ1(x, u1n), . . . , ũd(x, udn), φ

)
∈ conv(ΦP ). Hence,

(x, u·n, φ) ∈ R.

Next, we show that gr(φ ◦ f) ⊆ proj(x,φ)(H̃), which implies that gr(φ ◦ f) ⊆

proj(x,φ)(R). Let (x, φ) ∈ gr(φ ◦ f) and define u = u(x), where, in particular, u·n =

f(x). It follows readily that u ∈ P because, by construction, we have {u | u =

u(x), x ∈ X} ⊆ P . Moreover, since (x, φ) ∈ gr(φ ◦ f), we have φ = φ
(
f(x)

)
=

φ(u·n), which implies that (u, φ) ∈ ΦP and, thus, (u, φ) ∈ conv(ΦP ). In other words,

convP (φ)(u) ≤ φ ≤ concP (φ)(u). Therefore, (x, u, φ) ∈ H̃ and, thus, gr(φ ◦ f) ⊆

proj(x,φ) H̃.

Last, assume that {u·n = f(x), x ∈ X} is outer-approximated by a convex set,

and uij(x) is either a convex underestimator or concave overestimator for all i and

j < n. Then, H̃ is convex, and therefore, R is convex being a projection of H̃.

2.2.4 Abstraction simplification

We first simplify P (a, aL, aU , B) to show that it suffices to consider the case where

aLi = ai0 and aUi = ain to treat the general case.

Proposition 2.2.1 Define u′ so that u′ij = min
{

max{uij, ai0}, ain
}

. Then, we have

concP (φ)(u′) = concP (φ)(u).

Consider u′′ such that ai0 ≤ u′′ij ≤ ain. Then, for any aL, aU , āL, āU such that aLi , ā
L
i ≤

ai0 and aUi , ā
U
i ≥ ain we have

concP (a,aL,aU ,B)(φ)(u′′) = concP (a,āL,āU ,B)(φ)(u′′).

Define ãLi = ai0 and ãUi = ain. Then, for any u ∈ P (a, aL, aU , B) and φ ∈ R,

(u, φ) ∈ conv
(
ΦP (a,aL,aU ,B)

)
if and only if (u′, φ) ∈ conv

(
ΦP (a,ãL,ãU ,B)

)
.

Proof For any j ∈ Bi, uij ≥ uin ≥ ai0. Therefore, u′ij ≤ uij. Similarly, for

j ∈ Ai, max{uij, ai0} ≤ uin ≤ ain. Therefore, u′ij ≥ uij. Let P = P (a, aL, aU , B).

It follows from Lemma 2.2.1 that concP (φ)(u′) ≤ concP (φ)(u). Now, we show that
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concP (φ)(u′) ≥ concP (φ)(u). Let Ji(u) = {j | uij < ai0} and Ki(u) = {j | uij > ain}.

We perform induction on
∑d

i=1

(
|Ji(u)| + |Ki(u)|

)
. The base case is trivial because

|Ji(u)| + |Ki(u)| = 0 implies u′ = u and the inequality is trivially satisfied. Let i′

be such that there exists a j′ ∈ Ji′(u) ∪ Ki′(u). Since ai′0 ≤ ui′n ≤ ai′n, it follows

that j′ 6= n. We assume j′ ∈ Ji′(u) as a similar argument applies when j′ ∈ Ki′(u).

Since u ∈ P , by the definition of concP (φ), there exist convex multipliers λk and

(uk, φk) ∈ ΦP such that
(
u, concP (φ)(u)

)
=
∑

k λ
k(uk, φk). Define ūki′j′ = ai′0 and

ūkij = ukij otherwise. Since j′ 6= n, it can be verified easily that (ūk, φk) ∈ ΦP . Then,

define
(
ũ, concP (φ)(u)

)
=
∑

k λ
k(ūk, φk) and observe that the representation shows

that concP (φ)(ũ) ≥ concP (φ)(u), ũi′j′ = ai′0, and ũij = uij otherwise. However, since

j′ 6∈ Ji′(ũ), it follows that
∑d

i=1

(
|Ji(ũ)| + |Ki(ũ)|

)
=
∑d

i=1

(
|Ji(u)| + |Ki(u)|

)
− 1.

Therefore, it follows that concP (φ)(u) ≤ concP (φ)(ũ) ≤ concP (φ)(u′), where the last

inequality is by the induction hypothesis, proving the second statement in the result.

Let P 1 := P (a, aL, aU , B) and P 2 = P (a, āL, āU , B). We show that concP 1(φ)(u′′) ≤

concP 2(φ)(u′′) since the result follows by interchanging the roles of P 1 and P 2. Let

φ′′ = concP 1(φ)(u′′). Then, there exist (ul, φl) ∈ ΦP 1
and convex multipliers γl so

that (u′′, φ′′) =
∑

l γl(u
l, φl). Let ũlij = min

{
max{ulij, ai0}, ain

}
. Then, it follows that

(ũl, φl) ∈ ΦP2 . Therefore, (ū, φ′′) =
∑

l γl(ũ
l, φl) ∈ conv(ΦP2). It follows that φ′′ ≤

concP 2(φ)(ū). Moreover, ūij ≥ u′′ij for j ∈ Ai\{0, n} and ūij ≤ u′′ij for j ∈ Bi. Then,

by Lemma 2.2.1, it follows that concP 1(φ)(u′′) = φ′′ ≤ concP 2(φ)(ū) ≤ concP 2(φ)(u′′)

proving the fourth statement of the result.

Now, we show the last statement of the result. Let P ′ = P (a, aL, aU , B) and P ′′ =

P (a, ãL, ãU , B). By the second statement of the result, it follows that concP ′(φ)(u) =

concP ′(φ)(u′) and, because u′ ∈ P ′′, it follows from the fourth statement of the result

that concP ′(φ)(u′) = concP ′′(φ)(u′). Therefore, concP ′(φ)(u) = concP ′′(φ)(u′). By

considering −φ, a similar argument shows that convP ′(φ)(u) = convP ′′(φ)(u′). It

follows then that convP ′(φ)(u) ≤ φ ≤ concP ′(φ)(u) if and only if convP ′′(φ)(u′) ≤

φ ≤ concP ′′(φ)(u′).
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By Proposition 2.2.1, it suffices to construct conv
(
ΦP (a,ãL,ãU ,B)

)
to characterize

conv
(
ΦP (a,aL,aU ,B)

)
. The primary role played by aLi and aUi is to ensure that the esti-

mating functions are bounded. Therefore, without loss of generality, we will assume

in the foregoing discussion, unless specified otherwise, that aLi = ai0 and aUi = ain.

In other words, we will use Proposition 2.2.1 to simplify P . Proposition 2.2.1 has

another subtle value. It turns out that one of the main results in this paper can

be viewed as a sharpening of Proposition 2.2.1. This sharper version will show that

(u, φ) ∈ conv(ΦP ) if and only if a certain point (s, φ) ∈ conv(ΦP ), where s is larger

than the u′ constructed in the statement of Proposition 2.2.1. The transformation

from u to s is significantly more involved and is, arguably, one of the cornerstones

of the development later. The more general result will have much further reaching

consequences since it will also enable a significant simplification of P .

We now further simplify the structure of polytope P . First, we show that we

may assume that the index set Bi defining Pi in (2.2) is empty. To achieve this

simplification, we will transform overestimators into underestimators (and vice-versa)

and thus show that Bi = ∅ can be assumed without loss of generality. Consider an

affine transformation T : Rd×(n+1) 7→ Rd×(n+1) defined as follows:

T (u)ij = uij for j ∈ Ai and T (u)ij = aij − uij + uin j ∈ Bi. (2.5)

Recall that Ai and Bi are the index sets for underestimators and overestimators of fi

respectively. Let
(
u(x), a

)
be a pair satisfying (2.1). It follows that

(
T (u(x))

)
ij

is an

underestimator of fi(x) bounded from above by aij because aij ≤ uij(x) for all i and

j ∈ Bi. Clearly, the transformation Ti is invertible. More specifically, given a vector

t ∈ Rd×(n+1), we have T−1(t)ij = tij for j ∈ Ai and T−1(t)ij = aij− tij + tin for j ∈ Bi,

where we have used n ∈ Ai to substitute tin for uin. Since the transformation T is such
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that T (u)ij depends only on uij and uin, we may write T (u) :=
(
T1(u1), . . . , Td(ud)

)
,

where Ti : Rn+1 7→ Rn+1. Similarly, we write T−1(t) :=
(
T−1

1 (t1), . . . , T−1(td)
)
. Then,

P̂i := T (Pi) =

ti ∈ Rn+1

∣∣∣∣∣∣∣∣∣∣
for each j ∈ Ai : tij ≤ tin and aLi ≤ tij ≤ aij

for each j ∈ Bi : tij ≤ tin and tin + aij − aUi ≤ tij ≤ aij

ti0 = ai0, ai0 ≤ tin ≤ ain

 .

We further relax P̂i to P̄i as follows:

P̄i =

ti ∈ Rn+1

∣∣∣∣∣∣
tij ≤ tin and a′iL ≤ tij ≤ aij

ti0 = ai0, ai0 ≤ tin ≤ ain

 ,

where a′iL = min{aLi , ai0 + aij − aUi }. Let P̂ =
∏d

i=1 P̂i and P̄ =
∏d

i=1 P̄i.

Proposition 2.2.2 Let G :=
{

(t, φ)
∣∣ t ∈ P̂ , (t, φ) ∈ conv(ΦP̄ )

}
. Then, conv(ΦP̂ ) =

G. Moreover, conv(ΦP ) =
{

(u, φ)
∣∣ u ∈ P, (T (u), φ

)
∈ conv(ΦP̄ )

}
.

Proof Since ΦP̂ ⊆ G and G is convex, it follows that conv(ΦP̂ ) ⊆ G. Now, we

show that conv(ΦP̂ ) ⊇ G. Let (t, φ) ∈ G. It follows that t ∈ P̂ and there exist

convex multipliers λk and (tk, φk) ∈ ΦP̄ such that (t, φ) =
∑

k λk(t
k, φk). Let t̄kij =

max
{
tkij, a

L
i , t

k
in + aij − aUi

}
. We show that (t̄kij)

n+1
j=1 ∈ P̂i. This is easily verified since

t̄kin = tkin, t̄ki0 = tki0, and max
{
tkij, a

L
i , t

k
in + aij − aUi

}
≤ min

{
tkin, aij

}
. Since tkin = t̄kin, it

follows that (t̄k, φk) ∈ conv(ΦP̂ ). Then, (t̄, φ) :=
∑

k λk(t̄
k, φk) ∈ conv(ΦP̂ ). However,

t̄ ∈ P̂ and t̄ ≥ t. Therefore, conv(ΦP̂ ) ⊇ G because t ∈ P̂ and

convP̂ (φ)(t) ≤ convP̂ (φ)(t̄) ≤ φ ≤ concP̂ (φ)(t̄) ≤ concP̂ (φ)(t).

The second and third inequality follow from (t̄, φ) ∈ conv(ΦP̂ ). We will now show

the first inequality, and the argument for the last inequality is similar. To see that

convP̂ (φ)(t) ≤ convP̂ (φ)(t̄), let ū = T−1(t̄) and u = T−1(t) and observe that

convP̂ (φ)(t) = convP (φ)(u) ≤ convP (φ)(ū) = convP̂ (φ)(t̄),

where the first and last equality is because convex envelopes do not change when

the domain and argument undergo the same invertible affine transformation and the



23

inequality follows from Lemma 2.2.1 for −φ because, for j ∈ Ai\{0, n} (resp. j ∈ Bi),

uij ≤ ūij (resp. uij ≥ ūij), ui0 = ūi0, and uin = ūin. The last statement in the result

follows since T is an affine transformation and T (u) ∈ P̂ if and only if u ∈ P .

Since P̄ is a special case of P with Bi = ∅ for all i, Proposition 2.2.2 shows that this

special case is sufficient to treat the general case. Combined with Proposition 2.2.1,

it suffices to consider P̄ with aLi = ai0. We may further assume that a10 < ai1 <

· · · < ain, i.e., we may assume that aijs are strictly increasing in j since we may

replace with uij the maximum of all underestimators that share the same bounds.

Unless specified otherwise, we will, from here onwards, let P (a) denote
∏d

i=1 Pi(ai)

for ai0 < · · · < ain, where

Pi(ai) =

ui ∈ Rn+1

∣∣∣∣∣∣
uij ≤ uin and ai0 ≤ uij ≤ aij

ui0 = ai0, ai0 ≤ uin ≤ ain

 . (2.6)

We showed in Example 2.1.1 that redundant underestimators of inner functions

can help improve the relaxation of the composite function. However, when the under-

estimators are obtained using a convex combination derivation, we will show that they

do not improve the quality of the relaxation. For each pair
(
u(x), a

)
satisfying (2.1),

we denote by RCR

(
u(x), a

)
, the relaxation of composite function φ ◦ f obtained as

in Theorem 2.2.1. Now, consider a vector of underestimators u′(x) and their upper

bounds a′ obtained by taking convex combinations of u(x) and a. More precisely, let

Λi be a nonnegative matrix in R(n+1)×(n′+1), where rows indexes are in {0, . . . , n} and

columns indexes are in {0, . . . , n′} such that

Λi ≥ 0, en+1Λi = en
′+1, Λi(·, 0) = (1, 0, . . . , 0)>, Λi(·, n′) = (0, . . . , 0, 1)>, (2.7)

where ek is the all-ones row vector in Rk and Λi(·, k) is the kth column of the matrix

Λi. We let ui(x) (resp. u′i(x)) denote a row vector of n + 1 (resp. n′ + 1) func-

tions
(
ui0(x), . . . , uin(x)

)
(resp.

(
u′i0(x), . . . , u′in′(x)

)
). Then, we define u′(x) : Rd 7→

Rd×(n′+1) such that the ith row of u′(x) is u′i(x) := ui(x)Λi and a′ ∈ Rd×(n′+1) such

that the ith row of a′ is a′i := aiΛi. First two conditions in (2.7) imply that, for
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all i and k ∈ {0, . . . , n′}, u′ik(x) and the corresponding bound a′ik are obtained by

taking a convex combination of ui0(x), . . . , uin(x) and their bounds ai0, . . . , ain re-

spectively. The third (resp. fourth) requirement in (2.7) ensure that u′i0 = ui0 and

a′i0 = ai0 (resp. u′in′ = uin and a′in′ = ain). Therefore, the new pair
(
u′(x), a′

)
satisfies

the requirements in (2.1). Thus, we can derive a valid relaxation RCR(u′(x), a′) for

the composite function φ ◦ f using
(
u′(x), a′

)
as in Theorem 2.2.1. In the following

proposition, we show that RCR

(
u(x), a

)
⊆ RCR

(
u′(x), a′

)
.

Proposition 2.2.3 Let
(
u(x), a

)
be a pair which satisfies conditions in (2.1) and

Λi be a matrix defined in (2.7). Define u′(x) ∈ Rd 7→ Rd×(n′+1) such that u′ij(x) =

ui(x)Λi(·, j) and a′ ∈ Rd×(n′+1) such that a′ij = aiΛi(·, j). Then, RCR

(
u(x), a

)
⊆

RCR

(
u′(x), a′

)
.

Proof Let (x, u·n, φ) ∈ RCR

(
u(x), a

)
. Define u = u(x) and thus (u, φ) ∈ conv

(
ΦP (a)

)
.

Let u′ = u′(x). By the definition of u′(x), u′i = ui(x)Λi. To show that RCR

(
u(x), a

)
⊆

RCR

(
u′(x), a′

)
, we only need to show that (u′, φ) ∈ conv

(
ΦP (a′)

)
. Let A be the affine

transform used to obtain (u′, φ) from (u, φ). Then, the result follows because:

(u′, φ) = A(u, φ) ∈ A conv
(
ΦP (a)

)
= conv

(
AΦP (a)

)
⊆ conv

(
ΦP (a′)

)
,

where the first equality is by definition, the second equality is because A, being an

affine transform, commutes with convexification. All that remains to show is the

final containment. This follows if we show that, for each (ū, φ̄) ∈ ΦP (a), the point

(ū′, φ̄) := A(ū, φ̄) ∈ ΦP (a′), where we recall that A is such that ū′i = ūiΛi. Observe

that ai0e
n+1Λi ≤ ūiΛi ≤ aiΛi shows that ai0e

n′+1 ≤ ū′i ≤ a′i and ūiΛi ≤ ūin+1e
n+1Λi

shows that ū′i ≤ ūin+1e
n′+1 = ū′in+1e

n′+1. Finally, since ūin = ū′in, it follows that

φ̄ = φ(ū1n, . . . , ūdn) = φ(ū′1n, . . . , ū
′
dn). Therefore, (ū′, φ̄) ∈ ΦP (a′) and the result

follows.

Example 2.2.1 As in Example 2.1.2, consider the monomial x2
1x

2
2 over [0, 2]2 and

the underestimator ui = max{0, 2xi− 1}, which is bounded from above by 3. Now, let
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wi(xi) := 2
3
× ui(xi) + 1

3
× 0 = max

{
4
3
xi− 2

3
, 0
}

. Clearly, wi(xi) is an underestimator

of x2
i bounded from above by 2. Let

a′ =

0 2 3 4

0 2 3 4

 and u′(x) =

0 w1(x) u1(x) x2
1

0 w2(x) u2(x) x2
2

 .
In this example, we qualify the underestimating functions of Theorem 2.1.1 with the

underestimators used to derive them. For example, e2(w1, f1, u2, f2) denotes the un-

derestimator e2 obtained therein using the underestimator w1(x) instead of u1(x). One

of non-vertical facet-defining inequalities for the convex envelope of the bilinear term

f1f2 over the polytope P
(
a′
)

is given by:

φ ≥ w1 + 3f1 + 2u2 + 2f2 − 14, (2.8)

which is obtained from Theorem 2.1.1 as f1f2 ≥ e2(w1, f1, u2, f2). By substituting w1,

f1, u2, and f2 with 4
3
x1 + 2

3
, x2

1, 2x2 − 1, and x2
2 respectively, we obtain:

φ ≥ 4

3
x1 + 4x2 + 3x2

1 + 2x2
2 − 16− 2

3
.

Even though this inequality is not directly obtained from Theorem 2.1.1 when u1(x) is

the underestimator for f1(x), it is redundant and is obtained as φ ≥ 2
3
e2(u1, f1, u2, f2)+

1
3
e4(u1, f1, u2, f2), after substitution, derived as in Example 2.1.2. A tighter cut can be

obtained from (2.8) by substituting w1 with
(
4−2
√

2
)
x1 +

(
2−
√

2
)2

, which is the sub-

gradient of x2
1 at 2−

√
2 and is bounded from above by 2. However, this underestimator

is not a convex combinations of 0, u1(x1), and f1(x1).

2.3 Polynomial time equivalence of separations

To efficiently utilize conv(ΦP ) for constructing relaxations, we must solve the

separation problem of conv(ΦP ), that is, given a vector (ū, φ̄) we need to determine if

(ū, φ̄) ∈ conv(ΦP ) and, if not, find a hyperplane that separates (ū, φ̄) from conv(ΦP ).

In this section, we will prove that the separation problem of conv(ΦP ) can be solved

in polynomial time, given a polynomial time separation oracle for conv(ΦQ), where
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Q :=
∏d

i=1Qi for a certain subset Qi of Pi, which will be formally defined in (4.16),

and

ΦQ :=
{

(s1, . . . , sd, φ)
∣∣ φ = φ(s1n, . . . , sdn), (s1, . . . , sd) ∈ Q1 × · · · ×Qd

}
.

This result admits many applications because the structure of the vertex set vert(Q)

is much simpler than that of vert(P ). In particular, each Qi is a simplex and, thus,

Q is a cartesian product of simplices. As a result, there are conditions under which

we are able to devise a polynomial-time separation algorithm of conv(ΦQ), while a

similar algorithm for conv(ΦP ) is not directly apparent.

2.3.1 An extended formulation for polyhedral abstraction

In this subsection, we introduce a subset Qi of Pi, characterize its vertices and

facet-defining inequalities, and relate the two sets, ΦP and ΦQ, as projections of a

common extended formulation.

Let ai be a strictly increasing vector in Rn+1 and let Vi := (vi0, . . . , vin) be a

symmetric matrix in R(n+1)×(n+1) whose jth column is:

vij = (ai0, . . . , aij−1, aij, . . . , aij) j = 0, . . . , n. (2.9)

By a slight abuse of notation, we will also treat Vi as a set of points {vi0, . . . , vin} so

that conv(Vi) denotes the convex hull of columns of Vi, i.e., conv(Vi) := conv(vi0, . . . , vin).

Define Qi := conv(Vi). Since Vi ⊆ Pi, it follows that Qi ⊆ Pi.

Now, we show that Qi can be seen as an invertible affine transform of ∆i defined

as:

∆i :=
{
zi ∈ Rn+1

∣∣ 0 ≤ zin ≤ · · · ≤ zi1 ≤ zi0 = 1
}
. (2.10)

Denote by ζij the vector
∑j

j′=0 ej′ for all j = 0, . . . , n, where ej is the jth principal

vector in Rn+1 with e0 = (1, 0, . . . , 0)>. It can be verified that vert(∆i) = {ζij}nj=0.

Moreover, it follows readily that points ζi0, . . . , ζin are affinely independent since the

matrix ζi ∈ R(n+1)×(n+1) := (ζi0, . . . , ζin) is invertible, being the upper triangular
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matrix of all ones. Thus, dim(∆i) = n. The affine transformation that maps Qi to

∆i is Zi : Rn+1 7→ Rn+1 and is defined as follows:

zi0 = 1 and zij =
sij − sij−1

aij − aij−1

for j = 1, . . . , n. (2.11)

To verify that ∆i = Zi(Qi) observe that Zi maps vij to ζij. Then, Z−1
i is given by:

sij = ai0zi0 +

j∑
k=1

(aik − aik−1)zik for j = 0, . . . , n, (2.12)

and Qi = Z−1
i (∆i). We now characterize the extreme points and facet-defining in-

equalities of Qi.

Lemma 2.3.1 Let ai := (ai0, . . . , ain) be a strictly increasing vector in Rn+1 and let

Qi := conv(Vi). Then, Qi is a simplex so that vert(Qi) = Vi, and

Qi =
{

(sij)
n
j=0

∣∣∣ si0 = ai0, 0 ≤ sin − sin−1

ain − ain−1

≤ · · · ≤ si1 − si0
ai1 − ai0

≤ 1
}
, (2.13)

where all the inequalities are facet-defining. For j, j′, and j′′, satisfying 0 ≤ j < j′ <

j′′ ≤ n, each point in Qi satisfies 0 ≤ sij′′−sij′
aij′′−aij′

≤ sij′−sij
aij′−aij

≤ 1.

Proof The inequality description follows from the preceding discussion since Qi

and ∆i are related by an invertible affine transform, which maps vij to ζij and the

constraints in (2.13) transform those in (2.10). Now, we show the last statement in

the result. For any 0 ≤ j < j′ ≤ 1, it follows that
sij′−sij
aij′−aij

=
∑j′

k=j+1
sik−sik−1

aik−aik−1

aik−aik−1

aij′−aij
,

which is a convex combination of sik−sik−1

aik−aik−1
for k = j + 1, . . . , j′. Therefore, it follows

from (2.13) that 0 ≤ sij′′−sij′
aij′′−aij′

≤ sij′−sij
aij′−aij

≤ 1.

Next, we lift simplex Qi into the space of (ui, si) variables by imposing the ordering

constraints ai0e ≤ ui ≤ si, ui0 = si0, and uin = sin, which yields a polytope

PQi =
{

(ui, si)
∣∣ ui0 = si0 = ai0, uin = sin, ai0e ≤ ui ≤ si, si ∈ Qi

}
, (2.14)

where e is the all-ones vector in Rn+1. Let ΦPQ :=
{

(u, s, φ)
∣∣ φ = φ(s1n, . . . , sdn), (u, s) ∈

PQ
}

. We now show that ΦP and ΦQ are projections of ΦPQ.
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Lemma 2.3.2 Let ai be a strictly increasing vector in Rn+1. Then, projui(PQi) = Pi

and projsi(PQi) = Qi. Moreover, ΦP = proj(u,φ)(Φ
PQ) and ΦQ = proj(s,φ)(Φ

PQ).

Proof We first argue that projsi(PQi) = Qi. If (ui, si) ∈ PQi then si ∈ Qi, and

therefore projsi(PQi) ⊆ Qi. To show Qi ⊆ projsi(PQi), we consider a point si ∈ Qi

and observe (si, si) ∈ PQi. Second, we argue that projui(PQi) = Pi. To show

Pi ⊆ projui(PQi), let ui ∈ Pi and define sij = min{aij, uin} for all j. We will show

(ui, si) ∈ PQi. It follows readily that, for j ∈ {0, n}, uij = sij and ui ≤ si. In

addition, observe that there exists a j′ such that aij′−1 ≤ uin ≤ aij′ . By direct

computation, si = λvij′−1 + (1− λ)vij′ , where λ =
aij′−uin
aij′−aij′−1

. In other words, si ∈ Qi.

To prove projui(PQi) ⊆ Pi, we consider a point (ui, si) ∈ PQi and show ui ∈ Pi.

Clearly, ui0 = ai0. Also, for j = 1, . . . , n, ai0 ≤ uij ≤ sij ≤ min{uin, aij}, where

the first two inequalities hold by the definition of PQi and the last inequality holds

because uin = sin and the inequality, sij ≤ min{aij,sin}, is satisfied by all extreme

points of Qi.

The last two statements follow similarly because ΦP , ΦQ, ΦPQ are obtained from

P , Q, and PQ respectively, by adding a coordinate φ which depends only on coordi-

nates shared by P , Q, and PQ, namely (u1n, . . . , udn) = (s1n, . . . , sdn).

Lemma 2.3.2 implies that conv(ΦP ) = conv
(
proj(u,φ)(Φ

PQ)
)

= proj(u,φ) conv
(
(ΦPQ)

)
,

where the second equality holds because conv(AS) = A conv(S) for any affine map-

ping A and a set S. Similarly, conv(ΦQ) = proj(u,φ) conv
(
ΦPQ

)
.

Now, we characterize conv(ΦPQ) by using conv(ΦQ) as follows:

conv(ΦPQ) =
{

(u, s, φ)
∣∣ (s, φ) ∈ conv(ΦQ), (u, s) ∈ PQ

}
. (2.15)

We will establish the equality in a more general setting, so we can also apply the result

when we consider the convex hull of a vector of functions over PQ in Section 2.4. Let

X := {(x, µ) ∈ Rm+k | µ = f(x), x ∈ X} be the graph of a vector of functions

f : Rm 7→ Rk over a non-empty subset X of Rm. Let l : Rm 7→ Rn and h : Rm 7→ Rn

be vectors of affine functions. We consider a set Z defined as:

Z =
{

(x, y, µ) ∈ Rm+n+k
∣∣ l(x) ≤ y ≤ h(x), (x, µ) ∈ X

}
.
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Clearly, ΦPQ is of the form of Z, where X = ΦQ, h(s) = s, lin(s) = sin, and lij(s) = ai0

if j < n. Interpreting Z as such, the following result implies the equality in (2.15).

Lemma 2.3.3 Assume that l(x) ≤ h(x) for all x ∈ X. Then, we have conv(Z) ={
(x, y, µ)

∣∣ (x, µ) ∈ conv(X ), l(x) ≤ y ≤ h(x)
}

.

Proof Let R :=
{

(x, y, µ)
∣∣ (x, µ) ∈ conv(X ), l(x) ≤ y ≤ h(x)

}
. The inclusion

conv(Z) ⊆ R follows from Z ⊆ R since R is convex. We now show that R ⊆ conv(Z).

Let (x′, y′, µ′) ∈ R. Clearly, (x′, y′, µ′) lies in the hypercube, H :=
{

(x, y, µ)
∣∣ (x, µ) =

(x′, µ′), l(x′) ≤ y ≤ h(x′)
}

. So, it suffices to show that the vertex set of H belongs

to conv(Z). We only show that vertices of the form
(
x′, l(x′), µ′

)
lie in conv(Z) since

a similar argument applies to the remaining vertices.

Let Z ′ :=
{

(x, y, µ)
∣∣ (x, µ) ∈ X , y = l(x)

}
and express it as the image of X

under the affine transformation A : (x, µ) →
(
x, l(x), µ

)
. Therefore, conv(Z ′) =

conv
(
A(X )

)
= A

(
conv(X )

)
and, so,

(
x′, l(x′), µ′

)
∈ A

(
conv(X )

)
= conv(Z ′) ⊆

conv(Z), where the last containment follows because Z ′ ⊆ Z is implied by our as-

sumption that l(x) ≤ h(x) for all x ∈ X.

2.3.2 A combinatorial algorithm for polynomial equivalence

Before establishing polynomial equivalence of the separation problems associ-

ated with conv(ΦP ) and conv(ΦQ), we discuss an application of this result. Since

vert(Q) =
∏d

i=1 vert(Qi) and |vert(Qi)| = n + 1, it follows that |vert(Q)| = (n + 1)d.

In other words, if d is a constant, the number of vertices of Q is polynomial in n.

More generally, assuming r and d are constants, the number of r dimensional faces of

Q is polynomial in n, being upper-bounded by (n + 1)d
(
nd
r

)
. Since convex/concave-

envelopes of many functions depend only on the function value at the vertices or,

more generally, low-dimensional faces of the domain over which the function is con-

vex, we can construct polynomial-sized formulations for separation of conv(ΦQ) and,

therefore, of conv(ΦP ). For simplicity, we only discuss the implication of the equiva-
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lence of separating concQ(φ) and concP (φ) since a similar discussion directly applies

to convQ(φ) and convP (φ) by considering −φ instead.

Definition 2.3.1 ( [16]) A function g : D 7→ R, where D is a polytope, is concave-

extendable (resp. convex-extendable) from X ⊆ D if the concave (resp. convex)

envelope of g(x) is determined by X, that is, the concave envelope of g and g|X over

D are identical, where g|X is the restriction of g to X:

g|X =

g(x) x ∈ X

−∞ otherwise.

If φ is concave-extendable from vertices of Q then, using Theorem 2.4 in [16], we

can separate (s̄, φ̄) ∈ Rd×(n+1)×R from the hypograph of concQ(φ)(s) by solving the

following linear program:

min
(α,b)

〈α, s̄〉+ b

s.t. 〈α, v〉+ b ≥ φ
(
v1n, . . . , vdn

)
∀v ∈ vert(Q)

α ∈ Rd×(n+1), b ∈ R,

(2.16)

where an extreme point solution (α∗, b∗) yields a facet-defining inequality of concQ(φ)(s)

tight at s̄, i.e. 〈α∗, s̄〉+ b∗ = concQ(φ)(s̄). We retain b although it can be absorbed in

αi0 if ai0 6= 0. Since |vert(Q)| = (n + 1)d, it follows that the size of the LP (2.16) is

polynomial in n for a fixed d. As an example of the usefulness of this construction, ob-

serve that multilinear functions are convex and concave extendable from the vertices

of Q (see [9]). Then, as Theorem 2.3.1 shows, the above LP gives a tractable approach

to separate conv(ΦQ), when φ is multilinear and d is fixed. Techniques in [47] can be

used to identify whether a function is concave-extendable (convex-extendable) from

vertices of Q.

Theorem 2.3.1 Assume that φ(s1n, . . . , sdn) is concave-extendable from vert(Q) and

d is a fixed constant. For any given s̄ ∈ Rd×(n+1), there exists a polynomial time

procedure to generate a facet-defining inequality of concQ(φ)(s) that is tight at s̄.
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Proof Given s̄ ∈ Q, the LP (2.16) can be solved in polynomial time by using an

interior point algorithm. Moreover, by Lemma 6.5.1 in [48], an optimal extreme point

solution of linear program (2.16) can be found in polynomial time. Then, the result

follows from Theorem 2.4 in [16].

Remark 2.3.1 Although the separation problem of concQ(φ)(u) can be directly for-

mulated as a LP of polynomial size, the similar LP formulation for concP (φ)(u) using

the construction of (2.16) is exponentially-sized in n because the |vert(Pi)| is expo-

nential in n. To see this, for i ∈ {1, . . . , d}, consider the face of Pi defined as

Fi := Pi ∩ {ui | uin = ain}. Since Fi coincides with the hypercube {ui | uin =

ain, ai0 ≤ uij ≤ aij j = 1, . . . , n − 1} and ai0 < aij for j = 1, . . . , n − 1, it fol-

lows that |vert(Fi)| = 2n−1. Because vert(Fi) ⊆ vert(Pi), |vert(Pi)| ≥ 2n−1. Since

vert(P ) =
∏d

i=1|vert(Pi)|, |vert(P )| ≥ 2d(n−1).

Remark 2.3.2 A convex program, similar to the above LP, can be written to treat

the separation problem of concQ(φ)(s) for more general cases. For example, consider

the case when concQ(φ) is determined by its value over polynomially many faces of

Q (for example, faces of dimension r or less, for some constant r) and φ is concave

over those faces. To treat this case, we replace the constraint in (2.16) with b ≥

supx∈F
{
φ(x) − 〈α, x〉

}
= (−φ)∗F (−α), for each face F of Q which is required in the

computation of concQ(φ). Here, (−φ)∗F denotes the Fenchel conjugate of −φ with its

domain restricted to F .

We now show that separating conv(ΦP ) and conv(ΦQ) are polynomially equivalent.

To this end, we devise a combinatorial algorithm that solves the separation problem

of conv(ΦP ) in O(dn) and a separation oracle call for conv(ΦQ). We also derive many

structural insights relating conv(ΦP ) and conv(ΦQ) that are useful in applications

and illustrate their use to bilinear term in Section 2.3.3.

We start by presenting a brief preview of our construction. Given a point (ū, φ̄) 6∈

conv(ΦP ), where ū := (ū1, . . . , ūd) ∈ P , we first devise a lifting procedure, Algo-

rithm 1, to lift ūi to a particular point (ūi, s̄i) ∈ PQi for all i = 1, . . . , d. For this
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particular pair (ūi, s̄i), we show in Proposition 2.3.2 that s̄ij can be expressed as a con-

vex combination of ūi0, . . . , ūin for all i = 1, . . . , d and j = 0, . . . , n. Second, we show

that (s̄, φ̄) 6∈ conv(ΦQ). Third, we augment the separation oracle for concQ(φ)(s)

to generate a cut which satisfies a certain sign condition on coefficients and cuts off

(s̄, φ̄). Last, given a cut for concQ(φ)(s) satisfying these sign conditions, we derive a

valid cut for concP (φ)(u). The lifting procedure is a cornerstone in the proof archi-

tecture. Before presenting the lifting procedure formally, we illustrate, in the next

example, the main idea behind the procedure.

ui(x)

x
0 1 2

−1

0

1

2

3

4 ui2(x) = x2

ui1(x) = 2x− 1

ui0(x) = 0

(a) bounded estimators

ui(x)

x
0 1

0

0.25

0.5

0.75

1

max{0.75ui2(x), ui1(x)}

ui1(0.5)

si1(0.5)
ui2(0.5)

(b) improvement

ui

ai
0 1 2 3 4

0

0.05

0.1

0.15

0.2

0.25

(ai1, si1)

(ai1, ui1)

(c) envelope

ui1

ui2 = si2

si1

ui

(ui, si)
si

(d) lifting

Fig. 2.1.: Illustration of the lifting procedure

Example 2.3.1 Consider x2 over the interval [0, 2], and define

ui(x) =
(
ui0(x), ui1(x), ui2(x)

)
where ui0(x) := 0, ui1(x) := 2x − 1 and ui2(x) := x2, which are bounded from

above by ai0 = 0, ai1 = 3 and ai2 = 4 respectively (see Figure 2.1a). Next, we
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derive the largest underestimator sij(x) bounded from above by aij by taking con-

vex combinations of provided underestimators. More specifically, for all j, sij(x) :=

max
{∑2

j′=0 λ
′
juij′(x)

∣∣ ∑2
j′=0 λ

′
jaij′ = aij

}
. In Figure 2.1b, we tighten ui1(x) to

si1(x) = max
{

0.75ui2(x), ui1(x)
}

, because 0.75ui2(x) + 0.25ui0(x) = 0.75ui2(x) is

an underestimator which is bounded from above by 0.75ai2 + 0.25ai0 = 3. We let

si0(x) = ui0(x) and si2(x) = ui2(x).

We will find it useful to visualize the evaluation of si(x) as depicted in Figure 2.1c.

Consider x = 0.5 and let ui = ui(0.5). In order to evaluate si1(x) at 0.5, we compute

conc[0,2](ξ)(a;ui) at a = ai1 = 3, where ξ(a;ui) is a univariate discrete function

whose graph consists of the points,
{

(ai0, ui0), (ai1, ui1), (ai2, ui2)
}

, which are depicted

as black nodes in Figure 2.1c. In this way, the construction of the envelope of this

univariate function lifts ui = ui(0.5) = (0, 0, 0.25) to (ui, si) =
(
ui(0.5), si(0.5)

)
=(

(0, 0, 0.25), (0, 0.1875, 0.25)
)
. The obtained pair (ui, si) belongs to PQi = {ui0 =

0, ui1 ≤ si1, ui2 = si2, si ∈ Qi}, where Qi :=
{
si0 = 0, 0 ≤ si2−si1

1
≤ si1−si0

3
≤ 1

}
;

see Figure 2.1d. Observe, that in order to be able to draw a 3-D figure, we do not

show axes for the variables ui0 and si0 which are fixed to 0 and exploit uin = sin to

depict both these variables on the same axis.

We now formally introduce the lifting operation illustrated in Example 2.3.1.

Given a point ū = (ū1, . . . , ūd) ∈ P1× · · · ×Pd, for each i ∈ {1, . . . , d}, we lift ūi ∈ Pi
to a point (ūi, s̄i), where s̄i is an optimal solution of the following LP:

min
s

n∑
j=0

sij,

s.t. ūi ≤ si

si ∈ Qi.

(2.17)

By Lemma 2.3.2, the feasible region of the linear program (2.17) is non-empty. We

will show that (2.17) has an unique optimal solution and propose an algorithm, Al-

gorithm 1, to solve (2.17) in O(n) operations. This algorithm relies on representing
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points in Pi as discrete univariate functions in the following way. With a point ui ∈ Pi,

we associate a discrete univariate function ξ(a;ui) : [ai0, ain] 7→ R as follows:

ξ(a;ui) =

uij a = aij for j ∈ {0, . . . , n}

−∞ otherwise.

(2.18)

Moreover, let ξ̂(a;ui) : [ai0, ain] 7→ R be the piecewise-linear interpolation of ξ(a;ui)

such that ξ̂(a;ui) = ξ(a;ui) for a ∈ {ai0, . . . , ain} and, for all j = 1, . . . , n, the

restriction of ξ̂(a;ui) to [aij−1, aij] is linear. Next, we characterize points in the

simplex Qi as a family of univariate concave functions.

Lemma 2.3.4 Given a point si ∈ Qi, the extension ξ̂(a; si) : [ai0, ain] 7→ R is a non-

decreasing concave function such that ξ̂(a; si) ≤ a for a ∈ [ai0, ain] and ξ̂(ai0; si) = ai0.

On the other hand, if a concave function ψ : [ai0, ain] 7→ R satisfies

ψ(a) ≤ a for a ∈ [ai0, ain], ψ(ai0) = ai0, and ψ is non-decreasing (2.19)

then si :=
(
ψ(ai0), . . . , ψ(ain)

)
belongs to Qi.

Proof We start by proving the first part. Let si ∈ Qi. By Lemma 2.3.1, there

exists an unique non-negative vector λi ∈ Rn+1 such that si =
∑n

j=0 λijvij, where vij

is defined as in (4.16). Then, there exists a j′ ∈ {1, . . . , n} and γ ∈ [0, 1] such that

ξ̂(a; si) = (1− γ)ξ(aij′−1; si) + γξ(aij′ ; si)

= (1− γ)
n∑
j=0

λijξ(aij′−1; vij) + γ
n∑
j=0

λijξ(aij′ ; vij)

=
n∑
j=0

λij
(
(1− γ)ξ(aij′−1; vij) + γξ(aij′ ; vij)

)
=

n∑
j=0

λij ξ̂(a; vij),

where the first equality is because for a ∈ [ai0, ain], there exists j′ ∈ {1, . . . , n} and

γ ∈ [0, 1] such that a = (1 − γ)aij′−1 + γaij′ and ξ̂(a; si) is linear over [aij′−1, aij′ ],

the second equality is by linearity of ξ(a; si) with respect to si, the third equality is
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by rearrangement of terms, and last equality holds because ξ̂(a; si) is linear in a over

[aij′−1, aij′ ]. Since, for all j ∈ {0, . . . , n}, ξ̂(a; vij) ≤ a for a ∈ [ai0, ain], ξ̂(ai0; vij) = ai0,

ξ̂(a; vij) is a non-decreasing concave function, and these properties are closed under

convex combination, it follows that ξ̂(a, si) follows these properties as well.

Assume that ψ(a) is a univariate concave function satisfying (2.19). Then, we

define si :=
(
ψ(ai0), . . . , ψ(ain)

)
and let zi := Zi(si), where Zi is as defined in (4.17).

By the discussion preceding Lemma 2.3.1, to prove that si ∈ Qi, it suffices to show

that zi ∈ ∆i. Clearly, we have zij ≥ 0 because ψ is non-decreasing. Moreover, we

have zi1 = si1−si0
ai1−ai0 ≤ 1 because ψ(ai0) = ai0 and ψ(ai1) ≤ ai1. Finally, we show that

the concavity of ψ implies that zin ≤ · · · ≤ zi1. Let j′ ∈ {1, . . . , n − 1}, and let

ψ(a) ≤ L(a) be a supergradient inequality of ψ at aij′ . It follows readily that

zij′+1 =
ψ(aij′+1)− ψ(aij′)

aij′+1 − aij′
≤ L(aij′+1)− L(aij′)

aij′+1 − aij′

=
L(aij′)− L(aij′−1)

aij′ − aij′−1

≤ ψ(aij′)− ψ(aij′−1)

aij′ − aij′−1

= zij′ ,

where first equality and last equality follow by definition, first inequality holds because

ψ(aij′+1) ≤ L(aij′+1) and ψ(aij′) = L(aij′), second equality is the linearity of L(a),

second inequality holds because ψ(aij′) = L(aij′) and ψ(aij′−1) ≤ L(aij′−1).

Now, we present Algorithm 1 to lift a point in Pi to another in PQi. To lift, the

algorithm constructs the concave envelope of the discrete one-dimensional function

defined in (2.18). Formally, given a point ūi ∈ Pi, let ξ(a; ūi) be a discrete func-

tion associated with the point ūi. The graph of ξ(a; ūi) consists of (n + 1) points

(ai0, ūi0), . . . , (ain, ūin) in R2, which are sorted using the first coordinate. The con-

cave envelope of ξ(a; ūi) over [ai0, ain] can be found using two-dimensional convex hull

algorithms (see [49,50]). In particular, since points of the graph of ξ(a; ūi) are sorted

in terms of the first coordinate, Graham scan [50] takes O(n) to derive the envelope.

Proposition 2.3.1 Given ūi ∈ Pi Algorithm 1 returns the unique optimal solution

s̄i of (2.17) in O(n).
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Algorithm 1 Lifting procedure

1: procedure Lifting(ūi)

2: construct function ξ(a; ūi)

3: apply Graham scan to obtain conc(ξ)(a; ūi)

4: (s̄i0, . . . , s̄in)← (conc(ξ)(ai0; ūi), . . . , conc(ξ)(ain; ūi))

5: return s̄i.

6: end procedure
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Proof We first show that s̄i is a feasible solution to (2.17). Clearly, ūi ≤ s̄i be-

cause ξ(a; ūi) ≤ conc(ξ)(a; ūi). Next, we show that conc(ξ)(a; ūi) satisfies the three

conditions in (2.19), and, therefore, by the second result in Lemma 2.3.4, s̄i ∈ Qi.

First, conc(ξ)(ai0; ūi) = ξ(ai0; ūi) = ūi0 = ai0. Second, observe that ξ(a; ūi) ≤ a since,

for all i and j, ūij ≤ aij. This implies that conc(ξ)(a; ūi) ≤ a because by definition

conc(ξ)(a; ūi) is the smallest concave overestimator of ξ(a; ūi) over [ai0, ain]. Last,

we show the monotonicity of conc(ξ)(a; ūi). Observe that, for every a ∈ [ai0, ain],

conc(ξ)(a; ūi) ≤ ūin = ξ(ain, ūi) = conc(ξ)(ain; ūi), where first inequality holds be-

cause ūij ≤ ūin implies that ξ(a; ūi) ≤ ūin. Consider two points a′, a′′ such that

a′ < a′′ < ain. Let λ ∈ [0, 1] such that a′′ = (1 − λ)a′ + λain. Observe that

conc(ξ)(a′′; ūi) ≥ (1 − λ) conc(ξ)(a′; ūi) + λ conc(ξ)(ain; ūi) ≥ conc(ξ)(a′; ūi), where

the first inequality is by concavity of conc(ξ) and the second inequality is because

conc(ξ)(a′; ūi) ≤ conc(ξ)(ain; ūi).

Next, we prove by contradiction that s̄i is the optimal solution of (2.17). Suppose

that s′i is a feasible solution so that
∑n

j=0 s
′
ij ≤

∑n
j=0 s̄ij and s′i 6= s̄i. As s′i ∈ Qi

it follows from the first statement of Lemma 2.3.4 that ξ̂(a; s′i) is a concave function

over the interval [ai0, ain]. Moreover, we have ξ(a; ūi) ≤ ξ̂(a; s′i) because ūi ≤ s′i.

In other words, ξ̂(a; s′i) is a concave overestimator of ξ(a; ūi) over [ai0, ain]. By the

hypothesis,
∑n

j=0 ξ̂(aij; s
′
i) =

∑n
j=0 s

′
ij ≤

∑n
j=0 s̄ij =

∑n
j=0 conc(ξ)(aij; ūi). Since s′i 6=

s̄i, there exists a j′ ∈ {0, . . . , n} such that ξ̂(aij′ ; s
′
i) = s′ij′ < s̄ij = conc(ξ)(aij′ ; ūi),

contradicting that conc(ξ)(a; ūi) is the smallest concave overestimator of ξ(a; ūi) over

[ai0, ain].

Now, we study the following set

PQ′ :=
{

(u, s)
∣∣ si =

(
conc(ξ)(ai0;ui), . . . , conc(ξ)(ain;ui)

)
, i = 1, . . . , d

}
. (2.20)

Let (ū, s̄) ∈ PQ′. We will recover a mapping from ū to s̄ that is implicit in the con-

struction of conc(ξ). In order to do so, observe that the envelope, conc(ξ)(·; ūi), gives a

representation of (aij, s̄ij) as a convex combination of points in
{

(ai0, ūi0), . . . , (ain, ūin)
}

.
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Let J = (J1, . . . , Jd) be a d-tuple such that {0, n} ⊆ Ji ⊆ {0, . . . , n}. We define a

linear map, ΓJ : Rd×(n+1) 7→ Rd×(n+1), as follows:

ũij = uij for i ∈ {1, . . . , d} j ∈ Ji,

ũij = γijuil(i,j) + (1− γij)uir(i,j) for i ∈ {1, . . . , d} j /∈ Ji,
(2.21)

where l(i, j) := max{j′ ∈ Ji | j′ ≤ j}, r(i, j) := min{j′ ∈ Ji | j′ ≥ j}, and

γij = (air(i,j) − aij)/(air(i,j) − ail(i,j)) for j /∈ Ji. We will show that s̄ = ΓJ ′(ū) for

J ′ = (J ′1, . . . , J
′
d) such that J ′i := {j | ūij = s̄ij}. Geometrically, we identify a face of

Q in which the point s̄ lies. In Section 2.4.2, this characterization plays an important

role in establishing a polynomial time equivalence of facet generations between a

vector of functions over P and over Q. Recall that, by Lemma 2.3.1, vert(Qi) =

{vi0, . . . , vin}. For a d-tuple J = (J1, . . . , Jd) such that {0, n} ⊆ Ji ⊆ {0, . . . , n}, let

FJ := F1J(1) × · · · × FdJ(d), where FiJ(i) := conv({vij′ | j′ ∈ Ji}). It follows readily

that FiJ(i) is a face of the simplex Qi and can also be described as the set of points

of Qi, which satisfy the following at equality:

sij+1 − sij
aij+1 − aij

≤ sij − sij−1

aij − aij−1

for j /∈ Ji. (2.22)

By Lemma 2.3.1, given any j /∈ Ji, all points in Qi, and therefore in vert(Qi), satisfy

sij+1−sij
aij+1−aij ≤

sij−sij−1

aij−aij−1
. The vertices in {vij′ | j′ ∈ Ji} satisfy these inequalities at

equality while the remaining do not.

Proposition 2.3.2 Let J = (J1, . . . , Jd) be a d-tuple such that {0, n} ⊆ Ji ⊆ {0, . . . , n},

and let ΓJ be a linear map defined in (2.21). Then, we have
(
ΓJ(u), s

)
∈ PQ for every

(u, s) ∈ PQ. Moreover, inequality ΓJ(s) ≤ s defines the face FJ . Last, if (ū, s̄) ∈ PQ′

then s̄ = ΓJ ′(ū) and s̄ ∈ FJ ′, where J ′ = (J ′1, . . . , J
′
d) such that J ′i := {j | ūij = s̄ij}.

Proof We start by showing that
(
ΓJ(u), s

)
∈ PQ for every (u, s) ∈ PQ. Let

(u, s) ∈ PQ and define ũ := ΓJ(u). Clearly, for i ∈ {1, . . . , d} and j ∈ {0, n},

we have ũij = uij = sij, where first equality holds because {0, n} ⊆ Ji and second

equality holds because (u, s) ∈ PQ implies that ui0 = si0 and uin = sin. Moreover,

for all i and j, ai0 ≤ uij′ for every j′ ∈ {0, . . . , n} implies that ai0 ≤ ũij. Last, for i ∈
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{1, . . . , d}, ũi ≤ si follows because, for j ∈ {0, . . . , n}, we have ũij ≤ conc(ξ)(aij;ui) ≤

ξ̂(aij; si) = sij, where first inequality holds because the point (aij, ũij) is expressible as

a convex combination of the hypograph of ξ(a;ui), second inequality holds because,

by (ui, si) ∈ PQi and Lemma 2.3.4, ξ̂(a; si) is a concave overestimator of ξ(a;ui),

thus, of conc(ξ)(a;ui), and the equality is by definition.

Next, we show that inequality s ≥ ΓJ(s) defines the facet FJ of Q. Since, for

every s ∈ Q, (s, s) ∈ PQ, the validity of s ≥ ΓJ(s) over Q follows from the first

result. Then, we need to show that s = ΓJ(s) for s ∈ vert(FJ) and s 6= ΓJ(s) for

s ∈ vert(Q) \ vert(FJ). Let s′ = (s′1, . . . , s
′
d) ∈ vert(Q). Observe that s′ satisfies

s ≥ ΓJ(s) at equality if and only if, for i ∈ {1, . . . , d}, the associated extension

function ξ̂(a; s′i) is linear over [aij̄i , aiĵi ] for every 0 ≤ j̄i ≤ ĵi ≤ n such that j̄i, ĵi ∈ Ji
and Ji ∩ {j̄i + 1, . . . , ĵi − 1} = ∅. Observe that ξ̂(a; vij) is linear over intervals that

do not contain aij. If, for each i, there exists j′i ∈ Ji such that s′i = vij′i then ξ̂(a; vij′)

is linear over [aij̄i , aiĵi ] because j′i, being in Ji, does not belong to {j̄i + 1, . . . , ĵi − 1}.

Therefore, the point s′ satisfies s ≥ ΓJ(s) at equality. On the other hand, assume

that for some i ∈ {1, . . . , d}, there exists j′′ /∈ Ji, so that s′i = vij′′ . Since {0, n} ⊆ Ji

and j′′ /∈ Ji, there exist j̄i, ĵi ∈ Ji such that j̄i < j′′ < ĵi, ξ̂(a; vij′′i ) is not linear over

[aij̄i , aiĵi ], and s′ 6= ΓJ(s′).

Last, we prove the third result. Let (ū, s̄) ∈ PQ′. Then, we define (z̄1, . . . , z̄d) =(
Z1(s̄1), . . . , Zd(s̄d)

)
, where Zi is defined as in (4.17). Because s̄i ∈ Qi, 0 ≤ z̄in ≤

· · · ≤ z̄i1 ≤ z̄i0 = 1. We will show that that z̄ij+1 = z̄ij for all i and j /∈ J ′i . Thus,

by (2.22), s̄ ∈ FJ ′ , and, therefore, s̄ = ΓJ ′(s̄) = ΓJ ′(ū), where first equality holds by

the second result and second equality holds by the definition of ΓJ ′ and s̄ij = ūij for

all i and j ∈ J ′i . Now, we show that z̄ij+1 = z̄ij for all j /∈ J ′i . By definition, there are

j̄, ĵ and γ ≥ 0 such that s̄ij = γūij̄ + (1 − γ)ūiĵ. Since j 6∈ J ′i , we can assume that

0 ≤ j̄ < j < ĵ ≤ n. If not, assume wlog that j = ĵ. Then, 0 = aiĵ − aij = γ(aiĵ − aij̄)

implies that either γ = 0 or aiĵ = aij = aij̄. In either case, s̄ij = ūij, contradicting
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that j /∈ J ′i . Then, it follows that (aij, s̄ij), (aij̄, ūij̄), and (aiĵ, ūiĵ) are collinear. Let

L(a) be the function passing through these points. It follows that:

L(aij) ≥ γ′ conc(ξ)(aij−1, ūi) + (1− γ′) conc(ξ)(aij+1, ūi)

≥ γ′L(aij−1) + (1− γ′)L(aij+1)

= L(aij),

where γ′ =
aij+1−aij
aij+1−aij−1

. The first inequality is because L(aij) = conc(ξ)(aij, ūi) and

conc(ξ) is concave, second inequality is because γ′ ∈ [0, 1] and concavity of conc(ξ)

implies that conc(ξ)(aij−1, ūi) ≥ L(aij−1) and conc(ξ)(aij+1, ūi) ≥ L(aij+1), and the

equality is because of linearity of L. Therefore, equality holds throughout and s̄ij =

L(aij) = γ′ conc(ξ)(aij−1, ūi) + (1 − γ′) conc(ξ)(aij+1, ūi) = γ′s̄ij−1 + (1 − γ′)s̄ij+1,

thereby showing that z̄ij+1 = z̄ij.

Let 〈α, s〉+ βφ+ b ≥ 0 be a valid inequality generated for conv(ΦQ). We propose

an algorithm, Algorithm 2, to generate another valid inequality 〈α′, s〉 + βφ + b ≥ 0

for conv(ΦQ) such that α′ij ≤ 0 for all i and j /∈ {0, n} and 〈α, s〉 ≥ 〈α′, s〉 for

every s ∈ Q. In words, given a valid inequality for conv(ΦQ), Algorithm 2 generates

a valid inequality which dominates the original one over ΦQ and also satisfies the

sign condition discussed above. In the next proposition, we show the correctness of

Algorithm 2 and discuss its complexity.

Proposition 2.3.3 Let 〈α, s〉+ βφ+ b ≥ 0 be a valid inequality for conv(ΦQ). Algo-

rithm 2 generates an inequality 〈α′, s〉+ βφ+ b ≥ 0 which is valid for conv(ΦQ) such

that α′ij ≤ 0 for all i and j /∈ {0, n}. Moreover, for each s ∈ Q, 〈α′, s〉 ≤ 〈α, s〉 and

there exists s̃ ∈ Q such that, for all i, s̃in = sin and 〈α, s̃〉 = 〈α′, s〉. The procedure

takes O(dn) time.

Proof In Step 5, we initialize J+
i as a stack of indices j such that αij > 0 and in Steps

9 and 10, we initialize a queue that contains all the indices in {0, . . . , n}. In Step 14

of Algorithm 2, we pick j ∈ J+
i and remove it from the queue in Step 23. Indices

are added to J+
i only in Step 20 and the added index belongs to {1, . . . , n− 1}. We
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Algorithm 2 Sign Procedure

1: procedure Sign(α)

2: for i from 1 to d do

3: for j from 1 to n− 1 do

4: if αij > 0 then

5: push(j, J+
i )

6: end if

7: end for

8: for j from 0 to n do

9: prev(j) = j − 1

10: succ(j) = j + 1

11: α′ij = αij;

12: end for

13: while J+
i 6= ∅ do

14: j = pop(J+
i )

15: ϑij =
aisucc(j)−aij

aisucc(j)−aiprev(j)

16: for (j′, %) in
[(

prev(j), ϑij
)
,
(
succ(j), 1− ϑij

)]
do

17: neg← (αij′ ≤ 0);

18: α′ij′ = α′ij′ + %α′ij;

19: if neg = true and α′ij′ > 0 and 0 < j′ < n then

20: push(j′, J+
i )

21: end if

22: end for

23: prev
(
succ(j)

)
= prev(j); succ

(
prev(j)

)
= succ(j);

24: prev(j) = −1; succ(j) = n+ 1;

25: α′ij = 0;

26: end while

27: end for

28: return α′.

29: end procedure
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argue that at the beginning of each iteration of the while loop starting at Step 13, if

an index j ∈ J+
i then α′ij > 0, otherwise α′ij ≤ 0. Further, no index in J+

i is repeated,

and if j ∈ J+
i then j is also in the queue. This is certainly true at first iteration after

initialization ends at Step 12. At Step 20, j′ is added only if α′ij′ > 0 and was negative

previously and, therefore, not already in J+
i . Moreover, j′ is in the queue, being either

the predecessor or successor of an index j in the queue. At Step 18, it follows that

α′ij′ can only increase because Step 16 guarantees that % ∈ [0, 1] since ϑij ∈ [0, 1]

and αij > 0 because j was just removed from J+
i . Therefore, existing indices in J+

i

continue to satisfy the invariant regarding positive coefficients. Moreover, if αij′ turns

positive at Step 18, it is added to J+
i in Step 20. In Step 23, j is removed from the

queue, but its only copy in J+
i was removed already at Step 14. Since the size of

the queue reduces by one in each iteration of the while loop starting at Step 13 and

{0, n} remain in the queue throughout, the loop executes at most n − 1 iterations.

Since the outer for loop starting at Step 2 executes d iterations, the complexity of

the algorithm is O(dn). Further, α′ij, for any j not in queue, is set to zero at Step 25

and never updated at Step 18 because j has already been removed from the queue

and its only copy was removed from J+
i at Step 14. Observe that at termination J+

i

is empty. Any remaining index j in the queue is such that αij ≤ 0 and any index j

outside the queue is such that αij = 0.

We only need to establish the correctness of the ith iteration of the outer for

loop starting at Step 2. Let αk be the α′ at the start of kth iteration of the while-

loop spanning Steps 13-26, and, for notational convenience, assume α1 = α. It

follows easily that 〈αk, s〉 ≤ 〈αk−1, s〉, because s ∈ Q implies, by Lemma 2.3.1, that

sij ≥ ϑijsiprev(j) + (1 − ϑij)sisucc(j). Therefore, 〈α′, s〉 ≤ 〈α, s〉. Let (s, φ) ∈ ΦQ

and define s̃1 = s. At the kth iteration, we define s̃k such that, for prev(j) < j′ <

succ(j), s̃kij′ = ϑij′ s̃
k−1
iprev(j) + (1 − ϑij′)s̃

k−1
isucc(j) and s̃kij′ = s̃k−1

ij′ otherwise. We write

the elements in the queue at the beginning of kth iteration as Hk. Observe that, for

j′ /∈ Hk, ξ̂(a; s̃ki ) is linear at aij′ . Since s̃ki and s̃k−1
i differ only at indices not in Hk,

it follows easily that s̃kij′ = sij′ for j′ ∈ Hk. We show that 〈αl+1, s̃k〉 = 〈αl, s̃k〉 for
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1 ≤ l ≤ k − 1. In the lth iteration of the while loop, assume that, during Step 14,

j′ is popped from J+
i , prev(j′) = j̄, and succ(j′) = ĵ. Let ϑ =

aiĵ−aij′
aiĵ−aij̄

. Since

the queue becomes smaller with iterations and l ≤ k − 1, it follows that j′ /∈ Hk.

Then, 〈αl+1, s̃k〉 = 〈αl, s̃k〉 − αlij′
(
s̃kij′ − ϑs̃kij̄ − (1 − ϑ)s̃k

iĵ

)
, where, by the definition

of s̃k, {j̄ + 1, . . . , ĵ − 1} /∈ Hk, ξ̂(a; s̃k) is linear between [aij̄, aiĵ] and, so, the term

in the parenthesis on right-hand-side is zero. Since It follows from second result of

Proposition 2.3.2 that s̃k ∈ Q. Since {0, n} ⊆ Hk, it follows that s̃kin = sin. Moreover,

〈αk, s̃k〉 = 〈αk, s〉 since s̃kij = sij for all j ∈ Hk and αkij = 0 for j /∈ Hk. It follows by

considering the last iteration, say r, of the while-loop that there exists s̃r ∈ Q such

that s̃rin = sin, α′ = αr, and 〈αr, s〉 = 〈αr, s̃r〉 = 〈α, s̃r〉. Moreover, since s̃r ∈ Q and

φ = φ(s1n, . . . , sdn) = φ(s̃r1n, . . . , s̃
r
dn), by assumption, 〈α, s̃r〉 + βφ + b ≥ 0, thereby

proving that 〈α′, s〉+ βφ+ b ≥ 0.

Given (ū, s̄) ∈ PQ′ and a valid inequality 〈α, s〉+βφ+b ≥ 0 for conv(ΦQ) satisfying

the sign condition guaranteed by Algorithm 2, the following lemma generates an

inequality 〈α′, u〉+ βφ+ b ≥ 0 valid for conv(ΦP ) so that 〈α, s̄〉 = 〈α′, ū〉.

Lemma 2.3.5 Let 〈α, s〉+βφ+b ≥ 0 be an inequality valid for conv(ΦQ). Let (ū, s̄) ∈

PQ′ and define J = (J1, . . . , Jd) such that Ji = {j | ūij = s̄ij}. Consider a linear

function 〈α′, ·〉 such that 〈α′, u〉 =
〈
α,ΓJ(u)

〉
, where ΓJ is the linear transformation

defined in (2.21). If, for all i ∈ {1, . . . , d} and j /∈ {0, n}, αij is non-positive then,

for every (u, s) ∈ PQ, 〈α, s〉 ≤ 〈α′, u〉 and equality is attained at (ū, s̄). Moreover,

the inequality 〈α′, u〉+ βφ+ b ≥ 0 is valid for conv(ΦP ).

Proof Assume that αij ≤ 0 for all i and j /∈ {0, n}. We first observe that, for every

(u, s) ∈ PQ, 〈α, s〉 ≤
〈
α,ΓJ(u)

〉
= 〈α′, u〉, where the inequality holds because αij ≤ 0

for all i and j /∈ {0, n} and, by the first result in Proposition 2.3.2, (ΓJ(u), s) ∈ PQ,

and the equality holds by the definition of α′ in the statement of the result. In

particular, 〈α, s̄〉 =
〈
α,ΓJ(ū)

〉
= 〈α′, ū〉, where first equality holds because, by the

third result in Proposition 2.3.2, s̄ = ΓJ(ū).
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Now, we show that 〈α′, u〉 + βφ + b ≥ 0 is valid for conv(ΦP ). Observe that

the inequalities, 〈α′, u〉 ≥ 〈α, s〉 and 〈α, s〉 + βφ + b ≥ 0, are valid for conv(ΦPQ),

where validity of the latter inequality follows since it is assumed to be valid for

conv(ΦQ), which, by Lemma 2.3.2, equals proj(s,φ)

(
conv(ΦPQ)

)
. This implies that

〈α′, u〉+ βφ+ b ≥ 0 is valid for conv(ΦPQ) and, hence, for conv(ΦP ) since it does not

depend on s and, by Lemma 2.3.2, conv(ΦP ) = proj(u,φ)

(
conv(ΦPQ)

)
.

Now, we show that polynomial time separability of conv(ΦQ) implies that of

conv(ΦP ).

Theorem 2.3.2 The separation problem of conv(ΦP ) can be solved in O(dn) time

besides a call to the separation oracle for conv(ΦQ).

Proof Let (ū, φ̄) ∈ Rd×(n+1)+1. We assume that ū ∈ P because, if not, we can

separate ū from P in O(dn) time by finding a facet-defining inequality of P that is

violated at ū. Let s̄ := (s̄1, . . . , s̄d), where s̄i is the point returned by Algorithm 1

when ūi is provided as input. Observe that this step takes O(dn) time. Clearly, we

have (ū, s̄) ∈ PQ′, where PQ′ is defined in (2.20). Now, we call the separation oracle

for conv(ΦQ). If the oracle asserts that (s̄, φ̄) ∈ conv(ΦQ) then, by equality in (2.15),

(ū, s̄, φ̄) ∈ conv(ΦPQ), and thus, by Lemma 2.3.2, (ū, φ̄) ∈ conv(ΦP ).

Now, suppose that (s̄, φ̄) /∈ conv(ΦQ). In this case, we will derive a hyperplane that

separates (ū, φ̄) from conv(ΦP ). We call the separation oracle for conv(ΦQ), with (s̄, φ̄)

as input. The oracle returns a hyperplane 〈α, s〉+βφ+b = 0 such that, for all (s, φ) ∈

conv(ΦQ), 〈α, s〉+ βφ+ b ≥ 0, whereas 〈α, s̄〉+ βφ̄+ b < 0. Using Proposition 2.3.3,

we assume that αij ≤ 0 for all i and j /∈ {0, n}. Otherwise, we can satisfy this sign

requirement by executing, Algorithm 2, with complexity O(dn), using the generated

inequality. We utilize Lemma 2.3.5 to derive the inequality 〈α′, u〉+βφ+b ≥ 0, which

is valid for conv(ΦP ). Observe that α′ can easily be computed in O(dn) time. Given

arbitrary (u, φ) ∈ conv(ΦP ), it follows that 〈α′, ū〉 + βφ̄ + b = 〈α, s̄〉 + βφ̄ + b < 0 ≤

〈α′, u〉+βφ+b, where the first equality is by construction of α′ and Lemma 2.3.5, first
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inequality is guaranteed by the separation oracle for conv(ΦQ), and the last inequality

follows directly Lemma 2.3.5.

Next, we explore the strength of cuts that are generated by the procedure described

in Theorem 2.3.2. We will only discuss the strength of valid cuts for the hypograph

of concP (φ)(u) since a similar argument applies for convP (φ)(u). Recall that we say

an inequality φ ≤ 〈α, u〉 + b, valid for conv(ΦP ), is tight at a given point ū ∈ P if

concP (φ)(ū) = 〈α, ū〉+ b.

Proposition 2.3.4 Assume that the concave envelope, concP (φ)(u), is closed. Given

a polynomial time separation oracle for concQ(φ)(s) which yields tight cuts, there

exists a polynomial time separation algorithm for concP (φ)(u) which generates tight

cuts.

Proof Let ū ∈ P and define s̄ = (s̄1, . . . , s̄d), where s̄i is the point returned by

Algorithm 1 when ūi is provided as the input. Suppose that the separation oracle

generates a valid inequality φ ≤ 〈α, s〉 + b of concQ(φ)(s), which is tight at s̄. We

assume without loss of generality that αij ≤ 0 for all i and j /∈ {0, n} since otherwise

we apply Algorithm 2 to generate a new inequality which is tight at s̄ and satisfies the

sign requirement. Let φ ≤ 〈α′, u〉+ b be the inequality obtained using Lemma 2.3.5.

Then,

concQ(φ)(s̄) = 〈α, s̄〉+ b = 〈α′, ū〉+ b ≥ concP (φ)(ū) ≥ concP (φ)(s̄) ≥ concQ(φ)(s̄),

where first equality is because φ ≤ 〈α, s〉 + b is tight at s̄, second equality holds

because, by third result in Proposition 2.3.2, s̄ = ΓJ(ū) and, by Lemma 2.3.5, 〈α′, ū〉 =〈
α,ΓJ(ū)

〉
, the first inequality holds because, by Lemma 2.3.5, φ ≤ 〈α′, u〉+ b is valid

for concP (φ)(u), second inequality holds because, by Lemma 2.2.1, the closedness

of concP (φ)(u) implies that it is non-increasing in uij for all i and j /∈ {0, n} and

(ū, s̄) ∈ PQ implies that ū ≤ s̄ and ūij = s̄ij for all i and j ∈ {0, n}, and the last

inequality follows because Q ⊆ P and thus concP (φ)(s) ≥ concQ(φ)(s) for every

s ∈ Q. Therefore, equalities hold throughout. In particular, we obtain that 〈α′, ū〉+

b = concP (φ)(ū) = concP (φ)(s̄) = concQ(φ)(s̄).
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We argued in the proof of Proposition 2.3.4 that, given a pair (ū, s̄) ∈ PQ′, we have

concP (φ)(ū) = concQ(φ)(s̄). We denote by L(ui) the feasible region of (2.17) with ui

as the given input. It is easy to see that, for every u ∈ T (ū, s̄) := {u | ū ≤ u ≤ s̄},

we have (u, s̄) ∈ PQ′ because, for i ∈ {1, . . . , d}, L(ui) ⊆ L(ūi) and s̄i ∈ L(ui).

Therefore, the following result follows from the proof of Proposition 2.3.4.

Corollary 2.3.1 Assume that the concave envelope concP (φ)(u) is closed. Given

(ū, s̄) ∈ PQ′, we have concP (φ)(u) = concQ(φ)(s̄) for every u ∈ T (ū, s̄), where

T (ū, s̄) = {u | ū ≤ u ≤ s̄}.

2.3.3 Application in factorable programming

In this subsection, we show that the factorable programming scheme can be im-

proved by considering a special case of the problem treated in Sections 2.2 and 2.3.

We consider the case when φ is a bilinear term and P is defined with d = n = 2.

Theorem 2.3.3 Let fL1 ≤ a1 ≤ fU2 and fL2 ≤ a2 ≤ fU2 . Then, consider the set:

P =
{
fL1 ≤ u1 ≤ min{f1, a1}, f1 ≤ fU1 , f

L
2 ≤ u2 ≤ min{f2, a2}, f2 ≤ fU2

}
.

The following overestimators inequalities are valid for the epigraph of f1f2 over P :

f1f2 ≤ min



r1 := fL2 f1 + fU1 f2 − fU1 fL2

r2 := (fL2 − a2)u1 + (a1 − fU1 )u2 + a2f1 + fU1 f2 − a1f
L
2

r3 := (fL2 − fU2 )u1 + a1f2 + fU2 f1 − a1f
L
2

r4 := (fL1 − fU1 )u2 + a2f1 + fU1 f2 − fL1 a2

r5 := (a2 − fU2 )u1 + (fL1 − a1)u2 + fU2 f1 + a1f2 − fL1 a2

r6 := f1f
U
2 + fL1 f2 − fL1 fU2



.

Proof To show that r2 is a valid overestimator, observe that f1f2 = r2 − (a1 −

u1)(u2 − fL2 ) − (f1 − u1)(a2 − u2) − (f2 − u2)(fU1 − f1) ≤ r2. Similarly, it follows

that r3, r4, and r5 are overestimators because f1f2 = r3 − (a1 − u1)(f2 − fL2 )− (f1 −
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u1)(f2 − fU2 ) ≤ r3, f1f2 = r4 − (f1 − fL1 )(a2 − u2) − (fU1 − f1)(f2 − u2) ≤ r4, and

f1f2 = r5 − (u1 − fL1 )(a2 − u2)− (a1 − u1)(f2 − u2)− (f1 − u1)(fU2 − f2) ≤ r5.

Observe that Theorems 2.1.1 and 2.3.3 use a slightly different notation to denote P

than the rest of Sections 2.2-2.4. In particular, we hide the subscript j of uij, as it

is unnecessary when there is a single underestimator. We also drop the subscript j

of sij in the foregoing discussion. In [42], relying heavily on the equivalence results

established in Section 2.3, we provide an explicit representation of conv(ΦP ) for a

setup that significantly generalizes the one introduced in Theorems 2.1.1 and 2.3.3.

When specialized to the case treated here, i.e., n = d = 2 and φ = f1f2, the result

shows that conv(ΦP ) is obtained as an intersection of the sets described in Theo-

rems 2.1.1 and 2.3.3. We now use the results in Section 2.3 to show that one of the

inequalities obtained in Theorem 2.3.3 is a facet of conv(ΦP ). Extending this argu-

ment to each inequality given in the results, one can easily show that the inequalities

in Theorems 2.1.1 and 2.3.3 describe conv(ΦP ).

Consider, for example, the inequality f1f2 ≤ r3 and a point p := (ū1, f̄1, ū2, f̄2) =

(a1, 0.5a1 + 0.5fU1 , 0.5f
L
2 + 0.5a2, 0.25fL2 + 0.75fU2 ) that belongs to P . Algorithm 1

maps this point to q := (s̄1, f̄1, s̄2, f̄2), a point in Q, with s̄1 := ū1 and s̄2 :=
fU2 −a2

fU2 −fL2
fL2 +

a2−fL2
fU2 −fL2

(0.25fL2 +0.75fU2 ) = 0.25fL2 +0.75a2. Let g3 := (fL2 −fU2 )s1+a1f2+fU2 f1−a1f
L
2 .

The inequality f1f2 ≤ g3 is tight at the extreme points of Q given by (fL1 , f
L
1 , f

L
2 , f

L
2 ),

(a1, a1, f
L
2 , f

L
2 ), (a1, a1, a2, a2), (a1, a1, a2, f

U
2 ), and (a1, f

U
1 , a2, f

U
2 ), where for each

point, the variables are ordered as in (s1, f1, s2, f2). Now, observe that q can be

written as a convex combination of the above extreme points with multipliers 0, 0.25,

0, 0.25, and 0.5 respectively. Since the validity of f1f2 ≤ g3 can be shown in the same

manner as that of f1f2 ≤ r3, it follows that f1f2 ≤ g3 is a facet-defining inequality of

concQ(φ) that is tight at q. Since the coefficient of s1 in g3 is already non-positive,

we do not need to invoke Algorithm 2 to satisfy this sign-condition. Then, as in

Lemma 2.3.5, we replace each si with its defining expression in terms of ui to obtain

an inequality that is valid for concP (φ) and defines one of its facet. We provide more

detail and illustrate the ideas involved. Normally, we would replace s1 (resp. s2) with
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u1 (resp.
fU2 −a2

fU2 −fL2
fL2 +

a2−fL2
fU2 −fL2

f2). However, since s2 does not appear in the expression

defining g3, we obtain r3 simply by substituting u1 for s1 in g3, and thus derive the

inequality, f1f2 ≥ r3, that is valid for concP (φ). Using the points tight in Q, it follows

easily that this inequality also defines a facet for concP (φ). We next show that it is

also tight at p, the point that was initially chosen for its derivation, thereby, demon-

strating the more general fact shown in the proof of Proposition 2.3.4. Consider the

point r := (s̄1, f̄1, f
L
2 , f̄2) that is a convex combination of tight points, as seen from the

expression, r = 0.25(a1, a1, f
L
2 , f

L
2 ) + 0.25(a1, a1, f

L
2 , f

U
2 ) + 0.5(a1, f

U
1 , f

L
2 , f

U
2 ). Here,

the points in the rhs belong to P , are tight, and were obtained from the tight points

in Q by substituting the s2 coordinate with fL2 . Then, since p = 1
3
r + 2

3
q, we have

expressed p as a convex combination of tight points and shown that f1f2 ≤ r3 defines

a facet for concP (φ) and is tight at p.

Remark 2.3.3 Consider the bilinear product f1(x)f2(x) and assume f1(x) ≤ o1(x)

yields an overestimator, o1(x). Then, Theorems 2.1.1 and 2.3.3 can be used by replac-

ing f1 with −f1. In this case, the more involved transformation discussed in (2.5) is

not necessary. Nevertheless, (2.5) is useful if besides the overestimator, o1(x), we also

have an underestimator, u1(x), available for f1(x) and wish to exploit both estimators

in the construction of cuts.

2.4 Extensions

In this section, we consider a vector of functions θ : Rd 7→ Rk over the polytope

P and their graph

ΘP :=
{

(u, θ)
∣∣ θ = θ(u1n, . . . , udn), u ∈ P

}
.

We refer to conv(ΘP ) as the simultaneous hull of ΘP and are interested in solving the

separation problem associated with this set. We, similarly, define ΘQ :=
{

(s, θ)
∣∣ θ =

θ(s1n, . . . , sdn), s ∈ Q
}

and generalize the results from Sections 2.3.2 to this setting.

More specifically, we will show that, given a polynomial time separation oracle for
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conv(ΘQ), the separation problem for conv(ΘP ) can also be solved in polynomial time.

We will also prove a sharper result when conv(ΘQ) is a polytope, such as is the case

when θ is a vector of multilinear functions (see Corollary 2.7 in [51]). For this setting,

we will assume that we have access to a polynomial time oracle that generates facet-

defining cuts for a family of lower-dimensional polytopes of conv(ΘQ), using which

we will generate facet-defining cuts for conv(ΘP ) in polynomial time.

2.4.1 Polynomial time equivalence of separations for simultaneous hulls

In this subsection, we show that proof techniques for Theorem 2.3.2 can be gener-

alized to establish polynomial time equivalence of separations between conv(ΘP ) and

conv(ΘQ). First, Lemma 2.3.2 and the equality in (2.15) can be easily generalized to

the context of conv(ΘP ) using a similar argument. Let ΘPQ be the graph of θ over

polytope PQ, that is, ΘPQ :=
{

(u, s, θ)
∣∣ θ = θ(s1n, . . . , sdn), (u, s) ∈ PQ

}
.

Lemma 2.4.1 We have proj(u,θ)(Θ
PQ) = ΘP and proj(s,θ)(Θ

PQ) = ΘQ. Moreover,

conv(ΘP ) =
{

(u, s, θ)
∣∣ (s, θ) ∈ conv(ΘQ), (u, s) ∈ PQ

}
.

Now, observe that Algorithm 2 can be applied to modify coefficients of a valid in-

equality for conv(ΘQ).

Proposition 2.4.1 Given a valid inequality 〈α, s〉 + 〈β, θ〉 + b ≥ 0 for conv(ΘQ),

Algorithm 2 generates a valid inequality 〈α′, s〉+ 〈β, θ〉+ b ≥ 0 for conv(ΘQ) so that

α′ij ≤ 0 for all i and j /∈ {0, n} and 〈α′, s〉 ≤ 〈α, s〉 for every s ∈ Q.

Proof Let α′ be the vector returned by Algorithm 2 when α is given as input.

Then, for any (s, θ) ∈ ΘQ, there exists s̃ ∈ Q such that 〈α, s〉 ≥ 〈α′, s〉 = 〈α, s̃〉 ≥

−〈β, θ〉−b, where the first inequality, first equality, and the existence of s̃ follow from

Proposition 2.3.3. The second inequality follows because (s̃, θ) ∈ ΘQ and 〈α, s〉 +

〈β, θ〉+ b ≥ 0 is assumed to be valid for conv(ΘQ).

Theorem 2.4.1 The separation problem of conv(ΘP ) can be solved in polynomial

time given a polynomial separation oracle for conv(ΘQ).
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Proof The proof is similar to that of Theorem 2.3.2. We construct s̄ using Algo-

rithm 1 with ū as input. If (s̄, θ̄) ∈ conv(ΘQ) then, since (ū, s̄) ∈ PQ, Lemma 2.4.1

shows that (ū, θ̄) ∈ conv(ΘP ). If (s̄, θ̄) /∈ conv(ΘQ), we use the separation or-

acle of conv(ΘQ) and Algorithm 2 and Proposition 2.4.1 to obtain an inequality

〈α, s〉+ 〈β, θ〉+ b ≥ 0 valid for conv(ΘQ) that separates (s̄, θ̄) from conv(ΘQ). Then,

we use the transformation of Lemma 2.3.5 to obtain α′ and observe that, for all

(u, θ) ∈ conv(ΘP ) and (u, s) ∈ PQ, 〈α′, u〉+ 〈β, θ〉+ b ≥ 〈α, s〉+ 〈β, θ〉+ b ≥ 0. Since,

by Lemma 2.3.5, 〈α′, ū〉 = 〈α, s̄〉 < −〈β, θ̄〉− b, the inequality is not satisfied at (ū, θ̄)

and, thus, separates (ū, θ̄) from conv(ΦP ).

2.4.2 Polynomial time equivalence of facet generations for simultaneous

hulls

We start by formally defining a family of polytopes of the form Q that result when

subsets of the outer-approximators of fi(x) are considered. Let J be a collection of

d-tuples defined as follows:

J :=
{

(J1, . . . , Jd)
∣∣ {0, n} ⊆ Ji ⊆ {0, . . . , n} ∀i ∈ {1, . . . , d}

}
.

Consider J = (J1, . . . , Jd) ∈ J . For any y ∈ Rd×(n+1), let yJ := (y1J(1), . . . , ydJ(n)),

where yiJ(i) are the components of yi corresponding to the index Ji. Let J̄ :=

(J̄1, . . . , J̄d), where J̄i is the complement of Ji, i.e., J̄i = {0, . . . , n} \ Ji. Using

these definitions, we can now write, up to reordering of variables, that y = (yJ , yJ̄).

Let a = (a1, . . . , ad) be a vector in Rd×(n+1) so that ai is strictly increasing for every

i ∈ {1, . . . , d}. For any J = (J1, . . . , Jd) ∈ J , we define QJ := Q1J(1) × · · · × QdJ(d),

where QiJ(i) is the simplex defined in (4.16) with parameter aiJ(i) ∈ R|J(i)|. Consider

the graph of θ over QJ defined as ΘQJ :=
{

(sJ , θ)
∣∣ θ = θ(s1n, . . . , sdn), sJ ∈ QJ

}
.

In the following, we will show that the facet generation problem of conv(ΘP ) can be

solved in polynomial time, given a facet generation oracle for conv(ΘQJ ) for J ∈ J .

By a facet generation problem for a polyhedron S, we mean that in addition to the
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separation problem of S, we return a hyperplane that contains S and does not contain

x if x /∈ aff(S), or return a facet-defining inequality of S that is not satisfied at x.

Now, we associate with J a family of faces of Q. Namely, for each J ∈ J ,

FJ := F1J(1) × · · · × FdJ(d),

where FiJ(i) := conv
(
{vij | j ∈ Ji}

)
and vij = (ai0, . . . , aij−1, aij, . . . , aij) for all i

and j. Similarly, we consider the graph of θ over FJ defined as ΘFJ :=
{

(s, θ)
∣∣

θ = θ(s1n, . . . , sdn), s ∈ FJ
}

. In the next result, we will provide the invertible

affine isomorphism relating points in polytopes conv(ΘQJ ) with those in conv(ΘFJ ).

Recall that two polytopes X ⊆ Rm and Y ⊆ Rn are affinely isomorphic if there

is an affine map f : Rm 7→ Rn that is a bijection between the points of the two

sets. Let f : Rm 7→ Rk and X be a convex subset of Rm. For any valid inequality

〈α, x〉 + 〈β, µ〉 + b ≥ 0 of the convex hull of
{

(x, µ) | µ = f(x), x ∈ X
}

, we shall

denote by T
(α,β,b)
f (X) the face of conv

({
(x, µ)

∣∣ µ = f(x), x ∈ X
})

defined by the

valid inequality.

Lemma 2.4.2 Assume that conv(ΘQ) is a polytope. Let J = (J1, . . . , Jd) ∈ J and

let 〈α, s〉 + 〈β, θ〉 + b ≥ 0 be a valid inequality of conv(ΘQ) so that αJ̄ = 0. Then,

the face T
(α,β,b)
θ (FJ) of conv(ΘFJ ) is affinely isomorphic to the face T

(αJ ,β,b)
θ (QJ) of

conv(ΘQJ ).

Proof Let J = (J1, . . . , Jd) ∈ J . Since FJ is a face of Q and conv(ΘQ) is a polytope,

it follows readily that conv(ΘFJ ) is a polytope. We first show that conv(ΘFJ ) is affinely

isomorphic to conv(ΘQJ ). Consider an affine map A : sJ 7→ t such that tij = sij for

j ∈ Ji and tij = (1 − γij)sil(i,j) + γijsir(i,j) for j /∈ Ji, where l(i, j) = max{j′ ∈ Ji |

j′ ≤ j}, r(i, j) = min{j′ ∈ Ji | j′ ≥ j}, and γij =
aij−ail(i,j)

air(i,j)−ail(i,j)
. It follows from second

result in Proposition 2.3.2 that A maps the polytope QJ into the face FJ . The inverse

of A is defined as s 7→ sJ and maps the face FJ into the simplex QJ . This is because,

for any si ∈ vert(FiJ(i)), there exists a k ∈ Ji such that sij = min{aij, aik} for all

j ∈ Ji. Thus, siJ(i) ∈ vert
(
QiJ(i)

)
. Consider the affine transformation, Π, defined as
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(sJ , θ) 7→
(
A(sJ), θ

)
and its inverse, Π−1, (s, θ) 7→ (sJ , θ). Note that, in calling the

projection operation as an inverse of Π, we are interpreting Π as a transformation

into the affine hull of ΦFJ rather than into ΦQ. In other words, ΠΘQJ = ΘFJ and

Π−1ΘFJ = ΘQJ . Therefore, conv(ΘFJ ) = conv(ΠΘQJ ) = Π conv(ΘQJ ) and, similarly,

conv(ΘQJ ) = Π−1 conv(ΘFJ ). It follows that conv(ΘFJ ) is affinely isomorphic to

conv(ΘQJ ).

Now, let 〈α, s〉+ 〈β, θ〉+ b ≥ 0 be a valid inequality for conv(ΘQ) so that αJ̄ = 0.

Then, the validity of the inequality 〈αJ , sJ〉 + 〈β, θ〉 + b ≥ 0 for conv(ΘQJ ) follows

since αJ̄ = 0. Clearly, the corresponding faces, T
(α,β,b)
θ (FJ) and T

(αJ ,β,b)
θ (QJ), are

affinely isomorphic under the mapping Π.

As a consequence of Proposition 2.4.1, we obtain the following monotonic property

for a non-vertical facet-defining inequality of conv(ΘQ) using an argument similar to

that in the proof of Lemma 2.2.1. A inequality 〈α, s〉+ 〈β, θ〉+ b ≥ 0 is non-vertical

if β 6= 0.

Lemma 2.4.3 Assume that conv(ΘQ) is a polytope. Let 〈α, s〉 + 〈β, θ〉 + b ≥ 0 be

a non-vertical face-defining inequality of conv(ΘQ). Then, αij ≤ 0 for all i and

j /∈ {0, n}.

Assume that conv(ΘQ) is a polytope and observe that conv(ΘPQ) is a polytope since,

by the second part of Lemma 2.4.1, conv(ΘPQ) =
{

(u, s, θ)
∣∣ (s, θ) ∈ conv(ΘQ), (u, s) ∈

PQ
}

. Consequently, by the first part of Lemma 2.4.1, conv(ΘP ) is a polytope. For any

J ∈ J , FJ is a face of Q and, so, conv(ΘFJ ) is a face of conv(ΘQ). By Lemma 2.4.3, if

〈αJ , sJ〉+ 〈β, θ〉+ b ≥ 0 is a non-vertical facet-defining inequality of conv(ΘQJ ) then

αij ≤ 0 for all i and j ∈ Ji \ {0, n}.

Theorem 2.4.2 Assume that conv(ΘQ) is a polytope. The facet generation problem

of conv(ΘP ) can be solved in polynomial time if there exists a polynomial time facet

generation oracle of conv(ΘQJ ) for every J ∈ J .

Proof Let (ū, θ̄) ∈ Rd×(n+1)+k and assume that ū ∈ P . Let s̄ be the point returned

by Algorithm 1 with ū as input, and define J = {J1, . . . , Jd}, where Ji := {j |
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ūij = s̄ij}. We assume that (s̄, θ̄) /∈ ΘQ; otherwise (ū, θ̄) ∈ ΘP as in the proof of

Theorem 2.4.1. We only consider the case when the facet-generation oracle produces a

facet-defining inequality, 〈αJ , sJ〉+〈β, θ〉+b ≥ 0, of conv(ΘQJ ) with 〈αJ , s̄J〉+〈β, θ̄〉+

b < 0. Instead, if the oracle returns a hyperplane which contains ΘQJ , a similar proof

without the need for the point (s̃J , θ̃), we define later, can be constructed easily. By

Lemma 2.4.3, αij ≤ 0 for all i and j /∈ Ji\{0, n}. Let α̃J = αJ and α̃J̄ = 0. Since

〈α̃, ū〉+ 〈β, θ̄〉+ b < 0, we only need to show that the inequality 〈α̃, u〉+ 〈β, θ〉+ b ≥ 0

is facet defining for conv(ΘP ).

To prove the validity of the inequality, we consider a point (u, s, θ) ∈ ΘPQ and

observe that 〈α̃, u〉 ≥ 〈α̃, s〉 = 〈α̃J , sJ〉 ≥ −〈β, θ〉 − b, where the first inequality

is because α̃ij(uij − sij) ≥ 0, the first equality is because α̃J̄ = 0, and the second

inequality is because of the validity of 〈α̃J , sJ〉 + 〈β, θ〉 + b ≥ 0 for ΘQJ . Therefore,

the inequality is valid for ΘPQ, and hence, by Lemma 2.4.1, for ΘP .

For simplicity of notation, for any set S we abbreviate T
(α̃,β,b)
θ (S) as T (S). We

will show that dim
(
T (P )

)
= dim

(
ΘP
)
− 1, and thus, conclude that (α̃, β, b) defines

a facet of conv(ΘP ). We start by constructing a subset H of T (P ) so that, for

i′ ∈ {1, . . . , d} and j′ /∈ Ji, there exist two points, (ŝ, θ̂) and (š, θ̌), in H which

differ only in coordinate corresponding to si′j′ , that is, (ŝ, θ̂) − (š, θ̌) = (δei′j′ , 0)

where δ 6= 0 and ei′j′ is the j′th principal vector in the i′th subspace. Consider

(ŝJ , θ̂) ∈ ri
(
T (QJ)

)
and observe that ŝJ ∈ ri(QJ). If not, one of the inequalities

defining QJ is tight at all points in T (QJ) contradicting that (αJ , β, b) defines a non-

vertical facet of conv(ΘQJ ). Next, we extend the point ŝJ to the point ŝ of FJ using the

transformation A defined as in the proof of Lemma 2.4.2. By Lemma 2.4.2, ŝ ∈ ri(FJ)

and (ŝ, θ̂) ∈ ri
(
T (FJ)

)
. It follows that ŝij > ai0 for all i and j 6= 0. Moreover, there

exist a set of points
{

(sk, θk)
}
k∈K ⊆ T (FJ) ∩ ΘFJ and convex multipliers λ ∈ R|K|

such that (ŝ, θ̂) =
∑

k∈K λk(s
k, θk). Now, let šk be a point so that škij = skij for

(i, j) 6= (i′, j′) and škij = ai0 otherwise. Since α̃i′j′ = 0 and j′ 6= n, it follows that, for

all k ∈ K, (šk, θk) ∈ T (P ) ∩ ΘP . Then, we define (š, θ̌) :=
∑

k λk(š
k, θk). Therefore,
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by construction, (š, θ̌) ∈ T (P ) and (ŝ, θ̂) ∈ T (FJ) ⊆ T (P ), and (ŝ, θ̂) − (š, θ̌) =(
(ŝi′j′ − ai′0)ei′j′ , 0

)
6= 0.

Now, we argue that if (s, θ) ∈ ΘQ then, for δij ∈ R,
(
s+
∑d

i=1

∑
j /∈{0,n} eijδij, θ

)
∈

aff
(
T (P ) ∪ (A(s̃J), θ̃)

)
. We first prove the case when δij = 0 for all i and j 6= {0, n}.

It follows from Lemma 2.3.1 that the point (sJ , θ) ∈ ΘQJ . Thus, there exists a point

(s̃J , θ̃) ∈ ΘQJ , not dependent on (sJ , θ), such that (sJ , θ) can be expressed as an

affine combination of points in T (QJ) ∪ (s̃J , θ̃). Let Π be an affine mapping so that

Π(sJ , θ) =
(
A(sJ), θ

)
. Then,

Π(sJ , θ) ∈ Π
(
aff
(
T (QJ)∪(s̃J , θ̃)

))
= aff

(
T (FJ)∪(A(s̃J), θ̃)

)
⊆ aff

(
T (P )∪(A(s̃J), θ̃)

)
,

where first inclusion holds because (sJ , θ) ∈ aff
(
T (QJ) ∪ (s̃J , θ̃)

)
, the equality holds

by Lemma 2.4.2 and by the fact that A, as an affine transformation, commutes with

affine combinations, and the containment holds due to T (FJ) ⊆ T (P ). Because the

point (s, θ) differs from
(
A(sJ), θ

)
only in coordinates corresponding to variables of

the type sij for i ∈ {1, . . . , d} and j /∈ Ji, it follows from the existence of H that (s, θ)

can be expressed as an affine combination of points in T (P ) ∪
(
A(s̃J), θ̃

)
. Next, we

prove the general case. Let i′′ ∈ {1, . . . , d} and j′′ /∈ {0, n}. Then, consider the point

(s′′, θ′′), where s′′i = vi0 for i 6= i′′, s′′i′′ = vi′′j′′ (see Lemma 2.3.1 for the definition of

vij), and θ′′ = θ(s′′1n, . . . , s
′′
dn). Clearly, there exists ε > 0 so that two distinct points,

(s′′, θ′′) and (s′′ − εei′′j′′ , θ
′′), belong to ΘQ and are, as shown above, expressible as

affine combinations of points in T (P ) and
(
A(s̃J), θ̃

)
. Since these points differ only in

the variable si′′j′′ , it follows that we can change the variable si′′j′′ for any (s, θ) ∈ ΘQ

arbitrarily while remaining in the affine hull of T (P ) ∪
(
A(s̃J), θ̃

)
. In other words,

the affine hull of ΘP is parallel to each uij coordinate for all i and j /∈ {0, n}.

Last, let (u̇, θ̇) ∈ ΘP and define (ṡ, θ̇) as a point so that ṡi is the point returned

by Algorithm 1 when u̇i is provided as input. Then, it follows that (ṡ, θ̇) ∈ ΘQ. Since

u̇ij = ṡij for all i ∈ {1, . . . , d} and j ∈ {0, n}, it follows readily that (u̇, θ̇) is express-

ible as an affine combination of T (P ) ∪
(
A(s̃J), θ̃

)
. This shows that dim

(
T (P )

)
=

dim(ΘP )− 1.
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Corollary 2.4.1 Assume that concQ(φ)(s) is a polyhedral function. Further assume

that there is an oracle that for any J ∈ J and a point in Q generates a facet-defining

inequality of ΘQ that is tight at that point. Then, there exists a facet generation

algorithm for concP (φ)(u) which generates tight cuts in O(dn) besides a call to the

above facet generation oracle.

Proof Let ū = (ū1, . . . , ūd) and s̄ = (s̄1, . . . , s̄d), where s̄i is returned by Algorithm 1

when it is provided with ūi as input. Let J = (J1, . . . , Jd), where Ji = {j | ūij = s̄ij}.

The oracle returns a facet-defining inequality φ ≤ 〈αJ , sJ〉+ b of concQJ (φ)(sJ) that

is tight at s̄J . Let α̃ be a vector in Rd(n+1) such that α̃J = αJ and α̃J̄ = 0. Then,

by Theorem 2.4.2, φ ≤ 〈α̃, s〉 + b is facet-defining inequality for concP (φ)(u). The

proof is complete by observing that concP (φ)(ū) = concQ(φ)(s̄) = concFJ (φ)(s̄) =

〈α̃, s̄〉 + b = 〈α̃, ū〉 + b, where first equality holds by Corollary 2.3.1, second equality

is because s̄ ∈ FJ , third equality is because of the assumed tightness property of the

oracle and the affine isomorphism of ΘQJ and ΘFJ shown in Lemma 2.4.2. The last

equality follows because α̃J̄ = 0 and ūJ = s̄J .

2.5 Conclusions

In this chapter, we tightened the factorable relaxation by proposing a new relax-

ation framework for mixed-integer nonlinear programs. The framework gives the first

structured approach to relax composite functions using the inner-function structure.

This is achieved by relaxing the outer-function over a polytope P that encapsulates

information about the inner-functions implicit in their estimators. The structure of P

is relatively complex in that its extreme points grow exponentially with the number

of estimators, even when the number of inner-functions is fixed. Instead, we devised

a fast combinatorial algorithm to solve the separation problem over P using an oracle

to separate over Q, a much simpler subset of P . For vertex-generated outer-functions,

with a fixed number of inner functions, we gave a tractable polyhedral representation

for the convex hull over P . When the outer-function is a bilinear term, and each
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inner-function has one estimator, we developed closed-form expressions for new valid

inequalities, generalizing the factorable programming scheme. More specifically, if the

inner functions have n1 and n2 estimators, we derived 4n1n2 + 2n1 + 2n2 inequalities

besides the four McCormick inequalities. The new relaxations do not introduce vari-

ables beyond those used in the factorable scheme. In Chapter 3, we consider specially

structured outer-functions for which convexification of the graph over Q is tractable,

and using our results here, devise tractable algorithms for convexification over P . If

the convex hull of the graph of outer-function over Q is polyhedral and there is a

facet-generation oracle for this graph and some of its subsets, we constructed a facet-

generation separation algorithm for this graph over P . Finally, we generalized our

results to the setting involving a vector of outer-functions.
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3. TRACTABLE RELAXATIONS OF COMPOSITE

FUNCTIONS

The sole example of composite relaxations in Chapter 2 for which explicit inequalities

are available concerns the product of two bounded functions each furnished with an

underestimator. In this chapter, we describe ways in which we extend these results

beyond the above example setting. First, we treat a larger class of outer-functions,

in particular, those that are supermodular and concave-extendable over Q. Second,

we allow arbitrarily many estimators for each function. Formally, for a composite

function with d inner-functions, each equipped with n estimators, we devise an al-

gorithm that generates, whenever possible, a facet-defining inequality in O(dn log d)

time to separate a given point from the hypograph of the outer-function over Q.

The number of facet-defining inequalities of this hypograph is
(

dn
n,n,...,n

)
, which, by

Stirling’s approximation, grows asymptotically as fast as ddn+ 1
2

(2nπ)
d−1

2
, or exponentially

with respect to d and n. Though numerous, since these inequalities are generated

using a fast combinatorial separation algorithm, they can be derived iteratively, with

little computational overhead, to cut off infeasible regions from MINLP relaxations.

The geometric structure of these inequalities relates to a certain triangulation of Q,

which provides many insights. We show that a result of [8] regarding separability of

concave envelopes can be generalized to our setting. We also show that even when

additional estimators are available, any inequalities generated using fewer estimators

are still facet-defining. We specialize our results to the example setting of Chapter 2,

proving that the 12 inequalities therein yield the convex hull of the graph of the bi-

linear product over P ; the polytope which was modeled using one estimator for each

inner function. Third, we extend our algorithm to allow simultaneous separation of a

vector of composite functions, each with an outer-function that is supermodular and

concave-extendable over Q. Fourth, we consider infinitely many estimators for each
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inner-function, assuming additionally that the outer-function is convex when all but

one of its arguments are fixed. We show that, in this case, the composite relaxation

arises as the solution of an optimal transport problem [38]. The reduction proceeds

by expressing each inner-function as the expectation of a random variable that is

completely determined by its estimators. When the outer-function is also supermod-

ular, we provide an explicit integral formula, whose evaluation gives a closed-form

expression for the composite relaxation.

3.1 Problem setup and geometric structure

Let φ ◦ f : X ⊆ Rm 7→ R be a composite function denoted as φ ◦ f(x) = φ
(
f(x)

)
,

where f : X 7→ Rd is a vector of bounded functions over X. We shall write f(x) :=(
f1(x), . . . , fd(x)

)
and refer to f(x) as inner functions and φ(·) as the outer function.

In Chapter 2, we proposed a framework to relax the graph of φ◦f , that is, gr(φ◦f) ={
(x, φ)

∣∣ φ = φ
(
f(x)

)
, x ∈ X

}
. In this section, we review these ideas and relate our

setting to some relevant convexification results. Throughout this chapter, we shall

denote the convex hull of set S by conv(S), the convex (resp. concave) envelope of

f(x) over S by convS(f) (resp. concS(f)), the projection of a set S to the space of x

variables by projx(S), the extreme points of S by vert(S), the dimension of the affine

hull of S by dim(S), and the relative interior of S by ri(S).

3.1.1 A relaxation framework for composite functions

Let n ∈ Z. Let u : Rm 7→ Rd×(n+1) be a vector of bounded functions denoted as

u(x) =
(
u1(x), . . . , ud(x)

)
and let a = (a1, . . . , ad) be a vector in Rd×(n+1). For all

i and x ∈ X, assume that fi(x) ∈ [ai0, ain] and that u and a satisfy the following

inequalities:

ai0 < · · · < ain, uij(x) ≤ min{fi(x), aij}, ui0(x) = ai0, uin(x) = fi(x).
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We review some basic ideas regarding the structure of P . First, in Chapter 2, the

polytope P :=
∏d

i=1 Pi, where

Pi =

ui ∈ Rn+1

∣∣∣∣∣∣
uij ≤ uin and ai0 ≤ uij ≤ aij

ui0 = ai0, ai0 ≤ uin ≤ ain

 , (3.1)

was introduced as an abstraction of underestimators for the inner-functions f(x). The

polytope Pi introduces a variable uij for each underestimator uij(x), where uin is a

special underestimator that equals fi(x). Each uij(x) underestimates the correspond-

ing inner-function uin(x) and is bounded from above by aij. Thus, uij ≤ uin (resp.

uij ≤ aij) models that uij(x) underestimates fi(x) (resp. aij). If ai0 is a lower bound

for uin, then we are allowed to impose ai0 ≤ uij. Second, our assumption that each

function fi has n underestimators is without loss of generality. Third, if some of the

estimators are overestimators, Chapter 2 gives an affine transformation to reduce the

treatment to one involving only underestimators. We denote by ΦP the graph of the

outer function φ(u1n, . . . , udn) over P , given formally as

ΦP =
{

(u, φ) ∈ Rd×(n+1)×R
∣∣ φ = φ(u1n, . . . , udn), u ∈ P

}
.

The following result shows how the hypograph of φ ◦ f can be relaxed using variables

(x, u·n, φ), where u·n := (u1n, . . . , udn).

Theorem 3.1.1 (Theorem 2.2.1) Let φ : Rd 7→ R be a continuous function and

let f : Rm 7→ Rd be a vector of functions, each of which is bounded over X ⊆ Rm.

If
(
a, u(x)

)
satisfies (3.1.1) then hyp(φ ◦ f) ⊆ proj(x,φ)(R), where hyp(φ ◦ f) is the

hypograph of φ ◦ f over X and

R :=
{

(x, u·n, φ)
∣∣ φ ≤ concP (φ)(u), u(x) ≤ u, u·n = f(x), x ∈ X

}
.

If the graph of f(x), expressed using the constraints u·n = f(x) and x ∈ X in the

definition of R, is outer-approximated with a convex set, and, for j 6= n, uij(x) is

convex, we obtain a convex relaxation of hyp(φ ◦ f). Moreover, concP (φ) is non-

increasing in uij, for all i ∈ {1, . . . , d} and j /∈ {0, n}. Substituting uij(x) for such
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uij variables and dropping uij ≥ uij(x) projects the uij variables out of the convex

relaxation.

The idea behind Theorem 3.1.1 is that the constraints in P are satisfied by underes-

timators and, as such, inequalities valid for conv(ΦP ) are also valid for the underes-

timators. Since variables uij, for j 6= n, are eventually replaced with their defining

function, uij(x), the relaxation, just like the factorable one, uses the original variables

x and an introduced variable uin for each inner function fi(x).

In this chapter, we will solve the facet-generation problem of concP (φ), assuming

that φ is supermodular and concave-extendable over P . Under these conditions, the

hypograph of concP (φ) is a polyhedron. By the facet-generation problem of a full-

dimensional polyhedron S, we mean that, given a vector y, we establish that either

y ∈ S or find a facet-defining inequality of S that is not satisfied by y. The facet-

generation problem for concP (φ) is, in general, NP-Hard because P includes, as a

special case, the unit hypercube and φ can be any bilinear function. Nonetheless, on

the positive side, Chapter 2 showed that the facet-generation problem for concP (φ)

is tractable if the facet-generation problem for concQ(φ) and some of its faces is

tractable. The polytope Q, which is the domain of the latter function concQ(φ), is a

subset of P that we will describe shortly. Simultaneously, we will also review other

results relevant to devising separation algorithms for concP (φ).

Let a = (a1, . . . , ad) be a vector in Rd×(n+1) so that each subvector ai is strictly

increasing. Then, Q :=
∏d

i=1Qi, where Qi is the simplex in Rn+1, whose extreme

points are given as follows:

vij := (ai0, . . . , aij, aij, . . . , aij) for j = 0, . . . , n. (3.2)

We will consider projections of Q defined using a d-tuple of index sets. Let J =

(J1, . . . , Jd) ∈ J , where each Ji belongs to the collection:

J :=
{

(J1, . . . , Jd)
∣∣ {0, n} ⊆ Ji ⊆ {0, . . . , n} ∀i ∈ {1, . . . , d}

}
. (3.3)
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As a succinct notation, for any y ∈ Rd×(n+1), we let yJ := (y1J(1), . . . , ydJ(n)), where

yiJ(i) consists of coordinates of yi from the index-set Ji. We can then write, up to

reordering of variables, that y = (yJ , yJ̄). Define

QJ := Q1J(1) × · · · ×QdJ(d), (3.4)

where QiJ(i) is the simplex defined in (3.2) with the parameter vector aiJ(i) ∈ R|J(i)|

and observe that QJ is a projection of Q to the coordinates contained in the d-tuple

J .

Given a point (ū, φ̄), the separation algorithm for concP (φ) constructs another

point (s̄, φ̄) ∈ Rd×(n+1)+1. This point is then separated from concQ(φ) using the

separation oracle for one of its faces. We first describe how (s̄, φ̄) is obtained from

(ū, φ̄). With each point ui ∈ Rn+1, we associate a discrete univariate function ξ(a;ui) :

[ai0, ain] 7→ R defined so that ξ(a;ui) = uij if a = aij for some j ∈ {0, . . . , n} and

ξ(a;ui) = −∞ otherwise. Then, s̄ = (s̄1, . . . , s̄d), where

s̄i =
(
conc(ξ)(ai0; ūi), . . . , conc(ξ)(ain; ūi)

)
,

and conc(ξ)(·;ui) is the concave envelope of ξ(·;ui) over [ai0, ain]. So, ūi (resp. s̄i) is

the vector of values of ξ(χ;ui) (resp. conc(ξ)(χ;ui)) generated by sequentially setting

χ to the values in (ai0, . . . , ain). For each ū ∈ P , the corresponding s̄ is captured in

the set:

PQ′ :=
{

(u, s)
∣∣ (u1, . . . , ud) ∈ P, si :=

(
conc(ξ)(ai0;ui), . . . , conc(ξ)(ain;ui)

)
∀i
}
.

(3.5)

Since ū and s̄ are related via a concave envelope construction, we can lift ū to its

unique lifting (ū, s̄) ∈ PQ′ using a two-dimensional convex hull algorithm, such as

Graham scan [50], that, for each of the d discrete univariate functions ξ(a;ui) finds

its envelope in O(n) time. Given ū ∈ P , we will find a face of Q containing s̄ and,

consequently, identify which face of concQ(φ) is to be separated from (s̄, φ̄). Observe

that for any ūi /∈ Qi, ūi violates certain facet-defining inequalities of Qi. As the

next result shows, these inequalities define facets, whose intersection yields a face
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of Qi containing s̄i. Together, for all i, these faces define the face of interest of Q,

which is described using d-tuples of index sets. Thus, we associate with a d-tuple,

J = (J1, . . . , Jd) ∈ J , the following face FJ of Q:

FJ := F1J(1) × · · · × FdJ(d),

where FiJ(i) := conv
(
{vij | j ∈ Ji}

)
and, for all i and j, vij = (ai0, . . . , aij−1, aij, . . . , aij).

Clearly, FiJ(i) is a face of Qi because Qi is a simplex whose vertices form a superset

of those of FiJ(i). With J , we also associate a linear map, ΓJ : Rd×(n+1) 7→ Rd×(n+1)

that maps a u ∈ P to ũ ∈ P as follows:

ũij = uij for j ∈ Ji and ũij = (1− γij)uil(i,j) + γijuir(i,j) for j /∈ Ji, (3.6)

where l(i, j) := max{j′ ∈ Ji | j′ ≤ j}, r(i, j) := min{j′ ∈ Ji | j′ ≥ j}, and, for j /∈ Ji,

γij = (aij − air(i,j))/(air(i,j) − ail(i,j)). In other words, ũij is obtained by restricting

the domain of ξ(a;ui), a function of a, to aiJ(i) and then linearly interpolating the

function at aij for j /∈ Ji.

Proposition 3.1.1 (Proposition 2.3.2) Let (ū, s̄) ∈ PQ′ and J = (J1, . . . , Jd) be

defined so that Ji := {j | ūij = s̄ij}. Then, s̄ = ΓJ(ū). The set Q satisfies the

inequalities s ≥ ΓJ(s). Then FJ is the face of Q defined by the inequalities s ≤ ΓJ(s).

Moreover, s̄ ∈ FJ .

Given (ū, φ̄), we call the facet-generation oracle of concQJ (φ)(sJ) to generate an in-

equality φ ≤ 〈αJ , sJ〉 + b of concQJ (φ)(sJ), which is tight at s̄, i.e., concQJ (φ)(s̄J) =

〈αJ , s̄J〉 + b. Let α̃ be a vector in Rd×(n+1) such that α̃J = αJ and α̃J̄ = 0. By

Corollary (2.3.1), the inequality φ ≤
〈
(αJ , 0), (sJ , sJ̄)

〉
+ b defines a facet of concP (φ)

that is tight at ū. We summarize the above discussion for later use.

Proposition 3.1.2 Assume that concQ(φ)(s) is a polyhedral function. Given ū ∈ P ,

the unique point (ū, s̄) ∈ PQ′ can be found in O(dn) time. Let J = (J1, . . . , Jd), where

Ji := {j | ūij = s̄ij}. Then, s̄ ∈ FJ and s̄J ∈ QJ . If φ ≤ 〈αJ , sJ〉+b is a facet-defining

inequality for concQJ (s) that is tight at s̄J then the inequality φ ≤
〈
(αJ , 0), (uJ , uJ̄)

〉
+b

defines a facet of concP (φ) that is tight at ū.
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3.1.2 Supermodularity and staircase triangulation

This chapter considers supermodular and concave-extendable functions over a

Cartesian product of simplices, Q. Such functions have a concave envelope that is

closely related to certain triangulations of Q. In this subsection, we explore these

connections. Before we begin, we formally define concave-extendability of functions

[47] and triangulations of polyhedral domains [52]; both are prevalent notions in

convexification literature.

Definition 3.1.1 ( [16]) A function g : D 7→ R, where D is a polytope, is said to

be concave-extendable (resp. convex-extendable) from X ⊆ D if the concave (resp.

convex) envelope of g(x) is determined by X only, that is, the concave envelope of g

and g|X over P are identical, where g|X is the restriction of g to X that is defined as:

g|X =

g(x) x ∈ X

−∞ otherwise.

Definition 3.1.2 (Triangulation [52]) Let D ⊆ Rn. A set of polyhedra R :=

{R1, . . . , Rr} forms a polyhedral subdivision of D if D =
⋃r
i=1Ri and Ri ∩ Rj is

a (possibly empty) face of both Ri and Rj. Moreover, if each Ri is a simplex, then R

is a triangulation of D.

The non-vertical facets of a polyhedral function, when projected, divide the do-

main into polyhedral sets, which form a polyhedral subdivision; a subdivision that

can be further refined into a triangulation. Thus, if the concave envelope of φ(·) is

polyhedral over Q, there is a triangulation R of Q such that the concave envelope

affinely interpolates each simplex Ri of this triangulation (Theorem 2.4 in [16]). By

affine interpolation, we mean that the function value at any point s ∈ Ri is obtained

as the affine combination of function values at vert(Ri). Therefore, the concave en-

velope of φ(·) over Q, when polyhedral, is uniquely described by the triangulation R

of Q.
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We will eventually be interested in extending the domain of the concave envelope

outside of Q. To do so, we will use the following construction, which extends the

domain of concQ(φ) to aff(Q), a set that contains P . We describe this construction

for a generic function χ : D 7→ R, whose domain, D, is a subset of Rn and this

domain is assumed to be endowed with a triangulation R. Define χRi(x) : aff(D) 7→

R as the unique affine function that satisfies χRi(x) = χ(x) for all x ∈ vert(Ri).

Moreover, define h(x) so that, for all x ∈ Ri ∈ R, h(x) = χRi(x) and assume that

it is concave. Now, to extend h(x) to aff(D), we consider another function χR(x)

defined as mini χ
Ri(x) and show that it matches h(x) over D. If not, there exists

some (i, j) ∈ {1, . . . , r}2 and an x such that although x ∈ Ri, χ
Ri(x) > χRj(x). Now,

pick y ∈ int(Rj) and a sufficiently small ε > 0 so that y + ε(x − y) ∈ Rj. Then, as

the following argument shows, h(x) cannot be concave, violating our assumption:

h(y) + ε
(
h(x)− h(y)

)
= χRj(y) + ε

(
χRi(x)− χRj(y)

)
> χRj(y) + ε

(
χRj(x)− χRj(y)

)
= χRj

(
y + ε(x− y)

)
= h(y + ε(x− y)

)
,

(3.7)

where the first equality is by the definition of h, the first inequality is because χRi(x) >

χRj(x) and ε > 0, the second equality is because χRj is affine, and the last equality

is by the definition of h.

We turn our attention now to a specific triangulation of a product of simplices,

referred to as the staircase triangulation. Let Si ⊆ Rn be a simplex so that vert(Si) =

{νi0, . . . , νin} and let S :=
∏d

i=1 Si be the Cartesian product of these simplices. The

extreme points of S, which are
∏d

i=1{νi0, . . . , νin}, can then be depicted on the grid G

given by {0, . . . , n}d. More specifically, the extreme point (νiji)
d
i=1 will be associated

with the grid-point {ji}di=1. The coordinates of the extreme point are recovered from

those of the grid-point using grid-labels, markers that label coordinate j along direc-

tion i as νij. We remark that although grid-labels depend on the specific geometry

of S, the grid only depends on the number of simplices and the dimension of each

simplex.
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A monotone staircase is a set of dn+ 1 ordered points (p0, . . . , pdn), where pi ∈ G

for all i ∈ {0, . . . , dn} and the sequence satisfies the following properties, (i) p0 =

(0, . . . , 0) and (ii) for all i ∈ {1, . . . , dn}, pi − pi−1 = ek, where k ∈ {1, . . . , d} and ek

denotes the kth principal vector in Rd. We refer to movement from pi−1 to pi as the

ith move. Since pi ∈ G for all i, by property (ii) there are exactly n moves in each

coordinate direction. Moreover, pdn = (n, . . . , n). Thus, the monotone staircase is

a lattice path of monotonically increasing points in Zn from (0, . . . , 0) to (n, . . . , n),

hence resembling a staircase, where each step is of possibly different height. The stair-

case can be specified succinctly as a vector π = (π1, . . . , πdn), where πi ∈ {1, . . . , d}

is the coordinate direction of the ith move. Thus, we will refer to such vector π as

movement vector in the grid G. Given a vector π, we will often need to track where

the kth move leaves us on the grid. This is obtained using the transformation Π,

which is defined as Π(π, k) := p0 +
∑k

j=1 eπj , where ei is the ith principal vector in Rd.

The corresponding staircase can then be recovered as
(
Π(π, k)

)dn
k=0

. In Figure 3.1, we

see the set of all monotone staircases on the 4× 3 gird.
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Fig. 3.1.: Monotone staircases in the 4× 3 grid.

As described before, with each grid point pk = (ji)
d
i=1, we associate the extreme

point of S, (νij1 , . . . , νdjd), which we denote as ext(S, pk). The set of all extreme

points associated with the grid-points along a staircase π describe a simplex Ξπ. In

particular, if we let pk = Π(π, k) then Ξπ := conv
(⋃dn

k=0 ext(S, pk)
)
. That this set

defines a simplex follows from the affine independence of ext(S, pk) for k ∈ {0, . . . , dn},

which in turn follows from linear independence of difference vectors ext
(
S, pk+1

)
−
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ext
(
S, pk

)
for k = 0, . . . , dn−1. In particular, the difference vectors for a move k along

ith and another move k′ along i′ coordinate, where i′ 6= i, are linearly independent

because these vectors are non-zero along different variables. On the other hand, the

difference vectors for moves, all of which are along the ith coordinate, are linearly

independent because they are of the form (01, . . . , 0i−1, νij+1−νij, 0i+1, . . . , 0d), where

0i′ is the zero vector in the subspace of variables defining Si′ and νij+1 − νij are the

difference vectors between adjacent extreme points of Si.

Definition 3.1.3 (Staircase triangulation [52]) The set of all monotone stair-

cases in the grid G defines a staircase triangulation of
∏d

i=1 Si. Each monotone stair-

case, defined by the movement vector π, yields a simplex, Ξ(π), in this triangulation.

We argue that the staircase triangulation is a triangulation of S. Observe that

the Rn×n matrix, Mi := (νi1 − νi0, . . . , νin − νi0), is invertible because Si is a full-

dimensional simplex. Then, we consider the affine mapping that maps an x ∈ Rn to

UM−1
i (x − νi0), where U ∈ Rn×n is an upper-triangular matrix of all ones. Under

this transformation, the simplex Si maps to Λi := {zi ∈ Rn | 0 ≤ zin ≤ · · · ≤

zi1 ≤ 1}. Given a point s = (s1, . . . , sn) ∈ S, we obtain z = (z1, . . . , zn), where

zi = UM−1
i (si−νi0). Then, we sort the coordinates of the vector z in a non-increasing

order so that if zij = zij′ for some i and j′ > j, we place zij ahead of zij′ in the

ordering. Now, for any k ∈ {1, . . . , dn}, if zij is the kth order-statistic, we define

Θ(k) =
(
Θ1(k),Θ2(k)

)
:= (i, j). Given a movement vector π, Θ can be recovered

using Θ1(k) = πk, and Θ2(k) =
∣∣{j | π(j) = π(k), 1 ≤ j ≤ k}

∣∣. Then, we verify that

z (resp. s) belongs to the simplex whose extreme points form the monotone staircase

defined by the movement vector π′ =
(
Θ1(k)

)dn
k=1

, i.e., conv
(⋃dn

k=0 ext
(
Λ,Π(π′, k)

))
(resp. conv

(⋃dn
k=0 ext(S,Π(π′, k))

)
). We denote ext

(
Λ,Π(π′, k)

)
as pk. Note that p0 =

(01, . . . , 0d), where 0i is a zero vector in the space of zi variables and pk = pk−1 +eΘ(k),

where eΘ(k) is a unit vector in the direction of zΘ(k). Then,

z = (1− zΘ(1))p0 +
dn−1∑
k=1

(
zΘ(k) − zΘ(k+1)

)
pk + zΘ(dn)pdn. (3.8)
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Thus, each point z belongs to some simplex in the staircase triangulation. Moreover,

points that belong to two simplices have at least two consistent orderings of their

coordinates, ensuring some of them are equal, implying that the point belongs to a

common face of both simplices. Thus, monotone staircases triangulate S.

If a function f : [0, 1]n 7→ R is supermodular when restricted to {0, 1}n and concave

extendable from {0, 1}n then conc[0,1]n(f)(x) coincides with the Lovász extension of

f [16, 53]. The Lovász extension interpolates the staircase triangulation of [0, 1]n,

which can be regarded as a Cartesian product of simplices. In this setting, the

corresponding triangulation is referred to as Kuhn’s triangulation. We relate the

concave envelope over a product of simplices to that of certain subsets of [0, 1]n, also

treated in [16].

Definition 3.1.4 ( [54]) A function η(x) : S ⊆ Rn 7→ R is said to be supermodular

if η(x′ ∨ x′′) + η(x′ ∧ x′′) ≥ η(x′) + η(x′′) for all x′, x′′ ∈ S. Here, x′ ∨ x′′ denotes

the component-wise maximum and x′ ∧ x′′ denotes the component-wise minimum of

x′ and x′′ and S is assumed to be a lattice, that is, x′ ∨ x′′ and x′ ∧ x′′ belong to S

whenever x′ and x′′ belong to S.

Proposition 3.1.3 Let Λi = {zi | 0 ≤ zi1 ≤ · · · ≤ zin ≤ 1} and Λ =
∏d

i=1 Λi. Then,

vert(Λ) defines a lattice. Let η : Λ 7→ R be a supermodular function when restricted to

vert(Λ). Then, the concave envelope of η over Λ is given by the staircase triangulation

of Λ, i.e. concΛ(η)(x) = ηS(x) for every x ∈ Λ, where S is the staircase triangulation

of Λ.

Proof Since vert(Λi) forms a chain and vert(Λ) is a Cartesian product of these

chains, vert(Λ) forms a lattice. Using Corollary 3.4 in [16], the concave envelope

of η over Λ is obtained by affine interpolation of simplices obtained by ordering z in

specific linear orders in a manner consistent with how they are ordered within each Λi.

The so linearly ordered z belongs to one of the simplices in the staircase triangulation

of Λ.
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Although detecting whether a function is supermodular is NP-Hard [55], there

are important special cases where this property can be readily detected [54]. A

particularly useful result establishes supermodularity of a composition of functions.

Lemma 3.1.1 (Lemma 2.6.4 in [54]) Consider a lattice X and let K = {1, . . . , k}.

For i ∈ K, let fi(x) be increasing supermodular (resp. submodular) functions on X

and Zi be convex subsets of R. Assume Zi ⊇ {fi(x) | x ∈ X}. Let g(z1, . . . , zk, x) be

supermodular in (z1, . . . , zk, x) on
∏k

i=1 Zi×X. If for i ∈ K, z̄i′ ∈ Zi′ for i′ ∈ K \{i},

and x̄ ∈ X, g(z̄1, . . . , z̄i−1, zi, z̄i+1, . . . , z̄k, x̄) is increasing (resp. decreasing) and con-

vex in zi on Zi then g
(
f1(x), . . . , fk(x), x

)
is supermodular on X.

By choosing g(z1, . . . , zk, x) appropriately as z1z2 · · · zk or −z1z2 · · · zk, it follows that

a product of nonnegative, increasing (resp. decreasing) supermodular functions is

also nonnegative increasing (resp. decreasing) and supermodular; see Corollary 2.6.3

in [54]. Also, it follows trivially that a conic combination of supermodular functions

is supermodular.

3.2 On finitely many estimators for inner functions

In this section, we devise a facet generation algorithm, Algorithm 3, that separates

concP (φ) assuming φ satisfies some assumptions and takes O(dn log d) time. As

a result, we discover various interesting properties of the envelope concP (φ). In

Section 3.2.2, we develop a decomposition result that applies to a class of bilinear

functions and show that for a function φ from this class, concQ(φ) is obtained by

aggregating concave envelopes of each bilinear term, and thus generalize a result

of [8]. Last, we use Algorithm 3 to solve the facet generation problem of a vector of

functions over P .
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3.2.1 Tractable concave envelopes

In this subsection, we will, under previously stated technical conditions on φ,

characterize, in closed form, the concave envelope of φ(s1n, . . . , sdn) over Q and solve

the facet generation problem of concP (φ)(u) in O(dn log d) time. Specializing to a

multilinear function φ, we find that concP (φ), the envelope over P , is obtained simply

by extending the domain, from Q to P , of certain inequalities that describe concQ(φ),

the envelope over Q. Further specializing our result to a bilinear term φ with only

on non-trivial underestimator for each inner function, we recover Theorems 2.1.1

and 2.3.3 and show that the inequalities describe the convex hull of graph of φ in this

setting.

Lemma 2.3.1 in [56] shows that for each i = {1, . . . , d}, the simplex Qi can be

expressed as:

0 ≤ sin − sin−1

ain − ain−1

≤ · · · ≤ si1 − si0
ai1 − ai0

≤ 1, si0 = ai0.

Observe that, because of the last equality, Qi is not full-dimensional. Nevertheless, we

can mimic the construction following Definition 3.1.3 using the above representation

of Qi. Here, for an si ∈ Qi we define zi ∈ ∆i := {z | 0 ≤ zin ≤ · · · ≤ zi1 ≤ zi0 = 1} as

follows:

zi0 = 1 and zij =
sij − sij−1

aij − aij−1

for j = 1, . . . , n. (3.9)

We refer to the above transformation as Zi so that zi = Zi(si). The inverse of Zi is

then defined as:

sij = ai0zi0 +

j∑
k=1

(aik − aik−1)zik for j = 0, . . . , n. (3.10)

Unlike the treatment following Definition 3.1.3, here z has (n+1)d indices. To address

this discrepancy, we impose additional condition on how z is sorted. We require that

the first d entries, when z is sorted in non-increasing order, be zi0, i = 1, . . . , d.

Then, if the (d+ k)th variable in this order is zij, we associate with πk = i, that is a

movement which steps from j−1 to j along the ith direction. Thus, movement vector

π describes the simplex of the staircase triangulation that contains s.
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The transformation,
(
Z1(s1), . . . , Zn(sn)

)
, which maps Q :=

∏d
i=1 Qi to ∆ :=∏d

i=1 ∆i, has a few properties that will be useful in our development. First, being an

affine transformation, it maps vertices of Q to those of ∆. Recall that vert(Qi) =

{vi0, . . . , vin}, where vij = (ai0, . . . , aij−1, aij, . . . , ain). After the transformation, the

vertex vij maps to ζij =
∑j

j′=0 eij′ , where eij′ is the j′ principal vector in the space

spanned by variables (zi0, . . . , zin). Clearly, vert(∆i) form a chain, where ζi0 ≤ · · · ≤

ζin. Consequently, we show that vert(Qi) also form a chain, where the vertices are

ordered as vi0 ≤ · · · ≤ vin. This is because (3.10) is an increasing mapping. More

specifically, if zi, z
′
i ∈ ∆i such that zi ≥ z′i, then zi0 = 1 and aik − aik−1 > 0 imply

that si = Z−1
i (zi) ≥ Z−1

i (z′i) = s′i. Then, the definition of ∨ and ∧ as coordinate-wise

maximum and minimum and the observation that vert(Qi) form a chain together

imply

Z−1
i (ζij ∨ ζij′) = Z−1

i (ζij) ∨ Z−1
i (ζij′) Z−1

i (ζij ∧ ζij′) = Z−1
i (ζij) ∧ Z−1

i (ζij′) (3.11)

Zi(sij ∨ sij′) = Zi(sij) ∨ Zi(sij′) Zi(sij ∧ sij′) = Zi(sij) ∧ Zi(sij′), (3.12)

In other words, Z−1
i (resp. Z) distributes over ∨ and ∧ as long as the arguments are

vertices of ∆i (resp. Qi). The vertex (viji)
d
i=1 maps to (ζiji)

d
i=1 under Zi and will be

represented by the same grid-point (ji)
d
i=1 on G.

It follows that vert(Q) and vert(∆) form isomorphic lattices, i.e., Cartesian prod-

uct of d chains each with n + 1 elements. As such vert(Q) and vert(∆) satisfy the

conditions in Definition 3.1.4 and that allows us to define supermodular functions

over these domains. We exploit the isomorphism of the two lattices to relate a super-

modular function ψ over vert(Q) to another function η which is supermodular over

vert(∆).

Lemma 3.2.1 A function ψ : vert(Q) 7→ R is supermodular over vert(Q) if and only

if the function η : vert(∆) 7→ R defined by η(z) = ψ(Z−1(z)) is supermodular over

vert(∆).
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Proof We show that η(z) is supermodular over vert(∆) when ψ(s) is supermodular

over vert(Q). Consider z′ and z′′ in vert(∆) and observe that:

η(z′) + η(z′′) = ψ(Z−1(z′)) + ψ(Z−1(z′′))

≤ ψ
(
Z−1(z′) ∨ Z−1(z′′)

)
+ ψ

(
Z−1(z′) ∧ Z−1(z′′)

)
= ψ

(
Z−1(z′ ∨ z′′)

)
+ ψ

(
Z−1(z′ ∧ z′′)

)
= η(z′ ∨ z′′) + η(z′ ∧ z′′),

where the first quality is from the definition of η, the first inequality follows from

the supermodularity of ψ over vert(Q), the second equality is implied by equalities

in (3.11), and the last equality holds by definition of η. The converse follows similarly

by observing that η(Z(s)) = ψ(Z−1(Z(s))) = ψ(s) and utilizing (3.12) instead of

(3.11).

Theorem 3.2.1 Assume that φ(s1n, . . . , sdn) is concave-extendable from vert(Q) and

is supermodular when restricted to the lattice set vert(Q). Let S be the staircase tri-

angulation of Q. Then, concQ(φ)(s) = φS(s) for each s ∈ Q, where φS(s) interpolates

φ over vertices of a simplex in S that contains s.

Proof By Lemma 3.2.1, the function η(z) = φ
(
(Z−1

1 (z1))n, . . . , (Z
−1
d (zd))n

)
is su-

permodular over vert(∆) since φ is supermodular when restricted to the lattice set

vert(Q). It is also concave extendable over vert(∆) since the affine transformation

that maps {(s, φ) | φ ≤ φ(s1n, . . . , sdn), s ∈ Q} to {(z, η) | η ≤ η(z1n, . . . , zdn), z ∈ ∆}

preserves this property.

By Proposition 3.1.3, the concave envelope of η over ∆ is determined by the stair-

case triangulation K of ∆. The same triangulation also gives the concave envelope of

φ over Q because the two hypographs, that of η over ∆ and of φ over Q, are related via

the affine transformation Z. It is just that, for a monotone staircase specified by move-

ment vector π, the simplex in the triangulation of ∆ is conv
(⋃dn

k=1 ext(∆,Π(π, k))
)

while that in the triangulation of Q is conv
(⋃dn

k=1 ext(Q,Π(π, k))
)
.
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Remark 3.2.1 We show that supermodularity of φ over the lattice set vert(Q) fol-

lows from its supermodularity over
∏d

i=1{ai0, . . . , ain}, which in turn follows from

its supermodularity over
∏d

i=1[ai0, ain]. That
∏d

i=1{ai0, . . . , ain} is a lattice follows

easily, but, this lattice is also a projection of lattice of points in vert(Q) onto the

space of (s1n, . . . , sdn) variables since the operators ∨ and ∧ find maximum (resp.

minimum) along each component independently. It therefore suffices to check super-

modularity of φ over
∏d

i=1{ai0, . . . , ain} because φ depends only one (s1n, . . . , sdn).

Then, since
∏d

i=1{ai0, . . . , ain} ⊆
∏d

i=1[ai0, ain], if φ is shown to be the supermodular

over
∏d

i=1[ai0, ain], its supermodularity over vert(Q) follows.

Next, we explicitly derive the inequalities that interpolate the function φ over

the extreme points of each simplex in the staircase triangulation. We first recall

connections between monotone staircases in the grid and simplices of the triangu-

lation as it applies in this context. Let Ω be the set of movement vectors that

define monotone staircases over the grid G given by {0, 1, . . . , n}d. For π ∈ Ω,

the kth extreme point ext(Q,Π(π, k)) will be denoted as V(π, k). The correspond-

ing simplex conv
(
V(π, 0), . . . ,V(π, dn)

)
will be denoted as Υπ and the triangula-

tion {Υπ}π∈Ω as Υ. In addition, we define m(i, j) = k if π(k) = i and j =∑
k′≤k 1

(
π(k′) = π(k)

)
, i.e., for a pair (i, j), m(i, j) returns k if the kth movement is

the jth step in coordinate direction i. Observe that V
(
π,m(i, j)

)
−V
(
π,m(i, j)−1

)
=

(01, . . . , 0i−1, vij−vij−1, 0i+1, . . . , 0d), where 0k is the zero vector in the space of sk vari-

ables. If V(π, k) = (s1, . . . , sd), we denote (s1n, . . . , sdn) by V·n(π, k). Let 〈απ, s〉+ βπ

be the unique affine function so that, for all i, απi0 = 0 and φ(s1n, . . . , sdn) = 〈απ, s〉+βπ

for s ∈ vert(Υπ). Then, to derive expressions for απ, βπ observe that:

φ
(
V·n
(
π,m(i, j)

))
− φ
(
V·n
(
π,m(i, j)− 1

))
=
〈
απ,V·n

(
π,m(i, j)

)
− V·n

(
π,m(i, j)− 1

)〉
= 〈απi , vij − vij−1〉 = (aij − aij−1)

n∑
j′=j

απij′ .
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Let ϑ(π, i, j) = φ(V·n(π,m(i,j)))−φ(V·n(π,m(i,j)−1))
aij−aij−1

. Then, by differencing the equations and

fitting the equation at V(π, 0), we obtain the following explicit formulae:

απij =


0 j = 0

ϑ(π, i, j)− ϑ(π, i, j + 1) 1 ≤ j < n

ϑ(π, i, n) j = n

bπ = φ
(
V·n(π, 0)

)
−
〈
απ,V(π, 0)

〉
.

(3.13)

By construction, the inequality φ ≤ 〈απ, s〉+ bπ is tight over

Υπ := conv
(
V(π, 0), . . . ,V(π, dn)

)
,

where, by tight, we mean that, for s ∈ Υπ, concQ(φ)(s) = 〈απ, s〉 + bπ. More gen-

erally, the tight set for a valid inequality f ≤ 〈α, x〉 + b of a function f : X 7→ R

will represent the set {x ∈ X | concX(f)(x) = 〈α, x〉 + b}, and will be denoted as

T
(α,b)
f (X). So, we can succinctly express our conclusion regarding the tight set of

φ ≤ 〈απ, s〉+ bπ as Υπ ⊆ T
(απ ,bπ)
φ (Q). Although (3.13) describes the coefficients of the

interpolating inequalities in the general case, we remark the following special case,

where the coefficient απij becomes zero.

Remark 3.2.2 Let φ be a multilinear function and consider a movement vector π

such that the jth move along coordinate i is adjacent to the j + 1th move along this

coordinate, i.e., m(i, j+1) = m(i, j)+1. Then, because the function φ(s1n, . . . , sdn) is

affine when all but sin is fixed, it follows that ϑ(π, i, j) = ϑ(π, i, j + 1), which implies

by (3.13) that απij = 0.

Now, we use Theorem 3.2.1 to compute, at a given point s̄ ∈ Q, a non-vertical

facet-defining inequality of the hypograph of concQ(φ)(s). To this end, it suffices

to find a movement vector π so that s̄ belongs to the corresponding simplex Υπ

and then to compute the function φΥπ(s) using (3.13), where φΥπ(s) is the affine

interpolating function tight at V(π, 0), . . . ,V(π, dn). As shown, in our discussion

following Definition 3.1.3, that a simple sorting of the coordinates of z̄ := Z(s̄) reveals

this staircase. In our context, z̄i0 = 1 for all i and recall that to derive π we ignore
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Algorithm 3 Facet-Generation over Q

1: procedure Facet-Generation(s̄)

2: z̄ ← Z(s̄);

3: BeginSort

4: sort z̄ to find a movement vector π so that s̄ ∈ Υπ;

5: z̄i0 are sorted before z̄ij for j 6= 0;

6: if, for any j ≥ 1, zij = zij+1 then they are adjacent in the sorted order;

7: EndSort

8: compute an affine function φΥπ(s) = 〈απ, s〉+ bπ by using equation (3.13);

9: return (απ, bπ).

10: end procedure
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the ordering of these coordinates assuming they are placed first in the sorted order.

Then, if the d + k largest coordinate of z̄ is z̄ij, we let Θ(k) = (i, j) and define

π =
(
Θ1(1), . . . ,Θ1(dn)

)
. Slightly adjusting (3.8), we can express s̄ as a convex

combination of V(π, 0), . . . ,V(π, dn) as follows:

s̄ =
(
1− zΘ(1)

)
V(π, 0) +

dn−1∑
k=1

(
zΘ(k) − zΘ(k+1)

)
V(π, k) + zΘ(dn)V(π, dn).

Corollary 3.2.1 Assume that φ(s1n, . . . , sdn) is concave-extendable from vert(Q) and

is supermodular when restricted to the vertices of Q. Given a point s̄ ∈ Q, Algorithm 3

takes O(dn log d) operations to find a non-vertical facet-defining inequality of concQ(φ)

which is tight at s̄.

Proof The correctness of Algorithm 3 is due to Theorem 3.2.1 and because Algo-

rithm 3 identifies a π such that s̄ ∈ Υπ. The time complexity is O(dn log d) because

the computation of Z takes O(dn) time and d sorted lists each of size n can be merged

in O(dn log d) time using the d-way merge sort algorithm (see 5.4.1 in [57]).

The inequality obtained using Theorem 3.2.1 is facet-defining for concQ(φ)(s) since

it interpolates φ over the extreme points of a simplex Υπ. Moreover, when s̄ belongs

to a face of Q, this inequality describes a facet of the hypograph of φ restricted to

this face, a property that can be exploited as shown in [56] to develop facet-defining

inequalities over P . Recall that for J = (J1, . . . , Jd) ∈ J , where J is a collection of

d-tuples defined as in (3.3), we defined FJ :=
∏d

i=1 FiJ(i) as a face of Q, where FiJ(i)

is defined as the convex hull of {vij | j ∈ Ji}. We can also describe the face FiJ(i) as

the set of points of Qi which satisfy the following facet-defining constraints of Q at

equality:
sij+1 − sij
aij+1 − aij

≤ sij − sij−1

aij − aij−1

for j /∈ Ji. (3.14)

Corollary 3.2.2 Assume s̄ ∈ FJ , and, when s̄ is input, let (απ, bπ) be the pair gen-

erated by Algorithm 3. If φ(s1n, . . . , sdn) is supermodular when restricted to the ver-

tices of Q and concave-extendable from vert(Q) then (απ, bπ) defines a non-vertical
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facet of concFJ (φ)(s) and the corresponding inequality is tight at s̄. Moreover, if

φ(s1n, . . . , sdn) is a multilinear function then, for all j /∈ Ji, απij = 0.

Proof As s̄ ∈ FJ it follows from (3.14) that z̄ij+1 =
s̄ij+1−s̄ij
aij+1−aij =

s̄ij−s̄ij−1

aij−aij−1
= z̄ij for all

i and j /∈ Ji. Therefore, the sorting in Algorithm 3 guarantees that the movement

vector π is such that for all i and j /∈ Ji, the j + 1st move along coordinate i follows

immediately after the jth move. This implies that

for i ∈ {1, . . . , d} and j /∈ Ji m(i, j) + 1 = m(i, j + 1). (3.15)

Therefore, when φ is multilinear, the last statement in the result follows from Re-

mark 3.2.2.

Under the assumption on φ, it follows from Corollary 3.2.1 that the inequality

φ ≤ 〈απ, s〉 + bπ is valid for concQ(φ)(s), and, thus, also valid for concFJ (φ)(s). We

will show that dim
(
T

(απ ,bπ)
φ (FJ)

)
= dim(FJ). Clearly, we have dim

(
T

(απ ,bπ)
φ (FJ)

)
≤

dim(FJ). Now, consider the simplex Υπ defined by the movement vector π. It follows

readily that Υπ∩FJ ⊆ T
(απ ,bπ)
φ (FJ) since concQ(φ)(s) = concFJ (φ)(s) for every s ∈ FJ .

Thus, the proof is complete if we can show that dim(FJ) ≤ dim
(
vert(Υπ)∩FJ

)
, where

vert(Υπ) = {V(π, 0), . . . ,V(π, dn)}. Since V(π, k − 1) ≤ V(π, k) for all k = 1, . . . , dn,

it follows from (3.15) that for all i and j /∈ Ji, the only grid point where the grid-label

along ith coordinate is vij is Π
(
π,m(i, j)

)
with the corresponding point V(π,m(i, j)).

In other words, for all i and j /∈ Ji, vert(Υπ)∩{s | si = vij} = V
(
π,m(i, j)

)
and, thus

vert(Υπ) \
{
V
(
π,m(i, j)

) ∣∣ i = 1, . . . , d, j /∈ Ji
}
⊆ FJ .

This implies that | vert(Υπ ∩ FJ)| ≥ dn + 1 −
∑d

i=1 |J̄i| = dim(FJ) + 1, where J̄i =

{0, . . . , n} \ Ji. Since points in vert(Υπ) are affinely independent, we conclude that

dim(FJ) ≤ dim
(
vert(Υπ) ∩ FJ

)
≤ dim

(
T

(απ ,bπ)
φ (FJ)

)
.

Next, we show that the facet generation problem of concP (φ)(u) can be solved in

O(dn log d). To prove this result, we need the following result shown in Chapter 2

which relates the concave envelope over the face FJ to the envelope over the projection
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QJ , where QJ is defined in (3.4). Recall that two sets C ⊆ Rc and D ⊆ Rd are affinely

isomorphic if there is an affine map f : Rc 7→ Rd that is a bijection between the points

of the two sets. Consider an affine map A : sJ 7→ s̃ defined as

s̃ij = sij for j ∈ Ji and s̃ij = (1− γij)sil(i,j) + γijsir(i,j) for j /∈ Ji, (3.16)

where l(i, j) = max{j′ ∈ Ji | j′ ≤ j}, r(i, j) = min{j′ ∈ Ji | j′ ≥ j}, and γij =
aij−ail(i,j)

air(i,j)−ail(i,j)
. The inverse of A is defined as a map which transforms s to sJ .

Lemma 3.2.2 (Lemma 2.4.2) Assume that concQ(φ) is a polyhedral function. Let

J = (J1, . . . , Jd) ∈ J . Then, concFJ (φ)(s) = concQJ (φ)(sJ) for every s ∈ FJ . Let

φ ≤ 〈α, s〉 + b be a valid inequality of concQ(φ)(s) so that αJ̄ = 0. Then, the two

tight sets, T
(α,b)
φ (FJ) and T

(αJ ,b)
φ (QJ) are affinely isomorphic under the affine map A

defined in (3.16).

Theorem 3.2.2 Assume that φ(s1n, . . . , sdn) is concave-extendable from vert(Q) and

is supermodular when restricted to the vertices of Q. Let ū ∈ P . Then, a facet-defining

inequality of concP (φ) which is tight at ū can be found in O(dn log d) operations.

Proof Let ū ∈ P and let s̄ be the unique point so that (ū, s̄) ∈ PQ′, which can

be found in O(nd) and where PQ′ is defined as in (3.5). Define J = (J1, . . . , Jd),

where Ji := {j | ūij = s̄ij}. It follows from Proposition 3.1.1 that s̄ ∈ FJ . Given

s̄ as input, let (απ, bπ) denote the pair generated by Algorithm 3. Now, we derive

an inequality φ ≤ 〈α′, s〉 + b′ defined so that 〈α′, s〉 + b′ = 〈απ,ΓJ(s)〉 + bπ, where

ΓJ : s ∈ Rd(n+1) 7→ s̃ ∈ Rd(n+1) is a linear map defined in (3.6). We will show that

φ ≤ 〈α′, s〉+ b′ defines a facet of concFJ (φ)(s) which is tight at s̄. Then, since α′
J̄

= 0,

it follows from Lemma 3.2.2 that (α′J , b
′) defines a non-vertical facet of concQJ (φ)

which is tight at s̄J . Therefore, by Proposition 3.1.2, (α′, b′) defines a non-vertical

facet of concP (φ)(u) which is tight at ū.

We now show that φ ≤ 〈α′, s〉+ b′ defines a facet of concFJ (φ)(s) tight at s̄. The

validity of the inequality for concFJ (φ)(x) follows because for every s ∈ FJ

concFJ (φ)(s) ≤ 〈απ, s〉+ bπ = 〈απ,ΓJ(s)〉+ bπ = 〈α′, s〉+ b′, (3.17)
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where the first inequality holds by the validity of φ ≤ 〈απ, s〉 + bπ for concFJ (φ)(s),

first equality holds because, by Proposition 3.1.1, s ∈ FJ implies s = ΓJ(s), and the

second equality is by the definition of (α′, b′). Now, the proof is complete because, by

Corollary 3.2.2, the first inequality in (3.17) is satisfied at equality for dim(FJ) + 1

affinely independent points in FJ , and, in particular, for the point s̄.

Next, we specialize our study to the case when the outer function is multilinear.

Let S be the staircase triangulation of Q. Recall that φS : aff(Q) 7→ R is obtained

by extending the affine interpolation function of φ over the affine hull of Q. In Theo-

rem 3.2.1, we argued that, under the assumed conditions on φ, φS(s) = concQ(φ)(s)

for every s ∈ Q. Next, we show that if a multilinear function φ(s1n, . . . , sdn) is su-

permodular over vert(Q) then, for every u ∈ P , φS(u) = concP (φ)(u). The point to

note here is that, for the multilinear case, the concave envelope over P requires no

other non-vertical inequalities beyond those needed to describe the concave envelope

over Q, a result that does not hold in general for concave-extendable, supermodular

functions.

Corollary 3.2.3 Assume that the function φ(s1n, . . . , sdn) is multilinear and super-

modular when restricted to vertices of Q. Let S be the staircase triangulation of Q.

Then, for every u ∈ P , concP (φ)(u) = φS(u).

Proof Let ū ∈ P . Then, as in Proposition 3.1.2, compute (ū, s̄) ∈ PQ′ and define

J = (J1, . . . , Jd) so that Ji = {j | ūij = s̄ij}. Since φ is multilinear, it is concave-

extendable from vert(Q). Moreover, φ is supermodular when restricted to vert(Q).

Therefore, we may construct a facet-defining inequality using Algorithm 3, whose

output will be denoted as the pair (απ, bπ). Then, by Proposition 3.1.2, s̄ ∈ FJ and,

by Corollary 3.2.2, the inequality φ ≤ 〈απ, s〉 + bπ defines a facet of concFJ (φ) such

that for all i and j /∈ Ji, α
π
ij = 0. Moreover, by Corollary 3.2.1, this inequality is

tight at s̄. Then, by Lemma 3.2.2, φ ≤ 〈απJ , sJ〉 + bπ is a facet-defining inequality

of concQJ (φ) that is tight at s̄J and, by Proposition 3.1.2, φ ≤ 〈απ, u〉 + bπ is a

facet-defining inequality of concP (φ) that is tight at ū.
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We have shown that the Algorithm 3 can be used to generate facet-defining in-

equalities for concP (φ), where P is a product of polytopes defined in (3.1), each of

which depends on underestimators for an inner-function. Assume that we construct

another polytope P ′ using a subset of the underestimators used to define P . Then,

since P ′ is a projection of P and projection commutes with convexification, it follows

readily that that concP (φ) projects to concP ′(φ). Therefore, any inequalities valid for

concP ′(φ) are also valid for concP (φ). However, we will show that a stronger property

holds. The facet-defining inequalities also define facets of concP (φ). Towards this end,

we introduce some notation to describe a projection of P obtained by selecting a sub-

set of uderestimators. This subset is specified using a d-tuple J = (J1, . . . , Jd) ∈ J ,

where each tuple specifies which underestimators are selected. We denote the corre-

sponding projection of P as PJ which is now the Cartesian product P1J(1)×· · ·×PdJ(d),

where PiJ(i) is the polytope defined in (3.1) using underestimators uiJ(i) with a vector

of bounds aiJ(i).

Theorem 3.2.3 Assume concP (φ) is a polyhedral function and φ ≤ 〈αJ , uJ〉 + b is

a facet-defining inequality of concPJ (φ)(uJ). Then, φ ≤ 〈α, u〉 + b is a facet-defining

inequality of concP (φ)(u), where α := (αJ , 0).

Proof Since φ ≤ 〈αJ , uJ〉 + b is a facet-defining inequality of concPJ (φ)(uJ) and

ai0 < ain, there is a point ū ∈ P with concPJ (φ)(ūJ) = 〈αJ , ūJ〉 + b such that, for

i ∈ {1, . . . , d} and j 6= 0, ai0 < ūij. We assume without loss of generality that

ū = A(ūJ) because we can use the linear transformation A defined in (3.16) to

lift points from PJ to P and affine maps commute with convexification. Now, let

i′ ∈ {1, . . . , d} and j′ /∈ Ji′ , and consider the face P ′ := {u ∈ P | ui′j′ = ai0}. We

construct û ∈ P ′ that matches ū except that ûi′j′ 6= ūi′j′ . Such a û can be obtained
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using the same argument as above where û = B(ūJ) and B is defined similarly to A,

except that ûi′j′ = ai′0. It follows that ei′j′ is in the affine hull of T
(α,b)
φ (P ). Then,

dim(P ) ≥ dim
(
T

(α,b)
φ (P )

)
≥ dim

(
T

(αJ ,b)
φ (PJ)

)
+

d∑
i=1

(
n− |Ji|

)
= dim(PJ) +

d∑
i=1

(
n− |Ji|

)
= dim(P ),

where the first inequality is because T
(α,b)
φ (P ) ⊆ P , second inequality is because in

our argument above the choice of (i′, j′) was arbitrary except that j′ /∈ Ji′ , the first

equality is because (αJ , b) defines a facet of concPJ(φ), and the second equality is

by the definition of P . Therefore, equalities holds throughout and, in particular,

dim(P ) = dim
(
T

(α,b)
φ (P )

)
.

We have described a way to develop inequalities for composite functions as long

as the outer-function is supermodular and concave-extendable. To extend the appli-

cability of this result, we now turn our attention to a particular linear transformation

that can be used to convert some functions that are not ordinarily supermodular

into supermodular functions. This transformation is well-studied when the domain

of the function is {0, 1}d, a special case of vert(Q). In this case, the transforma-

tion, often referred to as switching, chooses a set D ⊆ {1, . . . , d} and considers a

new function φ′(x1, . . . , xd) defined as φ(y1, . . . , yd), where yi = (1 − xi) if i ∈ D

and yi = xi otherwise. We will now generalize this switching operation to Q. To

do so, we will need permutations σi of {0, . . . , n} for each i ∈ {1, . . . , d}. We use

the permutation σi to define an affine transformation that maps vij to viσi(j). Let

P σi be a permutation matrix in R(n+1)×(n+1) such that, for all (i′, j′), P σi
i′j′ = 1 when

i′ = σ(j′) and zero otherwise. Then, the affine transformation associated with σi is

given by Aσi = Z−1
i ◦ UP σiU−1 ◦ Zi, where ◦ denotes the composition operator and

U is an upper triangular matrix of all ones. We let Aσ(s) :=
(
Aσ1(s1), . . . , Aσd(sd)

)
.

We will particularly be interested in the case where σi = {n, . . . , 0} for i ∈ T and
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σi = {0, . . . , n} otherwise. In this case, we denote Aσ(s) by s(T ). Clearly, for i /∈ T ,

s(T )i = si. To compute s(T )i where i ∈ T , we use the following expression

s(T )ij = ai0 +

j∑
k=1

(aik − aik−1)(1− zin+1−k) for j = 0, . . . , n, (3.18)

where z denotes Z(s). Then, we define φ(T )(s1, . . . , sd) = φ
(
s(T )1n, . . . , s(T )dn

)
and we say that φ(T ) is obtained from φ by switching T . It follows easily that

concQ(φ)(s) = concQ
(
φ(T )

)(
s(T )

)
. (Similar conclusions can be easily drawn for

arbitrary permutations σ, where φ(σ)(s) is defined as φ
(
Aσ(s)1n, . . . , A

σ(s)dn
)
. In

this case, concQ(φ)(s) = concQ
(
φ(σ)

)(
(Aσ)−1(s)

)
.) More specifically, if the switched

function φ(T ) is supermodular when restricted to the vertices of Q then concQ(φ)(s)

is determined by the switched staircase triangulation specified by T , whose grid-labels

are obtained by labelling coordinates directions, for i ∈ T , as they were, and, for i /∈ T ,

in a reversed order vin, . . . , vi0. Then, for any movement vector π in the grid given by

{0, . . . , n}d, the corresponding simplex is defined as conv
(⋃dn

k=0 ext
(
Q(T ),Π(π, k)

))
,

where Q(T ) := {s(T ) | s ∈ Q}. The following result records the above construction

for later use.

Corollary 3.2.4 Assume function φ(s1n, . . . , sdn) is concave-extendable from vert(Q).

Let T be a subset of {1, . . . , d}. If φ(T )(s1, . . . , sd) is supermodular when restricted to

vert(Q) then concQ(φ)(s) is determined by the switched staircase triangulation speci-

fied by T .

We now consider a special case that was studied in Chapter 2 and used to improve

factorable programming. The case setting requires that the outer-function φ is a

bilinear term and each inner function has only one non-trivial underestimator.

Corollary 3.2.5 (Theorem 2.1.1 and Theorem 2.3.3) Let ai0 ≤ ai1 ≤ ai2 for

i = 1, 2, and define P :=
{

(u, f) | ai0 ≤ ui ≤ min{fi, ai1}, fi ≤ ai2, i = 1, 2
}

. Then,
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non-vertical facet-defining inequalities of the convex hull of
{

(u, f) | φ = f1f2, (u, f) ∈

P
}

are given as follows:

φ ≥ e1 := a22f1 + a12f2 − a12a22,

φ ≥ e2 := (a22 − a21)u1 + (a12 − a11)u2 + a21f1 + a11f2 + a11a21 − a11a22 − a12a21,

φ ≥ e3 := (a22 − a20)u1 + a20f1 + a11f2 − a11a22,

φ ≥ e4 := (a12 − a10)u2 + a21f1 + a10f2 − a12a21,

φ ≥ e5 := (a21 − a20)u1 + (a11 − a10)u2 + a20f1 + a10f2 − a11a21,

φ ≥ e6 := a10f2 + a20f1 − a10a20,

φ ≤ r1 := a20f1 + a12f2 − a12a20,

φ ≤ r2 := (a20 − a21)u1 + (a11 − a12)u2 + a21f1 + a12f2 − a11a20,

φ ≤ r3 := (a20 − a22)u1 + a11f2 + a22f1 − a11a20,

φ ≤ r4 := (a10 − a12)u2 + a21f1 + a12f2 − a10a21,

φ ≤ r5 := (a21 − a22)u1 + (a10 − a11)u2 + a22f1 + a11f2 − a10a21,

φ ≤ r6 := f1a22 + a10f2 − a10a22.

Proof Let φ(f1, f2) = f1f2. We verify that the set of inequalities, φ ≥ ei, i =

1, . . . , 6, defines the set of non-vertical facets of the epigraph of convP (φ)
(
(u1, f1), (u2, f2)

)
.

Let vi0 = (ai0, ai0), vi1 = (ai1, ai1), vi2 = (ai1, ai2), and define Qi := conv({vi0, vi1, vi2})

for i = 1, 2. For T = {2}, we have

φ(T )
(
(u1, f1), (u2, f2)

)
:= f1

(
a20+(a21−a20)

(
1− f2 − u2

a22 − a21

)
+(a22−a21)

(
1− u2 − a20

a21 − a20

))
,

where we have used (3.18) to derive the term after f1 on the RHS of the above expres-

sion. Using the above expression, φ(T )(v1j1 , v2j2) = a1j1a2(2−j2) for j1, j2 ∈ {0, 1, 2}. It

follows that φ(T ) is submodular when restricted to vertices of Q since ai0 ≤ ai1 ≤ ai2

for i = 1, 2. Let {π1, . . . , π6} be the set of movement sequences in Z2 from (0, 0)

to (2, 2), where π1 := (1, 1, 2, 2), π2 := (1, 2, 1, 2), π3 := (1, 2, 2, 1), π4 := (2, 1, 1, 2),
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π5 := (2, 1, 2, 1), and π6 := (2, 2, 1, 1). The set of movement sequences defines the

switched staircase triangulation
{

Υπ1(T ), . . . ,Υπ6(T )
}

, where for i ∈ {1, . . . , 6}

Υπi(T ) = conv

({
(v1j1 , v2(2−j2))

∣∣∣ (j1, j2) = (0, 0) +
k∑
p=1

eπip , k = 0, . . . , 4
})

,

(see Figure 3.2 for the grid representation of the triangulation). Since the bilinear
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Fig. 3.2.: Gird representation of switched staircase triangulation

term is obviously convex-extendable from vert(Q), it follows from Corollary 3.2.4 that

the convex envelope of φ over Q is determined by the switched staircase triangulation{
Υπ1(T ), . . . ,Υπ6(T )

}
. Moreover, each function ei affinely interpolates f1f2 over the

extreme points of simplex Υπi(T )
)
. As such, each inequality φ ≥ ei, where i ∈

{1, . . . , 6}, describes a non-vertical facet of the epigraph of convQ(φ)(s), and the

result follows from Corollary 3.2.3.

A similar argument can be used to show that, for each i ∈ {1, . . . , 6}, φ ≤ ri

defines a non-vertical facet-defining of the hypograph of concP (φ)(u). This case does

not require switching since the bilinear term is already supermodular.

3.2.2 On the strength of termwise relaxation of bilinear functions

In this subsection, we consider a weighted graph G = (V,E) with node set V =

{1, . . . , d} and edge set E. With this graph, we associate a bilinear function φ : Rd 7→

R defined as φ(s1n, . . . , sdn) =
∑

e∈E ce
∏

i∈e sin, where, by i ∈ e, we mean that edge

e is incident with node i. We assume that an edge exists only if the corresponding

weight ce 6= 0. We call an edge positive if ce > 0 and negative if ce < 0. We shall

denote the graph of φ over Q as φQ and we will study whether its convex hull

conv
(
φQ
)

=
{

(s, φ)
∣∣ convQ(φ)(s) ≤ φ ≤ concQ(φ)(s), s ∈ Q

}
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is obtained by a simple relaxation, one obtained by convexifying each bilinear term

separately. To formally define the latter relaxation, let φe(s) denote the bilinear term

ce
∏

i∈e sin associated with an edge e ∈ E. Then, we construct the termwise-relaxation

of φQ by underestimating φ(·) with
∑

e∈E convQ(φe)(s) and overestimating it with∑
e∈E concQ(φe)(s), where each term in the summation could be obtained by using

Corollary 3.2.4, or more specifically, when there is one non-trivial underestimator

for each inner function, using Corollary 3.2.5. Succinctly, the termwise relaxation is

defined as follow:

Ψ :=
{

(s, φ)
∣∣∣ ∑
e∈E

convQ(φe)(s) ≤ φ ≤
∑
e∈E

concQ(φe)(s), s ∈ Q
}
.

Clearly, Ψ is convex superset of φQ and therefore also a superset of conv
(
φQ
)
.

We show that, if the graph G satisfies some conditions, conv(φQ) coincides with

Ψ. Since the sign for all ce can be reversed, it suffices to consider the equivalence∑
e∈E concQ(φe)(s) = concQ(φ)(s). We assume without loss of generality, by trans-

forming sij to
sij−ai0
ain−ai0 for all i and j, if necessary, that for all i, ai0 = 0 and ain = 1.

We call an edge e ∈ E is positive if ce > 0 and negative otherwise. A (signed) graph

is said to be balanced if every cycle has an even number of negative edges (see [58]).

It is shown in Theorem 3 of [58] that a graph is balanced if and only if the vertex

set V (G) can be partitioned into subsets T1 and T2 so that each positive edge of G

connects two nodes from the same subset and each negative edge connects two nodes

from different subsets. We will argue, by switching the variables which correspond to

one of the partitioned subsets, that we can transform φ into a supermodular function.

For s ∈ Q, let s·n denote the vector (s1n, . . . , sdn), and, for an edge e = (i, j) ∈ E, let

sen denote the vector (sin, sjn).

Lemma 3.2.3 Consider a graph G and let φ be a bilinear function defined by the

graph G. There exists a subset T of V so that, for s(T ) as defined in (3.18), the

function φ(T )(s1n, . . . , sdn) = φ(s(T )1n, . . . , s(T )dn) is supermodular when restricted

to vert(Q) if and only if graph G is balanced.
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Proof Assume G = (V,E) is a balanced graph. Then, using Theorem 3 in [58], we

partition V into subsets T1 and T2 such that positively signed edges connect nodes of

the same subset and the negatively signed edges connect nodes of the opposite subset.

Then, to show that φ(T1)(·) is supermodular over vert(Q), it suffices to show that, for

each edge e, φe(T1)(sen) is supermodular over vert(Q). By (3.18) it follows that, for

i ∈ T1, si ≥ s′i and s(T1)i ≤ s′(T1)i whenever zi ≥ z′i. Since φe(sen) is supermodular

when e ∈ T1 or e ∈ T2 and submodular otherwise, it follows that, for each edge e,

φe(T1)(sen) is supermodular.

We now show the converse, i.e., there does not exist a T such that φ(T ) is su-

permodular when restricted to vert(Q). Since the graph is not balanced, there exists

a cycle that contains an odd number of negative edges. Since this cycle leaves and

enters T an even number of times, it follows that there is a negative edge either con-

tained in T or in its complement. Let this edge be e := (k, l). Assume without loss

of generality that k, l ∈ T as the other case is similar. Consider vertices v′ and v′′

corresponding to grid points (j′i)
d
i=1 and (j′′i )di=1, where we assume that j′k = j′′l = 1,

j′l = j′′k = 2, and j′i = j′′i otherwise. Then, it follows that

φ(T )(v′·n ∨ v′′·n) + φ(T )(v′·n ∧ v′′·n)− φ(T )(v′·n)− φ(T )(v′′·n)

= ce
(
akn−2aln−2 + akn−1aln−1 − akn−2aln−1 + akn−1aln−2

)
< 0,

where the inequality follows from the supermodularity of the bilinear product and

ce < 0. Therefore, it follows φ(T ) is not supermodular.

In Theorem 3.2.4, we show that the balanced graphs are exactly the ones for which

the termwise relaxation Ψ coincides with conv(φQ). To prove this result, we need the

following lemma. Recall that we say that the concave envelope of a function f is

determined by a triangulation K = {K1, . . . , Kr} if the concave envelope of f over⋃r
i=1Ki is minri=1 χ

Ki(s), where χKi is the affine function interpolating
(
v, f(v)

)
for

all v ∈ vert(Ki).

Lemma 3.2.4 ( [51]) Consider a function f : vert(D) 7→ R so that f(s) =
∑m

j=1 fj(s),

where D is a polytope. If concave envelopes of fj(s), j = 1, . . . ,m, are determined
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by the same triangulation K of D then concD(f)(s) =
∑m

j=1 concD(fj)(s) for every

s ∈ D. Moreover, if a common triangulation does not generate concave envelopes of

fj for all j, then there exists s ∈ D such that concD(f) <
∑m

j=1 concD(f).

Proof Let K = {K1, . . . , Kr}. Define fK(s) := minri=1 χ
Ki
j (s) (resp. fKj (s) :=

minri=1 χ
Ki
j (s)), where χKi (resp. χKij ) affinely interpolates

(
v, f(v)

)
(resp.

(
v, fj(v)

)
for all v ∈ vert(Ki). Let s ∈ Ki. Since K is the triangulation of D, it follows that for

some λ ≥ 0 such that
∑

v λv = 1

m∑
j=1

concD(fj)(s) ≥ concD(f)(s) ≥ χKi(s) =
∑

v∈vert(Ki)

λvχ
Ki(v) =

∑
v∈vert(Ki)

λvf(v)

=
∑

v∈vert(Ki)

λv

( m∑
j=1

fj(v)
)

=
m∑
j=1

∑
v∈vert(Ki)

λvfj(v) =
m∑
j=1

χKij (s)

≥
m∑
j=1

concD(fj)(s),

where the first inequality is because
∑m

j=1 concD(fj) is a concave overestimator of

f , the second inequality is because of Jensen’s inequality and concD(f) is a con-

cave function, the first equality is by definition of χKi(s), the second equality is

because χKi(v) = f(v) for all v ∈ vert(Ki), the third equality is because of defini-

tion of fj, the fourth equality is by interchanging the order of summation, the last

equality is by the definition of χKij (s) and fj(v) = χKij (v), and the last inequality

is because conc(fj)(x) = minri=1 χ
Ki(s). Therefore, equality holds throughout and

concD(f)(s) = χKi(s) =
∑m

j=1 concD(fj)(s).

Now, we consider the case when a common triangulation does not exist. Let

K = {K1, . . . , Kr} be the triangulation associated with the concave envelope of f

and let j be such that the concave envelope of fj is not associated with K. Clearly,

concD(fj)(s) ≥ χKij (s) for all s ∈ Ki. But, there must exist an i and an s ∈ Ki

such that concD(fj)(s) > χKij (s). Otherwise, as shown in (3.7) concD(fj)(s) =

minri=1 χ
Ki
j (s), which contradicts the assertion that the concave envelope of fj is not
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associated with the triangulation K. Let s =
∑

v∈vert(Ki)
vλv express s as a convex

combination of vertices of Ki. It follows that

concD(f)(s) =
∑

v∈vert(Ki)

f(v)λv =
∑

v∈vert(Ki)

m∑
j′=1

fj′(v)λv

=
m∑
j′=1

∑
v∈vert(Ki)

fj′(v)λv =
m∑
j′=1

χKij′ (s) <
m∑
j′=1

concD(fj′)(s),

where the first equality is because K is the triangulation associated with concD(f),

the second equality is by definition of f , the third equality is by interchanging the

summations, the fourth equality is by the definition of χKij (s) and the strict inequal-

ity is because for j′ 6= j, concD(fj′)(s) ≥ χKij′ (s) and we have chosen s so that

concD(fj)(s) > χKij (s).

Theorem 3.2.4 Consider a graph G and a bilinear function φ defined on G. Then,∑
e∈E concQ(φe)(s) = concQ(φ)(s) if and only if G is balanced.

Proof Suppose that graph G is balanced. Then, we show that
∑

e∈E concQ(φe)(s) =

concQ(φ)(s). By Lemma 3.2.3, there exists a subset T of V such that, for all e ∈ E,

φe(T )(s1n, . . . , sdn) is supermodular when restricted to vert(Q). By Theorem 1.2

in [9], for all e ∈ E, φe is concave-extendable from vert(Q). By Corollary 3.2.4,

concQ(φe)(s) is determined by the same switched staircase triangulation for all e ∈ E.

So, by Lemma 3.2.4, we conclude that
∑

e∈E concQ(φe)(s) = concQ(φ)(s).

Now, suppose that G is not balanced. We construct a point s ∈ Q so that

concQ(φ)(s) <
∑

e∈E concQ(φe)(s). Let s̄i = 1
2
(0, ai1, . . . , ain−1, 1) for all i = 1, . . . , d.

Then, we obtain

concQ(φ)(s̄1, . . . , s̄d) = conc[0,1]d φ
(1

2
, . . . ,

1

2

)
<
∑
e∈E

conc[0,1]2 φe

(1

2
,
1

2

)
=
∑
e∈E

concQ(φ)(s̄),

where first and last equality hold by Lemma 3.2.2 and strict inequality follows from

Theorem 4 in [8]. (Alternately, the existence of a point that satisfies the strict inequal-

ity follows from Lemma 3.2.4, and that
(

1
2
, . . . , 1

2

)
is such a point is a consequence

of strict supermodularity of the bilinear term).
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The hypercube [0, 1]d arises as a special case of Q where n = 1 and the variables

(s10, . . . , sd0) are projected out. In this case, Theorem 3.2.4 recovers the results of [8]

and [21] regarding when McCormick envelopes [5] applied termwise suffice to obtain

the concave envelope of a bilinear function φ over [0, 1]d.

Corollary 3.2.6 (Theorem 4 [8] and Theorem 3.10 [21]) Consider the graph G

associated with a bilinear function φ : [0, 1]d 7→ R. Then, the termwise relaxation of

the hypograph of φ(x) over [0, 1]d coincides with the hypograph of concP (φ)(u) if and

only if every cycle in G has an even number of negative edges.

3.2.3 Tractable simultaneous convex hull

We now extend our results to simultaneous convexification of a vector of functions

θ : Rd 7→ Rκ. Consider the hypograph of θ : Rd 7→ Rκ over a polytope P :=

P1 × · · · × Pd defined as

ΘP :=
{

(u, θ) ∈ Rd×(n+1)×Rκ
∣∣ θ ≤ θ(u1n, . . . , udn), u ∈ P

}
,

where Pi is the polytope defined in (3.1). For k ∈ {1, . . . , κ}, let ΘP
k :=

{
(u, θ)

∣∣ θk ≤
θi(u1n, . . . , udn), u ∈ P

}
be the hypograph of θk over P . Since ΘP ⊆

⋂κ
k=1 conv(ΘP

k ),

it follows that conv(ΘP ) is a subset of
⋂κ
k=1 conv(ΘP

k ), where the former will be

referred to as the simultaneous convex hull of ΘP , while the latter as the individual

convex hull of ΘP . Clearly, it is often the case that conv(ΘP ) (
⋂κ
k=1 conv(ΘP

k ).

Nevertheless, we will characterize conditions for which the simultaneous hull of ΘP

coincides with the individual hull of ΘP .

Theorem 3.2.5 If concave envelopes of θk, k = 1, . . . , κ, over Q are determined by

the same triangulation K then conv(ΘP ) =
⋂κ
k=1 conv(ΘP

k ).

Proof Clearly, conv
(
ΘP
)
⊆
⋂κ
k=1 conv

(
ΘP
k

)
because ΘP ⊆

⋂κ
k=1 conv

(
ΘP
k

)
and

the latter set is convex. To show
⋂κ
k=1 conv

(
ΘP
k

)
⊆ conv

(
ΘP
)
, we consider a point

(ū, θ̄) ∈
⋂κ
k=1 conv

(
ΘP
k

)
, i.e., (θ̄1, . . . , θ̄d) ≤

(
concP (θ1)(ū), . . . , concP (θd)(ū)

)
. Then,
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we lift ū to the unique point s̄ so that (ū, s̄) ∈ PQ′, and define J = (J1, . . . , Jd),

where Ji := {j | ūij = s̄ij}. Let D = (D1, . . . , Dd) so that Di ⊆ J̄i := {0, . . . , n} \ Ji.

Let ūD be a point of P so that, for i ∈ {1, . . . , d}, ūDij = s̄ij if j /∈ Di and ūDij = ūij

otherwise. Since ūJ̄ = ū where J̄ denotes (J̄1, . . . , J̄d), the proof is complete if we

show by induction on |D| :=
∑d

i=1 |Di| that there is a set MD ⊆ vert(P ) and λv, for

v ∈MD, that are independent of k and, for k ∈ {1, . . . , κ}, satisfy(
ūD, concP (θk)(ū

D)
)

=
∑
v∈MD

λv
(
v, θk(v·n)

)
,

∑
v∈MD

λv = 1, λ ≥ 0, (3.19)

where v·n denotes (v1n, . . . , vdn). For the base case with |D| = 0, we have ūD = s̄ ∈ Q.

Since K is assumed to be the common triangulation that determines concQ(θk) for

every k ∈ {1, . . . , κ}, there exists K ∈ K and convex multipliers λv such that, for

k ∈ {1, . . . , κ},
(
ūD, concQ(θk)(ū

D)
)

=
∑

v∈vert(K) λv
(
v, θk(v·n)

)
. Therefore, the base

case is established because vert(K) ⊆ vert(Q) ⊆ vert(P ), and, by Corollary 2.3.1,

we have that, for every k ∈ {1, . . . , κ}, concP (θk)(ū
D) = concQ(θk)(ū

D). For the

inductive step, consider D = (D1, . . . , Dd) so that Di ⊆ J̄i and assume that the result

holds for any tuple D′ such that |D′| < |D|. Since |D| 6= 0, there is a pair (i′, j′) so

that j′ ∈ Di′ . Let D′ := (D′1, . . . , D
′
d) so that D′i = Di if i 6= i′ and D′i′ = Di′ \ {j′}.

Consider an affine mapping A so that, for i 6= i′ and j 6= j′, A(u)ij = uij while

A(u)i′j′ = ai′0. Define γ :=
ui′j′−ai′0
si′j′−ai′0

. It follows from the induction hypothesis that

there exists a set MD′ ⊆ vert(P ) and convex multipliers λv, one for each v ∈ MD′ ,

so that, for k ∈ {1, . . . , κ},
(
ūD
′
, concP (θk)(ū

D′)
)

=
∑

v∈MD′ λv
(
v, θk(v·n)

)
. Then, for

k ∈ {1, . . . , κ},(
ūD, concP (θk)(ū

D)
)

= γ
(
ūD
′
, concP (θk)(ū

D′)
)

+ (1− γ)
(
A(ūD

′
), concP (θk)(ū

D′)
)

= γ
∑
v∈MD′

λv
(
v, θk(v·n)

)
+ (1− γ)

∑
v∈MD′

λv
(
A(v), θk(v·n)

)
= γ

∑
v∈MD′

λv
(
v, θk(v·n)

)
+ (1− γ)

∑
v∈MD′

λv

(
A(v), θk

(
A(v·n)

))
,

where the first equality holds as, by Corollary 2.3.1, concP (θk)(ū
D) = concP (θk)(ū

D′),

the second equality follows from the induction hypothesis because |D′| < |D| and ex-

ploits that convexification commutes with affine transformation, and the last equality
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is because j′ 6= n. The induction step is established by observing that, for any

u ∈ vert(P ), A(u) ∈ vert(P ).

Corollary 3.2.7 Assume that, for every k ∈ {1, . . . , κ}, the function θk(s1n, . . . , sdn)

is concave-extendable from vert(Q) and is supermodular when restricted to the vertices

of Q. Then, conv
(
ΘP
)

=
⋂κ
k=1 conv

(
ΘP
k

)
. Moreover, the facet generation problem of

conv(ΘP ) can be solved in O(κdn log d).

Proof It follows from Theorem 3.2.5 that conv
(
ΘP
)

=
⋂κ
k=1 conv

(
ΘP
k

)
because, by

Theorem 3.2.1, concave envelopes of θk, k = 1, . . . , κ, are determined by a triangu-

lation of Q, that does not depend on k. Now, we argue that the facet generation

problem of conv(ΘP ) can be solved by separating conv(ΘP
k ) individually. Let (ū, θ̄) ∈

Rd×(n+1)×Rκ. Then, for each k ∈ {1, . . . , κ}, we call the procedure in Theorem 3.2.2

to solve the facet generation problem of conv(ΘP
k ). If (ū, θ̄) ∈

⋂κ
k=1 conv(ΘP

k ) then,

as shown above, (ū, θ̄) ∈ conv(ΘP ). Otherwise, without loss of generality, we as-

sume that (ū, θ̄) /∈ conv(ΘP
1 ) and the procedure outputs a facet-defining inequality

θ1 ≤ 〈α, u〉+b of concP (θ1) that is violated by (ū, θ̄). As conv(ΘP ) ⊆
⋂κ
k=1 conv(ΘP

k ),

this inequality is valid for conv(ΘP ). To complete the proof, we will show that

it defines a facet of conv(ΘP ). Let T :=
{

(u, θ) ∈ conv(ΘP )
∣∣ θ1 = 〈α, u〉 + b

}
and let M :=

{
u ∈ vert(P )

∣∣ 〈α, u〉 + b = θ1(u·n)
}

. Observe that
{

(u, θ)
∣∣ u ∈

M, θ1 = θ1(u·n), θk ≥ θk(u·n) for k = 2, . . . , κ
}

is a subset of T . Therefore,

dim
(
aff(T )

)
≥ dim(M) + κ− 1 = dim(P ) + κ− 1 ≥ dim(ΘP )− 1, where the equality

holds because θ1 ≤ 〈α, u〉+ b defines a facet of Θ1. Thus, T is a facet of conv(ΘP ).

3.3 Infinitely many estimators for inner functions

Sections 3.1 to 3.2 considered composite functions and described a way to relax

them while exploiting finitely many estimators for each inner function. A natural

follow-up question is to understand the limiting relaxation, one obtained using in-

finitely many estimators for each inner function. We will explore the structure of this
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relaxation in Section 3.3. To begin, we review some basic concepts from probability

theory that we later use to characterize the structure of limiting relaxation.

We consider real-valued random variables with support in [0, 1]. Each such random

variable Ai induces a probability measure on R which can be described by its (cumu-

lative) distribution function Fi, that is: Fi(ai) = Pr{Ai ≤ ai} for ai ∈ (−∞,∞). The

expectation of random variable Ai is

E[Ai] =

∫ ∞
−∞

aidFi(ai).

Let F be the set of all distribution functions with support in [0, 1]. Any distribution

function Fi ∈ F has three properties; it is non-decreasing, right-continuous, and

ranges from 0 to 1 with Fi(0) = 0 and Fi(1) = 1. Conversely, any function satisfying

these three properties is a distribution function for some random variable whose

support is a measurable subset of [0, 1]. Then, F is a convex subset of B, where

the latter set denotes the convex cone whose elements are all bounded nonnegative

univariate functions on R. The convexity of F follows because the three properties

charactering functions in F are closed under convex combinations and any function

satisfying these properties belongs to F . The extreme set of F , denoted as ext(F),

is the set of distribution functions with Dirac measures over [0, 1], i.e., ext(F) :={
Hδ(a)

∣∣ a ∈ [0, 1]
}

, where δ(a) denotes the Dirac measure at point a and Hδ(a) denotes

the corresponding distribution function. The right-continuity of a non-decreasing

function implies that the function is continuous except possibly at a finite or countable

set of points where the graph of the distribution function has a vertical gap.

Due to the vertical gaps, a distribution function Fi does not always have an inverse.

To circumvent this issue, a generalized inverse is used instead that is defined for any

λ ∈ [0, 1] as follows:

F−1
i (λ) := min

{
ai ∈ [0, 1]

∣∣ Fi(ai) ≥ λ
}
.

The generalized inverse, F−1
i (λ), is non-decreasing and left-continuous on [0, 1]. Like

the distribution function Fi, the generalized inverse function, F−1
i , can have at most
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countably many jumps where if it fails to be continuous. Observe that F−1
i (λ) ≤ ai

if and only if λ ≤ Fi(ai). This is because for any (ai, λ), if F (ai) ≥ λ, it follows

by minimization and feasibility of ai in the definition of F−1
i (λ) that F−1

i (λ) ≤ ai.

Moreover, if F−1
i (λ) ≤ ai, there exists a decreasing sequence aki and aki → a′i ≤ ai such

that Fi(a
k
i ) ≥ λ. Then, it follows that Fi(ai) ≥ Fi(a

′
i) ≥ λ, where the first inequality

is because ai ≥ a′i and the second is because Fi is right-continuous.

For distribution functions F1, . . . , Fd ∈ F , we define Π(F1, . . . , Fd) as the set of

all joint distribution functions on Rd whose marginals are F1, . . . , Fd. Therefore, a

distribution function F belongs to Π(F1, . . . , Fd) if and only if it satisfies the following

properties. First, F is non-decreasing in each variable. Second, F is right-continuous

in the sense that limδ→0+ F (a1 +δ, . . . , ad+δ) = F (a1, . . . , ad). Third, F (0, . . . , 0) = 0

and F (1, . . . , 1) = 1. Finally, for each i and ai ∈ (−∞,∞), F (∞, . . . , ai, . . . ,∞) =

Fi(ai). Let Bd denote the convex cone of of bounded nonnegative functions on Rd.

Then, Π(F1, . . . , Fd) is a convex subset of Bd because the above properties are closed

under taking convex combinations and any functions satisfying these properties belong

to Π(F1, . . . , Fd). To clarify the joint distribution function, we add it as a subscript

to the expectation operator so that, for a continuous function φ : [0, 1]d 7→ R, its

expectation under F ∈ Π(F1, . . . , Fd) is denoted as

EF
[
φ(A1, . . . , Ad)

]
:=

∫
Rd
φ(a1, . . . , ad)dF (a1, . . . , ad),

where (A1, . . . , Ad) follows F , which will be denoted as (A1, . . . , Ad) ∼ F . Since the

random variablesA1, . . . , Ad are assumed to have supports in [0, 1] and φ is continuous,

it follows that, for all F ∈ Π(F1, . . . , Fd), the expectation EF
[
φ(A1, . . . , Ad)

]
is finite.

3.3.1 Envelope characterization via optimal transport

Consider a composite function φ◦f : X ⊆ Rm 7→ R defined as φ◦f(x) = φ(f(x)),

where f : Rm 7→ Rd is a vector of bounded functions over X and φ : Rd 7→ R is a

continuous function. We assume, without loss of generality, that, for every x ∈ X,

f(x) ∈ [0, 1]d and φ : [0, 1]d 7→ R since otherwise if, for every x ∈ X, fLi ≤ f(x) ≤ fUi ,
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we can define f̄i(x) = (fi(x) − fLi )/(fUi − fLi ) as the ith inner-function and φ̄(f̄) =

φ
(
(fU1 −fL1 )f̄1+fL1 , . . . , (f

U
1 −fLd )f̄d+fLd

)
as the outer-function. For each point (x, f),

where x ∈ X and f = f(x), in Section 3.3.2 we will use underestimating functions of

fi(x) to derive a marginal distribution function Fi ∈ F . This marginal distribution

will be such that the expected value of the corresponding random variable Ai, denoted

as EFi [Ai], equals fi. Consequently, to relax the hypograph of the composite function

φ(f(x)), it will suffice to over-estimate φ
(
EF1(A1), . . . ,EFd(Ad)

)
. We now discuss how

this will be achieved. For notational brevity, we extend the outer-function φ to define

φ̃ so that, for any (F1, . . . , Fd) ∈ Fd,

φ̃(F1, . . . , Fd) = φ
(
EF1 [A1], . . . ,EFd [Ad]

)
,

where Ai ∼ Fi. To see the functional φ̃ as an extension of φ from [0, 1]d to Fd, we

map an f ∈ [0, 1]d into Fd as
(
Hδ(f1), . . . , Hδ(fd)

)
, where Hδ(fi), as defined before, is

the distribution function with its mass concentrated at fi. In this subsection, we will

derive the concave envelope of φ̃ over its domain Fd, that is we will find the lowest

concave overestimator of the extension φ̃ over Fd. This envelope will be denoted

as concFd(φ̃). More specifically, we show that when the outer-function φ satisfies

certain conditions, concFd(φ̃) is the solution to an optimal transport problem [38].

This solution can be derived explicitly when φ satisfies some additional requirements.

Before characterizing the concave envelope of φ̃ over Fd, we discuss how this

setting relates to the discrete case. In Section 3.1 and 3.2, we introduced a sequence of

mappings (x, f) 7→ u 7→ s 7→ z, where the first map evaluated underestimators, second

map was defined by constructing two-dimensional concave envelopes, and the third

map was via an affine transformation Z. It is the z-space that is intimately related

to Fd. More specifically, let z = (z1, . . . , zd), where zi = (zi0, . . . , zin) ∈ ∆i. Let Fi be

defined as 1 at ain and above, 1−zik in [aik−1, aik) for k ∈ {1, . . . , n}, and 0 below ai0.

Since the mapping from z to (F1, . . . , Fd) is affine, results regarding concave envelopes

over ∆ translate to those about concFd(φ̃)(F1, . . . , Fd). The following treatment will

generalize the above constructions, allowing for more general distributions that are

not necessarily supported at a finite set of discrete points.
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We start by making an observation assuming d = 1. If φ is a univariate convex

function, by Jensen’s inequality, φ̃(F1) = φ
(
EF1 [A1]

)
≤ EF1

[
φ(A1)

]
. We now extend

this idea to the multidimensional case. We will show in Lemma 3.3.1 that, as long

as, φ is convex in each argument when other arguments are fixed, there exists a joint

distribution F ∈ Π(F1, . . . , Fd) so that

φ̃(F1, . . . , Fd) ≤ EF [φ(A1, . . . , Ad)]. (3.20)

The above inequality immediately implies that

concFd
(
φ̃
)
(F1, . . . , Fd) = concFd

(
φ̃|ext(Fd)

)
(F1, . . . , Fd), (3.21)

i.e., it suffices to restrict φ̃ to the extreme points for Fd for the purpose of constructing

concFd
(
φ̃
)
. To see this, observe that the left hand side in (3.21) is at least as large

as the right hand side. We now argue the converse relationship. Observe that

φ̃(F1, . . . , Fd) ≤ EF
[
φ(A1, . . . , Ad)

]
=

∫
φ̃(Hδ(a1), . . . , Hδ(ad))dF (a)

≤ concFd
(
φ̃|ext(Fd)

)
(F1, . . . , Fd),

(3.22)

where the first inequality holds by the hypothesis (3.20), the equality is by definition

of φ̃. The last inequality holds by the concavity of concFd(φ̃|ext(Fd)) and that Hδ(ai)

are the extreme points of F , since Fi(ai) =

∫
Hδ(bi)(ai)dFi(bi). Then, it follows

that the converse concFd(φ̃)(F1, . . . , Fd) ≤ concFd(φ̃|ext(Fd))(F1, . . . , Fd) holds. The

relation (3.21) shows that concFd(φ̃) is the lowest concave extension of φ̃ restricted

to ext(Fd). We now return to establish that the inequality (3.20) holds under certain

hypothesis on the structure of φ.

Lemma 3.3.1 Let A1, . . . , Ad be independent random variables. If φ : Rd 7→ R is

a continuous function which is convex in each argument when other arguments are

fixed then φ̃(F1, . . . , Fd) ≤ E
[
φ(A1, . . . , Ad)

]
, where the equality is attained when the

function φ is multilinear.

Proof For any index set I, we will denote the joint distribution of {Ai | i ∈ I} as

FI . The set of integers {i, . . . , j} will be denoted [i, j] so that the joint distribution
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of {Ai, . . . , Ad} will be written as F[i,j]. We prove the inequality in the statement of

the result by induction on d. The base case d = 1 follows from Jensen’s inequality as

was remarked earlier. For the inductive step, we have:

φ̃(F1, . . . , Fd) ≤ EF[1,d−1]

[
φ
(
A1, . . . , Ad−1,EFd

[
Ad
])]

= EF[1,d−1]

[
φ
(
A1, . . . , Ad−1,EFd

[
Ad
∣∣ A1, . . . , Ad−1

])]
= EF[1,d−1]

[
φ
(
EFd
[
A1, . . . , Ad−1, Ad

∣∣ A1, . . . , Ad−1

])]
≤ EF[1,d−1]

[
EFd
[
φ
(
A1, . . . , Ad

) ∣∣∣ A1, . . . , Ad−1

]]
= EF[1,d]

[
φ
(
A1, . . . , Ad

)]
,

where the first inequality is by induction hypothesis, the first equality is by the

independence of Ai, the second equality is because E[Ai | Ai] = Ai, the second

inequality is due to Jensen’s inequality, and the last equality holds because of the

law of iterated expectations. The proof is complete by observing that each inequality

becomes an equality if φ is linear when all but one of its arguments are fixed.

Next, for an arbitrary (F1, . . . , Fd) ∈ Fd, consider the following optimization

problem

φ̂(F1, . . . , Fd) = sup
{
EF
[
φ(A1, . . . , Ad)

] ∣∣∣ (F1, . . . , Fd) ∈ Fd, F ∈ Π(F1, . . . , Fd)
}
,

(3.23)

where we recall that Π(F1, . . . , Fd) denotes the set of joint distributions with F1, . . . , Fd

as marginals. The optimization problem (3.23) is called the multivariate Monge-

Kantorovich problem on the real line (Section 2 in [59]). We next argue that (3.23)

is a reformulation for the right hand side of (3.21).

Proposition 3.3.1 For (F1, . . . , Fd) ∈ Fd, φ̂(F1, . . . , Fd) = concFd
(
φ̃|ext(Fd)

)
(F1, . . . , Fd).

Moreover, if φ is continuous and convex in each argument when other arguments are

fixed, φ̂(F1, . . . , Fd) = concFd
(
φ̃
)
(F1, . . . , Fd).

Proof Let (F1, . . . , Fd) ∈ Fd. Then, φ̂(F1, . . . , Fd) ≤ conc
(
φ̃|ext(Fd)

)
(F1, . . . , Fd)

because, as we argued in (3.22) that for F ∈ Π(F1, . . . , Fd), EF [φ(A1, . . . , Ad)] ≤
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conc
(
φ̃|ext(Fd)

)
(F1, . . . , Fd). To prove the converse, it suffices to show that φ̂ is concave

in Fd because, for (F1, . . . , Fd) ∈ ext(Fd), each Fi = Hδ(ai) for some ai ∈ [0, 1]

and it follows by considering the multidimensional Dirac distribution at (a1, . . . , ad)

that φ̂(F1, . . . , Fd) ≥ φ̃(F1, . . . , Fd). To see that φ̂ is concave, let (F1, . . . , Fd) and

(G1, . . . , Gd) be two points in Fd and let α be chosen to satisfy 0 ≤ α ≤ 1. Then,

for any F ∈ Π(F1, . . . , Fd) and G ∈ Π(G1, . . . , Gd), let A ∼ F , B ∼ G, and C ∼

αF + (1− α)G. We have,

φ̂
(
α(F1, . . . , Fd) + (1− α)(G1, . . . , Gd)

)
≥ E(αF+(1−α)G)[φ(C1, . . . , Cd)]

= αEF [φ(A1, . . . , Ad)] + (1− α)EG[φ(B1, . . . , Bd)],

where the inequality holds because αF + (1− α)G is a feasible solution to (3.23) at

α(F1, . . . , Fd) + (1 − α)(G1, . . . , Gd), and the equality holds because expectation of

a mixture distribution is the mixture of the expectations under distributions being

mixed. Since the inequality holds for every (F,G) in Π(F1, . . . , Fd)×Π(G1, . . . , Gd), it

also holds for the supremum of αEF
[
φ(A1, . . . , Ad)

]
+ (1−α)EG

[
φ(B1, . . . , Bd)

]
over

Π(F1, . . . , Fd)×Π(G1, . . . , Gd). Therefore, φ̂
(
α(F1, . . . , Fd) + (1− α)(G1, . . . , Gd)

)
≥

αφ̂(F1, . . . , Fd) + (1− α)φ̂(G1, . . . , Gd), showing that φ̂ is concave.

The second statement follows from the first statement since Lemma 3.3.1 im-

plies (3.21).

As a result, when the inequality in (3.20) is satisfied, the functional φ̂(F1, . . . , Fd)

coincides with the lowest concave overestimator of φ̃ over Fd. Then, to compute φ̂ at

(F1, . . . , Fd), we need to solve the multivariate Monge-Kantorovich problem (3.23).

The latter problem has an explicit solution under certain conditions (see, for example,

Theorem 5 in [60]).

Theorem 3.3.1 ( [61] and Theorem 5 in [60]) Let F1, . . . , Fd be d probability dis-

tribution functions on the real line and let F ∗(a) = mini Fi(ai). Then, for any con-

tinuous supermodular function φ : Rd 7→ R,

sup
F∈Π(F1,...,Fd)

∫
φdF =

∫
φdF ∗



97

if φ ≤ ϕ for some continuous function ϕ such that
∫
ϕdT is finite and constant for

all F ∈ Π(F1, . . . , Fd).

We apply this result in our setting to obtain an explicit integral representation of the

optimal functional φ̂.

Theorem 3.3.2 If φ : [0, 1]d 7→ R is a continuous supermodular function then

φ̂(F1, . . . , Fd) = EF ∗ [φ(A1, . . . , Ad)] =

∫ 1

0

φ
(
F−1

1 (λ), . . . , F−1
n (λ)

)
dλ,

where F ∗(a) = min{F1(a1), . . . , Fd(ad)}.

Proof Let (F1, . . . , Fd) ∈ Fd. Since A1, . . . , Ad have supports in [0, 1] and the

function φ is continuous, EF [φ(A1, . . . , Ad)] is finite for all F ∈ Π(F1, . . . , Fd). We

choose ϕ(a) to be a constant c defined as maxa′∈[0,1]d |φ(a′)|. By definition, φ(f) ≤ c

and
∫
cdF = c is finite for all F ∈ Π(F1, . . . , Fd). It follows from Theorem 3.3.1 that

we have φ̂(F1, . . . , Fd) = EF ∗ [φ(A1, . . . , Ad)]. Now, consider a random variable U that

is uniformly distributed over [0, 1] and observe that, for all (a1, . . . , ad) ∈ Rd,

Pr
(
F−1

1 (U) ≤ a1, . . . , F
−1
d (U) ≤ ad

)
= Pr(U ≤ F1(a1), . . . , U ≤ Fd(ad))

= min
{
F1(a1), . . . , Fd(ad)

}
,

where the first equality is because F−1
i (U) ≤ ai if and only if U ≤ Fi(ai) and

the second equality is because U is uniformly distributed. In other words, the

distribution function of the random vector
(
F−1

1 (U), . . . , F−1
d (U)

)
is F ∗(a). Let

A∗ = (A∗1, . . . , A
∗
d) ∼ F ∗, and, for δ = 2−m, define

Mk = Pr
{

(A∗1, . . . , A
∗
d)
∣∣ kδ ≤ φ(A∗1, . . . , A

∗
d) < (k + 1)δ

}
= Pr

{(
F−1

1 (U), . . . , F−1
d (U)

) ∣∣∣ kδ ≤ φ
(
F−1

1 (U), . . . , F−1
d (U)

)
< (k + 1)δ

}
.

Then, it follows that∫
φdF ∗ = lim

m→∞

2m−1∑
k=0

kδMk = EU
[
φ
(
F−1

1 (U), . . . , F−1
d (U)

)]
,

where both equalities follow from the piecewise approximations of φ where it is re-

placed with kδ whenever it evaluates to a value in the range [kδ, (k + 1)δ) and the
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Dominated Convergence Theorem (see Theorem 16.4 in [62]), which applies because

of the existence of ϕ.

Similar to Corollary 3.2.4, Theorem 3.3.2 can be used to characterize φ̂ for func-

tions φ that become supermodular when their domain is transformed affinely, by using

an operation such as the switching operation. Recall that the function φ(T ), obtained

by switching the domain of φ : [0, 1]d 7→ R, is described using a set T ⊆ {1, . . . , d} so

that φ(T )(f) = φ(f(T )), where f(T )i = 1− fi if i ∈ T and f(T )i = fi otherwise. We

define a marginal distribution Fi(T ) so that

Fi(T )(b) = Pr{1− Ai ≤ b} for i ∈ T and Fi(T )(b) = Pr{Ai ≤ b} otherwise. (3.24)

Then, it follows that for i ∈ T

Fi(T )−1(λ) = min
{
b
∣∣ Fi(T )(b) ≥ λ

}
= min

{
b
∣∣∣ 1− sup

a<1−b
Fi(a) ≥ λ

}
= 1−max

{
d
∣∣∣ 1− sup

a<d
Fi(a) ≤ 1− λ

}
= 1− sup{a | Fi(a) ≤ 1− λ}.

The following result explicitly characterizes φ̂ when φ(T ), instead of φ, is supermod-

ular.

Corollary 3.3.1 If φ(T ) is a continuous function and there exists a T ⊆ {1, . . . , d}

so that φ(T ) is supermodular then

φ̂(F1, . . . , Fd) =

∫ 1

0

φ(T )
(
F1(T )−1(λ), . . . , Fd(T )−1(λ)

)
dλ.

Proof We will show that φ̂(F1, . . . , Fd) equals φ̂(T )
(
F1(T ), . . . , Fd(T )

)
and then, the

result follows directly from Theorem 3.3.2 using supermodularity of φ(T ). To show

φ̂(F1, . . . , Fd) ≤ φ̂(T )
(
F1(T ), . . . , Fd(T )

)
, consider F ∈ Π(F1, . . . , Fd), and let A ∼ F .

Define a random vector A′ so that, for S ∈ [0, 1]d, Pr{A′ ∈ S} := Pr
{
A ∈ {a(T ) | a ∈

S}
}

. Then, let F ′ be the cumulative distribution function of A′, i.e., F ′(a) = Pr
{
A ∈
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{a(T ) | a ∈ [0, a]}
}

. For δ = 2−m, let Sk :=
{
a ∈ [0, 1]d

∣∣ kδ ≤ φ(a) < (k + 1)δ
}

, and

thus,

Mk : = Pr
{
A ∈ Sk

}
= Pr

{
A′ ∈ {a(T ) | a ∈ Sk}

}
= Pr

{
A′
∣∣ kδ ≤ φ(T )(A′) < (k + 1)δ

}
,

(3.25)

where the second equality holds by the definition of A′, and the third equality holds

because φ(T )
(
a(T )

)
= φ(a). Therefore,

∫
φdF = lim

m→∞

2m−1∑
k=0

kδMk =

∫
φ(T )dF ′ ≤ φ̂(T )

(
F1(T ), . . . , Fd(T )

)
,

where the two equalities follow from the Dominated Convergence Theorem (see The-

orem 16.4 in [62]) and the first and last equalities in (3.25), and the inequality holds

because, using (3.24), the marginal distribution of A′i is given by Pr{A′i ≤ ai} =

Fi(T )(ai). Hence, φ̂(F1, . . . , Fd) ≤ φ̂(T )
(
F1(T ), . . . , Fd(T )

)
. Since the reverse in-

equality follows by a similar argument, the proof is complete.

3.3.2 Composite relaxations via random variables

In this subsection, we will assume that, for each inner function, an underestimator

is available and is parametrized by its real-valued upper bound ai. For a given x ∈ X,

the underestimator will vary with bound ai and will be used to derive the marginal

cumulative distribution function Fi used in Section 3.3.1. Then, we will use Theo-

rem 3.3.2 to construct the composite relaxation. To relate the marginal distributions

to the underestimating functions, we will find it useful to work with an alternate char-

acterization of a distribution function with support over [0, 1] in terms of a concave

function on the real line. To derive this function, we truncate the associated random

variable to lie below a bound and study how the expectation varies with this bound.

Formally, we define E : R×F as:

E(ai, Fi) = EFi
[
min{Ai, ai}

]
for ai ∈ R and Fi ∈ F , (3.26)
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where Ai ∼ Fi. We will write EFi(ai) (resp. Eai(Fi)) when we wish to convey that Fi

(resp. ai) is fixed. It is the right derivative of EFi(ai) that relates to the cumulative

distribution Fi. Recall that the left and right derivative of a univariate function s(a)

are defined as s′−(a) = limδ↗0
s(a+δ)−s(a)

δ
and s′+(a) = limδ↘0

s(a+δ)−s(a)
δ

.

Lemma 3.3.2 (Theorem 1 in [63]) For a distribution function Fi ∈ F , the uni-

variate function EFi(ai) is non-decreasing concave such that

EFi(0) = 0, EFi(1) = E[Ai], (EFi)
′
−(ai) = 1 for ai ≤ 0, (EFi)

′
+(ai) = 0 for ai ≥ 1.

(3.27)

The distribution function Fi can be recovered from EFi using Fi(ai) = 1− (EFi)
′
+(ai),

where (EFi)
′
+(x) := limx′↘x

EFi (x
′)−EFi (x)

x′−x , the right derivative of EFi. On the other

hand, any concave function si(ai) on R with the properties that

si(0) = 0, si(1) = a finite value, (si)
′
−(ai) = 1 for ai ≤ 0, (si)

′
+(ai) = 0 for ai ≥ 1

(3.28)

is EFi(ai) for some cdf Fi ∈ F .

Proof For a distribution function Fi ∈ F , the univariate function EFi(ai) is clearly

non-decreasing. It is concave because, for a′i, a
′′
i ∈ R and α ∈ [0, 1], EFi [min{Ai, αa′i+

(1−α)a′′i }] ≤ αEFi [min{Ai, a′i}]+ (1−α)EFi [min{Ai, a′′i }], where the inequality holds

by the concavity of min{ai, a′i} in a′i. Moreover, EFi(0) =

∫
min{ai, 0}dFi = 0 and

EFi(1) =

∫
min{ai, 1}dFi = EFi [Ai]. In addition, for ai ≤ 0

lim
δ↘0

EFi(ai)− EFi(ai − δ)
δ

= lim
δ↘0

ai − (ai − δ)
δ

= 1;

and for ai ≥ 1

lim
δ↘0

EFi(ai + δ)− EFi(ai)
δ

= lim
δ↘0

E[Ai]− E[Ai]

δ
= 0.

Therefore, it follows from Theorem 1 in [63] that Fi(ai) can be recovered using 1 −

(EFi)
′
+(ai).
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Now, let si(ai) be a concave function satisfying (3.28). It follows from (si)
′
−(0) = 1,

the concavity of si, and s(0) = 0 that si(ai) ≤ ai. Similarly, it follows from si(1) = c

for some constant c, (si)
′
+(1) = 0, and the concavity of si that si(ai) ≤ c for all

ai. Finally, since (si)
′
−(ai) = 1 for ai ≤ 0, it follows that, for bi < 0, si(bi) =

si(bi) − si(0) =

∫ bi

0

(si)
′
−(ai) = bi. Therefore, limai→−∞(ai − si(ai)) = 0. Thus,

by Theorem 1 in [63], there exists a distribution function Fi with support over R

such that EFi(ai) = si(ai). We are done if we show that Fi(bi) = 0 for bi < 0

and Fi(bi) = 1 for bi > 1. Assume that there exists bi < 0 such that Fi(bi) > 0.

Then, si(0) =

∫
min{ai, 0}dFi < 0, a contradiction. Similarly, suppose that Fi(1) <

1. This case also leads to a contradiction as follows, limai→∞ si(ai) =

∫
aidFi >∫

min{ai, 1}dFi = c ≥ limai→∞ si(ai), where the last inequality follows because

si(ai) ≤ c for all ai.

Lemma 3.3.2 establishes a connection between certain univariate concave functions

and distribution functions. We now relate these univariate fun

functions with certain underestimators of the inner functions. Formally, we con-

sider a function si : W × R 7→ R such that, for (x, f, ai) ∈ W × R,

si(x, f, ai) ∈
[
min

{
ai, f

L
i +

(
fi − fLi

)
1ai≥fUi

}
, min

{
ai, fi

}]
, (3.29)

where W outer-approximates the graph of inner function f(x), and 1clause is one if the

clause is true and 0 otherwise. For any (x, f, ai), the range of values for si(x, f, ai) is

non-empty because fLi +
(
fi − fLi

)
1ai≥fUi ≤ fi. In other words, (3.29) requires that,

for ai ∈ [0, 1], si(x, f, ai) underestimates min{fi, ai} over W , for ai ≤ 0, si(x, f, ai) is

ai, and, for ai ≥ 1, the function coincides with fi. We construct one such function in

the following remark.

Remark 3.3.1 Let Wi be a convex outerapproximation of the graph of inner func-

tion fi(x). With each constant ai ∈ R, associate a set Si(ai) :=
{

(x, fi, ρi)
∣∣ ρi ≥

min{ai, fi}, (x, fi) ∈ Wi

}
. Define si : Wi × R 7→ R so that, for any ai ∈ R,

si
(
x, fi, ai

)
:= inf

{
ρi

∣∣∣ (x, fi, ρi) ∈ conv
(
Si(ai)

)}
. (3.30)
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To see that the function si satisfies the requirements in (3.29), consider a constant

ai ∈ R. If ai ≤ 0 then min{ai, fi} equals ai, the set Si(ai) is convex, and si(x, fi, ai) =

ai. Similarly, if ai ≥ 1, min{ai, fi} equals fi, Si(ai) is convex, and si(x, fi, ai) = fi. If

0 ≤ ai ≤ 1 then 0 ≤ si(x, fi, ai) ≤ min{ai, fi}, where the first inequality holds because,

for each (x, fi, ρi) ∈ Si(ai), 0 ≤ min{ai, fi} ≤ ρi, and the second inequality holds

because, for every (x, fi) ∈ Wi,
(
x, fi,min{ai, fi}

)
∈ conv

(
Si(ai)

)
. Furthermore,

si(x, fi, ai) is a convex function over Wi; see Theorem 5.3 in [64]. In fact, for any

fixed ai ∈ R, si(x, fi, ai) is the convex envelope of the function min{ai, fi} over Wi.

In contrast, for any fixed (x, fi) ∈ Wi, si(x, fi, ai) is a concave function in ai. To

see this, consider two distinct points a′i, a
′′
i in R, and define ãi := λa′i + (1 − λ)a′′i

for some λ ∈ (0, 1). Since λsi(x, fi, a
′
i) + (1 − λ)si(x, fi, a

′′
i ) (resp. si(x, fi, ãi)) is a

convex underestimator (resp. convex envelope) of min{fi, ãi} over Wi, it follows that

λsi(x, fi, a
′
i) + (1− λ)si(x, fi, a

′′
i ) ≤ si(x, fi, ãi).

In the following example, we consider the quadratic term, derive the underesti-

mator (3.30) explicitly, and illustrate that this underestimator, treated as a function

of ai, is concave and, via the transformation discussed in Lemma 3.3.2, yields a dis-

tribution function.

Example 3.3.1 Consider the quadratic term x2
1 over the interval [0, 2]. Here, the

quadratic term varies over [0, 4], while in our formal treatment, we have assumed that

fi ∈ [0, 1]. However, as we discussed before, this does not pose any issues since an

affine transformation of the function can be used to normalize any bounded range to

[0, 1]. In our current setting, we could use 1
4
x2

1 as the inner function instead of x2
1.

The function s1(x1, x
2
1, a1) defined in (3.30) can be computed explicitly as follows

s1(x1, x
2
1, a1) =


a1 a1 ≤ 0(
−4 + 2

√
−a1 + 4

)
(2− x1) + a1 0 ≤ 2−

√
−a1 + 4 ≤ x1 ≤ 2,

x2
1 otherwise.

(3.31)
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Figure 3.3a illustrates the function at a1 = 3, where we see that this function is

the largest convex underestimator of x2
1 over [0, 2] bounded by 3. In contrast, Fig-

ure 3.3b depicts s1(x1, x
2
1, a1) as a function of a1 at x1 = 1 and it is easily verified

that this function is concave and satisfies the requirements in (3.28). Therefore, by

Lemma 3.3.2, (s1)′+(1, 1, a1) is a survival function (1− distribution function) for a

random variable with support in [0, 4] and is depicted in Figure 3.3c. For general a1,

the right derivative of s1(x1, x
2
1, a1) with respect to a1 is as follows:

(s1)′+(x1, x
2
1, a1) =


1 a1 < 0,

1− 2−x1√
−a1+4

0 ≤ 2−
√
−a1 + 4 < x1 ≤ 2,

0 otherwise.

(3.32)

0 1 2
0

1

2

3

4

s1(x1, x2
1, 3)

x1

x2
1

(a)

0 1 2 3 4
0

1

2

3

4

s1(1, 1, a1)

a1

a1

(b)

0 1 2 3 4
0

0.5

1

(s1)′+(1, 1, a1)

a1

(c)

Fig. 3.3.: (a) the largest convex underestimator of x2
1 over [0, 2] that is bounded from

above by 3. (b) a concave function which satisfies (3.28). (c) the right derivative of

s1(1, 1, a1) is a survival function.

In the following result, we formally relate the underestimator si(x, f, ai) with a

distribution function. Assume that we are given a function si(x, f, ai) that satis-

fies (3.29). We denote by (si)
′
+(x, f, ai) the right derivative of si(x, f, ai) with respect

to ai. We will fix (x, f) ∈ W and characterize 1 − (si)
′
+(x, f, ai) as a distribution

function, which, for notational brevity, we denote as Sx,fi (ai).
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Proposition 3.3.2 Let si : W×R be a function satisfying (3.29), and define Sx,fi (ai) :=

1−(si)
′
+(x, f, ai). If, for any given (x, f) ∈ W , si(x, f, ai) is concave in ai then Sx,fi is

a distribution function so that

∫
aidS

x,f
i (ai) = fi. Moreover, si(x, f, ai) = ESx,fi

(ai).

Proof It is easy to verify that function si(x, f, ai) that is concave in ai and satisfies

the requirement in (3.29) also satisfies the four conditions in (3.28). In particu-

lar, since si(x, f, ai) equals ai (resp. fi) when ai ≤ 0 (resp. ai ≥ 1), it follows

that (si)
′
−(x, f, ai) (resp. (si)

′
+(x, f, ai)) equals 1 (resp. 0). Then, by the sec-

ond part of Lemma 3.3.2, there exists a distribution function Fi ∈ F such that

si(x, f, ai) = EFi(ai). By the first part of Lemma 3.3.2, Fi(ai) = 1 − (EFi)
′
+(ai) =

1 − (si)
′
+(x, f, ai) = Sx,fi (ai). Moreover,

∫
aidS

x,f
i (ai) = limai→+∞ si(x, f, ai) = fi,

where the first equality is because s(x, f, ai) equals ESx,fi
(ai), which in turn approaches

the RHS as ai →∞, and the second equality follows directly from (3.29).

Equipped with Proposition 3.3.1 and Proposition 3.3.2, we are ready to derive the

limiting relaxation for the hypograph of φ ◦ f as follows. For each i ∈ {1, . . . , d}, let

Sx,fi (ai) be a function defined as in Proposition 3.3.2. Then, if the outer-function φ

satisfies (3.20), for example, as in Lemma 3.3.1, if φ is continuous and convex in each

argument when other arguments are fixed, we obtain that, for every (x, f) ∈ W ,

φ(f) = φ̃(Sx,f1 , . . . , Sx,fd ) ≤ φ̂
(
Sx,f1 , . . . , Sx,fd

)
,

where the first equality holds by Proposition 3.3.2 and the definition of φ̃, and the

inequality holds because, by Proposition 3.3.1, φ̂ is the lowest concave overestimator

of φ̃ over Fd. We will show that the limiting relaxation φ̂(Sx,f1 , . . . , Sx,fd ) has a convex

representation in the space of variables (x, f). We illustrate the ideas on an example

before providing a formal discussion.

Example 3.3.2 Consider x2
1x

2
2 over the rectangle [0, 2]2. We use Proposition 3.3.2

to derive distribution functions from underestimators of x2
i . For underestimator

si(x, x
2
i , ai) given in (3.31), 1 − (si)

′
+(x, x2

i , ai) is easily computed using the right

derivative in (3.32). For notational brevity, let Sxii (ai) denote 1 − (si)
′
+(x, x2

i , ai)
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since it depends only on the ith coordinate of x. For any xi ∈ [0, 2], it follows from

Proposition 3.3.2 that Sxii is a distribution function of a random variable Axii such that

E[Axii ] = x2
i . Then, in this example setting, our construction is essentially derived

from the following argument:

x2
1x

2
2 = E[Ax1

1 ]E[Ax2
2 ] = ED[Ax1

1 A
x2
2 ] where D(a1, a2) := Sx1

1 (a1)Sx2
2 (a2)

≥ inf
G

{
EG[Ax1

1 A
x2
2 ]
∣∣ G ∈ Π(Sx1

1 , Sx2
2 )
}

= EG∗ [Ax1
1 A

x2
2 ] where G∗(a1, a2) := max{0, Sx1

1 (a1) + Sx2
2 (a2)− 1}

= EU
[(
Sx1

1

)−1
(U)
(
Sx2

2

)−1
(1− U)

]
,

(3.33)

where the first equality is because E[Axii ] = x2
i , the second equality is by constructing

D by coupling Ax1
1 and Ax2

2 independently, the first inequality holds because the prod-

uct distribution D has Sx1
1 and Sx2

2 as marginals. The third equality holds because G∗

is feasible to the optimization problem on the LHS, and because, for two marginals

Sx1
1 , Sx2

2 ∈ F , Pr{(Ax1
1 > a1) ∪ (Ax2

2 > a2)} ≤ Pr{Ax1
1 > a1} + Pr{Ax2

2 > a2}. This

implies that, for G ∈ Π(Sx1
1 , Sx2

2 ), G(a1, a2) ≥ G∗(a1, a2), where the RHS is known as

Hoeffding-Fréchet lower bound [65, 66], and, thus, EG[Ax1
1 A

x2
2 ] ≥ EG∗ [Ax1

1 A
x2
2 ] by [?]

since the bilinear term is a correlation affine function. The third equality also fol-

lows from the more general result in Corollary 3.3.1 choosing either T = {1} or

T = {2}. The last equality holds because the distribution function of the random

vector
(
(Sx1

1 )−1(U), (Sx2
2 )−1(1 − U)

)
is G∗. We depict in Figure 3.4a the marginal

distributions S1.2
1 and S1.5

2 . For a given U = λ, we compute their inverse values to

locate a point on the curve that is the locus of support points for G∗; see Figure 3.4b.

We evaluate the last term in (3.33) by integrating the function value at points on this

curve to derive the following limiting composite relaxation:

x2
1x

2
2 ≥ max

{
0,

∫ x2
2

1−x1
2

(4λ2 − 4 + 4x1 − x2
1

λ2

)(4λ2 − 8λ+ 4x2 − x2
2

(1− λ)2

)
dλ

}
= max

{
0, 2 ln

[
x1x2

(2− x1)(2− x2)

]
− 4 · (x1 + x2 − 2) ·

(
(3− x1) · (2− x2)− x1

)}
,

whose convexity, although not directly apparent from the resulting formula, is a con-

sequence of Corollary 3.3.2 proved later.
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S1.2
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Fig. 3.4.: Underestimating x2
1x

2
2 at the point x = (1.2, 1.5) via optimal transport

To show that the the limiting relaxation is convex in (x, f), we will need certain

monotonicity properties of the optimal functional φ̂. To this end, we review order

relations over F . Let Fi, Gi ∈ F be two distribution functions. We say Fi � Gi if

EFi(ai) ≤ EGi(ai) for all ai ∈ R and EFi(ai) = EGi(ai) as ai →∞. (3.34)

If Ai ∼ Fi and Bi ∼ Gi, then the order Fi � Gi can equivalently be written as

E
[
min{Ai, ai}

]
≤ E

[
min{Bi, ai}

]
for all ai ∈ R and E[Ai] = E[Bi]. This ordering is

typically referred to as the concave order of two random variables (see Theorem 3.A.1

in [67]), which can equivalently be defined as follows. Ai is said to be smaller than

Bi in the concave order if E[ψ(Ai)] ≤ E[ψ(Bi)] for all concave functions ψ : R 7→ R,

provided the expectations exist and are equal. Next, we consider another order which

is defined by dropping the second requirement in (3.34). Namely, we say Fi ≺ Gi if

EFi(a) ≤ EGi(ai) for ai ∈ R,

or, equivalently, E
[
min{Ai, ai}

]
≤ E

[
min{Bi, ai}

]
for all ai ∈ R. This order is the in-

creasing concave order of two random variables Ai and Bi, and is equivalently defined

by requiring, E[ψ(Ai)] ≤ E[ψ(Bi)] for all increasing concave function ψ : R 7→ R (see

Theorem 4.A.2 in [67]). Given two tuples of distribution functions (F1, . . . , Fd) and

(G1, . . . , Gd), we say (F1, . . . , Fd) � (G1, . . . , Gd) (resp. (F1, . . . , Fd) ≺ (G1, . . . , Gd))

if, for each i ∈ {1, . . . , d}, Fi � Gi (resp. Fi ≺ Gi). To prove the monotonicity of φ̂,

we also need the following technical lemma.
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Lemma 3.3.3 (Theorem 1 in [68]) Let ψ(λ, u1, . . . , ud) be a continuous function

mapping from [0, 1]× Rd to R. Then, we have∫ 1

0

ψ(λ, η1, . . . , ηd)dλ ≤
∫ 1

0

ψ(λ, γ1, . . . , γd)dλ

for each system of non-decreasing bounded univariate functions ηi, γi, i = 1, . . . , d,

such that∫ p

0

ηi(λ)dλ ≥
∫ p

0

γi(λ)dλ 0 ≤ p ≤ 1 and

∫ 1

0

ηi(λ)dλ =

∫ 1

0

γi(λ)dλ, (3.35)

if and only if the function ψ is convex in ui when the other arguments are fixed,

supermodular over Rd when λ is fixed, and∫ δ

0

(
ψ(p+δ+λ, u)−ψ(p+δ+λ, u−hei)+ψ(p+λ, u−hei)−ψ(p+λ, u)

)
dλ ≥ 0 (3.36)

for all 0 ≤ p ≤ 1− 2δ, δ > 0, h ≥ 0, i = 1, . . . , d, where ei is the ith principal vector

in Rd.

Proposition 3.3.3 Let φ : Rd 7→ R be a continuous function which is convex in

each argument when the other arguments are fixed, and assume that there exists a

T ⊆ {1, . . . , d} so that φ(T ) is supermodular. If (F1, . . . , Fd) � (G1, . . . , Gd) then

φ̂(F1, . . . , Fd) ≥ φ̂(G1, . . . , Gd). The weaker condition (F1, . . . , Fd) ≺ (G1, . . . , Gd)

suffices to show φ̂(F1, . . . , Fd) ≥ φ̂(G1, . . . , Gd) if φ(T ) is also non-increasing in each

argument.

Proof Assume that (F1, . . . , Fd) � (G1, . . . , Gd). We will show that φ̂(F1, . . . , Fd) ≥

φ̂(G1, . . . , Gd). Let ηi(λ) := Fi(T )−1(λ) and define ψ(λ, η1, . . . , ηd) = φ(T )(η1, . . . , ηd).

Observe that the hypothesis on ψ in Lemma 3.3.3 is satisfied by this definition since

φ(T ) is independent of λ and is assumed to be supermodular and convex in each

argument when the others are fixed. Moreover, since the first argument of ψ is ignored,

the condition (3.36) holds trivially. Now, we show that (3.35) is satisfied with our

definition. Since, for any univariate function ψ, Fi � Gi implies that E[ψ(1− Ai)] ≤

E[ψ(1 − Bi)] where Ai ∼ Fi and Bi ∼ Gi, it follows that Fi(T ) � Gi(T ), where
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Fi(T ) and Gi(T ) are defined as in (3.24). It follows from Theorem 3.A.5 in [67] that

Fi(T ) � Gi(T ) if and only if∫ p

0

Fi(T )−1(λ)dλ ≤
∫ p

0

Gi(T )−1(λ)dλ for p ∈ [0, 1],

with equality achieved at p = 1. Last, observe that Fi(T )−1(λ) and Gi(T )−1(λ) are

non-decreasing. Therefore, it follows from Lemma 3.3.3 that∫ 1

0

φ(T )(F1(T )−1(λ), . . . , Fd(T )−1(λ))dλ ≥
∫ 1

0

φ(T )(G1(T )−1(λ), . . . , Gd(T )−1(λ))dλ.

Hence, by Corollary 3.3.1, we conclude that φ̂(F1, . . . , Fd) ≥ φ̂(G1, . . . , Gd).

Assume now that φ is non-increasing. We prove that φ̂(F1, . . . , Fd) ≥ φ̂(G1, . . . , Gd)

under the weaker condition (F1, . . . , Fd) ≺ (G1, . . . , Gd). Clearly, Fi ≺ Gi implies

Fi(T ) ≺ Gi(T ). Then, it follows from Theorem 4.A.6 in [67] that Fi ≺ Gi if and only

if there exists a distribution function Di ∈ F such that Fi(T )−1(λ) ≤ D−1
i (λ) for all

λ ∈ [0, 1] and Di � Gi(T ). Therefore,∫ 1

0

φ(T )
(
F1(T )−1(λ), . . . , Fd(T )−1(λ)

)
dλ ≥

∫ 1

0

φ(T )
(
D−1

1 (λ), . . . , D−1
d (λ)

)
dλ

≥
∫ 1

0

φ(T )
(
G1(T )−1(λ), . . . , Gd(T )−1(λ)

)
dλ,

where the first inequality holds because φ(T ) is non-increasing and, for every i ∈

{1, . . . , d} and λ ∈ [0, 1], Fi(T )−1(λ) ≤ D−1
i (λ), and second inequality was established

above. Thus, the result follows from Corollary 3.3.1.

Now, we derive the limiting composite relaxation. Our construction will be based

on three key ideas: (a) for each (x, f), the underestimator will be used as in Propo-

sition 3.3.2 to derive marginal distributions Sx,f1 , . . . , Sx,fd ; (b) under the technical

condition (3.20), Proposition 3.3.1 will be used to relax φ(f) by φ̂(Sx,f1 , . . . , Sx,fd );

(c) φ̂(Sx,f1 , . . . , Sx,fd ) will be further relaxed to φ̂(F1, . . . , Fd), where (F1, . . . , Fd) �

(Sx,f1 , . . . , Sx,fd ) using Proposition 3.3.3 without sacrificing the quality of the relax-

ation. We present these ideas formally in the next result, where we also prove the

convexity of the resulting relaxation.
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Theorem 3.3.3 Let φ ◦ f be a composite function, where φ : [0, 1]d 7→ R is a con-

tinuous function which is convex in each argument when other arguments are fixed,

and f : Rm 7→ [0, 1]d is a vector of functions over a subset X of Rm. For each

i ∈ {1, . . . , d}, let si : W ×R 7→ R be a function which satisfies (3.29) and is concave

in ai. Define Sx,fi (ai) := 1 − (si)
′
+(x, f, ai). Then, proj(x,φ)(R) is a relaxation of

hypograph of φ ◦ f , where:

R :=

(x, f, φ, F1, . . . , Fd)

∣∣∣∣∣∣
φ ≤ φ̂(F1, . . . , Fd), (F1, . . . , Fd) ∈ Fd

(x, f) ∈ W, Sx,fi � Fi

 , (3.37)

Moreover,

1. if, for each fixed ai, si(x, f, ai) is convex in (x, f) and W is convex then R is

convex;

2. if φ is a supermodular function then

proj(x,f,φ)(R) =

(x, f, φ)

∣∣∣∣∣∣∣
(x, f) ∈ W

φ ≤
∫ 1

0

φ
((
Sx,f1

)−1
(λ), . . . ,

(
Sx,fd

)−1
(λ)
)

dλ

 ;

(3.38)

3. if φ is supermodular and non-increasing in each argument and, for fixed ai ∈ R,

si(x, f(x), ai) is convex in x then we obtain a convex relaxation of the hypograph

of φ ◦ f :{
(x, φ)

∣∣∣∣ x ∈ X, φ ≤ ∫ 1

0

φ
((
S
x,f(x)
1

)−1
(λ), . . . ,

(
S
x,f(x)
d

)−1
(λ)
)

dλ

}
. (3.39)

Proof We first prove that hyp(φ ◦ f) ⊆ proj(x,φ)(R), where hyp(φ ◦ f) denotes

the hypograph of φ ◦ f . Let (x, φ) ∈ hyp(φ ◦ f). Define f := f(x) and observe

that (x, f) ∈ W because W is a relaxation of gr(f). Moreover, let Fi := Sx,fi . By

Proposition 3.3.2, Fi is the distribution function of a random variable Ai such that

E[Ai] = fi. By (x, φ) ∈ hyp(φ ◦ f), f = f(x), Fi = Sx,fi , and Proposition 3.3.1,

we obtain φ ≤ φ
(
f(x)

)
= φ(f) = φ̃(Sx,f1 , . . . , Sx,fd ) = φ̃(F1, . . . , Fd) ≤ φ̂(F1, . . . , Fd).
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Therefore, we conclude that (x, f, φ, F1, . . . , Fd) ∈ R. In other words, hyp(φ ◦ f) ⊆

proj(x,φ)(R).

We now show that under the three conditions in the theorem statement the claimed

structure for the relaxation holds. We begin with Condition 1. Assume that, for each

ai, si(x, f, ai) is convex in (x, f) and W is convex. To show that R is convex, it suffices

to argue that constraint Sx,fii � Fi defines a convex set because W is assumed to be

convex and, by Proposition 3.3.1, the functional φ̂ is concave over Fd. By definition,

Sx,fi � Fi is equivalent to

Eai
(
Sx,fi

)
≤ Eai(Fi) ∀ai ∈ R and

∫
aidS

x,f
i (ai) =

∫
aidFi(ai). (3.40)

For each ai ∈ R, by Proposition 3.3.2, we have Eai
(
Sx,fi

)
− Eai(Fi) = si(x, f, ai) −

Eai(Fi). Since we assumed that, for each ai, si(x, f, ai) is a convex function, the result

follows if Eai(Fi) is a concave function for each ai. The latter follows because, for α ∈

[0, 1] and Fi, Gi ∈ F , Eai
(
αF+(1−α)G

)
=

∫
min{a′i, ai}d

(
αFi(a

′
i)+(1−α)Gi(a

′
i)
)

=

αEai(F )+(1−α)Eai(G). The second equation in (3.40) defines a convex set because,

by Proposition 3.3.2,

∫
aidS

x,f
i (ai) = fi, and, for Fi, Gi ∈ F so that

∫
aidFi =∫

aidGi = fi,

∫
aid
(
αFi(ai)+(1−α)Gi(ai)

)
= α

∫
aidFi(ai)+(1−α)

∫
aidGi(ai) = fi.

It follows that the set described in (3.40) is convex in the space of (x, f, F1, . . . , Fd)

variables.

Next, we prove Condition 2. Let

R′ :=
{

(x, f, φ)
∣∣ (x, f) ∈ W, φ ≤ φ̂(Sx,f1 , . . . , Sx,f1 )

}
,

which, by Theorem 3.3.2, is the set in the RHS of (3.38). To show R′ ⊆ proj(x,f,φ)(R),

we consider a point (x, f, φ) ∈ R′ and define (F1, . . . , Fd) = (Sx,f1 , . . . , Sx,fd ). Then,

by Proposition 3.3.2, we have

∫
aidFi(ai) = fi. Since Sx,fi � Fi holds trivially, it

follows that (x, f, φ, F1, . . . , Fd) ∈ R, showing that R′ ⊆ proj(x,f,φ)(R). To prove

that proj(x,f,φ)(R) ⊆ R′, we consider a point (x, f, φ, F1, . . . , Fd) of R and show

that (x, f, φ) ∈ R′. It follows readily that φ ≤ φ̂(F1, . . . , Fd) ≤ φ̂
(
Sx,f1 , . . . , Sx,fd

)
,

where second inequality holds because
(
Sx,f1 , . . . , Sx,fd

)
� (F1, . . . , Fd) and, by Propo-
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sition 3.3.3, the functional φ̂ is non-increasing under the order �. Since (x, f) ∈ W ,

we conclude that (x, f, φ) ∈ R′ and proj(x,f,φ)(R) ⊆ R′.

Last, we prove Condition 3. Assume that si(x, f(x), ai) is convex in x. We start

by showing proj(x,φ)(R̃) is a convex relaxation of the hypograph of φ ◦ f , where

R̃ :=
{

(x, φ, F1, . . . , Fd)
∣∣ φ ≤ φ̂(F1, . . . , Fd), (F1, . . . , Fd) ∈ Fd, Sx,f(x)

i ≺ Fi
}
.

(3.41)

For this proof, we let W := gr(f). Then, we observe that hyp(φ ◦ f) ⊆ proj(x,φ)(R) ⊆

proj(x,φ)(R̃), where the first containment was shown above and the second contain-

ment holds because, by Proposition 3.3.1, the constraint S
x,f(x)
i � Fi is equivalent

to S
x,f(x)
i ≺ Fi and fi(x) =

∫
aidFi. The convexity of R̃ follows because φ̂ is con-

cave over Fd, and the constraint S
x,f(x)
i ≺ Fi is convex because it can be imposed

using si
(
x, f(x), ai

)
≤ Eai(Fi) for every ai ∈ R. This defines a convex set because,

for every ai ∈ R, si
(
x, f(x), ai

)
is convex and Eai(Fi) was shown to be linear in

the proof of Condition 1. Now, let R′′ be the set defined by (3.39). We will show

proj(x,φ)(R̃) = R′′. We have R′′ = proj(x,φ)(R) ⊆ proj(x,φ)(R̃), where the first equality

holds by Condition 2 and W := gr(f), and the second equality holds because R ⊆ R̃.

Now, to prove proj(x,φ)(R̃) ⊆ R′′, we consider a point (x, f, φ, F1, . . . , Fd) of R̃ and

show (x, φ) ∈ R′′. It follows readily that φ ≤ φ̂(F1, . . . , Fd) ≤ φ̂
(
S
x,f(x)
1 , . . . , S

x,f(x)
d

)
,

where the second inequality holds by
(
S
x,f(x)
1 , . . . , S

x,f(x)
d

)
≺ (F1, . . . , Fd) and because

Proposition 3.3.3 shows that φ̂ is non-increasing in ≺ under the assumed properties

of φ. Thus, by Theorem 3.3.2, (x, φ) ∈ R′′ and, therefore, proj(x,φ)(R̃) ⊆ R′′.

Remark 3.3.2 We remark that φ̂
(
Sx,f1 , . . . , Sx,fd

)
coincides with the composite func-

tion φ ◦ f when the underestimating function si(x, f, ai) equals min{fi(x), ai}. To

see this, consider an x ∈ X and let f = f(x). It follows that, for i = 1, . . . , d,

si(x, f, ai) = ai if ai ≤ fi and si(x, f, ai) = fi otherwise. Therefore, Sx,fi (ai) = 0 if

ai ≤ fi and 1 otherwise. In other words, Sx,fi corresponds to the distribution function

of a Dirac measure with all its mass at fi. Therefore, the only joint distribution,
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feasible in the optimal transport formulation (3.23), is the distribution of a Dirac

measure with all its mass at (f1, . . . , fd). In other words, φ̂(Sx,f1 , . . . , Sx,fd ) = φ(f).

Observe that since the locus of points over which the integral (3.38) or (3.39) is

taken is independent of the function φ, (3.38) or (3.39) can be used to simultaneously

treat a vector of functions θk, k ∈ {1, . . . , κ}. Using arguments similar to those in

Conditions 2 and 3 of Theorem 3.3.3, we can extend the result to treat functions that

become supermodular after switching. We record this result for its use in applications

such as Example 3.3.2.

Corollary 3.3.2 Let R be the set defined in (3.37). Assume the same setup as The-

orem 3.3.3 except that the assumed properties on φ apply to φ(T ), where T is some

subset of {1, . . . , d}. Then, Condition 2 applies with the definition of proj(x,f,φ)(R)

replaced with:

proj(x,f,φ)(R) =

(x, f, φ)

∣∣∣∣∣∣∣
(x, f) ∈ W

φ ≤
∫ 1

0

φ(T )
((
Sx,f1

)
(T )−1(λ), . . . ,

(
Sx,fd

)
(T )−1(λ)

)
dλ

 .

Similarly, Condition 3 applies, where the relaxation is replaced with:{
(x, φ)

∣∣∣∣ x ∈ X, φ ≤ ∫ 1

0

φ(T )
((
S
x,f(x)
1

)
(T )−1(λ), . . . ,

(
S
x,f(x)
d

)
(T )−1(λ)

)
dλ

}
.

3.4 Conclusions

In this chapter, we developed new tractable relaxations for composite functions.

Our relaxations leverage the composite relaxation framework proposed in Chapter 2

that involves convexifying the outer-function over a polytope P . The polytope P

encodes the structure of inner-functions using n estimators for each function. The

structure of P generalizes that of a hypercube; the set used in factorable relaxations

for a similar purpose and derived using bounds on the inner-function. Although

convexifying general outer-functions over P is NP-Hard, we showed that when the

outer-function is supermodular and concave-extendable, its concave envelope over P
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is determined by the staircase triangulation of a subset Q of P . Using this result, we

found exponentially many inequalities describing the concave envelope of the outer-

function over P . Since the polyhedral subdivision of P is invariant with the outer-

function, we could convexify simultaneously the hypograph of a vector of composite

functions. We also derived various inequalities regarding the structure of inequalities

for the special case where the outer-function is multilinear.

We extended our results to the case with infinitely many estimators for each

inner-function, by assuming that the outer-function is convex in each argument. For

this extension, we described a marginal distribution for each inner-function by con-

sidering how underestimating function varies as a function of its upper bound. We

then reformulated the concave envelope construction to an optimal transport prob-

lem and showed that the problem has an explicit solution when the outer-function

is supermodular. Moreover, when the outer-function is non-decreasing, we exploited

monotonicity properties of the explicit solution for the optimal transport problem

with respect to a certain stochastic order to show that, as long as the underesti-

mating functions were convex, we can derive a convex relaxation for the composite

function in the space of the original problem variables.
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4. EXTRACTING STRUCTURE FROM EXPRESSION

TREES FOR DISCRETE AND CONTINUOUS

RELAXATIONS OF MINLPS

In Chapters 2 and 3, we extracted a polytope P and its subset Q from expression

trees to construct composite relaxations. In this chapter, we show that composite

relaxations also lay a foundation for improving relaxation hierarchies and standard

MIP relaxations.

First, we present a family of inequalities, called staircase inequalities, which is ob-

tained by telescoping composite function φ◦ f in a certain way so that, under certain

conditions, each summand can be overestimated using a simple operation. Staircase

inequalities can be used to derive the Lovász extension of set function [53] and a

tractable relaxation for composite functions in Chapter 3. These staircase inequal-

ities are not implied by standard reformulation-linearization technique (RLT) [39].

Furthermore, recursively using staircase inequalities and linearization yield RLT in-

equalities and more.

We also argue that the composite relaxations are well-suited for constructing MIP

relaxations via a discretization scheme. Our proposed MIP relaxations are obtained

by reinterpreting the incremental formulation [35] and combining it with the com-

posite relaxations, and are provable to be tighter than the standard ones in [36, 37].

Further improved MIP relaxations can be constructed using staircase inequalities. For

composite functions with discrete domains and univariate inner-functions, we obtain

ideal logarithmic MIP formulations for their graphs. In contrast, the state-of-the-art

formulation from [40] is not ideal. By exploiting our results for discrete domains,

we show that, for certain compositions of univariate functions, we can construct a

sequence of polyhedral relaxations that converge, in the limit, to the concave envelope.
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4.1 Staircase expansions and stepwise relaxations

Consider a composite function φ ◦ f : X ⊆ Rm 7→ R defined as φ ◦ f(x) =

φ
(
f(x)

)
. We shall write f(x) :=

(
f1(x), . . . , fd(x)

)
and refer to f(·) as inner-functions

while φ : Rd 7→ R will be referred to as the outer-function. In this section, we will

present a procedure to derive overestimators for composite function φ ◦ f . More

specifically, we telescope composite function φ ◦ f in a certain way so that, under

certain conditions, each summand can be overestimated using a simple operation.

As an illustration, we apply this technique to derive the Lováze extension of set

function [53] and a tractable relaxation for composite functions in Chapter 3. We

will assume that for every x ∈ X we have f(x) ∈ [fL, fU ] for some vectors fL and

fU in Rd. We further assume, without loss of generality, that [fL, fU ] = [0, 1]d since

otherwise we can treat f̄i(x) =
(
fi(x) − fLi

)
/(fUi − fLi ) as an inner-function and

φ̄(f̄) = φ
(
(fU1 − fL1 )f̄1 + fL1 , . . . , (f

U
d − fLd )f̄d + fLd

)
as an outer-function.

Let (n1, . . . , nd) ∈ Zd, and let u : Rm 7→ R
∑d
i=1(ni+1) be a vector of functions so

that

u(x) =
(
u1(x), . . . , ud(x)

)
and

(
u1n1(x), . . . udnd(x)

)
=
(
f1(x), . . . , fd(x)

)
.

Throughout this chapter, we introduce a vector of variables u to represent u(x), and

we assume without loss of generality and for notational simplicity that n(1) = · · · =

n(d) = n. For (j1, . . . , jd) ∈ {0, . . . , n}d, a subvector (u1j1 , . . . , udjd) of u can be

conveniently represented on a grid G. More precisely, we define the grid G on a d-

dimensional space where each coordinate takes one of the values in {0, . . . , n}. Then,

a subvector (uiji)
d
i=1 can be depicted as the point {ji}di=1 on the grid. In other words,

if we label the grid marker j along the coordinate direction i as uij, we can read off

the labels to find the corresponding subvector of u. We shall call these labels grid-

labels, which depend on u, while the grid depends only on the number of subspaces

and the dimension of each subspace. Given a grid point pi = (ji)
d
i=1, we denote the

corresponding subvector (u1j1 , . . . , udjd) of u by (u, pk). Essentially, (u, pk) reads off
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the grid labels, derived from u, for the grid-point pk to obtain the corresponding

subvector.

A lattice path in G from (0, . . . , 0) to (n, . . . , n) is a sequence of points p0, . . . , pτ in

Zd such that p0 = (0, . . . , 0) and pk = (n, . . . , n). In particular, a monotone staircase

is a lattice path in Zd of length dn+1 such that, for all t ∈ {1, . . . , dn}, pk−pk−1 = ei,

where ei is the ith principal vector in Rd. We refer to the movement pk−1 to pk as the

kth move. Clearly, there are exactly n moves in each coordinate direction. Thus, the

staircase can be specified succinctly as a movement vector π = (π1, . . . , πdn) where

πk ∈ {1, . . . , d} is the coordinate direction of kth move. We will often need to track

where the kth move leaves us on the grid. This is obtained using the transformation

Π, which is defined as Π(π, k) := p0 +
∑k

j=1 eπ(j). Given a move π, the corresponding

staircase can be recovered as
(
Π(π, k)

)dn
k=0

, and thus the corresponding subvectors of

u are denoted by
{(
u,Π(π, k)

)}dn
k=0

. The staircase expansion of a function φ : Rd 7→ R

under a movement π is a function Dπ(φ) : Rd×(n+1) 7→ R defined as follows:

Dπ(φ)(u) := φ
(
u,Π(π, 0)

)
+

dn∑
k=1

(
φ
(
u,Π(π, k)

)
− φ
(
u,Π(π, k − 1)

))
. (4.1)

Lemma 4.1.1 Consider a composite function φ ◦ f : X ⊆ Rm 7→ Rd, and let u :

Rm 7→ Rd×(n+1) so that, for i ∈ {1, . . . , d}, uin(x) = fi(x). Then, for any staircase π

we have

φ
(
f(x)

)
= Dπ(φ)

(
u(x)

)
≤ φ

(
u(x),Π(π, 0)

)
+

dn∑
k=1

D̃(π,k)(φ)
(
u(x)

)
for x ∈ X,

provided that D(π,k)(φ)
(
u(x)

)
≤ D̃(π,k)(φ)

(
u(x)

)
is valid over X.

Proof Let x ∈ X, and let u := u(x). Then, the equality in the result holds by

observing that

φ
(
f(x)

)
= φ(u1n, . . . , udn) = φ

(
u,Π(π, dn)

)
= Dπ(φ)(u),

where the first equality holds by the hypothesis that for i ∈ {1, . . . , d} uin(x) = fi(x),

the second equality holds because Π(π, dn) = (n, . . . , n), and the last equality holds

because the sum in (4.1) telescopes, leaving the term φ
(
u,Π(π, dn)

)
.
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In the next example we use the idea in Lemma 4.1.1 to derive a relaxation for the

product of two functions.

Example 4.1.1 (Theorem 2.3.3) Consider the product of two functions f1(x)f2(x)

over a convex set X ⊆ Rm, where for x ∈ X we assume that fLi ≤ fi(x) ≤ fUi . For

i = 1, 2, assume that there exist constants fLi , fUi and ai, and a function ui : X 7→ R

so that for x ∈ X we have

fLi ≤ ai ≤ fUi fLi ≤ fi(x) ≤ fUi ui(x) ≤ fi(x) and ui(x) ≤ ai. (4.2)

We only derive one of inequalities in Theorem 2.3.3 since others can be derived in a

similar way. Let u+
i (x) denote max

{
ui(x), fLi

}
. Then, it follows that

f1(x)f1(x) = fL1 f
L
2 +

(
u+

1 (x)− fL1
)
fL2 + u+

1 (x)
(
u+

2 (x)− fL2
)

+
(
f1(x)− u+

1 (x)
)
u+

2 (x)

+ f1(x)
(
f2(x)− u+

2 (x)
)

≤ fL1 f
L
2 +

(
u+

1 (x)− fL1
)
fL2 + a1

(
u+

2 (x)− fL2
)

+
(
f1(x)− u+

1 (x)
)
a2

+ fU1
(
f2(x)− u+

2 (x)
)

= (fL2 − a2)u+
1 (x) + (a1 − fU2 )u+

2 (x) + a2f1(x) + fU1 f2(x)− a1f
L
2

≤ (fL2 − a2)u1(x) + (a1 − fU2 )u2(x) + a2f1(x) + fU1 f2(x)− a1f
L
2

where the first equality holds because the right hand side telescopes to f1(x)f2(x), the

first inequality holds because inequalities in (4.2) imply that(
a1 − u+

1 (x)
)(
u+

2 (x)− fL2
)
≥ 0,(

f1(x)− u+
1 (x)

)(
a2 − u+

2 (x)
)
≥ 0,(

fU1 − f1(x)
)(
f2(x)− u+

2 (x)
)
≥ 0,

the second equality holds by rearrangement, and the last inequality is implied by

u+
i (x) ≥ ui(x) and inequalities in (4.2).
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Motivated by the Example 4.1.1, we now consider a particular system of estimating

functions for the inner-function f(·). Namely, let
(
u(x), a(x)

)
be a pair of vectors of

functions mapping from Rd×(n+1) to R so that for x ∈ X

0 ≤ ai0(x) ≤ . . . ≤ ain(x) ≤ 1,

uij(x) ≤ min
{
fi(x), aij(x)

}
for all j ∈ {0, . . . , n},

ui0(x) = ai0(x) uin(x) = fi(x).

(4.3)

The first requirement states that uij(·) is an underestimator for fi(·), which is bounded

from above by bounding function aij(·). The second requirement requires that ele-

ments of ai(·) are ordered in a non-decreasing order. The last requirement says that

the first underestimator ui0(·) and last underestimator uin(·) is the smallest bound-

ing function ai0(·) and the inner function fi(·) itself. In Section 4.4, we will provide

tractable procedures for constructing a pair satisfying (4.3).

Now, we exploit ordering relationships in (4.3) to relax each step different function

D(π,k)
(
u(x)

)
. For a subset I of {1, . . . , d}, we define a replacement operator χI :

(u, a) ∈ Rd×(n+1)×Rd×(n+1) 7→ t ∈ Rd×(n+1) so that ti = ui if i ∈ I and ti = ai

otherwise. For a function φ : Rd 7→ R and for a staircase π in the grid given by

{0, . . . , n}d, let Bπ(φ) : Rn×(n+1)×Rn×(n+1) 7→ R be a function defined as follows:

Bπ(φ)(u, a) = φ
(
u,Π(π, 0)

)
+

dn∑
k=1

B(π,k)(φ)(u, a), (4.4)

where B(π,k)(φ)(u, a) := D(π,k)(φ)
(
χπ(k)(u, a)

)
is a function obtained from D(π,k)(φ)(u)

by replacing all arguments ui by ai but the πth
k coordinate direction. Next, we show

that the supermodularity of φ(·) implies that (φ◦f)(x) ≤ Bπ(φ)
(
u(x), a(x)

)
for every

x ∈ X and that Bπ(φ)(·, ·) processes certain monotone properties.

Definition 4.1.1 ( [54]) A function η(x) : S ⊆ Rn 7→ R is said to be supermodular

if η(x′ ∨ x′′) + η(x′ ∧ x′′) ≥ η(x′) + η(x′′) for all x′, x′′ ∈ S. Here, x′ ∨ x′′ denotes

the component-wise maximum and x′ ∧ x′′ denotes the component-wise minimum of

x′ and x′′ and assume that x′ ∨ x′′ and x′ ∧ x′′ belong to S whenever x′ and x′′ in S.
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Although detecting whether a function is supermodular is NP-Hard [55], there are

important special cases where this property can be readily detected [54]. For example,

a product of nonnegative, increasing (decreasing) supermodular functions is also non-

negative increasing (decreasing) and supermodular; see Corollary 2.6.3 in [54]. Also, it

follows trivially that a conic combination of supermodular functions is supermodular.

Theorem 4.1.1 Consider a composite function φ ◦ f : X ⊆ Rm 7→ R, and con-

sider three pairs
(
u(x), a(x)

)
,
(
u′(x), a(x)

)
and

(
u(x), a′(x)

)
which satisfy the re-

quirement (4.3) such that u(x) ≤ u′(x) and a(x) ≤ a′(x). If the outer-function

φ(·) is supermodular over [0, 1]d then, for each staircase π, we have φ
(
f(x)

)
≤

Bπ(φ)
(
u′(x), a(x)

)
≤ Bπ(φ)

(
u(x), a(x)

)
for every x ∈ X.

Proof Let
(
u(x), a(x)

)
and

(
u′(x), a(x)

)
be two pairs satisfying (4.3) such that

u(x) ≤ u′(x). Then, we start with showing that Bπ(φ)
(
u′(x), a(x)

)
≤ Bπ(φ)

(
u(x), a(x)

)
.

Let x ∈ X, and define u := u(x), u′ := u′(x), and a := a(x). For i ∈ {1, . . . , d},

define {ti1, . . . , tin} :=
{
t
∣∣ π(t) = i

}
so that ti1 ≤ . . . ≤ tin. It follows that

Bπ(φ)(u′, a)

= φ
(
u′,Π(π, 0)

)
+

d∑
i=1

n∑
j=1

(
φ
(
χi(u′, a),Π(π, tij)

)
− φ
(
χi(u′, a),Π(π, tij − 1)

))
= φ

(
u′,Π(π, 0)

)
+

d∑
i=1

(
−φ
(
χi(u′, a),Π(π, ti1 − 1)

)
+

n−1∑
j=1

(
φ
(
χi(u′, a),Π(π, tij)

)
− φ
(
χi(u′, a),Π(π, ti(j+1) − 1)

))
+ φ
(
χi(u′, a),Π(π, tin)

))

≤ φ
(
u,Π(π, 0)

)
+

d∑
i=1

(
−φ
(
χi(u, a),Π(π, ti1 − 1)

)
+

n−1∑
j=1

(
φ
(
χi(u, a),Π(π, tij)

)
− φ
(
χi(u, a),Π(π, ti(j+1) − 1)

))
+ φ
(
χi(u, a),Π(π, tin)

))
= Bπ(φ)(u, a).

(4.5)
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To see that the inequality holds when φ(·) is supermodular, we observe that
(
χi(u′, a),Π(π, ti1−

1)
)

=
(
χi(u, a),Π(π, ti1−1)

)
since

(
Π(π, ti1−1)

)
i

= 0 and ui0 = u′i0, that
(
χi(u′, a),Π(π, tin)

)
=(

χi(u, a),Π(π, tin)
)

since (Π(π, tin))i = n and uin = u′in, and that

(
χi(u′, a),Π(π, tij)

)
∧
(
χi(u, a),Π(π, ti(j+1) − 1)

)
=
(
χi(u, a),Π(π, tij)

)
,(

χi(u′, a),Π(π, tij)
)
∨
(
χi(u, a),Π(π, ti(j+1) − 1)

)
=
(
χi(u′, a),Π(π, ti(j+1) − 1)

)
,

where two equalities hold because u ≤ u′, ai0 ≤ . . . ≤ ain, and Π(π, tij) ≤ Π(π, ti(j+1)−

1).

Next, consider a vector of underestimators s(x) of f(x) so that for each i ∈

{1, . . . , d} and j ∈ {0, . . . , n}, sij(x) = min
{
fi(x), aij(x)

}
. We will show that (φ ◦

f)(x) ≤ Bπ(φ)
(
s(x), a(x)

)
, thus, together with the above result, yielding (φ◦f)(x) ≤

Bπ(φ)
(
u(x), a(x)

)
since the pair

(
s(x), a(x)

)
also satisfies (4.3) and u(x) ≤ s(x).

Let x ∈ X, and define a = a(x) and s = s(x). By Definition 4.1, we have (φ ◦

f)(x) = Dπ(φ)(s), and need to show Dπ(φ)(s) ≤ Bπ(φ)(s, a). By the Definition 4.4,

it suffices to show that, for k ∈ {1, . . . , dn}, D(π,k)(φ)(s) ≤ B(π,k)(φ)(s, a), which can

be established by observing that

D(π,k)(φ)(s) := φ
(
s,Π(π, k)

)
− φ
(
s,Π(π, k − 1)

)
≤ φ

(
χπ(k)(s, a),Π(π, k)

)
− φ
(
χπ(k)(s, a),Π(π, k − 1)

)
=: Bπ,k(φ)(s, a),

where the inequality holds because φ(·) is assumed to be supermodular, and si0 ≤

· · · ≤ sin, sij ≤ aij, and Π(π, k − 1) ≤ Π(π, k) imply that(
s,Π(π, k)

)
∧
(
χπ(k)(s, a),Π(π, k − 1)

)
=
(
s,Π(π, k − 1)

)
,(

s,Π(π, k)
)
∨
(
χπ(k)(s, a),Π(π, k − 1)

)
=
(
χπ(k)(s, a),Π(π, k)

)
.

The proof is complete.

Remark 4.1.1 In this remark we treat the case when overestimators for inner-functions

f(·) are provided. More specifically, we show that overestimators of f(·) can be trans-

formed into underestimators and thus our treatment in Theorem 4.1.1 is without loss

of generality. For i ∈ {1, . . . , d}, let (Ai, Bi) be a partition of {0, . . . , n} so that
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{0, n} ⊆ Ai, and let
(
u(x), a(x)

)
be a pair of vectors of functions from Rd×(n+1) to R

so that for x ∈ X:

0 ≤ ai0(x) ≤ . . . ≤ ain(x) ≤ 1,

for each j ∈ Ai : uij(x) ≤ min
{
fi(x), aij(x)

}
,

for each j ∈ Bi : max
{
fi(x), aij(x)

}
≤ uij(x),

ui0(x) = ai0(x) uin(x) = fi(x).

(4.6)

Consider an affine transformation L : (u, a) ∈ Rd×(n+1)+d×(n+1) 7→ (ũ, ã) ∈ Rd×(n+1)+d×(n+1)

defined as follows:

ũij = uij ãij = aij for j ∈ Ai and ũij = aij − uij + uin ãij = aij for j ∈ Bi.

(4.7)

Clearly, the transformation L is invertible. More specifically, given a vector (t, b) ∈

Rd×(n+1)+d×(n+1) the transformation (u, a) := L−1(t, b) is given by a = b, and uij = tij

for all i and j ∈ Ai and uij = bij− tij + tin for all i and j ∈ Bi. Observe that for each

pair
(
u(x), a(x)

)
satisfying (4.6) the transformed pair T

(
u(x), a(x)

)
satisfies (4.3).

Thus, by Theorem 4.1.1 we obtain that

(φ ◦ f)(x) ≤ Bπ(φ)
(
T
(
u(x), a(x)

))
for x ∈ X.

provided that φ(·) is supermodular over [0, 1]d.

To derive overestimators for a composite function φ◦f , the Theorem 4.1.1 requires

the outer-function φ(·) to be supermodular over [0, 1]d, which contains the range of

inner-functions f(·). Next, we consider a particular linear transformation that can

be used to make the outer-function supermodular. This transformation, referred to

as switching, chooses a set D ⊆ {1, . . . , d} and considers a new function φ(D) :

[0, 1]d 7→ R defined as φ(D)(f1, . . . , fd) = φ
(
f(D)

)
, where f(D)i = 1 − fi if i ∈ D

and f(D)i = fi otherwise. Moreover, for a given pair
(
u(x), a(x)

)
satisfying (4.3), we
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define a new pair
(
ũ(x), ã(x)

)
so that for i /∈ T ũi(x) = ui(x) and ãi(x) = ai(x), and

otherwise

ũij(x) =
(
1− ain−j(x)

)
−
(
1− uin−j(x)

)
+
(
1− uin(x)

)
and ãij(x) = 1− ain−j(x) ∀j

(4.8)

It turns out that φ ◦ f can be expressed as φ(T )
(
ū1n(x), . . . , ūdn(x)

)
. Moreover, the

new pair
(
ũ(x), ã(x)

)
satisfies the requirement in (4.3) as the pair

(
u(x), a(x)

)
is as-

sumed to satisfy (4.3). Therefore, the next result follows directly from Theorem 4.1.1.

Corollary 4.1.1 Consider a composite function φ ◦ f : X ⊆ Rm 7→ R, and consider

a pair
(
u(x), a(x)

)
satisfying (4.3). If f(T ) is supermodular for some T ⊆ {0, . . . , d}

then, for each staircase π, we have

(φ ◦ f)(x) ≤ Bπ
(
φ(T )

)(
ũ(x), ã(x)

)
for every x ∈ X,

where the pair
(
ũ(x), ã(x)

)
is defined as in (4.8).

Example 4.1.2 (Theorem 2.1.1) Consider the same setup as Example 4.1.1. We

will derive one of inequalities in [56] since others can be derived using similar ar-

gument. Let f̃2(x) := fU2 − f2(x), f̃L2 := 0, and f̃U2 := fU2 − fL2 . In addition, let

ũ2(x) := (fU2 −a2)−
(
fU2 −u2(x)

)
+
(
fU2 −f2(x)

)
and ã2 := fU2 −a2. Let ũ+

2 (x) denote

max
{
ũ2(x), f̃L2

}
. Then, it follows that

f1(x)f1(x) = f1(x)
(
fU2 − f̃2(x)

)
= fL1

(
fU2 − f̃L2

)
+
(
u+

1 (x)− fL1
)(
fU2 − f̃L2

)
+ u+

1 (x)
((
fU2 − ũ+

2 (x)
)
−
(
fU2 − f̃L2

))
+
(
f1(x)− u+

1 (x)
)(
fU2 − ũ+

2 (x)
)

+ f1(x)
((
fU2 − f̃2(x)

)
−
(
fU2 − ũ+

2 (x)
))

≥ fL1
(
fU2 − f̃L2

)
+
(
u+

1 (x)− fL1
)(
fU2 − f̃L2

)
+ a1

((
fU2 − ũ+

2 (x)
)
−
(
fU2 − f̃L2

))
+
(
f1(x)− u+

1 (x)
)(
fU2 − ã2

)
+ fU1

((
fU2 − f̃2(x)

)
−
(
fU2 − ũ+

2 (x)
))

= (fU2 − a2)u+
1 (x) + (fU1 − a1)u+

2 (x) + a2f1(x) + a1f2(x) + a1a2 − a1f
U
2 − fU1 a2

≥ (fU2 − a2)u1(x) + (fU1 − a1)u2(x) + a2f1(x) + a1f2(x) + a1a2 − a1f
U
2 − fU1 a2,
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where the first inequality holds because the following inequalities are valid for [fL1 , f
U
1 ]×

[fL2 , f
U
2 ]

u+
1 (x) ≤ a1 f̃L ≤ ũ+

2 (x) u+
1 (x) ≤ f1(x) ũ+

2 (x) ≤ ã2 f1(x) ≤ fU1 ũ2(x) ≤ f̃2(x),

and the bilinear function b1(fU2 − b2) is submodular over [fL1 , f
U
1 ]× [0, fU2 − fL2 ].

4.1.1 Lovász extension of set function

Consider a function f(·) mapping from {0, 1}d to R. Then, f(·) can be viewed

as a set function in the following way. We define f ′(·) as f ′(K) = f
(∑

j∈K ej
)

for

a subset K ⊆ {1, . . . , d}, where ej is the jth principal vector in Rd. In [53], the

author introduces an extension of the function f , which originally is defined on 0, 1

vectors, to all non-negative vectors, which is well-known as Lovász extension of set

functions. Given any x ∈ [0, 1]d, there exists a permutation π of {1, . . . , n} such that

xπ(1) ≥ · · · ≥ xπ(d). Then, x is expressible as follows x = (1− xπ(1))v
π
0 +

∑d−1
i=1 (xπ(i)−

xπ(i+1))v
π
i + xπ(n)v

π
n, where vπ0 = (0, . . . , 0) and vπi = vπi−1 + eπ(i) for i = 1, . . . , d. The

Lovász extension of f(x) is defined as

f̂(x) = (1− xπ(1))f(vπ0 ) +
d−1∑
i=1

(xπ(i) − xπ(i+1))f(vπi ) + xπ(n)f(vπn).

In the following, we show that relaxation techniques in Theorem 4.1.1 yields an al-

ternative derivation of Lovász extension of set function [53].

Our derivation can be divided into three steps. First, given π ∈ Ω, the set of

all permutations of {1, . . . , d}, we express the function f(·) as a function Dπ(f) :

{0, 1}d 7→ R defined as follows:

Dπ(f)(x) := f(0) +
d∑
i=1

(
f(eπ(1)xπ(1) + · · ·+ eπ(i)xπ(i))

− f(eπ(1)xπ(1) + · · ·+ eπ(i−1)xπ(i−1))
)

=: f(0) +
d∑
i=1

D(π,i)(f)(x).

(4.9)
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Clearly, terms in the second expression of (4.9) telescopes, leaving f(x). Next, we

consider a function obtained from Dπ(f) by replacing arguments (xπ(1), . . . , xπ(i−1)) in

D(π,i)(f)(x) by the all-ones vector (1, . . . , 1) ∈ Ri−1. Namely, let Bπ(f) : {0, 1}d 7→ Rd

be a function so that

Bπ(f)(x) := f
(
vπ0
)

+
d∑
i=1

(
f
(
vπi−1 + eπ(i)xπ(i)

)
− f

(
vπi−1

))
=: f(vπ0 ) +

d∑
i=1

B(π,i)(f)(x).

(4.10)

It follows readily that for every x ∈ {0, 1}d we have Dπ(f)(x) ≤ Bπ(f)(x) since

for each i ∈ {1, . . . , d} the supermodularity of f(·) implies that D(π,i)(f)(x) ≤

B(π,i)(f)(x). Last, we extend Bπ(f)(·) from {0, 1}d to Rd by affinely interpolating

each univariate function B(π,i)(φ) over {0, 1}, namely,

B̂π(f)(x) = f(vπ0 ) +
d∑
i=1

(
f(vπi )− f(vπi−1)

)
xπ(i). (4.11)

In summary, if f(·) is supermodular then

f(x) = Dπ(f)(x) ≤ Bπ(f)(x) = B̂π(f)(x) for every x ∈ {0, 1}d.

In the next result, we show that B̂Ω(f)(x) := minπ∈Ω B̂π(f)(x) coincides with the

Lovász extension of the set function f(·) when f(·) is supermodular.

Corollary 4.1.2 (Proposition 4.1 in [53] and Theorem 3.3 in [16]) Consider a

set function f : {0, 1}d 7→ R and its Lovász extension f̂(x). If f(·) is supermodular

then B̂Ω(f)(x) = f̂(x) for every x ∈ [0, 1]d. Moreover, the concave envelope of f(·)

over [0, 1]d is given by B̂Ω(f)(x).

Proof Let x ∈ [0, 1]d, and let π ∈ Ω so that xπ(1) ≥ · · · ≥ xπ(d). Then, it follows

readily that f̂(x) = Bπ(f)(x). If Bπ(f)(x) = BΩ(f)(x) then we can conclude that
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f̂(x) = BΩ(f)(x). Clearly, we have B̂π(f)(x) ≥ B̂Ω(f)(x). To show that B̂π(f)(x) ≤

B̂Ω(f)(x) we observe that for ω ∈ Ω,

B̂π(f)(x) = (1− xπ(1))f(vπ0 ) +
d−1∑
i=1

(xπ(i) − xπ(i+1))f(vπi ) + xπ(n)f(vπn)

≤ (1− xπ(1))B̂ω(f)(vπ0 ) +
d−1∑
i=1

(xπ(i) − xπ(i+1))B̂ω(f)(vπi ) + xπ(n)B̂ω(f)(vπn)

= B̂ω(f)(x),

where the first equality holds by definition, the first inequality holds because 1 ≥

xπ(1) ≥ · · · ≥ xπ(d) ≥ 0 and for every x ∈ {0, 1}d we have f(x) ≤ B̂π(f)(x), and

the second equality holds by the linearity of B̂ω(f)(·) and the convex combination

representation of x in terms of {vπ0 , . . . , vπn}.

Now, the proof is complete by observing that for every x ∈ [0, 1]d

conc[0,1]d(f)(x) ≤ B̂Ω(f)(x) = f̂(x) ≤ conc[0,1]d(f)(x),

where the first inequality holds because B̂Ω(f) is concave and overestimates the set

function f(·), and the second inequality holds because f̂(x) is defined as convex

combinations of {f(vi)}di=0 for some {vi}di=0 ⊆ {0, 1}d.

To illustrate the above construction, we derive the concave envelope of the multi-

linear monomial over a rectangle in the positive orthant.

Example 4.1.3 (Theorem 1 in [11]) Consider the multilinear monomial m(x) =∏d
i=1 xi over a rectangle [xL, xU ] :=

∏d
i=1[xLi , x

U
i ], where xUi > xLi ≥ 0 for all i.

Let π be a movement vector in the grid given by {0, 1}d. For i ∈ {1, . . . , d} define

I(i) := {π(i′) | i′ ≤ i} as a subset of {1, . . . , d}. It turns out that

m(x) =
d∏
i=1

(xLi + (xi − xLi )) =
d∏
i=1

xLi +
d∑
i=1

( ∏
j∈I(i)\π(i)

xj

)
·
( ∏
j /∈I(i)

xLj

)
· (xπ(i) − xLπ(i))

≤
d∏
i=1

xLi +
d∑
i=1

( ∏
j∈I(i)\π(i)

xUj

)
·
( ∏
j /∈I(i)

xLj

)
· (xπ(i) − xLπ(i))

:= Mπ(x).

Therefore, conc[xL,xU ](m)(x) ≤ minπ∈Ω M
π(x).
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Next, we extend constructions in (4.9), (4.10), and (4.11) to obtain the concave

envelope of set functions over sets other than the standard hypercube. Consider a

subset ∆ :=
∏d

i=1 ∆i of the hypercube [0, 1]d×(n+1), where ∆i := {zi ∈ Rn+1 | 1 =

zi0 ≥ zi1 ≥ · · · ≥ zin ≥ 0}. It can be verified that

vert(∆i) = {ζij}nj=0, (4.12)

where ζij denotes the vector
∑j

j′=0 eij′ and eij′ is the j′ principal vector in the space

spanned by variables (zi0, . . . , zin). Therefore, vert(∆i) forms a chain in Rn+1, and

thus vert(∆) =
∏d

i=1 vert(∆i) is a lattice set. Just as a subvector (uiji)
d
i=1 of u ∈

Rd×(n+1), an extreme point (ζiji)
d
i=1 of ∆ can also be conveniently represented on a

grid G given by {0, . . . , n}n. Here, we label as the extreme point ζij, instead of uij, the

grid marker j along the coordinate direction i. As a consequence of this re-labelling,

an extreme point (ζiji)
d
i=1 of ∆ is then depicted as the point {ji}di=1 on the grid. Given

a grid point pk = (ji)
d
i=1, we denote the corresponding extreme point (ζ1j1 , . . . , ζdjd)

by ext(∆, pk). Given a movement vector π in the grid G, there is a simplex Υπ,

which is defined by conv
(⋃dn

k=0 ext(∆,Π(π, k))
)
. The set of simplices {Υπ}π∈Ω yields

a subdivision ∆, referred as the staircase triangulation of ∆; see Chapter 3 for details.

Given a movement vector π in the grid given by {0, . . . , n}d, and given a k ∈

{1, . . . , dn}, let Θ(π, k) := (Θ1(π, k),Θ2(π, k)) so that

Θ1(π, k) = π(k) and Θ2(π, k) =
∣∣{j ∣∣ π(j) = π(k), 0 ≤ j ≤ k

}∣∣. (4.13)

For any function ψ : vert(∆) 7→ R, we define Dπ(ψ) : vert(∆) 7→ R so that

Dπ(ψ)(z) := ψ
(
ext(∆,Π(π, 0))

)
+

dn∑
k=1

(
ψ
(
ext(∆,Π(π, 0)) + eΘ(π,1)zΘ(π,1) + · · ·+ eΘ(π,k)zΘ(π,k)

)
− ψ

(
ext(∆,Π(π, 0)) + eΘ(π,1)zΘ(π,1) + · · ·+ eΘ(π,k−1)zΘ(π,k−1)

))
.
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Clearly, Dπ(ψ)(z) telescopes, leaving ψ(z). If ψ(·) is supermodular, we obtain that

Dπ(ψ)(z) ≤ Bπ(ψ), where

Bπ(ψ)(z) := ψ
(
ext(∆,Π(π, 0))

)
+

dn∑
k=1

(
ψ
(
ext(∆,Π(π, k − 1)) + eΘ(π,k)zΘ(π,k)

)
− ψ

(
ext(∆,Π(π, k − 1))

))
.

Affinely interpolating each term in Bπ(ψ)(z) over [0, 1], we obtain a function B̂π(ψ) :

Rd×(n+1) 7→ R defined as

B̂π(ψ)(z) := ψ
(
ext(∆,Π(π, 0))

)
+

dn∑
k=1

(
ψ
(
ext(∆,Π(π, k))

)
− ψ

(
ext(∆,Π(π, k − 1))

))
zΘ(π,k).

(4.14)

Corollary 4.1.3 The concave envelope of a supermodular function ψ : vert(∆) 7→ R

coincides with minπ∈Ω B̂π(ψ)(z), where Ω is the set of movement vectors that define

monotone staircases over the grid G given by {0, 1, ..., n}d.

Proof It follows readily that conc∆(ψ)(z) ≤ minπ∈Ω B̂π(ψ)(z) for every z ∈ ∆ be-

cause the latter is concave and for every π ∈ Ω and z ∈ vert(∆) we have ψ(z) =

Dπ(ψ)(z) ≤ Bπ(ψ)(z) ≤ B̂π(ψ)(z), where the first equality follows by staircase ex-

pansion, the first inequality holds by the supermodularity of ψ(·) over vert(∆), and

the last inequality holds by affine interpolation.

To show minπ∈Ω B̂π(ψ)(z) ≤ conc∆(ψ)(z), we consider a point z̄ ∈ ∆, and sort the

coordinates of z̄ assuming that z̄10, . . . , z̄d0 are placed first the sorted order. Then, we

define a move vector π̄ such that π̄(k) = i if the d + k largest coordinate of z̄ is z̄ij.

It can be verified that

z̄ = (1− z̄Θ(π̄,1)) ext(∆,Π(π̄, 1))

+
dn−1∑
k=1

(z̄Θ(π̄,k) − z̄Θ(π̄,k+1)) ext(∆,Π(π̄, k)) + z̄Θ(π̄,dn) ext(∆,Π(π̄, dn))
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Hence, we obtain

min
π∈Ω
B̂π̄(ψ)(z̄) ≤ B̂π̄(ψ)(z̄)

= (1− z̄Θ(π̄,1))ψ
(
ext(∆,Π(π̄, 1))

)
+

dn−1∑
k=1

(z̄Θ(π̄,k) − z̄Θ(π̄,k+1))ψ
(
ext(∆,Π(π̄, k))

)
+ z̄Θ(π̄,dn)ψ

(
ext(∆,Π(π̄, dn))

)
≤ conc∆(ψ)(z̄),

where the first equality holds by the linearity of B̂(ψ)(·) and, for k ∈ {1, . . . , dn},

B̂(ψ)
(
ext(∆,Π(π̄, dn))

)
= ψ

(
ext(∆,Π(π̄, dn))

)
, and the last inequality holds by the

concavity of conc∆(ψ).

4.1.2 Tractable composite relaxations

In Chapter 2, we proposed a framework to relax the graph of a composite function

φ ◦ f : X ⊆ Rm 7→ R, that is gr(φ ◦ f) :=
{

(x, φ)
∣∣ φ = φ

(
f1(x), . . . , fd(x)

)
, x ∈ X

}
.

Given a pair
(
u(x), a

)
of estimating functions of the inner-function f(x) which satisfies

requirements in (4.3), where a := (a1, . . . , ad) is a pre-specified vector in Rd×(n+1) such

that, for i ∈ {1, . . . , d}, ai0 < · · · < ain, they encapsulated ordering relationship of

the pair
(
u(x), a

)
in a polytope P :=

∏d
i=1 Pi, where

Pi =
{
ui ∈ Rn+1

∣∣∣ ai0 ≤ uij ≤ min{aij, uin}, ui0 = ai0, ai0 ≤ uin ≤ ain

}
. (4.15)

Here, the polytope Pi introduces a variable uij for each underestimator uij(x), where

ui0(x) (resp. uin(x)) is a special underestimator that equals the lower bound ai0 (resp.

f(x)). We denote by ΦP the graph of the outer-function φ over polytope P , which is

formally defined as

ΦP :=
{

(u, φ) ∈ Rd×(n+1)
∣∣ φ = φ(u1n, . . . , udn), u ∈ P

}
.

For a pair
(
u(x), a

)
satisfying (4.3), the following result yields relations for the graph

of φ ◦ f , which will be referred as composite relaxation of φ ◦ f .
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Theorem 4.1.2 (Theorem 2.2.1) Let φ : Rd 7→ R be a continuous function and

let f : Rm 7→ Rd be a vector of functions, each of which is bounded over X ⊆ Rm. If(
u(x), a

)
satisfies (4.3) then gr(φ ◦ f) ⊆ proj(x,φ)(R), where

R :=
{

(x, u, φ)
∣∣ (u, φ) ∈ conv(ΦP ), u(x) ≤ u, u·n = f(x), x ∈ X

}
.

If the graph of f(x), expressed using the constraints u·n = f(x) and x ∈ X in the

definition of R, is outer-approximated with a convex set, and, for j 6= n, uij(x) is

convex, one obtains a convex relaxation of gr(φ◦f). Moreover, for each i ∈ {1, . . . , d}

and j 6= n, substituting uij(x) for uij projects out the uij variable out of the convex

relaxation.

In order to derive the convex hull of ΦP , we identified a subset ΦQ of ΦP defined as

ΦQ :=
{

(s, φ)
∣∣ φ = φ(s1n, . . . , sdn), s ∈ Q

}
,

where Q :=
∏d

i=1Qi and Qi is a simplex in Rn+1 so that its extreme points are defined

as follows:

vij = (ai0, . . . , aij−1, aij, . . . , aij) for j ∈ {0, . . . , n}. (4.16)

Moreover, they proved that the convex hull of ΦQ together with a small size of in-

equalities suffice to describe the convex hull of ΦP in the space of (u, s, φ) variables.

Lemma 4.1.2 The convex hull of ΦP can be described in the space of (u, s, φ) vari-

ables as follows:

{
(u, s, φ)

∣∣ convQ(φ)(s) ≤ φ ≤ concQ(φ)(s), s ∈ Q, u ∈ P, u ≤ s, u·n = s·n
}
,

where convQ(φ) (resp. concQ(φ)) denote the convex (resp. concave) envelope of

φ(s1n, . . . , sdn) over Q.

Proof The result follows directly from Lemma 2.3.2 and Lemma 2.3.3.
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Remark 4.1.2 We remark that (convex) relaxations of the set ΦQ lead to (convex)

relaxations for the set ΦP . More specifically, given a set RQ ⊆ Rd×(n+1)+1+τ so that

proj(s,φ)(R
Q) ⊆ ΦQ for some τ ≥ 0, we obtain that

ΦP =
{

(u, φ)
∣∣ (s, φ) ∈ ΦQ, u ∈ P, u ≤ s, u·n = s·n

}
⊆
{

(u, φ)
∣∣ (s, φ, y) ∈ RQ, u ∈ P, u ≤ s, u·n = s·n

}
,

where the equality follows from Lemma 2.3.2, and the containment holds by the hy-

pothesis about RQ.

As a result of Lemma 4.1.2, we can focus on deriving the concave envelope of

φ(s1n, . . . , sdn) over Q since the convex envelope can be derived in a similar way. We

start with introducing an invertible affine mapping from Q to ∆, which is defined as

in (4.12). Consider the affine transformation Z(s) =
(
Z1(s1), . . . , Zd(si)

)
which maps

Q to ∆, where Zi : Rni+1 7→ Rni+1 is defined as follows

zi0 = 1 and zij =
sij − sij−1

aij − aij−1

for j = 1, . . . , ni. (4.17)

In addition, Q = Z−1(∆), where Z−1(z) =
(
Z−1

1 (z1), . . . , Z−1
d (zd)

)
and Z−1

i is given

by:

sij = ai0zi0 +

j∑
k=1

(aik − aik−1)zik for j = 0, . . . , ni. (4.18)

As a result, the simplex Qi can be described by the following inequalities:

0 ≤ sin − sin−1

ain − ain−1

≤ · · · ≤ si1 − si0
ai1 − si0

si0 = ai0. (4.19)

Moreover, for any function η : Q 7→ R, we have that concQ(η)(s) = conc∆(ψ)
(
Z(s)

)
,

where ψ(z) := η
(
Z−1(z)

)
.

Corollary 4.1.4 (Theorem 3.2.1) Let η : vert(Q) 7→ R, and define ψ : vert(∆) 7→

R so that ψ(z) = η
(
Z−1(z)

)
. If η(·) is supermodular, concQ(η)(s) = minπ∈Ω B̂π(ψ)

(
Z(s)

)
for every s ∈ Q. In particular, if φ(s1n, . . . , sdn) is concave-extendable from vert(Q)

and supermodular when restricted to vert(Q) then

concQ(φ)(s) = min
π∈Ω

{
φ
(
a,Π(π, 0)

)
+

dn∑
k=1

(
φ(a,Π(π, k)

)
− φ
(
a,Π(π, k − 1)

))
zΘ(k)

}
,

where recall Θ(π, k) is defined as in (4.13) and zij is defined as in (4.17).
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Proof This result follows directly from Corollary 4.1.3.

Example 4.1.4 Consider a nonlinear function
√
x1 + x2

2 over [0, 5] × [0, 2]. Let

s1(x) := (0, x1), and let s2(x) :=
(
0, max{3

4
x2

2, 2x2− 1}, x2
2

)
. It turns out a1 = (0, 5)

and a2 = (a20, a21, a22) = (0, 3, 4) is a vector of upper bounds for s1(x) and s2(x) over

[0, 5]× [0, 2], respectively. Moreover, it can be verified that, for each x ∈ [0, 5]× [0, 2],

the point si(x) satisfies (4.19). Since
√
s11 + s22 is submodular over [0, 5] × [0, 4], it

follows from Corollary 4.1.4 that we obtain the following underestimator of
√
x1 + x2

2

over [0, 5]× [0, 2]:

max



0 +
(√

5− 0
)s11(x)− 0

5− 0
+
(√

5 + 3−
√

5
)s21(x)− 0

3− 0

+
(√

5 + 4−
√

5 + 3
)s22(x)− s21(x)

4− 3

0 +
(√

3− 0
)s21(x)− 0

3− 0
+
(√

5 + 3−
√

3
)s11(x)− 0

5

+
(√

5 + 4−
√

5 + 3
)s22(x)− s11(x)

4− 3

0 +
(√

3− 0
)s21(x)− 0

3− 0
+
(√

4−
√

3
)s22(x)− s21(x)

4− 3

+
(√

5 + 4−
√

4
)s11(x)− 0

5− 0



,

whose convexity can be easily verified.

To extend the applicability of Corollary 4.1.4, we now turn our attention to a

particular linear transformation that can be used to convert some functions that

are not ordinarily supermodular into supermodular functions. In particular, we will

generalize the switching operation over [0, 1]d, which is used in Corollary 4.1.1, to Q.

To do so, we will need permutations σi of {0, . . . , n} for each i ∈ {1, . . . , d}. We use

the permutation σi to define an affine transformation that maps vij to viσi(j). Let

P σi be a permutation matrix in R(n+1)×(n+1) such that, for all (i′, j′), P σi
i′j′ = 1 when

i′ = σ(j′) and zero otherwise. Then, the affine transformation associated with σi is

given by

Aσi = Z−1
i ◦ UP σiU−1 ◦ Zi, (4.20)
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where ◦ denotes the composition operator and U is an upper triangular matrix of

all ones. We let Aσ(s) :=
(
Aσ1(s1), . . . , Aσd(sd)

)
. Then, we define φ(σ)(s1, . . . , sd) =

φ
(
Aσ(s)1n, . . . , A

σ(s)dn
)

and say that φ(σ) is obtained from φ by switching with σ.

It follows easily that concQ(φ)(s) = concQ
(
φ(σ)

)(
(Aσ)−1(s)

)
.

Corollary 4.1.5 Let η : vert(Q) 7→ R be a function, and let σ := (σ1, . . . , σd), where,

for i ∈ {1, . . . , d}, σi is a permutation of {0, . . . , n}. Then, if φ(σ)(s) is supermodular

when restricted to vert(Q), we have

concQ(φ)(s) = min
π∈Ω

B̂π
(
ψ(σ)

)(
Z
(
(Aσ)−1(s)

))
for s ∈ Q,

where ψ(σ) : ∆ 7→ R is defined as ψ(σ)(z) = φ(σ)
(
Z−1(z)

)
, and Aσ is defined as

in (4.20).

4.2 Connection to RLT relaxations of polynomial programs

Consider the feasible region X of a polynomial optimization in n variables defined

as

X =
{
x ∈ Rm

∣∣ gi(x) ≥ 0, i = 1, . . . , k
}
.

Let γ ≥ maxki=1 deg(gi) be a given integer, where deg(p) denote the degree of a

polynomial function p(·). To obtain a generic LP relaxation of X, the RLT procedure

in [39, 69] reformulates X by generating implied constraints using distinct product

forms:

g1(x)α1 · · · gk(x)αk ≥ 0,
k∑
i=1

αi ≤ γ. (4.21)

After this, RLT expands the left-hand side of each resulting polynomial inequality

so that it becomes a weighted sum of distinct monomials. Last, RLT linearizes the

resulting polynomial inequalities by substituting a new variable yα for each monomial

term xα, so as to obtain linear inequalities in terms of introduced y variables. The re-

sulting LP relaxation is called the degree-γ RLT relaxation for X, and will be denoted

as RLTγ(X). In this section, we study the connection between the reformulation-

linearization technique and the technique introduced in Section 4.1.
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4.2.1 Improving RLT relaxations of polynomial functions

We first restrict our study to the graph of a polynomial a polynomial function

p : [xL, xU ] ⊆ Rm 7→ R, that is, gr(p) :=
{

(x, φ)
∣∣ φ = p(x), xL ≤ x ≤ xU

}
. For a

given integer γ ≥ deg(p), the typical degree-γ RLT relaxation for gr(p) is obtained

by linearizing monomials in the following polynomial constraints with corresponding

y variables:

φ = p(x),

(x1 − xL1 )α1 · · · (xd − xLd )αd(xU1 − x1)β1 · · · (xUd − xd)βd ≥ 0 for
d∑
i=1

(αi + βi) ≤ γ.

Now, we represent p as a composite function, that is, p(x) = φ
(
f1(x), . . . , fd(x)

)
for some multilinear function φ(·) and polynomial function fi(·). Assume that there

exists a pair
(
u(x), a

)
satisfying requirement (4.3), where u : Rm 7→ Rd×(n+1) is a

vector of polynomials and a := (a1, . . . , ad) is a pre-specified vector in Rd×(n+1) such

that, for i ∈ {1, . . . , d}, ai0 < · · · < ain. It turns out that the typical RLT relaxation

of gr(p) can be improved through exploiting the following valid system for gr(p):

φ = p(x), x− xL ≥ 0, xU − x ≥ 0,

uin(x)− uij(x) ≥ 0, aij − uij(x) ≥ 0, uin(x)− ai0 ≥ 0 ∀i ∀j.
(4.22)

However, the following example shows that this improved RLT relaxation does not

imply all inequalities obtained using the technique in Theorem 4.1.1.

Example 4.2.1 Consider the graph G :=
{

(x, φ)
∣∣ φ = x2

1x
2
2, x ∈ [0, 2]2

}
, and

consider the following system of valid inequalities for G:

xi ≥ 0 2−xi ≥ 0 x2
i ≥ 0 4−x2

i ≥ 0 x2
i−(2xi−1) ≥ 0 3−(2xi−1) ≥ 0. (4.23)
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Using Corollary 4.1.1 we obtain that

φ = x2
1x

2
2

= 0 · 4 + 0 ·
(

min
{

4, x2
2 − (2x2 − 1) + 3

}
− 4
)

+
(
max{0, 2x1 − 1} − 0

)
·min

{
4, x2

2 − (2x2 − 1) + 3
}

+ max{0, 2x1 − 1} ·
(
x2

2 −min
{

4, x2
2 − (2x2 − 1) + 3

})
+
(
x2

1 −max{0, 2x1 − 1}
)
· x2

2

≥ 0 + 0 +
(
max{0, 2x1 − 1} − 0

)
· 3 + 3 ·

(
x2

2 −min
{

4, x2
2 − (2x2 − 1) + 3

})
+ 0

≥ 3(2x1 − 1) + 3
(
(2x2 − 1)− 3

)
= 6x1 + 6x2 − 15,

where the second equality follows from a staircase expansion, and the first inequality

holds due to the validity of 0 ≤ max{0, 2x1 − 1} ≤ min{x2
1, 3} over [0, 2] and that of

max{x2
2, 3} ≤ min

{
4, x2

2 − (2x2 − 1) + 3
}
≤ 4 over [0, 2].

Notice that to obtain the above inequality, we exploit the fact that 0 ≤ max{0, 2x1−

1} ≤ x2
1. However, the reformulation-linearization technique fails to deal with those

constraints involving piecewise functions max{0, 2x1−1}. Therefore, it can be expected

that applying RLT over (4.23) fails to generate the inequality φ ≥ 6x1 + 6x2 − 15.

Moreover, minimizing an affine function φ− (6x1 + 6x2 − 15) over the degree-4 RLT

relaxation of (4.23) yields −0.36, while it has been shown that φ−(6x1 +6x2−15) ≥ 0

is valid for G.

The second idea of improving RLT relaxations of gr(p) relies on the construction

in Theorem 4.1.2. By the Theorem 4.1.2, an extended formulation of gr(p) is given

as follows

{
(x, u, φ)

∣∣ (u, φ) ∈ ΦP , u(x) ≤ u, u·n = f(x), xL ≤ x ≤ xU
}
, (4.24)

where ΦP :=
{

(u, φ)
∣∣ φ = φ(u1n, . . . , udn), u ∈ P

}
and P :=

∏d
i=1 Pi is defined as

in (4.15). Therefore, a natural idea to construct relaxations for gr(p) is to replace the

set ΦP in (4.24) with its RLT relaxations.
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Example 4.2.2 Assume the same setup as Example 4.2.1. The polytope P , which

models the ordering relationship among functions, is given by

0 ≤ ui ≤ min{3, fi} and 0 ≤ fi ≤ 4 for i = 1, 2.

It follows readily that the inequality φ ≥ 6x1 + 6x2 − 15 in Example 4.2.1 is implied

by ui ≥ 2xi − 1 and the following RLT type constraints:

φ = f1f2 (f1 − u1)(f2 − 0) ≥ 0 (3− u1)(4− f2) ≥ 0.

However, the degree-2 RLT fails to yield the convex hull of
{

(f, u)
∣∣ φ = f1f2, (f, u) ∈

P
}

.

Although RLT fails to generate conv(ΦP ) in the dth-level, we will show that,

exploiting the structure of the Cartesian product of simplices Q defined as in (4.16),

RLT is helpful in describing the convex hull conv(ΦP ). We consider a set of points

MQ
I satisfying all degree d multilinear monomial equations over the Cartesian product

of simplices Q, that is ,

MQ
I :=

{
(s,m)

∣∣∣ s ∈ Q, m(I,e) =
∏
i∈I

siei ∀I ∈ I ∀e ∈ E
}
,

where I is a collection of subsets of {1, . . . , d}, and E is a set of all d-tuples so that,

for each e := (e1, . . . , ed) ∈ E, we have ei ∈ {0, . . . , n}. The set MQ
I is related to

another set of pointsMΛ satisfying all degree-d multilinear monomial equations over

the Cartesian product of standard simplices Λ :=
∏d

i=1 Λi, that is,

MΛ :=
{

(λ,w)
∣∣∣ λ ∈ Λ, we =

d∏
i=1

λiei ∀e ∈ E
}
, (4.25)

where Λi :=
{
λi ∈ Rn+1

∣∣ ∑n
j=0 λij = 1, λi ≥ 0

}
. It can be verified that a linear

transformation that maps MΛ
I to MQ is given by:

si =
n∑
j=0

vijλij for i ∈ {1, . . . , d},

m(I,e) =
∑
e′∈E

(∏
i∈I

aiei∧e′i

)
we′ for I ∈ I and e ∈ E,

(4.26)
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where {v10, . . . , vin} is the set of vertices of Qi and vij := (ai0, . . . , aij−1, aij, . . . , aij).

As a result, in order to describe the convex hull ofMQ, it suffices to derive the convex

hull of MΛ.

Lemma 4.2.1 RLTd(MΛ) = conv(MΛ).

Proof Clearly, we have conv(MΛ) ⊆ RLTd(MΛ) because MΛ ⊆ RLTd(MΛ) and

the latter set is convex. To show the opposite containment, we consider a set

R :=

{
(λ,w)

∣∣∣∣ λ ∈ Λ, w ≥ 0, λij =
∑

e∈E:ei=j

we ∀i ∀j
}
. (4.27)

It follows readily that RLTd(MΛ) ⊆ R. Therefore, the proof is complete if we show

that R ⊆ conv(MΛ). Consider a point (λ,w) ∈ R. It follows readily that the point

(λ,w) is expressible as follows:

(λ,w) =
∑
e∈E

(
µ(e), χ(e)

)
we,

where µ(e) ∈ Rd×(n+1) is a vector so that µ(e)ij = 1 if ei = j and µ(e)ij = 0

otherwise, and χ(e) ∈ R|E| is the indicator vector of e. The equality holds because,

for all i and j, we have λij =
∑

e∈E:ei=j
we =

∑
e∈E µij(e)we, and for all e ∈ E we

have we =
∑

e∈E χ(e)we. Moreover, we have w ≥ 0 and

∑
e∈E

we =
d∑
j=0

( ∑
e∈E:ei=j

we

)
=

d∑
j=0

λij = 1.

Therefore, (λ,m) is expressible as convex combinations of points in MΛ. Hence,

R ⊆ conv(MΛ).

Proposition 4.2.1 If φ : Rd 7→ R is a multilinear function, i.e., φ(s1n, . . . , sdn) =∑
I∈I cI

∏
i∈I sin, where I is a collection of subsets of {1, . . . , d}, the convex hull of

ΦQ is given by{
(s, φ)

∣∣∣∣∣w ≥ 0, φ =
∑
I∈I

(
cI
∑
e∈E

(∏
i∈I

aiei

)
we

)
, si =

n∑
j=0

vij
∑

e∈E:ei=j

we ∀i

}
. (4.28)

Moreover, the convex hull of ΦP is described by (4.28) and constraints u ∈ P , u ≤ s

and u·n = s·n.
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Proof The first statement follows from Lemma 4.2.1 and the linear transforma-

tion (4.26), and from the fact that convexification commutes with linear transforma-

tion. The second statement follows from Lemma 4.1.2.

4.2.2 Improving RLT via recursive staircase expansion

In this subsection, we show how to recursively apply staircase expansion and

termwise relaxations to improve RLT relaxations of the set X, which is a set of

points in Rm satisfying polynomials inequalities gi(x) ≥ 0, i ∈ {1, . . . , k}. We start

with introducing the notion of recursive staircase expansion. Recall that a vector

u ∈ Rd×(n+1) is represented on the grid G given by {0, . . . , n}d, and that a subvector

(u1j1 , . . . , udjd) is denoted as
(
u, (ji)

d
i=1

)
. For a given function φ : Rd 7→ R, and for a

given i ∈ {1, . . . , d} and a point p ∈ {0, . . . , n}d, let ∂i(φ)(·; p) : Rd×(n+1) 7→ R be the

difference function defined as follows:

∂i(φ)(u; p) := φ(u, p)− φ(u, p− ei),

where ei denote the ith principal vector in Rd. More generally, for a subset I :=

{i1, . . . , it} ⊆ {1, . . . , d} let ∂I(φ) : Rd×(n+1) 7→ R be the difference function defined

as follows:

∂I(φ)(u; p) := ∂i1
(
· · · ∂it(φ)

)
(u; p).

Next, we expand the difference function ∂I(φ)(u; p) according to a staircase move in

a sub-grid of G. We denote by G(I,p) the sub-grid of G given by
∏d

i=1

{
(0, pI)i, . . . , pi

}
,

where (0, pI) is a point of {0, . . . , n}d so that (0, pI)i = pi if i ∈ I and (0, pI)i = 0

otherwise. For a staircase move π = (π1, . . . , πτ ) in the sub-grid G(I,p), we can also

track where the kth move leaves us on the sub-grid using the transformation Π(I,p),

which is defined as Π(I,p)(π, k) := (0, pI) +
∑τ

j=1 eπ(j). It follow readily that function

∂I(φ)(u; p) can be expanded into the following way

Dπ
(
∂I(φ)

)
(u; p) = ∂I(φ)

(
u; Π(I,p)(π, 0)

)
+

m∑
k=1

∂I∪π(k)

(
u; Π(I,p)(π, k)

)
.
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As a result, for a given composite function φ ◦ f and a given vector of functions

u : X 7→ Rd×(n+1) so that u·n(x) := f(x), we can expand φ ◦ f into the sum of

difference functions, that is

(φ ◦ f)(x) =
∑
I⊆I

∑
p∈JI

∂I(φ)
(
u(x); p

)
, (4.29)

where I is a collection of subsets of {1, . . . , d}, and, for each I ∈ I, JI is set of points

in {0, . . . , n}d.

Now, we are ready to present a relaxation procedure for the set X, which consists

of the following four steps:

Composition: Construct a polynomial function p : X 7→ R as follows: p(x) =

φ
(
f1(x), . . . , fd(x)

)
, where φ : Rd 7→ R is a continuous function and fi is a polynomial

function;

Recursive staircase expansion: Expand the polynomial function p(x) into sums

of difference functions defined as in (4.29);

Termwise relaxation: Relax difference functions using special structures, e.g.,

structures exploited in Section 4.1 and Section 4.2.1;

Linearization: Linearize nonlinear expressions by replacing difference functions

and monomials with variables.

Our procedure can generate inequalities produced by RLT.

Example 4.2.3 (RLT) We use our procedure to derive the RLT constraint obtained

by linearizing monomials in the product constraint g1(x)g2(x) ≥ 0. Clearly, the

polynomial gi can be represented as a weighted sum of monomials, that is gi(x) :=
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∑n
j=0 aijx

αij , where aij ∈ R and mij(x) is a monomial. Define uij(x) :=
∑j

j′=0 aijx
αij .

Then, we obtain

g1(x)g2(x) = u10(x)u20(x)

+
(
u11(x)u20(x)− u10(x)u20(x)

)
+ · · ·+

(
u1n(x)u20(x)− u1(n−1)(x)u20(x)

)
+
(
u1n(x)u21(x)− u1n(x)u20(x)

)
+ · · ·+

(
u1n(x)u2n(x)− u1n(x)u2(n−1)(x)

)
.

Moreover, for j ∈ {1, . . . , n} the difference function u1n(x)
(
u2j(x)− u2j−1(x)

)
can be

further expanded as follows:

u10(x)
(
u2j(x)−u2j−1(x)

)
+

n∑
j′=1

uij′(x)
(
u2j(x)−u2j−1(x)

)
−uij′−1(x)

(
u2j(x)−u2j−1(x)

)
.

In other words, recursive staircase expansions yield
∑n

j1=0

∑n
j2=0 a1j1a2j2x

α1j1
+α2j2 .

On the other hand, the composite function g1(x)g2(x) is lower bounded by 0 over X

since g1(x) ≥ 0 and g2(x) ≥ 0 are valid for X. Therefore, for every x ∈ X we

have that
∑n

j1=0

∑n
j2=0 a1j1a2j2x

α1j1
+α2j2 = g1(x)g2(x) ≥ 0. Hence, after linearizing

monomial xα1j1
+α2j2 by a new variable yα1j1

+α2j2
, we obtain a valid inequality inequality

for X, that is
∑n

j1=0

∑n
j2=0 a1j1a2j2yα1j1

+α2j2
≥ 0.

Example 4.2.4 (Lemma 4.2.1) In this example, we apply our procedure to gen-

erate the convex hull of set MΛ defined as in (4.25). First, we consider a func-

tion p(λ) =
∏d

i=1(λi0 + · · · + λin), which can be treated as a composite function

φ
(
f1(λ1), . . . , fd(λd)

)
where φ(f1, . . . , fd) =

∏d
i=1 fi and fi(λi) = λi0 +· · ·+λin. Then,

by recursive staircase expansion the function p(x) can be expanded into
∑

e∈E
∏d

i=1 λiei.

Next, we observe that for every e ∈ E the monomial
∏d

i=1 λiei is bounded from below

by 0 and that p(λ) = 1. After linearization, we obtain that
∑

e∈E we = 1 and, for

every e ∈ E, we ≥ 0. Last, the inequality λij =
∑

e∈E:ei=j
we can be obtained in a

similar way.

Our procedure generates valid linear inequalities which improve a certain level

RLT relaxation using variables in a lower level RLT.
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Example 4.2.5 Consider the set M(2,4) defined by all monomials up to degree 4 in

terms of 2 variables, that is, M(2,4) :=
{
m
∣∣ x ∈ [0, 1]2, m(γ1,γ2) = xγ1

1 x
γ2

2 , γ1+γ2 ≤ 4
}

.

In the following, we will derive linear inequalities for the set M(2,4) without using

additional variables and show that those inequalities are not implied by the level-6

RLT.

First, consider a polynomial p with degree of 4 defined as p(x) = (1−2x1 +x2
1)(1−

2x2+x2
2). For i = 1, 2 let ui(x) be a vector of underestimators of 1−2xi+x

2
i defined as

ui0(x) = 0, ui1(x) = −xi + 0.75 and ui2(x) = (1− 2x1 + x2
1), and let ai := (0, 0.75, 1).

Then, our procedure yields the following valid inequality for M(2,4):

p(x) ≥ 0.25(−x1+0.75)+0.75(1−2x1+x2
1)+0.25(−x2+0.75)+0.75(1−2x2+x2

2)−0.935.

After replacing monomials by m variables we obtain a linear valid inequality l1(m)−

l2(m) ≥ 0 for M(2,4), where

l1(z) := m2,2 − 2m2,1 − 2m1,2 +m2,0 + 4m1,1 +m0,2 − 2m1,0 − 2m0,1 + 1,

l2(z) := 0.25(−m1,0 + 0.75) + 0.75(m2,0 − 2m1,0 + 1) + 0.25(−m0,1 + 0.75)

+ 0.75(m0,2 − 2m0,1 + 1)− 0.935.

Now, we conclude that the valid linear inequality l1(m)−l2(m) ≥ 0 is not implied by the

level-6 RLT of M(2,4) since min
{
l1(m)− l2(m)

∣∣ (m,w) ∈ RLT6

(
M(2,4)

)}
= −0.021.

Next, consider a polynomial with degree of 6 defined as q(x) = (1− x1)3(1− x2)3.

One way to expand q(x) is given as follows:

q(x) = 1+1(−3x2)+(−3x1)(−3x2 +1)+(−3x1 +1)(−x3
2 +3x2

2)+(−x3
1 +3x2

1)(1−x2)3,

(4.30)

where the last term can be relaxed to a degree 4 polynomial as follows:

(−x3
1 + 3x2

1)(1− x2)3 ≤ −x3
2 + 3x2

2. (4.31)

On the other hand, let ui(x) be a vector of underestimators of (1 − xi)
3 defined as

ui0(x) = 0, ui1(x) = −0.75x1 + 0.5, and ui2(x) = (1 − xi)3, and let ai := (0, 0.5, 1).

Then, our procedure yields the following inequality for M(2,4):

q(x) ≥ 0.5(−0.75x1+0.5)+0.5(1−x1)3+0.5(−0.75x2+0.5)+0.5(1−x2)3−0.75. (4.32)
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As a result, (4.30), (4.32) and (4.31) together imply a valid inequality for M(2,4) with

degree of 4, namely,

1 + 1(−3x2) + (−3x1)(−3x2 + 1) + (−3x1 + 1)(−x3
2 + 3x2

2) + (−x3
2 + 3x2

2) ≥

0.5(−0.75x1 + 0.5) + 0.5(1− x1)3 + 0.5(−0.75x2 + 0.5) + 0.5(1− x2)3 − 0.75.

Let l(z) ≥ 0 denote the resulting linear inequality obtained by replacing monomials

in the above polynomial inequality with corresponding m variables. It follows that

that l(z) ≥ 0 is not implied by the level-6 RLT relaxation of M(2,4) since min
{
l(m)

∣∣
(m,w) ∈ RLT6(M(2,4))

}
= −0.125.

Example 4.2.6 Consider the product of simplices Q :=
∏3

i=1 Qi, where Qi is the

convex hull of {(0, 0), (3, 3), (3, 4)}, and consider the epigraph Φ of s12s22s32 over Q,

that is Φ :=
{

(s, φ)
∣∣ φ ≥ s12s22s32, s ∈ Q

}
. Clearly, using the reformulation-

linearization technique to derive relaxations for Φ, we need to utilize inequalities in

the level-3 RLT of Q. In this example, we show that our procedure, using variables in

the level-2 RLT of Q, can generate relaxations for Φ,

φ ≥ s12s22s32 = s11s21(s31 − 0) + (s12 − s11)s21s31 + s12(s22 − s21)s31 + s12s22(s32 − s31)

≥ (3s11 + 3s21 − 9)s31 + (s12 − s11)(3s21 + s31 − 9) + (3s12 + 4s31 − 12)(s22 − s21)

+ (3s12 + 3s22 + s11 + s12 − 15)(s32 − s21),

where the first equality follows by staircase expansion, and the second inequality can

be established by using Example and the fact that si2 ≥ si1. Last, linearizing bilinear

monomials in the above inequality with corresponding variables in the level-2 RLT of

Q, we obtain a valid linear inequality for Φ.

4.3 Discrete relaxations for composite functions

In this section, we are interested in deriving mixed-integer linear programming

(MIP) relaxations for the graph of a composite function φ ◦ f : X 7→ R, that is

gr(φ ◦ f) =
{

(x, φ)
∣∣ φ = (φ ◦ f)(x), x ∈ X

}
,
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where the inner-functions f(·) is assumed to be bounded over X. Here, for a set

y1 ∈ D ⊆ Rd1 , we say that a set E := L ∩
(
Rd1 ×Rd2 ×Rt×{0, 1}κ

)
, where L

is a polytope in the space of variables (y1, y2, w, δ), is an MIP relaxation of Y if

D ⊆ projy1
(E), and we say that L is the linear programming (LP) relaxation of E. If

there exists E such that D = projy1
(E) then we say that the set D is mixed-integer

linear programming (MIP) representable and E is a mixed-integer linear programming

(MIP) formulation of D. Otherwise, we need to construct an MIP representable re-

laxation D̃ ⊆ Rd1 ×Rd2 of D in an extended space of variables y := (y1, y2), and

then derive an MIP formulation E for D̃. Clearly, a tighter MIP representable re-

laxation D̃ is favorable since it leads to a better bound for the optimization problem

over D. Moreover, since the most successful MIP solvers are currently based on the

branch-and-bound (B&B) algorithm, we also interested in the strength of the LP

relaxation L of the MIP formulation E of D̃. We say that a formulation E is ideal

if projδ(vert(L)) ⊆ {0, 1}κ. Ideal formulations are desirable since solving the LP re-

laxation yields an optimal solution that is integer and optimal for the original MIP

problem.

4.3.1 Connecting incremental formulation and composite relaxation

Let a := (a1, . . . , ad) be a pre-specified vector in Rd×(n+1) such that, for i ∈

{1, . . . , d}, fLi = ai0 < · · · < ain = fUi , where for every x ∈ X we have fLi ≤ fi(x) ≤

fUi . For each i ∈ {1, . . . , d}, we partition [fLi , f
U
i ] along points aiτ(i,0), . . . , aiτ(i,li), that

is,
[
fLi , f

U
i

]
=
⋃li
k=1

[
aiτ(i,k−1), aiτ(i,k)

]
, where 0 = τ(i, 0) < . . . < τ(i, li) = n. It follows

readily that we obtain a subdivision H of the hypercube [fL, fU ], where

H :=

{ d∏
i=1

[aiτ(i,ti−1), aiτ(i,ti)]

∣∣∣∣ ti ∈ {1, . . . , li}}.
Then, a typical MIP relaxation is constructed in two steps. First, we obtain a relax-

ation for the graph of composite function φ ◦ f defined as follows:

gr(φ ◦ f) ⊆
{

(x, φ)
∣∣∣ (f, φ) ∈

⋃
H∈H

conv(φH), (x, f) ∈ W
}
, (4.33)
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where φH denotes the graph of the outer-function φ(·) when restricted to a subcube

H, and W is a polyhderal outer-approximation of the inner-functions f(·). Second,

we derive an MIP formulation for the right side of (4.33) by replacing the disjunctive

constraint
{

conv(φH)
}
H∈H by a valid MIP formulation. A standard formulation for{

conv(φH)
}
H∈H can be derived using results in [70,71], provided that for each H ∈ H

the convex hull conv(φH) is a polytope. Since it is constructed by treating each poly-

tope separately and then using disjunctive programming, it requires a binary variable

δH and a copy of (fH , φH) for the convex hull conv(φH), and thus |H| binary vari-

ables and |H|(d + 1) continuous variables. However, convexifying the outer-function

φ(·) over a certain structure from incremental formulation [35,72], we obtain an ideal

MIP formulation for
{

conv(φH)
}
H∈H, which requires d(n + 1) auxiliary continuous

variables and
∑d

i=1(li − 1) auxiliary binary variables. Moreover importantly, auxil-

iary variables in incremental formulation can be related to certain underestimators

of inner-functions f(·), yielding an MIP relaxation for the graph of φ ◦ f , which is

tighter than the relaxation defined as in (4.33) and the composite relaxation in The-

orem 4.1.2. We also discuss a tightening strategy to further improve the strength of

our MIP relaxation.

We start with an MIP formulation of selecting a subcube from H:

zi ∈ ∆i, δi ∈ {0, 1}li−1, ziτ(i,t) ≥ δit ≥ ziτ(i,t)+1 for i ∈ {1, . . . , d} t ∈ {1, . . . , li − 1},

(4.34a)

fi = ai0zi0 +
n∑
j=1

(aij − aij−1)zij =: Fi(zi) for i ∈ {1, . . . , d}, (4.34b)

where ∆i := {zi ∈ Rn+1 | 1 = zi0 ≥ zi1 ≥ · · · ≥ zin ≥ 0}. Let ∆ :=
∏d

i=1 ∆, and for

H ∈ H let ∆H be the face of ∆ defined by ziτ(i,ti(H)−1) = 1 and ziτ(i,ti(H))+1 = 0 for

i ∈ {1, . . . , d}. Then, it can be verified that

(z, δ) ∈ (4.34a) ⇐⇒ z ∈
⋃
H∈H

∆H . (4.35)

Moreover, for H ∈ H, the affine function F (z) :=
(
F1(z1), . . . , Fd(zd)

)
, where Fi(·)

is defined in (4.34b), maps the face ∆H to the subcube H. Therefore, (4.34) is a
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valid MIP formulation for selecting a subcube from H. Notice that when d = 1 and

{τ(i, t)}lit=0 = {0, . . . , n} the formulation (4.34) reduces to

f1 = F1(z1), z1 ∈ ∆1, δ1 ∈ {0, 1}n−1, z1j ≥ δ1j ≥ z1j+1 for j ∈ {1, . . . , n− 1},

which is the classic incremental formulation of selecting an interval from
{

[a1j−1, a1j]
}n
j=1

in [35, 72]. In the following, we refer to (4.34) as the incremental formulation for se-

lecting a cube from H.

Let Ψ∆ be the graph of function φ(F1(z1), . . . , Fd(zd)) over ∆, that is

Ψ∆ :=
{

(z, φ)
∣∣∣ φ = φ

(
F (z)

)
, z ∈ ∆

}
,

where F (z) :=
(
F1(z1), . . . , Fd(zd)

)
and Fi(·) is defined as in (4.34b). We will show

that the convex hull of Ψ∆, together with the incremental formulation, yields an ideal

MIP formulation for
{

conv(φH)
}
H∈H, provided that the convex hull is a polytope.

Proposition 4.3.1 If conv(Ψ∆) is a polytope then an ideal MIP formulation for{
conv(φH)

}
H∈H is given by{

(f, φ, z, δ)
∣∣∣ (z, φ) ∈ conv

(
Ψ∆
)
, (f, z, δ) ∈ (4.34)

}
. (4.36)

Proof Let E denote the formulation (4.37). Then, we observe that

proj(f,φ)(E) = proj(f,φ)

(
proj(f,φ,z)(E)

)
= proj(f,φ)

( ⋃
H∈H

{
(f, φ, z)

∣∣ (z, φ) ∈ conv(Ψ∆), z ∈ ∆H , f = F (z)
})

= proj(f,φ)

( ⋃
H∈H

conv
{

(f, z, φ)
∣∣ (z, φ) ∈ Ψ∆, z ∈ ∆H , f = F (z)

})
=
⋃
H∈H

conv

(
proj(f,φ)

({
(f, φ, z)

∣∣ (z, φ) ∈ Ψ∆, z ∈ ∆H , f = F (z)
}))

=
⋃
H∈H

conv
(
φH
)
,

where the first equality holds because , the second equality holds due to (4.35), the

third equality holds because ∆H ∩ R is a face of conv(Ψ∆) and F (·) is an affine
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function, the fourth follows because projection commutes with convexification, and

the last equality holds because F (∆H) = H.

Next, we show that the formulation E is ideal. Consider an extreme point

(f, φ, z, δ) of the LP relaxation R of E. We first argue that for all i and t ∈

{1, . . . , li− 1} either δit = ziτ(i,t) or δit = ziτ(i,t)+1, denoted as δ = L(z). Suppose that

this is not the case, i.e., zi′τ(i′,t′) < δi′t′ < zi′τ(i′,t′+1) for some i′ and t′. Then, since the

convex hull of Ψ∆ does not depend on variable δ, it follows readily that (f, φ, z, δ′)

and (f, φ, z, δ′′) belong to R, where δ′ and δ′′ are two vectors so that δ′it = δ′′it = δit

for all i and t 6= t′, and δ′it = zi′τ(i′,t′) and δ′′it = zi′τ(i′,t′)+1 otherwise. However, the

extreme point (f, φ, z, δ) can be expressed a convex combination of (f, φ, z, δ′) and

(f, φ, z, δ′′), yielding a contradiction.

Now, we show z ∈ vert(∆) by contradiction. This implies that δ is binary, since

vert(∆) ∈ {0, 1}d×(n+1) and it has been shown that δ = L(z). Since conv(Ψ∆) is a

polytope and (z, φ) ∈ conv(Ψ∆), it follows readily that there exists
{

(νk, φk)
}
k∈K ⊆

Ψ∆ such that (z, φ) can be expressed as follows:

(z, φ) =
∑
k∈K

λk(ν
k, φk) λ ≥ 0 and

∑
k∈K

λk = 1. (4.37)

Observe that (νk, φk) ∈ Ψ∆ implies that
(
F (νk), φk, νk, L(νk)

)
belongs to R. There-

fore, we obtain a contradiction by observing that the extreme point (f, φ, z, δ) can be

expressed as follows:

(f, φ, z, δ) =
(
F (z), φ, z, L(z)

)
=
∑
k∈K

λk
(
F (νk), φk, νk, L(νk)

)
,

where the first equality is established above and the second equality holds by (4.37)

and the linearity of F (·) and L(·).

The continuous auxiliary variables z in the incremental model can be incorporated

into the convexification of the outer-function, yielding an MIP relaxation for the graph

of φ ◦ f . On the other hand, we will show that continuous auxiliary variables z, via

the invertible affine transformation Z−1 defined as in (4.18), can be related to certain
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underestimators u(·) of the inner-functions f(·), yielding a tighter MIP relaxation

for the graph of φ ◦ f than the typical one obtained from (4.33). Here, the affine

transformation Z−1 maps a face ∆H of ∆ to a certain face of the polytope Q defined

as in (4.16), that is

Z−1(∆H) = Z−1

(
conv

( d∏
i=1

{
ζiτ(i,ti(H)−1), . . . , ζiτ(i,ti(H))

}))

= conv

(
Z−1

( d∏
i=1

{
ζiτ(i,ti(H)−1), . . . , ζiτ(i,ti(H))

}))

= conv

( d∏
i=1

{viτ(i,ti(H)−1), . . . , viτ(i,ti(H))}
)

=: QH ,

(4.38)

where the first equality holds by the definition of ∆H , the second equality holds

because convexification commutes with affine maps, and the third equality holds be-

cause Z−1
i maps ζij :=

∑j
j′=0 eij′ to vij := (ai0, . . . , aij−1, aij, . . . , aij), where eij′ is

the j′ principal vector in the space spanned by variables (zi0, . . . , zin). Conversely, Z

maps QH to ∆H . The polytope QH is indeed a face of the polytope Q :=
∏d

i=1 Qi

because it is defined as the Cartesian product of simplices, each a face of the sim-

plex Qi := conv(vi0, . . . , vin). As a result, the incremental model (4.34) under the

transformation Z model the union of faces
⋃
H∈HQH , that is,

(
Z(s), δ

)
∈ (4.34a) ⇐⇒ Z(s) ∈

⋃
H∈H

∆H ⇐⇒ s ∈
⋃
H∈H

QH . (4.39)

Next, we define a vector of functions u(·) which can be related to faces {QH}H∈H.

Let u : W 7→ Rd×(n+1) be a vector of functions defined as follows:

ui0(x, s·n) = ai0, uin(x, s·n) = sin, and ai0 ≤ uij(x, s·n) ≤ min
{
sin, aij

}
∀i, (4.40)

where W is an outer-approximation of the inner function f(·). We can assume without

loss of generality that for all i and j 6= n inequality uij(x) ≤ sij is valid for W ;

otherwise the outer-approximation W can be strengthened using these inequalities.
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Theorem 4.3.1 Consider a composite function φ ◦ f : X 7→ R, where φ : Rd 7→ R

is continuous function and f : Rm 7→ Rd is a vector of bounded function over X.

Let
(
u(x, s·n), a

)
be a pair satisfying (4.40). If conv(ΦQ) is a polytope and u(·) is

polyhedral then we obtain an MIP relaxation for the graph of φ ◦ f defined as follows:

RH :=

(x, φ, s, δ)

∣∣∣∣∣∣
(s, φ) ∈ conv(ΦQ),

(
Z(s), δ

)
∈ (4.34a)

u(x, s·n) ≤ s, (x, s·n) ∈ W

 . (4.41)

Proof We first show that

proj(x,s·n)(S) = W, (4.42)

where S :=
{

(x, s, δ)
∣∣ (Z(s), δ

)
∈ (4.34a), (x, s·n) ∈ W, sij = min{aij, sin} ∀i ∀j

}
.

It follows clearly that proj(x,s·n)(S) ⊆ W . To show W ⊆ proj(x,s·n)(S), we consider

a point (x, s·n) ∈ W , and let H be a subcube from H so that s·n ∈ H. Then, we

show that s ∈ QH . This, together with (4.39), implies that there exists a δ so that

(s, δ) satisfies (4.34a), therefore showing that (x, s, δ) ∈ S. Since sin ∈ [ai0, . . . , ain],

there exist a j′i ∈ {1, . . . , n} and ti ∈ {1, . . . , li} so that aij′i−1 ≤ fi(x) ≤ aij′i and

τ(i, ti − 1) ≤ j′i − 1 ≤ j′i ≤ τ(i, ti). By definition of sij, we have sij = aij if j < j′i

and sij = sin otherwise. Consider two adjacent extreme points of Qi, i.e., vij′i−1 =

(ai0, . . . , aij′i−1, aj′i−1, . . . , aij′i−1) and vij′i = (ai0, . . . , aij′i−1, aij′i , . . . , aij′i). It follows by

direct computation that si = λvij′i−1 + (1−λ)vij′i , where λ =
aij′

i
−sin

aij′
i
−aij′

i
−1

. Since τ(i, ti−

1) ≤ j′i−1 ≤ j′i ≤ τ(i, ti), we can conclude s ∈ QH where H :=
∏d

i=1[aiτ(i,ti−1), aiτ(i,ti)].

Now, the proof is complete by observing that

gr(φ ◦ f) ⊆
{

(x, φ)
∣∣ (x, s, δ) ∈ S, φ = φ(s1n, . . . , sdn)

}
⊆ proj(x,φ)(RH),

where the first containment holds by (4.42) and gr(f) ⊆ W , and the second contain-

ment holds because
{

(x, s, δ, φ) ∈ S × R
∣∣ φ = φ(s1n,...,sdn)

}
⊆ RH.

An natural following up question is to investigate whether the MIP relaxation for

composite function φ ◦ f obtained using Theorem 4.3.1 is tighter than the relaxation
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defined in (4.33) and the relaxation obtained using Theorem 4.1.2. To this end, we

consider functions ϕH, ϕH−, and ϕ defined as follows:

ϕH(x, s·n) := sup
{
φ
∣∣∣ (x, φ, s, δ) ∈ (4.41)

}
,

ϕH−(x, s·n) := sup
{
φ
∣∣∣ (s, φ) ∈ conv(ΦQ),

(
Z(s), δ

)
∈ (4.34a), (x, s·) ∈ W

}
,

ϕ(x, s·n) := sup
{
φ
∣∣∣ (s, φ) ∈ conv(ΦP ), u(x, s·n) ≤ s, (x, s·n) ∈ W

}
.

It follows readily that ϕH(x, s·n) ≤ ϕH−(x, s·n) for every (x, s·n) ∈ W . In other

words, the MIP relaxation in Theorem 4.3.1 is tighter than the standard one obtained

from (4.33).

To show that ϕH(x, s·n) ≤ ϕ(x, s·n) for every (x, s·n) ∈ W , we need a certain

transformation which maps a point in the polytope P to a point in the polytope Q.

With each point ui ∈ Rn+1, we associated a discrete univariate function ξ(a;ui) :

[ai0, ain] 7→ R defined as follows:

ξ(a;ui) =

uij a = aij for j ∈ {0, . . . , n}

−∞ otherwise.
(4.43)

Moreover, let ξ̂ : [ai0, ain] 7→ R be the piecewise-linear interpolation of ξ(a;ui) such

that ξ̂(a;ui) = ξ(a;ui) for a ∈ {ai0, . . . , ain} and, for all j ∈ {1, . . . , n}, the restriction

of ξ̂(a;ui) to [aij−1, aij] is linear. Although a point ui ∈ Pi may not lie in Qi, it has

shown by Proposition 2.3.1 that the point si =
(
conc(ξ)(ai0;ui), . . . , conc(ξ)(ain;ui)

)
lies in Qi, where conc(ξ)(·;ui) is the concave envelope of ξ(·;ui) over [ai0, ain].

Proposition 4.3.2 Assume the same setup as Theorem 4.3.1. Then, ϕH(x, s·n) −

ϕH−(x, s·n) ≤ 0 and ϕH(x, s·n)− ϕ(x, s·n) ≤ 0 for every (x, s·n) ∈ W .

Proof We start with evaluating ϕ(·) at a point (x̄, s̄·n) ∈ W . Let ū := (ū1, . . . , ūd),

where ūi := ui(x̄, s̄·n), and let s̄ := (s̄1, . . . , s̄d), where each subvector s̄i is defined as(
conc(ξ)(ai0; ūi), . . . , conc(ξ)(aij; ūi)

)
. Then, we obtain that

ϕ(x̄, s̄·n) = sup
{

concP (φ)(s)
∣∣ ū ≤ s, s·n = s̄·n, s ∈ P

}
= concP (φ)(ū) = concQ(φ)(s̄),
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where the first equality follows by definition, the second equality holds because it

follows from Lemma 2.2.1 that concP (φ)(·) is non-increasing in sij for all i and j 6= n,

and the last equality follows from Corollary 2.3.1.

Next, we evaluate ϕH(·) at the point (x̄, s̄·n). It follows from (4.39) that ϕH(x̄, s̄·n) =

sup
{

concQ(φ)(s)
∣∣ s ∈ L}, where

L :=
{
s
∣∣∣ ū ≤ s, s·n = s̄·n, s ∈

⋃
H∈H

QH

}
.

Let H̄ be a subcube of H so that s̄·n ∈ H̄, and define u∗ := (u∗1, . . . , u
∗
d) so that

u∗ij = aij for j ≤ τ(i, ti(H̄)− 1) u∗ij = s̄in for j ≥ τ(i, ti(H̄)) and u∗ij = ūij o.w..

Then, we will show that s∗ := (s∗1, . . . , s
∗
d) is the smallest element in L, where

s∗i :=
(
conc(ξ)(ai0;u∗i ), . . . , conc(ξ)(aij;u

∗
i )
)
,

that is, s∗ ∈ L and for every s′ ∈ L we have s∗ ∧ s′ = s∗, where ∧ denotes the

component-wise minimum of two vectors. Since u∗ ∈ P , it follows from Proposi-

tion 2.3.1 that s∗ ∈ Q and s∗ ≥ u∗, and therefore s∗ ∈ QH̄ . As u∗ ≥ ū, we have s∗ ≥ ū.

Moreover, for every i ∈ {1, . . . , d} we have s∗in = conc(ξ)(ain;u∗i ) = ξ(ain;u∗i ) = u∗in =

s̄in. Hence, s∗ ∈ L. Now, for every s′ ∈ L, we have s∗ ∧ s′ = s∗ by observing that for

each i ∈ {1, . . . , d}

(s′i∧s∗i )j = min
{
ξ̂(aij; s

′
i), conc(ξ)(aij;u

∗
i )
}

= conc(ξ)(aij;u
∗
i ) = s∗ij for j ∈ {0, . . . , n},

where the first and third equalities hold by the definition of ξ̂ and s∗i . To see the second

equality, we show that conc(ξ)(a;u∗i ) ≤ ξ̂(a; s′i) for every a ∈ [ai0, ain]. Observe that

s′ ∈ QH̄ and s′·n = s̄·n imply that for every i ∈ {1, . . . , d}

s′ij = aij for j ≤ τ(i, ti(H̄)− 1) and s′ij = s̄in for τ(i, ti(H̄)− 1).

This, together with ū ≤ s, implies that u∗ ≤ s′. Therefore, ξ(a;u∗i ) ≤ ξ(a; s′i) ≤

ξ̂(a; s′i) for every a ∈ [ai0, ain]. Moreover, by Lemma 2.3.4, s′i ∈ Qi implies that

ξ̂(a; s′i) is a concave function. In other words, ξ̂(a; s′i) is a concave overestimator of

ξ(a;u∗i ) over [ai0, ain]. Hence, conc(ξ)(a;u∗i ) ≤ ξ̂(a; s′i).
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Now, we can conclude that ϕ(x̄, s̄·n) = concQ(φ)(s∗) because

ϕH(x̄, s̄·n) = sup{concQ(φ)(s) | s ∈ L}

and

concQ(φ)(s∗) ≤ sup
{

concQ(φ)(s)
∣∣ s ∈ L} ≤ concQ(φ)(s∗),

where the first inequality is because s∗ ∈ L, and the second inequality holds because,

by Lemma 2.4.3, concQ(φ) is non-increasing in sij for all i and j 6= n, and, for every

point s′ ∈ L we have s′ ≥ s∗ and s′·n = s∗·n.

The proof is complete by observing that ϕH(x̄, s̄·n) − ϕ(x̄, s̄·n) = concQ(φ)(s∗) −

concQ(φ)(s̄) ≥ 0, where the inequality holds because s∗ ≥ s̄ and, by Lemma 2.4.3,

concQ(φ) is non-increasing in sij for all i and j 6= n.

Example 4.3.1 Consider x2
1x

2
2 over [0, 3] × [0, 2]. Let u : [0, 3] × [0, 2] 7→ R4+2 be a

vector of functions defined as follows:

u1(x) :=
(
0, 2x1 − 1, 4x1 − 4,max{0, 2x1 − 1, 4x1 − 4, 6x1 − 9}

)
u2(x) :=

(
0,max{0, 2x2 − 1, 4x2 − 4}

)
and let a1 = (0, 5, 8, 9) and a2 = (0, 4). Consider $(s) := max{0, 4s11 + 5s21 −

20, 4s12 + 8s21 − 32, 4s13 + 9s21 − 36} obtained using Corollary 4.1.1, and consider

two functions defined as follows:

ϕH(x) := min

φ
∣∣∣∣∣∣∣∣∣∣
φ ≥ $(s)

1 ≥ s11 − 0

5− 0
≥ δ ≥ s12 − s11

8− 5
≥ s13 − s12

9− 8
≥ 0, δ ∈ {0, 1}

s ≥ u(x), x ∈ [0, 3]× [0, 2]


ϕ(x) := min

{
φ
∣∣ φ ≥ $(s), s ≥ u(x), x ∈ [0, 3]× [0, 2]

}
.

Then, we obtain that

ϕH(2.5, 1.5) = min

φ
∣∣∣∣∣∣∣
φ ≥ $(s), s1 ≥ (4, 6, 6), s21 ≥ 2, s11 = 5

1 ≥ s12 − s11

8− 5
≥ s13 − s12

9− 8
≥ 0


= $

(
(5, 6, 6), 2

)
= 10.

In constrast, ϕ(2.5, 1.5) = $
(
(4, 6, 6), 2

)
= 6.
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Corollary 4.3.1 Assume the same setup as Theorem 4.3.1. If the outer-function

φ(·) is multilinear, i.e., φ(s1n, . . . , sdn) =
∑

I∈I cI
∏

i∈I sin, where I is a collection of

subsets of {1, . . . , d} so that for I ∈ I |I| ≥ 0, then an explicit formulation for (4.41)

is given as follows:(s, φ, δ)

∣∣∣∣∣∣∣∣∣∣
w ≥ 0, φ =

∑
I∈I

(
cI
∑
e∈E

(∏
i∈I

aiei

)
we

)
, u(x, s·n) ≤ s, (x, s·n) ∈ W

(
Z(s), δ

)
∈ (4.34a), si =

n∑
j=0

vij
∑

e∈E:ei=j

we for i ∈ {1, . . . , d}

 ,

where vij is defined as in (4.16).

Proof This result follows from Theorem 4.3.1 and Proposition 4.2.1.

Corollary 4.3.2 If the outer-function φ(·) is supermodular and concave-extendable

from vert(Q) then

ϕH(x, s·n) = sup
{

min
π∈Ω
B̂π(ψ)

(
Z(s)

) ∣∣∣ (Z(s), δ
)
∈ (4.34a), u(x, s·n) ≤ s, (x, s·n) ∈ W

}
,

where ψ(z) := φ
(
Z−1(z)

)
.

Proof This result follows from Theorem 4.3.1 and Corollary 4.1.4.

We end this subsection with an idea of tightening the MIP relaxation in The-

orem 4.3.1. Let u : W 7→ R be a vector of functions defined as in (4.40), and

let M := (M1, . . . ,Md) be a pair of matrices, where Mi is a matrix in R(n+1)×li .

For each i ∈ {1, . . . , d} and for each t ∈ {1, . . . , li}, we assume that for every

(x, s·) ∈ W ∩
{

(x, s·n)
∣∣ aiτ(i,t−1) ≤ sin ≤ aiτ(i,t)

}
entries in the tth column of Mi

satisfy the following inequalities:

mi0t ≤ · · · ≤ mint and uij(x, s·n) ≤ mijt for all j ∈ {0, . . . , n}. (4.44)

Without loss of generality, we can assume that for all i, j and t, mijt ≤ aij. In

particular, we assume that for all i and t

mijt = aij for j ≤ τ(i, t− 1) and mijt ≤ aiτ(i,t) for j ≥ τ(i, t). (4.45)
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Proposition 4.3.3 Assume the same setup as Theorem 4.3.1. Let b : [0, 1]
∑d
i=1(li−1) 7→

R as a function so that

bij(δ) = mij1 +

li−1∑
t=1

(mijt+1 −mijt)δit for all i ∈ {1, . . . , d} j ∈ {0, . . . , n}.

If φ(·) is supermodular then hyp(φ◦f) ⊆ proj(x,φ)(RH+), where hyp(φ◦f) :=
{

(x, φ)
∣∣

φ ≤ (φ ◦ f)(x), x ∈ X
}

and RH+ is defined as follows:

φ ≤ min
π∈Ω
Bπ(φ)

(
s, b(δ)

)
, (x, s·n) ∈ W, u(x, s·n) ≤ s, (4.46a)

(sij+1 − sij)
(
bij(δ)− bij−1(δ)

)
≤ (sij − sij−1)

(
bij+1(δ)− bij(δ)

)
∀i ∀j 6= 0, 1, n,

(4.46b)

si0 = bi0(δ), si1 − si0 ≤ bi1(δ)− bi0(δ), sin−1 ≤ sin ∀i ∈ {1, . . . , d}, (4.46c)

δi ∈ {0, 1}li−1, δili−1 ≤ · · · ≤ δi1 ∀i ∈ {1, . . . , d}, (4.46d)

where Bπ(φ)(·, ·) is defined as in (4.4).

Proof Consider a point (x, φ) ∈ hyp(φ ◦ f), we will show that there exists a pair

(s, δ) such that the point (x, φ, s, δ) satisfies (4.46). Let s·n := f(x). Since s·n ∈∏d
i=1[ai0, ain], there exists H ∈ H so that s·n ∈ H. In other words, aiτ(i,ti(H)−1) ≤

sin ≤ aiτ(i,ti(H)). Let δ be a binary vector so that for i ∈ {1, . . . , d}

δit = 1 for t < ti(H) and δit = 0 otherwise.

Now, consider a vector s defined as follows:

sij := min
{
sin, bij(δ)

}
for every i ∈ {1, . . . , d} j ∈ {0, . . . , n}.

First, observe that φ ≤ φ(s·n) ≤ minπ∈Ω Bπ
(
s, b(δ)

)
, where the first equality holds by

s·n = f(x), and the second equality follows from Theorem 4.1.1 since the pair
(
s, b(δ)

)
satisfies (4.3). Moreover, (x, s·n) ∈ W as W is an outer-approximation of the graph

of inner-functions f(·). In addition, for all i and j, we obtain

uij(x, s·n) ≤ min{sin,mijti(H)} = min{sin, bij(δ)} = sij,
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where the inequality holds due to assumptions in (4.40) and (4.44), and the first

equality follows from the assumption in (4.45) and the definition of bij(δ), and the

last equality holds by the definition of sij.

Last, we verify that the point (s, δ) satisfies inequalities (4.46b). For every

i ∈ {1, . . . , d}, there exists j′i so that bij′i−1(δ) ≤ sin ≤ bij′i(δ). Then, for each

i ∈ {1, . . . , d}, if j 6= j′i − 1 then it can be verified that the inequality (4.46b) at-

tains equality; otherwise, we obtain

(sij+1 − sij)
(
bij(δ)− bij−1(δ)

)
=
(
sin − bij′i−1(δ)

)(
bij′i−1(δ)− bij′i−2(δ)

)
≤
(
bij′i(δ)− bij′i−1(δ)

)(
bij′i−1(δ)− bij′i−2(δ)

)
= (sij − sij−1)

(
bij+1(δ)− bij(δ)

)
,

where the two equalities hold by the definition of sij, and the inequality holds since

bij(δ) ≥ bij−1(δ) and bij′i−1(δ) ≤ sin ≤ bij′i(δ). Last, it is clearly that the point (s, δ)

satisfies inequalities (4.46c). Therefore, we can conclude that (x, s, δ, φ) ∈ RH+. In

other words, hyp(φ ◦ f) ⊆ proj(x,φ)(RH+).

Remark 4.3.1 Notice that if φ(·) is a multilinear function, Bπ
(
φ)(s, b(δ)

)
is also a

multilinear function, and each monomial of Bπ
(
φ)(s, b(δ)

)
is in the form of sij

∏
i′ 6=i δi′ti′

for some i ∈ {1, . . . , d}, j ∈ {0, . . . , n}, and (t1, . . . , ti−1, ti, . . . , td) ∈
∏

i′ 6=i{1, . . . , li′}.

Moreover, each monomial in (4.46b) is in the form of sijδit for some i, j, and t.

Therefore, an MIP reformulation for (4.46) is obtained if sij
∏

i′ 6=i δi′ti′ and sijδit are

linearized using

max

{
0, sij + aij

(∑
i′ 6=i

δi′ti′ − (d− 1)
)
− aij

}
≤ w

(i,j)
t−i ≤ min{sij, aijδ1t1 , · · · , aijδdtd},

where t−i := (t1, . . . , ti−1, ti, . . . , td), and max{0, sij+aij−aij} ≤ γijt ≤ min{sij, aijδit},

respectively.
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Example 4.3.2 Consider x2
1x

2
2 over [0, 3] × [0, 2], and consider underestimators u :

[0, 3]× [0, 2] 7→ R4+2 defined as in Example 4.3.1. Let

M1 :=


0 0

3.5 5

5 8

5 9

 ,

where, for j ∈ {0, . . . , 3}, let m1j1 and m1j2 of M1 are an upper bound of u1j(x) over{
x ∈ [0, 3] × [0, 2]

∣∣ 0 ≤ u13(x) ≤ 5
}

and
{
x ∈ [0, 3] × [0, 2]

∣∣ 5 ≤ u13(x) ≤ 9
}

,

respectively. Define b1 : {0, 1} 7→ R as follows:

b10(δ) := 0 b11(δ) := 3.5 + 1.5δ b12(δ) := 5 + 3δ and b13(δ) := 5 + 4δ,

and let a20 = 0 and a21 = 4. Consider a function ϕH+ : [0, 3]× [0, 2] 7→ R defined as

follows:

ϕH+(x) := min



φ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ ≥ 0

φ ≥ 4s11 + (3.5 + 1.5δ)s21 − 4(3.5 + 1.5

φ ≥ 4s12 + (5 + 3δ)s21 − 4(5 + 3δ)

φ ≥ 4s13 + (5 + 4δ)s21 − 4(5 + 4δ)

(3.5 + 1.5δ) ≥ s11, (1.5 + 1.5δ)s11 ≥ (3.5 + 1.5δ)(s12 − s11)

δ(s12 − s11) ≥ (1.5 + 1.5δ)(s13 − s12), s13 ≥ s12

δ ∈ {0, 1}, u(x) ≤ s, x ∈ [0, 3]× [0, 2].


Then,

ϕH+(2, 1) = min

{
φ

∣∣∣∣ φ ≥ max{0, 4s11 + 3.5s21 − 14, 4s12 + 5s21 − 20}

3.5 ≥ s11, 1.5s11 ≥ 3.5s12 − 3.5s11, s13 ≥ s12, s ≥
(
(3, 4, 4), 1

)}

= 1.5.

In contrast, evaluating the function ϕH(·) defined as in Example 4.3.1 at the point

(2, 1), we obtain that ϕH(2, 1) = min
{
φ
∣∣ φ ≥ $(s), s1 ≥ (3, 4, 4), s21 ≥ 1

}
= 0.
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4.3.2 MIP representations for discrete composite functions

In this subsection, we consider a discrete set defined as as follows:

D :=
{

(x, φ)
∣∣∣ φ = φ

(
f1(x1), . . . , fd(xd)

)
, x ∈

d∏
i=1

{ai0, . . . , ain}
}
, (4.47)

where fi(xi) is a univariate function so that for every j ∈ {0, . . . , n} we have fLi ≤

fi(aij) ≤ fUi for some fLi , f
U
i ∈ R. In Section 4.3.1, we lifted the subdivision H into

the collections of faces {QH}H∈H of the polytope Q. Here, we will lift the discrete

domain
∏d

i=1{ai0, . . . , ain} into vertices of Q. This construction leads to an ideal MIP

formulation for D which require dn additional continuous variables and ddlog2(n+1)e

additional binary variables. In contrast, a standard ideal formulation from [71] for

the discrete set D requires d(n + 1) binary variables and (n + 1)d auxiliary contin-

uous variables. When φ(·) is a bilinear term, our result yields an ideal formulation

for the graph of the product of two univariate discrete functions which requires 2n

additional continuous variables and 2dlog2(n + 1)e additional binary variables. In

contrast, the state-of-the-art formulation from [40] is not ideal (see Example 4.3.3),

and requires a number of continuous variables linear in n and a number of binary

variables logarithmic in n.

We start with lifting the discrete domain into the vertices of the polytope Q, which

is defined as in (4.16). Let id(x) :=
(
id(x1), . . . , id(xd)

)
, where id(xi) denotes the iden-

tity function xi. Consider a vector of special underestimators s :
∏d

i=1{ai0, . . . , ain} 7→

Rd(n+1) of inner-functions id(x) defined as

sij(x) = min{aij, xi} for i ∈ {1, . . . , d} and j ∈ {0, . . . , n}.

Let s denote s(x). Then, it follows readily that for each i ∈ {1, . . . , d} and j ∈

{0, . . . , n}

xi = aij ⇐⇒ si = vij := (ai0, . . . , aij, aij, . . . , aij).
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Recall that vert(Q) =
∏d

i=1{vi0, . . . , vin}. Therefore, we obtain an extended formula-

tion of the discrete set D defined as follows:⋃
s∈vert(Q)

{
(v, φ)

∣∣∣ φ = ϑ(s)
}
, (4.48)

where ϑ : vert(Q) 7→ R so that ϑ(s) = φ
(
f1(s1n), . . . , fd(sdn)

)
. Therefore, it suffices

to derive ideal logarithmic MIP formulations for (4.48).

To study MIP formulations for the vertex set vert(Qi), we show that vert(Qi)

can be seen as an invertible affine transformation of vert(Λi), where Λi =
{
λi ∈

Rn+1
∣∣ λi ≥ 0,

∑n
j=0 λij = 1

}
. The affine transformation that maps Λi to Qi is

Vi : Rn+1 7→ Rn+1, and is defined as

si = λi0vi0 + · · ·+ λinvin. (4.49)

After the transformation the vertex eij of Λi maps to the vertex vij of Qi, where eij is

the j principal vector the space spanned by variables (λi0, . . . , λin). In addition, the

inverse V −1
i is defined as

λij = zij − zij+1 for j = 0, . . . , n− 1 and λin = zin,

where zi = Zi(si) defined in (4.17). Notice that the vertex set vert(Λi) = Λi∩{0, 1}n+1

is exactly SOS1 constraints [73] over continuous variables δi ∈ [0, 1]n+1, which allow

at most one of continuous variables δ to be non-zero. MIP formulations for SOS1

constraints have been studied extensively. In particular, [74] introduces ideal MIP

formulations for SOS1 constraints that have a number of binary variables logarithmic

in the number of continuous variables λi. For any bijection ηi :
{

1, . . . , 2dlog2(n+1)e} 7→
P
(
{1, . . . , dlog2(n+ 1)e}

)
, an MIP for SOS1 constraints from [74] is given as follows:

λi ∈ Λi, δi ∈ {0, 1}dlog2(n+1)e,∑
j /∈Tik

λij ≤ δik,
∑
j /∈T̄ik

λij ≤ 1− δik for k ∈
{

1, . . . , dlog2(n+ 1)e
}
,

where Tik :=
{
η−1
i (I) ∩ {0, . . . , n}

∣∣ I ⊆ {1, . . . , dlog2(n + 1)e}, k /∈ I
}

and T̄ik =

{0, . . . , n} \ Tik. Now, observe that this formulation coincides with

λi ∈ Λi, δi ∈ {0, 1}dlog2(n+1)e,
∑
j /∈Tik

λij = δik for k ∈ {1, . . . , dlog2(n+ 1)e}. (4.50)
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To see this, we subtract
∑n

j=0 λij = 1 from each constraint
∑

j /∈T̄ik λik ≤ 1 − δik and

obtain
∑

j /∈Tik λik ≥ δik.

Theorem 4.3.2 An ideal MIP formulation for (4.48) is given by{
(s, φ, δ)

∣∣∣ convQ(ϑ)(s) ≤ φ ≤ concQ(ϑ)(s),
(
V −1
i (si), δi

)
∈ (4.50) for i ∈ {1, . . . , d}

}
,

(4.51)

where ϑ : vert(Q) 7→ R so that ϑ(s) = φ
(
f1(s1n), . . . , fd(sdn)

)
.

Proof Let E denotes the formulation (4.51). To establish that E is a valid formula-

tion for (4.47), it suffices to show that its validity for (4.48). This follows by observing

that

proj(s,φ)(E) =
⋃

s∈vert(Q)

{
(s, φ)

∣∣ concQ(ϑ)(s) ≤ φ ≤ concQ(ϑ)(s)
}

=
⋃

s∈vert(Q)

{(
s, ϑ(s)

)}
,

where the first equality holds because (4.50) is a valid formulation for vert(Λi) and

Vi is an invertible mapping from vert(Λi) to vert(Qi), and the second equality holds

because for every s ∈ vert(Q) we have convQ(ϑ)(s) = ϑ(s) = concQ(ϑ)(s).

Next, we prove that the formulation E is ideal by contradiction. Consider an

extreme point (s, φ, δ) of the LP relaxation R of E, and assume that δ is not binary.

Then, it follows readily that V −1
i (si) is not binary, and thus s /∈ vert(Q). Moreover,

(s, φ) belongs to the convex hull of the graph of ϑ(·) and δ = A(s) for some affine

map A. Therefore, there exists a convex multiplier {γv}v∈vert(Q) so that (s, φ, δ) is

expressible as follows:

(s, φ, δ) =
∑

v∈vert(Q)

γv
(
v, ϑ(v), A(v)

)
,

Now, observe that each point
(
v, ϑ(v), A(v)

)
belongs to R, a contradiction.

It has been shown in Corollary 4.1.4 the concave envelope concQ(ϑ) can be de-

rived using the technique in Theorem 4.1.1 provided that ϑ(·) is supermodular when

restricted to the vertex set vert(Q). It is clear that the supermodularity of φ(·) does

not guarantee that the supermodularity of ϑ(·) over vert(Q). However, it can be
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shown that ϑ(·) is supermodular by switching with a certain σ, that is, ϑ(σ)(·) is su-

permodular for a vector of permutation σ = (σ1, . . . , σd), where ϑ(σ) : vert(Q) 7→ R

so that ϑ(σ)(s) := ϑ
(
Aσ(s)

)
for every s ∈ vert(Q), and Aσ is defined as in (4.20).

Lemma 4.3.1 Let ϑ : vert(Q) 7→ R be a function so that ϑ(s) = φ
(
f1(s1n), . . . , fd(sdn)

)
for every s ∈ vert(Q). For i ∈ {1, . . . , d}, let σi be a permutation of {0, . . . , n} so

that

fi
(
aiσi(0)

)
≤ . . . ≤ fi

(
aiσi(n)

)
. (4.52)

Then, if φ(·) is supermodular over [fL, fU ] then function ϑ(σ)(s) is supermodular

over vert(Q).

Proof Let (ji)
d
i=1 denotes the vertex (v1j1 , . . . , vdjd) of Q, where recall that viji =

(ai0, . . . , aiji , aiji , . . . , ain). Consider vertices v′ and v′′ of Q corresponding to (j′i)
d
i=1

and (j′′i )di=1, respectively. Then, observe that

fi
(
Aσ(v′∧v′′)in

)
= fi

(
aiσi(j′i∧j′′i )

)
= fi

(
aiσi(j′i)

)
∧fi
(
aiσi(j′′i )

)
= fi

(
Aσ(v′)in

)
∧fi
(
Aσ(v′′)in

)
,

(4.53)

where the first and the last equalities hold by the definition of Aσ, and the second

equality follows because σi is defined such that inequalities in (4.52) are satisfied.

Similarly, we obtain

fi
(
Aσ(v′∨v′′)in

)
= fi

(
aiσi(j′i∨j′′i )

)
= fi

(
aiσi(j′i)

)
∨fi
(
aiσi(j′′i )

)
= fi

(
Aσ(v′)in

)
∨fi
(
Aσ(v′′)in

)
.

(4.54)
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The proof is complete by observing that

ϑ(σ)(v′ ∨ v′′) + ϑ(σ)(v′ ∧ v′′)

= φ
(
f1

(
Aσ(v′ ∨ v′′)1n

)
, . . . , fd

(
Aσ(v′ ∨ v′′)dn

))
+

φ
(
f1

(
Aσ(v′ ∧ v′′)1n

)
, . . . , fd

(
Aσ(v′ ∧ v′′)dn

))
= φ

(
f1

(
Aσ(v′)1n

)
∨ f1

(
Aσ(v′′)1n

)
, . . . , fd

(
Aσ(v′)dn

)
∨ fd

(
Aσ(v′′)dn

))
+

φ
(
f1

(
Aσ(v′)1n

)
∧ f1

(
Aσ(v′′)1n

)
, . . . , fd

(
Aσ(v′)dn

)
∧ fd

(
Aσ(v′′)dn

))
≥ φ

(
f1

(
Aσ(v′)1n

)
, . . . , fd

(
Aσ(v′)dn

))
+ φ
(
f1

(
Aσ(v′′)1n

)
, . . . , fd

(
Aσ(v′′)dn

))
= ϑ(σ)(v′) + ϑ(σ)(v′′),

where the first and last equalities follows from the definition of ϑ(σ)(·), the second

equality has been established in (4.53) and (4.54), and the inequality holds by the

supermodularity of φ(·) over [fL, fU ].

This lemma, together with Theorem 4.3.2, yields an ideal MIP formulation for

the hypograph hyp(ϑ) :=
{

(v, φ)
∣∣ φ ≤ ϑ(s), s ∈ vert(Q)

}
, where recall that ϑ :

vert(Q) 7→ R so that ϑ(s) = φ
(
f1(s1n), . . . , fd(sdn)

)
for every s ∈ vert(Q).

Proposition 4.3.4 If φ(·) is supermodular over [fL, fU ] then an ideal MIP formu-

lation for the hypograph hyp(ϑ) is given by,{
(s, δ, φ)

∣∣∣∣ φ ≤ min
π∈Ω
B̂π
(
ϑ̃(σ)

)(
Z
(
(Aσ)−1(s)

))
,
(
V −1
i (si), δi

)
∈ (4.50) ∀i

}
,

where ϑ̃(σ) : vert(∆) 7→ R defined as ϑ̃(σ)(z) = ϑ(σ)
(
Z−1(z)

)
, and for ψ : vert(∆) 7→

R function B̂π(ψ) is defined as in (4.14).

Proof By Theorem 4.3.2, it suffices to characterize the envelope concQ(ϑ)(s). It

follows from Lemma 4.3.1 that ϑ(σ)(·) is supermodular over vert(Q), and therefore,

by Corollary 4.1.3, minπ∈Ω B̂π
(
ϑ̃(σ)

)(
Z(s)

)
describes the envelope concQ

(
ϑ(σ)

)
(s).

Hence, minπ∈Ω B̂π
(
ϑ̃(σ)

)(
Z
(
(Aσ)−1(s)

))
describe envelopes concQ(ϑ)(s).
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Now, we specify our study to the case where the function φ(·) is a bilinear term.

Then, our results yield an explicit ideal logarithmic formulation for the following

discrete bilinear set

D :=
{

(x, φ)
∣∣ φ = f1(x1)f2(x2), xi ∈ {ai0, . . . , ain} i = 1, 2

}
,

where fi(·) is a univariate function.

Corollary 4.3.3 Let σ̌ := (σ̌1, σ̌2) be a pair of permutations of {0, . . . , n} such that

f1

(
a1σ̌1(0)

)
≤ · · · ≤ f1

(
a1σ̌1(n)

)
and f2

(
a2σ̌2(0)

)
≥ · · · ≥ f2

(
a2σ̌2(n)

)
,

and let σ̂ := (σ̂1, σ̂2) be a pair of permutations of {0, . . . , n} such that

fi
(
aiσ̂i(0)

)
≤ · · · ≤ fi

(
aiσ̂i(n)

)
.

Then, an ideal MIP formulation for D is given by(s, φ, δ)

∣∣∣∣∣∣∣
B̂π
(
ϑ̃(σ̌)

)(
Z
(
(Aσ̌)−1(s)

))
≤ φ ≤ B̂π

(
ϑ̃(σ̂)

)(
Z
(
(Aσ̂)−1(s)

))
∀π ∈ Ω(

V −1
i (s1), δi

)
∈ (4.50) i = 1, 2

 ,

where ϑ(s) : vert(Q) 7→ R so that ϑ(s) = f1(s1n)f2(s2n) for every s ∈ vert(Q), for

any pair of permutations σ, ϑ̃(σ) : vert(∆) 7→ R defined as ϑ̃(σ)(z) = ϑ(σ)
(
Z−1(z)

)
,

and for ψ : vert(∆) 7→ R function B̂π(ψ) is defined as in (4.14).

Proof By Theorem 4.3.2, it suffices to characterize the convex envelope convQ(ϑ)(s)

and the concave envelope concQ(ϑ)(s). It follows readily from Proposition 4.3.4 that

minπ∈Ω B̂π
(
ϑ̃(σ̂)

)(
Z
(
(Aσ̂)−1(s)

))
coincides with the concave envelope concQ(ϑ)(s)

since the bilinear term is supermodular over R2. The convex envelope convQ(ϑ)(s)
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can be obtained in a similar way since the submodularity of ϑ(σ̌)(·) can be established

by observing that for vertices v′ and v′′ of Q corresponding to (j′i)
d
i=1 and (j′′i )di=1,

ϑ(σ̌)(v′ ∨ v′′) + ϑ(σ̌)(v′ ∧ v′′)

= f1

(
Aσ̌(v′ ∨ v′′)1n

)
· f2

(
Aσ̌(v′ ∨ v′′)2n

)
+ f1

(
Aσ̌(v′ ∧ v′′)1n

)
· f2

(
Aσ̌(v′ ∧ v′′)2n

)
=
(
f1

(
Aσ̌(v′)1n

)
∨ f1

(
Aσ̌(v′′)1n

))
·
(
f2

(
Aσ̌(v′)2n

)
∧ f2

(
Aσ̌(v′′)2n

))
+(

f1

(
Aσ̌(v′)1n

)
∧ f1

(
Aσ̌(v′′)1n

))
·
(
f2

(
Aσ̌(v′)2n

)
∨ f2

(
Aσ̌(v′′)2n

))
≤ f1

(
Aσ̌(v′)1n

)
· f2

(
Aσ̌(v′)2n

)
+ f1

(
Aσ̌(v′′)1n

)
· f2

(
Aσ̌(v′′)2n

)
= ϑ(σ̌)(v′) + ϑ(σ̌)(v′′),

where the first and the last equalities hold by definition, the second equality can be

shown using arguments similar to those in (4.53) and (4.54) and using the defini-

tion of σ̌, and the inequality holds because for any two vectors c′, c′′ ∈ R2 we have

min{c′1, c′′1}max{c′2, c′′2}+ max{c′1, c′′1}min{c′2, c′′2} ≤ c′1c
′
2 + c′′1c

′′
2.

We provide an ideal formulation for the product of two discrete univariate func-

tions, which requires 2n continuous variables and 2dlog2(n+ 1)e binary variables. In

contrast, the formulation for the product of two discrete univariate functions from [40]

is not ideal and requires 2 + 3(n + 1) + dlog2(n + 1)e additional continuous variable

and 2dlog2(n+ 1)e binary variables.

Example 4.3.3 Consider a discrete set D :=
{

(x, φ)
∣∣ φ = x2

1x
2
2, xi ∈ {0, 1, 2} i =

1, 2
}

, whose convex hull is given as follows:

conv(D) =

(x, φ)

∣∣∣∣∣∣
max{0, 4x1 + 4x2 − 8, 12x1 + 12x2 − 32} ≤ φ ≤ min{8x1, 8x2}

x ∈ [0, 2]2

 .

Formulas (13)-(18) from [40] yield an MIP formulation for D whose projection onto

the space of (x, φ) variables is given as follows:

φ ≥ max{12x1 + 16x2 − 40, 4x1 + 16x2 − 32, 0, 15x1 + 12x2 − 38, 9x1 + 4x2 − 18},

φ ≤ min{8x1, 8x2},

x ∈ [0, 2]2,
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which differs from the convex hull of D. In other words, the formulation from [40]

for D is not sharp, and thus is not ideal.

For i = 1, 2, let si2 denotes xi and consider Qi = conv
(
{vi0, vi1, vi2}

)
, where

vi0 = (0, 0, 0), vi1 = (0, 1, 1) and vi2 = (0, 1, 2). Then, the set G is expressible as{
(s, φ)

∣∣ φ = ϑ(s), si ∈ vert(Qi) i = 1, 2
}

, where ϑ : vert(Q1)× vert(Q2) 7→ R so that

ϑ(s) = s2
12s

2
22. It follows readily that the vertex set vert(Qi) as follows:

si0 = 0, 1 ≥ si1 ≥ si2−si1 ≥ 0, 1−si1 = δi1, si1−(si2−si1) = δi2, δi ∈ {0, 1}2.

Since ϑ(·) is supermodular over vert(Q), for a movement vector π = (1, 2, 1, 2), for-

mula in (4.14) yields

ϑ(s) ≤ ϑ(v10, v20) +
(
ϑ(v11, v20)− ϑ(v10, v20)

) s11 − s10

a11 − a10

+
(
ϑ(v11, v21)− ϑ(v11, v20)

) s21 − s20

a21 − a20

+
(
ϑ(v12, v21)− ϑ(v11, v21)

) s12 − s11

a12 − a11

+
(
ϑ(v12, v22)− ϑ(v12, v21)

) s22 − s21

a22 − a21

= −3s11 + 3s12 − 11s21 + 12s22.

It turns out that concQ(ϑ)(s) can be explicitly derived as follows:

min

−11s11 + 12s12 − 3s21 + 3s22,−3s11 + 3s12 − 11s21 + 12s22,−8s11 + 12s12

−8s21 + 12s22,−2s11 + 3s12 − 12s21 + 12s22,−12s11 + 12s12 − 2s21 + 3s22

 .

To derive the convex envelope of ϑ over Q, we consider σ̌ = (σ̌1, σ̌2), where σ̌1 =

(0, 1, 2) and σ̌2 = (2, 1, 0). It follows readily that ϑ(σ̌)(v1j1 , v2j2) = ϑ(v1j1 , v2(2−j2)) for
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(j1, j2) ∈ {0, 1, 2}2, which is submodular over vert(Q1) × vert(Q2). Let s̃ = Aσ(s),

namely, s̃1 = s1, and s̃20 = 0, s̃21 = 1 + s21 − s22 and s̃22 = 2− s22.

ϑ(s) ≥ ϑ(σ̌)(v10, v20)

+
(
ϑ(σ̌)(v11, v20)− ϑ(σ̌)(v10, v20)

) s11 − s10

a11 − a10

+
(
ϑ(σ̌)(v11, v21)− ϑ(σ̌)(v11, v20)

) s̃21 − s̃20

a21 − a20

+
(
ϑ(σ̌)(v12, v21)− ϑ(σ̌)(v11, v21)

) s12 − s11

a12 − a11

+
(
ϑ(σ̌)(v12, v22)− ϑ(σ̌)(v12, v21)

) s̃22 − s̃21

a22 − a21

= s11 + 3s12 + s21 + 3s22 − 7

It turns out that convQ(ϑ)(s) can be explicitly derived as follows:

max

 4s11 − 2s21 + 3s22 − 4, s11 + 3s12 + s21 + 3s22 − 7, s11 + s21 − 1

−2s11 + 3s12 + 4s21 − 4,−8s11 + 12s12 − 8s11 + 12s22 − 16, 0

 .

4.3.3 Approximating the concave envelope of special composite functions

In this subsection, we will restrict our attention to composite function φ ◦ f :

[xL, xU ] 7→ R such that (φ ◦ f)(x) = φ
(
f1(x1), . . . , fd(xd)

)
, where fi(xi) is a univari-

ate function. We assume that without loss of generality that xL = (0, . . . , 0) and

xU = (1, . . . , 1) since otherwise we treat f ′i(xi) := fi
(
(xi − xLi )/(xUi − xLi )

)
as an in-

ner function. We will show that, combined with staircase expansion, Theorem 4.3.2,

an idea for constructing ideal formulations for discrete set, is also useful to generate

a sequence of polyhedral relaxations of φ ◦ f that converges uniformly to its con-

cave envelope on [0, 1]d. We start with the case where each inner-function fi(·) is a

piecewise-linear function.

Corollary 4.3.4 Let φ ◦ f : [0, 1]d 7→ R be a composite function so that (φ ◦ f)(x) =

φ
(
f1(x1), . . . , fd(xd)

)
, where fi(·) is a univariate function. If fi(·) is a piecewise

linear function characterized by breakpoints 0 = ai0 < . . . . . . < ain = 1, and the
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outer-function φ(·) is a multilinear function, an extended formulation for the convex

hull of the hypograph of φ ◦ f is given by

{
(s, φ)

∣∣ convQ(ϑ)(s) ≤ φ ≤ concQ(ϑ)(s), s ∈ Q
}
, (4.55)

where ϑ : vert(Q) 7→ R so that ϑ(s) = φ
(
f1(s1n), . . . , fd(sdn)

)
.

Proof We first show that conv
(
gr(φ◦f)

)
= conv(D), where D is defined as in (4.47).

Clearly, we have D ⊆ gr(φ ◦ f), thus implying that conv(D) ⊆ conv
(
gr(φ ◦ f)

)
. The

opposite inclusion holds because for every i ∈ {1, . . . , d} and ji ∈ {1, . . . , n} the

restriction of φ ◦ f to
∏d

i=1[aiji−1, aiji ] is a multilinear function.

Now, let R be the set defined by (4.55). Then, the result holds by observing that

conv(D) = conv
(

proj(s·n,φ)

(
gr(ϑ)

))
= proj(s·n,φ)

(
conv

(
gr(ϑ)

))
= proj(s·n,φ)(R),

where the first equality has been established in (4.48), the second equality holds

because projection commutes with convexification, and the last equality holds because

the projection of the LP relaxation of (4.51) onto the space of (s, φ) variables coincides

with the set R, and, by Theorem 4.3.2, (4.51) is an ideal formulation for gr(ϑ).

Next, we study the case where the inner-function fi(·) is not a piecewise-linear

function. To construct a sequence of polyhedral relaxations for composite function φ◦

f , we assume that for each i ∈ {1, . . . , d} there exist a sequence
(
l
(n)
i

)
n∈N of piecewise-

linear function mapping from [0, 1] to R and a sequence
(
β

(n)
i

)
n∈N of constants such

that for every xi ∈ [0, 1] we have

∣∣fi(xi)− l(n)
i (xi)

∣∣ ≤ β
(n)
i for n ∈ N and β

(n)
i → 0 as n→∞. (4.56)

We will assume that the outer-function φ(·) is Lipschitz continuous. Recall that a

function g : Y ⊆ Rm 7→ R is called Lipschitz continuous if there exists a real constant

K ≥ 0 such that, for all y1 and y2 in Y , |g(y1)− g(y2)| ≤ K‖x1 − x2‖2, and such K

is referred to as a Lipschitz constant for the function g.
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Theorem 4.3.3 Let φ ◦ f : [0, 1]d 7→ R be a composite function so that (φ ◦ f)(x) =

φ
(
f1(x1), . . . , fd(xd)

)
, where fi(x) is a continuous univariate function. For i ∈ {1, . . . , d},

let
(
l
(n)
i , β

(n)
i

)
n∈N be a sequence of pairs satisfying (4.56). If φ(·) is Lipschitz contin-

uous with a Lipschitz constant K then the sequence
(
ϕ

(n)
pw

)
n∈N of functions converges

uniformly to conc[0,1]d(φ ◦ f) on [0, 1]d, where

ϕ(n)
pw (x) := conc[0,1]d

(
φ ◦ l(n)

)
(x) +

d∑
i=1

Kβ
(n)
i ,

and l(n)(x) denotes
(
l
(n)
1 (x1), . . . , l

(n)
d (xd)

)
. Moreover, for each n ∈ N, the function

ϕ
(n)
pw (·) is a concave overestimator of (φ ◦ f)(·).

Proof It follows clearly that ϕ
(n)
pw (·) is a concave function, and that, for every x ∈

[0, 1]d,

(φ ◦ f)(x) = φ
(
l(n)(x)

)
+
(
φ
(
f1(x1), l

(n)
2 (x2) . . . , l

(n)
d (xd)

)
− φ
(
l
(n)
1 (x1), . . . , l

(n)
d (xd)

))
+ · · ·+

(
φ
(
f1(x1), . . . , fd(xd)

)
− φ
(
f1(x1), . . . , fd−1(xd−1), l

(n)
d (xd)

))
≤ conc[0,1]d

(
φ ◦ l(n)

)
(x) +K

∥∥∥(f1(x1), l
(n)
2 (x2), . . . , l

(n)
d (xd)

)
−
(
l
(n)
1 (x1), . . . , l

(n)
d (xd)

)∥∥∥
2

+ · · ·+K
∥∥∥(f1(x1), . . . , fd(xd)

)
−
(
f1(x1), . . . , fd−1(xd−1), l

(n)
d (xd)

)∥∥∥
2

≤ ϕ(n)
pw (x),

where the first equality holds by staircase expansion, the inequality holds by the

Lipschitz continuity of φ(·), and the last inequality holds by the first requirement

in (4.56).

Next, we show that
(
ϕ

(n)
pw (x)

)
n∈N converges uniformly to conc[0,1]d(φ ◦ f)(x) on

[0, 1]d. Let x ∈ [0, 1]d, and let λ be a convex multiply and (xt)mt=1 be points in [0, 1]d

such that x =
∑m

t=1 λtx
t. Then, it follows readily that

m∑
t=1

λt
(
φ ◦ l(n)

)
(xt) +

d∑
i=1

Kβ
(n)
i ≤

m∑
t=1

λt(φ ◦ f)(xt) +
d∑
i=1

Kβ
(n)
i +K

∥∥f(x)− l(n)(x)
∥∥

2

≤ conc[0,1]d(φ ◦ f)(x) +
d∑
i=1

Kβ
(n)
i +K

∥∥β(n)
1 , . . . , β

(n)
d

∥∥
2
,
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where the first inequality holds by the Lipschitz continuity of φ(·), and the second

inequality holds by the concavity of conc[0,1]d
(
φ◦f

)
and the first requirement in (4.56).

By Proposition 2.31 in [75], for any function g : Y 7→ R, where Y is a convex subset

of Rm, we obtain that concY (g)(y) = sup
{∑k

j=1 αjg(yj)
∣∣ y =

∑k
j=1 αjyj, α ≥

0,
∑k

j=1 αj = 1, yj ∈ Y
}

. Therefore, we obtain that ϕ
(n)
pw (x) ≤ conc[0,1]d(φ ◦ f)(x) +∑d

i=1 Kβ
(n)
i +K

∥∥β(n)
1 , . . . , β

(n)
d

∥∥
2
. Hence, the proof is complete by observing that for

every i ∈ {1, . . . , d} we assume in (4.56) that β
(n)
i is independent of x variables and

β
(n)
i → 0.

4.4 Ordered outer-approximations of inner functions

Consider the graph of the vector of bounded inner-functions, i.e., gr(f) :=

{(x, u·n) ∈ Rm+d | u·n = f(x), x ∈ X} where u·n denotes (u1n, . . . , udn). Let

κ := m+ d+m′ for some nonnegative integer m′, and let F as a bounded convex set

in Rκ so that gr(f) ⊆ proj(x,u·n)(F ) and int(F ) 6= ∅. For convenience, define

K :=
{
λ

1

y

 ∣∣∣ y ∈ F, λ ≥ 0
}
,

the homogenization of F ; K is a convex cone in Rκ+1 (the additional coordinate is

indexed by 0) and F = {y ∈ Rκ |

1

y

 ∈ K}. Let K∗ be the dual cone of K, that

is, K∗ =
{
α ∈ Rκ+1

∣∣ 〈α, z〉 ≥ 0 for all z ∈ K
}

. Since it is assumed that int(F ) 6= ∅,

it follows that int(K) 6= ∅, and, thus, K∗ is a pointed convex cone, that is, if α ∈ K∗

and −α ∈ K∗ then α = 0. The pointed convex cone K∗ defines a partial ordering

on Rκ+1 as follows: we say that α1 �K∗ α2 provided that α2 − α1 ∈ K∗. In the

following, we derive a pair
(
u(·), a(·)

)
satisfying the requirements in (4.3) by solving

optimization problems over the pointed convex cone K∗.

Proposition 4.4.1 Let F be a bounded convex set in Rκ such that int(F ) 6= ∅ and

gr(f) ⊆ proj(x,f)(F ). For i ∈ {1, . . . , d}, let
(
αi,j
)n
j=0

be a chain in (Rκ+1,�K∗) so

that αi,0 �K∗ euin �K∗ αi,n, where euin is the principle vector in Rκ+1 corresponding
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to variable uin. For any given ȳ ∈ F and for i ∈ {1, . . . , d}, define
(
βi,j
)n
j=0

so that

βi,n = uin and, for j ∈ {0, . . . , n− 1}

βi,j ∈ arg max
{〈
β, (1, ȳ)

〉 ∣∣∣ β �K∗ euin , β �K∗ αi,j}. (4.57)

Let aij(y) =
〈
αi,j, (1, y)

〉
and uij(y) =

〈
βi,j, (1, y)

〉
. Then, the pair

(
u(y), a(y)

)
satisfies requirement in (4.3).
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