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ABSTRACT

Zhen, Todd PhD, Purdue University, December 2019. Optimal Sensor Placement
Problems Under Uncertainty: Models and Applications. Major Professor: Carl D.
Laird.

The problem of optimally placing sensors can often be formulated as a facility

location problem. In the literature of operations research, facility location problems

are mathematical optimization problems where one or more facilities must be placed

in relation to a given number of demand points or customers. Within the context

of sensor placement, for example, this translates to placing wireless communication

nodes that connect to a set of users or placing smoke detectors to adequately cover

a region for safety assurances. However, while the classical facility location prob-

lem has been extensively studied, its direct applicability to and effectiveness for the

optimal sensor placement problem can be diminished when real-world uncertainties

are considered. In addition, the physics of the underlying systems in optimal sensor

placement problems can directly impact the effectiveness of facility location formula-

tions. Extensions to existing location formulations that are tailored for the system of

interest are necessary to ensure optimal sensor network design.

This dissertation focuses on developing and applying problem-specific optimal sen-

sor placement methods under uncertainty in sensor performance. With the classical

discrete facility location problems as a basis, our models are formulated as mixed-

integer linear and nonlinear programs that, depending on the specific application,

can also be in the form of a stochastic program, a robust optimization framework,

or require probability distributions for uncertain parameters. We consider optimal

placement problems from three different areas, particularly the optimal placement of

data concentrators in Smart Grid communications networks, the optimal placement of
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flame detectors within petrochemical facilities, and the optimal selection of infectious

disease detection sites across a nation. For each application, we carefully consider the

underlying physics of the system and the uncertainties and then develop extensions

of previous sensor placement formulations that effectively handle these qualities. In

addition, depending on the degree of nonlinear complexity of the problem, specific

relaxations and iterative solution strategies are developed to improve the ability to

find tractable solutions. All proposed models are implemented in Pyomo, a Python-

based optimization modeling language, and solved with state-of-the-art optimization

solvers, including IPOPT, Gurobi, and BARON for nonlinear, mixed-integer, and

mixed-integer nonlinear programs, respectively. Numerical results show that our tai-

lored formulations for the problems of interest are effective in handling uncertainties

and provide valuable sensor placement design frameworks for their respective indus-

tries. Furthermore, our extensions for placement of sensors under probabilistic failure

are appropriately general for application in other areas.



1

1. INTRODUCTION1

Sensor placement strategies have been extensively studied in areas ranging from struc-

tural health monitoring to leak detection in municipal water networks to wireless

sensor networks. The strategies can generally be divided into two types: (i) exact

methods based in mathematical programming, or (ii) heuristic-based methods includ-

ing proprietary algorithms and placement rules. In this dissertation, we will focus on

reviewing methods from the former, and present frameworks by which sensor place-

ment is handled for various applications.

We begin by discussing basic models for sensor placement, including the Set-

Covering Problem and Maximal Covering Location Problem, as well as expanded

approaches such as the p-Median, p-Center, and Capacitated Facility Location Prob-

lems in Section 1.1. We describe methods for consideration of uncertainty in facility

location problems in Section 1.2. The contributions of the dissertation are then de-

scribed in Section 1.3, followed by an outline in Section 1.4.

1.1 Basic Models and Classification

Optimal sensor placement formulations, within the context of mathematical pro-

gramming, can be traced back to the classical facility location problem. The facility

location problem consists of determining the “best” location for one or several facil-

ities or equipments to serve a set of demand points. The facility location problem

has been studied in the fields of operations research, location science, and optimiza-

tion, among others. We refer the reader to the book by Laporte et al. (2015) which

1Part of this chapter is reprinted from “Optimizing Placement and Expansion of Resources in

Smart Grid Communications Networks” by Zhen, T., Elgindy, T., Alam, S., Hodge, B. M., and

Laird, C.D., IET Smart Grid, July 2019.
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provides comprehensive details on the facility location problem and its correspond-

ing formulations, as well as on various applications and extensions across research

domains.

The optimal sensor placement problem, like the facility location problem, includes

a large family of model formulations that vary based on the physics of the underly-

ing system. For example, a detection sensor (as in a smoke alarm or contamination

detector) may only need to send signal in one direction and, in the case of binary

detection, require little to no information post-processing. However, wireless sen-

sors, within the context of wireless sensor networks, are required not only to detect

and serve demand points, but may also relay, process, and/or fuse information be-

tween other sensors. An optimal sensor placement formulation that serves well for a

problem within one context may not be applicable for one in a different context. In

general, however, optimal sensor placement models can be described by the class of

facility location problem formulations, and extensions can be made depending on the

underlying physics of the system. In the following sections, we describe the relevant

problem classes within the field of location science, and their applicability to optimal

sensor placement problems.

1.1.1 Set Covering Problem

In general, two types of covering problems are (i) the Set-Covering Problem (SCP),

where full service to demand points is required, and (ii) the Maximal Covering Loca-

tion Problem (MCLP), where coverage is maximized. The first mention of covering

problems in literature can be traced back to (Hakimi, 1965) where the problem of

where to distribute a number of policemen to patrol a highway was investigated.

However, the problem was first mathematically formulated by (Toregas et al., 1971)

within the context of facility location. The classical set covering problem involves

minimizing the total cost of placing a number of facilities such that every demand
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point or customer is covered. The corresponding mathematical formulation is defined

as follows.

minimize
y

∑
i∈I

yi (1.1a)

subject to
∑
i∈In

yi ≥ 1 ∀n ∈ N (1.1b)

yi ∈ {0, 1} ∀i ∈ I (1.1c)

where I is the set of candidate locations i where facilities can be placed, N is the set

of all demand points n that must be covered, In is the set of candidate locations that

can cover demand point n, and yi is a binary variable indicating whether a facility is

placed at location i. The objective function minimizes the total number of facilities

that are placed. The first constraint ensures that all demand points are covered by

one or more facilities. The second constraint denotes yi as a binary variable.

In the context of sensor placement, each facility in this case would instead be a

sensor with coverage or servicing capabilities. For example, a smoke detector with

a fixed radius of coverage, a visual camera with a field-of-view, or a wireless sensor

module with a communication radius. The SCP can also easily be expanded to specify

a level of coverage, where a cost is associated with covering each element. In addition,

the coverage constraint can be expanded to require each element or demand area (in

the case of facility location) be served by two or more sensors based on a minimum

percent of covered area. Farahani et al. (2012) provides an exhaustive updated survey

of literature on covering problems in facility location and their various extensions.

Wang (2011) details a number of coverage models for sensor networks, including a

review of coverage metrics and models for point, area, and barrier coverage problems.

1.1.2 Maximal Coverage Location Problem

The maximal coverage problem (MCLP) was first introduced by (Church and

Revelle, 1972) and describes maximizing the coverage of target demand subject to
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distance constraints. The MCLP is a natural extension of the SCP where the coverage

constraint is relaxed and coverage is maximized subject to a fixed budget of facilities.

Extending the SCP formulation and notation from the previous section, the MCLP

formulation is defined as follows.

maximize
x,y

∑
n∈N

xn (1.2a)

subject to
∑
i∈In

yi ≥ xn ∀n ∈ N (1.2b)

∑
i∈I

yi = P (1.2c)

yi ∈ {0, 1} ∀i ∈ I (1.2d)

0 ≤ xn ≤ 1 ∀n ∈ N (1.2e)

where xn is a variable indicating whether demand point n is covered by the network

of facilities (or sensors) and P is a parameter denoting a limit on the number of

facilities that can be placed. Conventionally, the variable xn is denoted as a binary

variable. But in the case of this specific formulation, the binary constraint can be

relaxed because the nature of the problem will converge xn to its bounds, 0 or 1. The

objective function maximizes the number of covered or satisfied demand points xn.

The coverage constraint in Equation 1.2b describes the relationship between yi and

xn, where a demand point n is satisfied only if a corresponding facility i that can

cover the demand point is placed. The budget constraint in Equation 1.2c limits the

number of placed facilities i.

The MCLP has been widely used for sensor placement problems, especially in

the fields of wireless sensor networks and visual surveillance. Bagula et al. (2015)

expanded the MCLP for placement of wireless parking sensors within garages to

detect presence of vehicles. Sterle et al. (2016) proposed a unified stepwise approach

for 2D and 3D coverage problems for omni-directional and unidirectional wireless

sensor networks based off the MCLP. Murray et al. (2007) applied the MCLP for

surveillance monitoring with visual sensors of a university campus.
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1.1.3 Uncapacitated/Capacitated Facility Location Problem

Traditionally, the defining characteristic in Facility Location Problems is to lo-

cate a number of facilities across a set of potential locations in order to serve user

demand. The placement decisions are generally assumed to be strategic while the

demand allocation decisions are considered flexible or operational. In the design of a

wired communications network, for example, both placement and allocation decisions

would be considered strategic, while in a wireless communications network, the allo-

cation decisions may be operational as changes in allocation do not incur cost. We

refer the reader to (Fernández and Landete, 2015a) for an in-depth review of fixed-

charge facility location problems. Daskin et al. (2005) reviews the capacitated facility

location problem and extensions in supply chain network design, including transporta-

tion costs, stochastic scenario-based formulations in literature, and reliability models.

Examples and an overview of the fixed charge facility location problems, including

capacitated and uncapacitated flow, can be found in (Bertsekas, 1998; Laporte et al.,

2015).

The Capacitated Facility Location Problem (CFLP) enforces a constraint on the

number of goods or services that each facility can handle (i.e. limit on sensor readings,

message size). The Uncapacitated Facility Location Problem (UFLP) is the general

form without this limit on capacity. In general, the CFLP is defined below, following

the notation convention defined for the previous SCP and MCLP formulations.

minimize
x,y

∑
i∈I

fiyi +
∑
i∈I

∑
n∈N

cinxin (1.3a)

subject to
∑
i∈In

xin = 1 ∀n ∈ N (1.3b)

∑
n∈N

gnxin ≤ qiyi ∀i ∈ I (1.3c)

yi, xin ∈ {0, 1} ∀i ∈ I, n ∈ N (1.3d)

where xin is a binary variable indicating whether demand at n is served by facility i,

yi is a binary variable indicating whether a facility is placed at location i, fi is the
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cost of placing facility i, cin is the cost of serving demand point n, gn is the demand

at n, and qi is the capacity of facility i. The objective function minimizes the total

cost of placing a facility as well as the total cost of allocating resources to the demand

points. Constraints 1.3b ensure that all demands are served. Constraints 1.3c sets a

capacity limit on the demands that can be served by a facility i.

In comparison to the MCLP, the CFLP does not impose limits on the number

of facilities that are placed. Rather, the total number of placements are minimized

according to the cost objective. In addition, the capacity constraint in Equation 1.3c

performs similarly to the coverage constraint in Equation 1.2b in that only if a facility

is placed at location i (i.e. yi=1) can demand allocations to facility i exist. However,

the capacity constraint also imposes limits on the number of potential allocations or

links that can be established between facility i and demand point n.

In the context of sensor placement, the CFLP has been predominantly used

for problems in designing wireless sensor networks, where facilities are wireless sen-

sors that have bandwidth-capped communication to service nodes (Qiu et al., 2004;

Rowaihy et al., 2007; Mo et al., 2011).

1.1.4 p-Median and p-Center Problems

Presumably independently of each other and concurrently with the development

of the Capacitated and Uncapacitated Facility Location Problems, Hakimi (1964)

published the seminal paper on the problem of locating facilities such that the sum

or the maximum of the distances from all nodes of the network to the facilities is

minimized. These two problems have since been known as the p-median and p-center

problems, respectively.

Specifically, the p-median problem (PMP) is that of placing p facilities to min-

imize the demand weighted-average distance between the closest selected facilities

and demand nodes (Laporte et al., 2015). A thoroughly annotated bibliography of p-

median-type problems can be found in (ReVelle et al., 2008). The p-median problem

draws close parallels with the capacitated facility location problems and the maxi-
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mal coverage location problems, as we will show in the following formulation, and

has historically lied at the heart of many practical location problems. Within sen-

sor placement, the p-median formulation has been applied extensively to problems

in optimal gas detector placement (Legg et al., 2012, 2013; Benavides-Serrano et al.,

2014; Gomes et al., 2014) and water contamination detector placement (Berry et al.,

2005; Hart and Murray, 2010; Krause et al., 2008; Casillas et al., 2013; Krause and

Guestrin, 2007). A number of papers have also expanded the p-median problem to

consider scenario-based coverage, and a variety of other metrics that are extended

from SCP or MCLP formulations (Farahani et al., 2012; Laporte et al., 2015; Karatas

et al., 2016).

The general PMP formulation is defined below, following the notation defined for

the previously described formulations.

minimize
x,y

∑
i∈I

∑
n∈N

wncinxin (1.4a)

subject to
∑
i∈In

xin = 1 ∀n ∈ N (1.4b)

∑
i∈I

yi = P (1.4c)

xin ≤ yi ∀i ∈ I, n ∈ N (1.4d)

yi ∈ {0, 1} ∀i ∈ I (1.4e)

xin ≥ 0 ∀i ∈ I, n ∈ N (1.4f)

where wn is the weight of serving demand node n, cin is the cost of serving demand

n with facility i, and P is the limit on placed facilities. The objective function

minimizes the demand-weighted total cost. Constraints 1.4b ensure that all demand

nodes are served, and is equivalent to Constraints 1.3b in the CFLP formulation.

Constraints 1.4c define a budget for the number of placed facilities, and is equivalent to

Constraints 1.2c in the MCLP formulation. This can also be relaxed to an inequality.

Constraints 1.4d ensure that a demand node is served only if a corresponding facility

is placed, and is similar to the coverage constraints found in Constraints 1.2b in
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the MCLP formulation. Constraints 1.4e require that the placement variables yi be

binary and Constraints 1.4f enforce that the assignment variables xin be non-negative.

Interestingly, in comparison to the assignment variables in CFLP, the assignment

variables xin here can be relaxed to non-negative values as long as the total demand

at node n can be assigned to the nearest placed facility.

The PMP formulation, like the CFLP, shares a minisum objective function, but

differ in their solution behavior. Whereas the objective in the PMP formulation is

comprised of a single summation for the total or average distance to demand nodes,

the CFLP objective includes multiple cost objectives that can lead to competing

behaviors, especially if it is formulated as a profit maximization instead. Therefore,

the PMP is, in some cases, considered more stable than the CFLP, although both

have been studied and used extensively over the past 60 years.

Similar to the PMP, the p-center problem (PCP) is that of placing p facilities to

minimize the maximum distance between a demand point and a demand-servicing

facility. While the total or average distance minimization in PMP tends to favor clus-

ters, the PCP yields a more spatially-dispersed demand-facility assignment, and has

been useful for location problems that need to account for adequate spatial disper-

sion, such as location of ambulances and police stations. Within sensor placement,

this translates to the placement of contamination detectors in water distribution net-

works that minimize maximum detection times (Berger-Wolf et al., 2005; Watson

et al., 2008, 2009; Krause and Guestrin, 2009), or in the design of wireless sensor

networks that minimize maximum network hop distance (Youssef and Younis, 2010).

Calik et al. (2015) describes in detail the p-center problem, solution methods, variants,

and extensions.
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The general PCP formulation is an extension of the PMP formulation, and is

defined below following the notation previously used for the aforementioned formula-

tions.

minimize
x,y

z (1.5a)

subject to
∑
i∈I

∑
n∈N

cinxin ≤ z ∀n ∈ N (1.5b)

∑
i∈In

xin = 1 ∀n ∈ N (1.5c)

∑
i∈I

yi = P (1.5d)

xin ≤ yi ∀i ∈ I, n ∈ N (1.5e)

yi ∈ {0, 1} ∀i ∈ I (1.5f)

xin ≥ 0 ∀i ∈ I, n ∈ N (1.5g)

where z is an auxiliary variable for the maximum of the distances between the demand

points and their facilities. Together with the objective, Constraints 1.5b ensure that

the objective value is no less than the maximum of the distances between the demand

points and corresponding facilities. The rest of the constraints are equivalent to those

of the PMP formulation.

In the next section, we describe how the p-median and p-center formulations can

be utilized in designing sensor networks under uncertainty.

1.2 Placement Under Uncertainty

Snyder (2006) provides an excellent and extensive survey of approaches to op-

timization under uncertainty within the context of facility location. The reader is

referred to (Snyder, 2006) for additional details and papers of interest, as only a

general overview of the approaches and reasoning are covered in this section.

There is a large body of literature concerning facility location problems with

possibly congested facilities, which attempt to capture the uncertain event that a

customer may need service from a facility that is occupied with another customer.
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Such models are most commonly utilized in siting ambulances or other emergency

services. They can attempt to guarantee adequate service either by (i) requiring

redundant coverage or (ii) explicitly considering queueing models. Closely related is

the branch of literature that considers models in which facilities may be unable to

provide service due to facility distributions or link failures.

Snyder (2006) divides decision-making into three categories: (i) certainty, (ii)

risk, and (iii) uncertainty. In certainty situations, all parameters are deterministic or

known, whereas uncertainty and risk situations involve randomness. In risk situations,

uncertain parameters can be characterized by known probability distributions. In

uncertainty situations, parameters are uncertain and probability distributions are

unknown. Problems concerning risk fall under stochastic optimization, while those

concerning uncertainty fall under robust optimization.

The goals of both these optimization classes of problems are to find a solution

that will perform well considering the possible realizations of the random parame-

ters, where performance is described by a metric that varies with the application.

For example, stochastic optimization problems can generally focus on optimizing

an expected value of an objective function, while robust optimization problems will

attempt to handle the worst-case performance of the system. In addition, these ran-

dom parameters can either be described by continuous probability distributions or

characterized by a discrete set of scenarios. The scenario approach has two main

disadvantages: (i) identification of the scenarios is itself a daunting task, and (ii) a

small number of scenarios is favored for practicality and computational handling, but

limits the state space of the evaluation. Nevertheless, the scenario approach can be

more tractable and has the benefit of allowing statistical dependency of parameters

across time and space, which can be difficult to achieve with continuous probability

distributions.

In sensor placement, there is also another form of uncertainty arising from the

performance of the sensor. This comprises uncertainties such as sensor outages and

undetected events, which can be critical in the effectiveness of the sensor network.
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While scenarios can also be used in this type of problem, such as specifying out-

age scenarios, the more common case is to use probability distributions to quantify

the uncertainty. Therefore, both probability- and scenario-based approaches can be

suitable depending on the goal of the sensor placement problem and nature of the

uncertainty involved in the design.

1.2.1 Stochastic and Robust Optimization Placement Models

The stochastic programming (SP) problem consists of first and second stage deci-

sion variables. Generally, locations are first-stage variables to be set now, and demand

assignments (in the case of facility location problems) are set after the uncertainty

has been resolved in the second-stage or recourse decisions.

The most common objective in SP is to optimize the mean (or expected value)

outcome of the system, for instance, by minimizing the expected cost. This is typically

done using a scenario-based PMP or CFLP formulation, whereby the expected cost,

distance, or demand, weighted across scenarios, is minimized. Snyder (2006) survey

a large number of papers within this context, including those involving dynamic

location, mean-variance models, and chance-constraints.

In contrast to the SP problem, robust optimization (RO) problems typically focus

on minimax cost (as in PCP-based formulations), and are used when no probability

information is known about uncertain parameters. The primary motivation for this

problem is that it does not require the modeler to have prior knowledge of scenario

probabilities.

The minimax problem is one that minimizes the maximum cost across all scenarios

or demand-weighted costs. Since this type of problem prioritizes handling of the

worst-case scenario, it can provide poor solutions for the scenarios that do not have

max cost. Thus, minimax objectives are useful for optimizing those applications in

which the system must function well in worst-case scenarios.

The literature for this type of minimax problem within facility location is not

as large as that of the expected value problem in SP, due to its limited practical
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use-cases and solution difficulty. Snyder (2006) describes papers that show general

tricks and heuristic algorithms that can be applied for minimax problems, such as

setting all uncertain parameters to their upper bounds and solving as a deterministic

problem. Exact methods for minimax problems, however, are still in their infancy.

Recently, Legg et al. (2013) proposed an optimal gas detector placement formulation

under uncertainty that considered Conditional-Value-at-Risk within a stochastic pro-

gramming framework, and generated placements with better worst-case behavior and

fewer scenarios with high detection times when compared with those that minimized

mean detection times.

1.3 Applications of Optimal Sensor Placement Methods

In this dissertation, the focus will be on applying and extending a combination of

these classical facility location formulations for the design of sensor networks under

uncertainty for three different domains: placement of data concentrators within Smart

Grid communications networks, placement of flame detectors within petrochemical

facilities, and location of infectious disease detection sites within a country. With

each of these problems, the classical facility location formulations cannot solve them

sufficiently, and model extensions must be developed to handle their unique natures.

Optimal Placement of Data Concentrators for the Expansion of the Smart
Grid Communications Network

Evolving power systems with increasing renewables penetration, along with the

development of the smart grid, calls for improved communication networks to support

these distributed generation sources. Automatic and optimal placement of communi-

cation resources within the Advanced Metering Infrastructure are critical to providing

a high-performing, reliable, and resilient power system.

The Smart Grid communications network is characterized by modules that collect

power usage data from consumers, which then relays the information wirelessly to data

concentrators that process the data before sending it to the central utility station.
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The problem of placing data concentrators is formulated as a CFLP-based model that

aims to maximize the residual network capacity rather than minimize cost.

Three network design formulations based on CFLP and p-center approaches are

proposed to minimize network congestion by optimizing residual buffer capacity through

placement of data concentrators and network routing. Results on a case study show

that the proposed models improve network connectivity and robustness, and increase

average residual buffer capacity. Maximizing average residual capacity alone, however,

results in both oversaturated and underutilized nodes, while maximizing either mini-

mum residual capacity or total reciprocal residual capacity can yield much-improved

network load allocation. Consideration of connection redundancy improves network

reliability further by ensuring quality-of-service in the event of an outage. Analysis

of multi-period network expansion shows that the models do not deviate significantly

from optimal when used in a rolling horizon planning context (within 5% deviation),

and are effective for utility planners to use for Smart Grid expansion.

Optimal Placement of Flame Detectors in Petrochemical Facilities Con-
sidering Non-Uniform Unavailabilities

Flame detectors provide an important layer of protection for personnel in petro-

chemical plants, but effective placement can be challenging. A mixed-integer non-

linear programming formulation based on the Maximal Expected Coverage Location

Problem is proposed for optimal placement of flame detectors while considering non-

uniform probabilities of detection failure. We show that this approach allows for

the placement of fire detectors using a fixed sensor budget and outperforms mod-

els that do not account for imperfect detection. We develop a linear relaxation to

the formulation and an efficient solution algorithm that achieves global optimality

with reasonable computational effort. We integrate this problem formulation into the

Python package, Chama, and demonstrate the effectiveness of this formulation on a

small test case and on two real-world case studies using the fire and gas mapping

software, Kenexis Effigy.
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Parameter Estimation for Infectious Disease and Optimal Selection of
Cities for Early Detection of Disease Spread

Highly infectious pathogens can cause localized outbreaks that are followed by

regional extinction as susceptible hosts are exhausted. Spatial transmission of these

pathogens can once again spark new outbreaks. Study of spatial transmission param-

eters is essential to predicting and mitigating these outbreaks, as well as implementing

strategies for allocating resources for early detection of outbreaks.

We first address the issue of estimating disease transmission parameters by propos-

ing a flexible, scalable modeling framework. Spatial coupling parameters are a mea-

sure of the level of mixing of individuals between regional subpopulations. Seasonal

transmission parameters describe the impact of seasonal variation due to effects like

degree of interaction. This work first focuses on estimating both spatial coupling

and seasonal transmission parameters with a nonlinear programming approach to

generate an effective model for simulating the spread of disease across a network of

subpopulations.

A framework is presented for efficient estimation of parameters in city-to-city spa-

tial transmission models by inferring transport information from localized disease

case data using a statistical, hazard-based SIR model. . A statistical hazard-based

approach focusing on disease fade-out periods provides the basis for the estimation.

Then, the model is extended to simultaneously estimate the city-to-city spatial trans-

mission parameters, as well as seasonal transmission parameters. The proposed ap-

proach for this large-scale estimation is readily scalable to larger problem sizes and

substantially reduces solution times. The estimation is demonstrated using records

of measles outbreaks in 954 cities across England and Wales between 1944 and 1964.

Using the parameter estimates, a stochastic simulator is constructed to model

spatio-temporal disease dynamics and generate disease transmission scenarios, we

identify optimal locations to place infectious disease detection centers using a stochas-

tic programming, p-median-based formulation. We compare the results between the
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minimization of two impact metrics - (i) time until detection and (ii) expected cumu-

lative number of infected individuals before detection.

Throughout this thesis, we demonstrate that facility location formulations are

remarkably general and applicable in a variety of sensor placement contexts. Fur-

thermore, as we show, these formulations can be extended to handle physics and

constraints arising in new applications while retaining reasonable computational per-

formance, even in a mixed-integer nonlinear programming context. This opens the

door for exact methods by extending formulations instead of relying on heuristic

simulation-based approaches (e.g. genetic algorithms) that do not provide optimality

guarantees.

1.4 Dissertation Outline

The goal of this dissertation is to develop optimal sensor placement models that

consider uncertainty for applications across three separate domains. In Section 1.1,

we discussed the classical models for sensor placement problems, including the Set

Covering Problem, Maximal Coverage Location Problem, Capacitated Facility Loca-

tion Problem, and p-Median and p-Center Problems. We then showed methods for

extending optimal placement formulations to consider uncertainty in Section 1.2.

In Chapter 2, we focus on the optimal placement of data concentrators for the

expansion of the Smart Grid communications network. We propose and compare

the effectiveness of three mixed-integer linear and nonlinear formulations that opti-

mize placement of data concentrators based on extensions to the Capacitated Facility

Location and p-center problems. The proposed formulations attempt to maximize

residual capacity in the network in order to reduce chances of network congestion and

ensure network reliability through three different ways: (i) maximizing total residual

capacity, (ii) maximizing minimum residual capacity, and (iii) minimizing sum of the

reciprocal residual capacity. Objective (i) follows the structure of a maxisum CFLP-

based formulation (maximizing residual capacity rather than minimizing cost), while

Objective (ii) is a robust p-center maximin formulation. Objective (iii) represents a
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hybrid of the previous two objectives in solution behavior, timing, and effectiveness.

We use the proposed formulations to place data concentrators according to a fixed

budget as well as impose redundancy requirements to capture the uncertain event that

an established data concentrator goes out of service. Chapter 2 concludes with results

on multi-period expansion to show the effectiveness of the models for incrementally

improving network capacity in a rolling horizon context.

In Chapter 3, we extend past work on the placement of gas detectors within petro-

chemical facilities to consider the placement of flame detectors with non-uniform un-

availabilities. A mixed-integer nonlinear program is proposed based on the Maximal

Expected Coverage Location Problem in which the expected coverage of a region-of-

interest is maximized, assuming the flame detectors have the possibility of failing to

capture combustion events. An iterative solution strategy and corresponding relax-

ation is also proposed to improve solution tractability and timing for the formulation.

The results from this formulation are compared with those from the classical Maximal

Coverage Location Problem, where coverage is maximized assuming flame detectors

have perfect detection capabilities.

In Chapter 4, the focus is on developing the framework to be able to select optimal

locations for infectious disease detection sites. To do so, extensive work is done in

building an effective model that accurately represents infectious disease propagation

across subpopulations. Using a nonlinear programming approach, spatial transmis-

sion parameters are estimated that provide key information for constructing city-to-

city disease transmission models. A stochastic simulator is developed to generate

scenarios of infectious disease epidemics across a nation-wide scale, specifically for

measles. The scenarios represent uncertainties in the centers of origin for epidemics,

and are entered into a stochastic p-median formulation where the optimal locations

for infectious disease detection sites are selected by minimizing time until detection

or total expected cases.

Finally, Chapter 5 concludes this dissertation with a summary and proposed di-

rections for future work.
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2. OPTIMAL PLACEMENT OF DATA CONCENTRATORS1

The adoption of new renewable standards and accelerated cost reductions are driv-

ing sharp growth in renewable energy technologies. In particular, the number of

distributed solar photovoltaic (PV) installations is growing rapidly. However, as dis-

tributed solar power becomes an increasing fraction of total energy generation, the

electric power grid must ensure continued reliability and cost-effectiveness. The de-

velopment of the smart grid, as a natural evolution of the electric power grid, seeks to

incorporate new technologies in order to support these distributed generation sources.

New grid devices, such as phasor measurement units (PMUs) and smart me-

ters, will be built to provide the existing Supervisory Control and Data Acquisition

(SCADA) systems with vital power flow information, allowing utility operators to

monitor and control power flow and maintain operational efficiency. The Advanced

Metering Infrastructure (AMI) is designed to measure, collect, process, and relay en-

ergy consumption data from these smart meters to utility operators. The AMI is

typically comprised of a multi-tiered network of various communication devices and

technologies. The AMI is the most fundamental part of the Smart Grid, and can

pose a challenging problem to solve in terms of node placement and routing design

(Saputro et al., 2012).

While technology selection and hardware capabilities are important to the ef-

fectiveness of the Smart Grid, the placement of hardware for AMI applications is

equally vital. Manual reconfiguration of network deployments are often impractical

since devices and infrastructure are fixed. Multi-tiered AMI networks require sensors

and gateways deployed at specific locations to effectively operate. Routing assign-

1Part of this chapter is reprinted from “Optimizing Placement and Expansion of Resources in

Smart Grid Communications Networks” by Zhen, T., Elgindy, T., Alam, S., Hodge, B. M., and

Laird, C.D., IET Smart Grid, July 2019.



18

ments between nodes can have significant effects on network quality and performance.

Bottlenecks and islanding can occur in the network due to highly congested nodes

and poor routing, leading to difficulties serving customers and ineffective system con-

trol. Careful planning of node placement and routing design can significantly alleviate

these Quality-of-Service (QoS) issues, while at the same time improving performance.

Automatic placement and optimization of network topology can be used to provide

a cost-effective, high-performing, reliable, and secure communication network in sup-

port of the expanding smart grid.

In this work, we develop a procedure to optimally place communication hard-

ware and route communication within AMI networks in a way that best maximizes

QoS performance for utility customers, provides redundant network connectivity in

the event of a security threat or outage, and provides for effective expansion of the

network.

To do so, we first propose three mixed-integer linear programming (MILP) ap-

proaches for optimal placement of data concentrators to maximize the network resid-

ual buffer capacity while ensuring network connectedness between smart meters and

electrical control centers. We apply the models to a case study with empirical pa-

rameters and standards. We analyze the network residual buffer capacities of the

results, comparing distributions of connections and placement topologies. We then

extend the formulations to improve network resilience by imposing connection redun-

dancy, and conclude by testing formulation effectiveness in planning for Smart Grid

communication network expansion.

This chapter is organized as follows. In Section 2.1, we summarize and highlight

related work. In Section 2.2 we describe the Smart Grid communication network and

its supporting technologies, as well as define assumptions about the network that

we will use in the optimization formulation. Section 2.3 outlines the mathematical

formulations for the smart grid expansion problems. Section 2.4 describes the applied

case study in detail. Results of the optimization are presented in Section 2.5.
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2.1 Background

In this work, we are focused on the problem of expanding the distribution grid

communications network as part of a growing, integrated Smart Grid. For consistency

and conciseness, we will simply refer to this problem as the Smart Grid expansion

problem.

The Smart Grid expansion problem is twofold; it consists of (i) a facility location

problem and (ii) a routing assignment problem. Facility location and routing assign-

ment problems have been studied extensively for applications in supply chain, emer-

gency, pipeline, and telecommunications networks (Daskin et al., 2005; Fernández and

Landete, 2015b). We refer to topology (or network) design as the process of placing

nodes within a network, and to routing design as the process of link assignment and

bandwidth allocation between nodes.

There have been a number of previous studies on the use of mathematical pro-

gramming approaches for designing wired/wireless mesh networks with regard to QoS,

cost, and/or traffic allocation. Kojima et al. (2018) investigated aggregation point

placement in a wired SCADA network and proposed a MILP framework involving

communication scheduling. Qiu et al. (2004) presented a MILP formulation based

on the capacitated facility location problem to optimally place internet transit access

points (ITAPs) in a wireless mesh network, while also handling QoS requirements like

throughput and fault tolerance. Amaldi et al. (2008) presented a MILP formulation

for constructing Mesh Access Points (MAPs) in the form of a multi-commodity net-

work flow problem with consideration to network traffic allocation. Jahromi and Rad

(2013) designed a communication topology for meshed node placement and assign-

ments of wired connections within the power communication network, and formulated

a multi-objective, nonlinear problem considering cost due to network packet loss, de-

lay, and budget. The previous work on wired networks and mesh networking cannot

be directly applied to our context because mesh routing requires different specifica-
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tions and characteristics than Smart Grid AMI for distributed power systems, which

are typically multi-layered systems with various interacting technologies.

In addition, many related works reported using approximation algorithms and

heuristic-based solvers to solve their respective location/routing problems (Amaldi

et al., 2008; Qiu et al., 2004; Jahromi and Rad, 2013; Rastgoo and Sattari-Naeini,

2016; Tavasoli et al., 2016; Klinkert, 2018; Hassan et al., 2018), citing high time-

complexities when solving NP-hard problems with exact methods. We instead argue

that the problems, while complex in nature, can be handled effectively with exact

solution methods (i.e. Branch-and-Cut as implemented in state-of-the-art commercial

solvers), and the benefits outweigh the costs in doing so. Approximation algorithms

are typically fast and specifically tailored to the application, but provide minimal

optimality guarantees. On the other hand, exact methods, by nature of the methods

themselves, provide measures of optimality. Given that the Smart Grid expansion

problem is a planning and design problem, fast solution times may be less of a concern

than the advantages of optimality guarantees provided by exact methods.

There is existing work that investigates the optimal placement problem of data

concentrators within a smart grid context. Huang and Wang (2015) evaluate a MILP

framework for constructing a three-layer Smart Grid AMI that focuses on ensuring

network demand while minimizing total cost, and designed an approximation algo-

rithm handle the problem. Klinkert (2018) present a MILP framework for repeater

and data collector placement based on fixed-charge network flow within the context

of a smart grid communications network. They also consider a multi-tier AMI in-

volving meters, repeaters, data collectors, and a central data center, analogous to the

AMI presented in this work. Their MILP formulation also focuses on ensuring net-

work feasibility for a minimum cost placement. Tavasoli et al. (2016) considered the

optimal placement of data aggregation points (i.e. data concentrators) in a hybrid

wireless and wired communication network by minimizing installation costs of the

access points, fiber-optic backbone, and Worldwide Interoperability for Microwave

Access (WIMAX) communication costs. Kong (2019) studied the inter-network re-
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liability problem concerning data aggregator placement, specifically the problem of

where to place data aggregators to ensure communication and power robustness.

They proposed a minimum cost objective subject to QoS requirements and network

robustness assurances. Each of these related works (Huang and Wang, 2015; Klinkert,

2018; Tavasoli et al., 2016; Kong, 2019) presented models that minimized cost while

ensuring network demand is fulfilled. In this work, however, we argue that while

optimizing for cost alone is an effective short-term solution for cost-limiting scenar-

ios, it is insufficient to guarantee network performance for the long-term. A more

rigorous objective, namely one that prioritizes QoS and network capacity, is required

to best ensure network longevity and future performance, especially for planning a

long-standing Smart Grid network.

Gourdin and Klopfenstein (2006) has compared different QoS objectives for com-

munication routing design. They condense the resource management solutions for

handling QoS factors (i.e. bandwidth, delay, jitter, and packet loss rate) down to

two essential criteria: avoiding congestion and limiting path length. They define

congestion as the difference between arc capacity and arc flow, and denote this rela-

tionship as residual capacity. They also describe three objective functions that can

handle such congestion: (i) maximize the minimum arc residual capacity for all arcs

in the network, (ii) maximize the total amount of available network bandwidth (also

equivalent to maximizing the total/average residual capacity across the network), and

(iii) minimize the sum of the reciprocal arc residual capacities. They analyzed the

effectiveness of each of these objectives on a wired communication network. While

their methods focus on optimal routing of arc flow (splittable) with consideration to

minimal communication path length (i.e. number of hops required from source to

destination), they did not consider node placement (i.e. network design).

Our application focuses on the distribution system communications network with

two-hop communication links and intermediate data concentrator nodes. Due to the

nature of data concentration, we do not consider splittable routes. Our approach

prioritizes node placement and introduces binary variables, yielding a mixed-integer
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linear programming design problem. We focus on optimal handling of aperiodic data

traffic by optimizing the residual buffer capacity of data concentrators as an analog to

optimizing QoS factors like bandwidth, throughput, packet loss, and delay require-

ments in the network. We expand upon the objectives proposed by (Gourdin and

Klopfenstein, 2006) within a topology design framework, and extend them by incor-

poration of communication redundancy to improve network reliability. In addition,

our models prove effective for multi-period expansion of the communications network.

To the best of our knowledge, no prior work has been done on solving the problem

of data concentrator placement while prioritizing QoS performance within an AMI

network.

In summary, the placement of data concentrators to maximize network residual

buffer capacity under the impacts of budget constraints, network connectivity require-

ments, distance limitations due to path loss, and redundant communication links to

enhance robustness for an expanding Smart Grid communications network is a unique

challenge that we aim to address in this chapter.

2.2 Introducing the Smart Grid communication network

We first describe the Smart Grid communication network (SGCN) in detail and

then propose an optimization framework to handle the expansion of the network to

ensure QoS guarantees and network connectedness. Specifically, we focus on the ad-

vanced metering infrastructure (AMI), which is the data communication architecture

between the smart meter and the meter data management system (MDMS). The AMI

is used to transfer real-time information from meters, including fault, outage, and us-

age, to the utility control center, where utility operators will use the information to

control power flow and maintain operational efficiency. The AMI typically involves a

hierarchical network architecture utilizing a variety of communications technologies

(Niyato and Wang, 2012). We will focus on the AMI when referring to SGCN in this

chapter.
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The general framework of the SGCN consists of a multi-tier system: (i) a Home

Area Network (HAN) consisting of smart appliances, Internet-of-Things (IoT) de-

vices, and distributed energy sources communicating to a nearby smart meter (SM),

(ii) a Neighborhood Area Network (NAN) consisting of data concentrators (DC) that

receive the information from nearby smart meters, process and relay the information

onto (iii) the edge router (ER) or a control center of the energy provider within the

Wide Area Network (WAN) (Niyato and Wang, 2012; Andreadou et al., 2018; Klink-

ert, 2018). Edge routers contain secure fiber optic connections to monitoring stations

on a SCADA network within the transmission system. A number of communication

technologies for the SGCN can be used, and can be divided into wired and wireless

types (Kuzlu et al., 2014; Andreadou et al., 2018). For the purposes of this chapter,

we will focus on wireless communications technologies.

2.2.1 Home Area Network (HAN)

The HAN is localized to the customer domain and encompasses communication

within the typical residential home, including smart appliances, solar panels, light

controls, and various other sensors and actuators. Home devices will send power

readings, usage, and outages over the HAN to the smart meter outside the home for

AMI application. A number of wireless technologies can be used within the HAN,

including Bluetooth, ZigBee, and IPv6 over Low-Power Wireless Personal Area Net-

works (6LoWPAN) (Saputro et al., 2012).

Bluetooth, Institute of Electrical and Electronics Engineers (IEEE) 802.15.1 stan-

dard, is a low power, short range radio frequency standard operating on the 2.4 GHz

band (Parikh et al., 2010). However, Bluetooth communication distances are short

(between 1m - 100m), are highly influenced by IEEE 802.11 networks, and offer weak

security compared to similar network standards. 6LoWPAN is a low-power wireless

personal area network (WPAN) built on the IPv6 routing protocol, and offers interop-

erability and QoS guarantees within a HAN. Disadvantages include network security

and poor service discovery (i.e. automatically locating other nodes and higher layer
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services) (Saputro et al., 2012; Niyato and Wang, 2012). ZigBee (built on the IEEE

802.15.4 standard) was developed by the ZigBee Alliance and is recommended as the

common choice for Home Area Network (HAN) communication. ZigBee devices and

routing protocols allow for meshed networking within the HAN, and provides QoS

guarantees for information relaying across devices. Advantages include low cost, low

power consumption, minimal data rates, and wide-spread usage in existing smart

home devices. Additional information on ZigBee communications can be found in

(Saputro et al., 2012).

2.2.2 Neighborhood Area Network (NAN)

The NAN connects smart meters to data concentrators for AMI applications, and

can involve a series of relays and mesh networking involving technologies such as

IEEE 802.11s Radio Frequency (RF) Mesh, IEEE 802.11 2.4 GHz Wireless Local

Area Network (WLAN), WIMAX, Power Line Communication (PLC), or cellular

technologies. Compared to the HAN and WAN, communications technologies can

vary significantly within the NAN, and often there is no smart grid-specific standard

within this domain. For our purposes, we focus chiefly on wireless communications

and will not discuss PLC technologies, although more information can be found in

(Saputro et al., 2012).

Mesh networking can present a cost-effective and viable solution for improved

network resilience (Xu et al., 2018). However, mesh networking can have significant

signal interference and fading effects that make the quality of these connections unre-

liable, presenting crucial security problems. Methods to address these security issues

in mesh routing have been investigated (Saputro et al., 2012). WIMAX, based on

the IEEE 802.16 standard, also provides promise with high throughput, low latency,

high security standards, and traffic management tools (Patel et al., 2011). How-

ever, WIMAX capabilities are typically relegated to specific architectures, and would

require constructing a utility-proprietary network with high capital costs.
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IEEE 802.11-based 2.4 GHz wireless LAN (WLAN) provides a robust, high speed,

point-to-point communication. Its ubiquity allows for easy installation and low costs.

Moreover, WLAN technologies are undergoing continuous improvement of data rates,

service, and coverage. High reliability can be achieved by proper routing design and

system design techniques (Parikh et al., 2010). WLAN is considered an excellent

candidate for smart grid systems (Niyato and Wang, 2012), specifically in remote

metering and monitoring applications, and has been recognized by the National In-

stitute of Standards and Technology (NIST) via the International Electrotechnical

Commission (IEC) 61850 standard for application in smart grid environment (Parikh

et al., 2010).

While cellular technologies have been studied for smart meter transmissions, they

are generally preferred for links between data concentrators and edge routers (An-

dreadou et al., 2018).

2.2.3 Wide-Area Network (WAN)

The WAN provides connections between the smart grid and the core utility net-

work. Within the WAN, communication between data concentrators and edge routers

can include technologies utilized in the NAN as well (e.g. cellular technologies,

WIMAX, RF Mesh or broadband fiber optic connections for wired options (Niyato

and Wang, 2012; Saputro et al., 2012)).

Cellular and Long-Term Evolution (LTE) technologies (3G/4G on 824-894 MHz/1900MHz

spectrum) are on licensed frequency bands and provide benefits of low interference,

high reception rate and information security, extensive data coverage, and no main-

tenance costs (since operation and network is maintained by carriers) (Parikh et al.,

2010). Since utility control centers require high levels of reliability, LTE connections

are suitable for WAN communication (Patel et al., 2011). Additionally, the existing

infrastructure for cellular communications allows for rapid deployment of Smart Grid

communication hardware.
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2.2.4 Defining the network graph

The network description addressed in this chapter is summarized in Figure 2.1.

The SGCN of interest in this chapter considers wireless communications between PV

Figure 2.1.: Network Diagram

inverters, smart meters, data concentrators, and edge routers. In addition, we assume

PV inverters transmit to smart meters via Zigbee, smart meters transmit to data

concentrators via 2.4 GHz WLAN, and data concentrators relay to edge routers via

LTE technology. While PV inverters are typically installed close to smart meters, data

concentrators and edge routers are installed separately from the PV inverter-smart

meter HAN. We do not consider mesh networking or multi-hop communications in this

work. Since the network communication is wireless, connections can be established

if transmitters and receivers are within communication range of one another, but the

assignment of connections will be decided by the optimization formulation described
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in Section 2.3. We use the terms “link”, “arc”, and “connection” interchangeably

to denote the connections in the network. Specific parameters for the network are

provided in Section 2.4. For additional information on Smart Grid technologies and

practices, QoS requirements for Smart Grid integration to SCADA systems, and

background on advanced metering infrastructure, we refer the reader to (Budka et al.,

2014).

2.2.5 QoS Factors

There are several critical QoS factors that affect network performance: packet

loss, path loss, effective throughput, network criticality, network availability, available

bandwidth, latency, and connection outage probability (Rastgoo and Sattari-Naeini,

2016). For our purposes in providing a time-invariant, deterministic routing assign-

ment and optimal placement of communication nodes, we will consider only packet

loss, path loss, effective throughput, available bandwidth, and latency as QoS factors

of interest in this work. We consider the time-varying and stochastic QoS parameters

(network availability, criticality, and outage probabilities) as future work.

Packet loss is the fraction of transmitted packets lost in the network and com-

monly occur due to queuing congestion and buffer overflows. Path loss depends on

factors such as antenna height, frequency, and link distance. Effective throughput,

the amount of data successfully passed through a link at a given time, is highly de-

pendent on the processing within each network router to determine the transmission

rate in order to forward the packet with a minimum number of hops (Rastgoo and

Sattari-Naeini, 2016). Since packet loss and effective throughput are highly depen-

dent on the effectiveness of underlying network technologies and routing protocols

(Qiu et al., 2004), we choose to focus on path loss, available bandwidth, and latency

as the principal QoS factors when placing network hardware and assigning network

routes.

Latency, or network delay, is defined as the time needed for a bit of data to travel

from one node to another. Latency can be divided into four parts: (i) processing delay
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- the time taken for a node to process the packet header, (ii) queuing delay - the time

a packet spends in routing queues before being processed, (iii) transmission delay -

the time taken to push the packet’s bits onto the link, and (iv) propagation delay - the

time for a signal to reach its destination. The propagation delay is dependent on the

distance and geography between communication nodes, while the majority of latency

(processing, queuing, and transmission delays) is dependent on the communication

hardware and wireless routing protocols (Nagai et al., 2013).

In the Smart Grid Expansion Problem, propagation delay is the relevant QoS

metric of interest within latency, while processing, queuing, and transmission delays

are handled by the hardware and wireless technologies (Park et al. (2019) has recently

developed a low-latency congestion control algorithm for wireless LTE networks).

Lopez-Aguilera et al. (2010) has shown that the propagation delay for outdoor IEEE

802.11 wireless networks is dependent on the slot time and translates up to 6 km

communication range for IEEE 802.11b without performance degradation. For larger

distances, the propagation delay becomes greater than the slot time and performance

is degraded.

For our proposed approaches, we ensure path loss and propagation delay in the

network are within QoS requirements by defining the effective communication range

of wireless technologies to within limits that ensure minimal performance degrada-

tion (refer to Section 2.2.6). Once the communication ranges are established, the

optimization can then consider optimal placements for wireless hardware and routing

decisions by maximizing available network bandwidth.

Following the convention of (Gourdin and Klopfenstein, 2006), we refer to available

network bandwidth as residual capacity, specifically on the capacities of buffers at each

data concentrator. Each data concentrator has a buffer size that can handle incoming

messages. Exceeding this buffer limit negatively impacts the packet loss rate, and

increases communication delay (Gourdin and Klopfenstein, 2006). Therefore, routing

assignments are made by maximizing residual capacities across the network.
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2.2.6 Path Loss Propagation Model for Communication Radius

The maximum allowable distance between nodes (communication radius) can be

predicted using a minimum threshold of received power required for signal reception

and a model for signal propagation. The Stanford University Interim (SUI) prop-

agation model (Abhayawardhana et al., 2005; Hari and Smith, 2003) is chosen to

represent the 2.4 GHz WLAN link between smart meters and data concentrators in

our case study.

The SUI models are specified for three types of terrain (A, B, and C), where Type

A is associated with hilly terrain and moderate to heavy foliage with maximum path

loss, Type B is associated with either mostly flat terrain with moderate to heavy

tree densities or hilly terrains with light tree densities, and Type C is associated with

flat terrain and light tree densities with minimum path loss. More information and

associated parameters on the SUI models can be found in (Abhayawardhana et al.,

2005).

Given that the case study we will be considering in Section 2.4 is representative

of a typical suburban area, we have elected to use the terrain Type B specification,

although the proposed approach is general and can be used with Type A and Type

C terrains. The path loss equation with correction factors and other parameters are

defined below,

P = Xg + 10γ log10

(
d

d0

)
+Xf +Xh + s (2.1a)

Xg = 20 log10

(
4πd0

λ

)
(2.1b)

γ = α− βhb +
ω

hb
(2.1c)

Xf = 6.0 log10

(
f

2000

)
(2.1d)

Xh = −10.8 log10

(
hr

2000

)
(2.1e)

where P is the path loss (defined as the ratio of the transmitted to received power),

Xg is the free space or line-of-sight (LOS) gain, d is the distance between the transmit-
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ter (smart meter) and the receiver (data concentrator) antennas, d0 is the reference

distance (d > d0), s is a shadow fading factor, hb is the base station height above

ground, γ is the path loss exponent, Xf and Xh are correction factors for the oper-

ating frequency and the antenna height, respectively, f is the operating frequency of

the transmission signal, λ is the wavelength from the communication frequency, and

hr is the receiver antenna height above ground. The terrain constants α, β, and ω

used in our study are given in Table 2.1, along with ranges and values for the other

parameters in the path loss equation.

Table 2.1.: Numerical Values for SUI Model Parameters

Model Parameter Value

d0 (m) 100

s (dB) 8.2 - 10.6

hb (m) 10 - 80

f (MHz) 2400

hr (m) 6

α 4.0

β (m−1) 0.0065

ω (m) 17.1

λ (m) 0.125

Bounding Equation 2.1a for maximum path loss and expanding Pmax, we have

Pmax = P trans − P rec
min (2.2)

where Pmax is the maximum path loss incurred when the received power is at its

minimum, P trans is the transmitted power (in dBm) and P rec
min is the minimum re-

ceived power (in dBm). From Equations 2.1a-2.1e, we obtain a relationship for the

communication distance in terms of Pmax,
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d ≤ d010
PT
10γ (2.3)

where PT=Pmax−Xg−Xf−Xh−s. Smart meter transceivers can operate at peak

transmitted power up to 1 W (30 dBm), but typically averages low transmitted

power since the transmission intervals are very short and infrequent (GSMA, 2015).

We therefore assume average transmitted powers of P trans=0.2 W (23.0 dBm) for our

test case (Rupasinghe and Guvenc, 2014). Minimal received signal power for wireless

networks (IEEE 802.11 variants) are typically P rec
min=−100 dBm. Combining these

power specifications leads to Pmax=123 dB. Therefore, the smart meter communica-

tion radius, in accordance with the SUI propagation model parameters in Table 2.1,

is d ≤ 0.93km with s=9.0 and hb=10, in order to remain within minimal received

signal power range for all receivers. In addition, since this communication range for

2.4 GHz WLAN is less than the reported distance in order to ensure minimal propa-

gation delay (i.e. 6 km according to (Lopez-Aguilera et al., 2010)), setting this as the

distance limit between smart meters and data concentrators will ensure acceptable

QoS in the optimal design.

2.3 Smart Grid Expansion Problem (SGEP)

A larger number of smart meters will eventually be constructed as the Smart Grid

grows, distributed generation becomes more widespread, and an increasing number

of IoT devices become commonplace. The Smart Grid expansion problem focuses on

placement of additional data concentrators (by selecting from a set of candidates de-

noted in Figure 2.1 as c-DC) and assignment of communication links between smart

meters and data concentrators in order to handle the load on the network, while min-

imizing congestion and improving network connectivity and robustness. We consider

the residual buffer capacity of the network as the key metric to define congestion

levels in the network.



32

In this section, we show three formulations that focus on improving network resid-

ual buffer capacity within a mixed-integer linear program to form the Smart Grid

Expansion Problem (SGEP).

The Smart Grid Expansion Problem - Average (SGEP-A) focuses on maximizing

average residual buffer capacity and is defined by the following mixed-integer linear

program,

maximize
x,y

∑
l∈L

rl (2.4a)

subject to
∑
l∈L

yl ≤ K (2.4b)

xa,l ≤ yl ∀l ∈ L, a ∈ Al (2.4c)∑
l∈La

xa,l = 1 ∀a ∈ A (2.4d)

rl = blyl −
∑
a∈Al

xa,lfa ∀l ∈ L (2.4e)

yl ≤
∑
a∈Al

xa,l ∀l ∈ L (2.4f)

yl, xa,l ∈ {0, 1} ∀l ∈ L, a ∈ Al (2.4g)

rl ≥ 0 ∀l ∈ L (2.4h)

where A is the set of all smart meters that must be serviced, L is the set of data

concentrators (existing and candidate), La is the set of candidate data concentrators

within communication range of smart meter a, as determined by the path loss model

from Equation 2.3. Here, Al is the set of all smart meters that are within the com-

munication range of candidate data concentrator l (i.e. the distance between smart

meter a and data concentrator l is less than or equal to d defined in Equation 2.3).

The binary variable yl indicates if a data concentrator at location l is selected for

installation, binary variable xa,l indicates if smart meter a is assigned a connection

to data concentrator l, and rl is a variable defined as the residual buffer capacity for

data concentrator l. Parameters fa denotes the flow of data or amount of data to be

processed daily (depending on units of buffer capacity) from smart meter a, K defines
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the limit on total allowable number of data concentrators in the network (includes

existing data concentrators), and bl is the buffer capacity on data concentrator l.

Problem Formulation 2.4a-2.4h seeks to select the set of data concentrators that

should be built (yl) along with the connection routing that maximizes the residual

capacity of the constructed network. Constraints 2.4b limit the total number of

newly installed data concentrators to be within budget K. Constraints 2.4c enforce

that a connection between smart meter a and data concentrator l can occur only if

data concentrator l is installed and is within communication range of a. Constraints

2.4e describe the residual capacity, defined as the difference between the allowable

bandwidth and the total throughput across each data concentrator. This definition

corresponds to residual bandwidth in (Gourdin and Klopfenstein, 2006). Constraints

2.4f enforce that a data concentrator will not be installed unless at least one smart

meter is assigned. Note that if yl=0 (the data concentrator l is not selected), then

no connections are possible for that concentrator (i.e. xa,l=0 ∀a ∈ A and rl=0 from

Constraints 2.4e). In addition, yl is fixed to 1 for all existing data concentrators.

Constraints 2.4g define the binary variables in the optimization, while Constraints

2.4h bound the residual capacity to be non-negative.

While the average residual buffer capacity seems like a reasonable metric, it does

nothing to ensure bandwidth is balanced. Consider a simple case of two data concen-

trators, each with bandwidth b. A design that results in each data concentrator at

50% residual bandwidth has the same average as a design where one data concentra-

tor is at 10% and the other at 90%. Therefore, this formulation would conceivably

yield saturated nodes due to the nature of the averaging metric. Therefore, we also

reformulate SGEP-A to (i) maximize the minimum residual buffer capacity and (ii)

to minimize the sum of the reciprocal residual buffer capacities. These alternative

objectives present options for penalizing oversaturated nodes in the network, while

also handling node placement. In the case of reciprocal residual buffer capacities,

the problem becomes nonlinear, and off-the-shelf MILP solvers are no longer directly

applicable.
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The reformulation to maximize the minimum residual buffer capacity, called the

Smart Grid Expansion Problem - Maximin (SGEP-MM), is as follows

maximize
x,y,z

z (2.5a)

subject to rl ≥ z ∀l ∈ L (2.5b)∑
l∈L

yl ≤ K (2.5c)

xa,l ≤ yl ∀l ∈ L, a ∈ Al (2.5d)∑
l∈La

xa,l = 1 ∀a ∈ A (2.5e)

rl = bl −
∑
a∈Al

xa,lfa ∀l ∈ L (2.5f)

yl ≤
∑
a∈Al

xa,l ∀l ∈ L (2.5g)

yl, xa,l ∈ {0, 1} ∀l ∈ L, a ∈ Al (2.5h)

rl ≥ 0 ∀l ∈ L (2.5i)

Objective 2.5a now maximizes an auxiliary variable z, defined as the minimum resid-

ual capacity over all connections in the network, enforced through Constraints 2.5b.

The objective function in SGEP-A was focused on maximizing the sum of the resid-

ual buffer capacity. For SGEP-A, if a data concentrator was not selected, rl must be

forced to zero for that specific data concentrator. In the SGEP-MM formulation, we

are maximizing the worst-case buffer capacity. This worst-case should be identified

for only the selected data concentrators. Therefore, Equation 2.5f is written to ensure

that unselected data concentrators do not impact this worst case objective. That is,

numerically, the residual capacity rl for unselected data concentrators are set equal

to the total bandwidth to ensure that they are not impacting the objective function

as written. All other constraints remain the same as those of SGEP-A.

As opposed to the SGEP-A formulation, which optimizes for maximum average

residual capacity over the entire network, the proposed formulation SGEP-MM im-

proves reliability by assigning connections to data concentrators in an attempt to
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maximize the worst-case, or minimum residual capacity. By ensuring that the min-

imum residual buffer capacity is maximized, utility planners can be confident about

minimum QoS guarantees the system will be able to provide.

The reformulation to minimize the sum of the reciprocal residual buffer capacities,

called the Smart Grid Expansion Problem - Reciprocal (SGEP-R), is as follows

minimize
x,y

∑
l∈L

1

rl
(2.6a)

subject to
∑
l∈L

yl ≤ K (2.6b)

xa,l ≤ yl ∀l ∈ L, a ∈ Al (2.6c)∑
l∈La

xa,l = 1 ∀a ∈ A (2.6d)

rl = bl −
∑
a∈Al

xa,lfa ∀l ∈ L (2.6e)

yl ≤
∑
a∈Al

xa,l ∀l ∈ L (2.6f)

yl, xa,l ∈ {0, 1} ∀l ∈ L, a ∈ Al (2.6g)

rl ≥ 0 ∀l ∈ L (2.6h)

Objective 2.6a now minimizes the sum of the reciprocal residual buffer capacities in

the network. Constraints 2.6e have been modified in the same manner as SGEP-MM.

SGEP-R follows the same assumption that the residual capacities of unselected data

concentrators are equal to its bandwidth rather than zero in order for the reciprocal

objective to perform as expected. All other constraints remain the same as those of

SGEP-A.

While SGEP-A maximizes the total residual capacity of the network, it fails to

consider the distribution of links to each node. In other words, the SGEP-A objective

is indiscriminant of a network with oversaturated nodes and concentrated links versus

a network with evenly distributed links. The SGEP-R objective, however, does seek

an even distribution of links in the network while also maximizing the total residual

capacity. The reciprocal objective function used in SGEP-R has been referred to as
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a tractable penalty model, falling between the extreme approaches used in SGEP-A

and SGEP-MM in terms of the number of connections routed to data concentrators

(Gourdin and Klopfenstein, 2006).

Due to the reciprocal objective, SGEP-R becomes a mixed-integer nonlinear pro-

gramming problem, and can be challenging to solve. Fortunately, the nonlinearity

is convex, and this problem can be approximated to arbitrary accuracy by applying

linear under-estimators to approximate the nonlinear function. First, linear under-

estimators can be applied to the nonlinear function using a Taylor Series expansion

as follows
1

rl
' 1

r∗l,m
− 1

r∗2l,m
(rl − r∗l,m) ∀l ∈ L,m ∈Ml (2.7)

where r∗l,m denotes the points along the domain of rl (denoted by m ∈ Ml) to apply

the under-estimators. These points can be generated uniformly or algorithmically to

improve convergence times. In our cases, we have chosen to generate them uniformly.

In addition, because the nonlinear function is convex with respect to the minimization
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objective, the constraint can be converted to an inequality. The result is the following

relaxed SGEP-R formulation,

minimize
x,y,v

∑
l∈L

vl (2.8a)

subject to vl ≥
1

r∗l,m
− 1

r∗2l,m
(rl − r∗l,m) ∀l ∈ L,m ∈Ml (2.8b)∑

l∈L

yl ≤ K (2.8c)

xa,l ≤ yl ∀l ∈ L, a ∈ Al (2.8d)∑
l∈La

xa,l = 1 ∀a ∈ A (2.8e)

rl = bl −
∑
a∈Al

xa,lfa ∀l ∈ L (2.8f)

yl ≤
∑
a∈Al

xa,l ∀l ∈ L (2.8g)

yl, xa,l ∈ {0, 1} ∀l ∈ L, a ∈ Al (2.8h)

rl ≥ 0 ∀l ∈ L (2.8i)

where vl is an auxiliary variable for the reciprocal residual buffer capacity, which is

approximated by Constraint 2.8b. This relaxation allows the problem to be solved as

a mixed-integer linear program. For the rest of the chapter, SGEP-R will refer to the

formulation comprising Eq. 8a-8i.

2.3.1 Redundancy

In addition, due to the flexibility of the MILP framework, constraints in all three

formulations can easily be modified to consider connection redundancy. To do so, we

can modify constraints 2.4d, 2.5e, and 2.8e and apply a redundancy threshold to the

right-hand side as follows ∑
l∈La

xa,l = C ∀a ∈ A (2.9)
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Constraint 2.9 provides redundancy in the event that a data concentrator is unavail-

able for a connected smart meter, either because of component failure or unexpected

congestion, ensuring that each smart meter can connect to at least C data concen-

trators. For example, if C=2, then this formulation ensures that each smart meter

can connect to one of two data concentrators (e.g. primary and secondary) while en-

suring that the data concentrator can feasibly handle the combined bandwidth from

all potential connections identified.

2.4 Case Study

To show the application of the SGEP formulations for a SGCN, and to evaluate

the capabilities of the modeling method in answering Smart Grid communication

system problems, a case study designing the topology of a semi-urban SGCN was

conducted.

The Reference Test Case A (RTCA), shown in Figure 2.2, was adapted from Pacific

Northwest National Laboratory (PNNL) taxonomy feeder R2-25.00-1 (Schneider and

Yousu Chen David Chassin Robert Pratt Dave Engel Sandra Thompson ii, 2008) and

represents a moderately-populated suburban area. It was placed arbitrarily in an

area with good solar resource data to provide representative scale for the network,

but has no relation to actual locations depicted. The characteristics of the network

are listed in Table 2.2.

The RTCA network spans 10.0 km from East to West and 8.0 km from North to

South.

A grid layout of candidate locations for data concentrators was chosen where new

nodes are allowed to be placed at any vertex on the grid. The density of the grid

can be assigned as a parameter to the optimization. In this case, a 44x44 matrix of

candidate locations was used, totaling 1936 candidate locations with approximately

200 m between each candidate node.

The communication range of the smart meters via 2.4 GHz WLAN is dependent on

the transmit power of the transmitters (smart meters), the receive power at receivers
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(data concentrators), terrain, elevation, and line-of-sight. Sources report widely rang-

ing values for physical ranges of 802.11 signals, from 25 m for 802.11a/b/g (Kuzlu

et al., 2014) to 80-450 m for 802.11ah (for smart cities in urban settings) (Bellekens

et al., 2018) to 1.0 km for 802.11ac (Kuzlu et al., 2014). Instead, we will utilize a path

loss propagation model to predict the communication range of WLAN, described in

Section 2.2.6, particularly for a suburban topology that reflects the RTCA test case.

Nevertheless, the approach taken in this research can be easily extended to urban

environments that utilize closer range protocols (as in the IEEE 802.11ah standard

for smart cities). The communication range is vital to construct the sets La and Al,

which determine what smart meter-data concentrator pairs are communicable.

Given the size of the system under consideration, the LTE communication range

allows data concentrators to communicate with the edge router with minimal loss

regardless of their proximity to each other. In addition, each PV inverter is tied to

a smart meter in the network, but additional smart meters exist for which no PV

inverters are linked. These additional smart meters represent residents who have not

yet integrated solar generation into their household, but will in the near future.

Therefore, the Smart Grid expansion problem is formulated to place additional

data concentrators in order to ensure network connectivity for these emerging sources

of distributed generation. A multi-period expansion will be performed using the pro-

posed formulations to evaluate the effectiveness of the methods for network expansion

over time. The optimization is focused on the placement of the data concentrators

and the assigned connections between the smart meters and the data concentrators.

Table 2.3 summarizes the parameter values used in the optimization. To facilitate

the case study, the buffer capacities and data transfer sizes are kept constant across all

data concentrators and smart meters in the network, but the proposed formulations

are amenable to varying values for these parameters.

Andreadou et al. (2018) studied smart meter traffic and data concentrator process-

ing for AMI systems, particularly the effects on the network for smart meter message

sizes from 4 bytes to 12,000 bytes and transmission intervals from 4 to 24 times per
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day. They showed that for an urban network of 101 meters to 1 data concentrator,

12,000 bytes transmitted 24 times per day from each meter required about 11 Mbits

of data to be processed daily at each data concentrator. For our case, the amount

of data or size of packets to be processed daily from each smart meter was set to be

at this maximum (11 Mbits) in order to simulate a scenario where a large amount

of daily traffic occurs at each data concentrator in the network. This also ensures

that the resulting network will be able to handle increases in data rates from future

demand. Because the approach relegates the handling of packet transmission and

reception rates to the hardware technologies, the placement problem needs only to

consider best locations to place the hardware and the specific routes in order to ensure

network capacity can handle high-traffic events.

An LTE range of 50.0 km was chosen to represent a moderately-populated subur-

ban area for RTCA from (Kuzlu et al., 2014). For more rural environments, evolved

UMTS Terrestrial Radio Access Network (eUTRAN) can be used, which is an air

interface for LTE cellular network that supports coverage up to 100 km with accept-

able performance (Rémy and Letamendia, 2014). For denser urban environments,

LTE coverage ranges are typically only reported up to 20 km, according to the COST

231-Hata model (Hamid, 2013). The proposed approach is general and can be ex-

tended to urban or rural environments with appropriate choice of LTE coverage.
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Figure 2.2.: RTCA network diagram.

Table 2.2.: Reference Test Case A Topology

Node Type Total Count

PV Inverters 57

Smart meters 275

Data concentrators 10

Edge router 1

Candidate locations for DCs 1,936
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Table 2.3.: Parameter Values for SGEP-A/-MM/-R

Model Parameters Value

bl 640 Mbits (Andreadou et al., 2018)

fa 11 Mbits (Andreadou et al., 2018)

WLAN Range 0.93 km [refer to Section 2.2.6]

LTE Range 50.0 km (Rémy and Letamendia, 2014; Kuzlu et al., 2014)

2.5 Numerical Results

In the first set of numerical results, we consider all three formulations (SGEP-

A, SGEP-MM, and SGEP-R) with a single period, no redundant connections. The

optimization problems were constructed using Pyomo (Hart et al., 2011a, 2017) and

solved with Gurobi Optimizer. Gurobi Optimizer is a commercial optimization solver

primarily used for linear, quadratic and mixed-integer linear or quadratic program-

ming problems (Gurobi Optimization, 2018). Gurobi Optimizer is well-established in

the operations research literature as a state-of-the-art solver for mixed-integer prob-

lems of this class. The results were obtained on a computer running a 2.4 GHz Intel

Core i5, dual-core processor with 8 GB RAM. Table 2.4 lists the computational results

for SGEP-A, SGEP-MM, and SGEP-R with different budgets of data concentrators

(budget K) based on the RTCA network. A total of 10 uniformly-distributed linear

under-estimators were used for the reciprocal function for each data concentrator in

Constraint 2.8b.

Given a budget limit, fixed assignments from Constraints 2.4c, and the assumption

of constant parameter values in this case study, the average (or total) residual buffer

capacity of the network can be pre-computed assuming the budget allows a fully con-

nected network. As such, SGEP-A (Formulation 2.4) reduces to a purely feasibility

formulation. The SGEP-A formulation leads to both oversaturated connections and
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Table 2.4.: Numerical Results for SGEP-A, SGEP-MM, and SGEP-R solutions

Budget Model Objective Residual Buffer Capacity

K value max (%) min (%)

8 SGEP-A 73.74 98.28 0.31

8 SGEP-MM 55.31 94.84 55.31

8 SGEP-R 1329.30 93.12 53.59

10 SGEP-A 76.37 98.28 0.31

10 SGEP-MM 67.34 93.12 67.34

10 SGEP-R 1328.56 93.12 63.91

25 SGEP-A 86.50 98.28 0.31

25 SGEP-MM 84.53 96.56 84.53

25 SGEP-R 1327.42 93.12 84.53

50 SGEP-A 92.12 98.28 0.31

50 SGEP-MM 89.69 98.28 89.69

50 SGEP-R 1327.07 94.84 84.53

underutilized data concentrators, as evidenced by the unchanged maximum and min-

imum residual buffer capacities of 98.29% and 0.31%, respectively. The SGEP-MM

formulation, on the other hand, seeks to maximize worst-case residual buffer capacity,

yielding values of 55.31%, 67.34%, 84.53%, and 89.69% for budget limits of 8, 10, 25,

and 50 data concentrators, respectively. The SGEP-R formulation seeks to minimize

the sum of the reciprocal of the residual buffer capacity and performs similarly to

SGEP-MM, yielding minimum values of 53.59%, 63.91%, 84.53%, and 84.53% for

budget limits of 8, 10, 25, and 50 data concentrators, respectively.

The histogram comparisons in Figures 2.3 - 2.5 show clearly the distribution of

connections per data concentrator in the solutions provided by SGEP-A, SGEP-MM,

and SGEP-R for an increasing budget size. Since SGEP-A only considers feasibility,
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the distributions shown in Figure 2.3 are not surprising – a large number of connec-

tions to a few data concentrators along with many underutilized data concentrators

with only one or two connections. On the other hand, formulations SGEP-MM and

SGEP-R result in more balanced distributions of data flow with the same average

residual buffer capacity over the network.



45

(a) SGEP-A with K=8

(b) SGEP-A with K=25

(c) SGEP-A with K=50

Figure 2.3.: Distribution of connections per data concentrator for SGEP-A solutions

with budget limit (a) K=8, (b) K=25, and (c) K=50.
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(a) SGEP-R with K=8

(b) SGEP-R with K=25

(c) SGEP-R with K=50

Figure 2.4.: Distribution of connections per data concentrator for SGEP-R solutions

with budget limit (a) K=8, (b) K=25, and (c) K=50.
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(a) SGEP-MM with K=8

(b) SGEP-MM with K=25

(c) SGEP-MM with K=50

Figure 2.5.: Distribution of connections per data concentrator for SGEP-MM solu-

tions with budget limit (a) K=8, (b) K=25, and (c) K=50.
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The reciprocal objective in SGEP-R penalizes designs with data concentrators

that have low residual buffer capacity. As Figure 2.4 shows, SGEP-R attempts to

equalize the number of connections per data concentrator across the network to reduce

bottlenecks. This behavior effectively reduces the maximum number of connections

per data concentrator by consolidating the distribution. As the budget limit for data

concentrators is increased, this consolidation becomes more pronounced, yielding a

progressively tighter distribution. By distributing connections effectively, the network

robustness and QoS are improved in the case of node outages.

SGEP-MM behaves similarly to SGEP-R. SGEP-MM maximizes the minimum

residual buffer capacity of the network, which, in test cases where the amount of data

to be processed daily fa for each smart meter and the buffer capacities bl of each

data concentrator are equal, is equivalent to minimizing the maximum number of

connections per data concentrator. Rather than reducing the maximum number of

connections as a result of consolidating in the case of SGEP-R, SGEP-MM directly

minimizes the maximum value. By doing so, SGEP-MM not only distributes con-

nections similar to SGEP-R to reduce congestion bottlenecks, but also provides the

guarantee that the minimum residual buffer capacity is maximized. One disadvan-

tage of SGEP-MM is that, by prioritizing the minimization of the high end of the

distribution, SGEP-MM neglects the low end, as shown in Figure 2.5c. This can lead

to a few underutilized nodes. Compared with Figure 2.4c, SGEP-R provides better

management of the low end of the distribution, but does not provide the guarantees

of SGEP-MM.

Figure 2.6 shows the resulting placement of data concentrators following the

SGEP-A (Figure 2.6a), SGEP-MM (Figure 2.6b), and SGEP-R (Figure 2.6c) for-

mulations for budget K=8 data concentrators. This limit is also the fewest number

required in order for the problem to remain feasible (i.e. fully connected). As ob-

served, the placements can be distant from the feeder network. Since we have assumed

a radius of communicability for each smart meter rather than distance-dependent per-

formance, this result is not surprising.
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(a) SGEP-A

(b) SGEP-MM
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(c) SGEP-R

Figure 2.6.: SGCN solution for 8 newly-installed data concentrators with (a) SGEP-

A, (b) SGEP-MM, and (c) SGEP-R formulations, respectively. Black links denote

the underlying power line feeder. Red links denote the connections from smart meters

to data concentrators, and from data concentrators to the edge router.

Both SGEP-MM and SGEP-R assign connections to more effectively utilize each

data concentrator. As such, not only do they handle network demand more efficiently

by spreading the load across data concentrators, but the resulting placement locations

are also closer to the feeder network as a consequence of increasing the number of

connections to data concentrators. By staying within vicinity of the feeder network,

the solutions of SGEP-MM and SGEP-R become more practical for utility operators

and contractors, since the infrastructure upon which the data concentrators can be
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installed may already be in place. SGEP-R shows a slightly better result than SGEP-

MM in terms of adhering to the feeder network, although the difference is minimal.

The SGEP-R formulation was also tested on a feeder-centric candidate topology,

where the data concentrators were restricted to be placed only along existing utility

poles. The findings from this test showed that the placements from the gridded

topology were very similar to those from the feeder topology. The restricted feeder

topology results in a similar number of connections per data concentrator. Minor

discrepancies in location of placement between the two were due to the fact that the

optimization model considered any connecting node within communication radius to

be of equal value. In other words, as long as a smart meter and corresponding data

concentrator were within communication range, there was no added value in locating

the data concentrator closer to the smart meters. This is evident in the results of the

gridded case, where placements of data concentrators can be seen in locations that

extend outwards in directions away from the utility lines, in intermediate distances

between its connected smart meters.

2.5.1 System Resilience

To address system resilience, we use the modified formulations that enforce re-

dundancy. This formulation enforces multiple possible connections for each smart

meter. With backup connections, we improve the resiliency and robustness of the

network in the face of possible security threats, outages, or node failures. In the case

of a node outage, the formulation ensures that a nearby data concentrator will be

able to continue processing the information originally handled by the damaged unit

since routing assignments and placement strategies have accounted for the additional

buffer capacity necessary.

Table 2.5 lists numerical results for SGEP-A, SGEP-MM, and SGEP-R with re-

dundancy threshold C=2, where K=20 is the minimum number of additional data

concentrators required for a feasible, fully-connected network. Figure 2.7 shows the

resulting placement of data concentrators following the SGEP-A (Figure 2.7a), SGEP-
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MM (Figure 2.7b), and SGEP-R (Figure 2.7c) formulations for budget K=20 data

concentrators and redundancy threshold of C=2.

Since SGEP-A focuses on feasibility only, data concentrators are overutilized with

very low residual buffer capacity (0.31%), along with underutilized data concentrators

yielding high residual buffer capacities of 98.28%. On the other hand, SGEP-MM

produces solutions with higher minimum residual buffer capacities (43.28%, 62.19%,

70.78%, and 82.81% for K=20, 25, 30, and 50, respectively) while maintaining high

maximum residual buffer capacities as well (93.12%, 93.12%, 94.84%, and 96.56%

for K=20, 25, 30, and 50, respectively). SGEP-R performs close to SGEP-MM,

producing minimum residual buffer capacities of 41.56%, 62.19%, 63.91%, and 81.09%

for K=20, 25, 30, and 50, respectively and maximum residual buffer capacities of

93.12%, 91.41%, 93.12%, and 94.84% for K=20, 25, 30, and 50, respectively.

In comparison with the numerical results from the C=1 solutions, the redundancy

solutions for C=2 yield lower residual buffer capacities overall. This is not surprising,

since consideration of redundancy requires the potential of additional throughput to

data concentrators, leading to lower overall residual buffer capacities for the same

number of nodes (minimum residual capacities of 84.53% for SGEP-MM with C=1

versus 62.19% for SGEP-MM with C=2 for K=25, for example). However, as the

number of data concentrators increases, this difference decreases (minimum residual

capacities of 89.69% for SGEP-MM with C=1 versus 82.81% for SGEP-MM with

C=2 for K=50, for example). This effect is due to the fact that the redundancy

threshold, in our case, does not scale with the number of data concentrators, but

with the number of smart meters. Since the number of smart meters in the network

is fixed, increasing the number of allowable data concentrators will always serve to

alleviate congestion by increasing total buffer capacity.

While this phenomenon holds for SGEP-MM and SGEP-R, the same cannot be

said of SGEP-A. SGEP-A could still assign the maximum number of connections to

a few data concentrators, regardless of the budget limit, while sparsely assigning the

minimum number of connections to the rest of the data concentrators.
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Analyzing Figure 2.7 shows all models placing data concentrators in locations

that can be very close to others. This result is due to the fact that, in the event

that a data concentrator fails, the smart meters in the area must be able to reconnect

to an alternative data concentrator nearby. An important trade-off occurs between

the desire to prevent against node failure by applying redundancy versus effective

utilization of data concentrators. Nevertheless, SGEP-MM and SGEP-R handle this

trade-off well by more evenly distributing route assignments among data concentrators

despite placing ones that can be in close proximity to each other. Future formulations

should consider addressing the assumption of independence of failure and spatial

distribution of data concentrators.



54

(a) SGEP-A with C=2

(b) SGEP-MM with C=2
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(c) SGEP-R with C=2

Figure 2.7.: SGCN solution with (a) SGEP-A, (b) SGEP-MM, and (c) SGEP-R

formulations for 20 newly-installed data concentrators (redundancy C=2)

2.5.2 Multi-Period Expansion

As this study focuses on the expansion problem, it may be reasonable to assume

that utility planners will need to resolve the expansion problem multiple times over

the course of decades as the Smart Grid grows and distributed generation spreads.

Rather than solving a large-scale multi-period problem, we verify the effectiveness of a

sequence of single-period solves in a rolling horizon. In terms of the optimization, we

model this rolling horizon approach by progressively solving the expansion problem

with an increasing budget while requiring that nodes from each prior placement be

considered built.
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Table 2.5.: Numerical Results for SGEP-A, SGEP-MM, and SGEP-R with redun-

dancy C=2

Budget Model Objective Residual Buffer Capacity

K value max (%) min (%)

20 SGEP-A 68.49 98.28 0.31

20 SGEP-MM 43.28 93.12 43.28

20 SGEP-R 1339.31 93.12 41.56

25 SGEP-A 72.99 98.28 0.31

25 SGEP-MM 62.19 93.12 62.19

25 SGEP-R 1335.84 91.41 62.19

30 SGEP-A 76.37 98.28 0.31

30 SGEP-MM 70.78 94.84 70.78

30 SGEP-R 1334.75 93.12 63.91

50 SGEP-A 84.24 98.28 0.31

50 SGEP-MM 82.81 96.56 82.81

50 SGEP-R 1333.10 94.84 81.09

Figure 2.8 shows the system performance for a series of single-period optimizations

(with 5 data concentrators added in each period). This is compared with the best

possible solution obtained if the placements were re-optimized for the new number

of data concentrators. From this comparison, we see that while placing a full set of

data concentrators at once (with the basic SGEP-MM formulation) yields a higher

minimum residual capacity, the difference compared to the rolling horizon solution is

minimal, with an average gap of 4%. This gap is dependent on the number of nodes

utilized for each progressive addition. The minimum residual buffer capacities of the

rolling horizon solutions and re-optimized solutions for SGEP-R are nearly identical,

and lie close to those of the rolling horizon solutions of SGEP-MM.
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Investigation of SGEP-A was omitted here since the minimum residual buffer

capacities of SGEP-A solutions remain unchanged, falling automatically to their ex-

tremes (minimum of 0.31%).

Figure 2.8.: Comparison of SGEP-MM/-R vs SGEP-MM/-R with Multi-Period Ex-

pansion

2.6 Conclusions and Future Work

Our key conclusions in this work are as follows. First, our proposed formulations

worked to design optimal placement topologies of data concentrators in Smart Grid

communications networks. Second, the SGEP-A model can be useful for targeting

(i.e. minimum number of data concentrators for feasibility), but is poor for routing

assignment, since the total (or average) residual buffer capacity can be computed
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directly. Third, the SGEP-MM and SGEP-R models provide better solutions in

terms of routing assignment, and leads to better placement within vicinity of the

feeder network, a practical consideration useful for ensuring that chosen placements

can be built. In addition, SGEP-MM provides minimum residual buffer capacity

guarantees that are useful for establishing and ensuring QoS standards. Fourth,

these formulations can address resilience concerns and are effective for rolling horizon

network expansion.

Future plans of study include evaluation of the proposed approaches on a variety

of urban environments and network sizes, as well as showing the scalability of the

approaches across a larger span of problems. In addition, investigation of the optimal

spatial distribution when placing nodes is important, since clustered placement of

data concentrators can reduce their effective utilization despite provisioning for node

outages. Also, multi-period placement approaches with stochastic growth models for

the expansion of the Smart Grid network over time can address concerns such as worst-

case scenarios and placement under uncertainty. Finally, investigation of statistical

metrics such as Conditional Value-at-Risk (CVaR) can be useful when considering

alternative objectives for optimal placement prioritizing risk mitigation.
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3. OPTIMAL FLAME DETECTOR PLACEMENT WITH NON-UNIFORM

UNAVAILABILITIES

In petrochemical facilities, flame detectors provide an important layer of protection

for personnel. Flame detectors, as opposed to smoke or heat detectors, are optical

sensors that utilize information from a visual field capture to detect the presence of

flames. Flame detectors can utilize a number of different visual sensing technologies,

including ultraviolet (UV), infrared (IR), combination UV/IR, and visible light. For

effective and reliable detection, flame detectors require a visual path to the flame, free

of obstructions, referred to as line-of-sight (LOS). Petrochemical facilities, however,

are typically characterized by complex physical geometries arising from the large

number of obstructions such as valves, pipes, tanks, and reactors in the plant. In

addition, a significant number of uncertainties, including visual field decay, unknown

obstructions, sensor outages, and cost limitations, make the problem of where to

optimally place flame detectors extremely challenging. Traditional approaches for

flame detector placement are ad-hoc, rule-of-thumb methods that are not typically

quantitative in nature, and do not account for these uncertainties.

Numerical optimization techniques provide a way to overcome these challenges.

Camm et al. (2002) proposed the Maximal Expected Coverage Problem (MECP) as

a way of optimizing expected coverage over a region of space, applied to the selection

of nature reserve sites to maximize the expected number of species. In this work, we

translate this formulation to the problem of optimal placement of flame detectors.

To the best of our knowledge, no prior work has been done on solving the problem

of optimally locating optical flame detectors within process facilities by maximizing

expected coverage in the face of detection failure.
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In this chapter, we present a mixed-integer nonlinear programming formulation

for determining the optimal plant-specific placement of optical flame detectors by

maximizing the expected coverage of 3D space while accounting for path-dependent

probability of detection failure. A linear relaxation of the original formulation is de-

veloped along with an iterative method to achieve global convergence to the original

nonlinear formulation. Under real-world conditions, we show that this probabilistic

formulation, with consideration of uncertainties, outperforms the max coverage for-

mulation that neglects potential for detection failure. We utilize the state-of-the-art

fire and gas mapping software developed by Kenexis Consulting Corporation, Kenexis

Effigy (Kenexis, 2019), to evaluate the effectiveness of the formulations on real-world

facility geometries. In addition, we integrate our developed models into the Python

package, Chama (Klise et al., 2017), for general usage.

The chapter is organized as follows. Section 3.1 provides background on industrial

fire detection and provides motivation for this work. This is followed by Section 3.2

in which the mixed-integer linear programming formulation for optimal placement of

flame detectors assuming perfect detection is presented, along with the probabilis-

tic extension in the form of a mixed-integer nonlinear programming problem, and a

corresponding convex relaxation and iterative solution algorithm. Section 3.3 com-

pares the perfect detection formulation and probabilistic extension with analysis on

one small-scale test case and two real-world facility geometries. The formulations are

evaluated under real-world conditions, first compared across fixed probability levels

of detection failure, and then across randomized probabilities of detection failure.

3.1 Background

The optimal flame detector placement problem investigated in this chapter is

related to the optimal camera placement problem. The optimal camera placement

problem considers the best locations to place a number of visual camera sensors

(fixed or motion-tracking) to ensure coverage over a region of interest, and is derived

from the Art Gallery problem. The Art Gallery Problem (AGP) is the problem of
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determining the minimum number of guards required to cover the interior of an n-wall

art gallery room (??, ORo). This problem, originally an exercise in geometry and an

application of the classic set covering problem, has been used as the foundation for

much work in the fields of camera and directional sensor placement.

Olague and Mohr (1998) presented a solution to the problem of positioning camera

sensors in 3D space to minimize the uncertainty in viewing a set of observable points

P . They defined the coverage based on relative accuracy of obtaining 3D measure-

ments and attempted to minimize the measurement error using a genetic algorithm.

Recently, Erdem and Sclaroff (2004) presented the problem of optimal camera place-

ment utilizing realistic camera capabilities and obtained a solution with integer linear

programming (ILP) techniques while handling arbitrary polygonal shapes. Zhao and

Cheung (2009) defined a grid-based solution to optimal camera placement with visual

tagging based on a set of visibility conditions. Hanoun et al. (2016) most recently

investigated placement of a camera network for target coverage within manufactur-

ing facilities with visibility and quality-of-resolution constraints. Much of the models

concerning camera placement assumes data fusion capabilities. For fire safety sys-

tems, however, optical flame detectors are attempting to process information to alert

personnel quickly in the event of an emergency, and would not require the two-way

communication functionality that would be typical for camera sensor networks. In

addition, while the camera placement problem is well-studied, they do not consider

uncertainties such as detection failure, which can impact reliability in a fire safety

system design.

The Maximal Expected Covering Location Problem (MEXCLP) was originally

introduced by (Daskin, 1982, 1983). The work addressed the problem of locating

a number of facilities to maximize the expected demand covered by an available

emergency medical service facility. Camm et al. (2002) then proposed the Maximal

Expected Coverage Problem (MECP) and the Linearized Maximal Expected Cover-

age Problem (LMECP), an extension and a linear approximation of the MEXCLP,

respectively, within the context of placing nature reserve sites in order to maximize
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expected coverage of species habitats. The formulation in (Camm et al., 2002) im-

proved upon the MEXCLP by assuming location-dependent probabilities, rather than

assuming a system-wide probability.

The mixed-integer nonlinear programming formulation we use to maximize ex-

pected coverage for the placement of flame detectors is similar to the MECP extension

proposed by Camm et al. (2002). We translate it to instead consider probabilities of

detection failure for each optical flame detector in the system to be independent of

each other, and allow for individual specifications according to distance from detector

to target. Rather than perform a linear approximation of the nonlinear probabilistic

model as in (Camm et al., 2002), our approach performs a convex relaxation of the

model using linear under-estimators via a Taylor-Series approximation. In addition,

we develop an iterative method of adding linear under-estimators that tightens our

relaxed formulation to reach the global optimum of the original nonlinear model. We

show that, for varied probabilities of detection, our iterative approach is computa-

tionally efficient, and competitive with commercial global MINLP solvers.

Fire detection sensors can be divided into three detection categories: smoke/gas,

heat, and flame – each of which are detected via sensing techniques such as chemical-

or optical-based methods. It is also important to note that not all fire detectors are

suited to detect all fires. Chemical-based detectors are predominantly used to detect

the presence of smoke that is created from smoldering fires (e.g. wood and coal), or

various harmful gases (e.g. carbon monoxide (CO)). These chemical-based detectors

typically employ catalysts or radioactive ions that interact with harmful compounds

in the air to alert personnel of gases, and are point detectors that must be placed in

the path of the evolving gas cloud to be effective. Fonollosa et al. (2018) provides

a comprehensive review of chemical sensors and corresponding algorithms for fire

detection.

While chemical-based detectors are effective for smoke and gases, they are inef-

fective for detecting presence of heat or flames. Optical-based detectors, on the other

hand, have smoke detection capabilities as well as heat and flame-detection capabil-
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ities, depending on the technology and suitability to fire. Optical-based detectors

are typically comprised of UV, IR, visual, or a combination of these technologies to

detect presence of fires. For example, video-based systems, utilizing specialized algo-

rithms, can recognize and detect flames. Similarly, optical smoke detection can also

be done with specialized algorithms and visual sensors. Comprehensive systems can

combine IR array technology with video imaging to locate flames within the field of

view in addition to detection capabilities. Bogue (2013) provides an in-depth review

of current sensor technologies for fire detection.

One major advantage of optical-based detectors for flame detection is their ability

to provide detection coverage over large physical areas due to their camera-like field-

of-view. Placed intelligently, significantly fewer optical-based flame detectors would

be required to ensure coverage over a target area than would a network of chemical-

based point detectors. Second, optical-based flame detectors can, in many cases,

provide much faster detection times than other types of flame detection. Yuan et al.

(2018) compared the response times of various fire detection sensors (e.g. CO, smoke,

and visual flame detectors) placed in different locations around a central flame. They

found that visual flame detectors produced the shortest detection times regardless of

location in their test scenario, whereas CO and smoke detectors provided less reliable

detection and required significantly more time (in some cases, 10x longer) to detect

the same fire.

A number of studies have been done surrounding algorithms that can better iden-

tify flames from image data from optical flame detectors. Milke et al. (2003) inves-

tigated multiple sensor technologies and data sources to identify the best variables

to consider in order to discriminate flames from nuisance sources. Several studies

have used support vector machines to classify flames from visual sensor data (Wang

et al., 2006; Ko et al., 2009). Thuillard (2002) investigated and designed a new flame

detector using fuzzy-wavelet algorithms. Wu et al. (2019) recently present a convo-

lutional neural network-based visual fire detection method to handle the intelligent

and automatic identification of flames as part of the on-board software within visual
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flame detector systems. In this work, we focus instead on optimally placing optical

flame detectors, and assume that, should a flame scenario occur in the field of view

of an optical flame detector, the detector will be able to successfully detect the flame

with a certain probability.

Previous formulations addressed rigorous mathematical programming approaches

for optimal placement of gas detectors. Legg et al. (2012) initially proposed a stochas-

tic programming framework to handle placement of gas detectors using dispersion

simulations generated using computational fluid dynamics (CFD) models. This work

was then expanded in (Legg et al., 2013) to handle worst-case scenarios by con-

sidering Conditional-Value-at-Risk (CVaR). Subsequently, Benavides-Serrano et al.

(Benavides-Serrano, 2014; Benavides-Serrano et al., 2014) extended the stochastic

programming framework to consider unavailabilities and voting to handle detector

failure and false alarms. Recently, Rad et al. (2017) investigated the optimal place-

ment problem for gas detectors using a risk-based approach, formulated as a maximum

weighted coverage problem, and proposed a greedy algorithm.

While the formulations described above focused on point-based or line-of-sight

gas detectors, a different set of assumptions are required for placing optical flame de-

tectors. The first-to-detect concept employed in (Legg et al., 2012, 2013; Benavides-

Serrano et al., 2014; Benavides-Serrano, 2014) (i.e. minimizing detection time by

placement of gas detectors near or close to likely gas dispersions) is no longer ap-

plicable for optical-based detector systems. Instead, the design of a flame detection

system must consider whether a flame event in a region-of-interest (ROI) is visible

and detectable by the detection network as a whole.

The placement of optical flame detectors in the petrochemical industry is typically

based upon rules-of-thumb that rely on identifying equipment of interest and conve-

nient mounting points for detectors. Several sets of internationally and regionally-

recognized standards and guidelines for fire detection and alarm systems can be

found in NFPA 72 (Association, 2019), ISO 7240-1:2014 (Nunes, 1999), and EN 54

(Nunes, 1999). However, these guidelines predominantly provide qualitative methods
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for placement of point detectors or alarms (i.e. gas, smoke, and/or heat detectors),

and only briefly mention optical flame detector placement. Indeed, little work has

been done on the problem of optimally placing optical flame detectors within petro-

chemical facilities. Obi (2014) evaluated the placement of flame detectors between

using 2D or 3D detector mapping simulation tools, and showed that 3D mapping

techniques provided better information to the user to improve flame detector sys-

tem designs. Yang et al. (2012) used color classification and a recognition algorithm

to identify the placement of visual fire detectors. They assigned hazard ratings to

key equipment, corresponding to a color mask, and used an exhaustive approach to

scan all possible locations along a wall for each detector in order to determine best

placement according to the highest coverage values.

There is a need for a systematic approach to optical flame detector placement that

addresses the following gaps:

• The existing practices are based on rule-of-thumb approaches that require sig-

nificant human input. While 3D detector mapping software has become more

widespread, it still relies on human interaction through manual placement of

individual detectors within the software, while providing no guarantee of opti-

mality. A rigorous optimization-based approach to flame detector placement has

the potential to provide quantifiably improved solutions while allowing design

engineers to focus on improving input data and exploring alternative solutions

through increased automation.

• Within the petrochemical industry, it is imperative that alarm systems are re-

liable, otherwise there can be catastrophic consequences. Therefore, the design

of any safety system must rigorously consider uncertainties. In the context of

optical flame detectors, these uncertainties can take the form of detector failure,

wiring issues, and partial or unknown obstructions, for example. An effective

detector placement approach should be able to consider and account for these

uncertainties.
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The mathematical programming formulation presented in this chapter addresses

the above concerns in the form of a mixed-integer nonlinear programming formulation

that considers uncertainty in detection, and yet is solvable to global optimality with

reasonable computational effort.

3.2 Problem Formulation

3.2.1 Basic Flame Detector Formulation (Ignoring Detection Failure)

Figure 3.1 is used to describe the terminology that is used in this chapter. Figure

3.1 shows an overhead view of a simple flame detector placement within a facility with

two large obstructions, A and B. The optical flame detector, denoted in red with the

number 1, has coverage (or vision) of the area in green. Each block of open space

that is covered by the flame detector is denoted as an “entity”. Within each entity

lies a possibility of a flame event. The aim of the flame detector placement problem is

to maximize coverage of the unobstructed entities in the facility in order to minimize

the chance that a flame goes undetected.
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Figure 3.1.: Flame detector layout example

The initial approach for placement of optical flame detectors that does not consider

detection failure is in the form of a set covering problem, where detectors are placed in

order to maximize total coverage of a set of unobstructed entities or regions of interest

with the assumption that the detectors provide perfect coverage (or detection).

The flame detection problem (FDP) is formulated as a mixed-integer linear pro-

gram given by

maximize
x,y

∑
e∈E

yewe (3.1a)

subject to
∑
l∈L

xl ≤ k (3.1b)

∑
l∈Le

xl ≥ ye ∀e ∈ E (3.1c)

xl, ye ∈ {0, 1} ∀l ∈ L,∀e ∈ E (3.1d)

where E denotes the set of entities e that are unobstructed (i.e. regions of interest),

L denotes the set of all candidate locations l for detectors, Le denotes the set of
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candidate detector locations that can observe entity e, ye is an indicator variable

that has a value of 1 if entity e is observed by at least one detector, we is a weighted

parameter for each entity e that allows priority of areas to be considered, xl is a binary

variable denoting whether a detector is built at location l, and k is a parameter

denoting the detector budget limit. The notation used in the FDP formulation is

summarized in Table 3.1.

The objective function 3.1a maximizes the total number of entities e ∈ E observed

by the placed detectors. Constraints 3.1b limits the number of detectors to be placed

to be no greater than budget limit k. Constraints 3.1c ensures that each entity e can

only be observed if a detector is placed within observable range. Constraints 3.1d

specifies the binary decision variables xl and ye.

The coverage set Le is specified through a data pre-processing step. First, can-

didate locations for detectors are specified in the topology of interest. For each can-

didate location, a ray-tracing analysis is performed to obtain the observable region

captured by each candidate detector location. This information is organized into a

set containing all entities e observed by each candidate detector location l. This set

is then inverted to obtain Le, the set of all candidate detector locations that have

observable vision of entity e, where Le ⊆ L.
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Table 3.1.: Notation for Problem FDP

Symbol Definition

L Set of all potential detector locations

E Set of all entities e to be observed

Le Set of detector locations that can observe e

xl Binary variable indicating 1 if detector is built at location l

ye Binary variable indicating 1 if entity e is observed

we Entity weight

k Maximum number of detectors allowed

3.2.2 Probabilistic Coverage Formulation (P-FDP)

The FDP formulation, while suitable for a preliminary analysis, fails to suffice

for real-world process safety conditions because it does not consider uncertainties in

detection. It assumes that detectors, once placed, provide perfect detection across

its field-of-view. In reality, however, detection is rarely perfect, and any number of

uncertain factors can affect the detection rate.

We therefore consider the case where detection is imperfect and associate a prob-

ability of detection for each detector-entity pair, and place detectors in such a way
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to maximize the expected coverage. The resulting formulation is a mixed-integer

nonlinear program (P-FDP) and is given by

maximize
x,σ

∑
e∈E

σewe (3.2a)

subject to
∑
l∈L

xl ≤ k (3.2b)

σe = 1− 1[
∏
l∈Le

(1− pl,exl)] ∀e ∈ E (3.2c)

xl ∈ {0, 1} ∀l ∈ L (3.2d)

0 ≤ σe ≤ 1 ∀e ∈ E (3.2e)

where σe is the expected coverage of entity e (i.e. probability of an event at entity e

being detected), pl,e is the probability of a detector at location l successfully detecting

an event at entity e, and we is the weight of entity e. Table 3.2 summarizes the

notation in this formulation.

Constraint 3.2c describes the probability that a flame event at entity e is detected

by the selected detectors. The second term in the right-hand side of Constraint 3.2c

is the probability that an event at entity e is not detected. This probability is, of

course, equal to 1 for all locations that do not observe entity e, and (1 − pl,exl) for

locations that could observe entity e (recall that xl is a binary variable that indicates

whether or not a detector at location l is selected). Therefore, Constraint 3.2c is

formulated as the complement of the probability that a flame event at entity e is not

detected by the network.

In addition to accounting for uncertainties in detection, another major advantage

of the P-FDP formulation is in its handling of partial obstructions in lower resolu-

tion geometries. The granularity of the discretized facility geometry determines the

number of nonlinear constraints 3.2c and σe variables, which can drastically affect the

problem size. Therefore, while it is advantageous to use a larger granularity (i.e. lower

resolution) to reduce problem size, complexity, and solution times, a lower resolution

of the discretized geometry leads to less information about obstructions.
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The detection probability pl,e is impacted by all factors that lead to a chance of

failed detection by the network of flame detectors. This includes, but is not limited

to, factors such as defective detection software, detector maintenance downtime, and

wiring issues. Since pl,e describes the detector-entity pairing, it is also useful for

treatment of partially obscured entities. This probability term allows this uncertainty

in partial obscurity to be considered when placing flame detectors.

Table 3.2.: Notation for P-FDP

Symbol Definition

L Set of all potential detector locations

E Set of all entities e to be observed

Le Set of detector locations that can observe entity e

xl Binary variable indicating 1 if detector is built at location l

σe Probability of entity e being observed

we Entity weight

ple Probability of detector at location l successfully observing entity e

k Maximum number of detectors allowed

3.2.2.1 Relaxed Form (RP-FDP)

The expected coverage model in Constraint 3.2c makes the P-FDP formulation

highly nonlinear and difficult to solve. We propose a convex relaxation of the P-FDP

formulation using linear under-estimators that can be solved as a mixed-integer linear

program. We also introduce an iterative algorithm that solves the original P-FDP

problem to global optimality using the relaxed form.

We begin by defining the nonlinear product term in Constraint 3.2c as γe, the

probability that an event at entity e is not detected, where

σe = 1− γe ∀e ∈ E (3.3)
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and

γe =
∏
l∈Le

(1− pl,exl) ∀e ∈ E (3.4)

Next, a log-transform is performed on Equation 3.4, resulting in

ln(γe) =
∑
l∈Le

ln(1− pl,exl) ∀e ∈ E (3.5)

We then redefine ln(γe) as γ̄e. In addition, since xl is a binary variable, it can be

factored out of the logarithmic expression while maintaining an equivalent result, as

follows.

γ̄e =
∑
l∈Le

xl ln(1− pl,e) ∀e ∈ E (3.6)

This transformation yields a linearized form of the original nonlinear product. The

original product γe is reconstructed from exp(γ̄e). Due to the nature of the objective,

this expression can be relaxed as an inequality producing a convex constraint, as

follows.

γe ≥ exp(γ̄e) (3.7)

A set of linear under-estimators can then be generated using a Taylor-Series Approx-

imation that bounds the right-hand side and provides a tight relaxation to Equation

3.7, as follows,

γe ≥ exp(γ̄∗e,m)(γ̄e − γ̄∗e,m + 1) ∀e ∈ E,m ∈Me (3.8)

where γ̄∗e,m are points along the domain of γ̄e where linear under-estimators are gen-

erated and Me is the set of all points in the domain of γ̄e.
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This leads to the following model, referred to as the Relaxed Probabilistic Cover-

age Flame Detector Problem (RP-FDP):

maximize
x,σ

∑
e∈E

σewe (3.9a)

subject to
∑
l∈L

xl ≤ k (3.9b)

σe = 1− γe ∀e ∈ E (3.9c)

γ̄e =
∑
l∈Le

xl ln(1− pl,e) ∀e ∈ E (3.9d)

γe ≥ exp(γ̄∗e,m)(γ̄e − γ̄∗e,m + 1) ∀e ∈ E,m ∈Me (3.9e)

xl ∈ {0, 1} ∀l ∈ L (3.9f)

0 ≤ σe ≤ 1 ∀e ∈ E (3.9g)

As the number of linear under-estimators increases, the model provides a more accu-

rate and tighter relaxation of the original problem. Therefore, an iterative algorithm

is developed to solve the RP-FDP efficiently by intelligently placing additional under-

estimators at each iteration and comparing this lower bound with the best candidate

solution to achieve global optimality.

3.2.3 Iterative Solution Algorithm

An initial set of equidistant linear under-estimators are generated across the do-

main of γ̄e for each entity e. The RP-FDP is the master problem in this case and

is solved as a mixed-integer linear program. A relative optimality gap between the

relaxed RP-FDP and the original P-FDP subproblem is calculated by (i) substituting

the solution from RP-FDP into the P-FDP problem, (ii) calculating the objective

value of P-FDP, and (iii) determining the percentage difference between the RP-FDP

and P-FDP objectives. Then, an additional linear under-estimator is added using

the current RP-FDP solution and the problem is re-solved. This iterative sequence

continues until the optimality gap between the RP-FDP and P-FDP problems falls

below a given tolerance or until a maximum iteration count has been achieved.
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To summarize, the steps of the iterative algorithm are as follows:

Step 0 Initialization A set of 3-5 equidistant linear under-estimators across the

domain of γ̄e are added to initialize the relaxed problem.

Step 1 Solving the Upper Bounding Master Problem The mixed-integer mas-

ter problem (RP-FDP) is formulated and solved to global optimality. If this

problem converges, update the current upper bound and proceed to Step 2.

Otherwise, the algorithm terminates and the current upper bound is the best

value of the objective function.

Step 2 Solving the Nonlinear Subproblem With the integer solution from Step

1, the nonlinear subproblem P-FDP is fully determined and becomes a forward

simulation. The optimality gap is then calculated between the RP-FDP and

P-FDP solutions. If the optimality gap is below the tolerance, the algorithm

terminates and the global solution is obtained. Otherwise, proceed to Step 3.

Step 3 Refining the Master Problem The current MILP master problem (RP-

FDP) is refined by adding linear under-estimators to eliminate the current in-

teger solution. This is done by adding an under-estimator at the previous value

of γ̄e for all e ∈ E. Proceed to Step 1.

Figure 3.2 depicts a visual representation of the iterative strategy using linear

under-estimators. As more under-estimators are added, the set of constraints gener-

ates a tighter bound and converges to the original nonlinear function.
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Figure 3.2.: Linear under-estimators

3.3 Numerical Results

The optimization problems presented in this chapter were written in Python using

the Chama (Klise et al., 2017) and Pyomo packages (Hart et al., 2011a, 2017).

Chama is an open-source Python package that provides mixed-integer linear pro-

gramming formulations to determine optimal sensor locations that maximize moni-

toring effectiveness. Chama is a general-purpose optimization software tool and is

applicable to a wide range of sensor placement optimization problems. Currently,

Chama is being actively used to design sensor networks for airborne and water pol-

lutant monitoring. The FDP model in this chapter was solved using the Coverage

formulation within Chama. In addition, the P-FDP and RP-FDP formulations de-

veloped in this chapter have been added to the Chama library for general usage.

The Python Optimization Modeling Objects (Pyomo) package provides a com-

plete optimization modeling platform that allows for full scripting capabilities in a

Python environment. Pyomo was used to write the proposed optimization models (P-
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FDP and RP-FDP) in this chapter, including all variables, constraints, and objective

functions.

The P-FDP formulation was solved using BARON 17.8.9 (Tawarmalani and Sahini-

dis, 2005; Sahinidis, 2017) while the global solution algorithm using the RP-FDP for-

mulation was solved using Gurobi Optimizer (Gurobi Optimization, 2018). BARON

is an optimization solver that solves non-convex optimization problems to global op-

timality and is particularly suited for mixed-integer nonlinear programs. Gurobi Op-

timizer is a commercial optimization solver that is well-established in the operations

research field as a state-of-the-art solver for mixed-integer problems. All analyses

were performed on a Intel Xeon E5-2697v2 12-Core 2.70 GHz machine with 250 GB

RAM.

A preliminary test case, denoted as Case A, was created to show the effectiveness

of the formulations on a small-scale facility. Case A, shown in Figure 3.3, represents

a warehousing facility with 10 storage tanks and 3 wall structures, and spans 100

units by 100 units in area and 2 units in height. Each storage tank and wall structure

measures 1 unit in height. A total of 50 candidate detector locations were considered

for Case A, located on the edges and throughout the facility. Uni-directional detectors

are placed at the sites on the edges of the facility, while each candidate location within

the interior of the facility allows the placement of four uni-directional detectors, one

oriented in each cardinal direction (i.e. at 0°, 90°, 180°, and 270° with respect to the

horizontal axis). Each detector has a 90° field-of-view. Discretizing the space into 1

cu unit entities yields 8,300 unobstructed blocks.

The coverage set for Case A was generated using a ray-casting technique. A set of

rays extend from each candidate detector location. A ray extends until it reaches an

obstruction (e.g. storage tank or wall structure) or the boundary of the facility. Each

unobstructed unit entity that the ray passed through is added to the set of entities

that a candidate detector location can observe. A total of 300 discretization points

about a 90° field-of-view are used to initialize the ray-casting from each candidate

detector location. A step size of 0.1 units is used in casting each ray.
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Figure 3.3.: Overhead view of Case A

The proposed formulations were also tested on real-world facilities, denoted in this

chapter as Cases B and C, which were generated by Kenexis Consulting Corporation

using the fire and gas mapping software, Kenexis Effigy (Kenexis, 2019). Kenexis Ef-

figy Fire and Gas Mapping Software is a state-of-the-art fire and gas mapping tool that

performs both geographic and scenario-based coverage calculations. Kenexis Effigy

is built on the techniques from the ISA 84.00.07 Technical Report (ISA-TR84.00.07,

2010) that standardize the process for the design of fire and gas systems and was

developed by industry experts to achieve a more quantitative approach to process

safety management. For both Cases B and C, Kenexis Effigy also provided the cov-

erage sets identifying the physical space captured within the field-of-view of each

candidate detector location.

The first real-world case study, Case B, is a wellhead drilling facility, typical for

offshore oil platforms. The facility geometry, shown in Figure 3.4, includes 16 well-

heads, stairs, storage cabinet, and support structures, and spans 30m by 20m in area

and 10m in height. A total of 24 candidate detector locations are considered for Case

B, located on the surrounding support columns. Each flame detector was specified

as a multi-spectrum infrared (MSIR) detector for hydrocarbon hazard identification
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and a horizontal field-of-view of 90°. Discretizing the space into 1 cu ft entities yields

162,722 unobstructed blocks, 57% of which are seen when all 24 detectors are allowed.

The reported coverage percentages in the proceeding analyses are normalized with

respect to this maximal coverage percentage.

Case C represents a typical offshore platform hydrocarbon separations module and

is a representative case of a complex process geometry. The facility geometry, shown

in Figure 3.5, includes a host of process equipment (tanks, supports, pipes, etc.)

spanning across 3 platform levels, measuring 73ft by 73 ft in area and approximately

35 ft in height. A total of 81 candidate detector locations were considered for Case C,

located at appropriate mounting points throughout the facility. Each flame detector

was specified as a multi-spectrum infrared (MSIR) detector for hydrocarbon hazard

identification and a horizontal field-of-view of 90°. Discretizing the space into 1 cu

ft entities yields 129,061 unobstructed blocks, 81% of which are seen when all 81

detectors are allowed. The reported coverage percentages in the proceeding analyses

are normalized with respect to this maximal coverage percentage.
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Figure 3.4.: Isometric view of Case B facility with 24 candidate flame detector loca-

tions
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Figure 3.5.: Isometric view of Case C facility with 81 candidate flame detector loca-

tions

The FDP and P-FDP formulations were applied to all test cases. Recall that

the FDP formulation places detectors assuming perfect detection, while the P-FDP

formulation considers detection failure by modeling detection as a set of probabilities.

The RP-FDP formulation is the relaxed form of P-FDP and is used as the master

problem in the proposed global solution algorithm to solve P-FDP more efficiently. In

the following results, the P-FDP model is solved using both BARON (when possible)

and the developed algorithm. The solutions from both methods are the same, but

solution times vary.

The relative optimality gap of the global iterative algorithm is set to 0.1% and

the outer iteration limit is set to 100. For comparison, the relative optimality gap for
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BARON is also set to 0.1% with a CPU time limit of 3 hours (10800 seconds). For

evaluation purposes, the iterative algorithm was not given a CPU time limit.

Two separate analyses are performed concerning the set of detection probabilities.

The first analysis considers the case where the detection probabilities pl,e are fixed

to constant values of 50%, 70%, and 90% for all unit entities. In other words, the

probability of successful detection of a flame event within any block by the set of

selected detectors would be 50% for pl,e=0.5, for example.

The second analysis considers the case where the detection probabilities pl,e are

varied relative to each location l and entity e. Specifically, the detection probabili-

ties pl,e were randomly sampled from a uniform distribution between the values 0.5

and 0.99. In this analysis, the probability of successful detection of a flame event

within any block by the set of selected detectors could be any value within the in-

terval [0.5,0.99]. The real facility analysis, these probabilities could be determined

considering a number of factors, including the amount of partial obstruction for each

detector-entity pair.

3.3.1 Results for Case A: Tank Storage Facility

The placement results of the FDP and P-FDP formulations for Case A are shown

in Figures 3.6 and 3.7, respectively. Figures 3.6 and 3.7 show how the resulting place-

ments of the FDP and P-FDP formulations differ. Each point depicts coverage from

the selected detectors according to the corresponding optimization formulation. The

P-FDP formulation attempts to maximize expected coverage. In so doing, coverage

redundancy is automatically accounted for. On the other hand, the FDP formula-

tion seeks to maximize total coverage assuming each detector has perfect detection

capabilities. This difference can be seen in the placement results, where the FDP

formulation results in fewer overlapping coverage fields than that of the P-FDP for-

mulation.

As expected, if we compare the optimal expected coverage assuming perfect de-

tection with that obtained when considering probability of detector failure, the for-
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mulation considering detector failure is lower. To this end, we compare the optimal

placement using FDP when assuming perfect detectors (detection failure probability

of 0%) and when subjected to a detection failure probability of 30%. These results

are shown in Figure 3.8a. Once detection failure is considered, the expected coverage

of the resulting placement drops significantly, almost 15% at points.

This is not a realistic assessment, however, since the FDP formulation ignores the

reality of detector failure. To analyze the impact of ignoring detector failure, in the

next analysis, we place the detectors using the same two approaches (FDP assuming

perfect detection, and P-FDP assuming 30% failure probability), but then we evaluate

these placements using the more realistic case including failure probability of 30%.

These results are shown in Figure 3.8b. As the number of detectors that are placed

increases, so does the discrepancy between the FDP and P-FDP solutions under real-

world conditions. The P-FDP solutions show consistent improvements in coverage

compared with the FDP solution, reaching up to 10%. Figures 3.8a and 3.8b also

show the diminishing returns in placing more detectors past a certain threshold. The

expected coverage increases 60% when placing 1 to 10 detectors. However, placing

more than 10 detectors for Case A yields no more than 15% additional expected

coverage, all the way up to 40 placed detectors.
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Figure 3.6.: Optimal placement results for FDP formulation for Case A with budget

k=10

Figure 3.7.: Optimal placement results for P-FDP formulation for Case A with budget

k=10 and pl,e=0.7
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(a)

(b)

Figure 3.8.: Expected coverage of FDP assuming perfect detection vs. FDP/P-FDP

under imperfect conditions for Case A with (a) FDP assuming perfect detection

(pl,e=1.0) vs. imperfect conditions (pl,e=0.7) and (b) Expected coverage of FDP

vs. P-FDP under imperfect conditions (pl,e=0.7)
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In addition, the percent improvement of the P-FDP solution over the FDP so-

lution is more pronounced when fewer detectors are considered. Figure 3.9 shows

the percent improvement of the P-FDP solution across three detection probability

levels pl,e=0.5, 0.7, and 0.9 for Case A. For high detection probability (50%) we see

increasing improvement in the P-FDP solution over the FDP solution, reaching 20%

improvement. A detection probability of 70% shows a moderate 5 to 8% improve-

ment over the FDP solution. A detection probability of 90% shows the smallest

improvement of around 2% over the FDP solution. Nevertheless, this value still rep-

resents a non-trivial improvement when designing a reliable fire safety system in a

petrochemical facility.

Figure 3.9.: Percentage improvement of P-FDP solutions against FDP solutions for

Case A for probabilities of successful detection pl,e=0.5, 0.7, and 0.9.
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The FDP formulation solved consistently within 1.35 seconds for Case A, but it

is a considerably smaller model compared to the P-FDP formulation and does not

consider probabilities. Table 3.3 lists the numerical results for the P-FDP formulation

for Case A across three probability levels pl,e=0.5, 0.7, and 0.9. Listed are the detector

budget k, the optimality gap percentage, the iteration count for the global solution

algorithm, the timing of the solution algorithm in seconds, and the timing for BARON

in seconds.

From Table 3.3 we find that the proposed global solution algorithm using linear

under-estimators is well suited to solve the probabilistic flame detector placement

problem. Our iterative algorithm converges to 0.1% optimality gap in 6 or fewer

iterations. Generally, as the detection failure rate increases (pl,e decreases), our al-

gorithm takes longer to converge over BARON. In this case, higher failure rates

introduces more probabilistic variation between placements and requires additional

under-estimators to attain the same degree of tightness of the relaxation when com-

pared to problems considering lower detection failure rates. When the detection

failure rate is at its lowest, the iterative algorithm performs fastest and converges in

one iteration. At this point, the P-FDP formulation approaches the timing of the

FDP formulation, since the probability of successful detection is reaching the perfect

detection assumption.

The timing of the iterative algorithm is comparable with that of BARON at

high detection probability levels (pl,e=0.9) and takes about 5 times as long when

pl,e=0.5. In some cases, namely when few detectors, the performance of the algorithm

fares better than BARON. When few detectors can be placed, there may be clear

placements that provide the best coverage. In the same vein, when the number of

detectors that can be placed approaches the total number of available locations, the

choice of the best coverage that can be gained from the remaining locations may

also be clear. However, when the number of detectors that can be placed and the

number of available locations are both large, the optimization requires significantly

more time to evaluate the available combinations. There may exist a large number
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of integer solutions that give similar objective values. This increase in computational

time occurs for both the iterative algorithm and BARON.

Table 3.3.: Numerical Performance of P-FDP formulation comparing Iterative Algo-

rithm and BARON for Case A

pl,e=0.5 pl,e=0.7 pl,e=0.9

Budget Gap Time (s) Gap Time (s) Gap Time (s)

k (%) Iter Alg BARON (%) Iter Alg BARON (%) Iter Alg BARON

1 0.00 4 41 93 0.00 4 41 42 0.02 1 7 71

6 0.00 4 82 52 0.00 2 38 58 0.02 1 20 40

11 0.06 4 115 57 0.00 5 166 38 0.02 1 34 32

16 0.06 3 49 30 0.00 3 93 64 0.03 1 16 8

21 0.02 4 65 30 0.00 3 96 8 0.03 1 14 9

26 0.03 6 121 8 0.10 3 62 9 0.03 1 26 9

31 0.04 3 45 8 0.10 2 23 8 0.03 1 19 10

36 0.00 3 45 8 0.08 2 23 8 0.03 1 12 10

41 0.05 3 46 8 0.04 2 30 8 0.02 1 12 10

In the previous case, it was assumed that the probability of detection failure

was the same for all detector-entity pairs. However, the probabilities depend on

several factors, including partial obstruction, and we also consider the case where

these probabilities are not all the same. We call this the non-uniform case. The

percentage improvement of the P-FDP solution against the FDP solution was also

compared for the non-uniform case. Figure 3.10 shows the comparison for Case A for

detection probability pl,e drawn from a uniform distribution between 0.5 and 0.99.

In this case, we find that the improvement follows a similar pattern to the case for

uniform probabilities. The percentage improvement in this case follows similarly to

the solution for a detection probability level of 0.7. This makes sense, since the mean

of the uniform distribution between 0.5 and 0.99 is 0.745, which is approximately

where the profile would lie if the analysis were performed using uniform probabilities.
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While a uniform distribution was used as the probability sampling in our analysis, the

problem formulation is general for any probability sampling distribution. In future

work, the investigation of a probability model that follows an exponential decay as a

function of distance from the optical flame detector and consider partial obstruction

would be valuable towards improving estimates of this uncertainty.

Table 3.4 lists the numerical timing results of the iterative algorithm on Case

A for the non-uniform case. The iterative algorithm converges to 0.1% gap in 6 or

fewer iterations. The timing of solving the variable probability scenario is greater on

average than the timing for any of the previous cases due to the increase in problem

complexity with the non-uniform probabilities.

It is important to note that for the non-uniform, the commercial global optimizer

BARON fails to generate a solution within the CPU time limit (3 hours) defined

for this case study. While BARON was able to solve the problem formulations us-

ing uniform probability levels, for the case of flame detector placement problems with

non-uniform probabilities, a tailored approach was required for efficient solution. Sup-

port for non-uniform probabilities more accurately reflects uncertainty in real-world

scenarios as opposed to uniform probability levels.
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Figure 3.10.: Percentage improvement of P-FDP solutions against FDP solutions for

Case A for probabilities of successful detection pl,e ∈ [0.5, 0.99]
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Table 3.4.: Numerical Performance of Iterative Algorithm for Case A with pl,e ∈

[0.5, 0.99]

Budget k Gap (%) Iter Time (s)

1 0.00 4 41

6 0.00 2 36

11 0.00 4 115

16 0.01 6 202

21 0.02 4 90

26 0.03 3 249

31 0.04 3 95

36 0.04 3 48

41 0.06 2 37

3.3.2 Results for Case B: Wellhead Drilling Facility

Figure 3.11 shows the percent improvement of the P-FDP solution across detection

probability levels pl,e=0.5, 0.7, and 0.9 for Case B. In comparison to the results from

Case A, those of Case B show markedly smaller improvements in using P-FDP over

FDP. For a detection probability of 50%, the improvement reaches up to 2.5% while

the same probability level for Case A reaches 20% improvement. The discrepancy

lies in the facility geometry of the respective test cases, as well as the candidate

detector locations. In Case A, the facility geometry was 2-dimensional, while the

geometry of Case B is 3-dimensional. This increase in dimension allows detectors

placed at higher vantage points in Case B to cover a much wider area than those

in Case A. In addition, the geometry and candidate locations in Case B are highly

symmetrical, which leads to very similar coverage areas with different placement

configurations. The combination of these factors in Case B results in similar coverage

capabilities using the FDP formulation, resulting in minor improvements when using
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the P-FDP formulation instead. Nevertheless, the improvement in using the P-FDP

formulation is non-trivial and remains a better placement method compared with the

FDP formulation. Note that this improvement is more pronounced with the more

complex geometry considered in Case C.

Figure 3.11.: Percentage improvement of P-FDP solutions against FDP solutions for

Case B for probabilities of successful detection pl,e=0.5, 0.7, and 0.9.

Table 3.5 lists the numerical timing results for the P-FDP formulation for Case B

across three probability levels pl,e=0.5, 0.7, and 0.9. The iterative algorithm converges

to 0.1% optimality gap in 5 or fewer iterations. For higher detection failure levels (pl,e

decreases), the problem becomes more challenging to solve and requires additional

iterations. For low detection failure levels (pl,e=0.9), the iterative algorithm con-

verges in one iteration and requires the shortest computational time. Because Case
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B represents a larger geometry, it requires significantly more time to solve compared

to Case A. The iterative algorithm was executed without a fixed CPU time limit for

evaluation purposes. It should be noted that the greatest timing coincided with the

budget limits and probability levels that generated the greatest percentage improve-

ment in the P-FDP solution compared with the FDP formulation. At one point, the

algorithm required over 3 hours to evaluate budget limit k=5 with probability level

pl,e=0.7.

Note also that for budget limit k=5, and partially for k=9 and k=13, the com-

mercial global solver BARON failed to solve the problem within the CPU time limit

(3 hours). However, it is worthwhile to mention that we only considered the default

options for BARON. Tuning option values may improve the performance of BARON

in solving these problems. In addition, BARON may have been able to generate a

solution for the missing values if given additional CPU time. Comparatively, the

iterative algorithm was able to converge to 0.1% gap for nearly all of the evaluations

in Case B in less time than BARON required.

Table 3.5.: Numerical Performance of P-FDP formulation comparing Iterative Algo-

rithm and BARON for Case B

pl,e=0.5 pl,e=0.7 pl,e=0.9

Budget Gap Time (s) Gap Time (s) Gap Time (s)

k (%) Iter Alg BARON (%) Iter Alg BARON (%) Iter Alg BARON

1 0.00 5 3015 1121 0.00 4 1219 1117 0.01 1 298 1227

5 0.00 4 8056 - 0.00 4 - - 0.03 1 1784 -

9 0.05 3 1709 - 0.00 4 9175 - 0.02 1 593 1118

13 0.04 4 3825 - 0.00 3 1675 1438 0.01 1 224 834

17 0.00 3 994 1502 0.06 2 501 1354 0.00 1 175 845

21 0.00 2 381 1294 0.00 2 383 1046 0.00 1 134 728

Figure 3.12 shows the comparison for Case B considering non-uniform detection

probabilities. Here, again, pl,e is drawn from a uniform distribution between 0.5 and
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0.99. In this case, we find that the performance improvement follows a similar pattern

to the case for a fixed probability level of 0.7.

Table 3.6 lists the numerical results of the iterative algorithm on Case B for

detection probability pl,e drawn from a uniform distribution between 0.5 and 0.99. The

algorithm was able to converge to 0.1% gap in 4 or fewer iterations. The timing for

the non-uniform case fares similar to that of the uniform case for the lower detection

probability levels. Again, for the non-uniform case, the commercial global optimizer

BARON was unable to generate a solution within the CPU time limit (3 hours) for

any budget.

Figure 3.12.: Percentage improvement of P-FDP solutions against FDP solutions for

Case B for probabilities of successful detection pl,e ∈ [0.5, 0.99]



94

Table 3.6.: Numerical Performance of Iterative Algorithm for Case B with pl,e ∈

[0.5, 0.99]

Budget Gap (%) Iter Time (s)

1 0.00 4 2951

5 0.00 3 8831

9 0.00 3 5702

13 0.04 2 1029

17 0.03 2 494

21 0.00 2 474

3.3.3 Results for Case C: Offshore Hydrocarbon Separations Module

Figure 3.13 shows the percent improvement of the P-FDP solution across detec-

tion probability levels pl,e=0.5, 0.7, and 0.9 for Case C. The results for Case C show

larger improvements in using P-FDP over FDP when compared with the results for

Case B. For a detection probability of 50%, the improvement in Case C reaches up to

10%. Again, the discrepancy lies in the facility geometries. Case C is a highly non-

symmetrical facility geometry which leads to marked improvements in the placements

from P-FDP versus FDP. The results for Case C also show a significant drop-off in

improvement percentage after placing about 5 detectors. Similarly, a drop-off can

be seen in the Case B results after placing 10 detectors. This drop-off is due to the

diminishing returns when placing additional detectors, previously encountered in the

trade-off curve in Figure 3.8. As more detectors are placed, the coverage areas become

more similar for both FDP and P-FDP solutions. Interestingly, this phenomenon is

not encountered in the Case A results, possibly due to the fewer number of solu-

tions that capture similar spaces and the larger present factor of obstructions in a

2-dimensional geometry.
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The results in Case C also show an eventual decay of improvement as the number

of detectors placed approaches the total set of possible candidate placements. In this

case, the placement results for both the FDP and P-FDP solutions converge to the

same selected detectors, leading to zero improvement in using P-FDP over FDP for

detector budgets that approach the maximum number of considered locations.

Figure 3.13.: Percentage improvement of P-FDP solutions against FDP solutions for

Case C for probabilities of successful detection pl,e=0.5, 0.7, and 0.9.

Table 3.7 lists the numerical timing results for the P-FDP formulation for Case C

across three probability levels pl,e=0.5, 0.7, and 0.9. The iterative algorithm converges

to 0.1% optimality gap within 5 iterations. As detection failure levels increase (pl,e

decreases), the problem becomes more challenging to solve and requires additional

iterations. For the highest detection rates pl,e=0.9, the algorithm converges in one
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iteration and generally required less time than BARON. The algorithm required the

longest evaluation times for intermediate budget levels k=11, 21, and 31, especially

as the detection probability decreased. Regardless, when detector budget limits are

small or nearing the total available locations, the algorithm performs faster than

BARON and represents the lowest solution times of the series of evaluations.

Table 3.7.: Numerical Performance of P-FDP formulation comparing Iterative Algo-

rithm and BARON for Case C

pl,e=0.5 pl,e=0.7 pl,e=0.9

Budget Gap Time (s) Gap Time (s) Gap Time (s)

k (%) Iter Alg BARON (%) Iter Alg BARON (%) Iter Alg BARON

1 0.00 3 384 442 0.00 3 384 471 0.01 1 88 621

11 0.00 5 7874 948 0.00 4 8704 889 0.02 1 1681 853

21 0.00 5 4027 879 0.03 3 2517 868 0.02 1 609 763

31 0.00 4 1180 727 0.00 3 1358 711 0.02 1 302 580

41 0.08 2 297 515 0.07 2 350 510 0.02 1 141 492

51 0.04 2 327 495 0.02 2 447 476 0.01 1 103 479

61 0.00 2 378 484 0.00 2 238 476 0.01 1 117 461

71 0.00 2 233 430 0.00 2 236 477 0.01 1 92 475

Figure 3.14 shows the comparison for Case C with non-uniform detection prob-

abilities. As before, pl,e is drawn from a uniform distribution between 0.5 and 0.99.

In this case, we find that the improvement follows a pattern similar to the case for a

fixed probability level of 0.7.

Table 3.8 lists the numerical timing results of the iterative algorithm on Case

C for detection probability pl,e drawn from a uniform distribution between 0.5 and

0.99. Note that the point of greatest improvement in expected coverage (k=11)

from Figure 3.14 required the longest solution time (over 4 hours). As the detector

budget increases and the number of available locations decreases, there is a significant

reduction in solution time. In general, the timings for the non-uniform case match
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closely with those of the uniform. Again, for the non-uniform case, the commercial

global optimizer BARON fails to generate a solution within the CPU time limit (3

hours).

Figure 3.14.: Percentage improvement of P-FDP solutions against FDP solutions for

Case C for probabilities of successful detection pl,e ∈ [0.5, 0.99]
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Table 3.8.: Numerical Performance of Iterative Algorithm for Case C with pl,e ∈

[0.5, 0.99]

Budget Gap (%) Iter Time (s)

1 0.00 3 431

11 0.00 5 -

21 0.02 3 3061

31 0.05 3 1914

41 0.06 2 383

51 0.02 2 376

61 0.00 2 351

71 0.00 2 262

3.3.4 Computational Scalability

The computational scalability of the P-FDP formulation and iterative solution

algorithm was tested across a set of topologies with increasing entity size. First, a

set of two-dimensional topology instances (in this case, 10 instances) were generated,

where each topology instance had a different set of obstacles that were randomly

placed within the respective topology. The set of instances were generated across a

series of grid densities: 100, 2,500, and 10,000 entities (corresponding to 10 m, 50

m, 100 m square grid sizes). Then, using a set of 20 candidate detector locations

that were placed in evenly-spaced locations along the boundaries of the topologies

(consistent across all topology instances) and a budget of 5 candidate detectors, the

P-FDP formulation was applied to each instance and grid size, assuming non-uniform

detection probabilities pl,e.

Table 3.9 lists the timing results of the scalability analysis for the set of 10 in-

stances across three grid sizes, where solution times correspond to the total time

required for the solver (in this case, Gurobi Optimizer) to converge to less than 0.1%
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optimality gap using the iterative solution algorithm. Each timing entry in Table

3.9 represents an average over 10 stochastic realizations of the non-uniform detec-

tion probability pl,e sampled from a uniform distribution between 0.5 and 0.99 for

the corresponding grid size and topology instance. Table 3.9 shows clearly that the

solution time increases with respect to the grid size. The timing results vary across

instances, with some instances performing significantly better than others. Figure

3.15 shows the normalized timings for each instance across the three grid sizes, where

solution times are normalized to the time required to solve the 100 m2 grid size. The

figure shows that while, in general, the solution times for the instances scale with an

increase in grid size, a few instances (specifically, instances 6 and 10) scaled better

than the others.

Table 3.9.: Solution Times for Scalability Analysis with average times over 10 real-

izations for pl,e ∈ [0.5, 0.99]

Instance Grid Density

100 m2 2,500 m2 10,000 m2

1 0.15 10.71 71.04

2 0.29 6.11 14.32

3 0.10 7.03 21.35

4 0.23 6.84 33.63

5 0.26 7.98 38.48

6 0.07 8.09 10.92

7 0.14 7.07 20.01

8 0.26 16.94 82.92

9 0.11 17.55 89.86

10 0.06 6.92 8.76
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Figure 3.15.: Normalized solution time versus grid size with average times over 10

realizations for pl,e ∈ [0.5, 0.99]

The solution times were also analyzed in relation to the objective function values

for each solution. Checking the correlation between the solution times and objective

function values yielded a Spearman’s correlation coefficient of r=−0.7 with a p-value

of 9.7× 10−16, indicating a strong negative correlation between the solution time and

objective value. This relationship implies that problems with low expected coverage

due to the location of obstructions take longer to solve than those with a similar

number of obstructions with a comparatively higher expected coverage.

3.4 Conclusions

Our key conclusions in this work are as follows. First, our proposed P-FDP for-

mulation results in consistent improvements in expected coverage compared with the

FDP formulation when subjected to real-world conditions. The improvement of the

P-FDP model over the FDP model reaches up to 20% for some cases when assuming
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high detection failure probabilities, while the improvement decreases to 1-2% when as-

suming 90% success rate in detection. Recall that the probability of detection failure

includes consideration of partial obstruction and camera range in addition to failure

or unavailability of the detector itself. Second, the P-FDP model addresses redun-

dancy in coverage, which leads to enhanced reliability in situations where particular

detectors are in service or in need of maintenance. Third, the P-FDP formulation is

agnostic to the specific process and underlying detection technology. Fourth, the P-

FDP formulation when using non-uniform probabilities is effectively solved with our

global solution algorithm that is tailored specifically for the flame detector placement

problem and solves efficiently with reasonable computational effort.

Future avenues of study include evaluating the behavior of the P-FDP formulation

with detection probabilities modeled as exponential decay over distance with respect

to the field-of-view specifications of the candidate detectors, as well as investigation

into a decomposition method for handling large-scale facility geometries (or high res-

olution discretizations). In addition, a combined optimization formulation for flame

and gas detector placement with shared budget constraints would provide a holistic

approach to process safety design.
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4. PARAMETER ESTIMATION OF INFECTIOUS DISEASE TRANSMISSION

PARAMETERS AND OPTIMAL SELECTION OF DISEASE DETECTION

SITES

The work in this chapter focuses on first estimating both spatial coupling and seasonal

transmission parameters with a series of nonlinear programming approaches for a

network of subpopulations. Then, the estimated parameters are used to form the

simulation basis for a stochastic programming framework based on the classical p-

median formulation to determine the optimal locations for placing detection sites in

order to quickly respond to infectious disease epidemics across a nationwide scale.

Despite large successes in the control of infectious diseases by improvements in

drugs, nutrition, vaccines, and lifestyles, transmissible pathogens still pose an enor-

mous threat to human mortality. Mortality rates attributed to infections are projected

to stay at the current levels of 13 to 15 million deaths per year until at least 2030

(Heesterbeek et al., 2015). Long-standing infectious agents and newly emerging ones

still pose a continuing challenge — for example, severe acute respiratory syndrome

(SARS) and Middle Eastern respiratory syndrome (MERS) coronaviruses; measles

and whooping cough; and the recent major Ebola outbreak in 2014-2015 (Heester-

beek et al., 2015).

The development of effective control methods for infectious disease spread involve

multiple layers of complexity, including an increased understanding of the spatial

transmission patterns in relation to susceptibility, infectiousness, and recovery rates,

as well as the duration of pathogen immunity. In light of this complexity, computa-

tional tools and mathematical models have become essential to garner information

for developing the evidence base for decision-making, and for understanding epidemi-

ological patterns throughout the population. In order for these reliable models to
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be constructed, however, the parameters within the models must be accurately esti-

mated, which can be quite difficult, and can require efficient algorithms and solution

procedures.

The seasonal transmission parameter measures the level of inter-population mix-

ing on a temporal scale. Previous works have shown that the seasonal transmission

parameter is correlated with school-term holidays (Word et al., 2012). The spatial

transmission parameter (also called the spatial coupling parameter) captures the level

of movement between subpopulations and provides important insights for understand-

ing dynamics of diseases within and between communities. Spatial coupling between

communities directly correlates with spatial synchrony, which is a key epidemiological

phenomenon describing the likelihood of disease persistence within a metapopulation

(Keeling and Rohani, 2002). In the absence of spatial synchrony, disease reintroduc-

tion events prevent localized extinctions from occurring and becoming permanent,

leading to an increased probability of disease persistence. By quantifying the spatial

coupling parameters for a metapopulation, we can better understand disease persis-

tence within this network, as well as implement more informed control measures.

Currently, a gap exists for a model that uses disease fade-out information to better

estimate city-to-city spatial coupling for many cities (instead of city-to-metapopulation).

We attempt to fill this gap while also incorporating an efficient solution method for

the parameter estimation.

The estimations in this work are demonstrated using records of measles outbreaks

in 954 cities across England and Wales between 1944 and 1964. The nonlinear pro-

gramming approaches for this large-scale estimation accurately reproduce longstand-

ing parameter estimates, are readily scalable to larger problem sizes, and substantially

reduce solution times compared to Markov-Chain Monte-Carlo methods. We present

our work on efficient estimation of spatial coupling parameters over a series of four

parameter estimation formulations.

First, we discuss the spatial coupling parameter in the form of a city-to- metapop-

ulation relationship, which relates the city of interest (i.e. host city) with the larger
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surrounding metapopulation (i.e. aggregate of cities within the same country/region,

excluding the host city). We show a stochastic simulation by which the city-to-

metapopulation spatial coupling parameter can be used to simulate transmission dy-

namics. Then we present a nonlinear programming framework to estimate the pa-

rameter for each city individually. A statistical, hazard-based Susceptible-Infectious-

Recovered (SIR) model focusing on disease fade-out periods provides the basis for the

estimation.

Second, we extend the prior formulation by applying a power law model to derive

the relationship between the city-to-metapopulation spatial coupling parameter and

the population size of the host city. We do so by solving the city-to-metapopulation

parameter estimation problem over all cities in the metapopulation simultaneously,

subject to the power law model.

Third, using the city-to-metapopulation spatial coupling parameter and corre-

sponding estimation formulation as a basis, we propose a model extension to estimate

the city-to-city spatial coupling parameter, which decouples cities from the metapopu-

lation and describes the level of transmission between cities in a pairwise relationship.

In this extension, we apply a gravity model to relate the city-to-city spatial coupling

parameter as a function of the sizes and distances between the pairwise cities. The

resulting nonlinear programming formulation solves for the city-to-city spatial cou-

pling parameters over all cities in the metapopulation simultaneously, subject to the

gravity model. We also extend the stochastic simulator proposed earlier to handle

city-to-city spatial dynamics.

Fourth, we utilize the flexible nature of our parameter estimation framework to

simultaneously estimate the seasonal transmission parameter in addition to estimating

the gravity model-based, city-to-city spatial coupling parameter.

Finally, the stochastic simulator, in conjunction with the previously estimated

city-to-city spatial transmission parameters found in PCC-GS, is then used to gener-

ate a family of epidemic scenarios for measles. This set of scenarios serves to quantify

the uncertainty in epidemic origin and infection transmission across subpopulations,
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and enters into a stochastic programming framework based on the classical p-median

problem to identify optimal locations for the placement of infectious disease detec-

tion sites. The optimal placement framework has fast solution times and serves to

help policymakers and healthcare professionals alike in determining epidemic control

strategies on a countrywide scale.

The sections in this chapter are divided as follows. Section 4.1 provides a back-

ground on infectious disease modeling and parameter estimation, epidemiological

models for transmission networks, and efficient solution algorithms. Section 4.2 fo-

cuses on the estimation and simulation of the city-to-metapopulation spatial cou-

pling parameter, including a stochastic simulation used to simulate data and help

validate the estimation in Section 4.2.1, an estimation framework for the city-to-

metapopulation spatial coupling parameter in Section 4.2.2, and an extension to si-

multaneously estimate the city-to-metapopulation spatial coupling parameters for

all cities in a region according to a power law model in Section 4.3. Section 4.4

presents an extension to estimate city-to-city transmission parameters using a gravity

model basis and is further developed in Section 4.5 to include estimation of seasonal

transmission parameters. Section 4.6 describes the development of a scenario-based

stochastic programming method for the optimal selection of disease detection sites

using the estimated transmission parameters to generate epidemic scenarios. Section

4.7 concludes the chapter with a discussion and summary of results and findings.

4.1 Background

The difficulty in modeling infection processes arises from the complex interactions

between individuals (i.e. length of time of interaction, physical contact with individ-

ual or contaminated object, etc.) and the distribution of infection characteristics at

various spatiotemporal scales. Additionally, the contact patterns between individu-

als are highly stochastic and are often described by one of two fundamental classes

of models: agent-based models and compartment-based models (Heesterbeek et al.,

2015). Agent-based models focus on network-level interactions that involve large
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numbers of distinct individuals with unique sets of traits such as age, sex, location,

immunity status. These types of models are often used to simulate epidemic growth,

rather than endemic cycles (epidemic refers to outbreaks, whereas endemic refers to

the cyclical recurrence of these outbreaks). They provide excellent frameworks for

representing stochastic contact patterns, but the complexity of the networks and the

high level of detail make them computationally impractical for parameter estimation

on the endemic level.

On the other hand, compartment-based modeling categorizes individuals into their

stage of infection, e.g. susceptible, infectious, exposed, etc. Since individuals are

described by states and aggregated into compartments with same average charac-

teristics, compartment-based models are more computationally tractable in estima-

tion frameworks than agent-based models. For example, the susceptible-infectious-

recovered (SIR) model is commonly used to represent the stages of measles (Hethcote,

2000). Unvaccinated newborns are susceptible to measles until they become infected,

after which they may recover and gain life-long immunity to the disease. By discretiz-

ing the compartment traits to match the progressive stages of the specific disease, a

compartment-based model can effectively model large-scale disease spread. Because

of the computational efficiency and applicability of solution algorithms, we choose to

use compartment-based modeling when formulating our problem.

An in-depth analysis on deriving spatial transmission information from the cou-

pling parameter was first performed by Keeling and Rohani (2002). To study the

interchange and exact mixing patterns of individuals between populations, Keeling

and Rohani (2002) defined a two-city SIR model using spatial coupling as a key

parameter to represent transmission. Incorporating the spatial coupling into both a

phenomenological model (SIR with coupling parameter in incidence rate) and a mech-

anistic model (SIR with constraints for rates at which individuals leave and return to

home cities, and ratio of time spent in the temporary to the permanent population),

Keeling and Rohani (2002) showed that equivalent coupling levels produced identical

movement rates.
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Whereas Keeling and Rohani (2002) fixed the coupling parameter to study its

effects, Xia et al. (2004) expanded the scope to estimate city-to-city spatial coupling

for many cities using a gravity model. Xia et al. (2004) estimated the spatial cou-

pling parameters using data from epidemic growth and minimizing one-step-ahead

prediction error.

Given that spatial coupling is correlated to disease persistence, Bjørnstad and

Grenfell (2008) hypothesized that more accurate estimates for the coupling parame-

ters could be drawn from fade-out data (periods of zero new infections) rather than

from epidemic growth trajectories. Bjørnstad and Grenfell (2008) defined a model

based on hazards (the probability of a new infection occurring after a period of fade-

out) and estimated the city-to-metapopulation spatial coupling for many cities.

While small-scale models may give important clues for disease spread, large-scale

models are necessary for understanding infectious disease spread across metapopula-

tions (e.g. multiple cities, regions, or countries). Previously, key parameters could be

chosen to fit models using case data from recurring epidemics, as well as simulating a

possible discrete set from qualitative techniques. However, due to the lack of compre-

hensive data (e.g. infectious and recovery rates are not observed for all individuals

recorded and high under-reporting rates), many researchers use statistical methods

to infer and reconstruct probable parameters for disease models.

To model stochasticity and reconstruct the numerous parameters in large-scale

models, Cauchemez et al. (2011) presented a stochastic continuous time model using a

statistical approach to analyze time-series epidemic data. To estimate the parameters,

they used the Metropolis-Hastings Markov-Chain Monte-Carlo (MCMC) approach

to sample from distributions to identify the parameters. MCMC approaches are

notoriously computationally expensive, and the simulation performed by Cauchemez

et al. (2011) required 20 hours per run for 20 total cities.

Recently, Jandarov et al. (2014) investigated the estimation of gravity model pa-

rameters for spatial transmission, building directly off the work of (Bjørnstad et al.,

2002; Grenfell et al., 2002; Finkenstädt et al., 2002; Xia et al., 2004). Jandarov
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et al. (2014) used an MCMC approach as well to estimate the spatial transmission

parameters, making the assertion that likelihood-based inference methods are com-

putationally intractable, and resorted to assuming a Gaussian process to emulate the

gravity model. They showed computation times of 10 hours for the Gaussian emu-

lation approach when compared to an MCMC approach, which required 3 days of

computation time.

In light of the significant resource requirements to fulfill large-scale MCMC statisti-

cal sampling methods, research has been done using large-scale optimization methods

to solve these difficult parameter estimation problems. Word et al. (2012) demon-

strated an optimization approach to estimating transmission parameters with a non-

linear, continuous time model. Using an SIR model for measles as a framework, Word

et al. (2012) proposed a nonlinear programming formulation involving the seasonal

transmission parameter varying with time. Using existing measles case data from

various sources, Word et al. (2012) showed estimation of the parameters matching

closely to existing findings performed independently by others in the field. In ad-

dition, by using an interior-point solution method for the parameter estimation, a

problem with over 16,000 variables and 15,000 constraints required only 190 seconds

in CPU time to converge.

In this research, we adopt the SIR model for measles and simulate endemic dis-

ease cycles to show that incorporation of the spatial coupling parameter does indeed

capture the essence of space-time disease dynamics. We then build upon the current

models by first reproducing the hazard model proposed by (Bjørnstad and Grenfell,

2008) using the efficient solution approach proposed by (Word et al., 2012). We then

extend both methods with a gravity model to decouple transport between the cities

and estimate intercity disease transmission. Finally, the estimated parameters are

used to form the simulation basis for a stochastic programming framework, based

on the classical p-median formulation, to determine the optimal locations for dis-

ease detection sites in order to detect and mitigate infectious disease epidemics on a

nationwide scale.
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4.2 City-to-Metapopulation Spatial Coupling Parameter Estimation

We begin by focusing our scope to measles, an established, prototypical disease

in quantitative epidemiology and population dynamics. Since measles is easily diag-

nosed and was historically subject to mandatory notification, medical personnel have

retained excellent data records for measles outbreaks (Anderson and May, 1992).

Additionally, measles-immune individuals have perfect cross-immunity to all variant

strains. Data from measles outbreaks in England and Wales from 1944 to 1964 were

used for the proposed models. These data contain sets for both a 60-cities subset and

the full 954-cities set in England and Wales, with new reported cases every biweek

for the 20 year period and before massive vaccination interventions. Due to misdiag-

noses and failure to seek medical attention, an under-reporting bias of about 40-60%

was characterized in these data (Bjørnstad et al., 2002). Given the cyclic nature of

measles, the data holds key insights into regional persistence and spatial immigration

due to the recurrent fade-out periods and epidemic periods.

4.2.1 Simulation

We first created a discrete-time, stochastic simulation of multi-city disease dy-

namics using spatial coupling parameters to show that real data can be modeled by

spatial transmission parameters, and to help validate the estimation procedure. The

SIR model represents the progressive stages of measles. A newborn falls into the

“susceptible” (S) category before becoming “infected” (I), and finally “recovering”

(R) into life-long immunity. This relationship is shown in Figure 4.1.

Figure 4.1.: SIR compartment-based model
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The mean proportion of susceptibles was initialized at 4% for each city (although it

can be as large as 8%) and the total population for each city was kept constant because

the population variance over the estimation period for the England and Wales dataset

was minimal (Bjørnstad et al., 2002). The stochastic SIR simulation is as follows.

St+1,j = St,j +Bt,j − It+1,j ∀t ∈ T, j ∈ J (4.1a)

It+1,j ∼ NegBin(λt,j, It,j + lt,j) ∀t ∈ T, j ∈ J (4.1b)

λt,j =
βu,j
Nj

(It,j + lt,j)
αSt,j ∀t ∈ T, j ∈ J, u = 1, ..., 26 (4.1c)

lt,j ∼ Bin(1, 1− exp(−cjxt,j ȳt,j)) ∀t ∈ T, j ∈ J (4.1d)

xt,j =
St,j
Nj

∀t ∈ T, j ∈ J (4.1e)

ȳt,j =

∑
k 6=j

It,k∑
k 6=j

Nk

∀t ∈ T, j ∈ J (4.1f)

where St,j, Bt,j, and It,j denote the number of susceptible individuals, newborns,

and infected individuals in city j at time t, respectively; Nj is the total population of

city j; λt,j describes the number of expected infected individuals; lt,j is the number of

immigrant infections into city j at time t; α is a correction parameter for discretization

of the continuous infection process; cj is the measure of spatial coupling of city j to

all other cities; xt,j is the fraction of local susceptible individuals and ȳt,j the fraction

of non-local infected individuals. Equations 4.1 are indexed over all bi-weeks t ∈ T

and cities j ∈ J , with u denoting the indices of bi-weeks per year for the seasonal

transmission rate βu,j.

Equation 4.1a describes a balance over the susceptible individuals in the local

region (newborns Bt,j enter the susceptible population and infected individuals It,j

leave the susceptible population). The susceptible balance ignores mortality, since

fatality from measles and child mortality rates have been historically very low in

developed nations.

Equation 4.1b defines the stochastic epidemic growth, which is randomly sam-

pled from a negative binomial distribution NegBin(a, b) with expectation a=λt,j and
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clumping parameter b=It,j + lt,j, previously described in (Bjørnstad and Grenfell,

2008).

Equation 4.1c describes the expected infections in a region and introduces stochas-

ticity into the simulation. The seasonal transmission rate βu,j is a parameter that

represents seasonal dynamics (i.e. more infections occur during the school year as

opposed to the holiday season), and has been defined for the data set by Xia et al.

(2004), as well as Bjørnstad and Grenfell (2008). A value of α=0.97 was used in

Equation 4.1c, which serves to correct for discretizing an inherently continuous pro-

cess and account for nonlinearity in the growth of infections (Grenfell et al., 2002;

Xia et al., 2004; Glass et al., 2003). The immigrant infections lt,j are randomly sam-

pled for each city j and time t from a binomial distribution, Bin(n, p), with n=1

trials and p=(1− exp(−cjxt,j ȳt,j)) probability of success, where success is defined as

contact between a local susceptible individual and a non-local infected individual.

Equation 4.1d denotes this relationship and results in either 0 or 1 immigrant infec-

tions at every time step. This relationship was previously described in (Bjørnstad

and Grenfell, 2008). Equations 4.1e and 4.1f describe the expressions for comput-

ing the fraction of local susceptible individuals and the fraction of non-local infected

individuals, respectively.

The spatial coupling parameter cj describes the disease transmission rate to city

j in relation to the larger metapopulation (or pool of cities) (Bjørnstad and Grenfell,

2008; Finkenstädt et al., 2002; Grenfell et al., 2002; Finkenstädt and Grenfell, 2000).

The spatial coupling parameter is critical to the understanding of inter-city relation-

ships. This parameter will be the focus of the parameter estimation process. For the

simulation, spatial coupling values from Bjørnstad and Grenfell (2008) are used.

Figure 4.2 compares the results of a single stochastic simulation against the real

case data for the city of Cambridge, UK over the 20 year period. The seasonal patterns

are consistent between the two data sets, and the magnitudes of the epidemic peaks

are comparable. Most importantly, the simulation reproduces the dynamics of fade-

out periods and re-introductions of infections into the city.
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Figure 4.2.: Comparison between simulated data and case data for Cambridge, UK

(population 91,300)

Note that no estimation has been performed in this portion. Values for the spa-

tial coupling were calculated using the linear function log(cj)=0.69 + 0.98 log(Nj)

described by Bjørnstad and Grenfell (2008). The initial susceptible fraction S0 was

assumed to be 4% and the reporting fraction r was 55%. The seasonal transmission

rates for biweeks 1 through 26 are outlined in A.5.

4.2.2 City-to-Metapopulation Formulation

In this section, we discuss the development of an estimator for spatial transmission

of measles among populations in the United Kingdom. The spatial coupling parameter

cj in the model formulation represents the level of mixing within and movement

between one city and the metapopulation, as well as information about the importance
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of the city in terms of disease spread potential (Finkenstädt and Grenfell, 2000; Xia

et al., 2004; Bjørnstad and Grenfell, 2008).

The problem of estimating the city-to-metapopulation spatial coupling parameter

can be formulated as a nonlinear programming problem on an independent, city by

city basis as follows.

max
cj

∑
t∈H

ln(1− ~t,j) +
∑
t∈H∗

ln(~t,j) (4.2a)

subject to ~(t, j) =

βu,j
Nj
St,j

1 +
βu,j
Nj
St,j

(1− exp(−cjxt,j ȳt,j)) (4.2b)

∀t ∈ T, u = 1, ..., 26

where H = {t|It−1,j = 0, It,j = 0 ∀t ∈ T} (4.2c)

H∗ = {t|It−1,j = 0, It,j > 0 ∀t ∈ T} (4.2d)

where the variable for spatial coupling cj is the only variable being estimated. Param-

eters Nj, St,j, xt,j, It,j, and ȳt,j are pre-computed from the data set, and the seasonal

transmission parameters βu,j are initially defined using values from (Bjørnstad and

Grenfell, 2008).

Constraint 4.2b defines the discrete-time hazard ~t,j, which represents the prob-

ability that a disease fade-out period will end and a new epidemic will result. The

hazard equation was first formulated by Bjørnstad and Grenfell (2008) based on the

idea that more information could be gathered about spatial disease transmission in

times of disease fade-out than in times of epidemic growth. This hazard is governed

by the joint probability of spatial contact between a susceptible individual and a non-

local infectious individual, along with the probability that an epidemic will result

from such a contact. The derivation of this expression can be found in A.4.

The estimation is done by maximizing the log-likelihood of the fade-out data over

the variable cj, represented by the objective function in Equation 4.2a, for individual

cities j within a metapopulation, one city at a time. The objective operates over

a summation of the hazard for all periods in which the preceding biweek had no
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new infected cases. Then, if the infected cases I at biweek t is 0, then the natural

logarithm of the fade-out probability (1−~t,j) is taken. Otherwise, if the infected cases

I at biweek t is greater than 0, then the natural logarithm of the hazard probability

~t,j is taken. The sets H and H∗ denote this relationship, and is shown in Sets

4.2c and 4.2d. Conceptually, this objective function models the behavior of fade-out

periods, in which fade-out is the result of the probability that neither spatial contact

nor epidemics occur (i.e. 1− ~t,j), and the end of fade-out is the probability of both

spatial contact and epidemics occurring (i.e. ~t,j). To minimize instances of cities with

little to no fade-out periods, the estimation was performed on cities with populations

less than 250,000 people. Note that while the cities j of interest included only cities

with populations fewer than 250,000, all cities were included in the calculation of the

fraction of non-local infectious individuals ȳt,j.

4.2.3 Estimation Results

This problem was modeled using Pyomo (Hart et al., 2012, 2011b) and solved

using IPOPT (Wachter and Biegler, 2006). Pyomo is an open-source optimization

modeling language based on Python. IPOPT is an open-source, nonlinear interior-

point solver. All estimations were performed on a Intel Xeon E5-2697v2 12-Core 2.70

GHz processor.

In order to validate the estimator, estimations were performed on 100 stochastic

simulations of case data, generated from an initialized value for the spatial coupling

parameter for each city. Figure 4.3 shows a sample distribution of the estimated

coupling parameters for the city of Birkenhead (with an average population of 141,550

from 1944-1964) over 100 stochastic simulations.

The mean of the set of distributions do not deviate more than 4.5% of the ini-

tialized (true) coupling value for all cities in the data set. General observations show

slightly higher deviations from the true value in cities with smaller populations than

in those with larger populations.
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Figure 4.3.: Distribution of estimated spatial coupling parameters on 100 simulations

for cj=10000 (Example: Birkenhead, population 141,550)

Figure 4.4 shows the estimated values for the spatial coupling parameters in each

of the 954 cities and towns from real case data, plotted against their respective pop-

ulation sizes. The color gradient ranges from cities with most fade-out periods (dark

blue) to cities with least fade-out periods (white). Intuitively, the larger the city,

the fewer fade-out periods in disease data since a larger population provides more

individuals through which disease can spread. The estimated spatial coupling val-

ues for the cities match the values contained in findings reported in (Bjørnstad and

Grenfell, 2008). The figure shows a strong log-linear correlation between the spatial

coupling parameter and the population size, which reasons that spatial coupling is a
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Figure 4.4.: Spatial coupling estimation for the 954 urban communities in England

and Wales with reporting fraction r=0.55 and initial susceptible fraction s0=0.04

direct function of the population and larger cities have a greater impact on spatial

transmission within a metapopulation. Another observation from the figure is that

the variance in the estimation is larger at high populations. Larger cities have fewer

fade-out periods, and thus provide the estimator with less information. This is not

surprising, since the objective function is a summation over the periods of fade-out.

If little fade-out occurs for a given city, there is less information for the estimation.

Several key assumptions were made in this problem formulation, including the

seasonal transmission rate βu,j, the reporting fraction r, and the initial susceptible
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fraction s0. The seasonal transmission rate βu,j was defined as a fixed set of values,

derived from the England and Wales data set reported in previous works (Bjørnstad

and Grenfell, 2008; Xia et al., 2004). The reporting fraction r, which affected the

total reconstructed case data, was defined as 55% (from range of 40-60% (Bjørnstad

and Grenfell, 2008)). The initial susceptible fraction s0 was defined as 4% (from

range of 4-8% (Bjørnstad and Grenfell, 2008)). These values were selected based on

susceptible reconstruction results and other literature estimates (Word et al., 2012).

A sensitivity analysis on the estimation was performed over the reporting fraction

and initial susceptible fraction to understand the impact of these parameters and

assumptions. Figures 4.5 and 4.6 show the sensitivity analyses on the two parameters.

The scatter points denote parameter estimates from the PCM formulation in Equation

4.2, while the line corresponds to the linear regression (cj=1.99N0.98
j ) from estimates

performed in (Bjørnstad and Grenfell, 2008).

In Figure 4.5, a higher reporting fraction leads to an increase in the coupling values

for cities. Conceptually, a higher reporting fraction produces fewer reconstructed

infections in the real case data. This increase in reporting fraction also leads to a

closer match with reported values from (Bjørnstad and Grenfell, 2008) (shown in the

red line). It may be that the results reported in (Bjørnstad and Grenfell, 2008) were

obtained using a greater reporting fraction than what was assumed here.
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Figure 4.5.: Sensitivity analysis on reporting fraction r

Figure 4.6 shows a decrease in coupling values for all cities with an increase in the

initial susceptible fraction. Conceptually, a greater initial susceptible fraction, along

with a fixed number of infections, results in a lowered spatial coupling parameter

because the infections have a lowered effect on the susceptible population.
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Figure 4.6.: Sensitivity analysis on initial susceptible fraction s0

4.3 Simultaneous City-to-Metapopulation with Power Law Model

To understand the log-linear relationship between the coupling parameter and

the population size, a power-law constraint is added to the nonlinear programming

formulation, shown in Equation 4.3.

cj = θNγ
j (4.3)

This constraint, after a logarithmic transformation, yields a linear form and will iden-

tify a consistent relationship between the city-to-metapopulation spatial coupling pa-

rameter cj and the population size Nj of city j. Until now, the estimation procedure

(including solution methods used by Xia et al. (2004) and Bjørnstad and Grenfell

(2008), as well as the nonlinear programming formulation by Word et al. (2012)) had

been done on an independent, city by city basis. Now we simultaneously estimate
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θ, γ over all cities. This now significantly increases the problem size and the compu-

tational challenges. Nevertheless, we show that the nonlinear programming approach

remains computationally efficient and the problem remains tractable. The modified

formulation to consider simultaneous estimation of the city-to-metapopulation spatial

coupling using the power-law model is shown below.

max
θ,γ

∑
j∈J

(
∑
t∈H

ln(1− ~t,j) +
∑
t∈H∗

ln(~t,j)) (4.4a)

subject to ~(t, j) =

βu,j
Nj
St,j

1 +
βu,j
Nj
St,j

(1− exp(−cjxt,j ȳt,j)) (4.4b)

∀t ∈ T, j ∈ J, u = 1, ..., 26

cj = θNγ
j ∀j ∈ J (4.4c)

where H = {t|It−1,j = 0, It,j = 0 ∀t ∈ T} (4.4d)

H∗ = {t|It−1,j = 0, It,j > 0 ∀t ∈ T} (4.4e)

The objective in Equation 4.4a now operates as a summation over all cities j ∈ J .

The hazard probability and corresponding fadeout sets H and H∗ remain the same

from Equations 4.2b, 4.2c, and 4.2d.

The results with the simultaneous estimation formulation yielded cj=0.91N0.99
j for

an θ=0.91 and γ=0.99, which shows close agreement with the regression performed

in (Bjørnstad and Grenfell, 2008) (i.e. cj=1.99N0.98
j ). This comparison is shown

in Figure 4.7, where the red line shows the regression reported in (Bjørnstad and

Grenfell, 2008) and the blue points are the results from our simultaneous estimation.

The numerical timing results for the simultaneous estimation approach are sum-

marized in Table 4.1. Given over 300,000 constraints and 300,000 variables for the

estimation using the 954-city dataset, the solver converged in under three minutes.

With the computational efficiency of this problem formulation, scale-up to larger
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Figure 4.7.: Comparison of linear regressions between estimated parameters (in blue)

and findings in (Bjørnstad and Grenfell, 2008) (red line) for reporting fraction r=0.55

and initial susceptible fraction s0=0.04

data sets and additional constraints is very viable, which will be explored in the next

sections.

Table 4.1.: Numerical Timing Results

Data set Iterations Solution Time (s) Constraints Variables

60 cities 12 2.21 6530 6532

954 cities 74 126.10 310934 310936

4.4 City-to-City Spatial Coupling Parameter Estimation

In this section, we transition to estimating spatial transmission between cities on

a city-to-city, pairwise basis. While the previous formulation provided a model for cj,
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the physical significance of the city-to-metapopulation spatial coupling parameter cj

lies only in its relationship to the metapopulation. In order to understand the spatial

transmission between respective cities in a disaggregated manner, however, we must

further specify the spatial coupling parameter as cj,k, where j denotes the local city of

interest and k denotes a nearby, non-local donor city (note that “donor” refers to the

uni-directional transmission from city k to city j). Redefining the spatial coupling

changes the problem formulation as well. In this case, Equation 4.2b is now replaced

by Equation 4.5. Since the coupling parameter is now dependent on the interactions

between individual cities, it enters into the summation that previously yielded the

non-local infected fraction ȳt,j.

~(t, j) =

βu,j
Nj
St,j

1 +
βu,j
Nj
St,j

(1− exp(−xt,j
∑
k 6=j

Ik,tcj,k
Nk

)) (4.5)

A gravity model is adopted for this new spatial coupling parameter, introducing an

additional set of constraints on cj,k, shown by Equation 4.6.

cj,k =
exp(α1)Nα2

j Nα3
k

dα4
j,k

(4.6)

The gravity model has been used extensively to relate magnitude of travel with

population sizes in transportation models (Xia et al., 2004). The term gravity comes

from the analogous form of the gravity equation between two large, physical bodies.

The model has parameters Nj, the population at city j; Nk, the population at city k;

and dj,k, the distance between cities j and k. The exponents in the model, α1, α2, α3,

and α4, determine the relationship between the parameters in the model. Variables

α2, α3, and α4 are assumed to be positive so that the transmission between the cities

increases with the populations of the cities and decreases with the distance between

the cities, while α1 is assumed to be negative to reflect the appropriate relationship
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in the exponential term. The modified formulation for the simultaneous estimation

of the pairwise spatial coupling cj,k using a gravity model (PCC-G) is as follows.

max
αi

∑
j∈J∗

(
∑
t∈H

ln(1− ~t,j) +
∑
t∈H∗

ln(~t,j))

subject to cj,k =
exp(α1)Nα2

j Nα3
k

dα4
j,k

~t,j =

βu
Nj
St,j

1 + βu
Nj
St,j

(1− exp(−xt,j
∑
k 6=j

Ik,tcj,k
Nk

))

∀t ∈ T, j ∈ J and u = 1, ..., 26

(4.7)

Correspondingly, an extension to the stochastic SIR simulation previously defined

in Equations 4.1a - 4.1f is also developed using the gravity model to reflect city-to-city

transmission, as follows.

St+1,j = St,j +Bt,j − It+1,j ∀t ∈ T, j ∈ J (4.8a)

It+1,j ∼ NegBin(λt,j, It,j + lt,j) ∀t ∈ T, j ∈ J (4.8b)

λt,j =
βu,j
Nj

(It,j + lt,j)
αSt,j ∀t ∈ T, j ∈ J, u = 1, ..., 26 (4.8c)

lt,j ∼ Bin(1, (1− exp(−xt,j
∑
k 6=j

Ik,tcj,k
Nk

))) ∀t ∈ T, j ∈ J (4.8d)

cj,k =
exp(α1)Nα2

j Nα3
k

dα4
j,k

(4.8e)

xt,j =
St,j
Nj

∀t ∈ T, j ∈ J (4.8f)

Equations 4.1a, 4.1b, 4.1c, and 4.1e stated previously are maintained in Equations

4.8a, 4.8b, 4.8c, and 4.8f, respectively. Equation 4.1d is expanded here in the Equa-

tion 4.8d to consider the re-derived expression representing the probability of contact

between a nonlocal infected and a local susceptible individual (expressed in Equa-

tion 4.5). The gravity model is included in the simulation to model the city-to-city

transmission parameter cj,k in Equation 4.8e.

Given the distance between cities, the size of the country of interest, and the

assumption that individuals typically do not have daily commutes over large distances,
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the model only assumes the pairwise existence of spatial coupling for cities within a

certain radius of one another. That is, city-to-city pairings were not considered for

cities that fell outside the distance boundary parameter. For our tests we used a

distance boundary of 60 miles.

The estimation results for the gravity model for all cities in the 954-city dataset

are α1=− 2.175, α2=1.127, α3=0.054, and α4=1.056, listed in Table 4.2.

Table 4.2.: Estimates for α parameters in gravity model (954-city dataset, distance

boundary of 60 miles)

Parameter Value

α1 -2.175

α2 1.127

α3 0.054

α4 1.056

4.5 Simultaneous City-to-City Spatial Coupling Parameter Estimation with Sea-
sonal Transmission

In this section, we extend the formulation to simultaneously estimate the seasonal

transmission parameters, βu, in addition to the parameters in the gravity model.

We also compare these estimates with existing findings performed by others in the

field. We then compare epidemic predictions from our model estimates with those

performed by others and with actual reported cases.

The seasonal transmission parameters had been estimated previously by (Word

et al., 2012; Xia et al., 2004; Finkenstädt et al., 2002; Bjørnstad et al., 2002; Grenfell

et al., 2002), which are defined in Appendix A.5 and were used for the estimation

done thus far. However, we now allow this parameter to be estimated and introduce

a least squares term into the objective to minimize the difference between number of
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predicted and recorded infections. The extended formulation is shown in Formulation

4.9.

max
αi,βi

∑
j∈J∗

(
∑
t∈H

ln(1− ~t,j) +
∑
t∈H∗

ln(~t,j))− ρ
∑
j∈J

∑
t∈T

(It,j − Ît,j)2 (4.9a)

subject to cj,k =
exp(α1)Nα2

j Nα3
k

dα4
j,k

(4.9b)

~t,j =

βu
Nj
St,j

1 + βu
Nj
St,j

(1− exp(−xt,j
∑
k 6=j

Ik,tcj,k
Nk

)) (4.9c)

Ît,j =
βuSt,j
Nj

Iγt−1,j (4.9d)

∀t ∈ T, j ∈ J and u = 1, ..., 26

Constraint 4.9d is a one-step-ahead method to predict the number of new infected

cases I, where Î is the predicted value. The parameter ρ is used to weight the multiple

objectives and is set to 1 for the subsequent analyses.

The estimation results for the seasonal transmission parameter β (normalized)

are shown in Figure 4.8. Figure 4.8 compares our estimation results with existing

estimates performed in (Xia et al., 2004) and (Finkenstädt et al., 2002). Our estimates

match seasonality patterns well with the existing estimates; namely, peaks around the

4th, 12th, and 21st biweeks and troughs around the 9th, 18th, and 25th biweeks. In

addition, the estimation reproduced the relative extrema in values and slopes. The

αi parameters did not change significantly from previous estimates (shown in Table

4.2).
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Figure 4.8.: Comparison of Seasonal Transmission Parameter Estimates for nor-

malized β over time (biweeks) between values estimated in (Xia et al., 2004) and

(Finkenstädt et al., 2002) with our results for the 60-city and 954-city datasets

Finally, we can combine the parameter estimates up to this point (αi from Table

4.2 and βu,j) with the pairwise city simulator in Equations 4.8 to simulate time-varying

infected case data. In Figures 4.9 and 4.10, we compare the frequency of outbreaks

in 10 simulations with those from the original measles case data for England and

Wales from 1944-1964 for the cities of Cambridge (est. population 105,950) and

Teignmouth (est. population 10,540), respectively. The outbreak size is reported in

terms of the infected fraction, which is the number of cases divided by the population

size of the city. For the larger city of Cambridge, we see remarkable agreement in

the mean and shape of the distributions. The scale of the fade-out periods with
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respect to the epidemic periods are also close, showing that the parameter estimation

formulation and simulator can indeed capture and recreate fade-out dynamics that

are in agreement with the data. The similarities in the long tail as cases increase show

that the proposed methods can also simultaneously match the scales of epidemics at

the relative infrequency of their occurrence. This strong agreement in distributions is

consistent in the findings for cities with populations larger than about 75,000 people.

As city sizes decrease, the simulations are less able to recreate outbreak frequencies

that match the original case data, as shown in Figure 4.10. While the mean of the

simulated distribution of outbreaks matches will with that of the original case data,

the simulation is no longer able to approximate the scale and frequency of epidemics

as well as it can for larger cities. As population sizes decrease, the number of fade-

out periods overwhelm the number of periods with infected cases, which ultimately

leads to a lower calculated probability of hazard or reintroduction of the disease. As

a result, the simulation generates more fade-out periods and fewer outbreaks. The

sporadic and sparse nature of endemic cycles in small cities (populations fewer than

35,000 to 55,000) makes simulations of infections in these cities notoriously difficult.

Nevertheless, the relatively close approximation of the distribution of outbreaks that

the proposed methods are able to produce even for small cities is encouraging and

provides credence to use the methods in decision-making and control strategies.
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Figure 4.9.: Comparison of outbreak frequency between case data for Cambridge

(est. population 105,950) and simulated outbreaks (10 simulations) using spatial and

seasonal parameter estimates
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Figure 4.10.: Comparison of outbreak frequency between case data for Teignmouth

(est. population 10,540) and simulated outbreaks (10 simulations) using spatial and

seasonal parameter estimates

With confidence in the estimation of spatial coupling parameters for infectious

disease transmission, we can use the insights from the work done so far to propose an

optimal selection method for the location of disease detection sites across a metapop-

ulation.

4.6 Optimal Selection of Disease Detection Sites

In this section, we build off of the classical p-median approach that has been used

extensively in the fields of operations research and location science Laporte et al.

(2015) to identify optimal locations for disease detection sites while accounting for

the uncertainty in sources of epidemics.
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Healthcare resources, including but not limited to infectious disease teams, ap-

propriate medical supplies, and support personnel, can often be in short supply when

an infectious disease outbreak occurs. The fast spread of infectious diseases puts

additional pressure on epidemic response teams and stretches healthcare resources

further.

While one solution would be to increase the total amount of available resources

across all possible healthcare locations, this tactic is typically cost prohibitive and may

not be reasonable given the vast number of treatments required to handle the known

roster of infectious diseases. Another solution, which will be discussed in this section,

is the optimal selection of infectious disease detection sites. A disease detection site

can be defined as the placement or allocation of additional healthcare resources in

order to maximize the chances of early detection of a specific (or related family of)

infectious disease(s). This solution aims to provide a more reasonable allocation of

resources while also aiming to detect infectious disease epidemics early to implement

subsequent control measures.

For the work described here, we have chosen to evaluate the selection of disease

detection sites for the targeted detection of measles. Note that while the optimal

selection method is designed to be agnostic to the specific disease, the scenario gen-

eration method discussed here is disease-specific and should be modified according to

the corresponding spatial and seasonal transmission patterns of the targeted disease.
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4.6.1 Problem Formulation

The impact formulation, based on the p-median facility location problem, for the

optimal selection of disease detection sites is described as follows.

minimize
x,s

∑
a∈A

αa
∑
i∈La

daixai (4.10a)

subject to
∑
i∈La

xai = 1 ∀a ∈ A (4.10b)

∑
i∈L

si ≤ K (4.10c)

xai ≤ si ∀a ∈ A, i ∈ La (4.10d)

si ∈ {0, 1} ∀i ∈ L (4.10e)

0 ≤ xai ≤ 1 ∀a ∈ A, i ∈ La (4.10f)

where A is the set of all epidemic scenarios a, L is the set of all candidate locations

i that can be selected, La is the set of all locations that are capable of detecting

epidemic scenario a, αa is the probability that scenario a occurs, dai is the impact

coefficient which describes the measure of impact that will be incurred if scenario a

is first detected at location i, xai is an indicator variable that denotes 1 if location i

is selected and is also the first to detect epidemic scenario a, si is a binary variable

indicating whether location i is selected, and K is a parameter for the limit on the

number of locations that can be selected.

The use of scenarios to quantify uncertainty in the objective function yields a

stochastic program that minimizes the total expected impact-weighted cost. Con-

straints 4.10b ensure that all scenarios are detected by the set of selected detection

sites. Constraints 4.10c define a budget limit for the number of selected detection

sites. Constraints 4.10d ensure that an epidemic scenario is detected only if a cor-

responding detection site is selected. Constraints 4.10e require that the placement

variables si be binary and Constraints 4.10f enforce that the assignment variables xai

be continuous between 0 and 1.
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The epidemic scenarios for the impact formulation that comprise set A are gener-

ated using the stochastic SIR simulation defined in Equation 4.8. For each scenario,

the simulation is first initialized with 10 infected measles cases in a single city. Then,

the infection spread is simulated for 104 biweeks (4 years) across the set of cities while

the number of cases in each city at each time period are recorded. For the subsequent

analyses, a total of 60 scenarios are conducted, one for each city in the data set. The

transmission radius dj,k was bounded to cities within 60 miles.

The impact coefficient dai can represent a number of different measures of impact.

For our cases, we define the impact metric as the total number of infected cases

across the metapopulation before an outbreak has been detected, denote as TNC

(Total Number of Cases). This metric also requires specification of a threshold level

for detection. For the subsequent analyses, we have chosen a threshold level of 12

infected cases. This parameter can have a large impact on the optimization results.

An analysis is shown in the next section that describes the sensitivity of this threshold

parameter. The impact coefficients dai are precomputed using the set of epidemic

scenarios A.

The set La, defined as the set of all sites that can detect epidemic scenario a, is

also precomputed using the set of epidemic scenarios A. A dummy site is included

within each location set La to handle the case when no existing candidate site is

capable of detecting epidemic scenario a. The impact coefficient dai corresponding to

a dummy site that is selected is set to a large value in order to penalize undetected

scenarios. For our results, we set the undetected impact coefficient to the maximum

impact coefficient corresponding to the scenario in the set of scenarios A. In other

words, the impact of not detecting scenario a is equivalent to the maximum number

of cases that correspond to scenario a at a given threshold level.

4.6.2 Selection Results

The simulation was written in Python while the optimal detection site formula-

tion was built using the Impact Formulation method contained in the Python package
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Chama (Klise et al., 2017), and solved using Gurobi Optimizer using default settings.

Chama is an open-source Python package that provides mixed-integer linear program-

ming formulations to determine optimal sensor locations that maximize monitoring

effectiveness. Chama is a general-purpose optimization software tool and is applica-

ble to a wide range of sensor placement optimization problems, including designing

sensor networks for airborne and water pollutant monitoring. Both the simulation,

optimization, and subsequent analyses were performed on a 2.4 GHz Intel Core i5

machine with 8 GB RAM. Solution times for the optimal detection site formulation

were consistently below 0.10 seconds with an optimality gap of 0.00%.

Figures 4.11 shows the optimal selection of disease detection sites for the TNC im-

pact metric, along with a threshold detection level of 12 cases and a budget of 6 detec-

tion sites for the 60-city UK dataset. The locations and approximate population sizes

(circa 1944-1964) of the selected cities are London (3.2 Million), Bristol (436,000),

Southampton (191,000), South Shields (108,000), Exeter (76,000), and Macclesfield

(36,000). Also of interest is that the optimization selected sites in centrally-located

areas, rather than ones with the largest populations.

Note that the distance bound of 60 miles that was applied to the simulation

can greatly affect the selection of sites because a tighter boundary can yield islanded

clusters of cities where epidemics will be localized. Since the optimization formulation

(specifically Constraint 4.10b) requires that each scenario be captured by the set of

detection sites (otherwise a heavy penalty will be incurred), a detection site will nearly

always be selected within islanded clusters of cities.
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Figure 4.11.: Optimal Selection Scheme for TNC impact metric with detection thresh-

old level of 12 cases and budget K=6

Figure 4.12 illustrates the sensitivity of the objective (with the TNC impact met-

ric) with respect to the detection threshold level. The analysis was performed with

detection threshold levels from 10 to 100 cases. The figure shows a gradual increase

in the total number of expected cases with an increase in the detection threshold.

When fewer resources are able to be allocated to improve detection thresholds, more

outbreaks will go undetected, leading to an increase in the total number of people

who will become exposed to and infected by the disease.
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Figure 4.12.: Objective with TNC impact metric versus detection threshold level for

levels from 10 to 100 cases

Figure 4.13 shows the impact of the budget K on the objective with TNC impact

metrics at a threshold level of 12 cases. The objectives are plotted on a logarithmic

scale to more clearly represent the stark decrease that occurs. The difference in the

total expected number of cases between placing one detection site and 10 detection

sites is nearly 2 orders of magnitude difference, from over 18,000 cases to just under

500 cases.
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Figure 4.13.: log10(Objective) with TNC impact metric versus budget limit from

K=1 to K=60

The trade-off effect shown in this figure means that a few optimally selected sites

(in this case, just 10 detection sites out of 60 possible candidate sites) can have a

dramatic impact on the possibility of early detection and mitigation of infectious

disease epidemics. In a resource-constrained region with limited access to healthcare

facilities and emergency personnel, the optimal selection of sites to locate these finite

resources can be crucial for preventing larger outbreaks.

4.7 Conclusions

From this work, we have presented a nonlinear programming framework for esti-

mation of city-to-city spatial and seasonal transmission rates by inferring transport

information from localized disease case data, as well as a rigorous selection method-

ology for the location of disease detection sites using a scenario-based stochastic

program. We have shown that nonlinear programming is an effective tool for esti-
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mating spatio-temporal disease models from case data using a hazards-based model.

We use this to estimate spatial coupling parameters for three relationships: (i) indi-

vidual city-to-metapopulation, (ii) simultaneous city-to-metapopulation with power

law model, and (iii) city-to-city transport with gravity model. We then extended the

city-to-city gravity formulation to estimate seasonal disease transmission parameters

in addition to transport parameters. With the estimated parameters, we were able to

generate simulations of measles cycles on a metapopulation scale that reproduce fade-

out characteristics seen in the data. We then constructed simulations as scenarios

for the basis of a scenario-based stochastic programming formulation that identified

optimal locations for disease detection sites. The methods presented in this work

are readily scalable to larger problem sizes, have fast solution times, and are flexible

to handle increasing parameter uncertainty. The optimal site selection method uses

the set of simulations to handle uncertainty in the source and spread of epidemics

on a countrywide scale, and leads to a solution that performs well for healthcare

policymakers and emergency medical teams alike in selecting locations that minimize

detection time and total number of infected cases.
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5. SUMMARY

While the optimal sensor placement problem has been well studied given the exten-

sive number of fields where it applies, it remains a difficult problem to solve and

can require significant investment in model formulation depending on the applica-

tion. Starting from the main contributions present in literature for facility location

problems (e.g. Maximal Coverage Location Problem, Capacitated Facility Location

Problem, and p-median/p-center based problems), our work has been devoted to ex-

tending, testing, and improving approaches for the placement of sensors across three

different application areas: optimal placement of data concentrators for the expan-

sion of the Smart Grid communications network, optimal placement of flame detectors

within petrochemical facilities, and optimal selection of infectious disease detection

sites across a large population. In this chapter, we summarize the major contributions

of each work and provide suggestions for future avenues of research.

5.1 Optimal Placement of Data Concentrators

In Chapter 2, we presented work on the optimal placement of data concentrators

for the expansion of the Smart Grid communications network to serve the distri-

bution power system based on extensions to the Capacitated Facility Location and

p-center problems. A central issue in the expansion of the Smart Grid is the place-

ment of additional data concentrators to service a growing network of smart meters

while maintaining a high level of reliability and Quality-of-Service. While this spe-

cific problem has not been previously addressed, related works involving design of

Automated Metering Infrastructure for the Smart Grid have focused on development

of approximation algorithms and heuristics to solve cost minimization problems. In

addition, few studies in this field have addressed the location problem and routing
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design problems simultaneously within a single formulation, while minimizing chance

of congestion and ensuring QoS guarantees.

The focus in this work is on optimal handling of aperiodic data traffic by opti-

mizing the residual buffer capacity of data concentrators as an analog to optimizing

QoS factors like bandwidth, throughput, packet loss, and delay requirements in the

network. The objectives proposed by (Gourdin and Klopfenstein, 2006) are extended

through a topology design framework, along with incorporation of communication

redundancy to improve network reliability. In addition, our models prove effective for

multi-period expansion of the communications network. To the best of our knowledge,

no prior work has been done on solving the problem of data concentrator placement

while prioritizing QoS performance within an Automated Metering Infrastructure

network.

The placement of data concentrators to maximize network residual buffer capacity

under the impacts of budget constraints, network connectivity requirements, distance

limitations due to path loss, and redundant communication links to enhance robust-

ness for an expanding Smart Grid communications network is a unique challenge that

we address in this work. Three network design formulations based on mixed-integer

linear programming approaches were proposed to handle Smart Grid expansion with

QoS guarantees: (i) SGEP-A – maximizing the average residual buffer capacity, (ii)

SGEP-MM – maximizing the minimum residual buffer capacity, and (iii) SGEP-R

– minimizing the total reciprocal residual buffer capacity. Objective (i) follows the

structure of a maxisum CFLP-based formulation, while Objective (ii) is a robust p-

center maximin formulation. Objective (iii) represents a hybrid of the previous two

objectives in solution behavior, timing, and effectiveness.

We applied the design formulations to a case study with empirical parameters

and solved them to optimality using Gurobi. The proposed formulations generated

feasible and effective design topologies for data concentrators in our test network.

The maxisum CFLP-based SGEP-A can be useful for feasibility analysis, but is poor

for routing assignment, since the total residual buffer capacity does not capture the
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benefit of more evenly distributed capacity. Compared with SGEP-A, the p-center-

based SGEP-MM and hybrid reciprocal-based SGEP-R models both provide better

solutions in terms of routing assignment and lead to better placement within vicinity

of the feeder network. Between the SGEP-MM and SGEP-R models, SGEP-MM pro-

vides minimum residual buffer capacity guarantees that are useful for establishing and

ensuring QoS standards, but can require high solution times to achieve optimality.

The SGEP-R formulation, while inherently nonlinear, can be relaxed to a mixed-

integer linear program using linear underestimators and solved to optimality faster

than that of SGEP-MM while returning similar placements. The hybrid reciprocal-

based formulation of SGEP-R also has the advantage of ensuring equal distributions

of connections per data concentrator so the network is balanced rather than over-

or under-saturated as in the case of SGEP-A. Our proposed formulations build off

of the CFLP and p-center formulations to address outage uncertainties through in-

corporation of redundancy, and are effective for rolling horizon network expansion to

address future network demands. This application has demonstrated that facility lo-

cation formulations can provide a reasonable basis for optimal placement, even when

significant extensions are necessary.

5.2 Optimal Placement of Flame Detectors

Chapter 3 addresses the optimal flame detector placement problem in petrochem-

ical facilities with an extension of the maximal expected facility location problem to

consider non-uniform unavailabilities in detection failure. In the petrochemical indus-

try, the chief concern is the implementation of safe and reliable systems to ensure the

well-being of operation personnel. Flame and gas detection systems have historically

been designed using rule-of-thumb, semi-quantitative methods.

In this research, we have proposed a rigorous, quantitative approach to the prob-

lem of optimal flame detector placement while considering uncertainties in detection,

such as detector outages and partial obstructions, that can lead to failure to detect

combustion events. Our approach, based on mixed-integer nonlinear programming,
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generates a flame detection network design of optical flame detectors that maximizes

expected geographic coverage. The mixed-integer nonlinear programming formula-

tion we use to maximize expected coverage for the placement of flame detectors is

similar to the Maximal Expected Coverage Problem extension proposed by Camm

et al. (2002), which was applied to the selection of nature reserve sites to maximize

the expected number of species. We translate it to consider instead placement of

optical flame detectors while assuming independent probabilities of detection failure,

and allow for individual detector specifications as a function of distance from detector

to target. Rather than perform a linear approximation of the nonlinear probabilistic

model as in (Camm et al., 2002), our approach performs a convex relaxation of the

model using linear under-estimators via a Taylor-Series approximation. To the best

of our knowledge, no prior work has been done on solving the problem of optimally

locating optical flame detectors within process facilities by maximizing expected cov-

erage in the face of detection failure.

Our P-FDP formulation (based on the Maximal Expected Coverage Problem) as-

sumes that complications may occur in detection systems, such as partial obscurities,

detector failure, wiring issues, etc. The proposed formulation includes a parameter

to capture a probability of detection failure. This probability can be set for each

detector-entity pair. The formulation becomes a mixed-integer nonlinear program

that is solved to global optimality using a tailored iterative algorithm that relies on

refining a relaxed master problem with linear under-estimators. We test our approach

on three separate test cases: (i) Case A – a basic 2D warehouse geometry, (ii) Case

B – a real-world oil wellhead facility, and (iii) Case C – a real-world offshore platform

hydrocarbon separations module. We utilize the state-of-the-art fire and gas map-

ping software developed by Kenexis Consulting Corporation, Kenexis Effigy (Kenexis,

2019), to generate real-world facility geometries. In addition, we integrate our devel-

oped models into the Python package, Chama (Klise et al., 2017), for general usage.

We compare our proposed P-FDP formulation to the corresponding FDP formula-

tion which assumes perfect detection (i.e. the classical Maximal Coverage Location
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Problem) and evaluate the performance of the developed solution algorithm against

BARON across both uniform and non-uniform probabilities.

We showed that our proposed P-FDP formulation results in consistent improve-

ments in expected coverage compared with the FDP formulation when subjected to

detector failure conditions. The improvement of the P-FDP model over the FDP

model reaches up to 20% for some cases when assuming high detection failure prob-

abilities, while the improvement decreases to 1-2% when assuming 90% success rate

in detection. The probability of detection failure that we have incorporated into the

model considers partial obstruction and detector range in addition to failure or un-

availability of the detector itself. The P-FDP model also addresses redundancy in

coverage to reduce the chance of undetected events, leading to improved reliability in

situations where certain detectors may be out-of-service. Our formulation is agnostic

to the specific chemical process, facility layout, and underlying detection technologies,

and requires only coverage information from the set of candidate detector locations to

perform the optimization. This formulation is general and useful for other coverage

problems with similar uncertainty characteristics. Furthermore, when considering

non-uniform probabilities, our global solution algorithm solves efficiently with rea-

sonable computational effort and is competitive with off-the-shelf global solvers like

BARON. The iterative solution algorithm and model extensions proposed here can

be readily applied to sensor placement problems in other research areas, particularly

ones that aim to place sensors to maximize observability of regions while considering

detector failure conditions.

5.3 Optimal Selection of Infectious Disease Detection Sites

Chapter 4 describes work in the field of epidemiology, particularly in the develop-

ment of a parameter estimation framework for construction of a city-to-city spatial

transmission model and in the development of an optimal placement framework for

the selection of infectious disease detection sites on a nationwide scale based on the

classical p-median problem.
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We first present a nonlinear programming framework for estimation of city-to-city

spatial and seasonal transmission rates by inferring transport information from local-

ized disease case data. We have shown that nonlinear programming is an effective

approach to estimate spatio-temporal disease dynamics with a statistical hazards-

based model. We have considered three models of spatial coupling: (i) individual

city-to-metapopulation, (ii) combined city-to-metapopulation with power law model,

and (iii) city-to-city transport with gravity model. We then extended the city-to-city

gravity model to also estimate seasonal disease transmission parameters simultane-

ously with the transport parameter. The methods presented in this work are readily

scalable to larger problem sizes, have faster solution times than existing parameter

estimation methods, and are flexible to handle increasing parameter uncertainty.

Using our estimated model, we then developed a stochastic programming ap-

proach for the optimal selection of infectious disease detection sites based off of the

classical p-median approach for facility location. Our approach handles uncertain-

ties in epidemic origins and infection transmission by minimizing the impact from

a set of epidemic scenarios generated using the results from parameter estimation

work. We consider the total expected number of infected individuals before detection

as the impact metric. Our optimal location framework results in fast solution times

and provides useful information for policymakers and health care professionals alike in

designing nationwide disease mitigation programs and allocation of emergency health-

care resources. This work illustrates the effectiveness of nonlinear programming for

estimation of these challenging models with computational performance that greatly

exceeds that of sampling-based methods.

5.4 Recommendations for Future Work

For the work on optimal placement of data concentrators in Chapter 2, future

avenues of study include evaluation of the proposed approaches on applicability to

different environment types and on scalability to various network sizes. Further in-

vestigation of the reciprocal-based placement method can lead to insights for general
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facility location problems, as the method has shown distinct advantages when com-

pared with the established CFLP and p-center-based formulations. Investigating the

optimal spatial distribution of node placement is also important, since clustered place-

ment of data concentrators can reduce their effective utilization despite provisioning

for node outages. One possible alternative model that could remedy this would be

a p-median based formulation, since the distance-centrality property of the p-median

problem can be used to prioritize effective node utilization while limiting clusters of

placed nodes. Multi-period placement approaches using stochastic growth models for

the expansion of the Smart Grid network over time can also address concerns such as

worst-case scenarios and placement under uncertainty.

Concerning optimal flame detector placement discussed in Chapter 3, future work

would include investigating the behavior of the maximal expected facility location-

based P-FDP formulation by modeling detection probabilities as a function of distance-

to-detector according to the field-of-view specifications of the candidate detectors.

In addition, the development of a decomposition method would be vital to handle

large-scale facility geometries (or high resolution discretizations) within reasonable

computational time. A combined optimization formulation for flame and gas detec-

tor placement with shared budget or cost constraints would also provide a holistic

approach to process safety design.

For the future of parameter estimation of infectious disease spread discussed in

Chapter 4, the hope is to further refine model formulations to better capture and

portray spatial transmission of disease spread. This includes testing a wider array of

formulations concerning the spatial coupling parameter (e.g. a radiation-based model

as a complement to the gravity model). In addition, investigation of the extent of

our methods by applying it to new types of datasets and infectious diseases would be

valuable.

Future work on optimal selection of infectious disease detection sites includes in-

vestigation of dynamic placement models such as time-dependent deployment of med-

ical teams and resources to serve communities in need that take into account local
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epidemic trajectories as well as spatial transmission. In addition, to complement the

stochastic programming frameworks proposed in this dissertation, a robust optimiza-

tion framework to handle uncertainties in disease spread by providing guarantees for

worse-case scenarios such as optimal quarantine zones would be practical for policy-

makers in controlling epidemics. To integrate with the parameter estimation work,

development of an information-based optimization formulation that selects the lo-

cations that best provide information for estimation spatial transmission parameters

would be valuable, such as those based on Fisher Information Matrices or correspond-

ing methods utilized in the structural health monitoring fields that localize sensors

so as to maximize estimation of structural failure modes.
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A. DERIVATION OF THE STOCHASTIC SIMULATION MODEL

A.1 Nomenclature

Table A.1.1.: Description of model variables and parameters

Variable Description Units

t Time index biweek

T Set of all time intervals –

j City index –

J Set of all cities –

St,j Number of susceptible individuals people

Bt,j Number of births people

Nt,j Population people

It,j Number of infected individuals people

lt,j Number of immigrant infections people

βu,j Seasonal Transmission parameter 1/biweek

u Seasonal index –

α Nonlinear correction parameter –

cj Spatial coupling parameter people

xt,j Fraction of local susceptible individuals –

¯yt,j Fraction of non-local infected individuals –

~ Hazard probability –
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A.2 Derivation for Binomial Distribution

Assume that the contact between local susceptible individuals and non-local in-

fectious individuals follows a Poisson process, with a rate of contact

k = Crxȳ

where C is a constant coefficient; r is the rate of people moving in to the local region;

ȳ is the probability that a non-local individual is infectious; and x is the probability

that a local individual is susceptible (Note: the spatial coupling parameter cj is the

product of C, r, and the time T ). Also assume that infected cases occur independently

and are identically distributed.

Since the probability of infected cases can be modeled by a Poisson process, the

interval of time between cases can be described by an Exponential distribution. The

probability that no contact occurs between non-local infected individuals and local

susceptible individuals is equivalent to the probability of the interval of time between

cases being greater than an interval x (where x is the fade-out period and lt are the

number of contacts). Thus,

P (X > x) = P (lt = 0) =
e−kT (kT )0

0!
= e−kT

and the probability that there is at least one contact (or the probability that the

fade-out period is less than interval x)is

P (X ≤ x) = P (lt > 0) = 1− e−kT

For relatively weak city-to-metapopulation coupling (Bjørnstad and Grenfell, 2008),

we can assume the number of contacts lt is binary and draws from the cumulative

distribution function

F (x) = P (X ≤ x) =

∫ x

−∞
f(u)du

Therefore, the number of contacts lt can be represented by a random sample over the

Binomial distribution

Bin(n, p) = Bin(1, 1− e−cjxȳ)
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where n is the number of trials and p is the probability of having at least one spatial

contact.

A.3 Derivation for Negative Binomial Distribution

Assume the per capita growth rate of infected individuals can be represented by

the geometric distribution. The geometric distribution describes the probability of “x

trials made before a success”. In this case, assume the number of incidences within

time period t, It+1, represents x trials and an infected individual represents a success.

The expectation of It+1 for a geometric distribution is

E(It+1) =
1− p
p

where p is the probability of an individual becoming infected.

The negative binomial distribution describes the probability of “x trials made be-

fore s successes”, where s is fixed. Comparing these two distributions, we can see

that the negative binomial distribution is a particular case of the geometric distribu-

tion, namely, when s=1. Therefore, for a number of initial infections s=It + lt, the

expectation of It+1 is

E(It+1) =
s(1− p)

p
=

(It + lt)(1− p)
p

where p is the probability of an individual becoming infected.

Recall that the estimated number of infections can be modeled by the standard

incidence rate. In our case,

E(It+1) = λt =
βu
N

(It + lt)
αSt

Using the previous relationship, we have

(It + lt)(1− p)
p

=
βu
N

(It + lt)
αSt

and

p =
1

1 + βuSt
N

(It + lt)α−1
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Therefore, the stochastic growth of an epidemic can represented by a negative

binomial process, NegBin(n, p), with n=It,j + lt,j initial infections (n > 0) and

p =
1

1 +
βu,jSt,j
Nj

(It,j + lt,j)α−1

probability of an individual becoming infected.

Note that this formulation is analogous to that used by Bjornstad et al. (Bjørnstad

and Grenfell, 2008), wherein the negative binomial process NegBin(a, b) has param-

eters: expectation a=λt, and clumping parameter b = It + lt.

A.4 Derivation for Hazard model

The probability that spatial contact will occur is (1− exp(−cjxt,j ȳt)), which can

be derived from the exponential distribution (see A.2). Note that this probability

expression implies that the larger the spatial coupling parameter of the city, the more

likely spatial contact will occur between a local susceptible individual and a non-local

infectious individual.

The probability that no new infection will occur if one non-local infection lt is

introduced at the beginning of time t is

P (It+1 = 0|It + lt = 1) = p =
1

1 + βuSt
N

(It + lt)α−1

The probability that a local epidemic occurs from a non-local infection is

P (In+1 > 0|It + lt = 1) = 1− p =
βu
N
St

1 + βu
N
St

Therefore, the probability of a hazard, or the joint probability of spatial contact

between a susceptible individual and a non-local infectious individual, along with the

probability that an epidemic will result from such a contact is

~ =

βu,j
Nj
St,j(1− exp(−cjxt,j ȳt))

1 +
βu,j
Nj
St,j
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A.5 Seasonal Transmission Parameters

The seasonal transmission rates for bi-weeks 1 through 26 were defined as βu,j =

30×(1.24, 1.14, 1.16, 1.31, 1.24, 1.12, 1.06, 1.02, 0.94, 0.98, 1.06, 1.08, 0.96, 0.92,

0.92, 0.86, 0.76, 0.63, 0.62, 0.83, 1.13, 1.20, 1.11, 1.02, 1.04, 1.08).

Figure A.5.1 below shows the parameters plotted over a one-year horizon. These

transmission rates were the result of estimations performed by Bjornstad et al. and

Grenfell et al. (Bjørnstad and Grenfell, 2008; Xia et al., 2004).

Figure A.5.1.: Seasonal Transmission Parameters over 1 year
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