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ABSTRACT

M.Sc, Purdue University, August 2019. Automated Weed Detection Using Machine
Learning Techniques on UAS-Acquired Imagery. Major Professor: Dharmendra
Saraswat.

Current methods of broadcast herbicide application cause a negative environmen-

tal and economic impact. Computer vision methods, specifically those related to ob-

ject detection, have been reported to aid in site-specific weed management procedures

to target apply herbicide on per-weed basis within a field. However, a major chal-

lenge to developing a weed detection system is the requirement for properly annotated

training data to differentiate between weeds and crops under field conditions. This

research involved creating an annotated database of weeds by using UAS-acquired

imagery from corn and soybean research plots located in North-central Indiana. A

total of 27,828 RGB; 108,398 multispectral; and 23,628 thermal images, were acquired

using FLIR Duo Pro R sensor that was attached to a DJI Matrice 600 Pro UAS. An

annotated database of 306 RGB images, organized into dicot (broadleaf) and monocot

(grass like) weed classes, was used for network training. Two Deep Learning networks

namely, DetectNet and You Only Look Once version 3 (YOLO ver3) were subjected

to eight training stages using seven annotated image sets. The precision for weed

detection ranged between 4.22-45.13% for dicot and 3.63-65.37% for monocot weed

detection. This research has demonstrated a need for creating a large annotated weed

database for improving precision of deep learning algorithms through better training

of the network.
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1. INTRODUCTION

1.1 Background

Precision agriculture (PA) practices have allowed farmers to reduce both cost and

amount of seed used, cultivation applied, labor needed, and machinery hours spent

(Leonard, 2015). Currently, there is very little precision in broadcast herbicide ap-

plication. Applying herbicide in bulk, over the entire field, regardless if there is a

weed present or not, has a detrimental financial and environmental impact (Lingen-

felter and Hartwig, 2007). The ability to not only detect but control the growth of

weeds in the early stages of plant development is crucial to a healthy and profitable

harvest. Having an effective management strategy in the early season helps prevent

weed infestation from spreading to other areas of the field.

Weed infestation occurs throughout the growing season in crops. Weeds compete

with crops for nutrients, moisture, sunlight, as well as physically attacking them by

wrapping around their stalk or leaf blades (Birch et al., 1989). These issues attribute

to yield loss at harvest. In order to control weeds before they have the chance to

produce seed and spread further infestation throughout the field, weeds should be

removed in soybeans between the V1 to V3 growth stage. In corn, weeds should be

eradicated by the V4 growth stage (Gower et al., 2003). This is referred to as an

early season weed management (ESWM) strategy. Weeds are controlled before they

reach a height of 6 to 8 inches in soybeans and 4 to 5 inches in corn. This is referred

to as the “critical time for weed removal” (CTWR) (Knezevic et al., 2003). After

the V4 growth stage in corn and V3 growth stage in soybeans, studies have shown

that insignificant to no loss of yield happened, due to new crop emergence, at these

stages (Gower et al., 2003; Carey and Kells, 1995; Knake and Slife, 1962). After these

growth stages, the crop has a competitive advantage on any new emerging weeds due
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to size, canopy cover, and the amount of time left before crop maturity. Even with

advances in weed management strategies and herbicide application practices, weed

infestation continues to account for over 10 percent of yield loss in Midwest fields

(Hartzler, 2009). Globally, the amount of yield loss is reported to be over 40 percent

(Oerke, 2006). With 14.5 billion bushels of corn and 4.5 billion bushels of soybean

produced annually in the United States, a 10 percent yield loss means 1.9 billion

less bushels for traditional row-crops alone (Sterk, 2018).The current market price for

corn and soybeans (June 18th, 2019) are $4.49/bushel and $9.12/bushel respectively

(Chicago Mercantile Exchange Group, 2019). In dollar terms, the average loss per

year is $10.51 billion on just corn and soybeans, in the United States alone. Reducing

harvest loss by just two percent in U.S.-grown corn and soybean fields would save

farmers an average of $2.1 billion annually. While there have been several advances

in weed control over the last hundred years, there is obvious economic incentive for

further research and development. Advances that have been made to current day and

will continue to evolve include technological, mechanical, chemical, and biological

(Abbas et al., 2018).

Among the most substantial technological, as well as mechanical, improvement

in weed control was the self-propelled sprayer. The first self-propelled sprayer was

invented by Ray Hagie in 1947 (Scott, 2018). This invention allowed for a substan-

tial increase in the land area that herbicide could now be applied. The original

self-propelled sprayer and the improvements made to it, up to current day, has rev-

olutionized the way farmers and applicators apply not just herbicides, but all liquid

agricultural chemicals in general (Scott, 2018). With the evolution of mechanical,

chemical, and technological innovations in weed control, it was possible to eliminate

weeds after the crop had emerged. Improved sprayer technologies, along with the in-

vention of post-emergence herbicides have allowed for application well beyond when

the crop had started to sprout.

Another technological advancement that enabled precision agriculture (PA) prac-

tices, was the introduction of GPS guidance for tractors and combines in the early
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1990s (Whelan and Taylor, 2013). This guidance system, although coarse in accuracy

by today’s standards, gave accurate enough latitude and longitude coordinates of the

implement’s location to allow farmers to see a map of their fields and store data

about planting, fertilizing, pesticide application, and harvest for each field. From this

data, farmers could now create maps corresponding with this information in-field.

Analysis of these maps allowed detection of problem areas in the field. For instance,

an area that yielded 50 bushels less of corn than the field average could indicate

disease or poor stand due to weed pressure. A farmer could reference that area in

the herbicide application map and realize there was a problem with the sprayer at

that time, or that herbicide-weed contact was sub-par. Areas within the field could

also be broken down into management zones, based on the amount of material that

needs to be applied to a given area, to produce the best yield. This is also referred

to as a prescription map. Many prescription maps utilized Geographic Information

Systems (GIS) to interpolate attribute data, such as yield, seeding population rate,

and gallons per acre (GPA) applied, into a spatially variable map capable of inference

by a farmer. This was done by fusing geo-referenced (GPS) data with attribute data

and performing a spatial query, or retrieving spatial information from a geodatabase

system (Strickland et al., 1999).

With this prescription map, farmers had the need for a technology capable of au-

tomatically varying input material in seeding, fertilization, and pesticide application

tasks. This technology was called variable-rate application (VRA). More specifically,

this was map-based VRA (Strickland et al., 1999). Map-based VRA interprets the

prescription map loaded on the tractor’s processor, via a dedicated software, converts

that information to a form understood by the implement’s controller (an attached

planter or combine hear, or the boom on a self-propelled sprayer) and sent as a com-

mand to be followed by the variable-rate drive system on the implement (what allows

the implement to physically vary the rate applied to the field surface) (Miles et al.,

2002). Later on, a sensor-based VRA method was developed that no longer needed

prescription maps to vary application rate. As the name implies, this method applies
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sensors to measure properties pertinent to the application task, such as soil proper-

ties and specific crop attributes (Miles et al., 2002). Sensor types can be proximal

(measuring property without physically touching the object) and intrusive (gaining

measurement from physically sampling the object). The workflow of a sensor-based

VRA system first takes reading from the attached sensor, sends that information to

the on-board processor, converts the measurements into a variable that the controller

can understand, outputs the controller command into the implement’s variable-rate

drive system, and causes the implement to physically vary output (Miles et al., 2002).

Both sensor and map-type VRA systems have been used in herbicide application.

Trimble’s WeedSeeker® is a sensor-based VRA system that measures reflected light

to differentiate between weeds and bare soil (Miles et al., 2002). However, since this

product cannot distinguish between crops and weeds, it can only be used inter-row or

when no crops have been planted. Another sensor-based VRA system for target her-

bicide application is Blue River’s See and SprayTM system. Unlike WeedSeeker®, See

and SprayTM is capable of distinguishing between weed and crop intra-row and can

accurately spray the weed without damaging the crop (Golden, 2017). Advancements

in proximal-sensors and processing power make it plausible to create an open-source

version of these products, that incorporates a sensor-based VRA system.

In addition to technological advances, genetic advances in weed control include

glyphosate tolerant soybean and corn seed, which were the first genetically modified

organisms (GMOs) to incorporate herbicide resistance. They were called Roundup

Ready® and developed by Monsanto in the ten years preceding their commercial

launches in 1996 and 1998 respectively. These products allowed for post-emergence

application of glyphosate, a non-selective herbicide only used for pre-emergence, to

be applied post-emergence in both corn and soybeans (Dill, 2005). As a result,

Roundup® became much more widely applied within the Unites States. Since

the inception of the genetically modified crops, glyphosate use has increased fifteen

times, with 1.6 billion kilograms applied within the United States in just the last

ten decade (Benbrook, 2016). Over-application of glyphosate can cause detrimental
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side-effects in contamination to groundwater from agricultural run-off, and xan be

toxic for beneficial organisms like earth worms, butterflies, bees, fish, and microbes

found within the soil (Myers et al., 2016). Another GMO seed advancement was Mon-

santo’s dicamba and glyphosate resistant soybean variety, termed Roundup Ready 2

Xtend®. This soybean variety was commercially introduced in 2016 and allowed for

control of marestail and waterhemp weeds resistant to other types of herbicides. It

also allowed for better control of broadleaf weeds in soybeans.

One method that aims at reducing herbicide application rate per acre, while pre-

cisely targeting weeds is site specific weed management (SSWM). SSWM blends the

precision agriculture approach of utilizing technology to observe, measure, and re-

spond to intra-field variability (Leonard, 2015) similar to the 4R nutrient management

approach.

Similar to how PA focuses on in-field variability, the 4Rs nutrient stewardship

guidelines aim to apply a precision management approach to fertilizer application.

The four Rs are right source, right rate, right time, and right place (Liu et al., 2015).

Much like nutrient stewardship, the 4R method can also be applied to herbicide

application. Having the right source of chemical, applied at the right rate for effective

coverage and uptake, only where a weed is present at the right place in the field, and at

the right time during the season and weather condition. Two of these areas that need

immediate improvement are right rate and right place. As mechanical, technological,

and managerial strategies have evolved to how agriculture is understood today, so

must herbicide application and management practices evolve. It is possible to target

apply herbicide to an individual weed, through the use of object detection. Object

detection is a computer vision method capable of classifying an object within a given

image, as well as locate all instances of that object. As the following sections will

detail, the ability to train an object detector to detect weeds at an individual level,

in a complex environment such as a row-crop field is quite challenging.
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1.2 Problem Statement

Weed detection is a challenging task within tilled and no tilled row-crop fields.

These fields present a complex and challenging environment for computer vision tasks

in several ways. Weeds and crops have similar spectral characteristics (similar color),

they also share physical similarities early in the growing season, soil conditions can

vary heavily within a small area, and stalks and debris in no-till or minimal till fields

can cause problems with false detection. In addition, differing weather conditions

can affect how well a weed detection system can discriminate weeds from non-weeds.

This includes shadow and glare caused by sunlight, image blurriness caused by clouds

and/or sensor settings, snow or rain obscuring objects within the image, and vibration

in the camera system caused by wind. Computational time required by a computer

vision system to detect a weed instance will affect the speed at which a weed remedia-

tion operation can occur. Application of this remediation, be it chemical destruction,

physical destruction, or a system that incorporates both, will also determine the

structure of computer vision system used. One Specific method of weed identification

might be more suited to a scenario than another. For example, in an area of heavy

weed infestation, where the speed of an operation can be slower, a weed identification

method that is more computationally intense but highly accurate may be preferred

to a method that is computationally light, allowing for faster operation but sacrifices

accuracy.

Autonomous detection of these noxious weeds requires the implementation of com-

puter vision methods, primarily image classification and object detection. Object

detection is preferred in this instance, as it both locates the desired object within the

image and classifies what it is (Li, 2018). However, object detection requires extensive

labelling and annotation of images to allow the network being trained to learn the

objects and their corresponding locations. A large, variable image set is required to

be manually labelled in this fashion.
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A wide variety of remote sensing devices are commercially available with varying

cost, spatial and spectral qualities, and application basis. Specific application, desired

sensor type for the study, availability, and desired resolution comparative to budget

were all factors influencing sensor selection for this study.

1.2.1 Overall Goal

The overall goal of this research is to gauge network training performance of deep

convolutional neural network (DCNN) models for detection of dicot (broadleaf) and

monocot (grass type) weeds in corn and soybean fields.

1.2.2 Research Objectives

1.To compile a database of UAS acquired images using RGB, thermal, and multi-

spectral sensors for providing critical training data for machine learning algorithms.

2. To classify an RGB image dataset of weeds obtained from multi-location corn

and soybean test plots into monocot and dicot classes and manually-annotate for

training of object detection models.

3. To evaluate the performance of DetectNet and YOLOv3 object detection mod-

els for identifying monocot and dicot weeds in corn and soybean fields.
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2. THEORETICAL BACKGROUND AND REVIEW OF

LITERATURE

Definitions used in remote sensing that are pertinent to this thesis research, ad-

vantages of Unmanned Aerial Systems over satellite and manned aircraft, and au-

tonomous applications of Site-Specific Weed Management will be discussed in this

chapter. For various machine learning techniques, theoretical framework, model struc-

ture and components, and applications for weed identification will also be discussed.

2.1 Unmanned Aerial Systems

An unmanned aerial system (UAS) offers the advantage of autonomous flight and

data collection (Milioto et al., 2017). Its ability to fly at a low altitude, which allows

for very-high resolution imagery, makes it advantageous over satellite-based options.

Flying closer to the target area allows for better spatial resolution, or being able to

utilize more pixels in the construction of the digital image (Milioto et al., 2017). An

unmanned aerial system also provide opportunities for high temporal resolution, the

ability to repeat a given measurement over a series of time, required to track physical

and biological changes within the field over a time period (Manfreda et al., 2018).

Examples of such changes include tracking crop and weed growth, disease or insect

infestation, and problem areas within a field.

High spatial resolution, ability for low altitude flight, and high definition, with live

video and imagery make an unmanned aerial system a suitable vehicle for agricultural

weed identification. The ability to detect weeds present in the field, in real-time, al-

lows for accurate ground truth data. Ground truthing is the act of linking information

from data to features and materials on the ground (Manfreda et al., 2018). Unmanned

aerial systems provide several advantages over traditionally acquired satellite imagery.
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Satellite imagery provide inadequate spatial and temporal resolutions necessary for

highly accurate measurements over an extended period or entire growing season in

certain remote sensing and precision agriculture applications (Torres-Sánchez et al.,

2014). While using satellite imagery for later growth stage crops have obtained decent

results, early season growth is dependent on a much more accurate spatial resolution

(Torres-Sánchez et al., 2014).

UAS offer the highly accurate, down to sub centimeter, accuracy required to

accurately map early season crop growth. Researchers have been using unmanned

aerial systems for agricultural applications longer than two decades. During this

time, UAS have gone from a tool for simple field scouting to providing insightful data

and information on everything from vegetation health to stand count and biomass

estimation (Foreign Agricultural Service, 1994) Rules and regulations governing the

use of UAS and specific needs has defined the global adoption of this technology in

agriculture.

Countries like Japan have been using unmanned helicopters for high volume spray-

ing since 1995. However, the system described for spraying in Japan is not legal in the

United States. Due to the weight restriction of an unmanned aerial vehicle (UAV),

must be between 0.5 and 55.0 pounds fully loaded. It is only recently that UAS-based

sprayers have been introduced in the American market (Federal Aviation Adminis-

tration, 2018). UAS give an affordable alternative to airborne and satellite-based

systems.

UAS offer an advantage to manned aircraft-based sensors from a cost and timing

standpoint. Due to the relative ease of setup and quick deployment time of a UAS,

they are able to get airborne and complete the mission much more quickly than a

manned aircraft (Watts et al., 2012). This can be a crucial factor during Midwest

summers, when it can go from sunny and ideal flying conditions to cloudy or storming

within the same hour. In addition to timing manned flights around the weather,

there is a broader problem of having to schedule their data collection in advance.

Pilot availability and competency, demand for services, mechanical issues of manned
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aircraft, and many other factors could determine commercial provider’s availability

to fly farmer’s fields. The cost of UAS and accompanying sensors have consistently

decreased, thereby becoming a viable option for ownership by individuals, agricultural

cooperatives, and researchers (Watts et al., 2010).Another advantage of UAS is their

capability of low altitude flight, as low as 2-3 feet off of the ground in certain use

cases. This is a much lower altitude than manned aircraft are capable of flying. This

allows for a much more accurate spatial resolution, the number of pixels used in the

formation of a digital image (Davidson, 2016). The lower the altitude that an image

is taken, the higher the spatial resolution of that image. However, less area will be

covered within the image as the altitude at which it is taken at decreases. Users have

to deal with a trade-off of spatial resolution to flying height at which an image is

captured (Figure 2.1).

Figure 2.1. Comparing Spatial Resolution and Height of Image Capture
in a Satellite Derived Image. (Jensen, 2005)

Looking at Site-Specific Weed Management (SSWM) from a remote-sensing per-

spective gives insight to the potential to decrease weed control costs through reduc-

tions in both manpower and use of herbicide (Hassan-Esfahani et al., 2017). This
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method also aids in the development of site-specific herbicide application maps. Per-

forming these tasks with small sensors mounted on unmanned aerial vehicles (UAVs)

allows for weed management and herbicide application practices that are affordable,

easy to implement, and environmentally friendly (Shi et al., 2016). In order to imple-

ment SSWM at field-scale, it is necessary to combine software and hardware to create

a weed control system Shi et al. (2016). At the root of this system is a technique

called machine learning (ML). According to Christopher bishop, one of the foremost

experts on ML, machine learning “is the scientific study of algorithms and statistical

models that computer systems use in order to perform a specific task effectively with-

out using explicit instructions, relying on patterns and inference instead. It is seen

as a subset of artificial intelligence” (Bishop, 2006). Rapid advances in this field over

the last 20 years have made ML more approachable by non-computer scientists and

has been implemented across several different fields, such as medicine, automotive,

construction, and recently in agriculture.

2.2 Background on Machine Learning Methods

Machine learning and computer vision advances have made it possible to create

and train a model capable of detecting specific instances of weed species within a field

scene. A method that has benefited from these advances is object detection. Object

detection is defined as the process of finding instances of real-world objects, like cars,

people, buildings, etc. in images or videos (MathWorks, 2018). The main function of

an object detection system is detecting all known occurances of a specified category

of object within the image (Barker and Prasanna, 2016). Object detection networks

such as region-based, fully convolutional, and single shot detectors implement feature

extraction by calculating the intersection over union (IoU) of the annotated vs. pre-

dicted bounding box to recognize instances of a certain object or category (shown in

Figure 2.2).
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Figure 2.2. Left: Plot of Average Intersection over Union (IoU) between
Anchors and Ground Truth Boxes, with Varying Number of Clusters (An-
chors). Right: Comparing Anchor Shapes of COCO and VOC 2007 Image
Set Trainings. (Hui, 2019).

Thus, it’s clear that object detection requires supervised learning, in order to train

and make predictions. A feature learning process that an object detection network

undergoes to classify a located object according to its class label is shown in Figure 2.3.

Figure 2.3. The Workflow of Feature Learning and Classification in a
Network, from an Input Image (Saha, 2018).
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The downside of object detection is that model training requires large, labelled

image datasets. As of now, it means hand-labelling all instances of the desired object

with that object’s category, a bounding box that must be hand drawn around the

corners of an object instance, and a way for the model’s architecture to read and

understand the bounding box points and categorical labels (Barker and Prasanna,

2016). Convolutional neural networks (CNNs) like the one shown in Figure 2.4 are

most popular in object detection tasks.

Figure 2.4. An Example of a Traditional Convolutional Neural Network
Architecture (Saha, 2018).

A convolutional neural network is comprised of neurons which invoke “learnable

weights and biases” (Li, 2018). Every neuron will receive some input and perform

matrix multiplication. A single unique score function is expressed by the network,

inputting raw image pixels and outputting class scores. What differentiates CNNs

from ordinary neural networks is that their architectures, or the overall processing

workflow of the network, makes an explicit inference that files inputted to the network

are solely imagery. This inference makes it so the user can input the desired properties,
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such as image size and file type into the network configuration (Li, 2018). The CNN

architecture arranges neurons in 3 dimensions: width (how many layers wide the

network is specified to be), height (how many layers tall the network is specified

to be), and depth (how many layers deep the network is specified to be), shown in

Figure 2.5.

Figure 2.5. A Regular 3-layer Neural Network vs. a ConVent Architecture
(Barker and Prasanna, 2016).

Another type of object detection is a region proposal-based network (RPN). In

an RPN framework, an entire image is first scanned and then a particular region of

interest is engaged. The scan is performed by a sliding window approach that inserts

a CNN to predict bounding boxes straight from locations in the uppermost layer of

the feature map after obtaining confidence levels of the underlying object categories

(Zhao et al., 2018).

Ren et al. (2017) combined a deep fully convolutional network capable of proposing

regions with a detection module that implements these proposed regions. They called

the network Faster R-CNN, an innovative type of region-based proposal network.

RPNs input an image and output sets of rectangular object proposals (Ren et al.,

2017). The Faster R-CNN approach put a small network into a sliding window that

runs over a feature pyramid layer (Ren et al., 2017). Using a concept of anchors,

or maximum number of predicted region proposals per sliding window location, the

authors denoted them as k. Anchors were defined as k reference boxes in which region

proposals were relatively parameterized to. The anchors were centered to each sliding
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window and had an associated scale and aspect ratio (Ren et al., 2017). Within this

study, “three scales and three aspect ratios were used, giving 9 total anchors per

position”. The same number of anchor boxes have been implemented in an object

detection method named You Only Look Once (YOLO), that has been a methodology

of interest for weed detection research (Redmon and Farhadi, 2018) A high level R-

CNN workflow is shown in Figure 2.6

Figure 2.6. An Example Faster-Regional Convolutional Neural Network
Architecture as Developed by Ren et al. (2017).

Unlike an RPN, the single shot detection method of object detection does not

use a sliding window approach for bounding box prediction. A single shot multibox

detector, also referred to as an SSD, is a relatively new method of object detection

that is capable of real time performance. Single shot refers to object localization and

classification tasks being done with a single forward pass of the network (Liu et al.,

2015). Multibox is the name given to the bounding box technique developed by (Liu

et al., 2015). The SSD architecture builds off of the VGG16 network architecture,

a region-based or R-CNN. In this architecture, “auxiliary convolutional layers were

added to VGG16 after the sixth convolutional layer”, to allow for feature extraction
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at various scales and gradually decrease the size of the input to each successive layer

(Forson, 2017). The architecture of an SSD is shown in Figure 2.7.

Figure 2.7. An Example Single Shot Detector Architecture as Developed
by Zhao et al. (2018).

YOLO (You Only Look Once) is a unified object detection system capable of run-

ning in real time (Redmon and Farhadi, 2018). It utilizes a single CNN to predict

multiple bounding boxes and their corresponding class probabilities (Redmon et al.,

2015). Unlike RPNs or other sliding-window approaches, YOLO is capable of visu-

alizing the entire image while training and testing and inherently encodes contextual

class information and their corresponding appearances (Redmon et al., 2015). The

YOLO network architecture is defined in a configuration or .cfg file. In order to un-

derstand how YOLO network training works, the following hyperparameters must be

defined.

Batch size refers to the number of training samples, in this case images, used in

each training iteration. An iteration is also be referred to as an epoch in different

network architectures. A subdivision is how many “mini-batches” the initial batch

is split. For example, if the batch size is 64 and the subdivision size is 8, the initial

batch size is divided by the subdivision (64/8) and 8 images per this smaller batch

will be processed by the GPU until all 64 images have been processed. Then the next

iteration will start.
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While subdivisions serve the purpose of reducing GPU memory needed during

processing, they also increase the amount of training time. It is recommended to

reduce the amount of subdivisions used, if GPU memory capacity can handle a higher

load of images (Redmon and Farhadi, 2018). Image detail information, height; width;

and channels, are important to have correct before beginning training. Specifying

image height and width will resize all images within the training set into those pixel

values. This is beneficial as all images within the training set do not need to be

resized beforehand.

Channel refers to the spectral wavelengths, or bands that the image pixels fall

into. For example, a color image has three channels, red, green, and blue. The

camera used to capture the image has a specified band range for red, for green, and

for blue. Multispectral images are broken down into these individual bands, but color

images combine the three.

Learning rate, also referred to as step size, controls the speed in which a neural

network is able to learn a problem (Brownlee, 2019). Network weights are produced

by this training, which have to be calculated using empirical optimization methods,

like stochastic gradient decent, instead of traditional statistical methods such as con-

fidence interval, variance, and clustering that generalize problem distributions.

Stochastic gradient decent “estimates the error gradient for the current state of

the model” (Brownlee, 2019) through picking images from the training set at random.

Model weights are updated by distributing errors backwards through the network’s

layers, since error is computed at the output (Deep AI, Incorporated, 2017). This is

referred to as backpropogation.

Feature scaling, also called data normalization, is “method used to standardize

the range of independent variables or features of data” (Nadahalli, 2014). As most

datasets contain a highly varying magnitude of features and most machine learning

algorithms use Euclidean distance between two points in their computations, high

magnitude features are given much more weight in distance calculations than low

magnitude features. To mediate this problem, all features need to be brought to the
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same level of magnitude. Feature scaling methods include standardization; shown in

equation (2.2), mean normalization; shown in equation (2.2), mix-max scaling; shown

in equation (2.3), and unit vector; shown in equation (2.4) (Asaithambi, 2017).

x′ =
x− x̄
σ

(2.1)

x′ =
x−mean(x)

max(x)−min(x)
(2.2)

x′ =
x−min(x)

max(x)−min(x)
(2.3)

x′ =
x

||x||
(2.4)

The YOLO detection network utilizes a feature pyramid network (FPN), shown in

Figure 2.8, to create multiple feature map layers at three different scales. FPN data

flow is structured in a bottom-up and top-down pathway. The bottom-up pathway is

the traditional method that CNNs use to perform feature extraction.

Figure 2.8. A Feature Pyramid Network’s Bottom-up Pathway is Later-
ally Connected to the Top-down Pathway through “Residual Connections”
in the YOLO Architecture (Lin et al., 2016).
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Spatial resolution decreases as the pyramid layers go from bottom to top. However,

the semantic value of each ascending layer increases, as more high-level structures are

detected (Hui, 2018). The top down-pathway constructs higher resolution layers,

drawing from semantically weaker features. Due to the imprecise locations of objects

within these reconstructed layers, lateral connections are added between these layers

and their corresponding feature maps to allow the detector to better predict object

locations. These connections are commonly referred to as skip or residual connections.

According to the creators of YOLO Redmon and Farhadi (2018), ”the initial con-

volutional layers of the network perform this feature extraction, while trailing fully-

connected layers output class probabilities and predicted bounding box coordinates”.

Max batches refers to the maximum number of iterations that the network will

train on. Number of classes are the categories of objects within the image that has

been annotated. During network training in YOLO, this is denoted by the .names

file. This file lists the names of the classes to be trained on. Another often overlooked

hyperparameter in the .cfg file is steps. The steps hyperparameter specifies the num-

ber of iterations at which scale will be applied. Both scale and steps values determine

how the learning rate will be changed over increasing numbers of iterations during

the training process (Mohnatkin, 2017).

The performance of each ML model discussed, as well as all others, is dependent

upon the dataset on which it is learning from. For detection within row crop fields,

the images in the dataset used to train a particular model must match the complex

environmental conditions found in the field. While images taken under staged condi-

tions in a lab produce highly accurate, theoretical detection (Lee et al., 2015), (Wang

et al., 2016), they do not yield good results when tested on realistic field conditions

2.2.1 Machine Learning Methods for Weed Classification and Detection

Pérez-Ortiz et al. (2015) compared the accuracy of various classification methods

at discriminating between crop, soil, and weeds in a sunflower crop. An image or-
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thomosaic was created for 30, 60, and 100 meter UAS-collected images. Each were

subdivided into 1000x1000 pixel subimages. Unsupervised k-means, semi-supervised

linear-SVM (support vector machine) approximation, and supervised kernel SVM

classification methods were evaluated on their mean average error (MAE) and tested

on a 32-frame ground-truth set at each corresponding altitude (Pérez-Ortiz et al.,

2015). At 30 meters, MAE was lowest with the semi supervised method, at 4.57%.

At 60 meters, the supervised method had the lowest MAE, with 6.5%. At 100 me-

ters, the supervised method also had the lowest MAE, with 26.5% (Pérez-Ortiz et al.,

2015). The best MAE scoring approach, the semi-supervised method at 30 meters,

was tested on binarized ground truth frames showing only weed presence. The semi-

supervised classifier obtained an accuracy of 75% Pérez-Ortiz et al. (2015).

dos Santos Ferreira et al. (2017) created a software to classify weeds and distin-

guish between grass and broadleaf weeds in soybean field images. 400 UAS-based

RGB images were segmented into single-object instances and manually annotated

according to their class and resized to 256x356 pixels. Classes were defined as soil,

soybean, grass weeds, and broadleaf weeds. A total of 15,336 segments were cre-

ated, 3249 of soil, 7376 of soybean, 3520 of grass, and 1191 of broadleaf weeds (dos

Santos Ferreira et al., 2017). A balanced image set, with 1125 images for each class

(4500 total) was split into 3000 training, 500 validation, and 1000 test images. The

unbalanced image set used 15,000 of total collected images, with 70% of the images

used for training, 10% for validation, and 20% for testing. The test set was created

to visually compare network weight results against ground truth imagery. Thus, it

was a physical experiment that mimicked validation tests by the network. This ratio

was also implemented within individual classes (dos Santos Ferreira et al., 2017). A

modified CaffeNet model was trained over 7500 iterations for the balanced image set

and 15,000 iterations for the unbalanced set. In the balanced image set, weighted

average precision of the classification results for the four classes were as follows: soil

100%, soybean 99.5%, grass 99.7%, and broadleaf 98.3%. In the unbalanced image

set, the following weighted average precision of classification results are given: soil
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100%, soybean 99.5%, grass 99.7%, and broadleaf 98.3% (dos Santos Ferreira et al.,

2017). However, the authors point out that these highly accurate classification results

would be unlikely in a “real field application” as all research was done in a controlled

environment (dos Santos Ferreira et al., 2017).

Yu et al. (2019) trained, tested and compared three deep convolutional neural

networks (DCNNs) for detecting broadleaf weeds in bermudagrass. Training was

done under multiple weed class and single weed class scenarios. Each original image

was split into 9, 640x360 pixel images. For single-class dataset creation, the three

training sets were set as follows: 6000 positive images (with weeds) and 6000 negative

images (without weeds), 7632 positive and 8500 negative images, and 6206 positive

and 7000 negative images. Each set had a total of 500 positive and 500 negative

validation images. For multi-class training, a total of 18,000 positive and 18,000

negative images were taken, with 6000 positive and negative images for each class.

The NVIDIA Deep Learning GPU Training System (DIGITS) was used for training

the three ML algorithms, utilizing the Convolutional Architecture for Fast Feature

Embedding (Caffe) (Yu et al., 2019). All network training was done over 30 epochs,

with a learning rate of 0.1. Results of single-class network training showed VGGNet

to have near perfect classification results, ranging from 98.2 to 100%. This was nearly

twice as accurate as GoogleNet, whose most accurate result was 57%. VGGNet also

performed best in multi-class network training, with a range in accuracy of 91 to 97%

(Yu et al., 2019).

Deep convolutional neural networks are the foundation of autonomous smart-

sprayer systems. Translating the trained detection network results to physical herbi-

cide application is a complex process that will be explained in section 2.3.

2.3 Ground-Based Weed Detection and Application Systems

The end goal of a weed detection system is to apply it to a physical machine

capable of eliminating weeds present in a field. There have been a handful of studies
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demonstrating such a system, with varying methods of weed detection and elimina-

tion. Xu et al. (2018) developed an “automated weed mapping and variable-rate

herbicide spraying system” (Xu et al., 2018) for implementation in row crop fields.

A complex segmentation algorithm was performed on images input from a high res-

olution, grayscale camera. The study combined the OTSU binarization method,

the maximum computed variance between clusters, with a particle swarm algorithm

(PSO) that searched for the optimum value in complex space to determine maxi-

mum variance (Xu et al., 2018). This novel method was termed “Improved particle

swarm optimization” or IPSO. This complex segmentation was used to produce a

weed distribution map. Figure 2.9 shows Xu et al. (2018)’s smart sprayer system.

Figure 2.9. Xu et al. (2018)’s Smart Sprayer System Configuration.

A variable-rate herbicide control system was designed to “collect and process

the weed information and determine herbicide application rates”. A digital signal

processor (DSP) controller received decision signals from a Wi-Fi module and pulsed
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the nozzle solenoids on and off as a weed was detected. The authors claim that their

control system could “simultaneously monitor liquid level, pressure, and flow rate

of the sprayer” Xu et al. (2018). A total of 30 images were collected from in-field

experiments and segmented using OTSU, PSO, and IPSO respectively. The standard

error rate of segmentation results from the OTSU, PSO, and IPSO methods, tested

the 30 acquired images ranged from 7.1 to 0.1%. The standard error rate used by Xu

et al. (2018) is shown in Equation 2.5 below.

σ =

√∑N
i=1 (Ti − TUi)

2

N
=

√∑N
i=1E

2
i

N
(2.5)

Within Equation 2.5, “n was the number of optimizations and N was the total

number of images (N = 30). Ti is the threshold value of different algorithms, and

TUi is the threshold value of the OTSU method. Ei is the difference of Ti and TUi”

(Xu et al., 2018).

Partel et al. (2019) developed and tested a ground-based detection and spraying

system. The computational system on the vehicle included an NVIDIA™Jetson TX2

and an 8 GB NVIDIA™GTX 1070 Ti GPU. Images were acquired from three Logitech

c920 webcams. The three cameras acquired images at 640 x 640 resolution that

were merged to form a 1920x480 pixel image and then resized to a 1024x256 pixel

image (Partel et al., 2019). The YOLOv3 object detection network was trained on

1000 manually labelled images of “targets and non-targets” for each “target-position”

within the images and three experiments were performed. The first experiment was

trained on the Tiny YOLOv3 weights, using images of artificial weeds as “targets” and

artificial plants as “non-targets”. The second experiment featured the same network

but training it on a Portulaca oleracea (common purlsane) weed as a labelled target,

and a pepper plant labelled as non-target. The same images collected for the second

experiment were used to train a standard YOLOv3 network in experiment three. The

standard YOLO network was capable of running at 24 fps on the GTX 1070 Ti GPU,

but ran at a tenth of that speed, 2.4 fps, on the Jetson TX2. The Tiny YOLOv3

network was used on the TX2 to achieve a frame rate of 22 fps. While this tiny
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network was faster than the standard, it sacrificed accuracy for speed. Experimental

YOLOv3 architecture utilized is shown in Figure 2.10.

Figure 2.10. Partel et al. (2019)’s Experimental YOLO Network Archi-
tecture, Visualizing Input Layer and Feature Mapping Parameters.

The object detection system on Jetson TX2 communicated with the sprayer sys-

tem through USB connection between the Jetson TX2 and an Arduino controller.

Once a weed was detected, it’s bounding box’s center coordinates were utilized to

calculate spray nozzle position and the height of the targeted weed. Once a detection

was been made, a 12-byte string of all “target-calculated values” on the frame was

sent to be processed by the Arduino controller, triggering each nozzle individually

(Partel et al., 2019). As a target got detected through the computer vision system,

latitude and longitude values were recorded by the on-vehicle RTK GPS system. An

angle was calculated from the activated sprayer’s orientation, based on the previously

recorded GPS data and image coordinates to create an “absolute position for every

target”. Each absolute target position was stored in a text file for future weed map

creation. This setup resulted in spraying accuracy of 91% by utilizing the GTX 1070

Ti GPU. Partel et al. (2019) defined sprayer accuracy as the average of overall her-

bicide coverage per weed area. If every weed sprayed had 100% of the top leaves

covered (similar to broadcast application targets weeds), the sprayer accuracy would

also be 100%. The smart spraying system developed is shown in Figure 2.11.
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Figure 2.11. Partel et al. (2019)’s UTV-based Intelligent Herbicide Spray-
ing System Setup.

While Partel et al. (2019)’s UTV smart sprayer attachment autonomously targeted

and sprayed weeds, Gonzalez-de-Soto et al. (2016) designed, developed, and tested

an unmanned, robotic patch-spraying system for herbicide application in cereals on

a site-specific basis. A medium-sized New-Holland Tractor was customized to create

the unmanned ground vehicle. The cab of the tractor was removed and replaced with

a receptacle for computers and subsystems. A laser system was attached to the front

of the vehicle for obstacle detection. The unmanned ground robot smart spraying

system developed by Gonzalez-de-Soto et al. (2016) is shown in Figure 2.12.
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Figure 2.12. Gonzalez-de-Soto et al. (2016)’s Unmanned, Herbicide-
applicator Robot, Based off of New-Holland Tractor.

In this study, Gonzalez-de-Soto et al. (2016) tested a “WDS” or weed detection

system that was remotely controlled and a system that was based entirely on-board

the vehicle. During demonstration on a wheat field, two “aerial robots” collected

images of the crop that were sequentially processed by a computer, on-board the

unmanned ground vehicle, to create a weed control method (WCM) and relay that

information to the actuation controller. When tested in a wheat field, with 16.5 x

6 meter weed patches randomly sewn into the field, the external WDS resulted in

more than 95% of the weed patches within the field being sprayed. The vehicle-

based weed detection system yielded an accuracy of 99.5% spray coverage. According

to Gonzalez-de-Soto et al. (2016), the difference in accuracy between the two Weed

Detection Systems was caused by a poorer position accuracy of the external WDS

positioning system than by the GPS used in the vehicle-based WDS.
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2.4 Large Scale Map Creation

(Sa et al., 2018) developed a crop/weed segmentation and mapping framework to

process UAS-based multispectral imagery on a whole field basis. To overcome chal-

lenges of using field scale, mosaiced images into general classifiers, a sliding window

technique was used. This technique was performed on a subsection of the mosaic and

then placed that section back on the map. The size of the maps created in this study

were approximately four acres (16,500 square meters). Eight orthomosaic maps were

created in total using a RedEdge-M camera and a Parrot Sequoia camera.

Out of both tested camera sets, one model performed the best for crop detection

with 96% accuracy for background and crop detection, but only 62% accuracy for

weed detection. Another model performed most accurately; with an 84% accuracy on

background detection, 87% accuracy on crop detection, and 79% accuracy on weed

detection. Overall conclusion was that though crop and background detection was

detected with high accuracy, weed detection was still sup-par.

2.5 UAS-Based Spraying Systems

UAS-based sprayer systems from major companies such as DJI™and Yamaha™have

been on the market for the last several years. The Yamaha R-MAX unmanned he-

licopter was developed in the mid-1990s. However, it was not until 2015 that the

Federal Aviation Administration approved it for operation in the United States. As

of May 2019, this unmanned helicopter has only been tested on vineyards in Califor-

nia’s Sonoma Valley. Due to its weight being in excess of the 55-pound commercial

UAV limit (physically attached to the aircraft itself, a special license and permission

is required from the FAA to fly the R-MAX. A Yamaha R-MAX unmanned helicopter

spraying system is shown in Figure 2.13. As the FAA comes out with official rules

and regulations for UAS herbicide application, it is likely that Yamaha Motors USA

(2016) will expand their custom application business with the R-MAX to more tra-
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ditional agricultural crops. It is also likely that they will expand operation to other

parts of the United States, specifically Midwest crop production.

Figure 2.13. Setting up Yamaha R-MAX for Custom Herbicide Applica-
tion in Vinyard, Sonoma Valley, CA (Yamaha Motors USA, 2016).

Without an efficient weed management strategy, investment in cutting edge tech-

nology like UAS sprayer systems is a wasted expenditure. In order to develop this

strategy, it is important to know the factors that influence weed growth and devel-

opment.

2.6 Factors influencing weed growth and development

Weed growth can be influenced by competition with the crop and other weeds

present in the field, soil fertility, soil moisture, soil reaction to certain weed species,

and climate factors (Zimdahl, 2007). The weed growth cycle includes seed, germina-

tion, growth, and death. Weed life cycles can be annual, completing their life in one

growing season, biennial, requiring two seasons, or perennial, living more than two

years. Weeds can be grouped into four major categories: grasses, sedges, lilies, and

broadleaves (Lingenfelter and Hartwig, 2007).
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Becoming familiar with the weed growth cycle allows for correct timing of herbicide

application. This is critical for an effective weed management program. With the

onset of glyphosate and other chemically-resistant weeds becoming more common

and the new herbicides coming on to the market to control them, there are at least

eight distinct application timings in row crop agriculture. This includes early preplant

application, pre-emergence application, early-post application, late-post application,

drop nozzle application, and harvest aid application (Matthews et al., 2014). It is also

important to become familiar with the type of weeds that are common to the area

application is undertaken in. Knowing common weeds to the Midwest and specific

study area gives the user a better idea of what to look for in-field and developing a

strategy to target these specific weeds.

2.6.1 Weeds Common to the Midwest and Pertinent Study Area

Before experimental research can be done on automating the detection of weeds,

the type of weeds we can expect to find in the area being studied as well as their

physical characteristics need to be distinguished. Due to the vast number of different

species present within each major weed class, this section will focus on only grass-type

weeds and broadleaf weeds (Welch-Keesey, 2011).

Monocot Weeds

Monocot weeds feature only a single cotelydon, or embryonic leaf. Hence the

term monocot[eleydon]. They are also referred to as grass type weeds. Monocot weed

leaves have two main parts, a sheath which surrounds the stem and a blade which

grows away from the stem (Welch-Keesey, 2011). Between these two parts lies the

collar, an important area for identifying grasses. Other identifying features of grasses

include the ligules, a growth standing up from the collar, auricles, protrusions that

extend from the collar and wrap around the stem, and a presence or absence of hairs,

wavy or straight edges, color, and the distinction of midrib (Welch-Keesey, 2011).
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Other identifying features of a monocot weed is the presence of stolons and rhizomes.

Stolons are stems that grow at the soil surface, or directly below the ground, which

form adventitious roots at the nodes and new plants at the buds (Woolley et al., 1979).

Conversely, rhizomes are modified subterranean plant stems that send out roots and

shoots from their nodes (Woolley et al., 1979). The basic structure of monocot or

grass-type weed is shown in Figure 2.14.

Figure 2.14. Identifying Features of Monocot Weeds (Welch-Keesey,
2011).

Monocot weeds common to the Midwest are crabgrass, foxtail, and quackgrass.

Broadleaf weeds are often more prevalent in Midwestern row-crop fields and are

typically harder to control than monocot weeds.

Dicot Weeds

Dicot weeds have wide leaves and a central vein leading to smaller veins branching

out. They feature paired cotyledons, or seed leaves that will typically appear around

germination, hence the term dicot[elydon] (PAN Germany, 2005). Dicot weeds come

in three different types, including basal leaves, opposite (also called whorled) leaves,
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and alternate leaves. Identifying features of a dicot, also called broadleaf, weed is

shown in Figure 2.15.

Basal leaf species common to the Midwest include broadleaf plantain and dan-

delion. Opposite (also called whorled) leaved broadleaves common to the midwest

include Common chickweed, honeyvine milkweed, purslane, common ragweed, and

giant ragweed fall into this category. The final type of broadleaf weeds belong to

the alternate-leaf class. Types of alternate leaf weeds common to the midwest are

Canada thistle, common lambsquarters, field bindweed, pokeweed, redroot pigweed,

and velvetleaf. Identifying features of a dicot weed is shown in Figure 2.15.

Figure 2.15. Identifying Features of Dicot Weeds (PSU Turfgrass, 2017).

These traits and physical characteristics are an important aspect of weed identi-

fication. The difficulty of training an object detection network to recognize certain

weed types is that the network must learn these properties from the training im-

ages and annotations provided. Much like how humans are trained to recognize a

type of weed by studying several, varying examples, a neural network must also learn

recognition in this fashion in order to spot a weed instance in-field.
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The studies and research reviewed in this chapter has shown that machine-learning

based methods have the potential to develop a simple but accurate weed detection

process that can be implemented with a small UAS and attached camera systems

(Sanchez-Lopez et al., 2017).
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3. METHODOLOGY

3.1 Methods used in dataset creation

Three sensors were selected for use in the research. They included the Flir Duo

Pro R (Flir Systems Inc., Wilsonville, Oregon), Slantrange 3PX (Slantrange Inc., San

Diego, California), and Micasense RedEdge 3 (MicaSense, Inc., Seattle, Washington).

Detailed specifications of the sensors are provided in Table 3.1. Each sensor is shown

in Figure 3.1 for comparison.

Table 3.1.
Specifications of the RGB, Multispectral, and Thermal Sensors used for
this Study.

Specification Micasense Slantrange Flir RGB/T

Spatial Resolution at 30 meters 2 cm 1.8 cm 1.5 cm/ 3 cm

Spectral Range, Bandwidth (nm) 410-680 (RGB spectrum)

Blue 475, 20 550, 40 750-1350 (Thermal)

Green 560, 20 650, 40

Red 668, 10 710, 30

NIR 840, 40 850, 100

Spectral Resolution 5 bands 4 bands

Cost (USD) $5,500 $5,250 $7,599

Sensor Size (mm) 4.8 x 6.2 mm 5.76 x 4.53 mm 10.88 x 8.704 mm/ 7.4 x 5.5 mm

Two unmanned aerial systems (UAS) were chosen for this study. The first UAS, a

DJI Mavic Pro (SZ DJI Technology Co., Ltd., Shenzhen, China), was used for initial

field scouting and pre-planting data acquisition. It has a built in 4K color (referred
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to as RGB throughout the rest of the chapters) sensor and gimbal that had turned

this small, foldable UAS, an ideal preliminary data collection tool. The second UAS,

a DJI Matrice 600 Pro was purchased along with a Gremsey T3 gimbal for attaching

the three sensors mentioned in the beginning. The cost of the Mavic pro was $1,200

USD, while the cost of the Matrice 600 Pro was $4,000 USD. The cost of the Gremsey

T3 gimbal was $1,500 USD. Detailed specifications about these two UAS has been

provided in Figures A.1 and A.2 in the appendix.

Figure 3.1. Visual Comparisons of the Multispectral and Thermal/RGB
Sensors used in This Research.

The sensors were attached to UAS for collecting imagery in corn and soybean

fields at the three different research sites located in the State of Indiana. Data was

collected throughout the 2018 and the first month of the 2019 growing season.

3.1.1 Choosing Research Area for Data Acquisition

Experimental research plots for this study were chosen for their weed density and

diversification throughout the growing season. Areas chosen also needed to be in

different areas of Indiana, to get a sample of weeds present in the state. This study

focused on three research locations, Pinney Purdue Agricultural Center (PPAC) (fig.
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Figure 3.2. Research Plot
Locations 1:PPAC 2:DPAC 3:
TPAC.

Figure 3.3. PPAC Trial Plot.

Figure 3.4. DPAC Trial Plot.
Figure 3.5. TPAC Trial Plot.

3.3), Davis Purdue Agricultural Center (DPAC) (fig. 3.4), and Throckmorton Purdue

Agricultural Center (TPAC) (fig. 3.5).
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At PPAC, the most commonly found weeds within the research plot where data

was collected were giant ragweed (Ambrosia trifida), velvetleaf (Abutilon theophrasti),

common lambs-quarters (Chenopodium album L.), and redroot pigweed (Amaranthus

retroflexus L.). Monocot weeds at PPAC were predominately giant foxtail (Setaria

faberi). At DPAC, the most commonly found weeds within the research plot were

tall waterhemp (Amaranthus tuberculatus), velvetleaf, and prickly sida (Sida spinosa).

At TPAC, the most commonly occuring weeds found in the research plots were giant

ragweed (Ambrosia trifida), and redroot pigweed (Amaranthus retroflexus). Monocot

weeds commonly found at TPAC were green foxtail (Setaria viridis), and panicum

(Poaceae Panicum virgatum).

3.1.2 Data Collection Mission Setup

Each of these trial plot locations were scouted with a DJI Mavic Pro UAS, well

before planting began. Video and RGB images were captured of the field sites, from

the built-in camera on the Mavic Pro. With real time video capability on the Mavic

Pro, potential problems within the field site, such as large trees and busy roads in

close proximity to the field boundaries were able to be inspected during flight. Images

from the flight mission were stitched together, to create an orthomosaic. This enabled

the creation of a high-resolution base map of each field site.

Ground control points (GCPs) were placed around the boundary of each exper-

imental plot. These points were created from 1x1checkerboard-patterned linoleum

squares, placed on a heavy ceramic tile. They were spaced equidistant around the

plot perimeter. The latitude and longitude position of GCPs were acquired with a

TopCon HiPer V™RTK base station and receiver (Topcon positioning systems, inc.,

Livermore, CA)(TopCon, 2018) and was used in image stitching to improve GPS ac-

curacy. These measurements were within a 2-3 centimeter accuracy of the GCP’s

physical location in-field. The GCP boundary map and TopCon HiPer V™RTK base

station and receiver used to locate the GCPs are presented in Figures 3.6 and 3.7.
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Figure 3.6. Ground Control
Point Boundary Map Created
from RTK Point Collection.

Figure 3.7. TopCon HiPer
V™ RTK Base Station and Re-
ceiver and GCP Measurement.

At TPAC, the soybean research site was planted on May 27th, 2018. Planting

began on the TPAC corn research site on April 27th, 2018. Planting began at the

PPAC research site, consisting of both corn and soybean plots, on May 28th, 2018.

Planting began at the DPAC research site, also consisting of both corn and soybean

plots, on May 17th, 2018. A timeline of data acquisition dates, over the 2018 growing

season is shown in Figure 3.8.
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Figure 3.8. 2018 Data Acquisition Dates.

Data collection missions were flown within 30 minutes of solar noon, or when the

sun is at its highest point in the sky. This practice is an important step in radiometric

calibration, or reducing the effects of radiation scattered on the atmosphere. Sun-

light’s spectral composition is directly affected by factors such as weather conditions

(cloudy, haze, fog), time of day, and solar position (Assmann et al., 2018). A board

of known reflectance was used to calibrate relative measurements obtained from the

multispectral, thermal, and RGB sensors. This calibration was deemed essential to

attain temporal accuracy across different data acquisition dates and sites. Calibration

images were taken of a SpectralonTM panel with known reflectance value before and

after each flight. In addition, black, white, red, gray, and green spectral targets were

also placed in line, next to the SpectralonTM panel. During several data collection

dates, a SpectraVistaTM mass spectrometer was used to measure the radiance of these

targets, as well as the radiance of the crop and soil background. This data was then

downloaded, converted to reflectance, and used at a later image processing step.
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Figure 3.9. UAS-based Image of the Spectral Targets used During Data
Collection.

Data collection was also done during the first month of the 2019 growing season,

at the Agronomy Center for Research and Education (ACRE) and TPAC. Due to the

high amount of rain received during the Spring of 2019, planting at these locations

did not take place until late May. Planting at the TPAC corn plot began on May

24th, 2019. Planting at the ACRE corn plot began on May 28th, 2019. The timeline

of 2019 data acquisition dates is shown in Figure 3.10 below.
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Figure 3.10. 2019 Data Acquisition Dates.

As research plot fields were rotated between corn and soybeans between the 2019

and 2019 growing seasons at TPAC, the location of the corn plot flown was slightly

different than in 2018. The 2019 corn plot location, used for data collection, is shown

in Figure 3.11 below.

Figure 3.11. 2019 TPAC Corn Plot Location.
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Data collection at ACRE was done to increase the amount of images for the 2019

growing season. Late planting and the conclusion of research dictated the removal of

DPAC and PPAC from the flights conducted in 2019, as neither location had planted

plots at the time data collection needed to be done. The map shown in Figure 3.12

below shows the two plot locations flown at ACRE. The first location, flown May

22nd, 2019 was done during pre-plant. The second plot location, flown June 4th, 2019,

had V1 growth stage corn.

Figure 3.12. 2019 ACRE Pre-plant and Corn Plot Locations.

ACRE is located at 4540 US-52, West Lafayette, IN 47906, as shown in Figure

3.13 below. The coordinates of the pre-plant field flown are 40.471077, -86.996117.

The coordinates of the early season corn field flown are 40.477930, -87.003301.
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Figure 3.13. Geographic Location of Agronomy Center for Research and
Education (ACRE) .

Data collection missions were set up using the DroneDeployTM mobile application.

DroneDeployTM is a flight automation software for unmanned aerial systems that

allows the user to set a predetermined flight path, speed, and percentage values of

side and front lap. Both the side and front lap values were kept as 75% meaning

thereby that each consecutive image captured would overlap 75% with the image

taken beside of it (from the previous flight line) and in front of it. Flight elevation

was set at 30 meters at ground level (AGL) for the majority of data collection missions.

For later stage corn (V6 and later), altitude was increased to 50 meters due to crop

height, weed density, and canopy cover. Flight speed was kept constant at 3 meters

per second. The SlantrangeTM 3PX multispectral sensor and the FlirTM Duo Pro

R sensors were attached to the UAS to capture imagery during flight. Before these

sensors were available, the MicasenseTM RedEdge 3 was used for early data collection.

Each camera was set to trigger at one second intervals. At the end of the flight, SD
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cards were removed from the sensors, data was downloaded on a laptop and analyzed

for errors, skips, and distortion. After data collection, image analysis, and machine

learning methods were applied.

3.1.3 Analysis of UAS acquired imagery

Images acquired before missions were flown, to calibrate the sensor GPS, were

removed from mission imagery to reduce geometric errors during processing. During

the early part of the 2018 growing season, between V3 and V5 growth stages RGB,

multispectral, and thermal images, respectively were stitched together using Pix4DTM

image stitching software (Pix4D S.A., Prilly, Switzerland) to create an orthomosaic

map of the research areas. Mosaics were created for each of the three image types for

the TPAC soybean, DPAC, and PPAC research areas. Mosiacs maps of the TPAC

corn research site were not created, as imagery collected after v6 growth stage made it

difficult to stitch. To create mosaic images in Pix4D, image key points were computed

, an aerial triangulation and bundle block adjustment procedure was performed for

geometric correction, a point cloud array was created from automatic tie points, and

then a 3-D textured mesh was created from the point cloud (Pix4D, 2017). These steps

allowed for creation of a digital surface model, that lead for orthorectifictation and

building of a final mosaic. Using multispectral imagery collected with the Slantrange

3PX, a normalized differential vegetation index, NDVI, was created with the near

infrared (NIR) and red bands to measure vegetation stress (Rouse et al., 1974). RGB,

thermal, and NDVI orthomosaic maps of the TPAC soybean research site are shown

in Figure 3.14.
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Figure 3.14. RGB Orthomo-
saic Map of TPAC Plot, cre-
ated June 18th, 2018 of V4
Growth Stage Soybeans.

Figure 3.15. Thermal Ortho-
mosaic Map of TPAC Plot, cre-
ated June 18th, 2018 of V4
Growth Stage Soybeans.

Figure 3.16. NDVI Orthomosaic of TPAC Plot, created June 18th, 2018
of V4 Growth Stage Soybeans.
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3.2 Labelling and Annotation of Weeds Dataset

While plot mosaic maps were useful for ground truthing and field layout purposes,

training an object detection model required a set of individual, labelled images. This

was accomplished by manual annotation and bounding box creation for hundreds of

individual images. Images chosen for manual annotation were acquired during the

2018 and early 2019 growing season, within corn and soybean crops. Only RGB

imagery was used for creating a labelled dataset for weed detection model training.

The RGB camera on the Flir Duo R Pro offered a larger sensor size (10.9 x 8.7 mm), a

wider field of view (FoV) (56°x 45°),higher spatial resolution (1.5cm at 30 meters), and

higher pixel resolution (4000x3000), than other sensors used in this research (shown

in Figures A.3 and A.4). Another reason for focusing on RGB imagery is that high

resolution, UAS-based, RGB cameras are more affordable and more commonly used

by farmers than multispectral or thermal UAS-based cameras (Margaritoff, 2018).

After a suitable RGB image had been selected for labeling, a bounding box was

drawn around each instance of a weed, and an annotation was given of the weed’s

common name. This was done using Alps Labelling Tool, an extension of the Im-

ageJ™open source photo editing software (Alp’s Labeling Tool, 2017). A training set

of these images was created, along with their labels, in a fashion that could be read

in and used by Python.

3.2.1 Methods for Choosing Imagery for Manual Annotation

In the context of this study, the desired object to be labelled and bounded is the

specific weed type, either monocot or dicot, present in the UAS collected imagery.

A total of 24 data collection flights were conducted throughout the 2018 growing

season and four flights were conducted during the first month of the 2019 growing

season. Of the 25 flights where RGB imagery was collected, an average of 1113

images were acquired per flight. Only multispectral imagery was collected with the

Micansense Rededge 3 on May 23rd and 31st, 2018 and July 23rd, 2018. The May,
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2018 data collection with this sensor was done before receiving the Flir Duo Pro

R. The July collection only using the Micasense RedEdge 3 was done to compare

image stitching results to the Slantrange 3PX and Flir Duo Pro R cameras. There

was difficulty stitching imagery with all three of these cameras, as the corn plot

flown at TPAC, in late July, was too homogeneous for digital surface model creation

(DSM). The Flir Duo Pro R camera was set to capture one image every second and

the average flight time of data collection missions were approximately 24.5 minutes.

The Flir Duo Pro R camera captures RGB and thermal imagery and stores both in

single JPG image format. For image annotation, only RGB images were extracted,

as Visual JPG 4000x3000 pixel images. While a total of 27,828 RGB images were

acquired during data collection, only two percent of these images were annotated for

network training dataset creation. The reason for this is that only early season, post-

harvest, and pre-plant, UAS-based RGB imagery was chosen for manual annotation.

Individual weed examples during later growth stages of the crop could not be used

for annotation because there were no instances of individual weeds to be labelled. All

of the later growth stage imagery had areas of heavy weed infestation, where weeds

were clumped together. These images might be useful for other researchers and future

research strives, but the focus of this research was on individual weed identification.

A flowchart of manually annotated, training image set creation is shown in figure

3.17. Each of these sets will be denoted as “Training Image Set #” in order to better

explain the methods for training set creation.
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Figure 3.17. Flowchart of Training Image Set Creation for Object De-
tection Network Training.

For the creation of Training Image Set 1 for Detectnet training in NVIDIA DIG-

ITS, discussed in 3.3.1, post-harvest imagery from DPAC (taken October 11th) and

TPAC (taken October 18th) fields was chosen for manual labelling. Choosing these

images made it easier to find and label weeds, without an excessive amount of back-

ground noise interfering. Image selection was based on weed variation and intensity

within the harvested field. Average weed diameter was 4 inches and average height

was 3 inches. Background features, such as straw, stover, and grasses, needed to be

minimal within the image, for ease of annotation and better training results. A mix of

post-harvest images from each research plot location were selected, to add variability

to the dataset.

For the creation of Training Image Set 2, a proof of concept was done for initial

training with YOLOv3. Images were parsed, along with their corresponding labels,

from the OpenImages online database, discussed in 3.3.2. The parsed images belonged
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to the plant class subset within the larger OpenImages database. Plant diameter and

height varied in this imagery, as uploaded images included different and random

scenes. Because this initial training with YOLOv3 was done as a proof of concept,

class labels were changed from plant to weed. Succeeding image set classes were

labelled based on individual weed species and two main weed classes.

For creation of Training Image Set 3, mutli-class annotated image set creation

was done for training, discussed in 3.3.3. For this creation, giant ragweed, cocklebur,

foxtail, corn, and nitrogen deficient corn were chosen as weed and crop class labels.

Corn and nitrogen deficient corn were added to this set for variation. Dicot weeds

(giant ragweed and cocklebur) had an average diameter of 4.5 inches and an average

height of 3.5 inches. Monocot weeds (foxtail) had an average diameter of 6 inches

and an average height of 8 inches. As this image set was made for a controlled

network training experiment, lab-based conditions were applied for growth and image

acquisition. Weeds and corn in this imagery were grown in the Purdue greenhouse.

In addition, the lighting, angle and height of images taken were controlled. Training

for this control group was compared to training performance of succeeding UAs-based

image sets, discussed in 4.3.4. Due to the difficulty and amount of time needed to

label individual weeds by their unique species, the weeds in the following UAS-based

image data sets were classified based on two major types i.e. monocot and dicot.

These images were acquired during April and May 2018, as well as April and May

2019 with a handheld camera, discussed in 3.3.3.

For creation of Training Image Set 4, UAS-based weed imagery was acquired

during the early growth stages of corn and soybeans in 2018. Training on this image

set was done in 3.3.4. Images used to create this dataset were collected on June 15th,

2018, at the Davis Purdue Agricultural Center (DPAC) in Farmland, Indiana. The

corn growth stage in these images were between V2 and V4. The soybean growth

stage in these images were also between V2 and V4. Average diameter of dicot weeds

in this imagery was 5 inches and the average height was 3.5 inches. The average

diameter of monocot weeds in this imagery was 6.5 inches and the average height
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was 7 inches. In order to accurately label the larger-sized UAS-based imagery, a new

labelling tool had to be used, capable of zooming in on a particular region and clearly

showing the weeds present therein. Research and testing was performed on several,

open-source labelling tools, including OpenLabeling, BBox-Label-Tool, Boobs (an

enhanced zoom labelling tool), and Labelbox to identify a labeling tool that provides

the speed needed to label up to hundred of weeds within an image, as was needed for

the UAS-based image set. It was found that none of these labelling tools were able

to provide the speed needed to label up to hundreds of objects within an image, as

would be required in the UAS-based image set. A labelling tool was finally found,

LabelIMG, which provided adequate labelling speed and user-friendly zoom and pan

features. LabelIMG, written by Darren Tzutalin, is a “graphical image annotation

tool written in Python and using Qt for its graphical interface” (Tzutalin, 2019).

Due to the amount of time required to complete manual annotation, factors such as

speed and ease of use become increasingly important in the overall network training

workflow.

For creation of Training Image Set 5, 2019 pre-plant weed imagery added to

Training Image Set 4. The average diameter of dicots in this imagery was 4.5 inches

and the average height was 3 inches. The average diameter of monocot weeds was

5.5 inches and average height was 6 inches. This bolstered image set then underwent

network training in 3.3.5. Images labelled within this training set were acquired at

the ACRE test plot on Wednesday May 22nd, 2019.

For creation of Training Image Set 6, images of VE-V1 growth stage corn plots

were labelled and added to the overall dataset. This was done to compare the differ-

ences between network performance on a multicrop image set, such as Training Image

Sets 4 & 5 to an image set from a single crop plot. These images were collected on

June 2nd, 2019 and June 4th, 2019 at TPAC and ACRE respectively. Average diam-

eter of dicot weeds in this imagery was 1.5 inches. Average height was less than 1

inch. There were no monocot weeds in this imagery.
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For creation of Training Image Set 7, V2-V4 growth stage corn plot imagery was

labelled. These images were acquired on June 11th and June 21st 2019, at TPAC

and ACRE respectively. These images were added to Training Image Set 6 and used

in network training in 3.3.7. Within these images, corn had fully emerged and was

easier to decipher between weeds and crop. Average diameter of dicot weeds in this

imagery was 3 inches and average height was 2 inches. For monocot weeds, average

diameter was 4 inches and average height was 4.5 inches. Corn in this imagery ranged

between the v2 and v3 growth stages. For every monocot and dicot labelled image, a

weed-free image showing only corn was added to the training set. Reasoning for this

will be discussed in detail in 3.3.7.

3.2.2 Hardware and software setup used for deep learning network train-

ing

An Alienware R3 laptop computer with a 2.8GHz Core i7-7700HQ processor,

with 32 GB of RAM was used to train the Detectnet and Darknet networks, used

by NVIDIA DIGITS and YoloV3 respectively. A six gigabyte NVIDIA GTX 1050

graphical processing unit (GPU) was installed on the laptop to enable deep learning

network training. The Ubuntu operating system, version 18.04 was installed on the

laptop. Ubuntu was disk partitioned to 200 GB, as it was set up to be dual booted

alongside the Windows operating system already available in the computer.

3.3 Object Detection Network Training Methods

3.3.1 Initial Network Training using NVIDIA DIGITS

Once the training and validation datasets had been created, they were loaded into

the NVIDIA Deep Learning GPU Training System (DIGITS) (Barker and Prasanna,

2016). DIGITS is an online platform that simplifies deep learning tasks such as data

structuring and management, neural network design and customization, real time
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performance monitoring and visualization, and model selection from the browser to

deployment (Barker and Prasanna, 2016).The post-harvest image set was used to

train a DetectNet model. DetectNet is a Caffe-based framework, created specifically

for object detection. Every image was obtained at a height of 30 meters. Image and

label paths were loaded into DIGITS API platform, under the “Object Detection

Training Set” creation tab. On the object detection training set creation page, the

following options were given:

Figure 3.18. NVIDIA DIGITS Graphical User Interface (GUI) Dataset
Creation Options (Barker and Prasanna, 2016).

The following network hyperparameters were set:

• Image padding: 2000 x 2000 pixels

• Image resize: 1900 x 1200 pixels

• Channel conversion: RGB

• Minimum Box Size: 25

• Classes: cocklebur, giant ragweed, and redroot pigweed
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• Feature encoding: PNG

• Label encoding: none

• Batch size: 32

• Number of encoder threads: 4

• Database back end: LMDB (Lightning MemoryMapped Database Manager)

• Dataset name: Post harvest test

These steps were input into the new image model creation page shown in Fig-

ure 3.19.

Figure 3.19. NVIDIA DIGITS GUI Object Detection Network Model
Creation Options (Barker and Prasanna, 2016).

For initial testing, only one custom class, “weed”, was specified. This was done

to ensure that the DetectNet Network could differentiate between the weeds and

post-harvest corn stover within the imagery.
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The two main calculations used to measure network training effectiveness are recall

and mAP. From NVIDIA’s documentation, precision, “is the ratio of the accurately

identified objects to the total number of predicted objects. Recall is, “the ratio of

the accurately identified objects to the total number of actual objects in the images.

In this instance, mAP, or mean average precision, is “the product of the precision

and recall” (Barker and Prasanna, 2016). Mean average precision measures how apt

the network is to objects of interest. At the same time, it gives an idea of how well

the trained network can avoid false alarms. One reason for this low accuracy is the

limited number of images trained on.

3.3.2 Initial training methods with YOLOv3 on OpenImages Dataset

Another object detection model used in this research was the YOLO (You Only

Look Once) single prediction network. The YOLO model used in this research

was based off of the Darknet open-source neural network framework (Redmon and

Farhadi, 2018). For training of the annotated weed dataset, a 13x13 grid detector

was used. Nine anchor boxes were used per cell for bounding box prediction, which

is fixed in the YOLOv3 model. A confidence score is given on the object certainty

within a bounding box prediction, along with a probability distribution over all given

classes, this is called the detection threshold. The threshold of detected objects was

tested at 25% and 50%, in the validation and test image sets. For this particular

network training, a 50% detection threshold yielded the best results, shown in 4.3.2.

Depending on the image set that the network trains on, the detection threshold that

yields the best results will vary. This research utilized the third version of YOLO,

YOLOv3. The architecture of this version utilizes a 53 convolutional layer variant

of Darknet, that was trained on ImageNet. These convolutional layers are used for

feature extraction. For detection, another 53 layers are added, giving a total of 106

layers to the YOLOv3 architecture (Redmon and Farhadi, 2018). The same num-

ber of layers were used during YOLOv3 network training of Training Image Sets
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2-7, as training resulted in higher mean average precision than other YOLO network

configurations with less layers. These configurations included YOLOv3 tiny with 30

total layers, Darknet19, which has 38 total layers, and YOLO9000 which has 25 total

layers. A higher mean average precision produces better detection results for the

specified classes in the training image sets. This format was kept for all YOLOv3

network training.

The YOLOv3 network was trained using the OpenImages V4 dataset. This is

an open source, online project in which people can submit their labelled imagery of

different classes. The current version of Open Images contains “15.4 million bounding-

boxes for 600 categories on 1.9 million images. This is the largest existing dataset

with object location annotations” (Ferrari, 2018). Images, along with their label

files, in the plant category were chosen to train network weights on. In order to do

this, several steps had to be taken, from downloading the image sets and labels, to

converting annotations to a format that YOLO can read. These steps were all done

using the OIDv4 Toolkit Github repository by Angelo Vittorio (Vittorio, 2018).Using

the main.py file in the repository, a command line script was written, shown in

Figure 3.20, which downloaded the images and labels by class type and test, train,

or validation sets.

Once the Plant image and label sets for train, test, and validation were down-

loaded, the label files were converted from the format given by Open Images (a CSV

file) to a text document that could be interpreted by YOLO. This was done using the

OID to YOLO.py file (Ferrari, 2018). After converting the labels to a usable format,

the next step was to train weights. A data file first had to be written, in order to

specify number of classes being trained on, the file path to the images and labels for

training and validation, a path to the name of the classes text file, and a path to the

folder storing the resulting training weights. This data file was named darknet.data.

The configuration file for YOLOv3 was then edited to the desired hyperparameters

for training:

• Batch size: 32
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Figure 3.20. Bash Command for Parsing Plant Subset from OpenIm-
agesv4 Database (Vittorio, 2018) .

• Subdivisions: 16

• Classes: 1

• Input image width and height: 416 x 416

• Channels: 3 (for R,G,B)

• Learning rate: 0.001

• Max batches: 5000

• Label encoding: none

• Batch size: 32

The rest of the configuration file was left the same. Finally, a convolutional weight

file, pre-trained on ImageNet, was used in the training command to help initialize

transfer learning from a much larger image dataset, to the specific class of image

desired for the network to learn.
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Figure 3.21. Bash Command for Training YOLOv3 Network on Labelled
Plant Subset from OpenImagesv4.

Training was stopped at 5,000 iterations (also referred to as batches or epochs)

because results no longer improved with further training. As YOLO training weights

were set to be saved at every thousand iterations, results were also evaluated at the

3,000 and 4,000 iteration weights. It was found that the 5,000 iteration weights gave

the best overall results based on percentage of images where “plants” were detected

and where the highest overall accuracy was achieved. Once adequate network training

results from this experiment were achieved, this research wanted to experiment with

YOLOv3 network training for multi class weed detection.

3.3.3 Methods for multi-class weed detection with YOLOv3

After verification of results from physical training as a proof of concept, a larger,

more robust training set was created. The images in this dataset were acquired with

a Sony™WX350 18.2 megapixel digital camera. At minimum, 300 images of each of

the five classes were chosen for inclusion in the new image training set.

A new image labelling software was implemented, which significantly sped up

the annotation time of the image training set. This labelling software, YOLO mark,

was developed by a software engineer deeply involved in Darknet programming, Alex

Mohnatkin (Monhatkin, 2019). This tool can be run from a simple Python script.

The script outputs an interactive window which can be used to label all of the images

within a designated folder. Labelling was done by drawing a rectangular bounding box

around each desired training object within the image. Label annotations were based

on categories, given from the YOLO.names file. A slider within the script window
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was used to transition between these categories and choose the correct one for the

object being labelled. The Python script translated the top right, top left, bottom

right, and bottom left pixel locations of the drawn bounding boxes and corresponding

class name into a .label file. While the YOLO.names file was edited to include all

of the desired training classes beforehand, each class was trained under a sub/-folder

of the corresponding images. For example, while labelling cocklebur, only images of

cocklebur were put into the folder to be labelled. This was done to prevent errors

in object labelling and enabled objects within the image to be labelled quickly and

accurately. In addition to a faster annotation process, YOLO mark offers direct

integration into the network training process. All of the necessary files for object

detection network training were produced, in the same directory. File paths were

copied into the command line and ran. In order to ensure the network training

process runs quickly, several other parameters were considered.

One such parameter to consider was the configuration file. This file, also referred

to as the .cfg file, sets the architecture for how the network was trained. The following

hyperparameters were chosen for the study:

• batch size- 64

• subdivisions- 32

• image height- 608

• width- 608

• channels- 3

• learning rate- 0.001

• max batches- 50,000

• feature scale- 0.1. 1

• number of classes- 5
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During the next stage of network training, anchor box configurations were set

to a range that is able to detect all of the class objects within the image, from the

smallest to the largest labelled object. This allowed for all class objects to be detected,

regardless of their size.

3.3.4 Methods for Two-class UAS-based Image Set Training

Once the Yolov3 network had been trained on this larger, more complex image

set, a UAS-based image set was then created. Images in this dataset were taken with

the Flir™Duo Pro R, discussed in section 3.1.

For initial training of the YOLOv3 network, using UAS-based imagery, early sea-

son data was selected for annotation and dataset creation. Images chosen for labelling

for this initial UAS dataset were in a two acre soybean plot, surrounded on all sides by

corn. The soybeans in these images were in the V1-V2 growth stage. The surrounding

corn plots however, were planted prior to the soybean plot were in the V4 growth

stage. A Flir Duo Pro R camera, attached to a DJI Matrice 600 Pro UAS was used

to collect this imagery. Each RGB image had a 4000x3000 pixel resolution. Instead

of labelling each weed by their species, it was decided to use two categories, dicot

and monocot. Aside from allowing for quicker annotation, these two categories were

chosen to provide a representation of weed types present in the field. It is possible

that a different weed management strategy be used for a field with more monocots

than dicots present, or visa versa.

Before the network could be trained, several parameters needed to be changed in

the configuration file YoloV3.cfg. The following hyperparameters were modified for

this training:

• batch size- 64

• subdivisions- 16

• image height- 416
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• width- 416

• channels- 3

• learning rate- 0.001

• max batches- 50,000

• policy steps- 45,000, 48,000

• feature scale- 0.1, 1

• burn in- 1000

• number of classes- 5

• i snapshot iterations- 100

• anchors- 4, 4, 6, 6, 12, 6, 21, 8, 12, 15, 43, 11, 21, 25, 39, 44, 70, 86

Due to memory constraints on the laptop’s GPU, image height and width had

to be resized to to 416 x 416 pixels. This was nearly ten times smaller than the

original input images. The Darknet neural network was used to read a bounding box

by the pixel location of it’s four corners within an image, allowing for the bounding

box’s width and height to be normalized by the width and height of the resized image.

Specifically, the x-center, y-center, width, and height are float values which are relative

to the width and height of an image. The values of these indices could range from

0.0 to 1.0 (Mohnatkin, 2018).In addition to resizing the images, anchor boxes were

calculated based on the manually labelled bounding boxes, using the calc anchors

bash command. This command was built into AlexyAB’s Darknet repository.
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Figure 3.22. Bash Command for YOLOv3 Anchor Calculation, used in
Network Configuration File (Monhatkin, 2019).

In addition to mAP, other statistical analyses of the training results included

Precision, Recall, and F1 score, shown in Equation 3.1.

Precision = TP
TP+FP

TP = True positive

Recall = TP
TP+FN

FP = False positive

F1 = 2 · precision x recall
precision + recall

(Hui, 2019) (3.1)

3.3.5 Methods for 2019 Data Collection and Pre-plant Weed Image Set

Addition for Training with YOLOv3

Data was collected before the beginning of the 2019 growing season . Due to the

high amount of rain received in the study area between April and June 2019, very few

plots were planted. Because of this, pre-plant data was collected with weeds present

in the field. The reason for this particular data collection was primarily to test the

functionality of a newly installed camera gimbal. Small to medium-sized dicot weeds

were mainly present in this field. Dicot weeds included Packera glabella (cressleaf

groundsel), Ambrosia trifida (giant ragweed), Conyza canadensis (marestail), and

Amaranthus rudis (common waterhemp). Few grass type weeds were present within

the field. Weeds were again labelled as either dicot or monocot. This updated image
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set was then trained on 20,000 iterations with the same configuration as the previous

training.

In added images to the early season corn training set, corn was at the V2 growth

stage and weeds were primarily very small dicot (less than two inches in diameter).

Anchors were again calculated, to ensure accuracy with the updated data, and the

learning rate was increased to 0.001 from 0.01 in the configuration file. During this

training intersection over union (IoU) of the annotated vs. predicted bounding boxes

was calculated to predict areas where a certain class of weed was present. The IoU

is the ratio of the overlapping area of ground truth and predicted area to the total

area (Hui, 2019). This is also known as the Jaccard index, for whom created this

equation.

3.3.6 Methods for 2019 Early Season Corn Image Set Creation and Train-

ing with YOLOv3

During 2019 early season data collection missions, the Flir Duo Pro R camera was

used to take 4000x3000 resolution RGB images at a height of 10 meters. Altitude

was set at 10 meters for these flights because of the small height of the corn and small

size of weeds present in the fields. As corn was the only crop planted during these

data collection dates, corn plots were chosen to make up this dataset. Nearly all of

the weeds present in these fields were boradleaf. Thus, testing should show nearly

all dicot prediction results. For this training, the following changes were made to the

yolov3 weeds.cfg file. Image size was increased to 512 x 512, to test whether resizing

to a higher resolution would improve training accuracies. Learning rate was also

increased from 0.001 to 0.0001. Anchors were also recalculated, using the calc anchors

command shown in Figure 3.23.
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Figure 3.23. Anchor Calculation Result of Labelled 2019 Early Season
Corn Dataset.

Anchors were calculated through a k-means clustering technique, shown in Equa-

tion 3.2.

bx = σ (tx) + cx

by = σ (ty) + cy

bw = pwe
tw

bh = phe
th

Pr( object ) ∗ IOU(b, object ) = σ (to)

(3.2)

Within this equation, tx, ty, tw, and th are the bounding box coordinate predictions

made by YOLO. Cx and Cy is the top left corner of the grid cell that the anchor lies

within. Pw and Ph are the width and height of the anchor. Cx, Cy, Pw, and Ph

are normalized by the width and height of the image in which the anchor is being

predicted. bx, by, bw, and bh are the x coordinate, y coordinate, width, and height of

the predicted bounding box (Hui, 2019). Finally, σ(t o) outputs the box confidence

score.
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Anchor box calculation relative to annotated bounding box location is visualized

in Figure 3.24.

Figure 3.24. Predicted Bounding Box Calculation, based on Annotated
Ground Truth Box (Redmon and Farhadi, 2016).

YOLOv3 employs nine anchor boxes per grid cell. The nine calculated anchors for

for the early season corn image set were 7x8, 9x13, 16x14, 11x24, 20x24, 20x45, 34x31

42x60, and 55x125. These calculated anchor boxes are quite small, compared to the

resized image, but is consistent with the range of labelled bounding box sizes within

the image set. Within the configuration file, certain YOLO layers are responsible

for predicting a subset of these anchors. For example, the first YOLO layer predicts

anchors 7, 8 and 9 because those are the largest boxes and this layer is set at the

coarsest scale. The YOLO layer predicts anchor boxes 4,5, and 6, as these are the

middle sized anchors and this layer is at a slightly finer scale. The third YOLO

layer predicts anchors 1,2, and 3, as these anchors are the smallest of the bunch

and this layer is set to the finest scale of the three (Redmon and Farhadi, 2018).
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Once the configuration file had been updated, the darknet network was trained over

20,000 iterations, with the darknet53.conv.74 weights pre-trained on Imagenet. This

is an example of transfer learning from a much larger dataset. During initial dataset

creation, initial 4000x3000 images were split 2x2,into 4 quadrants, to create 2000x1500

resized images. This made it easier to label weeds within the image, as well as reduce

the detail loss during downsampling in half. Network training began on Thursday,

June 13th 2019, at 7:00 PM EST. Training finished on Sunday June 16th, at 3:50 AM

EST.

3.3.7 Additions to 2019 Early Season Corn Image Set and Configuration

Changes for Training with YOLOv3

Before further training could be done, a significant amount of changes had to be

made, in order to increase average precision, lower false positive rate, and introduce

imagery with monocot weeds present to test network performance with two-class

detection. Upon further reading into training the Darknet network on the YOLO

model, there was mention of adding images of only objects not wanted to be detected.

Each of these images needed a corresponding, empty text file to tell the network there

were no labelled objects within. According to Mohnatkin (2017), there should be as

many negative samples, i.e. images with empty bounding boxes of non-desirable

objects, as the number of labelled images. In addition to adding negative samples to

the new image set, every image was resized to a resolution 800x800 to closer match

the maximum size that the network could be trained due to GPU memory. This

split the original 4000x3000 image into 20 smaller images. In addition to training

the network on a 1:1 image size, weeds within the images were much easier to label,

images were quicker to annotate, and amount of weeds per image were significantly

decreased as smaller sections of the original image were used. Even with splitting

the original image into fourths, an average of 78 weeds were manually labelled per
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image. Splitting the original image into twenty decreased that average to 26 weeds

per image.

This network training newly introduced true positives, false positives, and false

negatives at the 25% threshold. True positives in this instance is the total number of

average true positives per validation image for each class. False positives are defined

in the same manner. False negatives at the 25% threshold are the total amount of

weeds that were not detected, which were labelled during manual annotation.

Access to Purdue University’s community supercomputer cluster allowed for net-

work training at larger scale. The Gilbreth cluster utilized for this training is “Pur-

due’s newest Community Cluster and is optimized for communities running GPU

intensive applications such as machine learning” (Information Technology at Purdue

University, 2019). The Gilbreth cluster is comprised of “Dell compute nodes with

Intel Xeon processors and NVIDIA Tesla GPUs” (Information Technology at Purdue

University, 2019). A detailed overview of the compute nodes and GPU specifications

can be found in Figure A.6. Before the addition 2019 early season corn training

set could be trained on the Gilbreth cluster, several changes had to be made to the

YOLOv3.cfg file. These changes are detailed below:

• batch size: 64

• subdivisions: 16

• angle 30

• random: 1

The angle hyperparameter allows for random rotation of an image over the training

iterations by a specified degree, i.e. 30 degrees. This image augmentation improves

network performance and reduces loss (Monhatkin, 2019). The random hyperparame-

ter augments images by resizing them every few batches (Monhatkin, 2019). Resizing

is resolution and timing is random, hence the name of the hyperparameter.
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For two class weed detection network training with YOLOv3, the following image

sizes were used:

• Experiment in 3.3.4: 4000x3000 pixels, resized to 416x416 during training

• Experiment in 3.3.5: 2500x1500 pixels

• Experiment in 3.3.6: 800x800 pixels.
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4. RESULTS AND DISCUSSION

4.1 Results of Data Collection

A total of 28 data collection missions were flown throughout the 2018 and first

month of the 2019 growing season. The date, location, UAS flown, sensors used for

image acquisition, number of images collected by each sensor, and flight altitude for

every mission are listed in Table 4.1.

Table 4.1.
Total Flights and Flight Specifications for 2018 and 2019 Growing Season
Data Acquisition.
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The Slantrange 3PX multispectral camera saves each band to a stacked TIFF

image. When processed with the Slantrange’s Slantview software, each image is

broken down into 4 individual band images. Therefore, Slantrange images can be

multiplied by 4 within the chart, to coincide with the amount of images acquired

from the Micasense RedEdge3. As the Flir Duo Pro R stores thermal and RGB

imagery as a single JPG image, which is then extracted to a thermal TIFF image and

visual JPG image, the amount of RGB and thermal images taken are the same.

A total of 27,828 RGB images were collected during this period. A total of 23,628

thermal images were acquired during this period. A total of 108,398 single-band

multispectral images were taken during this period.

4.2 Manually Annotated Dataset Results

After examining several open-source labelling tools, including OpenLabeling, BBox-

Label-Tool, Boobs etc., a labelling tool was finally found, LabelIMG, which provided

adequate labelling speed and user-friendly zoom and pan features. LabelIMG, writ-

ten by Darren Tzutalin, is a “graphical image annotation tool written in Python and

using Qt for its graphical interface” (Tzutalin, 2019). Factors such as amount of time

required to complete manual annotation, speed and ease of use for network training

workflow were mainly responsible for the selection of LabelIMG.

A total of 45 images were manually labelled “weed” as the class for annotated

image set developed for DetectNet training in 3.3.1. An example of how these training

set images were labelled is shown in Figure 4.1



69

Figure 4.1. Manual Labelling Process for DetectNet Training Set Cre-
ation (Training Image Set 1).

For initial training on YOLOv3 with the parsed OpenImages plant subset, in 3.3.2,

a total of 2,959 images, along with their corresponding labels were parsed from the

OpenImages online database for annotated image set creation. An example of how

images are labelled within the OpenImages plant subset is shown in Figure 4.2.
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Figure 4.2. Manual Labelling Process for OpenImages Plant Training
Set Creation (Training Image Set 2).

Results of mutli-class image set creation in 3.3.3 totaled 1549 images. The follow-

ing shows the total number of labelled images for each class:

• giant ragweed: 317

• cocklebur: 319

• foxtail: 308

• corn: 303

• nitrogen deficient corn: 303
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An example of image labelling in Yolo mark for multi-class dataset creation is

shown in Figure 4.3.

Figure 4.3. Manual Labelling Process for Multiple Weed Classes Training
Set Creation (Training Image Set 3).

For two class labelling of UAS-based imagery in 3.3.4 a total of 100 images were

manually annotated using the labelImg annotation tool. Within these images a total

of 8638 weeds were labelled as either broadleaf or monocot. An average of 86 weeds

were labelled in each image.
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Figure 4.4. Manual Labelling Process for 2018 Two-Class Early Season
Image Set Creation (Training Image Set 4).

After this training concluded, an additional annotated 40 images were added to

the previous dataset from 2019 pre-plant data collection. A total of 1,801 dicot and

monocot weeds were labelled in this addition. The updated dataset included a total

of 208 images (100 from subsection 3.3.4; 68 from subsection 3.3.5, and 40 from the

2019 pre-plant data collection campaign) with 12,715 monocot and dicot weeds.
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Figure 4.5. Manual Labelling Process for 2019 Pre-Plant Image Addition
(Training Image Set 5).

Results of 2019 early-season corn annotated image set in 3.3.5 totaled 100 labelled

images, with a total of 7,795 monocot and dicot bounded. Of these, 78 images were

used for training and 22 were used for validation. This is slightly over the 80/20

threshold commonly used in training and validation dataset splits Partel et al. (2019)

(dos Santos Ferreira et al., 2017). An example of labelling done for this image set is

shown in Figure 4.6.
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Figure 4.6. Manual Labelling Process for 2019 Two-class Early Season
Image Set Creation (Training Image Set 6).

There were 66 additional images to the early season corn annotated image set

creation, detailed in 3.3.7. A total of 5,147 instances of monocot and dicot weeds

were labelled in this addition. An example of the result of manual labelling process

for this image set is shown in Figure 4.7.
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Figure 4.7. Manual Labelling Process for 2019 Early Season Image Set
Addition (Training Image Set 7).

A total of 166 positive samples (labelled images) were added to this image set and

166 negative sample (non-labelled), weed-free corn images were added. A total of

262 of the 332 total images were used for training, while 70 images were set aside for

validation. The training set comprised of 131 labelled and 131 non labelled images,

while 35 labelled and 35 non labelled images comprised the validation set. An example

of the negative samples used in this image set is shown in Figiure 4.8
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Figure 4.8. An Example of the Weed-free Negative Samples Added to
Training Image Set 7.

4.3 Object Detection Network Training Results

4.3.1 Initial Results with NVIDIA DIGITS

After 300 epochs, or training steps, the detection accuracy was approximately

45 percent. These results are visualized on the graph in Figure 4.9. Each training

sequence was split up into 50 epochs, for sake of time and memory usage.



77

Figure 4.9. Results of DetectNet training with Training Image Set 1
Over 300 Epochs.

In addition to a 45 percent precision value, the mAP and recall values were quite

low, at 12 percent and 8 percent respectively. The poor results can be explained by

the fact that an earlier study reported a minimum cutoff for obtaining best Detect-

Net network performance requires a minimum of several hundred images for training

(Warden, 2017). However, only 45 manually labelled images where used for this

network training.

4.3.2 Initial YOLOv3 Results with OpenImages Dataset

After running the trained weights on the OpenImages training set for 5000 itera-

tions, only 69 percent of the images tested from the test set successfully deployed a

bounding box. The accuracy of the objects detected, in the images where detection

worked, ranged from 54 to 98 percent (shown in Figure 4.10). This means that 31
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percent of tested images weren’t similar enough to the images used in the annotated

training set, or there was a problem with the network over training (only able to de-

tect a specific range of object sizes) or under trained (not able to predicted a certain

range of object sizes).

Figure 4.10. Detection Results of Training Image Set 2 on Testing set,
with Final YOLOv3 Training Weights.

Once the YoloV3 was tested in this manner as a proof of concept, training and

testing could be done with multiple weed classes.

4.3.3 Results of Multi-class Detection with YOLOv3

After training YOLOv3 on the OpenImages plant subset, a custom, annotated

image set was created of single weed instances. For example, the giant ragweed class

was composed of images with only giant ragweeds as the objects therein. Images

across all classes featured a seedling or early stage corn or weed, depending on class.

As images used for this multi-class training set had been previously acquired and

were much faster to label than UAS-acquired imagery, it was decided to label and

train with these ground-based images first.

After training on 50,000 iterations, average precision of each class is given below:

• giant ragweed: 78% ap

• cocklebur: 68% ap

• foxtail: 84% ap
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• corn: 73% ap

• nitrogen deficient corn : 48% ap

While final network training weights were tested on a test set of images not used

for training or validation sets, test images were of similar, small weeds for each class

and no test image had more than 5 examples of a particular class of weed. Also, test

set images only pertained a single weed class, as shown in Figure 4.11.

Figure 4.11. Giant Ragweed Class Detection Results from YOLOv3
Network Training on Training Image Set 3.

There were no images with multiple weed classes or a mixture of weeds and corn,

weeds and nitrogen deficient corn, etc. These factors likely contributed to high class

average precision.
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Results of testing on the foxtail class is shown in Figure 4.12.

Figure 4.12. Foxtail Class Detection Results from YOLOv3 Network
Training on Training Image Set 3.

Results of testing on the cocklebur class is shown in Figure 4.13.
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Figure 4.13. Cocklebur Class Detection Results from YOLOv3 Network
Training on Training Image Set 3.

As shown in the following training on UAS-based imagery, average precision, along

with other benchmark measures applied were much lower.

4.3.4 Results of Two-class UAS-based Image Set Network Training on

with YOLOv3

After 20,000 iterations, this training resulted in an average loss of 4.7. Accuracy

at detecting dicot was a meager 3.63 percent and monocot was 9.88 percent. A major

contributor to this poor performance was the high amount of false positives for both

classes. For dicot, there were an average 103 true positives to 499 false positives,

over the validation set. For monocot, there were an average of 188 true positives to

224 false positives, over the validation set. The mean average precision of objects

with an IoU over 50 percent (mAP@0.50) was poor at 6.76 percent. For a 25 percent

threshold, the average precision was 23 percent, recall was 15 percent, and the F1-

score was 0.18. Testing results with the final network training weights for this image

set are shown in Figure 4.14 below.
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Figure 4.14. Monocot and Dicot Detection Results from YOLOv3 Net-
work Training on Training Image Set 4.

4.3.5 2019 Pre-plant Weed Image Addition Network Training Results

with YOLOv3

The results of this training continued to be poor, with an average loss of 7.77

percent. Accuracy of detecting dicot weeds was 4.22 percent, while monocot accuracy

was 9.32 percent. Again a high number of false positives in both classes was a major

factor in poor network performance. For dicot, average true positives per validation

set image were 133 and false positives were 618. For monocot, average true positives

per validation set image were 101 and false positives were 199. The mean average

precision of 6.8 percent at the 50 percent threshold. At a 25 percent threshold,

precision was 22 percent, recall was 14 percent. and the overall F1-score was 0.17.
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Average IoU at this threshold was 13.64 percent. At this training stage, live mAP

tracking was newly discovered within Monhatkin (2019)’s repository and will be used

during further network training result interpolation.

Results of this training are shown in Figure 4.15

Figure 4.15. Average mAP and Loss Score Results from YOLOv3 Net-
work Training on Training Image Set 5.

4.3.6 Early Season Corn Image Set Training Results with YOLOv3

Performance measures of the network training results, after 20,000 iterations, con-

tinued to be poor. mAP at a 50 percent IoU threshold was 10.21 percent. The average

loss of this training was 3.9 percent.
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As there were no monocot weeds present in this training set, monocot accuracy

was zero percent. The average precision (ap) or accuracy, average true positives (TP)

found per validation image, and average false positives (FP) of the dicot weed class

is given below:

• ap- 20.42%

• TP- 15

• FP- 44

The following results were given for a 25 percent threshold:

• precision- 32 percent

• recall- 17 percent

• F1 score- 0.22

The average mAP and loss chart for early season corn network training results is

shown in Figure 4.16 below.
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Figure 4.16. Average mAP and Loss Score Results from YOLOv3 Net-
work Training on Training Image Set 6.

Precision in the context of this study meant the amount of weeds correctly iden-

tified (true positive) divided by the amount of weeds correctly identified plus the

amount of weeds incorrectly identified (false positive). Recall meant the amount of

weeds correctly identified divided by the amount of weeds correctly identified plus

the amount of weeds not identified that should have been (false negative). The F1

score is calculated with two times the precision times recall divided by precision plus

recall. In other words, it takes a weighted average of precision and recall to measure

overall network performance. In terms of weed detection, the F1 score gives an idea

on how well the trained network weights are able to correctly detect a weed’s class

and how accurately it is able to find every instance of a weed within an image. A
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large contributing factor for this poor statistical performance was the high amount

of false positives predicted. True positives were 178, while false positives were 374.

False negatives were also quite high at 900. Average IoU at the 25 percent threshold

was 20.53 percent. When the IoU threshold was increased to 50 percent, mAP was

4.68 percent. However, loss was slightly lower during this training, at 3.98 percent.

The chart of average mAP and loss results for this network training is shown in

Figure 4.16.

An example of testing results on the test image set is shown in Figure 4.17 below.

Figure 4.17. Dicot Detection Test Set Result from YOLOv3 Training on
Training Image Set 6.

4.3.7 Training Results for 2019 Early Season Corn Image Set Additons

with YOLOv3

Additional images, collected in early season 2019 corn plots, were added to the

previous training set. The YOLOv3 network was again trained over 20,000 iterations.
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Unlike the previous image set, several instances of monocot weeds were found while

labelling this addition, thus the accuracy of monocot weeds will only apply to the

additional 66 images. Results of this training are given below:

• avg. loss- 0.522%

• mAP at 50% IoU- 15.59%

• dicot ap- 31.38%

• monocot ap- 58.31%

• dicot TP- 410

• dicot FP- 99

• monocot TP- 167

• monocot FP- 38

• 25% threshold precision- 80%

• 25% threshold recall- 25%

• 25% threshold F1 score- 0.38

• 25% threshold TP- 577

• 25% threshold FP- 137

• 25% threshold FN- 1249

Results of additional 2019 early season corn training set is shown in Figure 4.18.
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Figure 4.18. Average mAP and Loss Score Results from YOLOv3 Train-
ing on Training Image Set 7.

This image set was then trained over 20,000 iterations on the Purdue Gilbreth

supercomputer cluster. The results of this training are given below:

• avg. loss- 0.98%

• dicot ap- 45.13%

• monocot ap- 65.37%

• mAP @ 50% IoU threshold- 22.57%

• precison @ 25% threshold- 86%

• recall @ 25% threshold- 47%
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• F1 score @ 25% threshold- 0.55

• TP @ 25% threshold- 515

• FP @ 25% threshold- 268

• FN @ 25% threshold- 576

• avg IoU @ 25% threshold- 44.14%

Combined class true positives and false positives were only calculated at the 25

percent threshold for this training.

The results of Gilbreth cluster network training are shown in Figures 4.19 and

4.20.
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Figure 4.19. Aveage mAP and Loss Score Results- 9,000-17,000 Itera-
tions, from YOLOv3 Training on Training Image Set 7 Using the Gilbreth
Cluster.
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Figure 4.20. Aveage mAP and Loss Score Results- 17,000-20,000 Iter-
ations, from YOLOv3 Network Training on Training Image Set 7, using
the Gilbreth Cluster.

The same test set was used to test the accuracy of the final network weights,

trained on the cluster. Dicot class prediction accuracy on a test set image, from the

final YOLO weights is shown in Figure 4.21.
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Figure 4.21. Dicot Detection Result from YOLOv3 Network Training on
Training Image Set 7, using the Gilbreth Cluster.

Challenges and problems faced during image collection, annotated training set

creation, and weed detection network training will be discussed in the next section.

4.4 Discussion

4.4.1 Discussion on Data Collection

There were several factors that influenced data collection timing and location.

In order to collect reliable data, weather conditions during UAS flights needed to

be clear, with little to no wind. Cloudiness, high wind, and precipitation all have

a detrimental effect on the collected imagery. The UAS is also incapable of flying
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in winds over 18 knots, or in any type of precipitation, as it is not water resistant.

Distance to the PPAC and DPAC locations also contributed to the limited amount

of data collection dates at those locations. The distance from Purdue University to

DPAC was 208 miles round trip and 4.5 hours. Data collection done at DPAC required

an entire dedicated day. PPAC was 151 miles and a 3.5-hour round trip from Purdue

University, Data collection done at PPAC also required a entire dedicated day.

The research areas chosen for this study were in conjunction with the Dr. Bryan

Young’s Weed Science lab at Purdue University. TPAC, DPAC, and PPAC plot

location data collection was done over Dr. Young’s or Dr. Bill Johnson’s experimental

research plots. The preplant and early season corn collection at ACRE were not

associated with the previous research plots mentioned, and were included in this

research due to the late 2019 planting of DPAC and PPAC plots, flown during the

2018 growing season. As the areas selected were part of Purdue University Weed

Science research, weed populations in may be considerably higher than in commercial

corn and soybean fields throughout the north-central Indiana region.

In addition to challenges faced from weather and distance to research area, there

were also mechanical issues with the original gimbal that the Flir Duo Pro R camera

was attached to. For the first three data collection dates, the Gremsey T3 gimbal

worked correctly, it held the camera firmly in place at nadir and did not list from

locked position. As such, imagery collected with the attached camera was uniform

in direction and free of distortion from vibration or shadow. However, during data

collection at PPAC on July 28th, 2018, the Gremsey gimbal started to malfunction

and cause the Flir Duo Pro R to move in the pan axis (left to right) from its locked

position. This caused collected imagery to be positionally distorted as the camera

moved out of its intended position. This movement also caused the tilt motor on the

gimbal to be overexerted, as it had to hold the camera at nadir during continuous pan

movement. This caused vibration distortion in several images. Attempts at fixing the

pan movement problem included increasing the stiffness on the pan rotation motor

in the Gremsey GTune application, extending the GNSS cable attached to the Flir
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Duo Pro R, so as to not come in contact with the gimbal, re-balancing the camera

with small, lead weights, and finally securing the gimbal’s camera mount frame to

the M600 UAS with zip ties. While none of these options completely eliminated the

pan movement problem, zip tying the camera mount to the UAS frame proved to

be the most effective at reducing movement. It was found that this gimbal had a

malfunctioning pan motor. For 2019 data collection, a Yangda Sky Eyo Duo three-

axis gimbal was mounted to the M600, in place of the Gremsey T3 gimbal. There were

no problems with this new gimbal, for the four data collection missions performed in

2019.

These factors that influenced UAS-based image collection similarly affected the

outcome of annotated weed detection network training datasets.

4.4.2 Discussion on Annotated Training set Creation

The major limiting factor to size of the annotated weed detection network training

datasets was the amount of time required to manually label all of the instances of

weeds within a particular image. This was especially prevalent in labelling of UAS-

based imagery, where there were over 300 individual examples of weeds labelled in

some images. Initial training set creation on early growing season 2018 imagery,

discussed in 3.3.4 took over 40 hours to completely label. With the addition of image

splitting in 3.3.5, more images could be added to the training set, with less time spent

on manual labelling per image. It was found that the ideal image split size for this

research was 800x800. This split the original 4000x3000 pixel image into 20 smaller,

more manageable pieces. This also proved better for network training, as the amount

of memory required was too much to train at any image size over 800x800 pixels

without resizing, which leads to loss of detail during training.

Another factor that limited the size of annotated network training sets was the

heavy weed infestation within the research areas that occurred after V6 growth stage

in corn and soybeans. After this growth stage, occurring on or after June 18th, 2018
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at TPAC, DPAC, and PPAC. This infestation made it difficult to label individual

weed examples. While a small, initial annotated training set was made with images

taken after the 2018 V6 growing stage, it was not added to the extent of the research

covered in this thesis due to sub-par and widely varying detection. In testing the final

weights of DetectNet and YOLOv3 network training with this mid-late growing season

annotated image set, there were more false postive detections than true positive. This

meant that crops were being detected as either monocot or dicot weeds more than

the weed instances themselves. An example of this heavy weed infestation in shown

in Figure 4.22.

Figure 4.22. Example of heavy weed infestation at TPAC field site, July
6th, 2018.

Aside from splitting the training set images into 800x800 pixels, adding negative

samples to the training set, as discussed in section 4.2, helped reduce network training

loss from 4.7 percent loss to 0.52 percent loss with the same 2019 early season corn

training set.
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Discussion on the results of training the various annotated image sets will be

detailed in the next section.

4.4.3 Discussion on Weed Detection Network Training Results

The Initial detection results of DetectNet training in NVIDIA DIGITS shows that

the larger monocot and dicot examples within the image are not getting detected.

This is due to the maximum bounding box size in the DetectNet architecture not

being large enough to fit these weeds inside. Another problem with this result is that

the network seems to distort the color of the output image in a way that masks some

of the greenness in the weeds. A possible reason for this is that hue, saturation, and

value were utilized for image augmentation within the DetectNet configuration file,

but might have caused testing images to be distorted as well, as shown in Figure 4.23.
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Figure 4.23. Weed Class Detection on Test Set Image as Result of
DetectNet Training on Training Image Set 1.

During the initial YOLOV3 network testing, the final weights were tested on the

same post-harvest images as used for DetectNet testing in DIGITS. The final network

weights of YOLO network training produced a very similar result to Detectnet testing,

around a 45 percent detection accuracy. However, the YOLOv3 network was not

trained on the post-harvest images. YOLO detection network architecture allowed

for larger size monocot and dicot weeds to be detected than what DetectNet allowed,

as shown in Figure 4.24. This advantage gave better results on larger image sets,

such as OpenImages and multi-class training.
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Figure 4.24. Plant Class Detection on Test Set Image as Result of
YOLOv3 Network Training on Training Image Set 2.

When training the YOLOv3 network on multiple weed classes, a problem arose

where not all instances of a particular class were detected within the image. Even

after the training of 1200 labelled images, over 10,000 iterations, the YOLO network

still had difficulty detecting multiple instances of the predicted weed class. This was

especially prevalent when that instance was obscured or physically different than the

other objects within the image, such as shown in Figure 4.25.
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Figure 4.25. Problem Detecting Multiple Weed Class Instances in Test
Set Image after YOLOv3 Network Training on Training Image Set 2.

A problem that was common within the literature and other studies undertaken,

was the high number of false positives when training on image sets in a complex

environment, such as a cornfield. In agronomic terms, this meant incorrectly detecting

cash crop within the field, such as corn, soybeans, sugar beets, and others, as weed (Sa

et al., 2018), (Pérez-Ortiz et al., 2015). Another case, likely more commonly occurring

than incorrectly identifying crop as weed, was incorrectly identifying weed class, either

monocot as dicot or visa versa. While this problem represents inaccuracies in the

network training, it is remedied in the field through mixing herbicides in the sprayer

tank. This is done to gain control of both dicot and monocot weed species in a single

application. For example, in Roundup Ready 2 Xtend® soybeans, glyphosate and

dicamba can be mixed in the sprayer tank to provide a more thorough coverage of

monocot and dicot weed species.

There were several issues with two-class training of UAS-based image sets.
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The initial UAS-based image set network training only produced a detection ac-

curacy of 3.63 percent for dicot and 9.33 percent for monocot. As the annotated

training set created for this training included monocot and dicot weeds interspersed

in corn and soybean plot areas, it was possible that the similarity between labelled

dicot weeds and soybeans were too much for the network to distinguish between.

Likewise, labelled monocot weeds and early growth stage corn might have shared

too many similarities. Reasoning for this assumption was the high number of false

positives that the network training resulted.

With the addition of pre-plant weed imagery from 2019, the hypothesis was that

a wider variety of weed images without crop or heavy background occlusion would

allow the network to better distinguish between crop and weed. However, the training

results continued to be poor, with less than a one percent improvement in dicot detec-

tion accuracy (4.22%) and a .01% decrease in monocot detection accuracy (9.32%).

Also, with average loss staying relatively constant over the last several thousand it-

erations and average mAP score stagnating over the same period, it is safe to assume

that increasing the amount of training iterations would not improve overall network

performance. In the context of this research, the results of this network training

showed it was clear that a comprehensive, highly variable training set would not pro-

duce desirable results (high class detection accuracy). The next experiment involved

building a dataset tailored to a specific growth stage period. The next annotated

dataset discussed was tailored to early season corn fields with small sized weeds, VE

through V3 growth stage.

Results of 2019 early season corn image set training were slightly improved from

the previously trained, UAS-based image set. While no monocot weeds were labelled

in this training set, dicot weed detection accuracy was 20.42 percent. Although there

continued to be a high number of average false positives resulting from this network

training, the accuracy of dicot detection was substantially improved. It is important

to decrease the amount of false positives as much as possible, as the final network

training weight used in real-time detection could incorrectly identify the corn crop as
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a weed. While applying herbicide to a tolerant crop, such as glyphosate to Roundup

Ready® corn would not hurt the crop, it is still a waste of product. A contributing

factor to this accuracy increase was that the training set was only comprised of early

season corn imagery, with small dicot weeds. Despite low statistical significance in

mAP score after training of the 2019 early stage corn image set, network testing on a

unique test set, and reducing image size, proved to have a more accurate prediction

of dicot weeds. This testing set also had a total of 100 labelled images, with early

season corn and small, dicot weeds. Images in this test set were also taken at TPAC

and ACRE, but of different fields than images used in the training set. For the next

round of training, image size was reduced further, the amount of images in the dataset

was increased, and images of corn without weeds were added to the dataset, in order

to show the network what should not be predicted. However, the high number of

false positives still leads to the question of how well the network is able to recognize

the variation in some dicot weeds to the small corn crop. To test this, 66 additional

images were added to this training set, which featured solely monocot weeds in early

stage corn, as well as a mixture of monocot and dicot weeds.

Training on the bolstered 2019 early season corn dataset, with additional labelled

images achieved improved results over previous training. The major reason for this

improvement was the introduction of negative samples to the training set. While

helping to reduce average loss, as detailed in the annotated training set creation

discussion section, mAP score also increased by 5%, dicot detection accuracy increased

11%, to 31.38% and monoct weed detection was nearly 50% higher than initial UAS-

based, two class training, at 58.31%. At a 25% threshold, combined precision of

both classes was 80%. This was close to 50% higher than the precision at the same

threshold from the original 2019 early corn training set. Another contributing factor

to improved network training results was the significantly reduced number of average

false positives. In the previous training, average false positives outnumbered average

true positives 3:1. With this training, average true positives for both monocot and

dicot classes outnumbered average true negatives 4:1. Introducing negative samples
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to this training set helped reduce the number of average false positives by feeding the

network explicit examples of which regions not to predict anchor boxes for. In other

words, the negative samples provided instruction to the network on which objects

(early season corn) not to predict within the image.

The 2019 early season corn addition image set was then trained on the Gilbreth

supercomputer cluster, as discussed in 3.3.7. With access to training on two, twelve

GB GPUs, as opposed to one, six GB GPU on the Alienware R3 laptop, batch size

could be increased and subdivision size could be decreased. Previous training on the

laptop needed the batch size set to 1 and subdivisions set to 64, in order to not exceed

GPU memory when training the YOLOv3 network at 800x800 pixel image resolution.

On the cluster, batch size could be set to 64 and subdivisions could be set to 16. The

training time over 20,000 iterations took 108 hours to complete on the laptop and 62

hours to complete on the cluster. A possible reason why the cluster training wasn’t

nearly as fast as it theoretically should have been is that with the shear amount of

labelled objects (monocot or dicot weeds) in the annotated image set, a bottleneck

could have occurred during training with anchor box prediction or feature extraction.

Also, as the processing job on the Gilbreth cluster had to share GPU memory with

other jobs running on the subcluster (Gilbreth has 5 sub clusters to choose from), it

is possible that the weed detection network training job was paused or slowed when

GPU space was low. After training over 20,000 iterations the Gilbreth cluster, with

the 2019 early corn image set addition, detection accuracy increased 14% to 45.13%

for dicot, and 8% to 65.37% with monocot. mAP score also increased 7% to 22.57%.

Detection of monocot and dicot weeds in corn and soybean fields is best utilized for

early-post emergence herbicide application. Image acquisition for application on or

before the V4 growth stage of corn allows the weeds to be large enough to accurately

label and provides enough of a physical difference for the network to distinguish

class and weed from crop. Likewise, image collection for herbicide application at V3

growth stage in soybeans differentiates features between soybeans and weed enough

for accurate labelling and network training. Once weeds are eliminated at these
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growth stages, the crop is capable of out-competing new weeds that emerge. The size

of the crop compared to the new weeds on or after the post-applied growth stages, as

well as the crop’s canopy coverage hindering the amount of sunlight the weed is able

to receive makes competition from new weeds an insignificant factor. From a nutrient

uptake standpoint, the root structure a the corn and soybean plant after V4 and V3

growth stages respectively, is much larger and deeper than a newly emerging weed.

This allows the plant to out-compete for nitrogen uptake, as well as other applied

fertilizers, making the nutrient uptake by weeds a negligible factor.

A Github repository was created, UAS-based-Weed-Detection, featuring the la-

belled datasets discussed, as well as the modified YOlO configuration files and in-

structions for running the necessary bash commands for network training, testing, and

analysis. The link to this respoitory is https://github.com/AaronJames93/UAS-

based-Weed-Detection.

https://github.com/AaronJames93/UAS-based-Weed-Detection
https://github.com/AaronJames93/UAS-based-Weed-Detection
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5. SUMMARY AND RECOMMENDATIONS

5.1 Summary

This research evaluated the accuracy of two deep convolutional neural networks at

detecting dicot and monocot weeds in corn and soybean fields. Achievement of this

evaluation happened in three stages, leading to the results of training a weed detection

network. UAS-based RGB imagery was collected over the 2018 and first month of

2019 growing seasons, at three different research sites, throughout the state of Indiana.

Four manually-annotated image sets were created to form a database for detection of

monocot and dicot weeds in corn and soybean fields. One network training was done

on the DetectNet object detection model and six trainings were undertaken with the

YOLOv3 object detection model. Results of the network trainings were evaluated on

a manually labelled validation set and tested on an unlabelled, unique test image set

to gauge detection accuracy of monocot and dicot weeds in corn and soybean fields.

5.1.1 Image acquisition

UAS-based imagery was acquired in corn and soybean research plots from three

Purdue agricultural research stations, throughout the 2018 and first month of 2019

growing season. A total of 25 flights were conducted with an RGB sensor during this

time. In addition to UAS-acquired imagery, plant subset images were parsed from

Google’s OpenImagesv4 online, labelled image set for transfer learning. Handheld

camera collection was also done for three different weed classes, as well as two classes

of corn, to compare results to that of UAS-based image set network training.
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5.1.2 Annotated Dataset Creation

Seven manually-labelled image sets were created for object detection network

training. The first image set was created from 2018 post-harvest imagery, labelled

as “weed” for training the DetectNet detection network in NVIDIA DIGITS. The

second image set was parsed from the plant subset of OpenImagesv4, labels were

converted to YOLO format and the “plant” class was replaced with “weed”. This

image set was trained on the YOLOv3 detection network. The third image set created

was comprised of five different classes, labelled “cocklebur”; “giant ragweed”, “fox-

tail”, “corn”, and “nitrogen defecient corn”. This image set was also trained on the

YOLOv3 detection network. The fourth image set created constituted of 2018 early

season corn and soybean plot images, with labelled “dicot and “monocot” weeds, and

trained on the YOLOv3 detection network. The fifth image set created was made

up of the fourth image set with added 2019 pre-plant images of labelled “dicot” and

“monocot” weeds, and trained on the YOLOv3 detection network. The sixth im-

age set created contained 2019 early season corn images of labelled “dicot” weeds.

This image set was comprised of 2000x1500 split RGB images. The seventh image

set created was composed of the sixth image set and additional 2019 early season

corn images of labelled “monocot” and “dicot” weeds and trained on the YOLOv3

detection network. This dataset was comprised of 800x800 split RGB images.

5.1.3 Weed Detection Network Training

Detectnet training with Image Set 1 was done over 300 iterations, with a 45%

precision value. YOLOv3 training with Image Set 2 was done over 5000 iterations

with a prediction accuracy ranging from 54% to 98% in test images that successfully

deployed bounding box predictions. YOLOv3 training on Image Set 3 was trained

over 50,000 iterations and yielded an average precision of 78% for giant ragweed,

65% for cocklebur, 84% for foxtail, 73% for corn, and 48% for nitrogen deficient

corn. YOLOv3 training on Image Set 4 was done over 20,000 iterations and yielded
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an average precision of 3.63% for dicot and 9.88% for monocot. YOLOv3 network

training on Image Set 5 was done over 20,000 iterations and resulted in an average

precision of 4.22% for dicot and 9.32% for monocot. YOLOv3 training on Image

Set 6 spanned 20,000 iterations and resulted in an average precision of 20.42% for

dicot. YOLOv3 network training on Image Set 7 was ran over 20,000 iterations and

resulted in an average precision of 31.38% for dicot and 58.31% for monocot. YOLOv3

network training for Image Set 7, on the cluster, was composed over 20,000 iterations

and resulted in an average precision of 45.13% for dicot and 65.37% for monocot.

5.2 Recommendations and Future Work

Considering the evaluations, comparisons, and testing done on the eight network

training results in this research, it is recommended that as many negative samples

(non-labelled images) be added to an annotated training set as there are positive

samples (labelled images). The negative samples should not contain any objects that

are desired for detection. It is also recommended that an annotated image set be

created for the specific crop detection is to be done in. For example, unique images sets

should be created for corn and soybeans separately. This will cut down on the amount

of false positives from the resulting network training. Another recommendation is to

split a larger resolution image, such as a 4000x3000 pixel image, into several smaller

parts with smaller resolution. For the context of this research, splitting the 4000x3000

pixel image into 20 800x800 sections proved to be advantageous in achieving improved

training results. This also limits the amount of images needed to be collected. Finally,

it is recommended that UAS-based image collection for labelled weed dataset creation

occur in the early growth stages of corn and soybean fields, due to difficulty identifying

weeds under canopy and finding individual weed examples to label in areas of heavy

weed infestation. From an agronomic perspective, herbicide application should be

done in the early stages of crop development to stem weed spread within the field.

Early detection of weed invasion, paired with a quick, coordinated response is crucial
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to completely eradicate or control the spread of weed species before they can become

too widespread and difficult to remediate. It is also important to identify the weed’s

introductory source or pathway to the field, and understand why it has infested that

particular field to begin with. Weed seeds disperse in four dimensions, length width,

height, and time (Dekker, 1997). Gravity, wind, water, specialized structures and

mechanisms, seed ejaculation, and animal movement are all factors in weed seed

dispersal (Dekker, 1997). Some seeds can survive for decades within the soil and thus

vigilance on weed seed sprouting is necessary.

Future work done on this research will involve creating a larger annotated image

set of 2019 early season corn with monocot and dicot weed labels. Due to the late

planting in 2019, a labelled early season soybean image set was unable to be created

before research for this thesis was concluded. This image set will be created, trained,

and compared against the results of early season corn image set training. The next

step for this project is to move towards a real-time, UAS-based, weed detection sys-

tem. This can be achieved by installing a microcomputer, such as a Raspberry PiTM

or NVIDIA NanoTM to the UAS, interfacing with the camera collecting imagery, and

installing a lighter memory version of YOLO, such as TinyYOLO to the microcom-

puter. Final trained weights (the results of completed network training) can be loaded

onto the microcomputer and real time video detection testing can be started from

the Linux operating system command line. To go a step further, this detector video

stream can be broadcast to a base-station computer for map creation and real-time

analysis. It is the hope of this graduate student that the open source object detection

networks discussed in this thesis will one day be used for a real-time, spot-targeting,

weed detection system that can be installed on a current self-propelled sprayer via an

add-on attachment. In addition to this “bolt-on” intelligent computer vision system,

current pulse-width-modulation (pwm) and quick-switch solenoids can allow sprayer

nozzles on the boom of a self-propelled sprayer to be adapted to the rapid activation

and shutoff of the valve that would be necessary with a spot spraying system.
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APPENDIX

Table A.1.
DJI Matrice 600 Specifications.
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Table A.2.
DJI Mavic Pro Specifications.

Table A.3.
DJI Mavic Pro Camera Specifications.
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Table A.4.
Flir Duo Pro R Thermal and RGB Sensor Specifications.
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Table A.5.
Slantrange 3PX Multispectral Sensor Specifications.



122

Table A.6.
Gilbreth Cluster Specifications (Information Technology at Purdue Uni-
versity, 2019).
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