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ABSTRACT

Reinert, Audrey E. Ph.D., Purdue University, August 2019. Detecting Human Ma-
chine Interaction Fingerprints In Continuous Event Data. Major Professor: Steven
J. Landry.

There is a problem facing human factors and human computing interaction re-

searchers. While laboratory studies can provide direct measures of human perfor-

mance, these methods are insufficient when trying to determine if similar changes in

human performance are observable in high volumes of continuous event data. How-

ever, continuous event data does not contain direct measures of human performance,

but it could contain indirect measures. It is not known if indirect measures of hu-

man performance present in continuous event data can be used to predict delay in

responding to an unexpected event or assessing the operator‘s workload. By develop-

ing an interface with distinct difficulty levels that correlated with different measures

of experienced workload we show that a set of variables exist that enable difficulty

and response delay to be classified with 95% and 72% accuracy, respectively. Finally,

there is evidence to suggest that the predictive accuracy is influenced by the sampling

rate of the data and the size of the training set.
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1. INTRODUCTION

1.1 Problem, Motivation and Approach

It is not presently known if a measure of human performance such as operator

workload or reaction time can be inferred from data typically collected from an op-

erating system. This is because the data collected by a system does not contain a

clear indicator of human performance. For example, a car may automatically record

information about lane position, acceleration and GPS location and use this data

to model driving behavior. However, the car does not know if a change in driving

behavior is due to the operator’s emotional state, the operator’s physiological state

or a change in the environment.

There are reasons why using data recorded by a system would provide a more

nuanced picture of operator performance. System data can be recorded at a near

continuous rate. The data collected will be reflective of how the system is used in

real operational conditions. Terabytes of data can be obtained at a marginal cost to

a researcher. Finally, the data can be gathered unobtrusively without altering the

driver. However, the data collected by a system does not contain a clear indicator of

human performance.

Conversely, laboratory studies can directly measure changes in human perfor-

mance. It is possible to measure a driver‘s blood alcohol content by having them use

a breathalyzer when performing a task in the laboratory. There are downsides to re-

lying exclusively on laboratory data. It is expensive and time consuming to collect a

terabyte of performance data. The total number of participants in a laboratory study

will be limited by financial and schedule constraints. Further, a researcher would need

to demonstrate that performing the task in the laboratory is indistinguishable from

performing the task in real operational conditions. This last point can be difficult
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to clearly demonstrate. The distinction between these two types of data is further

explained in the example below.

The purpose of this research is to show that human performance - in this case

workload and reaction time - can be measured using data collected from a system.

The following general method was used in this experiment. A web-application was

constructed in which the amount of required to accomplish a task was manipulated.

Participants performed the task under one of three difficulty conditions. Each dif-

ficulty condition corresponded with a different average subjective workload score as

measured by a standard workload metric.

State data was recorded as the participant performed the task. Three types of cat-

egorization models were used to classify task difficulty, and three types of regression

models were used to predict an individual‘s response time to an unexpected event.

Various combinations of sampling rate, training set size and set of measures of partici-

pant experience were manipulated to test the sensitivity of the difficulty classification

and delay prediction models.

1.2 Illustrative Example

Imagine two researchers have been approached by a car company and are tasked

with identifying the set of behaviors that indicate when a driver is drunk. The first

researcher designs an experiment where participants drive a car around a track a

fixed number of times in a simulated environment. The participants are given a fixed

amount of alcohol every few laps. The second researcher decides to buy one hundred

terabytes of driving data from the car manufacturer.

The data produced in the laboratory by the first researcher contains a direct

measure of performance in the form of blood alcohol content. This data can used to

generate a model that correlates blood alcohol content with an observable measure

of system performance such as braking distance. The first researcher could state

with reasonable confidence that each fixed increase in blood alcohol content leads to
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both a reduction in reaction time and an increases break distance. However, the first

researcher may not be able to collect data from enough people to show that their

findings will generalize to a larger population.

The second researcher will have access to data from hundreds of drivers that is

naturally reflective of ‘real’driving behavior. Any model the second researcher will

produce will generalize to a large population. However, there is no objective record

in the data of when the drivers were drinking. All the second researcher knows is

that some of the data corresponds with a sober condition and some with a drinking

condition.

This example demonstrates the relative strengths and weaknesses of both data

sources. It is impossible to state with certainty that a subset of the data is indicative

of a particular operator state without an objective measure of human performance.

Laboratory data contains the objective measure of human performance but there may

not be enough data to prove the findings will generalize.

1.3 Document Overview

The following thesis is divided eleven main chapters and three appendices. The

background chapter contains an overview of human factors, data science and user

experience research relevant to this work. The method chapter details the participant

recruitment procedures, data collection techniques and experimental design.

The general data overview chapter details the results of the pilot study. This

chapter contains summary statistics of the response data along with the results of

statistical tests to determine if response delay and task difficulty are correlated. The

next two chapters detail experimental results. The first of the two chapters details

the results of models that predicted task difficulty. The second chapter the results of

models that predicted response delay.

The sixth chapter discusses the results of difficulty prediction and response delay

prediction models when the following features in the data were altered: a) the rate at
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which data was sampled, b) the amount of data in the training set was altered, and

c) measures of participant experience were included as predictor variables. The thesis

closes with a summary of results, a discussion of the implications that arise from the

work, the limitations of the current research and a discussion of future work.

There are three appendices included in the back of the thesis. The first appendix

contains additional data visualizations of the results of response delay and task dif-

ficulty prediction models. The second appendix is a collection model performance

tables. The first and second appendices show the same model performance data in

different ways (See Appendixes A and B). The third appendix (Appendix C) provides

additional academic context.
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2. BACKGROUND

The following chapter is conceptually divided into four sections: (MATB-II), Work-

load, Gamification and Data Science. The (MATB-II) section details the development

of the Multi-Attribute Task Battery and discusses how the tool is used in the human

factors community. The Workload section discuss the different tools and techniques

used to measure and evaluate subjective workload. The Gamification section discusses

how games are used in human factors research. The data science sections provide an

introduction to key data science concepts such as supervised learning. Additional

context can be found in Appendix C

2.1 MATB-II

2.1.1 Definitions

The Multi-Attribute Task Battery (MATB-II ) is a computer-based task designed

to evaluate operator performance during system monitoring, tracking, communica-

tions monitoring, and resource management tasks. The MATB-II is analogous to

activities airline crews perform in flight but can be used by non-subject matter ex-

perts. The interface consists of six parts: tracking, resource management, scheduling

, system monitoring, communications, and pump status (Santiago-espada, Myer, La-

torella, & Comstock, 2011) .

In the monitoring tasks, the participant responds to the presence of a red light,

the absence of a green light and monitors for pointers for deviation from midpoint.

Tracking tasks have the participant keeping the solid circle within the confines of the

dotted box when the system is in manual. Otherwise, when the system is in automatic,

they do not need to do anything. The scheduling window shows the beginnings and



6

Fig. 2.1. MATB-II Interface

termination of tracking or communication tasks from the present time to 8 minutes

into the future (Comstock Jr & Arnegard, 1992).

The communication task is designed to simulate receiving messages from air traffic

control. The subject must discriminate their call sign from other three letter three

number combinations. Finally, the goal of the resource management task is to main-

tain the fuel level of tanks A and B at a specific level. This is done by turning on

and off specific pumps (Comstock Jr & Arnegard, 1992).

The MATB-II has a built-in Workload Assessment Tool based on the NASA Task

Load Index This feature appears in a full window at specific pre-programmed intervals.

The participant would use a slider feature to indicate how mentally, physically and

temporally demanding they find the task in addition to a subjective measure of their

current performance and effort. The last slider would indicate how frustrated the

participant felt when performing the task.
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MATB-II has been widely used in the human factors community as a research plat-

form in part to the ease of adaption and extendibility. This widespread use has lead

it to be used in studies on the effects of sleep deprivation on performance (Caldwell

& Ramspott, 1998), task switching (Gutzwiller, Wickens, & Clegg, 2014) , atten-

tional networks (Gutzwiller, Wickens, & Clegg, 2015) and time pressure (Gutzwiller,

Wickens, & Clegg, 2016) . MATB-II can also be used as an assessment measure in

multi-tasking studies (Chiappe, Conger, Liao, Caldwell, & Vu, 2013) and cognitive

fatigue (Brooks, 2015).

2.1.2 Applications

Caldwell and Rampsott decomposed a thirty-minute MATB-II session into three

ten-minute intervals to assess the impact of sleep deprivation on individual perfor-

mance. Their study included eighteen male Army aviators and flight students. The

authors noted that task durations of ten, twenty and thirty minutes were differentially

sensitive to the effects of sleep loss. In particular, individuals reaction time to both

communication calls and warning lights as well as tracking were more pronounced as

the task duration increased (Caldwell & Ramspott, 1998).

Chiappe et al. examined where experience with action videogames could improve

a participants ability to multi-task in high workload environments. The authors

screened potential participants for game experience, selected fifty-three and divided

them into groups-one control group and one manipulation group. Participants in the

manipulation group were given a PS3 and encouraged to play five hours of games

for ten weeks while the control group was given no such training. The authors found

that the videogame treatment resulted in improved performance during the secondary

tasks without interfering with the primary tasks of tracking and fuel management

(Chiappe et al., 2013).

The authors noted that participants in the videogame condition could play more

than five hours per week. They completed a correlational analysis of the number of
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games played on performance. While the authors found negative correlations between

reaction time and performance given gaming experience, in only one condition was

this relationship significant (Chiappe et al., 2013).

A series of studies by Gutzwiller, Wickens and Clegg used the MATB-II to assess

workload overload, individual differences in attentional networks and the effect of

time on multi-task management. In their first study on workload, the authors told

participants to perform four MATB-II tasks equally well or to prioritize the tracking

task. The difficulty of the task was also modulated. The authors counted the num-

ber of task switches and found that participants were more likely to switch in easy

conditions than in difficult conditions (Gutzwiller et al., 2014). The authors point to

this finding as evidence a general switch cost avoidance behavior postulated by Kool

(Kool, McGuire, Rosen, & Botvinick, 2010).

In Gutzwillers subsequent study, the authors posited that components of execu-

tive attention related to task switching behavior. In this study the authors included

a measure of optimal switch times as a measure of executive attention. The au-

thors found that when comparing low reaction time differences along the dimension

of optimal verses non-optimal, that when optimal strategies were used participants

made fewer switches. This result was not repeated for high reaction time differences

(Gutzwiller et al., 2015).

The third and final Gutzwiller paper examined the role cognitive load plays on

multi-task management. The authors studied task stability and cognitive load by

having participants manage the sequential performance of four concurrent tasks. The

authors found that the likelihood of task switching declines as memory load increases

but increases as a function of task stability. In this context, task stability is derived

from earlier work by Wickens (Wickens, 1986) which posits that dynamic systems

have stable periods where an operator can neglect a specific task to focus on an

alternate task (Gutzwiller et al., 2016) .
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2.2 Workload

The simplest definition of workload according to Stephen Jex is the amount of

work an individual must exert to complete some task. Workload can be classified in

quantitative or qualitative terms (Jex, 1998) The research on workload distinguishes

between perceived and actual workload. Further, workload can be used in terms of

physical work ((how much does a participant need to lift?) or mental workload.

There are various tools that a researcher can employ to evaluate a participants

mental workload. Per Meshkati et al. the majority of these measures fall into one of

three techniques: physiological measures, performance-based measures and subjective

measures. Performance based measures assume that an increase in the difficulty of a

task will increase the demand on the participant. This increase in demand will result

in lower performance. Physiological measures rest on the assumption that mental

workload can be measured using levels of physiological activation. Finally, subjective

measures posit that increased power expense is linked to perceived effort (Meshkati,

Hancock, Rahimi, & M. Dawes, 1995).

No two workload measurement tools are equally suitable for the same task. Egge-

meier et al. propose seven metrics a research can use to assess the suitability of a

measure. These measures are: sensitivity, diagnosticity, selectivity, intrusiveness, re-

liability, implementation requirements and subject acceptability (Eggemeier, Wilson,

Kramer, & Damos, 1991) . There are multiple outstanding measures of mental work-

load including: the Cooper-Harper Scale (Cooper & Harper Jr, 1969), the Bedford

scale (Roscoe & Ellis, 1990) , the NASA Task Load Index (TLX) (Hart & Staveland,

1988), the Subjective Assessment Technique (Reid & Nygren, 1988) and the Workload

Profile (Tsang & Velazquez, 1996).

The NASA-TLX is one of the more widely deployed measures of subjective work-

load and has been used in a variety of domains. The TLX measures workload using

six sub-scales: mental demand, physical demand, temporal demand, effort, perfor-

mance and frustration. Participants will provide a subjective rating -ranging from
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0 to 100- for each of the sub-scales. The participant will then perform a pair-wise

comparison. Each time a participant rates one scale as more salient than another,

the greater the weight given to that sub-scale.

Cognitive load refers to the amount of mental effort being exerted. Cognitive load

theory, developed by John Sweller, differentiates between three types of cognitive

load: intrinsic, extraneous and germane Sweller1988Cognitive. Intrinsic cognitive

load is the inherent difficulty of a specific topic. Extraneous load arises from the way

information is presented to a user. Finally, germane cognitive load is the amount of

effort devoted to developing and processing of schemas (Sweller, 1988).

Cognitive workload is recognized as a source of performance errors, but one of the

key issues facing researchers who study cognitive workload is how to quantify it as

a phenomena (Card, Moran, & Newell, 1983; Kirsh, 2000; Olson & Olson, 2000). A

central problem when attempting to measuring workload is how to design a minimally

invasive measure. A well-documented and validated method of measuring workload is

the use of electroencephalography. Researchers can search for event related potentials(

ERPs) in EEG data by looking for a change in amplitude (Gevins & Smith, 2003).

As a data source, EEGs change in predictable ways. This predictability allows

for a degree of automatic detection using signal processing techniques. One signal

component which is indicative of changes in workload is the P300 component of event-

related brain signals. The P300 is recorded using electroencephalography and surfaces

as a positive deflection of voltage with some latency (Polich, 2007). This component

is elicited in the process of decision making. Fowler used the P300 as a measure

of mental workload when studying a simulated aircraft landing task. Fowler found

that the P300 amplitude was not strongly correlated with performance. However, the

latency of the signal covaried with performance. According to Fowler, this latency

was indicative of the slowing of perceptual and cognitive processes in response to

increased workload (Fowler, 1994).

Tattersall and Foord found that workload measured using Instantaneous Self-

Assessment ( ISA ) is consistent with other subjective measures of workload, it use
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of this measure can interfere with the primary task (Tattersall & Foord, 1996). ISA

measure was originally developed by the Civil Aviation authority of the United King-

dom to measure air traffic controllers workload (Jordan, 1992). ISA works by asking

users to respond to a visual cue during as task using one of 5 keys. At the end of

each interval, participants indicate their level of perceived workload. These levels are

excessive, high, comfortable, relaxed, under-utilized.

Another psychophysiological measure of cognitive workload is the Index of Cogni-

tive Activity. This measure works by measuring the individuals pupil dilation. This

reliance on eye-tracking limits the ICA to visual displays (Marshall, 2002). Patten

and colleagues studied measures of driver workload in two studies. The first study

focused on driver distraction when using a cellphone as a function of task complexity.

Participants drove on a series of different simulated roads (motorways, cities and rural

areas) while having a conversation on a hands-free or hand-held device. Participants

all drove the same route on a motorway. The researchers measured driver workload

using the NASA TLX. Patten et. al. found that the content or complexity of the

conversation had a greater influence over driver distraction than the complexity of

the road (Patten, Kircher, stlund, & Nilsson, 2004).

Similar research addressed if a driver’s level of experience changed their cogni-

tive workload. The researchers found significant differences in experienced workload

between experienced and inexperienced drivers. Further, inexperienced drivers were

slower in reacting to a peripheral detection task. However, experienced drivers found

high traffic and highly complex situations to be more taxing than their less experi-

enced counterparts (Patten, Kircher, stlund, Nilsson, & Svenson, 2006).

We have all experienced both high and low physical and cognitive workload. This

universal experience lends itself to an innate understanding of the concept. However,

an activity that is seen as a high workload activity by one individual can be seen

as a low workload activity by another because of subjective differences. This section

outlined the techniques used by human factors engineers to transform the subjective

experience of workload into a quantifiable metric.
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2.3 Gamification

Gamification is the application of game playing elements - such as point scoring,

competition, and rules of play- to other domains. The purpose of using gamification

is to make a task feel more engaging by making an activity feel more challenging

(Deterding, 2010a) or adding an overarching narrative structure (McGonigal, 2011).

Gamification is typically applied to digital or computer based interactive experiences

but the concept has historical roots.

Mark Nelson argues that the historical roots of gamification lie in marketing en-

deavors and educational systems in the form of scholastic achievement levels. Nelson

noted that gamification efforts in the Soviet Union emphasized games as a tool to en-

courage productivity. Soviet games ranged from being purely competitive to morale-

building exercises. The American model placed greater emphasis on capturing the

sense of childhood play in an attempt to erase the work/play divide (Nelson, 2012).

Seaborn argues that interest in gamification has been renewed for three reasons.

Over the past 20 years the computer games industry has grown and importance, lead-

ing to significant investments in research to understand what makes a game engaging.

Web-based technologies, social media and mobile computing has changed how users

and organizations modify, share and discuss experiences. Finally, firms are looking

for new methods of connecting with influencing and learning about the experiences

of customers and employees (Seaborn & Fels, 2015).

This leads to the question, what is a game? Some define games as intensely engag-

ing but non-serious experiences structured by social boundaries and rules (Huizinga,

2007). Avedon and Sutton Smith defined games as a voluntary activity bounded

by a set of rules but requiring conflict between equal parties and an unequal result

(Avendon & Sutton-Smith, 1971). Others have defined games by six core features:

rules, variables, quantifiable value laden outcomes, player effort and investment, and

negotiable consequences (Juul, 2002).
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Gamification works by directly manipulating the motivational controls of human

behavior. Positive and negative reinforcing stimuli can be used to modify behav-

ior (Skinner, 1938). Players will repeat behaviors which lead to satisfying outcomes

while stopping those which leads to negative or undesired outcomes. Further, suc-

cessful gamification is dependent on the repetition of outcomes (Robson, Plangger,

Kietzmann, McCarthy, & Pitt, 2015).

There are questions about the theoretical ramifications of gamification. A meta-

analysis by Hamari et al. found that 87% of applied gamification research failed

to address theoretical foundations (Hamari, Koivisto, & Sarsa, 2014). When ques-

tions of theoretical foundations were raised, a few respondents referenced Deci et als.

Work on intrinsic and external motivation (Deci, Koestner, & Ryan, 1999) . Other

researchers cited Self-determination theory (Fallon et al., 2014; R. M. Ryan & Deci,

2000), operant conditioning (Skinner, 1938), ludic heuristics (Malone, 1982) and flow

theory (Mirvis, Csikszentmihalyi, & Csikzentmihaly, 1991). Despite the mixed the-

oretical underpinnings, a consensus is emerging in two areas: intrinsic and extrinsic

motivation and user centered design (Hamari & Tuunanen, 2014).

Modern video-games and gaming platforms collect gigabytes of data about a

player’s interactions with players, records of player movements and actions. Game

designers use this data to drive player engagement. There is an explicit financial

motive that compels game designers to collect this information. A poorly designed

game leads to fewer players which leads to less money.

However, the same data that designers use to improve their designs can be em-

ployed by human factors engineers to study cooperation, communication and team

behaviors. Games can be specifically modified to test how these behaviors emerge

and changes in response to challenges. These behaviors can be recorded with the

participant’s explicit knowledge.
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2.4 Data Science

This section discusses relevant research in data science. The first section focuses

on the five Vs of Big data. The second section focuses on the link between Data

Science and Human factors Engineering. The final section details research into bug

data techniques

2.4.1 The Vs of Big Data

Big Data applications are defined by the volume, velocity, veracity, variety or

variability, and value of the data being process. Volume in the context of big data

applications refers to the amount of data being stored and operated upon. Velocity

refers to the sampling or update frequency of the data itself. Data veracity refers

to the degree which the data is trusted, precise and accurate. Variety, sometimes

referred to as variability, is the number of different sources being sampled. Value

is the ability to transform the data into a usable product (McAfee, Brynjolfsson,

Davenport, et al., 2012).

2.4.2 Big data and human factors

The benefit of thinking of human factors problems through the lens of data science

and big data has been well discussed in the literature (C. G. Drury, 2015). The

benefits are often discussed in the context of digital sensors and how real time data

can be used to reduce ergonomic risk (Walker & Strathie, 2016; Emanuele, 2016;

Sharples & Houghton, 2017). None of these publications discuss how to use the

acquired data in a predictive fashion.

There has been some research focusing on using continuous state data as to study

human machine interaction problems . Dao et al. used pupil dilation as a way to

measure pilot workload. The authors used information about error extent, gain, lag

and delay from lateral path errors. They found that delay in responding to an error
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was inversely proportional to workload (Dao, Parkinson, & Landry, 2016). However,

this research did not use this data adaptively.

2.4.3 Supervised Learning

Supervised learning algorithms are a class of algorithms which use labeled train-

ing data to infer a function. The labeled training data consists of input-output pairs.

The input objects usually take the form of multi-dimensional vectors (Mohri, Ros-

tamizadeh, & Talwalkar, 2013). A supervised algorithm uses the training data to

infer the function between the input vector and the output value. The aim is to build

algorithms which can learn how to predict target output. However, algorithms are

designed with one or more inductive biases. An Inductive bias is an assumption which

an individual uses to predict specific outputs given inputs they have not trained on

(Mitchell, 1980). Inductive biases-like heuristics- can be incorrect but without them

learning algorithms would be able to predict or classify responses they had no prior

experience with.

This section covers five types of supervised learning algorithms in detail: Neural

Networks, Random Forests, Naive Bayesian Classifiers, Ensemble Learning and multi-

nominal logistic regression. Each subsection details the specific uses cases of these

algorithms along with their performance relative to each other.

Neural Networks

Neural Networks are a biologically inspired information processing paradigm.

These networks are composed of many highly interconnected processing nodes which

work in unison to solve a problem. These networks can be divided into three layers:

an input layer, one of more hidden layers and an output layer.

How these layers communicate with each other determines the structure of the

network. If the connections between the layers only feed from the input layer towards

the output layer and do not form a cycle, then the network takes on a feed forward
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structure (Zell, 1994). If the connections form a directed cycle, then a recurrent

neural network is formed. Both neural network structures can be used for binary

classification. As the name suggests, binary classification is the process of categorizing

elements into two distinct groups. A specific type of linear binary classifier, which

converts input into a numerical vector, is call are called the Perceptron (Freund &

Schapire, 1999).

Neural networks ’learn ’how to classify an object or detect speech using one of

two techniques: associative mapping and regularity detection. Associative mapping

occurs when nodes associate certain firing patterns with specific patterns of input

(Rojas, 1996) . Networks can also learning using regularity detection, where the

nodes respond to properties of the input (Hasan, Choi, Neumann, Roy-Chowdhury,

& Davis, 2016).

A programmer could use an associative learning paradigm to tune the weights

between the connections in the following ways. Say the input is the number five.

This activates output for eight, five and six. What the programmer can do is penalize

connections between the nodes which lead to incorrect categorizations. Using regu-

larity detection however, the programmer can encourage the network to look for sets

of features such as the curve on one side but not the other.

This leads to the question, what are the trade offs which come from using a neural

network. These networks can be trained to solve a variety of problems which would

be difficult to solve using other methods. However, neural networks need numerical

input which cannot have missing or incomplete values.

Random Forests

Random forests are an ensemble learning technique used for regression and classi-

fication tasks. A random forest operates by developing a multitude of decision trees

during training. When presented with testing data, a random forest model will re-

turn the most common class in classification problems or the mean prediction in the
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case of regression (Ho, 1995; Barandiaran, 1998). Random forest models have been

employed in the following disciplines and problems : remote sensing (Belgiu & Drgu,

2016; Pal, 2005), Sleep stage identification (Fraiwan, Lweesy, Khasawneh, Wenz,

& Dickhaus, 2012), ecology (Cutler et al., 2007), land usage (Rodriguez-Galiano,

Chica-Olmo, Abarca-Hernandez, Atkinson, & Jeganathan, 2012),modeling the effect

of climate change on coral (Fabina, Baskett, & Gross, 2015), and forest management

(Atkins, Epstein, & Welsch, 2018).

Naive Bayesian Classifiers

Naive Bayesian Classifiers are similar to ensemble learning techniques in that

they are a family of classifiers which rely on applications of Bayesian Reasoning.

These classifiers assume that each of the features under consideration are strongly

independent of each other. This independence is best explained through the following

example. A fruit classifier would label an object a banana if it is 15 centimeters long,

yellow and curved. However, each of these features contribute independently to the

likelihood of the item being a banana despite any correlation between features.

Nave Bayesian Methods have been seen as the punching bag of classifiers despite

having an extensive body of literature devoted to it from the field of information

retrieval devoted to it (Lewis, 1998). This is not to say that criticisms of the algorithm

are baseless as the algorithm tends to appear at the bottom of performance rankings

when it comes to accuracy . However, the algorithm is still used as a baseline because

other, more accurate algorithms, tend to be more complex (Rennie, Shih, Teevan, &

Karger, 2003).

Here is how one would use a Naive Bayesian Classifier to categorize if an object

was an apple or a banana. The measured features are color -measured in wavelength-

length/height, and diameter. The researcher would first take a set of training data

and build a classifier assuming a Gaussian distribution. This classifier would have the

average wavelength of bananas and apples along with the variance of those samples.
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Then, the testing sample would be presented. The research would then need to

calculate the initial evidence that an item is either a banana or apple. Once the

evidence value is known, the researcher needs only calculate the posterior probability

of both apple and banana and pick the greater value.

Ensemble Learning

Machine learning can be characterized in terms of searching a hypothesis space

for the most accurate hypothesis. There are cases, as explained by (Dietterich, 1997)

, where a single best learner or hypothesis may not be found. First, the provided

training data may not contain enough information to identify a best learner. There

may even be cases where there are multiple bet learners. Second, the process used

to obtain the best learner could be inaccurate or inefficient. Finally, the space being

search may not contain the target function.

Ensemble learning is a means of overcoming these limitations. Ensemble learning

is defined as:

machine learning paradigm where multiple learners are trained to solve

the same problem. In contrast to ordinary machine learning approaches

which try to learn one hypothesis from training data, ensemble methods

try to construct a set of hypotheses and combine them to use. (Chora et

al., 2009)

Ensemble learning by-passes the lack of a single best hypothesis by generating

multiple hypothesis which can approximate the best solution. Even if the method

of finding the best hypothesis is inefficient, the process used to find ’good enough

’solutions may not be. Finally, ensemble solutions can form an approximation of the

target function.

Each ensemble consists of a finite set of base learners. These base learners can be

weak learners- meaning they perform only slightly better than a random guess - or

strong learners- which can make highly accurate predictions. The process of turning
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weak learners into strong leaners is called boosting and is discussed in more detail in

a later section (Schapire, 1990). However, one advantage of using ensembles is that

their collective predictive performance is better than the single best classifier among

them (Hansen & Salamon, 1990).

Ensembles are constructed using parallel or serial approaches . Parallel ensembles

combine accurate and diverse base learners which were constructed independently

from each other. As such, each learner makes different errors when presented with

new data but each learner must have an error rate better than random chance (Tuv,

2006). As a collective, these learners perform better than any individual since their

errors cancel out. Serial ensembles rely on the previous generation of experts.

There are several types of ensembles discussed in the literature. However, most

methods can be traced back to Bootstrap aggregation and Boosting. Bootstrap ag-

gregation (Bagging) works by training each base learner on a different bootstrapped

sample drawn from the original dataset (Breiman, 1996).

l

Multinomial Logistic Regression

Multinomial logistic regression (MLR) is a generalized form of a logistic regression

that can be applied to multi-class problems. This technique is frequently used to

analyze categorical response data using categorical or continuous variables (Bull &

Donner, 1987). MLR is similar to ordinal logistic regression (OLR). Campbell et al.

provide a clear explanation of the difference between these methods. An example

of an ordinal ordinal would be whether an individual will be healthy, suffer an non-

fatal heart attack or stroke and if they will suffer a fatal heart attack . Non-ordinal

outcomes would be if a person was healthy, died of a heart attack or died of cancer

(Campbell & Donner, 1989).

There are several advantages to using an MLR compared to other methods. First,

MLR and by extension logistic regression- use an odds ration as an estimator for
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the predictor variable. Unlike, discriminant analysis- a separate type of classifica-

tion model- MLR models can use categorical and continuous variables as predictors

(Stevens, 1992). Finally, unlike discrimination analyses, MLR does not require the

independent variables to follow a normal distribution (Hossain, Wright, & Petersen,

2002).

There are also limitations to using MLR in classification problems. The researcher

needs a sufficiently large sample size across all levels of both the independent and

dependent variable (Hossain et al., 2002). There is a possibility that MLR models

can become difficult to interpret if there are more than 4 dependent variables (Hosmer

& Lemeshow, 2000).

MLR models have been extensively adopted by social work and human factors

practitioners. One such analysis was conducted in 2012 by Ghulam et al. who used

multi-nominal logistic regression to investigate single and multi-vehicle accidents (H.,

S., & R., 2012). The social work discipline has used MLR to identify juvenile delin-

quency risk factors, the likelihood of psychiatric disorders among adults, and de-

mographic characteristics of children who had experienced phsycial and emotional

abuse (Afifi, Brownridge, Cox, & Sareen, 2006; Mandell, Walrath, Manteuffel, Sgro,

& Pinto-Martin, 2005; J. P. Ryan, Hernandez, & Herz, 2007).

2.5 Summary

The link between games, data science, workload and the MAT-II is not immedi-

ately obvious. However, the MATB-II does have some characteristics that make it a

game. There are specific rules a user has to follow, the task requires effort and emo-

tional investment and there is a set of value laden outcomes associated with success

and failure. While MATB-II does not have a game over screen informing the player

of failure, there are still consequences for failure. Thinking of MATB-II as a game

prompts a reexamination of how human performance data can be collected for use in

human factors studies.
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Modern video-games collect data about player actions without the player’s aware-

ness. Game designers use the collected data to asses player interactions or identify

where players are exploiting the game’s mechanics. Simple games have been used as a

research tool to study interpersonal communication, individual motivation and player

cooperation. The next reasonable step is to ask if workload or another measure of

performance can be studied without the player’knowledge.

Games produce data at a rate and volume that the human factors discipline does

not have the tools or training to process or represent. Further, many of the tools hu-

man factors practitioners are intrusive. Machine learning and data science techniques

can be applied to a large volume of data to identify trends and patterns. The learning

techniques can be supervised- where the outcome variable is explicitly labeled - or

unsupervised - where the outcome variable is not explicitly labeled. These methods

can be adopted by human factors as a way to process and derive meaning from a

large volume of data.
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3. METHODS

The following chapter details: a) how participants were recruited for the study , b) a

description of the survey and main task participants were expected to complete and

c) model testing and evaluation procedures.

3.1 Research Plan

The research was divided into seven stages. The first stage entailed the develop-

ment of a Web-based version of MATB-II which was used to collect the data used

for subsequent analysis. The second stage was a pilot study intended to identify the

delineations in the data between high, medium, and low workload conditions. Once

clear delineations in the data were defined, the MATB-II task was distributed via

Prolific Academic to collect a high volume of continuous system state data.

Once the data was cleaned, a series of classification algorithms were constructed

which use derived measures in the data to categorize participants into the categories

of high, medium and low workload. These classification algorithms were trained on a

subset of the data and tested on the remaining subset. Stage six used a similar process

to determine if indirect (derived measures), or direct measures, can correctly classify

the delay in responding to a malfunction. A sensitivity analysis was performed in

the seventh and final stage to determine if the data’s sampling rate, the size of the

training set and or measures of participant’s experience affected the ability to classify

workload or delay.
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3.1.1 Prolific Academic

Prolific Academic is an online subject recruitment platform that matches research

requests with participants from around the world Prolific. It is similar to services such

as Amazon’s Mechanic Turk. Prolific Academic was selected for this study for two

reasons. Researchers have the ability to target their study towards participants with

specific demographic traits. Further, Prolific contains tools that help a researcher

manage a large subject pool including subject payment tools.

3.2 Participant Recruitment

Participants were recruited through Prolific Academic. Demographic information

about the participant’s recent experience flying an aircraft or playing videogames in

the past week and past month was collected using a survey. Participants would select

from one of six response options when responding to these questions. These options

are reprinted in Table 3.1 and Table 3.2. The selection of these levels was derived

from Prolific Academic’ s pre-screening questionnaire.

The participant would sign the online consent form using their Prolific Academic

ID number. A participant’s Prolific Academic ID number was a unique 24-character

string that contained no personal identifying information. This ID number was used

to link a participant’s survey results to the data generated by the task website. Once

the participant had completed the questionnaire they would move to the main task.

Participants were paid one dollar and fifty cents for their time.

Number of Participants

A total of 1,000 participants were recruited for participation in the study. Three

hundred and sixty five individuals either left the task half way through or submitted

incomplete responses. These participants were removed from the final study as their

results were incomplete.
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Table 3.1.
Levels for Gamers

Per Week Per Month

1-2 1-5

3-4 5-10

5-6 11-15

7-8 16-20

9-10 21-25

10+ 25+

Table 3.2.
Levels for Pilots

Per Week Per Month

0-5 1-10

6-10 11-20

11-15 21-30

16-20 31-40

21-25 41-50

25+ 50+

3.3 Description of Task

The NASA MATB-II was selected as the inspiration for this task for the following

reasons. MATB-II was designed as a modular system. The modular design enables

an experimenter to select specific task combinations for participants to perform by

turning off task units. This design choice served as a precedent to justify presenting
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participants with two tasks instead of five. Further, the MATB-II has been used to

study cognitive workload, time pressures and the effects of fatigue on performance.

Finally, the task described below is reproducible in the desktop version of MATB-II.

Developing a custom task was considered but ultimately disregarded as a custom task

could not be readily reproduced.

Participants were asked to interact with a custom-built website modeled after the

NASA MATB-II. The interface only contained the tracking and resource management

tasks. These were the two tasks that were the easiest to explain and had the fewest

confounds. The audio task was not included as it could not be determined that poor

performance could not be attributed to audio quality. A screen shot of this interface

is shown in Figure 3.1.

Participants were presented with the following cover story:

You are flying an older aircraft. It is prone to mechanical malfunctions

and does not have autopilot. You will need to fly by hand and watch for

and correct pump failures.

The task consisted of two components: a tracking task and a resource management

task. The goal of the tracking task was to bring a floating reticle back to the center of

the cross hairs. Participants would use their mouse to ’pull ’the reticle back to center.

For example, if the reticle moved to the upper right of the screen, the participant

would need to move the mouse towards the lower left.

The goal of the resource management task was to keep the fuel level of tanks

A and B within 500 units of their respective starting value. Participants would use

the number keys 1 to 8 to turn each pump on and off. One of these pumps would

fail during the last 30 seconds of the experiment. This failure was indicated by the

pump turning orange. A participant would need to ’restart’the pump by pressing

the corresponding key. This website recorded the variables shown in Table 3.3 at

a sampling rate of 60 Hz. The data was recorded as a JSON file labeled using the

participant’s Prolific Academic ID number.
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Fig. 3.1. Image of testing website

Table 3.3.
List recorded values

Variable Name Value

Time System Time

Mouse X / Mouse Y Position of Mouse (pixels)

Reticle X / Reticle Y Position of Reticle (pixels)

Tank Values (6 total) Liters

Pump State (8 total) On/Off/Failed

Difficulty Easy/Medium/Hard

3.3.1 Interaction Modes

The two interaction modalities used in this experiment —mouse movement and

key board— were selected for the following reasons. These are interaction modes
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that the largest number of participants would have ready access to and the greatest

experience with. While a joystick would fit the theme of the experiment, it was

assumed that most participants would not have access to a joystick.

3.3.2 Difficulty Settings

The difficulty of the interaction task was determined using the following variables

listed in 3.4. The mover force variables refer to the max force that will be present

throwing the moving reticle off during auto-pilot failure the amount of time auto-

pilot fails for before coming back (in radians) the minor turbulence always corrects

back toward center upon change, this sets the max deviation allowed from pointing

directly back to center. The pump flow rate is used to determine how quickly fuel

flows through the pump using the following equation.

tickF lowRate = flowRate/(FRAMERATE ∗ 60); (3.1)

3.3.3 Pilot Study

A pilot study was conducted to assess how task difficulty was manipulated and how

long the experiment should run. The eccentricity of the reticle and the rate of flow

between the tanks were altered in each difficulty condition. In the easy condition the

reticle could move up to fifty pixels away from the center of the cross hairs. However,

the participant could move their mouse more than fifty pixels away to exert control

on the reticle. While reticle position was directly dependent on difficulty, the mouse

position would not be dependent.

The flow rate of the tanks was manipulated in all conditions. A direct measure

of the rate of change in tank volume would directly correlate with difficulty. The

participants were instructed to keep the main tanks within 500 units of their starting

value for each tank. They were not told to keep both tanks balanced with each other.
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Table 3.4.
Variables used to manipulate task difficulty

Variable Easy Medium Hard

MOVERAUTOPILOTFAILURELENGTH 3000 4000 5000

MOVERMAJORMAXFORCE 0,4 0,9 1,4

MOVERMAJORMINFORCE 0,3 0,9 1

PUMP1FLOW 800 800 900

PUMP2FLOW 600 450 400

PUMP3FLOW 800 700 650

PUMP4FLOW 600 600 550

PUMP5FLOW 600 350 220

PUMP6FLOW 600 400 350

PUMP7FLOW 400 300 200

PUMP8FLOW 400 300 300

TANKACONSUMPTION 800 800 800

TANKBCONSUMPTION 800 800 800

There is a reason to suspect that a participant would allow one main tank to become

unbalanced at the expense of the other.

Finally, the pilot study determined that two minutes of training was sufficient to

learning the controls without needing to consider learning effects. Further, the pilot

study also showed that a pump failure in the last thirty seconds of the experiment

was sufficiently unexpected.

The results of the pilot study indicated that participants in the Easy condition

experience a lower subjective workload as measured by the NASA-TLX than par-

ticipants in the Medium and Hard conditions. These results were confirmed by the
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results of the talk aloud debriefing. The results of the pilot study are discussed in

detail in the Data Exploration Chapter.

3.4 Data Preparation

A custom set of R scripts would read each JSON file separately into a data table.

This script raw converted the recorded time into a fixed millisecond sequence to

standardized time values across sampling rates. Each data table had 30,000 rows.

Once the time values had been reformatted, the sampling rate of the original 60

Hz data was artificially manipulated reformatted by resampling the original data at

fixed intervals. This sampling reduced the total number of rows by a fixed amount.

The processed data was then split into two subsets. Once subset contained all records

before the pump failure and the other contained all rows after the pump failure.

The pre-pump failure subset was analyzed for the number of button presses

recorded by each pump, the mean time between those presses and the standard de-

viation of the presses. The position the mouse and reticle were smoothed to reduce

local noise in the pre-pump failure subset. A separate script would search the post

failure subset for the failed pump and then calculate the time between the first failure

and next state change. The processed data was stored in multiple SQL databases.

3.4.1 Sampling Rates

The 60 Hz data was resampled at the following intervals: 30 Hz, 12 Hz, 6 Hz,

3 Hz, 2 Hz, 1 Hz, Hz, 1/4 Hz and 1/10 Hz. The majority of commercial monitors

refresh at or 60 Hz and 30 Hz. With the exception of the 12 Hz and 1/10 Hz sampling

rates, each sampling rate is the Nyquist frequency of the proceeding value.

The sampling rates corresponded to the number of rows the resampling algorithm

would skip in between samples. For example, at 30 Hz the resampling algorithm

would take every second row while at 1 Hz the resampling algorithm took every 60th
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row. This meant that at lower sampling rates, there were fewer rows of data that

could be used to generate a derived measure.

12 Hz was used in lieu of 15 Hz because the sampling sequence would be: 7.5

Hz ,3.25 Hz, 1.125 Hz, etc. The reampling algorithm would need to take every 8th,

18.46th, and 53.3rd row respectively. No meaningful representation of these fractional

rows could be found.

3.5 Model Selection

The modeling techniques used in this experiment were selected based on two

criteria: a) a modeling method needed an extensive publication record and b) the

modeling method needed extensive coding documentation. These criteria were im-

plemented to ensure that the performance of the model could be assessed without

needing to consider the validity of the method.

Four models were selected that satisfied these criteria: general linear models,

neural networks, random forests and multinomial logistic regression. General linear

models were only used regression problems and multinomial logistic regression was

only used in categorization problems. Neural networks and random forests were used

in both classification and regression problems.

The regression models were a general linear model, a neural net regression and

a random forest regression. The categorization methods were a multinomial logistic

regression, a neural network and a random forest. The general linear model and the

multinomial logistic regression model were selected because they represent the purest

translation of input variables to outcome. Their relative simplicity served as a means

of validating the results of other regression and categorization.

3.6 Model Generation in R

The following general method was used in the regression and categorization exper-

iments. The processed data was split into a training and test set using an 80/20 split.
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The training data was divided into two groups of variables: the predictor variables

and the outcome variable. A model would be given the training predictors and would

map an association between the predictor and independent variables. A trained model

would then use predictor variables drawn from the test set to predict the outcome t

variable. This predicted outcome would be compared to the ’true’outcome.

The caret package in R automatically provides the following summary statistics

for categorization models using the confusionmatrix() function: Accuracy, the 95%

confidence interval, the No information rate and a p-value. The no information rate

is the accuracy of a model that was guessing at category membership. The p-value

was the result of a binomial exact test of the likelihood that the accuracy value was

greater than the no information rate model (Kuhn, 2008).

Table 3.5.
Example Confusion Matrix

Real

Predicted

A B C

A 66 15 18

B 0 3 0

C 1 0 10

The output of the confusion matrix function contains a table like the one shown

in Table 3.5. The binomial test function used by caret uses the sum of the diagonal

of this matrix as the number of successful trials. The sum of the entire total is the

maximum number of trials. The default probability can be set by the analyst or will

be set equal to the sum of the largest column over the total number of cases. This

percentage is termed the no information rate model and represents the outcome of

guessing at categorization.
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In the case of Table 3.5, the equation would look like the equation below. The

p-value of this equation is 0.0052.

p = binom.test(79, 113, (79/113)) (3.2)

The Mean Average Error, r2 and Root Mean Squared Error of regression models

was obtained using the postresample function. This function takes the predicted and

observed values as input would return the MAE, r2 and RMSE of the model.

3.7 Model Inputs

Each model was constructed using five classes of derived variables: number of

key presses, mean time between key presses, standard deviation of the key presses,

mouse gain and tank differential (see Table 3.6). All variables were measured from

the start of the session to four minutes and thirty seconds. This time marked the

predetermined point where the pump was supposed to fail. A model could also be

supplied with the participants weekly and monthly experience.

Table 3.6.
List of derived measures

Derived Measures Number

Number of Keypresses 8

Mean Time Between Press 8

SD Time between Presses 8

Absolute Distance from origin 16

Tank Differential 21
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Five distinct tests were conducted using the following variables to predict delay.

These combinations were selected because they contained a direct or indirect measure

of time and are listed below:

1. Weekly and Monthly Experience Only (2 variables)

2. Number of Key Presses Only (8 Variables)

3. Key Presses and Experience (10 variables)

4. Key presses, mean time between key presses and standard deviation (24 vari-

ables)

5. Test 4 with the addition of Experience (26 variables)

Seven distinct tests were conducted using the following variables to predict difficulty

These tests are listed below:

1. Weekly and Monthly Experience Only (2 variables)

2. Mouse Position Only (16 Variables)

3. Mouse Position and Experience (18 variables)

4. Tank differential Only (21 variables)

5. Tank differential and experience (23 variables)

6. Tank differential and Mouse position (39 variables)

7. Test 6 with the addition of Experience (41 variables)

3.8 Model Evaluation

A categorization model was considered to accurately predict delay group or diffi-

cultly if the following criteria were met.

1. The average accuracy of the model was above chance
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2. The lower bound of the 95% confidence interval was above chance

3. The performance of the model had to be significantly different than random

guessing

The second and third criteria were implemented to ensure that the analyst was 95%

certainty that the true prediction mean was above chance. The caret package in R

automatically calculates the confidence interval and average accuracy using a binomial

exact test. A model was deemed statistically significant if the p-value of the binomial

exact test comparing the model to a random chance model was less than 0,05.

3.8.1 Random Guess Models

As previously mentioned, a model was considered to be statistically significant if it

performed better than chance. The CARET package in R automatically generates a

no information model. This no information model is a model that guesses at category

membership given no additional information.

Chance was defined relative to two factors: a) the total number of categories and

b) the distribution of category membership. There were three possible categories

in the difficulty classification condition and these categories had an approximately

equal number of class members. There were three possible categories in the delay

classification condition but these categories had an unequal number of class members.

Chance for the difficulty classification condition was equal to one in three. This

makes intuitive sense as if no additional information was provided and you blindly

guessed at the outcome, one would be correct about one in three times. However,

the distribution of the three classes in the delay categorization condition was uneven.

One group contained approximately sixty percentage of all responses. If you did not

know the distribution, one could say that a correct random guess would approach

1/3. However, when the distribution is accounted for the correct random guess rate

would be 60%
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3.9 Hypothesis & Research Questions

The research questions this dissertation addresses were motivated by a widening

gulf between the data science and human factors disciplines in terms of understanding

human performance. There has been an increase in the diversity of data sources that

can be used by data scientists and human factors practitioners over the past twenty

years. This increase in diversity is attributable to multiple factors such as increased

adoption of mobile devices and other technological improvements.

The techniques and tools used by human factors professionals were not designed

to process large volumes of continuous event data. Data science has the capabilities

to process large volumes of data in near real time. However, data scientists do not

necessarily possess a nuanced understanding of human performance. What a data

scientist may label as poor human performance may not account for individual varia-

tions. Conversely, what human factors practitioners consider poor performance may

be treated as normal human performance by a data scientist.

This led to the question can the tools and techniques used by both disciplines

be used to in conjunction to model human performance? This broad question was

operationalized in the following three questions.

RQ1 : Can a measure of human performance be inferred using continuous state data

collected by a live system?

RQ 2: Can an individual’s response to an unexpected event be predicting using con-

tinuous state data collected by a live system?

RQ 3: Can a measure of human performance be inferred using continuous state data

alone?

These research questions informed the following hypothesis.

Null Hypothesis 1 : The first null hypothesis states that the number of correct clas-

sifications of task difficulty is equal to chance (1/3).
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Hypothesis 1 : The first hypothesis is that the number of correct classifications of

participant workload is greater than chance.

Null Hypothesis 2 : The second null hypothesis states that the number of correct

classifications of participant delay groupings is equal to chance (1/N) where N is

the number of clusters which best describes the data.

Hypothesis 2 : The second hypothesis states that there is a sampling rate and a

training/test split below which a model would perform no better than chance.

Null Hypothesis 3 : The third null hypothesis states that the inclusion of demographic

measures would not decrease the confidence interval of a prediction.

Hypothesis 3 : The third hypothesis states that the inclusion of demographic mea-

sures would decrease the confidence interval of a prediction.
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4. GENERAL DATA EXPLORATION

The following sections detail the results of a pilot study conducted in late fall 2018 to

determine of the three difficulty levels corresponded to distinct NASA—TLX work-

load scores. Further sections provide a general overview of the mean and median

response times. Finally, the chapter closes with a discussion of the effect of experi-

ence on response time.

4.1 Results of Pilot Study

A short pilot study was conducted in October of 2018 to determine if the three

task difficulty levels- Easy, Medium and Hard- corresponded to distinct NASA-TLX

workload scores. 10 students from the School of Industrial Engineering responded to

a post recruitment flier.

Table 4.1 shows the average TLX scores from the pilot study.

Table 4.1.
Results of Pilot Study

Condition Participants Average TLX Score Average Score(no outliers)

Easy 4 51 43

Medium 3 58 58

Hard 3 64 64

The results of the pilot study indicate that the three difficulty levels are quan-

tifiably different according to the NASA-TLX. On average, participants in the Easy

condition experienced a lower workload during completion of the task than partici-
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Table 4.2.
NASA-TLX Weighted Ratings

Easy 40 43 46 75

Medium 37 60 76 -

Hard 46 71 73 -

pants in the Medium and Hard Condition did (4.1). The greatest variability in TLX

scores occurred in the Medium condition while the scores for the Easy and Hard

condition appear to converge towards the low 40’s and low 70’s respectively.

The participants consistently assigned a higher ranking to the≤ MentalDemand′and‘Performance′categoriesoftheTLX.Noneoftheparticipantsratedthetaskasphysicallydemanding.Theseresultsareconsistentwithverbalcommentsprovidedbytheparticipants.

4.2 General Analysis

The first phase of the analysis entailed a comprehensive exploration of the data.

This analysis was necessary to address if response delay and task difficulty correlated

and is there a statistically significant difference between the average delay in respond-

ing to an on-screen malfunction in the Easy/Medium/Hard task conditions. Finally,

does participant experience have a statistically significant impact on response time.

4.2.1 Determining Correlation between Difficult and Delay

The first stage of the model building process entailed an examination of the mean

and median response times of all participants by difficulty condition. The purpose of

this stage was to determine if response delay was predictive of task difficulty and vice

versa. The results of this analysis also provided insight into the skew of the data and

potential statistical similarity between conditions.

Figure 4.1 is a graphical representation of the mean and median response times

by condition. The figure does show a consistent skew in the direction of quicker
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Fig. 4.1. Overview of data

Table 4.3.
Mean and Median Response time by condition

Condition Mean response time (secs) Median response time

Easy 10.33 4.7

Medium 11.07 4.28

Hard 9.64 3.56

responses across the three task difficulty conditions. Per the results shown in Table

4.3 and Table 4.4 there is no statistically significant difference between the mean

response times for the Easy, Medium and Hard Conditions. This finding, along with
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Table 4.4.
Results of T-test between conditions

Condition P-value

Easy versus Medium .507

Easy versus Medium .5338

Medium versus Hard .2076

the similarity in median response times, suggested that response time alone is not

predictive of task difficulty nor is difficulty predictive of response time.

This result means that a model that predicted difficulty would not provide any

information about response delay. Two models will need to be developed: one to

predict difficulty and one to predict delay.

4.2.2 Differences in means by experience level

The next phase of the analysis focused on determining the effect of experience

on response time once it had been established that the three conditions were not

statistically different from each other. The question this phase sought to answer was

do participants with similar levels of experience per week and per month have similar

response times across conditions.

Based on Table 4.5 it is correct to say that on average higher levels of weekly and

monthly experience correspond to a faster response to a pump failure. The fastest

average response times occurred when the participant was at level 2 or 3 in weekly

experience and 5 or 6 for monthly experience. This suggests that individuals with a

higher level of monthly experience should have faster responses times.

However, when the response times are analyzed by difficulty levels the trend de-

scribed above does not necessarily hold. Participants who were at the level one for

both weekly and monthly experience experienced progressively slower reaction times
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Table 4.5.
Mean response time by Week and Month

Level by week

Level by month

1 2 3 4 5 6 Average

1 11,01 12,41 21,77 21,25 5,54 9,90 13,6

2 11,43 10,34 7,73 10,61 7,12 9,4

3 5,77 10,84 11,60 7,03 8,17 8,7

4 17,94 14,37 10,74 9,57 13,2

5 29,23 10,01 12,96 7,20 9,61 13,8

6 22,99 6,95 10,56 13,5

Average 11 15 14 15 8 9

as difficulty increased. Beyond level two experience per month, additional experience

per week does not correspond to a decrease in response time across all difficulty con-

ditions. Higher levels of experience in the past month and week penalize individuals

in the easy difficult condition but provide a slight benefit in higher difficulties.

These results indicate that measures of experience alone - at least as defined in this

experiment- are insufficient predictors of difficulty and delay. Further, the benefit of

experience does not scale in a predictable manner. This does not mean that a model

built using delay as an input will necessarily be more or less accurate than a model

built without these input features.
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Table 4.6.
Mean response time by Week and Month for easy condition

Level by week

Level by month

1 2 3 4 5 6

1 5,75 23,59 20,25 30,00 19,9

2 13,21 5,06 1,75 5,80 12,14 7,6

3 9,68 13,93 10,21 12,23 10,85 11,4

4 29,12 19,82 10,96 7,60 16,9

5 1,87 10,78 10,36 10,57 8,4

6 6,47 9,74 8,1

6 15 14 11 9 13

Table 4.7.
Mean response time by Week and Month for medium condition

Level by week

Level by month Average

1 2 3 4 5 6

1 10,77 11,22 16,62 18,51 4,84 8,67 11,8

2 3,07 14,64 16,13 17,55 2,44 10,8

3 5,44 6,75 16,49 4,16 7,47 8,1

4 10,30 8,80 13,20 12,76 11,3

5 15,67 10,01 2,46 7,18 8,8

6 29,13 10,10 12,23 17,2

Average 11 7 13 17 9 8
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Table 4.8.
Mean response time by Week and Month for hard condition

Level by week

Level by month Average

1 2 3 4 5 6

1 17,46 10,28 29,21 26,72 6,95 2,03 15,4

2 12,27 10,45 9,50 12,34 1,93 9,3

3 2,82 9,03 9,89 2,80 3,87 5,7

4 3,22 14,67 7,93 8,34 8,5

5 29,23 1,17 29,13 7,72 11,10 15,7

6 10,73 5,81 9,52 8,7

Average 17 14 11 17 7 6
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5. PREDICTING DIFFICULTY

The features used to predict task difficulty were divisible into three categories: partic-

ipant experience, mouse gain and tank gain. Mouse gain was measured by counting

the number of unique instances where the participant‘s mouse was a fixed distance

away from the origin of the on-screen cross hairs. There were sixteen categorical

mouse gain variables measured in ten-pixel increments. Tank gain was measured by

examining the absolute between the values of the two main tanks on a scale of 0-500

broken down into fixed intervals.

Tank gain and mouse gain were selected as predictive features for the follow-

ing reasons. Unlike the number of key presses-which has a positive correlation with

difficulty- mouse gain and tank gain are not immediately correlated with difficulty.

There is no a priori reason to suspect that individuals in the low difficulty would tol-

erate a greater difference in tank values. Further, while the eccentricity of the reticle

was dependent on task difficulty, there was nothing limiting where the individual‘s

mouse could be. Thus, even if the reticle could move up to fifty pixels, a participant

could move their mouse up to three time as much.

A complete listing of all difficulty classification results can be found in graphical

for in A and as tables in B.

5.1 Overview

Seven distinct tests were conducted using the following variables to predict dif-

ficulty. These tests varied the number of variables that could be used to develop a

prediction. These tests are listed below:

1. Weekly and Monthly Experience Only (2 variables)
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2. Mouse Position Only (16 Variables)

3. Mouse Position and Experience (18 variables)

4. Tank differential Only (21 variables)

5. Tank differential and experience (23 variables)

6. . Tank differential and Mouse position (39 variables)

7. Test 6 with the addition of Experience (41 variables)

Table 5.1 shows the average accuracy of the three classes of difficulty prediction models

trained using 90% of the available data sampled at 60Hz. For additional results, see

B. The cells in grey are statistically insignificant results.

Table 5.1.
Average accuracy of workload classifiers

Model 1 2 3 4 5 6 7

Multinomial 30% 93% 89% 51% 51% 88% 91%

Neural Network 33% 89% 88% 54% 47% 81% 91%

Random Forest 30% 95% 89% 51% 54% 91% 95%

The following conclusions can be drawn from this table. First, models trained

using experience alone failed to be statistically significant. This outcome was expected

as task difficulty was randomly assigned. Thus, any correlation between experience

and difficulty is spurious. The second conclusion is that the inclusion of measures of

experience has a mixed effect on the accuracy of a model. There are some instances

where the model will gain a few points of predictive accuracy (columns 6 and 7 of

Table 5.1) and instances where the inclusion of experience results in a loss in predictive

accuracy. Finally, models that include information about mouse differential performed
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Table 5.2.
Average Performance of statistically significant models

Model Lower bound Average Upper Bound

Multinomial 68% 74% 79%

Neural Network 70% 75% 80%

Random Forest 71% 77% 81%

35% better than models that did not have tank differential Table 5.2shows the average

performance of all statistically significant models. The results suggest that random

forest models are the most accurate. However, no one modeling method significantly

out performs any other.

5.1.1 Experience Only

Table5.3shows the results of the multinomial logistic regression, net network and

random forest models built using participant experience as input and trained using

90% of the data as a training set. All three models failed to satisfy all three of

the criteria listed previously. No model had an average accuracy above chance or a

confidence interval that was above chance.

5.1.2 Mouse Data Only

Table5.4shows the results of the multinomial logistic regression, net network and

random forest models built using participant experience as input and trained using

90% of the data as a training set. All three models failed to satisfy all three of

the criteria listed previously. No model had an average accuracy above chance or a

confidence interval that was above chance.



47

Table 5.3.
Mean Model Accuracy using Experience Only

Model Lower bound Accuracy Upper bound Model>Chance

Multinomial 18% 30% 43% 0.96

Neural Network 21% 33% 47% 0.88

Random Forest 18% 30% 43% 0.96

Table 5.4.
Model accuracy using mouse position data

Model Lower bound Accuracy Upper bound Model>Chance

Multinomial 83% 93% 98% 0

Neural Network 78% 89% 96% 0

Random Forest 85% 95% 99% 0

5.1.3 Mouse and Experience Data

Table 5.5 shows the results of the multinomial logistic regression, net network and

random forest models built using mouse data as input and trained using 90% of the

data as a train set. None of the models shown performed worse than chance and all

three satisfied the test criteria. However, these models do perform slightly worse than

models that do not include experience.
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Table 5.5.
Model accuracy using mouse data and experience

Model Lower bound Accuracy Upper bound Model>Chance

Multinomial 78% 89% 96% 0

Neural Network 76% 88% 95% 0

Random Forest 78% 89% 96% 0

Table 5.6.
Model accuracy using tank differential data

Model Lower bound Accuracy Upper bound Model>Chance

Multinomial 37% 51% 64% 0.07

Neural Network 41% 54% 68% 0.02

Random Forest 37% 51% 64% 0.07

5.1.4 Tank Data Only

Table 5.6 shows the results of the multinomial logistic regression, net network and

random forest models built using tank differential data as input and trained using

90% of the data as a train set. The multinomial logistic regression and random forest

models were both statistically indistinguishable from a random guess model. This is

because the lower bound did not exceed chance.
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Table 5.7.
Model accuracy using tank differential and experience

Model Lower bound Accuracy Upper bound Model>Chance

Multinomial 45% 51% 57% 0

Neural Network 41% 47% 53% 0

Random Forest 48% 54% 60% 0

5.1.5 Tank and Experience

Table 5.7 shows the results of the multinomial logistic regression, net network and

random forest models built using tank differential data as input and trained using

90% of the data as a train set. The multinomial logistic regression and random forest

models were both statistically indistinguishable from a random guess model. This is

because the lower bound did not exceed chance.

5.1.6 Tank, Mouse and Experience Combinations

Table 5.8.
Model accuracy using mouse position and tank differential

Model Lower bound Accuracy Upper bound Model>Chance

Multinomial 76% 88% 95% 0

Neural Network 68% 81% 90% 0

Random Forest 81% 91% 97% 0
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Table 5.9.
Model Accuracy using mouse position, tank differential and experience

Model Lower bound Accuracy Upper bound Model>Chance

Multinomial 81% 91% 97% 0

Neural Network 81% 91% 97% 0

Random Forest 85% 95% 99% 0

Table 5.8 shows the results of models built using mouse position, tank differential

as input. Table 5.9 shows the results of models built using mouse position, tank

differential and experience as inputs. While both groups of models are statistically

significant, the models that include experience are 5% more accurate on average.

5.2 Interpretations of Results

The results of these analyses are evidence that task difficulty can be predicted at

a rate above chance. These results indicate that measures of participant experience

are not necessary to create a statistically significant classification model. Excluding

experience only models, the least accurate but statistically significant models are one

built using tank differential and experience. Models built using tank differential alone

were not guaranteed to be statistically significant. The most accurate models were

those built using information about the position of the mouse.

Evidence shows that the inclusion of tank differential to models built using mouse

position data are slightly less accurate on average than mouse data alone. However,

the mean predictive accuracy of these two classes of models are not significantly

statistically different from each other. Further, models that include experience as a
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predictor variable are not significantly statistically different from models that do not

have experience as a predictor variable.
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6. DELAY PREDICTION MODELS

Five distinct tests were conducted using the following combinations of variables to

predict delay in seconds. These tests varied the number of variables that could be

used to develop a prediction. These tests are listed below:

1. Weekly and Monthly Experience Only (2 variables)

2. Number of Key Presses Only (8 Variables)

3. Key Presses and Experience (10 variables)

4. Key presses, mean time between key presses and standard deviation (24 vari-

ables)

5. Test 4 with the addition of Experience (26 variables)

Three regression methods were used to model the relationship between input and

output variables. These methods were: general linear modeling, neural networks and

random forests. In total, fifteen separate models were created for a given sampling

rate. The results shown herein were generated by models using 90% of the available

data sampled at 60Hz. A complete listing of all delay classification results can be

found in graphical for in A and as tables in B.

Table 6.1 shows the RMSE values of fifteen models given the five possible combi-

nations of input variables. These values take on greater significance when compared

to the mean response delay. The mean response delay was 11.2 seconds. These models

are off by over a third of the total range.
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Table 6.1.
RMSE values of regression models at 60Hz

Model Exp Only Key Press Key Press Exp
Key Press,

Mean and SD

Key press,

mean,

SD, and

Exp

Linear 11.8 12.4 12.5 14 12.6

Neural Network 12 10.5 11.6 10.5 11.4

Random Forest 12.9 10.3 11.5 10.7 11

6.1 Model Performance

To say that the regression models performed poorly would be an understatement.

The mean average error of the models does reach a minimum value of 4 seconds. This

occurred when the sampling frequency was equal to a 1/10th of a hertz. There are

reasons to suspect that models built using data at this sampling rate are prediction

a distorted view of real events. Excluding sampling rates below 1/2Hz , the models

will incorrectly predict delay by at least 8 seconds.

Table 6.2.
Regression model performance using experience only

Model RMSE r2 MAE

General Linear Model 11.863 0.000 10.662

Neural Network 12.023 0.025 10.819

Random Forest 12.293 0.001 11.065
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Table 6.3.
Regression model performance using keypress data

Model RMSE r2 MAE

General Linear Model 12.460 0.016 11.068

Neural Network 10.496 0.233 8.675

Random Forest 10.375 0.249 8.371

Table 6.4.
Regression model performance using keypress and experience

Model RMSE r2 MAE

General Linear Model 1.,537 0.025 11.178

Neural Network 11.655 0.094 9.535

Random Forest 11.581 0.110 9.474

Table 6.5.
Regression model performance using keypress and interaction times

Model RMSE r2 MAE

General Linear Model 14.544 0.046 10.717

Neural Network 10.537 0.202 8.325

Random Forest 10.772 0.170 8.566

When the r2 value of the models is taken into consideration, it becomes apparent

that the models are essentially predicting the mean response time of the data set. This

is evidence by the low r2 values. There are three explanations for these outcomes.
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Table 6.6.
Regression model performance using keypress, interaction times and ex-
perience

Model RMSE r2 MAE

General Linear Model 12.265 0.020 10.915

Neural Network 11.450 0.122 9.168

Random Forest 11.014 0.173 9.298

The first explanation is that the underlying distribution of the data is skewed to the

left. This evidence for this assertion comes from

Table 6.6 where it is apparent that the mean response time is larger than the

median response time. The second explanation is that the selected variables are not

simply not predictive of delay. The third and final explanation is that the selected

variables could be valid, but the relationship is not linear.

6.2 Predicting Delay Group

No regression model could be found that accurately predicted delay. The decision

was made to convert the regression problem into a classification problem by clustering

the delay responses based on similarity. The logic was that rather than predicting

a participant delay in second, it would be possible to predict which delay cluster

they would belong in based on a set of variables. A K-Nearest Neighbors clustering

algorithm was applied to the delay data. The resulting clusters are shown below in

Figure 6.1. The results show that delay can be divided into three clusters centered

at: 2.54, 10.92 and 28.26 seconds. What is not shown in this image is the number

of individuals in each cluster. 60% of the participants belong to cluster one while

the reaming 40% were split between the remaining two clusters. Given this class

imbalance, a model that was guessing cluster membership would be correct 60% of
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Fig. 6.1. Results of Cluster Analysis.

the time. In the context of the success criteria outlined previously, a model would be

considered significant if the mean accuracy was better than chance and the confidence

interval was above chance.

6.2.1 Result

Table 6.7 shows the mean average accuracy of delay group prediction models

training using data sampled at 60 Hz. Only neural networks build using key press

variables were statistically significant at 72% with an upper and lower bound on the

prediction at 58.6% and 83%. These results prove that a delay can be classified at a

rate above chance. However, the preponderance of models that failed to be statisti-

cally significant are evidence that the selected combination of predictor variables is

insufficient.

There are two possible solutions to the class imbalance problem under consider-

ation. The first possible solution is to collect more data to assess if the imbalance
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Table 6.7.
Mean Accuracy of Delay Prediction

Model Exp. Only Key Press
Key Press

Exp.

Key Press,

Mean,

and SD

Key press,

Mean,

SD,

and Exp.

Multinomial 60% 60% 56% 65% 65%

Neural Network 60% 72% 65% 67% 67%

Random Forest 54% 68% 64% 67% 70%

persists. The second option is to use cost sensitive learning techniques to penalize

the more common class. This method has been previously shown to correct class

imbalance problems (Elkan, 2001; Zhang & Oles, 2001) .
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7. EFFECT OF SAMPLING RATE AND TRAINING SET

SIZE

The following section is divided into three parts. Section 7.1 provides a short overview

of summary of the mean, median and number of unique values generated at a given

sampling rate. Section 7.2 details the effects of experience, sampling rate and training

set size on the categorization accuracy of difficulty classification models. Section 7.3

details the effects of experience, sampling rate and training set size on the categoriza-

tion accuracy of delay classification models.

A complete listing of the results can be found in graphical for in A and as tables

in B.

7.1 Means, Medians and Unique values

Table 7.1 shows the mean and median values of the analyzed data at different

sampling rates along with the number of unique delay times in each of the data sets.

As the sampling rate decreases, the median value of the dataset will increase while

the number of unique entries decreases. This is a consequence of how the algorithms

calculated delay.

The algorithm sequentially searched for a failure flag in each of the eight columns

of pump data. Once the failure flag had been found, the algorithm would count

the number of rows between the failure state and the correction of that state. The

sampling rate was altered by removing rows at a particular interval. If the change in

the size of the sampling window is small enough, the difference in recorded reaction

times is not immediately apparent.

Table 7.2 shows a graphical representation of how sampling rate affected the data.

Each row in the table is a fixed time step. At 60Hz, all 12 rows will be included in the
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Table 7.1.
Table of Means, Medians and Unique Values

Sampling Frequency (Hz) Mean Median Min Max Unique

60 11.36 4.20 0.10 29.98 279

30 11.36 4.18 0.10 29.96 225

12 11.32 4.16 0.08 29.91 148

6 11.29 4.16 0.33 29.83 99

3 11.18 4.00 0.33 29.66 68

2 11.09 4.00 0.50 29.50 49

1 11.18 5.00 1.00 29.00 29

1/2 12.57 10.17 2.00 28.00 15

1/4 12.199 7.86 4.00 24.00 7

1/10 10.627 6.52 6,52 20.00 3

processed data. The 30Hz sample will contain half the number of rows as the 60Hz

data. The 60Hz data accurately represents when the pump switched from failed to

active (row 8). Data sampled at 30Hz shows the same failure being corrected at row

9 while data sampled at 12Hz captures the change in state at row 11.

The difference between the rows is 0.0166 seconds. This time is small enough

that detecting the same event one row later does not significantly alter the outcome.

When the sampling rate is slow enough, the time difference between sampled rows

can exceed two seconds. The system is essentially blind to state changes that occur

faster than the sampling window and will round a participant‘s response up to the

nearest whole unit. This is why the minimum possible recorded value increases as the

sampling rate decreases. Delay values that fall between sampled rows are coerced up

to the nearest sampled value. For example, if the sampling rate captured every tenth
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Table 7.2.
Graphical Explanation of the effect of sampling rate

Row Number State 60Hz 30Hz 12 Hz Time (secs)

1 Fail Yes Yes Yes 250.0000

2 Fail Yes No No 250.0167

3 Fail Yes Yes No 250.0333

4 Fail Yes No No 250.0500

5 Fail Yes Yes No 250.0667

6 Fail Yes No Yes 250.0833

7 Fail Yes Yes No 250.1000

8 Active Yes No No 250.1167

9 Active Yes Yes No 250.1333

10 Active Yes No No 250.1500

11 Active Yes Yes Yes 250.1667

12 Active Yes No No 250.1833

row but the participant responded at the 36th row, then their response time would

be set equal to the time value in the 40th rows.
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7.2 Difficulty Classification

The following sections contain two types of heat maps. One Heat-map shows the

95% confidence interval for a given modeling method built using tank variables and

tank and experience variables respectively. These two families of models had the

lowest predictive accuracy of all models excluding experience only models. The bluer

values represent smaller ranges. The second Heat-maps show the classification accu-

racy for given modeling method built using tank variables and tank and experience

variables respectively.

A complete listing of difficulty classification results can be found in Appendices

A and B.

7.2.1 Multinomial Logistic Regression

Effect of Experience

Figure 7.1 and Figure 7.2 are Heat-maps showing the 95% confidence interval for

multinomial logistic regression models built using tank variables and tank and expe-

rience variables respectively. These two families of models had the lowest predictive

accuracy of all models excluding experience only models. The bluer values represent

smaller ranges.

Three conclusions can be drawn from these figures. The first conclusion is that

increasing the ratio of data in the training set corresponds with a larger range between

the upper and lower bound of the confidence interval for models built with and without

experience as an input. The second conclusion is that altering the sampling rate does

not have an effect on the range of the confidence interval for models built with and

without experience. However, the inclusion of experience reduces the range of the

confidence interval at training and testing splits above 75%.
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Fig. 7.1. Heat-map of Confidence Intervals for multinomial logistic regres-
sion models without experience

Effect of Sampling Rate and Training Set Size

Figure 7.3 and Figure 7.4 are Heat-maps showing the classification accuracy for

multinomial logistic regression models built using tank variables and tank and expe-

rience variables respectively. These two families of models had the lowest predictive

accuracy of all models excluding experience only models. The bluer values represent

higher accuracies. The numbers are the p value for the model.

Three conclusions can be drawn from these figures. The first conclusion is that

reducing the sampling rate of the data neither significantly increases nor decreases

classification accuracy for a given training ratio. The second conclusion is that in-

creasing the training ratio corresponds with a marginal gain in accuracy for a given

sampling rate. Finally, there is an effect of training ratio on the statistical signifi-

cance of a model when experience is included. Models built without experience are

guaranteed to be statistically significant at training splits below 50% while models
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Fig. 7.2. Heat-map of Confidence Intervals for multinomial logistic regres-
sion Models with experience

with experience are guaranteed to be statistically significant at training splits above

50%.

Interpretation

The evidence shown above demonstrates that the inclusion of experience has the

following effects on classification accuracy of multinomial logistic regression models.

First, experience will reduce the range of the confidence interval in models trained

using 50% or more of the available data. The inclusion of experience into a model

implies that a larger training set is required to guarantee a statistically significant

prediction. Finally, the inclusion experience does not increase the accuracy of the

model.
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Fig. 7.3. Heat-map of Prediction Accuracy for multinomial logistic regres-
sion Models without experience

7.2.2 Neural Networks

Effect of Experience

Figure 7.5 and Figure7.6 are Heat-maps showing the 95% confidence interval for

neural net models built using mouse and tank variables and mouse, tank and ex-

perience variables respectively. The bluer values represent smaller ranges. Three

conclusions can be drawn from these figures. The first conclusion is that increasing

the ratio of data in the training set corresponds with a larger range between the

upper and lower bound of the confidence interval for models built with and without

experience as an input. The second conclusion is that altering the sampling rate does

not have an effect on the range of the confidence interval for models built with and

without experience. However, the inclusion of experience increases the range of the

confidence interval at training and testing splits above 75%.
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Fig. 7.4. Heat-map of Prediction Accuracy for multinomial logistic regres-
sion models with experience

Effect of Sampling Rate and Training Set Size

Figure 7.7 and Figure 7.8 are Heat-maps showing the classification accuracy for

neural net models built using mouse and tank variables and mouse, tank and expe-

rience variables respectively. These two families of models had the lowest predictive

accuracy of all models excluding experience only models. The bluer values represent

higher accuracy predictions. The numbers are the p value for the model.

Three conclusions can be drawn from these figures. The first conclusion is that

reducing the sampling rate of the data does not consistently decrease the accuracy of

a model. The second conclusion is that increasing the training ratio corresponds with

a marginal gain in accuracy for a given sampling rate. Finally, there is an effect of

training ratio on the accuracy of a model when experience is included. The inclusion

of experience in models built using less than 10% of the data perform marginally

above chance. The inclusion of experience will decrease the accuracy of a model.
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Fig. 7.5. Heat-map of Confidence Intervals for Neural Net Models without
experience

Interpretation

The inclusion of experience does not change the confidence interval of models built

using less than 50% of the data. However, the inclusion of experience can make models

statistically insignificant when training split and sampling rate are controlled. For

larger training splits experience will only marginally reduce the confidence interval of

a prediction.

7.2.3 Random Forests

Effect of Experience

Figure 7.9 and Figure7.10 are heat-maps showing the 95% confidence interval

for neural net models built using mouse and tank variables and mouse, tank and

experience variables respectively. The bluer values represent smaller ranges. Three
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Fig. 7.6. Heat-map of Confidence Intervals for Neural Net Models with
experience

conclusions can be drawn from these figures. The first conclusion is that increasing

the ratio of data in the training set corresponds with a larger range between the

upper and lower bound of the confidence interval for models built with and without

experience as an input. The second conclusion is that altering the sampling rate does

not have an effect on the range of the confidence interval for models built with and

without experience. However, the inclusion of experience reduces the range of the

confidence interval at training and testing splits above 75%.

Effect of Sampling Rate and Training Set Size

Figure 7.11 and Figure 7.12 are heat-maps showing the classification accuracy

for random forest models built using mouse and tank variables and mouse, tank

and experience variables respectively. These two families of models had the lowest

predictive accuracy of all models excluding experience only models. The bluer values
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Fig. 7.7. Heat-map of Prediction Accuracy for Neural Net Models without
experience

represent relatively more accurate predictions. The numbers are the p value for the

model.

Three conclusions can be drawn from these figures. The first conclusion is that

reducing the sampling rate of the data does not consistently decrease the accuracy of

a model for training splits under 75%. The second conclusion is that increasing the

training ratio does correspond with a marginal gain in accuracy for a given sampling

rate for models built with experience. Finally, there is an effect of experience on the

accuracy across all sampling conditions. The models are less accurate but will always

be statistically significant.

Interpretation

The inclusion of experience will reduce the range of the confidence interval for

models built using a training split greater than 75%. However, the inclusion of expe-
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Fig. 7.8. Heat-map of Prediction Accuracy for multinomial logistic regres-
sion models with experience

rience reduces the accuracy of the models but will ensure the prediction is statistically

significant. The most accurate models do occur at higher training splits but if the

sampling rate and training split are reduced a model of equivalent accuracy will be

generated.

7.2.4 Discussion

The models shown in the previous sections were difficulty classification models

built using tank variables and tank and experience variables. The models produced

using different combinations of predictor variables were consistently performing above

80% classification accuracy. However, the data yields three important findings. The

first is that including experience will reduce the confidence interval of a prediction

and decrease the accuracy across multiple training splits and sampling rates.
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Fig. 7.9. Heat-map of Confidence Intervals for Random Forest Models
without experience

The second finding is that altering the size of the training split does have an effect

on the statistical significance of a model when controlling for experience. Models built

using experience require a larger training split to guarantee statistical significance.

Finally, altering sampling rate had a marginal effect on predictive accuracy. There is

no sampling rate where all models fail to be significant.
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Fig. 7.10. Heat-map of Confidence Intervals for Random Forest Models
with experience

Fig. 7.11. heat-map of Prediction Accuracy for Random Forest Models
without experience
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Fig. 7.12. heat-map of Prediction Accuracy for Random Forest Models
with experience
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7.3 Delay Classification

The following sections contain two types of heat maps. One heat-map shows

the 95% confidence interval for a given modeling method built using the number of

keypress and the number of keypress and experience variables respectively. These two

families of models had the best predictive accuracy of all models excluding experience

only models. These two families of models had the lowest predictive accuracy of all

models excluding experience only models. The bluer values represent smaller ranges.

The second heat-maps show the classification accuracy for a given modeling method

built using keypress and the number of keypress and experience variables respectively.

A complete listing of delay classification results can be found in classification

results Appendices A and B.

7.3.1 General Linear Regression

Effect of Experience

Figure 7.13 and Figure 7.14 heat-maps showing the 95% confidence interval for

general linear models built using the number of keypress and the number of keypress

and experience variables respectively. These two families of models had the best

predictive accuracy of all models excluding experience only models. The bluer values

represent smaller ranges.

Two conclusions can be drawn from these figures. The first conclusion is that

the inclusion of experience does not alter the size of confidence intervals. The second

conclusion is that models produced using a 90% training split and data sampled at

1/4 Hz have the greatest range.
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Fig. 7.13. heat-map of Confidence Intervals for multinomial logistic re-
gression models without experience

Effect of Sampling Rate and Training Set Size

Fig. 7.16. heat-map of Prediction Accuracy for general linear models with
experience
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Fig. 7.14. heat-map of Confidence Intervals for multinomial logistic re-
gression Models with experience

Figure 7.15 is a heat-map showing the classification accuracy for general linear

models using the number of keypress. Figure 7.16 is a heat-map showing the classifi-

cation accuracy for general linear models using the number of keypress and experience

variables . These two families of models had the greatest predictive accuracy of all

models excluding experience only models. The bluer values represent relatively more

accurate predictions. The numbers are the p value for the model.

There were only eight models that accurately predicted delay group at a rate above

chance in Figure7.15 and only one model that accurately predicted delay group at a

rate above chance in Figure 7.16. This is strong evidence that experience penalizes

model performance. The second conclusion is that for models that do not have

experience and are built using data sampled faster than 1/Hz, the only statistically

significant models occur at 30Hz, 6Hz, 3Hz, 2Hz and 1 Hz.
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Fig. 7.15. heat-map of Prediction Accuracy for general linear models
Models without experience

7.3.2 Neural Networks

Effect of Experience

Figure ?? and Figure?? are heat-maps 95% confidence interval for neural net

models built using the number of keypress and the number of keypress and experience

variables respectively. These two families of models had the best predictive accuracy

of all models excluding experience only models. The bluer values represent smaller

ranges. Two conclusions can be drawn from these figures. The first conclusion is that

the inclusion of experience does not alter the size of confidence intervals. The second

conclusion is that models produced using a 90% training split and data sampled at

1/4 Hz have the greatest range.
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Fig. 7.17. heat-map of Confidence Intervals for Neural Net Models without
experience

Effect of Sampling Rate and Training Set Size

Figure 7.19 and Figure 7.20 are heat-maps showing the classification accuracy for

neural net models built using mouse and tank variables and mouse, tank and expe-

rience variables respectively. These two families of models had the lowest predictive

accuracy of all models excluding experience only models. The bluer values represent

relatively more accurate predictions. The numbers are the p value for the model.

Three conclusions can be drawn from these figures. The first conclusion is that

a little more than half of all combinations of training split and sampling rate will

result in a statistically significant model when experience is not included. There

are 18 combinations of training split and sampling rate will result in a statistically

significant model when experience is not included. This is evidence that experience

does penalize a models significance. There is a range of sampling frequencies at

the 25% training split that consistently produce statistically significant models when
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Fig. 7.18. heat-map of Confidence Intervals for Neural Net Models with
experience

experience is and is not included. Experience does have an impact on the required

sampling frequency at the 90% training split. Models that do not have experience

will be statistically significant at 60Hz and 12Hz while models with experience will

be statistically significant at 3Hz and 2Hz.

Interpretation

The evidence demonstrates that neural network models can predict delay group

under specific training split conditions. Models built using 25 to 50% of the available

data are more likely to be statistically significant at variety of sampling frequencies.

There is an interesting trend that occurs models built using data sampled under of

a hertz that is discussed later in the paper.
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Fig. 7.19. heat-map of Prediction Accuracy for Neural Net Models without
experience

7.3.3 Random Forests

Effect of Experience

Figure 7.21 and Figure7.22 are heat-maps showing the 95% confidence interval

for neural net models built using the number of keypress and the number of keypress

and experience variables respectively. These two families of models had the best

predictive accuracy of all models excluding experience only models. The bluer values

represent smaller ranges. Two conclusions can be drawn from these figures. The first

conclusion is that the inclusion of experience does not alter the size of confidence

intervals. The second conclusion is that models produced using a 90% training split

and data sampled at 1/4 Hz have the greatest range.
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Fig. 7.20. heat-map of Prediction Accuracy for multinomial logistic re-
gression models with experience

Effect of Sampling Rate and Training Set Size

Figure 7.23 and Figure 7.24 are heat-maps showing the classification accuracy for

random forest models built using the number of keypress and the number of keypress

and experience variables respectively. These two families of models had the best

predictive accuracy of all models excluding experience only models. The bluer values

represent higher accuracy. The numbers are the p value for the model.

The first conclusion is that a little under a quarter of all combinations of training

split and sampling rate will result in a statistically significant model when experi-

ence is not included. There are 16 combinations of training split and sampling rate

will result in a statistically significant model when experience is not included. This

is further evidence that experience does provide a smaller benefit to model‘s signif-

icance. However, models built with experience are not more accurate than models

built without experience.
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Fig. 7.21. heat-map of Confidence Intervals for Random Forest Models
without experience

The inclusion of experience to will increase the size of the training split required to

produce a statistically prediction. Further models built using data sampled at slower

rates did perform worse than models built using data sampled at a higher sampling

rate. The best models were built using 90% of the data which included experience

and was greater than 6Hz.

Interpretation

The evidence demonstrates that neural network models can predict delay group

under specific training split conditions. Models built using 25 to 50% of the available

data are more likely to be statistically significant at variety of sampling frequencies

when experience is not a factor. The inclusion of experience does increase the size of

the training split required to produce a statistically significant model.
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Fig. 7.22. heat-map of Confidence Intervals for Random Forest Models
with experience

Hz and 1/10 Hz

These two sampling frequencies represent a special case for all delay prediction

models regardless of model type, training set split and combination of predictor vari-

ables. No model built using data sampled at a 1/4Hz was statistically significant.

Models built using data sampled faster than this frequency were not guaranteed to

be statistically significant but for the majority of combinations of experience, sam-

pling rate and training split there was at least one statistically significant model. The

evidence shows that the minimum viable sampling frequency is a Hz.

Models built at 1/10 could be statistically significant, but they are excluded from

consideration for the following reason. Per Table 7.1 the minimum recorded response

time was a little over 6 seconds while the maximum response time was 20 seconds.

Further, there were only three possible response outcomes. Considering that the ‘real
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Fig. 7.23. heat-map of Prediction Accuracy for Random Forest Models
without experience

’response time was between 0 and 30, sampling at a 1/10 of a hertz fundamentally

misrepresents the world.

7.3.4 Discussion

The models shown in the previous sections were delay classification models built

using the number of keypress and the number of keypress and experience variables

respectively. These two families of models had the best predictive accuracy of all

models excluding experience only models. The evidence confirms that it is possible

to construct a model that will predict delay group at a rate above chance.

Three additional findings can be derived from the data. The first is that neural

networks are the most consistent models when it comes to predicting delay group

while multinomial logistic regression models are the least consistent. Further there

is evidence that a statistically significant model can be constructed for most combi-
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Fig. 7.24. heat-map of Prediction Accuracy for Random Forest Models
with experience

nations of predictor variables, sampling frequency and training split. There is strong

evidence that proves that the minimum sampling rate is 1/2 Hz.
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8. SUMMARY AND DISCUSSION OF RESULTS

The following hypotheses were tested during this experiment:

Null Hypothesis 1 : The first null hypothesis states that the number of correct clas-

sifications of task difficulty is equal to chance (1/3).

Hypothesis 1 : The first hypothesis is that the number of correct classifications of

participant workload is greater than chance.

Null Hypothesis 2 : The second null hypothesis states that the number of correct

classifications of participant delay groupings is equal to chance (1/N) where N is

the number of clusters which best describes the data.

Hypothesis 2 : The second hypothesis states that there is a sampling rate and a

training/test split below which a model would perform no better than chance.

Null Hypothesis 3 : The third null hypothesis states that the inclusion of demographic

measures would not decrease the confidence interval of a prediction.

Hypothesis 3 : The third hypothesis states that the inclusion of demographic mea-

sures would decrease the confidence interval of a prediction.

There is sufficient evidence to reject Null Hypothesis 1 in favor of Hypothesis 1. The

results of this research project indicate that task difficulty, and by proxy subjec-

tive workload, can be determined using recorded and derived system state data at a

rate above chance. The evidence further demonstrates that an individual‘s delay in

responding to an on-screen event cannot be consistently predicted using regression

models. Further, there is sufficient evidence to reject Null Hypothesis 2 in favor of

Hypothesis 2. The evidence demonstrate that the delay cluster a participant will

belong to can be predicted at a rate above chance.
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There is sufficient evidence to reject Null Hypothesis 3 in favor of Hypothesis 3.

The inclusion of experience will reduce the confidence interval of a categorization

prediction but decrease the accuracy of said prediction across multiple training splits

and sampling rates. In the context of delay prediction, the inclusion of experience

will increase the size of the training split required to produce a statistically significant

prediction for random forest models. The inclusion of experience will have a detri-

mental effect on the prediction accuracy of multinomial logistic regression and neural

network models by reducing the total number of significant models. These results

indicate that an analyst can produce a statistically significant difficulty and delay

classification model both with and without the benefit of knowing the participant‘s

experience.

The evidence does not support the rejection of Null Hypothesis 2 for difficulty

prediction models. There was no combination of training set split and sampling rate

that would result in a statistically insignificant difficulty prediction model. Hypothesis

2 could be falsified for delay prediction models. There were multiple combinations

of sampling rates and raining set splits that results in a statistically insignificant

prediction. Further work is needed to determine if this outcome is attributable to the

existence of a class imbalance.

8.1 Discussion

One of the main inspirations for this work stemmed from a paper that demon-

strated that mobile phones can be used to predict individual activity levels. The

same paper showed that it was possible to predict if an individual user had Parkin-

son’s disease based on how the phone was moving (Antos, Albert, & Kording, 2014).

The ability to detect if a phone was carried on a belt, in a pocket, or in a purse is

not broadly useful to the human factors community. The source and volume of data

used to make those predictions and the method used to collect the data is useful to

the human factors community.
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The rapid proliferation of the types of data available in conjunction with an in-

crease in the rate at which data is produced presents a problem for the human factors

discipline. The tools and techniques used by human factors practitioners are not

designed to model the performance of a human operator in real time or collect per-

formance data an unintrusive manner. The tools presently available to practitioners

can precisesly assess an operator’s cognitive load when performing a task. In order to

measure operator workload a researcher either needs to wait for the task to conclude

or interrupt the operator while performing the task. The literature shows that inter-

rupting an operator during a task has a negative impact on task performance (Bailey

& Konstan, 2006; Bailey, Konstan, & Carlis, 2001; Adamczyk & Bailey, 2004).

The results of this research show that a measure of human performance can be

derived from continuous system state data without interfering with task performance.

These results should be read in the same way as the ability to detect where a phone

was being carried. Both studies show that information about the operator can be

interred using data collected by a system without the operator’s explicit knowledge.

The results of both studies point to the need to employ supervised learning methods

when making a prediction about the operator.

The results further demonstrate that response delay can be predicted under certain

conditions. The following caveats do apply to this result. First, the variables used to

predict response delay were dependent on time. Changes to the sampling rate caused

a change to the values of the predictor and outcome variables. While the change was

on the order of milliseconds, the consequences of that change are profound.

A unique consequence of the current research is the ability to measure human

performance without knowing demographic information such as gender or age. The

implications of this consequence cuts two ways. A positive implication of this work

is that an accurate model of operator performance can be derived using system data

alone. This allows for a general model of operator performance to be constructed.

However, a general performance model would not account for variations in individual

performance. For example, a general model of driving behavior may misclassify a



88

driver as being drunk when in fact they may have neurological issues. Demographic

information should be used to tailor a model to to better assess a specific operator.

The results of the paper shows that the inclusion participant experience at least

in how it was defined in this study does not improve model performance. This does

not mean that experience does not play a role in individual performance; Rather, the

result suggests that the operational definition of experience used in this experiment

was possibly over-broad.

The results of manipulating the data sampling rate demonstrate that the mini-

mum sampling rate necessary to produce a statistically significant categorization of

response delay is 1/2Hz. Data sampled below this frequency either misrepresents the

operator‘s true performance or results in a statistically insignificant model. There was

no sampling frequency below which task difficulty could not be classified. Finally, the

evidence demonstrates that the size of the training/test split has an impact on model

performance. Delay and task difficulty classification models trained using a smaller

train/test split had smaller confidence intervals but were not necessarily more likely

to be statistically significant.

In short, this research shows that a measure of human performance can be inferred

from continuous event data. Thus, it is possible to say that state y was observed

therefore, the operator was in state x.

8.1.1 Modeling Techniques and Data

None of the classification techniques, multi-nominal logistic regression, neural net-

works, and random forests, clearly performed worse than the others. All three mod-

els performed had an average classification accuracy of 75% , excluding statistically

insignificant predictions. No clear recommendation can be made on the basis of ac-

curacy.

Multi-nominal logistic regression models were the most likely to be statistically

insignificant when predicting response delay. Neural network and random forest mod-
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els were less likely to be statistically insignificant under the same conditions. Both

neural networks and random forests had similar predictive accuracy when predicting

task difficulty and response delay. Random forests should be used in future research

as they are less computationally intensive.

Alterations to features in the data have a greater impact on the prediction of

response time. The consequences of these changes should be interpreted through the

lens of signal processing. Decreasing the rate at which the data is sampled leads to

the system loosing information. This is most evident when calculating response time.

An individual may have responded to the pump failure in two and a half seconds.

If the sampling window is larger than a half second, then the individual’s response

will be collected at the next whole interval. This would transform a 2 1/2 second

response into a 3 second response. This loss of a 1/2 second may be imperceptible

to an operator but it could lead a system to acting in an unexpected way. This does

not occur when predicting task difficulty. The data used to predict difficulty was not

dependent on time, but it was dependent on position. It is possible to meaningfully

reconstruct the mouse trajectory even if rows are missing.
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9. IMPLICATIONS

The tools and techniques used by human factors practitioners were not intended to

collect and process data in near real-time. Imagine you are measuring operator work-

load under various road conditions using the NASA-TLX under laboratory conditions.

Ask the driver to complete the TLX too frequently and their driving performance will

suffer. You are left with the question: did drivers perform the task poorly because

you kept distracting them or because the task was actually hard? Ask the driver to

complete the TLX too infrequently and you cannot easily identify what aspects of

the task required the driver to exert more effort.

This example points to multiple growth direction for the human factors discipline.

The first direction entails the development of tools that measure human performance

in near real-time. This development process would be slow and expensive. The other

direction would combine elements of data science with human factors engineering

techniques.

A researcher would need to clearly link a state of the system with a measure of

operator performance in order to properly combine data science and human factors

engineering techniques. This link would need to be verified under laboratory con-

ditions. During this stage the research would also formulate operator archetypes.

These archetypes would be used to describe collections of individuals with similar

performance characteristics.

It possible to find multiple operator archetypes given a sufficiently large volume

of data by using unstructured learning methods. Once these archetypes have been

identified, you could designate one group as safe drivers and another as unsafe drivers.

However, this blind classification would not account for individual variability or ex-

ternal environmental factors. Laboratory studies would be needed to ensure that the

archetypes were reflective of real operators.
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The data science and human factors disciplines complement each other. The

results of human factors studies help guide data science research by providing an

objective measure of a behavior. Data science provides human factors engineers with

data from hundreds of participants. This allows for human factors experiments to be

conducted at scale.

The results of this research have implications for research related to human au-

tomation pairings. One of the key questions in automation design is when to exclude

or include the human in a control loop. The ability to predict how long an operator

will take to respond to an unexpected event is beneficial for determining when the

automation could take preemptive action. A similar argument could be constructed

for when to delegate control to the human or to the automation based on operator

workload.

However, these solutions may create more problems than they solve. A blanket

rule stating that any nonoptimal response is ‘incorrect’ignores the contexts which

operators will find themselves in. Many solutions that appear suboptimal are perfectly

valid alternate solutions. For example, rerouting fuel through the working parts of a

system to bypass the failed parts is an equally valid solution to restarting a broken

pump.

This research has further implications on the design of systems that employ rule

based automation. Imagine a system that operated using the following rules:

• When workload is high, take control from the operator until stable workload is

reached.

• When workload is low, give control to the operator until stable workload is

reached.

The goal of the automation is to keep operator workload at some predetermined

equilibrium. However, there are circumstances where high workload is desirable and

removing control may hinder the operator. If these rules are applied without consid-
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eration to operational context, then the automation may contribute to performance

issues.

9.1 Experimental Designs

The data collection method used in this experiment has implications for future

work involving crowd-sourced human factors experiments. The task used in this

experiment was designed to quickly capture data from a large subject pool with

minimal investment. The ability to quickly collect responses from a large and diverse

subject pool allows a researcher to capture a wider variety of responses at a marginal

cost. The behavior of the task can be easily altered in response to new discoveries in

the data. For example, the task can be altered so that the pump fails two minutes

into the experiment by changing one line of code.

There are risks with this low-cost, high-yield design method. The lack of direct

oversight makes it difficult to identify low effort responses in real-time. The task

instructions have to be as unambiguous as possible to prevent confusion. For example,

one of the participants in the study contacted the experimenter asking what ’pull the

reticle’ meant. They explained that English was not their first language and had

never seen the verb pull used in this context before.

The goal of this experiment is not to replace or supplant laboratory experiments.

There are certain tasks, such as driving, that are best studied in a laboratory setting.

Laboratory experiments also permit a degree of control over when and how stimuli

are presented to subjects. Critically, laboratory experiments allow for a clear link

between between stimulus and response to be established.

Ideally, laboratory studies and low-cost, high-yield studies would be used to com-

plement. Laboratory experiments are needed to clearly establish if the task captures

the phenomena of interest. The low-cost, high-yield studies are needed to capture the

phenomena at scale.
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9.2 Data Driven Discrimination

It is irresponsible to minimize the negative implications of this research while

overselling the positive implications.

You know that this is every pilot or machine operator‘s worst nightmare

because it would open up the possibility for an airline or employer to

establish an expected response time to a particular event? This would

create all sorts of instances of people being penalized for not meeting some

form of expected response time or manner of their response. Commercial

pilots on the more modern airlines have just about every aspect of their

performance analyzed by their employer as it is which adds pressure to

an already complicated and stressful work environment.

The quote above was sent in response to a participant recruitment advert and

perfectly captures the negative consequences of this research. The ability to predict

reaction times and assess the state of the operator is beneficial. Doing so without

an understanding of individual variation or consideration of context may result in

harmful outcomes.

One could easily imagine a situation where an insurance company altered your

rates in response to your driving behavior. This could potentially be used to discour-

age dangerous behaviors such as erratic driving by imposing a financial penalty on

the behavior. If the system did not know if a driver has a neurological impairment, it

is possible that individual’s behavior could be seen as erratic driving. This introduces

the real possibility of algorithmic discrimination.

The question is not if data will be used in such a manner; the question is when.

9.3 Beyond the Data

There are several claims that are suggested but cannot be supported by the data.

First, demographic data may be sufficient but not necessary when predicting individ-
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ual workload. Demographic data was not included as a predictor in this experiment,

yet statistically significant prediction models were constructed.

The data suggests that the perceived difficulty of a task can be dynamically ma-

nipulated in real time. Dynamic difficulty adjustment (DDA) is employed by game

designers to tailor the game play experience to an individual. Dynamic difficulty

adjustment could be used in automated driving or situations where humans are su-

pervising automated agents.

Finally, the data suggests that the tools and methods employed could be used to

detect other aspects of human performance. The web-based interface is based on an

existing interface that has been used to study human performance. It is reasonable to

assume that the current interface could be modified to measure operator distraction.

9.4 Human Factors Education

The human factors discipline has reached an inflection point in regards to data.

It is an undeniable fact that data is going to be produced at faster rates and higher

volumes. The tools and techniques used by human factors professionals were not

designed to process large volumes of data in near real-time.

Human factors education will need to adapt to better reflect the changing data

landscape that researchers and practitioners will face in the future. This could happen

in several ways. Educational institutions could encourage human factors students to

take courses in data science to teach them how to navigate large, complex, and multi-

faceted data sets. Machine learning and programming courses could become required.

The goal is not to make human factors engineers expert data scientists. Data sci-

ence is a distinct discipline that draws from a different skill set. The aim of such educa-

tion would be to: a) provide human factors practitioners with enough understanding

of data science to properly apply these techniques to human factors problems, and b)

preserve the discipline by applying a skeptical lens to data science methods. There

is the temptation among data scientists to label a sub-set of performance data as the
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result of sub-optimal human performance. Human factors practitioners will need to

use their expertise to rein in these potentially erroneous classifications.
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10. LIMITATIONS

The results of this research are subject to the several limitations. The MATB-II has

previously been used in studies involving both pilots and gamers. This is why gamers

and pilots were chosen for this study.

One can directly compare the experience level of two pilots by asking what certifi-

cations they have obtained and their total logged flight hours. Similarly, it is possible

to compare the experiences of two games by asking how many hours of gaming they

play in a week. However, the experiences between the two groups may not be directly

comparable.

The measure of experience used in this experiment only counted the number of

hours per week and per month a participant had participated in either activity. This

measure excludes additional information (e.g. the type of games played or type certi-

fication) that can be used to describe participant experience. The resulting measure

of experience is possibly uninformative. This limits the ability to definitively state

that experience has a negligible impact when predicting either response delay or task

difficulty.

The results are further limited by the number of gamers and pilots who partic-

ipated in the study. Only 30 pilots completed the study. This could be attributed

to one of two factors. There is a financial barrier of entry to being a pilot. This

barrier would naturally reduce the number of pilots that can be studied. Gaming

does not have this financial barrier. This barrier to access limits the ability to clearly

determine if there was a significant difference between pilot performance and gamer

performance.
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10.1 Technical Limitations

The results of this research are subject to the following technical limitations. The

data was resampled at the following intervals: 30Hz, 12Hz, 6Hz, 3Hz, 2Hz, 1Hz, Hz,

1/4Hz and 1/10Hz as described in 3.4.1. With the exception of the 12Hz and 1/10Hz

sampling rates, each sampling rate is the Nyquist frequency of the proceeding value.

This sequence guaranteed that the resampling algorithm would need to sample rows

at a whole interval .The algorithm would have needed to interpolate the value of a

fractional row which would have injected additional error into the data.

The second technical limitation stems from the non-exhaustive search all possible

modeling techniques and resampling parameters. The CARET package in R allows

for the researcher to specify a wide range of model tuning and resampling parameters.

Further, the CARET package comes with hundreds of different modeling techniques

that can be used. Given the computing resources available to the researcher, the per-

formance of each class of predictive model was not examined. The models selected for

this experiment were models that had a long publication record and easily accessible

coding documentation.

Finally, the present research did not investigate if non-linear models would be able

to accurately predict task difficulty or delay. The relationship between the response

delay and predictor variables may not be linear. As such, applying a linear method

would result in meaningless predictions.
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11. FUTURE RESEARCH

The following chapter has been divided into two sections dedicated to future research:

the first section details the logical next steps that can be taken in the short term to

expand upon the findings presented here; the second section discusses the long term

research projects that will stem from the current research. The third section discusses

how this research could be scaled up.

11.1 Next Steps

There are four suggested directions in the immediate future research could move.

The first research direction wise to examine if delay prediction can be solved by

examining the delay in the context of a sliding window problem. It may be possible

that the current prediction variables reliably predict delay when examining data 30

to 60 seconds before an unexpected failure. This would mean that a system would

only need to consider recent user interactions when making a prediction.

The second direction would examine if the inclusion of explicit demographic

measures-such as age, gender, etc- improve the classification accuracy of a model.

These demographic measures were not included in the current research for the fol-

lowing reasons. There are many factors-including age, gender, handidness and and

fatigue- that effect reaction time (Karia, Ghuntla, Mehta, Gokhale, & Shah, 2012).

The demographic data did contain records of age and gender; however, there was no

a priori reason to suspect that age or gender would be predictive of task difficulty.

Furthermore, the majority of participants were in their twenties.

This is not to say that age or gender would not have an effect on response time

to a pump failure. However, such a study would need to control for which pump had

failed and how many times a participant had interacted with each pump. If a pump
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that participants frequently interacted with failed, it would be expected that they

would have a faster reaction time.

Future research could also investigate if non-linear methods can be used to predict

response delay. The current results show that delay group can be predicted under

certain combinations of sampling rate and sampling set size. Additional work is

needed to determine if there are combinations of that consistently predict response

delay.

Finally, subsequent research will focus on applying the tools and techniques devel-

oped by this work to different domains. This would happen in one of two ways. The

first would be to apply these methods to data collected from a live system such as a

fleet of cars to determine a measure of operator performance. This would represent

a next logical step in demonstrating that measures of human performance can be

detected in a live system.

Alternatively, the research would employ the same data collection methodology

but look for a different measure of human performance. The MATB-II has been used

to study phenomena such as cognitive control and distraction. Given that the web-

interface is a recreation of MAT-II, it may be possible to use the tool to measure

other elements of human performance.

11.2 Human Factors sans Humans?

The title of this section is designed to be deliberately inflammatory. Proposing to

study human performance without measuring or observing human behavior is akin

to an entomologist wanting to study insect behavior without collecting samples. This

scenario is ridiculous when considered through the lens of laboratory based human

factors experiments. However, when viewed through the lens of a low-cost, high-yield

design methodology the question does become reasonable.

One of the long term questions raised by the current work is how should demo-

graphic information be included into a model to develop an individualized prediction



100

model? The question is not how demographic data be included but how should that

data be collected. The demographic data necessary to produce an individualized

model could be used to identify individuals in unexpected ways. There are clear

protocols on how to handle individual identifiable data in a laboratory setting. The

protocols for handling data generated by a system are less clear.

Researchers will need to answer two questions regarding informed consent. First,

does voluntary use of a product that automatically collects data imply consent for

that data to be used in research? Second, would a disclosure of system data pose a risk

to individual participants? These questions did arise when the Institutional Review

Broad reviewed this study. Individuals who use Prolific Academic could be argued to

be giving implied consent for their data to be used as a function of their membership.

However, this blanket implied consent many not apply to specific studies.

The system data collected in this study reflects individual performance at an

arbitrary task. No one would be at risk of losing their job or would come to serious

harm if their performance data leaked. This question becomes non-trivial when the

discussion focuses on driving data.

This research does have implications for automation design. One of the questions

that will need to be addressed is how and when to transfer control from the human to

the automated system or vice-versa. The current research suggests that it is possible

to detect when transfer is necessary. These results offer little insight into how to

transfer control.

A final long term question raised by this research is: what should the role of human

factors be when it comes to data science? The systems humans interact with are only

getting more complex and are capable of producing data at high rates and volumes.

Using unstructured learning it is possible to look at a large set of data, identify

some clusters in the data, and declare those clusters as representative of a particular

behavior. Without a proper understanding of the nuances of human behavior, this

methodology would lead to unfortunate outcomes or support a discriminatory system.
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11.3 Human Factors at Scale

One of the sources of inspiration for this thesis came from a harrowing experience

while driving. The author was driving home from a sporting event late at night.

There was little illumination and the weather had the hint of an autumn chill. This

combination of factors lead the driver of the car the author was in to fall asleep for

10 seconds.

A reoccurring example in this paper has been drunk driving. This example was

used because: it is an event individuals have first or second hand experience with

through media exposure, it is a clearly deleterious and harmful behavior, and it is a

notable economic cost. The ability for a car to detect when a driver was impaired,

either because of drugs or sleep deprivation, would save lives.

There are several questions that must be answered before this technology could

be implemented. What sort of data does the car need to record? Who will have

access to that data? Should the system error on the side of caution and assume that

a driver is impaired when they may have a neurological issue? These are the sort of

questions that will need to be addressed when thinking about human factors at scale.
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A. EXTRA FIGURES

This chapter contains graphical representations of the accuracy of task difficulty and

response delay models. There are additional graphical representations of the differ-

ence between the upper and lower confidence intervals. The subsections are organized

by model type and are ordered by the type of variables used in the prediction.

A.1 Difficulty

The following section contains graphical representations of the accuracy of task dif-

ficulty prediction models and the confidence intervals of the predictions. The section

is structured by model class and further subdivided by predictor variables. Graphical

representations of experience only prediction models are not included because none

of the models were statistically significant.

A.1.1 Multinomial Logistic Regression

This section contains graphical representations of the accuracy of multinomial

logistic regression models to predict task difficulty. The color scale reads from red to

blue with redder shades being less accurate predictions.



117

(a) Accuracy of Multinomial Logistic Regression Models

using Mouse Data Only

(b) Confidence interval of Multinomial Logistic Regres-

sion Models using Mouse Data Only
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(c) Accuracy of Multinomial Logistic Regression Models

using Mouse and Experience Data

(d) Confidence interval of Multinomial Logistic Regres-

sion Models using Mouse and Experience Data
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(e) Accuracy of Multinomial Logistic Regression Models

using Tank Data

(f) Confidence interval of Multinomial Logistic Regres-

sion Models using Tank Data



120

(g) Accuracy of Multinomial Logistic Regression Models

using Tank and Experience Data

(h) Confidence interval of Multinomial Logistic Regres-

sion Models using Tank and Experience Data



121

Multinomial Logistic Regression: Mouse Data

Multinomial Logistic Regression: Mouse Data and Experience

Multinomial Logistic Regression: Tank Data

Multinomial Logistic Regression: Tank Data and Experience

Multinomial Logistic Regression: Mouse and Tank Data

Multinomial Logistic Regression: Mouse, Tank, and Experience Data
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(i) Accuracy of Multinomial Logistic Regression Models

using Mouse and Tank Data

(j) Confidence interval of Multinomial Logistic Regres-

sion Models using Mouse and Tank Data
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(k) Accuracy of Multinomial Logistic Regression Models

using Mouse, Tank and Experience Data

(l) Confidence Interval of Multinomial Logistic Regres-

sion Models using Mouse, Tank and Experience Data
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A.1.2 Neural Networks

This section contains graphical representations of the accuracy of neural network

models to predict task difficulty. The color scale reads from red to blue with redder

shades being less accurate predictions.

Neural Network: Mouse Data

Neural Network: Mouse and Experience Data

Neural Network: Tank Data

Neural Network: Tank and Experience Data

Neural Network: Mouse and Tank Data

Neural Network: Mouse, Tank , and Experience Data
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(m) Accuracy of Neural Network Models using Mouse

Data

(n) Confidence Interval of Neural Network Models using

Mouse Data



126

(o) Accuracy of Neural Network Models using Mouse and

Experience Data

(p) Confidence Interval of Neural Network Models using

Mouse and Experience Data
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(q) Accuracy of Neural Network Models using Tank Data

(r) Confidence Interval of Neural Network Models using

Tank Data

A.1.3 Random Forests

This section contains graphical representations of the accuracy of random forest

models to predict task difficulty. The color scale reads from red to blue with redder

shades being less accurate predictions.
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(s) Accuracy of Neural Network Models using Tank and

Experience Data

(t) Confidence Interval of Neural Network Models using

Tank and Experience Data
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(u) Accuracy of Neural Network Models using Mouse

and Tank Data

(v) Confidence Interval of Neural Network Models using

Mouse and Tank Data
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(w) Accuracy of Neural Network Models using Mouse,

Tank and Experience Data

(x) Confidence Interval of Neural Network Models using

Mouse, Tank and Experience Data
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Random Forest: Mouse Data

(y) Accuracy of Random Forest Models using Mouse

Data

(z) Confidence Interval of Random Forest Models using

Mouse Data
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Random Forest: Mouse and Experience Data

() Accuracy of Random Forest Models using Mouse and

Experience Data

() Confidence Interval of Random Forest Models using

Mouse and Experience Data
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Random Forest: Tank Data

() Accuracy of Random Forest Models using Tank Data

() Confidence Interval of Random Forest Models using

Tank Data
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Random Forest: Tank and Experience Data

() Accuracy of Random Forest Models using Tank and

Experience Data

() Confidence Interval of Random Forest Models using

Tank and Experience Data
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Random Forest: Mouse and Tank Data

() Accuracy of Random Forest Models using Mouse and

Tank Data

() Confidence Interval of Random Forest Models using

Mouse and Tank Data



136

Random Forest: Mouse , Tank and Experience Data

() Accuracy of Random Forest Models using Mouse,

Tank and Experience Data

() Confidence Interval of Random Forest Models using

Mouse, Tank and Experience Data
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A.2 Delay

The section is structured by model class and further subdivided by predictor

variables. Graphical representations of experience only prediction models are not

included because none of the models were statistically significant.

A.2.1 General Linear Model

This section contains graphical representations of the accuracy of general linear

models to predict response delay. The color scale reads from red to blue with redder

shades being less accurate predictions.

General Linear Model : Keypress Data

General Linear Model : Keypress and Experience Data

General Linear Model : Keypress and Interaction Time Data

General Linear Model : Keypress, Interaction Time and Experience Data
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() Accuracy of General Linear Models using Keypress

Data

() Confidence Interval of General Linear Models using

Keypress Data
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() Accuracy of General Linear Models using Keypress

and Experience Data

() Confidence Interval of General Linear Models using

Keypress and Experience Data
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() Accuracy of General Linear Models using Keypress

and Interaction Time Data

() Confidence Interval of General Linear Models using

Keypress and Time Data
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() Accuracy of General Linear Models using Keypress ,

Interaction Time and Experience Data

() Confidence Interval of General Linear Models using

Keypress ,Interaction Time and Experience Data
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A.2.2 Neural Networks

This section contains graphical representations of the accuracy of neural network

models to predict response delay. The color scale reads from red to blue with redder

shades being less accurate predictions.

Neural Network : Keypress Data

Neural Network : Keypress and Experience Data

Neural Network : Keypress and Interaction Time Data

Neural Network : Keypress, Interaction Time and Experience Data
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() Accuracy of Neural Network Models using Keypress

Data

() Confidence Interval of Neural Network Models using

Keypress Data
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() Accuracy of Neural Network Models using Keypress

and Experience Data

() Confidence Interval of Neural Network Models using

Keypress and Experience Data
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() Accuracy of Neural Network Models using Keypress

and Interaction Time Data

() Confidence Interval of Neural Network Models using

Keypress and Interaction Time Data
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() Accuracy of Neural Network Models using Keypress,

Interaction Time , Experience Data

() Confidence Interval of Neural Network Models using

Keypress, Interaction Time , Experience Data
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A.2.3 Random Forests

This section contains graphical representations of the accuracy of random forest

models to predict response delay. The color scale reads from red to blue with redder

shades being less accurate predictions.

Random Forest : Keypress Data

Random Forest : Keypress and Experience Data

Random Forest : Keypress and Interaction Time Data

Random Forest : Keypress, Interaction Time Data
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() Accuracy of Random Forests Models using Keypress

Data

() Confidence Interval of Random Forests Models using

Keypress Data
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() Accuracy of Random Forests Models using Keypress

and Experience Data

() Confidence Interval of Random Forests Models using

Keypress and Experience Data
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() Accuracy of Random Forests Models using Keypress

and Interaction Time Data

() Confidence Interval of Random Forests Models using

Keypress and Interaction Time Data
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() Accuracy of Random Forests Models using Keypress,

Interaction Time and Experience Data

() Confidence Interval of Random Forests Models using

Keypress, Interaction Time and Experience Data



152

B. EXTRA TABLES

This chapter contains tables showing the Accuracy of task difficulty and response

delay models. There is information on the difference between the upper and lower

confidence intervals. The subsections are organized by model type and are ordered

by the type of variables used in the prediction.

How to Read the Tables The tables in this section are organized in the following

maner. The first column is the percent of total data used to train a model. The

next column is the sampling rate in hertz. Four values are presented: the lower

bound of the confidence interval, the mean predictive Accuracy , the upper bound

of the confidence interval and the p-value of the model. P-values less than 0.001 are

represented as 0.00.

B.1 Difficulty Predictions

This section contains tables showing the Accuracy of difficulty prediction models

that have been further subdivided by predictor variables

B.1.1 Multi-nomial Logistic Regression
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Multi-nomial Logistic Regression: Experience

Table B.1.: Multinomial Logistic Regression using Expe-

rience Only

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

10% 60Hz 26% 30% 34% 0.98

30Hz 29% 33% 37% 0.69

12Hz 29% 33% 38% 0.69

6Hz 27% 31% 35% 0.98

3Hz 29% 33% 37% 0.83

2Hz 31% 35% 39% 0.41

1Hz 28% 32% 37% 0.78

.5Hz 30% 34% 39% 0.62

.25Hz 27% 31% 35% 0.94

.1Hz 27% 31% 35% 0.99

25% 60Hz 29% 33% 38% 0.74

30Hz 32% 36% 41% 0.48

12Hz 28% 32% 37% 0.88

6Hz 29% 33% 38% 0.89

3Hz 29% 33% 37% 0.93

2Hz 30% 35% 40% 0.40

1Hz 28% 33% 37% 0.85

.5Hz 29% 34% 38% 0.60

.25Hz 28% 32% 37% 0.95

.1Hz 28% 32% 37% 0.80

50% 60Hz 25% 30% 35% 0.98

30Hz 31% 37% 43% 0.52

continued on next page
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Table B.1.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

12Hz 25% 31% 36% 0.95

6Hz 26% 32% 37% 0.94

3Hz 31% 36% 42% 0.78

2Hz 24% 29% 35% 0.99

1Hz 33% 38% 44% 0.57

.5Hz 34% 39% 45% 0.38

.25Hz 25% 30% 36% 0.95

.1Hz 27% 33% 38% 0.79

75% 60Hz 25% 33% 41% 0.67

30Hz 26% 34% 42% 0.60

12Hz 25% 33% 41% 0.90

6Hz 23% 31% 39% 0.87

3Hz 25% 32% 40% 0.93

2Hz 24% 31% 39% 0.95

1Hz 26% 33% 42% 0.60

.5Hz 27% 35% 43% 0.60

.25Hz 22% 29% 37% 0.97

.1Hz 25% 33% 41% 0.73

90% 60Hz 18% 30% 43% 0.96

30Hz 17% 28% 42% 1.00

12Hz 17% 28% 42% 0.94

6Hz 36% 49% 63% 0.55

3Hz 23% 35% 49% 0.83

2Hz 36% 49% 63% 0.55

1Hz 16% 26% 40% 0.99

continued on next page
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Table B.1.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

.5Hz 18% 30% 43% 0.98

.25Hz 26% 38% 52% 0.55

.1Hz 14% 24% 37% 1.00
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Multi-nomial Logistic Regression: Mouse Data

Table B.2.: Multinomial Logistic Regression using Mouse

Data Only

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

10% 60Hz 85% 88% 90% p ≤ 0.001

30Hz 90% 82% 85% p ≤ 0.001

12Hz 91% 87% 90% p ≤ 0.001

6Hz 93% 88% 91% p ≤ 0.001

3Hz 91% 91% 93% p ≤ 0.001

2Hz 86% 88% 91% p ≤ 0.001

1Hz 88% 83% 86% p ≤ 0.001

.5Hz 81% 85% 88% p ≤ 0.001

.25Hz 75% 77% 81% p ≤ 0.001

.1Hz 90% 72% 75% p ≤ 0.001

25% 60Hz 92% 87% 90% p ≤ 0.001

30Hz 89% 89% 92% p ≤ 0.001

12Hz 92% 86% 89% p ≤ 0.001

6Hz 90% 89% 92% p ≤ 0.001

3Hz 95% 88% 90% p ≤ 0.001

2Hz 89% 93% 95% p ≤ 0.001

1Hz 87% 86% 89% p ≤ 0.001

.5Hz 88% 84% 87% p ≤ 0.001

.25Hz 77% 85% 88% p ≤ 0.001

.1Hz 95% 73% 77% p ≤ 0.001

50% 60Hz 84% 92% 95% p ≤ 0.001

30Hz 91% 80% 84% p ≤ 0.001

continued on next page
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Table B.2.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

12Hz 89% 88% 91% p ≤ 0.001

6Hz 92% 85% 89% p ≤ 0.001

3Hz 92% 88% 92% p ≤ 0.001

2Hz 92% 89% 92% p ≤ 0.001

1Hz 91% 88% 92% p ≤ 0.001

.5Hz 92% 87% 91% p ≤ 0.001

.25Hz 84% 89% 92% p ≤ 0.001

.1Hz 95% 80% 84% p ≤ 0.001

75% 60Hz 96% 91% 95% p ≤ 0.001

30Hz 92% 92% 96% p ≤ 0.001

12Hz 96% 87% 92% p ≤ 0.001

6Hz 94% 93% 96% p ≤ 0.001

3Hz 97% 90% 94% p ≤ 0.001

2Hz 94% 94% 97% p ≤ 0.001

1Hz 93% 90% 94% p ≤ 0.001

.5Hz 91% 88% 93% p ≤ 0.001

.25Hz 86% 86% 91% p ≤ 0.001

.1Hz 98% 80% 86% p ≤ 0.001

90% 60Hz 100% 93% 98% p ≤ 0.001

30Hz 96% 98% 100% p ≤ 0.001

12Hz 98% 89% 96% p ≤ 0.001

6Hz 100% 93% 98% p ≤ 0.001

3Hz 96% 96% 100% p ≤ 0.001

2Hz 94% 89% 96% p ≤ 0.001

1Hz 95% 86% 94% p ≤ 0.001

continued on next page
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Table B.2.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

.5Hz 96% 88% 95% p ≤ 0.001

.25Hz 95% 90% 96% p ≤ 0.001

.1Hz 80% 88% 95% 0.00
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Multi-nomial Logistic Regression: Mouse Data and Experience

Table B.3.: Multinomial Logistic Regression Mouse and

Experience Data

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

10% 60Hz 92% 83% 86% p ≤ 0.001

30Hz 82% 89% 92% p ≤ 0.001

12Hz 92% 79% 82% p ≤ 0.001

6Hz 92% 90% 92% p ≤ 0.001

3Hz 88% 90% 92% p ≤ 0.001

2Hz 94% 85% 88% p ≤ 0.001

1Hz 92% 92% 94% p ≤ 0.001

.5Hz 87% 89% 92% p ≤ 0.001

.25Hz 82% 84% 87% p ≤ 0.001

.1Hz 85% 79% 82% p ≤ 0.001

25% 60Hz 89% 82% 85% p ≤ 0.001

30Hz 79% 86% 89% p ≤ 0.001

12Hz 89% 75% 79% p ≤ 0.001

6Hz 85% 86% 89% p ≤ 0.001

3Hz 87% 82% 85% p ≤ 0.001

2Hz 85% 84% 87% p ≤ 0.001

1Hz 86% 81% 85% p ≤ 0.001

.5Hz 88% 83% 86% p ≤ 0.001

.25Hz 84% 85% 88% p ≤ 0.001

.1Hz 92% 81% 84% p ≤ 0.001

50% 60Hz 90% 88% 92% p ≤ 0.001

30Hz 91% 86% 90% p ≤ 0.001

continued on next page
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Table B.3.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

12Hz 94% 87% 91% p ≤ 0.001

6Hz 90% 91% 94% p ≤ 0.001

3Hz 94% 86% 90% p ≤ 0.001

2Hz 89% 90% 94% p ≤ 0.001

1Hz 90% 85% 89% p ≤ 0.001

.5Hz 90% 86% 90% p ≤ 0.001

.25Hz 84% 86% 90% p ≤ 0.001

.1Hz 92% 80% 84% p ≤ 0.001

75% 60Hz 91% 87% 92% p ≤ 0.001

30Hz 95% 86% 91% p ≤ 0.001

12Hz 92% 91% 95% p ≤ 0.001

6Hz 93% 87% 92% p ≤ 0.001

3Hz 94% 88% 93% p ≤ 0.001

2Hz 93% 89% 94% p ≤ 0.001

1Hz 93% 88% 93% p ≤ 0.001

.5Hz 95% 88% 93% p ≤ 0.001

.25Hz 87% 90% 95% p ≤ 0.001

.1Hz 96% 81% 87% p ≤ 0.001

90% 60Hz 95% 89% 96% p ≤ 0.001

30Hz 97% 88% 95% p ≤ 0.001

12Hz 96% 91% 97% p ≤ 0.001

6Hz 94% 89% 96% p ≤ 0.001

3Hz 99% 86% 94% p ≤ 0.001

2Hz 97% 95% 99% p ≤ 0.001

1Hz 95% 91% 97% p ≤ 0.001

continued on next page
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Table B.3.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

.5Hz 96% 88% 95% p ≤ 0.001

.25Hz 93% 90% 96% p ≤ 0.001

.1Hz 0% 84% 93% p ≤ 0.001
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Multi-nomial Logistic Regression: Tank Data

Table B.4.: Multinomial Logistic Regression using Tank

Variables

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

10% 60Hz 53% 44% 49% p ≤ 0.001

30Hz 55% 49% 53% p ≤ 0.001

12Hz 47% 50% 55% p ≤ 0.001

6Hz 47% 42% 47% p ≤ 0.001

3Hz 52% 43% 47% p ≤ 0.001

2Hz 50% 47% 52% p ≤ 0.001

1Hz 49% 46% 50% p ≤ 0.001

.5Hz 55% 45% 49% p ≤ 0.001

.25Hz 54% 50% 55% p ≤ 0.001

.1Hz 50% 50% 54% p ≤ 0.001

25% 60Hz 56% 45% 50% p ≤ 0.001

30Hz 52% 52% 56% p ≤ 0.001

12Hz 54% 48% 52% p ≤ 0.001

6Hz 51% 49% 54% p ≤ 0.001

3Hz 57% 47% 51% p ≤ 0.001

2Hz 54% 52% 57% p ≤ 0.001

1Hz 54% 49% 54% p ≤ 0.001

.5Hz 55% 49% 54% p ≤ 0.001

.25Hz 53% 50% 55% p ≤ 0.001

.1Hz 54% 48% 53% p ≤ 0.001

50% 60Hz 55% 48% 54% p ≤ 0.001

30Hz 54% 49% 55% p ≤ 0.001

continued on next page



163

Table B.4.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

12Hz 50% 48% 54% p ≤ 0.001

6Hz 52% 44% 50% p ≤ 0.001

3Hz 57% 46% 52% p ≤ 0.001

2Hz 53% 51% 57% p ≤ 0.001

1Hz 56% 47% 53% p ≤ 0.001

.5Hz 60% 50% 56% p ≤ 0.001

.25Hz 60% 54% 60% p ≤ 0.001

.1Hz 61% 54% 60% p ≤ 0.001

75% 60Hz 58% 53% 61% p ≤ 0.001

30Hz 61% 50% 58% 0.04

12Hz 53% 52% 61% p ≤ 0.001

6Hz 54% 45% 53% 0.02

3Hz 59% 45% 54% 0.14

2Hz 57% 50% 59% p ≤ 0.001

1Hz 64% 48% 57% 0.02

.5Hz 61% 55% 64% p ≤ 0.001

.25Hz 58% 53% 61% p ≤ 0.001

.1Hz 64% 50% 58% p ≤ 0.001

90% 60Hz 72% 51% 64% 0.07

30Hz 54% 60% 72% 0.01

12Hz 63% 40% 54% 0.16

6Hz 64% 49% 63% 0.04

3Hz 59% 51% 64% 0.01

2Hz 64% 46% 59% 0.11

1Hz 71% 51% 64% 0.11

continued on next page
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Table B.4.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

.5Hz 71% 58% 71% p ≤ 0.001

.25Hz 62% 59% 71% p ≤ 0.001

.1Hz 0% 48% 62% 0.04
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Multi-nomial Logistic Regression: Tank Data and Experience

Table B.5.: Multinomial Logistic Regression using Tank

Variables and Experience

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

10% 60Hz 48% 43% 47% p ≤ 0.001

30Hz 38% 44% 48% p ≤ 0.001

12Hz 50% 34% 38% 0.69

6Hz 35% 45% 50% p ≤ 0.001

3Hz 38% 31% 35% 0.96

2Hz 47% 33% 38% 0.69

1Hz 45% 43% 47% p ≤ 0.001

.5Hz 48% 41% 45% p ≤ 0.001

.25Hz 54% 44% 48% p ≤ 0.001

.1Hz 41% 50% 54% p ≤ 0.001

25% 60Hz 50% 37% 41% 0.31

30Hz 45% 45% 50% p ≤ 0.001

12Hz 42% 41% 45% p ≤ 0.001

6Hz 51% 38% 42% 0.25

3Hz 49% 47% 51% p ≤ 0.001

2Hz 47% 45% 49% p ≤ 0.001

1Hz 50% 43% 47% p ≤ 0.001

.5Hz 50% 46% 50% p ≤ 0.001

.25Hz 52% 46% 50% p ≤ 0.001

.1Hz 54% 48% 52% p ≤ 0.001

50% 60Hz 56% 49% 54% p ≤ 0.001

30Hz 50% 51% 56% p ≤ 0.001

continued on next page
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Table B.5.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

12Hz 51% 45% 50% p ≤ 0.001

6Hz 49% 46% 51% p ≤ 0.001

3Hz 51% 44% 49% p ≤ 0.001

2Hz 53% 46% 51% p ≤ 0.001

1Hz 56% 48% 53% p ≤ 0.001

.5Hz 59% 51% 56% p ≤ 0.001

.25Hz 55% 54% 59% p ≤ 0.001

.1Hz 54% 50% 55% p ≤ 0.001

75% 60Hz 50% 49% 54% p ≤ 0.001

30Hz 46% 46% 50% p ≤ 0.001

12Hz 50% 41% 46% 0.01

6Hz 44% 45% 50% p ≤ 0.001

3Hz 54% 39% 44% 0.03

2Hz 51% 49% 54% p ≤ 0.001

1Hz 55% 46% 51% p ≤ 0.001

.5Hz 56% 50% 55% p ≤ 0.001

.25Hz 58% 51% 56% p ≤ 0.001

.1Hz 57% 53% 58% p ≤ 0.001

90% 60Hz 53% 51% 57% p ≤ 0.001

30Hz 57% 47% 53% p ≤ 0.001

12Hz 53% 51% 57% p ≤ 0.001

6Hz 50% 47% 53% p ≤ 0.001

3Hz 47% 45% 50% p ≤ 0.001

2Hz 57% 41% 47% 0.04

1Hz 54% 51% 57% p ≤ 0.001

continued on next page
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Table B.5.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

.5Hz 59% 48% 54% p ≤ 0.001

.25Hz 58% 53% 59% p ≤ 0.001

.1Hz 0% 52% 58% 0.00
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Multi-nomial Logistic Regression: Mouse and Tank Data

Table B.6.: Multinomial Logistic Regression using Tank

and Mouse Data

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

10% 60Hz 90% 86% 89% p ≤ 0.001

30Hz 91% 87% 90% p ≤ 0.001

12Hz 82% 88% 91% p ≤ 0.001

6Hz 84% 79% 82% p ≤ 0.001

3Hz 92% 81% 84% p ≤ 0.001

2Hz 94% 90% 92% p ≤ 0.001

1Hz 90% 92% 94% p ≤ 0.001

.5Hz 82% 88% 90% p ≤ 0.001

.25Hz 63% 79% 82% p ≤ 0.001

.1Hz 87% 58% 63% p ≤ 0.001

25% 60Hz 86% 84% 87% p ≤ 0.001

30Hz 87% 82% 86% p ≤ 0.001

12Hz 88% 83% 87% p ≤ 0.001

6Hz 87% 85% 88% p ≤ 0.001

3Hz 82% 84% 87% p ≤ 0.001

2Hz 83% 78% 82% p ≤ 0.001

1Hz 90% 79% 83% p ≤ 0.001

.5Hz 86% 88% 90% p ≤ 0.001

.25Hz 76% 83% 86% p ≤ 0.001

.1Hz 91% 72% 76% p ≤ 0.001

50% 60Hz 90% 87% 91% p ≤ 0.001

30Hz 92% 86% 90% p ≤ 0.001

continued on next page
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Table B.6.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

12Hz 87% 88% 92% p ≤ 0.001

6Hz 88% 83% 87% p ≤ 0.001

3Hz 87% 84% 88% p ≤ 0.001

2Hz 89% 83% 87% p ≤ 0.001

1Hz 88% 85% 89% p ≤ 0.001

.5Hz 87% 84% 88% p ≤ 0.001

.25Hz 81% 83% 87% p ≤ 0.001

.1Hz 95% 76% 81% p ≤ 0.001

75% 60Hz 96% 91% 95% p ≤ 0.001

30Hz 97% 93% 96% p ≤ 0.001

12Hz 95% 93% 97% p ≤ 0.001

6Hz 91% 91% 95% p ≤ 0.001

3Hz 91% 86% 91% p ≤ 0.001

2Hz 97% 86% 91% p ≤ 0.001

1Hz 95% 93% 97% p ≤ 0.001

.5Hz 93% 91% 95% p ≤ 0.001

.25Hz 89% 88% 93% p ≤ 0.001

.1Hz 95% 83% 89% p ≤ 0.001

90% 60Hz 95% 88% 95% p ≤ 0.001

30Hz 98% 88% 95% p ≤ 0.001

12Hz 98% 93% 98% p ≤ 0.001

6Hz 97% 93% 98% p ≤ 0.001

3Hz 91% 91% 97% p ≤ 0.001

2Hz 97% 82% 91% p ≤ 0.001

1Hz 93% 91% 97% p ≤ 0.001

continued on next page
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Table B.6.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

.5Hz 95% 84% 93% p ≤ 0.001

.25Hz 94% 88% 95% p ≤ 0.001

.1Hz 0% 86% 94% 0.00
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Multi-nomial Logistic Regression: Mouse. Tank. and Experience Data

Table B.7.: Multinomial Logistic Regression using Tank,

Mouse and Experience Data

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

10% 60Hz 84% 78% 81% p ≤ 0.001

30Hz 90% 81% 84% p ≤ 0.001

12Hz 88% 87% 90% p ≤ 0.001

6Hz 85% 85% 88% p ≤ 0.001

3Hz 88% 82% 85% p ≤ 0.001

2Hz 92% 85% 88% p ≤ 0.001

1Hz 89% 89% 92% p ≤ 0.001

.5Hz 84% 87% 89% p ≤ 0.001

.25Hz 68% 81% 84% p ≤ 0.001

.1Hz 84% 64% 68% p ≤ 0.001

25% 60Hz 88% 81% 84% p ≤ 0.001

30Hz 79% 85% 88% p ≤ 0.001

12Hz 84% 76% 79% p ≤ 0.001

6Hz 89% 80% 84% p ≤ 0.001

3Hz 89% 86% 89% p ≤ 0.001

2Hz 93% 86% 89% p ≤ 0.001

1Hz 88% 91% 93% p ≤ 0.001

.5Hz 81% 85% 88% p ≤ 0.001

.25Hz 78% 77% 81% p ≤ 0.001

.1Hz 89% 74% 78% p ≤ 0.001

50% 60Hz 88% 85% 89% p ≤ 0.001

30Hz 90% 84% 88% p ≤ 0.001

continued on next page
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Table B.7.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

12Hz 88% 87% 90% p ≤ 0.001

6Hz 87% 84% 88% p ≤ 0.001

3Hz 87% 83% 87% p ≤ 0.001

2Hz 87% 83% 87% p ≤ 0.001

1Hz 90% 83% 87% p ≤ 0.001

.5Hz 88% 86% 90% p ≤ 0.001

.25Hz 82% 84% 88% p ≤ 0.001

.1Hz 90% 77% 82% p ≤ 0.001

75% 60Hz 90% 85% 90% p ≤ 0.001

30Hz 90% 85% 90% p ≤ 0.001

12Hz 89% 85% 90% p ≤ 0.001

6Hz 90% 84% 89% p ≤ 0.001

3Hz 87% 85% 90% p ≤ 0.001

2Hz 93% 81% 87% p ≤ 0.001

1Hz 88% 88% 93% p ≤ 0.001

.5Hz 88% 82% 88% p ≤ 0.001

.25Hz 89% 82% 88% p ≤ 0.001

.1Hz 97% 83% 89% p ≤ 0.001

90% 60Hz 90% 91% 97% p ≤ 0.001

30Hz 98% 81% 90% p ≤ 0.001

12Hz 98% 93% 98% p ≤ 0.001

6Hz 91% 93% 98% p ≤ 0.001

3Hz 96% 82% 91% p ≤ 0.001

2Hz 93% 89% 96% p ≤ 0.001

1Hz 93% 84% 93% p ≤ 0.001

continued on next page
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Table B.7.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

.5Hz 89% 84% 93% p ≤ 0.001

.25Hz 91% 79% 89% p ≤ 0.001

.1Hz 71% 83% 91% 0.00

Table B.8.: Multinomial Logistic Regression using Tank.

Mouse and Experience Data

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

10% 60Hz 84% 78% 81% p ≤ 0.001

30Hz 90% 81% 84% p ≤ 0.001

12Hz 88% 87% 90% p ≤ 0.001

6Hz 85% 85% 88% p ≤ 0.001

3Hz 88% 82% 85% p ≤ 0.001

2Hz 92% 85% 88% p ≤ 0.001

1Hz 89% 89% 92% p ≤ 0.001

.5Hz 84% 87% 89% p ≤ 0.001

.25Hz 68% 81% 84% p ≤ 0.001

.1Hz 84% 64% 68% p ≤ 0.001

25% 60Hz 88% 81% 84% p ≤ 0.001

30Hz 79% 85% 88% p ≤ 0.001

12Hz 84% 76% 79% p ≤ 0.001

6Hz 89% 80% 84% p ≤ 0.001

3Hz 89% 86% 89% p ≤ 0.001

2Hz 93% 86% 89% p ≤ 0.001

1Hz 88% 91% 93% p ≤ 0.001

continued on next page
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Table B.8.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

.5Hz 81% 85% 88% p ≤ 0.001

.25Hz 78% 77% 81% p ≤ 0.001

.1Hz 89% 74% 78% p ≤ 0.001

50% 60Hz 88% 85% 89% p ≤ 0.001

30Hz 90% 84% 88% p ≤ 0.001

12Hz 88% 87% 90% p ≤ 0.001

6Hz 87% 84% 88% p ≤ 0.001

3Hz 87% 83% 87% p ≤ 0.001

2Hz 87% 83% 87% p ≤ 0.001

1Hz 90% 83% 87% p ≤ 0.001

.5Hz 88% 86% 90% p ≤ 0.001

.25Hz 82% 84% 88% p ≤ 0.001

.1Hz 90% 77% 82% p ≤ 0.001

75% 60Hz 90% 85% 90% p ≤ 0.001

30Hz 90% 85% 90% p ≤ 0.001

12Hz 89% 85% 90% p ≤ 0.001

6Hz 90% 84% 89% p ≤ 0.001

3Hz 87% 85% 90% p ≤ 0.001

2Hz 93% 81% 87% p ≤ 0.001

1Hz 88% 88% 93% p ≤ 0.001

.5Hz 88% 82% 88% p ≤ 0.001

.25Hz 89% 82% 88% p ≤ 0.001

.1Hz 97% 83% 89% p ≤ 0.001

90% 60Hz 90% 91% 97% p ≤ 0.001

30Hz 98% 81% 90% p ≤ 0.001

continued on next page
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Table B.8.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

12Hz 98% 93% 98% p ≤ 0.001

6Hz 91% 93% 98% p ≤ 0.001

3Hz 96% 82% 91% p ≤ 0.001

2Hz 93% 89% 96% p ≤ 0.001

1Hz 93% 84% 93% p ≤ 0.001

.5Hz 89% 84% 93% p ≤ 0.001

.25Hz 91% 79% 89% p ≤ 0.001

.1Hz 71% 83% 91% 0.00

B.1.2 Neural Networks
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Neural Network: Experience

Table B.9.: Neural Network using Experience Only

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

0.10 60Hz 30% 34% 39% .5

30Hz 27% 31% 35% .9

12Hz 29% 33% 37% .8

6Hz 30% 34% 38% .8

3Hz 31% 35% 39% .5

2Hz 29% 33% 37% .8

1Hz 30% 34% 38% .5

.5Hz 31% 35% 39% .5

.25Hz 28% 32% 36% .9

.1Hz 29% 33% 38% .9

0.25 60Hz 28% 32% 37% .8

30Hz 31% 36% 41% .5

12Hz 27% 31% 36% .9

6Hz 31% 36% 41% .5

3Hz 29% 33% 37% .9

2Hz 28% 33% 37% .8

1Hz 29% 33% 37% .8

.5Hz 28% 32% 37% .8

.25Hz 27% 31% 36% 1

.1Hz 25% 30% 34% 1

0.50 60Hz 27% 32% 38% .9

30Hz 33% 38% 44% .3

12Hz 27% 33% 38% .8

continued on next page
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Table B.9.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

6Hz 27% 32% 38% .9

3Hz 33% 38% 44% .5

2Hz 27% 33% 38% .9

1Hz 30% 35% 41% .9

.5Hz 34% 40% 46% .3

.25Hz 28% 33% 39% .7

.1Hz 29% 34% 40% .6

0.75 60Hz 28% 36% 44% .3

30Hz 26% 33% 42% .7

12Hz 25% 32% 40% .9

6Hz 27% 35% 43% .5

3Hz 25% 33% 41% .9

2Hz 23% 31% 39% 1

1Hz 26% 34% 42% .5

.5Hz 30% 38% 47% .3

.25Hz 20% 27% 35% 1

.1Hz 25% 33% 41% .7

0.90 60Hz 21% 33% 47% .9

30Hz 16% 26% 40% 1

12Hz 17% 28% 42% .9

6Hz 36% 49% 63% .6

3Hz 28% 40% 54% .6

2Hz 34% 47% 61% .7

1Hz 16% 26% 40% 1

.5Hz 21% 33% 47% .9

continued on next page
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Table B.9.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

.25Hz 18% 29% 43% .9

.1Hz 18% 29% 43% 1



179

Neural Network: Mouse Data

Table B.10.: Neural Network using Mouse Data Only

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

0.10 60Hz 82% 85% 88% p ≤ 0.001

30Hz 84% 87% 90% p ≤ 0.001

12Hz 82% 85% 88% p ≤ 0.001

6Hz 85% 88% 91% p ≤ 0.001

3Hz 88% 91% 93% p ≤ 0.001

2Hz 89% 91% 94% p ≤ 0.001

1Hz 82% 85% 88% p ≤ 0.001

.5Hz 86% 89% 91% p ≤ 0.001

.25Hz 72% 76% 79% p ≤ 0.001

.1Hz 69% 73% 77% p ≤ 0.001

0.25 60Hz 86% 89% 92% p ≤ 0.001

30Hz 84% 88% 91% p ≤ 0.001

12Hz 86% 89% 92% p ≤ 0.001

6Hz 89% 92% 95% 0.00

3Hz 89% 92% 95% p ≤ 0.001

2Hz 86% 90% 92% p ≤ 0.001

1Hz 85% 89% 91% p ≤ 0.001

.5Hz 84% 88% 91% p ≤ 0.001

.25Hz 83% 87% 90% p ≤ 0.001

.1Hz 71% 75% 79% p ≤ 0.001

0.50 60Hz 87% 91% 94% p ≤ 0.001

30Hz 84% 88% 91% p ≤ 0.001

12Hz 85% 89% 92% p ≤ 0.001

continued on next page
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Table B.10.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

6Hz 79% 83% 87% p ≤ 0.001

3Hz 90% 94% 96% p ≤ 0.001

2Hz 90% 93% 96% p ≤ 0.001

1Hz 87% 90% 94% p ≤ 0.001

.5Hz 82% 87% 90% p ≤ 0.001

.25Hz 87% 91% 94% p ≤ 0.001

.1Hz 78% 83% 87% p ≤ 0.001

0.75 60Hz 82% 88% 93% p ≤ 0.001

30Hz 81% 88% 93% p ≤ 0.001

12Hz 81% 88% 93% p ≤ 0.001

6Hz 89% 94% 97% p ≤ 0.001

3Hz 87% 92% 96% p ≤ 0.001

2Hz 90% 95% 98% p ≤ 0.001

1Hz 89% 94% 97% p ≤ 0.001

.5Hz 84% 90% 95% p ≤ 0.001

.25Hz 78% 85% 90% p ≤ 0.001

.1Hz 71% 79% 85% p ≤ 0.001

0.90 60Hz 78% 89% 96% p ≤ 0.001

30Hz 83% 93% 98% p ≤ 0.001

12Hz 85% 95% 99% p ≤ 0.001

6Hz 78% 89% 96% p ≤ 0.001

3Hz 88% 96% 100% p ≤ 0.001

2Hz 83% 93% 98% p ≤ 0.001

1Hz 81% 91% 97% p ≤ 0.001

.5Hz 81% 91% 97% p ≤ 0.001

continued on next page
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Table B.10.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

.25Hz 81% 91% 97% 0.00

.1Hz 79% 90% 96% 0.00
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Neural Network: Mouse and Experience Data

Table B.11.: Neural Network Mouse and Experience

Data

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

0.10 60Hz 84% 87% 90% p ≤ 0.001

30Hz 86% 89% 92% p ≤ 0.001

12Hz 83% 87% 89% p ≤ 0.001

6Hz 87% 90% 92% p ≤ 0.001

3Hz 85% 88% 91% p ≤ 0.001

2Hz 85% 88% 91% p ≤ 0.001

1Hz 87% 90% 92% p ≤ 0.001

.5Hz 86% 89% 91% p ≤ 0.001

.25Hz 80% 83% 86% p ≤ 0.001

.1Hz 76% 80% 83% 0.00

0.25 60Hz 85% 89% 92% 0.00

30Hz 85% 88% 91% p ≤ 0.001

12Hz 83% 87% 90% p ≤ 0.001

6Hz 86% 90% 92% p ≤ 0.001

3Hz 86% 89% 92% 0.00

2Hz 87% 90% 93% p ≤ 0.001

1Hz 86% 90% 92% p ≤ 0.001

.5Hz 87% 90% 93% p ≤ 0.001

.25Hz 80% 83% 87% p ≤ 0.001

.1Hz 68% 73% 77% p ≤ 0.001

0.50 60Hz 84% 88% 92% p ≤ 0.001

30Hz 82% 86% 90% p ≤ 0.001

continued on next page
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Table B.11.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

12Hz 86% 90% 93% p ≤ 0.001

6Hz 87% 91% 94% p ≤ 0.001

3Hz 85% 89% 93% p ≤ 0.001

2Hz 87% 91% 94% p ≤ 0.001

1Hz 88% 91% 94% p ≤ 0.001

.5Hz 82% 86% 90% p ≤ 0.001

.25Hz 88% 92% 95% p ≤ 0.001

.1Hz 70% 75% 80% p ≤ 0.001

0.75 60Hz 82% 88% 93% p ≤ 0.001

30Hz 82% 88% 93% p ≤ 0.001

12Hz 55% 63% 71% p ≤ 0.001

6Hz 87% 93% 96% p ≤ 0.001

3Hz 84% 90% 94% p ≤ 0.001

2Hz 87% 93% 96% p ≤ 0.001

1Hz 80% 86% 91% p ≤ 0.001

.5Hz 85% 91% 95% p ≤ 0.001

.25Hz 89% 94% 97% p ≤ 0.001

.1Hz 74% 81% 87% p ≤ 0.001

0.90 60Hz 76% 88% 95% p ≤ 0.001

30Hz 78% 89% 96% p ≤ 0.001

12Hz 74% 86% 94% p ≤ 0.001

6Hz 72% 84% 93% p ≤ 0.001

3Hz 76% 88% 95% p ≤ 0.001

2Hz 88% 96% 100% p ≤ 0.001

1Hz 78% 89% 96% p ≤ 0.001

continued on next page
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Table B.11.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

.5Hz 76% 88% 95% p ≤ 0.001

.25Hz 75% 86% 94% p ≤ 0.001

.1Hz 79% 90% 96% p ≤ 0.001
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Neural Network: Tank Data

Table B.12.: Neural Network using Tank Variables

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

0.10 60Hz 40% 44% 49% p ≤ 0.001

30Hz 41% 45% 50% p ≤ 0.001

12Hz 38% 43% 47% p ≤ 0.001

6Hz 37% 41% 46% p ≤ 0.001

3Hz 37% 41% 46% p ≤ 0.001

2Hz 40% 45% 49% p ≤ 0.001

1Hz 44% 48% 52% p ≤ 0.001

.5Hz 45% 49% 53% p ≤ 0.001

.25Hz 43% 48% 52% p ≤ 0.001

.1Hz 42% 46% 50% 0.00

0.25 60Hz 45% 50% 54% p ≤ 0.001

30Hz 41% 45% 50% p ≤ 0.001

12Hz 47% 52% 56% p ≤ 0.001

6Hz 49% 54% 59% p ≤ 0.001

3Hz 42% 46% 51% p ≤ 0.001

2Hz 43% 48% 53% p ≤ 0.001

1Hz 40% 45% 49% p ≤ 0.001

.5Hz 43% 47% 52% p ≤ 0.001

.25Hz 45% 50% 55% p ≤ 0.001

.1Hz 41% 46% 51% p ≤ 0.001

0.50 60Hz 46% 52% 58% p ≤ 0.001

30Hz 47% 53% 59% p ≤ 0.001

12Hz 45% 51% 57% p ≤ 0.001

continued on next page
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Table B.12.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

6Hz 40% 46% 52% p ≤ 0.001

3Hz 39% 45% 51% p ≤ 0.001

2Hz 46% 52% 58% p ≤ 0.001

1Hz 48% 54% 60% p ≤ 0.001

.5Hz 41% 47% 52% p ≤ 0.001

.25Hz 50% 55% 61% p ≤ 0.001

.1Hz 43% 49% 55% p ≤ 0.001

0.75 60Hz 45% 54% 62% p ≤ 0.001

30Hz 47% 55% 63% p ≤ 0.001

12Hz 46% 54% 63% p ≤ 0.001

6Hz 39% 48% 56% p ≤ 0.001

3Hz 38% 46% 54% .1

2Hz 43% 52% 60% p ≤ 0.001

1Hz 39% 47% 55% p ≤ 0.001

.5Hz 44% 52% 60% p ≤ 0.001

.25Hz 51% 59% 67% p ≤ 0.001

.1Hz 48% 56% 65% p ≤ 0.001

0.90 60Hz 41% 54% 68% p ≤ 0.001

30Hz 55% 68% 80% p ≤ 0.001

12Hz 44% 58% 71% p ≤ 0.001

6Hz 37% 51% 64% p ≤ 0.001

3Hz 42% 56% 69% p ≤ 0.001

2Hz 31% 44% 58% .2

1Hz 31% 44% 58% .4

.5Hz 44% 58% 71% p ≤ 0.001

continued on next page
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Table B.12.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

.25Hz 42% 55% 68% 0.00

.1Hz 30% 43% 57% .2
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Neural Network: Tank and Experience Data

Table B.13.: Neural Network Tank Variables and Expe-

rience

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

0.10 60Hz 35% 39% 43% .01

30Hz 39% 43% 48% p ≤ 0.001

12Hz 35% 39% 43% .02

6Hz 35% 40% 44% p ≤ 0.001

3Hz 34% 38% 42% 0

2Hz 36% 40% 44% p ≤ 0.001

1Hz 41% 45% 49% p ≤ 0.001

.5Hz 34% 38% 43% 0

.25Hz 38% 43% 47% p ≤ 0.001

.1Hz 40% 45% 49% p ≤ 0.001

0.25 60Hz 39% 44% 48% p ≤ 0.001

30Hz 38% 42% 46% p ≤ 0.001

12Hz 39% 44% 48% p ≤ 0.001

6Hz 40% 44% 48% p ≤ 0.001

3Hz 44% 48% 52% p ≤ 0.001

2Hz 41% 45% 50% p ≤ 0.001

1Hz 38% 42% 46% p ≤ 0.001

.5Hz 32% 36% 40% .3

.25Hz 44% 48% 52% p ≤ 0.001

.1Hz 42% 46% 50% p ≤ 0.001

0.50 60Hz 40% 44% 49% p ≤ 0.001

30Hz 42% 46% 51% p ≤ 0.001

continued on next page
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Table B.13.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

12Hz 40% 44% 49% p ≤ 0.001

6Hz 43% 48% 53% p ≤ 0.001

3Hz 44% 49% 54% p ≤ 0.001

2Hz 42% 47% 52% p ≤ 0.001

1Hz 37% 41% 46% 0

.5Hz 38% 42% 47% p ≤ 0.001

.25Hz 51% 56% 60% p ≤ 0.001

.1Hz 44% 49% 54% p ≤ 0.001

0.75 60Hz 40% 45% 50% p ≤ 0.001

30Hz 41% 46% 50% p ≤ 0.001

12Hz 45% 49% 54% p ≤ 0.001

6Hz 41% 45% 50% p ≤ 0.001

3Hz 44% 48% 53% p ≤ 0.001

2Hz 39% 44% 49% p ≤ 0.001

1Hz 45% 49% 54% p ≤ 0.001

.5Hz 44% 49% 54% p ≤ 0.001

.25Hz 43% 48% 52% 0

.1Hz 42% 47% 51% p ≤ 0.001

0.90 60Hz 41% 47% 53% p ≤ 0.001

30Hz 39% 44% 50% p ≤ 0.001

12Hz 42% 48% 54% 0

6Hz 40% 45% 51% 0

3Hz 36% 42% 48% p ≤ 0.001

2Hz 45% 51% 57% p ≤ 0.001

1Hz 48% 53% 59% 0

continued on next page
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Table B.13.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

.5Hz 44% 50% 56% p ≤ 0.001

.25Hz 46% 52% 58% p ≤ 0.001

.1Hz 45% 51% 57% 0
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Neural Network: Mouse and Tank Data

Table B.14.: Neural Network using Tank and Mouse Data

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

0.10 60Hz 81% 85% 88% p ≤ 0.001

30Hz 84% 87% 90% p ≤ 0.001

12Hz 79% 82% 85% 0

6Hz 87% 90% 93% p ≤ 0.001

3Hz 88% 91% 93% p ≤ 0.001

2Hz 87% 90% 92% p ≤ 0.001

1Hz 77% 80% 84% p ≤ 0.001

.5Hz 82% 85% 88% p ≤ 0.001

.25Hz 77% 81% 84% p ≤ 0.001

.1Hz 56% 60% 65% p ≤ 0.001

0.25 60Hz 85% 89% 92% p ≤ 0.001

30Hz 87% 90% 93% p ≤ 0.001

12Hz 79% 83% 87% p ≤ 0.001

6Hz 85% 88% 91% 0

3Hz 88% 91% 94% p ≤ 0.001

2Hz 86% 89% 92% p ≤ 0.001

1Hz 82% 85% 89% p ≤ 0.001

.5Hz 85% 88% 91% p ≤ 0.001

.25Hz 80% 84% 87% p ≤ 0.001

.1Hz 67% 72% 76% p ≤ 0.001

0.50 60Hz 86% 90% 93% 0

30Hz 87% 91% 94% p ≤ 0.001

12Hz 88% 91% 94% p ≤ 0.001

continued on next page
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Table B.14.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

6Hz 84% 88% 92% p ≤ 0.001

3Hz 86% 90% 93% p ≤ 0.001

2Hz 86% 90% 93% p ≤ 0.001

1Hz 87% 91% 94% p ≤ 0.001

.5Hz 85% 89% 93% p ≤ 0.001

.25Hz 83% 87% 91% p ≤ 0.001

.1Hz 71% 76% 81% p ≤ 0.001

0.75 60Hz 87% 93% 96% p ≤ 0.001

30Hz 85% 90% 95% p ≤ 0.001

12Hz 87% 93% 96% p ≤ 0.001

6Hz 85% 91% 95% p ≤ 0.001

3Hz 87% 92% 96% p ≤ 0.001

2Hz 86% 92% 96% p ≤ 0.001

1Hz 90% 95% 98% 0

.5Hz 88% 93% 97% p ≤ 0.001

.25Hz 81% 88% 93% p ≤ 0.001

.1Hz 74% 81% 87% p ≤ 0.001

0.90 60Hz 68% 81% 90% p ≤ 0.001

30Hz 78% 89% 96% p ≤ 0.001

12Hz 81% 91% 97% p ≤ 0.001

6Hz 74% 86% 94% p ≤ 0.001

3Hz 88% 96% 100% p ≤ 0.001

2Hz 78% 89% 96% p ≤ 0.001

1Hz 88% 96% 100% p ≤ 0.001

.5Hz 66% 79% 89% p ≤ 0.001

continued on next page
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Table B.14.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

.25Hz 73% 84% 93% p ≤ 0.001

.1Hz 73% 84% 93% p ≤ 0.001
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Neural Network: Mouse, Tank , and Experience Data

Table B.15.: Neural Network using Tank. Mouse and

Experience Data

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

0.10 60Hz 80% 83% 86% p ≤ 0.001

30Hz 84% 87% 90% 0.00

12Hz 85% 88% 91% p ≤ 0.001

6Hz 83% 86% 89% p ≤ 0.001

3Hz 81% 84% 87% p ≤ 0.001

2Hz 85% 88% 91% p ≤ 0.001

1Hz 82% 85% 88% p ≤ 0.001

.5Hz 84% 87% 90% p ≤ 0.001

.25Hz 83% 86% 89% p ≤ 0.001

.1Hz 77% 80% 84% p ≤ 0.001

0.25 60Hz 84% 88% 91% p ≤ 0.001

30Hz 84% 88% 91% p ≤ 0.001

12Hz 85% 88% 91% p ≤ 0.001

6Hz 86% 89% 92% p ≤ 0.001

3Hz 87% 90% 93% p ≤ 0.001

2Hz 88% 91% 94% p ≤ 0.001

1Hz 89% 92% 94% p ≤ 0.001

.5Hz 87% 90% 93% p ≤ 0.001

.25Hz 85% 89% 91% p ≤ 0.001

.1Hz 78% 82% 86% p ≤ 0.001

0.50 60Hz 87% 91% 94% p ≤ 0.001

30Hz 84% 88% 92% p ≤ 0.001

continued on next page
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Table B.15.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

12Hz 88% 91% 94% p ≤ 0.001

6Hz 87% 91% 94% p ≤ 0.001

3Hz 88% 92% 95% p ≤ 0.001

2Hz 87% 91% 94% p ≤ 0.001

1Hz 88% 92% 95% p ≤ 0.001

.5Hz 86% 90% 93% p ≤ 0.001

.25Hz 88% 92% 95% p ≤ 0.001

.1Hz 79% 84% 88% p ≤ 0.001

0.75 60Hz 77% 84% 89% p ≤ 0.001

30Hz 79% 86% 91% p ≤ 0.001

12Hz 84% 90% 94% p ≤ 0.001

6Hz 80% 86% 91% p ≤ 0.001

3Hz 87% 92% 96% p ≤ 0.001

2Hz 83% 89% 94% p ≤ 0.001

1Hz 89% 94% 97% p ≤ 0.001

.5Hz 90% 95% 98% p ≤ 0.001

.25Hz 80% 86% 91% p ≤ 0.001

.1Hz 73% 80% 86% p ≤ 0.001

0.90 60Hz 81% 91% 97% p ≤ 0.001

30Hz 70% 82% 91% p ≤ 0.001

12Hz 74% 86% 94% 0.00

6Hz 88% 96% 100% 0

3Hz 81% 91% 97% p ≤ 0.001

2Hz 88% 96% 100% p ≤ 0.001

1Hz 83% 93% 98% p ≤ 0.001

continued on next page



196

Table B.15.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

.5Hz 83% 93% 98% p ≤ 0.001

.25Hz 75% 86% 94% p ≤ 0.001

.1Hz 71% 83% 91% p ≤ 0.001
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B.1.3 Random Forests
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Random Forest: Experience

Table B.16.: Random Forest using Experience Only

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

0.10 60Hz 30% 34% 38% .6

30Hz 27% 31% 35% 1

12Hz 30% 34% 38% .6

6Hz 28% 32% 36% 1

3Hz 29% 33% 37% .8

2Hz 30% 34% 38% .6

1Hz 29% 33% 37% .7

.5Hz 31% 35% 39% .5

.25Hz 29% 33% 37% .8

.1Hz 27% 31% 35% 1

0.25 60Hz 28% 32% 37% .9

30Hz 27% 31% 36% 1

12Hz 28% 32% 37% .9

6Hz 28% 32% 37% 1

3Hz 29% 33% 38% .9

2Hz 30% 34% 39% .5

1Hz 28% 32% 37% .9

.5Hz 29% 34% 38% .6

.25Hz 29% 33% 38% .9

.1Hz 27% 32% 36% .9

0.50 60Hz 30% 36% 41% .5

30Hz 27% 32% 38% 1

12Hz 25% 31% 36% 1

continued on next page
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Table B.16.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

6Hz 25% 30% 35% 1

3Hz 28% 34% 39% .9

2Hz 26% 32% 37% .9

1Hz 29% 34% 40% .9

.5Hz 28% 33% 39% 1

.25Hz 27% 33% 38% .8

.1Hz 27% 32% 38% .8

0.75 60Hz 26% 34% 42% .5

30Hz 26% 34% 42% .6

12Hz 23% 30% 38% 1

6Hz 27% 35% 43% .5

3Hz 27% 35% 43% .8

2Hz 25% 32% 40% .9

1Hz 25% 33% 41% .7

.5Hz 28% 36% 44% .5

.25Hz 24% 31% 39% .9

.1Hz 25% 33% 41% .7

0.90 60Hz 18% 30% 43% 1

30Hz 14% 25% 38% 1

12Hz 16% 26% 40% 1

6Hz 24% 37% 51% 1

3Hz 23% 35% 49% .8

2Hz 23% 35% 49% 1

1Hz 16% 26% 40% 1

.5Hz 18% 30% 43% 1

continued on next page
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Table B.16.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

.25Hz 17% 28% 41% 1

.1Hz 21% 33% 46% 1
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Random Forest: Mouse Data

Table B.17.: Random Forest using Mouse Data Only

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

0.10 60Hz 79% 82% 86% p ≤ 0.001

30Hz 82% 85% 88% 0

12Hz 80% 83% 86% p ≤ 0.001

6Hz 84% 87% 90% p ≤ 0.001

3Hz 87% 90% 93% p ≤ 0.001

2Hz 89% 92% 94% p ≤ 0.001

1Hz 89% 91% 94% p ≤ 0.001

.5Hz 88% 91% 93% p ≤ 0.001

.25Hz 87% 90% 92% p ≤ 0.001

.1Hz 75% 79% 82% p ≤ 0.001

0.25 60Hz 83% 86% 89% p ≤ 0.001

30Hz 82% 86% 89% p ≤ 0.001

12Hz 85% 88% 91% 0

6Hz 88% 91% 93% p ≤ 0.001

3Hz 87% 90% 93% p ≤ 0.001

2Hz 88% 91% 94% p ≤ 0.001

1Hz 88% 91% 94% 0

.5Hz 88% 91% 94% p ≤ 0.001

.25Hz 88% 91% 94% 0

.1Hz 78% 82% 86% p ≤ 0.001

0.50 60Hz 87% 91% 94% p ≤ 0.001

30Hz 85% 89% 92% p ≤ 0.001

12Hz 85% 89% 93% p ≤ 0.001

continued on next page
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Table B.17.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

6Hz 88% 92% 94% p ≤ 0.001

3Hz 89% 93% 96% p ≤ 0.001

2Hz 86% 90% 93% 0

1Hz 87% 91% 94% p ≤ 0.001

.5Hz 88% 91% 94% p ≤ 0.001

.25Hz 90% 94% 96% p ≤ 0.001

.1Hz 77% 82% 86% p ≤ 0.001

0.75 60Hz 84% 90% 94% p ≤ 0.001

30Hz 85% 91% 95% p ≤ 0.001

12Hz 84% 90% 94% p ≤ 0.001

6Hz 90% 95% 98% p ≤ 0.001

3Hz 91% 96% 98% p ≤ 0.001

2Hz 90% 95% 98% p ≤ 0.001

1Hz 89% 94% 97% p ≤ 0.001

.5Hz 87% 92% 96% p ≤ 0.001

.25Hz 85% 90% 95% p ≤ 0.001

.1Hz 77% 84% 90% p ≤ 0.001

0.90 60Hz 85% 95% 99% 0

30Hz 83% 93% 98% 0

12Hz 81% 91% 97% p ≤ 0.001

6Hz 81% 91% 97% 0

3Hz 91% 98% 100% p ≤ 0.001

2Hz 74% 86% 94% p ≤ 0.001

1Hz 78% 89% 96% p ≤ 0.001

.5Hz 76% 88% 95% p ≤ 0.001

continued on next page
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Table B.17.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

.25Hz 83% 93% 98% p ≤ 0.001

.1Hz 79% 90% 96% 0
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Random Forest: Mouse and Experience Data

Table B.18.: Random Forest Mouse and Experience Data

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

0.10 60Hz 79% 82% 85% 0

30Hz 81% 84% 87% p ≤ 0.001

12Hz 88% 91% 93% p ≤ 0.001

6Hz 81% 85% 88% p ≤ 0.001

3Hz 88% 91% 93% p ≤ 0.001

2Hz 90% 92% 94% p ≤ 0.001

1Hz 89% 92% 94% p ≤ 0.001

.5Hz 90% 92% 94% p ≤ 0.001

.25Hz 81% 85% 88% p ≤ 0.001

.1Hz 75% 79% 82% p ≤ 0.001

0.25 60Hz 83% 87% 90% p ≤ 0.001

30Hz 83% 87% 90% p ≤ 0.001

12Hz 85% 88% 91% p ≤ 0.001

6Hz 89% 92% 95% p ≤ 0.001

3Hz 90% 93% 95% p ≤ 0.001

2Hz 87% 90% 92% p ≤ 0.001

1Hz 88% 91% 94% p ≤ 0.001

.5Hz 89% 92% 94% p ≤ 0.001

.25Hz 89% 92% 94% p ≤ 0.001

.1Hz 79% 83% 86% p ≤ 0.001

0.50 60Hz 86% 90% 93% p ≤ 0.001

30Hz 84% 88% 92% p ≤ 0.001

12Hz 83% 87% 91% p ≤ 0.001

continued on next page
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Table B.18.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

6Hz 86% 90% 93% p ≤ 0.001

3Hz 87% 91% 94% p ≤ 0.001

2Hz 86% 90% 93% p ≤ 0.001

1Hz 88% 92% 95% p ≤ 0.001

.5Hz 87% 91% 94% p ≤ 0.001

.25Hz 89% 93% 95% p ≤ 0.001

.1Hz 76% 81% 85% p ≤ 0.001

0.75 60Hz 84% 90% 94% p ≤ 0.001

30Hz 82% 88% 93% p ≤ 0.001

12Hz 84% 90% 94% p ≤ 0.001

6Hz 88% 93% 97% p ≤ 0.001

3Hz 87% 92% 96% p ≤ 0.001

2Hz 89% 94% 97% p ≤ 0.001

1Hz 84% 90% 94% p ≤ 0.001

.5Hz 86% 92% 96% p ≤ 0.001

.25Hz 86% 92% 96% p ≤ 0.001

.1Hz 78% 85% 90% p ≤ 0.001

0.90 60Hz 78% 89% 96% p ≤ 0.001

30Hz 78% 89% 96% p ≤ 0.001

12Hz 85% 95% 99% p ≤ 0.001

6Hz 72% 84% 93% p ≤ 0.001

3Hz 74% 86% 94% p ≤ 0.001

2Hz 78% 89% 96% p ≤ 0.001

1Hz 76% 88% 95% p ≤ 0.001

.5Hz 78% 89% 96% p ≤ 0.001

continued on next page
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Table B.18.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

.25Hz 81% 91% 97% p ≤ 0.001

.1Hz 75% 86% 94% p ≤ 0.001



207

Random Forest: Tank Data

Table B.19.: Random Forest using Tank Variables

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

0.10 60Hz 42% 47% 51% p ≤ 0.001

30Hz 45% 50% 54% p ≤ 0.001

12Hz 44% 48% 52% p ≤ 0.001

6Hz 47% 52% 56% p ≤ 0.001

3Hz 45% 49% 53% p ≤ 0.001

2Hz 47% 51% 56% p ≤ 0.001

1Hz 47% 52% 56% p ≤ 0.001

.5Hz 41% 45% 50% p ≤ 0.001

.25Hz 47% 52% 56% p ≤ 0.001

.1Hz 47% 51% 56% p ≤ 0.001

0.25 60Hz 49% 53% 58% p ≤ 0.001

30Hz 44% 49% 53% p ≤ 0.001

12Hz 48% 53% 58% p ≤ 0.001

6Hz 47% 52% 57% p ≤ 0.001

3Hz 41% 45% 50% p ≤ 0.001

2Hz 50% 54% 59% p ≤ 0.001

1Hz 44% 49% 54% p ≤ 0.001

.5Hz 46% 51% 56% p ≤ 0.001

.25Hz 49% 54% 59% p ≤ 0.001

.1Hz 49% 54% 59% p ≤ 0.001

0.50 60Hz 47% 53% 58% p ≤ 0.001

30Hz 44% 49% 55% p ≤ 0.001

12Hz 51% 56% 62% p ≤ 0.001

continued on next page
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Table B.19.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

6Hz 44% 49% 55% p ≤ 0.001

3Hz 46% 52% 58% p ≤ 0.001

2Hz 51% 57% 63% p ≤ 0.001

1Hz 46% 52% 58% p ≤ 0.001

.5Hz 46% 52% 58% p ≤ 0.001

.25Hz 50% 56% 62% p ≤ 0.001

.1Hz 47% 53% 59% p ≤ 0.001

0.75 60Hz 46% 54% 63% p ≤ 0.001

30Hz 51% 59% 67% p ≤ 0.001

12Hz 48% 56% 65% p ≤ 0.001

6Hz 41% 49% 57% p ≤ 0.001

3Hz 49% 58% 66% p ≤ 0.001

2Hz 43% 52% 60% p ≤ 0.001

1Hz 38% 46% 55% p ≤ 0.001

.5Hz 48% 56% 64% p ≤ 0.001

.25Hz 51% 60% 68% p ≤ 0.001

.1Hz 44% 52% 61% p ≤ 0.001

0.90 60Hz 37% 51% 64% p ≤ 0.001

30Hz 48% 61% 74% p ≤ 0.001

12Hz 32% 46% 59% p ≤ 0.001

6Hz 37% 51% 64% p ≤ 0.001

3Hz 51% 65% 77% p ≤ 0.001

2Hz 39% 53% 66% p ≤ 0.001

1Hz 41% 54% 68% p ≤ 0.001

.5Hz 42% 56% 69% p ≤ 0.001

continued on next page
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Table B.19.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

.25Hz 43% 57% 70% p ≤ 0.001

.1Hz 37% 50% 63% p ≤ 0.001
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Random Forest: Tank Data and Experience

Table B.20.: Random Forest Tank Variables and Expe-

rience

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

0.10 60Hz 36% 40% 45% p ≤ 0.001

30Hz 40% 44% 49% p ≤ 0.001

12Hz 38% 42% 47% p ≤ 0.001

6Hz 38% 42% 47% p ≤ 0.001

3Hz 41% 45% 49% p ≤ 0.001

2Hz 43% 47% 51%7p ≤ 0.001

1Hz 43% 47% 52% p ≤ 0.001

.5Hz 45% 49% 53% p ≤ 0.001

.25Hz 48% 52% 57% p ≤ 0.001

.1Hz 46% 51% 55% p ≤ 0.001

0.25 60Hz 44% 49% 53% p ≤ 0.001

30Hz 45% 50% 54% p ≤ 0.001

12Hz 43% 48% 52% p ≤ 0.001

6Hz 35% 39% 44% .1

3Hz 40% 44% 48% p ≤ 0.001

2Hz 41% 45% 49% p ≤ 0.001

1Hz 42% 47% 51% p ≤ 0.001

.5Hz 44% 48% 53% p ≤ 0.001

.25Hz 47% 52% 56% p ≤ 0.001

.1Hz 47% 51% 55% p ≤ 0.001

0.50 60Hz 46% 51% 56% p ≤ 0.001

30Hz 49% 54% 59% p ≤ 0.001

continued on next page
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Table B.20.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

12Hz 44% 49% 54% p ≤ 0.001

6Hz 46% 50% 55% p ≤ 0.001

3Hz 46% 51% 56% p ≤ 0.001

2Hz 40% 44% 49% p ≤ 0.001

1Hz 39% 44% 49% p ≤ 0.001

.5Hz 46% 51% 55% p ≤ 0.001

.25Hz 48% 53% 57% p ≤ 0.001

.1Hz 46% 51% 55% p ≤ 0.001

0.75 60Hz 47% 51% 56% p ≤ 0.001

30Hz 47% 52% 57% p ≤ 0.001

12Hz 48% 53% 58% p ≤ 0.001

6Hz 50% 55% 59% p ≤ 0.001

3Hz 46% 51% 56% p ≤ 0.001

2Hz 47% 52% 57% p ≤ 0.001

1Hz 43% 48% 53% p ≤ 0.001

.5Hz 49% 53% 58% p ≤ 0.001

.25Hz 49% 54% 59% p ≤ 0.001

.1Hz 48% 53% 58% p ≤ 0.001

0.90 60Hz 48% 54% 60% p ≤ 0.001

30Hz 50% 56% 62% p ≤ 0.001

12Hz 44% 50% 56% p ≤ 0.001

6Hz 46% 52% 57% p ≤ 0.001

3Hz 47% 53% 59% 0.00

2Hz 47% 53% 59% 0.00

1Hz 49% 54% 60% p ≤ 0.001

continued on next page
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Table B.20.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

.5Hz 43% 49% 55% 0.00

.25Hz 51% 56% 62% p ≤ 0.001

.1Hz 48% 53% 59% 0.00
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Random Forest: Mouse and Tank Data

Table B.21.: Random Forest using Tank and Mouse Data

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

0.10 60Hz 81% 84% 87% 0.00

30Hz 83% 86% 89% p ≤ 0.001

12Hz 85% 88% 90% p ≤ 0.001

6Hz 87% 90% 93% p ≤ 0.001

3Hz 88% 91% 93% p ≤ 0.001

2Hz 89% 91% 94% p ≤ 0.001

1Hz 87% 90% 92% p ≤ 0.001

.5Hz 85% 88% 91% p ≤ 0.001

.25Hz 84% 88% 90% p ≤ 0.001

.1Hz 73% 77% 81% p ≤ 0.001

0.25 60Hz 79% 83% 86% 0.00

30Hz 82% 86% 89% 0.00

12Hz 86% 89% 92% p ≤ 0.001

6Hz 87% 90% 93% p ≤ 0.001

3Hz 89% 92% 94% p ≤ 0.001

2Hz 89% 92% 94% p ≤ 0.001

1Hz 87% 90% 92% p ≤ 0.001

.5Hz 88% 91% 93% 0.00

.25Hz 87% 90% 93% 0.00

.1Hz 78% 82% 86% p ≤ 0.001

0.50 60Hz 81% 86% 90% p ≤ 0.001

30Hz 84% 88% 91% p ≤ 0.001

12Hz 88% 92% 95% p ≤ 0.001

continued on next page
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Table B.21.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

6Hz 86% 90% 93% p ≤ 0.001

3Hz 87% 90% 94% p ≤ 0.001

2Hz 88% 92% 95% p ≤ 0.001

1Hz 90% 94% 96% 0.00

.5Hz 88% 91% 94% p ≤ 0.001

.25Hz 88% 92% 95% p ≤ 0.001

.1Hz 77% 82% 86% p ≤ 0.001

0.75 60Hz 84% 90% 94% p ≤ 0.001

30Hz 86% 92% 96% p ≤ 0.001

12Hz 87% 93% 96% p ≤ 0.001

6Hz 89% 94% 97% p ≤ 0.001

3Hz 82% 88% 93% p ≤ 0.001

2Hz 85% 91% 95% p ≤ 0.001

1Hz 88% 93% 97% p ≤ 0.001

.5Hz 90% 95% 98% p ≤ 0.001

.25Hz 85% 91% 95% p ≤ 0.001

.1Hz 81% 87% 92% p ≤ 0.001

0.90 60Hz 81% 91% 97% p ≤ 0.001

30Hz 83% 93% 98% p ≤ 0.001

12Hz 83% 93% 98% 0.00

6Hz 81% 91% 97% p ≤ 0.001

3Hz 88% 96% 100% p ≤ 0.001

2Hz 81% 91% 97% p ≤ 0.001

1Hz 88% 96% 100% p ≤ 0.001

.5Hz 76% 88% 95% p ≤ 0.001

continued on next page
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Table B.21.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

.25Hz 79% 90% 96% p ≤ 0.001

.1Hz 79% 90% 96% p ≤ 0.001
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Random Forest: Mouse, Tank and Experience Data

Table B.22.: Random Forest using Tank. Mouse and

Experience Data

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

0.10 60Hz 85% 88% 91% p ≤ 0.001

30Hz 79% 82% 85% p ≤ 0.001

12Hz 87% 90% 92% p ≤ 0.001

6Hz 87% 90% 92% p ≤ 0.001

3Hz 77% 80% 84% p ≤ 0.001

2Hz 86% 89% 92% p ≤ 0.001

1Hz 86% 89% 92% p ≤ 0.001

.5Hz 83% 86% 89% p ≤ 0.001

.25Hz 80% 83% 86% p ≤ 0.001

.1Hz 59% 63% 67% p ≤ 0.001

0.25 60Hz 84% 88% 91% p ≤ 0.001

30Hz 85% 88% 91% p ≤ 0.001

12Hz 86% 90% 92% p ≤ 0.001

6Hz 87% 90% 93% p ≤ 0.001

3Hz 86% 89% 92% p ≤ 0.001

2Hz 79% 83% 87% p ≤ 0.001

1Hz 82% 86% 89% p ≤ 0.001

.5Hz 80% 84% 87% p ≤ 0.001

.25Hz 77% 81% 85% p ≤ 0.001

.1Hz 69% 73% 78% p ≤ 0.001

0.50 60Hz 88% 92% 95% p ≤ 0.001

30Hz 84% 88% 92% p ≤ 0.001

continued on next page
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Table B.22.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

12Hz 89% 93% 96% p ≤ 0.001

6Hz 89% 93% 95% p ≤ 0.001

3Hz 86% 90% 93% p ≤ 0.001

2Hz 90% 93% 96% p ≤ 0.001

1Hz 69% 74% 79% p ≤ 0.001

.5Hz 85% 89% 92% p ≤ 0.001

.25Hz 85% 89% 92% p ≤ 0.001

.1Hz 68% 74% 79% p ≤ 0.001

0.75 60Hz 82% 88% 93% p ≤ 0.001

30Hz 83% 89% 94% p ≤ 0.001

12Hz 82% 88% 93% p ≤ 0.001

6Hz 82% 88% 93% p ≤ 0.001

3Hz 80% 87% 92% p ≤ 0.001

2Hz 81% 87% 92% p ≤ 0.001

1Hz 84% 90% 94% p ≤ 0.001

.5Hz 89% 94% 97% p ≤ 0.001

.25Hz 70% 78% 84% p ≤ 0.001

.1Hz 59% 67% 75% p ≤ 0.001

0.90 60Hz 85% 95% 99% p ≤ 0.001

30Hz 74% 86% 94% p ≤ 0.001

12Hz 81% 91% 97% p ≤ 0.001

6Hz 88% 96% 100% p ≤ 0.001

3Hz 85% 95% 99% p ≤ 0.001

2Hz 85% 95% 99% p ≤ 0.001

1Hz 74% 86% 94% p ≤ 0.001

continued on next page
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Table B.22.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

.5Hz 85% 95% 99% p ≤ 0.001

.25Hz 77% 88% 95% p ≤ 0.001

.1Hz 65% 78% 87% p ≤ 0.001

B.2 Delay Prediction

This section contains tables showing the Accuracyuracy of delay prediction mod-

els and is structured by model class and further sUpper Bounddivided by predictor

variables

B.2.1 General Linear Model



219

General Linear Model : Experience Data

Table B.23.: General Linear Model using Experience

Data

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

10% 60Hz 55% 59% 63% 0.5

30Hz 55% 60% 64% 0.5

12Hz 55% 59% 63% 0.4

6Hz 52% 57% 61% 0.8

3Hz 53% 57% 61% 0.8

2Hz 49% 53% 58% 1.0

1Hz 52% 56% 61% 0.6

.5Hz 36% 41% 46% 0.7

.25Hz 49% 56% 62% 1.0

.1Hz 59% 64% 68% 0.7

25% 60Hz 54% 59% 63% 0.5

30Hz 55% 60% 64% 0.5

12Hz 54% 59% 63% 0.5

6Hz 54% 59% 64% 0.4

3Hz 53% 57% 62% 0.6

2Hz 52% 57% 61% 0.9

1Hz 47% 52% 56% 1.0

.5Hz 49% 55% 60% 0.2

.25Hz 56% 63% 70% 0.5

.1Hz 60% 65% 69% 0.4

50% 60Hz 53% 59% 65% 0.5

30Hz 53% 59% 65% 0.5

continued on next page
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Table B.23.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

12Hz 53% 59% 64% 0.5

6Hz 53% 59% 64% 0.5

3Hz 52% 58% 63% 0.5

2Hz 49% 55% 61% 0.8

1Hz 50% 56% 62% 0.7

.5Hz 47% 54% 61% 0.4

.25Hz 55% 64% 72% 0.5

.1Hz 59% 65% 70% 0.5

75% 60Hz 50% 59% 67% 0.5

30Hz 50% 59% 67% 0.5

12Hz 50% 59% 67% 0.5

6Hz 50% 59% 67% 0.5

3Hz 49% 58% 66% 0.5

2Hz 51% 60% 68% 0.5

1Hz 49% 57% 65% 0.5

.5Hz 45% 55% 64% 0.4

.25Hz 51% 64% 76% 0.6

.1Hz 56% 65% 72% 0.5

90% 60Hz 46% 60% 72% 0.6

30Hz 46% 60% 72% 0.6

12Hz 46% 60% 72% 0.6

6Hz 46% 60% 72% 0.6

3Hz 44% 58% 71% 0.6

2Hz 44% 58% 71% 0.6

1Hz 44% 58% 71% 0.6

continued on next page
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Table B.23.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

.5Hz 27% 42% 58% 0.6

.25Hz 45% 67% 84% 0.6

.1Hz 52% 66% 78% 0.6
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General Linear Model : Keypress Data

Table B.24.: General Linear Model using Keypress Data

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

10% 60Hz 55% 59% 63% 0.44

30Hz 56% 60% 65% 0.23

12Hz 51% 56% 60% 0.92

6Hz 53% 58% 62% 0.68

3Hz 55% 60% 64% 0.71

2Hz 55% 59% 64% 0.37

1Hz 49% 54% 58% 0.93

.5Hz 39% 44% 49% 1.0

.25Hz 44% 50% 57% 1.0

.1Hz 52% 56% 60% 1.0

60Hz 53% 58% 63% 0.6

30Hz 53% 58% 63% 0.7

12Hz 52% 56% 61% 0.8

6Hz 54% 59% 64% 0.4

3Hz 53% 58% 63% 0.5

2Hz 49% 54% 58% 1.0

1Hz 54% 58% 63% 0.3

.5Hz 39% 44% 50% 0.2

.25Hz 48% 56% 63% 1.0

.1Hz 66% 71% 75% 0.0

50% 60Hz 48% 54% 60% 1.0

30Hz 59% 65% 70% 0.0

12Hz 50% 56% 62% 0.8

continued on next page
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Table B.24.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

6Hz 60% 66% 71% 0.0

3Hz 58% 63% 69% 0.0

2Hz 51% 57% 62% 0.6

1Hz 60% 66% 72% 0.0

.5Hz 52% 58% 65% 0.1

.25Hz 48% 57% 66% 0.9

.1Hz 63% 68% 74% 0.1

75% 60Hz 50% 58% 66% 0.6

30Hz 50% 59% 67% 0.5

12Hz 50% 59% 67% 0.5

6Hz 49% 58% 66% 0.6

3Hz 49% 58% 66% 0.5

2Hz 58% 66% 74% 0.0

1Hz 53% 61% 70% 0.2

.5Hz 50% 59% 69% 0.1

.25Hz 50% 63% 74% 0.7

.1Hz 67% 75% 82% 0.0

90% 60Hz 46% 60% 72% 0.6

30Hz 46% 60% 72% 0.6

12Hz 46% 60% 72% 0.6

6Hz 46% 60% 72% 0.6

3Hz 44% 58% 71% 0.6

2Hz 46% 60% 72% 0.4

1Hz 44% 58% 71% 0.6

.5Hz 33% 49% 65% 0.2

continued on next page
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Table B.24.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

.25Hz 35% 56% 76% 0.9

.1Hz 54% 67% 79% 0.5
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General Linear Model : Keypress and Experience Data

Table B.25.: General Linear Model using Keypress and

Experience Data

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

10% 60Hz 50% 54% 58% 0.99

30Hz 46% 50% 55% 1.00

12Hz 50% 54% 58% 0.98

6Hz 45% 49% 54% 1.00

3Hz 48% 53% 57% 0.99

2Hz 48% 52% 57% 0.99

1Hz 49% 53% 57% 0.97

.5Hz 43% 48% 53% 0.97

.25Hz 42% 49% 55% 1.00

.1Hz 48% 53% 57% 1.00

25% 60Hz 54% 58% 63% 0.60

30Hz 53% 57% 62% 0.74

12Hz 51% 56% 61% 0.89

6Hz 52% 57% 62% 0.74

3Hz 50% 55% 60% 0.89

2Hz 54% 59% 63% 0.30

1Hz 54% 59% 64% 0.18

.5Hz 34% 39% 44% 0.88

.25Hz 48% 55% 62% 0.99

.1Hz 61% 65% 70% 0.40

50% 60Hz 53% 59% 65% 0.53

30Hz 54% 60% 66% 0.38

continued on next page
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Table B.25.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

12Hz 54% 60% 65% 0.39

6Hz 52% 58% 64% 0.62

3Hz 57% 63% 68% 0.04

2Hz 55% 60% 66% 0.16

1Hz 51% 57% 63% 0.57

.5Hz 47% 54% 60% 0.42

.25Hz 51% 60% 69% 0.80

.1Hz 63% 69% 74% 0.06

75% 60Hz 50% 58% 66% 0.60

30Hz 51% 60% 68% 0.47

12Hz 53% 61% 69% 0.28

6Hz 47% 55% 63% 0.82

3Hz 55% 63% 71% 0.10

2Hz 54% 62% 70% 0.14

1Hz 54% 62% 70% 0.13

.5Hz 36% 45% 55% 0.25

.25Hz 42% 55% 67% 0.95

.1Hz 61% 69% 76% 0.17

90% 60Hz 42% 56% 69% 0.75

30Hz 47% 60% 73% 0.56

12Hz 46% 60% 72% 0.56

6Hz 42% 56% 69% 0.75

3Hz 49% 63% 76% 0.25

2Hz 58% 72% 83% 0.07

1Hz 41% 55% 68% 0.75

continued on next page
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Table B.25.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

.5Hz 38% 53% 69% 0.56

.25Hz 46% 68% 85% 0.43

.1Hz 61% 74% 85% 0.11



228

General Linear Model : Keypress and Interaction Time Data

Table B.26.: General Linear Model using Keypress and

Interaction Time Data

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

10% 60Hz 46% 50% 55% 1.00

30Hz 44% 48% 52% 1.00

12Hz 35% 39% 44% 1.00

6Hz 42% 47% 51% 1.00

3Hz 48% 53% 57% 1.00

2Hz 41% 46% 50% 1.00

1Hz 39% 44% 48% 1.00

.5Hz 38% 43% 48% 1.00

.25Hz 44% 50% 57% 1.00

.1Hz 51% 55% 60% 1.00

25% 60Hz 53% 58% 62% 0.82

30Hz 47% 52% 57% 1.00

12Hz 49% 54% 59% 0.98

6Hz 53% 57% 62% 0.70

3Hz 48% 53% 57% 0.98

2Hz 50% 55% 60% 0.87

1Hz 50% 55% 60% 0.97

.5Hz 43% 49% 54% 0.93

.25Hz 38% 45% 53% 1.00

.1Hz 58% 63% 68% 0.74

50% 60Hz 59% 65% 70% 0.02

30Hz 54% 60% 66% 0.34

continued on next page
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Table B.26.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

12Hz 57% 62% 68% 0.11

6Hz 55% 61% 66% 0.34

3Hz 51% 57% 62% 0.66

2Hz 51% 57% 62% 0.62

1Hz 51% 57% 63% 0.48

.5Hz 51% 58% 64% 0.08

.25Hz 45% 54% 63% 0.99

.1Hz 64% 70% 75% 0.03

75% 60Hz 54% 62% 70% 0.23

30Hz 56% 64% 72% 0.10

12Hz 57% 65% 73% 0.10

6Hz 60% 68% 75% 0.01

3Hz 59% 67% 75% 0.01

2Hz 59% 67% 75% 0.03

1Hz 60% 69% 76% 0.02

.5Hz 43% 52% 62% 0.61

.25Hz 39% 52% 64% 0.99

.1Hz 60% 68% 75% 0.22

90% 60Hz 51% 65% 77% 0.25

30Hz 55% 68% 80% 0.11

12Hz 48% 61% 74% 0.45

6Hz 55% 68% 80% 0.11

3Hz 55% 68% 80% 0.17

2Hz 44% 58% 71% 0.75

1Hz 48% 62% 75% 0.45

continued on next page
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Table B.26.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

.5Hz 42% 58% 73% 0.32

.25Hz 39% 60% 79% 0.74

.1Hz 59% 72% 83% 0.17
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General Linear Model : Keypress, Interaction Time and Experience Data

Table B.27.: General Linear Model using Keypress, In-

teraction Time and Experience Data

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

10% 60Hz 40% 45% 49% 1.0

30Hz 37% 41% 45% 1.0

12Hz 46% 51% 55% 1.0

6Hz 34% 38% 43% 1.0

3Hz 42% 46% 51% 1.0

2Hz 43% 48% 52% 1.0

1Hz 43% 47% 52% 1.0

.5Hz 38% 43% 48% 1.0

.25Hz 39% 46% 52% 1.0

.1Hz 48% 53% 57% 1.0

25% 60Hz 44% 49% 53% 1.0

30Hz 52% 56% 61% 0.9

12Hz 51% 56% 61% 0.9

6Hz 50% 54% 59% 1.0

3Hz 54% 58% 63% 0.8

2Hz 49% 54% 59% 0.9

1Hz 47% 52% 56% 1.0

.5Hz 42% 47% 53% 1.0

.25Hz 46% 54% 61% 1.0

.1Hz 59% 63% 68% 0.7

50% 60Hz 49% 55% 61% 0.9

30Hz 51% 56% 62% 0.8

continued on next page
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Table B.27.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

12Hz 56% 62% 67% 0.2

6Hz 55% 61% 66% 0.3

3Hz 53% 59% 65% 0.3

2Hz 51% 57% 63% 0.6

1Hz 55% 61% 66% 0.4

.5Hz 40% 47% 53% 1.0

.25Hz 48% 57% 66% 0.9

.1Hz 63% 68% 74% 0.1

75% 60Hz 60% 68% 75% 0.0

30Hz 54% 62% 70% 0.2

12Hz 54% 62% 70% 0.2

6Hz 59% 67% 75% 0.0

3Hz 56% 64% 72% 0.1

2Hz 56% 65% 72% 0.1

1Hz 57% 66% 74% 0.1

.5Hz 47% 57% 66% 0.3

.25Hz 54% 67% 78% 0.4

.1Hz 65% 73% 80% 0.0

90% 60Hz 51% 65% 77% 0.3

30Hz 46% 60% 72% 0.6

12Hz 51% 65% 77% 0.3

6Hz 51% 65% 77% 0.3

3Hz 48% 61% 74% 0.3

2Hz 51% 65% 77% 0.2

1Hz 48% 62% 75% 0.3

continued on next page
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Table B.27.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

.5Hz 35% 51% 67% 0.1

.25Hz 43% 64% 82% 0.6

.1Hz 59% 72% 83% 0.2
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B.2.2 Neural Networks
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Neural Network : Experience Data

Table B.28.: Neural Network using Experience Data

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

0.10 60Hz 55% 59% 63% 0.48

30Hz 55% 60% 64% 0.52

12Hz 54% 59% 63% 0.52

6Hz 54% 58% 62% 0.66

3Hz 43% 47% 52% 1.00

2Hz 52% 56% 61% 0.69

1Hz 52% 57% 61% 0.52

.5Hz 37% 42% 47% 0.48

.25Hz 47% 53% 60% 1.00

.1Hz 60% 64% 68% 0.52

0.25 60Hz 54% 59% 63% 0.52

30Hz 52% 57% 62% 0.89

12Hz 54% 59% 63% 0.52

6Hz 54% 59% 63% 0.52

3Hz 45% 50% 55% 1.00

2Hz 50% 54% 59% 0.99

1Hz 49% 53% 58% 0.94

.5Hz 49% 55% 60% 0.27

.25Hz 56% 63% 70% 0.53

.1Hz 59% 64% 68% 0.64

0.50 60Hz 53% 59% 65% 0.53

30Hz 51% 56% 62% 0.81

12Hz 53% 59% 64% 0.52

continued on next page
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Table B.28.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

6Hz 51% 57% 63% 0.74

3Hz 52% 58% 63% 0.52

2Hz 46% 52% 58% 0.97

1Hz 48% 54% 60% 0.85

.5Hz 45% 52% 58% 0.68

.25Hz 51% 60% 69% 0.80

.1Hz 59% 64% 70% 0.53

0.75 60Hz 50% 59% 67% 0.54

30Hz 50% 59% 67% 0.54

12Hz 51% 59% 67% 0.47

6Hz 49% 57% 65% 0.66

3Hz 47% 55% 64% 0.72

2Hz 51% 60% 68% 0.54

1Hz 49% 57% 65% 0.54

.5Hz 49% 59% 68% 0.15

.25Hz 43% 56% 69% 0.92

.1Hz 56% 65% 72% 0.54

0.90 60Hz 46% 60% 72% 0.56

30Hz 46% 60% 72% 0.56

12Hz 42% 56% 69% 0.75

6Hz 46% 60% 72% 0.56

3Hz 44% 58% 71% 0.56

2Hz 42% 56% 69% 0.66

1Hz 44% 58% 71% 0.56

.5Hz 25% 40% 56% 0.68

continued on next page
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Table B.28.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

.25Hz 37% 58% 78% 0.86

.1Hz 52% 66% 78% 0.56
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Neural Network : Keypress Data

Table B.29.: Neural Network using Keypress Data

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

0.10 60Hz 56% 60% 64% 0.28

30Hz 59% 63% 67% 0.03

12Hz 49% 53% 58% 1.00

6Hz 45% 49% 54% 1.00

3Hz 60% 64% 68% 0.07

2Hz 62% 66% 70% p ≤ 0.001

1Hz 61% 65% 69% p ≤ 0.001

.5Hz 45% 50% 55% 0.40

.25Hz 57% 63% 70% 0.53

.1Hz 65% 69% 73% 0.01

p ≤ 0.001 60Hz 60% 64% 69% 0.01

30Hz 54% 59% 63% 0.52

12Hz 61% 66% 70% p ≤ 0.001

6Hz 60% 65% 69% p ≤ 0.001

3Hz 60% 65% 69% p ≤ 0.001

2Hz 60% 65% 69% p ≤ 0.001

1Hz 60% 64% 69% p ≤ 0.001

.5Hz 44% 49% 55% p ≤ 0.001

.25Hz 43% 50% 57% 1.00

.1Hz 67% 71% 75% p ≤ 0.001

0.50 60Hz 60% 65% 71% 0.01

30Hz 59% 65% 70% 0.02

12Hz 61% 66% 72% p ≤ 0.001

continued on next page
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Table B.29.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

6Hz 60% 66% 71% 0.01

3Hz 58% 64% 70% 0.01

2Hz 58% 64% 69% 0.01

1Hz 59% 65% 71% 0.04

.5Hz 49% 56% 63% 0.19

.25Hz 55% 64% 72% 0.54

.1Hz 65% 71% 76% 0.01

0.75 60Hz 55% 64% 71% 0.14

30Hz 57% 66% 73% 0.05

12Hz 56% 65% 72% 0.08

6Hz 54% 63% 70% 0.18

3Hz 57% 65% 73% 0.04

2Hz 59% 67% 75% 0.03

1Hz 55% 64% 72% 0.07

.5Hz 51% 60% 70% 0.08

.25Hz 51% 64% 76% 0.56

.1Hz 62% 70% 77% 0.10

0.90 60Hz 58% 72% 83% 0.04

30Hz 53% 67% 79% 0.17

12Hz 58% 72% 83% 0.04

6Hz 51% 65% 77% 0.25

3Hz 49% 63% 76% 0.25

2Hz 48% 61% 74% 0.35

1Hz 44% 58% 71% 0.56

.5Hz 42% 58% 73% 0.02

continued on next page
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Table B.29.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

.25Hz 46% 68% 85% 0.43

.1Hz 48% 62% 74% 0.76
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Neural Network : Keypress and Experience Data

Table B.30.: Neural Network using Keypress and Expe-

rience Data

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

0.10 60Hz 54% 58% 63% 0.62

30Hz 54% 58% 62% 0.66

12Hz 54% 59% 63% 0.52

6Hz 42% 47% 51% 1.00

3Hz 53% 57% 61% 0.65

2Hz 48% 52% 57% 0.99

1Hz 46% 50% 55% 1.00

.5Hz 55% 60% 65% p ≤ 0.001

.25Hz 44% 50% 57% 1.00

.1Hz 66% 70% 74% p ≤ 0.001

0.25 60Hz 52% 56% 61% 0.87

30Hz 62% 67% 71% p ≤ 0.001

12Hz 60% 65% 69% p ≤ 0.001

6Hz 60% 65% 69% p ≤ 0.001

3Hz 45% 50% 55% 1.00

2Hz 59% 64% 69% p ≤ 0.001

1Hz 52% 57% 62% 0.56

.5Hz 39% 45% 50% 0.15

.25Hz 56% 63% 70% 0.53

.1Hz 64% 69% 73% 0.03

0.50 60Hz 60% 66% 71% 0.01

30Hz 57% 63% 68% 0.09

continued on next page
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Table B.30.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

12Hz 53% 59% 64% 0.52

6Hz 56% 62% 68% 0.11

3Hz 61% 67% 72% p ≤ 0.001

2Hz 56% 62% 67% 0.07

1Hz 58% 64% 69% 0.01

.5Hz 52% 59% 66% 0.03

.25Hz 55% 64% 72% 0.54

.1Hz 66% 71% 76% 0.01

0.75 60Hz 57% 65% 73% 0.08

30Hz 56% 64% 72% 0.10

12Hz 56% 65% 72% 0.08

6Hz 60% 68% 75% 0.01

3Hz 57% 65% 73% 0.04

2Hz 51% 60% 68% 0.34

1Hz 56% 65% 73% 0.04

.5Hz 41% 51% 61% 0.03

.25Hz 51% 64% 76% 0.56

.1Hz 61% 69% 77% 0.13

0.90 60Hz 51% 65% 77% 0.25

30Hz 57% 71% 82% 0.07

12Hz 51% 65% 77% 0.25

6Hz 42% 56% 69% 0.75

3Hz 60% 74% 84% 0.01

2Hz 60% 74% 84% 0.04

1Hz 48% 62% 75% 0.34

continued on next page
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Table B.30.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

.5Hz 31% 47% 62% 0.86

.25Hz 43% 64% 82% 0.59

.1Hz 63% 76% 86% 0.06
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Neural Network : Keypress and Interaction Time Data

Table B.31.: Neural Network using Keypress and Inter-

action Time Data

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

0.10 60Hz 47% 51% 55% 1.00

30Hz 51% 55% 60% 0.95

12Hz 41% 45% 50% 1.00

6Hz 50% 54% 58% 0.99

3Hz 52% 56% 60% 0.99

2Hz 53% 57% 61% 0.59

1Hz 44% 49% 53% 1.00

.5Hz 57% 62% 67% p ≤ 0.001

.25Hz 49% 55% 62% 0.99

.1Hz 58% 62% 66% 0.89

0.25 60Hz 60% 64% 69% 0.03

30Hz 55% 60% 64% 0.37

12Hz 53% 58% 63% 0.60

6Hz 56% 61% 65% 0.21

3Hz 53% 58% 62% 0.56

2Hz 60% 64% 69% p ≤ 0.001

1Hz 59% 64% 68% 0.05

.5Hz 54% 60% 65% 0.01

.25Hz 48% 56% 63% 0.99

.1Hz 67% 71% 76% p ≤ 0.001

0.50 60Hz 56% 62% 67% 0.19

30Hz 59% 65% 70% 0.02

continued on next page
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Table B.31.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

12Hz 59% 65% 71% 0.01

6Hz 58% 64% 69% 0.05

3Hz 57% 63% 69% 0.03

2Hz 57% 63% 69% 0.03

1Hz 55% 61% 67% 0.08

.5Hz 54% 61% 67% 0.01

.25Hz 50% 59% 67% 0.88

.1Hz 64% 70% 75% 0.03

0.75 60Hz 57% 66% 73% 0.05

30Hz 56% 64% 72% 0.10

12Hz 59% 67% 75% 0.04

6Hz 62% 70% 77% p ≤ 0.001

3Hz 49% 58% 66% 0.54

2Hz 53% 62% 70% 0.28

1Hz 60% 69% 76% 0.02

.5Hz 46% 56% 65% 0.32

.25Hz 43% 56% 69% 0.92

.1Hz 65% 73% 80% 0.02

0.90 60Hz 53% 67% 79% 0.17

30Hz 53% 67% 79% 0.17

12Hz 44% 58% 71% 0.66

6Hz 57% 70% 82% 0.07

3Hz 58% 72% 83% 0.07

2Hz 53% 67% 79% 0.25

1Hz 46% 60% 73% 0.56

continued on next page
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Table B.31.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

.5Hz 44% 60% 75% 0.22

.25Hz 39% 60% 79% 0.74

.1Hz 61% 74% 85% 0.11
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Neural Network : Keypress, Interaction Time and Experience Data

Table B.32.: Neural Network using Keypress, Interaction

Time and Experience Data

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

0.10 60Hz 46% 50% 55% 1.00

30Hz 42% 47% 51% 1.00

12Hz 61% 65% 69% p ≤ 0.001

6Hz 55% 59% 64% 0.38

3Hz 43% 47% 51% 1.00

2Hz 54% 58% 62% 0.38

1Hz 54% 59% 63% 0.20

.5Hz 51% 56% 61% 0.09

.25Hz 43% 50% 57% 1.00

.1Hz 59% 63% 67% 0.78

0.25 60Hz 60% 64% 69% 0.01

30Hz 52% 57% 61% 0.84

12Hz 51% 56% 61% 0.89

6Hz 54% 59% 63% 0.52

3Hz 64% 68% 73% p ≤ 0.001

2Hz 56% 61% 65% 0.10

1Hz 57% 62% 67% 0.02

.5Hz 30% 35% 41% 1.00

.25Hz 42% 49% 56% 1.00

.1Hz 67% 72% 76% p ≤ 0.001

0.50 60Hz 57% 63% 68% 0.11

30Hz 53% 59% 64% 0.57

continued on next page
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Table B.32.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

12Hz 58% 63% 69% 0.05

6Hz 60% 65% 71% 0.01

3Hz 58% 64% 70% 0.01

2Hz 58% 64% 69% 0.01

1Hz 58% 64% 70% 0.08

.5Hz 58% 65% 71% p ≤ 0.001

.25Hz 45% 53% 62% 0.99

.1Hz 67% 73% 78% p ≤ 0.001

0.75 60Hz 60% 68% 75% 0.02

30Hz 55% 64% 71% 0.14

12Hz 55% 63% 71% 0.14

6Hz 61% 69% 76% 0.01

3Hz 55% 64% 71% 0.08

2Hz 56% 64% 72% 0.18

1Hz 56% 65% 73% 0.13

.5Hz 48% 58% 67% 0.20

.25Hz 43% 56% 69% 0.92

.1Hz 66% 73% 80% 0.01

0.90 60Hz 53% 67% 79% 0.17

30Hz 49% 63% 76% 0.35

12Hz 51% 65% 77% 0.25

6Hz 55% 68% 80% 0.11

3Hz 51% 65% 77% 0.17

2Hz 57% 70% 82% 0.04

1Hz 51% 65% 78% 0.17

continued on next page
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Table B.32.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

.5Hz 27% 42% 58% 0.56

.25Hz 35% 56% 76% 0.85

.1Hz 55% 69% 80% 0.34
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B.2.3 Random Forests
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Random Forest : Experience Data

Table B.33.: Random Forest using Experience Data

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

0.10 60Hz 51% 55% 59% 0.96

30Hz 50% 54% 58% 1.00

12Hz 51% 55% 60% 0.95

6Hz 38% 43% 47% 1.00

3Hz 45% 50% 54% 1.00

2Hz 50% 54% 59% 0.93

1Hz 43% 47% 52% 1.00

.5Hz 35% 39% 44% 0.86

.25Hz 35% 42% 48% 1.00

.1Hz 56% 60% 65% 0.97

0.25 60Hz 52% 57% 61% 0.82

30Hz 49% 54% 58% 1.00

12Hz 52% 57% 61% 0.82

6Hz 47% 52% 56% 1.00

3Hz 45% 50% 55% 1.00

2Hz 52% 56% 61% 0.93

1Hz 44% 49% 54% 1.00

.5Hz 47% 53% 58% 0.57

.25Hz 47% 55% 62% 1.00

.1Hz 55% 60% 64% 0.98

0.50 60Hz 52% 57% 63% 0.70

30Hz 51% 57% 63% 0.74

12Hz 46% 52% 58% 0.99

continued on next page
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Table B.33.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

6Hz 49% 54% 60% 0.93

3Hz 50% 56% 62% 0.70

2Hz 46% 52% 58% 0.97

1Hz 47% 53% 59% 0.93

.5Hz 46% 52% 59% 0.58

.25Hz 47% 56% 65% 0.97

.1Hz 57% 62% 68% 0.79

0.75 60Hz 48% 57% 65% 0.72

30Hz 50% 58% 66% 0.60

12Hz 48% 56% 65% 0.72

6Hz 48% 56% 65% 0.72

3Hz 48% 57% 65% 0.60

2Hz 51% 60% 68% 0.54

1Hz 46% 54% 63% 0.78

.5Hz 43% 53% 63% 0.54

.25Hz 43% 56% 69% 0.92

.1Hz 52% 61% 68% 0.87

0.90 60Hz 41% 54% 68% 0.83

30Hz 46% 60% 72% 0.56

12Hz 39% 53% 66% 0.89

6Hz 42% 56% 69% 0.75

3Hz 41% 54% 68% 0.75

2Hz 42% 56% 69% 0.66

1Hz 41% 55% 68% 0.75

.5Hz 27% 42% 58% 0.56

continued on next page
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Table B.33.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

.25Hz 29% 50% 71% 0.97

.1Hz 54% 67% 79% 0.45
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Random Forest : Keypress Data

Table B.34.: Random Forest using Keypress Data

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

0.10 60Hz 57% 61% 65% 0.13

30Hz 57% 62% 66% 0.12

12Hz 58% 62% 67% 0.04

6Hz 54% 58% 62% 0.59

3Hz 61% 66% 70% 0.01

2Hz 55% 59% 63% 0.45

1Hz 55% 60% 64% 0.10

.5Hz 45% 50% 55% 0.40

.25Hz 47% 53% 60% 1.00

.1Hz 63% 67% 71% 0.08

p ≤ 0.001 60Hz 55% 60% 64% 0.41

30Hz 58% 62% 67% 0.08

12Hz 59% 64% 68% 0.02

6Hz 58% 62% 67% 0.05

3Hz 55% 59% 64% 0.27

2Hz 49% 54% 59% 0.92

1Hz 53% 58% 62% 0.40

.5Hz 37% 42% 47% 0.52

.25Hz 54% 61% 68% 0.75

.1Hz 64% 69% 73% 0.04

0.50 60Hz 58% 64% 69% 0.05

30Hz 52% 58% 64% 0.62

12Hz 58% 64% 70% 0.03

continued on next page
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Table B.34.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

6Hz 56% 62% 67% 0.13

3Hz 56% 62% 68% 0.07

2Hz 57% 62% 68% 0.04

1Hz 58% 64% 69% 0.10

.5Hz 51% 57% 64% 0.10

.25Hz 55% 64% 72% 0.54

.1Hz 64% 69% 75% 0.04

0.75 60Hz 55% 63% 71% 0.18

30Hz 60% 68% 75% 0.02

12Hz 53% 61% 69% 0.28

6Hz 54% 62% 70% 0.23

3Hz 54% 62% 70% 0.14

2Hz 53% 61% 69% 0.34

1Hz 50% 59% 67% 0.40

.5Hz 49% 59% 68% 0.15

.25Hz 46% 59% 71% 0.82

.1Hz 66% 74% 81% 0.01

0.90 60Hz 55% 68% 80% 0.11

30Hz 53% 67% 79% 0.17

12Hz 55% 68% 80% 0.11

6Hz 57% 70% 82% 0.07

3Hz 46% 60% 72% 0.45

2Hz 44% 58% 71% 0.56

1Hz 44% 58% 71% 0.56

.5Hz 29% 44% 60% 0.44

continued on next page
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Table B.34.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

.25Hz 39% 60% 79% 0.74

.1Hz 52% 66% 78% 0.56
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Random Forest : Keypress and Experience Data

Table B.35.: Random Forest using Keypress and Experi-

ence Data

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

0.10 60Hz 56% 60% 65% 0.25

30Hz 60% 64% 68% 0.01

12Hz 59% 63% 67% 0.02

6Hz 61% 65% 69% 0.01

3Hz 56% 60% 64% 0.14

2Hz 56% 60% 64% 0.10

1Hz 52% 56% 61% 0.62

.5Hz 53% 58% 63% 0.02

.25Hz 39% 46% 52% 1.00

.1Hz 66% 70% 74% p ≤ 0.001

0.25 60Hz 58% 62% 67% 0.07

30Hz 56% 61% 66% 0.18

12Hz 57% 62% 66% 0.11

6Hz 58% 63% 67% 0.04

3Hz 55% 60% 65% 0.16

2Hz 58% 63% 67% 0.01

1Hz 57% 62% 66% 0.03

.5Hz 38% 43% 49% 0.35

.25Hz 46% 54% 61% 1.00

.1Hz 64% 68% 73% 0.05

0.50 60Hz 57% 63% 68% 0.11

30Hz 57% 63% 69% 0.07

continued on next page
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Table B.35.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

12Hz 57% 62% 68% 0.11

6Hz 61% 67% 72% p ≤ 0.001

3Hz 57% 63% 68% 0.04

2Hz 56% 62% 68% 0.05

1Hz 54% 60% 66% 0.18

.5Hz 48% 55% 62% 0.27

.25Hz 49% 58% 67% 0.91

.1Hz 65% 71% 76% 0.02

0.75 60Hz 56% 64% 72% 0.10

30Hz 53% 62% 70% 0.28

12Hz 53% 61% 69% 0.28

6Hz 53% 61% 69% 0.28

3Hz 56% 64% 72% 0.05

2Hz 57% 66% 73% 0.03

1Hz 54% 63% 71% 0.10

.5Hz 35% 45% 54% 0.31

.25Hz 48% 61% 73% 0.74

.1Hz 62% 70% 77% 0.10

0.90 60Hz 41% 54% 68% 0.83

30Hz 55% 69% 80% 0.11

12Hz 53% 67% 79% 0.17

6Hz 46% 60% 72% 0.56

3Hz 62% 75% 86% p ≤ 0.001

2Hz 62% 75% 86% 0.02

1Hz 48% 62% 75% 0.34

continued on next page
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Table B.35.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

.5Hz 42% 58% 73% 0.32

.25Hz 39% 60% 79% 0.74

.1Hz 61% 74% 85% 0.11
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Random Forest : Keypress and Interaction Time Data

Table B.36.: Random Forest using Keypress and Inter-

action Time Data

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

0.10 60Hz 56% 61% 65% 0.23

30Hz 61% 65% 69% p ≤ 0.001

12Hz 55% 59% 63% 0.45

6Hz 58% 62% 66% 0.05

3Hz 62% 66% 70% 0.01

2Hz 57% 61% 65% 0.05

1Hz 57% 61% 65% 0.03

.5Hz 54% 59% 64% 0.01

.25Hz 53% 59% 66% 0.90

.1Hz 66% 70% 74% p ≤ 0.001

0.25 60Hz 60% 65% 70% 0.01

30Hz 59% 64% 69% 0.01

12Hz 60% 64% 69% 0.01

6Hz 60% 65% 69% p ≤ 0.001

3Hz 58% 62% 67% 0.03

2Hz 52% 57% 62% 0.56

1Hz 59% 64% 68% 0.05

.5Hz 55% 60% 65% p ≤ 0.001

.25Hz 51% 59% 66% 0.92

.1Hz 61% 66% 70% 0.26

0.50 60Hz 63% 68% 74% p ≤ 0.001

30Hz 61% 67% 72% p ≤ 0.001

continued on next page
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Table B.36.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

12Hz 60% 65% 71% 0.01

6Hz 57% 63% 69% 0.09

3Hz 60% 66% 71% p ≤ 0.001

2Hz 56% 62% 68% 0.05

1Hz 60% 66% 71% p ≤ 0.001

.5Hz 56% 63% 69% p ≤ 0.001

.25Hz 53% 62% 70% 0.68

.1Hz 64% 69% 75% 0.04

0.75 60Hz 57% 66% 73% 0.05

30Hz 57% 66% 73% 0.05

12Hz 57% 66% 73% 0.07

6Hz 64% 72% 79% p ≤ 0.001

3Hz 57% 66% 73% 0.03

2Hz 57% 65% 73% 0.08

1Hz 63% 71% 79% p ≤ 0.001

.5Hz 49% 59% 68% 0.15

.25Hz 45% 58% 70% 0.88

.1Hz 61% 69% 76% 0.17

0.90 60Hz 53% 67% 79% 0.17

30Hz 51% 65% 77% 0.25

12Hz 49% 63% 76% 0.35

6Hz 57% 70% 82% 0.07

3Hz 60% 74% 84% 0.04

2Hz 58% 72% 83% 0.07

1Hz 55% 69% 81% 0.11

continued on next page
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Table B.36.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

.5Hz 38% 53% 69% 0.56

.25Hz 46% 68% 85% 0.43

.1Hz 67% 79% 89% 0.02
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Random Forest : Keypress, Interaction Time Data

Table B.37.: Random Forest using Keypress, Interaction

Time and Experience Data

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

0.10 60Hz 59% 63% 67% 0.02

30Hz 60% 65% 69% p ≤ 0.001

12Hz 58% 63% 67% 0.07

6Hz 54% 58% 63% 0.55

3Hz 55% 60% 64% 0.18

2Hz 55% 60% 64% 0.16

1Hz 58% 63% 67% 0.01

.5Hz 50% 55% 60% 0.26

.25Hz 52% 58% 65% 0.95

.1Hz 68% 72% 76% p ≤ 0.001

0.25 60Hz 61% 66% 70% p ≤ 0.001

30Hz 56% 60% 65% 0.27

12Hz 56% 60% 65% 0.23

6Hz 62% 67% 71% p ≤ 0.001

3Hz 61% 66% 70% 0.01

2Hz 59% 64% 69% p ≤ 0.001

1Hz 56% 61% 66% 0.05

.5Hz 54% 60% 65% 0.01

.25Hz 53% 60% 67% 0.83

.1Hz 66% 71% 75% p ≤ 0.001

0.50 60Hz 60% 65% 71% 0.01

30Hz 57% 63% 69% 0.07

continued on next page
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Table B.37.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

12Hz 62% 67% 73% p ≤ 0.001

6Hz 61% 67% 72% p ≤ 0.001

3Hz 58% 64% 70% 0.01

2Hz 57% 62% 68% 0.04

1Hz 62% 68% 73% p ≤ 0.001

.5Hz 53% 60% 67% 0.02

.25Hz 51% 60% 68% 0.84

.1Hz 69% 75% 79% p ≤ 0.001

0.75 60Hz 60% 68% 76% 0.01

30Hz 57% 65% 73% 0.08

12Hz 58% 67% 74% 0.03

6Hz 60% 68% 75% 0.01

3Hz 56% 64% 72% 0.05

2Hz 58% 67% 74% 0.05

1Hz 60% 69% 76% 0.02

.5Hz 55% 65% 74% 0.01

.25Hz 46% 59% 71% 0.82

.1Hz 67% 75% 82% 0.01

0.90 60Hz 57% 70% 82% 0.07

30Hz 46% 60% 72% 0.56

12Hz 53% 67% 79% 0.17

6Hz 55% 68% 80% 0.11

3Hz 48% 61% 74% 0.35

2Hz 53% 67% 79% 0.11

1Hz 50% 64% 76% 0.25

continued on next page
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Table B.37.: continued

Split Sampling Rate Lower Bound Accuracy Upper Bound P-values

.5Hz 31% 47% 62% 0.32

.25Hz 46% 68% 85% 0.43

.1Hz 55% 69% 80% 0.34
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C. ADDITIONAL CONTEXT

The following chapter provides additional academic context not covered in the Back-

ground Chapter.

C.1 Human Factors

The following section provides a brief overview of three interaction domains under

consideration in this exam and specific human factors related to that domain. The

first section, titled Aviation and HFACS, discusses the formulation of the Human

Factors analysis and classification system because of aviation accident investigations.

The second section, uses the interaction domain of driving to introduce the concept

of mental models. The third and final section use human computer interaction and

the sub-domain of data visualization to introduce the language of data.

C.1.1 Aviation and HFACS

Human Factors analysis and classification system (HFACS) is used by analysts

to classify the human causes of an accident. The results of an HFACS analysis can

be used to improve training and develop accident prevention procedures(Aviation,

2000). The model is based on James Reasons Swiss Cheese Model of accident cau-

sation (Reason, 1990). The HFACS model was originally developed for commercial

and military aviation but has been applied to: Air traffic control (Broach & Dollar,

2002) , Aviation maintenance (Krulak, 2004; Rashid, Place, & Braithwaite, 2014),

construction (Garrett & Teizer, 2009), healthcare (ElBardissi, Wiegmann, Dearani,

Daly, & Sundt, 2007) and mining operations (Patterson & Shappell, 2010). Figure

C.1shows the four level of analysis considered during an HFACS analysis. These lev-



267

Fig. C.1. HFACS Framework courtesy skybrary.com

els, Unsafe acts, Preconditions for unsafe acts, unsafe supervision and organization

influence, are directly based on Reason’s Swiss Cheese model of accident causation.

Analysts consider incidents and accidents using a bottom up holistic approach.

A bottom up approach allows an analyst to work up the chain of causation. Take

for instance a ground vehicle which collides with a parked aircraft. This unsafe act

can be simultaneously a decision error, a perceptual error and a violation. The ground

crew driver may be used to taking a short cut with a small vehicle and not realize

they were in a vehicle with a taller clearance which lead to this incident.

HFACS asserts that errors do not occur spontaneously but are a product of pre-

existing environmental and operational conditions. The driver may have felt oper-

ational pressure to take the short cut because the ground crew was under staffed

and they were needed elsewhere. Alternatively, a clearance alarm alerting the pi-



268

lot may not have sounded. At higher levels, unsafe supervisions and organizational

influences can increase the likelihood of incidents. An organizational climate which

stresses working long hours buts down plays the importance of retraining employees

combined with poor supervision can increase the likelihood of errors.

Procedural Non-compliance

What are the reasons trained professionals who are aware that a procedure exists

fail to comply with a procedure? According to Carthey et al. in a study of medical

professionals in the National Health Service (NHS), the reasons included the length,

complexity, accessibility and volume of regulations (Carthey, Walker, Deelchand, Vin-

cent, & Griffiths, 2011). The length criteria measured was the steps in the procedure

while complexity is a measure of how easy the regulation was to implement or find.

Accessibility refers to how quickly the procedure could be accessed. Volume is distinct

from length because it refers to the number of pages not the number of steps.

There were additional issues of redundancy and version control. Carthey et al.

noted that a single task may have multiple procedures associated with it. In emer-

gency situations, it was not always clear which procedure would take priority. Further,

two departments may not be referencing the same version of a procedure. Leads to

scenarios where two groups are referencing different versions of the same procedure.

This builds on previous research by Reason et al. who posited that five main

factors shaped the occurrence of ten types of rule related behaviors including: avail-

ability of a procedure, the appropriateness of the procedure, whether or not it was

followed, the correctness of the chosen course of action and the outcome of the action

in terms of the achievement of personal goals (Reason, 1990).

The authors note that the variety of rules available will always be less diverse than

the number of unsafe situations and that wholly safe situations cannot be made safe

through perspective measures. Four types of organizational control can be employed:

administrative controls, technical controls, social controls and self-controls.
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Procedures can be inappropriate for the scenario, as in they were written for ideal

conditions but emergencies, which can lead to noncompliance.

Skill Based Errors

Skill based errors occur when the individual has the right knowledge, skills and

experience to execute a task but their attention is diverted from the task. This

diversion can be due to external or internal factors. These errors occur once the task

has become routine to the operator, which allows them to exert less cognitive effort

on the task but increases the likelihood of distraction.

There are two categories of skill based errors: memory lapses and slips of action.

Memory lapses occur during the task planning stage and typically involve a failure

to include a step or losing one’s place in the task sequence. Slips are unintended

actions and occur during task execution and can take the following forms including:

the right action on the wrong object, reordering steps in a procedure and performing

the wrong action on the correct object.

Exceptional Violations

Exceptional violations are one of three identified types of violations within the

human factors literature. The first category of errors, called situational errors, arise

from pressures to keep the task moving towards completion. These errors occur when

individuals believe that following the normal rule is no longer safe or will not produce

the desired outcome, thus the decision is made to violate the exiting rule. Such

violations are usually singular events (Lawton, 1998) .

The second category, routine violations, are the most commonplace and arise as

shortcuts to the task at hand. Per researching conducted by Rebecca Lawton on

Railway workers, routine violations can occur when the original rules and norms

are seen as too onerous to follow (Lawton, 1998). The third and final category of
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violations are Exceptional Violations which occur when an unusual situation requires

an exceptional response.

Time pressure and performance

Hwang proposed an additive model of decision making under time pressure. Time

pressure would positively impact task difficulty. Task difficulty negatively impacts de-

cision strategy and positive impacts goal commitment (Hwang, 1994). According to

a meta-analysis by Wofford et al., facing the challenge of a difficult task raises deter-

mination to reach a goal but task complexity can offset this determination (Wofford,

Goodwin, & Premack, 1992) .

Hwang decomposed decision strategy into three categories based on research by

Beach and Mitchell. These categories are: aided analytic,unaided, and unaided ana-

lytic. (Beach & Mitchell, 1978). Aided analytic methods require the decision maker

to apply a prescribe procedure and solve the problem with the help of decision aids.

Unaided analytic methods are applied when the decision maker attempt to explore

the dimensions of the problem without aids. The last category includes non-analytic

strategies such as flipping a coin or applying a heuristic.

Decision making behavior during gambling tasks is affected by time pressure.

Under high time pressure conditions, individuals picked the less risky choice. Three

mechanisms were proposed as a way to account for time pressure (Zur & Breznitz,

1981). Acceleration occurs when individuals process all information at a faster rate.

Avoidance occurs when the individuals avoids making a choice. Finally, filtration is a

compromise strategy where individuals select the subjectively important information

for processing (MILLER, 1960).

Bear and Oldham studied the effect of time pressure has on individual creativity.

They found that manufacturing employees creativity could be modeled as an inverted

u-curve when time pressure was applied. However, this u-curve only occurred in
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scenarios where the individuals were open to creativity and they were being supported.

Otherwise, creative time pressure could be modeled as a line (Baer & Oldham, 2006).

Ahituv et al studied Israeli military commanders 5 key findings worth discussing.

First, complete information improves task performance but that improvement is not

always significant. Second, time pressure usually-but is not guaranteed- to impair

performance. Experienced individuals are better at digesting more information when

decision time is constrained. Less experienced individuals make more decisions within

a given interval. Everyone made more decisions early in the scenario but slowed down

once they realized the decisions would take time to be effective (Ahituv, Igbaria, &

Sella, 1998).

Parkinson‘s law is an adage which states that work expands to fill time allowed for

completion. There is some empirical evidence which suggests this phenomenon does

exist. Bryan and Locke altered amount of time students had to complete a series

of mathematics problems. Their findings indicated students who had been given

double the amount of time worked significantly longer than student who were given

a minimal amount of time to complete the tasks (Bryan & Locke, 1967). Work by

Locke with wood harvesters found that wood harvesters who faced time restrictions

on their production quota would exert more effort towards task completion than their

less stressed counterparts. In the lumber industry, mills would restrict the number of

days per week they would buy from a lumber harvester because the mill had more

wood in stock than it could process. Mills would employ different strategies to restrict

purchases, including only buying wood from harvesters on a first come first serve basis.

Harvesters would try to minimize their lost income by increasing their output rate to

accommodate this schedule (G. P. Latham & Locke, 1975).

The researchers found that when mills restricted the amount of wood they would

purchase, they implicitly encouraged harvesting crews to adopt a higher production

goal. This is because the crews were trying to fit five days of work into two or three

days. The author‘s argued these findings validated Parkinsons law by stating that
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given proper incentivizing, workers would adjust the rate they worked at to accord

with the time restraints imposed by the task (G. P. Latham & Locke, 1975).

These results have been replicated in different organizations. In a five-year study

that tested the association between time pressure and productivity found evidence of

the impact of time pressure on individual productivity. In this study, performance

was assessed along the lines of innovation, usefulness and productivity. A key finding

of this study was that performance varied as a function of the absolute amount of

time reported (Andrews & Farris, 1972) .

Peters et al. continued these organizational studies and found a positive correla-

tion between performance and perceived time pressure of .19 (p¡0.05). They noted

that while this relationship is not particularly strong, it is above chance and replicates

the work of previous researchers. They suggested that time pressure is more associ-

ated with the rate of work rather than the amount of work done. Further rate of work

is one of several factors which influences performance (Peters, O’Connor, Pooyan, &

Quick, 1984).

Eckhardt et al. examined the question of how social network users experienced

feelings of stress and fatigue. The proposed that users who were under higher pressure

to perform had an objectively higher degree of strain and better performance than

users without the performance pressure. Further, they proposed that higher levels

of techno-stress would lead to lower objective performance and higher subjective and

objective levels of stress (Eckhardt, Maier, & Buettner, 2012). Techno-stress is a

combination of techno-uncertainty, techno-complexity, techno-invasion and techno-

overload (Ayyagari, Grover, & Purvis, 2011)). Using a combination of measures

of eye-tracking and electro-dermal activity, Eckhardt et al. found that a pressure

to perform and high levels of system level experience contributed to a higher level of

performance. This time pressure did enhance individual measures of strain (Eckhardt

et al., 2012).

These studies suggest indicate that time pressure has an impact of human perfor-

mance. Performance can be measured in a variety of ways- from individual creativity,
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productivity, and output- depending on the context of the study. However, the pres-

ence of perceived and real time pressures has an impact on individual performance.

C.2 Human Machine Interaction Events

The following five sections briefly outline research on cognitive overload, distrac-

tion, fatigue, multi-tasking and pressure. These events are discussed because they

can be induced while using the MATB-II.

C.2.1 Cognitive Overload

Cognitive overload which is related to cognitive load - occurs when an individual

is presented with so much information and stimuli they cannot process everything.

David Kirsh outlined four systems of causes of cognitive overload: an oversupply of

information, too much information demand, inadequate tools to helps with metacog-

nition and the need to deal with distractions (Kirsh, 2000).

Per Kirsh, these four causes of cognitive overload can be further sub-divided.

For example, information oversupply can be divided into an oversupply of pushed

information and an oversupply of retrievable information. These both manifest as

a linear increase in quality information increases at a relatively constant rate but

the volume of all information increases exponentially. As such, knowledge workers

develop a series of strategies to cope with this clutter including just in time learning

or just in case learning (Kirsh, 2000).

Cognitive overload has an impact on instructional domains. Mayer and Moreno

identified five types of over-load scenarios in multi-media instruction. The first type

occurs when essential processing in a sensory channel are greater than the cognitive

capacity of that channel. The second type occurs when essential processing in the

visual and auditory channels are greater than the cognitive capacity overall (Mayer

& Moreno, 2003). The other three types are discussed in more detail in the literature

review.
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Strategies for overcoming cognitive overload including off-loading, segmenting and

pre-training. Segmenting occurs when the trainer allows for time between information

bites. Pre-training occurs by providing some degree of pre-familiarization with the

names or characteristics of the components. Off-loading is moving information from

one presentation domain to another (Mayer & Moreno, 2003).

Fatigue

Fatigue is a natural physiological and psychological reaction to prolonged periods

of stress. This state corresponds with a decrease capacity to perform physical or men-

tal work (Queensland Government, 2009). Unlike distraction or cognitive overload

where individuals can assess how overloaded or distracted they are, individuals are

less capable of assessing how fatigued they are (Goel, Basner, Rao, & Dinges, 2013).

There are several biological and social factors which influence fatigue. The first

factor is how mentally and physically demanding the task is to perform. This factor

can manifest as sub-optimal planning and decreased flexibility. Van der Linden et al.

induced fatigue by having participants perform a cognitively complex task for two

hours. They found that participants showed greater perseveration errors during the

Wisconsin card sorting task and long planning time during a tower of London task

than non-fatigued individuals (van der Linden, Frese, & Meijman, 2003).

The next set of factors influencing fatigue involve sleep. Being awake for more than

sixteen hours, having inadequate amounts of sleep and being active during an adverse

time of the circadian cycle have a performance detriment. One domain where sleep

deprivation is noticed is the medical professional. Sleep deprivation induced fatigue

contributes to an increase in the number and severity of surgical errors (Eastridge et

al., 2003) and the number of misjudgments made by residents (Baldwin & Daugherty,

2004).
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Distraction

A distraction is anything which draws an individual’s attention away from the

task which they should be employed in. Distractions are a natural part of work envi-

ronment - i.e. the urgent email from your boss - but they are avoidable. Distractions

can occur in the same modality a loud noise occurring while listening to someone

talk-or in different modalities such as car passing by during the conversation (Lee,

Young, & Regan, 2008).

One of the most immediately available examples of the negative impacts of dis-

traction on performance at least in the public consciousness- is driving performance.

Horberry and colleagues found that performing an additional in vehicle task such as

using your cellphone or tuning the radio while driving can lead to degradation of driv-

ing performance under certain road conditions. The authors noted that drivers of dif-

ferent ages did attempt to compensate for potential in-vehicle distractions by altering

their driving behavior (Horberry, Anderson, Regan, Triggs, & Brown, 2006). Further

research in the domain of distracted driving demonstrated that cellphones were more

distracting than passenger conversations. This is because conversations between the

passenger and driver can focus on traffic conditions while cellphone conversations

cannot. Thus, interpersonal conversations can increase situational awareness while

cellphone conversations cannot (Drews, Pasupathi, & Strayer, 2008).

Distractions also negatively impact howl individuals perform recall tasks. Ban-

bury et al. found that recall memory is susceptible interference by irrelevant sounds.

Specifically, they found that seriation the cognition function used for maintaining

order in short term memory- was very susceptible to this interference. Further, this

susceptibility is not limited to tones but also to speech like sounds (Banbury, Macken,

Tremblay, & Jones, 2001). Additional research on irrelevant background speech found

that speech in native or non-native languages to the listener are equally distracting

(Marsh & Jones, 2010).
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Loss of Vigilance

Vigilance- or sustained concentration- is the ability to maintain concentrated at-

tention over a prolonged period of time. During this period of sustained concentration

an individual is attmeping to detect the appearance of a target stimulus. This stim-

ulus can appear at an unknown time (Warm, Parasuraman, & Matthews, 2008). A

practical example of a task requiring vigilance is lifegaurding (Warm, Matthews, &

Finomore Jr, 2017) . In contrast, loss of vigilance occurs when the operator loses

concentration on the task.

Fatigue, distraction and loss of vigilance are similar enough at first glance that

one could confuse one for another. However, fatigue and loss of concentration occur

over a period of sustained activity while distraction occurs over a faster time period.

Further, both distraction and fatigue can contribute to a loss of vigilance.

Multi-tasking

Multi-tasking refers to the apparent human ability to perform two or more tasks

or activities over a short period. Researchers have known for about 50 years that

performance during multi-tasking activities often result in decreased performance in

both tasks. This decrease in performance has been attributed to a phenomenon called

cognitive bottle-necking.

Pashler argued that the psychological refractory period effects acts as a bottleneck

which interferes with an individuals ability to process and respond to incoming stimuli

(Pashler, 1994). This cognitive bottlenecking theory suggests that individuals have

finite attentional resources that can only be allocated to one task at a time, therefore

stimuli are filtered so only the most relevant are perceived (Bottleneck Theory , 0;

Borst, Taatgen, & van Rijn, 2010).

Patten and colleagues studied measures of driver workload in two studies. The

first study focused on driver distraction when using a cellphone as a function of task

complexity. Participants drove on a series of different simulated roads (motorways,
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cities and rural areas) while having a conversation on a hands-free or hand held

device. Participants all drove the same route on a defined section of motorway. The

researchers measured driver workload using the NASA TLX. Patten et al found that

the content or complexity of the conversation had a greater influence over driver

distraction than the complexity of the road (Patten et al., 2004).

C.3 Experience and Expertise

C.3.1 Experience

Experience refers to knowledge or skill in a particular activity that has been gained

because and individual has performed that activity for a long while. The operational

definition of experience will depend on the task. For example, Blaauw defined experi-

enced drivers as individuals who had driven for more than 3 years and had logged over

30,000 kilometers while inexperienced drivers were those who had either just passed

their driving test or were taking classes. Blaauw found that experienced drivers found

lateral and longitudinal driving control tasks to be less difficult than inexperienced

drivers (Blaauw, 1982). There is evidence that task experience changes how individu-

als will approach a task. Groves et. al showed that while expert clinicians committed

more errors during data collection and interpretation but produced more accurate

diagnoses than novice clinicians (Groves, O’Rourke, & Alexander, 2003) . Experts do

not produce and test more hypotheses than novices do . Rather, they produce and

test better hypotheses (Neufeld, Norman, Feightner, & Barrows, 1981).

There are specific conditions where experience can be related to age. In the

context of driving, younger drivers are said to be less experienced than older drivers

(Peck, 1993). Age is not necessarily a poor proxy for experience, but it is insensitive

to contextual factors such as gender (C. F. Miller, 1993).

Littlepage et al. provide an important insight on task experience. The authors

defined task experience as previous experience with similar tasks (Littlepage, Ro-

bison, & Reddington, 1997). Prior research by Goodman and Shah state the task
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experience is an important contributor job knowledge (Goodman & Shah, 1992). Ad-

ditionally, there is a large body of research on training effectiveness which emphasizes

that individual increases with prior experience in similar tasks (Burke & Day, 1986;

Guzzo, Jette, & Katzell, 1985; Hellervik, Hazucha, & Schneider, 1992) . Experi-

ence performing a particular task can be directly measured. Feigenspanet al noted

that in the context of programming and software engineering, experience could be

evaluated by examining programming language constructs (see (Bacher, Mac Namee,

& Kelleher, 2018),(Bergersen, Sjberg, & Dyb\a a, 2014), (Feigenspan & Siegmund,

2012) in (Feigenspan, Kastner, Liebig, Apel, & Hanenberg, 2012)) . However, the

authors note that experience can also be examined through the leans of education

and self-estimation (Bunse, 2006; Ricca, Di Penta, Torchiano, Tonella, & Ceccato,

2007).

C.3.2 Expertise

One of the challenges in human factors and cognitive psychology is the question

of how to define expertise. There are some domains where a gold standard in the

form of exhaustive documentation of domain knowledge or professional licensing- have

been codified and is accessible for use by others in the domain. However, the chal-

lenge remains in how to generate an operationalized definition of expertise. Hoffman

proposed that expertise can be defined in terms of cognitive development, the experts

knowledge structure and the experts reasoning process (Hoffman, 1998).

In this context, cognitive development is not correlated with measures of intelli-

gence. Rather, it refers to a developmental progression from a literal interpretation

of and superficial understanding of the problems to a more principled and nuanced

understanding of the same problem. Skill is acquired based on accumulated practice

and not age. This leads to the question of how to distinguish between someone who

is at a novice level and the expert level.
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Research suggests that the developmental process from novice to expert have level-

like shifts. First, with practice skills require less effort and become more automatic

in execution. Second, it is rare for individuals to skip levels. Expert teachers can

anticipate the mistakes novice learners are about to make. Finally, it is rare for

individuals to regress unless they fall out of practice .

How do you empirically measure an individual‘s level of expertise at a task? One

proposed method of evaluating expertise is the Cochran-Weiss-Shanteau (CWS) in-

dex. This index a ratio of the ability to consistently discriminate various stimuli in

a domain and consistent treatment of those stimuli. The CWS formula is defined

as discrimination over inconsistency. According to Weiss et al, discrimination is an

individuals differential evaluation of stimuli while inconsistency refers to variations in

the individuals evaluations of the stimuli overtime (Weiss & Shanteau, 2003).

The CWS is important in the study of expertise for two reasons. First, it builds on

the existing body of research which states that differences exist between novice and

expert billiard players, American football fans and chess players as well as technical

professions such as doctors and air traffic controllers (Abernethy, Neal, & Koning,

1994; Holding, 1979; Werner & Thies, 2000). Further, the measure is related to the

F- ratio. This gives the CWS a degree of statistical meaning.

This metric has been validated in the context of aviation decision making. Pauley

et al. examined the performance of qualified pilots, student pilots ,and geography

students at weather related risk assessment tasks. The authors found that the three

groups did not have significantly different CWS scores. Further, they found that

when tasks decreased reliance on memory, there was a relationship between flight

experience and CWS scores (Pauley, O’Hare, & Wiggins, 2009).

Applying the CWS as a measure of expertise also validates assumptions about

the intermediate effect. The intermediate effect refers to a U-shaped curve which

appears when measuring the performance of individuals who work in domains where

extensive diagnostic knowledge is required. Witterman et al. applied the CWS to

first year counseling students, master level counseling students and professional coun-
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selors and found that the mean CWS scores for the first year and professional coun-

selors were significantly different than the master levels students (C. L. M. Witteman,

Weiss, & Metzmacher, 2012). Witterman et al. noted that their findings mirrored

previous work which demonstrated the intermediate effect (C. L. Witteman & Van

Den Bercken, 2007).

C.4 Gamification

C.4.1 Does Gamification work?

The research on the effectiveness of gamification is mixed. Similar experiences

of gamification do not elicit the same results in different contexts. According to

Hamari et al outcomes are either positive or negative or positive or neutral (Hamari

& Tuunanen, 2014). The positive and negative effects of gamification varies among

individuals (Passos, Medeiros, Neto, & Clua, 2011).

Other demographic factors can influence the outcome of a gamified experience.

The individual‘age along with their familiarity with games impacts interest in and use

of a gamified experience (Bagley, 2012). Research also suggested that women were

more engaged in gamified experiences than men (McDaniel, Lindgren, & Friskics,

2012). While this result surprised the authors, it should be noted that women are

commonly assumed to not enjoy games.

C.4.2 Limits of Gamification

Gamification is not without limitations. The practice can lead to the introduction

of unintended behaviors among users. One example given of this comes from BMW,

who used an app to challenge drivers to be more fuel efficient. Unintentionally, drivers

started engaging in unsafe driving practices in order to score more points.

According to Sebastian Detering, the other unitneded side effects of gamification

include: hitting the target but missing the point, gaming the system and messing with
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implicit social norms (Deterding, 2010b). Hitting the target but missing the point

occurs when a game encourages behaviors that statisfy the challenge at hand, but

fail to impart the intended point. A commonly cited example came from a review of

British hospitals, where incoming patients were placed on trolleys- labeled as hospital

beds- to meet the goal of admitting a patient to a bed in a 12 hour window (Bevan &

Hood, 2006). Messing with implicit social norms occurs when players are encouraged

to violate a real or implied social norm to win. Finallny, Gaming the system occurs

when players try to hack or cheat the system in order to achieve the desired outcome

(Deterding, 2010b).

C.4.3 Competition

Games present a unique opportunity for researchers to study competitive behav-

ior. This is because gaming as a domain offers several design tools, mechanics and

interaction modes designed foster competition. Design elements such as leader-boards

allow researchers to directly interfere with a player’s competitive drive. The mechan-

ics of a game can be alter to handicap a player. This handicap in turn alters their

behavior. Finally, games are explicitly designed to be competitive or cooperative.

Competitive and cooperative games require a players to goal structure.

Peng and Hsieh studied goal structure in multiplayer gaming had on player mo-

tivation, goal commitment and performance. They studied this effect by having par-

ticipants play a specially designed game. The game had three versions: solo play and

two multiplayer modes. In the solo mode, participants would see their performance

in real time. In the cooperative and competitive multiplayer, players would see their

score and the other players score on screen (Peng & Hsieh, 2012).

The concepts of player handicapping and balancing are two mechanical ways of

altering competition. Handicapping refers to a set mechanic which alter what the

player can do. Notable handicapping methods include point handicapping where the

winner of the last round starts the next stage with a score penalty or mechanical



282

handicapping. Mechanical handicapping alters what actions the player can take in

game. Balancing occurs when the game accounts for player skill.

Balancing sounds like a special case of handicapping but it is not. Handicapping is

a means of assigning a score compensation as a means of equalizing players chances of

winning. Balancing refers to actions which help provide the player with the right mix

of challenge and difficulty (Falstein, 2005). Balance is important because of player

engagement. If a game is too difficult or too easy, players may become frustrated

(Newheiser, 2009).

Cechanowicz et al identified four ways of balancing players: matchmaking, asym-

metric roles, difficulty adjustment and assists. An assist is anything which adjusts a

players performance in basic task by simplifying the input needed to perform the ac-

tion. One example is auto-aiming in first person shooters. Difficulty adjustment refers

to methods which alter the game difficulty to match the players skill (Cechanowicz,

Gutwin, Bateman, Mandryk, & Stavness, 2014).

This process can be initiated by a player or it can be a dynamic process. However,

this technique can lead to players discounting their success because an achievement

feels meaningless (Bostan & Ogut, 2009). Asymmetric roles allow players to execute

tasks or roles which better suited to their play level and ability. This technique is

often used in multiplayer games to ensure that all team roles will be fulfilled. Finally,

matchmaking is a computational process by which players of equivalent skill are

grouped together (Cechanowicz et al., 2014).

Each of these techniques have their own benefits and drawbacks. Mishandled

difficulty adjustment systems can lead experienced players feeling frustrated at the

games mechanics which seem to favor weaker players (Newheiser, 2009). Asymmetric

roles need to be balanced so each role feels like it fulfilling a unique purpose.

These methods of balancing play each have their own design implications and

limitations for novice and expert players. Cechanowicz et al. sought to answer the

following questions in the context of a racing game. First, does balancing work and
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does balancing improve naive players experiences? Further, does balancing detract

from the experiences of expert players (Cechanowicz et al., 2014)?

To test questions of balancing in action, the authors developed a series of assists

and adaptive algorithms were developed. The assists were intended to improve the

experience and performance of novices and act as a hindrance to the experts. The cars

speed was modified by adding or subtracting a scalar value. Acceleration was adjusted

by multiplicative increasing or decrease the cars air friction constant. Finally, steering

was modified to induce error (Cechanowicz et al., 2014)?

Four adaptive algorithms were developed: realtime100, realtime40, rolling and

MaxDistance. Realtime100 and realtime40 provided assistance or hindrance to play-

ers based on their relative distance from each other. The rolling algorithm averaged

the assistance from the two realtime algorithms. Finally, maxdistance scaled the pro-

vided assistance based on the maximum distance between vehicles (Cechanowicz et

al., 2014)?

The authors found that balancing does have a positive impact on the performance

elements they tested. These metrics included the win/loss rate, lead changes and

distance between cars. Balancing did improve the novice player’s experience when

either the rolling, MaxDistance or realtime40 algorithms were used. Balancing did

impact the expert’s perception of fairness when the rolling average was used.

This research leads to questions of how to balance performance based on individual

ability. In a study focusing on balance between mobility and non-mobility impaired

players, Gerling et. al found that explicit input balancing results in lower self-esteem

in both players. They attributed this to the fact that input balancing is a highly visible

means of manipulating performance. Time balancing balanced the score differential

but did not result in the weaker player winning more. Finally, score balancing did

result in the weaker player winning more games, but this resulted in the game being

overbalanced (Gerling, Miller, Mandryk, Birk, & Smeddinck, 2014).

The results of this study suggested that balancing strategies used in collocated

games did not affect the weaker players in game performance. However, players did
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perceive the game balancing under certain circumstances. The authors extended the

conversation outward to discussing overbalancing. They suggested that the intensity

of balancing needs to be carefully adapted so a balance is struck between the weaker

playing being able to wind and for the stronger player to feel competent (Gerling et

al., 2014).

C.4.4 Manipulating Player Experience

A key question in player experience (pX) research is how to give the player a

sense of success and progress without altering the experience. Player experience is

measured using the Player Experience of Need Satisfaction (PENS) survey. PENS

is a 21 item assessment instrument which uses a Likert scale to measure immersion,

relatedness, competence, autonomy and intuitive controls (R. M. Ryan, Rigby, &

Przybylski, 2006).

Johnson and colleagues used the PENS to assess if different genres of games had

different levels of player experience. They found that action adventure, role playing

and action role playing games fostered a sense of immersion and presence in the

player. Further, games seem equally capable of nurturing experiences of flow and

competence (Johnson, Nacke, & Wyeth, 2015).

While Johnsons work does provide insight in pX research, it does not address

direct manipulation of player experience. One method of altering a players experience

is to change their position on a leaderboard. Bowey et al. studied if manipulating a

players position on a leaderboard would affect their performance and enjoyment. They

found that leaderboard position does influence a players perception of competence,

autonomy and presence (Bowey, Birk, & Mandryk, 2015).

Their findings also indicate significant interactions between leaderboard position

and autonomy. Specifically, they found that when the players position is shown, that

there is an interaction between their perceived success and autonomy. This type of
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interaction is not present when the score is hidden. These findings were not affected

by demographic factors such as age, gender or and hours played (Bowey et al., 2015).

These findings lead to the question of whether goal-setting is influenced by leader-

board position. Chernbumroong and colleagues studied this question using three

leader-boards: do-your-best, difficult and impossible. Do your best represented the

scores of all participants while the difficult leader-board showed the players position

with three participants above and below them. The impossible leader board only

showed the top five scores (Chernbumroong, Sureephong, & Muangmoon, 2017).

The authors found that players using the difficult leaderboard had the highest

scores on an online CPR training test. However, this group had the lowest task

completion rate relative to the other groups. The authors also noted that users in the

impossible and difficult scenarios showed the greatest improvement (Chernbumroong

et al., 2017).

These findings were attributed to differences in the player’s goals. The do-your-

best leaderboard did not have a specific and clear goal. This reduced the players

concern about their score or the competitive nature of the environment. In the

difficult scenarios. Players could align their goals with the actions of others. This lead

to players competing to see if they could best each other. Finally, in the impossible

conditions, the players felt it was too difficult to reach the top five, so they instead

focused their effort on task completion (Chernbumroong et al., 2017).

Individual motivations

Discussions of an individual motivations to play a game are sub dividable into

the following topics. From a game content perspective, different types of players

each want a unique experience from the game. While each of these player types

have a unique set of goals, the steps they take to reach them can be described using

self-determination theory.
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Self Determination Theory investigates factors which facilitate or weaken intrin-

sic and extrinsic motivation. Intrinsic motivator underpinning games and sports

(Frederick & Ryan, 1993, 1995). A sub-set of SDT is cognitive evaluation theory

which is explicitly concerned with contextual factors enhancing or weakening intrinsic

motivation (Deci & Ryan, 1980; K. A. Miller, Deci, & Ryan, 1988). CET states that

intrinsic motivation is enhanced by conditions and events which enhance a player’s

sense of competence and autonomy. Conditions and events which decrease perceived

autonomy and competence undermine a player’s extrinsic motivation.

The player experience of needs satisfaction (PENS) builds on SDT and CET.

PENS consists of five metrics: autonomy, competence, immersion, intuitive controls

and relatedness. Autonomy relates a players sense of willingness or volition to com-

plete a task (Deci & Ryan, 1980; K. A. Miller et al., 1988). Competence is a feeling

of effectiveness. Immersion refers to a sense of ’being in’the world the game is pre-

senting as opposed to feeling like you are outside the game. Intuitive controls refer to

the degree which controls can be easily mastered and make sense in context. Finally,

relatedness is the degree with which the player connects to others (La Guardia, Ryan,

Couchman, & Deci, 2000).

While PENS is useful for describing motivation in microscopic terms, game de-

signers and researchers categorize players by what they want from a game. One of the

most prominent examples comes from Richard Bartles study of multi-user dungeons

(MUDs). He observed that players could be divided into four categories: achievers,

explorers, socializers and killers. Achievers set game-related goals and adopt their

play style to accomplish them. Explores want to learn everything they can about the

world while socializers want to interact with other players or characters in the game.

Killers seek to cause distress in other players (Bartle, 1996).

Figure C.2 shows Bartles Taxonomy along two axes. These axes are representative

of the player types motivations. Explorers like interacting with the world and uncov-

ering as much about the world they can. These players tend not to be score focused.

Achievers want to do things and feel the point of playing is the master as much as
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Fig. C.2. Player Types

they can. Killers want to act on people, even when these actions occur without the

consent of other players. Finally, socializers want to learn about the other players

through their interactions (Bartle, 1996).

In a meta-analysis of player types, Hamari and Tuunanen concluded there are

seven dimensions along which to describe players motivation and behavior. These di-

mensions are achievement, exploration, sociability, domination, immersion, intensity

and in-game demographics (Hamari et al., 2014). They noted that most player cate-

gorization systems are directly inspired by Bartles taxonomy. Some researchers, such

as (Kallio, Myr, & Kaipainen, 2011), see the reliance on taxonomies as reductionist

arguing that players do not strictly belong to one type.

C.4.5 Games and Executive function

According to (Schmidt, 2002), the term awareness is highly imprecise. The term

is often used in association with a qualifing adjective such as ’general awareness

’(Gutwin & Greenberg, 1999), ’workspace awareness ’(Gutwin & Greenberg, 1996) or

’passive awareness ’(Dourish & Bellotti, 1992). This comment does not account for
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the topic of situational awareness, visual-spatial awareness or auditory awareness. In

certain gaming contexts, awareness is best conceptualized as a way to understand the

activities of others while providing context for your own actions (Dourish & Bellotti,

1992). Dourish and Bellotti’s definition of awareness is the best broad definition of

awareness in a gaming context.

Little research has been conducted on mode and situational awareness explicitly

on games. This lack of research does not mean the two concepts are not related. The

bridge between traditional situational awareness research and games research comes

from research in unmanned aerial vehicles.

The reason UAVs represent a bridge case stems from control modalities. UAVs

are primarily controlled through a visual medium (J. L. Drury & Scott, 2008). While

there is research that focuses on providing haptic and auditory feedback to UAV

operators, most of their decisions will be made based on what they can or cannot see.

Videogames are controlled in a visual medium through an interaction device.

Further, many of the situations studied in the UAV literature are easily replicated

in a game context. For example, Drury and Scott studied how operators would use a

single UAV to coordinate unmanned ground vehicles (Riley & Endsley, 2005). This

research was buttressed by previous work by Ruff et al. which showed that operator

performance decreased as the number of UAVs being supervised increased (Ruff,

Calhoun, Draper, Fontejon, & Guilfoos, 2004). With relatively minor tweaks to the

design of the system, these same scenarios can be recreated in a game.

Expertise and executive functions

The effect of videogames on task switching and other executive control functions

is often done by dividing players into expert or non-expert categories. Expert gamers

are players who log more hours than non-gamers and have experience in a wider

variety of games. Non-gamers are players who play less than one hour per week

(Boot, Kramer, Simons, Fabiani, & Gratton, 2008).
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Unsurprisingly, expert gamers outperform non-players in a variety of tasks. Ex-

perts are better able to track objects moving at higher speeds, have a more accurate

short term memory in visual memory tests and are faster at switching between tasks.

Further, as Boot et al. note, with few exceptions practicing videos games for more

than 20 hours does not lead non-players to perform at parity with the expert players

(Boot et al., 2008). This finding builds on previous research which showed it took at

minimum 10 hours of practice were needed to obtain skill transfer (Green & Bave-

lier, 2003). Strobach et al. provided evidence showing that increased practice does

improve reaction time and that these effects transfer (Strobach, Frensch, & Schubert,

2012).

Evidence exists which suggests that playing action videogames has a direct impact

on the players visual attention (Green & Bavelier, 2003). Boot et al. found that a

significant difference exists between expert and non-expert player’s cognitive abilities.

Experts were better able to detect changes in short term memory and track visual

objects moving speed. What Boot was unable to resolve was if these performance

differences are attributable to game experience or an untested difference in the groups.

These findings can be debated since expert players are assumed to have a deeper

knowledge base to draw from. Experts are assumed to have a better and concrete

grasp of the controls. This debate was addressed by Green et al. who found that

expert action game players task performance is not a product of their ability to react

to altered key mappings. However, expertise does not always lead to objectively better

performance (Shawn Green, Sugarman, Medford, Klobusicky, & Bavelier, 2012).

There are limits to expertise. One of the few skills where experts outperform

non-experts is reaction time. Having a fast reaction time is of marginal significance

when cost switching. Further, performance improvement is not universal by game.

Learning to play an action game will lead to faster reaction times in strategy games

but the reserve is not always true (Shawn Green et al., 2012)

This research leads to the question of what distinguishes an expert from a non-

expert gamer. One critique of the distinction hinges on the diversity of genres within
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gaming. Action games can be subdivided into distinct genres (A. J. Latham, Patston,

& Tippett, 2013). An expert in one genre of action games may not be an expert in

other games.

C.5 Interaction Modalities

The following section focuses on the relvant literature for two input modalities: a)

mouse and keyboard and b) trackpads. User interaction in both domains is informed

by Fitts’s Law. This law predicts that the time it will take for a user to move a

pointer to a target is a function of the ratio of the ratio between the width of the

target and the distance to the target (Fitts, 1954). Studies have shown that user

performance in mouse and trackpad conditions are comparable (Rozado, 2013).

The mouse and trackpad are not the only interaction modalities that can be used

in pointing tasks. Other modalities include: directional keypresses, joysticks, eye gaze

and motion tracking. It has long been known that mouse movements are faster than

keypresses (Card, English, & Burr, 1978). Further, there is evidence to suggest that

eye gaze and motion tracking are not sufficently more complicated to implement and

result in slower reaction times (General, Da Silva, Esteves, Halleran, & Liut, n.d.;

Rozado, 2013). This difference in performance could be attributed to the relative

rareity of devices that employ motion or eye tracking.

C.6 Data Science

C.6.1 K Nearest Neighbors

The goal of the k-Nearest Neighbors (k-NN) algorithm is to classify an unknown

example into the most likely class among K nearest examples. When K-NN is used

for classification, an object is classified by majority vote based on proximity to its

neighbors. The object would be assigned the most common value of the neighbors.
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There are several computational methods for determining the nearest neighbor.

When K=1, the visually intuitive answer is to pick the only other point. At higher

dimensionalities of K this intuition can fail, and the analyst must consider the dis-

tance between points. For continuous data, the analyst must calculate the Euclidean,

Manhattan or Minkowski Distance. When the data is categorical, the analyst can use

the Hamming Distance (Hamming, 1950).

K-NN relies on instance based learning and lazy learning. Instance based learning

methods construct hypothesis directly from the training instances provided (Russell

& Norvig, 2013). A consequence of this is that hypothesis can be more complex as

they are given more data. The obvious downside is that more memory is required to

store the training data. This can lead to slow run times.

Lazy Learning algorithms are defined by three behaviors: deferring, reply and

flushing. Deferring means algorithms store all the training data and delay processing

until a query is made. Replying occurs when queries are answered by combing the

data using a localized learning approach. Once the query has been answered, the

results are flushed (Wettschereck, Aha, & Mohri, 1997) .

One of the ways to improve the value of a large volume of data is to use pattern

matching algorithms. These classes of algorithms, described in more detail below,

search for and analyze underlying trends in the data. A designer or researcher can

program in specific patterns to search and filter the data, x=1, or search for more

complex pattern, f(x) = n ∗ f(n2).

The following paragraphs focus on three classes of data mining algorithms relevant

to the project. The three classes of algorithms discussed in order are: k-means

clustering, real time cluster analysis. The purpose for this ordering will be explained

at the end of this section.

K-Means clustering algorithms function by partitioning n observations in k distinct

clusters. K refers to the number of initial assigned means. Each observation is grouped

with the closest mean. The result of a K-Means analysis is k distinct groupings. There

is evidence that K-means can be applied to continuous data (Faber, 1994). The case
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for using K-Means clustering in this experiment is twofold. First, one cluster of

responses could be defined as ’error state’while another cluster could be defined as

’pre-error’.

The second method considered for data analysis is real-time cluster analysis. There

are two method of interest: hierarchical clustering and correlation clustering. Hier-

archical clustering word in either a top down or bottom up manner and seek to build

the largest cluster (Blashfield, 1976). Correlation clustering works by grouping data

points by how co-related they are with each-other (Bansal, Blum, & Chawla, 2004).

The third and final method under consideration are Neural Nets. In broad terms,

neural nets are computing systems which progressively learn by considering examples

provided to them without task specific programming. These networks can be trained

using a small dataset and letting the program learn on over time (Bigus, 1996; Lu,

Setiono, & Liu, 1996).

Sliding Window Clustering One of the key problems in this project is the question

of which time-period needs to be evaluated to determine if an error occurred. In gen-

eral terms, the data mining algorithm needs to preference the most recent elements.

Streaming clustering algorithms provide a technique to solve this problem. Cluster-

ing algorithms as previously discussed-work by grouping similar data points together.

The term siding window refers to an algorithm which performs an operation on a

subset of data then moves on to perform the same calculation on a different ’frame’.

The simplest in terms of implementation- clustering algorithm is the K-Means

clustering algorithms. This algorithm functions by partitioning n observations in k

distinct clusters. Each cluster starts with a single point termed a centroid. Clusters

are populated by the other data points which are assigned based on their distance

from a centroid. There is evidence that K-means can be applied to continuous data

(Faber, 1994).

One of the limitations when using clustering algorithms is that large volumes of

streaming data can render algorithms inefficient. One-pass algorithms have been pro-

posed as a solution to this problem, but per Aggarwal and colleagues, these algorithms



293

do not account for the evolution in the data. Further, they argued that the quality of

the clusters can degrade when the data evolves over time and streaming algorithms

need greater functionality to discover and explore clusters at different portions of the

stream (Aggarwal et al., 2003).

Streaming clustering algorithms work by decomposing the stream into smaller

partitions, performing an operation on that partition and then moving forward in

time. The small partitions are termed micro-clusters which are stored as a snapshot.

(Aggarwal et al., 2003; Dang, Lee, Ng, & Ong, 2009). Aggarwal et al. used micro-

clusters as input for an off-line clustering algorithm, which used these clusters to

create macro-clusters. He also introduced the concept of a pyramidal time frame,

which stored snapshots at different levels of granularity. The pyramidal time frame

allows for the identify and removal of repeated values while still capturing the evolving

nature of the dataset (Aggarwal et al., 2003).

Dang et al. proposed a variation to Aggarwals method. Their algorithm Sliding

Window with Expectation Maximization or SWEM- divides a micro-component based

on the highest variance sum and size of the cluster. The algorithm then calculates the

mid-point between the averages of each sub-component (Dang et al., 2009). SWEM

can merge components if they are small enough and close enough. If the means of

each sub-cluster are within standard deviations of each other, SWEM will form one

new cluster. The algorithm will automatically remove the oldest entry

C.6.2 Training Test Split

The heuristic for splitting the data into a training and test set ranges suggests an

80/20 split is generally the most reliably accurate across conditions (Foody, McCul-

loch, & Yates, 1995; Liu & Cocea, 2017),Shahin2004Data. The more training data

the model has to work with the more accurate it will be overall. In theory, a model

given infinite training data would be able to classify with 100% accuracy given enough

time. However, this heuristic is subject to limitations and most of the academic lit-
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erature suggests using partition methods to sample the data. There is evidence to

suggest that the size of the training set -in terms of percentage of the total data-

does not have an effect on prediction accuracy (Abdelwahab, Bahgat, Lowrance, &

Elmaghraby, 2015; Foody et al., 1995).

Alternate train-test splitting methods

There are alternate methods that can be employed to generate training and test

data sets. One of the most common forms of cross validation is K-folds cross val-

idation. This method divides the data into k even sized subsets. A single subset

is retained for validating the model while k-1 subsets are used to build the model

(McLachlan, Do, & Ambroise, 2005) . This method is repeated k times.

C.6.3 CARET Package

The CARET (classification and regression training) package focuses on simplifying

model training and tuning techniques (Kuhn, 2008) . At the time of writing, this

package has been referenced in 1,400 scientific articles including (Van Essen, 2012;

Bischl et al., 2016) .


