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ABSTRACT 

Author: Ghantasala, Lakshmi, A. MSECE 

Institution: Purdue University 

Degree Received: December 2019 

Title: Purduep.com, The Front Page of Probabilistic Spin Logic Research 

Committee Chair: Supriyo Datta 

 

While probabilistic neural networks are a staple of the neural network field, their study in the 

context of real hardware has been limited. Probabilistic spin logic entails the study of probabilistic 

neurons that have real hardware counterparts. This comes under a new effort, termed Purdue-P, 

whose goal it is to develop efficient, probabilistic neural network hardware to solve some of 

today’s most difficult problems. An important step in this effort has been the development of a 

website, purduep.com, to act as a “front page” for the effort. This website introduces the idea of 

probabilistic spin logic to newcomers, houses an online web simulator and blog, and provides 

instructions on how to access a powerful asynchronous p-computing co-processor through the 

cloud. The thoughts behind the flow of content, the web simulator, and cloud access of the co-

processor constitute the crux of the thesis.  
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1. INTRODUCTION 

A website has been developed that describes a novel computing paradigm termed Probabilistic 

Spin Logic (PSL). This site, “purdue.edu/p-bit”, will be the topic of this thesis. While I have co-

authored two publications over the course of my Masters in addition to the work presented here, 

those are part of other students’ theses, and will not be discussed in any significant part here. 

However, those contributions have given me the necessary background to build this website. As 

this website will be the front page for Purdue’s probabilistic computing effort for the foreseeable 

future, It warrants some discussion as to its design, implementation, and content. The homepage 

for “purdue.edu/p-bit” accounts for the brunt of the website. For readability, the homepage has 

been broken into multiple sections, each with their own purposes. Users will scroll through these 

sections in order as they proceed down the website, necessitating proper ideological transitions 

between sections. These transitions should carry over to the chapters of this thesis. Chapter 2 of 

this thesis will cover the first two sections which introduce the idea of PSL, while chapters 3 and 

4 of the thesis will cover section 3 on the webpage. Section 3, “Tools”, contains the Purdue-P web 

simulator and instructions to connect to the Purdue-P Co-processor, which each will have their 

own chapters.  

The purpose of this website is to introduce the idea of PSL to newcomers, while providing a 

hub for PSL related information that returning users can also find useful. Design choices have been 

made to satisfy both ends of this spectrum. Firstly, a one-page design gives newcomers a 

controlled, curated experience with only one way to go forward: scrolling down the webpage. This 

contrasts an earlier multi-page structure in which sections had their own pages. Different users 

may have different experiences under this model as they explore this network of pages on their 

own. An animated “scroll down” indicator has been added to emphasize this idea. Information has 
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been organized to go from most generic, to most specific, from up to down. The Overview section, 

therefore, contains the most generic information, describing PSL in English with simplified 

diagrams to emphasize key points. The Applications section follows, which describes how PSL 

can be implemented to solve real problems with eye-catching images. These first two sections are 

written such that the first describes the “what” and the second section describes the “why” of PSL, 

providing a natural segue for readers.  

At this junction, we have introduced the idea of PSL in a largely one-way fashion. The most 

casual sector of the userbase may find this information substantial enough. Now the experience 

becomes a two-way exchange with users being able to interact with tools that we have developed 

in the Tools section. These tools assume no prior knowledge of the user apart from the two sections 

presented previously on the homepage. For those that would like to then understand the science 

behind why these tools works, a Resources section follows with links to additional PSL 

information. Videos, links to slides, and even a blog are arranged in this section. The blog will 

become an extension of the website, containing useful snippets and up to date specifics related to 

PSL research that the homepage will not be able to cover. Finally, a Research section follows. It 

not only provides specific information to a more neural network familiar audience, but it 

lends credibility to the site and the tools being presented. The research section will be updated at 

intervals to highlight the most important papers being put out by the Purdue probabilistic spin logic 

research group.  

Advanced users can quickly access the more nuanced aspects of the site with a quick links bar 

on the starting screen, which currently has links to the co-processor instructions, the web simulator, 

and the blog. This structure allows newcomers to “get off the train” at any stage of their one-page 

journey, while more advanced users can scroll all the way through resources and research to find 
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the most rigorous information regarding PSL.  The remainder of this thesis will explore the various 

sections of the homepage in order, and hopefully take the reader on a similar, albeit more 

informative, experience as those who would come to “purduep.weebly.com”.  
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2. PROBABILISTIC SPIN LOGIC 

 Website Section 1 - Overview 

While classical bits deterministically occupy a 1 or a 0, and quantum bits occupy some 

superposition of 1 and 0, a novel paradigm called probabilistic bits occupy a 1 or a 0 with some 

probability. These probabilistic bits, or p-bits, are at their essence random number generators that 

can be biased towards 1 or 0. Like transistors for classical bits, p-bits can be interconnected to 

form useful circuits that solve a variety of problems. These p-circuits are defined by two simple 

equations that will be referred to as eq(1) and eq(2) [1][2] . Eq(1) defines the update of a single p-

bit given some biasing variable Ii, given by: 

         (1) 

𝑚𝑖 = sign(tanh(𝐼𝑖) − rand(−1,1)) 
 

 

Rand (-1,1) is a uniform random variable between 1 and -1, the range of the tanh activation 

function. Eq(2) defines the generation of the biasing variable. This general weighted summing 

operation is given by: 

    (2) 

𝐼𝑖 = 𝐼0(ℎ𝑖 + ∑ 𝐽𝑖𝑗𝑚𝑗
𝑁
𝑗=1 )   

 

     

Probabilistic spin logic (PSL) is a paradigm built on these two equations, encompassing the 

study of this specific form of probabilistic neural network and how it can solve today’s problems. 

While the idea of a probabilistic neural network is not new [3], studying these networks in the 

context of real hardware is; PSL shines in building a system which can be implemented with real 

transistor and/or magnetic devices that will compose an efficient hardware architecture [4]. These 
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two equations govern a very flexible system to which a wide variety of problems can be mapped. 

P-circuits have been shown to solve combinatorial optimization problems including TSP, Max-

Cut, and Subset Sum, Bayesian inference problems, and Boolean logic problems [1][5].  

 Website Section 2 - Applications 

Probabilistic spin logic encapsulates a very flexible system suitable for a range of real-

world applications. Combinatorial optimization, Bayesian inference, and invertible Boolean logic 

are three such applications suitable for p-circuits that are emphasized on “purduep.weebly.com”. 

While there are additional applications like sampling and qubit emulation [6], the next two sub-

sections will explore combinatorial optimization and invertible Boolean logic problems 

specifically. These sections will explain related examples that I have helped solve in published 

works over the past two years. These examples provide additional evidence that these families of 

problems map handily to PSL.   
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2.2.1 Combinatorial Optimization 

 

Figure 2-1 Combinatorial Optimization web-snippet 

 

While the webpage puts forth a short snippet, shown in Figure 2-1, that describes PSL’s 

role in solving combinatorial optimization problems, much work has gone on behind the scenes to 

establish optimization as a family of problems applicable to PSL. A recent FPGA demonstration 

by Brian Sutton and myself falls under combinatorial optimization. Figure 2-2 captures this 

demonstration of a 1000 p-bit, anti-ferromagnetically coupled network cooling to its ground state. 

This problem can be classified as a Max-Cut problem, a popular archetype within the NP 

combinatorial optimization class, for which the maximum cut is obtained by separating every 

alternate p-bit into a single group. This splits the network into two groups, each containing 

alternating p-bits, which results in the checkerboard pattern in Figure 2-2. 
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Figure 2-2 Convergence of 1000 p-bit anti-ferromagnetically coupled p-circuit 

 

A 400 p-bit version of this problem is available as a pre-loaded example on the web-simulator and 

will be explored in more detail in chapter 3. Brian Sutton also demonstrated solving the travelling 

salesman problem using PSL in 2016 [7]. These examples evidence the claim that PSL is well 

suited to solve combinatorial optimization problems.  
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2.2.2 Invertible Boolean Logic 

 

Figure 2-3 Invertible Boolean Logic web-snippet 

 

PSL is invertible by nature, meaning p-circuits will naturally fluctuate inputs to match 

outputs that are pinned to certain values (Figure 2-3). Zeeshan et. Al. [5] showed in 2017 the 

subset-sum problem being solved on an FPGA, extracting the correct solution from a histogram 

the FPGA produced, shown in part c of Figure 2-4. Subset sum is an NP-Complete problem in 

which one must find a subset of elements within some set that add up to a value k. Though subset-

sum is a combinatorial optimization problem, the problem was formatted as a series of Boolean 

logic gates, specifically Full/half–adders. This is one of the examples solidifying invertible 

Boolean logic as an application of PSL, and so will be explained in more detail.  
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Figure 2-4 Subset-Sum figure 

 

Part A of Figure 2-4 describes the architecture of the instance that was implemented. In 

order to sum two numbers, a row of full adders is required. For each subsequent number that is 

being summed, an additional row must be added where one input is the sum from the previous row 

and the other is the new number. For this instance, it was pre-decided that the subset would consist 

of a maximum of 3 numbers, and so two rows of full adders were implemented. Each full adder 

has 5 pins: two inputs (a and b), a carry-in, carry-out and sum. The carry out of each MSB is 
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connected to the carry in of the next significant MSB. The connection scheme is implemented in 

hardware via a J matrix that acts as an adjacency matrix for the entire subset sum graph, connecting 

different ports in each full adder together.  

The output pins of the second row of Full Adders was clamped to 3854. Every bit of the inputs 

was clamped except for 3 bits, one bit from each input. The value taken by these three bits would 

decide which out of 4 possible numbers {0, 512, 1024, 2048} would sum to 3854. The solution to 

the problem is {111}, as 512 + 1024 + 2048 = 3854. The histogram of system state occupancy is 

shown in part c of Figure 2-4. It should be observed that the state of maximum occupancy is {111}, 

the correct answer. This shows that the network backtracked such that the inputs of the problem 

fluctuated to the correct values that summed to the pinned output. This is but one of the examples 

showcasing invertible Boolean logic with PSL.  
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3. PURDUE-P WEB SIMULATOR 

 Web Simulator Overview 

The Web Simulator is an online platform built into the Purdue-P website that allows users 

to execute probabilistic spin logic on any moderately sized p-circuit. The simulator runs the same 

Parallel-PSL algorithms as those in the FPGA co-processor, albeit on a much slower timescale. 

The simulator has three options, each with their own flexible sub-options. One, the user can 

execute PSL on a randomly generated J-matrix and H-vector. Two, the user can execute PSL on 

their own specified parameter set. Three, the user can execute PSL on one of three pre-loaded 

example parameter sets. These parameter sets will be further detailed in Section 3-4.  

The purpose of this web simulator is multi-fold. First, the simulator will connect the real 

world to the algorithms that we have designed. That is, the simulator should properly illuminate 

the real-world → PSL → real-world transition. The user should start in the real world, with some 

problem, and end in the real world with some solution.  

Second, the simulator should give users a simple environment to execute PSL in, removing 

the need for extensive set up procedures that are otherwise required to run the algorithms in Python 

or MATLAB. The resultant streamlined experience removes the need to build read-out functions, 

install packages, and debug the resulting code.  

Third, the web simulator should motivate users to take the additional steps needed to use 

the Purdue-P co-processor. The co-processor is the real innovation of the Purdue-P team, with 

significant thought put into its hardware parallel-execution of PSL. However, this co-processor 

requires multiple technical steps on the users’ part to set up. With an easy to use web simulator, 

the user should be more inclined to take those steps and delve further into PSL research.  
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As a bonus, the web simulator also puts PSL execution on the smart phone for the first time. 

Networks as large as 400 p-bits have been run on a smartphone in a few seconds. Now, all you 

need is a J-matrix or H-vector ready, and you can run PSL anywhere!  

 Parallel PSL Algorithms 

Eq.(1,(2) are sequential by nature; these equations are applied to p-circuits one p-bit at a time 

until every p-bit in the network has been updated, as is generally required for unrestricted 

boltzmann machines [8]. This scheme limits the rate at which networks of p-bits can be updated. 

A novel update scheme has been proposed that allows multiple p-bits to update per timestep, 

resulting in a faster convergence rate for many problems, while maintaining the accuracy of the 

predicted ground state. This new scheme describes a Parallel-Probabilistic Spin Logic (PPSL) 

framework. The original, sequential equations now describe a Classical-Probabilistic Spin Logic 

(CPSL) framework, for distinction. The new framework is better suited to model real hardware, 

where magnets lack a sequencer to tell them when to flip. This parallel scheme is what drives the 

Purdue-P Web Simulator. 

 Simulator Inputs 

The simulator itself has two modes, one shows the text field setup for a specific J-matrix/H-

vector problem (referred to as specify text field setup), and one for the random setup (referred to 

as random text field setup). These two setups are shown in Figure 3-1.  
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Figure 3-1 Specify and Random text field setups 

 

The pre-loaded examples simply fill the specify text field setup with the parameters that reflect 

that problem. The specify text-field setup offers a variety of knobs that the user can tune.  

• J-matrix - The connection matrix describing the weights between p-bits. 

• H-vector - The bias vector describing initial state of p-bits. 

• Nt - Number of time-steps to collect data. 

• dt - Mean update frequency for p-bits. A small dt leads to more simultaneous updates, while 

a larger dt leads to fewer. 

• Clamps – specifies which p-bits are clamped, if any, formatted as [[p-bit #, clamp 

value],[.,.],...]. Clamp values must be +-1. 

• Annealing setup 

o No annealing - A constant scaling factor for the J-matrix. I0 corresponds to inverse-

temperature. 

o Linear annealing - I0 is modified each timestep following I0 = I0 + Iend/Nt. This is 

equivalent to linearly reducing temperature to encourage the system to converge to 

the global minimum. 
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o Geometric annealing - I0 is modified each timestep following I0(t+1) = 

growth_factor * I0(t). This exponentially reduces temperature to encourage the 

system to converge to the global minimum. 

The random text field set up removes the option to input a J-matrix, H-vector, and clamps, while 

introducing a new parameter.  

• Nm - Number of magnets in the p-circuit. 

This parameter was previously inferred from the size of the H-vector, when the H-vector was an 

input, since the H-vector must provide a bias for each p-bit.  

 Annealing 

In the context of p-bits, annealing refers to modifications to temperature that influence the 

rate at which p-bits update their states. A high temperature will encourage a network of p-bits to 

explore a wide range of states, while a low temperature will freeze the p-bits such that they fall 

into some lower energy state, and remain there. This strategy has been widely used in simulated 

annealing methodologies for optimization problems in the past [9]. While smaller networks of p-

bits will converge to ground states without any annealing, larger connection matrices introduce 

local minima that the network can get stuck in. For optimization problems, it becomes especially 

difficult to deduce when the network’s apparent ground state is the true ground state or a local 

minimum which the network cannot escape. It is therefore crucial to provide slow annealing 

features. This temperature translates to an inverse pseudo-temperature variable I0 in software. Any 

annealing scheme for p-bits increments I0 until the network converges to some state. The web 

simulator currently presents three options for the user to choose from. First, a constant I0 that does 

not change. A constant I0 is generally sufficient for small network sizes (Nm ~ 10). 
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(3) 

𝐼𝑜(𝑡 + 1) = 𝐼𝑜 

The second option is a linear annealing schedule, for which I0 changes by some constant 

value each timestep. The user may select an Iend > 0.0000001 until which I0 will increment over Nt 

timesteps.  

(4) 

𝐼𝑜(𝑡 + 1) = 𝐼𝑜(𝑡) +
𝐼𝑒𝑛𝑑
𝑁𝑡

 

𝐼𝑜(0) = 0.0000001 

The third option is a geometric annealing pattern. The user selects both a starting I0 and an 

ending I0 under this schedule, along with some growth factor. The starting I0 is multiplied by the 

growth factor each iteration, for Nt timesteps.  

(5) 

If gf ∗ 𝐼𝑜(𝑡) < 𝐼𝑒𝑛𝑑, 

𝐼𝑜(𝑡 + 1) = gf ∗ 𝐼𝑜(𝑡) 

else 𝐼𝑜(𝑡 + 1) = 𝐼𝑜(𝑡) 

𝐼𝑜(0) = 𝐼𝑠𝑡𝑎𝑟𝑡 

As it is generally known that different annealing schedules are better suited to different 

energy landscapes, these annealing options will be expanded over time to maximize flexibility 

for the user. An example of annealing using the linear annealing schedule is given below in 

Figure 3-2.  
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Figure 3-2 Linear annealing schedule applied to 20x20 p-bit grid 

 

The connection matrix encodes a specific ground state in order to make clear that the 

annealing was successful in finding the correct ground state. The energy plot confirms the linear 

annealing schedule.  

 Simulator Outputs 

Given the inputs as they are described, the simulator calculates and displays a series of data 

values, charts, and graphs. Each output is described in the order with which It appears on the 

webpage. Firstly, the final energy and final state of the network are displayed in text. This gives 

the user an exact final energy up to the 16th significant place. For large networks with a larger 

absolute final energy, the value may be rounded to a lesser significant digit. The final state is 

shown with binary values rather than bipolar values. This final state is often important in 

optimization problems, where it generally (hopefully) is the ground state.  
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A heatmap is built from the final state to visually show the final state of the network. For 

large problems, this may help confirm whether the ground state was reached or provide some 

reference for the string of 1s and 0s provided in the final state text field. The pre-loaded 400 p-bit 

Max-Cut example utilizes this heat map to confirm the ground state of an optimization problem.  

A histogram is built by compounding the state of the network at each timestep for 

sufficiently small networks. For certain machine learning problems, the probability of occupancy 

of each state may be important, which can be extracted from this histogram. The 6 p-bit Max-Cut 

problem uses this histogram to ensure that the most occurring state, and the second most occurring 

state solve the problem at hand.  

Finally, an energy over time curve is presented to the user. This visualizes the effects of 

the annealing schedule and presents the energy of the state occupied at each time step over the Nt 

timesteps. A linear annealing schedule results in a linear energy decline, while a geometric 

annealing schedule will present an inverted exponential curve.  

An extensive notification message system has been implemented as well. This system alerts 

the users to mis-inputs as shown in Figure 3-3. The messages are specific to each text field and tell 

the user exactly what the error is and how to fix it. This system supports displaying multiple errors 

at once and supports retention for as long as the user needs (the user can simply mouse over the 

error).  

 

Figure 3-3 Notification message samples  
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The messages are color coded as follows. 

RED – Error that needs to be fixed for the simulator to run. 

BLUE – a note that isn’t necessarily an error. The simulator will still run, although the output may 

not be valid.  

Green – Successful run.   

 Pre-loaded Examples 

A series of examples have been preset to ease the introduction of PSL for new users. These 

preset examples are simple parameter sets that are loaded into text fields on the web simulator. 

The text fields, and the algorithm behind the simulator, is the same for every example.  Each 

example is explained in detail in its own tab above the simulator. The explanations follow a 2-step 

structure. First, they explain what the input is to the simulator in order to encode the given problem. 

This shows how a real-world problem can be translated into the PSL world. Second, the example 

shows how the output of the simulator can be interpreted within the context of the real world. This 

shows how PSL solved the encoded problem. There are currently 3 examples pre-loaded into the 

simulator. These examples grow in complexity, starting with a simple AND gate, then a 6 p-bit 

Max-Cut problem, then finally a 400 p-bit Max-Cut problem. Each of these examples is explored 

below.  

3.6.1 And Gate 

A p-circuits capability to model logic functions can be demonstrated with a simple AND 

gate. The three pins of an AND gate can be replaced with p-bits that execute roughly equivalent 

functions. Two p-bits serve as inputs and one as output. The difference though, is that while 
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conventional AND gates provide some output for set inputs, p-circuits can also provide inputs 

that satisfy some set output. The AND gate can be transformed into the simulator world as 

shown in Figure 3-4. Part a shows how a network of p-bits can emulate an AND gate’s behavior, 

with certain weighted connections. These connections can be converted into a matrix, and input 

into the simulator as in part b of Figure 3-4.  

 

 

Figure 3-4 AND gate Input Parameters 

 

Given these parameters, the simulator is run to reveal each of the outputs described in Section 3-

3 (Simulator Outputs), shown in Figure 3-5. To derive the weights for any given function, such 

as an AND gate, the constraints set by the Hamiltonian for that function must be satisfied. The 

matrix satisfying the constraints becomes the J matrix whose ground state will minimize the 

function’s Hamiltonian. Though I will not go into detail regarding the methods by which J-

matrices are derived, others have invested time to this end [10].  
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Figure 3-5 AND gate output 

 

While the final state/heatmap and final energy are not as crucial for modelling an AND gate, the 

histogram shows the system to spend more time in the states that describe an AND gate. Figure 

3-6 explains how this output confirms correct AND gate modelling by p-bits.  

 

Figure 3-6 AND gate output description 



28 

 

 

When each state is read as a binary value, each bit in each state represents the state of a p-bit. The 

configuration of bits in each state show the state of the network. As described in Figure 3-6, only 

the binary configurations that satisfy A = B & C are occupied with high probability. This example 

further explores the capabilities of this simulator by allowing testing with the clamping system. 

By clamping p-bit A to 1, we see that the network conforms by keeping the inputs, p-bits B and C, 

in state 1. A state of 7 (111) is the only one that satisfies having p-bit A clamped to 1. This clamped 

input and output are shown in Figure 3-7. The remaining input parameters for this problem are the 

same as in Figure 3-4.  

 

Figure 3-7 Clamping feature on AND gate 

 

3.6.2 6 p-bit Max-Cut 

While the AND gate demonstrates some simple logic gate functionality of PSL, this 6 p-

bit Max-Cut example shows how specifically to map a graph onto the PSL framework. The 

Hamiltonian for Max-Cut is so similar to the biasing variable update Eq. 2 that to map a Max-

Cut graph, one simply uses the adjacency matrix for the graph as the J-matrix. With this 

example, the user should understand how to map any graph they want onto the PSL framework. 

The input parameter set is shown in Figure 3-8, while the solution is explained in Figure 3-9.  
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Figure 3-8 Six p-bit Max-Cut input parameters 

 

A few modifications on the input parameter set of the AND gate should be pointed out. The J-

matrix and H-vector are different to encode the desired graph. While the number of trials (Nt) 

remains the same, dt (mean p-bit update frequency) has been reduced. Experimentally, 𝑑𝑡 <
1

2𝑁𝑚
  

for arbitrarily connected networks prevents collisions to a degree that Parallel-PSL matches the 

statistics of Classical-PSL. In accordance with this ratio, dt was reduced to 
1

(2∗6)
 = 1/12. Since 

optimal convergence time is not a priority, a slower update rate can be afforded for increased 

precision. Since there are more inputs, and so the sums going into each p-bit are larger, I0 has 

been slightly reduced to compensate. Scaling down the J matrix with a smaller I0 ensures that the 

space is thoroughly explored while still showing large enough “correct” peaks.  
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Figure 3-9 Six p-bit Max-Cut example output description 

 

The 6 p-bit Max-Cut problem can be considered solved if the p-bits in the network 

occupy the states in which m2, m4, and m5 are all one state, and m1, m3, and m6 are all the other 

more often than they do every other possible state involving 6 bits. This can be considered a 

solution condition. There are 2^6 (64) possible states out of which 2 should stand out. The 

histogram shown in Figure 3-9 is the output of the web simulator, which clearly shows the two 

correct peaks standing out. These peaks satisfy our solution condition.  

3.6.3 400 p-bit Max-Cut 

Where the previous examples have taught how to map problems onto PSL, this example is 

a showcase of what PSL is capable of. While the 400 p-bit Max-Cut problem is technically a 

scaled-up form of the previous 6 p-bit Max-Cut problem, it encodes a less arbitrary J-matrix 

which converges to a regular final state pattern. The J-matrix is formed from a colored image 

overlaid onto a white background, as seen in Figure 3-10.  
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Figure 3-10 400 p-bit Max-Cut problem 

 

A J-matrix that encodes this final ground state, with black pixels as 0,1 and white pixels as 

1,0, can be formed by following two simple rules. P-bits of opposite colors must have a 1 

connection, while p-bits of the same color must have a -1 connection. This antiferromagnetically 

couples opposite colors, forming edges in the final state. This example connects with scientific 

literature, where recognizable patterns are used to ensure that the algorithm converged to the 

correct final state for very large networks. The J-matrix is a 400x400 matrix, giving the output 

image 20 x 20 dimensions. The output by the web simulator on the J-matrix obtained as described 

is shown in part c of Figure 3-10.  
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The parameter dt was increased to 0.125 to obtain this output. For arbitrarily connected 

networks, 𝑑𝑡 <
1

2𝑁𝑚
  is generally abided by. Since the maximum fan-in for any p-bit is 4 in this 

network, on average, 1/8th of the network could be updated at once with enough of a chance that 

two p-bits within the same group of 4 would not be updated together. Even if such an event 

occurs, enough “correct” events occur to overwrite their missteps on the energy landscape. 

Furthermore, since we are only interested in the final state, we are not as particular in following 

time-dynamic statistics of how we get there. A high collision rate resulting from a large dt would 

undoubtedly affect the time-dynamics of the network, providing incorrect peaks on a histogram, 

but this would nonetheless converge to an accurate solution.  

 Future Work 

There is an assortment of developments that should improve the user experience with the 

simulator going forwards. The users could be allowed to save their parameter setups and give 

them a name, to allow simply loading their own presets at any time. Offloading the algorithmic 

scripts to a git hub repository, and linking that repository will improve page load time, and 

prevent the code from being discoverable through the web browser. Allowing file uploads for 

large J-matrix in CSV form rather than the bracket form could make running large networks 

much easier.  
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4. PURDUE-P FPGA CO-PROCESSOR 

 A Cloud Accessible Co-processor 

The Purdue-P Co-processor is a cloud-hosted FPGA design for modelling and executing 

p-circuits asynchronously. In terms of execution, p-bits dispersed throughout the FPGA overcome 

the Von-Neuman bottleneck to a large degree compared to a general-purpose CPU running the 

same algorithms. This leads to noticeably faster convergence rates in the co-processor as opposed 

to MATLAB or Python running PSL equations. In addition to expedited execution of PSL, the co-

processor runs an asynchronous PPSL framework which accurately models real hardware. The 

FPGA design has been compartmentalized such that different aspects of the PPSL algorithm may 

be swapped out, encouraging exploration for an optimal p-bit design in hardware. Access to the 

co-processor is provided via a MEX file for MATLAB, which will be downloadable from 

“purdue.edu/p-bit”. Though this system has been built for MATLAB, the client C++ file (See 

Figure 4-1) through which a user’s local computer communicates with the server can be attached 

to any user IDE. Support for Python, C++, and other languages can be made possible, further 

lowering the bar for access to the co-processor. Once connected, users can interact with the co-

processor with commands that will affect the FPGA execution in real time, allowing users to 

modify temperature, pause, resume, and read the network state on the fly.  



34 

 

 

Figure 4-1 User to FPGA Connection Schematic 

 

While the entire system labeled “Purdue-p Co-processor” in Figure 4-1 is provided, the user 

must download the libraries that are used by the client C++ file for the client C++ file to compile 

properly, and for data to be transmitted between the client and server. Boost.asio, cereal, and Eigen 

are three libraries that are crucial for this process to function. The role of these libraries will be 

briefly explored.  

Boost.asio is an optimized, asynchronous IO framework that simplifies transmitting and 

receiving data between a client and a server. Boost.asio functions compiled on the client side 

require a destination socket and data, with corresponding security protocols satisfied. The 

destination socket is established by the “Server C++” file on the AWS server in Figure 4-1. For 

Boost.asio to send data, that data should be in a form that is transmittable, a series of bytes. 

Matrices especially, among other types of stacked, multi-dimensional data, are difficult to transmit 

and receive. As such, it is required to “serialize” the data before transmission. This arranges 

matrices, classes, and other multi-dimensional data containers into a single, easily transmittable 

string of bytes. This operation is handled within the Purdue-P Co-processor framework by the 
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cereal library. Since p-bit data will be read out repeatedly over the course of a single run, it is 

important that the data be read and written quickly and accurately. Since both the client and server 

files use the same cereal library, the method used to serialize the data is used in reverse to 

deserialize the data on the other side and re-create the data in its original dimensions. Finally, 

cereal accepts data in the form of vectors and matrices of the Eigen datatype. The Eigen library is 

used to format the data such that it can quickly be serialized and transmitted.  

 Connecting to the Cloud – Tutorial 

An extensive sequence of steps can be found in Appendix A, under “Instructions on 

Accessing Purdue-P Co-processor” that guide users in connecting to the Purdue-P Co-processor. 

The following will be a more general overview of these steps. The entire setup sequence can be 

split into three phases. The first of these phases sets up the client side, referring to the blue box in 

Figure 4-1. These directions involve downloading the client C++ file form purduep.weebly.com 

and installing the appropriate libraries that will allow MATLAB to compile that C++ file. At the 

end of this phase, a compiled client C++ file should be present on the user’s computer. 

The second phase sets up a server on Amazon Web Services (AWS) with the FPGA 

connection mechanisms in place and instructs the user on how to access that server. This begins 

with the creation of AWS account and proceeds through the setup of an instance on the cloud. This 

instance is the server with which the user’s MATLAB client will communicate. To communicate 

with this server, a free software called PuTTY is recommended. Instructions on how to SSH into 

the server with PuTTY follow. Other applications exist, like SecureCRT, through which the user 

can also access the server. There are specific key files and settings that must be set within PuTTY 

for the connection to bypass the server security protocols, which are outlined.  
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The final phase activates the server with some final setup procedures that run the server C++ 

file in Figure 4-1. Prior to this step, all the necessary files and commands have been pre-loaded 

onto the server, but the server has yet to be activated. The commands and setup procedures are 

provided. At the end of this phase of instructions, the user can run ./psl_server in a specific place 

within the server directory and run the server. Again, Appendix A contains very thorough setup 

instructions with explanations at more important steps.  

The server is ready to communicate with MATLAB at this stage. Specified commands 

within MATLAB will set up PSL problems to run on the FPGA, and these commands can be used 

to read the p-bit states at any point during execution to collect time-dynamic information.  
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APPENDIX A 

Client Side 

1. Download MATLAB  

2. Install the libraries necessary to compile the client-side C++ file 

a. Eigen, found at http://eigen.tuxfamily.org/index.php?title=Main_Page 

b. Boost.asio, found at https://www.boost.org/ 

c. Cereal, found at https://uscilab.github.io/cereal/ 

Eigen and cereal are header only libraries, meaning they do not require an 

installation, simply download the .zip folders, extract the files into some location, and 

link their libraries using the command in step 4 with the paths to each library 

modified. 

3. Download the c++ client file psl_accel.cpp from https://purduep.weebly.com/fpga-

tool.html 

4. Run the following command in the MATLAB terminal with pertaining paths to each 

library  

 

 

 

 

With 

that compiled, the client is ready to send requests up to the server, we must now  

establish a server with the fpga.  

 

Server Side 

1. Create an AWS account 

2. Set up payment information so that AWS can allow you to create an FPGA server 

3. Start an instance  

a. Use the Purdue-P FPGA User AMI (custom built AMI with all the settings pre-

installed) 

b. f1.2xlarge instance type 

c. 65 gb volume 

d. Security groups default 

e. Default settings for rest of steps 

4. Set up a keypair for authentication, store your keypair safely 

mex psl_accel.cpp -I/usr/local/Cellar/cereal/1.2.2/include/ -

I/usr/local/Cellar/eigen/3.3.7/include/eigen3/ -

I/usr/local/Cellar/boost/1.67.0_1/include/ -

L/usr/local/Cellar/boost/1.67.0_1/lib/ -lboost_system; 
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5. Go to security groups, select the group associated with your instance, add a custom TCP 

rule with port 1234, accessible by anyone if you are ok with anyone using your instance, 

or accessible by “My IP” to keep it locked to your current IP.  

The server is now set up with all the required FPGA files. You must now access the server 

and spin up the FPGA so that it can communicate with your MATLAB client. 

 Download PuTTY to access the server you have started. 

6. The keypair you have downloaded will be a .pem file, while PuTTY uses .ppk. use 

PuTTYgen to convert the .pem file into a .ppk file 

7. Right click on your instance (found in the instance tab along the left side) in the AWS 

console and click instance state → start 

8. Set up PuTTY to access the server 

a. In the IP address box, type “centos@” and paste the IP address given in the AWS 

console for your server under “Public DNS (IPv4)” 

b. Connection type should be ssh 

c. Under connection → ssh → auth on the left side of PuTTY go to browse under 

“private key file for authentication” and link the .ppk file you have created using 

your AWS provided keypair 

d. Type a name for your session under “saved sessions” and save it so that you don’t 

have to re-connect your keypair on the next login 

Each successive login onto your server from PuTTY will require you to replace the IP 

address with the AWS provided public DNS address, since this will change each time you 

spin up the server. 

9. Click Open to enter the server 

10. Go to src → project_data → aws_fpga  

11. Go to ./hdk → cl → developer_designs → … (will be modified soon) 

Run the following command to end in the correct folder  

 

 

 

12. Run  

 

 

 

A file named “psl_server” should appear 

Some final server configurations are necessary 

13. Type “aws configure” 

cd /home/centos/src/project_data/aws-fpga/hdk/cl/developer_designs/… 

make clean all 
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a. Set the access key and secret access key found in your aws account by clicking on 

your name in the top right corner, clicking on “my security credentials”. Go to 

access keys, and generate a new access key and secret access key.  

b. Set the default region name to be the region your instance is running on, found on 

your aws console. Ex. “us-east-1” 

14. Load the bitstream onto the FPGA based on which topology setup you would like to use, 

there are currently two available topologies 

a. 500 all-to-all 

 

b. 90x90 nearest neighbor 

 

 

 

If you are unsure of which topology, the 500 p-bit all-to-all  will be a safe bet for any 

small to medium sized problem. 

15. Ensure that port 1234 is set as custom TCP rule in security group (your selected security 

group) → inbound rules on your AWS console 

16. To run the server, run “sudo ./psl_server” 

 

 

 

Your server is officially running and accepting commands from your MATLAB client! 

 

Soon only a compiled AMI will be released to the public, so that the user will not need to access 

source code for the FPGA designs. Rather the server should spin up immediately following the 

launch of a new instance.  

 

 

 

 

 

 

sudo fpga-load-local-image -S 0 -I agfi-…  

sudo fpga-load-local-image -S 0 -I agfi-… 

sudo ./psl_server 
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APPENDIX B 

Scroll down indicator on starting header (HTML, CSS, JavaScript) 

1. <html>   
2.   <head>   
3.   <style>   
4.       @import url(https://fonts.googleapis.com/css?family=Josefin+Sans:300,400);   
5.    
6. .demo a {   
7.   position: absolute;   
8.   top: 50px;   
9.   z-index: 2;   
10.   display: inline-block;   
11.   -webkit-transform: translate(0, -50%);   
12.   transform: translate(0, -50%);   
13.   color: #000;   
14.   font : normal 400 20px/1 'Josefin Sans', sans-serif;   
15.   letter-spacing: .1em;   
16.   text-decoration: none;   
17.   transition: opacity .3s;   
18. }   
19. .demo a:hover {   
20.   opacity: .5;   
21. }   
22.    
23. #section07 a {   
24.   padding-top: 80px;   
25. }   
26. #section07 a span {   
27.   position: absolute;   
28.   top: 0;   
29.   left: 50%;   
30.   width: 24px;   
31.   height: 24px;   
32.   margin-left: -12px;   
33.   border-left: 1px solid #000;   
34.   border-bottom: 1px solid #000;   
35.   -webkit-transform: rotate(-45deg);   
36.   transform: rotate(-45deg);   
37.   -webkit-animation: sdb07 2s infinite;   
38.   animation: sdb07 2s infinite;   
39.   opacity: 0;   
40.   box-sizing: border-box;   
41. }   
42. #section07 a span:nth-of-type(1) {   
43.   -webkit-animation-delay: 0s;   
44.   animation-delay: 0s;   
45. }   
46. #section07 a span:nth-of-type(2) {   
47.   top: 16px;   
48.   -webkit-animation-delay: .15s;   
49.   animation-delay: .15s;   
50. }   
51. #section07 a span:nth-of-type(3) {   
52.   top: 32px;   
53.   -webkit-animation-delay: .3s;   
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54.   animation-delay: .3s;   
55. }   
56. @-webkit-keyframes sdb07 {   
57.   0% {   
58.     opacity: 0;   
59.   }   
60.   50% {   
61.     opacity: 1;   
62.   }   
63.   100% {   
64.     opacity: 0;   
65.   }   
66. }   
67. @keyframes sdb07 {   
68.   0% {   
69.     opacity: 0;   
70.   }   
71.   50% {   
72.     opacity: 1;   
73.   }   
74.   100% {   
75.     opacity: 0;   
76.   }   
77. }   
78.    
79.    
80.          
81. </style>   
82.   </head>   
83.   <body>   
84.        
85. <section id="section07" class="demo">   
86.  <a href="#ajsection-overview"><span></span><span></span><span></span></a>   
87. </section>   
88.    
89. </body>   
90. </html>   

 

Animated horizontal line on scroll down (HTML, CSS, JavaScript) 

1. <html>   
2.   <head>   
3.        
4.   <style>   
5.     body    
6.     {     
7.       background: #ffffff;   
8.          
9.       margin: 0;   
10.       align-items: center;   
11.       justify-content: center;   
12.       text-align: center;   
13.       font-family: Helvetica neue, roboto;   
14.     }   
15.        
16.     h1    
17.     {   
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18.       color: #bdbdbd;   
19.       font-weight: 300;   
20.     }   
21.     .line   
22.     {   
23.       background: #c4aa71;   
24.       display: block;   
25.       margin: 0 auto;   
26.       opacity: 1;   
27.       height: 2px;   
28.       transition: 1s;   
29.       width: 0%;   
30.          
31.     }   
32.     .line.show   
33.     {   
34.       opacity: 1;   
35.       width: 100%;   
36.     }   
37.   </style>   
38.   </head>   
39.   <body>   
40.   <div class="line"></div>   
41.      
42.         <script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.2/jquery.min.js"

></script>   
43.         <script>window.jQuery || document.write('<script src="js/vendor/jquery-

1.11.2.min.js"><\/script>')</script>   
44.         <script src="https://cdnjs.cloudflare.com/ajax/libs/ScrollMagic/2.0.5/ScrollMag

ic.min.js"></script>   
45.         <script src="https://cdnjs.cloudflare.com/ajax/libs/ScrollMagic/2.0.5/plugins/d

ebug.addIndicators.min.js"></script>   
46.    <script>   
47.         $(document).ready(function(){   
48.    
49.     // Init ScrollMagic   
50.     var controller = new ScrollMagic.Controller();   
51.    
52.     // build a scene   
53.     var ourScene = new ScrollMagic.Scene({   
54.         triggerElement: '.line'   
55.     })   
56.     .setClassToggle('.line', 'show') // add class to project01   
57.     //.addIndicators({   
58.     //  name: 'fade scene',   
59.     //  colorTrigger: 'black',   
60.     //  indent: 200,   
61.     //  colorStart: '#75C695'   
62.     //}) // this requires a plugin   
63.     .addTo(controller);   
64.    
65. });   
66.         </script>   
67.      
68.   </body>   
69.      
70. </html>   
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Web Simulator Code (HTML, CSS, JavaScript) 

1. <!DOCTYPE html>   
2. <html>   
3.   <head>   
4.   <meta http-equiv="content-type" content="text/html; charset=UTF-8" />   
5.   <script src="https://cdn.plot.ly/plotly-latest.min.js"></script>   
6.   <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjs/5.9.0/math.min.js

"></script>   
7.   <script src="https://code.jquery.com/jquery-3.4.0.min.js"></script>   
8.   <script src="https://cdn.jsdelivr.net/gh/StephanWagner/jBox@v0.6.4/dist/jBox

.all.min.js"></script>   
9.   <link rel="stylesheet" type="text/css" href="styles.css">   
10.   <link href="https://cdn.jsdelivr.net/gh/StephanWagner/jBox@v0.6.4/dist/jBox.

all.min.css" rel="stylesheet">   
11.      
12.   <style>   
13.   .all_inputs .input{   
14.     background: transparent;   
15.         border: 0;   
16.         border-bottom: 2px solid #1E2330;   
17.         padding: 4px;   
18.         outline: none;   
19.    
20.   }   
21.   </style>   
22.      
23.   </head>   
24. <body>   
25.   <div class='all_inputs'>   
26.     <div id="specify rand_Flag">   
27.         <label> User specified or random network</label><span class="tooltip" 

title="Run a random network or specify the weights for a custom network"><img 
src="https://i.ibb.co/wgYvNP5/10pt-qc-no-fill.png" alt="10pt-qc-no-
fill" border="0"></span>   

28.         <br>   
29.         <select id="rand_choice">    
30.           <optgroup label="General Use">   
31.           <option value = "1"> Specify </option>   
32.           <option value = "0"> Random </option>   
33.           </optgroup>   
34.           <optgroup label="Pre-loaded Networks">   
35.           <option value = "2"> AND gate </option>   
36.           <option value = "3"> 6 p-bit Max-Cut </option>   
37.           <option value = "4"> 400 p-bit Max-Cut </option>   
38.           </optgroup>   
39.         </select>   
40.     <button id="hide" onclick='hide(); pre_load();'> Select </button>   
41.     </div>   
42.     <div id='allinput' style='display: none;'>   
43. <fieldset>   
44.    
45.     <div id='inputs_random' class = "class_inputs_random" style="display: none

;">   
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46.            <legend> Inputs </legend>   
47.            <label> Enter Nm </label><span class="tooltip" title="Number of mag

nets in the p-circuit."><img src="https://i.ibb.co/wgYvNP5/10pt-qc-no-
fill.png" alt="10pt-qc-no-fill" border="0"></span>   

48.            <input type='text' class="input" id='Nm_rand_text' value='50'/>   
49.            <br>   
50.            <label>Enter Nt </label><span class="tooltip" title="Number of time

-steps to collect data."><img src="https://i.ibb.co/wgYvNP5/10pt-qc-no-
fill.png" alt="10pt-qc-no-fill" border="0"></span>   

51.            <input type='text' class="input" id='Nt_rand_text' value='10000'/> 
  

52.            <br>   
53.            <label> Enter dt </label><span class="tooltip" title="Mean update f

requency for p-
bits. A small dt leads to more simultaneous updates, while a larger dt leads t
o fewer."><img src="https://i.ibb.co/wgYvNP5/10pt-qc-no-fill.png" alt="10pt-
qc-no-fill" border="0"></span>   

54.            <input type='text' class="input" id='dt_rand_text' value='0.01'/>   
55.            <br>   
56.            <br>   
57.           <div id="annealing_schedule">   
58.           <label> Annealing Schedule </label> <span class="tooltip" title="Sim

ulated annealing slowly cools the system (increases I0) following some schedul
e, encouraging the network to find the global minimum."><img src="https://i.ib
b.co/wgYvNP5/10pt-qc-no-fill.png" alt="10pt-qc-no-fill" border="0"></span>   

59.           <br>   
60.           <select id="anneal_choice_rand" onChange="check_anneal(1)">    
61.           <option value = "0"> No Annealing </option>   
62.           <option value = "1"> Linear Annealing </option>   
63.           <option value = "2"> Exponential Annealing </option>   
64.           </select>   
65.           <br><br>   
66.           </div>    
67.              
68.           <div id='show_no_anneal_r'>   
69.            <label> Enter I0 </label><span class="tooltip" title="A constant sc

aling factor for the J-matrix. I0 corresponds to inverse-
temperature. "><img src="https://i.ibb.co/wgYvNP5/10pt-qc-no-
fill.png" alt="10pt-qc-no-fill" border="0"></span>   

70.            <input type='text' class="input" id='I0_rand_text' value='1'/>   
71.           </div>   
72.           <div id='show_anneal_lin_r' style="display: none;">   
73.            <label> Enter ending I0 </label><span class="tooltip" title="I0 is 

modified each timestep following I0(t+1) = I0(t) + Iend/Nt. This is equivalent
 to linearly reducing temperature to encourage the system to converge to the g
lobal minimum."><img src="https://i.ibb.co/wgYvNP5/10pt-qc-no-
fill.png" alt="10pt-qc-no-fill" border="0"></span>   

74.            <input type='text' class="input" id='I0_start_lin_rand_text' value=
'1'/>         

75.           </div>   
76.           <div id='show_anneal_geo_r' style="display: none;">   
77.            <label> Enter starting I0 </label><span class="tooltip" title="I0 i

s modified each timestep following I0(t+1) = growth_factor * I0(t). This expon
entially reduces temperature to encourage the system to converge to the global
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 minimum."><img src="https://i.ibb.co/wgYvNP5/10pt-qc-no-fill.png" alt="10pt-
qc-no-fill" border="0"></span>   

78.            <input type='text' class="input" id='I0_start_geo_rand_text' value=
'0.001'/>         

79.            <br>   
80.            <label> Enter growth factor</label><span class="tooltip" title="The

 growth factor by which I0 is scaled each timestep, i.e growth_factor in I0(t+
1) = growth_factor * I0(t)."><img src="https://i.ibb.co/wgYvNP5/10pt-qc-no-
fill.png" alt="10pt-qc-no-fill" border="0"></span>   

81.            <input type='text' class="input" id='I0_growth_rand_text' value='1.
001'/>   

82.           </div>   
83.            <br>   
84.            <br>   
85.            <button onclick='output(); check_anneal(1);'> Run Simulator </butto

n>     
86.            <br>   
87.            <br>   
88.     </div>   
89.     <div id='inputs_non_random' class='class_inputs_non_random' style="display

: none;">   
90.            <legend> Inputs </legend>   
91.            <label>Enter J </label><span class="tooltip" title="The connection 

matrix describing the weights between p-
bits"><img src="https://i.ibb.co/wgYvNP5/10pt-qc-no-fill.png" alt="10pt-qc-no-
fill" border="0"></span>   

92.            <input type='text' class="input" id='J_text' placeholder="[[.,.,.],
[.,.,.],...]"/>   

93.            <br>   
94.            <label>Enter H </label><span class="tooltip" title="The bias vector

 describing initial state of p-bits"><img src="https://i.ibb.co/wgYvNP5/10pt-
qc-no-fill.png" alt="10pt-qc-no-fill" border="0"></span>   

95.            <input type='text' class="input" id='H_text' placeholder="[.,.,.]"/
>   

96.            <br>   
97.            <label>Enter Nt </label><span class="tooltip" title="Number of time

-steps to collect data"><img src="https://i.ibb.co/wgYvNP5/10pt-qc-no-
fill.png" alt="10pt-qc-no-fill" border="0"></span>   

98.            <input type='text' class="input" id='Nt_text' placeholder="Nt"/>   
99.            <br>   
100.            <label>Enter dt </label><span class="tooltip" title="Mean upd

ate frequency for p-
bits. A small dt leads to more simultaneous updates, while a larger dt leads t
o fewer."><img src="https://i.ibb.co/wgYvNP5/10pt-qc-no-fill.png" alt="10pt-
qc-no-fill" border="0"></span>   

101.            <input type='text' class="input" id='dt_text' placeholder="dt
"/>   

102.            <br>   
103.            <br>   
104.            <label> Enter Clamps </label><span class="tooltip" title="Ent

er which p-bits should be clamped, if any, formatted as [[p-
bit #, clamp value],[.,.],...]. Clamp values must be +-
1."><img src="https://i.ibb.co/wgYvNP5/10pt-qc-no-fill.png" alt="10pt-qc-no-
fill" border="0"></span>   
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105.            <input type='text' class="input" id='clamps' placeholder="[[.
,.],[.,.],...]"/>   

106.            <br>   
107.            <br>   
108.              
109.           <div id="annealing_schedule">   
110.           <label> Annealing Schedule </label> <span class="tooltip" titl

e="Simulated annealing slowly cools the system (increases I0) following some s
chedule, encouraging the network to find the global minimum."><img src="https:
//i.ibb.co/wgYvNP5/10pt-qc-no-fill.png" alt="10pt-qc-no-
fill" border="0"></span>   

111.           <br>   
112.           <select id="anneal_choice" onChange="check_anneal(0)">    
113.           <option value = "0"> No Annealing </option>   
114.           <option value = "1"> Linear Annealing </option>   
115.           <option value = "2"> Exponential Annealing </option>   
116.           </select>   
117.            <br>   
118.            <br>   
119.           </div>    
120.           <div id='show_no_anneal'>   
121.            <label> Enter I0 </label><span class="tooltip" title="A const

ant scaling factor for the J-matrix. I0 corresponds to inverse-
temperature. "><img src="https://i.ibb.co/wgYvNP5/10pt-qc-no-
fill.png" alt="10pt-qc-no-fill" border="0"></span>   

122.            <input type='text' class="input" id='I0_text' placeholder="Co
nstant I0"/>   

123.           </div>   
124.           <div id='show_anneal_lin' style="display: none;">   
125.            <label> Enter ending I0 </label><span class="tooltip" title="

I0 is modified each timestep following I0 = I0 + Iend/Nt. This is equivalent t
o linearly reducing temperature to encourage the system to converge to the glo
bal minimum."><img src="https://i.ibb.co/wgYvNP5/10pt-qc-no-
fill.png" alt="10pt-qc-no-fill" border="0"></span>   

126.            <input type='text' class="input" id='I0_start_lin_text' place
holder="I0 end"/>         

127.           </div>   
128.           <div id='show_anneal_geo' style="display: none;">   
129.            <label> Enter starting I0 </label><span class="tooltip" title

="I0 is modified each timestep following I0(t+1) = growth_factor * I0(t). This
 exponentially reduces temperature to encourage the system to converge to the 
global minimum."><img src="https://i.ibb.co/wgYvNP5/10pt-qc-no-
fill.png" alt="10pt-qc-no-fill" border="0"></span>   

130.            <input type='text' class="input" id='I0_start_geo_text' place
holder="I0 start"/>         

131.            <br>   
132.            <label> Enter growth factor</label><span class="tooltip" titl

e="The growth factor by which I0 is scaled each timestep, i.e growth_factor in
 I0(t+1) = growth_factor * I0(t)."><img src="https://i.ibb.co/wgYvNP5/10pt-qc-
no-fill.png" alt="10pt-qc-no-fill" border="0"></span>   

133.            <input type='text' class="input" id='I0_growth_text' placehol
der="I0 growth factor"/>   

134.           </div>   
135.            <br>   
136.            <br>   
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137.            <button onclick='output(); check_anneal(0);'> Run Simulator <
/button>   

138.            <br>   
139.            <br>   
140.         </div>   
141.            
142.            
143.   </fieldset>   
144.   </div>   
145.    
146. <br>   
147. <br>   
148. <div id='out'><p id='out_data'></p></div>   
149. <div id='chart'></div>   
150. <div id='state histogram'></div>   
151. <div id='heatmap'></div>   
152.    
153. </div>   
154. <script>   
155. console.log('made it here');   
156. var error_flag;   
157. var I0;   
158.    
159. new jBox('Tooltip', {   
160.   attach: '.tooltip'   
161. });   
162.    
163. function hide(){   
164.     var rand_flag = JSON.parse(document.getElementById("rand_choice").va

lue);   
165.     var x1 = document.getElementById('inputs_non_random');   
166.     var x2 = document.getElementById('inputs_random');   
167.     var x3 = document.getElementById('allinput');   
168.     check_anneal(1-rand_flag);   
169.     x3.style.display = 'inline';   
170.     if(rand_flag >= 1){      // specify   
171.       x1.style.display = 'inline';   
172.       x2.style.display = 'none';   
173.     }   
174.     else{                              // random   
175.       x2.style.display = 'inline';   
176.       x1.style.display = 'none';   
177.     }   
178. }   
179. function pre_load(){   
180.   var rand_flag = JSON.parse(document.getElementById("rand_choice").valu

e);   
181.   if(rand_flag == 1) // empty   
182.   {   
183.     document.getElementById("Nt_text").value = '';   
184.     document.getElementById("dt_text").value = '';   
185.     document.getElementById("I0_text").value = '';   
186.     document.getElementById("I0_start_lin_text").value = '';   
187.     document.getElementById("I0_start_geo_text").value = '';   
188.     document.getElementById("I0_growth_text").value = '';   
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189.     document.getElementById("J_text").value = '';   
190.     document.getElementById("H_text").value = '';   
191.        
192.   }   
193.   if(rand_flag == 2) // AND gate   
194.   {   
195.     document.getElementById("Nt_text").value = "10000";   
196.     document.getElementById("dt_text").value = "0.1667";   
197.     document.getElementById("I0_text").value = "0.3";   
198.     document.getElementById("I0_start_lin_text").value = "1";   
199.     document.getElementById("I0_start_geo_text").value = "1";   
200.     document.getElementById("I0_growth_text").value = "1.001";   
201.     document.getElementById("J_text").value = "[[0,-2, -2],[-2, 0, 1],[-

2, 1, 0]]";   
202.     document.getElementById("H_text").value = "[2,-1,-1]";   
203.   }   
204.   else if(rand_flag == 3) // 6 p-bit maxcut   
205.   {   
206.     document.getElementById("Nt_text").value = "10000";   
207.     document.getElementById("dt_text").value = "0.0833";   
208.     document.getElementById("I0_text").value = "0.15";   
209.     document.getElementById("I0_start_lin_text").value = "0.3";   
210.     document.getElementById("I0_start_geo_text").value = "0.001";   
211.     document.getElementById("I0_growth_text").value = "1.001";   
212.     document.getElementById("J_text").value = "[[0,5,3,0,0,0],[5,0,6,0,0

,0],[3,6,0,10,7,0],[0,0,10,0,0,0],[0,0,7,0,0,4],[0,0,0,0,4,0]]";   
213.     document.getElementById("H_text").value = "[0,0,0,0,0,0]";   
214.        
215.   }   
216.    else if(rand_flag == 4) // 400 p-bit maxcut   
217.   {   
218.     document.getElementById("Nt_text").value = "1000";   
219.     document.getElementById("dt_text").value = "0.125";   
220.     document.getElementById("I0_text").value = "1";   
221.     document.getElementById("I0_start_lin_text").value = "1";   
222.     document.getElementById("I0_start_geo_text").value = "0.001";   
223.     document.getElementById("I0_growth_text").value = "1.001";   
224.     document.getElementById("J_text").value =[400x400 j-

matrix for purdue-p symbol   
225. ]";   
226.        
227.   }   
228. }   
229.          
230.          
231. function check_anneal(rand){   
232.     // if rand == 0, non random anneal_choice div   
233.     // if rand == 1, rand anneal_choice div   
234.        
235.     if(JSON.parse(rand))   
236.       anneal_str = document.getElementById('anneal_choice_rand').value; 

  
237.     else   
238.       anneal_str = document.getElementById('anneal_choice').value;   
239.          
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240.     //var anneal = JSON.parse(document.getElementById('anneal_choice').v
alue);   

241.     var anneal = JSON.parse(anneal_str);   
242.     console.log(anneal);   
243.     var x1 = document.getElementById('show_no_anneal');   
244.     var x2 = document.getElementById('show_anneal_lin');   
245.     var x3 = document.getElementById('show_anneal_geo');   
246.     var x4 = document.getElementById('show_no_anneal_r');   
247.     var x5 = document.getElementById('show_anneal_lin_r');   
248.     var x6 = document.getElementById('show_anneal_geo_r');   
249.        
250.        
251.     if(anneal == 0){   
252.       x1.style.display = 'inline';   
253.       x2.style.display = 'none';   
254.       x3.style.display = 'none';   
255.       x4.style.display = 'inline';   
256.       x5.style.display = 'none';   
257.       x6.style.display = 'none';   
258.     }   
259.     else if(anneal == 1){   
260.       x1.style.display = 'none';   
261.       x2.style.display = 'inline';   
262.       x3.style.display = 'none';   
263.       x4.style.display = 'none';   
264.       x5.style.display = 'inline';   
265.       x6.style.display = 'none';   
266.     }   
267.     else{   
268.       x1.style.display = 'none';   
269.       x2.style.display = 'none';   
270.       x3.style.display = 'inline';   
271.       x4.style.display = 'none';   
272.       x5.style.display = 'none';   
273.       x6.style.display = 'inline';   
274.     }   
275.      
276. }   
277.          
278. function ppsl_e(*) {   
279.      
280.   PROPRIETARY, WILL BE PUBLISHED SOON! 
281. } 
282. function error_handling(J, H, dt, Nt, Nm, I0){   
283.      
284.      
285. }   
286. function toast(colors, contents){   
287.      
288.       new jBox('Notice', {   
289.         content: contents,   
290.         color: colors,   
291.         delayOnHover: true   
292.         });   
293. }   
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294.    
295. function execute_anneal(anneal, I0_cur, I0_const, end_lin, start_geo, gr

owth, Nt){   
296.   var I0_next;   
297.   if(anneal == 0)  // constant   
298.     I0_next = I0_const;   
299.   if(anneal == 1)  // linear   
300.   {   
301.     I0_next = I0_cur+ (end_lin/Nt);   
302.   }   
303.   else if(anneal == 2) // geometric   
304.   {   
305.     I0_next = growth * I0_cur;   
306.   }   
307.      
308.   return I0_next;   
309. }   
310.    
311. function output(){   
312.        
313.     //check if you need to create random J,h   
314.     var rand_flag = JSON.parse(document.getElementById("rand_choice").va

lue);   
315.     if(rand_flag >= 1){    // specify   
316.         var Nt = document.getElementById("Nt_text").value;   
317.         var dt = document.getElementById("dt_text").value;   
318.         var I0_const = document.getElementById("I0_text").value;   
319.         var I0slt = document.getElementById("I0_start_lin_text").value; 

  
320.         var I0sgt = document.getElementById("I0_start_geo_text").value; 

  
321.         var I0gt = document.getElementById("I0_growth_text").value;   
322.         var anneal = JSON.parse(document.getElementById("anneal_choice")

.value);   
323.         var clamps = document.getElementById("clamps").value;   
324.            
325.         if(isNaN(Nt))   
326.           toast('red','Error: Nt is non-numeric.');   
327.         if(isNaN(dt))   
328.           toast('red','Error: dt is non-numeric.');   
329.         if(isNaN(I0_const))   
330.           toast('red','Error: I0 is non-numeric.');   
331.         if(isNaN(I0slt))   
332.           toast('red','Error: I0 start is non-numeric.');   
333.         if(isNaN(I0sgt))   
334.           toast('red','Error: I0 start is non-numeric.');   
335.         if(isNaN(I0gt))   
336.           toast('red','Error: I0 growth factor is non-numeric.');   
337.            
338.              
339.         if(anneal == 0)   
340.           I0_const = JSON.parse(I0_const);   
341.         else if(anneal == 1)   
342.           I0slt = JSON.parse(I0slt);   
343.         else if(anneal == 2)   
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344.         {   
345.           I0sgt = JSON.parse(I0sgt);   
346.           I0gt = JSON.parse(I0gt);   
347.         }   
348.         if(clamps.length != 0)   
349.         {  clamps = JSON.parse(clamps);   
350.           console.log(clamps);   
351.              
352.         }    
353.         else   
354.           clamps = JSON.parse("[[-1]]")   
355.         dt = JSON.parse(dt);   
356.         Nt = JSON.parse(Nt);   
357.            
358.    
359.         var J = JSON.parse(document.getElementById("J_text").value);   
360.         var H = JSON.parse(document.getElementById("H_text").value);   
361.         var Nm = H.length;   
362.     }   
363.     else{   
364.       var Nm = document.getElementById("Nm_rand_text").value;   
365.       var Nt = document.getElementById("Nt_rand_text").value;   
366.       var dt = document.getElementById("dt_rand_text").value;   
367.       var I0_const = document.getElementById("I0_rand_text").value;   
368.       var I0slt = document.getElementById("I0_start_lin_rand_text").valu

e;   
369.       var I0sgt = document.getElementById("I0_start_geo_rand_text").valu

e;   
370.       var I0gt = document.getElementById("I0_growth_rand_text").value;   
371.       var clamps = JSON.parse("[[-1]]")   
372.    
373.          
374.       if(isNaN(Nm))   
375.         toast('red','Error: Nm is non-numeric.');   
376.       if(isNaN(Nt))   
377.         toast('red','Error: Nt is non-numeric.');   
378.       if(isNaN(dt))   
379.         toast('red', 'Error: dt is non-numeric.');   
380.       if(isNaN(I0_const))   
381.         toast('red', 'Error: I0 is non-numeric.');   
382.       if(isNaN(I0slt))   
383.         toast('red', 'Error: I0 start is non-numeric.');   
384.       if(isNaN(I0sgt))   
385.         toast('red', 'Error: I0 start is non-numeric.');   
386.       if(isNaN(I0gt))   
387.         toast('red', 'Error: I0 growth factor is non-numeric.');   
388.            
389.       I0_const = JSON.parse(I0_const);   
390.       I0slt = JSON.parse(I0slt);   
391.       I0sgt = JSON.parse(I0sgt);   
392.       I0gt = JSON.parse(I0gt);   
393.       dt = JSON.parse(dt);   
394.       Nt = JSON.parse(Nt);   
395.       Nm = JSON.parse(Nm);   
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396.       var anneal = JSON.parse(document.getElementById("anneal_choice_ran
d").value);   

397.    
398.       var J = [];   
399.       var H = [];   
400.       var hold=0;   
401.       for(i=0;i<Nm;i++){   
402.         J[i] = [];   
403.         for(k=0;k<i;k++){   
404.           hold = math.random()*2-1;   
405.           J[i][k] = hold;   
406.           J[k][i] = hold;   
407.         }   
408.         J[i][i] = 0;   
409.         H[i] = math.random()*2-1;   
410.       }   
411.     }   
412.        
413.       
414.     // Error handling   
415.     // Errors get red toast, notices get blue toast, successful run gets

 green toast at end of plotting   
416.     error_flag = 0;   
417.     if(Nt <= 0)   
418.     {   
419.       toast('red', 'Error: Network is being run for Nt <= 0 timesteps.')

;   
420.       error_flag = 1;   
421.     }   
422.      if(Nm <= 0)   
423.     {   
424.        toast('red', 'Error: Network has Nm <= 0 p-bits.');   
425.        error_flag = 1;   
426.     }   
427.     if(dt <= 0)   
428.     {   
429.       toast('red', 'Error: Mean p-

bit update frequency is (dt) <= 0.');   
430.       error_flag = 1;   
431.     }   
432.     if(I0_const < 0)   
433.     {   
434.       toast('blue', 'Note: J is being scaled by a negative I0.');   
435.     }   
436.     if(J.length != H.length || J[0].length != H.length)   
437.     {   
438.       toast('red', 'Error: Mismatch of # of rows and columns in J and le

ngth of H.');   
439.       error_flag = 1;   
440.     }   
441.     if(anneal == 2 && I0sgt == 0)   
442.     {   
443.       toast('red', 'Error: geometric annealing cannot start at 0');   
444.       error_flag = 1;   
445.     }   
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446.     if(anneal == 2 && I0sgt < 0)   
447.     {   
448.       toast('blue', 'Note: Geometric annealing is starting at a negative

 number.');   
449.     }   
450.     if(anneal == 2 && I0gt < 1)   
451.     {   
452.       toast('blue', 'Note: Geometric annealing with growth rate < 1 will

 increase temperature, preventing convergence.');   
453.     }   
454.    if(anneal == 1 && I0slt < 0)   
455.     {   
456.       toast('blue', 'Note: Linear annealing with ending < 0 will increas

e temperature, preventing convergence.');   
457.     }   
458.        
459.        
460.     if(error_flag == 0)   
461.     {   
462.         var energy_state_laststate = ppsl_e(J, H, Nt, dt, anneal, I0_con

st, I0slt, I0sgt, I0gt, clamps);   
463.         energy = energy_state_laststate[0];   
464.         state = energy_state_laststate[1];   
465.         last_state = energy_state_laststate[2];   
466.            
467.         var xrange = [];   
468.         for(i=0;i<energy.length;i++)   
469.           xrange[i] = i;   
470.         var trace1_line = {   
471.                         x: xrange,   
472.                         y: energy,   
473.                         type: 'line',   
474.                         marker: {color: "rgb(30,35,48)"}   
475.                       };   
476.                          
477.         var hist_end = math.pow(2,Nm)+1;   
478.         var trace1_hist = {   
479.                             x: state,   
480.                             type: 'histogram',   
481.                             histnorm: 'probability',   
482.                             xbins: {   
483.                                     end: hist_end,    
484.                                     size: 1,    
485.                                     start: -0.5   
486.                                   },   
487.                             marker: {color: "rgb(30,35,48)",   
488.                                       line: {   
489.                                       color: "grey",   
490.                                       width: 0.5   
491.                                 }}   
492.         }   
493.         var data_line = [trace1_line];   
494.         var data_hist = [trace1_hist];   
495.         var layout_hist = {   
496.                         title: "States Occupied",    
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497.                         xaxis: {title: "State (decimal)"},    
498.                         yaxis: {title: "Probability"},   
499.                         bargap: 0.25   
500.                            
501.         };   
502.         var layout_line = {   
503.                         title: "Energy",    
504.                         xaxis: {title: "Timesteps"},    
505.                         yaxis: {title: "Energy"}   
506.         };   
507.            
508.         // print converged energy and state   
509.         document.getElementById("out_data").innerHTML = 'Final energy:<b

r>';   
510.         document.getElementById("out_data").innerHTML += energy[Nt-1];   
511.         document.getElementById("out_data").innerHTML += "<br>Final stat

e:<br>";   
512.         for(ii=0; ii<last_state.length; ii++)   
513.         {   
514.           if(last_state[ii] == -1)   
515.             last_state[ii] = 0;   
516.           document.getElementById("out_data").innerHTML += last_state[ii

];   
517.         }   
518.            
519.            
520.            
521.         Plotly.purge('chart');   
522.         Plotly.purge('state histogram');   
523.         Plotly.purge('heatmap');   
524.         Plotly.plot('chart', data_line, layout_line);   
525.         if(Nm < 15){   
526.           Plotly.plot('state histogram', data_hist, layout_hist);   
527.         }   
528.        
529.          
530.         // find the optimal length and width for Nm magnets to show heat

map   
531.         // find all the factors, use the middle 2   
532.         factors = [];   
533.         for (i=1; i < last_state.length+1; i++)   
534.         {   
535.           if (math.mod(Nm, i) == 0)   
536.             factors.push(i);              
537.           if(i**2 == Nm)   
538.             factors.push(i);   
539.         }   
540.         if(factors.length >= 2){   
541.           var len = factors.length/2;   
542.           var reshaped = math.reshape(last_state, [factors[len],factors[

len-1]]);   
543.           var colorscaleValue = [   
544.             [0, '#C4aa71'],   
545.             [1, '#001f3f']   
546.           ];   
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547.           var data = [   
548.           {   
549.             z: reshaped,   
550.             type: 'heatmap',   
551.             colorscale: colorscaleValue,   
552.             showscale: false   
553.           }   
554.           ];   
555.           var layout = {   
556.           title: 'Final State Heatmap',   
557.         };   
558.      
559.           Plotly.newPlot('heatmap', data, layout);   
560.         } // if there are greater than 2 factors   
561.         else{   
562.           toast("blue","Note: Cannot print heatmap for this network")   
563.         }   
564.            
565.       toast('green', 'Successful run');   
566.     }// error_flag == 0   
567.     else{   
568.       Plotly.purge('chart');   
569.       Plotly.purge('state histogram');   
570.       Plotly.purge('heatmap')   
571.     }   
572.        
573. }   
574. </script>   
575.    
576. </body>   
577. </html>   
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