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ABSTRACT

Ravandi, Babak PhD, Purdue University, December 2019. Analysis of Controllability
for Temporal Networks . Major Professors: Fatma Mili and John A. Springer.

Physical systems modeled by networks are fully dynamic in the sense that the

process of adding edges and vertices never ends, and no edge or vertex is necessarily

eternal. Temporal networks enable to explicitly study systems with a changing topol-

ogy by capturing explicitly the temporal changes. The controllability of temporal

networks is the study of driving the state of a temporal network to a target state at

deadline tf within ∆t = tf − t0 steps by stimulating key nodes called driver nodes. In

this research, the author aims to understand and analyze temporal networks from the

controllability perspective at the global and nodal scales. To analyze the controllabil-

ity at global scale, the author provides an efficient heuristic algorithm to build driver

node sets capable of fully controlling temporal networks. At the nodal scale, the au-

thor presents the concept of Complete Controllable Domain (CCD) to investigate the

characteristics of Maximum Controllable Subspaces (MCSs) of a driver node. The

author shows that a driver node can have an exponential number of MCSs and intro-

duces a branch and bound algorithm to approximate the CCD of a driver node. The

proposed algorithms are evaluated on real-world temporal networks induced from ant

interactions in six colonies and in a set of e-mail communications of a manufacturing

company. At the global scale, the author provides ways to determine the control

regime in which a network operates. Through empirical analysis, the author shows

that ant interaction networks operate under a distributed control regime whereas the

e-mails network operates in a centralized regime. At the nodal scale, the analysis

indicated that on average the number of nodes that a driver node always controls is

equal to the number of driver nodes that always control a node.
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1. INTRODUCTION

The vision and perspective of this dissertation is provided in this chapter. In addition,

the significance of the proposed research in the study of structural controllability is

established. Moreover, the research questions, assumptions, scope, and limitations,

and delimitations of this research are presented.

1.1 Scope

Networks are abundant around us. Their fingerprint exists within our biology

(network of blood vessels and neurons), our technologies (Internet, roads, and trans-

portation networks), and our languages (network of syntactic dependencies). Un-

derstanding the structure and behavior of such networks significantly contributes to

our understanding of complex systems. The term network represents graphs that

model physical systems (a graph is the mathematical representation of a network).

A graph is a simple structure with two elements: vertices (nodes) that represent the

components of a system and edges (links) that represent the interactions between

those components. Researchers use networks to model the structure and dynamics of

physical systems.

This research is focused on the controllability aspects of temporal networks. In

general, the controllability of complex networks is the study of input and output

characteristics of graphs [1, 2]. These complex systems receive stimuli (inputs) and

produce effects (outputs) by interacting with an environment. Temporal networks

capture the timescale of interactions between a system’s components in the structure

of networks [3]. In contrast, static networks aggregate the order of these interactions

within the intervals in which they occurred [4]. As illustrated in Fig. 1.1, two different

temporal networks can have an identical static network. Indeed in Fig. 1.1 (a-b), the
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Fig. 1.1. Temporal and time-aggregated representation of networks.

temporal networks G1 and G2 differ only in the timescale of two links c → b and

c → e. However, their time-aggregated network over time intervals 1 ≤ t ≤ 8 is

captured by the same static graph depicted in Fig. 1.1 (c). Note that the static

graph contains a path a → b → c, even though there is no temporal pathway from

a 99K c.

The controllability of temporal networks is the study of driving the state of a

network to a targeted state at deadline tf within ∆t = tf − t0 steps by applying

stimulations to key nodes called driver nodes. Pósfai and Hövel [5] applied the defini-

tion of structural controllability to temporal networks under the linear time-varying

dynamics. They provided a method to efficiently determine a single Maximum Con-

trollable Subspace (MCS), denoted by MC(D, tf ,∆t) ⊆ V , for a set of driver nodes

D ⊆ V . This research aims to understand and analyze the behavior of temporal

networks from the controllability perspective.
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1.2 Significance

Complex networks have widely been used to characterize numerous physical and

phenomenological systems in the world. The applications of complex networks cover

many scientific disciplines including applied and abstract physics [6,7], chemistry [8],

biology [9, 10] as well as social sciences [11]. Controlling such systems has been a

motivation for the scientific community [12].

The main contributions of this work are the following two algorithms: a) the au-

thor introduced a heuristic approach to create driver node sets capable of controlling

temporal networks, and b) the author developed a branch and bound algorithm to

determine all MCSs of a driver node. A few applications of the proposed methods in

this dissertation are as follows:

• The algorithms to create driver node sets and identify all MCSs can be extended

to design networks with an expected control behavior. For instance, designing

networks that rely on many nodes to be controlled or in contrast designing

networks that rely on a few nodes to become controllable.

• One can study the evolution of MCSs in time to detect emergent behaviors in

the context of a complex system. Such a study could shed light on the emergence

of distributed and centralized control regimes in complex networks. A network

is in a distributed control regime if many groups of nodes with a small size can

control the network. On the other hand, in a centralized control regime only a

few groups of nodes with many members can control the network.

• Another application of being able to obtain all MCSs is creating a broker to

influence the network toward a targeted behavior by applying intervention to a

network structure. For example, such a broker can be used to tailor friendship

suggestions in social networks to weaken the polarization phenomenon in these

networks.
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A broader significance of this work is its contribution in understanding the control

characteristics of complex systems. For instance, studying the ways these systems

self-organize and control themselves through interactions with their environments.

As mentioned above, many complex systems operate in a distributed or a centralized

control regime [13, 14]. The findings in this research contribute in formalizing and

understanding these control regimes. Furthermore, the developed methods in this

research could be extended to switch between these control regimes by applying tar-

geted interventions in the structure of networks. It is this process that is likely to

change the nature of networks over time.

1.3 Research Questions

The proposed research attempts to answer the following questions:

1) Is it possible to create an algorithm to find minimal-sized driver node sets that

can make temporal networks structurally controllable?

2) Can an algorithm be designed to determine all MCSs of nodes in temporal

networks?

3) If the above is true, does the analysis of all MCSs reveal the overall behavior of

physical systems modeled with temporal networks?

1.4 Limitations

• For temporal networks, the analytical approaches to find the Minimum Driver

node Sets (MDSs) are on the order of O(2N) and currently such sets can be

identified only by brute-force. Hence, except for very small networks, it is not

always feasible to find an MDS of temporal networks. Therefore, this work may

pursue heuristic approaches to identify suboptimal MDSs when the goal is to

achieve full controllability.
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1.5 Assumptions

The following assumptions are considered in this project:

• This work focused on systems that are governed by discrete time-varying linear

dynamics [5,15]. Most real systems are driven by nonlinear dynamics, but their

controllability is structurally similar to linear systems in many aspects [16].

• This work used the definition of structural controllability for temporal networks

proposed by Pósfai and Hövel in [5].

1.6 Delimitations

The following delimitations are applied to this study:

• Six temporal networks of ant colonies [17] and e-mail communication of a manu-

facturing company [18] are incorporated to conduct analysis and perform evalu-

ations. The characteristics of these datasets enable performing computationally

feasible experimental trials on temporal networks that have a variety of sizes

and behaviors.

• The analysis of computational complexity for the proposed algorithms are re-

laxed based on the empirical results.

• The correctness of proposed methods in this research is based on both analytical

proofs and empirical evidences.
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2. REVIEW OF RELEVANT LITERATURE

This section presents a brief introduction of network science, time-aggregated net-

works, temporal networks, and the structural controllability concepts. An overview

of recent advancements in the structural controllability of complex networks is dis-

cussed. Also, a brief overview of the author’s research in the domains of complex

systems and network science is provided.

2.1 Complex Systems Theory and Network Thinking

Most systems consist of many parts that are working together to form capabili-

ties and functionalities. For example, languages consist of distinct components such

as verbs and nouns that form a system that we use to communicate our thoughts

and ideas with each other. Studying the individual parts that create a system is

immensely important for understanding systems. On the same token, studying the

collective behaviors of a system is an equally important aspect to understand the

emergent behaviors of a system, that is, the phenomena that emerge from interac-

tions between the individual parts of a system [19]. For instance, consider language as

a complex system that is evolved over thousands of years. Why do some grammatical

structures lose their popularity over time, but others become dominant? To answer

these complex questions, we would need to analyze systems as a whole and study

the relationships and interactions between their parts. The complex systems theory

offers a framework to conceptualize, study, and evaluate the emergent behaviors of

systems [19]. In other words, scientists view systems’ functions as a set of phenomena

and they try to discover and explain the mechanisms that drive the emergence of

those phenomena. Hence, the complex systems theory provides a holistic perceptive

to study and analyze a system of interest. For example, Will et al. [20] treated the
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circulatory system as space-filling fractal networks, and they introduced a theory that

provides an explanation for the well-known metabolic scaling relationship observed

in many species of animals (i.e., metabolic-rate ∝ body-mass3/4).

Interconnectivity, scalability, robustness, and fractal geometry are a few common

themes within complex systems [19]. Network thinking provides new perspectives

to analyze and understand complex systems by capturing these themes in modeling.

A complex network is a web of often many interconnected entities with topological

characteristics that are non-trivial and do not happen in simple networks such as

lattices and random networks. Scientists widely use complex networks to charac-

terize many physical and phenomenological phenomena in natural and human-made

systems. Network thinking is applied to a variety of scientific disciplines including

applied and abstract physics [6], chemistry [8], sustainability in ecosystem manage-

ment [21], and biology [9, 10].

Based on the complex systems theory and network science, the author conducted

research in various domains. In [22], the author introduced the Block Software De-

fined Storage (BSDS) framework to enable self-organization and self-adaptation in

cloud block storage infrastructure. To understand the political polarization in social

networks, in [23] the author developed an agent-based model to investigate scenarios

that either increase or decrease levels of polarization in social networks. Moreover,

the author proposed strategies to decrease the polarization issue in social networks.

On the topic of food security, in [24] the author proposed an agent-based model to

simulate human consumption behavior in all-you-can-eat facilities and quantify the

impact of plate size on food waste. The results showed reducing plate size can de-

crease food waste by 30% without impacting the quality of service. In [25], the author

proposed a network-based approach to model and analyze the entire cardiovascular

tree as a complex system. The author showed how network science can provide a new

perspective to look at the coronary angiography images. Lastly, in [26] the author

introduced a heuristic approach to control temporal networks.
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2.1.1 Temporal Networks

To create a network from a physical system, we observe the system during multiple

observational intervals and record the interactions between its components. Depend-

ing on the frequency of observational intervals taken from a system, two types of

networks can be introduced: a) time-aggregated (also called static) networks, and b)

temporal networks. Time-aggregated networks capture the existence of interactions

(or connections) between components of a system, and they ignore the temporal

correlations by aggregating the observed interactions. Therefore, time-aggregated

networks are suitable for modeling complex systems with a fixed topology, which

are governed by trivial temporal correlations such as the power grid networks and

ecological networks [27,28].

However, by nature many systems change continuously and the effect of changes

is non-commutative; it is essential to study the effect of these changes on the control-

lability of networks. Temporal networks explicitly represent the order of observed in-

teractions in the structure of networks, which is a necessity when a system is governed

by non-trivial temporal correlations. For example, the speed of spreading processes

depends on the temporal correlations [29,30]. Such complex systems with non-trivial

temporal correlations range from systems of communication and transportation to

biological systems such as neural circuits [31–34].

To capture the dynamic changes in topology of networks, the temporal correlations

of links must be explicit. The author illustrates an example in Fig. 2.1 by a simple

temporal network with three time-respecting paths (marked with distinct colors) in

observational interval 1 ≤ t ≤ 2. A time-respecting path is a path that follows the

temporal orders of connections. In Fig. 2.1 (a), the time-aggregated network allows

information to spread from node v1 to node v4 through v1 → v2 → v3 → v4 path.

However, considering the order of interactions, it is not physically possible to have a

path from node v1 to node v4. Hence, the time-layered representation can be utilized

to visualize the temporal correlations as presented in 2.1 (b). The number of layers in
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Fig. 2.1. Temporal correlations in pathways.

a time-layered network is equal to the number of observational intervals and each layer

has a copy of network nodes. The links between time-layers represent the interactions

between nodes observed within an interval. Hence, time-layered networks explicitly

encode the temporal correlations between interactions.

This research focuses on the controllability of temporal networks. Many studies

in this area are centered on networks with a fixed topology [35–38]. In contrast,

this work shifts focus from the fixed topology to the structural controllability of

temporal networks. The structural controllability theorem shows that many control

related questions can be answered by only analyzing the structure of networks [1, 2,

39]. In [40], Li et al. showed how temporal networks have fundamental advantages

concerning the energy and time needed to achieve control. They presented how to

harvest the changing topology of complex systems to improve the efficiency of control.

Furthermore, in [5], Pósfai and Hövel introduced the fundamental tools to analyze

the structural controllability of temporal networks.

2.2 Controllability of Time-Aggregated Networks

A time-aggregated (i.e., static) network denoted by graph G(V,E) consists of a

set of vertices (i.e., nodes) V = {v1, v2, ...vn} and a set of edges E = {e1, e2, ...em}.
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Each edge e = (vi, vj, w) ∈ E is a triplet connecting two vertices with weight w (i.e.,

strength of connection). For directed networks the triplets are ordered (i.e., vi → vj),

whereas in undirected networks the edges have no order (i.e., vi — vj). An adjacency

matrix A ∈ RN×N is the algebraic representation of networks describing the wiring of

a system between N vertices (components) and their strength of interactions wij ∈ A.

Time-aggregated networks make the assumption that patterns of connections are fixed

over time (i.e., the topology of network is fixed).

The structural controllability of time-aggregated networks is applied to the sys-

tems that are modeled by a set of nodes with time-varying state variables. A set

of directed edges captures the relationship between these nodes. Also, a protocol

governs the dynamics of interactions between the nodes that changes the nodes state

variables over time. These systems receive stimuli by u(t) from an environment, and

they produce outputs. To conclude, the structural controllability of complex net-

works studies the behaviors and relationships between the structural connections and

external stimuli.

Nonlinear dynamics govern many real systems, however, in many aspects, their

controllability is structurally similar to that of linear systems [16]. Therefore, recent

studies mostly focused on the linear time-invariant dynamics (LTI) that govern a

system as presented in Equation 2.1 [2]. In this equation, the network of N vertices

is represented by its adjacency matrix A. Each vertex holds a variable x of interest

that varies with time, called its state. The network is connected to the external world

from a subset of its vertices (captured by matrix B) through time varying stimuli

captured by vector u.

x(t+ 1) = A>x(t) +Bu(t) (2.1)

Time-varying vector x(t) ∈ RN captures the state of networked system at interval

t. The effect of external stimuli is modeled by the second part of Equation 2.1.

The matrix B ∈ RN×M describes the connections between a controller and M driver

nodes. The controller imposes stimuli to the network by controlling the driver nodes,
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and the time-varying input vector u(t) ∈ RM captures the strength of these stimuli.

Therefore, reaching control depends on identifying a set of driver nodes that can fully

control the network if driven by external stimuli. Also, many control problems are

interested in identifying a Minimum Driver node Set (MDS) with its size denoted by

Nc.

The system in Equation 2.1 is controllable if one can identify a set of driver nodes

capable of steering the state of network from an initial state to a target state over a

finite time. According to Kalman’s rank condition, control is possible if the control

matrix C ∈ RN×NM has full rank, i.e., rank(C) = N in Equation 2.2 [41].

C = (B,AB,A2B, ...AN−1B) (2.2)

To apply Kalman’s rank condition the weights of all links must be known, but

for many real-world networks this is not practical. Fortunately, the a priori require-

ment to have exact weights of links can be bypassed by the structural controllability

theorem. That is, assuming Equation 2.1 governs the system’s dynamic, the system

< A,B > is structurally controllable if by replacing nonzero weights in A and B

the controllability matrix becomes full rank. Hence, the system’s links needs to be

represented by nonzero entries in < A,B >. In [1], Lin showed that a structurally

controllable system is controllable for almost any configuration of weights. However,

we need to test Kalman’s rank condition on O(2N) driver node sets to find an MDS.

Moreover, the problem of identifying an MDS is reduced to the maximum matching

problem on directed networks [42]. Hence, an MDS can be identified with O(
√
NE)

computation where N is the number of nodes, and E is the number of edges.

2.3 Controllability of Temporal Networks

Temporal networks enable modeling systems with changing topology over time.

Also, the efficiency of control (regarding time and energy) can be increased by utiliz-

ing the changes in system’s wirings [40]. Moreover, including time in the definition
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of structural controllability enables to explicitly study the time necessary to reach

controllability. However, for the time-aggregated networks, the study of time needed

to reach control only receives implicit treatment [43]. The aforementioned motivate

the study of controllability on temporal networks.

Another significant characteristic of complex systems that is traditionally ignored

in time-aggregated networks is modeling self-interactions [44, 45]. Often natural sys-

tems benefit from a passive stability that enables the capacity to retain information

over time [46, 47]. The framework introduced by Pósfai and Hövel in [5] enabled

the use of self-loops to model the state retention aspect. The author illustrates an

example of state retention in Fig. 2.1, where the single self-loop enabled node v1 to

influence node v2 at interval t = 2.

A directed temporal network denoted by T (V,E) consists of a set of vertices

V = {v1, v2, ...vn} and a set of directed temporal edges E = {e1, e2, ...em} with

timestamps. Each temporal edge e = (vi, vj, wij, t) ∈ E connects two vertices vi → vj

at observational interval t and the strength of connection is represented by weight

wij.

To conceptualize control, the dynamics that govern the interactions between nodes

and capture the changing topology of temporal networks are needed to be defined.

This study assumes the system is governed by discrete time-varying linear dynamics

as shown in Equation 2.3 [5,15]. Although nonlinear processes drive many real-world

systems, the linear systems can provide good approximations [2, 16].

x(t+ 1) = A>(t)x(t) +B(t)u(t) (2.3)

The time-varying vector x (t) ∈ RN captures the state of nodes and N denotes the

number of nodes. The state of network at interval t+ 1 is defined by Equation 2.3 as

a sum of two terms: a) the effect of system’s internal dynamics applied at interval t,

and b) the effect of external stimuli applied to driver nodes. The weighted adjacency

matrix A (t) ∈ RN×N encodes system’s wiring at interval t. A controller stimulates

driver nodes di ∈ D ⊆ V at interval t, which propagates the injected signal values to
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interval t+ 1. In this research, an intervention point is denoted by the pair (di, t+ 1)

to indicate stimulating a driver node. Also, the matrix B (t) ∈ RN×NI(t) captures the

intervention points where u(t) ∈ RNI(t) represents the strength of stimuli and function

NI(t) yields the number of intervention points at t.

2.3.1 Independent Path Theorem

Assuming Equation 2.3 governs the dynamics of a system, based on the indepen-

dent path theorem a temporal network is structurally controllable within a desired ∆t

steps at deadline (target) tf if there exists |V | number of independent time-respecting

paths originated by intervention points and end on all nodes vi ∈ V at tf [5]. In-

dependent time-respecting paths are a set of paths that do not cross each other on

any time layers within a given interval (i.e., vertex disjoint paths). An example is

presented in Fig. 2.2, where the independent time-respecting paths are marked with

the solid red edges. In Fig. 2.2 (a), the deadline to reach control is tf = 1 and at

least three driver nodes are required to gain control. But, in Fig. 2.2 (b), to reach

control at tf = 2 two driver nodes are required. Also, the self-loop of node v2 enables

state retention by which node v1 influences v2 over interval t = 2.

Fig. 2.2. Controlling a simple temporal network.
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2.3.2 Maximum Controllable Subspace

The Maximum Controllable Subspace (MCS) is denoted by MC(D, tf ,∆t) ⊆ V

that identifies two properties of driver node set D ⊂ V : 1) the maximum number of

nodes, namely Nm, that can be controlled by D, and 2) a set of nodes with cardinality

Nm that are controllable by D (i.e., an MCS of D) [5]. We can efficiently find an

MCS using Ford-Fulkerson algorithm by finding the maximum flow in the time-layered

Fig. 2.3. Identifying a maximum controllable subspace.
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networks [48, 49]. The procedure of finding an MCS is: 1) create a source node and

connect it to all drive nodes in D within the time layers, 2) create a sink node and

only connect all node in the deadline layer to it, and 3) limit the flow of each node

to one (i.e., at most a flow of one can pass through each node). Hence, a driver

node set can have multiple MCSs since a network can have multiple maximum flows.

The author provides an example in Fig. 2.3 where the identified independent time-

respecting paths are marked by distinct colors. The colored edges are the edges with

non-zero flow, which are identified using a maximum flow algorithm. Also, to improve

visualization, the connections from source node s to the driver nodes are grouped, and

the intervention points are presented with dotted edges. Driver node set D1 = {v4}

can control at most 75% of the network as illustrated in Fig. 2.3 (c). However, as

illustrated in Fig. 2.3 (d) driver set D2 = {v3, v4} can reach full control.

2.4 Control Characteristics of Static Networks

Nodes in a network can be characterized based on their capacity and level of

contribution to control the network. This section aims to provide a summary of the

literature on characterization of nodes and networks based on the controllability of

static networks.

By considering the concept of controlling a network using the minimum number

of driver nodes, it is possible to categorize nodes based on their intersections with

multiple MDSs. As mentioned earlier, the problem of identifying a single MDS in

static networks is reduced to the maximum matching problem [2,42]. Equally impor-

tant, most networks have many MDSs (i.e., multiple maximum matchings) in which

nodes intersect or disjoint with. In [14], Jia et al. build upon the existence of mul-

tiple MDSs and introduce three categories of nodes: a) critical nodes that belong to

all MDSs (always selected as drivers), b) intermittent nodes representing the nodes

that at least appear in one MDS, and c) redundant nodes that are not selected as

a driver in any MDS. Furthermore, they discovered a bimodality in the fraction of
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Fig. 2.4. Control categories of nodes in static networks (Courtesy Jia et
al. [14]).

redundant nodes in complex networks. This bimodality signals the existence of two

control regimes, namely the distributed and centralized regimes based on the tendency

of nodes to appear in MDSs. When only a small fraction of nodes can form an MDS,

the network can be considered to operate under a centralized control regime; whereas

a distributed control regime indicates that many nodes can form an MDS. For exam-

ple, the author presented two static networks with different control regimes in Fig.

2.4. As illustrated, by changing the direction of a single edge, the control category of

node v1 (marked with the green arrow) changed from redundant to intermittent.

Furthermore, Jia et al. [14] proposed that if ∆nr = nr − nTr > 0 then a network

operates under a centralized control regime, and if ∆nr < 0 then it operates under a

distributed regime where nr denotes the number of redundant nodes and nT refers to

the transpose of a network in which all the edges are reversed.
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2.5 Summary

The controllability of complex networks, and particularity temporal networks, is

an emerging field. This chapter introduced the relevant literatures in the field and

provided the background needed for the coming chapters. To summarize, this chapter

introduced the following points: 1) the definition of controllability for both time-

aggregated and temporal networks, and 2) the past attempts to reveal the behavior

of complex networks from the controllability perspective.
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3. FRAMEWORK AND METHODOLOGY

The previous chapter summarized the current achievements in the literatures and

introduced the innovation and general scope of this research. In this chapter, the

author dives into the methodologies and frameworks used to develop this study.

3.1 Approach

This research consists of three objectives and quantitative approaches that are

perused. Objective I aims to build driver node sets that can make a temporal network

structurally controllable. In objective II, the researcher aims to design an algorithm

to identify all MCSs of a driver node. Objective III focuses on analyzing the MCSs of

individual driver nodes to investigate the overall behavior of temporal networks from

the controllability perspective.

3.1.1 Objective I: Create Minimum Driver Node Sets

As discussed in Chapter 2 finding an MDS for temporal networks is computation-

ally prohibitive. Hence, the researcher proposes a heuristic approach for identifying

and using driver nodes in temporal networks. The heuristic algorithm creates mul-

tiple Suboptimal Minimum Driver node Sets (SMDSs) with size Ns ≥ Nc with the

computation complexity of O(N3 + N2E + N∆t). The concept of SMDS focuses on

efficiently creating a set of drivers that can fully control the network. This research

builds on the concept of SMDS to analyze the overall behavior of temporal networks

from the controllability perspective.
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3.1.2 Objective II: Identify All MCSs of Nodes in Temporal Networks

The researcher proposes the below algorithmic approach to identify multiple MCSs

of a single node, denoted by u. Function Mc(G, u) finds an MCS of u in time-layered

network G using the maximum flow approach that was introduced in Section 2.3.2.

Chapter 5 draws on the below algorithm to develop an approach capable of identifying

all MCSs of a driver node.

1. Find an MCS of node u denoted by M = Mc(G, u) ⊆ V in the time layered

network G where V is the set of network nodes.

2. Create the set M = {M} to store all MCSs of u.

3. For every node v ∈M create an augmented graph Gv where v is removed from

deadline layer tf .

4. find an MCS of u denoted by M ′ = Mc(G
v, u) and if |M ′| = |M | then record

M ′ is a new MCS of u, i.e., M =M.append(M ′).

5. Repeat steps 3-4 until all nodes in v ∈ m are exhausted.

6. Return M which contains multiple MCSs of node u.

The above algorithm enables finding the intersection and union between MCSs of

a single node u, denoted by Iu =
⋂
M∈MM and Uu =

⋃
M∈MM for node u ∈ V . The

goal is to analyze I and U for all nodes in temporal networks and investigate whether

they follow a pattern. One way to analyze all MCSs of nodes is using metrics such as

ranking the nodes with respect to I and U . For example, we can rank nodes based

on their frequency in MCSs of the other nodes. By using similar approaches, this

research aims to explore the domain of information that can be provided using the

above algorithm.



20

Novelty of Identifying Multiple MCSs

The proposed algorithmic approach leads to the creation of a new concept in

the controllability of temporal networks. The author refers to this concept as the

Complete Controllable Domain (CCD) for a driver node set. The CCD of nodes

reflects the degree to which the system’s entities are capable of influencing control.

Hence, the third objective of this research focuses on identifying the properties of

CCD.

3.1.3 Objective III: Analysis of the Controllable Space of Nodes from the

Controllability Perspective

The author defines CCD as the union of all MCSs of a driver node, and the goal

of this objective is exploring the characteristics of CCD of individual driver nodes.

An approach toward this exploration is investigating the intersection between MCSs

of nodes and the driver node sets (i.e., MDSs and SMDSs as identified in Chapter

4). From the controllability perspective, this analysis is likely to reveal the overall

behavior of temporal networks. Moreover, the possible findings from exploring all

MCSs of nodes could contribute to improving the formalization of the CCD concept

and identifying its potential applications.

3.2 Novelty

The novelty of this research is in providing efficient algorithms to study the behav-

ior of temporal networks from the structural controllability perspective. This research

introduces the concept of SMDS to efficiently identify driver node sets that can make

a temporal network controllable. Next, the author introduces the concept of CCD for

a driver node by designing an algorithm that can identify k MCSs of a driver node.

The concepts of SMDS and CCD could be used to determine the function of a system
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from its structure, which has a great importance in understanding the underlying

mechanisms that govern complex systems.

3.3 Datasets

This research performs a series of experiments on real-world temporal networks

that are induced from ants’ interactions [17] and e-mail communications of a manu-

facturing company [18]. Six temporal networks created from independent ant colonies

are utilized to develop methods, conduct analysis, and perform evaluations. Blonder

and Dornhaus [17] captured the interaction between ants of six colonies and provided

timestamped directed edges, which record the ants who initiate pairwise communi-

cations by touching antennas. The characteristics of these datasets (e.g., a small

number of minimum driver nodes) enable performing various experiments that are

computationally feasible. Each ant network has a unique temporal and structural

characteristics as presented in Fig. 3.1 and Fig. 3.2. For example, ant colonies 1-

1 and 1-2 have a low average inter-event (1.63 and 1.67 seconds respectively), and

colonies 3-1 and 3-2 have a large average inter-event (15.87 and 15.83 seconds).

The main reason for selecting these datasets is the nature of physical systems that

they represent. The ant colonies are capable of self-organization; that is, an ant colony

does not depend on a leader to organize itself [19]. In contrast, the emails dataset

reflects the structure of communications in a hierarchical organization that relies on

leaders to be managed. In a hierarchical organization, it is common to observe that

a few numbers of employees (e.g., managers) are the most influential components

in managing the organization. Hence, the selected datasets enable to analyze the

proposed algorithms in this dissertation on systems with both self-organizing and

hierarchical traits.
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Fig. 3.1. Network characteristics of the datasets.
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Fig. 3.2. Frequency of interactions in the datasets.
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3.4 Measure of Success

The measures of success are as the following:

• Develop an approach to build driver node sets that can make a temporal network

structurally controllable.

• Design an algorithm to determine all MCSs of a driver node.

• Analyze the controllable space of individual driver nodes and draw intuitions

using the methods and metrics as discussed in Objectives I, II, and III.

• From the controllability perspective, connect the analysis of MCSs with the

characteristics of the physical systems represented by the aforementioned datasets

in Section 3.3. In other words, analyze the controllable space of nodes to under-

stand the overall behavior of the temporal networks created from those datasets.

3.5 Summary

This chapter introduced the research framework and objectives of the proposed

study to answer the proposed research questions in Section 1.3. Also, the datasets

used in this study are introduced along with the measurements of success.
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4. IDENTIFYING DRIVER NODES FOR TEMPORAL

NETWORKS

Finding an MDS for temporal networks is computationally prohibitive due to two dif-

ficulties: a) it involves searching many combinations of driver nodes and intervention

points in order of O(2N∆t) configurations where ∆t = tf − t0 represents the expected

number of steps to reach structural controllability at deadline tf , and b) the rank

of temporal controllability matrix C (t0, tf ) in Equation 4.1 needs to be calculated

to test a configuration. Also, the latter step requires O(A (t)∆t) number of matrix

multiplications. This research assumes that the start interval is t0 = 0. There is

no loss of generality as we can modify the start interval to gain control within any

desired period in (tf −∆t, tf ].

C(t0, tf ) =
[
A(tf − 1)A(tf − 2) . . . A(t0 + 1)B(t0);

. . . ;A(tf − 1)B(tf − 2);B(tf − 1)
] (4.1)

The operator [X;Y ] concatenates two matrices hence C(t0, tf ) ∈ RN×NI where

NI =
∑

tNI(t) returns the total number of interventions. Assuming the discrete

time-varying linear dynamics (Equation 2.3) governs the system, by a proper se-

lection of intervention points the system < A(t), B(t) > becomes controllable if

rank(C(t0, tf )) = N . Since, the linear rank of C(t0, tf ) represents the number of

variables that can be independently controlled.

Constructing an MDS with size NC that passes the aforementioned rank condition

is computationally excessive as it involves minimizing the number of driver nodes and

maximizing the number of times the drivers are used. Hence, the author proposes a

heuristic algorithm to efficiently find Suboptimal Minimum Driver node Sets (SMDSs)

with size Ns ≥ NC that can fully control temporal networks.
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4.1 Heuristic Approach for Identifying SMDSs

Pósfai and Hövel proposed the independent path theorem [5] to formalize the

structural controllability for temporal networks. That is, a subset of network nodes

C ⊆ V at deadline tf is controllable within ∆t steps iff there exists |C| independent

time-respecting paths such that a) they start from intervention points, and b) they

end on all nodes in C at tf layer. Hence, a temporal network is structurally con-

trollable if there exists |V | number of independent time-respecting paths originated

from intervention points and end on tf layer. Hence, the author proposes a heuris-

tic algorithm to find |V | number of such independent-paths. This is equivalent with

identifying an SMDS, denoted by D, where its MCS covers all networks nodes, i.e.,

MC(D, tf ,∆t) = V such that MC ⊆ V identifies an MCS of D within tf−∆t < t ≤ tf .

This leads to the emergence of Properties 1 and 2 that connect the concept of MCS

to the MDS and SMDS concepts.

Property 1
∑

d∈MDS |MC({d}, tf ,∆t)| ≥ |V | for any arbitrary MDS.

Property 2 For any driver set D′ ⊆ V if
∑

d∈D′ |MC({d}, tf ,∆t)| ≥ |V |, then D′ is

a potential SMDS.

The heuristic approach transforms a sorted list, denoted by C, that contains an

MCS of each node to an SMDS. This transformation is based on applying Property 2

to C. Formally, a set Svk denotes an MCS of vk such that Svk = MC({vk}, tf ,∆t) ⊆ V .

The author proposes to create a possible SMDS, denoted by D′, from an MCSs-list

C in the following steps:

1. Create an MCSs-list such that C = [Sv1 , Sv2 , . . . , Svk=N
]; that is for each node

store an arbitrary MCS.

2. Sort C in the decreasing order of its elements size (the size of MCSs). That is,

|S1| ≥ |S2| ≥ · · · ≥ |SN | for every Svk ∈ C where the position of elements in C

are denoted by the superscripts.
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3. Starting from the first MCS Si=1, do Sj ← Sj \ Si for 1 ≤ i < j ≤ N .

4. Repeat Step 3 for i = 2 . . . N .

5. Consider the nodes with non-empty controllable subspace as potential driver

nodes. That is, a potential SMDS denoted by D′ = {vk|Svk ∈ C, Svk 6= ∅} is

derived from C.

6. Mark D′ as an actual SMDS, denoted by D = D′ if MC(D′, tf ,∆t) = V .

Otherwise, D′ cannot fully control the network hence it is not an SMDS.

The author illustrates an execution of the proposed heuristic in Fig. 4.1 on a

simple temporal network. The step by step execution of heuristic approach on MCSs-

list C is presented in Fig. 4.1 (a) and resulted in transforming C to an SMDS {v1, v4}.

Moreover, Fig. 4.1 (b) illustrates the independent time-respecting paths originated

from the identified driver nodes (marked with red color). Also, the identified SMDS

is an MDS since at least two driver nodes are required to fully control the network.

Fig. 4.1. Heuristic approach execution on a temporal network.
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4.1.1 Multiple Controllable Subspaces and Branching Process

Temporal pathways limit the number of independent time-respecting paths, es-

pecially when multiple driver nodes are selected. This limitation results in the fol-

lowing inequality MC({v1, v2}, tf ,∆t) 6= MC({v1}, tf ,∆t) ∪MC({v2}, tf ,∆t), i.e., an

MCS of multiple driver nodes is not equal to the union of an MCS of each driver

node separately. Moreover, a node does not necessarily have a unique MCS due

to the existence of various temporal pathways. The author illustrates an example

in Fig. 4.2 by adding a new temporal link (marked with color blue) to the tem-

poral network of Fig. 4.1 (b). All possible MCSs of each node are presented in

Fig. 4.2 by Svi . The new link expands the space of MCSs of nodes v4 and v5

hence the maximum flow approach could return any of the possible MCSs. For

instance, function MC(v5, tf = 3,∆t = 3) could return any of the two MCSs of

node v5 as illustrated in Fig. 4.2. Suppose MC(v5, tf = 3,∆t = 3) = {v2, v5}

and MC(v4, tf = 3,∆t = 3) = {v1, v3, v4}. Now, accounting for the temporal path-

Fig. 4.2. Non-unique MCSs.
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ways MC({v5, v4}, tf = 3,∆t = 3) ∈ Z = {{v1, v3, v4, v5}, {v2, v3, v4, v5}}. However,

{v2, v5} ∪ {v1, v3, v4} /∈ Z.

The aforementioned inequality can affect the size of an SMDS generated by the

heuristic approach since the heuristic does not have any control on which MCS is

selected by a maximum flow algorithm. Hence, the author introduces a branching

procedure to generate multiple SMDSs, which increase the chance of finding at least

one MCS. Also, having multiple SMDSs can be used to characterize the overall behav-

ior of temporal networks from the controllability perspective as discussed in Chapters

6 and 7. This procedure creates multiple stems of the original MCSs-list in the fol-

lowing way:

1. On each iteration of the heuristic if Si ∩ Sj 6= ∅ for j > i then create a new

stem C′ ← C.

2. Swap the position Si and Sj in C′.

3. Run the heuristic approach on C′ without creating new stems.

Fig. 4.3. Branching process for an MCSs-list.
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The author illustrates an example of the branching process on the temporal net-

work of Fig. 4.2 that resulted in creating four stems. In Fig. 4.3 (a) the red arrows

mark an element of MCSs-list C that is being processed, and the blue arrows indicate

the creation of a new stem. The procedure produced five SMDSs with various sizes

and identified an MDS. Moreover, in Fig. 4.4 the author illustrates the complete

execution of the heuristic approach for each stem.

Fig. 4.4. Complete illustration of the branching procedure.
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4.1.2 Heuristic Approach Algorithm

The author formally introduces the proposed heuristic approach in two algorithms.

First, Algorithm 1 initializes the process to create an SMDS in three phases: 1)

the initialization phase to declare the required variables, 2) the creation phase that

employs Algorithm 2 to transform and MCSs-list to a potential SMDS, denoted by D′,

and create stems of C, and 3) the selection phase that validates the potential SMDSs

and return an SMDS with the smallest size. In practice the expected computational

cost of the heuristic is O(N3 +N2E +N∆t). The computational cost of each phase

is as the following:

(1) Initialization phase: This phase (Algorithm 1 Lines 3-5) initializes the MCSs-list

using the maximum flow approach on the time-layered network, which requires

O(N∆t+E) computation, where E is the number of network edges. The Ford-

Fulkerson algorithm is used with computation cost of O(Ef ∗) where f ∗ is value

of the maximum flow [48, 49]. In the time layered network, the flow capacity

of all edges is equal to one, hence f ∗ = N and finding an MCS is in the order

of O(NE). Therefore, to create an MCSs-list, N number of MCSs needs to be

identified that results in the computation cost of O(N2) (Line 4 of Algorithm

1). Next, the heuristic approach sorts MCSs-list C in the descending order of

its elements cardinality that requires O(N logN) computations. Therefore, the

computational complexity of Initialization phase is in order of O(N2E+N∆t).

(2) Creation phase: This phase (Algorithm 1 Lines 5-11) utilizes Algorithm 2 for

two purposes. First, transform an MCSs-list to a potential SMDS that cost

O(N2) computation due to the nested loops in Lines 5 and 6 of Algorithm 2.

Second, generate stems of C that is denoted by Cstem in Algorithm 1. At most a

maximum of number of
∑N−1

i=1

∑N
j=i+1 1 = O(N2) stems can be generated from

C, i.e., for each iteration of Algorithm 2 all Sj>i must have a common node

with Si where 1 ≤ i < j ≤ N . Therefore, the computational cost of creation

phase is in order of O(N4) as Algorithm 2 needs to be executed for each stem.
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(3) Selection phase: This phase (Algorithm 1 Lines 12-17) validates the created po-

tential SMDSs in the ascending order of their cardinality (Line 12 of Algorithm

1) to return a smallest SMDS. The validation requires running a maximum flows

algorithm to ensure a potential SMDS can yield flow N . Hence, at worse all

identified potential SMDSs needs to be validated resulting in O(N2E) compu-

tations.

Algorithm 1 Build an SMDS

1: Inputs: (1) V : Nodes, (2) tf : Deadline layer, (3) ∆t: Expected steps.

2: Output: An SMDS denoted by D.

3: procedure Find SMDS(V, tf ,∆t)

//Initialization phase

4: C← [Svk = MC({vk}, tf ,∆t)|vk ∈ V ]

5: Sort C in a descending order of its elements cardinality

//Creation phase

6: D′,Cstem ← Select Drivers(C, True) // Calls Algorithm 2

7: P ← D′

8: for each C′ in Cstem do

9: D′ ← Select Drivers(C′, False)

10: P ← P.append(D′)

11: end for

12: Sort P in an ascending order of its elements size

//Selection phase

13: for each D′ in P do

14: if MC(D′, tf ,∆t) == V then

15: return D ← D′ //An actual SMDS is found

16: end if

17: end for

18: end procedure
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Algorithm 2 Selecting Driver Nodes Heuristic

1: Inputs: (1) C: An MCSs-list,

(2) stem: Flag to enable the branching process to create stems.

2: Outputs: (1) D′: a possible SMDS,

(2) Cstem: stems created from C if parameter stem == True.

3: procedure Select Drivers(C, stem)

4: Cstem ← {}

5: for each Si in C ; i = 1, 2 . . . |C| do

6: for each Sj in C ; j = i+ 1, i+ 2 . . . |C| do

7: if stem is True and |Si ∩ Sj| > 0 then

8: C′ ← C

9: C′ ← Swap the location of Si and Sj in C′

10: Cstem ← (Cstem ∪ C′)

11: end if

12: Sj ← Sj \ Si

13: end for

14: end for

15: D′ ← {vk|Svk ∈ C, Svk 6= {∅}}

16: return D′,Cstem

17: end procedure

The theoretical computational cost of the heuristic approach is O(N4). However,

in practice the computational cost is a factor of N lower. In Section 4.2.1 the empirical

analysis showed that the number of stems is in order of O(N), although the theoretical

worst case is O(N2). Hence, based on the empirical analysis the computational cost

of algorithms is closer to O(N3 +N2E +N∆t).
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4.2 Results

The author evaluated the proposed heuristic approach on empirical and synthetic

temporal networks. The empirical networks are induced from e-mail communications

in a manufacturing company and ants interactions in six colonies [17, 18, 50]. These

datasets represent complex systems with different underlying control mechanisms.

For example, often the organization of companies rely on a few key employees such as

managers. On the other hand, many naturally evolved systems such as ant colonies

are capable of self-organization without any leader. Hence, the author expects to

observe these traits from the structural controllability perspective.

A strong state retention assumption is enforced to all evaluations, i.e., all nodes

have self-loops within time intervals. This causes no loss of generality as the model

can be simply modified to limit the state retention property. Also, a strong state

retention configuration results in a highly dense time-layered network that expands

the space of temporal pathways and the connectivity of nodes. For both ants and e-

mails datasets, the temporal networks are created within the entire available periods

of observations, i.e., tf is set to the last recorded observation and t0 to the first

observation in the order of timestamps. For the e-mails dataset, the observations’

timestamps were discretized with one-hour resolution, i.e., the time distance between

each time layer is one hour. The six ant interactions datasets were not discretized

hence the time distance between each layer varies depending on the observations’

timestamps. For more information on the temporal characteristics of the datasets

refer to Section 3.3.

Moreover, the author was able to identify all MDSs for the six ant colony networks

using a brute force approach by utilizing Property 1. However, due to exponential

combination of driver sets, the brute force approach was not able to identify any

MDS for the e-mails network. For the ant colony networks, the author presented

the minimum number of driver nodes in Fig. 4.5, denoted by Nc, and the smallest

number of driver nodes identified by the heuristic approach is denoted by Ns. The
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Fig. 4.5. Cardinality of MDSs and SMDSs for ant networks.

heuristic approach successfully identified SMDSs. Also, the heuristic found optimal

solutions (MDSs) in the networks of colonies 3-1, 3-2, and 6-1.

4.2.1 Identifying Multiple Driver Node Sets

Many networks have more than a unique MDS with size Nc, which expands the

space of nodes participating in MDSs. This resulted in categorizing network nodes

into three groups namely critical, intermittent, and redundant [13,14,51]. The critical

nodes belong to all MDSs, i.e., they are the intersection of all MDSs. In contrast, the

redundant nodes do not appear in any MDS. A node is categorized as intermittent if

it belongs to at least one MDS.

With a minor modification, the heuristic algorithm can produce multiple SMDSs

of size Ns ≥ Nc. Algorithm 1 can validate and return all created SMDSs at Step

15. In this dissertation, the author analyzes multiple SMDSs to further study the

behavior of networks. However, this dissertation does not aim to establish definitions

to characterize driver nodes for temporal networks.
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The numerical results for both MDSs and SMDSs are presented in Table 4.1. For

SMDSs the minimum size Ns and Ns + 1 are considered in all analysis. MDSs are

identified by a brute force approach (column NMDSs), but for the e-mail dataset no

MDSs were identified as the combinatorial space is in order of
(

109
40

)
= 109!/(40!69!)

if Nc ≈ 40. The column NSMDSs shows the number of identified SMDSs with size

Table 4.1.
Numerical results for MDSs and SMDSs.

Network MDSs (Optimal) SMDSs (Suboptimal)

Name N E Nc NMDSs fi fr fc NStems Ns NSMDSs |P | f ′i f ′r f ′c
Ants
1-1 89 1911 3 153 0.59 0.41 0 231

7 2 2 0.02 0.91 0.07

8 11 11 0.13 0.81 0.06

Average: 0.07 0.86 0.06

7 6 6 0.15 0.82 0.03

8 19 19 0.26 0.72 0.02

Ants
1-2 72 1820 2 21 0.20 0.80 0 198

Average: 0.2 0.77 0.02

Ants
3-1 11 78 2 7 0.54 0.46 0 17

2* 1 1 0 0.82 0.18

3 6 6 0.64 0.27 0.09

Average: 0.32 0.54 0.13

1* 5 5 0 0.83 0.17

2 5 5 1.0 0 0

Ants
3-2 6 104 1 5 0.83 0.17 0 11

Average: 0.5 0.41 0.08

Ants
6-1 33 652 1 3 0.09 0.91 0 50

1* 3 3 0.09 0.91 0

2 19 19 0.54 0.46 0

Average: 0.31 0.68 0

4 5 5 0.22 0.78 0

5 14 14 0.53 0.47 0

Ants
6-2 32 367 2 10 0.28 0.72 0 44

Average: 0.37 0.62 0

E-mail 109 250 Too big to compute 56
51 6 6 0.08 0.50 0.42

52 17 17 0.25 0.39 0.36

Average: 0.16 0.44 0.39

* At least one MDS is identified by the heuristic approach.
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Ns and Ns + 1. Also, to present the efficiency of the proposed algorithm, column |P |

reports the total number of potential SMDSs, i.e., the number of stems of C plus one.

This shows all potential SMDSs did pass the validation test and were actual SMDSs.

Finally, for the heuristic approach the columns f ′i , f
′
r, and f ′c present the fraction of

intermittent, redundant, and critical nodes. Similarly, for MDSs the columns fi, fr,

and fc present the fractions of nodes.

In Section 4.1.2, the author mentioned that the number of stems is expected to be

in the order of O(N) based on the empirical results. This is presented by the column

Nstems of Table 4.1 signaling that the number of stems linearly grows in relation with

N . Also, for the ant networks 3-1, 3-2, and 6-1 the heuristic approach identified

MDSs (i.e., where Ns = Nc). The possibility of identifying MDSs by the heuristic

may be explained by the degree of uniqueness between MCSs of individual nodes in

a network. For instance, the frequency of a node appearing in MCSs of other nodes.

Such analysis requires an efficient approach to identify all MCSs of a node, which is

the focus of Chapters 5 and 6.

4.2.2 Queen Ants

The analysis of structural controllability showed queen ants tend to avoid becom-

ing a driver node in both MDSs and SMDSs. In nature, the main responsibility of

queen ants is reproduction and she does not contribute in the organization of the

colony (e.g., temperature management and decision to forage for food). Table 4.2

presents the fraction of edges connected to a queen ant and her participation in the

driver node sets. The queen ants have a high in-degree and out-degree in the time-

aggregated networks. This indicate that although many interactions with the queen

ants were recorded, a queen rarely was selected as a driver node.
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Table 4.2.
Queen ants’ interactions.

Network N Queen in-degree out-degree Interactions
Fraction in

MDSs
Fraction in

SMDSs

Ants1-1 89 Q1 42 30 23 4% 0%

Ants1-2 72 Q1 17 23 21 0% 30%

Ants3-1 11 Q1 3 4 3 0% 0%

Ants3-2 6 Q1 10 7 4 0% 10%

Ants6-1 33 Q1 23 0 11 0% 0%

Q2 14 26 15 0% 0%

Ants6-2 32 Q1 10 6 9 0% 0%

4.2.3 Degree Distribution of MDSs and SMDSs

For the time-aggregated network of ant colonies, the author presented the average

in/out/total degree distributions of driver nodes in Fig. 4.6. This analysis tests

whether driver nodes tend to have a large or a small degree in temporal networks.

The results showed driver nodes tend to have a large degree in both MDSs and SMDs.

Also, the out-degree of driver nodes is slightly higher than their in-degree. Similarly,

Hu et al. [52] found that messenger nodes tend to have a large degree in the structural

observability problem (a dual problem of structural controllability). These results are

in contrast with static networks where it is shown that driver nodes tend to have a

small degree and avoid hubs [2].
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Fig. 4.6. Driver nodes degree distributions.

4.2.4 Evaluations Using Network Randomizations

The author utilizes randomization techniques to identify the most influential char-

acteristics of temporal networks on their structural controllability. Five randomiza-

tion techniques are employed and they are formally introduced in the next section.

The author illustrates the effect of each randomization technique on Ns and Nc in

Fig. 4.7 and all results were averaged over 10 realizations.

The main observation is that degree distribution is the most influential factor on

the structural controllability of temporal networks. In Fig. 4.7 (d), DPN (Degree

Preserved Network) has the least difference on Nc of the randomized and original

networks. As discussed in the next section, DPN preserves both the degree distri-

butions between time-layers and the time-aggregated network, but it eliminates the

network structure. Also, DPN similarly behaves on the heuristic approach (i.e., Ns)

except for colony 1-1.
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Focusing on Ns, in Fig. 4.7 (b-c), RT (Random Time) and RP (Randomly Per-

muted) has the smallest delta on Ns that signals the influence of degree distribution

and the structure of networks. In Fig. 4.7 (a), the fluctuations of Nc and Ns present

the effect of network topology assessed by the RE (Randomized Edges) technique.

Furthermore, using RN (Random Network) in Fig. 4.7 (e), the largest delta between

Ns and Nc is observed since RN eliminates the degree distributions between each

time-layer and the time-aggregated network. Lastly, the e-mails network behaves

similarly against all randomization techniques.

Fig. 4.7. Randomization results.



41

Randomization Procedures

The author utilized the randomization techniques in Table 4.3 where the green

and red cells indicate preservation and elimination of a network’s characteristic re-

spectively. Holme and Saramäki [3] provided a comprehensive overview of methods

for randomizing temporal networks. The following provides a summary of the utilized

randomization techniques:

Randomized Edges (RE): The effect of network topology can be studied using this

method. RE assumes that edges govern the temporal relations (i.e., time of contacts)

instead of the vertices, and it changes who contacts whom. The sequence of contacts

is preserved since the timestamps of edges will not be changed. Also, the temporal

correlations associated with edges are preserved (e.g., average degree fluctuations).

An algorithm to implement RE is introduced in [3].

Randomly Permuted (RP): RP shuffles the timestamps of edges and it retains

the structure of time-aggregated network and the number of contacts associated with

each edge. However, RP eliminates all temporal correlations (e.g., causal events) and

it changes the degree distribution of each time layer.

Random Time (RT): RT assigns timestamps to temporal links. Hence, RT elimi-

nates both local (e.g., simultaneous events) and global (e.g., overall fluctuations in the

degree distributions) correlations. But, RT retains the structure of time-aggregated

network.

Degree Preserved Network (DPN): DPN randomly rewires the networks between

each time-layer given their corresponding original degree sequences. Hence, the times-

tamps of edges will not change. DPN only preserves the degree distribution between

time-layers. However, DPN eliminates all other structural and temporal correlations.

Random Network (RN): RN replaces the networks between time-layers with Erdős-

Reńyi networks that have the exact same number of links as the original networks.

Hence, RN eliminates the structure of the time-aggregated network and all temporal

correlations. Similar to DPN, RN does not modify the timestamps of interactions.
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Table 4.3.
Randomization techniques.

Method Aggregated

network

structurea

Aggregated

network

degree dis-

tribution

Local

degree

distribu-

tionsb

Overall

rate of

eventsc

Average

degree

fluctua-

tions

Causal

chain of

events

RE

RP

RT

DPN

RN

a Retains who contacts whom.

b Local refers to the networks between time-layers and their degree distributions.

c The level of simultaneous interactions within time-layers. Such as the patterns

in amount of daily, weekly, or monthly messages in the e-mail networks.

4.2.5 Synthetic Temporal Networks

The author evaluated the behavior of proposed heuristic approach on synthetic

temporal networks generated using Erdős-Reńyi and Barabási–Albert models with

various sizes (average degree) [53]. The generation process of synthetic networks was

based on generating an Erdős-Reńyi or Barabási–Albert network for each time-layer.

In Fig. 4.8, the author illustrates Nc and Ns versus average degree 〈k〉 of the time-

aggregated networks. All temporal networks have 50 time-layers and 15 nodes, and

the results were averaged over 10 realizations. As illustrated in Fig. 4.8, the heuristic

approach and optimal solutions converged as the size of networks was increased.

Also, Barabási-Albert model required more driver nodes compared to Erdős-Reńyi.

Moreover, Ns and Nc converged on a slightly smaller 〈k〉.
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Fig. 4.8. Synthetic temporal networks.

4.3 Conclusion

In this chapter, the author proposed algorithms to identify and use driver node

sets that can make a temporal network structurally controllable. Also, a compre-

hensive analysis of controllability was presented on empirical and synthetic temporal

networks. The results indicated that driver nodes tend to have a large degree in

temporal networks.
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5. COMPLETE CONTROLLABLE DOMAIN

The predominant research on analyzing the controllable space of a driver node focuses

on the maximum cardinality of controllable nodes. In this chapter, the author focuses

on the multiple controllable subspaces of a driver node with the maximum controllable

cardinality. The author introduces the Complete Controllable Domain (CCD) as the

union of all MCSs of a driver node and investigates the characteristics of CCD.

5.1 Exponential Number of MCSs

A node, namely v ∈ V , can have an exponential number of MCSs depending on

the network size (number of nodes) and the maximum number of controllable nodes

by v is denoted by nd. The author illustrates an example in Figure 5.1, where node

v1 can originate two independent time respecting paths at t = 1 and t = 2 that

can end on any node at tf = 2 (except v1). Hence, any combinations of size 2 from

{v2, v3, . . . , vn} is an MCS of v1.

Fig. 5.1. Driver nodes can have an exponential number of MCSs.
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Accordingly, Equation 5.1 provides the worst case upper-bound on the number of

MCSs for a single node.

(
N − 1

nd

)
=

(N − 1)!

nd!(N − nd − 1)!
(5.1)

Equation 5.1 has the highest possible value if nd ≈ N/2. Hence, by using Stirling’s

approximation for n! the asymptotic value of Equation 5.1 is:

lim
N→∞

(
N
N
2

)
= lim

N→∞

N !

(N
2

)!(N
2

)!
≈ lim

N→∞

√
2πN(N

e
)N

[
√

2πN
2

(
N
2

e
)
N
2 ]2

=

√
2

πN
2N (5.2)

5.2 Algorithm to Identify k MCSs

A driver node can have an exponential number of MCSs hence the cardinality of

CCD of a driver node can exponentially grow. Therefore, the researcher proposes

a branch and bound algorithm to approximate the CCD of a driver nodes (see Al-

gorithm 3). The proposed algorithm obtains k MCSs for a single driver node with

computational cost of O(kn3
dNE

3) (derived in Section 5.3).

The main idea of the algorithm is checking whether a node that belongs to an MCS

of a driver can be replaced by another node. Hence, for a driver node d ∈ V , the

algorithm blocks the independent time-respecting paths (i.e., flows in the time-layer

network) by strategically removing connections to the sink u → t from time-layered

network, denoted by G, and assess if d still has a maximum flow in G. The strategy

is to create an nd-ary tree, namely T , for a driver node d where each node in T has

at most nd children [49]. Each edge in T represents the removal of an edge u→ t in

G. That is, the depth of a node in T indicates the number of removed connections to

the sink node. In other words, each edge in T divides the possible spectrum of MCSs.

For example, consider the simple temporal network in Fig. 5.2, denoted by T

that has 6 MCSs of size nd = 2. The author illustrates an example of execution of

Algorithm 3 in Fig. 5.3. For illustration, the black boxes show the possible space of

MCSs at each node that can be randomly selected using the maximum flow algorithm.
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The highlighted edges and nodes in Fig. 5.3 present a complete nd-ary tree for the

temporal network in Fig. 5.2. On the other hand, the dashed edges present the space

that can result in other nd-ary trees. Moreover, in T a same MCS can be returned by

the max flow algorithm for two nodes. An example of this case is marked in Fig. 5.3

by the blue star. However, the children of such nodes represent different spectrum

(branches) of MCSs as the combination of edges from the root indicates the removal

of a unique set of nodes from the time-layered network.

The bound condition of the proposed branch and bound algorithm is based on

the prevention of processing redundant sub-trees of T . A sub-tree, namely T ′, is

considered redundant if there exists another node in T that represents the same

combination of edge removals as the root of T ′. To prevent creating redundant sub-

trees, the algorithm keeps the record of edge removal sets using set Be defined in Line

10 of Algorithm 3. Figure 5.3 presents the two redundant edge removals (sub-trees)

by the dashed ellipses.

Fig. 5.2. A simple temporal network with 6 MCSs.
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Fig. 5.3. Execution of the proposed algorithm on a temporal network.
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Algorithm 3 Obtain k MCSs of a single driver node

Inputs: (1) G: time-layered network, (2) d: a driver node,

(3) k: find at most k MCSs of d, (4) t: the sink node of G

Output: MCSs: a set that contains k MCSs of d.

1: procedure Find MCSs(G, d, k, t)

2: M ←MC(G, d) // MC finds an MCS of d using the max flow approach

3: nd ← |M |

4: MCSs← {M}

5: B ← [[r]|r ∈M, r 6= d] // Branches of tree

6: Be ← {} // Evaluated branches

7: while true do

8: if |MCSs| == k then return MCSs

9: Bl ← B.popFromHead() // BFS order

10: if Bl ∈ Be then continue

11: Remove all edges {u→ t|u ∈ Bl} from G

12: M ←MC(G, d)

13: if nd == |M | then

14: B′ ← [Bl + [r]|r ∈M, r 6= d] // Create new branches

15: B ← B.append(B′)

16: Be ← Be.append(B′)

17: MCSs←MCSs.append(M)

18: end if

19: Add all edges {u→ t|u ∈ Bl} to G

20: end while

21: return MCSs

22: end procedure
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5.3 Computational Complexity

The proposed algorithm uses the Edmonds-Karp algorithm to find maximum

flows, which requires O(NE2) computations. Also, to find k number of MCSs, the

algorithm needs to build an nd-ary tree, namely T , with at least k nodes. Hence the

height of T is at least:

h = blognd
((nd − 1)k)c (5.3)

Therefore, at least Ω(nhd) = Ω(ndk) computations are required if all nodes in T are

a unique MCS. However, since the tree can have duplicated nodes (as illustrated in

Fig. 5.3) its height may grow higher than the minimum. In practice, the researcher

observed that building T with height h ≈ 3 is sufficient to find k MCSs (the empirical

evidence is presented in Section 5.5). Hence, in practice the computational cost of this

step is O(kn3
d). Therefore, the total computation cost of the algorithm is O(kn3

dNE
2).

5.4 Algorithm Optimization

Algorithm 3 creates an nd-ary tree in the Breadth-First Search (BFS) order by

removing the branches from the head of branch-queue in Line 9 of the algorithm.

In contrast, the algorithm can build an nd-ary tree in the Depth-First Search (DFS)

order by removing from the tail of branch-queue. The researcher chose to create the

tree in BFS order for two reasons. First, by using DFS order, an nd-ary tree grows

vertically that limits the finding of MCSs to a few branches. In other words, the

edge removals combinations will have a large intersection. Second, since a node can

have an exponential number of MCSs, the height of an nd-ary tree is un-bounded.

Hence, the proposed computational cost analysis in Section 5.3 is valid if the tree

grows horizontally.
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5.5 Evaluation

In Section 5.3 the researcher proposed that based on the empirical results it is

sufficient to build nd-ary trees with height ≈ 3 for identifying k number of MCSs.

In Fig. 5.4, the author presented the aforementioned empirical observation between

the average MCS size of nodes (i.e., nd) and the average height of nd-ary trees. The

empirical analysis showed on average the height of nd-ary trees are orders of magni-

tude smaller than nd. This is aligned with the proposed worst-case computational

complexity of Algorithm 3.

Moreover, the proposed branch and bound algorithm is evaluated on empirical

datasets to investigate the number of bounded sub-trees and duplicate tree nodes. In

Fig. 5.4. Average height of nd-ary trees in real-world temporal networks.
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Fig. 5.5, the author illustrates the performance of Algorithm 3 (with un-bounded k)

on the real-world temporal networks. Overall, the average number of bounded sub-

trees (marked with green lines) is close to size of created nd-ary trees (i.e., average

number of tree nodes), which presented the effectives of proposed algorithm.

Fig. 5.5. Performance of the branch and bound algorithm.

5.6 Conclusion

In this chapter, the author showed that a node can have an exponential number

of MCSs. Hence, a branch and bound algorithm to identify k number of MCSs was

introduced and its performance was analyzed on a variety of real-world temporal

networks.
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6. ANALYSIS OF COMPLETE CONTROLLABLE

DOMAIN

The purpose of this chapter is to investigate the characteristics of CCD of individual

driver nodes approximated by Algorithm 3. The researcher begins by analyzing the

intersection between MCSs of nodes for the real-world temporal networks introduced

in Section 3.3. For node v ∈ V , let Ikv denote the intersection of maximum k MCSs of

v. In other words, Ikv represents the set of nodes that driver node v always controls.

Given that a driver node at most can control the full network, and to exclude the

driver itself from its MCSs-intersection, we have 0 ≤ |Ikv | ≤ N − 1. Moreover, Ik

denotes the average size of MCSs-intersection for a temporal network as defined in

Equation 6.1 where N = |V |.

Ik =
1

N

∑
v∈V

|Ikv | (6.1)

Similarly, the frequency of a node, namely v, in MCSs-intersection of all other

nodes is denoted by fkv as defined by Equation 6.2. In other words, fkv is the number

of driver nodes that always control v. Since a node can be in MCSs-intersection of at

most N − 1 driver nodes then 0 ≤ fkv ≤ N − 1.

fkv =
∑

j∈V,j 6=v

1, if v ∈ Ikj ;

0, otherwise
(6.2)

The average frequency of nodes in MCSs-intersection of other nodes for a network

is denoted by Ek as defined in Equation 6.3.

Ek =
1

N

|∑
v∈V

fkv (6.3)



53

6.1 Convergence of MCSs-Intersection on k

The researcher evaluated the values of Ik and Ek for various k as illustrated in

Fig. 6.1. The results were averaged over 5 realizations for each k. At the first glance,

Ik (marked by red solid lines) converges to a fixed value for k ≈ 25 in the evaluated

temporal networks. Hence, this result indicated that it is possible to approximate the

CCD of a driver node by having a limited number of its MCSs.

Interestingly, the researcher observed that for all networks Ik and Ek converge.

This convergence indicates that on average the number of nodes that are always

controlled by a driver node is equal to the number of driver nodes that always control

Fig. 6.1. Convergence of MCSs-intersections on small k
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a node. Further investigation to explain the reason behind this convergence is needed,

however, it is out of the scope of this dissertation. Moreover, the author presented the

number of discovered MCSs over 5 realizations of Algorithm 3 using the bar charts

in Fig. 6.1. Overall, in the large and medium size ant colonies (i.e., 1-1, 1-2, 6-1, and

6-2) on average over 800 MCSs were discovered indicating that most nodes (ants) had

a large CCD and had the potential to influence a large fraction of nodes. However,

in the e-mails network the small number of unique MCSs (around 60) indicated that

many nodes did not have any chance to control a large fraction of the networks.

6.2 MCSs and Driver Nodes Sets

In Chapter 4, the author proposed a heuristic approach to identify multiple SMDSs

for temporal networks. Also, the optimal driver sets (MDSs) were identified for

the ant networks. Drawing on the MDSs and SMDSs concepts, the author aims to

investigate the relationship between MCSs and the driver node sets. In pursuit of

this aim, Equations 6.4 and 6.5 quantify the tendency of MCSs-intersection of node

to participate in the driver node sets.

DkM =
1

N

∑
v∈N

∑
M∈MDSs

1, if Ikv ∩M 6= {∅};

0, otherwise
(6.4)

DkS =
1

N

∑
v∈V

∑
S∈SMDSs

1, if Ikv ∩ S 6= {∅};

0, otherwise
(6.5)

Moreover, the author quantifies the frequency of nodes appearing in driver sets

based on Equations 6.6 and 6.7.

QM =
1

N

∑
v∈V

∑
M∈MDSs

1, if v ∈M ;

0, otherwise
(6.6)

QS =
1

N

∑
v∈V

∑
S∈SMDSs

1, if v ∈ S;

0, otherwise
(6.7)
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The author illustrates the aforementioned measurements with respect to the driver

node sets (MDSs and SMDSs) in Fig. 6.2. Algorithm 3 is executed with k = 200 and

all results were averaged over 5 realizations. Two main observations can be drawn

based on the results depicted in Fig. 6.2. First, in the case of ant networks the

proposed heuristic approach (Chapter 4) and optimal solutions behave similarly. For

example, as illustrated in Fig. 6.2 if in a colony Dk=200
M > QM then the correspond-

ing analysis for SMDSs also showed Dk=200
S > QS. Second, overall in ant colonies

the MCSs-intersection of nodes more appeared in the driver node sets compared to

the level of nodes that appeared in the driver sets. However, in the e-mails net-

works the MCSs-intersection of nodes tend to less participate in the driver node sets.

This behavioral difference between the e-mails and ant networks could be due to the

fundamental underlying control mechanisms that these systems operate under. Ant

societies self-organize themselves, however, the companies rely on managers to be

organized. Chapter 7 continues this discussion by analyzing the control regimes of

complex networks.

Fig. 6.2. Participation in driver node sets



56

6.3 Conclusion

This chapter analyzed the behavior of ant colony and e-mail communication net-

works by investigating multiple MCSs of individual driver nodes and approximating

the CCD of driver nodes. In other words, this chapter provided a showcase of em-

ploying the proposed algorithm in Chapter 5 that identifies k MCSs of a network. For

instance, the empirical results showed the cardinality of MCSs-intersection of driver

nodes converged on k ≈ 25.



57

7. DISCUSSIONS AND FINDINGS

This dissertation provided a set of algorithms and tools to understand and analyze

the controllability of temporal networks. The author enforced a strong state retention

assumption to all evaluation by allowing all nodes to have self-loops. This assumption

enables nodes to retain their previous state in the absence of interactions between

nodes in consequent periods of time. In other words, this assumption lifts the common

modeling limitation that the flow of information and influence depends on having a

continues chain of observations. Moreover, employing self-loops in the structure of

networks is aligned with the behaviors of many physical systems [45]. For instance,

in e-mails communications, the lack of connections during weekends will not stop the

diffusion of information from the e-mail received before the weekends.

Furthermore, the conducted analysis is aligned with the behavior of complex sys-

tems represented by the evaluated datasets. For example, Section 4.2.2 illustrates that

queen ants tend to avoid becoming a driver node, which is aligned with the queen’s

main responsibility to reproduce rather than decision making for the management

of her colony. In fact, ant societies without any leader optimize their resources and

workforce to maintain both exploration (e.g., to forage) and exploitation (e.g., to

transfer and consume discovered food) [19]. An architecture that can foster a highly

distributed control regime is required to achieve such optimizations. That is, rela-

tively large groups of ants with a small number of members are capable of quickly

spread and diffuse information in their colony.

In contrast with self-organized ant societies, the hierarchical organizations rely

on managers to organize the company and spread information. Such a behavior is

reflected by the analysis conducted in this dissertation. For instance, the identified

SMDSs showed a few groups of employees with many members are capable of fully

controlling the network. Also, a large intersection between those SMDSs exists sig-
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naling the need for having critical employees (e.g., managers) to drive the spread of

information. This indicates that the e-mails network operates under a highly central-

ized control regime as expected in hierarchical organizations.

7.1 Control Regimes

Researchers attempted to identify the control regime of complex networks based

on the control categories of nodes (i.e., critical, intermittent, and redundant). Two

general control regimes are commonly proposed namely the distributed and centralized

regimes [13,14,26]. A centralized regime indicates that redundant nodes are dominant

in a network. In contrast, a distributed regime indicates that intermittent and critical

nodes are dominant. It is challenging to define a universal definition for the centralized

and distributed control regimes due to the various states and size of systems. For

example, the evaluated ant colony datasets did not provide any information on the

state that a colony was during the data collection such as being in the stat of forage

to search for food or in the state of exploitation to transport identified food. Also,

the individual nodal dynamics are unknown such as the strength of state retention for

an ant (e.g., how long the pheromone trails remain active or how strong is an ant’s

memory). Moreover, in ant datasets on average 1800 seconds were observed for data

collection (Section 3.3).

The control regimes of complex networks are classified mainly based on the fraction

of redundant nodes fr [13, 14]. That is, a large fr indicates a centralized regime is

governing control because a small number of nodes could be selected as driver nodes.

To discuss the control regime, Fig. 7.1 illustrated the fraction of nodes for each control

type and the number of MDSs and SMDSs (the numerical results are presented in

Table 4.1). Based on only considering fr, ant colony 1-2 should be in a centralized

control regime since fr(0.8) > fi(0.2) as illustrated in Fig. 7.1. However, the author

argues that colony 1-2 operate under a distributed control regime because 21 (NMDS)

unique groups with only Nc = 2 ants can fully control the colony. Also, consider only
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15 ants (= dfi ∗ |V |e) could be selected in minimum driver set (i.e., 15 intermittent

nodes). Even assuming that some ants are never exposed to any external interventions

(i.e., permanently stay inside their colony), still 15 ants are about 20% of the colony

(of 72 ants) that have the ability to control the colony with groups of Nc = 2 ants.

Therefore, in an attempt to formalize the control regime of complex networks the

author proposes Statement 1.

Statement 1 A centralized regime refers to the capacity that relatively a few groups

of nodes with a large intersection can make a network structurally controllable. On

the other hand, a distributed control regime indicates that relatively many groups of

nodes with a small number of members can make a network structurally controllable.

Based on Statement 1, except colony 6-1 all ant colonies were in a distributed

control regime since relative to their networks size, they have a large number of

Fig. 7.1. MDSs and SMDSs characteristics for ants and emails network.
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MDSs NMDS and a small Nc. In colony 6-1, as presented in Fig. 7.1 Nc = 1 and

NMDS = 3 that is only three ants formed three MDSs out of 33 ants, which clearly

demonstrate a centralized control regime. On the other hand, the e-mails network

operates under a highly centralized control regime because a large percentage of the

nodes belong to the critical node category (39% as depicted in Fig. 7.1).

In Fig. 7.1, the author illustrates the number of SMDSs NSMDSs with size Ns and

Ns + 1 as well as the fractions of nodes control types based on the identifies SMDSs

denoted by f ′c, f
′
i , and f ′r. The reasons for providing SMDSs of size Ns and Ns + 1 is

to improve the accuracy of f ′c, f
′
i , and f ′r. According to Statement 1 based on SMDSs

except colony 1-1 all other colonies are in a distributed control regime as 13 SMDSs

with size Ns = 7 and Ns = 8 are identified.

The author notes that applying Statement 1 needs to be done with caution because

a colony can be considered to operate under a centralized approach using MDSs,

however the same colony can be classified as a distributed control regime based on

SMDSs. For example, based on SMDSs colony 6-1 is operating under a centralized

regime since Nc = 1 and NMDSs = 3. But, the heuristic approach identified 22

SMDSs with sizes Ns = 1 and Ns = 2, which indicate the network is operating

under a distributed control regime.

7.2 Future Recommendations

A systematic way to characterize distributed and centralized control regimes is

needed. Moreover, the proposed research in this dissertation paves the way to design

targeted interventions in the structure of networks to alter their control regime. Sim-

ilarly, one can design methods to alter the MCSs of a node by tailoring a series of

interventions.
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7.3 Conclusion

Temporal networks enable to explicitly study systems with changing topologies by

capturing the order of interactions (i.e., time dimension) in the network’s structure.

This dissertation focuses on the structural controllability of temporal networks, which

is the study of how to drive the state of networks from an initial state to a targeted

state in finite time. In Chapter 4, the author showed finding a Minimum Driver node

Set (MDS) is computationally prohibitive for temporal networks. Hence, the author

proposed a heuristic approach to efficiently identify Suboptimal Minimum Driver node

Sets (SMDSs) based on the Maximum Controllable Subspace (MCS) concept.

In Chapter 5, the author showed a node can have an exponential number of

MCSs and proposed a branch and bound algorithm to identify k number of MCSs

for a driver node. The algorithm enables to further study the behavior of temporal

networks from the controllability perspective. In Chapter 6, the author evaluated the

proposed branch and bound algorithm on a variety of temporal networks and observes

that the MCSs-intersection of a node converge with identifying k = 200 MCSs. Also,

the author analyzed the relationship between MCSs-intersections of nodes and driver

node sets (MDSs and SMDSs).
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