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ABSTRACT

Jain, Shubham PhD, Purdue University, December 2019. In-Memory Computing with
CMOS and Emerging Memory Technologies. Major Professor: Anand Raghunathan.

Modern computing workloads such as machine learning and data analytics perform

simple computations on large amounts of data. Traditional von Neumann computing

systems, which consist of separate processor and memory subsystems, are inefficient

in realizing modern computing workloads due to frequent data transfers between

these subsystems that incur significant time and energy costs. In-memory comput-

ing embeds computational capabilities within the memory subsystem to alleviate the

fundamental processor-memory bottleneck, thereby achieving substantial system-level

performance and energy benefits. In this dissertation, we explore a new generation of

in-memory computing architectures that are enabled by emerging memory technolo-

gies and new CMOS-based memory cells. The proposed designs realize Boolean and

non-Boolean computations natively within memory arrays.

For Boolean computing, we leverage the unique characteristics of emerging mem-

ories that allow multiple word lines within an array to be simultaneously enabled,

opening up the possibility of directly sensing functions of the values stored in multi-

ple rows using single access. We propose Spin-Transfer Torque Compute-in-Memory

(STT-CiM), a design for in-memory computing with modifications to peripheral cir-

cuits that leverage this principle to perform logic, arithmetic, and complex vector

operations. We address the challenge of reliable in-memory computing under pro-

cess variations utilizing error detecting and correcting codes to control errors during

CiM operations. We demonstrate how STT-CiM can be integrated within a general-

purpose computing system and propose architectural enhancements to processor in-

struction sets and on-chip buses for in-memory computing.
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For non-Boolean computing, we explore crossbar arrays of resistive memory ele-

ments, which are known to compactly and efficiently realize a key primitive operation

involved in machine learning algorithms, i.e., vector-matrix multiplication. We high-

light a key challenge involved in this approach - the actual function computed by

a resistive crossbar can deviate substantially from the desired vector-matrix multi-

plication operation due to a range of device and circuit level non-idealities. It is

essential to evaluate the impact of the errors introduced by these non-idealities at

the application level. There has been no study of the impact of non-idealities on the

accuracy of large-scale workloads (e.g., Deep Neural Networks [DNNs] with millions

of neurons and billions of synaptic connections), in part because existing device and

circuit models are too slow to use in application-level evaluation. We propose a Fast

Crossbar Model (FCM) to accurately capture the errors arising due to crossbar non-

idealities while being four-to-five orders of magnitude faster than circuit simulation.

We also develop RxNN, a software framework to evaluate DNN inference on resistive

crossbar systems. Using RxNN, we evaluate a suite of large-scale DNNs developed

for the ImageNet Challenge (ILSVRC). Our evaluations reveal that the errors due

to resistive crossbar non-idealities can degrade the overall accuracy of DNNs consid-

erably, motivating the need for compensation techniques. Subsequently, we propose

CxDNN, a hardware-software methodology that enables the realization of large-scale

DNNs on crossbar systems with minimal degradation in accuracy by compensating

for errors due to non-idealities. CxDNN comprises of (i) an optimized mapping tech-

nique to convert floating-point weights and activations to crossbar conductances and

input voltages, (ii) a fast re-training method to recover accuracy loss due to this

conversion, and (iii) low-overhead compensation hardware to mitigate dynamic and

hardware-instance-specific errors. Unlike previous efforts that are limited to small net-

works and require the training and deployment of hardware-instance-specific models,

CxDNN presents a scalable compensation methodology that can address large DNNs

(e.g., ResNet-50 on ImageNet), and enables a common model to be trained and de-

ployed on many devices.
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For non-Boolean computing, we also propose TiM-DNN, a programmable hard-

ware accelerator that is specifically designed to execute ternary DNNs. TiM-DNN

supports various ternary representations including unweighted (-1,0,1), symmetric

weighted (-a,0,a), and asymmetric weighted (-a,0,b) ternary systems. TiM-DNN is

an in-memory accelerator designed using TiM tiles — specialized memory arrays that

perform massively parallel signed vector-matrix multiplications on ternary values per

access. TiM tiles are in turn composed of Ternary Processing Cells (TPCs), new

CMOS-based memory cells that function as both ternary storage units and signed

scalar multiplication units. We evaluate an implementation of TiM-DNN in 32nm

technology using an architectural simulator calibrated with SPICE simulation and

RTL synthesis. TiM-DNN achieves a peak performance of 114 TOPs/s, consumes

0.9W power, and occupies 1.96mm2 chip area, representing a 300X improvement in

TOPS/W compared to a state-of-the-art NVIDIA Tesla V100 GPU . In comparison to

popular quantized DNN accelerators, TiM-DNN achieves 55.2X-240X and 160X-291X

improvement in TOPS/W and TOPS/mm2, respectively.

In summary, the dissertation proposes new in-memory computing architectures

as well as addresses the need for scalable modeling frameworks and compensation

techniques for resistive crossbar based in-memory computing fabrics. Our evaluations

show that in-memory computing architectures are promising for realizing modern

machine learning and data analytics workloads, and can attain orders-of-magnitude

improvement in system-level energy and performance over traditional von Neumann

computing systems.
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1. INTRODUCTION

In recent years, we have witnessed a surge in modern computing workloads such as

data analytics, machine learning, bioinformatics, and graphics. In particular, machine

learning workloads such as Deep Neural Networks (DNNs) have gained tremendous

popularity due to their ability to achieve super-human accuracy in many cognitive

tasks involving video, image, speech, and natural language processing. Consequently,

they are being used in several real-world products and services for speech recogni-

tion (Apple Siri, Google Assistant, Amazon Alexa), image analysis (Google+ image

search, Facebook DeepFace), natural language processing (Google Translate, Face-

book DeepText), search engines, recommendation systems, and more [1, 2]. These

workloads differ from traditional workloads in their computing characteristics, i.e.,

they perform simple computations on large amounts of data leading to frequent data

transfers and memory accesses. Von Neumann Computing systems with the separate

processor and memory subsystems, such as multi-cores and GPUs, have been the

mainstay of computing platforms for the past several decades. However, their perfor-

mance and energy efficiency on data-intensive workloads are limited by the enormous

amount of time and energy spent in frequent data transfers between these subsystems.

Von Neumann systems also suffer from the known processor-memory data transfer

bottlenecks [3], wherein the memory subsystem is much slower as compared to the

processor.

The closer integration of compute and memory is a promising approach to al-

leviate the processor-memory bottleneck and reduce the frequent memory accesses

enabling substantial improvement in system performance and energy. This idea has

been explored at various levels of the storage hierarchy leading to numerous academic

research efforts [4–15] as well as a few commercial solutions [16,17]. Prior efforts that

have explored the closer integration of logic and memory are variedly referred to in
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the literature as logic-in-memory, computing-in-memory, and processing-in-memory.

These efforts may be classified into two categories – moving logic closer to mem-

ory, or near-memory computing [4–17], and performing computations within memory

structures, or in-memory computing [18–30]. In-memory computing reduces the num-

ber of memory accesses and the amount of data transferred between processor and

memory, and exploits the wider internal bandwidth available within memory systems

to achieve computing performance and efficiency beyond traditional Von Neumann

systems. In this dissertation, we focus on in-memory computing using CMOS and

emerging memory technologies to efficiently execute modern computing workloads.

Emerging memories technologies such as spintronic memories, Resistive RAM

(ReRAM), and Phase Change Memory (PCM) are promising candidates for future

memories due to several desirable attributes such as non-volatility, high density, and

near-zero leakage. In particular, spintronic memories such as Spin Transfer Torque

Magnetic RAM (STT-MRAM) have garnered significant interest with various proto-

type demonstrations and early commercial offerings [31–33]. In this dissertation, we

explore three exemplary approaches to in-memory computing with emerging memories

and a new CMOS-based memory cell that realize Boolean and non-Boolean compu-

tations within the memory array. In the first approach, we propose Spin-Transfer

Torque Compute-in-Memory (STT-CiM), a design for in-memory computing with

STT-MRAM. We exploit the resistive nature of STT-MRAM to realize a range of

bit-wise, arithmetic, and vector compute-in-memory operations. We propose archi-

tectural enhancements to the processor instruction set and on-chip bus to integrate

STT-CiM in larger systems. We also address the challenge of reliable in-memory

computing by extending ECC schemes to detect and correct errors during CiM oper-

ations.

In the second approach, we explore crossbars with resistive memory elements to

realize vector-matrix multiplications, i.e., the primitive compute kernel in machine

learning workloads. We highlight a key challenge with resistive crossbars, i.e., the

actual computed functions deviate from the desired vector-matrix multiplication op-
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erations due to numerous device and circuit-level non-idealities. The cumulative effect

of all these non-idealities manifests as errors in the vector-matrix multiplications lead-

ing to accuracy degradation in DNNs. We address the need for a fast and accurate

simulation framework to enable functional evaluation of large-scale DNNs on resistive

crossbars. We propose a Fast Crossbar Model (FCM) to accurately capture the er-

rors arising due to crossbar non-idealities while being four-to-five orders of magnitude

faster than circuit simulation. We also develop RxNN, a software framework to eval-

uate DNN inference on resistive crossbar systems. Our evaluations reveal that the

degradation in accuracy due to non-idealities can be significant for large-scale DNNs,

motivating a need for cross-layer mitigation and compensation schemes to enable use

of resistive crossbar based fabrics. Subsequently, we focus on error mitigation tech-

niques for crossbars systems and propose CxDNN, a hardware-software methodology

that enables the realization of large-scale DNNs on crossbar systems with minimal

degradation in accuracy by compensating for errors due to non-idealities. CxDNN

comprises of (i) an optimized mapping technique to convert floating-point weights

and activations to crossbar conductances and input voltages, (ii) a fast re-training

method to recover accuracy loss due to this conversion, and (iii) low-overhead compen-

sation hardware to mitigate dynamic and hardware-instance-specific errors. CxDNN

presents a scalable compensation methodology that can address large DNNs (e.g.,

ResNet-50 on ImageNet), and enables a common model to be trained and deployed

on many devices.

Finally, in the third approach; we also explore in-memory computing using new

CMOS-based memory cells. While emerging memories show considerable promise as

future memories due to much higher density and lower leakage, CMOS-based memo-

ries are currently (and in near-future may continue to be) the backbone of memory

design in computing platforms. We focus on realizing vector-matrix multiplication

operations with signed ternary values and propose TiM-DNN, a programmable hard-

ware accelerator that is specifically designed to execute state-of-the-art ternary DNNs.

TiM-DNN supports various ternary representations including unweighted (-1,0,1),
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symmetric weighted (-a,0,a), and asymmetric weighted (-a,0,b) ternary systems, en-

abling it to execute a broad range of ternary DNNs.

In the following sections, we first present the limitations of traditional Von Neu-

mann computing systems and motivate emerging memory technologies. Next, we

provide a brief description of the thesis contribution and the thesis outline.

1.1 The Processor-Memory Bottleneck

In traditional Von Neumann computing systems, the processing and memory units

are separate subsystems connected via a system bus or Network-on-Chip (NoC) as

shown in Figure 1.1(a). These systems have been the backbone for computing plat-

forms for the past several decades and will continue to be so. However, they are not

very efficient in realizing several modern computing workloads such as data analytics

and machine learning that perform simple computations on large amounts of data.

Realizing these workloads on Von Neumann systems lead to frequent data transfers

between the processor and memory subsystem [Figure 1.1(a)], thereby consuming a

significant fraction of the overall system energy and time. We can consider the en-

ergy and time spent during data transfers undesirable as no useful computations are

performed.

Fig. 1.1.: Von Neumann computing Systems: (a) Separate processor and memory

subsystems lead to significant data transfers, (b) Processor-memory bottleneck [3].
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Processor-memory gap, i.e., the performance gap between the processor and mem-

ory, as shown in Figure 1.1(b) is another source of inefficiency in Von Neumann

systems. Modern workloads lead to enormous amounts of slow memory access and

perform very simple and little computations on the fetched data, thereby leading to

processor-memory bottlenecks that degrade the overall system performance.

1.2 Emerging Memories

The growth in data processed and the increase in the number of cores place high

demands on the memory systems of modern computing platforms. Consequently, a

growing fraction of transistors, area, and power are utilized towards memories. CMOS

memories (SRAM and embedded DRAM) have been the mainstays of memory design

for the past several decades. However, recent technology scaling challenges in CMOS

memories, along with an increased demand for memory capacity and performance,

have fueled an active interest in alternative memory technologies.

Several alternative non-volatile memory (NVM) technologies such as spintronic

memory, Phase Change Memory (PCM), and Resistive RAM (ReRAM) have emerged

as potential candidates for future memories due to several highly desirable charac-

teristics, viz., high density, ultra-low leakage energy, and non-volatility. Figure 1.2

shows the comparison of different emerging and CMOS memory technologies using

access speed, memory capacity, and endurance. ReRAM and PCM offer memory

capacity in G-bit range with an access speed of 100-1000ns, thereby limiting them to

be an alternative for only off-chip memories. In contrast, spintronic memories such as

STT-MRAM and p-STT-MRAM (shown in Figure 1.2) offer both high access speeds

(1 ns to 10 ns) and capacity (1 M-bits to 10 G-bits), enabling them to be used as

both on-chip and off-chip memories. Moreover, unlike PCM and ReRAM, spintronic

memories have practically unlimited endurance adding to their bid for being the next

generation memory technology.
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Fig. 1.2.: Comparison of different memory technologies [34].

1.3 Thesis contributions

In this section, we detail the contributions of this dissertation wherein we explore

three exemplary approaches to in-memory computing, viz., boolean computing with

Spin-Transfer Torque Magnetic RAM, non-boolean computing with resistive cross-

bars, and non-boolean computing with novel CMOS memory cells.

1.3.1 Boolean Computing with Spin-Transfer Torque Magnetic RAM

Spintronic memories use electron spin as the state variable to represent logic,

as opposed to SRAMs and DRAMs that use charge. There are two spin states -

Up and Down - enabling 1-bit of storage. Spin Transfer Torque Magnetic RAM

(STT-MRAM) is currently the most popular spintronic memory with commercial

chips [31–33] already available in the market. In recent years, there have been several

research efforts to boost the efficiency of STT-MRAM at the device, circuit, and

architectural levels [35–61]. In this dissertation, we explore in-memory computing
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with STT-MRAM motivated by the observation that the movement of data from bit-

cells in the memory to the processor and back (across the bit-lines, memory interface,

and system interconnect) is a major performance and energy bottleneck in computing

systems. By exploiting the ability to simultaneously enable multiple wordlines within

a memory array, we enhance STT-MRAM arrays to perform a range of arithmetic,

logic and vector operations. We propose circuit and architectural techniques for

reliable in-memory computing under process variations and for enabling the proposed

design to be used in a programmable processor-based system. We also address the

question of how should STT-CiM be integrated into a general-purpose computing

system. To this end, we propose architectural enhancements to processor instruction

sets and on-chip buses to enable utilization of STT-CiM as a scratchpad memory.

Finally, we present data mapping techniques to increase the effectiveness of STT-

CiM. We evaluate STT-CiM using a device-to-architecture modeling framework and

integrate cycle-accurate models of STT-CiM with a commercial processor and on-

chip bus (Nios II and Avalon from Intel). Our system-level evaluation shows that

STT-CiM provides system-level performance improvements of 3.93x on average (upto

10.4x), and concurrently reduces memory system energy by 3.83x on average (upto

12.4x).

1.3.2 Non-Boolean Computing with resistive crossbars

Resistive crossbar based in-memory computing systems have garnered significant

interest for realizing DNNs due to their ability to perform the underlying computa-

tional kernel, viz., vector-matrix multiplications, efficiently. They may be designed us-

ing any of the above mentioned emerging resistive memory devices, including ReRAM,

PCM, and Spintronics [62–65]. These devices offer the prospect of highly compact

and energy-efficient DNN implementations due to their intrinsic properties. Several

research efforts have explored the design of crossbar based systems at the device,

circuit, architecture, and algorithmic levels [28–30,63,66–86].
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A key challenge with resistive crossbars is that the computed function (input volt-

ages multiplied with the weights stored as conductances to obtain output currents)

is only an approximation of the desired vector-matrix multiplication. In practice, re-

sistive crossbars suffer from various device and circuit level non-idealities, viz., driver

resistance, sensing resistance, sneak paths, interconnect parasitics, process and pro-

gramming variations, and non-linearities in the peripheral circuits such as ADCs and

DACs, which lead to errors in the computed vector-matrix multiplications. These

errors can degrade the overall application-level accuracy of a DNN realized on a re-

sistive crossbar system. Although DNNs are resilient to some inaccuracy in their

computations [87–90], this resilience is not unlimited. Therefore, it is necessary to

evaluate the impact of non-idealities present in imperfect computational fabrics such

as resistive crossbars.

In this dissertation, we first evaluate the impact of non-idealities in resistive

crossbars to characterize errors due to these non-idealities. We show that the er-

rors show significant data-dependence, i.e., they depend on the weight programmed

into, and input applied to, the crossbar, and hardware-instance dependence (due to

variations), motivating the need for a detailed crossbar model. Next, we propose

a Fast Crossbar Model (FCM) that can accurately capture the impact of crossbar

non-idealities. FCM abstracts non-idealities using simple linear algebra operations to

achieve orders-of-magnitude faster simulation compared to SPICE. We realize FCM

using the well-known BLAS (Basic Linear Algebra Subprograms) library and develop

RxNN, a software framework to evaluate DNNs realized on resistive crossbar systems.

We use RxNN (which is based on the popular Caffe [91] deep learning framework)

to evaluate several large-scale DNNs with millions of neurons and billions of synaptic

connections. Our evaluation shows that the accuracy degradation due to crossbar

non-idealities can be significant, motivating a need for cross layer error mitigation

and compensation schemes.

To address the accuracy degradation due to crossbar non-idealities, we also pro-

pose CxDNN, a hardware-software methodology to realize high accuracy DNNs on
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resistive crossbar systems. CxDNN is composed of a conversion algorithm, a fast

re-training method, and a low-overhead hardware compensation scheme. The con-

version algorithm takes any given floating-point DNN and converts its weights to

conductances and activation values to voltages by determining appropriate scaling

factors. Subsequently, CxDNN uses a fast re-training method to recover accuracy

loss due to the conversion with very few iterations. We note that our re-training

method is hardware instance independent and therefore needs to be performed only

once overall (and not once per instance). Finally, CxDNN mitigates data-dependent

and hardware-instance-specific errors using low-overhead error compensation circuits

that post-process the crossbar outputs. We evaluate CxDNN using 6 state-of-the-

art DNNs on the ImageNet dataset. Our results show that CxDNN improves top-1

accuracy by 16%-49% and obtains classification accuracies comparable to a software

fixed-point implementation, thereby alleviating non-idealities as an impediment to

the use of resistive crossbar based in-memory computing fabrics.

1.3.3 Non-Boolean Computing with CMOS-based memory cells

The use of lower precision to perform computations has emerged as a popular

technique to enable complex Deep Neural Networks (DNNs) to be realized on energy-

constrained platforms. In the quest for lower precision, studies to date have shown

that ternary DNNs, which represent weights and activations by signed ternary val-

ues, represent a promising sweet spot, and achieve accuracy close to full-precision

networks on complex tasks such as language modeling and image classification. We

propose TiM-DNN, a programmable hardware accelerator that is specifically designed

to execute state-of-the-art ternary DNNs. TiM-DNN supports various ternary rep-

resentations including unweighted (-1,0,1), symmetric weighted (-a,0,a), and asym-

metric weighted (-a,0,b) ternary systems. TiM-DNN is an in-memory accelerator

designed using TiM tiles — specialized memory arrays that perform massively par-

allel signed vector-matrix multiplications on ternary values per access. TiM tiles are
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in turn composed of Ternary Processing Cells (TPCs), new bit-cells that function as

both ternary storage units and signed scalar multiplication units. We evaluate an

implementation of TiM-DNN in 32nm technology using an architectural simulator

calibrated with SPICE simulations and RTL synthesis. TiM-DNN achieves a peak

performance of 114 TOPs/s, consumes 0.9W power, and occupies 1.96mm2 chip

area, representing a 300X and 388X improvement in TOPS/W and TOPS/mm2,

respectively, compared to a state-of-the-art NVIDIA Tesla V100 GPU. In comparison

to popular DNN accelerators, TiM-DNN achieves 55.2X-240X and 160X-291X im-

provement in TOPS/W and TOPS/mm2, respectively. We compare TiM-DNN with

a well-optimized near-memory accelerator for ternary DNNs across a suite of state-

of-the-art DNN benchmarks including both deep convolutional and recurrent neural

networks, demonstrating 3.9x-4.7x improvement in system-level energy and 3.2x-4.2x

speedup.

1.4 Thesis outline

We have organized the rest of the thesis as follows. Chapter 2 details the related

efforts in the area of near- and in-memory computing and also presents the the-

sis contributions in their context. Chapter 3 provides the necessary background on

the spintronic devices, resistive crossbar systems, and deep neural networks (DNNs).

Chapter 4 proposes in-memory computing with STT-MRAM. Chapter 5 presents a

fast, accurate, and scalable simulation framework to evaluate and re-train large-scale

DNNs on resistive crossbar systems. Chapter 6 details hardware-software compen-

sation schemes to mitigate the impact of crossbar non-idealities on DNNs realized

using resistive crossbars. Chapter 7 proposes a new CMOS-based in-memory com-

puting design for accelerating ternary DNNs. Finally, chapter 8 concludes the thesis.
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2. RELATED WORK

The idea of closer integration of logic and memory has been explored at various levels

to alleviate the fundamental processor-memory bottlenecks. There have been numer-

ous research efforts that explore the possibility of near- and in-memory computing

using the traditional CMOS memory technologies such as SRAM and DRAM, as well

as emerging memory technologies, viz., ReRAM, PCM, and Spintronic. These efforts

are variedly referred to in the literature as logic-in-memory, computing-in-memory,

and processing-in-memory. They can be broadly classified into two categories, as

shown in Figure 2.1. We limit the scope of our discussion to approaches that improve

the efficiency of active computation. For example, we do not discuss the embedding

of non-volatile memory elements into a logic circuit [92–95] in order to enable the

system to shut-down and wakeup efficiently for improved power management. In this

chapter, we discuss the research efforts directed towards processing-in-memory using

both CMOS and emerging memory technologies.

2.1 Near-memory Computing

Near-memory computing refers to bringing logic or processing units closer to mem-

ory. Notwithstanding the closer integration, processing units still remain distinct

from memory arrays. Near-memory computing has been explored at various levels

of the memory hierarchy [4–8, 10–17]. Intelligent RAM (IRAM) [4] is an early ex-

ample, which integrated a processor and DRAM in the same chip to improve the

bandwidth between them. Embedding simple processing units within each page of

the main memory [5] and within secondary storage [6] enables computations to be

performed near memory. Application-specific examples of near-memory computation

are: (i) memory that can generate interpolated values, enabling the evaluation of
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Fig. 2.1.: Taxonomy of computing near/in memory

complex mathematical functions [15], and (ii) Deep Neural Network (DNN) acceler-

ators [10, 96, 97]. Near-memory computing has gained significant interest in recent

years, with industry efforts like Hybrid Memory Cube (HMC) [16] and High Band-

width Memory (HBM) [17].

2.2 In-memory Computing

In-memory computing [18–21, 24–27, 98] integrates logic operations into memory

arrays, fundamentally blurring the distinction between processing and memory. In

comparison to near-memory computing, a key advantage of in-memory computing

is that it enables a much higher level of parallelism by enabling and computing on

multiple memory rows simultaneously, thereby achieving superior performance and

energy efficiency. We can classify previous proposals for in-memory computing based
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on whether they target application-specific or general-purpose computations, and

based on the underlying memory technology that they consider.

2.2.1 General-purpose in-memory computing

General-purpose examples of in-memory computing include evaluation of bitwise

logic operations using emerging memories [21–23,26,99] and DRAM [24]. CRAM [20]

that introduces an extra transistor (2T-1R) to enable evaluation of complex func-

tions within the array is another example of general-purpose in-memory computing.

The key challenge of general-purpose in-memory computing is to realize it without

impacting the desirability of the resulting design as a standard memory (i.e., den-

sity or efficiency of standard read and write operations). Due to these constraints,

general-purpose in-memory computing designs are typically limited to performing a

small number of simple operations.

2.2.2 Application-specific in-memory computing

Application-specific examples of in-memory computing include vector-matrix mul-

tiplication [27–30] and sum-of-absolute difference [19] computation. Ternary content-

addressable memory [18], ROM-embedded RAM [100], AC-DIMM [25] and Micron’s

automata processor [101] can also be viewed as examples of in-memory computing

that target specific operations such as pattern matching or evaluation of transcen-

dental functions. Next, we discuss examples of in-memory computing targeting Deep

Neural Network (DNN) applications in more detail.

2.2.3 In-memory computing for Deep Neural Networks (DNNs)

Deep neural networks (DNNs) have greatly advanced the state-of-the-art in ma-

chine learning tasks involving video, image, speech and natural language processing,

and are currently used in several real-world products and services [1]. The high com-
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putation and memory requirements of DNNs often pose challenges to the computing

platforms on which they are executed. Currently, GPUs and specialized accelerators

like Google’s TPU and Microsoft’s Brainwave are the mainstays for DNN execution.

However, the continuing increase in DNN complexity and amount of data processed

has fueled an active interest in new hardware fabrics that can deliver further improve-

ments in efficiency, and thereby enable the virtuous cycle of advances in deep learning

algorithms and hardware to continue.

In recent years, several research efforts have focused on improving the energy

efficiency and performance of DNNs at various levels of design abstraction [87–89,102–

108]. In this subsection, we limit our discussion to efforts on in-memory computing

for DNNs [28, 30, 109–117]. Table 2.1 classifies prior in-memory computing efforts

based on the memory technology [CMOS and Non-Volatile Memory (NVMs)] and the

targeted precision. One group of efforts [28, 30, 109, 110] has focused on in-memory

DNN accelerators using emerging Non-Volatile memory (NVM) technology such as

PCM and ReRAM. Although NVMs promise density and low leakage relative to

CMOS, they still face several open challenges such as errors due to the device and

circuit-level non-idealities, which we address in this dissertation. The other group

of efforts [111–118] has focused on in-memory DNN accelerators using the mainstay

CMOS technology.

,

2.2.4 In-memory computing for DNN applications using CMOS-based

memory cells

Efforts on SRAM-based in-memory accelerators can be classified into those that

target binary [111–115] and high-precision [116–118] DNNs. Accelerators targeting

binary DNNs [111–115] can execute massively parallel vector-matrix multiplication

per array access. However, the restriction to binary networks is a significant limitation

as binary networks (known to date) incur a large drop in accuracy. Efforts [116–
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Table 2.1.: Examples of In-memory Computing for DNN applications

118] that target higher precision (4-8 bit) DNNs require multiple execution steps

(array accesses) to realize signed dot-product operations, wherein both weights and

activations are signed numbers. For example, Neural cache [116] computes bitwise

Boolean operations in-memory but uses bit-serial near-memory arithmetic to realize

multiplications, requiring several array accesses per multiplication operation (and

many more to realize dot-products).

2.2.5 In-memory computing for DNN applications using emerging mem-

ories

Resistive crossbars have witnessed significant research interest in recent years due

to their ability to efficiently realize vector-matrix multiplications, i.e., the primi-

tive machine learning kernel [119–122]. In this subsection, we focus on prior works

that target DNNs on resistive crossbar systems. These efforts can be broadly classi-

fied into specialized hardware accelerators [28–30,66–68,123], non-ideality mitigation

schemes [69–78], and design tools for resistive crossbar systems [79–81,124].

Specialized hardware accelerators. Resistive crossbar based specialized hard-

ware systems have been proposed for accelerating DNN inference [28–30,68,125] and
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training [66, 67] operations. These efforts focus on the evaluation of the proposed

architecture using performance, energy, and area as their metrics. They either do

not explicitly consider non-idealities or model only the limited-precision aspect of

non-idealities.

Non-ideality mitigation schemes. We now discuss prior efforts that attempt to

mitigate the effects of crossbar non-idealities. These efforts can be grouped into (i)

methods that use (re-)training to compensate for errors [69, 71, 73, 75, 126–128], (ii)

mapping to reduce computational errors [70, 74], (iii) closed-loop re-programming

methods to overcome imperfect programming and drift in synaptic conductances [72,

76,78], and (iv) ECC schemes to reduce errors due to a specific device non-ideality [129].

The focus of all these efforts is to evaluate and mitigate errors due to crossbar non-

idealities. However, they are restricted to simple networks and small datasets since

they lack a scalable simulation framework. Many of these efforts also lack a detailed

crossbar model as they consider only a subset of crossbar non-idealities.

Training-based compensation [69,71,73,75,126] using software models of the cross-

bar is the most popular approach to compensating for non-idealities. However, re-

training can only mitigate accuracy degradation to a limited extent. Further, it ties

the network to the specific hardware instance and therefore is not scalable. For exam-

ple, to create re-trained models for crossbar-based inference accelerators deployed in

millions of IoT devices will correspondingly require millions of training runs. Another

limitation of these efforts [69, 71, 73, 75, 126] is that they correct errors due to only

a subset of crossbar non-idealities. For example, [126] can only mitigate errors due

to driver resistance, source resistance, and chip-to-chip variations. It ignores other

prominent non-idealities such as wire resistance, sneak paths, non-linear ADCs and

DACs, and intra-chip process variations (each crossbar or synaptic device within a

chip is uniquely impacted by process-variations). Finally, all (re-)training based prior

efforts [69–73,75,76,78,126] are limited to small scale networks and data sets.

ECC scheme using AN codes have also been proposed to correct errors in resistive

crossbars [129]. However, AN codes [130] can correct errors only in linear func-



17

tions realized using digital systems, wherein errors are discrete (at the bit-level) and

can be quantified using the digital number representation (multiple bits). Although

vector-matrix multiplications realized using digital systems are linear, the functions

executed in resistive crossbars are not. For example, vector-matrix multiplications

in resistive crossbars consist of several non-linear operations (viz., non-linear DACs

and ADCs functions). The errors in resistive crossbars due to the cumulative effect

of all non-idealities are analog and non-linear in nature. Therefore, ECC schemes

cannot effectively mitigate errors in analog systems (experimental results shown in

Section 6.3.5). Further, apart from assuming crossbar operations to be linear, another

limitation of the prior effort [129] is that it only models errors due to a specific device

non-ideality (random telegraph noise) and ignores circuit-level non-idealities, viz.,

wire resistances, sensing resistances, sneak paths, driver resistances, and non-linear

ADCs and DACs.

Design tools. To aid design space exploration, prior efforts [79–81, 124] have pro-

posed circuit-level macro models to evaluate crossbar systems. These efforts include

(i) MNSIM [79], a simulation platform to evaluate inference accelerators designed us-

ing resistive crossbars, (ii) NeuroSim [124], a framework to evaluate crossbars systems

designed for on-chip training, (iii) technological exploration tool to optimize resistive

crossbar design space [80], and (iv) AutoNCS [81], a tool to optimize the utilization

and efficiency of a resistive crossbar system. The primary focus of all these tools has

been the performance, energy, and area evaluation of resistive crossbar systems to

facilitate design space exploration. These tools also have simplistic accuracy/error

models that are reasonable for design space exploration, but inadequate for evaluating

application-level accuracy of DNNs.

2.3 Thesis contributions

The primary contributions of this dissertation are different or complementary to

the prior efforts in the following aspects:
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Boolean Computing with Spin-Transfer Torque Magnetic RAM. Our work

differs from application-specific in- and near-memory computing designs as we focus

on embedding a broader set of operations (arithmetic, logic and vector operations)

within memory. Our work also differs from efforts [21–23] that realize bitwise logic

operations in several important aspects. First, we focus on in-memory computing

for spintronic memory, which involves fundamentally different prospects and design

challenges. For example, the proposed operations are not destructive to the contents

stored in the accessed bit-cells (unlike [24]). On the other hand, the much lower ratio

of on to off resistance in spintronic memory leads to lower sensing margins. Second, we

use a different sensing and reference generation circuitry, which enables us to natively

realize a wider variety of operations. For example, the proposed design requires only

one array access (unlike two in the case of [21]) to perform bit-wise XOR operations.

Third, our design goes beyond bitwise logic operations and realizes arithmetic as well

as complex vector operations. Fourth, we propose architectural extensions (bus and

ISA extensions) and data mapping techniques to enable in-memory computing within

a general-purpose processor system. Finally, we address a key challenge associated

with in-memory computing, viz., reliable operation under process variations. In con-

trast to the effort that uses 2T-1R STT-MRAM bit-cells [20], our proposal enables

in-memory computation within a standard STT-MRAM array with no changes to

the bit-cells. Moreover, unlike [20, 26] we do not restrict ourselves to device and cir-

cuit level considerations and also address the architectural challenges of in-memory

computing.

Non-Boolean Computing: Framework for Evaluating Deep Neural Net-

works on Resistive Crossbars. Our work complements the prior efforts on hard-

ware accelerators [28–30, 66–68] and non-ideality mitigation schemes [69–78]. We

focus on the functional evaluation of large-scale DNNs, including winners from previ-

ous ImageNet challenges [131]. We address the need for a fast, scalable, and accurate

framework for resistive crossbar systems to enable evaluation and re-training of large-

scale DNNs. Moreover, unlike simple error estimation model [79, 80], we focus on a
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more accurate model that captures the cumulative effects of all non-idealities includ-

ing data-dependent errors, i.e., the errors that depend on the weights programmed

into, and inputs applied to the crossbar.

Non-Boolean Computing: Hardware-Software Compensation methods for

Deep Neural Networks on Resistive Crossbar Systems. CxDNN complements

and improves upon previous efforts by proposing a hardware-software methodology

that scales to large DNNs, avoids hardware-instance-specific (re-)training, can correct

errors due to a wider range of crossbar non-idealities (including both device and

circuit-level non-idealities), and uses low-overhead compensation circuits to better

alleviate dynamic and hardware instance specific errors. Other prior efforts [72,76,78]

using closed-loop programming may be combined with CxDNN to specifically address

programming errors.

Non-Boolean Computing with CMOS: Ternary in Memory accelerator for

Deep Neural Networks. In contrast to previous proposals, TiM-DNN is the first

specialized and programmable in-memory accelerator for ternary DNNs that supports

various ternary representations including unweighted (-1,0,1), symmetric weighted (-

a,0,a), and asymmetric weighted (-a,0,b) ternary systems. TiM-DNN utilizes a new

CMOS-based bit-cell (i.e., TPC) and enables multiple memory rows simultaneously to

realize massively parallel in-memory signed vector-matrix multiplications with ternary

values per memory access, enabling efficient realization of ternary DNNs. As illus-

trated in our experimental evaluation, TiM-DNN achieves 3.9x-4.7x improvement in

system-level energy and 3.2x-4.2x speedup over a well-optimized near-memory accel-

erator. In comparison to the near-memory ternary accelerator [97], it achieves 55.2X

improvement in TOPS/W.
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3. BACKGROUND

In this chapter, we provide the necessary background information on the emerging

memory technologies, the resistive crossbar system, and DNNs.

3.1 STT-MRAM

This section presents the STT-MRAM bit-cell structure and describe the basic

read and write operations.

Fig. 3.1.: STT-MRAM bit-cell

An STT-MRAM bit-cell consists of an access transistor and a magnetic tunnel junc-

tion (MTJ), as shown in Figure 3.1. An MTJ consists of a pinned layer that has a fixed

magnetic orientation and a free layer whose magnetic orientation can be switched.

The magnetic layers are separated by a tunneling oxide. The relative magnetic orien-

tation of the free and pinned layers determines the resistance offered by the MTJ (the

resistance for the parallel configuration, RP , is lower than the anti-parallel resistance,

RAP ). The two resistance states encode a bit (we assume that parallel represents the

logic “1”, and anti-parallel represents the logic “0”). A read operation is performed
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by applying a bias (Vread) between the bitline (BL) and the source line (SL) and

enabling the wordline (WL). The resultant current flowing through the bit-cell (IP

or IAP ) is compared against a global reference to determine the logic state stored in

the bit-cell.

A write is performed by passing a current greater than the critical switching

current of the MTJ through the bit-cell. The logic value written, is dependent on

the direction of the write current, as shown in Figure 3.1. The write operation in

STT-MRAM is stochastic in nature, and the duration and magnitude of the write

current determine the write failure rate. Apart from write failures, STT-MRAMs are

also subject to read decision failures, where the value stored in a bit-cell is incorrectly

sensed due to process variations, and read disturb failures where a read operation

inadvertently ends up writing into the bit-cell. These failures are addressed through a

range of techniques including device and circuit optimization, manufacturing test and

self-repair, and error correcting codes [43, 44, 46, 47]. Apart from write/read failures,

memories may also have failures due to thermal noise, which causes stochastic flipping

in the bit-cells. However, such failures are negligible in STT-MRAM due to the high

energy barrier between the two resistance states.

3.2 Spintronic synaptic device

Next, we provide a brief overview of the spintronic synaptic device [64] used in

our experiments.

Spintronic devices [64] have emerged as promising candidates for designing synap-

tic devices. They have several key advantages over 2-terminal memristive devices [62], viz.,

low-voltage write operations, high endurance, immunity to drift (i.e., change in synap-

tic conductance during the read operations [62]), and no read-write conflicts due to

separate read and write paths. Figure 3.2 shows a spintronic device [64] that can be

used as a building block for resistive crossbar arrays. It is a 3-terminal device consist-

ing of a Magnetic Tunneling Junction (MTJ) and an underlying Heavy Metal (HM)
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Fig. 3.2.: Spintronic synaptic device

layer. An MTJ is composed of a fixed Ferro-Magnetic (FM) layer, a tunneling oxide,

and a free FM layer. A write operation is performed by applying a voltage at the two

ends of the HM layer, i.e., between terminals T2 and T3. The resulting current flowing

through the HM exerts a spin orbit torque on the free layer that causes domain wall

motion. The position of the domain wall in the free layer determines the conductance

of the MTJ that lies between GMIN (when the domain wall is to the far right) and

GMAX (when the domain wall is to the far left). Moreover, the number of unique

locations at which the domain wall can reside determines the precision of the device.

A read operation in this device is performed by applying a voltage across terminals

T1 and T3, and the resultant current is proportional to the MTJ’s conductance. In

summary, the device shown in Figure 3.2 operates as a programmable resistor wherein

the resistance is programmed through the HM layer and sensed via the MTJ.

3.3 Resistive crossbar system

In this section, we provide a brief background on resistive crossbar based acceler-

ator and vector-matrix multiplications executed using resistive crossbar arrays.
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Figure 3.3 (left) depicts a representative resistive crossbar based accelerator, viz.,

Resistive crossbar processing unit (XPU), connected to a host processor and main

memory via a system bus. The host processor off-loads execution of compute kernels

having vector-matrix multiplications (e.g., convolution and fully-connected layers in

DNNs) to the XPU, which in-turn realizes them using multiple Crossbar processing

tiles (XPTs) and a scheduler. XPTs are composed of Resistive Crossbar Arrays

(RCAs) that store weights and compute vector-matrix multiplications, local memories

in the form of input and output buffers to store activations, a local bus, a controller

to orchestrate various operations, and special function units (SFUs) to execute other

DNN operations such as ReLU, max pooling, etc. Next, we describe RCAs, the

fundamental compute units of resistive crossbar systems, in detail.

Fig. 3.3.: Architecture for resistive crossbar system

As shown in Figure 3.4, a resistive crossbar array comprises of a 2D array of

synaptic elements, Analog-to-Digital Converters (ADCs), Digital-to-Analog Convert-

ers (DACs), registers, a decoder, a column MUX, a reduce unit and write circuits.

The synaptic elements are programmable resistors that store DNN weights as con-

ductances. The number of available conductance levels determines the precision of

the synaptic element. They can be realized using emerging NVMs technologies, viz.,
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Fig. 3.4.: Resistive crossbar array

PCM, ReRAM, and spintronics [64,120,121]. RCA supports two main operations: (i)

vector-matrix multiplication and (ii) programming. A vector-matrix multiplication is

performed by driving all wordlines (WL) to analog voltages using DACs and sensing

the resultant currents flowing through the columns (BL) using ADCs. The vector-

matrix multiplication ideally realized in an MxN RCA is shown in Equation 3.1,

where V inideal represents a 1xM vector of input voltages, Gideal is an MxN matrix

comprising of the programmed conductances, and Ioutideal denotes a 1xN vector of

output currents. In contrast, the programming operations, i.e., write operations on
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synaptic elements, are performed row-wise, wherein, the write circuitry applies the

necessary currents and sets them to the desired conductance.

Ioutideal = Vinideal ∗Gideal (3.1)

An XPT realizes vector-matrix multiplications involving a large weight matrix by

partitioning it into fragments and mapping them to multiple RCAs. The partitions

can have dependencies, i.e., they can either share inputs or outputs (produce partial

sums for the same output). We map partitions sharing the inputs (outputs) to same

rows (columns). RCAs also have additional logic units (e.g., reduce unit) to handle

partial sums and to support input sharing across rows.

3.4 Deep Neural Network (DNN)

Finally, we present a very brief overview of Deep Neural Networks (DNNs).

DNNs are multi-layered neural networks comprising of the basic compute units called

artificial neurons. The layers are predominantly of Convolutional (Conv) and Fully-

Connected (FC) types, and these layers are associated with a set of weights. The

computations in CONV and FC layers can be expressed as block 2D-convolution

(matrix-matrix multiplication) and vector-matrix multiplication, respectively. Fur-

ther, CONV and FC layers consume 90%-95% of the overall computation time and

energy in DNNs. DNNs operate in 2 key phases: (i) Training and (ii) Inference.

Training is done on a labeled dataset, wherein the weights of the DNN are iteratively

refined using the Stochastic Gradient Descent (SGD) algorithm. In contrast, the

inference is performed using a pre-trained model to classify unseen inputs. In this

thesis, we focus on improving the energy efficiency of DNN inference using in-memory

computing.
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4. BOOLEAN COMPUTING WITH SPIN-TRANSFER

TORQUE MAGNETIC RAM

In this chapter, we propose our first approach to in-memory computing with emerging

memory technologies. As discussed in chapter 1, in-memory computing is motivated

by the observation that the movement of data from bit-cells in the memory to the

processor and back is a major performance and energy bottleneck in computing sys-

tems. In-memory computing is a promising approach that reduces the number of

memory accesses and the amount of data transferred between processor and memory.

It also exploits the wider internal bandwidth available within memory systems to en-

able substantial system-level performance and energy benefits for modern computing

workloads.

Our proposal is based on the observation that by enabling multiple wordlines

simultaneously 1 and sensing the effective resistance of each bit-line, it is possible to

directly compute logic functions of the values stored in the bit-cells. Based on this

insight, we propose STT-CiM, a design for in-memory computing with STT-MRAM

that can perform a range of arithmetic, logic, and vector operations. In STT-CiM,

the core data array is the same as standard STT-MRAM; hence, memory density and

the efficiency of read and write operations are maintained. Reliable sensing under

the limited tunneling magneto-resistance (TMR) of STT-MRAM bit-cells is known

to be a challenge [43–47, 60], and we show that challenge this is further aggravated

for in-memory computations. In order to enhance the robustness of STT-CiM under

process variations, we extend error correction codes (ECC) to errors that occur during

in-memory computations. To evaluate the benefits of STT-CiM, we utilize it as a

scratchpad in the memory hierarchy of the Intel Nios II [132] processor. We propose

1Note that this is much easier in STT-MRAM than in CMOS memories, due to the resistive nature
of the bit-cells.



27

enhancements to the on-chip bus and extend the instruction set of the processor to

support compute-in-memory operations and expose them to software. We also present

suitable data mapping techniques to maximize the benefits of STT-CiM.

We note that earlier efforts (e.g., [21]) have proposed enabling multiple wordlines

to perform computations within Non-Volatile Memories (NVMs). Although our work

shares this principle, we differ from previous work in several key aspects: (i) we

address reliable in-memory computing under process variations, (ii) we go beyond

bitwise logic operations to also perform arithmetic and vector operations, which are

commonly present in modern computing workloads, and (iii) we propose architectural

enhancements (bus and ISA extensions), and data mapping techniques to enable in-

memory computation in the context of on-chip scratchpad memories.

In summary, the key contributions of this work are as follows:

• We explore compute-in-memory with spintronic memories as an approach to

improving system performance and energy.

• We propose STT-CiM, an enhanced STT-MRAM array that can perform a

range of arithmetic, logic and vector compute-in-memory operations without

modifying either the bit-cells or the core data array.

• We address a key challenge in STT-CiM, i.e. reliably performing in-memory

operations under process variation, by demonstrating suitable error correction

mechanisms.

• We propose extensions to the instruction set and on-chip bus to integrate STT-

CiM into a programmable processor system and demonstrate the viability of

these extensions using Intel’s Nios II processor and Avalon on-chip bus.

• We evaluate the performance and energy benefits of STT-CiM, achieving av-

erage improvements of 3.83x (upto 12.4x) and 3.93x (upto 10.4x) in the total

memory energy and system performance, respectively.
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The rest of the chapter is organized as follows. Section 4.1 describes the STT-CiM

design and how it supports in-memory computation. Section 4.2 outlines architectural

enhancements for STT-CiM. Section 4.3 describes the experimental methodology and

experimental results are presented in section 4.4. Section 4.5 concludes the chapter.

4.1 STT-MRAM based Compute-in-Memory (STT-CiM)

In this section, we describe STT-MRAM based Compute-in-Memory (STT-CiM), a

design for in-memory computing using standard STT-MRAM arrays.

4.1.1 STT-CiM overview

The key idea behind STT-CiM is to enable multiple wordlines simultaneously in

an STT-MRAM array, leading to multiple bit-cells being connected to each bitline.

With enhancements that we propose to the sensing and reference generation circuitry,

we can directly compute logic functions of the enabled words. Note that such an

operation is feasible in STT-MRAMs since the bit-cells are resistive, and since the

write currents are typically much higher than read currents. In contrast, enabling

multiple wordlines in SRAM can lead to short-circuit paths through the memory

array, leading to loss of data stored in the bit-cells.

Figure 4.1 explains the principle of operation of STT-CiM. First, consider the

resistive equivalent circuit of a single STT-MRAM bit-cell shown in Figure 4.1(a). Rt

represents the on-resistance of the access transistor and Ri the resistance of the MTJ.

When a voltage Vread is applied between the bitline (BL) and the source line (SL), the

net current Ii flowing through the bit-cell can take two possible values depending on

the MTJ configuration, as shown in Figure 4.1(b). A read operation involves using a

sensing mechanism to distinguish between these two current values.

Figure 4.1(c) demonstrates a Compute-in-Memory (CiM) operation, where two

wordlines (WLi and WLj) are enabled, and a voltage bias (Vread) is applied to the

bitline. The resultant current flowing through the SL (denoted ISL) is a summation of
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Fig. 4.1.: STT-CiM: Principle of operation

the currents flowing through each of the bit-cells (Ii and Ij), which in turn depends

on the logic states stored in these bit-cells. The possible values of ISL are shown

in Figure 4.1(d). We propose enhanced sensing mechanisms to distinguish between

these values and thereby compute logic functions of the values stored in the enabled

bit-cells. We discuss the details of these operations in turn below.

Bitwise OR (NOR). In order to realize logic OR and NOR operations, we use

the sensing scheme shown in Figure 4.2(a), where ISL is connected to the positive

input of the sense amplifier and a reference current Iref−or is fed to its negative input.

We choose Iref−or to be between IAP−AP and IAP−P , as shown in Figure 4.2(c). As a

result, among the possible values of ISL [Figure 4.1(d)], only ISL = IAP−AP is less than
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Fig. 4.2.: STT-CiM sensing schemes

Iref−or. Consequently, only the case where both bit-cells are in the AP configuration,

i.e., both store “0”, leads to an output of logic “0” (“1”) at the positive (negative)

output of the sense amplifier, while all other cases lead to logic “1” (“0”). Thus, the

positive and negative outputs of the sense amplifier evaluate the logic OR and NOR

of the values stored in the enabled bit-cells.

Bitwise AND (NAND). A bitwise AND (NAND) operation is realized at the

positive (negative) terminal of the sense amplifier by using the sensing scheme shown

in Figure 4.2(b). Note that in this scheme, a different reference current (Iref−and) is

fed to the sense amplifier.

Bitwise XOR. A bitwise XOR operation is realized when the two sensing schemes

shown in Figure 4.2 are used in tandem, and OAND and ONOR are fed to a CMOS

NOR gate. In other words, OXOR = OAND NOR ONOR.

Table 4.1 summarizes the logic operations achieved using the two sensing schemes

discussed above. Note that, all the logic operations described above are symmetric in

nature, and hence it is not necessary to distinguish between the cases where the two

bit-cells connected to a bitline store “10” and “01”.

ADD Operation. An ADD operation is realized by leveraging the ability to con-

currently perform multiple bitwise logical operations, as illustrated in Figure 4.3.
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Table 4.1.: Possible outputs of various sensing schemes in STT-CiM

ISL OOR ONOR OAND ONAND OXOR

IAP−AP 0 1 0 1 0

IAP−P 1 0 0 1 1

IP−AP 1 0 0 1 1

IP−P 1 0 1 0 0

Suppose An and Bn (the n-th bits of two words, A and B) are stored in two different

bit-cells of the same column within an STT-CiM array. Suppose that we wish to

compute the full-adder logic function (n-th stage of an adder that adds words A and

B). As shown in Figure 4.3, Sn (the sum) and Cn (the carry out) can be computed

using An XOR Bn and An AND Bn, in addition to Cn−1 (carry input from the pre-

vious stage). Figure 4.3 also expresses the ADD operation in terms of the outputs

of bitwise operations, OAND and OXOR. Three additional logic gates are required

to enable this computation. Note that the sensing schemes discussed enable us to

perform the bitwise XOR and AND operations simultaneously, thereby performing

an ADD operation with a single array access.

Fig. 4.3.: In-Memory ADD operation using STT-CiM
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Fig. 4.4.: STT-CiM array structure

4.1.2 STT-CiM array

In this section, we present the array-level design of STT-CiM using the circuit-

level techniques described above. As shown in Figure 4.4, the proposed STT-CiM

memory array takes an additional input CiMType that indicates the type of compute-

in-memory operation that needs to be performed for every memory access. The CiM

decoder interprets this input and generates appropriate control signals to perform

the desired logic operation. In order to enable compute-in-memory operations, the

read peripheral circuits present in each column (sensing circuit and global reference

generation circuit in Figure 4.4) are enhanced, while the core data array remains

the same as in standard STT-MRAM. The address (row) decoder needs to enable

multiple wordlines for CiM operations. Specifically, we utilize two address decoders,
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with each decoding the corresponding input address. The corresponding outputs of

the decoders are OR-ed and connected to each wordline. This configuration allows

any of the two decoders to activate random WL locations. While the row decoder

overhead is roughly doubled, it represents a small fraction of total area and power for

configurations involving large arrays (1.8% in our evaluation). The write peripheral

circuits are unchanged, as write operations are identical to standard STT-MRAM.

We next describe enhancements to sensing and reference generation circuits to enable

CiM operations.

Sensing circuitry. Figure 4.4 shows the sensing circuit enhanced to support all the

logic operations discussed in Section 4.1.1. It consists of two sense amplifiers, a CMOS

NOR gate, three multiplexers and three additional logic gates for the ADD operation.

We note that the area and power overheads associated with these enhancements are

minimal since the sensing circuit constitutes a small fraction of the total memory

area/power. As shown in the figure, the reference currents (Irefl, Irefr) produced by

the global reference generation circuit are fed to the two sense amplifiers in order to

realize the sensing schemes discussed in Section 4.1.1. The three MUX control signals

(sel0, sel1, sel2) are generated by the CiM decoder to select the desired compute-in-

memory operation.

Reference generation. Figure 4.4 illustrates the modified reference generation

circuit used to produce the additional reference currents necessary for the proposed

sensing schemes. It includes two reference stacks, one for each of the two sense

amplifiers in the sensing circuit. Each stack consists of three bit-cells programmed

to offer resistances RP , RAP and RREF , respectively. RREF
2 represents the fixed

resistance reference MTJ used in a standard STT-MRAM to perform read operations.

The CiM decoder generates control signals (rwl0, rwl1, .... rwr1, rwr2) that enable

a subset of these bit-cells in the reference stacks, which in turn produces the desired

reference currents. Table 4.2 presents the values of these control signals so as to

achieve the required reference currents.

2RAP > RREF > RP
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Table 4.2.: STT-CIM operations control signals

Operation rwl0 rwl1 rwl2 rwr0 rwr1 rwr2 sel0 sel1 sel2

READ 1 0 0 0 0 0 1 1 x

NOT 0 0 0 1 0 0 0 1 x

AND 1 0 1 0 0 0 1 1 x

OR 1 1 0 0 0 0 1 1 x

NAND 0 0 0 1 0 1 0 1 x

NOR 0 0 0 1 1 0 0 1 x

XOR 1 1 0 1 0 1 0 0 1

ADD 1 1 0 1 0 1 0 0 0

The STT-CiM array can perform both regular memory operations and a range of

CiM operations. The normal read operation is performed by enabling a single wordline

and setting sel0, sel1, and rwl0 to logic ’1’. On the other hand, a CiM operation is

performed by enabling two wordlines and setting CiMType to the appropriate value,

which results in computing the desired function of the enabled words. The control

signal values for a read operation as well as CiM operations are shown in Table 4.2.

4.1.3 CiM operation under process-variations

The STT-CiM array suffers from the same failure mechanisms (read disturb fail-

ures, read decision failures and write failures) that are observed in standard STT-

MRAM. In this section, we compare the failure rates in STT-CiM and standard

STT-MRAM. Normal read/write operations in STT-CiM have the same failure rate

as in a standard STT-MRAM, since the read/write mechanisms are identical. How-

ever, CiM operations differ in their failure rates, since the currents that flow through

each bit-cell differ when enabling two wordlines simultaneously. In order to ana-

lyze the read disturb and read decision failures under process variations for CiM
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operations, we performed a Monte-carlo circuit-level simulation on 1 million samples

considering variations in MTJ oxide thickness (σ/µ = 2 %), transistor VT (σ/µ =

5%), and MTJ cross sectional area (σ/µ = 5%) [43]. Figure 4.5 shows the probability

density distribution of the possible currents obtained during read and CiM operations

on these 1 million samples.

CiM disturb failures. As shown in Figure 4.5, the overall current flowing through

the source line is slightly higher in case of a CiM operation as compared to a normal

read. However this increased current is divided between the two parallel paths, and

consequently the net read current flowing through each bit-cell (MTJ) is reduced.

Hence, the read disturb failure rate is lower for CiM operations than for normal read

operations.

CiM decision failures. The net current flowing through the source line (ISL) in case

of a CiM operation can have 3 possible values, i.e., IP−P , IAP−P (IP−AP ), IAP−AP .

A read decision failure occurs during a CiM operation when the current IP−P is

interpreted as IAP−P (or vice versa), or when IAP−AP is inferred as IAP−P (or vice

versa). In contrast to normal reads, CiM operations have two read margins — one

between IP−P and IAP−P and another between IAP−P and IAP−AP [Figure 4.5(b)].

Our simulation results show that the read margins for CiM operations are lower

as compared to normal reads, therefore they are more prone to decision failures.

Moreover, the read margins in CiM operations are unequal 3. Thus, we have more

failures arising due to the read margin between IP−P and IAP−P .

ECC for STT-CiM. In order to mitigate these failures in STT-MRAM, various ECC

schemes have been previously explored [43–45]. We show that ECC techniques that

provide single error correction and double error detection (SECDED) and double error

correction and triple error detection (DECTED) can be used to address the decision

failures in CiM operations as well. This is feasible because the codeword properties

for most ECC codes are retained for a CiM XOR operation. Figure 4.6 shows the

3Although resistances may be equally separated, the currents are not since they depend inversely
on resistance.
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Fig. 4.5.: Probability density distribution of ISL under process variations during read

and CiM operations in STT-CiM

codeword retention property of a CiM XOR operation using a simple Hamming code.

As shown in the figure, word1 and word2 are augmented with ECC bits (p1, p2,

p3) and stored in memory as InMemW1 and InMemW2 respectively. A CiM XOR

operation performed on these stored words (InMemW1, InMemW2) results in the

ECC codeword for word1 XOR word2, therefore the codewords are preserved for CiM

XORs. We leverage this codeword retention property of CiM XORs to detect and

correct errors in all CiM operations. This is enabled by the fact that STT-CiM always

computes bitwise XOR (CiM XOR) irrespective of the CiM operation that is being

performed.

We demonstrate the proposed error detection and correction mechanism for CiM

operations in Figure 4.7. Let us assume that data bit d1 suffers from a decision failure
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during CiM operations, as shown in the figure. As a result, the combination of logic

1 and 1 in the two bit-cells (IP−P ) is inferred as logic 1 and 0 (IAP−P ), leading to

erroneous CiM outputs. An error detection logic operating on the CiM XOR output

(Figure 4.7) detects an error in the d1 data bit. This error can be corrected directly for

a CiM XOR operation by simply flipping the erroneous bit. For other CiM operations,

we perform two conventional reads on words InMemW1 and InMemW2, and correct

the erroneous bits by recomputing them using an error detection and correction unit

(discussed in section 4.2). Note that such corrections lead to overheads, as we need

to access memory array 3 times (compared to 2 times in STT-MRAM). However,

our variation analysis shows that error corrections on CiM operations are infrequent,

leading to overall improvements.

Fig. 4.6.: Codeword retention property of CIM XOR

Fig. 4.7.: Error detection and correction for CiM operations in STT-CiM
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ECC design methodology. We use the methodology employed in [43] to determine

ECC requirements for both the baseline STT-MRAM and the proposed STT-CiM

design. The approach uses circuit level simulations to determine the bit-level error

probability, which is then used to estimate the array level yield. Moreover, the ECC

scheme is selected based on the target yield requirement. Our simulation shows that

1 bit failure probability of normal reads and CiM operations are 4.2x10−8 and 6x10−5

respectively. With these obtained bit-level failure rates and assuming a target yield of

99%, the ECC requirement for 1MB STT-MRAM is single error correction and double

error detection (SECDED), whereas for 1MB STT-CiM is three error correction and

four error detection (3EC4ED). Note that the overheads of the ECC schemes [43,

133] are fully considered and reflected in our experimental results. Moreover, our

simulation shows that the probability of CiM operations having errors is at most 0.1,

i.e., no more than 1 in 10 CiM operations will have an error. Errors on all CiM

operatons are detected by using 3EC4ED code on the XOR output. Detected errors

are directly corrected for CiM XORs using the 3EC4ED code, and by reverting to

near-memory computation for other CiM operations.

Apart from ECC schemes, STT-CiM can also leverage various reliability improve-

ment techniques proposed for STT-MRAMS [58–61]. Further, recent efforts [58, 59]

that increase the Tunneling Magneto Resistance (TMR) of the MTJ and improve

sensing margins will reduce read failure in CiM operations as well. These techniques

can be used along with ECC to cost-effectively mitigate failures in STT-CiM opera-

tions.

4.2 STT-CiM Architecture

In order to evaluate the application-level benefits of STT-CiM, we integrate it as a

scratchpad memory within the memory hierarchy of a programmable processor [132].

This section describes architectural enhancements for STT-CiM and hardware/software

optimizations to increase its efficiency.
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4.2.1 Optimizations for STT-CiM

In order to further the efficiency improvements obtained by STT-CiM, we propose

additional optimizations.

Vector CiM operations. Modern computing workloads exhibit significant data

parallelism. To further enhance the efficiency of STT-CiM for data-parallel compu-

tations, we introduce Vector Compute-in-Memory (VCiM) operations. The key idea

behind VCiM operations is to perform CiM operations on all the elements of a vector

concurrently. Figure 4.8 shows how the internal memory bandwidth (32xN bits) can

be significantly larger than the limited I/O bandwidth (32 bits) visible to the pro-

cessor. We exploit the memory’s internal bandwidth to perform vector operations (N

words wide) within STT-CiM.

Fig. 4.8.: STT-CiM supporting In-memory vector operation

Note that the data resulting from a vector operation may also be a vector, and

hence transferring it back to the processor is subject to the limited I/O bandwidth.

To address this issue, we observe that vector operatons are often followed by reduction

operations. For example, a vector dot-product involves element-wise multiplication of

two vectors followed by a summation (reduction) of the resulting vector of products
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to produce a scalar value. Based on this observation, we introduce a Reduce Unit

(RU) before the column multiplexer, as shown in Figure 4.8. The RU takes an array

of data elements as inputs and reduces it to a single data element. The RU can

support various reduction operations such as summation, Euclidean distance, L1 and

L2 norm, zero-comparision, etc., of which two are described in Table 4.3. Consider

the computation of
∑N

i=1A[i] + B[i], where arrays A and B are stored in rows i and

j respectively (shown in Figure 4.8). To compute the desired function using a VCiM

operation, we activate rows i and j simultaneously, and configure the sensing circuitry

to perform an ADD operation and the RU to perform accumulation of the resulting

output. Note that the summation would require 2N memory accesses in a conventional

memory. With scalar CiM operations, it would require N memory accesses. With the

proposed VCiM operations, only a single memory access is required.

The overheads of the RU depend on two factors: (i) the number of different

reduction operations supported, and (ii) the maximum vector length allowed (can

be between 2 to N words). To limit the overheads, we restrict our design to vector

lengths of 4 and 8.

Table 4.3.: Examples of reduction operations

Type Function

RuOut = f (IN1, IN2,...,INN)

Summation RuOut=IN1 + IN2+ .. + INN

Zero-Compare RuOut[k] = (INk == 0) ? 0 : 1

Error Detection and Correction. To enable correction of erroneous bits for CiM

operations, we introduce an Error Detection and Correction (EDC) unit that imple-

ments the 3EC4ED ECC scheme. The EDC unit checks for errors using the CiM XOR

output (recall that the XOR is evaluated along with all CiM operations) and signals

the controller (shown in Figure 4.8) upon detection of erroneous computations. Upon
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receiving this error detection signal, the controller performs the required corrective

actions.

4.2.2 Architectural Extensions for STT-CiM

To integrate STT-CiM in a programmable processor based system, we propose

the following architectural enhancements.

ISA extension. We extend the ISA of a programmable processor to support CiM

operations. To this end, we introduce a set of new instructions in the ISA (CiMXOR,

CiMNOT,CiMAND, CiMADD ...) that are used to invoke the different types of

operations that can be performed in the STT-CiM array. In a load instruction, the

requested address is sent to the memory, and the memory returns the data stored at

the addressed location. However, in the case of a CiM instruction, the processor is

required to provide addresses of two memory locations instead of a single one, and

the memory operates on the two data values to return the final output.

Format: Opcode Reg1 Reg2 Reg3

Example: CiMXOR RADDR1 RADDR2 RDEST

(4.1)

Equation 4.1 shows the format of a CiM instruction with an example. As shown,

both the addresses required to perform CiMXOR operations are provided through

registers. The format is similar to a regular arithmetic instruction that accesses two

register values, performs the computation, and stores the result back in a register.

Program transformation. To exploit the proposed CiM instructions at the application-

level, an assembly-level program transformation is performed, wherein specific se-

quences of instructions in the compiled program are mapped to suitable CiM in-

structions in the ISA. Figure 4.9 shows an example transformation where two load

instructions followed by an XOR instruction are mapped to a single CiMXOR in-

struction.
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Fig. 4.9.: Program transformation for CiMXOR

Bus and interface support. In a programmable processor based system, the pro-

cessor and the memory communicate via a system bus or on-chip network 4. This

makes it essential to analyze the impact of CiM operations on the bus and the cor-

responding bus interface. As discussed above, a CiM operation is similar to a load

instruction with the key difference that it sends two addresses to the memory. Con-

ventional system buses only allow sending a single address onto the bus via the ad-

dress channel. In order to send the second address for CiM operations, we utilize the

unused writedata channel of the system bus, which is unutilized during a CiM oper-

ation. Besides the two addresses, the processor also sends the type of CiM operation

(CIMType) that needs to be performed. Note that it may be possible to overlay the

CIMType signal onto the existing bus control signals; however, such optimizations

strongly depend on the specifics of the bus protocol being used. In our design, we

assume that 3 control bits are added to the bus to carry CIMType, and account for

the resulting overheads in our experiments.

4.2.3 Data Mapping

In order to perform a CiM instruction, the locations of its operands in memory

must satisfy certain constraints. Let us consider a memory organization consisting of

several banks where each bank is an array that contains rows and columns. In this

case, a CiM operation can be performed on two data elements only if they satisfy

4While we consider the case of a shared bus for illustration, the same enhancements can be applied
to more complex interconnect networks.
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three key criteria: (i) they are stored in the same bank, (ii) they are mapped to

different rows, and (iii) they are stored in the same set of columns.

Consequently, a suitable data placement technique is required that maximizes the

use of CiM operations. We observe that the target applications for STT-CiM have

well-defined computation patterns, facilitating such a data placement. Figure 4.10

shows three general computation patterns. We next discuss these compute patterns

and the corresponding data placement techniques.

Type I. This pattern, shown in the top row of Figure 4.10, involves element-to-

element operations (OPs) between two arrays, e.g., A and B. In order to effectively

utilize STT-CiM for this compute pattern, we utilize the array alignment technique

(shown in Figure 4.10(a)) that ensures alignment of elements A[i] and B[i] of arrays

A and B for any value of i. This enables the conversion of operation A[i] OP B[i] into

a CiM operation. An extension to this technique is the row-interleaved placement

shown in Figure 4.10(b). This technique is applicable to larger data structures that

do not fully reside in same memory bank. It ensures that the corresponding elements,

i.e., A[i] and B[i], are mapped to the same bank for any value of i, and satisfy the

alignment criteria for a CiM operation.

Type II. This pattern, shown in the middle row of Figure 4.10, involves a nested

loop in which the inner loop iteration consists of a single element of array A being

operated with several elements of array B. For this one-to-many compute pattern,

we introduce a spare row technique for data alignment. In this technique, a spare

row is reserved in each memory bank to store copies of an element of A. As shown

in Figure 4.10(c), in the kth iteration of the outer for-loop, a special write operation

is used to fill the spare rows in all banks with A[k]. This results in each element of

array B becoming aligned with a copy of A[k], thereby allowing CiM operations to

be performed on them. Note that the special write operation introduces energy and

performance overheads, but this overhead is amortized over all inner loop iterations,

and is observed to be quite insignificant in our evaluations.
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Fig. 4.10.: Data mapping for various computation patterns

Type III. In this pattern, shown in the bottom row of Figure 4.10, operations are

performed on an element drawn from a small array A and an element from a much

larger array B. The elements are selected arbitrarily, i.e., without any predictable

pattern. For example, consider when a small sequence of characters needs to be

searched within a much larger input string. For this pattern, we propose a column

replication technique to enable CiM operations, as shown in Figure 4.10(d). In this

technique, a single element of the small array A is replicated across columns to fill an

entire row. This ensures that each element of A is aligned with every element of B,

enabling a CiM operation to be utilized. Note that the initial overhead due to data

replication is very small, as it pales in comparison to the number of memory accesses

to the larger array.
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4.3 Experimental Methodology

In this section, we discuss the device-to-architecture simulation framework (Fig-

ure 4.11) and application benchmarks used to evaluate the performance and energy

benefits of STT-CiM at the array-level and system-level.

Fig. 4.11.: STT-CiM device-to-architecture evaluation framework

Fig. 4.12.: System level integration of STT-CiM

Device/Circuit modeling. We first characterize the bit-cells using SPICE-compatible

MTJ models that are based on self-consistent solution of Landau-Lifshitz-Gilbert

(LLG) magnetization dynamics and Non-Equilibrium-Green’s Function (NEGF) elec-
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Table 4.4.: Device parameters for evaluating STT-CiM

Material System Ta/CoFeB/MgO

MTJ Type PMA

Saturation Magnetization(MS) 1.58T

Damping Factor, (α) 0.028

Polarization 0.62

Interface Anisotropy 1.3mJ/m2

MTJ Dimension 40nm x 40nm x 1.32nm

Oxide Thickness (tox) 1.1nm

Energy Barrier 65KT

T 300K

RA Product 18ohm-µm2

TMR 124%

CMOS Technology 45nm Bulk CMOS

Assumed Variation (σ/µ) tox = 2%, MTJ Area = 5%

transistor VT=5%

tron transport [134]. Table 4.4 shows the MTJ device parameters [135] used in our

experiments. Using 45nm bulk CMOS technology and the MTJ models, the memory

array along with the associated peripherals and extracted parasitics was simulated in

SPICE for read, write and CiM operations to obtain array-level timing and energy

characteristics. The obtained characteristics were then used as technology parame-

ters in a modified version of CACTI [136] that is capable of estimating system-level

properties for a spin-based memory. The variation analysis to compute failure rates

was performed considering variations in MTJ oxide thickness (σ/µ = 2 %), transistor

VT (σ/µ = 5%), and MTJ cross sectional area (σ/µ = 5%).

System level simulation. We evaluated STT-CiM as a 1MB scratchpad for an

Intel Nios II processor [132]. Figure 4.12 shows the integration of STT-CiM in the
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memory hierarchy of the programmable processor. In order to expose the STT-

CiM operations to software, we extended the Nios II processor’s instruction set with

custom instructions. The Avalon on-chip bus was also extended to support CiM

operations. Cycle-accurate RTL simulation was used to obtain the execution time

and the memory access traces for various benchmarks. These traces along with the

energy results obtained through the modified CACTI tool were used to estimate the

total memory energy.

Table 4.5.: Benchmark applications for evaluating STT-CiM

Algorithm Application

Aho-Corasick (AHC) String matching

Knuth-Morris-Pratt (KMP) String matching

Edit Distance (EDIST) Text processing, Computational biology

Bit-Blit (BLIT) Low-level graphics

Longest Common Subsequence (LCS) Data compression, Bio-informatics

Rivest Cipher 4 (RC4) Cryptography

K-means clustering (IMGSEG) Image segmentation

GLVQ Eye detection

K-means clustering (KMEANS) Digit recognition

K-nearest neighbors (OCR) Optical character recognition

Multi Layer Perceptron (MLP) Protein structure classification

Support Vector Machines (SVM) Text classification

Benchmark applications. We evaluate STT-CiM on a suite of twelve algorithms

drawn from various applications (Table 4.5).

4.4 Results

In this section, we first present an array-level analysis of STT-CiM and then quantify

its benefits through system-level energy and performance evaluation.
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4.4.1 Array-level analysis

Fig. 4.13.: Array-level energy evaluation of STT-CiM

Energy. The second and third bars in Figure 4.13 show the energy consumed by a

standard read operation and a representative CiM operation (CiMXOR) in a 1MB

STT-CiM array. Each bar shows the energy breakdown into the major components,

i.e., peripheral circuitry (PeriphCkt), wordline (WordL), bitline (BitL), reference

generation circuitry (REF), sense amplifier (SenseA), and error correction circuitry

(ECC). For comparison, we provide the read energy for an STT-MRAM array of the

same capacity (first bar in Figure 4.13) and all energy numbers are normalized to

this value. A normal read operation in STT-CiM incurs an energy overhead of about

4.4%, which arises primarily due to the extra peripheral circuits (PeriphCkt) and

stronger ECC. STT-CiM uses a 3EC4ED ECC scheme (as compared to SECDED in

the baseline STT-MRAM), which accounts for about 3% of the 4.4% energy over-

head. The CiMXOR operation consumes higher energy than a standard read oper-

ation mainly due to the charging of multiple wordlines and a slightly higher source

line current. However, since a CiM operation replaces two normal read operations,

we also present the energy required for two reads in a standard STT-MRAM (last

bar in Figure 4.13). Note that an array-level comparison greatly understates the ben-

efits of STT-CiM, since it does not consider the system-level impact of reduced data
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transfers between the processor and memory (system-level evaluation is presented in

the next subsection). Nevertheless, it is worth noting that even at the array level,

STT-CiM consumes 34.2% less energy than STT-MRAM. The benefits mainly arise

from a lower bitline dynamic energy (BitL), since only a single access to the memory

array is required for STT-CiM.

Fig. 4.14.: Array-level area evaluation of STT-CiM

Area and access time. Figure 4.14 shows the area breakdown for two STT-CiM de-

signs that support vector operations of length 4 (VEC4) and 8 (VEC8). As compared

to the STT-MRAM baseline, the area overheads for VEC4 and VEC8 are 14.2% and

16.6%, respectively. As shown in Figure 4.14, Peripheral circuits, ECC storage and

ECC Logic are the causes of area overheads (5%, 3.6% and 3.2% respectively). Pe-

ripheral circuits include the enhanced address decoder (1.8%), sense amplifier (0.9%),

and reduce unit (2.3%). Note that the total area is still dominated by the core array,

which remains unchanged. Finally, the access time overhead for STT-CiM was found

to be only ∼0.8%, because the wordline and bitline delays dominate the total memory

access latency.
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4.4.2 Application-level memory energy

We next present the system level memory energy benefits of using STT-CiM in

the programmable processor based system described in Figure 4.12. We evaluated

the total memory energy consumed by STT-CiM across the application benchmarks,

and compared it with a baseline design that uses standard STT-MRAM. Figure 4.15

shows the breakdown of different energy components, viz. Read, Write and CiM, that

contribute to the overall memory energy in both the STT-MRAM and proposed STT-

CiM designs. In addition, it also shows the energy overheads due to near memory

corrections (NMCorrections) on failing CiM operations. The total memory energy for

an application is normalized to the memory energy consumed by the baseline design.

For the proposed STT-CiM design, we evaluated a version without vector operations

(STT-CiM), and two versions with vector lengths of 4 and 8 (STT-CiM+VEC4 and

STT-CiM+VEC8, respectively). Across all benchmarks, we observe 1.26x, 2.77x

and 3.83x average improvement in energy for STT-CiM, STT-CiM+VEC4 and STT-

CiM+VEC8, respectively.

Fig. 4.15.: Improvement in application-level memory energy using STT-CiM
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To provide further insights into the energy benefits, Figure 4.16 presents a break-

down for memory accesses made by each application into 3 categories — writes, reads

that cannot be converted into CiM operations (CiM non-convertible reads or CNC-

Reads), and CiM convertible reads (CC-Reads). We see that applications where CC-

Reads dominate the total memory accesses (KMP, BLIT, GLVQ, KMEANS, OCR,

IMGSEG, MLP, SVM in Figure 4.16) experience higher energy benefits from STT-

CiM (Figure 4.15). Among these applications, those that benefit from vectorization

achieve the highest savings (GLVQ, KMEANS, OCR, MLP, SVM). Applications with

relatively fewer CC-Reads or more frequent writes (AHC, LCS, RC4, EDIST) exhibit

relatively lower energy savings. CNC-Reads and writes are not benefited by STT-

CiM, and writes in particular consume significantly (∼3x) higher energy than reads.

The energy overheads due to additional writes incurred for data alignment in Type

II and Type III compute patterns was observed to be 0.8% and 0.3%, respectively.

Fig. 4.16.: Memory access breakdown of applications used in evaluation of STT-CiM
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Fig. 4.17.: Improvement in application-level system performance using STT-CiM

4.4.3 System-level performance

Figure 4.17 shows the speedup for the Nios II processor system integrated with

STT-CiM across various applications. The speedup shown in the figure is with re-

spect to the baseline design, i.e., the processor system integrated with a standard

STT-MRAM based memory. As discussed in Section 4.2.2, CiM lowers the total

number of memory accesses as well as the number of instructions executed, which

leads to performance benefits at the system level. Overall, for STT-CiM without

vector operations, we observe performance benefits ranging from 1.07X to 1.36X.

With vector operations, the average speedup increased to 3.25x and 3.93x for vector

lengths of 4 and 8, respectively. Comparing Figures 4.16 and 4.17, we see that the

factors that indicate higher energy savings for an application (large fraction of mem-

ory accesses are CC-Reads, opportunities for vectorization exist) are also predictive

of higher performance improvements.

In order to demonstrate the performance sensitivity to memory latency, we vary

the memory latency and evaluate the execution time for each application. Figure 4.18

shows the results of this sensitivity analysis. On the Y-axis, we have the speedup of

STT-CiM over STT-MRAM, and on the X-axis the memory latency. We observe
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that STT-CiM yields higher performance benefits at higher memory latency. This is

attributed to the fact that the reduced number of memory accesses for STT-CiM has

a larger impact on system performance. On an average, we achieve 1.13x speedup for

a memory latency of 1 cycle, and 1.26x speedup for a memory latency of 16 cycles,

thereby illustrating the effectiveness of the proposed approach.

Fig. 4.18.: STT-CiM performance sensitivity to memory latency

4.5 Summary

STT-MRAM is a promising candidate for future on-chip memories. In this work,

we proposed STT-CiM, an enhanced STT-MRAM that can perform a range of arith-

metic, logic and vector compute-in-memory operations. We addressed a key chal-

lenge associated with these in-memory operations, i.e. reliable computation under

process variations. We utilized the proposed design (STT-CiM) as a scratchpad in

the memory hierarchy of a programmable processor, and introduced ISA extensions

and on-chip bus enhancements to support in-memory computations. We proposed

architectural optimizations and data mapping techniques to enhance the efficiency of
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STT-CiM. A device-to-architecture simulation framework was used to evaluate the

benefits of STT-CiM. Our experiments indicate that STT-CiM achieves substantial

improvements in energy and performance, and shows considerable promise in allevi-

ating the processor-memory gap.
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5. FRAMEWORK FOR EVALUATING DEEP NEURAL

NETWORKS ON RESISTIVE CROSSBARS

Deep neural networks are the state-of-the-art in many machine learning tasks, as

discussed in chapter 1. However, the large and rapidly growing computation require-

ments of DNNs pose severe challenges to performance and energy efficiency in the

systems on which they are deployed. Resistive crossbar based systems are promising

due to their ability to compactly and efficiently realize vector-matrix multiplications,

the underlying computational kernels in DNNs. However, in practice, the function-

ality of resistive crossbar deviate considerably from the ideal abstraction due to the

device and circuit-level non-idealities, as discussed in chapter 1. Therefore, it is es-

sential to evaluate the impact of non-idealities in resistive crossbars on the overall

application-level accuracy of the realized workloads.

Most previous efforts on resistive crossbar based DNN implementations either do

not consider non-idealities or model non-idealities in a very limited manner (e.g.,

as limited precision). Moreover, they focus their analysis on simple networks and

datasets (e.g., MNIST). Thus, they leave open the question of how non-idealities

impact the accuracy of large-scale neural networks realized on resistive crossbars.

State-of-the-art DNNs often contain tens to hundreds of layers, millions of neurons

and billions of synaptic connections. Evaluating such networks requires a fast and

scalable, yet accurate simulation framework for resistive crossbars that can be inte-

grated into state-of-the-art DNN software frameworks. Unfortunately, such a frame-

work is currently unavailable. Device and circuit simulation (SPICE) models of resis-

tive crossbars are accurate but extremely slow and infeasible for large-scale network

evaluation. Architectural models of resistive crossbars [79,80,124] target design space

exploration and use highly simplified error models that are reasonable for their con-

text, but inadequate for evaluating application-level accuracy of DNNs. For example,
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these models do not consider error dependence on the crossbar inputs, programmed

conductances, and the crossbar column performing the computation. In this work, we

address the need for a fast and accurate simulation framework to enable functional

evaluation of large-scale DNNs on resistive crossbars.

We first study the impact of crossbar non-idealities to characterize errors in the

realized vector-matrix multiplications. We observe the errors to show significant data

dependence and hardware-instance dependence (due to variations), motivating the

need for a detailed crossbar model. Next, we propose a Fast Crossbar Model (FCM)

that can accurately capture the impact of crossbar non-idealities. FCM abstracts non-

idealities using simple linear algebra operations to achieve orders-of-magnitude faster

simulation compared to SPICE. We realize FCM using the well-known BLAS (Basic

Linear Algebra Subprograms) library and develop RxNN, a software framework to

evaluate DNNs realized on resistive crossbar systems. We use RxNN (which is based

on the popular Caffe [91] deep learning framework) to evaluate six large-scale DNNs

for classifying the ImageNet [131] dataset and three simple networks for classifying

CIFAR-10 and MNIST datasets. Our evaluation reveals that crossbar non-idealities

do not impact accuracy significantly for such small/simple networks. However, our

results on large networks tell a very different story, wherein non-idealities result in

significant accuracy loss for large-scale DNNs on resistive crossbar systems, motivating

the need for further research in cross-layer mitigation and compensation techniques.

One of the key contributions of this chapter is to also draw attention to the challenges

of crossbar non-idealities that become significant as we move from the small networks

(LeNet and ConvNet) to larger DNNs (ResNet, etc.).

In summary, the key contributions of this work are:

• We study the cumulative effect of all crossbar non-idealities to characterize

errors in the realized vector-matrix multiplications. We find the errors to show

significant data and hardware-instance dependence that should be considered

for accurately modeling vector-matrix multiplications in crossbars.
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• We propose FCM, a fast and accurate functional crossbar model to capture the

effects of crossbar non-idealities.

• We develop RxNN a software framework that can evaluate large-scale DNNs

on resistive crossbar systems and help re-train to compensate for the effects of

non-idealities.

• We evaluate the application-level accuracy of 6 state-of-the-art DNNs, viz.

ResNet-50, VGG-16, GoogleNet, AlexNet, OverFeat, and NiN on a resistive

crossbar based system. Our evaluation reveals that the degradation in accu-

racy due to non-idealities can be significant (9.6%-32%) for large-scale DNNs.

This degradation can be partially alleviated by re-training, but calls for further

research in compensation techniques.

The rest of the chapter is organized as follows. Section 5.1 discusses crossbar

non-idealities and demonstrates their impact on vector-matrix multiplications realized

using crossbars. Section 5.2 describes the proposed FCM models. Section 5.3 presents

the RxNN software framework. Section 5.4 details the experimental methodology.

Experimental results are presented in section 5.5. Section 5.6 concludes the chapter.

5.1 Crossbar Non-Idealities

In this section, we analyze non-idealities in resistive crossbars and examine their

impact on vector-matrix multiplications.

5.1.1 Crossbar Non-idealities

To illustrate the device and circuit level non-idealities in resistive crossbars, we

present the equivalent resistive circuit for the crossbar array and the peripherals

(DAC and ADC) in Figure 5.1. The key sources of non-idealities are wire resistances

of the crossbar interconnects, sensing resistances of the circuits that sense the out-

put currents, driver resistances of the circuits that drive the crossbar rows, sneak
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paths, variance in synaptic conductance due to process variations, device-level noise,

and imperfect programming, and non-ideal DACs. While we consider all these non-

idealities in subsequent sections, we select the non-idealities due to DACs and sneak

paths for a more detailed treatment below, in order to illustrate the complexity of

error modeling.

Fig. 5.1.: Crossbar non-idealities overview

Non-ideal DAC. Figure 5.1 shows the equivalent circuit for a DAC that is repre-

sented using a resistive divider circuit with an input determined resistance (RDAC)

and a fixed resistance (RPD). An applied digital input determines the value of RDAC

and subsequently decides the DAC’s output voltage (DACout). Note that, DACout

also depends on the effective resistive load (RLoad), leading to deviations from the ideal

value. RLoad is a function of the synaptic conductances within the crossbar array and

therefore varies with the crossbar state (the values of all synaptic conductances). The

equation in Figure 5.2(a) shows the error incurred due to DAC non-idealities which
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is a function of both applied inputs (RDAC) and synaptic conductances (RLoad). Fig-

ure 5.2(a) also illustrates errors’ dependence on the applied inputs. The plot shows

the outputs of the non-ideal DAC (Non-ideal DACOUT ) for two load resistances 3.2kΩ

and 32kΩ, respectively. As evident, the voltage plots of the two RLoad differ with the

applied inputs.

Fig. 5.2.: Example of non-idealities in resistive crossbar: (a) Non-ideal DAC, (b)

Sneak paths

Sneak paths during vector-matrix multiplication. Ideally, currents in resistive

crossbars would be expected to flow from left to right along the rows and from top

to bottom through the columns. However, due to the non-idealities described above

(specifically, wire resistances), internal node voltages within the crossbar may vary,

resulting in additional current paths, which we refer to as sneak paths. Figure 5.2(b)

illustrates sneaks paths during vector-matrix multiplications for a 3x2 crossbar array.

We consider a crossbar state with all synaptic devices programmed to 20KΩ, and the

applied input voltages at the rows are 0.2V, 0.01V and 0.2V, respectively. For this

crossbar state, we observe that the direction of current between nodes a22 and b22

is flipped, i.e., the current flows from b22 towards the input (Vin2), instead of the

expected direction. Sneak paths are a function of both the crossbar state and the
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applied inputs, and therefore further contribute to the overall dynamism in errors due

to non-idealities.

5.1.2 Errors due to Non-Idealities

Next, we study the impact of non-idealities on the computational accuracy of the

vector-matrix multiplication realized using resistive crossbars. To this end, we com-

pare the outputs of vector-matrix multiplications obtained from HSPICE simulations

of non-ideal crossbar arrays with the ideal computations (Equation 3.1) and analyze

the errors’ sensitivity to various parameters.

Fig. 5.3.: Crossbar non-idealities: (a)-(b) Sensitivity to crossbar dimension with all

synaptic conductances programmed to GMIN and GMAX , respectively, (c)-(d)

Sensitivity to synaptic conductances and applied inputs, (e) Sensitivity to process

variation and imperfect programming

Sensitivity to crossbar size. We first examine how the errors incurred due to the

individual non-idealities (WIRE, SENSE), combinations of non-idealities (DAC+DRIVER,



61

WIRE+SENSE), and due to the cumulative effect of all non-idealities (ALL) vary with

the crossbar dimension. Figures 5.3(a) and 5.3(b) show the errors incurred during the

vector-matrix multiplication realized using crossbars, with all synaptic conductances

programmed to GMIN and GMAX , respectively. In both graphs, the Y-axis represents

the error in the last (N th) column of an NxN crossbar, and the X-axis represents

the crossbar dimension (N). In both cases, we observe that the overall errors due to

all non-idealities (ALL), as well as due to individual non-idealities, increase with the

crossbar dimension. This is expected because: (i) the overall wire resistances increase

with crossbar array size, (ii) the sensing resistance contribution to the overall bitline

resistance increases, and (iii) the DAC non-ideality increases due to a decrease in the

effective load resistance 1. Further, we also observe that for smaller crossbars, the

non-ideality due to DAC is predominant, whereas, for larger crossbars, the wire and

sensing resistance effect becomes equally significant.

Sensitivity to crossbar state. Next, we characterize errors’ dependence on the

crossbar state, i.e., the conductances of all synaptic devices. To this end, we fix the

inputs to a 64x64 crossbar array and vary the conductances of the synaptic devices to

obtain different crossbar states. Figure 5.3(c) shows the maximum (MAX), minimum

(MIN), and average (AVG) errors across columns of the crossbar over 1000 random

crossbar states. We observe that the errors show significant dynamism across these

states. In Figure 5.3(c), we also plot the errors for a sample crossbar state (Sample-

Run) to demonstrate the irregular pattern shown by them across crossbar columns.

Moreover, this irregular pattern deviates notably from the patterns observed for MAX,

MIN, and AVG errors.

Sensitivity to crossbar inputs. To analyze the errors’ dependence on the applied

inputs, we fixed the conductances of all synaptic devices and varied the inputs. Fig-

ure 5.3(d) shows the variations in errors across inputs. We observe that the variance

across inputs (MAX and MIN) for a particular column is noticeable, but small in

1Higher crossbar dimensions have more columns leading to increase in parallel paths, consequently
lowering the effective load resistance
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comparison to the variance across crossbar states. However, errors’ variance across

columns is significant.

Sensitivity to crossbar columns. Figures 5.3(c-d) depicts how errors vary across

crossbar columns. While there is a slight trend of increase in error as we go from the

first to the last column, it is not always the last column that incurs the maximum

error. Rather any column can incur the maximum error depending on the crossbar

states and the applied inputs.

Sensitivity to process variation and imperfect programming. Finally, we

also evaluate the impact of variations by performing Monte-Carlo simulation on a

sample set of 10,000 crossbar states obtained by considering variations in synaptic

conductances (σ/µ = 10%) [137]. Figure 5.3(e) shows the maximum, minimum, and

average error observed on a 64x64 crossbar array across these samples. The varia-

tions in synaptic conductances can occur due to two prominent reasons: (i) Process

variations and (ii) Imperfect programming, i.e., errors during write operations.

In summary, the non-idealities in resistive crossbars can have a significant impact

on the computations that they perform, and that the errors due to non-idealities

are highly dependent on various factors, including the conductances, applied inputs,

crossbar column and hardware-instance performing the computation. In order to ac-

curately capture the impact of non-idealities on application-level accuracy, a crossbar

model should consider these factors.

5.2 Crossbar Modeling

In this section, we present a Fast Crossbar Model (FCM) that accurately cap-

tures the impact of non-idealities on the vector-matrix multiplications realized using

resistive crossbars.
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Fig. 5.4.: FCM: Overview

5.2.1 FCM Overview

Figure 5.4 overviews the proposed fast crossbar model that consists of two phases:

(i) Model generation and (ii) Model evaluation. Model generation is a design time

phase that is performed only once for a DNN, whereas model evaluation is a runtime

phase that is invoked to evaluate each inference operation using the DNN. The key

idea behind FCM is to first abstract non-idealities using the crossbar model generator

to transform a weight matrix (W) into a non-ideal conductance matrix (Gnon−ideal).
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Subsequently, using the generated Gnon−ideal matrix and non-linear peripheral (ADC

and DAC) models, FCM emulates the non-ideal vector matrix multiplications on

resistive crossbars. We discuss these steps of FCM in detail below.

Fig. 5.5.: Crossbar model generator: Details

Crossbar model generator. FCM uses a crossbar model generator to abstract

the hardware instance, the synaptic device and the interconnect specific crossbar

non-idealities arising due to the process variation, the non-linear synaptic conduc-

tance characteristics, the sensing resistance, and the wire resistances. The model

generator takes crossbar parameters and a weight matrix (W) as inputs and gener-

ates a non-ideal conductance matrix (Gnon−ideal) as the output. Using a three-step

transformation mechanism (listed in Figure 5.4), it converts W to Gnon−ideal based
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Fig. 5.6.: Abstracting synaptic device non-idealities

on crossbar parameters including synaptic device characteristics (Gmin, Gmax, pre-

cision), interconnect (RSense, rrow, rcol), and circuit (crossbar size) parameters, and

the chip variation profile. Figure 7.10 illustrates the model generation process using

an example, where we consider the mapping of a PxQ weight matrix to crossbars

of size MxN. In step 1, the model generator slices the matrix W into fragments and

maps them to multiple crossbar instances. The fragment size is same as the cross-

bar dimension and to achieve this for all fragments the corners of the matrix W are

zero padded (if required). Note that, we need t=ceil(P/M)*ceil(Q/N) crossbar in-

stances, ‘P mod M’ zero-padded rows, and ‘Q mod N’ zero-padded columns. Next,

in step 2, weights are converted from floating-point (FP) values to conductances (G)

considering device conductance characteristics, parameters (Gmin, Gmax, precision),

and the variation profile. We support synaptic devices with both linear [64,138] and

non-linear [73, 120] conductance characteristics, either using equations (if available)

or lookup tables. We sample the variation profile to obtain a unique variation factor
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(VF) for each synaptic element within and across crossbar instances. At the end of

step 2, we obtain a conductance matrix (Gi) for each crossbar instance. Figure 5.6

details the step 2 of the crossbar model generator. Finally, in step 3, the generator ab-

stracts interconnect non-idealities (Rsense, rcol, rrow) and transforms the conductance

matrices (Gi) to the corresponding non-ideal conductance matrices (Gnon−ideal−i).

Subsequently, these non-ideal conductance matrices (Gnon−ideal−i) are merged to ob-

tain one Gnon−ideal matrix. The transformation of Gi to Gnon−ideal−i is exact, and we

provide the mathematical proof in Section 5.2.2.

Peripheral (ADC & DAC) models. Figure 5.4 details the ADC and DAC mod-

els used by FCM to incorporate ADC and DAC non-idealities. The DAC model is

composed of a resistive divider circuit with a digital input (Inp) dependent resistance

(RDAC) and a fixed resistance (RPD). The resistive divider is connected to a variable

effective load conductance (GLoad) whose value is dependent on the crossbar state

(synaptic conductances). FCM uses the equation shown in Figure 5.4 to compute the

non-ideal input voltages (Vin−non−ideal). In the shown equation, RDAC is determined

using the digital inputs (Inp), and GLoad is computed using the Gnon−ideal matrix.

We note that Vin−non−ideal captures the data-dependence of the errors arising due to

non-ideal DAC as RDAC and GLoad are dependent on the applied inputs and the cross-

bar state, respectively. Using matrices Gnon−ideal and Vin−non−ideal, FCM computes

the non-ideal vector-matrix multiplication realized in crossbars to obtain non-ideal

output currents (Iout−non−ideal). The ADC model shown in Figure 5.4 is then used to

convert the Iout−non−ideal to digital outputs (Out). Note that, FCM utilizes lookup

tables to model non-linear functions.

FCM abstracts both device and circuit non-idealities into fast models that achieve

several orders-of-magnitude speed-up over SPICE, without compromising on the mod-

eling accuracy (which is within 0.28% of HSPICE). We note that achieving such

simulation speed is not possible without some abstraction, and FCM provides a good

tradeoff between fidelity vs. simulation speed (detailed in section 5.5.1). FCM realizes
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algebraic operations using well-optimized BLAS (Basic Linear Algebra Subprograms)

routines to further improve the simulation speed.

Fig. 5.7.: Equivalent resistance circuit of MxN crossbar array

5.2.2 Abstraction of interconnect non-idealities

In this section, we provide the mathematical formulation for the abstraction of

interconnect non-idealities (Step 3 of crossbar model generation). We recall that

in this step the generator abstracts interconnect non-idealities (Rsense, rcol, rrow)

and transform the conductance matrix (Gi) associated with the ith crossbar instance

to the corresponding non-ideal conductance matrix (Gnon−ideal−i). We achieve this

transformation by leveraging circuit laws (Kirchhoff’s loop laws and Ohm’s law) and

linear algebraic operations (direct sum, row switching, vector concatenation, row

reduction, etc.).
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We now explain the formulation using Figure 5.7 that shows the equivalent resis-

tive circuit of an MxN crossbar array. V ini represents the input voltage at the ith

row of the crossbar, V ai,j denotes the voltage at the node ai,j, and Vi,j is the voltage

difference between the node ai,j and the node bi,j. Gi,j is the conductance of the

synaptic device at the ith row and the jth column. Rsense, rrow, and rcol depict the

sensing and distributed wire resistances, respectively, and Ioutj indicates the out-

put current of the jth column. In figure 5.7, we refer vertical and horizontal slices

of the crossbar array as Column Linear Systems (LSCols) and Row Linear Systems

(LSRows), respectively. To demonstrate the formulation of Gnon−ideal, we employ 6

major steps involving Equations 5.1 to 5.13. We next describe these steps in turn

below.

Step 1: Formulate column linear systems. We first formulate column linear

systems (LSCol1 to LSColN) using each vertical slice of the crossbar, shown in Fig-

ure 5.7. Let us consider the jth vertical slice corresponding to the LSColj system

(Equations 5.1 to 5.3). Using Kirchhoff’s Current Law (KCL) at all nodes bi,j present

in the jth column, we obtain Equations 5.1 and 5.2. Equations 5.1 and 5.2 are then

combined to obtain the linear system in Equation 5.3. In the case of an MxN crossbar,

we have N such linear systems (LSCol1 to LSColN).

Aj ∗Vcolj = VAcolj − J ∗ Ioutj (5.1)

Ioutj =
x=M∑
x=1

Gx,jVx,j (5.2)

(Aj + J ∗Kj)Vcolj = VAcolj (5.3)
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where,

Aj =



−1 G2,jrcol 2 ∗G3,jrcol . . . (M − 1) ∗GM,jrcol

0 −1 G3,jrcol . . . (M − 2) ∗GM,jrcol

0 0 −1 . . . (M − 3) ∗GM,jrcol
...

...
...

. . .
...

0 0 0 . . . −1


,

Vcolj =


V1,j

V2,j
...

VM,j

 ,VAcolj =


V a1,j

V a2,j
...

V aM,j

 ,J =


Rsense + (M − 1) ∗ rcol
Rsense + (M − 2) ∗ rcol

...

Rsense


Kj =

[
G1,j G2,j . . . GM,j

]
Step 2: Merge column linear systems. Next, the column linear systems (LSCol1

to LSColN) are merged to form a larger Column Linear System (merged-LSCol) as

shown in Equation 5.4 and 5.5. We achieve this by using the direct sum (⊕) matrix

operation on matrices (Aj + J*Kj) and Kj to obtain block matrices COLmat and

Gmat, respectively. In Equation 5.4, CVcol and CVAcol are vectors formed by

concatenating Vcolj and VAcolj vectors, respectively. Note that, the vectors Vcolj

and VAcolj are obtained in Step 1 (Equations 5.1 and 5.3). Further, Ioutnon-ideal in

Equation 5.5 is a vector representing the output currents.

COLmat ∗CVcol = CVAcol (5.4)

Gmat ∗CVcol = (Ioutnon-ideal)
T (5.5)
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where,

COLmat = ⊕
j∈1,2,..,N

(Aj + J ∗Kj)

Gmat = ⊕
j∈1,2,..,N

(Kj)

Ioutnon-ideal =
[
Iout1 Iout2 . . . IoutN

]
CVcol =

[
VcolT1 VcolT2 . . . VcolTN

]T
CVAcol =

[
VAcolT1 VAcolT2 . . . VAcolTN

]T
Step 3: Formulate row linear systems. Similar to Step 1, the row linear systems

(LSrow1 to LSrowM) are formulated considering horizontal slices of the crossbar.

We use KCL at nodes ai,j present in the ith horizontal slice to obtain Equation 5.6

which represents the LSrowj system. In case of an MxN crossbar, we have M such

row linear systems (LSrow1 to LSrowM).

Bi ∗Vrowi = VrowINi −VARowi (5.6)

where,

Bi =



Gi,1 Gi,2 Gi,3 . . . Gi,N

Gi,1 Gi,2 ∗ 2 Gi,3 ∗ 2 . . . Gi,N ∗ 2

Gi,1 Gi,2 ∗ 2 Gi,3 ∗ 3 . . . Gi,N ∗ 3
...

...
...

. . .
...

Gi,1 Gi,2 ∗ 2 Gi,3 ∗ 3 . . . Gi,N ∗N


∗ rrow,

Vrowi =


Vi,1

Vi,2
...

Vi,N

 ,VArowi =


V ai,1

V ai,2
...

V ai,N

 ,VrowINi =


V ini

V ini
...

V ini


Step 4: Merge row linear systems. Next, the row linear systems obtained in

Step 3 are merged to obtain a larger Row Linear System (merged-LSrow) as shown in

Equation 5.7. ROWmat is a block matrix obtained by performing the direct sum (⊕)

matrix operation on the matrix (Bi). Moreover, CVrowIN, CVrow, and CVArow
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are vectors formed by concatenating vectors (obtained in Step 3) VrowINi, VArowi,

and Vrowi, respectively.

CVrowIN−ROWmat ∗CVrow = CVArow (5.7)

where,

ROWmat = ⊕
i∈1,2,..,M

(Bi)

CVrow =
[
VrowT

1 VrowT
2 . . . VrowT

N

]T
CVArow =

[
VArowT

1 VArowT
2 . . . VArowT

N

]T
CVrowIN =

[
VrowINT

1 VrowINT
2 . . . VrowINT

N

]T
Step 5: Eliminate internal variables. Next, the vectors CVAcol and CVcol

comprising of internal variables V ai,j and Vi,j, respectively, are eliminated. In order

to eliminate these variables, we use the merged-LScol and merged-LSrow systems ob-

tained in Step 2 and 4, respectively. However, the merged-LScol and merged-LSrow

equations cannot be used directly due to the mismatch in their Right-Hand Sides

(RHS) (CVAcol 6= CVArow). We resolve this mismatch by performing elementary

row operations on Equation 5.7 to obtain Equation 5.8. Note that, the CVrowINA

vector and the ROWmatA matrix are obtained by performing row switching, i.e., an

elementary row operation, on the CVrowIN vector and the ROWmat matrix, re-

spectively. Next, the CVAcol vector is eliminated using Equations 5.4 and 5.8 to ob-

tain Equation 5.9. Subsequently, the CVcol vector is eliminated using Equations 5.5

and 5.9 to yield Equation 5.10. Note that, Equation 5.11 details the NETmat matrix

introduced in Equation 5.10.

CVrowINA−ROWmatA ∗CVcol = CVAcol (5.8)

(COLmat + ROWmatA) ∗CVcol = CVrowINA (5.9)

(Ioutnon-ideal)
T = NETmat ∗CVrowINA (5.10)
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NETmat = Gmat ∗ (COLmat + ROWmatA)−1 (5.11)

Step 6: Reduce matrix dimension. Finally, we reduce the size of matrices NET-

mat and CVrowINA by leveraging a key property of the CVrowINA vector, i.e.,

it contains repeated elements. Recall that, the CVrowIN vector is formed by con-

catenating the VrowINi vectors (Step 4), and the CVrowINA vector is obtained by

performing row switching operations on the CVrowIN vector. Since the VrowINi

vector (Step 3) has repeated elements, consequently, the vectors CVrowIN and

CVrowINA also have repeated elements. Exploiting this property, the columns

of the NETmat matrix that are to be multiplied by same elements in CVrowINA

can be summed using elementary column operations to yield a compressed NET-

matC matrix (shown in Equation 5.12). Moreover, removing redundancies in vector

CVrowINA leads to the Vinnon-ideal
T vector. Further, Equation 5.12 can be re-

written as Equation 5.13 to obtain the Gnon-ideal matrix. Note that, Gnon-ideal is

a function of (G, Rsense, rcol, and rrow), and therefore can be constructed using the

intermediate matrices COLmat, ROWmat, and Gmat.

(Ioutnon-ideal)
T = NETmatC ∗ (Vinnon-ideal)

T (5.12)

Ioutnon-ideal = Vinnon-ideal ∗Gnon-ideal (5.13)

where,

Vinnon-ideal =
[
V in1 V in2 . . . V inM

]
Gnon-ideal = NETmatCT = f(G, Rsense, rrow, Rcol)

5.3 RxNN Framework

In this section, we present a software framework RxNN that enables evaluation of

large-scale DNNs on resistive crossbar systems. RxNN is a functional simulator ob-

tained by modifying a popular deep learning framework, i.e., Caffe [91], to mimic
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non-ideal vector-matrix multiplications realized on resistive crossbars. Caffe models

the convolution and fully-connected layers of DNNs as matrix-matrix and vector-

matrix multiplications. RxNN maps these matrix-matrix and vector-matrix multi-

plications to a resistive crossbar system and evaluates application-level accuracy of

DNN inference operations. It takes the network description, resistive crossbar system

description, crossbar parameters, and a trained model as inputs, and computes the

DNN accuracy using the embedded FCM models. RxNN’s primary objective is to

evaluate the application-level accuracy of DNNs, however, it is also capable of gen-

erating execution traces to enable performance and energy estimation. RxNN is also

capable of re-training DNN to improve their inference accuracy.

Fig. 5.8.: RxNN Overview

Figure 5.8 depicts the RxNN flow that consists of 3 steps. In step 1 , RxNN maps

the neural network to the specified target architecture. The weights are read from

the trained Caffe model and virtually programmed into the crossbar array instances.

Subsequently, the conductance matrices (G) corresponding to each resistive crossbar

instance are generated, which are then transformed into the non-ideal conductance
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matrices (Gnon−ideal) by abstracting crossbar non-idealities. Next, in step 2 , the

Gnon−ideal matrices associated with each convolution and fully-connected DNN layers

are incorporated back into the Caffe’s original weight data structure. RxNN transpar-

ently utilizes Caffe’s underlying data structures and optimized BLAS libraries, which

is key to its performance and scalability. We note that steps 1 - 2 are performed

only once for a given DNN and architecture template. Thereafter, in step 3 , RxNN

evaluates the DNN for the given set of test inputs using embedded Gnon−ideal matrices

and peripheral (ADC and DAC) models. During network evaluation, the DAC/ADC

models are invoked as pre- and post-processing steps on the inputs/outputs of each

convolutional and fully-connected layer.

Next, we describe re-training with RxNN to improve inference accuracy of DNN on

resistive crossbar systems. The major challenges that arise during DNN re-training for

crossbar systems are: (i) the data-structures (inputs, outputs, weights) should abide

by the range and resolution constraints at all times, and (ii) errors and gradients

computed during back-propagation should be appropriately scaled to ensure network

convergence2. RxNN meets these constraints by using a crossbar abstracted forward

pass and a floating-point based backward pass. It appropriately converts and scales

the data-structures between abstractions to ensure that the network re-trains with

minimal impact on the overall training speed, which is extremely critical in the context

of large-scale DNNs.

5.4 Experimental Methodology

In this section, we provide the experimental setup for evaluating FCM and the

software framework RxNN.

Device/Circuit simulation. We use an in-house device model of the synaptic

element [64] that is based on the solution of Landau-Lifshitz-Gilbert (LLG) magneti-

2Stochastic-gradient descent solver assumes the forward and backward passes to be contiguous and
differentiable. However, crossbar abstraction of vector-matrix multiplication does not ensure these
conditions.
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zation dynamics and Non-Equilibrium-Green’s Function (NEGF) electron transport.

Circuit-level simulations are performed in HSPICE using the 45nm bulk CMOS tech-

nology and the synaptic device model. Our simulations use the ADC and DAC

circuits proposed in [27, 139]. The interconnect parasitics (rrow, rcol) are extracted

using the device and crossbar array layouts. Figure 5.9 shows these layouts that are

performed using the design rules specified in [140]. The Table 5.1 details the device,

technology [141], and variation parameters [137] assumed in our experiments. We

also characterize a resistive crossbar array to compute energy at the crossbar-level

which is used as a technology parameter in RxNN to estimate system-level energy

consumption.

Table 5.1.: Device and Technology parameters for evaluating RxNN

Components Values

Synaptic Device Precision = 6bits, Length = 1280 nm

Width = 40nm, tox = 2.12 nm

Rmin = 200KΩ, Rmax = 1.4MΩ

Wire Technology Resistance = 3.3 Ω/µm, Capacitance = 0.2 fF/µm

Assumed Variation (σ/µ) Synaptic Conductance = 5%

CMOS Technology 45nm Bulk CMOS

ADC/DAC Precision = 6 bits

Extracted Parasitic rrow = 1Ω, crow = 0.05fF

rcol = 4.6Ω, ccol = 0.3fF

Application-Level simulation. We evaluated the application-level accuracy and

energy of several popular DNNs on the resistive crossbar system using RxNN. Ta-

ble 5.2 details our benchmark DNNs using the number of convolution and fully-

connected layers, the targeted data-set, and the number of synaptic connections and

neurons. We also present the relative model size to highlight the difference between

these benchmark DNNs. To evaluate the system-level energy of DNNs, we use the

resistive crossbar system architecture presented in Section 3.3.
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Fig. 5.9.: Layout of synaptic device and crossbar array

Table 5.2.: Benchmark DNN Applications

5.5 Results

We now present the experimental results to demonstrate the modeling accuracy and

speedups achieved by FCM over circuit simulation. We also evaluate the application-

level accuracy of large-scale DNNs on non-ideal resistive crossbar systems using

RxNN.



77

5.5.1 FCM: Crossbar-level Evaluation

Modeling Accuracy. Figure 5.10 shows the errors in vector-matrix multiplications

realized using a 64x64 non-ideal crossbar. We compute errors using three different

crossbar models, viz., HSPICE, FCM, and MNSIM. HSPICE is our baseline model,

whereas MNSIM [79] represents a simple error model. The X-axis represents the

crossbar column, and the Y-axis depicts the error incurred during the non-ideal vector-

matrix multiplication. We observe that the simple error model (MNSIM) deviates

considerably from the HSPICE model. This is expected, as it does not consider

errors’ dependence on several factors including applied inputs, the crossbar state,

and the crossbar columns. In contrast, the FCM model considers these dynamic

factors and therefore able to closely match the errors observed in the HSPICE model.

The maximum deviation between the errors estimated by MNSIM and the actual

errors computed using HSPICE is about 3.51%. In the case of FCM, the maximum

deviation is found to be significantly (0.28%) smaller.

Fig. 5.10.: Computation Errors observed in crossbar for various crossbar models

Speedup. To evaluate the speedup of FCM over HSPICE, we measure the execu-

tion time of FCM and HSPICE for various crossbar sizes. Figure 5.11 details the
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Fig. 5.11.: FCM speedup over HPSICE

speedup achieved using FCM over HSPICE. We observe a speedup of about 5 orders

in magnitude across crossbar with different sizes. Moreover, as expected, the speedup

increases for larger crossbar arrays.

Model generation overhead. Recall that FCM’s crossbar model generator trans-

forms the weights matrix (W) to a non-ideal conductance matrix (Gnon−ideal) which

incur a one-time overhead. In our evaluation, we found the modeling overhead to be

0.038, 1.2, and 61 seconds for 16x16, 32x32, and 64x64 crossbar array, respectively.

While considerable for larger crossbars, these one-time overheads are amortized over

a large number of inputs evaluated by the DNN model.

5.5.2 RxNN: Application-Level Evaluation

Next, we evaluate the accuracy degradation due to crossbar non-idealities at the

application-level for the benchmark DNNs using RxNN. We implement three different

resistive crossbar systems designed using crossbars of size 16x16 (Cross16), 32x32

(Cross32), and 64x64 (Cross64). Figure 5.12(a) shows the accuracy degradation for

these designs with respect to our baseline, i.e., an ideal crossbar with no device and

circuit-level non-idealities. We first compare the accuracy degradation of the Cross64

design across DNNs. We observe that for simple networks (LeNet and ConvNet) the

accuracy degradation due to non-idealities is quite small. For example, LeNet and
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ConvNet networks suffer accuracy degradation of 0.05% and 2.2%, respectively. In

contrast, the accuracy loss due to non-idealities is considerable for large-scale DNNs.

For instance, VGG-16, OverFeat, and Resnet-50 networks incur accuracy losses of

25.6%, 27.8%, and 32%, respectively. We observe similar accuracy degradation trend

across simple and large-scale DNNs for Cross16 and Cross32 designs as well.

Fig. 5.12.: Application-Level evaluation using RxNN

Next, we compare the accuracy degradation across resistive crossbar system de-

signs (Cross16, Cross32, and Cross64). As evident from Figure 5.12(a), the accuracy

degradation for the Cross16 design is much lesser than the Cross32 and Cross64 de-

signs. This trend is expected as the impact of non-idealities is lower for smaller

crossbar arrays (Section 5.1.2). However, the Cross16 design consumes higher energy

compared to Cross32 and Cross64 designs. Since the major components of the energy

consumed in resistive crossbar systems are peripherals (ADC and DAC), therefore,
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larger crossbar arrays that amortize the energy cost of ADCs and DACs over more

number of columns and rows have superior energy efficiency. Figure 5.12(b) depicts

the normalized energy consumption per image for the Cross16, Cross32, and Cross64

designs. Note that, in LeNet and ConvNet networks the energy of the Cross64 de-

sign is higher than the Cross32 design. This is because the crossbars in the Cross64

design are under-utilized in case of these simple networks. Therefore, Cross64 suffers

from energy overheads due to redundant computations performed in the unmapped

columns.

To further illustrate the energy consumption of DNNs on resistive crossbar sys-

tems, we present the energy breakdown of three networks, viz., VGG-16, GoogleNet,

and AlexNet realized on the Cross64 design. Figure 5.13 shows the energy breakdown

of these networks considering – read energy for inputs (CMOS-Mem-Read), write

energy for outputs (CMOS-Mem-Write), and computation energy for vector-matrix

multiplications (Cross-Computation). We observe that the major energy component

is the vector-matrix multiplications (Cross-Computation) which is dominated by the

ADCs and DACs.

Fig. 5.13.: Energy Breakdown for Cross64 implementation

We also evaluated the slowdown of RxNN with respect to Caffe, which amounts

to 2.5X and 2.75X for inference and re-training, respectively, across our benchmark

applications. We believe this is a reasonable overhead given the highly optimized
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nature of Caffe, and the fact that much like Caffe, RxNN can also leverage multi-

cores, GPUs, and clusters for increased processing throughput.

In summary, there exists a fundamental trade-off between the application-level

accuracy and the system energy which needs to be examined, in order to determine

the architectures for future resistive crossbar systems. RxNN intends to drive these

decisions by providing a software platform that can precisely evaluate crossbar archi-

tectures executing large-scale DNNs.

Fig. 5.14.: Accuracy’s sensitivity to non-idealities

5.5.3 Sensitivity of accuracy to non-idealities

To further illustrate the impact of non-idealities on the application-level accuracy,

we present a sensitivity analysis in Figure 5.14. We plot the accuracies of 6 large-

scale networks, viz., AlexNet, VGG-16, GoogleNet, NiN, Overfeat, and ResNet-50 for

implementations differing in their degree of non-idealities. The implementations that

we use are: (i) floating-point implementation realized on an x86 CPU architecture

(FP32), (ii) 6-bit ideal crossbar design (Cross6) without any crossbar non-idealities,
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and (iii) 6-bit non-ideal crossbar based designs with and without variations (NI-

Cross6-64x64). Note, FP32 is a CMOS-based digital implementation that does not

use crossbars. As shown in Figure 5.14, the accuracy drops from left to right as

more non-idealities are incorporated. We observe two significant accuracy drops,

one between FP32 and Cross6 implementations, and other between Cross6 and NI-

Cross6-64x64 implementations. The degradation between FP32 and Cross6 is due

to the limited precision of the synaptic devices, ADCs, and DACs. This drop in

accuracy can be reduced by re-training as discussed in Chapter 6. In contrast, the

drop in accuracy from Cross6 to NI-Cross6-64x64 is due to the device and circuit-level

non-idealities.

5.5.4 Impact of non-idealities: Insight

To provide further insights into the impact of non-idealities at the application-

level, Figure 5.15 compares the output features obtained from an ideal resistive cross-

bar system and a non-ideal resistive crossbar system, respectively, for two convolu-

tion layers (Conv1 and Conv3) of the ConvNet network executing on the CIFAR-10

dataset. Some of the significant distortions in features are identified in the figure

using circles. We observe that the impact of non-idealities increases noticeably as

we go deeper into the network (Conv3 layer outputs show increased artefacts com-

pared to Conv1 layer outputs in Figure 5.15). This is consistent with the observation

from Figure 5.12(a) that deeper DNNs show greater degradation in accuracy due to

crossbar non-idealities.

In summary, our results underscore the utility of RxNN in evaluating and re-

training large-scale DNNs on resistive crossbar architectures. They also motivate the

need for further research into techniques to mitigate and compensate for the effects

of crossbar non-idealities in the context of large-scale DNNs.
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Fig. 5.15.: Visual demonstration of errors using ConvNet

5.6 Summary

Resistive crossbar systems are a promising solution to the energy efficient realization

of DNNs. In this work, we evaluate the impact of various device and circuit non-

idealities that are present in crossbars on the overall accuracy of large-scale DNNs.

We propose FCM, i.e., a fast, scalable, and accurate functional crossbar model to

evaluate vector-matrix multiplications realized on resistive crossbars. We present

RxNN, a software simulation framework to enable evaluation and re-training of large-

scale DNNs on resistive crossbar systems. Our evaluations show that the errors due

to non-idealities can degrade the overall accuracy of large scale DNNs considerably,

therefore necessitating a need for error correction and compensation schemes.
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6. HARDWARE-SOFTWARE COMPENSATION

METHODS FOR DEEP NEURAL NETWORKS ON

RESISTIVE CROSSBAR SYSTEMS

As mentioned in Chapter 5, a key challenge with resistive crossbars is that the com-

puted function (input voltages multiplied with the weights stored as conductances

to obtain output currents) is only an approximation of the desired vector-matrix

multiplications. In reality, the computed outputs can deviate significantly from the

desired value due to limited precision, as well as numerous device and circuit-level non-

idealities, viz., interconnect resistance, sensing and driver resistances, noise in synaptic

devices, ADC and DAC non-linearity, sneak paths, imperfect write operations, and

process variations [69–73,75,76,78,79,124,126,142]. The cumulative effect of all these

non-idealities manifests as errors in the vector-matrix multiplication that depend on

data (programmed weights and applied inputs), how the computation is mapped to

the crossbar (since errors vary across crossbar columns) and the hardware instance

performing the computation (due to variations). These errors in vector-matrix multi-

plications can accumulate over numerous crossbar operations within a DNN layer and

propagate through the different network layers, eventually impacting the accuracy of

the DNN. The overall impact of non-idealities on DNN accuracy strongly depends on

the scale of the network. The Figure 5.14 in Section 5.5.3 illustrates the accuracy

degradation due to limited precision and device and circuit-level non-idealities, for

simple and complex DNNs. We can observe that the accuracy degradation to be

minimal for simple networks (LeNet and ConvNet) with smaller and fewer layers.

However, the accuracy degradation can be substantial (19.8%-57.8%) for large-scale

DNNs such as VGG-16, GoogleNet and ResNet-50. Therefore, it is essential to ad-

dress the challenges posed by crossbar non-idealities to enable adoption of resistive

crossbar based systems.
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Prior efforts that have addressed non-idealities in resistive crossbars are limited

by the scale of networks that they consider (there is no reported work on Ima-

geNet DNNs such as AlexNet, VGG-16, GoogLeNet and ResNet), and only miti-

gate a subset of crossbar non-idealities [69–73, 75, 76, 78]. Re-training DNNs using

software models of the crossbar is a popular approach to compensating for non-

idealities [69, 71, 73, 75, 126–128]. However, re-training can only mitigate accuracy

degradation to a limited extent. Moreover, a key limitation of re-training based com-

pensation is that each hardware instance requires separate model re-training and the

trained network is tied to the specific hardware instance. Breaking the train-once-

deploy-anywhere tenet of current DNN applications raises significant challenges. For

example, consider a potential deployment of resistive-crossbar-based inference accel-

erators in a million edge devices. Deployment of a new DNN on these devices would

require characterizing the non-idealities of each instance, communicating these non-

idealities to a cloud-based infrastructure, invoking a million runs of re-training in the

cloud, and transfering a unique model back to each device, thereby greatly raising

deployment complexity and computational requirements. Compensation mechanisms

without re-training have only been explored in the limited context of small-scale

auto-associative neural networks to mitigate specific non-idealities such as imperfect

programming and drift in synaptic conductances [72, 76]. Therefore, there is a need

for a design methodology that: (i) can effectively compensate for errors due to a wide

range of crossbar non-idealities, (ii) does not use hardware instance specific training,

(iii) incurs low hardware overhead, and (iv) is scalable to large DNNs.

We propose CxDNN, a hardware-software methodology to realize high accuracy

DNNs on resistive crossbar systems. CxDNN is composed of a conversion algorithm,

a fast re-training method, and a low-overhead hardware compensation scheme. The

conversion algorithm takes any given floating-point DNN and converts its weights to

conductances and activation values to voltages by determining appropriate scaling

factors. Subsequently, CxDNN uses a fast re-training method to recover accuracy
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loss due to the conversion with very few iterations1. We note that our re-training

method is hardware instance independent and therefore needs to be performed only

once overall (and not once per instance). Finally, CxDNN mitigates data-dependent

and hardware-instance-specific errors using low-overhead error compensation circuits

that post-process the crossbar outputs. We evaluate CxDNN using 6 state-of-the-

art DNNs on the ImageNet dataset. Our results show that CxDNN improves top-1

accuracy by 16%-49% and obtains classification accuracies comparable to a software

fixed-point implementation, thereby alleviating non-idealities as an impediment to

the use of resistive crossbar based neural fabrics.

We organize the rest of the chapter as follows. Section 6.1 details the proposed

CxDNN compensation methodology. We outline the experimental methodology in

section 6.2. The experimental results are presented in section 6.3, and section 6.4

concludes the chapter.

6.1 CxDNN: Compensation methods for DNNs on resistive crossbars

In this section, we present CxDNN, a hardware-software methodology to realize DNNs

with high accuracy on resistive crossbar based accelerators for DNN inference. We

first motivate the approach adopted by CxDNN and subsequently detail the software

and hardware compensation methods.

6.1.1 CxDNN: Approach and Overview

Figure 6.1 contrasts the design approach adopted by CxDNN with prior efforts

by highlighting the difference in their usage models. We consider a scenario in which

XPUs are deployed on millions of mobile and IoT devices to accelerate DNN infer-

ence. As shown in Figure 6.1(a), prior schemes that rely on (re-)training to mitigate

hardware-instance specific errors will have to characterize non-idealities for each in-

1Training ResNet-50 on the ImageNet dataset requires ∼365000 iterations with a batch size of 50.
In comparison, CxDNN requires <500 iterations
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stance and communicate these characteristics to a cloud-based infrastructure. Subse-

quently, a run of re-training is invoked for each device, and a unique model is trans-

ferred back to each device. Therefore, these schemes are not scalable. In contrast,

CxDNN preserves the train-once-deploy-anywhere tenet of current DNN implementa-

tions (shown in Figure 6.1(b)). It designs DNNs that are re-trained once and deployed

on many XPU instances. Further, the XPU instances (XPU+) are equipped with

low-overhead compensation hardware to mitigate instance-specific errors.

Fig. 6.1.: CxDNN usage model

Figure 6.2 outlines the CxDNN compensation flow, which consists of a quanti-

zation and conversion algorithm, hardware-independent re-training, and hardware

compensation. CxDNN takes a readily available floating-point (FP32) DNN as an

input. It first quantizes the weights and activations of the FP32 network to match

the precisions of the synaptic devices and ADCs/DACs, resulting in a fixed-point

(FxP) DNN. Subsequently, it transforms the weights into conductances and acti-

vations to voltages, to obtain a DNN for an “ideal” crossbar (with no device and

circuit non-idealities other than limited precision), denoted DNNXI . CxDNN then

uses a fast hardware-instance-independent re-training method to recover accuracy

lost during the conversion process. Next, CxDNN maps the DNNXI to a resistive
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crossbar system that suffers from crossbar non-idealities (denoted DNNXNI), which

results in further degradation in accuracy. CxDNN overcomes this accuracy drop us-

ing a hardware compensation scheme. Note that, DNNXI can also be obtained using

end-to-end DNN training, i.e., used for designing FP32 DNNs. However, training

is computationally very expensive, requiring exa-ops of compute and hence days-to-

weeks to complete. In contrast, CxDNN designs DNNXI by converting FP32 models

and utilizing a fast re-training method to recover accuracy loss during conversion with

very few iterations2. We next describe CxDNN’s software and hardware methods in

detail.

Fig. 6.2.: CxDNN Overview

6.1.2 Conversion algorithm

CxDNN uses a two-step conversion algorithm to convert a floating-point DNN

(DNNFP ) to a DNN for ideal crossbar (DNNXI). Algorithm 1 details the pseudo

code for the conversion algorithm. It takes as inputs DNNFP , precision constraints

for weights and activations (pW , pA), conductance (gmax, gmin) and voltage (vmax,

2Training ResNet-50 on the ImageNet dataset requires ∼365K iterations with a batch size of 50. In
comparison, our re-training requires <500 iterations
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vmin) ranges, and a validation dataset (V alData), and producesDNNXI as its output.

First, CxDNN quantizes DNNFP to get an optimized fixed-point DNN (DNNFxP )

(lines 2). Subsequently, it converts DNNFxP to DNNXI by transforming weights to

conductances (lines 3-10). To avoid hardware overhead incurred by variable precision,

we assume the same precision for all layers. However, Algorithm 1 can be easily

extended to support variable precision across DNN layers and data-structures (weights

and activations).

Algorithm 1 DNN Conversion for an ideal crossbar

Input: DNNFP : floating-point DNN, [pW,pA]: weights and activation precision,

ValData: Validation Dataset, [gmax, gmin]: Conductance range, [vmax, vmin]: volt-

age range

Output: DNNXI : DNN converted for ideal crossbar

1: Begin

2: DNNFxP = convertToFxP (DNNFP , ValData, pW, pA) // DNNFxP : Fixed-

Point DNN

3: [αg, βg] = get-Conversion-Params (gmax, gmin, pW)

4: DNNXI = DNNFxP

5: for Each layer k: 1 to N do

6: DNNXI= convertToConductances (DNNXI ,αg, βg, k)

7: [WDk, ADk]=get magnitude distribution (DNNXI , ValData,k)

8: [SFin,SFout] = getOptScalingFactor (DNNXI , ValData, k, vmax, vmin, pA,

WDk, ADk)

9: DNNXI = applyScalingFactor (DNNXI , SFin, SFout, k)

10: end for

11: Return DNNXI

To convert DNNFP to DNNFxP (line 2), several algorithms have been proposed in

recent years [143–146]. We adopt the quantization method proposed in [143], wherein

we explore the conversion design space (trade-off between range and resolution) to
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identify the best FxP format for each DNN layer and data-structure. Next, we convert

DNNFxP to DNNXI using the weight-to-conductance conversion parameters (αg, βg)

and scaling factors (SFin, SFout) that are used for converting digital inputs to voltages

and currents to digital outputs, respectively. Figure 6.3 depicts our DNNFxP to

DNNXI conversion process. We develop a statistics-driven approach to identify the

best scaling factors (SFin, SFout) for each DNN layer. For each layer in the network,

we derive weight and activation distributions (line 7) by simulating DNNXI with the

validation dataset and determine a list of possible scaling factors. We systematically

explore these choices and identify the scaling factors that yield the highest accuracy

(line 8). We convert each layer separately starting with the first DNN layer, and once

all layers are converted DNNXI is returned (line 11).

Fig. 6.3.: FxP to ideal crossbar conversion function

6.1.3 Re-training method

The conversion of DNNFxP to DNNXI is not perfect and leads to accuracy loss

due to two major factors: (i) non-linear ADC and DAC functions introduce distortions

in the computed outputs, and (ii) the representation of numerical ‘0’ with a non-

zero (gmin) conductance for weights and a non-zero voltage (vmin) for inputs. For

example, multiplications with zero values produce ‘0’ in FxP but yield a non-zero
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value in ideal crossbar based implementation. Further, the magnitude of the non-zero

value is not constant, rather data-dependent. Therefore, the output (Dout) computed

using ideal crossbar differs from the output (Fout) calculated using FxP. Figure 6.4

shows the impact of the incurred data distortion during conversion by highlighting

the differences in the distribution of the layer outputs for 6-bit FxP (DNNFxP6) and

ideal crossbar (DNNXI−6) implementations of the VGG-16 network. We observe

that for the same primary input (shown of the left), the histograms of the output

activations get distorted for DNNXI−6 design in comparison to DNNFxP6. Moreover,

the distortions propagate through DNN layers and increase as we go deeper into the

network, eventually impacting DNN accuracy. For example, the output distribution

of CONV1-2 layer shows higher distortion than the CONV1-1 layer outputs.

Fig. 6.4.: Activation distortion during conversion

To recover the accuracy lost during conversion, CxDNN uses a hardware-instance-

independent re-training method. DNN training consists of three major steps - forward

propagation, backward propagation and gradient computation followed by weight

update. CxDNN uses a software model of the resistive crossbar during the forward

propagation step, reflecting the fact that we are modeling inference on a resistive
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crossbar based hardware fabric, and a floating point (FP32) model for the backward

propagation, gradient computation, and weight update steps.

Fig. 6.5.: Re-training method for DNNs on crossbar system

Figure 6.5 presents the CxDNN re-training process that uses a conductance (G)

weight matrix during the forward pass and FP32 weight matrices during the back-

ward pass. The DAC and ADC models apply the scaling factors and convert digital

inputs (Din) to input voltages (Vin) and crossbar output currents (Iout) to digital

output activations (Dout). We synchronize both weight matrices after each mini-

batch iteration by converting the updated FP32 weights to conductances. Figure 6.5

illustrates the main steps in the forward and backward passes (steps 1-4 and steps

5-8, respectively). First, we convert inputs (Din) and weights to voltages (Vin) and

conductances (G) (Step 1-2). Next, we perform the crossbar based vector-matrix

multiplication to obtain output currents (Iout) (Step 3). The ADC model converts

the output currents to digital outputs (Dout) (Step 4). We perform Steps 1-4 for

each convolution and fully-connected DNN layer. On completion of the forward pass,
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the loss and error functions are computed using the final layer outputs and a label

(Step 5). Next, we execute backward pass, gradient computation, and weight update

functions for each DNN layer. Figure 6.5 illustrates these operations for the Kth

DNN layer, wherein the gradients (∆W ) (Step 6) and output errors (ErrorK) (Step

8) are computed using the errors from layer K+1 (ErrorK+1). Next, the computed

error (ErrorK) propagates in the backward direction to the previous layer (K-1), and

the FP32 DNN model is updated using the computed gradient (∆W ) (Step 7). We

re-train DNNXI by repeating Steps 1-8 for a small set of images to compensate the

accuracy drop during conversion.

Fig. 6.6.: Error characteristics across crossbar instances and columns

6.1.4 Hardware compensation

As mentioned in Section 6.1.1, DNNs executed on crossbar based systems will suf-

fer from accuracy degradation due to data-dependent and hardware-instance-specific

non-idealities. CxDNN employs a hardware compensation method to overcome this

degradation. Our hardware compensation is motivated by a key observation that er-

rors in vector-matrix multiplications realized using resistive crossbars result from the

cumulative effect of all non-idealities. It is not possible to isolate the effect of individ-
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ual non-idealities on the executed vector-matrix multiplication as all non-idealities

kick in simultaneously. Therefore, we propose error compensation at the crossbar

level, where the outputs of the realized vector-matrix multiplications are compen-

sated using Compensation Factors (CFs). CxDNN uses a separate compensation

factor for each crossbar column of each crossbar instance, which allows many degrees

of freedom in tuning the compensation process. The use of per-column compensation

factors is motivated by the error characteristics in Figure 6.6 that show a significant

variance across both crossbar instances and columns within an instance.

Fig. 6.7.: Histogram of absolute and relative errors at crossbar columns

Next, we determine the type of compensation factor that should be used to mit-

igate errors due to crossbar non-idealities based upon insights from the error char-

acteristics at the crossbar-level. To that end, we compute errors at each crossbar

column by considering all crossbar non-idealities and plot the error histogram. We

examine two error metrics - relative error (RE) and absolute error (AE). Figure 6.7

shows the histogram of RE and AE normalized with their respective mean (µ), across

these input vectors. We observe that the absolute errors vary substantially across

different input vectors as they have large variance (σ/µ = 8%) with a spread of 0.78µ

to 1.3µ. In contrast, the relative errors show significantly lower spread and have very

small variance (σ/µ = 0.5%). Based on this observation, we can conclude that ad-
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ditive compensation factors where a constant offset is added to correct the errors at

crossbar columns will not work as the absolute errors show significant input depen-

dence. Further, it also suggests that we can effectively compensate errors by selecting

multiplicative compensation factors (CFs) computed using the mean relative error

(REmean). For example, we can compute the compensation factor (CFi) for the ith

crossbar column using REmean as shown in Equation 6.1, and correct errors using

CFi as a multiplicative factor (shown in Equation 6.2).

CFi = 1/(1−REmean) (6.1)

REmean =

∑k
j=1

|Expectedval−j−Actualval−j |
|Expectedval−j |

k

Compensatedval−i = Actualval−i ∗ CFi (6.2)

CxDNN’s hardware compensation method consists of two phases - a calibration

phase to determine CFs and a runtime phase to mitigate errors using these CFs.

The host processor initiates the calibration phase after the DNNXI is mapped and

programmed to the resistive crossbar system. The calibration phase consists of three

main steps. In step 1, the host sends predetermined inputs (Inp) to each RCA in

the resistive crossbar system. In step 2, RCAs perform vector-matrix multiplica-

tions using these calibration inputs (Inp) and stored weights to obtain the actual

(erroneous) output vectors (Out-act) and subsequently send them to the host. In

step 3, the host processor computes compensation factors using the actual outputs

(Out-act) and the ideal outputs (Out-idl). The host processor could either store or

generate the calibration inputs (Inp) and expected outputs (Out-idl). We generate

the calibration inputs using a characterization dataset. We note that our method

does not restrict the nature or size of the characterization dataset – it can be as large

as required, subject to the characterization time being acceptable. In our experi-

ments, we found that a small subset of the validation set was sufficient to compute



96

compensation factors that led to the accuracy improvements reported in the thesis.

Figure 6.8 depicts the CF computation process for an RCA using actual and ideal

outputs (Out-idl). As shown in the figure, we compute a vector of CFs, one for

each column. The computed CFs are then sent back to the respective crossbars to

be stored locally in the compensation logic. While all RCAs execute vector-matrix

multiplications in parallel, the host processor computes the compensation factor for

each RCA sequentially. Therefore, the overall calibration time is dominated by the

host processor. Further, the calibration time depends on the total number of RCAs

utilized by the DNN. In our evaluation, the overall calibration time was 0.2 sec to

1.3 sec across our benchmark DNNs for a single core Intel-Atom C2350 as our host

processor. We invoke the calibration phase whenever a new DNN is mapped to the

XPU system, and subsequently execute millions of inference operations during the

runtime phase. We can also periodically invoke the calibration phase to cope with

aging issues and drift in synaptic conductances. Aging and synaptic drifts are very

slow phenomena, hence the calibration phase will still need to be performed rarely

(e.g., once every 10K-100K inference operations). The execution time required for

calibration is negligible when amortized over 10K-100K inference operations. We also

note that the computed CFs are not exact but approximate factors that compensate

the errors effectively with limited hardware overhead, as discussed next.

Figure 6.9 shows an RCA with the compensation logic, which consists of registers

for storing CFs, a column mux, and a multiplier. Using the compensation logic, we

mitigate errors in vector-matrix multiplications at runtime to obtain compensated

outputs given by Out-comp = Out-act * CF. Further, we hide the latency of the

compensation logic using a two-stage pipeline, where we pipeline crossbar evaluation

and error compensation operations. We note that the slowest stage, which determines

the pipeline throughput, is still the crossbar evaluation stage [125]. In our evalua-

tion, the latency of the crossbar and the compensation logic are ∼60ns and ∼0.78ns,

respectively. We require ∼49ns to compensate 64 (all) columns of an RCA using

the compensation logic. Thus, the compensation logic adds no throughput penalty.
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Further, we observe the compensation logic area and power overheads to be 7.3%

and 4%, respectively, at the RCA level, and 5.5% and 3.5%, respectively, at the sys-

tem level. We consider these overheads to be reasonable considering the accuracy

improvements they enable. The major contributor to the overhead are the additional

registers required for storing the CFs.

Fig. 6.8.: CxDNN Hardware compensation: Calibration phase

We note that CxDNN offers multiple design choices that differ based on which non-

idealities are compensated in software and which are compensated in hardware. In

our implementation, we compensated for limited precision and conversion of weights

to conductances and activation values to voltages/currents in software (through re-

training), leaving the remaining non-idealities to be compensated in hardware. Alter-

native design choices are possible where additional non-idealities (e.g., sneak paths)

are included during (re-)training to obtain a compensated DNN model. However, as

motivated in Section 6.1.1, we cannot model instance-specific errors (e.g., chip-to-chip

variations) during re-training as it ties the trained network to the specific hardware

instance. This breaks the train-once-deploy-anywhere tenet of current DNN applica-
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tions. Therefore, the overhead of hardware compensation to mitigate instance-specific

errors must be incurred irrespective of the degree of non-idealities considered during

re-training.

Fig. 6.9.: Hardware compensation logic of CxDNN

6.2 Experimental Methodology

In this section, we present the experimental framework used for evaluating CxDNN.

Accuracy evaluation. To evaluate the application-level accuracy of DNNs on resis-

tive crossbar systems, we use RxNN framework proposed in Chapter 5. The frame-

work is enhanced with the CxDNN design methodology. It takes a resistive crossbar

system description as an input and maps convolution (Conv) and fully-connected (FC)
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DNN layers to this system. Like Caffe, it models Conv and FC layers as matrix-matrix

and vector-matrix multiplications. It functionally evaluates DNNs by mimicking the

vector-matrix multiplications realized in resistive crossbars to obtain application-level

accuracy. We consider several non-idealities, viz., wire resistances, driver and sens-

ing resistances, non-ideal DACs and ADCs, sneak paths, imperfect write operations,

device-level noise (e.g., thermal noise) and process variations in our crossbar model.

We provide the modeling details in Table 6.1. We use an effective Gaussian noise

function to model errors due to non-ideal synaptic devices. Table 5.2 details the

benchmark DNNs that we use to evaluate CxDNN. To demonstrate the scalability

of CxDNN, we focus on large-scale DNNs, viz., AlexNet, Network-in-Network (NiN),

OverFeat, VGG-16, GoogleNet, and ResNet-50.

Table 6.1.: Crossbar non-idealities modeled during evaluation of CxDNN

Type Non-idealities modeled

Device-level Process variations (Gaussian), device-level noises

non-idealities (Gaussian), imperfect writes (Gaussian)

Circuit-level Wire resistances (rrow = 1Ω, rcol= 4.6Ω), driver

non-idealities resistances (1.5KΩ), sensing resistances (500Ω),

sneak path (data-dependent), non-linear ADCs and

DACs (lookup tables)

Device, circuit and system modeling. Table 6.2 details the synaptic device [64],

circuit parameters, interconnect technology [141], and variation technology param-

eters [137] used in our experiments. It also provides the RCA, the host processor,

and the compensation logic configurations. We limit the synaptic device precision to

6-bits considering the maximum precision that can be achieved by practical synaptic

devices [147]. We perform the device simulation to abstract the circuit-level parame-

ters such as conductance range (Rmin to Rmax) and the number of conductive states

(Precision) for a nominal device (without any non-idealities). Next, we characterize

the impact of process variations in physical parameters (e.g., synaptic device dimen-
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sions, Tox, etc.) and intrinsic device-level noise (e.g., thermal noise) that results in

variations in the synaptic conductance. Subsequently, we model all device-level non-

idealities using a Gaussian distribution in the synaptic conductance (the abstracted

circuit-level parameter). We consider the variation in the synaptic conductance to be

σ/µ = 5% to 15% based on variation data reported in [137]. We show the efficacy of

CxDNN on this range of variation values [(σ/µ) = 5% to 15%]. We perform layouts of

the synaptic device and the crossbar array (using design rules [140]) to extract inter-

connect parasitics (detailed in Table 6.2). Our simulations utilize the ADC and DAC

circuits proposed in [27,148]. We evaluate RCA energy consumption and latency us-

ing SPICE simulations. Finally, we synthesize the digital logic units using Synopsys

Design Compiler and a commercial 45nm technology to estimate their energy, delay,

and area at the gate-level. We assume a spatial architecture with sufficient RCAs

to map the largest DNN (i.e, VGG-16). Operations other than vector-matrix multi-

plications (max-pooling, normalization, etc.) are performed on the Special Function

Units (SFUs).

Table 6.2.: Device, circuit, and system parameters used for evaluating CxDNN

Components Values

Synaptic Device Precision = 6 bits, Rmin = 200 KΩ , Rmax = 1.4 MΩ

Length = 1280nm, Width = 40nm, Tox = 2.12nm

Wire Technology Resistance = 3.3Ω/um, Capacitance = 0.2fF/um

Variation Synaptic conductance (σ/µ) = 5% to 15%

CMOS Technology 45nm Bulk CMOS

Resistive Crossbar 64 DACs (6 bits each), 16 shared ADCs (10 bits each),

Array (RCA) 64x64 synaptic elements, 64 input registers (6 bits),

64 output registers (10 bit), 1 Adder (16 bits)

Compensation logic 64 registers (6-bits), 1 multiplier (10 bit)

Extracted Parasitic rrow = 1Ω, crow = 0.05fF, rcol = 4.6Ω, ccol = 0.3fF



101

6.3 Results

We now present results to show the effectiveness of CxDNN in enabling high

accuracy large-scale DNNs on resistive crossbar based systems.

Fig. 6.10.: Application level accuracy benefits

6.3.1 Application-level compensation

We first show CxDNN’s compensation ability at the application-level. To this

end, we compare DNNs designed using three different compensation techniques. We
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use (i) a baseline DNN obtained using only the CxDNN conversion algorithm, (ii)

a software compensated DNN obtained using the CxDNN conversion algorithm and

re-training mechanism, and (iii) a software and hardware compensated DNN obtained

using both hardware and software compensation techniques of CxDNN. Figure 6.10

shows the classification accuracy of these DNNs realized on two different resistive

crossbar systems - an “ideal” system with 6-bit precision but no device and circuit

non-idealities (Cross-ideal6) and a non-ideal crossbar system (Cross-NI6) designed

using 64x64 resistive crossbar arrays. In Figure 6.10, FxP6 is a software 6-bit fixed-

point implementation. Across all benchmark applications, we observe that DNNs

compensated using both software and hardware techniques are considerably superior

to the other two versions (baseline and Software Compensated). The baseline DNN

suffers distortion due to conversion, and both the baseline and the software com-

pensated DNNs suffer from device and circuit-level non-idealities, leading to poor

application-level accuracy on real resistive crossbar systems (Cross-NI6). Overall,

CxDNN achieves 16.9%-49% improvement in accuracy relative to the baseline. We

observe the effect of crossbar non-idealities to be more prominent on deeper networks

with >50 layers ( e.g., ResNet and GoogleNet), as the accuracy degradation for the

software compensated design (with no compensation for crossbar non-idealities) on

Cross-NI6 is substantial. In contrast, we find wider DNNs (e.g., AlexNet and VGG-

16) with fewer (9 to 16) layers to show more resilience to crossbar noise, as the software

compensation is effective in restoring application-level accuracy. We observed an in-

teresting correlation between the resilience of DNNs to crossbar non-idealities and

their resilience to other traditional optimizations, such as pruning [149,150]. For ex-

ample, efforts on DNN pruning [149, 150] show that AlexNet and VGG-16 networks

can be pruned by 90-95%, but parameters in ResNets can only be pruned by about

50-60%. Correspondingly, we observe that AlexNet and VGG-16 networks are more

resilient (robust) than ResNet-50 to crossbar non-idealities.

Next, we provide insights on how errors in vector-matrix multiplication at the

crossbar level interact over various crossbar operations and propagate through the
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network. To that end, we visualize the heat map of output activations obtained from

various layers of the GoogleNet DNN as it processes an oxcart image from the Im-

ageNet dataset. Figure 6.11 illustrates the heat map of the first layer, some middle

layers, and the last layer of the GoogleNet DNN implemented on an ideal crossbar

system (Cross-ideal), and a non-ideal crossbar system (Cross-NI) with and without

hardware compensation. We observe that the initial layers of the uncompensated

CrossNI and the Cross-ideal cases are very similar. However, the later layers are

noticeably different. This is because the errors accumulate as we go deeper into

the network, leading to significant and visible distortions in output features of the

later layers. This observation also concurs well with the result shown in Figure 6.10,

where the impact of crossbar non-idealities on deeper networks is found to be more

prominent. Further, we observe the output feature-maps of the Cross-ideal and Com-

pensated Cross-NI cases to be very similar, thereby demonstrating the effectiveness

of CxDNN in mitigating errors due to crossbar non-idealities.

Fig. 6.11.: Visual demonstration of HW error compensation
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6.3.2 Compensating hardware-instance-specific errors

We now focus on hardware-instance-specific errors due to process variations and

evaluate CxDNN’s efficacy in mitigating them. We assume random variations (σ/µ=5%)

in the synaptic elements of a resistive crossbar system as the source of non-ideality.

Figure 6.12 shows the accuracy of an ideal crossbar system (Cross-Ideal), and a non-

ideal crossbar system (Cross-NI) with and without hardware compensation. We ob-

serve that hardware compensation recovers the drop in DNN accuracy due to process

variation very effectively. On average, we observe an accuracy improvement of 25.83%

over the Cross-NI Uncompensated case. Moreover, Hardware compensation achieves

accuracy within 1.8%-2.8% of the Cross-ideal implementation.

Fig. 6.12.: HW compensation for instance specific errors

We also study CxDNN’s effectiveness with increasing process variations on the

GoogleNet and NiN networks. Figure 6.13 shows the accuracy of the compensated

and the uncompensated Cross-NI designs for various degrees of random variations

(σ/µ) in the synaptic devices. We observe that the HW compensation effectively mit-

igates errors in resistive crossbar systems with high process variations ( σ/µ=15%),

and achieves considerable accuracy improvement over the uncompensated design ir-

respective of the degree of variations. As mentioned in section 6.1.4, CxDNN’s HW

compensation is a low-overhead approximate compensation scheme that does not cor-

rect errors exactly. Figure 6.13 suggests that the CxDNN can achieve accuracy close

to Cross-ideal case for σ/µ upto 10%, with some degradation for larger values.
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Fig. 6.13.: HW compensation with increasing process variations

6.3.3 Re-training efficiency

Next, we demonstrate the effectiveness of the proposed hardware-instance-independent

re-training mechanism. Figure 6.14 shows the accuracy improvement with re-training

iterations for various DNNs. As shown, we achieve an improvement of 7%-27.4% for a

minimal amount of re-training (150 iterations). In summary, our re-training method

is able to bridge the accuracy gap between the fixed-point and the ideal crossbar

(Cross-Ideal) DNN implementations effectively.

Fig. 6.14.: Efficiency of the re-training method
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6.3.4 Hardware compensation at the array-level

We now show the effectiveness of the hardware compensation method in miti-

gating errors at the crossbar array level. Figure 6.15 shows the observed errors for

the Uncompensated and Compensated RCA instances with respect to ideal crossbar

across 1000 input vectors. We plot the average error at each column of a 64x64

crossbar. We also show the error spread (maximum and minimum error) for each

crossbar column across the 1000 vectors. We use four different crossbar instances

with 0%, 5%, 10% and 15% random variations in synaptic conductances. As evident,

the observed errors for each crossbar column in the compensated design are drastically

smaller than the uncompensated design, underscoring the effectiveness of CxDNN’s

hardware compensation scheme in mitigating errors at the crossbar array level.

Fig. 6.15.: Hardware compensation in action
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Fig. 6.16.: Comparison of CxDNN and ECC scheme based compensation [129]

6.3.5 Comparison with ECC scheme

Next, we compare the proposed hardware compensation with the AN code based

ECC compensation scheme [129] at the crossbar-level. Figure 6.16 shows the com-

puted relative errors across crossbar columns of an RCA instance for three designs

- (i) an uncompensated design, (ii) the CxDNN compensated design, and (iii) the

ECC compensated design. In the plots, the markers (orange square, green diamond,

and blue circle) represent the mean relative error for each crossbar column across

1000 input vectors, and the error bars show the spread. We implemented the AN

code based ECC scheme with N=19 which is equivalent to a 5-bit Hamming code

and can correct up to 19 syndromes. We note that for 6-bit weights and inputs, the

overhead due to the ECC scheme requiring five additional bits will be substantial.

However, we found the N=19 code to provide the best result, and thereby use it for

the comparison. For instance, N>19 and N<19 both had higher mean error due to

overcompensation and inferior compensation, respectively. In Figure 6.16, we observe

that the ECC scheme reduces the mean error for each crossbar column. However, it

cannot detect and correct a significant number of errors and wrongly compensates

a few. In contrast, CxDNN is quite effective in compensating errors at the crossbar

level. Further, as mentioned in Chapter 2, AN codes [130] are for correcting errors in
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linear functions realized using digital systems, where the errors are discrete (at bit-

level) and can be quantified using the digital number representation (multiple bits).

However, the functions realized in resistive crossbars are analog and non-linear due to

several non-linear functions (e.g., ADCs and DACs). Therefore, ECC schemes cannot

effectively mitigate errors in analog systems.

6.3.6 Area and Power breakdown

Finally, we discuss the area and the power breakdown of various components in a

Resistive Crossbar Array (RCA) including the compensation logic. Figure 6.17 shows

the major components, viz., ADC, DAC, input and output registers, and compensa-

tion logic (Comp-Logic). The Comp-Logic includes registers for storing CFs, a mux,

and a multiplier. ADCs and DACs dominate the area and power consumption in

the RCA. The fraction of total area and power consumed by them is 79% and 90%,

respectively. The area and power overhead due to the Comp-Logic with respect to

RCA is about 7.3% and 4%, respectively. However, the system-level area and power

overhead are lower, i.e., 3.5% and 5.5%, respectively, as the resistive crossbar pro-

cessing unit (XPU) consists of other non-RCA logic units such as input and output

buffers, controllers, and special function units (SFUs). These non-RCA logic units

occupy 24% of the total XPU area and consume 13% of the total XPU power. The

major contributors to the overhead are the additional registers required for storing

compensation factors (CFs). Therefore, more efficient methods for storing CF can

effectively reduce the overall overhead. For example, the registers for storing CFs can

be replaced by denser memories like SRAM, and CFs can also be provided as inputs

along with the activations and the partial sums. The overhead can also be improved

by sharing CFs across crossbar columns. In this dissertation, we did not optimize

the overheads further as we believe them to be reasonable, considering the benefits of

CxDNN and its ability in mitigating a key challenge to the use of resistive crossbar

based neural fabrics.
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Fig. 6.17.: Area and power breakdown of a crossbar array with compensation logic

6.4 Summary

Resistive crossbar systems are a promising solution to the energy efficient real-

ization of DNNs. However, they suffer from numerous device and circuit-level non-

idealities leading to degradation in application-level accuracy of large-scale DNNs.

In this work, we present CxDNN, a hardware-software methodology comprising of a

conversion algorithm, a hardware-instance-independent re-training mechanism, and

a low-overhead hardware compensation scheme to design high accuracy DNNs on re-

sistive crossbars. CxDNN preserves the train-once-deploy-anywhere tenet of current

DNN implementations, wherein DNNs are re-trained once to obtain a common model

that can be deployed on many resistive crossbar systems (XPUs). Further, CxDNN

utilizes low-overhead hardware to mitigate instance-specific errors. Our evaluations

reveal that CxDNN can largely restore the accuracy loss due to non-idealities by

achieving 16.9%-49% improvements over a range of large-scale DNN benchmarks.

We also find that CxDNN to be very effective in compensating hardware-instance

specific errors as it can achieve accuracy within 1.8%-2.8% of the crossbar imple-

mentation with no non-idealities. The system level area and power overheads of the

compensation hardware are minimal, i.e., 5.5% and 3.5%, respectively. Finally, we

conclude that CxDNN presents a promising approach to compensate for errors due

to crossbar non-idealities and addresses a key bottleneck to the adoption of resistive

crossbar based neural fabrics.
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7. TERNARY IN-MEMORY ACCELERATOR FOR DEEP

NEURAL NETWORKS

The use of lower precision to represent the weights and activations in DNNs is

a promising technique for realizing DNN inference (evaluation of pre-trained DNN

models) on energy-constrained platforms [96, 104, 105, 145, 151–157]. Reduced bit-

precision can lower all facets of energy consumption including computation, memory

and interconnects. Current commercial hardware [158,159], includes widespread sup-

port for 8-bit and 4-bit fixed point DNN inference, and recent research has continued

the push towards even lower precision [96,104,105,145,151–155].

Recent studies [96, 104, 105, 143, 145, 151–155] suggest that among low-precision

networks, ternary DNNs represent a promising sweet-spot as they enable low-power

inference with high application-level accuracy. This is illustrated in Figure 7.1,

which shows the reported accuracies of various state-of-the-art binary [104,145,151],

ternary [96,105,152–155], and full-precision (FP32) networks on complex image clas-

sification (ImageNet) and language modeling (PTB [160]) tasks. We observe that the

accuracy degradation of binary DNNs over the FP32 networks can be considerable

(5-13% on image classification, 150-180 PPW [Perplexity Per Word] on language mod-

eling). In contrast, ternary DNNs achieve accuracy significantly better than binary

networks (and much closer to FP32 networks). Motivated by these results, we fo-

cus on the design of a programmable accelerator for realizing various state-of-the-art

ternary DNNs.

Ternary networks greatly simplify the multiply-and-accumulate (MAC) operation

that constitutes 95-99% of total DNN computations. Consequently, the amount of

energy and time spent on DNN computations can be drastically improved by using

lower-precision processing elements (the complexity of a MAC operation has a super-

linear relationship with precision). However, when classical accelerator architectures
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Fig. 7.1.: Accuracy comparison of binary, ternary, and full-precision (FP32)

DNNs [96,104,105,145,151–155]

(e.g., TPU and GPU) are adopted to realize ternary DNNs, on-chip memory due to

sequential (row-by-row) reads and leakage in un-accessed rows becomes the energy and

performance bottleneck. This chapter explores in-memory computing in the specific

context of ternary DNNs and demonstrates that it leads to significant improvements

in performance and energy efficiency.

While several efforts have explored in-memory accelerators in recent years, TiM-

DNN differs in significant ways and is the first to apply in-memory computing (mas-

sively parallel vector-matrix multiplications within the memory array itself) to ternary

DNNs using a new CMOS-based bit-cell. Many in-memory accelerators use non-

volatile memory (NVM) technologies such as PCM and ReRAM [28, 30, 109, 110] to

realize in-memory dot product operations. While NVMs promise much higher den-

sity and lower leakage than CMOS memories, they are still an emerging technology

with open challenges such as large-scale manufacturing yield, limited endurance, high

write energy, and errors due to device and circuit-level non-idealities (detailed in

chapters 5 and 6). Other efforts have explored SRAM-based in-memory accelerators

for binary networks [111–115] and SRAM-based near-memory accelerators for ternary
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networks [96, 97]. However, the restriction to binary networks is a significant limita-

tion as binary networks known to date incur a large drop in accuracy as highlighted

in Figure 7.1, and the near-memory accelerators are bottlenecked by the on-chip

memory where only one memory row is enabled per access. Extended SRAMs that

perform bitwise binary operations in-memory may be augmented with near-memory

logic to perform higher precision computations in a bit-serial manner [116]. How-

ever, such an approach requires multiple sequential execution steps (array accesses)

to realize even one multiplication operation (and many more to realize dot-products),

limiting efficiency. In contrast, we propose TiM-DNN, a programmable in-memory

accelerator that can realize massively parallel signed ternary vector-matrix multiplica-

tions per array access. TiM-DNN supports various ternary representations including

unweighted (-1,0,1), symmetric weighted (-a,0,a), and asymmetric weighted (-a,0,b)

systems, enabling it to execute a broad range of state-of-the-art ternary DNNs. This

is motivated by recent efforts [152] that show weighted ternary systems can achieve

improved accuracies.

The building block of TiM-DNN is a new memory cell, Ternary Processing Cell

(TPC), which functions as both a ternary storage unit and a scalar ternary multipli-

cation unit. Using TPCs, we design TiM tiles which are specialized memory arrays

to execute signed ternary dot-product operations. TiM-DNN comprises of a plural-

ity of TiM tiles arranged into banks, wherein all tiles compute signed vector-matrix

multiplications in parallel.

In summary, the key contributions of this chapter are:

• We present TiM-DNN, a programmable in-memory accelerator supporting var-

ious ternary representations including unweighted (-1,0,1), symmetric weighted

(-a,0,a), and asymmetric weighted (-a,0,b) systems for realizing a broad range

of ternary DNNs.

• We propose a Ternary Processing Cell (TPC) that functions as both ternary

storage and a ternary scalar multiplications unit and a TiM tile that is a spe-
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cialized memory array to realize signed vector-matrix multiplication operations

with ternary values.

• We develop an architectural simulator for evaluating TiM-DNN, with array-

level timing and energy models obtained from circuit-level simulations. We

evaluate an implementation of TiM-DNN in 32nm CMOS using a suite of 5

popular DNNs designed for image classification and language modeling tasks.

A 32-tile instance of TiM-DNN achieves a peak performance of 114 TOPs/s,

consumes 0.9W power, and occupies 1.96mm2 chip area, representing a 300X

improvement in TOPS/W compared to a state-of-the-art NVIDIA Tesla V100

GPU [158]. In comparison to low-precision accelerators [97, 116], TiM-DNN

achieves 55.2X-240X improvement in TOPS/W. TiM-DNN also obtains 3.9x-

4.7x improvement in system energy and 3.2x-4.2x improvement in performance

over a well-optimized near-memory accelerator for ternary DNNs.

We organize the rest of the chapter as follows. Section 7.1 presents the proposed

TiM-DNN architecture. We detail the experimental methodology for evaluating TiM-

DNN in section 7.2. Section 7.3 contains our experimental results, and section 7.4

concludes the chapter.

7.1 TiM-DNN architecture

In this section, we present the proposed TiM-DNN accelerator along with its building

blocks, i.e., Ternary Processing Cells and TiM tiles.

7.1.1 Ternary Processing Cell (TPC)

To enable in-memory signed multiplication with ternary values, we present a new

Ternary Processing Cell (TPC) that operates as both a ternary storage unit and a

ternary scalar multiplication unit. Figure 7.2 shows the proposed TPC circuit, which

consists of two cross-coupled inverters for storing two bits (‘A’ and ‘B’), a write
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wordline (WLW ), two source lines (SL1 and SL2), two read wordlines (WLR1 and

WLR2) and two bitlines (BL and BLB). A TPC supports two operations - write and

scalar ternary multiplication. A write operation is performed by enabling WLW and

driving the source-lines and the bitlines to either VDD or 0 depending on the data.

We can write both bits simultaneously, with ‘A’ written using BL and SL2 and ‘B’

written using BLB and SL1. Using both bits ‘A’ and ‘B’ a ternary value (-1,0,1) is

inferred based on the storage encoding shown in Figure 7.2 (Table on the left). For

example, when A=0 the TPC stores W=0. When A=1 and B=0 (B=1) the TPC

stores W=1 (W=-1).

Fig. 7.2.: Ternary Processing Cell (TPC) circuit and encoding scheme

A scalar multiplication in a TPC is performed between a ternary input and the

stored weight to obtain a ternary output. The bitlines are precharged to VDD, and

subsequently, the ternary inputs are applied to the read wordlines (WLR1 and WLR2)

based on the input encoding scheme shown in Figure 7.2 (Table on the right). The

final bitline voltages (VBL and VBLB) depend on both the input (I) and the stored

weight (W). The table in Figure 7.3 details the possible outcomes of the scalar ternary

multiplication (W*I) with the final bitline voltages and the inferred ternary output
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(Out). For example, when W=0 or I=0, the bitlines remain at VDD and the output is

inferred as 0 (W*I=0). When W=I=±1, BL discharges by a certain voltage, denoted

by ∆, and BLB remains at VDD. This is inferred as Out=1. In contrast, when W=-

I=±1, BLB discharges by ∆ and BL remains at VDD producing Out=-1. The final

bitline voltages are converted to a ternary output using single-ended sensing at BL

and BLB. Figure 7.3 depicts the output encoding scheme and the results of SPICE

simulation of the scalar multiplication operation with various possible final bitline

voltages. Note that, the TPC design uses separate read and write paths to avoid read

disturb failures during in-memory multiplications.

Fig. 7.3.: Scalar multiplication using a TPC
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7.1.2 Dot-product computation using TPCs

Next, we extend the idea of realizing a scalar multiplication using the TPC to

a dot-product computation. Figure 7.4(a) illustrates the mapping of a dot-product

operation (
∑L

i=1 Inp[i] ∗W [i]) to a column of TPCs with shared bitlines. To com-

pute, first the bitlines are precharged to VDD, and then the inputs (Inp) are applied

to all TPCs simultaneously. The bitlines (BL and BLB) function as an analog accu-

mulator, wherein the final bitline voltages (VBL and VBLB) represent the sum of the

individual TPC outputs. For example, if ‘n/L’ and ‘k/L’ TPCs have output 1 and -1,

respectively, the final bitline voltages are VBL = VDD − n∆ and VBLB = VDD − k∆.

The bitline voltages are converted using Analog-to-Digital converters (ADCs) to yield

digital values ‘n’ and ‘k’. For the unweighted encoding where the ternary weights are

encoded as (-1,0,1), the final dot-product is ‘n-k’. Figure 7.4(b) shows the sensing

circuit required to realize dot-products with unweighted (-1,0,1) ternary system.

Fig. 7.4.: Dot-product computation using TPCs: (a) Analog accumulation using

BL and BLB, (b) sensing circuit for unweighted (-1,0,1) ternary system, (c) Sensing

circuit for asymmetric weighted (-a,0,b) ternary system
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We can also realize dot-products with a more general ternary encoding repre-

sented by asymmetric weighted (-a,0,b) values. Support for a more general ternary

encoding is motivated by recent efforts [152] that show weighted ternary systems can

achieve improved accuracies. Figure 7.4(c) shows the sensing circuit that enables

dot-product with asymmetric ternary weights (−W2, 0,W1) and inputs (−I2, 0, I1).

As shown, the ADC outputs are scaled by the corresponding weights (W1 and W2),

and subsequently, an input scaling factor (Iα) is applied to yield ‘Iα(W1*n-W2*k)’. In

contrast to dot-products with unweighted values, we require two execution steps to

realize dot-products with the asymmetric ternary system, wherein each step computes

a partial dot-product (pOut). Figure 7.5 details these two steps using an example. In

step 1, we choose Iα=I1, and apply I1 and I2 as ‘1’ and ‘0’, respectively, resulting in a

partial output (pOut) given by pOut1 = I1(W1*n-W2*k). In step 2, we choose Iα=-I2,

and apply I1 and I2 as ‘0’ and ‘1’, respectively, to yield pOut2 = -I2(W1*n-W2*k).

The final dot-product is given by ‘pOut1+pOut2’.

Fig. 7.5.: Example dot-product computation with asymmetric weighted ternary values
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To validate the dot-product operation, we perform a detailed SPICE simulation

to determine the possible final voltages at BL (VBL) and BLB (VBLB). Figure 7.6

shows various BL states (S0 to S10) and the corresponding value of VBL and ‘n’. Note

that the possible values for VBLB (‘k’) and VBL (‘n’) are identical, as BL and BLB are

symmetric. The state Si refers to the scenario where ‘i’ out of ‘L’ TPCs compute an

output of ‘1’. We observe that from S0 to S7 the average sensing margin (∆) is 96mv.

The sensing margin decreases to 60-80mv for states S8 to S10, and beyond S10 the

bitline voltage (VBL) saturates. Therefore, we can achieve a maximum of 11 BL states

(S0 to S10) with sufficiently large sensing margin required for sensing reliably under

process variations [114]. The maximum value of ‘n’ and ‘k’ is thus 10, which in turn

determines the number of TPCs (‘L’) that can be enabled simultaneously. Setting

L = nmax = kmax would be a conservative choice. However, exploiting the weight

and input sparsity of ternary DNNs [153–155], wherein 40% or more of the elements

are zeros, and the fact that non-zero outputs are distributed between ‘1’ and ‘-1’,

we choose a design with nmax = 8, and L = 16. Our experiments indicate that this

choice had no effect on the final DNN accuracy compared to the conservative case.

In this thesis, we also evaluate the impact of process variations on the dot-product

operations realized using TPCs, and provide the experimental results on variations

in Section 7.3.6.

7.1.3 TiM tile

We now present the TiM tile, i.e., a specialized memory array designed using

TPCs to realize massively parallel vector-matrix multiplications with ternary values.

Figure 7.7 details the tile design, which consists of a 2D array of TPCs, a row decoder

and write wordline driver, a block decoder, Read Wordline Drivers (RWDs), column

drivers, a sample and hold (S/H) unit, a column mux, Peripheral Compute Units

(PCUs), and scale factor registers. The TPC array contains ‘L*K*N’ TPCs, arranged

in ‘K’ blocks and ‘N’ columns, where each block contains ‘L’ rows. As shown in
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Fig. 7.6.: Dot-product circuit simulation

the Figure, TPCs in the same row (column) share wordlines (bitlines and source-

lines). The tile supports two major functions, (i) programming, i.e., row-by-row write

operations, and (ii) a vector-matrix multiplication operation. A write operation is

performed by activating a write wordline (WLW ) using the row decoder and driving

the bitlines and source-lines. During a write operation, ‘N’ ternary words (TWs)

are written in parallel. In contrast, to the row-wise write operation, a vector-matrix

multiplication operation is realized at the block granularity, wherein ‘N’ dot-product

operations each of vector length ‘L’ are executed in parallel. The block decoder

selects a block for the vector-matrix multiplication, and RWDs apply the ternary

inputs. During the vector-matrix multiplication, TPCs in the same row share the

ternary input (Inp), and TPCs in the same column produce partial sums for the

same output. As discussed in section 7.1.2, accumulation is performed in the analog

domain using the bitlines (BL and BLB). In one access, TiM can compute the vector-

matrix product Inp.W, where Inp is a vector of length L and W is a matrix of

dimension LxN stored in TPCs. The accumulated outputs at each column are stored

using a sample and hold (S/H) unit and get digitized using PCUs. To attain higher
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Fig. 7.7.: Ternary in-Memory processing tile

area efficiency, we utilize ‘M’ PCUs per tile (‘M’ < ‘N’) by matching the bandwidth

of the PCUs to the bandwidth of the TPC array and operating the PCUs and TPC

array as a two-stage pipeline. Next, we discuss the TiM tile peripherals in detail.

Read Wordline Driver (RWD). Figure 7.8(a) shows the RWD logic that takes a

ternary vector (Inp) and block enable (bEN) signal as inputs and drives all ‘L’ read

wordlines (WLR1 and WLR2) of a block. The block decoder generates the bEN signal

based on the block address that is an input to the TiM tile. WLR1 and WLR2 are

activated using the input encoding scheme shown in Figure 7.2 (Table on the right).

Peripheral Compute Unit (PCU). Figure 7.8(b) shows the logic for a PCU, which

consists of two ADCs and a few small arithmetic units (adders and multipliers). The

primary function of PCUs is to convert the bitline voltages to digital values using

ADCs. However, PCUs also enable other key functions such as partial sum reduction,
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Fig. 7.8.: (a) Read Wordline Driver (RWD), (b) Peripheral and Compute Unit (PCU)

and weight (input) scaling for weighted ternary encoding (-W2,0,W1) and (-I2,0,I1).

Although the PCU can be simplified if W2=W1=1 or/and I2=I1=1, in this work,

we target a programmable TiM tile that can support various state-of-the-art ternary

DNNs. To further generalize, we use a shifter to support DNNs with ternary weights

and higher precision activations [153, 155]. The activations are evaluated bit-serially

using multiple TiM accesses. Each access uses an input bit, and we shift the computed

partial sum based on the input bit significance using the shifter. TiM tiles have scale

factor registers (shown in Figure 7.7) to store the weight and the activation scale

factors that vary across layers within a network.

7.1.4 TiM-DNN accelerator architecture

Figure 7.9 shows the proposed TiM-DNN accelerator, which has a hierarchical orga-

nization with multiple banks, wherein each bank comprises of several TiM tiles, an

activation buffer, a partial sum (Psum) buffer, a global Reduce Unit (RU), a Spe-

cial Function Unit (SFU), an instruction memory (Inst Mem), and a Scheduler. The

compute time and energy in Ternary DNNs are heavily dominated by vector-matrix
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multiplications which are realized using TiM tiles. Other DNN functions, viz., ReLU,

pooling, normalization, Tanh and Sigmoid are performed by the SFU. The partial

sums produced by different TiM tiles are reduced using the RU, whereas the partial

sums produced by separate blocks within a tile are reduced using PCUs (as discussed

in section 7.1.3). TiM-DNN has a small instruction memory and a Scheduler that

read instructions and orchestrates operations inside a bank. TiM-DNN also contains

activation and Psum buffers to store activations and partial sums, respectively.

Fig. 7.9.: TiM-DNN accelerator architecture

Mapping. DNNs can be mapped to TiM-DNN both temporally and spatially. The

networks that fit on TiM-DNN entirely are mapped spatially, wherein the weight

matrix of each convolution (Conv) and fully-connected (FC) layer is partitioned and

mapped to dedicated (one or more) TiM tiles, and the network executes in a pipelined

fashion. In contrast, networks that cannot fit on TiM-DNN at once are executed using

the temporal mapping strategy, wherein we execute Conv and FC layers sequentially

over time using all TiM tiles. The weight matrix (W) of each CONV/FC layer

could be either smaller or larger than the total weight capacity (TWC) of TiM-DNN.

Figure 7.10 illustrates the two scenarios using an example workload (vector-matrix

multiplication) that is executed on two separate TiM-DNN instances differing in the
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number of TiM tiles. As shown, when (W < TWC) the weight matrix partitions (W1

& W2) are replicated and loaded to multiple tiles, and each TiM tile computes on

input vectors in parallel. In contrast, when (W > TWC), the operations are executed

sequentially using multiple steps.

Fig. 7.10.: TiM-DNN mapping: Example

7.2 Experimental Methodology

In this section, we present our experimental methodology for evaluating TiM-DNN.

TiM tile modeling. We perform detailed SPICE simulations to estimate the tile-

level energy and latency for the write and vector-matrix multiplication operations.

The simulations are performed using 32nm bulk CMOS technology and PTM models.
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We use 3-bit flash ADCs to convert bitline voltages to digital values. To estimate

the area and latency of digital logic both within the tiles (PCUs and decoders) and

outside the tiles (SFU and RU), we synthesized RTL implementations using Synopsys

Design Compiler and estimated power consumption using Synopsys Power Compiler.

We performed the TPC layout (Figure 7.11) to estimate its area, which is about

720F 2 (where F is the minimum feature size). We also performed variation analysis

to estimate error rates due to incorrect sensing by considering variations in transistor

VT (σ/µ=5%) [161].

Fig. 7.11.: Ternary Processing Cell (TPC) layout

Table 7.1.: TiM-DNN micro-architectural parameters

Components Values

No. of processing tiles 32 TiM tiles

TiM tile 256x256 TPCs, 32 PCUs, (M=32, N=256, L=K=16)

Buffer (Activation + Psum) 16 KB + 8 KB

I-Mem 128 entries

Global Reduce Unit (RU) 256 adders (12-bit)

Special function unit (SFU) 64 ReLUs, 8 vPE with 4 lanes, 20 SPEs, 32 QUs

Main memory HBM2 (256 GB/s)
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System-level simulation. We developed an architectural simulator to estimate

application-level energy and performance benefits of TiM-DNN. The simulator maps

various DNN operations, viz., vector-matrix multiplications, pooling, Relu, etc. to

TiM-DNN components and produces execution traces consisting of off-chip accesses,

write and in-memory operations in TiM tiles, buffer reads and writes, and RU and

SFU operations. Using these traces and the timing and energy models from circuit

simulation and synthesis, the simulator computes the application-level energy and

performance.

TiM-DNN parameters. Table 7.1 details the micro-architectural parameters for

the instance of TiM-DNN used in our evaluation, which contains 32 TiM tiles, with

each tile having 256x256 TPCs. The SFU consists of 64 Relu units, 8 vector processing

elements (vPE) each with 4 lanes, 20 special function processing elements (SPEs),

and 32 Quantization Units (QU). SPEs computes special functions such as Tanh

and Sigmoid. The output activations are quantized to ternary values using QUs.

The latency of the dot-product operation is 2.3 ns. TiM-DNN can achieve a peak

performance of 114 TOPs/sec, consumes ∼0.9 W power, and occupies ∼1.96 mm2

chip area.

Fig. 7.12.: Near-memory compute unit for the baseline design
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Baseline. The processing efficiency (TOPS/W) of TiM-DNN is 300X better than

NVIDIA’s state-of-the-art Volta V100 GPU [158]. This is to be expected, since the

GPU is not specialized for ternary DNNs. In comparison to previous near-memory

ternary accelerators [97], TiM-DNN achieves 55.2X improvement in TOPS/W. To

perform a fairer comparison and to report the benefits exclusively due to in-memory

computations enabled by the proposed TPC, we design a well-optimized near-memory

ternary DNN accelerator. This baseline accelerator differs from TiM-DNN in only

one aspect — tiles consist of regular SRAM arrays (256x512) with 6T bit-cells and

near-memory compute (NMC) units (shown in Figure 7.12), instead of the TiM tiles.

Note that, to store a ternary word using the SRAM array, we require two 6T bit-

cells. The baseline tiles are smaller than TiM tiles by 0.52x, therefore, we use two

baselines designs. (i) An iso-area baseline with 60 baseline tiles and the overall accel-

erator area is same as TiM-DNN.(ii) An iso-capacity baseline with the same weight

storage capacity (2 Mega ternary words) as TiM-DNN. We note that the baseline

is well-optimized, and our iso-area baseline can achieve 21.9 TOPs/sec, reflecting an

improvement of 17.6X in TOPs/sec over near-memory accelerator for ternary DNNs

proposed in [97].

Table 7.2.: DNN benchmarks for evaluating TiM-DNN [153,154]
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DNN Benchmarks. We evaluate the system-level energy and performance bene-

fits of TiM-DNN using a suite of DNN benchmarks. Table 7.2 details our bench-

mark applications. We use state-of-the-art convolutional neural networks (CNN),

viz., AlexNet, ResNet-34, and Inception to perform image classification on ImageNet.

We also evaluate popular recurrent neural networks (RNN) such as LSTM and GRU

that perform language modeling task on the Penn Tree Bank (PTB) dataset [160].

Table 7.2 also details the activation precision and accuracy of these ternary networks.

7.3 Results

In this section, we present various results that quantify the improvements ob-

tained by TiM-DNN. We also compare TiM-DNN with other state-of-the-art DNN

accelerators.

7.3.1 Comparison with prior DNN accelerators

We first quantify the advantages of TiM-DNN over prior DNN accelerators using

processing efficiencies (TOPS/W and TOPS/mm2) as our metric. Table 7.3 details 3

prior DNN accelerators including - (i) Nvidia Tesla V100 [158], a state-of-the-art GPU,

(ii) Neural-Cache [116], a design using bitwise in-memory operations and bit-serial

near-memory arithmetic to realize dot-products, (iii) BRien [97], a near-memory ac-

celerator for ternary DNNs. As shown, TiM-DNN achieves substantial improvements

in both TOPS/W and TOPS/mm2. GPUs, near-memory accelerators [97], and bi-

nary in-memory accelerators [116] are less efficient than TiM-DNN as their efficiency

is still limited by the on-chip memory bandwidth, wherein they can simultaneously

access one [97,158] or at most two [116] memory rows. In contrast, TiM-DNN offers

addition parallelism by simultaneously accessing ‘L’ (L=16) memory rows to compute

in-memory vector-matrix multiplications.
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Table 7.3.: Comparison of TiM-DNN with other DNN accelerators

7.3.2 Analysis of performance benefits

We analyze the performance benefits of TiM-DNN over our two baselines (Iso-

capacity and Iso-area near-memory accelerators). Figure 7.13 shows the two major

components of the normalized inference time which are MAC-Ops (vector-matrix mul-

tiplications) and Non-MAC-Ops (other DNN operations) for TiM-DNN (TiM) and

the baselines. Overall, we achieve 5.1x-7.7x speedup over the Iso-capacity baseline

and 3.2x-4.2x speedup over the Iso-area baseline across our benchmark applications.

The speedups depend on the fraction of application runtime spent on MAC-Ops, with

DNNs having higher MAC-Ops times attaining superior speedups. This is expected

as the performance benefits of TiM-DNN over the baselines derive from accelerating

MAC-Ops using in-memory computations. Iso-area (baseline2) is faster than Iso-

capacity (baseline1) due to the higher-level of parallelism available from the additional

baseline tiles. The 32-tile instance of TiM-DNN achieves 4827, 952, 1834, 2*106, and

1.9*106 inference/sec for AlexNet, ResNet-34, Inception, LSTM, and GRU, respec-

tively. Our RNN benchmarks (LSTM and GRU) fit on TiM-DNN entirely, leading to

better inference performance than CNNs.



129

Fig. 7.13.: Performance benefits of TiM-DNN

Fig. 7.14.: Energy benefits of TiM-DNN

7.3.3 Analysis of energy benefits

We now analyze the application level energy benefits of TiM-DNN over the su-

perior of the two baselines (Baseline2). Figure 7.14 shows major energy components

for TiM-DNN and Baseline2, which are programming (writes to TiM tiles), DRAM

accesses, reads (writes) from (to) activation and Psum buffers, operations in reduce

units and special function units (RU+SFU Ops), and MAC-Ops. As shown, TiM

reduces the MAC-Ops energy substantially and achieves 3.9x-4.7x energy improve-
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ments across our DNN benchmarks. The primary cause for this energy reduction is

that TiM-DNN computes on 16 rows simultaneously per array access.

7.3.4 Kernel-level benefits

To provide more insights on the application-level benefits, we compare the TiM

tile and the baseline tile at the kernel-level. We consider a primitive DNN kernel, i.e.,

a vector-matrix computation (Out = Inp*W, where Inp is a 1x16 vector and W is a

16x256 matrix), and map it to both TiM and baseline tiles. We use two variants of

TiM tile, (i) TiM-8 and (ii) TiM-16, wherein we simultaneously activate 8 wordlines

and 16 wordlines, respectively. Using the baseline tile, the vector-matrix multiplica-

tion operation requires row-by-row sequential reads, resulting in 16 SRAM accesses.

In contrast, TiM-16 and TiM-8 require 1 and 2 accesses, respectively. Figure 7.15

shows that the TiM-8 and TiM-16 designs achieve a speedup of 6x and 11.8x respec-

tively, over the baseline design. Note that the benefits are lower than 8x and 16x,

respectively, as SRAM accesses are faster than TiM-8 and TiM-16 accesses.

Fig. 7.15.: Kernel-level benefits of TiM tile

Next, we compare the energy consumption in TiM-8, TiM-16, and baseline designs

for the above kernel computation. In TiM-8 and TiM-16, the bit-lines are discharged

twice and once, respectively, whereas, in the baseline design the bit-lines discharge

multiple (16*2) times. Therefore, TiM tiles achieve substantial energy benefits over
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the baseline design. The additional factor ‘2’ in (16*2) arises as the SRAM array uses

two 6T bit-cells for storing a ternary word. However, the energy benefits of TiM-8 and

TiM-16 is not 16x and 32x, respectively, as TiM tiles discharge the bitlines by a larger

amount (multiple ∆s). Further, the amount by which the bitlines get discharged in

TiM tiles depends on the number of non-zero scalar outputs. For example, in TiM-

8, if 50% of the TPCs output in a column are zeros the bitline discharges by 4∆,

whereas if 75% are zeros the bitline discharges by 2∆. Thus, the energy benefits over

the baseline design are a function of the output sparsity (fraction of outputs that are

zero). Figure 7.15 shows the energy benefits of TiM-8 and TiM-16 designs over the

baseline design at various output sparsity levels.

7.3.5 TiM-DNN area breakdown

We now discuss the area breakdown of various components in TiM-DNN. Fig-

ure 7.16 shows the area breakdown of the TiM-DNN accelerator, a TiM tile, and a

baseline tile. The major area consumer in TiM-DNN is the TiM-tile. In the TiM

and baseline tiles, area mostly goes into the core-array that consists of TPCs and 6T

bit-cells, respectively. Further, as discussed in section 7.2, TiM tiles are 1.89x larger

than the baseline tile at iso-capacity. Therefore, we use the iso-area baseline with 60

tiles and compare it with TiM-DNN having 32 TiM tiles.

Fig. 7.16.: TiM-DNN area breakdown
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Fig. 7.17.: Histogram of the bit-line voltages (VBL/VBLB) under process variations

7.3.6 Impact of under process variations

Finally, we study the impact of process variations on the computations ( i.e.,

ternary vector-matrix multiplications) performed using TiM-DNN. To that end, we

first perform Monte-Carlo circuit simulation of ternary dot-product operations exe-

cuted in TiM tiles with nmax = 8 and L = 16 to determine the sensing errors under

random variations. We consider variations (σ/µ = 5%) [161] in the threshold voltage

(VT ) of all transistors in each and every TPC. We evaluate 1000 samples for every

possible BL/BLB state (S0 to S8) and determine the spread in the final bitline volt-

ages (VBL/VBLB). Figure 7.17 shows the histogram of the obtained VBL voltages of

all possible states across these random samples. As mentioned in section 7.1.2, the

state Si represents n = i, where ‘n’ is the ADC Output. We can observe in the

figure that some of the neighboring histograms slightly overlap, while the others do

not. For example, the histograms S7 and S8 overlap but S1 and S2 do not. The

overlapping areas in the figure represent the samples that will result in sensing errors

(SEs). However, the overlapping areas are very small, indicating that the probability

of the sensing error (PSE) is extremely low. Further, the sensing errors depend on

‘n’, and we represent this dependency as the conditional sensing error probability
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[PSE(SE/n)]. It is also worth mentioning that the error magnitude is always ±1, as

only the adjacent histograms overlap.

PE =
8∑

n=0

PSE(SE/n) ∗ Pn (7.1)

Fig. 7.18.: Error probability during vector-matrix multiplications

Equation 7.1 details the probability (PE) of error in the ternary vector-matrix mul-

tiplications executed using TiM tiles, where PSE(SE/n) and Pn are the conditional

sensing error probability and the occurrence probability of the state Sn (ADC-Out =

n), respectively. Figure 7.18 shows the values of PSE(SE/n), Pn, and their product

(PSE(SE/n)*Pn) for each n. PSE(SE/n) is obtained using the Monte-Carlo simula-

tion (described above), and Pn is computed using the traces of the partial sums ob-

tained from sample ternary DNNs [153,154]. As shown in Figure 7.18, Pn is maximum

at n=1 and drastically decreases with higher values of n. In contrast, PSE(SE/n)

shows an opposite trend, wherein the probability of sensing error is higher for larger

n. Therefore, we find the product PSE(SE/n)*Pn to be quite small across all values

on n. In our evaluation, the PE is found to be 1.5*10−4, reflecting an extremely low

probability of error. In other words, we have roughly 2 errors of magnitude (±1) for

every 10K ternary vector matrix multiplications executed using TiM-DNN. In our
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experiments, we found that PE = 1.5*10−4 has no impact on the application level

accuracy. We note that this is due to the low probability and magnitude of error as

well as the ability of DNNs to tolerate errors in their computations [87].

7.4 Summary

Ternary DNNs are extremely promising due to their ability to achieve accuracy simi-

lar to full-precision networks on complex machine learning tasks, while enabling DNN

inference at low energy. In this work, we present TiM-DNN, an in-memory accelerator

for executing state-of-the-art ternary DNNs. TiM-DNN is programmable accelerator

designed using TiM tiles, i.e., specialized memory arrays for realizing massively par-

allel signed vector-matrix multiplications with ternary values. TiM tiles consist of a

new Ternary Processing Cell (TPC) that functions as both a ternary storage unit and

a scalar multiplication unit. We evaluate an embodiment of TiM-DNN with 32 TiM

tiles and demonstrate that TiM-DNN achieves significant energy and performance

improvements over a well-optimized near-memory accelerator baseline.
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8. CONCLUSION

The high computation and storage demands of modern computing workloads pose

significant challenges to the efficiency of the computing platforms on which they are

deployed. Traditional Von Neumann systems such as multi-cores and GPUs have

been the mainstay computing platforms for past decades. However, their comput-

ing performance and efficiency on modern workloads (e.g., DNNs) are limited by the

on-chip data-transfer and memory bandwidth. In-memory computing is an emerg-

ing computing paradigm that enables massively parallel functions to be computed

within the memory array itself. Consequently, reducing the time and energy spend

in data-transfers and memory accesses significantly to attain performance and energy

efficiency beyond current Von Neumann systems.

8.1 Thesis summary

In this dissertation, we propose new in-memory architectures to boost the system-

level performance and energy efficiency of modern workloads. We also address key

challenges associated with existing resistive crossbar based in-memory computing

fabrics to enable this future adoption. The key contributions of this dissertation are

summarized below.

• In this dissertation, we explore in-memory computing using STT-MRAM that

is a promising candidate for future on-chip memories. The thesis proposes

STT-CiM, an enhanced STT-MRAM that can perform a range of arithmetic,

logic, and vector compute-in-memory operations. It addresses a key challenge

associated with these in-memory operations, i.e., reliable computation under

process variations. The thesis utilizes the proposed design (STT-CiM) as a

scratchpad in the memory hierarchy of a programmable processor using ISA
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extensions and on-chip bus enhancements to support in-memory computations.

To further the system-level performance and energy improvements due to STT-

CiM, it proposes architectural optimizations and data mapping techniques. A

device-to-architecture simulation framework was used for evaluating the bene-

fits of STT-CiM. The experiments indicate that STT-CiM achieves substantial

improvements in energy and performance, and shows considerable promise in

alleviating the processor-memory gap.

• The thesis addresses a key challenge in resistive crossbar based in-memory com-

puting fabrics, i.e., they suffer from numerous device and circuit-level non-

idealities leading to degradation in application-level accuracy of large-scale

DNNs. To quantify the impact of crossbar non-idealities on the accuracy of

large-scale DNNs, a fast and scalable framework that can be integrated into

state-of-the-art DNN software frameworks is needed. The dissertation addresses

this need and proposes FCM, i.e., a fast and accurate functional crossbar model

that abstracts crossbar non-idealities to achieve orders of magnitude speedup

over the existing circuit simulations. It also presents RxNN, a software simu-

lation framework for evaluating and re-training large-scale DNNs on resistive

crossbar systems. The thesis evaluated several state-of-the-art neural networks

and found that the errors due to non-idealities can degrade the overall accu-

racy of large scale DNNs considerably, thereby highlighting the need for further

research in error correction and compensation schemes to enable adoption of

resistive crossbar system.

• In this thesis, we also exemplify a compensation scheme for resistive crossbar

system. We propose CxDNN, a hardware-software methodology comprising of a

conversion algorithm, a hardware-instance-independent re-training mechanism,

and a low-overhead hardware compensation scheme to design high accuracy

DNNs on resistive crossbars. CxDNN preserves the train-once-deploy-anywhere

tenet of current DNN implementations, wherein DNNs are re-trained once to ob-
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tain a common model that can be deployed on many resistive crossbar systems.

Further, CxDNN utilizes low-overhead hardware to mitigate instance-specific

errors. Our evaluations reveal that CxDNN can largely restore the accuracy

loss due to non-idealities over a range of large-scale DNN benchmarks. There-

fore, CxDNN is a promising approach to compensate for errors due to crossbar

non-idealities and addresses a key bottleneck to the adoption of resistive cross-

bar based neural fabrics.

• Finally, the dissertation also proposes TiM-DNN, an in-memory accelerator for

executing state-of-the-art ternary DNNs. TiM-DNN is programmable accelera-

tor designed using TiM tiles, i.e., specialized memory arrays for realizing mas-

sively parallel signed vector-matrix multiplications with ternary values. TiM

tiles consist of a new Ternary Processing Cell (TPC) that functions as both

a ternary storage unit and a scalar multiplication unit. The evaluation of an

embodiment of TiM-DNN with 32 TiM tiles and demonstrate that TiM-DNN

achieves significant energy and performance improvements over well-optimized

near-memory accelerators.
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