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GLOSSARY 

Placebo A harmless pill or medicine contains no active pharmaceutical ingredient, or 

a procedure prescribed more for the psychological benefit to the patient than 

for any physiological effect. 

Endpoint A clinical endpoint is an outcome that represents direct clinical benefit, such 

as survival, decreased pain, or the absence of disease. 

Randomization A procedure of allocating patients/subjects to trial arms/treatments according 

to probabilities. 
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ABSTRACT 

Author: Chen, Wei-An. PhD 

Institution: Purdue University 

Degree Received: December 2019 

Title: Drug Supply Chain Optimization for Adaptive Clinical Trials 

Committee Chair: Nan Kong and Gintaras V. Reklaitis 

 

As adaptive clinical trials (ACTs) receive growing attention and exhibit promising performance in 

practical trials during last decade, they also present challenges to drug supply chain management. 

As indicated by Burnham et al. (2015), the challenges include the uncertainty of maximum drug 

supply needed, the shifting of supply requirement, and rapid availability of new supply at decision 

points [1]. To facilitate drug supply decision making and the development of mathematical 

analysis tools, we propose two trial supply chain optimization problems that represent different 

mindsets in response to trial adaptations. In the first problem, we treat the impacts of ACTs as 

exogenous uncertainties and study important aspects of trial supply, including drug wastage, 

resupply policy, trial length, and costs minimization, via a two-stage stochastic program. In the 

second problem, we incorporate the adaptation rules of ACTs with supply chain management and 

numerically study the impact of joint optimization on the trial and drug supply planning through a 

mixed-integer nonlinear program (MINLP). For solution approaches to the problems, we use 

progressive hedging algorithm (PHA) and particle swarm optimization (PSO) respectively, and 

take advantages of the problem structures to enhance the solution efficiency. With case studies, 

we see that the proposed models capture the features of ACT drug supply and the mechanisms of 

trial conduction well. The solutions not only reflect the impact of trial adaptations but also provide 

managerial suggestions, e.g. the prediction of needed production amount, storage capacity at 

clinical sites, and resupply schemes. The joint optimization also suggests a new angle and research 

extension in the field of ACT design and supply. 
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1. INTRODUCTION 

 Motivation 

According to the annual report published by Pharmaceutical Research and Manufacturers of 

America (PhRMA), America’s biopharmaceutical companies sponsored more than 4,500 clinical 

trials in 2017 alone, involving more than 920,000 participants, and the overall economic impact of 

company investments in U.S. clinical trial sites is more than $42 billion [2]. Chang and Balser 

(2016) pointed out the increase in investments, however, does not reflect an increased success rate 

of pharmaceutical development, and one obvious area for improvement is the design, conduct, and 

analysis of clinical trials [3]. Although adaptive designs have the potential to improve the 

efficiency of clinical trials in practice [4-9], Burnham et al. (2015) and the DIA Adaptive Design 

Scientific Working Group revealed the drug supply dilemma for ACTs [1].  

 

 According to Burnham et al. (2015), 

• Nevertheless, the operational challenge of drug supply continues to be a barrier 

preventing greater uptake of adaptive designs. 

• Adaptive designs are potentially more costly than traditional studies, and much of 

that cost is driven by increased drug supply costs. 

• Modern tools for the planning and execution of drug supply for adaptive clinical 

trials are simulation approaches 

 

These motivate us to develop optimization tools to facilitate the decision making and analysis of 

drug supply chain planning in response to challenges resulted from ACTs. Our goal is to enhance 

the understanding and connection between the fields of clinical trial design research and 

pharmaceutical supply chain management. We also hope that our findings suggest where it may 

be best to dedicate future research efforts in the joint area. 

 Adaptive Clinical Trial Basics 

Adaptive clinical trials (ACTs), in contrast to traditional fixed trials, are trials that allow the 

visitation and analysis of the latest sample data and allow the alteration and adaptation of trial 



12 

 

design and protocol during the conduct of the trials. In other words, the trial design and protocol 

parameters can be modified in the halfway of the trial based on the newly collected patient 

responses to the treatments and investigational dugs. The visitation of the trial sample data, i.e. 

patient responses, is called “interim analysis” and usually will put the trial on a brief pause. An 

ACT can have more than one interim analysis time point, which is defined prior to the 

implementation of the trial. Note that adaptations can only be made at each interim analysis point. 

 

The processes of conducting an ACT is illustrated in Fig 1.1. After a trial (with its protocol) is 

designed, the trial starts with advertisement via phone call, television, newspaper, or web banner. 

The advertisement is the beginning of the incessant recruitment process and is followed by several 

screening steps, where the interested patients are examined and picked based on age, gender, 

personal and family medical history, physical and blood tests, etc. The qualified patients will be 

enrolled into the trial and assigned to a specific treatment arm or group according to the 

randomization scheme. Then the patients receive the specific treatment and drug during a treatment 

span. Meanwhile, clinicians observe and record the patients’ responses to the treatment and drug 

in terms of certain medical measure quantitatively, i.e. an endpoint. After treating a cohort of 

patients or reaching a pre-specified time point, the trial goes through a brief pause, where the Data 

Monitoring/Review Committee (DMC or DRC) analyzes the latest data regarding patients’ 

responses and adapts the trial design and protocol. When the trial resumes, newly enrolled patients 

and Trial Management Groups (TMGs) must follow the new protocol until the next interim 

analysis point or the satisfaction of termination criteria. Apart from drug safety and trial integrity 

issues, a trial is considered as completion when a pre-determined number of patient responses, i.e. 

target sample size, are collected. Note that some patients may dropout from the treatment and trial, 

resulting in sample loss, and that the trial protocol describes randomization scheme, conditions of 

having an interim analysis, how treatments are performed, and all the information needed to 

conduct the trial. Further details about the implementation of ACT can be seen in these references 

[10]. 
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Fig 1.1 Processes of Adaptive Clinical Trial. 

 

ACTs have been proven to be more beneficial than fixed trials in many aspects. Because of the 

usage of newly learned information and the flexibility of making adaptations accordingly, ACTs 

can retrieve better drug/dosage information per unit of resources invested, which generally 

contributes to higher chances of verifying the drug efficacy and shortening the trial length. In 

regard to patient well-being, early identification of effective dosage/treatment and appropriate 

adaptations will contribute to less portion of patients taking ineffective drugs. As for commercial 

benefits, higher probability of trial success and shorter trial length will lead to less time-to-market 

of medicines and higher future profits due to the competition between other biopharmaceutical 

companies. Note that these benefits come at a price, e.g. higher expenses of conducting the trial 

and supplying drugs. 

 Types of Adaptive Trials 

A large number of adaptive designs are developed nowadays due to multitudinous situations and 

requirements in pharmaceutical research and development. I recommend understanding them from 

two aspects: (1) the purpose it serves (2) the design/protocol parameters it adapts. Regarding the 

purpose, traditional trials generally can be either exploratory or confirmatory, and the so-called 

phase 0, I, II, III, and IV trials are also classified based on specific purpose. For ACTs, we can see 

not only the purpose-oriented naming strategy, e.g. adaptive dose-finding design, but also a 
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purpose-combined design, e.g. adaptive seamless phase II/III design. As for ACTs named after 

adaptations, there are group sequential design (GSD), sample size re-estimation design (SSR), 

adaptive randomization design, etc. In this dissertation, we only introduce the designs that are 

commonly used and have direct impact on drug supply. A summary of different types of ACTs is 

shown in Fig 1.2 [8], and the usage percentage is reported by Fig 1.3 [3]. 

 

 

Fig 1.2 Summary of Different Types of Adaptive Designs for Clinical Trials [8]. 

 

 

Fig 1.3 Current Use of Adaptive Design Types [3]. 

 

A sample size re-estimation (SSR) trial allows the adjustment in the target sample size based on 

the data reviewed in an interim analysis. The reason of having a sufficient number of subjects is 

to achieve a desired study power for correctly detecting a clinically meaningful difference. When 
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the collected data reveals quite higher or lower variability than the initial understanding, a re-

estimation of sample size can prevent an underpowered or overpowered trial in the end. A 

response-adaptive randomization (RAR) trial allows the adjustment in the patient allocation 

ratio/proportion/number of treatments, i.e. changing the plan of assigning patients to treatments, 

based on the patient responses to the treatments/drugs reviewed in an interim analysis. A benefit 

of this type of adaptation is that more patients may receive a superior treatment/drug by the end of 

the trial. An adaptive seamless phase II/III trial that addresses the objectives that are normally 

achieved through separate trials in phases IIb and III, within a single trial to achieve benefits such 

as savings in time or sample size. The adaptation of sample size or randomization are possible in 

seamless designs. More details and other types of ACTs that are not addressed in this dissertation 

can be seen in these references [3, 5, 6, 8, 9, 11, 12]. 

 Resupply Schemes 

Two widely used inventory control policies in practice are quantity-reorder (Q-r) and floor-ceiling 

(S-s). Fig 1.4 shows the typical inventory profiles of the two policy. In Q-r policy, only when the 

current inventory level drops below the reorder point r, a replenishment of quantity Q will be 

triggered, where the Q and r are fixed values throughout the supply horizon. In S-s policy, there 

also exist a resupply threshold s. Only when the current inventory level drops below the threshold, 

a replenishment can occur. The quantity of the replenishment is designated to fill the inventory up 

to a “ceiling” level S. The S and s are fixed values throughout the supply horizon. Note that the 

replenishment of inventory in practice are usually not instantons like Fig 1.4. Instead, there exist 

a lead time and the current inventory level keeps dropping before the initialized shipment arrives. 
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Fig 1.4 Illustration of Q-r and S-s Resupply Schemes 

 Contribution of the Dissertation 

This is a work that bridges the gap between adaptive clinical trial (ACT) planning and drug supply 

chain management and involves the use of knowledge from diverse areas, including clinical trial 

design, clinical statistics, supply chain management, and mathematical optimization.  

 

For the research project in Chapter 3, a contribution is that we introduce a new type of supply 

chain management problem to the literature. The unique characteristics are (uncertain) finite-

customer supply horizon, demand-repeating and length-fixed window of customers’ stay, 

uncertain customer arrival, uncertain customer drop-out rate, 100% customer service level, and 

(uncertain) multi-product demands per customer. That is, the supply of multiple products will be 

terminated when an uncertain finite number of customers are successfully supplied throughout 

their staying windows. Every randomly arrived customer must be supplied immediately, without 

backlog or delay, until the end of their staying windows or they randomly dropout from it. 

 

For the research project in Chapter 4, a contribution is that we incorporate the trial-side operations 

into supply chain management and propose a joint optimization problem, where we identify the 

individual patient assignment as the key decision/linkage between trial adaptation and drug supply. 
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It is the first work in the relevant field that introduces the integration between trial design problem 

and drug supply problem, which may potentially pave a path to future research domain. 

 

Both works also satisfy the need of better optimization tools for adaptive trial supply management, 

given that current practice is using simulation tools. Other contributions include building ACT-

oriented uncertainty simulators, building mathematical programming models for the problem, 

adapting modern solution methods to the optimization programs, studying the performance of 

different drug resupply schemes, and addressing the drug overage and production amount 

estimation issues. 

 Organization of the Dissertation 

This dissertation is composed of two major research projects, presented in Chapter 3 and Chapter 

4 respectively. The literature related to the two projects is reviewed in Chapter 2, including the 

latest works within relevant fields and the important studies that help the development of our 

projects. The solution methods used in the two projects are reviewed in Chapter 3 and 4 rather than 

Chapter 2. Chapter 3 is a research study for drug supply chain optimization under exogenous 

uncertainties incurred by ACTs. Chapter 4 is a research study for integration between drug supply 

and trial design and its joint optimization. Both Chapter 3 and 4 have subsections of problem 

statement, model formulation, solution method, numerical case study, and conclusions. 
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2. LITERATURE REVIEW 

 Clinical Trial Supply Chain Management  

Early researches focus on only single or few aspects of the trial supply chain, e.g. drug wastage, 

supply scheme, demand forecast, supply cost, and most of the approaches rely on simulations. Ho 

and Hamilton (2004) proposed a dynamic drug supply procedure for stratified clinical trials and 

demonstrated its ability of reducing drug waste by simulations. The key concept is to replenish the 

inventories based on the coverage of future randomized patients, rather than focusing on individual 

inventory levels [13]. Peterson et al. (2004) built a simulation model for a computer-controlled 

medication system that automatically maintains sufficient supplies at each study site. Through 

several simulation experiments, they showed that the automated medication management system 

has superior performance to the traditional method in terms of reducing wasted medication [14]. 

Abdelkafi et al. (2009) proposed a simulation model, a reevaluation scheme to select for optimal 

supply strategy that balances supply costs against the risk of medication shortage. The simulation 

model consists of treatment process and the supply process, which respectively simulate the drug 

demands and the performance of supply strategy, while the reevaluation scheme follows Bayesian 

principle to reevaluate supply strategies with large number of observations [15]. Anisimov (2009) 

proposed a statistical technique for modeling the patient recruitment of multi-center clinical trials, 

which serves as an approach to predicting number of recruited patients, total recruitment time, and 

minimal number of centers required. The author also utilizes it to develop a risk-based supply 

modelling tool that evaluates/predicts the needed supply amount and drug overage [16]. 

 

From recent articles, we can see more comprehensive aspects of drug supply chain for clinical 

trials as well as the use of optimization programming. Two threads of research are reviewed. One 

is developed by Chen and Reklaitis; the other is developed by Fleischhacker and Zhao. Chen et al. 

(2012) proposed a simulation-optimization framework for the management of entire supply chain, 

which includes patient demand simulation and demand scenario forecast, mathematical 

programming based planning, and discrete event simulation of the supply chain. Given simulated 

drug demand scenarios, the quality and robustness of the plans generated from the planning model 

are assessed by replicated simulation runs of the discrete event simulation model [17]. Building 
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upon this work, Chen et al. (2013) added an outer loop optimization in order to determine 

appropriate pooled safety stock levels. The outer optimization problem is solved via a direct search 

algorithm [18]. Fleischhacker and Zhao (2011) built a dynamic programming model for a 

production lot size problem that includes the risk of trial failure. For trials with finite time horizon, 

the author assumed the drug demand is known in all periods and drugs can be produced at every 

period with zero lead-time [19]. Fleischhacker et al. (2015) built a nonlinear integer programming 

(NIP) model for a multi-echelon inventory problem, where quantity-reorder policy is embedded 

and the network is composed of a central warehouse, several country depots, and multiple site-

level inventories. The NIP is linearized and solved by standard integer programming solvers. This 

works studies the impact of various factors, e.g. shipment lead time, patient arrival rate, number 

of sites per country, on supply costs and inventory overage [20]. 

 Adaptive Clinical Trial Supply Chain Management 

The literature that addresses the supply chain management for ACTs is much rare.  The content of 

this subsection is mainly reported by Burnham et al. (2015) [1], which is a pioneer article that 

records practical observations and effective strategies for drug manufacturing, labeling, packaging, 

and randomization. 

 

Important observations or suggestions reported in Burnham et al. (2015) [1]: 

• Total cycle time to ready the active pharmaceutical ingredient (API) and comparators for 

packaging is anywhere from 6 to 16 months. 

• The nature of the adaptive design demanded prepackaging for all possible allocation 

scenarios before study start. Flexibility in dosing outweighed the cost of maximum overage. 

• Just-in-time or on-demand packaging and labeling is a strategy to reduce overage and 

increase supply utilization. However, this approach requires the ability to quickly 

turnaround treatment-specific packaging and release and ship drug supply. 

• If a trial is long enough, supplies can be manufactured and/or packaged in separate 

campaigns to preserve material. 

• To maintain study blinding, it may be important to keep the number of tablets taken per 

day consistent across treatment arms. 
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• During the course of the trial, adjustments to threshold levels triggering resupply of study 

drug must reflect changes to the randomization schedule. 

• In many adaptive studies, there is a delay between completion of a cohort and 

implementation of an adaptive change, which is most often driven by the availability of 

supplies at sites. 

• If the delay (previous bullet point) is lengthy relative to enrollment rate, the clinical team 

will decide whether to supply sites in advance for all possible allocations or shut 

randomization down until new supplies arrive. 

• Among many factors other than trial size, patient accrual rate influences drug supply 

estimates the most. 

• For modeling site-level accrual, Poisson models have been shown to fit data from several 

trials across therapeutic areas in large pharmaceutical companies. 

• As in other industries, the “floor/ceiling’’ system of inventory control with joint 

replenishment is commonly used in clinical trials. 

• Drug supply planning must take into account the uncertainty of maximum drug needed and 

the shifting of supply requirement. The need for immediate drug availability at sites must 

be balanced by the amount of overage. 

• Adaptive designs are potentially more costly than traditional studies, and much of that cost 

is driven by increased drug supply costs. 

 

One effective strategy for reducing drug overage is to produce minimal packaged dosage (MPD) 

units. Take a thrombosis prevention trial sponsored by GlaxoSmithKline as an example [21], 

shown in Table 2.1, the manufacturer only produces two MPDs, 125 mg API and the placebo. 

Every patient will receive 4 bottles that correspond to the treatment which this person is assigned 

to, and take one tablet from each bottle to reach the target investigational dosage. In comparison 

to producing 5 treatment dosages, this MPD strategy can better accommodate drug demand 

uncertainties and reduce drug wastage, especially when one or a few of the treatments may be 

excluded in the halfway of the ACT.  
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Table 2.1 An Example of Minimal Packaged Dosage Strategy [21] 

Different Treatments / Dosages  Bottle 1 Bottle 2 Bottle 3 Bottle 4 

Treatment A: 0 mg Placebo Placebo Placebo Placebo 

Treatment B: 125 mg Placebo Placebo Placebo Active 

Treatment C: 250 mg Placebo Placebo Active Active 

Treatment D: 375 mg Placebo Active Active Active 

Treatment E: 500 mg Active Active Active Active 

 

The use of modeling and simulation approach is also emphasized by Burnham et al. (2015). 

Typically, there are two simulation programs, trial design simulation and drug supply simulation. 

The trial design simulation estimates subject recruitment, overall treatment allocation, and 

adaptations of randomization ratios, and outputs the generated scenarios to the drug supply 

simulation. The drug supply simulation then estimates the drug supply required based on an 

assumed supply environment, including the structure of inventories, addition/deletion of clinical 

sites, packaging campaigns, subject recruitment and dropout rates. This simulation framework can 

investigate the impact of a variety of alternative scenarios through adjusting the supply 

environment and allow the clinical team to evaluate operational decisions [1]. A comprehensive 

simulation study was performed and presented by the chairman of Cytel Inc., Nitin R Patel, at 

Clinical Supply Forecasting Summit, in which a placebo-controlled, double-blind, phase II dose-

finding trial with continuous primary endpoint that are normally distributed is considered [22, 23]. 

There is another study that use two simulation tools, CytelSim and MedSim, for estimating clinical 

trial and supply decisions respectively, under different scenarios [24]. 

 Adaptive Design of Patient Allocation 

Patient and treatment allocation have been a very important part of clinical trial design and can 

strongly affect the management of resources used in a trial. Here we review some representative 

works that focus on optimal allocation design, listed in Table 2.2, where different designs and 

modifications are proposed and analyzed for trials with different characteristics. Note that our 

work is not aiming at improving the allocation design. Instead, we focus on identifying and 

incorporating adaptive design rules with drug supply problem. Since our work is the first attempt 
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to merge supply chain management considerations into the patient-treatment allocation design, we 

target on characteristics of two arms and binary patient response. 

 

Table 2.2 Representative References Focusing on Optimal Allocation Design 

Reference # Arms Response Sample Size Description 

RSIHR 

(2001) [25] 

2 

 

binary fixed Proposed an allocation design that 

minimizes the number of negative 

responses  

Biswas 

and Mandal 

(2004) [26] 

2 normal  

and 

exponential 

fixed Extended the work of RSIHR (2001) 

and considered responses with 

covariates 

Zhang and 

Rosenberger 

(2006) [27] 

2 normal fixed Proposed an allocation design with 

objective of acquiring desirable 

expected response 

Biswas et. Al 

(2007) [28] 

2 normal fixed Indicated the conditions of failure in 

the design by Zhang and Rosenberger 

(2006) and developed a unified new 

framework 

Tymofyeyev 

(2007) [29] 

≥2 binary sequential 

design 

Proposed an allocation design that 

minimizes the weighted sum of 

sample sizes and maintains certain 

level of statistical power 

Hu and 

Zhang 

(2004) [30] 

≥2 general  

form 

sequential 

design 

Proposed a general doubly biased 

coin design and studied the 

asymptotic properties 

Zhu and Hu 

(2010) [31] 

2 binary  

and  

normal 

sequential 

design 

Proposed a sequential monitoring 

procedure to control the inflation of 

type I error for several common 

allocation designs 

 



23 

 

Among these papers, two representative allocation rules are frequently mentioned and used in 

comparison with various approaches: RSIHR and Neyman allocation. RSIHR allocation is firstly 

proposed by Rosenberger et al. (2001) [25] for minimizing the expected number of treatment 

failures or maximizing the expected number of successes in a trial with a fixed asymptotic variance 

of 𝑝̂1 − 𝑝̂2, where 𝑝̂1 and 𝑝̂2 are estimators of the success probabilities on each treatment 𝑝1 and 

𝑝2 [30, 32]. The optimal target allocation proportions 𝜌1
∗ and 𝜌2

∗ can be expressed as (1). 

 

𝜌1
∗ =

√𝑝1

√𝑝1 + √𝑝2

  , 𝜌2
∗ =

√𝑝2

√𝑝1 + √𝑝2

 (1) 

 

Neyman allocation is firstly proposed by Melfi and Page (1998) [33] for minimizing the variance 

of 𝑝̂1 − 𝑝̂2 or maximizing the precision of estimators [29, 30]. The Neyman allocation follows 

(2), where 𝑞1 = 1 − 𝑝1 and 𝑞2 = 1 − 𝑝2. 

 

𝜌1
∗ =

√𝑝1𝑞1

√𝑝1𝑞1 + √𝑝2𝑞2

  , 𝜌2
∗ =

√𝑝2𝑞2

√𝑝1𝑞1 + √𝑝2𝑞2

 (2) 

 

To achieve the desired allocations and maintain/control trial power and variance, several 

approaches are proposed. Note adaptive designs, including RAR, are sequential procedures, and 

therefore these approaches contain sequential process and analysis. Urn models is one of the 

approaches to adaptively randomizing patients. Zhang et al. (2006) proposed a sequential 

estimated-adjusted urn (SEU) model as a patient assignment procedure targeting an allocation 

proportion [34]. Zhang et al. (2011) proposed a broad class of immigrated urn models, which can 

control the treatment allocation in a multi-arm trial to the desired allocation target [35]. Another 

approach is sequential maximum likelihood estimation (SMLE), which uses a suitable function to 

adjust randomization probabilities according to the current estimation on the model parameters. 

One famous method is the doubly adaptive biased coin design (DBCD), firstly proposed by Eisele 

(1994) [36]. Hu and Zhang (2004) proposed a new family of DBCD that is applicable to any given 

allocation proportion, in which the target/optimal allocation is a continuous, twice-differentiable 

vector function of trial parameters, i.e. treatment success probabilities in the case of binary 

response [30]. The general procedure for a K-treatment trial fellows (3), where 𝜙𝑗+1,𝑘
  is the 



24 

 

allocation probability of the (𝑗 + 1)th patient to treatment 𝑘, 𝜌̂𝑘
∗  is the current estimation of target 

allocation to treatment 𝑘, 𝑁𝑘𝑗/𝑗 is the proportion of 𝑗 patients assigned to treatment 𝑘, and 𝛾 is a 

user-defined parameter governing the degree of randomness [37]. 

 

𝜙𝑗+1,𝑘
 =

𝜌̂𝑘
∗ (

𝜌̂𝑘
∗

𝑁𝑘𝑗/𝑗
)

𝛾

∑ 𝜌̂𝑖
∗ (

𝜌̂𝑖
∗

𝑁𝑖𝑗/𝑗
)

𝛾
𝐾
𝑖=1

  ,      𝑘 = 1, … , 𝐾 (3) 

 

This DBCD procedure is adapted for our joint optimization problem, where we discretize the 

sequential process of assignment into time periods to align with the drug supply problem and adjust 

the allocation probability of the cohort of patients arrived at each (next) period, instead of each 

individual. 

 

In addition, Zhu and Hu (2010) have numerically demonstrated that Neyman allocation proportion 

can be targeted well by DBCD, and the type-I error along with standard deviation can be controlled 

within a reasonably small range. In their work, 𝛾 = 2 is applied [31].  

 Sample Size Re-estimation 

The field of sample size re-estimation is another broad area of clinical trial design research. Here 

we only mention the rules and equations that fit the case of our interest, two-arms trial with binary 

responses that follow Binomial distribution, because our intention is not improving the adaptive 

design but seeking the integration of design information into supply chain management. 

 

To evaluate the statistical significance, normal-theory test, e.g. 𝑍-test, can be applied if we assume 

normal the normal approximation to the binomial distribution is valid. Then the acceptance and 

rejection of the null hypothesis can be determined by the 𝑍 value, illustrated as Fig 2.1. The criteria 

𝑍1−𝛼/2 and 𝑍𝛼/2 have strong relation with the power and significance of a trial [38]. 
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Fig 2.1 Illustration of Acceptance and Rejection Regions [38] 

 

For the two-independent-sample study/test for incidence/success rates, the minimum number of 

subjects 𝑁 needed to attain certain study power can be calculated as (4), where 𝛼 and 𝛽 are the 

probabilities of type I  and II error, 𝑝1 and 𝑝2 are incidence rates of group 1 and 2, 𝜌1 and 𝜌2 are 

allocation ratios of group 1 and 2 to the entire population, 𝜌1 + 𝜌2 = 1 [38]. 

 

𝑁 = {𝑍1−𝛼/2√
𝑝̅ 𝑞̅

𝜌1𝜌2
+ 𝑍1−𝛽√

𝑝1𝑞1

𝜌1
+

𝑝2𝑞2

𝜌2
}

2

Δ2⁄  (4) 

where 𝑞1 = 1 − 𝑝1, 𝑞2 = 1 − 𝑝2, 𝑝̅ = 𝜌1𝑝1 + 𝜌2𝑝2, 𝑞̅ = 1 − 𝑝̅ , Δ = |𝑝1 − 𝑝2|  

 

In our joint optimization problem, we consider this calculation as a termination criterion that 

specifies whether we have collected enough samples at the end of every period. The 𝛼 and 𝛽 are 

chosen to be the commonly seen values 0.05 and 0.2 respectively, which result in 𝑍1−𝛼/2 = 1.96 

and 𝑍1−𝛽 = 0.84. 
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3. DRUG SUPPLY CHAIN OPTIMIZATION FOR ADAPTIVE 

CLINICAL TRIALS 

 A Novel Production-Inventory-Transportation Problem 

This problem aims at facilitating the drug supply chain management in response to the 

uncertainties resulted from ACTs and numerically studying the impact of ACTs on several 

important aspects of trial supply, including drug wastage, resupply policy, trial length, and overall 

costs. For trial design and adaptation, we focus on the adaptations commonly seen in SSR and 

adaptive seamless phase II/III trial, including target sample size changes, dosage dropping, and 

randomization adaptations. For drug supply, we have a multi-dosage, multi-site, multi-period, and 

multi-echelon supply chain framework. In this problem, the trial adaptations are reflected on 

stochastic parameters/random variables that govern the demands for drugs, and we optimize supply 

decisions under the uncertainties of patient arrival, patient dropout, and trial adaptations, for 

minimum production, inventory, transportation, drug wastage, and recruitment costs. The unique 

features of our problem are: 

• Finite-customer supply horizon 

• Demand-repeating and length-fixed window of customers’ stay 

• Uncertain customer drop-out from staying windows 

 

In terms of the trial, we targeted on a randomized, double-blinded trial with multiple parallel 

treatments and one interim analysis timepoint. Random number of patients will be enrolled at 

different clinical sites and discrete time periods, and no one can be rejected or missed due to any 

reason. Enrolled patient will keep consuming drugs in the duration of their treatments. However, 

every time period, a random proportion of them will drop out from the trial. The is terminated 

when there is enough number of patients who enrolled and finished their treatments, i.e. the 

satisfaction of the target total sample size. Note that the target sample size could change after an 

interim analysis time point. 

 

As for the supply, the immediate availability of drugs is always enforced, and no backlog or cross 

shipment between sites is allowed. All dosages are produced in one campaign prior to the 
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beginning of the trial and stored at a centralized distribution center (DC). Note the produced 

dosages are minimum packaged dosages (MPDs) mentioned in Chapter 2.2 instead of the 

investigational dosages used in the trial. Drug demands are generally expressed as the 

multiplication of two (stochastic) parameters: the number of patients and the averaged 

consumption of the MPD per patient. The calculation of the averaged consumption involves the 

randomization ratios between treatments and the composition of the treatment dosage respective 

to the MPDs. Three types of resupply policy are applied in this problem, freely resupply, quantity-

reorder (Q-r), and floor-ceiling (S-s), the introduction and characteristics of which are written in 

Chapter 1.4 and Table 3.9. The distances between the DC and clinical sites vary, which are 

reflected on shipping costs instead of shipping time. The lead time of shipment is shorter than the 

treatment span/duration. All dosages are shipped together in boxes with same capacity via FedEx 

cold chain service. The cost of storing drugs is higher at clinical sites than at the DC. When the 

trial is terminated, no shipment or change in inventory levels is allowed. 

 A Two-Stage Stochastic Program 

We have sets of dosages, sites, periods, and scenarios defined as Table 3.1. Note that the minimal 

packaged dosages (MPDs) is the unit dosages that are manufactured and consist of the 

investigational dosages used in treatments. The setting of MPDs has been proven to effectively 

reduce the drug waste in ACTs [21]. 

 

Table 3.1 Sets and Indices of the Production-Inventory-Transportation Problem 

𝐼 The set of (minimal packaged) dosages indices 𝑖 

𝑆 The set of clinical sites indices 𝑠 

𝑇 The set of time periods 𝑡 

𝐾 The set of scenarios indices 𝑘 

 

All parameters used in the model are listed in Table 3.2. The values of stochastic parameters differ 

at each scenario and are sampled from certain distributions described in Chapter 3.4.1. Although 

𝐷𝑡
𝑘 and 𝛾𝑖𝑡

𝑘  are subscripted by 𝑡, their values in a scenario only change after the prespecified time 

periods where an interim analysis occurs. 
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Table 3.2 Parameters of the Production-Inventory-Transportation Problem 

Parameters 

𝑐𝑖
𝑝
 Production cost of (minimal packaged) dosage 𝑖; $/dose 

𝑐𝑠
𝑟 Recruitment and enrollment cost of site 𝑠; $/week 

𝑐𝑠
𝑠 Shipping cost of site 𝑠; $/box 

𝑐 
ℎ Holding cost at distribution center; $/dose/week 

𝑐𝑠
ℎ Holding cost at site 𝑛; 𝑐𝑠

ℎ > 𝑐 
ℎ; $/dose/week 

𝑐𝑛𝑖
𝑤  Disposal/recycle cost of dosage 𝑖 left at site 𝑛 at the end of horizon; $/dose 

𝐿 Shipment lead time of all dosages and sites; 𝐿 > 0; week 

𝜏  Addition periods required to finish the treatment; 𝜏 ≥ 𝐿; week 

𝑉 Volume of a dose; in3 

𝑄𝑏𝑜𝑥 Capacity of a cold shipping box; in3 

𝑄𝑠
  Capacity limit of site 𝑠; in3 

𝑀 
  Large number 

Stochastic Parameters 

𝑛𝑠𝑡
𝑘  Number of enrolled patients at site 𝑠 at period 𝑡 

𝛼𝑠𝑡
𝑘  Period-based patient drop-out rate of site 𝑠 at period 𝑡 

𝐷𝑡
𝑘 Target sample size of the trial at period 𝑡 

𝛾𝑖𝑡
𝑘  Average consumption of dosage 𝑖 at period 𝑡; dose/patient 

 

The decision variables needed to form this problem are listed in Table 3.3, where the production 

decisions 𝑥𝑖 are not superscripted by 𝑘 because they are here-and-now decisions and determined 

without the realization of future scenarios, i.e. prior to the reveal of stochastic data. The rest of the 

variables are wait-and-see decisions and belong to the second stage. 

 

 

 

 

 

 



29 

 

Table 3.3 Decision Variables of the Production-Inventory-Transportation Problem 

𝑥𝑖 Produced amount of dosage 𝑖; dose 

𝑁𝑠𝑡
𝑘  Cumulative number of samples collected from site 𝑠 at the end of period 𝑡 

𝑦𝑖𝑡
𝑘  Inventory of dosage 𝑖 at distribution center at the end of period 𝑡; dose 

𝑦𝑠𝑖𝑡
𝑘  Inventory of dosage 𝑖 at site 𝑠 at the end of period 𝑡; dose 

𝑢𝑠𝑖
𝑘  Amount of dosage 𝑖 shipped to site 𝑠 before the trial starts; dose 

𝑢𝑠𝑖𝑡
𝑘  Amount of dosage 𝑖 shipped to site 𝑠 at period 𝑡; dose 

𝑣𝑠
𝑘 Number of boxes used for the shipment to site 𝑠 before the trial starts 

𝑣𝑠𝑡
𝑘  Number of boxes used for the shipment to site 𝑠 at period 𝑡 

𝛿𝑡
𝑘 Binary status of open enrollment; 0 means terminated 

𝜃𝑡
𝑘 Binary status of drug supply; 0 means terminated 

 

The deterministic equivalent of the two-stage stochastic program for this problem is formulated as 

below, where the number of second-stage problems corresponds to the size of set 𝐾. The two-stage 

structure is usually resolved by reformulating into extensive form (EF) [39-41], for which we 

substitute the corresponding (7) into (5) and minimize all the variables together subject to (6) and 

(8)-(28) with respect to each 𝑘 . The resulting EF problem is a large mixed-integer nonlinear 

program (MINLP) and is referred to original problem in the following content. 

 

First Stage: 
min

𝑥𝑖

 ∑ 𝑐𝑖
𝑝𝑥𝑖

 

𝑖∈𝐼

+ ∑
1

|𝐾|
𝜙𝑘(𝑥𝑖)

 

𝑘∈𝐾

  (5) 

 𝑥𝑖 ∈ ℝ+
  ∀𝑖 (6) 

Second Stage: 

Minimize 
𝜙𝑘 = ∑ ∑ 𝑐𝑠

𝑟𝛿𝑡
𝑘

 

𝑠∈𝑆

 

𝑡∈𝑇

+ ∑ 𝑐𝑠
𝑠𝑣𝑠

𝑘

 

𝑠∈𝑆

+ ∑ ∑ 𝑐𝑠
𝑠𝑣𝑠𝑡

𝑘

 

𝑠∈𝑆

 

𝑡∈𝑇

+ ∑ ∑ 𝑐 
ℎ𝜃𝑡

𝑘𝑦𝑖𝑡
𝑘

 

𝑖∈𝐼

 

𝑡∈𝑇

+ ∑ ∑ ∑ 𝑐𝑠
ℎ𝜃𝑡

𝑘𝑦𝑠𝑖𝑡
𝑘

 

𝑖∈𝐼

 

𝑠∈𝑆

 

𝑡∈𝑇

+ ∑ ∑ 𝑐𝑠𝑖
𝑤𝑦𝑠𝑖𝑇

𝑘

 

𝑖∈𝐼

 

𝑠∈𝑆

 

(7) 

Subject to     

Sample Size 
𝑁𝑠𝑡

𝑘 = 𝑁𝑠,𝑡−1
𝑘 + 𝛿𝑡−𝜏 

𝑘 𝑛𝑠,𝑡−𝜏 

𝑘 ∏ (1 − 𝛼𝑠,𝑡−𝑚
𝑘 )

𝜏 −1
𝑚=0   ∀𝑠, 𝑡 > 𝜏  (8) 
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𝑁𝑠𝑡
𝑘 = 0 ∀𝑠, 𝑡 ≤ 𝜏  (9) 

Trial 

Termination 

𝜃𝑡
𝑘 = 1 𝑡 = 1 (10) 

𝐷𝑡−1
𝑘 ≤ ∑ 𝑁𝑠,𝑡−1

𝑘 
𝑠∈𝑆 + 𝑀𝜃𝑡

𝑘  ∀𝑡 > 1 (11) 

∑ 𝑁𝑠,𝑡−1
𝑘 

𝑠∈𝑆 < 𝐷𝑡−1
𝑘 + 𝑀(1 − 𝜃𝑡

𝑘)  ∀𝑡 > 1 (12) 

𝛿𝑡
𝑘 = 𝜃𝑡+𝜏

𝑘  ∀𝑡 ∈ [1, |𝑇| − 𝜏 ] (13) 

𝐷𝑡
𝑘 ≤ ∑ 𝑁𝑠𝑡

𝑘 
𝑠∈𝑆   𝑡 = 𝑇 (14) 

Inventory of 

DC 

𝑦𝑖𝑡
𝑘 = 𝑦𝑖,𝑡−1

𝑘 − 𝜃𝑡
𝑘 ∑ 𝑢𝑠𝑖𝑡

𝑘 
𝑠∈𝑆   ∀𝑖, 𝑡 > 1 (15) 

𝑦𝑖𝑡
𝑘 = 𝑥𝑖 − ∑ 𝑢𝑠𝑖

𝑘 
𝑠∈𝑆 − ∑ 𝑢𝑠𝑖𝑡

𝑘 
s∈𝑆   ∀𝑖, 𝑡 = 1 (16) 

Inventory of 

Sites 

𝑦𝑠𝑖𝑡
𝑘 = 𝑦𝑠𝑖,𝑡−1

𝑘 + 𝜃𝑡−𝐿
𝑘 𝑢𝑠𝑖,𝑡−𝐿

𝑘 − 𝑑𝑘𝑠𝑖𝑡
1  ∀𝑠, 𝑖, 𝑡 > 𝜏 (17) 

𝑦𝑠𝑖𝑡
𝑘 = 𝑦𝑠𝑖,𝑡−1

𝑘 + 𝜃𝑡−𝐿
𝑘 𝑢𝑠𝑖,𝑡−𝐿

𝑘 − 𝑑𝑘𝑠𝑖𝑡
2  ∀𝑠, 𝑖, 𝑡 ∈ (𝐿, 𝜏] (18) 

𝑦𝑠𝑖𝑡
𝑘 = 𝑦𝑠𝑖,𝑡−1

𝑘 − 𝑑𝑘𝑠𝑖𝑡
3  ∀𝑠, 𝑖, 𝑡 ∈ (1, 𝐿] (19) 

𝑦𝑠𝑖𝑡
𝑘 = 𝑢𝑠𝑖

𝑘 − 𝛾𝑖𝑡
𝑘 𝛿𝑡

𝑘𝑛𝑠𝑡
𝑘   ∀𝑠, 𝑖, 𝑡 = 1 (20) 

Capacity 

restriction 

∑ 𝑉𝑢𝑠𝑖
𝑘 

𝑖∈𝐼 ≤ 𝑄𝑠
   ∀𝑠 (21) 

∑ 𝑉𝑦𝑠𝑖,𝑡−1
𝑘 

𝑖∈𝐼 + ∑ 𝑉𝑢𝑠𝑖,𝑡−𝐿
𝑘 

𝑖∈𝑆 ≤ 𝑄𝑠
   ∀𝑠, 𝑡 > 𝐿 (22) 

∑ 𝑉𝑦𝑠𝑖𝑡
𝑘 

𝑖∈𝐼 ≤ 𝑄𝑠
   ∀𝑠, 𝑡 ≤ 𝐿 (23) 

Shipment ∑ 𝑉𝑢𝑠𝑖
𝑘 

𝑖∈𝐼 ≤ 𝑄𝑏𝑜𝑥𝑣𝑠
𝑘  ∀𝑠 (24) 

 ∑ 𝑉𝑢𝑠𝑖𝑡
𝑘 

𝑖∈𝐼 ≤ 𝑄𝑏𝑜𝑥𝑣𝑠𝑡
𝑘   ∀𝑠, 𝑡 (25) 

Bounds 𝛿𝑡
𝑘, 𝜃𝑡

𝑘 ∈ {0,1} ∀𝑖, 𝑠, 𝑡, 𝑗 ∈ J 
𝑠𝑡 (26) 

𝑁𝑠𝑡
𝑘 , 𝑦𝑖𝑡

𝑘 , 𝑦𝑠𝑖𝑡
𝑘 , 𝑢𝑠𝑖

𝑘 , 𝑢𝑠𝑖𝑡
𝑘 ∈ {0, ℝ+} ∀𝑠, 𝑖, 𝑡 (27) 

𝑣𝑠
𝑘, 𝑣𝑠𝑡

𝑘 ∈ {0, ℤ+} ∀𝑠, 𝑖, 𝑡 (28) 

 

Note that the 𝑑𝑘𝑠𝑖𝑡
1 , 𝑑𝑘𝑠𝑖𝑡

2 , and 𝑑𝑘𝑠𝑖𝑡
3  in (17)-(19) are functions of 𝛿𝑡

 , expressed as (29)-(31), and 

consist of drug consumption terms contributed by currently enrolled patients and patients who 

arrived in early periods but have not finished their treatments. Note that a portion of patients will 

drop out at every period, so there exists cumulative multiplication of 1 − 𝛼𝑠𝑡
𝑘 . 

 

𝑑𝑘𝑠𝑖𝑡
1 = 𝛾𝑖𝑡

𝑘 𝛿𝑡
𝑘𝑛𝑠𝑡

𝑘 + ∑ 𝛾𝑖,𝑡−𝑗
𝑘 𝛿𝑡−𝑗

𝑘 𝑛𝑠,𝑡−𝑗
𝑘 ∏ (1 − 𝛼𝑠,𝑡−𝑚

𝑘 )
𝑗−1
𝑚=0

𝜏 
𝑗=1   (29) 

𝑑𝑘𝑠𝑖𝑡
2 = 𝛾𝑖𝑡

𝑘 𝛿𝑡
𝑘𝑛𝑠𝑡

𝑘 + ∑ 𝛾𝑖,𝑡−𝑗
𝑘 𝛿𝑡−𝑗

𝑘 𝑛𝑠,𝑡−𝑗
𝑘 ∏ (1 − 𝛼𝑠,𝑡−𝑚

𝑘 )
𝑗−1
𝑚=0

t−L
𝑗=1   (30) 
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𝑑𝑘𝑠𝑖𝑡
3 = 𝛾𝑖𝑡

𝑘 𝛿𝑡
𝑘𝑛𝑠𝑡

𝑘 + ∑ 𝛾𝑖,𝑡−𝑗
𝑘 𝛿𝑡−𝑗

𝑘 𝑛𝑠,𝑡−𝑗
𝑘 ∏ (1 − 𝛼𝑠,𝑡−𝑚

𝑘 )
𝑗−1
𝑚=0

t−1
𝑗=1   (31) 

 

The objective function of the EF problem, (5) and (7), consists of production cost and the 

expectation of the recruitment costs, initial shipping costs, shipping costs incurred during the trial 

horizon, holding costs of the distribution center, holding cost of sites, and the recycling costs of 

drug wastage by the end of the horizon  respectively. 

 

Regarding the trial termination, constraint (8) ensures the incremental number of samples, i.e. 

patients who finished their treatments, at current period is the number of patients enrolled τ-periods 

ago multiplied by according drop-out rates, and constraint (9) is its initial condition. Constraint 

(10) specifies that the initial status of drug supply is on. Constraint (11) and (12) ensures that the 

supply is terminated only as the target sample sized is reached, otherwise the supply continues. 

Constraint (13) specifies that the open enrollment status is 𝜏-periods ahead of the supply status. 

when the enrollment stops, the last cohort of patients still require the availability of drugs during 

the treatment span. Hence, the termination of the supply is 𝜏-periods later. Constraint (14) specifies 

that there will be enough samples collected by the end of the horizon. Otherwise, the problem is 

infeasible because the trial is doomed to fail or be incomplete due to insufficient patient arrival.  

 

As for the drug supply, constraint (15) and (16) ensure that the inventory difference between the 

end of current and the immediately previous periods equals to the amount of drugs shipped out of 

the DC. Similarly, constraints (17)-(20) ensure the inventory balance at clinical sites due to drug 

resupply and consumption. Constraint (21)-(23) ensure that the amount of resupply or the 

inventory at the beginning of any period will not exceed the space limit of clinical sites. Constraints 

(24) and (25) impose the capacity restriction on every shipments and specify the number of boxes 

needed in each shipment. Finally, Constraints (26)-(28) indicate bounds on the decision variables. 

 

Note that this stochastic program is not fixed recourse, not relatively complete recourse, non-linear, 

and not fully continuous, which results in considerable difficulty in solving it efficiently. For the 

nonlinearity, we may resort to linearization-reformulation techniques. The non-linear constraints 

(15), (17), and (18) can be linearized via Big-M method. Take constraint (17) as an example,  

𝑦𝑠𝑖𝑡
𝑘 − 𝑦𝑠𝑖,𝑡−1

𝑘 + 𝑑𝑘𝑠𝑖𝑡
1 = 𝜃𝑡−𝐿

𝑘 𝑢𝑠𝑖,𝑡−𝐿
𝑘  can be reformulated as (32)-(35). 
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𝑦𝑠𝑖𝑡
𝑘 − 𝑦𝑠𝑖,𝑡−1

𝑘 + 𝑑𝑘𝑠𝑖𝑡
1 ≥ 𝑢𝑠𝑖,𝑡−𝐿

𝑘 + 𝑀(1 − 𝜃𝑡−𝐿
𝑘 ) ∀𝑠, 𝑖, 𝑡 > 𝜏 (32) 

𝑦𝑠𝑖𝑡
𝑘 − 𝑦𝑠𝑖,𝑡−1

𝑘 + 𝑑𝑘𝑠𝑖𝑡
1 ≤ 𝑢𝑠𝑖,𝑡−𝐿

𝑘 + 𝑀(1 − 𝜃𝑡−𝐿
𝑘 ) ∀𝑠, 𝑖, 𝑡 > 𝜏 (33) 

𝑦𝑠𝑖𝑡
𝑘 − 𝑦𝑠𝑖,𝑡−1

𝑘 + 𝑑𝑘𝑠𝑖𝑡
1 ≥ 0 + 𝑀𝜃𝑡−𝐿

𝑘  ∀𝑠, 𝑖, 𝑡 > 𝜏 (34) 

𝑦𝑠𝑖𝑡
𝑘 − 𝑦𝑠𝑖,𝑡−1

𝑘 + 𝑑𝑘𝑠𝑖𝑡
1 ≤ 0 + 𝑀𝜃𝑡−𝐿

𝑘  ∀𝑠, 𝑖, 𝑡 > 𝜏 (35) 

 

In addition to the above formulation for the freely resupply problem, we introduce the additional 

variables and constraints below for the four resupply schemes in our study: Q-r, S-s, (Q-r)𝑠𝑖, and 

(S-s)𝑠𝑖. The (Q-r)𝑠𝑖 and (S-s)𝑠𝑖 are the cases in which the safety stock level and shipment trigger 

criteria are independent of sites and dosages. In contrast, all sites and dosages in Q-r and S-s cases 

respectively follow a universal policy. The 𝑧𝑠𝑖𝑡
𝑘  indicates whether the current inventory level is 

below the replenishing threshold; the 𝑧′𝑠𝑖𝑡
𝑘  indicates whether a shipment is triggered. Constraint 

𝑧𝑠𝑖𝑡
𝑘 − 𝑧𝑠𝑖,𝑡−1

𝑘 ≥ 1 prevents repeating replenishments due to shipping lead time. 

 

(S-s)𝑠𝑖 scheme 

 

𝑆𝑠𝑖
𝑘 , 𝑠𝑠𝑖

𝑘  ∈ ℤ+ ∀𝑠, 𝑖 

(36) 

𝑧𝑠𝑖𝑡
𝑘 , 𝑧′𝑠𝑖𝑡

𝑘 ∈ {0,1} ∀𝑠, 𝑖, 𝑡 

𝑆𝑠𝑖
𝑘 ≥ 𝑠𝑠𝑖

𝑘  ∀𝑠, 𝑖 

[
𝑧𝑠𝑖𝑡

𝑘 = 1

𝑦𝑠𝑖𝑡
𝑘 < 𝑠𝑠𝑖

𝑘 ] ∨ [
𝑧𝑠𝑖𝑡

𝑘 = 0

𝑦𝑠𝑖𝑡
𝑘 ≥ 𝑠𝑠𝑖

𝑘 ] ∀𝑠, 𝑖, 𝑡 

[
𝑧′𝑠𝑖𝑡

𝑘 = 1

𝑧𝑠𝑖𝑡
𝑘 − 𝑧𝑠𝑖,𝑡−1

𝑘 ≥ 1
] ∨ [

𝑧′𝑠𝑖𝑡
𝑘 = 0

𝑧𝑠𝑖𝑡
𝑘 − 𝑧𝑠𝑖,𝑡−1

𝑘 < 1
] ∀𝑠, 𝑖, 𝑡 > 1 

𝑢𝑠𝑖𝑡
𝑘 = 𝑧′𝑠𝑖𝑡

𝑘 (𝑆𝑠𝑖
𝑘 − 𝑦𝑠𝑖𝑡

𝑘 ) ∀𝑠, 𝑖, 𝑡 

(Q-r)𝑠𝑖  scheme 𝑄𝑠𝑖
𝑘 , 𝑟𝑠𝑖

𝑘 ∈ ℤ+ ∀𝑠, 𝑖 

(37) 

𝑧𝑠𝑖𝑡
𝑘 , 𝑧′𝑠𝑖𝑡

𝑘 ∈ {0,1} ∀𝑠, 𝑖, 𝑡 

[
𝑧𝑠𝑖𝑡

𝑘 = 1

𝑦𝑠𝑖𝑡
𝑘 < 𝑟𝑠𝑖

𝑘] ∨ [
𝑧𝑠𝑖𝑡

𝑘 = 0

𝑦𝑠𝑖𝑡
𝑘 ≥ 𝑟𝑠𝑖

𝑘] ∀𝑠, 𝑖, 𝑡 

[
𝑧′𝑠𝑖𝑡

𝑘 = 1

𝑧𝑠𝑖𝑡
𝑘 − 𝑧𝑠𝑖,𝑡−1

𝑘 ≥ 1
] ∨ [

𝑧′𝑠𝑖𝑡
𝑘 = 0

𝑧𝑠𝑖𝑡
𝑘 − 𝑧𝑠𝑖,𝑡−1

𝑘 < 1
] ∀𝑠, 𝑖, 𝑡 > 1 

𝑢𝑠𝑖𝑡
𝑘 = 𝑧′𝑠𝑖𝑡

𝑘 𝑄𝑠𝑖
𝑘  ∀𝑠, 𝑖, 𝑡 
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S-s scheme 

 

𝑆 
𝑘, 𝑠 

𝑘  ∈ ℤ+  

(38) 

𝑧𝑠𝑖𝑡
𝑘 , 𝑧′𝑠𝑖𝑡

𝑘 ∈ {0,1} ∀𝑠, 𝑖, 𝑡 

𝑆 
𝑘 ≥ 𝑠 

𝑘  

[
𝑧𝑠𝑖𝑡

𝑘 = 1

𝑦𝑠𝑖𝑡
𝑘 < 𝑠 

𝑘
] ∨ [

𝑧𝑠𝑖𝑡
𝑘 = 0

𝑦𝑠𝑖𝑡
𝑘 ≥ 𝑠 

𝑘
] ∀𝑠, 𝑖, 𝑡 

[
𝑧′𝑠𝑖𝑡

𝑘 = 1

𝑧𝑠𝑖𝑡
𝑘 − 𝑧𝑠𝑖,𝑡−1

𝑘 ≥ 1
] ∨ [

𝑧′𝑠𝑖𝑡
𝑘 = 0

𝑧𝑠𝑖𝑡
𝑘 − 𝑧𝑠𝑖,𝑡−1

𝑘 < 1
] ∀𝑠, 𝑖, 𝑡 > 1 

𝑢𝑠𝑖𝑡
𝑘 = 𝑧′𝑠𝑖𝑡

𝑘 (𝑆 
𝑘 − 𝑦𝑠𝑖𝑡

𝑘 ) ∀𝑠, 𝑖, 𝑡 

Q-r scheme 𝑄 
𝑘, 𝑟 

𝑘 ∈ ℤ+  

(39) 

𝑧𝑠𝑖𝑡
𝑘 , 𝑧′𝑠𝑖𝑡

𝑘 ∈ {0,1} ∀𝑠, 𝑖, 𝑡 

[
𝑧𝑠𝑖𝑡

𝑘 = 1

𝑦𝑠𝑖𝑡
𝑘 < 𝑟 

𝑘
] ∨ [

𝑧𝑠𝑖𝑡
𝑘 = 0

𝑦𝑠𝑖𝑡
𝑘 ≥ 𝑟 

𝑘
] ∀𝑠, 𝑖, 𝑡 

[
𝑧′𝑠𝑖𝑡

𝑘 = 1

𝑧𝑠𝑖𝑡
𝑘 − 𝑧𝑠𝑖,𝑡−1

𝑘 ≥ 1
] ∨ [

𝑧′𝑠𝑖𝑡
𝑘 = 0

𝑧𝑠𝑖𝑡
𝑘 − 𝑧𝑠𝑖,𝑡−1

𝑘 < 1
] ∀𝑠, 𝑖, 𝑡 > 1 

𝑢𝑠𝑖𝑡
𝑘 = 𝑧′𝑠𝑖𝑡

𝑘 𝑄 
𝑘 ∀𝑠, 𝑖, 𝑡  

 A Progressive Hedging based Heuristic 

Progressive hedging (PH) is a popular and flexible scenario-based decomposition approach to 

solving large-scale stochastic mixed-integer programs (SMIPs) [40, 42-44]. The computational 

difficulty associated with large problem instances is mitigated by decomposing the problem into 

smaller scenario problems that have similar or the same problem structure, which facilitates the 

use of parallel computing and preserves the flexibility of incorporating other existing approaches 

to the deterministic scenario subproblems [39, 45]. PH does not guarantee the convergence and is 

usually used as heuristic methods for proximate solutions [41]. 

 

To perform scenario decomposition, we introduce the copies of first-stage variables respective to 

scenarios and enforce the equalities between them, known as non-anticipativity constraints 

(NACs). This reformulation leads to the so-called extensive form of scenario formulation (EFS) 

of the stochastic program. With shorthand notations, let the EFS of our problem violating the 

NACs be expressed as (40)-(41), where 𝑥 
𝑘 and 𝑦 

𝑘 are the vectors of first-stage and second-stage 
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variables with respect to scenario 𝑘, 𝐶 and 𝐺 are first-stage and second-stage cost vectors, and 𝕏 
𝑘 

denotes the partitioned feasible region that violates the NACs. Note that (40)-(41) is scenario 

decomposable and the feasible solutions of (40)-(41) that happen to satisfy the NACs are also 

feasible to the original problem. 

 

min
all 𝑥 

𝑘,𝑦 
𝑘

∑
1

|𝐾|
(𝐶𝑥 

𝑘 + 𝐺𝑦 
𝑘)

𝑘∈𝐾

 

s.t. (𝑥 
𝑘, 𝑦 

𝑘) ∈ 𝕏 
𝑘  ∀𝑘 

(40) 

(41) 

 

Progressive hedging algorithm (PHA) aims at iteratively driving the feasible solution of (40)-(41) 

to satisfy the NACs and meanwhile minimizing the objective function, i.e. (40) or (5). The driving 

force of satisfying NACs is resulted from minimizing (40) along with proximal terms that measure 

the deviation of the scenario solutions 𝑥 
𝑘. The general procedure of PHA can be illustrated as Fig 

3.1, where 𝜌  is a user-specific parameter vector, 𝜔𝑘  are called dual price vectors, 𝑖  denotes 

iterations, and 𝑘 still denotes scenarios. 
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Fig 3.1 Flowchart of Progressive Hedging Algorithm for Two-Stage SMIPs 

 

Since our first-stage variables are continuous, the algorithm is considered as terminated when the 

𝑥 
𝑘  converges to within a small tolerance, for which we use maximal difference, i.e. 

max
 

{𝑥 
𝑘  |𝑘 ∈ 𝐾} − min

 
{𝑥 

𝑘  |𝑘 ∈ 𝐾} ≤ 𝜖, as the criterion and the tolerance 𝜖 is set to be 0.3 in our 

study. The selection of 𝜌 follows the cost-proportional principle demonstrated by Watson et al. 

(2007) [40]. 

 

We then propose a pre-solving procedure to reduce the computational burden because we observed 

that a scenario-specific subproblem, e.g. min
 

{𝐶x + 𝐺y|(x, y) ∈ 𝕏 
𝑘}, cannot be solved through 

commercial MIP solvers within reasonable amount of time. This proposed procedure takes 

advantage of the problem structure to separate the trial termination problem from the drug supply 

problem. By solving the trial termination problem separately, we can obtain optimal termination 

decisions of the scenario-specific subproblem, i.e. 𝛿𝑡
𝑘  and 𝜃𝑡

𝑘 , in advance. The reduction in 

computational time of solving the scenario-specific subproblem results from the fixation of 𝛿𝑡
𝑘 and 
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𝜃𝑡
𝑘. The procedure is shown as Fig 3.2 below and incorporated into every step that requires solving 

scenario subproblem in the PHA. 

 

 

Fig 3.2 Flowchart of Proposed Presolving Procedure 

 

In addition, we apply scenario bundling technique to the PHA, where the problem is decomposed 

according to bundles of scenarios instead of individual scenarios. By treating the bundles as 

decomposition units, the convergence at the master level of PHA can be enhanced. However, the 

bundles are computationally more difficult than single scenarios. Many studies focus on the 

efficiency of scenario bundling/clustering [39, 46-48]. For our problem, we choose the bundle size 

of 3 scenarios and considered two bundling schemes: random bundling and maximal similarity, 

where the similarity measure is the termination time obtained via the presolving procedure. 

 Numerical Case Study 

3.4.1 Instance Generation 

The information of the case for study is listed in Table 3.4. Regarding the stochastic parameters, 

we created distributions to simulate the uncertainties. First, the number of patients enrolled at each 
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clinical site and period, 𝑛𝑠𝑡
 , independently follows a Poisson distribution, where the mean is set to 

7.14 for enough samples to be collected in the trial. Second, the patient drop-out rate at each site 

and period, 𝛼𝑠𝑡
 , follows a triangular distribution where the mean is set to be 1 − √0.7

𝜏
 because the 

average dropout rate across all clinical trials is around 30% [49]. Third, a new target sample size 

is governed by two distributions. One is a discrete uniform distribution over three outcomes that 

represent increase, no change, and decrease respectively. The other is a discrete uniform 

distribution over 10 outcomes, {5%, 10%, …, 50%}, representing the percentage change in the 

size. Fourth, new average consumption of each dosages is independently governed by a uniform 

distribution over [0, 4], which includes all possible dose-consumption outcomes resulted from 

adaptive randomization and arm-dropping. For each scenario 𝑘, a set of 𝑛𝑠𝑡
𝑘 , 𝛼𝑠𝑡

𝑘 , 𝐷𝑡
𝑘, and 𝛾𝑖𝑡

𝑘  are 

sampled from the distributions accordingly. Note that sampling new values for 𝐷𝑡
𝑘, and 𝛾𝑖𝑡

𝑘  are 

restricted by the interim analysis timepoints and that ∑ 𝛾𝑖𝑡
𝑘 

𝑖∈𝐼 = 4 for all 𝑡 ∈ 𝑇 is enforced. 

 

Table 3.4 Basic Information of the Case 

 

For production costs 𝑐𝑖
𝑝
, we use the information of average API price per kilogram reported by 

Hill, A. M., et al. (2018) [50] to generate the price per dose: $0.5, $25.5, and $50.5 for the 3 MPDs. 

For recruitment and enrollment costs 𝑐𝑠
𝑟, we use the information of screening rates reported by 

Forte Research [51] and screening prices reported by Pivotal Financial Consulting [52] to generate 

the period-based cost for each sites, which depends on the previously estimated mean patient 

arrival and approximately ranges within $2,000-$4,000 per week. Holding costs of the distribution 

center and sites 𝑐 
ℎ and 𝑐𝑠

ℎ are $0.5 and $2.5/dose/week, respectively. As for shipments, we refer 

Trial Information Drug Supply Information 

Maximum Trial Duration 16 weeks Clinical Sites 5 

Trial Arms multiple Produced Dosages 3 MPDs 

Treatment Span 2 weeks Drug Form tablet (or shot) 

Initial Target Size 200 patients Drug Consumption 4 blind doses/patient/week 

Interim Analysis Point 8th week Shipment Leadtime 1 week 

Treatment Allocation adaptive   

Trial Sample Size adaptive   
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to the cold shipping service provided by FedEx. A small standard duration box has the volume of 

64 in3 and the price of $46. One-third of the sites will need longer cooling duration and cost 

$57/box. The volume of a dose 𝑉 is 0.426 in3/tablet or 2.56 in3/shot. As for the capacity limit of 

sites 𝑄𝑠
 , we choose larger numbers in order to see the space needed for optimal inventory solution. 

Disposal and recycle costs 𝑐𝑛𝑖
𝑤  are estimated based on factors used in generating production and 

shipping cost and have prices of $25.55/dose or $31.05/dose regardless of dosages. 

3.4.2 Performance of Bundling Schemes 

We applied two bundling schemes with size of 3 scenarios to our PHA and compare the CPU time 

required to solve the same problem instances with using no scenario bundle, shown as Table 3.5. 

Two instances with different number of scenarios are generated and solved under freely resupply 

scheme. 

 

Table 3.5 CPU Time between Different Scenario Bundling Schemes    

Bundling Scheme 5 scenarios 15 scenarios 

Random bundling 2,790 s 33,607 s 

Maximal Similarity 14,411 s 39,755 s 

No bundling 25,692 s >120,611 s 

 

From Table 3.5, we can see that scenario bundling can facilitated the solution time and that the 

random bundling scheme has the best performance for our problem. The results also suggest that 

the convergence in first-stage variables is now computationally more difficult than solving 

decomposed subproblems. Note that, before we apply the presolving procedure, the CPU time it 

takes to solve a scenario subproblem is more than 5 days. 

3.4.3 Impact of Adaptations Types 

We have incorporated the adaptations of ACTs into the supply chain problem, and the uncertainty 

of the adaptations are reflected on two stochastic parameters, 𝐷𝑡
𝑘 and 𝛾𝑖𝑡

𝑘 . Here we investigate the 

impact of trial size and dose consumption uncertainties by comparing four cases, None-adapted, 

Size-only, Dose-only, and All-adapted, shown as Table 3.6, where no changes means the trial size 

or dose consumption stays the same as the initial values throughout the entire horizon. 
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Table 3.6 Cases of Adaptation Types 

Types Changes in 𝐷𝑡
𝑘 Changes in 𝛾𝑖𝑡

𝑘  

None-adapted No No 

Size-only Yes No 

Dose-only No Yes 

All-adapted Yes Yes 

 

An instance with 5 scenarios is generated and solved under Q-r resupply scheme by the PHA with 

random bundling. The results are presented in Table 3.7 and Table 3.8, where drug overage is 

defined as the total manufactured doses divided by the actual doses consumed in the trial and the 

wastage cost is the cost of disposing/recycling the doses left at clinical sites in the end of supply. 

Note the results are expected values with respective to scenarios. 

 

Table 3.7 Basic Comparison between Adaptation Types 

 CPU Time (s) Trial Length Total Cost ($) Drug Overage 

None-adapted 19,169 9.8 200,418 1.0655 

Size-only 50,785 9.4 214,029 1.4932 

Dose-only 29,952 9.8 202,556 1.1320 

All-adapted 30,558 9.4 222,026 1.5905 

 

Table 3.8 Cost Distribution between Adaptation Types 

 Production Inventory Shipping Recruitment Wastage 

 Cost ($) Cost ($) Cost ($) Cost ($) Cost ($) 

None-adapted 56,716 16,930 965 124,746 1,061 

Size-only 72,603 20,583 956 119,076 811 

Dose-only 57,940 17,898 1,120 124,746 852 

All-adapted 80,452 21,053 967 119,076 478 
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In Table 3.7, None-adapted cases is the benchmark representing a drug supply case in absence of 

trial adaptation certainty, i.e. only patient arrival and dropout uncertainties. According to the trial 

length of Size-only case, we know that the adaptations of trial sample size in this specific instance 

has an overall effect of trial length reduction. However, overall shorter trial and less patients 

needed did not lead to less total cost or drug overage because the supply planning has to 

accommodate the uncertainty of having longer trial and more patients in some scenarios. In the 

comparison between Size-only and Dose-only, we see that the impact of size adaptation is much 

heavier than the adaptions related to dose consumption in terms of total cost and drug overage. 

Base on Table 3.8, we see that the increase of supply cost in Size-only case is majorly contributed 

by production and inventory because of the need of covering large-sample-size scenarios and 

storing the excess doses in small-sample-size scenarios. However, the increase of supply cost in 

Dose-only case are distributed quite evenly in each category. Finally, when both adaptations are 

presented, i.e. All-adapted case, we see even higher total cost and drug overage because of the 

higher extent of uncertainties.  

3.4.4 Comparison between Resupply schemes 

In this subsection, we study the advantages or disadvantages between different resupply schemes. 

Characteristics of the five schemes are summarized in Table 3.9, and the details of implementation 

is described as (36)-(39). 

 

Table 3.9 Characteristics of Resupply Schemes  

Resupply 

Schemes 
Trigger of Resupply Replenishment 

Same policy for all 

sites and dosages? 

freely anytime any quantity N/A 

(Q-r)𝑠𝑖 threshold-controlled fixed quantity No 

(S-s)𝑠𝑖 threshold-controlled threshold-controlled No 

Q-r threshold-controlled fixed quantity Yes 

S-s threshold-controlled threshold-controlled Yes 

   

An instance with 5 scenarios is generated and solved by the PHA with random bundling. The 

results of supplying tablet-form drugs are presented in Table 3.10, where drug overage is defined 
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as the total manufactured doses divided by the actual doses consumed in the trial and the wastage 

cost is the disposal/recycle cost. Note the results are expected values with respective to scenarios. 

All five resupply schemes have same expected trial length of 9.4 weeks and recruitment cost of 

$119,075 because patient arrival and dropout are the same in an instance.  

 

Table 3.10 Costs and Drug Overage of Tablet-form Drugs Supply 

Resupply 

Schemes 

CPU  

Time (s) 

Total  

Cost ($) 

Production 

Cost ($) 

Inventory 

Cost ($) 

Shipping 

Cost ($) 

Wastage 

Cost ($) 

Drug 

Overage 

freely 2,789 209,316 80,144 7,891 2,205 0 1.5767 

(Q-r)𝑠𝑖 50,927 215,626 80,253 14,506 1,262 529 1.5795 

(S-s)𝑠𝑖 9,468 216,914 80,299 16,174 1,105 260 1.5813 

Q-r 133,408 221,529 80,512 20,237 979 725 1.5885 

S-s 8,862 221,094 80,290 16,764 4,693 272 1.5804 

 

Table 3.11 Storage Space Required at Sites for Tablet-form Drugs Supply 

Resupply 

Schemes 

Site #1  

(in3) 

Site #2  

(in3) 

Site #3  

(in3) 

Site #4  

(in3) 

Site #5  

(in3) 

freely 36 33 31 42 36 

(Q-r)
𝑠𝑖

 129 159 133 145 116 

(S-s)
𝑠𝑖

 134 159 125 129 120 

Q-r 142 159 169 159 206 

S-s 193 168 188 233 162 

 

From Table 3.10, we see that the freely resupply scheme has the best performance in terms of total 

cost, drug overage, and solution time. The other schemes in the order of high performance are 

(Q-r)𝑠𝑖, (S-s)𝑠𝑖, Q-r, and S-s. This shows that a resupply scheme with higher flexibility, i.e. less 

(universal) restrictions on resupply trigger and amount, will have better supply performance. In 

the comparison between quantity-reorder and floor-ceiling schemes, quantity-reorder schemes are 

generally favored in this ACT supply problem, which may result from the short finite-patient 

horizon. Floor-ceiling schemes are only favored in terms of less shipping cost, and (S-s)𝑠𝑖  is 
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preferred to (Q-r)𝑠𝑖 in terms of less drug wastage cost. As for the storage capacities needed at each 

site, a better resupply scheme also requires less storage spaces in general. The difference in needed 

space is small between the schemes other than freely resupply. 

 

To further examine the performance of the resupply schemes, we consider the supply of drugs with 

much larger volume. The shot form of medicine has volume of 2.56 in3, while previously the tablet 

form is 0.426 in3. Note the instance we used here is the same as the previous one, except the volume 

of a dose, parameter 𝑉, is raised. The results are presented in Table 3.11 and Table 3.12, and the 

trial length and recruitment cost remain the same. 

 

Table 3.12 Costs and Drug Overage of Shot-form Drugs Supply 

Resupply 

Schemes 

CPU  

Time (s) 

Total  

Cost ($) 

Production 

Cost ($) 

Inventory 

Cost ($) 

Shipping 

Cost ($) 

Wastage 

Cost ($) 

Drug 

Overage 

freely 2,664 211,767 80,144 8,036 4,512 0    1.5769 

(Q-r)
𝑠𝑖

 4,365 218,650 80,174 14,036 4,894 470 1.5774 

(S-s)
𝑠𝑖

 2,669 220,777 80,323 16,460 4,659 261 1.5809 

Q-r 3,153 225,152 80,211 20,698 4,542 625 1.5830 

S-s 14,059 224,284 80,306 19,557 4,517 829 1.5906 

 

Table 3.13 Storage Space Required at Sites for Shot-form Drugs Supply 

Resupply 

Schemes 

Site #1  

(in3) 

Site #2  

(in3) 

Site #3  

(in3) 

Site #4  

(in3) 

Site #5  

(in3) 

freely 221 215 186 230 193 

(Q-r)
𝑠𝑖

 601 537 690 559 505 

(S-s)
𝑠𝑖

 776 878 749 755 753 

Q-r 1,594 1,374 1,446 1,019 869 

S-s 830 972 1,046 1,004 1,295 

 



43 

 

It is not surprising that all five schemes here have the increased total supply cost, contribute by an 

increase in shipping cost. However, the performance of S-s becomes superior to Q-r in terms of 

total cost and required space at sites, even though S-s still has worse drug overage and wastage 

cost. The other resupply schemes remain the same order of performance. In addition, the higher 

shipping cost due to the change drug-form drives the supply to have more discreet prediction on 

production amount, resulting in the decrease in drug overage. 

 Conclusions 

This work introduces a special type of drug supply chain management problem to the literature. 

The unique characteristics include uncertain finite-customer supply horizon, demand-repeating 

and length-fixed window of customers’ stay, uncertain customer arrival and drop-out, and 

uncertain multi-product demands per customer. To facilitate drug supply chain management in the 

presence of different sources of uncertainties resulted from ACTs, we proposed a two-stage 

stochastic MINLP and study several important aspects of trial supply, including drug wastage, 

resupply policy, trial length, and overall costs. 

 

The key finding of our numerical study is that the impact of trial sample size adaptation is much 

significant than the adaptions related to average dose consumption per patient, e.g. changes in 

randomization ratios, in terms of total cost and drug overage. In addition, even though the size re-

estimation may lead to expected shorter trial, the expected supply cost and drug overage will still 

be higher than the case in absence of trial adaptations, which aligns with the observation that 

“adaptive designs are potentially more costly than traditional studies” by Burnham et al. (2015) 

[1]. As for the resupply policy, quantity-reorder schemes are generally favored, compared to floor-

ceiling schemes, in this ACT supply problem. In addition, when the medicine is in the form of 

shots with much larger volume than tablets, the shipping cost becomes a driver to the more discreet 

prediction on production quantity, resulting in decreased drug overage.   

 

We also noticed that a resupply scheme with less restrictions on the replenishment quantity and 

trigger will result in better management performance. In most of industries, the benefit of freely 

resupply is probably hard to achieve. However, in clinical trials, the consumption of treatment 

dosages is specified according to the randomization schedules and recorded in a centralized 



44 

 

management system, e.g. interactive web response system (IWRS), which enables the 

implementation of more complicated resupply solutions than traditional policies.  

 

A limitation of this project is that we do not have real data to have deeper practical managerial 

insights. What we can suggest based on our findings is that, when adapting trial size and 

randomization are both feasible options to achieve the objective of ACTs, adapting the 

randomization will cause less burden on the supply chain side.  The future extensions of this work 

include expanding the distribution network to international drug supply, adding clinical sites 

selection to study the characteristics of promising sites, and embedding advertisement problem to 

study the optimal investment plan in terms of trial completion and costs. 
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4. TRIAL ADAPTATION AND DRUG SUPPLY JOINT 

OPTIMIZATION FOR ADAPTATIVE CLINICAL TRIALS 

 A Patient Assignment and Drug Supply Problem 

This problem aims at incorporating adaptive designs and adaptation procedures with the drug 

supply chain problem and studying the impact of the joint optimization on trial and supply 

management numerically. For trial design and adaptation, we consider two types of adaptive trials, 

SSR and RAR, and focus on their key adaptations, target total sample size and patient 

allocation/assignment. For drug supply, we still have a multi-dosage, multi-sites, multi-period, and 

multi-echelon supply chain framework. The connection between them lies in drug demand, which 

relates to patient arrival, patient response to dosage/treatment, and patient allocation/assignment 

to arms. In this problem, we optimize supply and patient assignment decisions subject to design 

rules of the ACTs, given the predicted information of patient arrival and responses, for minimum 

production, inventory, transportation, and recruitment costs. 

 

With respect to the trial, we targeted on a randomized sequential trial with two parallel arms and 

binary response, where the size re-estimation and randomization adaptation occur in every time 

period (except for the first few periods of treatment lead time). Random number of patients will 

be enrolled at different clinical sites and at discrete time periods, and each one of them will be 

allocated to a specific arm/treatment that represents the use of a specific dosage of the 

investigational drug. Patient responses can only be observed after a prespecified treatment 

duration/span, which is independent of arms/treatments due to trial blindness. The trial termination 

is the satisfaction of the target total sample size re-estimated every period. 

 

In terms of the supply, the immediate availability of drugs is always enforced, and no backlog or 

cross shipment between sites is allowed. All dosages are produced in one campaign prior to the 

beginning of the trial and stored at one distribution center (DC). The distances between the DC 

and sites vary and are reflected on shipping costs instead of shipping time. The lead time of 

shipment is shorter than the treatment span/duration. All dosages are shipped together in boxes 

with same capacity via FedEx cold chain service. The cost of storing drugs is higher at clinical 
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sites than at the DC. When the trial is terminated, no shipment or change in inventory levels is 

allowed. 

 A Mixed-Integer Nonlinear Program 

We have sets of arms, sites, periods, and patients defined in Table 4.1, where the size of patient 

set 𝐽 
𝑠𝑡 corresponds to the number of enrolled patients 𝑛𝑠𝑡

 . The number of sets 𝐽 
𝑠𝑡 we have in the 

model depends on the size of 𝑆 × 𝑇. We also define the union set Ω𝐽
𝑆𝑡  for the convenience of 

reviewing the patient responses collected from the beginning to period 𝑡 across all sites. 

 

Table 4.1 Sets and Indices in the Model 

𝐼 The set of arms/treatments/dosages indices 𝑖 

𝑆 The set of clinical sites indices 𝑠 

𝑇 The set of time periods 𝑡 

𝐽 
𝑠𝑡 The set of patients indices 𝑗 who enrolled at site 𝑠 time 𝑡; 𝐽 

𝑠𝑡 = {1, … , 𝑛𝑠𝑡
 } 

Ω𝐽
𝑆𝑡 

The union of sets J 
𝑠𝑡 for all sites and time periods earlier than and equal to 𝑡;  

Ω𝐽
𝑆𝑡 = {𝐽 

11, … , 𝐽 
|𝑆|1, 𝐽 

12, … , 𝐽 
|𝑆|2, … , 𝐽 

1𝑡, … , 𝐽 
|𝑆|𝑡} 

 

All the parameters used in the model are listed in Table 4.2. Note the 𝑛𝑠𝑡
  and 𝑋𝑖𝑗

𝑠𝑡  are usually 

treated as uncertainty sources. However, to prevent from an overly complicated model beyond 

regular solution approaches, we consider them as deterministic parameters and sample the values 

of them via a simulator. 
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Table 4.2 Parameters in the Model 

𝑐𝑖
𝑝
 Production cost of dosage 𝑖; $/dose 

𝑐𝑠
𝑟 Recruitment and enrollment cost of site 𝑠; $/week 

𝑐𝑠
𝑠 Shipping cost of site 𝑠; $/box 

𝑐 
ℎ Holding cost at distribution center; $/dose/week 

𝑐𝑠
ℎ Holding cost at site 𝑛; 𝑐𝑠

ℎ > 𝑐 
ℎ; $/dose/week 

𝐿 Shipment lead time of all dosages and sites; 𝐿 > 0; week 

𝜏  Addition periods required to finish the treatment; 𝜏 ≥ 𝐿; week 

𝑉 Volume of a dose; in3 

𝑄𝑏𝑜𝑥 Capacity of a (cold) shipping box; in3 

𝑄𝑠
  Capacity limit of site 𝑠; in3 

𝛾𝑖
  Number of doses needed per period per patient in arm/treatment 𝑖; dose/week/patient 

𝐷0
  Initial target of total sample size designed for this trial 

Δ Critically important difference between two arms  

𝑀 
  Large number 

𝑛𝑠𝑡
  Number of enrolled patients at site 𝑠 at period 𝑡 

𝑋𝑖𝑗
𝑠𝑡 Binary response of patient 𝑗 enrolled at site 𝑠 and period 𝑡 and receiving dosage 𝑖  

 

The decision variables needed to form this problem are listed in Table 4.3. 
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Table 4.3 Decision Variables in the Model 

𝑥𝑖 Produced amount of dosage 𝑖; dose 

𝜋𝑖𝑗
𝑠𝑡 Binary decision of assigning patient 𝑗 who enrolled at site 𝑠 and period 𝑡 to arm 𝑖 

𝑁𝑖𝑡
  Cumulative number of patients who finished treatment 𝑖 by the end of period 𝑡 

𝐷̂𝑡
  Total sample size needed for this trial estimated at the end of period 𝑡 

𝑝̂𝑖𝑡
  Positive/success rate/possibility of dosage 𝑖 estimated at period 𝑡 > 𝜏 

𝜌1𝑡
  Allocation proportion of arm 𝑖 = 1 implemented in period 𝑡 

𝑦𝑖𝑡
  Inventory of dosage 𝑖 at distribution center at the end of period 𝑡; dose 

𝑦𝑠𝑖𝑡
  Inventory of dosage 𝑖 at site 𝑠 at the end of period 𝑡; dose 

𝑢𝑠𝑖
  Amount of dosage 𝑖 shipped to site 𝑠 before the trial starts; dose 

𝑢𝑠𝑖𝑡
  Amount of dosage 𝑖 shipped to site 𝑠 at period 𝑡; dose 

𝑣𝑠
  Number of boxes used for the shipment to site 𝑠 before the trial starts 

𝑣𝑠𝑡
  Number of boxes used for the shipment to site 𝑠 at period 𝑡 

𝛿𝑡
  Binary status of open enrollment; 0 means terminated 

𝜃𝑡
  Binary status of drug supply; 0 means terminated 

 

A mixed-integer nonlinear program (MINLP) can therefore be formulated as below. The objective 

function (42) consists of production cost, recruitment cost, initial shipping cost, shipping costs 

incurred during the trial horizon, holding cost at the distribution center, and holding cost at sites 

respectively. 

 

Minimize 
∑ 𝑐𝑖

𝑝𝑥𝑖

 

𝑖∈𝐼

+ ∑ ∑ 𝑐𝑠
𝑟𝛿𝑡

 

 

𝑠∈𝑆

 

𝑡∈𝑇

+ ∑ 𝑐𝑠
𝑠𝑣𝑠

 

 

𝑠∈𝑆

+ ∑ ∑ 𝑐𝑠
𝑠𝑣𝑠𝑡

 

 

𝑠∈𝑆

 

𝑡∈𝑇

+ ∑ ∑ 𝑐 
ℎ𝜃𝑡

 𝑦𝑖𝑡
 

 

𝑖∈𝐼

 

𝑡∈𝑇

+ ∑ ∑ ∑ 𝑐𝑠
ℎ𝜃𝑡

 𝑦𝑠𝑖𝑡
 

 

𝑖∈𝐼

 

𝑠∈𝑆

 

𝑡∈𝑇

 

(42) 

Subject to     

 𝑝̂𝑖𝑡 = ∑ 𝛿𝑡−𝜏
 𝜋𝑖𝑗

𝑠,𝑡−𝜏𝑋𝑖𝑗
𝑠,𝑡−𝜏 

𝑗∈Ω𝐽
𝑆,𝑡−𝜏 𝑁𝑖,𝑡−𝜏

 ⁄   ∀𝑖, 𝑡 > 𝜏 (43) 

Sample Size 𝑁𝑖𝑡
 = 𝑁𝑖,𝑡−1

 + ∑ 𝛿𝑡−𝜏
 𝜋𝑖𝑗

𝑠,𝑡−𝜏 
𝑠∈𝑆,𝑗∈𝐽 

𝑠,𝑡−𝜏   ∀𝑖, 𝑡 > 𝜏  (44) 
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𝑁𝑖𝑡
 = 0 ∀𝑖, 𝑡 ≤ 𝜏  (45) 

 𝐷̂𝑡
 = 𝑓(𝑁𝑖𝑡

 , 𝑝̂𝑖𝑡
 ) ∀𝑡 > 𝜏  (46) 

 𝐷̂𝑡
 = 𝐷0

  ∀𝑡 ≤ 𝜏  (47) 

Patient 

Allocation 

∑ 𝜋𝑖𝑗
𝑠𝑡 

𝑖∈𝐼 = 1  ∀𝑠, 𝑡, 𝑗 ∈ 𝐽 
𝑠𝑡 (48) 

𝜌1𝑡
 𝑛𝑠𝑡

 − 1 < ∑ 𝜋1𝑗
𝑠𝑡 

𝑗∈𝐽 
𝑠𝑡 < 𝜌1𝑡

 𝑛𝑠𝑡
 + 1  ∀𝑠, 𝑡 (49) 

 𝜌1𝑡
 = 𝑔(𝑁𝑖𝑡

 , 𝑝̂𝑖𝑡
 ) ∀𝑡 > 𝜏 + 1 (50) 

 𝜌1𝑡
 = 0.5 ∀𝑡 ≤ 𝜏 + 1 (51) 

Trial 

Termination 

𝜃𝑡
 = 1 𝑡 = 1 (52) 

𝐷̂𝑡−1
 ≤ ∑ 𝑁𝑖,𝑡−1

  
𝑖∈𝐼 + 𝑀1𝜃𝑡

   ∀𝑡 > 1 (53) 

∑ 𝑁𝑖,𝑡−1
  

𝑖∈𝐼 < 𝐷̂𝑡−1
 + 𝑀1(1 − 𝜃𝑡

 )  ∀𝑡 > 1 (54) 

𝛿𝑡
 = 𝜃𝑡+𝜏

  ∀𝑡 ∈ [1, |𝑇| − 𝜏 ] (55) 

Inventory of 

DC 

𝑦𝑖𝑡
 = 𝑦𝑖,𝑡−1

 − 𝜃𝑡
 ∑ 𝑢𝑠𝑖𝑡

  
𝑠∈𝑆   ∀𝑖, 𝑡 > 1 (56) 

𝑦𝑖𝑡
 = 𝑥𝑖 − ∑ 𝑢𝑠𝑖

 
𝑠∈𝑆 − ∑ 𝑢𝑠𝑖𝑡

  
s∈𝑆   ∀𝑖, 𝑡 = 1 (57) 

Inventory of 

Sites 

𝑦𝑠𝑖𝑡
 = 𝑦𝑠𝑖,𝑡−1

 + 𝜃𝑡−𝐿
 𝑢𝑠𝑖,𝑡−𝐿

 − 𝑑𝑠𝑖𝑡
1  ∀𝑠, 𝑖, 𝑡 > 𝜏 (58) 

𝑦𝑠𝑖𝑡
 = 𝑦𝑠𝑖,𝑡−1

 + 𝜃𝑡−𝐿
 𝑢𝑠𝑖,𝑡−𝐿

 − 𝑑𝑠𝑖𝑡
2  ∀𝑠, 𝑖, 𝑡 ∈ (𝐿, 𝜏] (59) 

𝑦𝑠𝑖𝑡
 = 𝑦𝑠𝑖,𝑡−1

 − 𝑑𝑠𝑖𝑡
3  ∀𝑠, 𝑖, 𝑡 ∈ (1, 𝐿] (60) 

𝑦𝑠𝑖𝑡
 = 𝑢𝑠𝑖 − 𝛾𝑖

 ∑ 𝜋𝑖𝑗
𝑠𝑡 

𝑗∈𝐽 
𝑠𝑡   ∀𝑠, 𝑖, 𝑡 = 1 (61) 

Capacity 

restriction 

∑ 𝑉𝑢𝑠𝑖
  

𝑖∈𝐼 ≤ 𝑄𝑠
   ∀𝑠 (62) 

∑ 𝑉𝑦𝑠𝑖,𝑡−1
  

𝑖∈𝐼 + ∑ 𝑉𝑢𝑠𝑖,𝑡−𝐿
  

𝑖∈𝑆 ≤ 𝑄𝑠
   ∀𝑠, 𝑡 > 𝐿 (63) 

∑ 𝑉𝑦𝑠𝑖𝑡
  

𝑖∈𝐼 ≤ 𝑄𝑠
   ∀𝑠, 𝑡 ≤ 𝐿 (64) 

Shipment ∑ 𝑉𝑢𝑠𝑖
  

𝑖∈𝐼 ≤ 𝑄𝑏𝑜𝑥𝑣𝑠
   ∀𝑠 (65) 

 ∑ 𝑉𝑢𝑠𝑖𝑡
  

𝑖∈𝐼 ≤ 𝑄𝑏𝑜𝑥𝑣𝑠𝑡
   ∀𝑠, 𝑡 (66) 

Bounds 𝛿𝑡
 , 𝜃𝑡

 , 𝜋𝑖𝑗
𝑠𝑡 ∈ {0,1} ∀𝑖, 𝑠, 𝑡, 𝑗 ∈ J 

𝑠𝑡 (67) 

𝑥𝑖 , 𝑝̂𝑖𝑡
 , 𝜌1𝑡

 , 𝑦𝑖𝑡
 , 𝑦𝑠𝑖𝑡

 , 𝑢𝑠𝑖
 , 𝑢𝑠𝑖𝑡

 ∈ {0, ℝ+} ∀𝑠, 𝑖, 𝑡 (68) 

𝑁𝑖𝑡
 , 𝐷̂𝑡

 , 𝑣𝑠
 , 𝑣𝑠𝑡

 ∈ {0, ℤ+} ∀𝑠, 𝑖, 𝑡 (69) 

 

Note that the 𝑑𝑠𝑖𝑡
1 , 𝑑𝑠𝑖𝑡

2 , and 𝑑𝑠𝑖𝑡
3  in (58)-(60) are functions of 𝛿𝑡

  and 𝜋𝑖𝑗
𝑠𝑡 , expressed as (70)-(72). 
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𝑑𝑠𝑖𝑡
1 = 𝛾𝑖

 𝛿𝑡
 ∑ 𝜋𝑖𝑗

𝑠𝑡 
𝑗∈𝐽 

𝑠𝑡 + 𝛾𝑖
 ∑ 𝛿𝑡−𝑚

 𝜏 
𝑚=1 ∑ 𝜋𝑖𝑗

𝑠,𝑡−𝑚 
𝑗∈𝐽 

𝑠,𝑡−𝑚   (70) 

𝑑𝑠𝑖𝑡
2 = 𝛾𝑖

 𝛿𝑡
 ∑ 𝜋𝑖𝑗

𝑠𝑡 
𝑗∈𝐽 

𝑠𝑡 + 𝛾𝑖
 ∑ 𝛿𝑡−𝑚

 ∑ 𝜋𝑖𝑗
𝑠,𝑡−𝑚 

𝑗∈𝐽 
𝑠,𝑡−𝑚

t−L
𝑚=1   (71) 

𝑑𝑠𝑖𝑡
3 = 𝛾𝑖

 𝛿𝑡
 ∑ 𝜋𝑖𝑗

𝑠𝑡 
𝑗∈𝐽 

𝑠𝑡 + 𝛾𝑖
 ∑ 𝛿𝑡−𝑚

 ∑ 𝜋𝑖𝑗
𝑠,𝑡−𝑚 

𝑗∈𝐽 
𝑠,𝑡−𝑚

t−1
𝑚=1   (72) 

 

Note the size re-estimation function 𝑓(𝑁𝑖𝑡
 , 𝑝̂𝑖𝑡

 ) in (46) is adapted from (4) and expressed as (73). 

 

𝑓(𝑁𝑖𝑡
 , 𝑝̂𝑖𝑡

 ) = {1.96√
𝑝̅𝑡(1−𝑝̅𝑡)

(𝑁1𝑡 ∑ 𝑁𝑖𝑡
 
𝑖∈𝐼⁄ )(𝑁2𝑡 ∑ 𝑁𝑖𝑡

 
𝑖∈𝐼⁄ )

+ 0.84√
𝑝1𝑡(1−𝑝1𝑡)

𝑁1𝑡 ∑ 𝑁𝑖𝑡
 
𝑖∈𝐼⁄

+
𝑝2𝑡(1−𝑝̂2𝑡)

𝑁2𝑡 ∑ 𝑁𝑖𝑡
 
𝑖∈𝐼⁄

}
2

Δ2⁄   

where 𝑝̅𝑡 = 𝑝̂1𝑡(𝑁1𝑡 ∑ 𝑁𝑖𝑡
 
𝑖∈𝐼⁄ ) + 𝑝̂2𝑡(1 − 𝑁1𝑡 ∑ 𝑁𝑖𝑡

 
𝑖∈𝐼⁄ ) 

(73) 

 

Note that the update function of allocation probability/proportion 𝑔(𝑁𝑖𝑡
 , 𝑝̂𝑖𝑡

 ) in (50) is adapted 

from (3) and expressed as (74), where RSIHR and Neyman allocation rules are incorporated as 

(75) and (76) respectively. 

 

𝑔(𝑁𝑖𝑡
 , 𝑝̂𝑖𝑡

 ) = 𝜌̂1,𝑡−1
∗ (

𝜌̂1,𝑡−1
∗

𝑁1,𝑡−1 ∑ 𝑁𝑖,𝑡−1
 
𝑖∈𝐼⁄

)

2

∑ 𝜌̂𝑖,𝑡−1
∗ (

𝜌̂𝑖,𝑡−1
∗

𝑁𝑖,𝑡−1 ∑ 𝑁𝑖,𝑡−1
 
𝑖∈𝐼⁄

)

2 

𝑖∈𝐼
⁄  (74) 

𝜌̂𝑖,𝑡−1
∗ = √𝑝̂𝑖,𝑡−1 (√𝑝̂1,𝑡−1 + √𝑝̂2,𝑡−1)⁄  (75) 

𝜌̂𝑖,𝑡−1
∗ = √𝑝̂𝑖,𝑡−1(1 − 𝑝̂𝑖,𝑡−1) (√𝑝̂1,𝑡−1(1 − 𝑝̂1,𝑡−1) + √𝑝̂2,𝑡−1(1 − 𝑝̂2,𝑡−1))⁄  (76) 

 

In regard to trial design, constraint (43) specifies the simple mean estimation on the success rates 

of certain treatment based on the patient responses observed so far. Constraint (44) ensures the 

incremental number of patients who finished certain treatment at current period is the number of 

patients assigned to the treatment 𝜏 -periods ago, and constraint (45) is its initial condition. 

Constraint (46) specifies the rule of re-estimating sample size under adequate statistic power, 

which is a function of 𝑝̂𝑖𝑡  and 𝑁𝑖𝑡
 , and constraint (47) is its initial condition. Constraint (48) 

ensures that a patient can only be assigned to one arm. Constraint (49) ensures the number of 

assignments to certain treatment is restricted by the allocation proportion designated at this period. 

Constraints (50) specifies the rule of adapting allocation proportion based on previously estimated 

drug success rates and previously implemented allocation proportion. Constraint (51) specifies the 

equal allocation in the beginning of the trial.  
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With respect to the trial termination criteria, constraint (52) specifies that the initial status of drug 

supply is on. Constraint (53) and (54) ensures that the supply is terminated only as the target sample 

sized is reached, otherwise the supply continues. Constraint (55) specifies that the open enrollment 

status is 𝜏-periods ahead of the supply status. when the enrollment stops, the last cohort of patients 

still require the availability of drugs during the treatment span. Hence, the termination of supply 

is 𝜏-periods later.  

 

As for drug supply, constraint (56) and (57) ensure that the inventory difference between the end 

of current and the immediately previous periods equals to the amount of drugs shipped out of the 

DC. Similarly, constraints (58)-(61) ensure the inventory balance at clinical sites due to drug 

resupply and consumption. Note that the drug consumption terms, 𝑑𝑠𝑖𝑡
1 , 𝑑𝑠𝑖𝑡

2 , and 𝑑𝑠𝑖𝑡
3 , include not 

only the consumption from newly enrolled patients at current period, but the consumption from 

previously enrolled patients who have not finished their treatments. Constraint (62)-(64) ensure 

that the amount of resupply or the inventory at the beginning of a period will not exceed the space 

limit of clinical sites. Constraints (65) and (66) impose the capacity restriction on every shipments 

and specify the number of boxes needed in each shipment. Finally, Constraints (67)- (69) indicate 

bounds on the decision variables. 

 A Particle Swarm Optimization Based Heuristic 

Particle swarm optimization (PSO) algorithm is a population-based search algorithm inspired by 

biological social behavior. PSO is originally introduced by Eberhart and Kennedy [53] in 1995 

and then developed to solve various optimization problems, including nonlinear programs. In PSO 

algorithm, multiple potential solutions to the problem (called particles) are iteratively moving 

within a hyperdimensional search space under the influence of particles’ best-known positions, 

which are evaluated via a fitness function (usually the objective function). At each iteration, the 

movement (called velocity) of each particle is randomized and updated based on three components: 

personal inertial motion, personal best-known position, and the best-known position of the swarm 

or its neighbors. Further details and variants of PSOs are reviewed in the literature [54-56].  

 

For a problem involving binary variables, binary particle swarm optimization (BPSO) algorithms 

are developed because the discretized space prohibits the usage of continuous velocities in basic 
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PSO. Kennedy and Eberhart (1997) proposed a new interpretation of the velocity and particle 

trajectories, where velocities are transferred to the range of [0, 1] via Sigmoid function and used 

as the possibility of moving to one of the binary values [57]. Noticing this moving scheme losses 

the memory of current positions, Khanesar et al. (2007) proposed a novel BPSO, where they 

introduced two velocities to separately represent the probability of having binary values and the 

use of them is dependent of the current position [58].  

 

Our proposed algorithm uses the framework of BPSO and takes advantage of the problem structure. 

Firstly, we examined the relation between all variables and separated the trial design constraints, 

(43)-(55), from the drug supply subproblem, (42) and (56)-(66). Note that the linkage between 

them lies in  𝜋𝑖𝑗
𝑠𝑡 , 𝛿𝑡

 , and 𝜃𝑡
 . For every combination of the three linkage variables that is feasible, 

we can acquire a solution to the original problem and its objective value by solving the linear 

supply subproblem, i.e. (42) and (56)-(66) with the fixation of 𝜋𝑖𝑗
𝑠𝑡 , 𝛿𝑡

 , and 𝜃𝑡
 . Secondly, after 

analyzing the trial design constraints, we see that all the involved variables, 𝑁𝑖𝑡
 , 𝑝̂𝑖𝑡

 , 𝜌1𝑡
 , 𝐷̂𝑡

 , 𝛿𝑡
 , 

and 𝜃𝑡
 , are strictly constrained by 𝜋𝑖𝑗

𝑠𝑡 , and their values have one-on-one correspondence to a 

feasible 𝜋𝑖𝑗
𝑠𝑡  due to the equalities in (43)-(47), (50)-(52), and (55) and the binary disjunctive 

concept in (53)-(54). That is, given 𝜋𝑖𝑗
𝑠𝑡, we can compute the values of all other variables in the 

trial design constraints, and we can define the searching space of PSO as the feasible region of 𝜋𝑖𝑗
𝑠𝑡, 

which is a much more efficient way than letting particles moving within the hyper-dimensional 

space formed by all variables and then checking the feasibility through (43)-(55). The above 

properties allow us to adapt the designs in Khanesar et al. (2007) [58] and Hu and Eberhart (2002) 

[59] into the framework below. 
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Fig 4.1 The Flowchart of Proposed PSO Algorithm.  

 

As for the construction and update of particle velocities, in the work of Khanesar et al. (2007), 

each dimension of a particle, referring to each 𝜋𝑖𝑗
𝑠𝑡  in our problem context, has two velocities 

updated as (77)-(78). The velocities of moving to binary values in the next iteration, 𝑉𝑛𝑒𝑥𝑡
1  and 

𝑉𝑛𝑒𝑥𝑡
0 , are contributed by three components: current velocities 𝑉𝑛𝑜𝑤

1  and 𝑉𝑛𝑜𝑤
0 , individual’s best 

information 𝑑𝑖𝑏𝑒𝑠𝑡
1  and 𝑑𝑖𝑏𝑒𝑠𝑡

0 , and global best information 𝑑𝑔𝑏𝑒𝑠𝑡
1  and 𝑑𝑔𝑏𝑒𝑠𝑡

0 .  The latter two 

contributions are dependent of incumbent best-know position values 𝑃𝑖𝑏𝑒𝑠𝑡 and 𝑃𝑔𝑏𝑒𝑠𝑡, shown as 

(79)-(80). The 𝑤, 𝑐1 and 𝑐2  are fixed user-specified parameters, and 𝑟1 and 𝑟2  are two random 

variables within the range of (0, 1), which are rerolled at each iteration. 
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𝑉𝑛𝑒𝑥𝑡
1 = 𝑤𝑉𝑛𝑜𝑤

1 + 𝑑𝑖𝑏𝑒𝑠𝑡
1 + 𝑑𝑔𝑏𝑒𝑠𝑡

1  (77) 

𝑉𝑛𝑒𝑥𝑡
0 = 𝑤𝑉𝑛𝑜𝑤

0 + 𝑑𝑖𝑏𝑒𝑠𝑡
0 + 𝑑𝑔𝑏𝑒𝑠𝑡

0  (78) 

{
𝑑𝑖𝑏𝑒𝑠𝑡

1 = 𝑐1𝑟1 and 𝑑𝑖𝑏𝑒𝑠𝑡
0 = −𝑐1𝑟1 , if 𝑃𝑖𝑏𝑒𝑠𝑡 = 1

𝑑𝑖𝑏𝑒𝑠𝑡
1 = −𝑐1𝑟1 and 𝑑𝑖𝑏𝑒𝑠𝑡

0 = 𝑐1𝑟1 , if 𝑃𝑖𝑏𝑒𝑠𝑡 = 0
 (79) 

{
𝑑𝑔𝑏𝑒𝑠𝑡

1 = 𝑐2𝑟2 and 𝑑𝑔𝑏𝑒𝑠𝑡
0 = −𝑐2𝑟2 , if 𝑃𝑔𝑏𝑒𝑠𝑡 = 1

𝑑𝑔𝑏𝑒𝑠𝑡
1 = −𝑐2𝑟2 and 𝑑𝑔𝑏𝑒𝑠𝑡

0 = 𝑐2𝑟2 , if 𝑃𝑔𝑏𝑒𝑠𝑡 = 0
  (80) 

 

Because our problem has constraint (49) that restricts the number of value 1 among certain 𝜋𝑖𝑗
𝑠𝑡 , 

we set the value of 1 to those with higher 𝑉𝑛𝑒𝑥𝑡
1 − 𝑉𝑛𝑒𝑥𝑡

0  during the step of movement to next 

positions. In addition, because of the existence of  constraint (48), we only determine the patient 

assignment of one treatment, which leads to the reduction in the search space of PSO to a half. The 

supply subproblem is solved by Gurobi MIP solver, and parameters 𝑤, 𝑐1 and 𝑐2 are set to be 1/3, 

7, and 13 respectively.  

 Numerical Case Study 

4.4.1 Instance generation 

The case for study has information listed in Table 4.4. The number of patients arrived at each 

clinical site and period, 𝑛𝑠𝑡
 , is independent of others and follows Poisson distribution. The mean 

of the Poisson distribution is set to 1.75 and differs slightly with respective to sites. In this case, 

we simulate responses of every patient, 𝑋𝑖𝑗
𝑠𝑡 , via Bernoulli distribution. The probability of 

success/positive response is set to be 0.5 and 0.7 for treatment 1 and 2 respectively.  In addition, 

the critically important difference between two treatments, Δ, is set to 0.2 so that we will not end 

up with a trial instance that is impossible to complete. 
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Table 4.4 Basic Information of the Case 

 

The rest of supply-related parameters are generated in the same way of Chapter 3.4.1, and we only 

address the final values here. Production costs are $0.5/tablet and $25.5/tablet. Recruitment costs 

of sites depends on the mean arrival rates and approximately range within $500-$900 per week. 

Holding costs of the distribution center and sites are $0.5/tablet/week and $2.5/tablet/week 

respectively. Shipping costs of one-third of the sites are $57/box; the others are $46/box. The 

volume of shipping boxes is 64 in3/box. 

4.4.2 Performance of PSO-based heuristic 

To evaluate the performance of the proposed PSO-based heuristic, we implemented a random 

search algorithm (RSA) to solve the same instance. The RSA also takes advantage of problem 

structure by only searching the feasible region of patient assignments, 𝜋𝑖𝑗
𝑠𝑡 . Once feasible 

assignments are sampled, the trial-related variables, 𝑁𝑖𝑡
 , 𝑝̂𝑖𝑡

 , 𝜌1𝑡
 , 𝐷̂𝑡

 , 𝛿𝑡
 , and 𝜃𝑡

 , are determined 

accordingly through constraints (43)-(55). Then the rest of the problem is optimized by using the 

Gurobi MIP solver. Fig 4.2 and Fig 4.3 show the relationship between incumbent objective values 

and solving time for PSO and RSA respectively. Note that RSA searched more than 1,000 feasible 

solutions within 500 seconds. 

 

Trial Information Drug Supply Information 

Maximum Trial Duration 16 weeks Clinical Sites 10 

Trial Arms 2 dosages Produced Dosages 2 

Treatment Span 4 weeks Drug Form tablet (0.426 in3) 

Treatment Allocation adaptive Drug Consumption 7 tablets/patient/week 

Trial Sample Size adaptive Shipment Leadtime 1 week 

Adaptation Frequency weekly   

Patient Response binary   
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Fig 4.2 Performance of PSO Algorithm with Five Repetitions 

 

 

Fig 4.3 Performance of RSA with Five Repetitions 

 

According to the figures, RSA rarely improved solution quality after 150 seconds, and by 500 

seconds the best solutions found contribute to objective values higher than 130,00 dollars. In 

contrast, all five repetitions in PSO reached better objective values, which shows the superiority 

of using PSO algorithm in this problem. 
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4.4.3 Impact of joint optimization 

To evaluate the impact of the joint optimization proposed in Chapter 4.2, we compare its best 

solutions found by the PSO algorithm with the solutions obtained by randomly assigning patients, 

i.e. randomly generating values of 𝜋𝑖𝑗
𝑠𝑡 that are feasible to the entire problem (42)-(69), and then 

optimizing for minimum supply cost. For each instance, we conducted this random assignment 

optimization 1,000 times and the average results are presented in Table 4.5 and Table 4.6, where 

𝑁1
 , 𝑁2

 , 𝑝̂1
 , and 𝑝̂2

  are the total number of patients assigned to treatment 1 and 2 and the observed 

success rate of treatment 1 and 2 by the end of the trial. 

 

Table 4.5 Results of Joint Optimization under RSIHR Allocation Rule 

Instance Optimization Total Trial 
    

Index Choice Cost ($) Length 𝑁1
  𝑁2

  𝑝̂1
  𝑝̂2

  

1 Random Assignment 169,065 13.9 104.7 123.9 0.51 0.69 
 

Joint Optimization 135,127 12 109 77 0.58 0.71 

2 Random Assignment 169,828 14.3 88.7 119.5 0.49 0.69 
 

Joint Optimization 138,271 13 86 107 0.52 0.72 

3 Random Assignment 160,941 13.2 92.9 119.6 0.51 0.72 
 

Joint Optimization 123,798 11 96 74 0.59 0.80 

4 Random Assignment 157,582 13.2 84.5 118.6 0.47 0.75 
 

Joint Optimization 124,445 11 92 78 0.57 0.79 

5 Random Assignment 165,548 14.0 100.2 120.0 0.48 0.67 
 

Joint Optimization 147,939 13 115 83 0.51 0.64 
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Table 4.6 Results of Joint Optimization under Neyman Allocation Rule 

Instance Optimization Total Trial 
    

Index Choice Cost ($) Length 𝑁1
  𝑁2

  𝑝̂1
  𝑝̂2

  

1 Random Assignment 158,127 13.9 119.4 109.5 0.50 0.69 
 

Joint Optimization 120,046 12 112 74 0.52 0.77 

2 Random Assignment 150,874 14.2 112.6 94.3 0.48 0.69 
 

Joint Optimization 123,571 13 119 74 0.50 0.76 

3 Random Assignment 143,917 13.3 117.5 95.9 0.52 0.73 
 

Joint Optimization 122,498 12 132 58 0.55 0.88 

4 Random Assignment 141,491 13.4 117.6 89.6 0.48 0.73 
 

Joint Optimization 116,745 11 103 67 0.50 0.88 

5 Random Assignment 155,219 14.0 116.3 103.7 0.48 0.68 
 

Joint Optimization 140,939 13 125 73 0.49 0.74 

 

In comparison to random assignment, joint optimization obviously reduces the supply cost, trial 

length, and the total number of samples/patients collected/needed in the trial 𝑁1
 + 𝑁2

  in all 

instances and both allocation rules. As for the patient allocation, we see that joint optimization 

inclines toward higher allocation to treatment 1, i.e. 𝑁1
 > 𝑁2

 , under both allocation rules because 

of the lower unit price of producing dosage 1. As for the final observation of treatment success 

rate, we see that random assignment observed values that are very close to the mean values 0.5 

and 0.7 we used in the instance generator, while joint optimization tends to observe better success 

rates, i.e. larger 𝑝̂1
  and 𝑝̂2

 . As for the cost analysis, we see from Table 4.7 that the major reduction 

in supply cost is contributed by production, followed by inventory, recruitment, and transportation. 
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Table 4.7 Cost Reduction of Joint Optimization against Random Assignment 

Instance Allocation Costs Reduction Percentage in Categories 

Index Rule Total Production Recruitment Inventory Transportation 

1 RSIHR -20.1% -30.6% -9.1% -17.0% -5.9% 

 Neyman -24.1% -28.0% -19.3% -30.4% -14.9% 

2 RSIHR -18.6% -23.7% -12.6% -20.9% -10.3% 

 Neyman -18.1% -25.2% -11.6% -19.8% -10.0% 

3 RSIHR -23.1% -31.9% -13.2% -21.5% -9.8% 

 Neyman -14.9% -30.4% -2.9% -4.4% -2.8% 

4 RSIHR -21.0% -28.6% -12.6% -18.9% -7.7% 

 Neyman -17.5% -19.4% -15.3% -22.5% -9.6% 

5 RSIHR -10.6% -22.3% -0.1% -0.2% -0.1% 

 Neyman -9.2% -20.9% 0.0% 0.0% 0.0% 

 

In comparison to Neyman allocation rules, RSIHR tends to assign more patients to treatment 2, i.e. 

larger 𝑁2
  in Table 4.5 than Table 4.6, which is aligned with the objective of RSIHR rule: 

minimizing the expected number of treatment failures. That is, RSIHR rule tends to allocate 

patients to the treatment with higher success rate, which is treatment 2 in our case, and therefore 

leads to higher supply cost in Table 4.5 than Table 4.6. 

 

According to the above results, we noticed the joint optimization solution is strongly affected by 

the unit price difference between manufacturing doses for the two treatments. To further 

understand the impact of joint optimization, we raised the unit price of producing dosage 1 to be 

the same as dosage 2 and rerun the five instances. The average results of the five instances are 

summarized in Table 4.8 as well as the cost reduction percentage in Table 4.9. 
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Table 4.8 Summary of Joint Optimization Results 

Allocation Drug Optimization Total Trial 
    

Rule Unit Cost Choice Cost ($) Length 𝑁1
  𝑁2

  𝑝̂1
  𝑝̂2

  

RSIHR Different Random Assignment  164,593  13.7 94.2 120.3 0.49 0.70 

  Joint Optimization  133,916  12.0 99.6 83.8 0.55 0.73 

 Same Random Assignment  224,475  13.7 94.2 120.3 0.49 0.70 

  Joint Optimization  203,776  11.8 83.4 96.0 0.52 0.74 

Neyman Different Random Assignment  149,926  13.8 116.7 98.6 0.49 0.70 

  Joint Optimization  124,760  12.2 118.2 69.2 0.51 0.81 

 Same Random Assignment  225,661  13.8 116.8 98.7 0.49 0.70 

  Joint Optimization  208,561  12.0 96.2 87.2 0.53 0.73 

 

Table 4.9 Summary of Cost Reduction 

Allocation Drug Costs Reduction Percentage in Categories 

Rule Unit Cost Total Production Recruitment Inventory Transportation 

RSIHR Different -18.6% -27.4% -9.4% -15.4% -6.7% 

 Same -9.2% -8.6% -9.4% -15.3% -7.1% 

Neyman Different -16.8% -24.8% -9.8% -15.2% -7.6% 

 Same -7.6% -7.0% -7.9% -12.3% -5.6% 

 

First, for the random assignment cases under an allocation rule in Table 4.8, we see the adjustment 

of drug unit cost only affects the total cost because the assignment of patients is not altered due to 

supply chain factors. Second, for the comparison between joint optimization and random 

assignment, we see obvious reductions in supply cost, trial length, and the total number of patients 

even though the drug unit prices are even. As for the number of patients assigned to the two 

treatments, we see the distribution between 𝑁1
  and 𝑁2

  becomes proportional to the distribution in 

the random assignment case when the drug unit prices are even, which implies that the tendency 

of patient allocations in RSIHR and Neyman rules will be preserved if there is no huge difference 

in drug unit price between treatments. In addition, when the drug unit costs are adjusted to be even, 

the sampled treatment success rates in the end of the trial is closer to the real means, 0.5 and 0.7, 
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especially for Neyman allocation. Fourth, for the cost reduction comparisons in Table 4.9, we see 

that the percentage reduction in production cost is no longer the highest after the adjustment in 

drug unit cost. The percentage reduction in inventory cost becomes the highest and other categories 

are at approximately same level of reduction. Fifth, no matter the unit cost of drugs, the joint 

optimization under RSIHR allocation rule overall results in higher reduction in total cost, trial 

length, and total number of patients than under Neyman allocation.   

 Conclusions 

Patient-Treatment Allocation plays essential role of bridging the gap between adaptive clinical 

trial (ACT) planning and drug supply chain management. Patient assignment affects not only the 

trial performance, including trial size, trial length, and statistic power, but also the resources 

management, including drug distribution, drug wastage, and supply costs. With the proposed joint 

optimization model, we study the impact of incorporating supply consideration into ACT design 

and incorporating trial design rules into drug supply chain in terms of trial performance and supply 

costs numerically. 

 

The key finding of our research is that, when there is no significant difference in unit production 

price between the treatment drugs, the proposed integration between trial design and supply 

management is beneficial to lower supply costs, trial length, and total number of patients needed 

in a trial without jeopardizing the study power and the sampled treatment success rates. In addition, 

the cost reduction does not center on certain category in the supply chain. Instead, the production, 

inventory transportation, and recruitment costs have more than 7% reduction. We also noticed that 

the joint optimization has better effect on RSIHR allocation rule than Neyman allocation. 

 

A limitation of this project lies in the deterministic programming model. It is not the nature of a 

randomization trial to assign individual patients to treatments according to deterministic prediction 

of patient arrival and response to treatments/dosages. Therefore, we will consider the stochastic 

extension in future research. We hope the proposed concept of joint optimization and the numerical 

results may suggest a new angle or domain extension regarding the conduction and design research 

of ACTs and facilitate the development of optimization tools for adapting trials in coordination 

with drug supply planning.  
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5. FUTURE RESEARCH AND REFLECTIONS 

 Future Research 

In addition to stochastic extension of Chapter 4, it is interesting to use the proposed models to 

study other important issues or problems in clinical trial and supply management. First one is 

multi-trial management. Many non-adaptive and adaptive clinical trials are implemented with time 

overlap and using many common resources, e.g. clinical sites and personnel, patients with similar 

symptoms, and drug supply facilities. According to the industry people we have contact with, 

multi-trial management is one of major concerns in practice. Second one is the advertisement and 

recruitment. Insufficient number of subjects has been an obstacle to trial completion and success, 

and many research works treat patient arrival as an independent uncertainty. If we can model the 

relation between different advertisement media and clinical site recruitment, then the integration 

with supply chain model may suggest more insightful results. Third one is clinical site selection. 

Current practice is close to choosing sites based on the feasibility of conducting trials, e.g. whether 

an airport is nearby the hospitals or whether trained clinical trial investigators and treatment 

facilities are available. However, the economic considerations of the entire drug supply chain are 

not taken into account at the trial planning stage. The mathematical model/tools that integrates the 

trial design and supply can more insightfully suggest the good characteristics of a clinical site for 

any specific case, which may lead to reduction in operational cost and resource wastage along the 

clinical trial process. 

 Reflections 

Upon the completion of this dissertation, I am glad I became an independent learner, thinker, and 

explorer. I recall the moments of trying to connect adaptive trial design with drug supply and 

develop a dissertation topic/problem. Many questions, assumptions, doubts, and guesses surround 

me all the time no matter how hard I try to find answers from published papers. After countless 

attempts, I learned to resort to website posts, news reports, or even the introductions of company’s 

services to gather the bigger picture of backgrounds that my potential research problems may lie 

in. By immerging myself in this environment, I started to be able to “see” many connections or 

answers. This is one of the experiences during my Ph.D. journey that cultivates my skill of 
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exploring and learning as well as the valuable fruit of my Ph.D. study. The knowledge in this 

dissertation might become outdated one day; however, there are more unknown domains ahead of 

me. This Ph.D. journey feeds back to me with confidence in facing unknowns in my life thereafter. 
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