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 ABSTRACT 
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Title: Enhancement of Mechanical Properties and Analysis of Damage Using Molecular Dynamics 

Simulations with Machine Learning  
Committee Chair: Guang Lin 
 

The objective of this study is that combination of molecular dynamics (MD) simulations 

and machine learning to complement each other. In this study, four steps are conducted.        

First is based on the empirical potentials development in silicon nanowires for theory parts of 

molecular dynamics. Many-body empirical potentials have been developed for the last three 

decades, and with the advance of supercomputers, these potentials are expected to be even more 

useful for the next three decades. Atomistic calculations using empirical potentials can be 

particularly useful in understanding the structural aspects of Si or Si-H systems, however, existing 

empirical potentials have many errors of parameters. We propose a novel technique to understand 

and construct interatomic potentials with an emphasis on parameter fitting, in which the 

relationship between material properties and potential parameters is explained. The input database 

has been obtained from density functional theory (DFT) calculations with the Vienna ab initio 

simulation package (VASP) using the projector augmented-wave method within the generalized 

gradient approximation. The DFT data are used in the fitting process to guarantee the compatibility 

within the context of multiscale modeling. 

Second, application part of MD simulations, enhancement of mechanical properties was 

focused in this research by using MEAM potentials. For instance, Young’s modulus, ultimate 

tensile strength, true strain, true stress and stress-strain relationship were calculated for nanosized 

Cu-precipitates using quenching & partitioning (Q&P) processing and nanosized Fe@C 

strengthened ultrafine-grained (UFG) ferritic steel. In the stress-strain relationship, the structure 

of simulation is defined using the constant total number of particles, constant-energy, constant-

volume ensemble (NVE) is pulled in the y-direction, or perpendicular to the boundary interface, 

to increase strain. The strain in increased for a specified number of times in a loop and the stress 

is calculated at each point before the simulation loops.  
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Third, based on the MD simulations, machine learning and the peridynamics are applied to 

prediction of disk damage patterns. The peridynamics is the nonlocal extension of classical 

continuum mechanics and same as MD model. Especially, FEM is based on the partial differential 

equations, however, partial derivatives do not exist on crack and damage surfaces. To complement 

this problem, the peridynamics was used which is based on the integral equations and overcome 

deficiencies in the modeling of deformation discontinuities. In this study, the forward problem (i), 

if we have images of damage and crack, crack patterns are predicted by using trained data 

compared to true solutions which are hit by changing the x and y hitting coordinates on the disk. 

The inverse problem (ii), if we have images of damage and crack, the corresponding hitting 

location, indenter velocity and indenter size are predicted by using trained data. Furthermore, we 

did the regression analysis for the images of the crack patterns with Neural processes to predict 

the crack patterns. In the regression problem, by representing the results of the variance according 

to the epochs, it can be confirmed that the result of the variance is decreased by increasing the 

epoch through the neural processes. Therefore, the result of the training gradually improves, and 

the ranges of the variance are expressed as 0 to 0.035. The most critical point of this study is that 

the neural processes makes an accurate prediction even if the information of the training data is 

missing or not enough. The results show that if the context points are set to 10, 100, 300, and 784, 

the training information is deliberately omitted such as context points of 10, 100 and 300, and the 

predictions are different when context points are significantly lower. However, when comparing 

the results of context points 100 and 784, the predicted results appear to be very similar to each 

other because of the Gaussian processes in the neural processes. Therefore, if the training data is 

trained through the neural processes, the missing information of training data can be supplemented 

to predict the results. 

Finally, we predicted the data by applying various data using deep learning as well as MD 

simulation data. This study applied the deep learning to Cryo-EM images and Line Trip (LT) data 

with power systems. In this study, deep learning method was applied to reduce the effort of 

selection of high-quality particles. This study proposes a learning frame structure using deep 

learning and aims at freeing passively selecting high quality particles as the ultimate goal. For 

predicting the line trip data and bad data detection, we choose to analyze the frequency signal 

because suddenly the frequency changes in the power system due to events such as generator trip, 

line trip or load shedding in large power systems.  
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CHAPTER 1. INTRODUCTION 

In the last three decades, empirical potentials have been advanced. With the advance of 

supercomputers, these potentials are anticipated to be more useful for the next three decades [1]. 

Atomistic calculations by empirical potentials can be utilize in understanding the structural aspects 

of Si or Si-H systems that are found in many important areas such as the surface of nano patterning 

Si [2, 3], nano-electro-mechanical systems (NEMS) [4], superconductivity of silane [5], optical 

modulators [6], and applications of 𝛼-Si:H materials [7]. In the past, empirical potentials for Si [8-

11] and for Si-H [12-14] have been developed constantly, but none of them have been resolved 

the bulk elastic properties of Si. In Ref.12, they show the different hydrogen-induced 

reconstructions of the silicon surface then distance between hydrogen and hydrogen is 1.64 Å and 

bond angle H-Si-H is 106°	using existing empirical potential, however, when H-H distance and 

bond angle are compared to results of first principle calculations, H-H distance and bond angle are 

2.1638 	Å  and 104.805 °	 respectively. In this situation, bond angle is distinguished from 

1.195°	which means that difference of bond angle can be ignored, however, the biggest problem 

is that H-H distance is distinguished from 0.5238	Å. In this respect, if existing empirical potential 

are used for Si nanowires, computation speed is fast but not accuracy compared to results of first 

principle calculations, the other problem is that it includes errors autonomously. It is essential to 

fix errors preventing even much bigger errors. In this paper, we propose a novel technique to 

understand and construct empirical potentials with an emphasis on parameter fitting, in which the 

relationship between material properties and potential parameters is explained. The input database 

has been obtained from density functional theory (DFT) calculations with the Vienna ab initio 

simulation package (VASP) [15]. For application part of MD simulations, based on empirical 

potential, enhancement of mechanical properties was focused in this research by using MEAM 

potentials. For instance, Young’s modulus, ultimate tensile strength, true strain, true stress and 

stress-strain relationship were calculated for nanosized Cu-precipitates using quenching & 

partitioning (Q&P) processing and nanosized Fe@C strengthened ultrafine-grained (UFG) ferritic 

steel. In an effort to reduce vehicle weight but still satisfying the more stringent safety regulations, 

the automotive industry world-wide has been adopting various types of advanced high strength 

steels (AHSS) in the past decades. It is well established that a good combination of strength and 
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ductility can be achieved by following factors: solid solution strengthening and precipitation 

hardening, transformation strengthening, grain boundary strengthening, and back stress hardening 

resulted from gradient structure [16-19]. Transformation-induced-plasticity (TRIP) steel has been 

used in the automotive body construction due to their outstanding combination of strength and 

ductility. The strengthening mechanism for TRIP-assisted steels is based on the deformation-

induced transformation of the metastable austenite, a face-centered cubic (fcc) γ-phase 

characterized by a high work hardening capacity to achieve very high tensile strengths with 

exceptional ductility [18], to martensite characterized by a hexagonal close-packed (hcp) ε-phase 

and/or body-centered cubic (bcc) α′-phase, during the deformation process [19, 20]. The TRIP 

effect can significantly improve the formability and energy absorption of this class of materials 

[21]. The quenching and partitioning (Q&P) processing has been proved to be an effective method 

for achieving a good combination of strength and ductility in steels [22, 23]. In this study, the 

morphology and volume fraction of Cu precipitates and all phases in the steels after different O&P 

processing have been characterized using numerical methods based on molecular dynamical 

simulations. Next, we mainly focused on characterizing the microstructures and mechanical 

properties of low alloy medium-carbon steel with a duplex microstructure composed of nanoscale 

spheroidized Fe3C in an ultrafine-grained (UFG) ferritic steel. Molecular dynamic (MD) 

simulation based on Modified embedded-atom method (MEAM) was employed to explain the 

strengthening effect of nanosized Fe3C precipitates in Ferrite-Fe3C system. This study has 

provided useful insights into the mechanisms contributing to work hardening of the UFG steels 

strengthened using nanoscale precipitates. It is expectable that the present results may be beneficial 

for the design of new steels and the modeling of the corresponding deformation 15ehavior. Finally, 

based on the MD simulations, machine learning and peridynamics are applied to prediction of disk 

damage patterns. Many products in everyday life are damaged by external shocks or user’s 

mistakes, and cracks are formed. In the Department Of Energy (DOE), it is often the case that 

blades of thermoelectric power plant and wind power plant are damaged by rotation, temperature 

effects, and external wind influences. In the reactor of nuclear power plant, cracks are occurred 

due to heat generated during nuclear fission. This can lead to not only high maintenance costs but 

also national disaster. So far, research on cracking has been going on in various perspectives for 

several decades. Representatively, various types of structures and material behaviors have been 

studied through the finite element analysis (FEM). However, there are inherent errors in the study 
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through the FEM. In the FEM, only the approximate solution can be obtained. Also, the results of 

analysis tend to depend on the mesh, and the mistakes by the researchers can be fatal to derive the 

results. Finally, the FEM is based on partial differential equations, but the partial derivatives are 

not present on the surface of the crack, so it is not enough to get accurate results. Therefore, in 

order to compensate for these drawbacks, we conducted a crack pattern study using the 

peridynamics. The peridynamics theory of solid mechanics was first introduced by S. Silling [24-

27]. This theory is nonlocal extension of classical continuum mechanics and It is an alternative to 

continuum mechanics for more accurate crack studies. This model is based on integral equations 

and the integral equations of the peridynamics can be applied directly to cracks. The reason for 

this is that it does not require partial derivatives. Therefore, the peridynamics is very suitable for 

the study of surface discontinuity such as cracks, and various multiscale modeling is possible due 

to SI units can be used. The peridynamics can be of particular use in understanding the damage in 

membranes and nanofiber [28], composites and brittle materials [29], brazed single-lap joints [30], 

fuel pellet [31] and biomembranes [32]. The peridynamics can be applied not only to damage 

studies, but also to technologically important areas such as prediction of viscoelastic materials [33], 

piezo-resistive response of carbon nanotube nanocomposites [34], phase transformation in 

zirconium dioxide [35], shock and vibration [36], and indentation of thin copper film [37]. Though 

the peridynamics framework has proven to be a powerful and widely applicable tool, the 

computational demand can become burdensome very quickly as the scales of the simulations are 

increased.  In order to decrease the computation time required to run these simulations while 

maintaining a high level of accuracy, we propose a machine learning approach which utilizes 

recent design and hardware advances that have greatly improved the performance of artificial 

neural networks (ANNs) [38-39]. Recently, convolutional neural networks (CNNs) have been 

shown to provide excellent light-weight alternative to traditional fully-connected networks [40] 

and are particularly well-suited for applications on spatially structured data [41], which is 

characteristic of the physical systems considered in the peridynamics. These networks have the 

advantage of being trainable in advance, learning from a dataset generated by a highly accurate 

model such as the peridynamics, and encoding an approximation of the model into a concise, 

neural network representation [42]; this approximate model can then be used after the training 

procedure to produce near instantaneous results. By combining the accuracy of the peridynamics 

model with the computational speed of modern neural networks, we show that complex MD 
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simulations can be accurately approximated using just a fraction of the computation time required 

by traditional approaches. Furthermore, we applied the neural processes (NPs) [80] which combine 

the advantages of the neural networks with the advantages of a Gaussian process with the data 

obtained from the peridynamics theory. Therefore, we can learn how to apply advanced 

information to the data, improve the efficiency of computation during the training and evaluation 

resulting in fast and more accurate results. Finally, in this study, the CNNs and the neural processes 

are applied based on the data obtained from the peridynamics theory. As a result, we are trying to 

develop the peridynamics theory even more precisely with the case study for the characteristic of 

materials, and by applying the deep machine learning, we can speed up the calculation speed using 

the trained data and finally reduce the computational cost as a result. 

Finally, this study applied deep learning using various data such as Cryo-EM images and 

Line Trip (LT) data with power systems. Recent developments in Cryo-EM technology have had 

a great impact on structural biology and protein molecular complexes. However, high-resolution 

Cryo-EM studies of molecular complexes require the choice of a large number of high-quality 

particles. The particle selection stage in this process is very labor intensive. This is because it is 

manually selected by the human hand to obtain high quality particles. Also, Particle selection is 

also very subjective because it is done passively, and the results can be very different because 

particle selection is done by humans. Therefore, in this study, deep learning method was applied 

to reduce the effort of selection of high-quality particles. In recent years, deep learning technology 

has been applied to researches such as computer vision and natural language processing through 

the availability of large – scale learning data, the development of powerful computing platforms 

and learning algorithms. Therefore, this study proposes a learning frame structure using deep 

learning and aims at freeing passively selecting high quality particles as the ultimate goal. In the 

problem of the power system, Continuous or simultaneous failures / events in power systems are 

a common problem that can lead to frequent section blackouts. In recent decades, many researches 

have been reported on perturbation or event detection and perception. Various types of signals 

were used for analysis purposes, including frequency, power and voltage, and phasor angles. In 

this paper, we choose to analyze the frequency signal because suddenly the frequency changes in 

the power system due to events such as generator trip, line trip or load shedding in large power 

systems. 
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CHAPTER 2. EMPIRICAL POTENTIAL DEVELOPMENT FOR SiNWs 

 Structure of SI:H Nanowires 

 
Fig. 2.1. Diamond cubic structure. 

 
Before describing the structure in which hydrogen is passivated to the silicon nanowires in 

this study, we first examine the structure of silicon. Fig. 2.1 is a diagram illustrating the crystal 

structure of silicon as a diamond cubic crystal structure. The diamond cubic crystal structure is a 

structure in which four atoms are settled in the shape of a face centered cubic crystal structure. 

Let’s take the example of cutting this structure to the length and size that we want and use it for 

experiments. If we cut the silicon to the desired shape or length, the surface will have dangling 

bond. This would lead to corrosion of the silicon nanowires if the dangling bond reacts with oxygen. 

Therefore, this study stabilizes the surface of silicon nanowires by passivating hydrogen to the 

silicon nanowires. In other words, the surface structure of the silicon nanowires will passivate all 

the dangling bonds of the wire surface to hydrogen atoms to prevent corrosion of the surface of 

the nanowire. By passivating the hydrogen, it became a role to eliminate the instability of the 

surface of the wire. 

 



 19 

 
Fig. 2.2.  Cross section of silicon nanowires passivated hydrogen <001>. 

 

In this study, Si nanowires passivated hydrogen model is chosen. Fig. 2.2 [43] has 

expressed a cross section of silicon nanowires. Green dots and blue dots are expressed silicon 

atoms and hydrogen atoms respectively. Fig. 2.2 is represented by structure of Si nanowires and 

cross section of Si nanowires is Wulff structure is selected by minimizing surface energy. It can 

be more stabilized by passivating hydrogen to surface of Si nanowires. In mechanical property 

part, Young’s modulus and equilibrium elongation will be calculated after H-H parameters fitting 

by increasing the size of cross section compared to results of Young’s modulus and equilibrium 

elongation by using existing empirical potentials and first principles calculations.  

 Govern Equation of Tersoff Empirical Potentials 

The atomistic computer simulations based on empirical potential is fast for speed of 

calculation. In this system, the number of atoms is not limited compared to first principles, however, 

the accuracy of calculation is not adequate, therefore, reliability of empirical potential presented 

so far are needed to verify. There are various empirical potentials depending on the type of material, 

for instance, Nickel (Ni) and Titanium (Ti) are calculated through EAM (Embedded Atom Method) 

[44] and Silicon (Si) is calculated through Tersoff empirical potential [9] and Stillinger-Weber 

empirical potential [8]. In this study, silicon nanowires passivated hydrogen for the model and 

Tersoff empirical potential are used for the purpose of verifying accuracy of existing Tersoff 
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empirical potential. Tersoff empirical potential is based on the concept of bond order, force of 

bonds between atoms is not consistent and depends on local environment. Tersoff empirical 

potential expands concept and form of existing variously. The total energy function is given as [12] 

 

𝑉 = 0.5 ∗H𝑓I
J,L
JML

(𝑟) + 𝑏JL𝑓Q(𝑟) (1) 

𝑓I(𝑟) = 	𝐴𝑒𝑥𝑝U−𝜆W𝑟JLX (2) 
 

𝑓Q(𝑟) = 	−𝐵𝑒𝑥𝑝U−𝜆Z𝑟JLX (3) 
 

𝑏JL = (1 + 𝜁JL
\ )]^ (4) 

 

V is total energy function, 𝑓I(𝑟) and 𝑓Q(𝑟) are repulsive energy and attractive energy 

respectively. These functions are defined as function of distance between i and j atoms, r is 

interatomic distance and 𝑏JL  is bond order. In this study, A, B, 𝜆W  and 𝜆Z  are decided as H-H 

parameters fitting. 

 

𝜁JL = 	 H 𝑓_(𝑟J`)a𝑐 + 𝑑{𝐻(𝑁) − 𝑐𝑜𝑠𝜃JL`}Zi
`MJ,L

	× 	expa𝛼{U𝑟JL − 𝑅JLm X − (𝑟J` − 𝑅J`m )}ni (5) 

 

𝜁JL is function of effective coordination number, H(N) is function of bond number, 𝑐𝑜𝑠𝜃JL` 

is bond angle, 𝑟JL and 𝑟J` are distance between i and j atoms and between i and k respectively and 

𝑅JLm  and 𝑅J`m  are equilibrium distance between i and j atoms and between i and k respectively. Lastly, 

in this study, 𝛼, 𝛽, 𝜂, 𝛿 and c are decided as HZ-HZ parameters fitting. 

 

𝑓_(𝑛) =

⎩
⎨

⎧
1,																																																			𝑟JL < 𝑅 − 𝐷

1
2
−
9
16
sin ~𝜋

𝑟JL − 𝑅
2𝐷 � −

1
16
sin ~3𝜋

𝑟JL − 𝑅
2𝐷 � ,						𝑅 − 𝐷 < 𝑟JL < 𝑅 + 𝐷																								(6)

0,																																																		𝑟JL > 𝑅 + 𝐷

 

 

𝑓_(𝑛) is cutoff function which is judging whether there is coherence or not between atom 

and neighbor atom. R is interatomic distance, R and D are a constant to determine range of inter-

atomic influence. According to R and D value, it is possible to judge obtaining numerical value. If 
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interatomic distance is less than R-D, the influence is 1, if interatomic distance is larger than R-D, 

the influence is 0. Finally, if interatomic distance is between R-D and R+D, it is influenced by Eq. 

(5). 

 Multi-fidelity Gaussian Process Regression for Prediction of High Fidelity to Increase the 
Number of Modes in Low Fidelity  

This is the standard setup for multi-fidelity modelling with Gaussian processes. The steps 

on multi-fidelity are given as  

 

𝑢W(𝑥)~𝒢𝒫(0, 𝑘W(𝑥, 𝑥�; 𝜃W)) (7) 
 

𝑢Z(𝑥)~𝒢𝒫(0, 𝑘Z(𝑥, 𝑥�; 𝜃Z)) (8) 
 

𝑢W(𝑥) and 𝑢Z(𝑥) are independent and in Gaussian process regression, it is assumed that the 

mean of 𝒢𝒫 is zero and 𝑘(𝑥, 𝑥�; 𝜃) is the covariance matrix between all possible pairs (x, x’) in set 

of vector of hyper-parameters θ. [44] The basic idea is that we begin with two independent GP 

𝑢W(𝑥) and 𝑢Z(𝑥); then we define low fidelity and high fidelity models: [45-50] 

 

𝑓�(𝑥) = 	𝑢W(𝑥), 		𝑓�(𝑥) 	= 	𝜌𝑢W(𝑥) +	𝑢Z(𝑥)	 (9) 
                         

This “relationship” the low and high-fidelity models since both include the GP 𝑢W(𝑥).  In 

particular setting, 𝑘W=cov[𝑢W,	𝑢W] and 𝑘Z=cov[𝑢Z,	𝑢Z] we have: 

 

𝐾��= cov[𝑓�,	𝑓�] = cov[𝑢W,	𝑢W] = 𝑘W (10) 
 

𝐾��= cov[𝑓�,	𝑓�] = cov[𝜌𝑢W+𝑢Z,	𝑢W] = 𝜌cov[𝑢W,	𝑢W] + cov[𝑢Z,	𝑢W] = 𝜌𝑘W (11) 
 

𝐾��= cov[𝑓�,	𝑓�] = cov[𝜌𝑢W+𝑢Z,	𝜌𝑢W+𝑢Z] = 𝜌Zcov[𝑢W,	𝑢W] + 𝜌cov[𝑢Z,	𝑢W] + 
𝜌cov[𝑢W,	𝑢Z] + 𝜌cov[𝑢Z,	𝑢Z] = 𝜌Z𝑘W +	𝑘Z 

 
 

(12) 

cov[𝑢W,	𝑢Z] = 0 and cov[𝑢Z,	𝑢W] = 0 by independence and to sum up 𝐾��, 𝐾��, 𝐾��: 
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𝐾��(𝑥, 𝑥�) = 	𝑘W(𝑥, 𝑥�; 𝜃W)
𝐾��(𝑥, 𝑥�) = 	𝜌𝑘W(𝑥, 𝑥�; 𝜃W)

𝐾��(𝑥, 𝑥�) = 	𝜌Z𝑘W(𝑥, 𝑥�; 𝜃W) + 𝑘Z(𝑥, 𝑥�; 𝜃Z)
 (13) 

 

This gives us a complete model which incorporates both the low and high-fidelity. In 

particular, we model the column vector [𝑓�(𝑥); 𝑓�(𝑥)] using a zero-mean prior and the covariance 

matrix defined block-wise by: [ 𝐾��, 𝐾��; 𝐾��, 𝐾��]. Since the mean and covariance are known, 

the whole Gaussian process model is specified and training will begin using the standard procedure. 

 

																																					�𝑓�(𝑥)𝑓�(𝑥)
�	~	𝒢𝒫 ~0, �𝐾��

(𝑥, 𝑥�) 𝐾��(𝑥, 𝑥�)
𝐾��(𝑥, 𝑥�) 𝐾��(𝑥, 𝑥�)

��							                       (14) 

 

In training, based on {𝑥�,	𝑦�}, {𝑥�,	𝑦�}, 𝑁�>>	𝑁�, 

	

																									�𝑦�(𝑥)𝑦�(𝑥)
�	~	𝒩 �0, �𝐾��

(𝑥�, 𝑥�) + 𝜎�Z𝐼 𝐾��(𝑥�, 𝑥�)
𝐾��(𝑥�, 𝑥�) 𝐾��(𝑥�, 𝑥�) + 𝜎�Z𝐼

��					                      (15) 

 

This matrix adds the noise by including the terms on the diagonal of the covariance matrix. 

This just adds uncertainty (or noise) into the way the observations are included into the model. 

 

NLML(𝜃W,	𝜃Z, 𝜌) = W
Z
𝑦�𝒦]Wy +W

Z
log|𝒦|+�����

Z
log(2𝜋) (16) 

 

𝒦 is the covariance matrix and the Negative Log Marginal Likelihood (NLML) is used as 

the “cost function” which should be minimized to get the best-fit model by using hyper-parameters 

θ. In prediction, if we consider a Gaussian likelihood and the posterior distribution is easy to apply 

and can be used to involve predictive deduction for a new output 𝑓�, given a new input x* as 

 

𝑓�(𝑥∗|𝑦	~	𝒩([𝐾��(𝑥∗, 𝑥�)	𝐾��(𝑥∗, 𝑥�)]𝒦]Wy, 𝐾��(𝑥∗, 𝑥∗) − 𝐾(𝑥∗, 𝑥)𝒦]W	𝐾(𝑥, 𝑥∗)	) (17) 
 

In numerical results, to reduce the computational cost for expensive calculations (DFT), 

Multi-fidelity Gaussian process regression for prediction [45-50] is used. H-H binding energy and 

HZ-HZ interaction energy with empirical potential are applied to low-fidelity model and results of 
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H-H binding energy and HZ-HZ interaction energy with DFT are implied to high-fidelity model for 

few samples. 

 

 
Fig. 2.3.  The interaction energy of 𝑓�(𝑥) is obtained with high-fidelity samples (𝑁�=4) and 
increase the number of low-fidelity modes. If we increase 𝑁�, the accuracy is increased (the 

standard deviation of the high-fidelity decreases). 

 

 
Fig. 2.4.  The binding energy of 𝑓�(𝑥) is obtained with high-fidelity samples (𝑁�=4) and 

increase the number of low-fidelity modes. If we increase 𝑁�, the accuracy is increased (the 
standard deviation of the high-fidelity decreases). 

 
In Fig. 2.3 and Fig. 2.4, high-fidelity samples (𝑁�=4) are fixed and we compare the 

standard deviation of the high-fidelity to increase the number of low-fidelity modes. As we can 

see, the standard deviation of the high-fidelity is decreased when the number of low-fidelity modes 

are increased. 
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 H-H Fitting Parameters 

2.4.1 H-H Parameters Fitting Method (Nelder-Mead Method) 

In this study, various fitting methods were used to minimize the difference of binding 

energy and interaction energy by using first principles and empirical potential. Let’s look at the 

Nelder – Mead method [51-52] that minimizes energy differences in various fitting methods. This 

method is proposed by John Nelder and Roger Mead as a way to find the local minimum of a 

function containing multiple variables by applying an initial value to the function. This method is 

generally used to solve non-linear optimization problems. The Nelder-Mead method is as follows. 

First, define the function you want to minimize f (x, y) and specify three vertices of the initial 

triangle to start this method. 

 

𝑉 = (𝑥`, 𝑦`)	, 𝑘 = 1,2,3 (18) 
 

Put these three points into the function and rearrange them in the order of smaller results. 

 

𝐵 = (𝑥W, 𝑦W), 𝐺 = (𝑥Z, 𝑦Z),𝑊 = (𝑥@, 𝑦@) (19) 
 

B, G and W define the best vertex, good vertex, the worst vertex respectively. Next, the 

center point M is set between B and G. M is defined as follows. 

 

𝑀 =	
𝐵 + 𝐺
2 = ~

𝑥W + 𝑥Z
2 ,

𝑦W + 𝑦Z
2 � (20) 

 

The function decreases gradually from the point W to the point B and from the point W to 

the point G along the sides of the triangle in the direction of lower energy. Therefore, since the 

function f (x, y) tends to go in the direction of decreasing the energy, the worst point W reflects to 

a symmetrical R point centering around the line connecting the B and  
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Fig. 2.5.  Reflection using the point R.  

 

G points. In order to determine the point R, the midpoint M between B and G is found first. The 

distance between point W and point M is d. The point moved from the M point to the opposite 

point by d is the R point and R is defined as follows. 

 

𝑅 = 2𝑀 −𝑊 (21) 
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Fig. 2.6.  Expansion using the point E.  

 

If the function value of the R is smaller than the function value of the W, the Nelder-Mead 

method will induce toward the minimum. The minimum value can be further from point R. we 

extend the line segment through M and R to the point E. The point E is found by moving an 

additional distance d along the line joining M and R. If the function value at E is less than the 

function value at R, then we have found a better vertex than R. The vector formula for E is 

 

𝐸 = 2𝑅 −𝑀 (22) 
 

So far, we have studied the Nelder-Mead method. The following Table 2.1 is an 

explanation of the algorithm of the Nelder-Mead method based on the above-mentioned 

description.
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Table 2.1. Algorithm for the Nelder-Mead method. 

IF f(R)<f(G), THEN perform Case(i) {either reflect or extend} 

ELSE perform Case(ii) {either contract or shrink} 

BEGIN {Case (i)} BEGIN {Case (ii)} 

IF f(B)< f(R) THEN IF f(R)<f(W) THEN 

replace W with R replace W with R 

ELSE Compute C=(W+M)/2 

 or C=(M+R)/2 and f(C) 

Compute E and f(E) IF f(C)<f(W) THEN 

IF f(E)<f(B) THEN replace W with C 

replace W with E ELSE  

ELSE Compute S and f(S) 

replace W with R replace W with S 

ENDIF replace G with M 

ENDIF ENDIF 

END {Case(i)} END{Case(ii)} 

 
If the value of f(R) is smaller than the value of f(G) as a result of deriving the function 

value using the above-mentioned contents, the case (i) can be calculated. If f(B) is less than f(R), 

replace W with R and if not, calculate the values of E and f(E). Also replace W with E if f(B) is 

less than f(R) and f(E) is less than f(B), and if not, replace W with R. If the algorithm is 

continuously repeated in this way, the final results can be obtained by obtaining a result that 

converges at all of B, G, and W points. As I mentioned part 2.1, the structure of Si nanowires is 

passivated by hydrogen to prevent oxidation. This model can divide three parts of the Si nanowires 

for parameters fitting. First, Si-Si parameters fitting are needed for internal structure of Si 

nanowires, Second, H-H parameters fitting are needed for surface computation, Lastly, Si-H 

parameters for interface calculation are needed. 
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Table 2.2.  H-H parameters for molecular hydrogen compared three optimization methods which 
are Nelder-Mead Simplex Method (N-M) [52], Broyden-Fletcher-Goldfarb-Shanno Quasi-

Newton Method (BFGS) [53–56], Trust-Region Method (T-R) [57, 58] and RMSE (Root Mean 

Square Error) is defined as RSME = ¥ W
¦§
∑ (V© − E©)Z
¦§
©ªW , V-E is difference of binging Energy 

and Interaction Energy are calculated to DFT (V) Energy and Empirical potential (E) Energy 
respectively. 

 N-M BFGS T-R Existing 

A 87.5482 87.5471 80.0752 80.07 

B 18.2497 18.2498 31.3714 31.38 

𝜆W 5.2898 5.2898 3.9932 4.2075 

𝜆Z 1.0290 1.0290 1.4134 1.7956 

R« 0.75 0.75 0.75 0.74 

R 3.5 3.5 3.5 1.4 

D 0.5 0.5 0.5 0.3 

h 0 0 0 0 

d 0 0 0 0 

α 3 3 3 3 

β 1 1 1 1 

c 1.3328 1.3322 3.9550 4 

δ 0.6923 0.6926 0.3576 0.A80469 

η 1.2866 1.2865 0.8464 1 

RMSE (Binding Energy) 0.0014 0.0014 0.1341  

RMSE (Interaction Energy) 0.0012 0.0013 0.0521  

 

In this study, the H-H parameters fitting is focused by using H-H binding energy and HZ-

HZ interaction energy for surface computation. In surface of Si nanowires, there are two forces for 

hydrogen relations that are attractive and repulsive forces. This H-H parameter fitting is 

complicated so we have to design systematically. When we fit H-H parameters fitting by using H-

H binding energy, we only use Eq. (1) – Eq. (3) except for Eq. (4, 5). This is because H-H binding 

energy is calculated by two hydrogen atoms which can be neglected 𝜁JL term that needs more than 

three atoms, however, HZ-HZ parameters fitting by using interaction energy are applied to more 
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than three hydrogen atoms so it should be applied 𝜁JL  term. In Table. 2.2, three methods of 

optimization were used for H-H parameters fitting. Lastly, we can find the error of each method 

between DFT results and fitting line through root mean square error that represents on Table. 2.2. 

Nelder-Mead simplex method is the best method for error compare to other methods. The 

parameters using Nelder-Mead simplex method were chosen are listed on Table. 2.2. 

2.4.2 H-H Parameters Fitting by Using Binding Energy 

 
Fig. 2.7.  H-H parameters fitting by using Nelder-Mead Simplex method. 

 

In the study, we compute the binding energy using DFT for reference results that are 

adjusted to the results of empirical potential’s objective function and parameters can be obtained 

after fitting between hydrogen and hydrogen. Fig. 2.7 shows that black dots explain DFT results 

for H-H binding energy and red line express fitting line. A, B, 𝜆W,	𝜆Z and 𝑅m values are listed on 

Table 2.2. 
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2.4.3 H2-H2 Parameters Fitting by Using Interaction Energy 

 
Fig. 2.8.  H2-H2 Parameters Fitting by using Nelder-Mead Simplex method. 

 

In this section, we compute interaction energy using DFT for reference results that are 

adjusted to the results of empirical potential’s objective function and we obtained parameters after 

fitting hydrogen intermolecular. We use Nelder-Mead Simplex methods of optimization for H-H 

parameters fitting by using interaction energy. Fig. 2.8 shows that black dots explain DFT results 

for HZ-HZ interaction energy and red line express fitting line. In this H-H fitting, A, B, 𝜆W,	𝜆Z and 

𝑅m which are obtained from H-H parameters fitting by using binding energy applied to HZ-HZ 

parameters fitting and 𝛼, 𝛽, 𝜂, 𝛿 and c values are presented on Table 2.2 are obtained. 
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 Results and Discussion 

 

 
Fig. 2.9.  Binding energy after H-H parameters fitting. 

 

 
Fig. 2.10.  Interaction energy after H-H parameters fitting. 

 

Fig. 2.9 and Fig. 2.10 represent the H-H binding energy and HZ-HZ interaction energy compared 

DFT, empirical potential (This work) and existing empirical potential. In Fig. 2.9 and Fig. 2.10, 
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cross data represents the H-H binding energy and HZ-HZ interaction energy using existing Tersoff 

empirical potential parameters and important thing is that these data’s curve shape is not smooth 

because in existing classical MD, cutoff range is too short to calculation so it does not calculate 

for long range interaction. In this study, we fixed cut off range much longer and calculate long 

range of hydrogen molecule. As we can see, DFT and empirical potential (This work) results match 

each other after H-H parameters fitting. We have developed a systematic process to construct 

empirical potential for Si nanowires passivated hydrogen.  

 

 

Fig. 2.11.  Young’s modulus increasing wire width of Si nanowires. 
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Fig. 2.12.  Equilibrium elongation increasing wire width of Si nanowires. 
 

In Fig. 2.11 and Fig. 2.12, mechanical properties were performed by using H-H parameters 

which are obtained after H-H part parameters fitting. To evaluate the new fit of H-H part, young’s 

modulus and equilibrium elongation of Si nanowires are calculated increasing wire width of Si 

nanowires and compared with the DFT results and existing empirical results in Fig. 2.11 and 2.12. 

The size reliance of Young’s modulus and equilibrium elongation show critical improvement 

compared to the DFT results and existing potential results. Until now, surface part of Si nanowires 

is fitted by using our systematic fitting method and shows mechanical properties to prove 

enhancement, however, the improvement of the irregular mechanical properties can be seen by the 

H-H parameter fitting of the surface, but the perfect result matching could not be seen. The reason 

for this is that not only the surface but also the silicon-hydrogen parameter fitting between the 

silicon and the surface must be performed. In addition, the hydrogen parameters obtained so far 

are limited to the calculation of the mechanical properties of nanowires with hydrogen and silicon. 

Furthermore, it is necessary to derive parameter fittings that can be applied to various types of 

materials, and potential errors of existing empirical potentials must be corrected for calculations 

using various materials as well as silicon nanowires. 
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CHAPTER 3. MD SIMULATIONS OF NANOSIZED CU-
PRECIPITATES USING QUENCHING & PARTITIONING (Q&P) 

PROCESSING 

We conducted molecular dynamics based computational study to investigate whether 

changing the morphologies of Cu precipitates and the ratio of multi-phases in the microstructure 

can greatly enhance both ultra-high strength and good ductility. In this section, the detailed setup 

for computational study is listed as follows. 

 Modified Embedded Atom Method (MEAM) Potentials 

In the MEAM, The total energy function is given as [59] 

 

E =∑ ¬F­(ρ°̄) +	
W
Z
∑ ϕ­²²M­ (R­²)³­  (23) 

 

where F­ and ϕ­²(R­²) are the embedding term as a function of the background electron 

density ρW´́´ and the pair interaction function between atoms i and j is divided by a distance of R­² 

respectively. For the calculation of the total energy using MEAM potential, the functional forms 

of F­ and ϕ­² should be defined first. The background electron density is calculated by considering 

the directionality of bonding. EAM potentials [60] consider solely spherically averaged atomic 

electron densities, however, MEAM potentials apply to additional angular functions to explain the 

directional character of bonding. In original version of MEAM [61], only the first nearest-

neighbour interactions are taken into consideration. The second and more far nearest-neighbour 

interactions become crucial while considering many-body screening function [62]. In general, a 

binary structure chosen by one type of atom has only the same type of atoms as the second-nearest 

neighbours. The total energy per atom of such structure is calculated using the universal equation 

of state. After that, the interactions between different kinds of elements are acquired from the 

embedding energy of the binary structure and the values of the total energy per atom are already 

obtained. 
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 The 2NN MEAM Potential Parameters for the Fe – Cu System  

In this research, the 2NN MEAM potential parameters for pure Fe and Cu were given from 

Lee et al. [59]. 

Table 3.1.  The 2NN MEAM potential parameters for Fe and Cu. 

 Eµ r« B A β(·) β(W) β(Z) β(@) t(W) t(Z) t(@) C¹­º C¹©» D 

F

e 

4

.29 

2

.48 

1

.73 

0

.56 

4

.15 

1

.00 

1

.00 

1

.00 

2

.60 

1

.80 

-

7.2 

0

.36 

2

.80 

0

.05 

C

u 

3

.54 

2

.555 

1

.42 

0

.94 

3

.83 

2

.2 

6 2

.2 

2

.72 

3

.04 

1

.95 

2

.80 

1

.21 

0

.05 

The units of the cohesive energy E¼, the distance of equilibrium nearest-neighbor r« and 

the bulk modulus B are eV, Å, and 10WZdyne/cm]Z, respectively. The structure of Fe and Cu is 

BCC. In Table 3.1, it includes 14 independent potential parameters for pure Fe and Cu in the 2NN 

MEAM. Eµ , 	r« , B and d represent the cohesive energy, the distance of equilibrium nearest-

neighbour, the bulk modulus and an adjustable parameter respectively. For the electron density 

part, β(·) , β(W) ,β(Z) ,β(@) ,t(·) , t(W) , t(Z)  are the seven potential parameters and A is a potential 

parameter for the embedding function and C¹­º, C¹©» are for many-body screening. For pure Fe 

and Cu elements, the three atoms are all of the same type i.e., {i, j, k} = {Fe, Fe, Fe} or {Cu, Cu, 

Cu}. However, in Fe-Cu alloy systems, four different types i.e., {i, j, k}= {Fe, Cu, Fe}, {Cu, Fe, 

Cu}, {Fe, Fe, Cu}, and {Fe, Cu, Cu} are employed to represent one of the screening atom and the 

interaction atoms. The other parameter (ρ·) is the atomic electron density scaling factor. 

 

Table 3.2.  The 2NN MEAM potential parameters for binary Fe and Cu. 

 Fe-Cu C¹­º(Cu, Fe, Cu) 1.21 

Eµ 4.2605 C¹­º(Fe, Fe, Cu) 0.7225 

r« 2.57 C¹­º(Fe, Cu, Cu) 0.7225 

B 2.72002 C¹©»(Fe, Cu, Fe) 2.8 

d 0.05 C¹©»(Cu, Fe, Cu) 2.8 

ρ· ρ(½«)=ρ(¼¾)=1 C¹©»(Fe, Fe, Cu) 2.8 

C¹­º(Fe, Cu, Fe) 0.36 C¹©»(Fe, Cu, Cu) 2.8 
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 Molecular Dynamics (MD) Simulations 

In simulations, the structures of TRIP, Cu-TRIP with particle Cu precipitates and Cu-TRIP 

with lamellae Cu precipitates were represented using VESTA (Visualization for Electronic and 

Structural Analysis) [63]. MD simulations were performed at Purdue Carter Cluster using the 

software LAMMPS [64]. Fe and Cu were calculated using the Modified Embedded – Atom 

Method (MEAM) interatomic potential. The energy of the structures was minimized by the 

conjugate-gradient method with NVE which cannot change the total number of particle (N), the 

system’s volume (V) and the total energy € in the system and designated stopping tolerance for 

energy (unitless) equals 1.0e-25, stopping tolerance for force (force units) equals 1.0e-25, max 

iterations of minimizer equals 1,000 and max number of force/energy evaluations equals 10,000. 

The structure of steel A, steel B and steel C is followed the experimental process by using Q&P 

process. Steel A was heat treated by using Q&P process (quenching temperature = partitioning 

temperature) consisting of annealing at 1093.15K for 180000 steps, quenching to 453.15K and 

partitioning for 300000 steps and then cooled to room temperature (298K). Steel B was treated by 

using Q&P process (quenching temperature ≠ partitioning temperature) including annealing at 

1093.15K for 180000 steps, quenching to 453.15K for 10000 steps and then partitioning at 

653.15K for 300000 steps. Finally, the steel B was cooled to room temperature (298K). Steel C 

except for no Cu-containing was treated by using Q&P process consisting of annealing at 

1093.15K for 180000 steps, quenching to 673.15K and partitioning for 300000 steps and then 

cooled to room temperature (298K).  
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 The Structure of Binary Fe-Cu System and the True Stress – Strain Curve 

 

 

 

 

 

 

Fig. 3.1.  (a) Three types of initial structure. Steel A: Cu-steel with lamellae Cu precipitates, 
consisting of 10% Cu in structure; Steel B: Cu-steel with spherical Cu precipitates, including 5% 
of randomly mixed Cu; Steel C: steel without Cu-containing. (b) True stress-strain curve: Steel 

A: with lamellae Cu precipitates (10% Cu); Steel B: with spherical Cu precipitates (5% Cu); 
Steel C: steel without Cu-containing. 

  

(a) (b) 
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In Fig. 3.1. (a), three types of structure (Steel with lamellae Cu precipitates, consisting of 

10% Cu in structure; Steel with spherical Cu precipitates, including 5% of randomly mixed Cu; 

steel without Cu-containing) are used, which include 5866 atoms, in cross-section, with 28.70 Å 

in width, 20.294 Å in length and 202.94 Å in height for reference structure for all of structure. At 

interface between Fe and Cu in Cu-steel, lamellae Cu precipitates are considered for the 

combination of Fe with Cu in (110) direction. For the lamellae structure, 10% of Cu in total atoms 

is used to construct Cu-steel with lamellae Cu precipitates. For Cu-steel with spherical Cu 

precipitates, 5% of Cu is mixed in Cu-steel arbitrarily and all of atoms are relaxed for stabilization. 

Fig. 3.1.(b) represents the true stress–strain curves for two TRIP steels with different Cu 

precipitates (lamellae, spherical) compared with the steel without Cu precipitates. In simulation, 

Cu-steel with lamellae and spherical Cu precipitates shows evidently higher strengths than that of 

the TRIP steel without Cu precipitates. In linear elastic regime, For Cu-steel with lamellae Cu 

precipitates, the tensile yield strength σy (at 0.2% offset) reaches as high as 6.52 Gpa and the 

ultimate tensile strength (σUTS) is 9.93 Gpa. For Cu-TRIP with particle Cu precipitates, 4.18 Gpa 

and 7.58 Gpa are observed for σy and σUTS, respectively. In contrast, the steel without Cu shows 

the relatively low σy of 0.48 Gpa and σUTS of 1.69 Gpa. The experimental finding is validated by 

the molecular dynamical simulations, which confirmed that changing the morphologies of Cu 

precipitates and the ratio of multi-phases in the microstructure can greatly enhance both ultra-high 

strength and good ductility. 

  



 39 

CHAPTER 4. MD SIMULATION EXPLORING DEFORMATION 
BEHAVIOUR OF NANOSIZED FE3C STRENGTHENED UFG 

FERRITIC STEEL 

MD simulation based on MEAM was employed to explain the strengthening effect of 

nanosized Fe3C precipitates in Ferrite-Fe3C system. Both size and volume faction of Fe3C 

particles play important role for improving the strength of UFG ferritic steel, i.e., the strength of 

UFG D6AC steel increases with increasing volume fraction and decreasing size of Fe3C particles. 

In this section, the detailed setup for computational study is listed as follows. 

 The 2NN MEAM Potential Parameters for the Fe – C System  

In this research, the 2NN MEAM potential parameters for pure Fe and C were given from 

Lee et al. [65]. 

Table 4.1.  The 2NN MEAM potential parameters for Fe and C. The units of the cohesive energy 
E¼, the distance of equilibrium nearest-neighbor r« and bulk modulus B are eV, Å, and 

10WZdyne/cm]Z, respectively. The structure of Fe and C are BCC and diamond. 
 Eµ r« B A β(·) β(W) β(Z) β(@) t(W) t(Z) t(@) C¹­º C¹©» d 
Fe 4.29 2.48 1.73 0.56 4.15 1.00 1.00 1.00 2.60 1.80 -7.2 0.36 2.80 0.05 
C 7.37 1.54 4.45 1.18 4.25 2.8 2.0 5.0 3.2 1.44 -4.48 2.80 1.41 0.00 
 

 
In Table 4.1, it includes 14 independent potential parameters for pure Fe and C each in the 

2NN MEAM. Eµ , r« , B and d represent cohesive energy, the distance of equilibrium nearest-

neighbor, bulk modulus and an adjustable parameter respectively. For the electron density part, 

there are seven potential parameters that are β(·), β(W),	β(Z),	β(@),	t(·), t(W), t(Z) and A is potential 

parameter for the embedding function and C¹­º, C¹©» for many-body screening. 
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Table 4.2.  The 2NN MEAM potential parameters for binary Fe and C. The units of the cohesive 
energy E¼, the distance of equilibrium nearest-neighbor r« and bulk modulus B are eV, Å, and 

10WZdyne/cm]Z, respectively. The structure of Fe and C are BCC and diamond. 

 Fe-C 

Eµ 6.01 

r« 2.364 

B 2.644 

d 0.05 

ρ· ρ(_)/ρ(½«)=6 

C¹­º(Fe, C, Fe) 0.36 

C¹­º(C, Fe, C) 0.16 

C¹­º(Fe, Fe, C) 0.16 

C¹­º(Fe, C, C) 0.16 

C¹©»(Fe, C, Fe) 2.8 

C¹©»(C, Fe, C) 1.44 

C¹©»(Fe, Fe, C) 2.8 

C¹©»(Fe, C, C) 2.8 

 

As I mentioned above, two parameters (C¹­º, C¹©») must be determined to explain Ferrite-

Fe3C systems. The first value of determined parameter is C¹­º. In Table 4.1, Fe and C elements 

has its own value of C¹­º	each. C¹­º decides the extent of screening of an atom k to the interaction 

with two neighbor atoms (i, j atoms). For pure Fe and C elements, the three atoms are all the same 

type i.e., {i, j, k} = {Fe, Fe, Fe} or {C, C, C}. However, in Ferrite-Fe3C systems, one of the 

screening atom and the interaction atoms should be four different types i.e., {i, j, k} = {Fe, C, Fe}, 

{C, Fe, C}, {Fe, Fe, C}, and {Fe, C, C}. The other parameter (ρ·) is the atomic electron density 

scaling factor. In equilibrium structure, if R equals to r«, the value of all atomic electron density 

becomes ρ· which is a random value and cannot effect on calculations for Fe and C pure elements. 

On the other hand, if the constituted elements have different coordination numbers in systems, the 

scaling factor relative difference great influence on calculations. In Table 4.2, the 2NN MEAM 

potential parameters (Eµ, r«, B, d) for Fe-C were given from Lee et al. [65] by using their procedure 

for the parameters determination. 
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 Molecular Dynamics Simulations 

In simulations, structures of UFG1 and UFG2, were represented by using VESTA 

(Visualization for Electronic and Structural Analysis) [63]. MD simulations were performed at 

Purdue Rice Cluster using the software LAMMPS [64]. Fe and C were calculated by using 

Modified Embedded – Atom Method (MEAM) interatomic potential. The energy of the structures 

was minimized by the conjugate-gradient method and the total number of particles in the system 

(N), the volume of system (V) and the total energy in the system (E) are constant quantities. This 

is called the NVE ensemble which is used in this simulation then designated stopping tolerance 

for energy (unitless) equals 1.0e-25, stopping tolerance for force (force units) equals 1.0e-25, max 

iterations of minimizer equal 5000 and max number of force/energy evaluations equals 10000. 

 The Stress – Strain Relationship in Molecular Dynamics Simulations 

In the stress-strain relationship, the structure of simulation is defined using the constant 

total number of particles, constant-energy, constant-volume ensemble (NVE) is pulled in the y-

direction, or perpendicular to the boundary interface, to increase strain. The strain in increased for 

a specified number of times in a loop, and the stress is calculated at each point before the simulation 

loops. The stress-strain curve can be generated using MATLAB script.  
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 The Structure of Ferrite and Fe3C 

 

 
Fig. 4.1.  Two types of structure for ferrite and Fe3C. (a) UFG1 which includes 9.6% of 

cementite in ferrite (left) and UFG2 which includes 5.5% of cementite in ferrite (right). (b) The 
interface orientation relationship between ferrite and Fe3C is used [111]Â ∥ [100]µ, [−110]Â 	 ∥

	[001]µ and [11 − 2]Â 	 ∥ 	 [010]µ. 
 
In order to conduct the atomistic simulation, two types of structure (UFG1, UFG2) are used 

which includes 268980 and 1032496 atoms respectively in Fig. 4.1. First, the dimension of the 

UFG1 is 14.3nm and the size of the cementite which includes in UFG1 is 2.3nm. Second, the 
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dimension of the UFG2 is 22.6nm and the size of the cementite which includes in UFG2 is 3nm. 

The interface orientation relationship between ferrite and Fe3C is used [111]Â ∥ [100]¼ , 

[−110]Â 	 ∥ 	 [001]µ and [11 − 2]Â 	 ∥ 	 [010]µ by Bagaryatsky [66]. 

 Results 

 
Fig. 4.2.  True stress-strain curve: (a) UFG1 (Sample), (b) UFG2 (Sample) (c) UFG1. 

 
Fig. 4.2 represents true stress–strain curves for UFG1 (Ferrite + 9.6% of Fe3C) and UFG2 

(Ferrite + 5.5% of Fe3C). In simulation, First, for the stress-strain curve, UFG1 (Sample) and 

UFG2 (Sample) which are diminished almost 100times and 608 and 1796 atoms are used 

respectively in this simulation. Sample dimensions of UFG1 and UFG2 are 3.40076nm by 

4.77166nm in the x-z plane and 0.4484 nm and 1.08408nm in the y axis respectively. UFG1 

(Sample) and UFG2 (Sample) show that UFG1 (Sample) is evidently higher strengths than UFG2 

(Sample). In linear elastic, For UFG1 (Sample), the tensile yield strength σy (at 0.2% offset) 

reaches as high as 9.3 Gpa and the ultimate tensile strength (𝜎ÃÄÅ) is 11.3 Gpa. In contrast, UFG2 

(Sample) reveals the 𝜎Æ of 3.8 Gpa and 𝜎ÃÄÅ of 8.5 Gpa. Finally, UFG1 which are diminished 

almost 30times and 268980 atoms are used in this simulation. Dimension of UFG1 is 14.3nm and 

the size of the cementite which includes in UFG1 is 2.3nm. In linear elastic, the tensile yield 

strength 𝜎Æ (at 0.2% offset) reaches as high as 1.2 Gpa and 𝜎ÃÄÅ of 4.2 Gpa. 
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CHAPTER 5. THE PERIDYNAMICS MODEL 

The peridynamics is the non-local extension of the classical continuum mechanics. The 

model structure of peridynamics is the same as a MD model and in LAMMPS, SI units can be 

used for simulation. Compared with FEM (Finite Element Method), FEM can only acquire 

approximate solutions and the user’s mistake in obtaining a solution can be incredibly deadly, and 

the results can vary depending on how the mesh is set. Finally, the FEM is based on partial 

differential equations, but there are no partial derivatives on crack surfaces. Therefore, to secure 

this weakness, the peridynamics model is used. The peridynamics model is based on integral 

equations. In the analysis of damage and cracks, the integral equations of the peridynamics theory 

can be apply directly, because they do not require partial derivatives. Accordingly, it overcomes 

deficiencies in modeling of deformation discontinuities. Next, let’s look at the govern equations 

of the peridynamics model [25-28]. 

 

Fig. 5.1.  The composition of peridynamics model. 

 

Fig. 5.1 is plotted to represent the composition of the peridynamics model. As you can see 

in the Fig. 5.1, ℱÈ (Family of x) exists in the body, and there are arbitrary points x and x’ in it. X 

and x ‘are the points given in the reference configuration. U(x,t) and y(x,t) represent the 

displacement and position of the point x at time t respectively. In peridynamics theory, all points, 

including x and x’ in the horizon δ boundary, are interconnected by bonds. That is, each point has 

connectivity to all points in horizon δ as well as nearby neighbors. Thus, as mentioned above, the 
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peridynamics is a non-local extension of the classical continuum mechanics. Integral equation is 

used to calculate the current point forces per unit volume. Due to spatial differentiation is not used 

in peridynamics, it is useful for analyzing discontinuous media and discrete particles such as cracks 

or damage. The peridynamic equation of motion is given as: 

𝜌(𝑥)𝑢̈(𝑥, 𝑡) = 	Ë 𝜔(𝑢(𝑥�, 𝑡) − 𝑢(𝑥, 𝑡), 𝑥� − 𝑥)𝑑𝑉È�
ℱÍ

+ 𝑏(𝑥, 𝑡), 𝑡 ≥ 0 (24) 

 

𝜌(𝑥) is the density in the reference configuration, ℱÈ is the family of x in the horizon δ, b 

represents the external force per unit volume and u represent the displacement of    the point x at 

time t. 𝜔 is the pairwise bond force density that includes all of the information related to x and x’. 

Next, the relative position vector which is time-independent and displacement vector which is 

time-dependent of two bonded points x and x’ are defined by ξ = x′ − x and η = u(x′, t) – u(x, t), 

respectively. ξ + n represents the current relative position vector between the particles. The 

pairwise bond force density 𝜔 should have the following properties:  

𝜔(−𝜂,−𝜉) = 	−𝜔(𝜂, 𝜉),									(𝜉 + 	𝜂) 	× 	𝜔(𝜂, 𝜉) = 0			∀𝜂, 𝜉 (25) 

 

𝜔(−𝜂,−𝜉) = 	−𝜔(𝜂, 𝜉)  represents the conservation of linear momentum, and (𝜉 + 	𝜂) 	×

	𝜔(𝜂, 𝜉) = 0	indicates the conservation of angular momentum. It means that the force vector 

between x and x’ is parallel to their current relative position vector.  

 Prototype Microelastic Brittle (PMB) Model 

In this study, crack pattern generated by impact of indenter on disk is used as input data of 

machine learning algorithm. Therefore, Prototype Microelastic Brittle (PMB) model [27] was used 

for constitutive model to obtain a more precise and complex crack pattern. The govern equations 

are given as: 

𝑠 =
|𝜉 + 𝜂| − |𝜉|

|𝜉| =
𝑦 − |𝜉|
|𝜉|  (26) 
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f is the scalar valued bond force and it is defined in relation to bond stretch s. The best way 

to apply failure to the constitutive model is to allow the bonds to break when they exceed the 

predefined limit. If the bond is broken, the tensile strength cannot be restored. The PMB model is 

defined as follows. 

𝑓(𝑦(𝑡), 𝜉) = 𝑔U𝑠(𝑡, 𝜉)X𝜇(𝑡, 𝜉) (27) 

 

𝑔(𝑠) = 𝑐𝑠					∀𝑠 (28) 

 

𝜇(𝑡, 𝜉) = 	 Ó		1						𝑖𝑓	𝑠(𝑡
�, 𝜉) < 𝑠·						𝑓𝑜𝑟	𝑎𝑙𝑙			0 ≤ 𝑡� ≤ 𝑡

	0					𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																																																		
 (29) 

 

f is composed of the products of g and μ functions. g is the linear scalar-valued function 

which is composed of spring constant (c) and bond stretch (s). 𝜇 is a history-dependent scalar-

valued function and has a value of 1 and 0 depending on the condition. In other words, if the bond 

stretch is less than critical bond stretch (𝑠·), it has a value of 1, otherwise it has a value of 0. The 

spring constant (c) and the critical bond stretch (𝑠·) mentioned above are described in detail below. 

𝑐 = 	
18𝑘
𝜋𝛿Û (30) 

 

𝑠· = Ü10𝐺·
𝜋𝑐𝛿Ý = 	

Ü5𝐺·
9𝑘𝛿 		,				𝐺· =

𝜋𝑐𝑠·Z𝛿Ý

10  (31) 

 

k is the bulk modulus of the material and 𝐺· is the work required to break all bonds per 

unit fracture area. As we can be seen from the above equations, the spring constant and the critical 

bond stretch are composed of bulk modulus of the material (k) and chosen horizon boundary (δ). 

Finally, in the case of brittle materials such as glass, related to bond stretch, is defined as follows. 

 

𝑠· = 𝑠·· − 𝛼𝑠ÞJß(𝑡),						𝑠ÞJß(𝑡) = 	minà á
𝑦(𝑡) − |𝜉|

|𝜉| â (32) 
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𝑠ÞJß is the current minimum stretch in the group of all bonds connected to a given point, 

s00 and α are constants and α is generally used about 1/4.  

 Data Preparation 

In this study, crack pattern data were generated by using the peridynamics in the LAMMPS, 

a kind of MD simulation tool.  

5.2.1 LAMMPS Input File Setup 

The spherical indenter impacted the disk by dropping the spherical indenter in the direction 

perpendicular to the disk, it means from the + y axis to disk and varying the x and z coordinates of 

the indenter to impact whole parts of the disk. The radius of the indenter are 0.007 m and 0.008 m 

for the inverse problem and the velocity are 100m/s and 100.1m/s, however, for the forward 

problem, the radius of the indenter and velocity are fixed by 0.0020m and 100m/s respectively. 

The radius of the cylindrical disk is 0.037 m, the thickness is 0.0025 m and this disk contains 

12855 particles. Each particle 𝑖 has volume fraction 𝑉J = 1.25 × 10]W·𝑚@ and the density of the 

disk material is 𝜌 = 2200𝑘𝑔/𝑚@. The pair style in LAMMPS is used peri / pmb [27] model. Pair 

constants are c, horizon, 𝑠·· and 𝛼 in order of 1.6863e22, 0.0015001, 0.0005, 0.25. c is the spring 

constant for peridynamic bonds, the horizon is a cutoff distance and s00 and alpha are used as a 

critical bond stretch parameters.  

5.2.2 LAMMPS input .peri file 

Table 5.1.  Algorithm of .peri input file. 

Algorithm: LAMMPS .peri input file 

1: # Define number of iteration steps, l = Velocity, k = Indenter radius, i, j = Hitting location 

2: variable imax equal 100 

3: variable jmax equal 100 

4: variable kmax equal 0 

5: variable lmax equal 0 

6: variable countmax equal "v_imax*v_jmax*v_kmax*v_lmax" 

7: # Start loops 
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Table 5.1 continued 

8: label start_of_loop_1 

9: variable l loop ${lmax} 

10: label start_of_loop_2 

11: variable k loop ${kmax} 

12: label start_of_loop_3 

13: variable i loop ${imax} 

14: label start_of_loop_4 

15: variable j loop ${jmax} 

16: clear 

17: # Define initial condition 

18: units  si 

19: boundary        s s s 

20: dimension 3 

21: atom_style      peri 

22: atom_modify map array 

23: neighbor        0.0010 bin 

24: # Target (disk) 

25: lattice         sc 0.001 

26: region          target cylinder y 0.0 0.0 0.037 -0.0025 0.0 units box 

27: create_box      1 target 

28: create_atoms    1 region target 

29: pair_style      peri/pmb 

30: pair_coeff      * * 1.6863e22 0.0015001 0.0005 0.25 

31: set             group all density 2200 

32: set             group all volume 1.25e-10 

33: velocity        all set 0.0 0.0 0.0 sum no units box 

34: fix             1 all nve 

35: fix             2 all indent 1e16 sphere v_x v_y v_z v_w units box 

36: # Indenter velocity control(q), Indenter radius (w), Disk radius(r) for indent.txt file 

37: variable         q equal "1+(0.001*v_l)" 
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Table 5.1 continued 

38: variable         w equal "0.0020+(0.001*v_k)" 

39: variable r equal 0.037 

40: variable        y0 equal 0.00510 

41: variable        vy equal -100 

42: variable        y equal "v_y0 + v_q*step*dt*v_vy" 

43: #Hit the disk reduced 5times compare to disk size 

44: variable        x equal "cos((2*PI)*v_i/v_imax)*v_r*(0.2)" 

45: variable        z equal "sin((2*PI)*v_j/v_jmax)*v_r*(0.2)" 

46: compute         1 all damage/atom 

47: timestep        1.0e-7 

48: thermo          100 

49: dump            ${count} all custom 1000 Data/dump_${count}.peri id type x y z c_1 

50: run             2000 

51: # save indenter.txt for machine learning process 

52: print $x file Data/indenter_${count}.txt 

53: print $z append Data/indenter_${count}.txt 

54: print $w append Data/indenter_${count}.txt 

55: print $q append Data/indenter_${count}.txt 

56: next j 

57: next count 

58: jump SELF start_of_loop_4 

59: next i 

60: jump SELF start_of_loop_3 

61: next k 

62: jump SELF start_of_loop_2 

63: next l 

64: jump SELF start_of_loop_1 

 
LAMMPS MD simulation tool are used to obtain the crack pattern data generated by the 

indenter using peridynamics, and the .peri input file was specified in Table 5.1. We can obtain the 
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specific data by changing the variable using for loops to adjust the velocity and radius of the 

indenter and the hitting point of the disk. SI units are to be used and boundary is non-periodic and 

shrink-wrapped. The particle volume is used a simple cubic lattice and the lattice constant is 

0.001m. In the line 26, cylinder disk (target) with a radius of 0.037 m and a thickness of 0.0025 m 

is set. The initial velocity of all particles on line 33 is 0, and line 34 instructs LAMMPS to integrate 

time with velocity-verlet. The hitting location, velocity, and radius of the indenter should be saved 

to do damage prediction for the next steps after the MD simulation, so we set up to save the 

parameters information in indenter.txt. In addition, for the inverse problem, damage is given to the 

whole parts of the target, but in the forward problem, peridynamics proved to be inaccurate in the 

boundary part, and data is obtained by only damaging 1/5 size around the center of the target. 

Finally, we declare a dump command to obtain the crack pattern image, and 2000 time-steps of 

running simulation to get the data are used, and we set it to 2000 time-steps in dump command as 

well. The reason for this is that the image we want for prediction in next step is the initial image 

and the final image due to the same as the meaning of 2000 in the dump command is to store the 

x,z coordinates of the atoms at the initial target and 2000 time-steps of the target.  
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 Data Results 

 

Fig. 5.2.  The initial appearance of the disk (Left) and the data result after hitting the indenter 
onto the disk (Right).  

 

Using the above-mentioned algorithm, we can see the result obtained by simulation using 

LAMMPS tool in Fig. 5.2. The dump file after running the MD simulation is converted to an 

EnSight data format with the pizza.py toolkit [67] and Paraview is used for visualization in Fig.5.2 

[68]. The left figure is the initial model of the target disk, and the right is the figure after the 

simulation results. The symmetry solution represents the right side in the figure because of the 

perfect lattice is used, and the perfectly spherical indenter impacted geometric center of the target. 

In this study, the use of asymmetric crack patterns could be better data for real life applications 

but focused primarily on crack patterns with symmetry, However, as the position of the hitting 

point changes, various crack patterns can be confirmed, so that the data for machine learning is 

sufficient. 
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CHAPTER 6. DATA-DRIVEN DISK DAMAGE PREDICTION USING 
DEEP MACHINE LEARNING 

 
Fig. 6.1.  Diagram of inverse problem and forward problem using machine learning. 
 
In this study, we used data obtained by using peridynamics to predict the forward and 

inverse problems through machine learning and the diagrams are expressed in Fig. 6.1. For the 

forward problem, the crack patterns of the target disk are predicted due to the hitting locations. 

Conversely, we use the crack pattern in the inverse problem to predict the velocity, radius, and 

hitting locations of the indenter. 

 Supervised Machine Learning for Inverse Problem 

Clarified input and output data set are required to apply the supervised machine learning in this 

experiment. Various types of data are available to be used as an input data. Moreover, the features 

of the input data are determined, and its usually expressed as the vector form. In this experiment, 

image form of damage data, which is simulated by LAMMPS, is used as an input data set. Let the 

damage data be c = {c1, c2, …, cN} as an input data when	𝑁 ∈ ℝ. For Supervised Learning, labels 

which classify and represent the input data are required as well. Consider the label set is w = {w1, 

w2, …, wM} in case 𝑀 ∈ ℝ, and, each label is assigned to the corresponding input data, c. The 

labeled data set, which is called the training pair, is 𝜌 = (ci, wi), so this pair represents the damage 
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set with corresponding labels. In this article, 70% of the input data set is used for the training set, 

and 30% of the input data, is used for the validation set. This labeled training set is sent to a 

supervised learning algorithm which is chosen and designed for making a prediction model. The 

goal of the supervised machine learning algorithm is to efficiently classify the training set 

according to the corresponding labels. There are a few supervised learning algorithms which are 

used such as decision trees, Naive Bayes, Artificial Neural Network(ANNs), etc [69]. In this article, 

Convolutional Neural Network(CNNs), is used as Supervised Learning algorithm. Through the 

learning algorithm, the labeled training set and validation set are used as an input of a function 

which allows the learning algorithm to classify the relationship between the unlabeled input data, 

c, and the corresponding labels, w. Thus, it generates a function that is ℱ: 𝜒J → 𝜔J. Moreover, 

through the validation set which is sorted from the input data, the function is optimized as a 

classifier, and it makes an accurate prediction model. In this process, the more training data is used, 

the more accurate prediction model is able to be made. Lastly, in order to estimate the prediction 

model, a new input data set is used as a test set. In the same way as the training set, the 

corresponding labels is assigned to the new test set. This test set is sent to the prediction model, 

and it finally shows the accuracy of the prediction model by predicting the assigned labels of the 

test set. In this process, the labels of the test set are not used for training but for prediction. Thus, 

the prediction model predicts the corresponding labels of each component of the data set, and the 

predicted labels are compared with the desired labels of the test pairs. In this article, the result is 

displayed as a success rate of prediction of the test set, and it shows the accuracy of this supervised 

learning. An inverse problem is a mathematical way to predict the parameters through the 

measured and observed data. In this study, the crack pattern on a disk by an indenter was supposed 

to be analyzed depending on different value of the parameters of the indenter through the way of 

inverse problem. The purpose of this experiment is by using the concept of the inverse problem 

for the crack pattern to predict the velocity, radius and hitting points of indenter. A crack patterns 

of the target data are switched dump file data to Numpy array data file. 
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6.1.1 Input Image Data for Machine Learning 

Table 6.1.  Setup for 8 mode input image data. 

 

 

Mode 

4 variables 

Radius of indenter (r) = 0.007, 0.008m 

Velocity of indenter (v) = 100, 100.1m/s 

Angle of indenter (a) = 0°,45° 

Hitting location of disk (x, y) 

Mode1 r=0.007m, v=100m/s, 0° 

Mode2 r=0.007m, v=100.1m/s, 0° 

Mode3 r=0.008m, v=100m/s, 0° 

Mode4 r=0.008m, v=100.1m/s, 0° 

Mode5 r=0.007m, v=100m/s, 45° 

Mode6 r=0.007m, v=100.1m/s, 45° 

Mode7 r=0.008m, v=100m/s, 45° 

Mode8 r=0.008m, v=100.1m/s, 45° 

 

Matconvnet [70] based on MATLAB CODE was applied to the inverse problem using 

Numpy array as input image data. Prior to considering the results, focusing on the input image data 

by using LAMMPS, we can classify into 8 modes changing the 4 variables (Radius of indenter, 

Velocity of indenter, angle of indenter, and hitting location of disk) and obtained 7,200 training 

data sets and 1,200 test data sets. The mode according to the variation of the variable is set as a 

combination of velocity, angle, radius of indenter and hitting location of disk and is shown in Table 

6.1.  



 55 

 

Fig. 6.2.  Data structure in the .mat file. 

 

Next, we distinguished training data set and test data set to apply input image data set to 

machine learning. First, the image size of the training data set is 128 by 128, and the number is 

7200. 2,160 (30% of 7,200 training data set) were designated as validation set. In this way, the 

image size of the test data set is 128 by 128, and the number of images is 1200. 360 (30% of 1,200 

test data set) were designated as validation set. Finally, the training data set and the test data set 

are made into a .mat file that can be applied to Matconvnet and its structure is shown in Fig. 6.2. 

The structure of the data in the .mat file is largely divided into ‘images’ and ‘meta’. There are 

‘labels’, ‘set’, and ‘data’ classes in the ‘images’ class. ‘label’ displays labels on images of 7200 

training data sets. Labels were displayed randomly from 1 to 8 since data has 8modes. In the set 

class, training data, test data, and validation data are indicated by 1, 2, and 3, respectively. The 

data class converts the data obtained from the LAMMPS into a Numpy array and expresses it as a 

4-D single matrix. Finally, there are ‘set’ and ‘classes’ in the meta class. The ‘set’ contains the 

words 'train', 'test', and 'val' which are related to the ‘images’ class and indicate that the 1 2 3 in 

the set of images class is training data, test data, and validation data, respectively. The ‘class’ in 

the ‘meta’ specifies a class from 1 to 8 due to this inverse problem has a mode of 8. 
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6.1.2 Numerical Results 

 
Fig. 6.3.  Architecture of convolution neural network (CNN) for inverse problem. 
 

Data was trained by Matconvnet based on MATLAB using training data set and test data 

set. Convolution neural network (CNN) was used for training and its structure was shown in Fig. 

6.3. Our fully convolutional network is composed of two convolutional layers followed by a max 

pool layer and rectified linear layer (ReLU) and followed by fully-connected layer with softmax 

layer which is used in the final layer of convolution neural network-based classifier. In the first 

convolutional layer, the “weights” are the filters being learned and initialized with random 

numbers from a Gaussian distribution. The filters are 2 by 2 spatial resolution with 1filter depth 

and number of kernels are 200. The next layer is a max pooling layer which takes 2 by 2 sliding 

window with a stride of 2. The spatial resolution will be decreased due to the stride 2 in max 

pooling layer. The next layer is the rectified linear unit (ReLU). It promotes the convergence of 

stochastic gradient descent through the negative value becomes zero. By doing this activation, the 

enhancement of the speed of convergence can be seen when training the data. The last layer is 

fully-connected layer have full connections with the activation functions in the previous 

convolution layers. In this study, the output of this layer must be 1x1 spatial resolution and since 

the size of the filter should be classified as 8 mode, it should be unconditionally 8. 
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Table 6.2.  Results of CNN prediction for inverse problem. 

Test image number : Label (Mode) CNN prediction results (Mode) 

Test image 1 : 5 (Mode) 5 (Mode) 

Test image 100 : 6 (Mode) 6 (Mode) 

Test image 200 : 7 (Mode) 7 (Mode) 

Test image 300 : 2 (Mode) 2 (Mode) 

Test image 400 : 8 (Mode) 8 (Mode) 

Test image 500 : 7 (Mode) 7 (Mode) 

Test image 600 : 2 (Mode) 1 (Mode) 

Test image 700 : 3 (Mode) 3 (Mode) 

Test image 800 : 8 (Mode) 8 (Mode) 

Test image 900 : 6 (Mode) 6 (Mode) 

Test image 1000 : 7 (Mode) 7 (Mode) 

Test image 1100 : 7 (Mode) 7 (Mode) 

Test image 1200 : 5 (Mode) 5 (Mode) 

 
Using the CNN mentioned above with 7200 training data and 1200 test images, the learning 

rate is 0.001 and the epoch is trained for 25, and the results are shown in Table 6.2. As you can see 

in the table, the left side shows the number of the 13 test images and the marked label among 1200 

test images, and the right side shows the prediction based on the training results. The prediction 

results using the training data showed a success rate of 95.6%. 

 Forward Problem 

The forward problem consists of predicting the crack pattern which is produced by an 

indenter striking the disk at a specified location. More precisely, given the x-z coordinates of the 

center of the indenter’s hit location we aim to predict the damage pattern across the disk. The 

dataset for the forward problem has been created using the LAMMPS peridynamics package. 

Simulations corresponding to 25,250 indenter hit locations were carried out to construct the final 

dataset. To avoid the introduction of potentially unrealistic artifacts in the dataset due to 

inaccuracies of the peridynamics model near the boundary, the selected hitting locations have been 

restricted to the inner 1/3 of the target disk. In order to successfully train the network for the 

forward problem, it was necessary to design a loss function which converted the raw LAMMPS 
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damage data into a format which is compatible with the deep learning framework and array/tensor-

based format of the TensorFlow network implementation. This conversion was performed most 

naturally by bucketizing the atoms into a uniform grid of resolution 64 × 64. The average damage 

of the atoms contained in each bucket/bin of the grid was calculated and used to create the target 

outputs for the network. It was also necessary to account for atoms which had been substantially 

dislocated by a direct impact with the indenter and had left some bins at the disk's interior empty. 

These interior bins were assigned a full damage value of 1.0 to indicate that the atom which had 

originally occupied the space was displaced by the indenter. This was achieved by storing a copy 

of the LAMMPS data before the indenter strikes to serve as a template which indicates where the 

atom damages should be calculated. 

6.2.1 Network Structure for the Forward Problem 

 
Fig. 6.4.  Architecture of neural network for the forward problem. 

 
To accomplish the task of predicting damage patterns from known hitting location 

coordinates, we propose the use of a deep neural network which consists of several fully-connected 

network layers followed by a sequence of transpose convolutional layers. In this framework, the 

input coordinates are first processed by the initial dense layers to construct features which are 

reshaped into a collection of coarse 8 × 8 resolution features. These coarse features are then passed 
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to the transpose convolutional layers to be upsampled into a single, higher resolution 64 × 64 

damage pattern prediction. The precise network structure used is shown in Fig. 6.4. This network 

was implemented using the TensorFlow software library and written in Python. 

 

Table 6.3.  Average computation times, MSE, 𝐿W errors for the forward problem model.  

Dataset Avg. Computation Time Avg. MSE Avg. 𝐿W Error 
Training 0.003973 s 0.010214 0.054590 
Testing 0.003970 s 0.010298 0.054779 
 
Of equal importance to the network structure is the choice of a suitable loss function. In 

order to successfully train the network for the forward problem, it was necessary to design a loss 

function which converted the raw LAMMPS damage data into a format which is compatible with 

the deep learning framework and array/tensor-based format of the TensorFlow network 

implementation. This conversion was performed most naturally by bucketizing the atoms into a 

uniform grid of resolution 64 x 64. The average damage of the atoms contained in each bucket/bin 

of the grid was calculated and used to create the target outputs for the network. It was also 

necessary to account for atoms which had been substantially dislocated by a direct impact with the 

indenter and had left some bins at the disk’s interior empty. These interior bins were assigned a 

full damage value of 1.0 to indicate that the atom which had originally occupied the space was 

displaced by the indenter. This was achieved by storing a copy of the LAMMPS data before the 

indenter strikes to serve as a template which indicates where the atom damages should be 

calculated. The mean square error (MSE) was then calculated on the interior of the disk using the 

template file as an indicator of where the interior error should be calculated: 

𝐿𝑜𝑠𝑠(𝑦∗, 𝑦) =
1
𝑁Z 		HH	𝟏Ä[𝑖, 𝑗] ∗ 	 |𝑦∗[𝑖, 𝑗] − 𝑦[𝑖, 𝑗]|Z

�

LªW

�

JªW

 (33) 

Here we denote the network prediction by y*, the true damage pattern by y, the selected 

output resolution by N, and the Boolean template file by 1T (i.e. 1T[i,j]=1 when the (i,j)th bin was 

originally occupied by an atom, and 1T[i,j]=0 otherwise). All network layers used ReLU activation 

functions except for the final layer; as the damage pattern values are scaled to be within the range 

between 0 and 1, the final network layer was equipped with a sigmoidal activation function: 
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𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 	
1

1 + exp	(−𝑥) (34) 

 

The model was trained using the standard ADAM optimization algorithm and 

backpropagation as implemented in TensorFlow. The learning rate for the ADAM optimizer was 

initialized to 0.0001 with a geometric decay rate of 0.9 applied every 3 epochs. The model was 

trained for 100 epochs using 20,200 training data points, with the remaining 5,050 data points 

reserved for testing/validation. 

6.2.2 Results and Discussion for the Forward Problem 

After training, the neural network's damage predictions are seen to closely approximate the 

true damage patterns from the LAMMPS simulations. The offline training procedure required just 

under 7 hours to complete using 4 CPUs; once completed, network predictions for damage patterns 

can be computed in less than 0.0025 seconds with average MSE and 𝐿Werrors in the range of 0.01 

and 0.05, respectively (see Table. 6.3). Of note is the fact that a single LAMMPS simulation for 

the specified problem setup required an average of 6 seconds to complete on the same machine; 

the trained network is thus seen to provide approximations to the true simulation results while 

reducing the computation time by a factor of over 1500.
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Fig. 6.5.  Example of a true damage pattern computed using LAMMPS (left) along with the 

corresponding neural network prediction (right). 
 

 

 
Fig. 6.6.  Plot of the mean squared error of the network's predictions for training (blue) and 

validation (orange) examples throughout the training process for the forward problem.
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Fig. 6.7.  Demonstration of low forward stability of true damage patterns for LAMMPS 

simulations. A cluster of neighboring hit locations near the center of the disk (top row) as well as 
a cluster further from the center (bottom row) both produce a widely varied collection of 

simulated damage patterns. 
 
As depicted in Fig. 6.5, we see that the overall pattern of the damage on the disk is predicted 

quite well, however many of the finer details have been deemphasized or smoothed out by the 

network. The network predictions also tend to be more symmetric than the simulated patterns and 

tend to produce more linear cracking branches in contrast to the more jagged cracks from the 

simulations. The reason why the predictions are overly symmetric is most likely due to the 

relatively low forward stability of the LAMMPS peridynamics simulations. That is to say that the 

damage patterns are observed to change significantly even when the hit location of the indenter is 

changed by a very small amount. For example, the patterns shown in Fig. 6.7 correspond to hit 

locations which are very close to one another near the center of the disk along with a cluster of hit 

locations further from the center. 

Each of these clusters has a maximum distance of less than 0.00031mm on a disk of radius 

0.037mm (i.e. less than 0.85% of the radius), yet the simulated damage patterns are seen to be 
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quite disparate. It is suspected that the smoother, more symmetric neural network predictions 

illustrated in Fig. 6.5 may be reflective of the average damage incurred when the indenter's hit 

location is varied over a small neighborhood of the precise location provided to the network as 

input. 
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CHAPTER 7. THE ANALYSIS OF THE CRACK PATTERNS USING 
THE NEURAL PROCESSES 

 Introduction 

A significant problem to solve in solid mechanics is associated primarily to the construction 

of discontinuities in areas that do not exist at first. A typical example of the formation of 

discontinuities is a mechanical component failure due to cracking and breakage due to the dynamic 

load, high-temperature gradient, shock, explosion, etc. Occasionally, due to human negligence and 

mistakes in daily life, possessions of people are damaged causing a breakdown. In addition, 

automobile accidents can cause cracks in the car body. Finally, In DOE (Department of Energy), 

the blade of thermoelectric power plant and wind power plant which are formed the crack due to 

the influence of high temperature or wind, and reactor of the nuclear power plant are damaged by 

nuclear fission. Research on the cause of damage to objects with motility is actively underway. In 

general, many studies on fracture are performed by Finite Element Method (FEM). 

However, FEM has a fatal error. First, the FEM is calculated based on partial differential 

equations, but, there are no partial derivatives on the crack surface. Also, only the approximate 

solution can be obtained in the calculation of the FEM, the result depends on the mesh, and the 

user's mistake is fatal to the result. In order to secure these defects, we used the peridynamics. The 

peridynamics theory was first introduced by S. Silling. By applying integral equations directly to 

the surface of the crack, the peridynamics can solve the absence of partial derivatives and 

compensate for the fatal error of the FEM. From this point of view, the peridynamics is the most 

appropriate theory for studying cracks or damage. The peridynamics theory is applied not only to 

cracks but also to various materials in which cracks are generated. 

For instance, membranes and nanofiber, composites and brittle materials and prediction of 

viscoelastic materials. Based on the peridynamics theory, the MD simulation tools of LAMMPS 

and Peridigm [77] have been used extensively in crack research and have been actively researched 

to apply various material properties to crack simulations. For instance, PMB, LPS [78], and VES 

[79] models are set up in the MD simulation tool. Besides, we applied the deep machine learning 

method to reduce the computational cost to compensate for the remarkable increasing the 

computational times of the MD simulation as the size of the simulation increases. In recent years, 

Convolutional Neural Network (CNN) has been shown to provide superior light-weight to replace 
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existing fully connected networks, particularly for highly structured data applications such as the 

peridynamics model. These networks have the advantage of being able to pre-train, learn the data 

sets generated from highly accurate models based on the peridynamics theory, and encode the 

process of the model into a neural network. This approximate model can be used to produce 

immediate results through the training and testing process. Also, we applied neural processes (NPs) 

[80] which combine the advantages of a neural network with the advantages of a Gaussian process 

with the data obtained from the peridynamics theory. Therefore, we can learn how to apply 

advanced information to the data, improve the efficiency of computation during the training and 

evaluation resulting in fast and more accurate results. Finally, in this study, CNN and neural 

processes are applied based on the data obtained from the peridynamics theory. As a result, we are 

trying to develop the peridynamics theory even more precisely with the case study for the 

characteristic of materials, and by applying the deep machine learning, we can speed up the 

calculation speed using the trained data and finally reduce the computational cost as a result. 

  

 
Fig. 7.1.  Diagram of inverse problem and forward problem using machine learning. 

 The Peridynamics Model (PMB, LPS, VES) 

In peridynamics, all points in the material are connected by bonds. The Fig. 7.1 shows the 

composition of the peridynamics model. Suppose that there is an x in the whole body. When we 

denote the circle with radius is 𝛿 (horizon) centered on x, all the points in it are connected to each 

other, and this is called the family of x. Therefore, peridynamics is the continuation of the classical 

continuum mechanics. The most crucial point of peridynamics is that it uses the integral equation. 
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Compared to the FEM study, FEM uses the partial differential equation for crack analysis. 

However, there are no partial derivatives on the crack surface. Therefore, peridynamics can solve 

the absence of partial derivatives by applying integral equations directly to the surface of the crack. 

From this point of view, peridynamics is the most appropriate theory for studying cracks or damage. 

The following is the equation of motion based on the peridynamics model. The results are as 

follows.’ 

𝜌(𝑥)𝑢̈(𝑥, 𝑡) = 	Ë 𝜔(𝑢(𝑥�, 𝑡) − 𝑢(𝑥, 𝑡), 𝑥� − 𝑥)𝑑𝑉È�
ℱÍ

+ 𝑏(𝑥, 𝑡), 𝑡 ≥ 0 (35) 

 

The left term represents the equation of motion, 𝜌  represents the mass density and 𝑢̈ 

represents the acceleration. In the right term, ℱÈ is the family of x, T is the pairwise force function 

of the bond which connects point x and 𝑥�. u is the displacement of the point x according to the 

time domain. Finally, b represents the external body force density. The following definitions of 𝜁 

and 𝜂  are needed to define conservation of linear momentum and conservation of angular 

momentum. 𝜁 is the position vector in the initial arrangement and 𝜂 is the relative displacement 

vector. 

 

𝜁 = 	𝑥� − 	𝑥 (36) 
 

𝜂 = 	𝑢� − 	𝑢 (37) 
 

𝜁 + 𝜂 represents the current relative position vector between the points. The T function 

follows the two properties: 

 

𝑇(−𝜂,−𝜉) = 	−𝑇(𝜂, 𝜉),									(𝜉 + 	𝜂) 	× 	𝑇(𝜂, 𝜉) = 0			∀𝜂, 𝜉 (38) 
 

Eq. (38) represent the conservation of linear momentum and the conservation of angular 

momentum respectively. Conditions of T satisfy the conservation of linear momentum and the 

conservation of angular momentum.  

In this study, the crack patterns were formed by applying the above-mentioned 

peridynamics theory. PMB, LPS, and VES models are applied to do the case study for crack 

patterns according to the material types. First, the PMB model is a Prototype Microelastic Brittle 
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model which evolved from a model of isotropic and microelastic. The strength of bond depends 

only on bond stretch s. The equation is as follows: 

 

  𝑦 = |𝜁 − 	𝜂| (39) 
 

𝑠 =
|𝜉 + 𝜂| − |𝜉|

|𝜉| =
𝑦 − |𝜉|
|𝜉|  (40) 

 

Where s is the bond stretch and consists of the current relative position vector between the 

points and the position vector in the initial arrangement. The definition of PMB model is as follows. 

 

𝐹(𝑦(𝑡), 𝜉) = 𝑔U𝑠(𝑡, 𝜉)X𝜇(𝑡, 𝜉) (41) 
 

𝑔(𝑠) = 𝑐𝑠					∀𝑠 (42) 
 

𝜇(𝑡, 𝜉) = 	 Ó		1						𝑖𝑓	𝑠(𝑡
�, 𝜉) < 𝑠·						𝑓𝑜𝑟	𝑎𝑙𝑙			0 ≤ 𝑡� ≤ 𝑡

	0					𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																																																		
 (43) 

 

The function F is a product of g and 𝜇 functions, and the g function is a linear scalar-valued 

function consisting of c and s, which are spring constants and bond stretch, respectively. The 𝜇 

function, a component of the f function, as a function of time and position vector, exists the 

conditions. If the bond stretch is less than a critical bond stretch 𝑠·, u is 1, and otherwise, it is 

defined as 0. c, and 𝑠· are as follows. 

𝑐 = 	
18𝐾
𝜋𝛿Û  (44) 

 

𝑠· = Ü10𝐺·
𝜋𝑐𝛿Ý = 	

Ü5𝐺·
9𝐾𝛿 		,				𝐺· =

𝜋𝑐𝑠·Z𝛿Ý

10  (45) 

 

The spring constant c consists of bulk modulus K and 𝛿(horizon boundary in peridynamics 

model), critical bond stretch 𝑠· is a function of shear modulus 𝐺· and horizon 𝛿. Finally, shear 

modulus 𝐺·  consists of spring constant c, and critical bond stretch 𝑠·  and horizon 𝛿  in the 

boundary. The scalar force state of the PMB model is as follows: 
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𝑡íîï =
1
2
18𝐾
𝜋𝛿Û

||𝜂 + 𝜁|| − ||𝜉||
||𝜉||  (46) 

 

Finally, briefly describing the LPS and VES models, the elastic properties of both models 

are defined by the bulk modulus and the shear modulus along with the horizon boundary. However, 

the VES model requires additional relaxation parameters and time constants. Based on the above 

description, the scalar force state of the LPS model and the VES model can be described as follows. 

For LPS model, 

 

𝑡�íÅ = − @ðñ
Þ
𝜔𝑥 + 𝛼𝜔𝑒ò (47) 

 

m, 𝜃, e and 𝑒ò are weighted volume, dilatation, extension state and deviatoric extension 

state respectively. The bulk modulus is K and the shear modulus G related term 𝛼 = 	 WÝó
Þ

. 

 

𝑡ôõÅ = −
3𝐾𝜃
𝑚 𝜔𝑥 + (𝛼ö +	𝛼J)𝑒ò −	𝛼J𝜔𝑒ò÷(J) (48) 

 

For viscoelasticity model, the key constituent in the viscoelastic constitutive model is the 

decomposition of the scalar extension state into dilatation and deviatoric parts, as well as the 

additive decomposition of the deviatoric extension state into elastic 𝑒ò and back extension 𝑒ò÷(J) 

parts. 𝛼 = 	𝛼ö +	𝛼J and 0 < 	𝛼J < 	
WÝø
Þ

. 

 The Neural Processes 

This section introduces the neural processes. Neural networks are the nonlinear functions 

that are very easy to train and the Gaussian processes [81] provide the stochastic framework for 

learning the distribution of the wide range of nonlinear functions. Thus, in limited data, Gaussian 

processes can capture probabilistic nature and uncertainty. However, the neural networks are 

computationally much more scalable than the Gaussian processes so that they can handle the vast 

amounts of data. Therefore, the neural processes is the model that combine the advantages of the 

neural networks and the Gaussian processes and can complement each other's disadvantages. Fig. 

7.2 represents the diagram of neural processes. The process of neural processes is examined 
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through a diagram. The massive flow of neural processes is as follows. Information flows from 

the context points through the potential space z to new predictions with target points. z is a random 

variable makes neural processes a probabilistic model and captures uncertainty about the function. 

Once the model has trained, the posterior distribution of z can be used before making predictions 

at test time. 

In summary, given data is largely divided into context points and target points. It predicts 

𝑦Ä∗  using the given context and target points. To learn more about neural processes, first, context 

points pass through the neural networks h to produce their respective representations 𝑟W, 𝑟Z, ... 𝑟_. 

Next, all the r's from each context points are aggregated to obtain a single r. This r is used to 

parameterize the distribution of z. 

 

𝑝(𝑧|𝑧W:_, 𝑦W:_) = 	𝒩(𝜇ú(𝑟), 𝜎úZ(𝑟)) (49) 
 

 
Fig. 7.2.  The diagram of the neural processes. 

 
Finally, to obtain the prediction point 𝑦Ä∗ , z is sampled, and the result is concatenated with 

the target point 𝑥Ä∗  to obtain a predictive distribution of 𝑦Ä∗  by passing through a neural network 

decoder (g). Inference of neural processes is performed in the variational inference framework. 

Inferring the approximate the posterior q(z|context, target), we can evaluate the prediction p(𝑦Ä∗ |z, 

𝑥Ä∗ ). The approximate posterior q(z|context, target) is chosen for prediction 𝑦Ä∗  to use the neural 
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networks h (encoder) and by using the same h, mapped the context points and the target points to 

obtain the aggregated r which in turn is mapped to 𝜇ú and 𝜎ú. Lastly, the parameters of the encoder 

(h) and decoder (g) are trained by the ELBO. 

 

ELBO = 𝐸û(ú|_üßýmÈý,ýþýÿmý) ¬∑ log 𝑝(𝑦ý∗|𝑧, 𝑥ý∗) +Ä
ýªW

𝑙𝑜𝑔 û(ú|_üßýmÈý)
û(ú|_üßýmÈý,			ýþ!ÿmý)

		³ 
(50) 

 

The first term in brackets is the expected log-likelihood of the target set. It is evaluated by 

the first sampling z ~ q(z|context, target). The second term of the ELBO has a normalization effect, 

which is a negative KL divergence between q (z|context) and q(z|context, target). This term 

indicates a summary of the contexts to be not too far from the summary of the targets. 

 

 
Fig. 7.3.  Left side: Initial disk, Right side: Crack patterns (LPS, PMB, VES). 

 The Preparation of the Data Using the Peridynamics Theory and Models 

In this study, peridynamics was applied to obtain the crack patterns of a moving disk and 

LAMMPS was used for the simulations. PMB, VES, and LPS models were used for the case study 

of the peridynamics model in order to apply deep machine learning. The crack patterns were 

penetrated by the spherical indenter perpendicularly to the disk moving in the x, y, and z directions. 

In this study, data were obtained by changing 4 parameters.  
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1) Hitting points are set by increasing and decreasing the x and y coordinates around the 

center of the disk, and the disk was penetrated by the indenter evenly throughout the 

cylindrical disk.  

2) The parameters of velocity were changed to 100m/s and 100.1m/s with a slight 

difference. The reason for this was to find out how to classify the velocity of subtle 

differences when classifying the modes by applying deep machine learning.  

3) The radius of indenter was adjusted by 0.007m and 0.008m.  

4) To obtain the crack pattern of the moving disk, not the static disk, we changed the 

moving direction of disk (x, y, z). 

 

Finally, the cylindrical disk was composed of 103,110 particles with a radius of 0.037 m 

and a thickness of 0.0025 m, each particle have a volume fraction of 𝑉J = 1.25 x 10]W·𝑚@ and the 

density of the disk material is 𝜌 = 2200 kg/𝑚@. So far, 3 changed parameters have been applied to 

the moving disk, and the disk was composed of PMB model, VES model and LPS model for the 

case study. First, to apply the PMB model, `peri / pmb’ pair style was used. The pair constants for 

the simulations have been specified as follows: c = 1.6863 × 10ZZ, horizon 𝛿 equal to 0.0015001, 

𝑠··= 0.0005, and 𝛼 = 0.25. c is the spring constant for peridynamic bonds, the horizon 𝛿 is a cutoff 

distance for non-local interactions, the constants 𝑠··  and 𝛼  correspond to material-dependent 

parameters for the critical bond stretch. Second, we used `peri / lps’ pair style for the LPS model 

which consists of bulk modulus (K), shear modulus (G), horizon, 𝑠·· and 𝛼. Bulk modulus (14.9 

×	10" ), shear modulus (14.9 ×	10" ), horizon 𝛿  (0.0015001), 𝑠··  (0.0005) and 𝛼  (0.25) were 

used to generate the crack patterns of LPS model. Finally, to set up the VES model, `peri / ves’ 

pair style which consists of bulk modulus (K), shear modulus (G), horizon, 𝑠··, 𝛼, m-lambdai and 

m-taubi was used. m-lambdai and m-taubi represent the viscoelastic relaxation parameter and time 

constant, respectively. Lastly, we generated a crack pattern for VES model by applying the bulk 

modulus = 14.9 ×	10", shear modulus = 14.9 ×	10", horizon = 0.0015001, 𝑠·· = 0.0005, 𝛼 = 

0.25, m-lambdai = 0.5, and m-taubi = 0.001. By this time, I have created data set for deep machine 

learning, and have studied the models and simulation settings for the case study research. We 

calculated the simulations for 1000 time-steps in one simulation and stored the output as a dump 

file, assuming that 1000 time-steps were meaningful by turning the simulation one by one for the 

case model to obtain the more sophisticated crack patterns. Finally, the pizza.py toolkit was used 
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to change the EnSight data format to visualize the crack patterns using the dump files, then apply 

it to the Paraview [82,83] tool to visualize the crack patterns. In Fig. 7.3, the figure on the left is 

the initial model of the disk before the crack patterns were formed, the first line, the middle line, 

and the last line are the crack patterns were generated using the PMB, LPS VES models 

respectively. 

 Method and Results 

This study used the supervised machine learning with the convolutional neural networks 

and the neural processes to classify the crack patterns in cases according to PMB, LPS, and VES 

models and 2-D regression problem. We have applied the deep machine learning method to 

improve the MD simulation using the peridynamics more efficiently, and we also investigate how 

accurately the peridynamics model can be predicted through the machine learning method. In this 

section, we will learn how to define the data set to perform supervised machine learning, how to 

label the train, validation, test data sets, how to set up the structure in the CNNs and neural 

processes. Finally, after training, validation, and testing, the loss function is calculated to 

determine how well the training and validation tests are performed. We will proceed with case 

studies through the success rate and the result of how accurately we predicted. 
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7.5.1 The Preparation of the Data for Classification 

Table 7.1.  12 modes of the input image data for classification. 

Mode 4 variables 
 Radius of indenter (r) = 0.007, 0.008m 
 Velocity of indenter (v) = 100, 100.1m/s 
 Hitting location of disk (x, y) 
 Moving direction of the disk (x, y, z) 

Mode 1 r = 0.007m, v = 100m/s, Moving direction (x) 
Mode 2 r = 0.007m, v = 100.1m/s, Moving direction (x) 
Mode 3 r = 0.007m, v = 100m/s, Moving direction (y) 
Mode 4 r = 0.007m, v = 100.1m/s, Moving direction (y) 
Mode 5 r = 0.007m, v = 100m/s, Moving direction (z) 
Mode 6 r = 0.007m, v = 100.1m/s, Moving direction (z) 
Mode 7 r = 0.008m, v = 100m/s, Moving direction (x) 
Mode 8 r = 0.008m, v = 100.1m/s, Moving direction (x) 
Mode 9 r = 0.008m, v = 100m/s, Moving direction (y) 
Mode 10 r = 0.008m, v = 100.1m/s, Moving direction (y) 
Mode 11 r = 0.008m, v = 100m/s, Moving direction (z) 
Mode 12 r = 0.008m, v = 100.1m/s, Moving direction (z) 

 

For the convolutional neural networks, Matconvnet, a MATLAB toolbox was used. First, 

the crack pattern was stored as the dump files through the MD simulation based on the 

peridynamics theory. These dump files were converted to the 64 × 64 Numpy array and saved 

them as the data. There are three types of data: training data set, validation data set, and testing 

data set. The total number of dump files is 10800, and 12 modes of data were obtained by changing 

the 4 parameters mentioned in section 4. 12 modes are represented in Table 7.1. We also randomly 

shuffled all data to reduce the imbalance of the data and also correctly divided the number of data 

according to each mode and assign it to do training, validation, and test data set. Also, 30% of the 

training data was designated as a validation data set to observe the overfitting and evaluate the 

training. Through these processes, we have used 6300 training data sets, 2700 validation data sets, 

and 1800 test data sets. In neural processes, Pytorch [84] which is a deep-running implementation 

library for training and testing was used and crack dataset was made the same as the MNIST [85] 

data format. Through the MD simulation using the peridynamics theory, 10800 dump files were 

obtained as output. These are converted to the Numpy array and converted them to 28 × 28 png 

image files. Finally, the training data set, the training label, the test data set and the test label are 

stored separately and then converted into the ubyte.gz file to obtain the data and the label similar 
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to MNIST dataset. Through these processes, 9000 training data, 9000 training labels, 1080 test 

data and 1080 test labels are obtained. 

7.5.2 The Composition of Data Set for CNNs and the Neural Processes 

 
Fig. 7.4.  Architecture of CNNs for classification of modes. 

 

For convolutional neural networks, the training data set and the test data set were made 

into a .mat file to apply the data to Matconvnet. Each set also contains a 30% validation set. 

The .mat file consists of `images' and `meta' format. First of all, `images' has a structure of `labels', 

`set', `data'. `labels' are used to display the labels for randomly mixed data. In `labels', our datasets 

are labeled randomly from 1 to 12 to classify as 12modes. `Set' specifies the training data set, test 

data set, and validation data set. For example, 1, 2, 3 can be referred to as training data, test data, 

and validation data respectively. `data' stores the image of the crack pattern with Numpy array in 

the form of a 4-D single. For instance, if the size of 4-D single is 64 × 64 × 1 × 10800, there are 

10800 grey images with 64 × 64 pixels. The `meta' structure contains `set' and `classes'. `set' is 

related to `set' in `images', where 1 is training data, 2 is test data, and 3 is validation data 

respectively. Finally, `classes' specifies from 1 to 12 related to the mode of the data we want to 

sort. Also, our data was made similar to the MNIST data type to apply the neural processes. All 

data were compressed in ubyte.gz in the form of training sets, training labels, test sets, and test 

labels, respectively. Likewise, the data was randomly mixed before storing the data and labels. 

Since the validation data set does not exist, it is possible to specify the validation data set to use 

the portion of the entire training set. The labels exist from 1 to 12, which are the same as the 
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number of the classification. The data set was arranged to be easy to see at a glance by attaching 

each images side by side with 28 × 28 pixels like MNIST data type. All of these data types are 

ndarrays, an N-dimensional array. 

7.5.3 Convolutional Neural Networks for Classification 

Deep learning has become a powerful tool for machine learning, and it is possible to 

perform various cognition and inference by appropriately utilizing the human knowledge existing 

in annotated data. CNNs are widely used to solve many computer vision problems that are image 

classification and object recognition. These neural networks are composed of several layers of 

neurons between the input and output, which can be shared with neurons in other layers, making 

it very easy to communicate information. Each connection unit acts as a linear or nonlinear 

operator defined by the set of parameters. We used the Alexnet structure to classify the modes of 

the crack patterns. There are two processes for classifying properly annotated data. The first is the 

feature extraction step. This step takes a gray 2D image of a × a pixels as an input. This input 

image forms a 1 × c feature vector through each layer of neurons. The second is the feature 

classification. This process is the process of classifying the feature vector into the desired modes. 

Through these two processes, images can be classified. Let's take a look at this process in more 

detail. First, the process of the feature extraction step requires three layers. The first is the 

convolutional layer. The convolutional layer receives the input image of 𝑊W  × 𝐻W  × 𝐷W  and 

produces an output image of size 𝑊Z × 𝐻Z × 𝐷Z. Four hyperparameters are required in this process. 

Hyperparameters consist of the horizontal and vertical spatial size (F), stride (S), zero padding (P) 

and the number of the filter (K). The input image forms an output image by the relation of 4 

hyperparameters, and the relation equations are as follows. 

 

𝑊Z = (𝑊W𝐹 + 2𝑃)/𝑆	 + 1 (51) 
 

𝐻Z = (𝐻W𝐹 + 2𝑃)/𝑆	 + 1 (52) 
 

𝐷Z = 𝐾 (53) 
 

The volume of the output image is determined through these relations. Let's describe our 

calculations through the Fig. 7.4. When an input image of 64 ×  64 ×  1 passes through the 
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convolutional layer using the above-mentioned relation equations with hyperparameters of 11 × 

11 filter size and 100 filters, stride (1) and zero padding (0), the 18 × 18 × 100 output images are 

obtained. The second is Max pooling layer. The Max pooling layer receives the input image passed 

through the convolutional layer and downsample it. Therefore, it reduces the computational load 

and memory usage and makes calculations faster. By applying our study, we set the Max pooing 

to 3 in this study. Thus, using the Max pooing layer to an image of 18 × 18 × 100 obtained through 

the convolutional layer, input images are converted to 6 × 6 × 100. Finally, it is the ReLU layer. 

The ReLU layer is an activation function that is applied to the neuron at each pixel location. Also, 

by changing all values less than 0 to 0, the computation speed is significantly increased. The ReLU 

activation function is defined as follows: 

 

𝑅𝑒𝐿𝑈(𝑥) = max	(0, 𝑥) (54) 
 

Where x is the intensity of a pixel. It controls how much information is passed through the 

network. So far, we have looked at the process of feature extraction. Finally, when we look at 

feature classification, the output image of 6 × 6 × 100 obtained through the three layers mentioned 

above was arranged in the form of 1 × 3600 vector through the flattening process. The reason is 

that our ultimate goal is to classify into 12 modes. Thus, a flattened 1 × 3600 vector is classified 

as 1 × 12 through the Softmax layer. SoftMax layer is often used in the final layer of a neural 

network- based classifier. It takes a vector of arbitrary real-valued scores (in z) and reduces it to a 

vector of values between 0 and 1.  

This process is as follows: 

 

𝑧[�] = 	𝜔[�]𝑎[�]W] + 𝑏[�] (55) 
 

Compute z, we need softmax activation function 

 

𝑡 = 	 𝑒𝑥𝑝ú[�] (56) 
 

t, 𝑧[�] = (12,1) dimensional vector related to the classification for 12 modes. 
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𝑎[�] =
𝑒𝑥𝑝𝑧[�]

∑ 𝑡JWZ
W

 (57) 

 

Output(a) is going to be the vector t but normalized to sum to 1. 

 

 
Fig. 7.5.  The objective plots for PMB, LPS and VES model. 

7.5.4 The Results of the Training and the Testing Using CNNs with Success Rates 

In this section, we examined the results of training, validation, testing and success rate in 

classifying modes using specified data and CNNs. As mentioned earlier, in the 9000 training 

datasets, 30% of training datasets were used for validation datasets in the training process. Fig. 7.5 

shows the training and validation results according to PMB, LPS and VES model. During the 

training, hyperparameters were set such as learning rate was 0.001, batch size was 50, and the 
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number of the epoch was 100. As we can see in the Fig. 7.5, we observed the objective value and 

judged whether the training was proper or not. The blue line indicates a training error and the 

orange line shows a validation error. 

The objective value is the same as the error graph, and there has some error when the 

training is first started. However, as the epoch increases, it gradually converges to zero. It is also 

possible to judge the overfitting of the training through the Fig. 7.5. If there has overfitting in the 

training process, the validation line may not converge to 0 or the value may drop and it may 

converge to a particular value. In this case, we can make the model more simple, or reduce the 

overfitting by regularization. In this study, as shown in the Fig. 7.5, training and validation errors 

converge to zero exactly without overfitting or underfitting. So far, we have studied the training 

and validation. Finally, we tested the 1200 images based on the training data and judged how 

accurately we predict the modes and classified the test image through the success rate. 
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Table 7.2.   CNNs prediction of crack patterns using the Neural processes 

The PMB test image number : Label 
(Mode) CNNs prediction results (Mode) 

Test image 1 : 4 (Mode) 4 (Mode) 
Test image 2 : 11 (Mode) 11 (Mode) 
Test image 3 : 5 (Mode) 5 (Mode) 
Test image 4 : 3 (Mode) 3 (Mode) 
Test image 5 : 7 (Mode) 7 (Mode) 
Test image 6 : 2 (Mode) 2 (Mode) 
Test image 7 : 4 (Mode) 4 (Mode) 
Test image 8 : 8 (Mode) 8 (Mode) 
Test image 9 : 1 (Mode) 1 (Mode) 
Test image 10 : 2 (Mode) 2 (Mode) 

The LPS test image number : Label 
(Mode) CNNs prediction results (Mode) 

Test image 1 : 10 (Mode) 10 (Mode) 
Test image 2 : 7 (Mode) 7 (Mode) 
Test image 3 : 3 (Mode) 3 (Mode) 
Test image 4 : 5 (Mode) 5 (Mode) 
Test image 5 : 2 (Mode) 2 (Mode) 
Test image 6 : 6 (Mode) 6 (Mode) 
Test image 7 : 1 (Mode) 1 (Mode) 
Test image 8 : 12 (Mode) 12 (Mode) 
Test image 9 : 4 (Mode) 4 (Mode) 
Test image 10 : 5 (Mode) 5 (Mode) 

The VES test image number : Label 
(Mode) CNNs prediction results (Mode) 

Test image 1 : 5 (Mode) 5 (Mode) 
Test image 2 : 8 (Mode) 8 (Mode) 
Test image 3 : 3 (Mode) 3 (Mode) 
Test image 4 : 10 (Mode) 10 (Mode) 
Test image 5 : 9 (Mode) 9 (Mode) 
Test image 6 : 7 (Mode) 7 (Mode) 
Test image 7 : 5 (Mode) 5 (Mode) 
Test image 8 : 3 (Mode) 3 (Mode) 
Test image 9 : 2 (Mode) 2 (Mode) 

Test image 10 : 11 (Mode) 11 (Mode) 
 

Table. 7.2 shows the classification results according to the model using the training data. 

The test image number and Label (mode) indicate the image data we tested and the labels 

associated with it. CNNs prediction results, on the other hand, show what the test images are 

predicted. In the results, the prediction of the test results according to the model was successful. 
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We obtained the success rate to numerically determine the test results and the relation equation is 

as follows: 

 
𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡ℎ𝑒	𝑐𝑜𝑟𝑟𝑒𝑐𝑡	𝑡𝑒𝑠𝑡	𝑖𝑚𝑎𝑔𝑒𝑠
𝑡ℎ𝑒	𝑡𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡ℎ𝑒	𝑡𝑒𝑠𝑡	𝑖𝑚𝑎𝑔𝑒𝑠 × 	100% (58) 

 

The prediction results of the classification modes using the training data showed the 

success rates between 99.6% and 99.8%. 

7.5.5 The 2-D Regression Problem Results Using the Neural Processes 

 
Fig. 7.6.  These results evaluate the network’s predictions for the crack patterns problem. This 
example has been taken from the test data set and have not been seen by the network during 

training. Prediction and true solution are shown at the top, with the corresponding absolute errors 
plotted below along with the network’s predicted variance. 

 

So far, we have classified the crack patterns according to the modes by CNNs. In this 

section, we try to predict the crack patterns by solving the 2-D regression problem using NPs. As 

mentioned earlier, the data used 9000 training data and 1800 test data. The structure of the data is 
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similar to that of MNIST, and the size of each image is 28 × 28 pixels. The NPs were used to solve 

the 2-D regression problem and the experiment set up of the NPs was as follows. In 

hyperparameters, the input batch size for training was set to 128, and the number of the epoch was 

set to 3000. 

 
Fig. 7.7.   2-D regression problem results for crack patterns with 10, 100, 300, 784 contexts 

points. 1) First line represent the prediction results in epoch 1 compared to the context points (10, 
100, 300, 784). 2) Second line represent the prediction results in epoch 500 compared to the 

context points (10, 100, 300, 784). 3) Third lines represent the prediction results in epoch 1000 
compared to the context points (10, 100, 300, 784). 4) Last lines represent the prediction results 

in epoch 3000 compared to the context points (10, 100, 300, 784). 
 

Also, the dimension of representation (r) was 128 to obtain each representation through the 

NNs from context points. This is associated with the linear layers of NNs which yield the 128 

representations through three linear layers (3 × 400, 400 × 400 and 400 × 128). In NNs, we used 

the ReLU layer as an activation function and added efficiency to the training. Representation 

obtained through NNs is used to parametrize the distribution of z which is related to the Eq. 49, 

and through this process, the dimension of the global latent variable (z) is also 128. Using the 

obtained z and target points, we predicted the crack pattern through the g of the linear layers. The 
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linear layers of the g are composed of 130 × 400, 400 × 400, 400 × 400, 400 × 1. As a result, 

crack patterns can be predicted. 

Finally, the loss function is binary cross-entropy, and the relation equation is as follows: 

 

𝐻'(û) = −
1
𝑁H𝑦J ∙ log(𝑝) + (1 − 𝑦J)

�

JªW

∙ log	(1 − 𝑝) (59) 

 

For instance, considering the modes, we assume that there are modes 1 and 2. y represents 

the label for mode 1 and p is the predicted probability of the point being mode 1 for all N points. 

This represents that for each mode 1 point, it adds log(p) to the loss, that is, the log probability of 

it being mode 1. On the contrary, it adds log(1-p), that is, the log probability of it being mode 2, 

for each mode 1 point. Finally, the model was trained using standard ADAM optimization 

algorithms and backpropagation implemented in Pytorch. The learning speed of the ADAM 

optimization was set to 0.001.  

In this study, the network predictions were evaluated using the above network settings and 

the results are shown in Fig. 7.6. The network prediction and true solution can be found at the top 

of the line and can be seen to be quite similar when comparing the results. In next line, the absolute 

error can be confirmed by using the mean value of the prediction obtained from the distribution of 

z mentioned in Fig. 7.2 and true solution. 

Finally, we showed the result of the variance obtained as the network progresses the 

prediction over the epoch 3000. As a result of the variance, the variance value was significantly 

lowered when the process of the prediction proceeded from epoch 1 to reach the epoch 3000, and 

the range was from 0 to 0.015. We can see the result that the prediction value becomes similar to 

the true solution value because the variance value becomes smaller according to the result of 

increasing epoch iteration and parameter tuning. The variance can be used as an indicator to show 

how well network’s prediction is. Also, the location with the largest variance is the location where 

we should take additional samples. We can use it for experimental design to get additional optimal 

sample locations. Using the structure of the generated neural processes, the predicted results of 

one of our models, LPS model through the training and testing, are shown in Fig. 7.7. It shows the 

result of the prediction of the test data. In the training process, we set the context points to 10, 100, 

300, and 784 and show the test results accordingly. The 1 and 2 lines of the figure show the result 
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of 1 epoch according to the context points 10, 100, 300, and 784 from the left side. As you can see 

from the figure, the test images are not predicted yet since it is the first step in the training process. 

The 3 and 4 line are the results of anticipating the test images as the 500 epochs. In this process, 

the crack pattern is blurred, but the crack pattern can be predicted gradually. Finally, the 7 and 8 

lines are the results of anticipating the test images after finishing the final training at epoch 3000. 

As we can be seen from the 7 and 8 lines, we accurately predicted the crack patterns and even 

more surprising is that also if the context points are 10, 100, and 300, the crack patterns are 

predicted precisely as well as the results with the context points of 784. Through this process, if 

NPs are used, even if there is not enough information, it is enough to predict the model. 

 Conclusions 

We used the peridynamics to obtain the crack pattern changing the 4 variables: velocity of 

the indenter, the radius of the indenter, hitting location of the disk and moving direction of the disk. 

This data obtained the crack patterns from moving the disk and more detailed and accurate crack 

patterns using peridynamics theory which can compensate for the disadvantages of FEM. Besides, 

various models (PMB, LPS, VES) could be complemented by using case studies with 

convolutional neural networks using peridynamics. First, the modes of the crack pattern were 

classified, and the case study of models was conducted with convolutional neural networks. In this 

process, data obtained through the peridynamics have labeled the data according to each mode and 

did the supervised learning. By evenly distributing the data, the problem of the imbalance data was 

reduced. A training data set of 30% was designated as a validation data set to solve the most 

problematic overfitting in the training process. Overfitting was observed during the training and 

training was optimized by tuning hyperparameters to reduce the overfitting. As a result, 99.6% ~ 

99.8% success rate was obtained, and the modes could be classified accurately. 

Finally, the neural processes was used to solve the 2-D regression problem. The neural 

processes was optimized to address the regression problem by combining the advantages of neural 

networks and Gaussian processes. In this process, the data obtained through the peridynamics were 

made similar to the MNIST data and were classified into training data set and test data set for 

training. We also set the context points to 10, 100, 300, and 784 so that we could see the results of 

the test images. As a result, if the epoch is low, the prediction is not good enough regardless of 

context points. However, as the number of epochs increases, the result of the speculation is right. 
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In the final epoch 3000, even if the context points are 10, the prediction is sufficiently good as in 

the case of the context points 784. In other words, using neural processes, the forecast is possible 

using data that is not enough information. 
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CHAPTER 8. AUTOMATICALLY PARTICLE PICKING ON CRYO-
EM IMAGING WITH DEEP MACHINE LEARNING 

 Introduction 

Recent developments in Cryo-EM technology have had a great impact on structural biology 

and protein molecular complexes. However, high-resolution Cryo-EM studies of molecular 

complexes require the choice of a large number of high-quality particles. The particle selection 

stage in this process is very labor intensive. This is because it is manually selected by the human 

hand to obtain high quality particles. Also, Particle selection is also very subjective because it is 

done passively, and the results can be very different because particle selection is done by humans. 

Therefore, in this study, deep learning method was applied to reduce the effort of selection of high-

quality particles. In recent years, deep learning technology has been applied to researches such as 

computer vision and natural language processing through the availability of large - scale learning 

data, the development of powerful computing platforms and learning algorithms. Therefore, this 

study proposes a learning frame structure using deep learning and aims at freeing passively 

selecting high quality particles as the ultimate goal. 
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 Dataset Creation for Automatically Picking Particles in Cryo-EM Images 

 
Fig. 8.1.  Cryo-EM raw image from EMPIAR. 

 

 
Fig. 8.2.  Manually particle picking with EMAN2. 
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Fig. 8.3.  Left side (Bad images), Right side (Good images). 

 

In this section, we introduce the process of obtaining training data and test data to extract 

particles in the Cryo-EM image. The purpose of this study is to replace handwork to obtain a high-

resolution image of the past using deep learning. Therefore, in order to utilize deep learning, 

training data, validation data, and test data are needed. We obtained a .MRC file via the EMPIAR 

[86] for the Cryo-EM image sample, and the image can be seen in Fig. 8.1. As you can see from 

the figure, we can identify hundreds of protein particles. We used the EMAN2 [87] tool to read 

the .MRC file from EMPIAR. Briefly, the EMAN2 tool reads the .MRC file and displays it as an 

image, and has an algorithm that automatically extracts particles from the tool itself. However, the 

accuracy was 60% when compared with our training data, and we can confirm different success 

rates depending on the image in EMAN2 so we only used this tool to read the data and obtain the 

data we wanted. The advantage of this tool is that we can extract and store the images which can 

control the pixel size we want. As you can see in Fig. 8.2, we can extract the data by 100 by 100 

pixels and save it as deep learning data. However, this study has drawbacks in that it requires 

manual work to obtain the desired good and bad particles. Fig. 8.3 shows the results obtained by 

picking good and bad particles through the manual operation. On the left represents the bad 

particles which are the error part and the background part are specified in the image, and the right 

part is the result of extracting protein particles in the image with good particles. Through this work, 

we obtained 100 by 100 pixels 2600 images and collected various data by flip and rotate the data 

in order to increase the data. Therefore, 2000 training data and 600 test data were obtained, and 

30% of the training data was designated as validation data. Finally, we used MATCONVNET 

which is based on the MATLAB for supervised learning. In order to do a training, we converted 
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the image files into Numpy array and saved 4-D single data as .mat file. A detailed introduction to 

this data can be found in the next section. 

 

 
Fig. 8.4.  Data structure in the .mat file. 

 Reference Annotation 

The training data set and the test data set are made into a .mat file that can be applied to 

Matconvnet and its structure is shown in Fig. 8.4. The structure of the data in the .mat file is largely 

divided into `Images' and `Meta'. There are `Labels', `Set' and `Data' classes in the `Images' class. 

`Labels' displays labels on images of input data sets. Labels were displayed randomly from 1 to 2 

since data has good and bad particles. In the set class, training data, test data, and validation data 

are indicated by 1, 2, and 3, respectively. In the `Data' class, the data obtained from the images of 

the good and bad particles are converted to a Numpy array and expresses it as a 4-D single matrix. 

Finally, there are `Set' and `Classes' in the `Meta' class. The `Set' contains the words `train', `test' 

and `val' which are related to the `Images' class and indicate that the 1 2 3 in the set of images class 

is training data, test data, and validation data respectively. The `Classes' in the `Meta' specifies a 

class from 1 and 2 due to the good and bad particles. 
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 Convolutional Neural Networks for Particle Picking in Cryo-EM Image 

 
Fig. 8.5.  Architecture of convolution neural network (CNN) for automatically particle picking. 

  

Deep learning is a subset of AI and machine learning capabilities of achieving state-of-the-

art results on problems such as object detection, text generation, and image recognition. Using 

existing human knowledge in the form of annotated data, various cognitive and inferential tasks 

can be performed. Convolutional neural networks are widely used to solve computer vision 

problems such as classification of images and object detection. These convolutional neural 

networks consist of several layers which can be tuned through the connection weights between 

input and output layers. In this work for damage analysis using machine learning, a similar 

structure of AlexNet are chosen. The CNN processes the input damage pattern in two steps: a 

feature extraction step carried out by the convolutional layers, followed by a classification step 

performed by the fully connected layers. First, feature extraction uses a 2D damage array of size 

𝑁!ü) × 	𝑁_ü*  for input data and produces a vector of size 10 × 10 × 200. Second, the feature 

vector is converted to a classification vector of size 1 × 	𝑁_ , where 𝑁_  is the number of 

classification categories. This work accounts for two categories corresponding to the good and bad 

particles. 
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 Feature Extraction and Classification 

The purpose of image extraction and classification is to create a 1 ×	𝑓_ feature vector in 

relation to the input data, which is related to the 8 modes used for classification. The feature vector 

is generated from the input training data by applying successive filters and the filters are 1) max 

pooling layer, 2) ReLU layer and 3) SoftMax layer; each of the three types of network layers are 

described below.  

1) Max pooling layer is a sample-based discretization process. The objective of max 

pooling layers is to downsample the input images in order to reduce the computational 

load and the memory usage. If the input image x is a square image of size 𝑁!ü) × 	𝑁_ü*, 

and a = 3, then the output image y of the pooling operation is of size [𝑁_ü*/𝑎] × 

[𝑁!ü)/𝑎]. In our research, the downsampling rate is set to a = 3, the 100 pixels by 100 

pixels array becomes 30 pixels by 30 pixels and then 10 pixels by 10 pixels.  

2) The rectified linear unit (ReLU) layer applies an activation function which is defined 

as the positive part of its argument: where x is the input data to a neuron. A ReLU 

performs a threshold operation to each element of the input where any value less than 

zero is set to zero. The choice of the ReLU activation facilitates faster training due to 

the simplicity of its function and derivative evaluations. 

3) SoftMax layer is often used in the final layer of a neural network-based classifier. It 

takes a vector of arbitrary real-valued scores (in z) and reduces it to a vector of values 

between zero and one that sums to one. 

 

𝑧[�] = 𝑊[�]𝑎[�]W] + 𝑏[�] (60) 
 

To compute z, SoftMax activation function is needed. 

 

𝑡 = 𝑒𝑥𝑝𝑧[�] (61) 
 

t and 𝑧[�] is (2,1) dimensional vector which is related to the good and bad of output. 

 

𝑎[�] =
𝑒𝑥𝑝𝑧[�]

∑ 𝑡J+
JªW

 (62) 
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Output a is going to be the vector t but normalized to sum to 1. 

ReLU(x) = 𝑥� = max	(0, 𝑥) (63) 
 

 Training and Testing Using CNNs and Prediction Accuracy 

 
Fig. 8.6.  The objective and error plots during the training. 

 

The model for the automatically particle picking has been trained using the MATLAB 

toolbox Matconvnet. The prediction model has been implemented as a convolution neural network 

(CNN) with architecture as shown in Fig. 8.5. The proposed convolutional network is composed 

of two convolutional layers and a fully-connected layer. Each convolutional layer is followed by 

a max pooling layer and rectified linear unit layer (ReLU). After the two convolution layers, a 

fully-connected layer with Softmax activation is used in the final layer of convolution neural 

network-based classifier. In the first convolutional layer, the “weights” are the filters being learned 
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and initialized with random numbers from a Gaussian distribution. The filters are 13 by 13 spatial 

resolution with 1 filter depth and the number of kernels is 200. The next layer is a max pooling 

layer which takes 3 by 3 sliding window with a stride of 3. 

 

Table 8.1.  CNNs predictions results compared to the test image data and good particles and bad 
particles represent 1 and 2 respectively. 

Test image number : Label  CNNs prediction results (Good and Bad) 
Test image 1 : 1 (Good) 1 (Good) 
Test image 2 : 1 (Good) 1 (Good) 
Test image 3 : 2 (Bad) 2 (Bad) 

Test image 4 : 1 (Good) 1 (Good) 
Test image 5 : 2 (Bad) 2 (Bad) 

Test image 6 : 1 (Good) 1 (Good) 
Test image 7 : 2 (Bad) 2 (Bad) 
Test image 8 : 2 (Bad) 2 (Bad) 

Test image 9 : 1 (Good) 1 (Good) 
Test image 10 : 2 (Bad) 2 (Bad) 

 

The spatial resolution will be decreased due to the stride 3 in max pooling layer. The ReLU 

activation function is then applied to introduce non-linearities into the modeling framework. The 

last layer is a fully-connected layer which has dense connections with the activation function 

outputs from the previous convolution layers. The final layer is designed to produce 2 output values 

corresponding to the model's predicted likelihood for the good and bad particles. Using the CNNs 

mentioned above with the 2000 training data and the 600 test data, the learning rate is 0.001, the 

batch size is 50, and the epoch is 200 for the training. In this convolutional neural network, 

MatConvNet minimizes the objective which represents the loss function and y-axis of energy 

represents to measure the magnitude of loss. During the training, several statistics are measured 

after every batch. In the objective and the error plots, the training error is depicted by the blue line 

and the validation error is represented by an orange dotted line. The error graph should show 

similarity to the objective graph and our network achieved 0.033 validation error. Lastly, the 

results are shown in Table. 8.1. The left side shows the number of the 10 test images and the 

marked label among 600 test images, and the right side shows the prediction based on the training 

results. As we can see in Table. 8.1, labelled test images and CNNs prediction results are quite 

match the results each other. To evaluate the accuracy of training data obtained from CNNs, the 

success rate is defined as 



 93 

𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑜𝑟𝑟𝑒𝑐𝑡	𝑡𝑒𝑠𝑡	𝑖𝑚𝑎𝑔𝑒𝑠
𝑡𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡𝑒𝑠𝑡	𝑖𝑚𝑎𝑔𝑒𝑠 × 100% (64) 

 

The prediction results of the inverse problem using the training data showed a success rate 

of 96.7 %. 

 Results 

 
Fig. 8.7.  Automatically particle picking in Cryo-EM raw image using trained data. 

 

We have trained using supervised learning to automatically extract proteins in Cryo-EM 

images. From now on, this training data will be applied to the new Cryo-EM image and the protein 

particles will be automatically extracted and displayed as a rectangle in the extracted location. To 

do this, we used MATLAB to create the scan code. The scan code was scanned by moving the raw 

Cryo-EM image by 10 pixels using training data obtained using supervised learning. During the 

process, a threshold score is specified. If the score is larger than the threshold, a square is displayed 
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at that position. If the score is less than the threshold score, skip is performed. The result is Fig. 

8.7. We have so far obtained training data through supervised learning by designating good and 

bad particles to pick particles automatically. During the training, CNNs were used and the success 

rate was 96.7%. Using this training data, protein particles in the Cryo-EM image were extracted 

through the scan code. In order to increase the accuracy during the process, it is possible to control 

the threshold score to extract the correct particles and to narrow the range of the scanned pixels 

when scanning the image. 
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CHAPTER 9. ANOMALY AND BAD DATA DETECTION FOR 
POWER SYSTEMS BY LSTMS 

 Introduction 

Continuous or simultaneous failures / events in power systems are a common problem that 

can lead to frequent section blackouts. In recent decades, many researches have been reported on 

perturbation or event detection and perception. Various types of signals were used for analysis 

purposes, including frequency, power, voltage, and phasor angles. In this paper, we choose to 

analyze the frequency signal because suddenly the frequency changes in the power system due to 

events such as generator trip, line trip or load shedding in large power systems. Typical power 

system events are divided into one of three categories such as generator trip (GT), load shedding 

(LS), and line trip (LT).   

 
Fig. 9.1.  Line trip (LT) data for power system. 

 
For GT and LS, vibration can be treated as noise. In LT, the frequency pattern of vibration 

is similar to the frequency pattern of LT, and the scale of oscillation is similar to that of LT. 

Therefore, Detection of LT is a great challenge to the power systems.  
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Fig. 9.2.  Load shedding (LS) data for power system. 

 

 
Fig. 9.3.  Generator trip (GT) data for power system. 

 
Therefore, in this paper, we used various methods to detect LT and predict the most 

predictable method. The remainder of this paper is organized as follows: Section 9.3 is introduced 

the variety of methods to predict line trip data and find the best prediction method. Section 9.4 is 
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shown the results of predicting line trip data using LSTMs and also shows the result of detecting 

bad data using LSTMs by arbitrarily adding bad data to the real data. 

 Dataset Creation for Predicting the Line Trip Data 

 
Fig. 9.4.  Line trip (LT) data for prediction with LSTMs. 

 
In this section, we introduce data for predicting line trip data using various methods. As 

shown in Fig. 9.4, the line trip data is frequency data having a certain type of period, and the x-

axis represents samples of data. The data obtained 9030 samples in 903 seconds, and the y-axis 

shows the magnitude of the frequency. Next, we used the measurement data to detect the bad data 

in the data. As shown in Fig. 9.5, the measurement data is frequency data having a certain periodic 

form like the line trip data, and the x-axis represents time (s). Measurement data was obtained 

from one data per second and 902 data were measured for a total of 992 seconds. Also, when 

compared with line trip data, we used about 10 times less data. The reason is that we use a small 

number of data to find out if it can be predicted using various methods and use a small number of 

data to find out the ability to detect bad data. 
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Fig. 9.5.  Measurement data for prediction with LSTMs. 

 Methods 

In this section, we have used four methods to predict the line trip data and the measurement 

data, and to find the optimal method to detect bad data by arbitrarily adding four outliers to the 

measurement data. Therefore, we want to find the optimum method by comparing and analysing 

the Root Mean Square Error (RMSE) using real data and predicted data.    

9.3.1 Long Short Term Memory (LSTM) 

LSTM [88] is a special kind of RNN as long short term memory networks. The most basic 

characteristic of LSTM is that it stores information for a long time. Therefore, LSTM can solve 

the long-term dependency problem of RNN. 
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Fig. 9.6.  Repeated standard RNN module with single layer. 

 
Fig. 9.7.  Repeated modules with four interacting layers that the LSTMs contains. 
 

Fig. 9.6 consists of chains that are repeated with the structure of the RNN. 𝑋ý  and ℎý 

represent the input and output respectively and also contain a single tanh layer as an activation 

function. Fig. 9.7 represents the repetitive structure of LSTM, and it has a more complicated 

structure when compared with the structure of RNN. Here, the yellow rectangle represents the 

neural network layer and the pink circle represents the pointwise operation.  
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Fig. 9.8.  The cell state of the LSTMs. 

 
Fig. 9.8 shows the cell state of LSTM. The cell state is the key point of the LSTM and is 

the horizontal line at the top of the Fig. 9.8. The cell state is made up of minor linear operations 

and plays a very important role in transmitting information. It has a function to add or remove 

information using the gate in the process of transmitting information. So far, we have examined 

the overall structure of LSTMs and the role of cell states. Next, we will use LSTMs in more detail 

to see how the information we want flows. 
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Fig. 9.9.  First step of the LSTM with sigmoid layer and inputs. 

 
Fig. 9.9 shows the first step of the LSTM. The first step is to choose what information to 

discard in the cell state. This process is done by taking input values of ℎý]Wand 𝑋ý with output 

values between 0 and 1 in the sigmoid layer which is a forget gate layer. Here, if the output value 

is 1, the value is completely maintained. If the output value is 0, the value is completely discarded. 

This process takes the input data through the sigmoid layer and proceeds to the next process by 

the following equation. 

 

𝑓ý = 𝜎(𝑊/ ∙ [ℎý]W,𝑋ý) + 𝑏/) (65) 
 

In the equation, ℎý]W and 𝑋ý are taken as inputs in the sigmoid layer, and the product of the 

weight function and the bias 𝑏/ is added to the cell state. 
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Fig. 9.10.  Second step of the LSTM with sigmoid layer and tanh activation function. 

 
The second step determines whether new information is stored in the cell state and is shown 

in Fig.9.10. First, the sigmoid layer determines which values we update. The following tanh layer 

produces a new candidate value 𝐶1ý which can be added to the cell state, and finally the two values 

to affect the next state. This process is done by the following formula. 

 

𝑖ý = 𝜎(𝑊/ ∙ [ℎý]W,𝑋ý) + 𝑏J) (66) 
 

𝐶1ý = 𝑡𝑎𝑛ℎ(𝑊2 ∙ [ℎý]W,𝑋ý) + 𝑏2) (67) 
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Fig. 9.11.  Third step of updating the old cell state to the new cell state. 

 
The third step shown in Fig. 9.11 updates the old cell state 𝐶ý]W to the new state 𝐶ý. This 

process multiplies the old cell state by 𝑓ý obtained in the first step. In addition, the data that is 

discarded from the forget gate layer is discarded. Then, by adding the product of 𝑖ý and 𝐶1ý, the new 

candidate value affects the existing value. 

 

𝐶ý = 𝑓ý ∗ 𝐶ý]W + 𝑖ý ∗ 𝐶1ý (68) 

 
Fig. 9.12.  The final step of the LSTMs. 

 

Finally, Fig. 9.12 shows the final step. In this step we have to determine the output value. 

First, we use a sigmoid layer to determine what value to output. Then, the value between -1 and 1 
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is obtained by using the tanh activation function. This value can then be multiplied by the output 

of the sigmoid gate layer to reflect the desired result. The equation is as follows: 

 

𝑜ý = 𝜎(𝑊·[ℎý]W,𝑋ý] + 𝑏· (69) 
 

ℎý = 𝑜ý ∗ tanh	(𝐶ý) (70) 
 

9.3.2 STLDecompose 

STLDecompose [89] is a powerful time series decomposition technique that can be used 

in a variety of situations. STL stands for "Seasonal and Trend decomposition using Loess". Here 

Loess is a technique for estimating nonlinear relations. The key idea is that the time series data (D) 

can be broken down into three components: trending (T), seasonal (S) and residual (R). 

 

D	=	T	+	S	+	R		 (71) 
 

STL has several advantages: STL can handle any kind of seasonality, including monthly 

or quarterly data. Seasonal ingredients can change over time. User can control the rate of change 

of seasonal components and adjust the smoothness of the trend - seasonal. Sometimes an ideal 

value cannot affect the trend and seasonal components, but ideal value will affect the remainder. 
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Fig. 9.13.  Decomposition for trend, seasonal and residual with line trip data. 

 
Fig. 9.14.  Prediction results for line trip data with STLDecompose. 

 
Fig. 9.13 shows an example of applying STL to the line trip data. As you can see in the 

figure, using SLTDecompose, we can decompose the data to see the trend and seasonal of the data. 

Also, as can be seen in Fig. 9.14, we learn the line data from the yellow data such as the observed 

data to predict future data sufficiently, and the results are quite similar. 
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9.3.3 ARIMA Model 

Three integers (p, d, q) used to parameterize the ARIMA model [90]. These three 

parameters represent the seasonality, trends, and noise of the data. p is the autoregressive part of 

the model, which allows us to integrate the influence of past values into our model. d is the 

integrated part of the model, which includes the term of the model that incorporates the amount of 

difference to apply to the time series. q is the moving average part of the model that allows us to 

configure the model's error as the linear combination of error values observed at a previous point 

in the past. When dealing with seasonal effects, seasonal ARIMA marked as ARIMA (p, d, q) (P, 

D, Q)s is used. (p, d, q) is the seasonal parameter, (P, D, Q) applies to the seasonal component of 

the time series and s is the time series period (4 for the quarter and 12 for a year). Three pairs of 

parameters are used to train with the ARIMA model. When evaluating and comparing statistical 

models with different parameters, each parameter can be ranked according to how well they fit in 

the data. We use the Akaike Information Criterion (AIC) value in this process. The AIC statistic 

model is used to return to the ARIMA model. The AIC values compare how well the model fits 

the data and take into account the complexity of the model, so a model that fits better while using 

fewer features will receive a lower AIC score than a similar model that uses more features. 
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Fig. 9.15.  Prediction results for line trip data with ARIMA model. 

 

Table 9.1.  Results of AIC (Akaike Information Criterion) score with different parameters (p, d, 
q) × (P, D, Q, s). 

parameters (p, d, q) × (P, D, Q, s)  AIC score 
(1, 1, 1) × (0, 0, 0, 12) -27896 
(0, 1, 1) × (0, 0, 0, 12) -27490 
(1, 0, 1) × (0, 0, 0, 12)               -27557 
(1, 1, 0) × (0, 0, 0, 12) -27741 
(1, 1, 1) × (1, 0, 0, 12) -27693 
(1, 0, 0) × (1, 0, 0, 12) -26611 
(0, 1, 1) × (1, 0, 1, 12) -27284 
(0, 1, 0) × (1, 1, 0, 12) -25327 
(0, 1, 0) × (1, 0, 0, 12) -26581 

∙ ∙ 
  

 

In this study, the AIC score was obtained by substituting various parameters to find the 

lowest AIC score mentioned above. The result is shown in Table 9.1. As the table shows, when 
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the parameter is (1, 1, 1) x (0, 0, 0, 12), the AIC score is the lowest value of -27896 and it can be 

seen in Fig. 9.15. The blue line represents the observed data and the yellow line represents the 

predicted results using the ARIMA model. As can be seen from the figure, the prediction results 

are quite matched the line trip data. 

9.3.4 Holt-Winters Seasonal Method 

Holt-Winters seasonal method [91] is extended the Holt's method to capture seasonality. It 

consists of the predictive equation and three smooth equations. One for the level 𝑙ý, one for the 

trend 𝑏ý and one for the seasonal component 𝑠ý, each of them is made up of the corresponding 

smoothing parameters 𝛼, 𝛽∗, 𝛾. We use m to denote the period of the seasonality, i.e., the number 

of seasons in a year. For instance, for quarterly data m=4, and for monthly data m=12. There are 

two variations on this method, depending on the nature of the seasonal components. Addition 

method is used when the seasonal variability is almost constant throughout the time series and 

multiplication method is used when seasonal variation is proportional to the level of the time series. 

In this research, we used the addition method and the govern equations represents below: 

𝑦7ý�8|ý = 𝑙ý + ℎ𝑏ý + 𝑠ý]Þ�89: 		 (72) 
 

𝑙ý = 𝛼(𝑦ý − 𝑠ý]Þ) + (1 − 𝛼)(𝑙ý]W + 𝑏ý]W)		 (73) 
 

𝑏ý = 𝛽∗(𝑙ý − 𝑙ý]W) + (1 − 𝛽∗)𝑏ý]W		 (74) 
 

𝑠ý = 𝛾(𝑦ý − 𝑙ý]W − 𝑏ý]W) + (1 − 𝛾)𝑠ý]Þ		 (75) 
 

The level equation shows the weighted average between the seasonally adjusted 

observation (𝑦ý − 𝑠ý]Þ) and the non-seasonal forecast (𝑙ý]W + 𝑏ý]W) for time t. The trend equation 

is identical to Holt’s linear method. The seasonal equation shows the weighted average between 

the current seasonal index, (𝑦ý − 𝑙ý]W − 𝑏ý]W)	and the seasonal index of the same season last year 

(i.e., m time periods ago). 
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Fig. 9.16.  Prediction results for line trip data with Holt-Winters method. 

 

In Fig. 9.16, we learned the line data using Holt-Winters methods to predict data 

sufficiently, and the results are quite similar compared to line trip data. 

9.3.5 The Comparison of the Prediction Data with Methods 

Table 9.2.  RMSE comparison for 4 methods. 
Methods RMSE(Root Mean Square Error) 

Long Short Term Memory (LSTM) 0.002605 
Seasonal Trend decomposition using Loess (STLD) 0.0381 

AutoregRessive Integrated Moving Average (ARIMA) 0.00311 
Holt-winters seasonal method 0.019 

 

We have predicted line trip data using 4 methods that we have briefly discussed above. In 

order to find the most accurate prediction method, Root Mean Square Error (RMSE) was 

calculated and compared. Table. 9.1 represents the result of comparing RMSE values using four 

methodologies. As can be seen from the table, it shows the smallest error value when the line trip 

data is predicted using LSTM. Therefore, in the next section, we will use LSTM to predict line trip 

data and add 4 outliers to measurement data to find bad data and to predict measurement data. 
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 Predicting the Line Trip Data and Bad Data Detection with LSTMs  

In this section, the methodology of LSTMs was deemed to be most appropriate when using 

the line trip data and measurement data and evaluating the methods mentioned above as prediction 

methods. Therefore, we will go into more detail in this section.  

 
Fig. 9.17.  Line trip data for prediction with LSTMs. 

 

We also compared the real data with the prediction data using LSTMs by arbitrarily 

including outlier data in the measurement data. We want to see the result of detecting bad data 

through the obtained error. We first obtained the 9030 line trip data [92] for 903 seconds. Using 

9030 data, training data and test data are composed of 6030 and 3000 respectively and 900 

validation data sets are specified in 6030 training data sets. We trained using the specified data and 

LSTMs. During the training process, the batch size is set to 50 and the epoch is set to 100. The 

LSTM layers start from the input layer 1 and through the hidden layers 64, 256, and 100, the final 

output layer is 1. We predicted the data using the mentioned above data and LSTMs. Fig. 9.17 

shows the result of predicting line trip data using LSTMs. The x-axis represents data over time and 

the y-axis represents the frequency magnitude. The y-axis of the squared error represents the error 

value obtained by subtracting the predicted signal from the actual test signal. As shown in the 
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figure, the blue data at the top represents the actual test signal data, the data using the mentioned 

above data and LSTMs. Fig. 9.17 shows the result of predicting line trip data using LSTMs. The 

x-axis represents data over time and the y-axis represents the frequency magnitude. The y-axis of 

the squared error represents the error value obtained by subtracting the predicted signal from the 

actual test signal. As shown in the figure, the blue data at the top represents the actual test signal 

data, the middle represents the predicted value using LSTMs, and the bottom graph shows the error 

value obtained by subtracting the predicted signal data value from the actual test signal data. As 

can be seen from the figure, the predicted results are quite similar when compared to the actual 

test data. 

 

 
Fig. 9.18.  Measurement data for prediction with LSTMs. 
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Fig. 9.19.  Bad data detection with LSTMs. 

 

Next, we predicted the data using measurement data and LSTMs. Through the total of 992 

data, 800 training data and 192 test data were specified. Finally, 60 validation data sets were 

specified in 800 training data. We trained using the specified data and LSTMs. During the training 

process, the batch size is set to 50 and the epoch is set to 100. The LSTM layers start from the 

input layer 1 and through the hidden layers 64, 256, and 100, the output layer is 1. We predicted 

the measurement data using the mentioned above the data and LSTMs. In addition, as mentioned 

above, when a small amount of data is used, the amount of data which is 10 times smaller than the 

number of line trip data is specified in order to judge how high the success rate of data is predicted. 

Fig. 9.18 shows the result of predicting measurement data using LSTMs. The x-axis represents 

data over time and the y-axis represents the frequency magnitude. The y-axis of the squared error 

represents the error value obtained by subtracting the predicted signal from the actual test signal. 

As shown in the figure, the blue data at the top represents the actual test signal data, the middle 

represents the result predicted using LSTMs, and finally the bottom graph shows the error value 

obtained by subtracting the predicted signal data value from the actual test signal data. As can be 

seen from the graph, the predicted results are quite similar when compared to actual test data. 



 113 

Finally, bad data was detected using the same measurement data as above. During this 

process, 4 outliers were arbitrarily added to the data to specify bad data. Fig. 9.19 shows the result 

of predicting bad data detection of measurement data using LSTMs. As shown in the figure, the 

blue data at the top represents the actual test signal data, the middle represents the result predicted 

using LSTMs, and finally the bottom graph shows the error value obtained by subtracting the 

predicted signal data value from the actual test signal data. As can be seen from the graph, the 

predicted results are quite similar when compared with the actual test data, and the prediction is 

different when the outlier part is met. In order to obtain a more accurate result, the errors are 

calculated and it is confirmed that the error increases rapidly in the four outlier sections. Therefore, 

we could detect bad data of measurement data through the error. 
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CHAPTER 10. CONCLUSIONS  

In this study, we started from the theoretical part of molecular dynamics and supplemented 

it by using machine learning and deep learning to compensate for the disadvantages of the high 

computational cost of molecular dynamics. Also, peridynamics based on molecular dynamics was 

used as data, and deep learning method was applied to increase the efficiency of computation cost. 

The deep learning method was used to automatically extract particles from the Cryo-EM image 

and apply power system frequency data to predict the data and detect bad data. 

First, Tersoff empirical potentials, which are the basis of molecular dynamics calculations, 

are not suitable for calculating the mechanical properties of silicon nanowires. Therefore, we can 

obtain the mechanical properties suitable for the silicon nanowires by fitting the parameters of the 

existing experiential potential in our way through the combination of first principle calculation and 

MD calculation. In the application part study of molecular dynamics, the MEAM potential was 

applied to the Fe-Cu system to improve the mechanical properties. In the Fe-Cu system, Cu-steel 

with lamellae Cu precipitates, consisting of 10% Cu in structure, Cu-steel with spherical Cu 

precipitates, including 5% of randomly mixed Cu, and steel without Cu-containing are compared. 

The experimental finding is validated by the molecular dynamical simulations, which confirmed 

that changing the morphologies of Cu precipitates and the ratio of multi-phases in the 

microstructure can significantly enhance both ultra-high-strength and good ductility. 

Secondly, we compensate for the disadvantages of FEM by using peridynamics based on 

molecular dynamics and also supplemented the disadvantages of calculation of molecular 

dynamics by applying deep learning technique. In this work, we introduce convolutional neural 

networks designed to predict and analyze damage patterns on a disk resulting from molecular 

dynamics (MD) collision simulations. The simulations under consideration are specifically 

designed to produce cracks on the disk and, accordingly, numerical methods which require partial 

derivative information, such as finite element analysis, are not applicable. These simulations can, 

however, be carried out using peridynamics, a nonlocal extension of classical continuum 

mechanics based on integral equations which overcome the difficulties in modeling deformation 

discontinuities. Though this nonlocal extension provides a highly accurate model for the MD 

simulations, the computational complexity and corresponding run times increase significantly as 

the simulations grow large. We propose the use of neural network approximations to complement 
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peridynamic simulations by providing quick estimates which maintain much of the accuracy of the 

full simulations while reducing simulation times by a factor of 1,500. We propose two distinct 

convolutional neural networks: one trained to perform the forward problem of predicting the 

damage pattern on a disk provided the location of a colliding object's impact, and another trained 

to solve the inverse problem of identifying the collision location, angle, velocity, and size given 

the resulting damage pattern. Finally, neural processes were used to solve the 2-D regression 

problem. These neural processes were optimized to address the regression problem by combining 

the advantages of neural networks and Gaussian processes. In this process, the data obtained 

through the peridynamics were made similar to the MNIST data, and were classified into training 

data set and test data set for training. We also set the context points to 10, 100, 300, and 784 so 

that we could see the results of the test images. As a result, if the epoch is low, the prediction is 

not good enough regardless of context points. However, as the number of epochs increases, the 

result of the speculation is right. In the final epoch 3000, even if the context points are 100, the 

prediction is sufficiently right as in the case of the context points 784. In other words, using neural 

processes, the forecast is possible using data with less information. 

Finally, deep learning was used to automatically extract the particles in the Cryo-EM 

image, predict frequency data of the power system, and detect bad data. First, we used CNNs to 

distinguish between bad data and good data of a particle, and the success rate was 96.7%. Using 

the trained data, we could create a scanning system and extract the particles by applying a new raw 

Cryo-EM image. We also used LSTMs, a unique method of RNN, to predict frequency data of the 

power system. In addition, bad data was predicted by randomly adding outlier to the frequency 

data. As a result of prediction, if bad data existed, it could be detected by showing that the MSE 

error value significantly increased, unlike other standard data. 
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