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ABSTRACT

Bagwe, Rishikesh Mahesh. M.S.E.C.E., Purdue University, December 2019. Modeling
and Energy Management of Hybrid Electric Vehicles. Major Professor: Dr. Euzeli
Dos Santos Jr.

This thesis proposes an Adaptive Rule-Based Energy Management Strategy (ARBS

EMS) for a parallel hybrid electric vehicle (P-HEV). The strategy can efficiently be

deployed online without the need for complete knowledge of the entire duty cycle in or-

der to optimize fuel consumption. ARBS improves upon the established Preliminary

Rule-Based Strategy (PRBS) which has been adopted in commercial vehicles. When

compared to PRBS, the aim of ARBS is to maintain the battery State of Charge

(SOC) which ensures the availability of the battery over extended distances. The

proposed strategy prevents the engine from operating in highly inefficient regions and

reduces the total equivalent fuel consumption of the vehicle. Using an HEV model

developed in Simulink®, both the proposed ARBS and the established PRBS strate-

gies are compared across eight short duty cycles and one long duty cycle with urban

and highway characteristics. Compared to PRBS, the results show that, on average,

a 1.19% improvement in the miles per gallon equivalent (MPGe) is obtained with

ARBS when the battery initial SOC is 63% for short duty cycles. However, as op-

posed to PRBS, ARBS has the advantage of not requiring any prior knowledge of the

engine efficiency maps in order to achieve optimal performance. This characteristics

can help in the systematic aftermarket hybridization of heavy duty vehicles.
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1. INTRODUCTION

A vehicle that uses more than one source for propulsion is termed as a hybrid vehicle.

Lately, the hybrid electric vehicle (HEV) and the fuel cell hybrid vehicle (FCHV) are

becoming popular in the automotive industry. The HEV combines the conventional

internal combustion engine (ICE) with an electric motor and a battery storage sys-

tem. Many companies have been manufacturing and selling HEVs for two decades

but the first hybrid car was built in 1898 [1]. The HEV technology is paving the

way from gasoline vehicles to pure electric vehicles. A FCHV has a battery power

source assisted by compressed hydrogen. The compressed hydrogen energy storage

is a cleaner approach compared to gasoline energy storage in hybrid vehicles [2]. In

contrast to the high production number of HEVs, fewer FCHV cars are built to date.

The rise of electric vehicles, the lack of fueling infrastructure and high hydrogen fuel

cost [3] are among the reasons for the low FCHV production.

The two power sources in a hybrid vehicle have their own benefits and drawbacks.

A hybrid technology tries to compensate for the drawbacks of one source by using

the benefits of the other. For example, in HEVs, the engine does not perform well

on duty cycles with high number of stops whereas a battery and an electric motor

can propel the vehicle efficiently in such situations [4]. The use of battery power

also helps in reducing the emissions. On the other hand, batteries have lower energy

density [5] which may limit the range of the vehicle. Although petroleum fuel is the

leading cause of greenhouse gases, it has a high energy density and the refueling time

is shorter compared to the time needed to charge a battery.
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1.1 Classification of HEVs

The engine and the electric motor in a HEV can be connected using different

configurations. As a results, the HEVs are classified into three main classes: Series

(S-HEV), Parallel (P-HEV) and Series/Parallel (S/P-HEV) [6].

1.1.1 Series HEV

In S-HEV drivetrain, one or multiple motors are coupled to the wheel shaft of

the vehicle. The ICE is attached to a generator. The generator is coupled with the

battery and the motor. So the ICE assists in either charging the battery or directly

propelling the vehicle through the generator and the motor. The advantage of the

series configuration is that it can be differential free. That is two motors can be used,

one for the right and one for the left side wheels. The engine, motor and generator

have to be sized adequately in order to fulfill high power requests by the vehicle. Fig.

1.1 shows the configuration diagram for S-HEV vehicle.

Fuel Engine

Generator

Power
ConverterBattery Motor/

Generator

Drive

Line

Fig. 1.1. Block diagram of a S-HEV.
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1.1.2 Parallel HEV

A P-HEV consists of an ICE and an electric motor coupled to the drive shaft

separately. This configuration allows both components to deliver torque to the wheels

simultaneously. Unlike S-HEV, a separate generator is not present in a P-HEV. The

power requested by the vehicle can be split into engine power request and battery

power request. As a result, a downsized engine which is complemented by motor can

be used to satisfy vehicle peak power. The power splitting proportion between the

components can be optimized for fuel economy. Since the engine is coupled to the

drive shaft in a P-HEV, engine speed is determined by the vehicle speed. Whereas

for a S-HEV, the engine speed can be adjusted to attain high efficiency for a given

torque request. Fig. 1.2 shows the P-HEV configuration and the power flow through

the vehicle.

Fuel Engine

Power
ConverterBattery Motor/

Generator

Drive

Line

Fig. 1.2. Block diagram of a P-HEV.

1.1.3 Series/Parallel HEV

A S/P-HEV combines the benefits of both the series and parallel configurations.

It consists of a generator that connects the ICE to the electric motor and the ICE

is also directly connected to the drive shaft. The use of all these components adds

complexity and cost to the vehicle.
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However, an intelligent power split strategy can help offset the added cost. Com-

mercial vehicles like Toyota Prius and Ford Escape Hybrid use this configuration.

Fig. 1.3 shows the S/P-HEV components and their connection.

Fuel Engine

Generator

Power
ConverterBattery Motor/

Generator

Drive

Line

Fig. 1.3. Block diagram of a S/P-HEV.

1.2 P-HEV classification

The P-HEV vehicle can be further classified into four categories based on the

relative size of the electric motor with respect to the ICE and battery voltage. They

are micro, mild, full and plug-in hybrids [7]. The HEVs with voltage net of 12 V are

classified under micro HEVs. The electric motor of micro HEVs has a peak power of 5

kW. It is used to run the engine starter motor and some accessory electrical systems.

The mild HEVs (MHEV) is a category that has become popular due the growing

power demand by the vehicle peripheral systems. The development of technologies

such ADAS [8], V2V [9] has led to the use of 48 V batteries with electric motors

ranging from 5 to 30 kW to supply the sensors, processor cooling systems and some

of the high power accessory load like air compressor pumps. Commercial vehicles like

Audi A8 have adopted the MHEV technology.

The full P-HEVs have comparable electric motor and ICE sizes. For an ICE of 75

kW, the electric motor can range from 25 to 75 kW in peak power. Unlike the micor-
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or mild- HEVs, the full hybrid system have a pure electric mode where the electric

motor can individually propel the vehicle. Toyota Prius vehicles is an example of the

full hybrid category.

In Plug-in P-HEVs, the electric motor is larger in size than the ICE. The electric

motor is the primary propulsion machine while the ICE assists the electric motor.

The main difference between the plug-in hybrids and the full hybrids is the external

battery charging capability present in the plug-in hybrids. Chevy Volt is one of the

popular plug-in hybrid vehicles.

1.3 Energy Management Systems

In order to achieve high energy efficiency, it is important for a hybrid vehicle to

use its power sources optimally. An Energy Management (EM) System controls the

power delivered by each of the sources available on-board. Different EM systems are

available for HEVs and multiple systems can be implemented on a vehicle depending

on its type, class and size. Some of the EM systems are mentioned below:

1.3.1 Regenerative Braking

In conventional ICE vehicles, the car uses friction brakes to decelerate the vehicle.

The braking action converts the kinetic energy of the vehicle into heat energy which is

wasted. Hybrid vehicles use regenerative braking along with friction brakes to reduce

the vehicle speed. The regenerative braking technique converts the kinetic energy of

the vehicle in to electric energy which gets stored in the battery and can be reused

to propel the vehicle. During regenerative braking, the electric motor of the hybrid

vehicle operates as a generator which converts the mechanical energy of the wheels

to electric energy. This EM system significantly increases the fuel economy of the

HEV over conventional ICE vehicles. HEVs can absorb up to a certain amount of

kinetic energy from the vehicle depending on the size of the electric motor and the

Amp-hr/hr limit of the battery.
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1.3.2 Load scheduling

Different systems may be demanding power simultaneously during the vehicle

operation. Some of these systems are time critical where the lack of power can cause

noticeable changes in the drivability of the vehicle. For example, ADAS need power

to keep operating its sensors like lidar, cameras along with the cooling system that

maintains the temperature of the system’s microprocessor. Any drop in the power

delivered to this system can cause malfunction and endanger the driver’s safety. On

the other hand, some systems in the vehicle are not critical. An example of such

system is the vehicle’s air conditioning system. A load scheduling EM systems only

operates the non-critical systems if delivering power to these systems allows the ICE

and the motor to still operate in their efficient regions.

1.3.3 Engine Start/Stop

With the growing number of cars on road, vehicles spend an increasing amount of

time idling in the city traffic. The ICE consumes some fuel to keep the engine idling

in such situations. Completely turning off the engine at a stop in a conventional ICE

vehicles leads to uncomfortable starts and lagging responses from the vehicle. The

starter motors in the conventional ICE are not big enough to enable a smooth start

of the engine. The HEV have more powerful motors that can crank the engine faster.

Therefore this EM system can help cut down the fuel that is wasted by stopping the

engine when the vehicle is at a stop.

1.3.4 Power split

The major advantage of a P-HEV or S/P-HEV is that the total power requested

by the vehicle can be split between the ICE and the electric motor. The ICE fuel

map has inefficient regions, so delivering certain power request from the ICE is non-

economical. Using the electric motor to supply some of the power in these cases
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is beneficial and may yield higher fuel economy. If power demand is low, ICE can

produce more power thus moving to an efficient operating region and use the excess

power produced to charge the battery.

The power split opportunity in P-HEV allows it operate in five modes, they are,

a) Motor only propulsion, b) Engine only propulsion, c) Motor Assist, d) Engine

charging the battery, and e) Regenerative braking. A strategy that can optimize the

power split between the sources of power in an P-HEV is needed. Several strategies

have been previously proposed. This thesis describes an online optimization strategy

for P-HEVs. The proposed approach is easier to implement and achieves better fuel

economy without the knowledge of the engine maps.

1.4 Energy Management Strategy

An Energy Management Strategy (EMS) is an algorithm that decides the amount

of power delivered by each of the source. It is an important aspect of fuel economy

and emission control in HEVs. The objective of the EMS is to efficiently use the two

sources of energy available in the HEV. The EMS strategies broadly fall under two

categories: optimization-based (OBS) and rule-based (RBS) strategies [10].

The OBS category relies on several optimization techniques including dynamic

programming (DP) [11], particle swarm optimization (PSO) [12] and equivalent con-

sumption minimization strategy (ECMS) [13]. When the DP technique is used, the

problem is discretized over time into a sequence of optimization sub-problems. To ob-

tain a global optimum, these sub-problems are then solved by using backward induc-

tion. Because it uses backward induction, this technique requires a priori knowledge

of the entire duty cycle in order to optimize fuel economy in HEVs. PSO also needs

full a priori knowledge of the entire duty cycle. When PSO is used as the optimization

technique, the objective function is fuel consumption. Particles represent potential

solutions that minimize the objective function and these solutions are updated at each
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iteration of PSO according to the current lowest fuel consumption solution for each

particle as well as the current lowest fuel consumption solution across all particles.

The third OBS technique, ECMS, tries to overcome the limitation of the a pri-

ori knowledge of the entire duty cycle underlying the DP and PSO techniques by

converting the global optimization problem into a local problem. The global objec-

tive function is transformed into a local optimization problem by including a fuel

equivalent cost for use of the battery. ECMS can be implemented online. However,

establishing the fuel equivalent cost factor for the conversion of the battery usage

into equivalent fuel cost requires substantial calibration in order for this approach to

generate optimal solutions. Moreover, the resulting solutions are often duty cycle-

specific [14].

The second category of EMS strategies is the RBS category. The RBS strategies

are computationally more efficient than the OBS strategies and therefore can be

easily implemented online. One of the most widely adopted rule-based EMS is the

preliminary rule-based strategy (PRBS) which was introduced in [15] and [16]. PRBS

is based on the engine efficiency map of the vehicle and is powertrain-specific. The

fuzzy rule-based strategy (FRBS) [17] is another RBS technique that is not specific

to a given powertrain. However, while still practical for online deployment, it is

computationally more complex than PRBS.

In general, RBS is the EMS strategy of choice for commercial and practical ap-

plications. The OBS strategies are typically used to gain insight into the behavior

of the vehicle powertrain. The design rules derived from the observations of this be-

havior are then incorporated into a RBS strategy. For example, DP, support vector

machines and neural networks have been adapted to a rule-based online implemen-

tation in [11], [18] and [19], respectively. The RBS energy management strategy

has been successfully implemented in various commercial vehicles such as the Toyota

Prius [20]. RBS is computationally efficient and does not rely on the knowledge of

the entire duty cycle. However, it still may require extensive tuning by experts based

on engine efficiency maps and its optimality may not be guaranteed.
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This thesis presents an online RBS energy management strategy for HEVs which

can be tuned without the knowledge of the engine efficiency map. It can prove to be

effective in aftermarket hybridization process where typically the engine maps of the

conventional vehicles are not readily available. The proposed strategy is suitable for

a parallel HEV and can achieve higher fuel economy than PRBS strategy. Moreover

the proposed strategy is computationally efficient.
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2. MODELING

Modeling physical systems by using a computational framework is a widely used

technique. It facilitates the analysis of the physical systems during the various phases

of the systems′ life cycles. Because of their underlying complexity, models are usually

developed for a specific need and each model has advantages and limitations. Indeed,

as reported in [21], ”All models are wrong, some are useful”. Therefore, the models

of physical systems are evaluated based on their accuracy in faithfully reproducing

the physical system′s behaviors, their generalizability to a family of physical systems,

and their complexity.

Current modeling techniques range from first principle modeling (e.g., CFD [22],

Block Diagram [23]) to data-driven modeling (e.g., Neural Networks [24], System

Identification [25]). In the automotive industry, conducting tests on physical proto-

types during the design or adaptation phases of the product may neither be practical

nor cost effective. For instance, in order to incorporate a new control strategy, a

digital vehicle model, instead of the physical prototype, may be used to assess the

impact of the new strategy on the entire vehicle. This process is commonly followed

in the automotive industry [26], [27], [28], [29], [30]. The flexibility afforded by the

digital model can result in significant time and cost saving. Moreover, with the emer-

gence of connected vehicles, one can anticipate that digital models will be used to

enhance the performance of individual vehicles or a fleet of vehicles while in use. For

instance, a new configuration for a fleet of vehicles can be tested on the digital model

for improved fuel economy on a specific route and then applied to the actual vehicles.

Researchers have been harvesting data from the vehicles on road ( [31], [32]) which

would then facilitate the development of a vehicle digital clone [33].

Developing an accurate digital model for a vehicle requires the integration of the

models for the underlying components of the vehicle. The vehicle model developed in
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this study consists of the combination of models for a) the engine, b) the transmission,

the torque converter clutch and c) the vehicles interaction with the road. Models for

the aforementioned components may be heterogeneous where each model is based on

a different computational technique. Additionally, a driver model is also developed.

It consists of a controller that allows the vehicle plant model to follow a reference

duty cycle.

2.1 Engine

The Engine modeled in this research is a diesel fueled V6 type engine with a max-

imum torque of 2100 N.m at 1200 rpm and a maximum rated power of 321.44 kW .

Traditionally, the engine component of the vehicle is modeled using 1-dimensional

computational fluid dynamics (CFD). This technique is used in commercial software

such as GT-Power [34]. It treats the engine as a piping system and the associated

model focuses on the fluid dynamics in the engine manifolds, valves and the cylinder

body [35]. The goal of CFD is to capture the variances in the parameters within an

engine cycle. Another widely used engine modeling technique is the Mean Value En-

gine Modeling (MVEM). This technique describes the average engine behavior over

several engine cycles [36]. Compared to CFD, MVEM is less accurate but compu-

tationally more efficient. There are several techniques to build a MVEM model like

lookup tables [37] and Neural Networks [38].

In this thesis, the Engine (Fig. 2.1) is modeled as a combination of two engine

maps, EM1, and EM2 following the approach described in [39] and [40]. The input

of the model consist of the engine power request (Peng) and the transmission input

speed. The output are the engine torque and the engine fuel rate.

EM1 defines the maximum engine torque curve. It is used to limit the engine

torque request derived from the engine speed and the engine power request. EM2

defines the engine fuel rate as a function of the engine speed and the engine torque.

These engine maps represent the operational specifications of the engine and are
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Fig. 2.1. Engine model.

measured during performance testing of the engine. In addition to the above two

engine maps, the engine model also emulates the behavior of the torque converter

clutch (TCC) by using two switches (Fig. 2.1). Switch 1 forces the engine propulsion

torque to zero and switch 2 holds the engine speed constant when the engine is in

the idle state. The transmission input speed has a range from 0 to 2200 rpm. The

output engine torque and engine fuel rate have a range from -250 to 2100 N.m and

0 to 125 Lph, respectively. The engine maps and the logic for the TCC replicate the

expected operational behavior of the engine.

2.2 Transmission

The transmission helps the engine operate in an efficient engine speed range.

An automatic transmission system is a discrete system. That is, there is no linear

transition between the states of the transmission. In the proposed vehicle model,

the Simulink® Stateflow® toolbox was used to simulate the finite state machine

governing the transmission gear box. Each state in the transmission model represents

a particular gear ratio.

The transmission being modeled in this study is a 6-speed automatic transmission.

The transition between the states is guided by the transmission shift-schedules. These
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schedules are different for up-shifting and down-shifting which creates a hysteresis

phenomenon that avoids rapid back and forth switching between two adjacent gear

states [41]. The shift schedules depend on the vehicle speed and the APP . In order to

create the shift-schedule maps from the real data, the vehicle speed and the accelerator

pedal position (APP ) are plotted for different gear states as shown in Fig. 2.2. The

boundaries of these gear state regions form the transmission shift-schedule maps. The

data used to build the shift schedule maps was collected from a vehicle that has the

same transmission as the target HEV vehicle. Fig. 2.2 shows the derived downshift

and upshift schedule maps for the vehicle under consideration.

The complete diagram of the transmission model is shown in Fig. 2.3. The input

of the transmission model includes the vehicle speed and the APP . The output is

the gear ratio. A function block, implemented in MATLAB®, is used to generate

the upshift and downshift schedules. Depending on the value of APP , this function

0 10 20 30 40

Vehicle Speed (mph)

0

50

100

A
P

P
 (

%
)

Down Shift Schedule

Up Shift Schedule

Fig. 2.2. Transmission shift schedule maps.

block communicates two sets of 5 vehicle speeds each to the state flow block shown in

Fig. 2.3. These sets represent the transition speeds for the current APP . The State

flow block then determines the appropriate gear by comparing the current vehicle

speed with the transition speeds. The gear ratio associated with each gear was also

determined from the dataset. It is calculated by dividing the transmission output
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speed by the turbine speed. The transmission torque converter clutch is not modeled

as part of the transmission model. However, it is included in the integrated vehicle

model as discussed in Section 2.5.

Gear Numbers

Accelerator Pedal 
Breakpoints

UpShift Schedule 
Map

DownShift Schedule 
Map

APP

Vehicle Speed

Gear Ratios

UpShift 
Schedule

DownShift 
Schedule

Stateflow
 block

attained
gear 
ratiodelay

blockMATLAB 
function 

block

Fig. 2.3. Transmission Model.

The transport delay block in Fig. 2.3 emulates the time taken by the transmission

to engage and disengage the clutch plates while changing gears. During testing, the

transmission model is initialized with the shift-schedules maps and this delay is set

to 1sec.

The transmission model was validated using eight duty cycles. The vehicle speed

and APP are extracted from the dataset and used as input to the transmission model.

The transmission gear predicted by the model is then compared to the actual gear

value recorded in the dataset using the following equation:

% error =
1

S
·
∑

i | Ôi − Õi |
Ômax − Ômin

× 100 (2.1)

where Ôi is the target output, Õi is the corresponding model output and S is the

number of samples. The error (2.1) between the predicted gear and the actual gear

across the eight duty cycles is 5.7%. A sample of both simulated and actual gears for

a period of 500 sec. is shown in Fig. 2.4. The neutral gear state is not shown in Fig.

2.4 because, the vehicle does not come to an engine-off stop during the trips.
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Fig. 2.4. Predicted versus actual transmission gear.

2.3 Vehicle Road Load Model

The power generated in the engine and the battery is delivered to the tires of the

vehicle through the powertrain. The vehicle road load model emulates the interaction

between the vehicle and the road. While the two power sources are propelling the ve-

hicle in the forward direction, there are opposing forces acting on the vehicle, namely,

the aerodynamic drag and the rolling resistance. The vehicle has to overcome these

forces in order to move forward. The free body diagram of the forces acting on the

vehicle is shown in Fig. 2.5.

The aerodynamic drag force (Faero) is produced when the vehicle is trying to cut

through a volume of air. This force has a major impact on vehicles especially, as in

the case of this study, for heavy-duty trucks and buses because of their large fontal

areas. In general, it is difficult to accurately express Faero because of the complex

interaction between the air flow and the body of the vehicle [42]. Instead, a semi-

empirical equation for the aerodynamic drag (Faero) is used as shown in (2.2).

Faero ≈
1

2
· AD · ρ · A · v2 (2.2)
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Fig. 2.5. Vehicle Free Body diagram.

where AD is the aerodynamic drag coefficient which is determined empirically for

each vehicle [43], ρ corresponds to the air density, v is the velocity of the vehicle and

A is the frontal area of the vehicle.

Unlike the aerodynamic force whose effects are considerable at higher vehicle

speeds, the rolling resistance force (Frr) is consistently significant throughout the

operation of the wheels. It is affected by the road material and the weight of the

vehicle on the wheels. It is also affected by the composition of the rubber material of

the tires as well as their design, temperature, and inflation pressure. Using the above

parameters, the rolling resistance (Frr) can be as expressed as follows [42]:

Frr ≈ fr ·N (2.3)

where N is the normal component (i.e., with respect to the ground) of the weight

force on the wheels and fr is the coefficient of rolling resistance. The parameter fr

is dimensionless and reflects the physical properties of the tire and the ground. An

expression for fr is provided in [44] and repeated here in (2.4) for convenience.

fr ≈ Csr + (3.24) · Cdr · (
v

100
)2 (2.4)
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where Csr and Cdr represent the static and dynamic coefficients of the rolling

resistance, respectively. These coefficients vary with the inflation pressure in the

tires.
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Fig. 2.6. Vehicle Road Load Model.

When a vehicle is on a road with a non-zero grade, a portion of the gravitational

force either opposes the vehicle motion or helps it. According to [42], the gravitation

force (Fgrad) can be expressed as follows:

Fgrad = Mv · g · sin(α) (2.5)

where, α is the grade of the road and Mv · g is the total weight of the vehicle.

By taking into account all of the above forces, the total road load force (Rl) on

the vehicle can be expressed by:

Rl ≈
1

2
· AD · ρ · A · v2 + fr ·N +Mv · g · sin(α) (2.6)



18

Equation (2.6) is the basis of the Simulink® road load model implementation in

this research. This model is shown in Fig. 2.6. The maximum brake force is the

service brake force applied to the vehicle when the brake pedal is pressed at a 100%.

Unfortunately, the dataset used in this study did not record a continuous brake pedal

position (BPP ). Instead, the BPP was recorded as a binary value corresponding to

on/off. Therefore, the maximum brake force value was assumed to best fit the duty

cycle.

The vehicle road load model was also tested using a randomly selected trip from

the dataset. The input to the vehicle road load model (i.e. propulsion power, road

grade, vehicle mass) were taken from the real data for the purpose of this testing. A

sample of the simulation results is shown in Fig. 2.7. The error for the vehicle speed

over the 500 sec. testing duration is 3.8%.

0 100 200 300 400 500
Time (s)

0

20

40

60

V
eh

ic
le

 S
p
ee

d
(m

p
h
)

Target Output

Model Output

Fig. 2.7. Actual versus predicted vehicle speed.

2.4 Battery Model

The battery pack in the HEV is modeled as a combination of series and parallel

cell batteries. The circuit used to model a single cell battery is shown in Fig. 2.8.
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Fig. 2.8. Battery cell model.

The battery discharging current is assumed to be positive in the remainder of the

thesis. As a result, the battery discharging power is also assigned a positive battery

power value. Therefore, if the battery is discharging, both the battery power (PBatt)

and the battery current (IBatt) have positive values. In addition to delivering power

to the vehicle, the battery can also absorb power (Pregen) from the vehicle during

regenerative braking. Since the battery is charging during regenerative braking, the

regenerative power (Pregen) takes on negative values.

According to [45], the battery current during discharging is given by

IBatt =
VInt −

√
V 2
Int − 4RIntPBatt

2RInt

(2.7)

where, VInt and RInt are the battery internal voltage and resistance, respectively.

The battery current during charging is negative and follows the same definition in

(2.7) with Pregen substituted for PBatt.

The state of charge (SOC) of the battery represents the amount of energy left in

the battery. As defined in [45], the relationship between SOC and IBatt is given by

the coulomb counting differential equation shown below:

dSOC(t)

dt
=

IBatt

QBatt

(2.8)

where, QBatt is the total capacity of the battery.

The internal parameters, VInt and RInt of the battery vary with changing levels

of SOC and battery temperature (Tbatt). In the battery model (Fig. 2.9), these
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relationships are represented by using two look-up tables (LT). These look-up tables

LT1 and LT2, obtained from [46], define VInt and RInt as a function of SOC and

Tbatt, respectively. The battery ambient temperature (Tamb) is kept constant for all

the simulations in this study. The battery temperature varies with Tamb and the heat

generated in the battery. The heat equation (2.9) shows the relationship between the

change in battery temperature its heat capacity and heat generated by RInt.

Ccell ·
dTbatt
dt

= −Tbatt − Tamb

Rcell

+ Pheat (2.9)

where Ccell is the heat capacity of the cell and Rcell is the heat exchange coefficient

of the battery obtained from [46].

Battery

Circuit

Model
IBatt

V

min

max

Int
Tamb Tbatt
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SOCDPL

CPL

LT 2

LT 3

Heat 
Equation

Fig. 2.9. Battery model. The HEVmode indicates whether the bat-
tery is charging or discharging.

2.5 Integrated Vehicle Model

The engine, transmission, road load and battery models introduced in the previous

sections were combined in the integrated vehicle model shown in Fig. 2.10.

The power generated by the engine and battery model is fed to the road load model

which, in turn, defines the speed of the vehicle. The vehicle speed is then converted

to the transmission output speed. The transmission model calculates the gear ratio

which, when multiplied by the transmission output speed, provides the transmission
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input speed. In the integrated vehicle model, the torque or the power information

propagates from the engine to the vehicle road load model while the speed propagates

in the reverse direction.

The transmission input speed is related to the engine speed through the torque

converter clutch (TCC). The TCC divides the vehicle model into two states. The

vehicle model is in the idling state when the TCC is disengaged and it is in the active

state when the TCC is engaged. The engine speed is equal to the Transmission Input

Speed during the active state, whereas it is equal to a predefined engine speed during

the idling state. In the vehicle model, the TCC is emulated using two switches: the

first switch is on the torque/power path (Switch 1) and the second switch (Switch 2)

is on the speed path as shown in Fig. 2.10. Switch 1 limits the power given to the

vehicle road load model when TCC is disengaged and the engine is idling. Switch 2

limits the speed of the engine to an idling speed.
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In the real world, the vehicle has internal losses due to the friction present between

two moving parts in the drivetrain,

• pumps present in the engine and transmission support systems,

• the accessories connected to the vehicle (e.g., air compressor)

These losses have to be accounted for in the sub-models described in the previous

sections. As stated in [47], the drivetrain losses are generally in the range of 8% to

12%. The accessory losses are assumed to be around 3%. Therefore, the total losses

are approximated at 15% in this study. This vehicle efficiency (i.e. 85%) is shown

in Fig. 2.10 on the power path between the two power sources and the vehicle road

load model. The external input of the vehicle model consists of the APP and the

road grade. The overall outputs of the model are the fuel rate and SOC.

2.6 Driver Model

The vehicle model needs to be actuated according to a duty cycle which is normally

dictated by the driver. For the purpose of this study, a driver model that replicates

the actions of a driver was implemented. The driver model controls the integrated

vehicle model.

Driver models are constructed for different purposes. As explained in [48], the

purpose can be either descriptive or motivational. The latter predicts the behavior

of the driver whereas the former describes a given driving activity. An example of

a motivational model is presented in [49]. In this study a dataset representing 10

drivers was used to develop a predictive model that can improve the lane departure

warning system. The driver model can be developed by using various techniques.

For instance, neural networks, fuzzy control and optimal control theory are used

in [50], [51] and [38], respectively.
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The input of the driver model in this thesis includes the target duty cycle and

the corresponding road grade from the real dataset. The model is implemented as

a combination of a feedback and a feedforward control (Fig. 2.11). The feedback

path has two lead-lag controllers which examine the errors in the vehicle speed and

the vehicle acceleration. Since the aim of the proposed model is to estimate average

fuel economy, the feedback controller also monitors the error in the distance and

proportionally increases the output of the feedback block. The feedforward module

performs the inverse calculations of the vehicle model. It calculates the APP needed

to achieve the necessary vehicle speed in the immediate future. The output of the

driver model consists of the APP and the BPP . These signals are used to drive the

integrated vehicle model.
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Fig. 2.11. Driver Model block diagram.
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3. ENERGY MANAGEMENT STRATEGY

An EMS is necessary in order for an HEV to supply the desired vehicle power, Pveh(t),

at the wheels. The role of the EMS is to efficiently splits Pveh(t) into a request for

engine power, PEng(t) and a request for battery power, PBatt(t). The split always

adheres to the following relation:

Pveh,req(t) = PBatt,req(t) + PEng,req(t) (3.1)

Table 3.1.: Definition of EMS parameters.

Parameters Definition

esp(t) Engine speed at time t.

etr(t) Engine torque at time t.

Pveh,req(t) Desired vehicle power at time t.

PBatt,req(t) Requested battery power at time t.

PEng,req(t) Requested engine power at time t.

P12 Defines the boundary curve between regions 1 (motor) and 2 (en-

gine) in the engine efficiency map. For the PRBS controller, this

value is constant (i.e., P12 = 100kW ). For the ARBS controller,

P12(t) varies as a function of time.

P+
12, P

−
12 Defines the maximum/minimum power for the boundary between

regions 1 (motor) and 2 (engine) for the ARBS controller.

P23 Defines the boundary curve between regions 2 (engine) and 3 (mo-

tor+engine) in the engine efficiency map. It is a constant (i.e.,

P23 = 250kW ) for both the PRBS and ARBS controllers.

continued on next page
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Table 3.1.: continued

Parameters Definition

Pm Constant margin for P12 and P23 in the PRBS controller.

SOC(t) SOC of the battery at time t.

SOCmin,

SOCmax

Minimum/Maximum allowable SOC for the battery

SOCm Constant margin for SOCmin and SOCmax in the PRBS controller.

SOCref Reference value for the SOC that the ARBS strategy tries to main-

tain.

Pchg Constant predefined amount of power which is supplied by the en-

gine in order to charge the battery.

Kp Gain of the proportional controller in the ARBS strategy.

In this section, we first review the approach used by the PRBS strategy [15] to

split the desired vehicle power into engine power and battery power. This approach

is then compared to the split approach of the proposed ARBS. The parameters used

to describe both EMS strategies are defined in Table 3.1.

3.1 Preliminary Rule-Based Strategy

The RBS strategy was initially introduced in 1997 [52]. Subsequently, a PRBS

strategy for a parallel hybrid heavy-duty truck was proposed in [15]. The PRBS strat-

egy relies on the efficiency map of the target engine which consists of three operating

regions as shown in Fig. 3.1. The power values P12 and P23 define the boundaries

between operating regions 1 and 2 and operating regions 2 and 3, respectively. For

PRBS, P12 = 100kW and P23 = 250kW . These values are determined experimentally

with the purpose of constraining the engine to high efficiency operating levels.

The PRBS strategy is implemented in a controller. At any time during the oper-

ation of the vehicle, the desired vehicle power Pveh(t) and SOC(t) values are fed to
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the PRBS controller. The SOC(t) value is generated by the battery model whereas

Pveh(t) is calculated based on the APP (t) output of the driver model using a vehicle

pedal progression map. Based on this information and the value of the current engine

speed (esp(t)), the controller first identifies the region of Pveh(t) on the engine effi-

ciency map (Fig. 3.1) and then defines the power split (3.1) according to the following

rules:
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1. Pveh(t) in region 1:

• If SOC(t) > SOCmin, then all the requested Pveh(t) is provided by the

battery. This region is labeled as the motor region.

• Otherwise, the engine supplies Pveh(t) + Pchg, where Pveh(t) is delivered

to the driveline and Pchg is used to recharge the battery.

2. Pveh(t) in region 2: In this case Pveh(t) is delivered by the engine irrespective of

the value of SOC(t). This region is labeled as the engine region.

3. Pveh(t) in region 3:

• If SOC(t) < SOCmin, Pveh(t) is supplied by the engine.

• Otherwise, the engine delivers P23 and the balance of the requested power

(i.e., Pveh(t)− P23) is provided by the battery.

In addition to the above operating modes, the HEV absorbs power to recharge the

battery while it is decelerating. This process is called regenerative braking. When the

requested power is negative (i.e., Pveh(t) < 0), the PRBS controller compares SOC(t)

to SOCmax:

• If SOC(t) > SOCmax, then no power is absorbed by the battery and the vehicle

has to slow down using the friction brakes.

• Otherwise, the battery is recharged through regenerative braking. That is, the

motor in the HEV acts as a generator, absorbs the net vehicle inertia and helps

it to stop.

Finally, in order to prevent high frequency switching between operating regions,

the power region boundary and the SOC are adjusted by a constant margin. P12 and

P23 are adjusted by the constant margin Pm = 6kW . The boundary curves derived

from these step changes are shown by dashed lines in Fig. 3.1. The margin SOCm for

SOCmin and SOCmax is set to 5%. These margins are used in the rules of the PRBS
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controller when establishing the operating region (i.e., P12 + Pm and P23 + Pm) and

when comparing SOC(t) to either SOCmin or SOCmax (i.e., SOCmin + SOCm and

SOCmax + SOCm) in order to maintain the current operating region of the vehicle,

thereby limiting switching between regions 1 and 2 and between regions 2 and 3. Fig.

3.2 shows the PRBS algorithm.
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3.2 Adaptive Rule-Based Strategy

The PRBS strategy described above is easy to implement online. However, the

strategy suffers from a main limitation. Indeed, the same region boundaries are

maintained across all duty cycles. Therefore, if Pveh(t) for a given duty cycle mostly

falls in region 1, the battery will be used extensively causing its quick depletion.

This will force the vehicle to operate in region 2 and rely primarily on the engine

even if Pveh(t) lies in an inefficient operating region for the engine. This limitation is

particularly detrimental over extended travel distances. Moreover, this scenario will

occur despite the fact that PRBS allows for a margin Pm on P12 and P23 and a margin

SOCm on SOCmin and SOCmax. These PRBS margins are constant, limited in range

and intended to reduce the frequency of switching between operating regions.

+
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SOC

SOC (t)

Proportional
Controller PRBS

Controller
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k(t)ref

X
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P12

P  (t)12
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-

Front Controller
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+

Fig. 3.3. ARBS controller.

The main contribution of the proposed ARBS approach is that it introduces an

additional controller in front of the PRBS controller that dynamically adjusts P12 at

each time step according to the duty cycle. The output of this front controller is fed

into the traditional PRBS controller described in the previous subsection as shown in

Fig. 3.3.
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The time variant P12(t) in ARBS is defined as follows:

P12(t) = k(t) · (P+
12 − P−12) + P−12 (3.2)

where P−12 and P+
12 are maximum and minimum boundary values for P12(t) (Table

3.1). Their values are set to 100Kw and 150Kw, respectively. These boundary values

are determined experimentally based on the engine map. Since region 1, the motor

region, represents a low efficiency operating region for the engine and region 2, the

engine region represents a high efficiency operating region for the engine, P−12 and P+
12

are selected to clearly delineate these regions.

The ARBS also tries to maintain the battery SOC close to a reference value

SOCref which is set to 50%. The value of SOCref is determined based on the rated

operating range of the battery. It is compared to SOC(t) by using a proportional con-

troller which is embedded within the front controller. The output of the proportional

controller, k(t), is used to derive P12(t) in (3.2). k(t) is defined as follows:

k(t) = 0.5−Kp · (SOC(t)− SOCref ) (3.3)

where Kp = 0.1 is the gain of the proportional controller (Fig. 3.3). It is set based

on the maximum allowable variation in the battery SOC compared to SOCref . Since

the value of P12 is restricted to the range between P−12 and P+
12 (3.2), the value of k(t)

is between 0 and 1 (i.e., 0 ≤ k(t) ≤ 1).

If the battery is depleting, the ARBS controller increases P12(t) thereby extending

region 2 (engine) and reducing region 1 (motor) by an amount proportional to the

difference between SOCref and SOC(t). This process dynamically promotes the use

of the engine and discourages the use of the battery thus protecting it from depletion.

The magnitude of the controller action depends on its gain Kp and the difference

(SOC(t) − SOCref ) (3.3). The limits on the value of SOC(t) can be found using

(3.3) and the constraints on k(t).

SOCref −
0.5

Kp

≤ SOC(t) ≤ SOCref +
0.5

Kp
(3.4)
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Fig. 3.4. Engine efficiency map with region boundaries for the ARBS strategy.

The limits on SOC(t) (3.4) depict the range of battery SOC during which the

controller is active. Beyond these SOC values, the controller is saturated. According

to (3.4), the value of Kp determines the range for which the controller would be in

action. In this study, Kp is set to be 0.05, so that the controller is active when SOC(t)

is between 40% and 60%.

The proposed ARBS described above only modifies the boundary, P12(t), between

regions 1 and 2 to a time variant boundary while keeping the boundary, P23, between

region 2 and 3 constant. It is possible to also apply a similar approach to P23.
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However P23 is already near the maximum torque curve as shown in Fig. 3.4.

Therefore, increasing P23 will extend the engine region to include areas outside the

allowable operating region of the engine. Reducing P23 will exclude areas where the

engine is at its highest efficiency.



34

4. SIMULATION AND RESULT ANALYSIS

In order to implement the PRBS and proposed ARBS strategies, values for P23, P12,

P−12 and P+
12 are selected. P23 power level is fixed close to the maximum rated power

of the engine whereas, the power level P+
12 is fixed close to the maximum rated power

of the battery. The values of P12 for PRBS can be determined based on the engine

efficiency map for best performance. Two simulations are performed in this study

in order to compare ARBS and PRBS. The first (Section 4.1) evaluates both the

strategies for short duty cycles of about 9.5 miles where the strategy parameters are

set based on the engine efficiency maps. The short trips do not drain the batteries

as much as the long trips. As a result, the short trip simulations evaluates both the

strategies inside the SOC boundary conditions. The second (Section 4.2) compares

the strategies over a long duty cycle for different values of P12 for PRBS and P−12 for

ARBS. The simulations with different values of P12 and P−12 help study the effects of

chosing these values on the HEV fuel economy. In long trip simulations, the SOC

reaches it’s minimum or maximum value more often than short trips. Thus the long

trip simulations are affected by the SOC boundary conditions. The results of the two

simulations are expressed in terms of miles per gallon equivalent (MPGe) metric to

compare the two strategies. MPGe is a metric introduced by the EPA in 2011 [53]

to compare vehicles with different energy sources. It represents the number of miles

driven per diesel gallon equivalent energy and assumes that 1 gallon of diesel fuel has

38.08 kWh of energy [54]. The MPGe value is given by:

MPGe =
Dm

TE
· 38.08 (4.1)
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where Dm is the number of miles driven, and TE is the total net energy spent over

the trip in kWh. TE is calculated by converting the change in SOC and the fuel spent

by the vehicle to its energy content in kWh as follows:

TE = FC · Uf −BE · (SOC(tf )− SOC(t0)) (4.2)

where FC is the actual fuel consumed in gallons, Uf is the energy content of one gal-

lon of diesel fuel, BE is the battery capacity, SOC(tf ) is the final SOC and SOC(t0)

is the initial SOC of the battery. The values of these parameters are maintained

constant across all the simulations. It is worth noting that in the ECMS strategy,

the equivalence factor is the weight assigned to the difference between SOCref and

SOC(t0). This equivalence factor can take on different values and is adjusted accord-

ing to the duty cycle. On the other hand, the BE factor which is used to convert the

change in SOC to the energy spent by the battery in the ARBS strategy is constant.

4.1 Short Trips Simulation

The HEV vehicle model described in chapter 2 is implemented with either the

PRBS controller or the ARBS controller described in chapter 3. The resulting model

was used to simulate the two strategies for 8 duty cycles. The values of the parameters

used for the simulations are given in Table 4.1.

The value of P12 for PRBS and the value of P−12 for ARBS is set 100 kW based

on the engine efficiency map (Fig. 3.1). It can be seen in Fig. 3.1 that the engine

operates in inefficient regions below the power level of 100 kW.

The 8 duty cycles are collected from a single heavy duty vehicle with 4 different

drivers (Table 4.2). Each driver generated two duty cycles which include both city

and highway traffic spanning varying distances. Drivers were instructed to exhibit

good driving behavior in one of the duty cycle and bad driving behavior in the second

duty cycle. Good behavior entails anticipating braking and coasting when possible.
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Table 4.1.
Short trip simulation parameter values.

Parameters Values

P12 (PRBS only) 100 kW

P+
12 (ARBS only) 150 kW

P−12 (ARBS only) 100 kW

P23 260 kW

Pm (PRBS only) 6 kW

SOCmin 35 %

SOCmax 65 %

SOCm 5 %

SOCref (ARBS only) 50 %

Pchg 20 kW

Kp (ARBS only) 0.05

DPL 210 kW

CPL -100 kW

Battery Size 11.31 kWh

The vehicle was driven on two routes around the Indianapolis area. Both routes have

segments of city and highway driving.

Tables 4.3, 4.4 and 4.5 show the simulation results for different initial SOC values.

The percent improvement (Imp) in MPGe for the ARBS strategy compared to the

PRBS strategy is calculated using (4.3) and shown in these tables for the 8 duty

cycles.

Imp =
MPGeARBS −MPGePRBS

MPGePRBS

· 100 (4.3)

where MPGeARBS and MPGePRBS represent the miles per gallon equivalent for

ARBS and PRBS, respectively.
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Table 4.2.
Duty cycles characteristics.

Duty cycle Driver Distance Behavior Route

(miles)

1 1 7.89 good A

2 1 9.61 bad A

3 2 9.69 good A

4 2 9.78 bad A

5 3 9.56 good A

6 3 9.57 bad A

7 4 7.56 good B

8 4 7.57 bad B

The average Imp across the 8 duty cycles in Tables 4.3, 4.4 and 4.5 for different

initial SOCs are 0.16%, 0.09% and 1.19%, respectively. These results indicate that,

in general, the performance enhancement due to the ARBS strategy is very small

for low SOC(t0) values (i.e., ≤ 50%). The performance of ARBS increases when

SOC(t0) is 63%.

The different SOC(t0) values simulated in the three tables can be considered as

sample intermediate values of battery SOC during an extended duty cycle. During

this extended cycle, instances of high SOC(t) at the beginning of a road segment

will lead to a higher Imp when the ARBS strategy is used compared to the PRBS

strategy. Whereas for instances of low SOC(t) at the beginning of a road segment,

the ARBS and PRBS strategies will have similar performances. Instances of high

SOC(t) occur, for example, when there are opportunities for regenerative braking in

the duty cycle. For these cases ARBS is expected to show improved fuel consumption.

Fig. 4.1 shows the vehicle speed for duty cycles 3 and 5. These two duty cycles

are generated from good driving behavior by two different drivers. Duty cycle 3 has
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Table 4.3.
Fuel consumption for the 8 duty cycles resulting from the PRBS and
ARBS energy management strategies for an initial SOC of 37%.

Strategy

Actual Fuel

Consumed

FC , (gallons)

Final

SOC

SOC(t), (%)

Total

Net Energy

TE, (kWh)

MPGe

(miles per

33.7 kWh)

Percent

Improvement

Imp, (%)

1 PRBS 1.58 41.22 57.98 4.59 1.82

ARBS 1.54 38.62 56.95 4.67

2 PRBS 1.83 36.34 67.70 4.79 -0.03

ARBS 1.83 36.75 67.73 4.78

3 PRBS 1.52 37.00 56.35 5.80 -0.14

ARBS 1.52 36.77 56.43 5.79

4 PRBS 2.24 37.80 82.73 3.99 0.25

ARBS 2.22 35.21 82.53 4.00

5 PRBS 1.60 36.83 59.15 5.45 0.23

ARBS 1.60 37.62 59.00 5.46

6 PRBS 1.96 37.15 72.33 4.46 -0.99

ARBS 1.98 37.26 73.06 4.42

7 PRBS 1.02 35.71 38.06 6.69 0.03

ARBS 1.03 35.95 38.05 6.70

8 PRBS 1.05 38.68 38.78 6.58 0.17

ARBS 1.05 38.78 38.71 6.59

Average 0.16

more highway coasting whereas duty cycle 5 is more urban. In order to compare the

two EMS strategies, the engine operating points for duty cycles 3 and 5 are shown in

Fig. 4.2 and Fig. 4.3, respectively. The circles in these figures represent the power

delivered by the engine, sampled at 1 second intervals during the trip.

For PRBS, the engine region is between P12,PRBS and P23, whereas for the ARBS

strategy the engine region is between P12(t) and P23. P12(t) is greater than P−12 as

long as SOC(t) is greater than SOCref and the engine operates at a high efficiency

under this condition. Moreover, the motor region for the ARBS strategy is wider

than that of PRBS since P12(t) varies between P−12 and P+
12 during the duty cycle.
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Table 4.4.
Fuel consumption for the 8 duty cycles resulting from the PRBS and
ARBS energy management strategies for an initial SOC of 50%.

Strategy

Actual Fuel

Consumed

FC , (gallons)

Final

SOC

SOC(t), (%)

Total

Net Energy

TE, (kWh)

MPGe

(miles per

33.7 kWh)

Percent

Improvement

Imp, (%)

1 PRBS 1.51 46.87 56.17 4.74 -0.20

ARBS 1.51 46.27 56.29 4.73

2 PRBS 1.69 37.05 64.15 5.05 0.68

ARBS 1.68 36.54 63.72 5.09

3 PRBS 1.40 37.12 53.31 6.13 0.63

ARBS 1.39 37.24 52.98 6.17

4 PRBS 2.08 35.31 78.64 4.19 -0.32

ARBS 2.09 36.49 78.90 4.18

5 PRBS 1.45 36.27 55.23 5.83 -0.82

ARBS 1.47 37.44 55.69 5.79

6 PRBS 1.83 36.62 69.27 4.66 0.34

ARBS 1.83 36.92 69.05 4.67

7 PRBS 0.90 35.86 35.00 7.29 0.30

ARBS 0.90 36.11 34.90 7.31

8 PRBS 0.93 38.66 35.67 7.15 0.11

ARBS 0.93 40.08 35.64 7.16

Average 0.09

When comparing the two duty cycles, higher power demands are observed for

duty cycle 5 because of its urban characteristic. In addition, the motor only mode

is less frequent in this duty cycle and there are more opportunities for regenerative

braking. These factors help sustain the battery SOC above SOCmin. Therefore, the

ARBS operates the engine in higher efficiency region compared to the PRBS strategy

for duty cycle 5 as shown by the fewer number of operating points below P+
12 in Fig.

4.3 for ARBS compared to the PRBS strategy.

The impact of coasting can also be observed by comparing Figures 4.2 and 4.3. A

smaller amount of power is required during highway coasting, a characteristic of duty

cycle 3. Indeed, less acceleration events are observed during coasting (duty cycle 3)
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Table 4.5.
Fuel consumption for the 8 duty cycles resulting from the PRBS and
ARBS energy management strategies for an initial SOC of 63%.

Strategy

Actual Fuel

Consumed

FC , (gallons)

Final

SOC

SOC(t), (%)

Total

Net Energy

TE, (kWh)

MPGe

(miles per

33.7 kWh)

Percent

Improvement

Imp, (%)

1 PRBS 1.51 59.48 56.25 4.73 2.74

ARBS 1.44 50.13 54.75 4.86

2 PRBS 1.63 43.82 62.36 5.20 0.44

ARBS 1.61 41.57 62.09 5.22

3 PRBS 1.27 37.11 49.80 6.56 -0.39

ARBS 1.27 36.90 50.00 6.54

4 PRBS 1.97 39.30 75.50 4.37 0.05

ARBS 1.96 37.74 75.48 4.37

5 PRBS 1.45 48.07 55.35 5.82 2.76

ARBS 1.38 39.63 53.86 5.98

6 PRBS 1.74 40.05 66.84 4.83 1.48

ARBS 1.70 36.64 65.86 4.90

7 PRBS 0.82 37.80 33.06 7.72 0.44

ARBS 0.81 36.90 32.92 7.75

8 PRBS 0.81 38.98 32.64 7.82 2.04

ARBS 0.78 36.51 31.99 7.98

Average 1.19

compared to an urban duty cycle (duty cycle 5). As a result, fewer operating points

lie on the P23 boundary in Fig. 4.2 compared to Fig. 4.3.

There are few engine operating points in the low efficiency region for duty cycle

3 under the ARBS strategy (Fig. 4.2). This can be explained by the fact that the

battery depletes quicker under ARBS compared to PRBS for this duty cycle. Once

the battery SOC(t) reaches SOCmin, the engine starts operating in low efficiency

regions.

The improvement in fuel consumption obtained for duty cycle 5 under ARBS is

due to the regenerative braking opportunities present in urban and stop-and-do duty

cycles that can help maintain high levels of SOCs for the battery.



41

0 200 400 600 800 1000 1200 1400
0

20

40

60

0 200 400 600 800 1000 1200 1400
0

20

40

60

V
eh

ic
le

 S
p
ee

d

(m
p
h
)

V
eh

ic
le

 S
p
ee

d

 (
m

p
h
)

Time (s)

Time (s)

Duty Cycle 3

Duty Cycle 5

Fig. 4.1. Vehicle speed for duty cycles 3 and 5.

Varying the parameters of the PRBS strategy while maintaining the ARBS pa-

rameters unchanged has an impact on the MPGe improvement due to the ARBS

strategy for each duty cycle. Table 4.6 shows the average improvement values for

the 8 duty cycles corresponding to different values of P12. These results indicate that

while the percent improvement varies, it still favors ARBS. The SOCmin value for the

PRBS strategy was also changed to 50% from 35% in an attempt, as in the case of

ARBS, to maintain the battery SOC above 50% (i.e., the value of SOCref in ARBS).

This change had a negative impact on PRBS as it reduced the operating range of the

battery and resulted in an average Imp of 7.49% for ARBS over the 8 duty cycles.
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Fig. 4.2. Engine operating points for duty cycle 3 under PRBS and
ARBS for SOC(t0) = 63%.

4.2 Long Trip Simulation

While hybridizing a conventional vehicle (aftermarket hybridization), the engine’s

efficiency maps are usually unknown. It is thus difficult to select appropriate values

for P12 in PRBS P−12 in ARBS that are necessary to configure the vehicle. In order
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Fig. 4.3. Engine operating points for duty cycle 5 under PRBS and
ARBS for SOC(t0) = 63%.

to compare the two strategies, the HEV model was simulated with different values

of P12 and P−12. The values of parameters used in this simulation are given in Table

4.7. This simulation was performed on a long duty cycle constructed from 6 of the

8 short duty cycles mentioned in Section 4.1. This long duty cycle is about 56 miles

long and operates for about 8000 s.
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Table 4.6.
Average improvement in total equivalent fuel economy over the 8 duty
cycles for different values of P12 in the PRBS strategy.

P12, PRBS Average Imp

(kW) (%)

80 2.46

110 0.41

140 2.23

Table 4.7.
Parameter values for long trip simulation with 365V battery system.

Parameters Values

P12 (PRBS only) 0 to 140 kW

P+
12 (ARBS only) 150 kW

P−12 (ARBS only) 0 to 140 kW

P23 260 kW

Pm (PRBS only) 6 kW

SOCmin 35 %

SOCmax 65 %

SOCm 5 %

SOCref (ARBS only) 50 %

Pchg 20 kW

Kp (ARBS only) 0.05

DPL 210 kW

CPL -100 kW

Battery Size 11.31 kWh

Battery Nominal Voltage 365 V
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Fig. 4.4. (a) MPGe (b) Battery Final SOC for different values of P12

in the PRBS strategy.

Fig. 4.4 and 4.5 show the simulation results for three different values of initial

SOC. In Fig. 4.4 the long duty cycle was simulated with the PRBS strategy for 15

different values of P12 ranging from 0 kW to 140 kW with incremental steps of 10 kW.
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Fig. 4.5. (a) MPGe (b) Battery Final SOC for different values of P−12
in the ARBS strategy.

In Fig. 4.5, the same duty cycle was simulated with the ARBS strategy for different

values of P−12 also ranging from 0 kW to 140 kW with incremental steps of 10 kW.

The MPGe value for PRBS is highest when P12 is around 75 kW. The MPGe is

low when P12 is low because the engine region is large and extends to its inefficient
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regions. Moreover, the battery is not discharged much when P12 is low because the

motor region is small causing the battery to only charge through regenerative braking.

As a result the battery final SOC is high for low values of P12 as seen in Fig 4.4b.

When P12 is high, the motor region is large causing the battery to drain faster and

making it unusable during the vehicle operation. At the same time the engine operates

in its inefficient regions decreasing the vehicle MPGe. Fig 4.4b shows that for higher

values of P12, the final SOC is close to its lower limit of 35%. In fact, high MPGe

(i.e., around 6.4 miles/gallon) are only possible for a very narrow range of P12 values.

In contrast, for ARBS, and as shown in Fig 4.5a, the MPGe value is maintained

at a high value (i.e., around 6.4 miles/gallon) for an extended range of P−12 values

ranging from 0 kW to 70 kW. The MPGe value is high for low values of P−12 because

the ARBS controller can adjust the value of P12(t) in order to keep the battery SOC

is kept around the reference SOC of 50%. It neither completely drains the battery

nor charges it to the upper limit (65%) keeping the battery available to charge and

discharge throughout the duty cycle operation and thus avoids the inefficient engine

regions. Fig. 4.5b shows that the battery final SOC is maintained around 50% for

low values of P−12. As P−12 increases, the P12(t) value which is constrained by P−12 and

P+
12, also increases resulting in a similar scenario as in the case of PRBS with high

P12. Therefore, the MPGe decreases for high values of P−12. The described behavior

of MPGe under the ARBS strategy makes the selection of optimal configuration

parameters easier than in the case of the PRBS strategy.

Fig 4.6a shows the long duty cycle used in this simulation and Fig 4.6b shows the

battery SOC during the vehicle operation for both strategies with P12 = 20 kW for

PRBS and P−12 = 20 kW for ARBS. The value of P12(t), in the ARBS controller, is

depicted in Fig 4.6c. The initial battery SOC is kept at 50% for these simulations.

The battery SOC increases for PRBS strategy because of the low value of P12, whereas

the ARBS controller tries to maintain the battery SOC around 50% (Fig 4.6b) by

adjusting the value of P12(t) (Fig 4.6c). As the battery SOC decreases below 50%,

the ARBS controller tries to preserve the SOC by lowering the P12(t) power level and
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Fig. 4.6. (a) Vehicle Speed (b) Battery SOC (c) P12(t) for long duty
cycle operation.

equivalently reducing the motor region. Conversely, the ARBS controller increases

the value P12(t) when the SOC increases beyond 50%. This action of the controller

reduces the engine inefficient operating points compared to the PRBS strategy and
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also keeps the SOC around 50%. Fig 4.7 shows the engine operating points at an

interval of 4 s during the long duty cycle operation for both the strategies. This figure

illustrates that the engine is operated in inefficient regions more frequently in PRBS

than in the ARBS. The engine has more operating points near the P12,ARBS curve

during PRBS strategy than during the ARBS strategy.
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Table 4.8.
Short trip simulation parameter values.

Parameters Values

P12 (PRBS only) 0 to 27.5 kW

P+
12 (ARBS only) 30 kW

P−12 (ARBS only) 0 to 27.5 kW

P23 260 kW

Pm (PRBS only) 3 kW

SOCmin 35 %

SOCmax 65 %

SOCm 5 %

SOCref (ARBS only) 50 %

Pchg 10 kW

Kp (ARBS only) 0.05

DPL 30 kW

CPL -30 kW

Battery Size 2.82 kWh

Battery Nominal Voltage 48 V

In order to compare the benefits of ARBS over PRBS in the 48V full hybrid

system, the HEV model battery was modified with a 48V battery system with a peak

power delivery of 30 kW. The weight of the vehicle was also changed from 25000 kg to

7000 kg so that the 48V systems are able to propel the vehicle in electric-only mode.

The parameters used for this simulation are given in Table 4.8. The same long duty

cycle that was used in the previous simulation is used here. The values of P12 and P−12

are varied from 0 to 27.5 kW with incremental steps of 2.5 kW. The simulation helps

to study effects of selecting different values of P12 and P−12 in a 48V battery system.
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Fig. 4.8. (a) MPGe (b) Battery Final SOC for different values of P12

in the PRBS strategy.

A similar MPGe and SOC behavior is observed for 48V hybrid systems when

compared to the previous 365V system. The MPGe value for ARBS strategy is high

around 13.4 miles/gallon for P−12 values ranging from 0 to 15 kW as seen in Fig. 4.9.

Whereas, the MPGe reaches its highest point of 13.3 miles/gallon at P12 = 20 kW



52

0 5 10 15 20 25

P
-

12
 (kW )

12.2

12.4

12.6

12.8

13

13.2

13.4

13.6

M
P

G
e 

(m
il

es
/g

a
ll

o
n
)

Initial SOC 37%

Initial SOC 50%

Initial SOC 63%

0 5 10 15 20 25

P
-

12
 (kW )

30

40

50

60

70

F
in

a
l 

S
O

C
 (

%
)

Initial SOC 37%

Initial SOC 50%

Initial SOC 63%

Fig. 4.9. (a) MPGe (b) Battery Final SOC for different values of P−12
in the ARBS strategy.

for PRBS strategy. The ARBS strategy also maintains the battery SOC within the

40% to 60% range for P−12 values ranging from 0 to 12.5 kW. As seen from the results

in Fig. 4.9, the ARBS strategy is able to maintain a high MPGe when the battery
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final SOC is around its reference value and as the final SOC reduces close to its

lower limit, the MPGe value starts decreasing. The availability of the battery during

the operation of ARBS helps it to optimize the fuel consumption.

Thus, the ARBS strategy can be tuned easily than the PRBS for both the hybrid

systems (i.e., 365V and 48V). In addition, the ARBS performs the best when P−12 =

0 kW by maintaining the highest final SOC in comparison to all the other values of

P−12 for both the hybrid systems.
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5. CONCLUSION

This thesis introduces an adaptive EMS strategy for a parallel HEV and compares it

with the state-of-the-art PRBS strategy. The increase in the equivalent fuel economy

exhibited by the ARBS strategy varies depending on the duty cycle and the initial

SOC for short trips. For SOC(t0) = 63%, an average improvement of 1.19% across

8 short duty cycles was obtained. The highest level of improvement in MPGe (i.e.,

2.76%) was obtained for duty cycle 5. Typically, this level of improvement is expected

for extended duty cycles with frequent opportunities for regenerative braking. Given

that the ARBS controller is a simple linear controller that is added in front of the

PRBS controller, this increase in performance does not incur any significant increase

in computational cost.

The results in Section 4.2 demonstrate that ARBS can be used effectively to

support the hybridization of conventional vehicles with 48V full hybrid systems where

typically the engine efficiency maps are unknown and a simple online strategy is

needed. Both the PRBS and ARBS strategies are easy to implement. However, the

ARBS is easier to configure compared to the PRBS. Indeed, instead of attempting

to estimate the appropriate value of P12 as in the case of PRBS, the value of P−12 in

ARBS can be set to 0 kW. The ARBS will then automatically adjust the dynamic

value of P12(t) in order to achieve high MPGe. The ARBS strategy also maintains

the SOC around its reference value when P−12 is set to 0 kW.

Future work will investigate into dynamic variation of P23 value along with P12.

Faster and more control can be achieved by varying both the values simultaneously.

Instead of constant power lines defining the operating region boundaries for the engine

and the motor, a more complex shaped boundary (like elliptical) can be considered.
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