
ACCURACY EXPLICITLY CONTROLLED H2-MATRIX ARITHMETIC IN

LINEAR COMPLEXITY AND FAST DIRECT SOLUTIONS FOR

LARGE-SCALE ELECTROMAGNETIC ANALYSIS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Miaomiao Ma

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2019

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Dan Jiao, Chair

School of Electrical and Computer Engineering

Dr. Weng Cho Chew

School of Electrical and Computer Engineering

Dr. Steven D. Pekarek

School of Electrical and Computer Engineering

Dr. Jianlin Xia

Department of Mathematics

Approved by:

Dr. Dimitrios Peroulis

Head of the School Graduate Program

iii

To my father

iv

ACKNOWLEDGMENTS

Foremost, I would like to express my deepest gratitude to my advisor Professor

Dan Jiao for giving me this opportunity to work with her at Purdue University. This

work can never be completed without her sharp insights, constant inspiration and

kind encouragement. Professor Jiao is always there and willing to help when I feel

confused or get stuck with research. And she is able to see the whole picture and guide

me through the research mist with her solid numerical and physical visions. As she

knows almost every detail about my research project, she could provide very useful

suggestions to further push the research limits. When the numerical experiments

could not agree with physical understanding, she will not give up until we figure out

the reasons. Knowing that she is always there for me is really a strong dose of courage

to help me keep calm and carry on in my research career. I feel so lucky and gratitude

to have Professor Jiao as my advisor!

I would like to thank other members of my PhD advisory committee: Professor

Weng Cho Chew, Professor Steven D. Pekarek and Professor Jianlin Xia for their

precious time, support and suggestions regarding my research work.

Thanks are also extended to all the fellow labmates who worked with me in On-

Chip Electromagnetics Lab here at Purdue: Dr. Bangda Zhou, Dr. Woochan Lee,

Dr. Md. Gaffar, Dr. Jin Yan, Dr. Ping Li, Dr. Yanpu Zhao, Dr. Kaiyuan Zeng,

Dr. Yu Zhao, Li Xue, Chang Yang, Shuzhan Sun, Yifan Wang, Michael Hayashi and

Zhangchao Wei for their constant support and the friendly yet professional environ-

ment in the lab.

Last but not the least, I am thoroughly indebted to my family for their everlasting

love and support during all these years. I dedicate this work to all of you!

v

TABLE OF CONTENTS

Page

LIST OF TABLES . x

LIST OF FIGURES . xii

ABSTRACT . xv

1 INTRODUCTION . 1

1.1 Challenges . 1

1.2 Computational Electromagnetic Methods 3

1.2.1 Integral Equations . 4

1.2.2 Partial Difference Equations . 5

1.3 Mathematical Background . 6

1.3.1 H Matrix . 7

1.3.2 H2 Matrix . 9

1.3.3 HSS Matrix . 10

1.4 Contributions of This Work . 10

2 ACCURACY CONTROLLED H2-MATRIX-MATRIX PRODUCT WITH
APPENDED CLUSTER BASES IN LINEAR COMPLEXITY 12

2.1 Introduction . 12

2.2 Structure Preserved H2-Matrix-Matrix Product 13

2.2.1 Proposed Alorithm . 13

2.2.2 Accuracy and Complexity Analysis 23

2.2.3 Numerical Results . 24

2.3 H2-Matrix-Matrix Product without Formatted Multiplications 32

2.3.1 Proposed Alorithm . 32

2.3.2 Numerical Results . 35

2.4 Conclusion . 39

vi

Page

3 RANK-MINIMIZED AND STRUCTURE-KEPTH2-MATRIX-MATRIX PROD-
UCT IN LINEAR COMPLEXITY WITH CONTROLLED ACCURACY . . 40

3.1 Introduction . 40

3.2 Proposed H2 Matrix-Matrix Product Algorithm—Leaf Level 41

3.2.1 Product is an inadmissible block (full matrix) in C 43

3.2.2 Product is an admissible block in C 44

3.2.3 Computation of new cluster bases in matrix product CH2 45

3.2.4 Computation of the four cases of multiplications with the prod-
uct block being admissible . 48

3.2.5 Summary of overall algorithm at leaf level 50

3.3 Proposed H2 Matrix-Matrix Product Algorithm—Non-Leaf Level . . . 51

3.3.1 Product is an NL block in C 52

3.3.2 Product is an admissible block in C 52

3.3.3 Computation of the new non-leaf level transfer matrices in C . . 56

3.3.4 Computation of the four cases of multiplications with the prod-
uct block being admissible . 58

3.3.5 Summary of overall algorithm at each non-leaf level 59

3.4 Accuracy and Complexity Analysis . 60

3.4.1 Accuracy . 61

3.4.2 Time and Memory Complexity 61

3.5 Numerical Results . 63

3.5.1 Two-layer Cross Bus . 63

3.5.2 Large-scale Dielectric Slab . 64

3.5.3 Large-scale Array of Dielectric Cubes 66

3.6 Conclusion . 67

4 ACCURACY DIRECTLY CONTROLLED FAST DIRECT SOLUTION OF
GENERAL H2 MATRICES . 68

4.1 Introduction . 68

4.2 Proposed Factorization and Inversion Algorithms 69

vii

Page

4.2.1 Computation at the Leaf Level 70

4.2.2 Computation at the Non-leaf Level 78

4.2.3 Algorithm Summary . 83

4.3 Proposed Matrix Solution (Backward and Forward Substitution) Al-
gorithm . 85

4.3.1 Forward Substitution . 85

4.3.2 Backward Substitution . 87

4.3.3 Accuracy and Complexity Analysis 88

4.4 Numerical Results . 89

4.4.1 Scattering from Dielectric Sphere 90

4.4.2 Large-scale Dielectric Slab . 92

4.4.3 Large-scale Array of Dielectric Cubes 95

4.5 Conclusion . 98

5 DIRECT SOLUTION OF GENERALH2-MATRICES WITH CONTROLLED
ACCURACY AND CONCURRENT CHANGE OF CLUSTER BASES FOR
ELECTROMAGNETIC ANALYSIS . 99

5.1 Introduction . 99

5.2 Proposed Direct Solution . 100

5.2.1 Computation at Leaf Level . 101

5.2.2 Computation at Non-leaf Levels 103

5.2.3 Overall Factorization . 105

5.3 Algorithm for Concurrent Change of Cluster Bases During Matrix Fac-
torization . 106

5.3.1 Concurrent Change of Cluster Bases at Leaf Level 107

5.3.2 Concurrent Change of Cluster Bases at a Non-Leaf Level . . . 115

5.4 Accuracy and Complexity Analysis 117

5.5 Numerical Results . 118

5.5.1 Two-Layer Cross Bus . 118

5.5.2 On-Chip Interconnects . 119

viii

Page

5.5.3 Large-scale Dielectric Slab . 121

5.5.4 Large-scale Array of Dielectric Cubes 123

5.6 Conclusion . 124

6 FAST H2-BASED ALGORITHMS FOR DIRECTLY SOLVING SPARSE
MATRIX IN LINEAR COMPLEXITY . 126

6.1 Introduction . 126

6.2 Proposed Direct Solution . 127

6.3 Numerical Results . 131

6.3.1 Laplacian Matrix . 131

6.3.2 FEM Matrix of Dielectric Slab 132

6.4 Conclusion . 133

7 NEW HSS MATRIX INVERSION WITH DIRECTLY CONTROLLED
ACCURACY . 134

7.1 Introduction . 134

7.2 Proposed Algorithm . 135

7.2.1 Leaf Level . 136

7.2.2 Nonleaf Level . 138

7.3 Numerical Results . 143

7.3.1 Two-layer Cross Bus . 143

7.3.2 Dielectric Cube Array . 144

7.4 Conclusion . 146

8 SUMMARY AND FUTURE WORK . 147

8.1 Summary . 147

8.1.1 Accuracy ControlledH2-Matrix-Matrix Product With Appended
Cluster Bases in Linear Complexity 147

8.1.2 Rank-Minimized and Structure-Kept H2-Matrix-Matrix Prod-
uct in Linear Complexity with Controlled Accuracy 147

8.1.3 Accuracy Directly Controlled Fast Direct Solution of General
H2-Matrices . 148

ix

Page

8.1.4 Direct Solution of General H2-Matrices with Controlled Accu-
racy and Concurrent Change of Cluster Bases for Electromag-
netic Analysis . 148

8.1.5 Fast H2-Based Algorithms for Directly Solving Sparse Matrix
in Linear Complexity . 148

8.1.6 New HSS Recursive Inverse with Directly Controlled Accuracy 149

8.2 Future Work . 149

REFERENCES . 150

VITA . 154

x

LIST OF TABLES

Table Page

2.1 Structure-preserving MMP error at different εadd for large-scale capaci-
tance extraction. 26

2.2 Structure-preserving MMP error comparison for the large-scale capaci-
tance extraction. 27

2.3 Structure-preserving MMP error at different εadd for 2-D large-scale dielec-
tric slab. 29

2.4 Csp as a function of N for the dielectric cube array. 29

2.5 Structure-preserving MMP error at different εadd for 3-D dielectric cube
array. 30

2.6 Structure-preserving MMP error comparison with existing MMP for 3-D
cube array. 31

2.7 H2 MMP error performance at different εadd and comparison with existing
MMP for large-scale capacitance extraction. 36

2.8 H2 MMP error at different εadd for 2-D dielectric slab. 37

2.9 H2 MMP error at different εadd for 3-D dielectric cube array. 38

3.1 H2 MMP error at different εtrunc for large-scale capacitance extraction
matrices. 63

3.2 H2 MMP error for 2-D slab. 65

3.3 H2 MMP error at different εtrunc for 3-D cube array. 66

4.1 Direct solution error measured by relative residual εrel of the dielectric
sphere as a function of εfill−in. 92

4.2 Direct solution error measured by relative residual, εrel, for the dielectric
slab example. 94

4.3 Performance comparison between this solver with εfill−in = 10−5 and [14–
16] for the dielectric slab example. 94

4.4 Csp as a function of N for the dielectric cube array. 96

4.5 Direct solution error measured by relative residual for the cube array. . . . 96

xi

Table Page

4.6 Performance comparison with [14–16] for the dielectric cube array example. 97

5.1 Direct solution error measured by relative residual εrel for the full-wave
VIE interconnect simulation example. 121

5.2 Direct solution error measured by relative residual, εrel, for the dielectric
slab example. 122

5.3 Performance comparison between this solver with εacc = 10−4 and [15, 16]
for the dielectric slab example. 123

5.4 Direct solution error measured by relative residual for the cube array ex-
ample. 124

6.1 Direct sparse solver error measured by relative residual. 132

7.1 New HSS inversion relative residual for 2-layer bus array. 144

7.2 New HSS inversion relative residual for cube array at 3e+5 Hz. 145

7.3 New HSS inversion relative residual for cube array at 3e+8 Hz. 145

xii

LIST OF FIGURES

Figure Page

1.1 Illustration of a block cluster tree. 7

1.2 Matrix partition where admissible blocks are stored in the format of (1.14). 8

1.3 Illustration of a two-level HSS matrix. 11

2.1 An H2-matrix structure. (a) AH2 . (b) BH2 . (c) CH2 14

2.2 H2 matrix at leaf level. (a) AL
H2 . (b) BL

H2 . (c) CL
H2 14

2.3 H2-matrix block at non-leaf level (L− 1). (a) AL−1
H2 . (b) BL−1

H2 . (c) CL−1
H2 . . 19

2.4 Structure-preserving MMP performance for AH2 ×BH2 of large-scale ca-
pacitance extraction. (a) Time scaling v.s. N . (b) Memory scaling v.s.
N . 26

2.5 Structure-preserving MMP time comparison with existing MMP for ca-
pacitance matrix. 27

2.6 Structure-preserving MMP performance for AH2 ×AH2 of 2-D slab from
4λ to 28λ. (a) Time scaling v.s. N . (b) Memory scaling v.s. N 28

2.7 Structure-preserving MMP performance for AH2×AH2 of 3-D cube array.
(a) Time scaling v.s. N . (b) Memory scaling v.s. N 30

2.8 Structure-preserving MMP time comparison with existing MMP for 3-D
cube array VIE matrix. 31

2.9 An H2-matrix structure. (a) AH2 . (b) BH2 . (c) CH2 32

2.10 MMP performance for AH2 × BH2 of large-scale capacitance extraction.
(a) Time scaling v.s. N . (b) Memory scaling v.s. N 36

2.11 MMP performance for AH2 × BH2 of large-scale capacitance extraction
and comparison with existing MMP. (a) Time scaling v.s. N . (b) Memory
scaling v.s. N . 37

2.12 MMP performance for AH2 ×AH2 of electrically large dielectric slab scat-
tering from 8λ to 28λ. (a) Time scaling v.s. N . (b) Memory scaling v.s.
N . 38

2.13 MMP performance for AH2 ×AH2 of a suite of cube array from 2× 2× 2
to 16× 16× 16. (a) Time scaling v.s. N . (b) Memory scaling v.s. N 39

xiii

Figure Page

3.1 An H2-matrix structure. (a) AH2 . (b) BH2 . (c) CH2 42

3.2 H2 matrix at leaf level. (a) AL
H2 . (b) BL

H2 . (c) CL
H2 42

3.3 H2-matrix block at non-leaf level (L− 1). (a) AL−1
H2 . (b) BL−1

H2 . (c) CL−1
H2 . . 51

3.4 MMP performance for AH2×BH2 of cross buses. (a) Time scaling v.s. N .
(b) Memory scaling v.s. N . 64

3.5 MMP performance for AH2 ×AH2 of 2-D slab from 4λ to 28λ. (a) Time
scaling v.s. N . (b) Memory scaling v.s. N 65

3.6 MMP performance for AH2×AH2 of 3-D cube array. (a) Time scaling v.s.
N . (b) Memory scaling v.s. N . 67

4.1 (a) Original H2 matrix. (b) Illustration of QH
1 ZQ1. 71

4.2 (a) Zcur after partial LU of cluster 1 with fill-in blocks marked in blue.
(b) Fill-in blocks of cluster 2 turned green after cluster basis update. . . . 74

4.3 (a) QH
2 ZcurQ2. (b) Zcur after partial LU of cluster 2. 76

4.4 Zcur left to be factorized after leaf-level computation. 78

4.5 (a) Merging to next level. (b) Permuting to obtain Zcur to be factorized
at next level. 80

4.6 (a) L1 matrix. (b) U1 matrix. 85

4.7 Simulated RCS of a dielectric sphere for different electric sizes and dielec-
tric constants. (a) k0a = 0.408, εr = 36.0. (b) k0a = 0.408, εr = 4.0. (c)
k0a = 0.816, εr = 4.0. (d) k0a = 1.632, εr = 4.0. 91

4.8 Solver performance of a large-scale dielectric slab for different choices of
εfill−in. (a) Factorization time v.s. N . (b) Solution time v.s. N . (c)
Memory v.s. N . 93

4.9 Rank of the dielectric cube array example v.s. number of array elements. . 95

4.10 Solver performance of a suite of cube arrays for different choices of εfill−in.
(a) Factorization time v.s. N . (b) Memory v.s. N 97

5.1 (a) An H2-matrix structure. (b) QH
1 ZQ1. (c) After partial LU of cluster

1. (d) After cluster basis 2 update. (e) QH
2 ZQ2. (f) After partial LU of

cluster 2. (g) H2 matrix after leaf-level elimination. (h) Merging to next
level. (i) Ancestor level structure. (j) Ancestor level QH

t ZQt. 101

5.2 Illustration of Zi for i = 1 and i = 4. 106

5.3 Illustration of top-down tree traversal for computing Sisum. 108

xiv

Figure Page

5.4 (a)H2-tree with eliminated and uneliminated nodes. (b) Zi matrix (orange
box) for i = 4. 109

5.5 Illustration of the procedure for instantaneously computing Si,newsum 112

5.6 Illustration of instantaneously computing Si,newsum during a non-leaf level
factorization. 116

5.7 Capacitance extraction of a two-layer cross bus interconnect. (a) Time
complexity. (b) Memory complexity. (c) Capacitance matrix error. . . . 120

5.8 Solver performance of lossy on-chip buses. (a) Factorization time v.s. N .
(b) Memory v.s. N . 121

5.9 Solver performance of a suite of dielectric slab for different choices of εacc.
(a) Factorization time v.s. N . (b) Memory v.s. N 122

5.10 Solver performance of a suite of cube array from 2× 2× 2 to 14× 14× 14.
(a) Time scaling v.s. N . (b) Memory scaling v.s. N 124

6.1 H2-tree of a node (separator or domain) in the elimination tree. 127

6.2 (a) Nested dissection. (b) Elimination tree. 127

6.3 (a) H2-based frontal matrix of a node n. (b) Frontal matrix after leaf-level
factorization of Ynn. (c) Frontal matrix merged after leaf-level factoriza-
tion of Ynn. (d) Illustration of fill-ins in Ybb. 129

6.4 Solver performance of a 3-D cube grid as comparison of state of the art
direct sparse solver. (a) Factorization time v.s. N . (b) Memory v.s. N . . 131

6.5 Solver relative residual of a 3-D cube grid. 132

6.6 Solver performance of FEM matrix on a dielectric slab. (a) Factorization
and solution time v.s. N . (b) Memory v.s. N 133

7.1 Illustration of an HSS matrix (a)tree. (b) A two-level matrix. 135

7.2 New HSS inverse performance for 2-layer bus array example. (a) Time
performance. (b) Memory performance. 143

7.3 New HSS inverse performance for cube array at 3e+5 Hz. (a) Time
performance. (b) Memory performance. 144

7.4 New HSS inverse performance for cube array at 3e+8 Hz. (a) Time
performance. (b) Memory performance. 145

xv

ABSTRACT

Ma, Miaomiao Ph.D., Purdue University, December 2019. Accuracy Explicitly Con-
trolled H2-Matrix Arithmetic in Linear Complexity and Fast Direct Solutions for
Large-Scale Electromagnetic Analysis. Major Professor: Dan Jiao.

The design of advanced engineering systems generally results in large-scale numer-

ical problems, which require efficient computational electromagnetic (CEM) solutions.

Among existing CEM methods, iterative methods have been a popular choice since

conventional direct solutions are computationally expensive. The optimal complexity

of an iterative solver is O(NNitNrhs) with N being matrix size, Nit the number of it-

erations and Nrhs the number of right hand sides. How to invert or factorize a dense

matrix or a sparse matrix of size N in O(N) (optimal) complexity with explicitly

controlled accuracy has been a challenging research problem. For solving a dense

matrix of size N , the computational complexity of a conventional direct solution is

O(N3); for solving a general sparse matrix arising from a 3-D EM analysis, the best

computational complexity of a conventional direct solution is O(N2). Recently, an

H2-matrix based mathematical framework has been developed to obtain fast dense

matrix algebra. However, existing linear-complexity H2-based matrix-matrix multi-

plication and matrix inversion lack an explicit accuracy control. If the accuracy is

to be controlled, the inverse as well as the matrix-matrix multiplication algorithm

must be completely changed, as the original formatted framework does not offer a

mechanism to control the accuracy without increasing complexity.

In this work, we develop a series of new accuracy controlled fast H2 arithmetic,

including matrix-matrix multiplication (MMP) without formatted multiplications,

minimal-rank MMP, new accuracy controlled H2 factorization and inversion, new

accuracy controlled H2 factorization and inversion with concurrent change of cluster

xvi

bases, H2-based direct sparse solver and new HSS recursive inverse with directly

controlled accuracy. For constant-rank H2-matrices, the proposed accuracy directly

controlled H2 arithmetic has a strict O(N) complexity in both time and memory. For

rank that linearly grows with the electrical size, the complexity of the proposed H2

arithmetic is O(NlogN) in factorization and inversion time, and O(N) in solution

time and memory for solving volume IEs. Applications to large-scale interconnect

extraction as well as large-scale scattering analysis, and comparisons with state-of-the-

art solvers have demonstrated the clear advantages of the proposed newH2 arithmetic

and resulting fast direct solutions with explicitly controlled accuracy. In addition to

electromagnetic analysis, the new H2 arithmetic developed in this work can also be

applied to other disciplines, where fast and large-scale numerical solutions are being

pursued.

1

1. INTRODUCTION

1.1 Challenges

The design of advanced engineering systems generally results in large-scale numer-

ical problems, which require efficient computational electromagnetic (CEM) solutions.

The CEM solvers generate either dense or sparse matrix systems. How to invert or

factorize a dense matrix or a sparse matrix of size N in O(N) (optimal) complexity

with explicitly controlled accuracy has been a challenging research problem. The H2

matrix is a general mathematical framework [1–4] for compact representation and

efficient computation of dense matrices. It can be utilized to develop fast solvers for

electromagnetic analysis. Many existing fast solvers can be interpreted in this frame-

work, although their developments may predate the H2-framework. For example, the

matrix structure resulting from the well-known Fast Multipole Method (FMM)-based

methods [5, 6] is an H2 matrix. In other words, the H2 matrix can be viewed as an

algebraic generalization of the FMM method. Multiplying an H2 matrix by a vector

has a complexity of O(N logN) for solving electrically large surface integral equations

(SIEs). In mathematical literature like [7], it is shown that the storage, matrix-vector

multiplication (MVM), and matrix-matrix multiplication of an H2 matrix can be

performed in optimal O(N) complexity for constant-rank cases. However, no such

complexity is shown for either matrix factorization or inversion, regardless of whether

the rank is a bounded constant or an increasing variable. Later in [8, 9], fast matrix

inversion and LU factorization algorithms are developed for H2 matrices. They have

shown a complexity of O(N) for solving constant-rank cases like electrically small

and moderate problems for both surface and volume IEs (VIEs) [10–13]; and a com-

plexity of O(N logN) for solving electrically large VIEs [14–16]. There exist other

significant contributions in fast direct solvers such as [17–27]. Recently, an HSS-

2

matrix structure [28] has also been explored for electromagnetic analysis [29,30]. The

HSS matrix, as a special class of H2 matrix, requires only one admissible block be

formed for each node in the H2 tree.

Despite a significantly reduced complexity, in existing direct solutions ofH2 matri-

ces like [8,9], formatted multiplications and additions are performed instead of actual

ones, where the cluster bases used to represent a matrix are also used to represent

the matrix’s inverse as well as LU factors. During the inversion and factorization

procedure, only the coupling matrix of each admissible block is computed, while the

cluster bases are kept to be the same as those in the original matrix. Physically

speaking, such a choice of the cluster bases for the inverse matrix often constitutes

an accurate choice. However, mathematically speaking, the accuracy of the inversion

and factorization cannot be directly controlled. The lack of an accuracy control is

also observed in the H2-based formatted matrix-matrix multiplication in mathemati-

cal literature such as [7]. If the accuracy is to be controlled, the inverse as well as the

matrix-matrix multiplication algorithm must be completely changed, as the original

formatted framework does not offer a mechanism to control the accuracy without in-

creasing complexity. Algorithm wise, the collect operation involves approximations,

whose accuracy is not directly controlled. This operation is performed when multi-

plying a non-leaf block with a non-leaf block, or multiplying a nonleaf block with an

admissible block, with the target block being admissible. In this operation, the four

blocks, either admissible or inadmissible, are collected to a single admissible block

based on the cluster bases of the original matrix. If the target block cannot be accu-

rately represented by the original cluster bases, then an error would occur. When the

accuracy of the direct solution is not satisfactory, one can only change the original

H2-representation, i.e., change the cluster bases and/or the rank for representing the

original matrix (based on a prescribed accuracy), with the hope that they can better

represent the inverse and LU factors. Therefore, the accuracy of the resulting direct

solution is not directly controlled. A direct solution with an explicit accuracy control

should perform every multiplication and addition as it is without assuming a format

3

of the matrix involved in the computation. Meanwhile, every operation in the direct

solution should be either exact or performed based on a prescribed accuracy. This is

what is pursued and achieved in this research work. The computer used for numerical

results sections in this thesis has an Intel(R) Xeon(R) CPU E5-2690 v2 running at

3.00GHz, and only a single core is employed for carrying out all the computations.

1.2 Computational Electromagnetic Methods

Computational electromagnetics is the science of solving Maxwell’s equations to

analyze the interaction between electromagnetic fields and physical objects and the

environment. The CEM methods can be categorized into two classes, the partial dif-

ferencial equation (PDE) based methods and integral equation (IE) based ones. The

IE-based methods have been a popular choice since they avoid the use of any artifi-

cial absorbing boundary condition (ABC) and they can handle open-region problems

efficiently. There are two major classes of IE-based solvers, surface IE (SIE)-based

solvers and Volume IE (VIE)-based ones. SIE-based solvers are very efficient when

calculating homogeneous problems since they only need to discretize the surface.

Compared to SIE-based solvers, VIE-based solvers have a great flexibility in handling

complicated geometry and inhomogeneous materials. However, both SIE and VIE

generally lead to dense linear systems of equations. When an iterative solver is used,

the operation count is proportional to O(NitNrhsN
2), where Nrhs is the number of

right-hand sides, Nit is the number of iterations and N is the matrix size. When a

direct solver is used, the computational cost would be O(N3). It is computationally

expensive for solving electrically large problems. Therefore, there is a continued need

to reduced the complexity of IE solvers.

4

1.2.1 Integral Equations

Capacitance Extraction Formulation

For capacitance extraction of interconnects in a single material, we consider charges

on the conducting surfaces producing electric potential, which results in the following

integral equation

φ(~r) =

∫
S

ρs(~r′)

ε
g(~r, ~r′)ds′, (1.1)

where ρs is surface charge density, ε is permittivity, and g(~r, ~r′) is free-space static

Green’s function. A method-of-moments based solution of (1.1) results in the follow-

ing dense system of equations

Zq = v, (1.2)

where q vector consists of charges on each discretization patch, and right hand side

vector v is composed of the potential assigned to each conductor. In non-uniform

dielectrics, (1.1) is augmented by the electric potential due to equivalent surface

charges at the dielectric discontinuity.

Volume Integral Equation Formulation

For a full-wave analysis of interconnects, the most general IE formulation would be

a volume integral equation based formulation, which accounts for arbitrary dielectric

and conductive inhomogeneity. Consider an interconnect exposed to an external

field ~Ei(~r), based on the volume equivalence principle, the equivalent volume current

~J = jω(ε̄ − ε0) ~E radiating in the background material produces the scattered field.

Thus, the total field ~E at any point ~r is equal to the sum of the incident field and

the scattered field

~E(~r) +∇φs(~r) + jωAs(~r) = ~Ei(~r), (1.3)

5

which is expressed in the following form of the volume integral equation [31],

~D(~r)

ε̄(~r)
− µω2

∫
V

κ(~r′) ~D(~r′)g(~r, ~r′)dv′ −

∇
∫
V

∇′ ·

(
κ(~r′) ~D(~r′)

ε0

)
g(~r, ~r′)dv′ = ~Ei(~r), (1.4)

where Green’s function g(~r, ~r′) = e−jk0|~r−
~r′|/4π|~r− ~r′|, ω being the angular frequency,

k0 is the free space wave number, κ is the contrast ratio defined as

κ(~r) =
ε̄(~r)− ε0
ε̄(~r)

, (1.5)

and ~D(~r) is

~D(~r) = ε̄(r) ~E, (1.6)

which is related to the equivalent volume current by ~J(~r) = jωκ(~r) ~D(~r). From the

third term in (1.4), it can be seen that

φs(~r) = −
∫
V

∇′ ·

(
κ(~r′) ~D(~r′)

ε0

)
g(~r, ~r′)dv′, (1.7)

which can further be written as

φs(~r) =

∫
V

ρv(~r′)

ε0
g(~r, ~r′)dv′ +

∫
S

ρs(~r′)

ε0
g(~r, ~r′)ds′, (1.8)

where ρv is the density of equivalent volume charges, and ρs is the density of the

equivalent surface charges at the material discontinuity where κ(~r) is discontinuous.

In this paper, the vector basis functions employed to expand ~D are the Schaubert-

Wilton-Glisson (SWG) bases [31].

1.2.2 Partial Difference Equations

Finite Element Methods

Considering a general physical layout of a package or integrated circuit involving

inhomogeneous materials and arbitrarily shaped lossy conductors, the electric field E

satisfies the following second-order vector wave equation

∇× (
1

µr
× E) + jk0η0σE− k20εrE = −jk0Z0j, (1.9)

6

where µr is relative permeability, εr is relative permittivity, σ is conductivity, k0 is

free-space wave number, Z0 is free-space wave impedance, and j is current density. A

finite element based solution of (1.9) subject to pertinent boundary conditions results

in the following linear system of equations

Y X = B, (1.10)

where Y ∈ CN×N is a sparse matrix, and matrix B is composed of one or multiple

right hand side vectors. Sparse matrix Y can be expended as,

Y = −k20T + jk0G+ S (1.11)

where T , G, and S are assembled from their elemental contributions as the following,

Tij =

∫∫∫
v

εrni · nj dv

Sij =

∫∫∫
v

1

µr
(∇× ni) · (∇× nj) dv (1.12)

Gij =

∫∫∫
v

η0σni · nj dv +

∫∫
s

(n̂× ni) · (n̂× nj) ds,

where v denotes the volume of each element, s is the boundary, n̂ is the unit normal

vector and ni is the vector basis function used to expand unknown e in each element.

When the size of (1.10) is large, its efficient solution relies on fast and large-scale

matrix solutions.

1.3 Mathematical Background

Rank-structured matrices, such as H- (hierarchical), H2-, and HSS (Hierarchi-

cally Semiseparable) matrices [1-2], are one important class of matrices whose struc-

tures can be utilized to develop fast solvers for analyzing electromagnetic problems

[3-4].

7

1.3.1 H Matrix

An H matrix [3, 4] is generally stored in a tree structure, with each node in the

tree called a cluster. The number of unknowns in each cluster at the leaf level is

no greater than leafsize, a predefined constant. An H matrix is partitioned into

multilevel admissible and inadmissible blocks based on an admissibility condition.

max{diam(Ωt), diam(Ωs)} ≤ η × dist(Ωt,Ωs), (1.13)

where Ωt (Ωs) denotes the geometrical support of cluster t (s), diam{·} is the Eu-

clidean diameter of a cluster, dist{·, ·} denotes the Euclidean distance between two

clusters, and η is a positive parameter that can be used to control the admissibility

condition. As an example, a four-level block cluster H-tree is illustrated in Fig. 1.1,

{1,...,8}

{1,...,4} {5,...,8}

{1,2} {3,4} {5,6} {7,8}

{1} {2} {3} {4} {5} {6} {7} {8}

{1,...,8}

{1,...,4} {5,...,8}

{1,2} {3,4} {5,6} {7,8}

{1} {2} {3} {4} {5} {6} {7} {8}

Fig. 1.1.: Illustration of a block cluster tree.

where a green link denotes an admissible block, formed between a row cluster and

a column cluster that satisfy the admissibility condition; and a red link denotes an

inadmissible block. The block cluster tree structure combined with data-sparse stor-

age of the matrix blocks in admissible blocks complete the H-matrix representation

of a matrix. The storage requirement of such H-matrix representation is shown to be

O(N logN) through theoretical complexity analysis. After the H-matrix representa-

tion is established, basic H-matrix arithmetics are defined on it. In an H matrix,

8

an inadmissible block keeps its original full matrix form, while an admissible block is

represented by a low-rank matrix shown as the following:

Ỹt×s = A#t×k ·BT
#s×k, (1.14)

where k is the rank, and # denotes the cardinality of a set. The error of a rank-k

approximation can be evaluated as

‖Yt×s − Ỹt×s‖2 = σk+1, (1.15)

in which σk+1 is the maximum singular value among truncated singular values. By

applying (1.15), the error of an H-matrix representation can be quantitatively con-

trolled. With a rank-k representation, an H-matrix significantly accelerates matrix-

related operations and reduces storage cost for a prescribed accuracy as compared to

a full-matrix based representation. The resultant H matrix is as shown in Fig. 1.2.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8
Inadmissible

Admissible

Fig. 1.2.: Matrix partition where admissible blocks are stored in the format of (1.14).

9

1.3.2 H2 Matrix

The H2 matrix [1–4] is a special class of H matrix. The only difference is that the

admissible blocks are stored using nested representation. An admissible block in an

H2 matrix can be represented as

Zt,s = (Vt)#t×k(St,s)k×k(Vs)
T
#s×k, (1.16)

where Vt (Vs) is called cluster basis of cluster t (s), St,s is called coupling matrix, #

denotes the cardinality of a set, and k is rank. The cluster basis in an H2 matrix has

a nested property. This means the cluster basis for a non-leaf cluster t, Vt, can be

expressed by its two children’s cluster bases, Vt1 and Vt2 , as the following

(Vt)#t×k =

 (Vt1)#t1×k1 0

0 (Vt2)#t2×k2

 (Tt1)k1×k

(Tt2)k2×k

 (1.17)

where Tt1 and Tt2 are called transfer matrices. In anH2 matrix, the number of blocks

formed by a single cluster at each tree level is bounded by a constant, Csp. The size

of an inadmissible block is leafsize, and inadmissible blocks appear only at the leaf

level. Because of the nested relationship of cluster bases, the cluster bases only need

to be stored for leaf clusters. For non-leaf clusters, only transfer matrices need to

be stored. So an H2 matrix is more compact and computational efficient due to its

nested property as compared to an H matrix.

In mathematical literature [7], for constant-rank cases, it is shown that the com-

putational complexity of an H2 matrix is optimal (linear) in storage, matrix-vector

multiplication, and matrix-matrix multiplication. In [8–13], it is shown that O(N)

direct solutions can also be developed for H2 matrices for constant-rank cases as well

as electrically moderate cases whose rank can be controlled by a rank function. For

electrically large analysis, the rank of an H2-representation of IE kernels is not con-

stant any more for achieving a prescribed accuracy. Different H2-representations also

result in different rank and their growth rates with electrical size, and hence different

complexities. For example, if an FMM-based H2-representation is used to model an

10

IE operator, the asymptotic rank would scale quadratically with the electrical size. If

an interpolation based H2-representation is used to model an IE operator, the asymp-

totic rank would scale quadratically with the electrical size in surface IEs (SIEs), and

cubically with the electrical size in volume IEs. Despite its full-rank model in SIEs,

the FMM complexity is as low as O(N logN) for one matrix-vector multiplication,

because its coupling matrix is diagonal and transfer matrix is sparse. On the other

hand, if one uses an SVD-based minimal-rank representation, the resultant coupling

matrix is not diagonal. However, the asymptotic rank of such a minimal-rank repre-

sentation only scales linearly with electrical size for general 3-D problems as shown

by the analysis given in [32]. In this analysis, there are additional findings that are

not utilized in the FMM-based rank analysis or a source-observer separated rank

analysis, such as SVD turns to a Fourier analysis in a linear-shift invariant system,

and the Fourier transform of Green’s function reveals that not all the plane waves are

important, and only those whose wave number is closest to the given wave number k0

make the most important contribution. These plane waves are counted for prescribed

accuracy for 1-, 2-, and 3-D problems in [32]. It is found that the growth rate with

electrical size is no greater than linear.

1.3.3 HSS Matrix

The HSS matrix can be viewed as a special class of H2 matrix. An HSS matrix

only permits one admissible block formed for each node in the H2-tree. Instead of

using admissibility condition in (1.13) to note admissible blocks inH andH2 matrices,

all the off-diagonal blocks are admissible in HSS matrix. As shown in Fig. 1.3, all the

off-diagonal blocks have nested low-rank representation (Vt)#t×k(St,s)k×k(Vs)
T
#s×k.

1.4 Contributions of This Work

In this work, we develop a series of new accuracy controlled fast H2 arithmetic,

including matrix-matrix multiplication (MMP) without formatted multiplications,

11

T T

2 3 1VS V

T T

5 6 4VS V

T

1 3 2VS V

T

4 6 5VS V

T

4 41 1

7

5 52 2

VTVT
S

VTVT

T

4 4 1 1T

7

5 5 2 2

VT VT
S

VT VT

1F

2F

4F

5F

Fig. 1.3.: Illustration of a two-level HSS matrix.

minimal-rank MMP, new accuracy controlled H2 factorization and inversion, new

accuracy controlled H2 factorization and inversion with concurrent change of cluster

bases, H2-based direct sparse solver and new HSS recursive inverse with directly

controlled accuracy. For constant-rank H2 matrices, the proposed accuracy directly

controlled H2-arithmetic has a strict O(N) complexity in both time and memory. For

rank that linearly grows with the electrical size, the complexity of the proposed H2

arithmetic is O(NlogN) in factorization and inversion time, and O(N) in solution

time and memory for solving volume IEs. Applications to large-scale interconnect

extraction as well as large-scale scattering analysis, and comparisons with state-of-the-

art solvers have demonstrated the clear advantages of the proposed newH2 arithmetic

and resulting fast direct solutions with explicitly controlled accuracy. In addition to

electromagnetic analysis, the new H2 arithmetic developed in this work can also be

applied to other disciplines, where fast and large-scale numerical solutions are being

pursued.

12

2. ACCURACY CONTROLLED H2-MATRIX-MATRIX

PRODUCT WITH APPENDED CLUSTER BASES IN

LINEAR COMPLEXITY

2.1 Introduction

The H2 matrix [7] serves as a general mathematical framework for compact repre-

sentation and efficient computation of large dense systems. Both partial differential

equation (PDE) and integral equation (IE) operators in electromagnetics can be rep-

resented as H2 matrices with controlled accuracy. The development of H2-matrix

arithmetic such as addition, multiplication, and inverse are of critical importance to

the development of fast solvers in electromagnetics [9]. Under the H2-matrix frame-

work, it has been shown that an H2-matrix-based addition, matrix-vector product

(MVP), and matrix-matrix product (MMP) all can be performed in linear complex-

ity for constant-rank H2 [7]. However, the accuracy of existing H2-MMP algorithm

like [7] is not directly controlled. This is because given two H2 matrices AH2 and

BH2 , the matrix structure and cluster bases of their product C = AH2 × BH2 are

assumed, and a formatted multiplication is performed, whose accuracy is not con-

trolled. For example, the row cluster bases of AH2 and the column cluster bases of

BH2 are assumed to be those of C. This treatment lacks accuracy control since the

original cluster basis may not be able to represent the new content generated during

the MMP. The algorithm in [7] can be accurate if the cluster bases of the original

matrices can also be used to accurately represent the matrix product. However, this

is unknown in general applications, and hence the accuracy of existing MMP algo-

rithm is not controlled. One can find many cases where a formatted multiplication

can fail. For example, the row cluster bases of AH2 and the column cluster bases of

BH2 are assumed to be those of C. This treatment lacks accuracy control since the

13

original cluster basis may not be able to represent the new content generated during

the MMP. For example, when multiplying a full-matrix block F by a low-rank block

VtSVs
T , treating the result as a low-rank block is correct. However, it is inaccurate

to use the original row cluster basis as the product’s row cluster basis, since the latter

has been changed to FVt. Even though a subblock of full matrix in AH2 is multiplied

by a full-matrix block of BH2 , the result of which should be a full-matrix block, if the

targeted block in C is determined to be an admissible block based on the admissibility

criterion, the matrix product is projected onto the row cluster basis of AH2 and the

column cluster basis of BH2 to compute. The posteriori multiplication in [4] is more

accurate than the formatted multiplication in [7]. But it is only suitable for special

H2 matrices. Besides, this posteriori multiplication need much more computational

time and memory during the computation. It needs to first present the product into

an H matrix and then converts it into an H2 matrix, the complexity of which is not

linear.

In this chapter, we develop two accuracy controlled H2-based MMP algorithms

with appended cluster bases. The original H2-matrix structure can be preserved in

the matrix product, or can be changed based on the structures of the two multipliers.

The additional cluster bases are appended to old cluster bases based on the prescribed

accuracy during the computation of the matrix-matrix product. Meanwhile, we are

able to keep the computational complexity to be linear for constant-rank H2. For

variable-rank cases such as those for electrically large analysis, the proposed MMP is

also efficient.

2.2 Structure Preserved H2-Matrix-Matrix Product

2.2.1 Proposed Alorithm

To compute AH2 × BH2 = C, unlike the existing H2 formatted MMP [7], which

is recursive, we propose to perform a one-way tree traversal from leaf level to root

level. While doing the multiplications at each level, we update the row and column

14

(a) (b) (c)

Fig. 2.1.: An H2-matrix structure. (a) AH2 . (b) BH2 . (c) CH2 .

cluster bases based on prescribed accuracy to represent the product accurately. The

proposed algorithm also facilitates parallelization. We will use the H2 matrices shown

in Fig. 2.1 to illustrate the algorithm, but the algorithm is valid for any H2 matrix.

In this figure, green blocks are admissible, and red ones are inadmissible. Here the

structures of AH2 , BH2 and CH2 matrices are determined based on the admissibility

condition [4].

(a) (b) (c)

Fig. 2.2.: H2 matrix at leaf level. (a) AL
H2 . (b) BL

H2 . (c) CL
H2 .

15

Leaf level

We start from leaf level (l = L). At leaf level, there are in total four matrix-matrix

multiplication cases, i.e., 1) FA × FB; 2) FA × RB; 3) RA × FB; 4) RA × RB. We

will use the leaf level blocks in Fig. 2.1 to illustrate the algorithm at this level, which

is shown in Fig. 2.2. The resulting matrix block has two cases: 1) leaf level full block

FC, noted as red in Fig. 2.2(c) and 2) leaf level admissible block RL
C, noted as green

in Fig. 2.2(c). The white blocks in Fig. 2.2 are zeros, meaning they are upper level

blocks and not used for this level multiplications. Here we will show how to perform

matrix-matrix multiplication based on different target matrix blocks.

1) Full block as target

If the product matrix block is leaf level full block FC, we can perform these

four cases multiplications exactly by full matrix multiplications. For the admissible

leaf blocks in four cases, we convert them into full matrix representation as Rt,s =

VtSt,s(Vs)
T in advance and then calculate products. Since the matrix is of leafsize,

the computational cost for matrix-matrix multiplication is low as O(leafsize3).

2) Leaf level admissible block as target

If the target block is leaf level admissible block RL
C, we need to update row and

column cluster bases using multiplications from case-1 to case-3 to represent the

product with controlled accuracy. The fourth case is exact because

RA
i,j ×RB

j,k = VA
i,rS

A
i,j(V

A
j,c)

T ×VB
j,rS

B
j,k(V

B
k,c)

T . (2.1)

The product matrix block is obviously admissible and it preserves the original row

cluster basis VA
i,r, and column cluster basis VB

k,c. Here the VA
i,r means the ith row

cluster bases in matrix A. We only need to calculate the coupling matrix, which is

the center part, SA
i,jB̃jS

B
j,k, where B̃j is cluster bases product (VA

j,c)
T × VB

j,r, which

can be computed in advance in linear complexity. For the other three cases, we need

16

to update cluster bases to preserve the low rank property of the target block. For the

first case, FA
i,j ×FB

j,k, both the row and the column cluster bases need to be updated.

For the second case, the products are clearly low rank due to the low-rank property

of admissible blocks as:

FA
i,j ×RB

j,k = (FA
i,jV

B
j,r)× SB

j,k × (VB
k,c)

T . (2.2)

So we only need to use FA
i,jV

B
j,r to update the row cluster basis VA

i,r. This is because

the row cluster basis of this product block is no longer VA
i,r, if FA

i,jV
B
j,r contains new

information not included in VA
i,r. Similarly, the third case also has clearly a low rank

product as:

RA
i,j × FB

j,k = VA
i,r × SA

i,j × [(VA
j,c)

TFB
j,k]. (2.3)

And we need to use (VA
j,c)

TFB
j,k to update column cluster basis VB

k,c to get additional

information for representing the product accurately. Since there are many case-1,

case-2 and case-3 products encountered at the leaf level for the same row or column

cluster, to systematically update the i’s row cluster basis VA
i,r and k’s column cluster

basis VB
k,c, we consider these products at the same time.

To update i’s row cluster basis VA
i,r, we need to consider all the products in case-1

and case-2. So we first find all the products FA
i,j × FB

j,k with target Ci,k to be an

admissible block at i’s row of CH2 , whose number is bounded by constant C2
sp. We

calculate the Gram matrix sum as:

VA
i,new1 =

O(Csp)∑
j=1

O(Csp)∑
k=1

(FA
i,jF

B
j,k)(F

A
i,jF

B
j,k)

H (2.4)

Then we find all the dense matrices in i’s row of AH2 , whose number is also bounded

by constant Csp, and multiply them with corresponding row cluster basis VB
j,r in BH2 ,

obtaining Gram matrix sum as:

VA
i,new2 =

O(Csp)∑
j=1

(FA
i,jV

B
j,r)(F

A
i,jV

B
j,r)

H . (2.5)

17

Since the magnitude of Gram matrix sum VA
i,new1 and VA

i,new2 differs greatly, we

normalize them separately and sum them up to get

VA
i,new = V̂A

i,new1 + V̂A
i,new2. (2.6)

The ̂ above VA
i,new1 and VA

i,new2 means matrix normalization, and we could use

matrix norm such as F-norm to normalize them. We then use this VA
i,new to augment

i’s row cluster basis in AH2 by deducting the original cluster bases VA
i,r as GA

i =

[I − VA
i,r(V

A
i,r)

H] × VA
i,new × [I − VA

i,r(V
A
i,r)

H]H . After this, we perform an SVD on

GA
i to obtain the additional cluster bases VA,add

i,r for cluster i based on prescribed

accuracy εadd. Now the updated i’s row cluster bases Ṽ
A

i,r = [VA
i,r VA,add

i,r] can be used

to accurately represent the admissible blocks in i’s row of CH2 .

For updating the column cluster basis in k’s column in BH2 , VB
k,c, the steps are

similar. The case-1 and case-3 products are used to update column cluster basis. For

case-1, we consider all the products FA
i,j × FB

j,k with target Ci,k to be an admissible

block in k’s column of CH2 and calculate the Gram matrix sum as:

VB
k,new1 =

O(Csp)∑
i=1

O(Csp)∑
j=1

(FA
i,jF

B
j,k)

T (FA
i,jF

B
j,k)
∗. (2.7)

Here the superscript ∗ means taking the complex conjugate of each entry in the

matrix. We then find all the dense matrices in k’s column of BH2 and multiply them

with corresponding column cluster basis VA
j,c in AH2 , obtaining Gram matrix sum:

VB
k,new2 =

O(Csp)∑
j=1

[(VA
j,c)

TFB
j,k]

T [(VA
j,c)

TFB
j,k]
∗. (2.8)

We also normalize VB
k,new1 and VB

k,new2 and sum them up as:

VB
k,new = V̂B

k,new1 + V̂B
k,new2. (2.9)

We then use this VB
k,new to augment the cluster basis by computing GB

k = [I −

VB
k,c(V

B
k,c)

H]×VB
k,new× [I−VB

k,c(V
B
k,c)

H]H . After this, we perform an SVD on GB
k to

obtain the additional cluster bases VB,add
k,c for cluster i based on prescribed accuracy

18

εadd. Now the updated k’s column cluster basis Ṽ
B

k,c = [VB
k,c VB,add

k,c] can be used to

accurately represent the admissible blocks in k’s column of CH2 .

After updating row and column cluster bases of the product matrix, we can now

calculate the coupling matrices of case-1 , case-2 and case-3 multiplications. The

case-4 products are known. So we show the coupling matrices for these four cases as:

SC
i,k =

(Ṽ
A

i,r)
HFA

i,jF
B
j,k(Ṽ

B

k,c)
∗ case-1

(Ṽ
A

i,r)
HFA

i,jV
B
j,rS

B
j,k case-2

SA
i,j(V

A
j,c)

TFB
j,k(Ṽ

B

k,c)
∗ case-3

SA
i,jB̃jS

B
j,k case-4.

(2.10)

Then the resulting admissible blocks in CH2 all can be represented as RC
i,k = Ṽ

A

i,r ×

SC
i,k × (Ṽ

B

k,c)
T .

In order to speed up leaf level multiplications, we can collect the F blocks in AH2

by (Ṽ
A

i,r)
HFA

i,jV
B
j,r and F blocks in BH2 by (VA

j,c)
TFB

j,k(Ṽ
B

j,c)
∗ in advance to facilitate

case-2 products FA
i,j ×RB

j,k for different k and case-3 products RA
i,j ×FB

j,k for different

i by computations of rank size. Note that this collect is accurate now because it is

for products between F and R, and the products’ row and column cluster bases have

been updated to account for F × R and R × F cases. Here, we conclude all the

operations at the leaf level:

1. Prepare cluster bases product B̃;

2. Updating row and column cluster bases to Ṽ;

3. Collect the F blocks in AH2 and BH2 ;

4. Perform four cases of multiplications.

19

Non-leaf level

After finishing leaf level multiplication, we need to update the original row and

column transfer matrices with zeros due to the leaf level cluster bases updates to keep

the nested property of cluster bases, which is as shown below

 Vt1Tt1

Vt2Tt2

 =

 [Vt1V
add
t1

] 0

0 [Vt2V
add
t2

]

Tt1

0

Tt2

0

 . (2.11)

In this way, we can keep the nested property of original cluster bases and all the prod-

ucts can use these updated cluster bases. Since multiplications at different nonleaf

levels are the same, we will use level (L−1) as an example to show the computations.

And this level multiplication is shown in Fig. 2.3 as AL−1
H2 , BL−1

H2 and CL−1
H2 . At level

(L− 1), we perform four types of matrix products: 1) NL × R; 2) R × NL; 3) R ×

R; and 4) NL × NL. And the resulting matrix block also have two cases: 1) non-leaf

block at this level, noted as red in Fig. 2.3(c) and 2) admissible block at this level,

noted as green in Fig. 2.3 (c). For these two different resulting matrix blocks, the

operations are the same, i.e. calculating the coupling matrices. The only difference is

the post process operations after getting products, which will be discussed later. Here

(a) (b) (c)

Fig. 2.3.: H2-matrix block at non-leaf level (L− 1). (a) AL−1
H2 . (b) BL−1

H2 . (c) CL−1
H2 .

20

for the case-4 multiplication, which is NL × NL, the target block is only admissible

block at this level. Because the NL×NL→ NL has been taken care by lower levels’

multiplications. For case-4 multiplication, we need to update both row and column

transfer matrices.

The NL block used in case-1 and case-2 multiplications at level (L − 1) is a

merged matrix with four blocks from the collected F matrices and coupling matrices

at leaf level L so that the block is of rank size. Such a merged NL block of rank size is

accurate because we’ve already updated leaf level cluster bases to count multiplication

between F and R and this NL block is used in multiplications with R. It resembles

F at the leaf level. For example, a merged block at level (L− 1) in AH2 is like

(NLA
i,j)merge =

(Ṽ

A

i1,r
)HFA

i1,j1
VB
j1,r

SA
i1,j2

B̃j2

0

SA
i2,j1

B̃j1

0

 (Ṽ
A

i2,r
)HFA

i2,j2
VB
j2,r

 . (2.12)

The collect operation on the left uses updated row cluster bases, since the updated

cluster bases are accurate for these multiplications. And the collect operation on the

right uses row cluster basis in BH2 . Because the NL block in AH2 will be used to

multiply admissible blocks in BH2 . And a merged NL block in BH2 is like

(NLB
i,j)merge =

(VA

i1,c
)TFB

i1,j1
(Ṽ

B

j1,c
)∗

B̃j2S
B
i1,j2

0

B̃j1S
B
i2,j1

0

 (VA
i2,c

)TFB
i2,j2

(Ṽ
B

j2,c
)∗

 . (2.13)

Similarly, the left collect use column cluster basis in AH2 and right collect use updated

column cluster bases. Case-3 again does not require any updates on transfer matrices,

since the transfer matrices in equation (2.11) keeps the original cluster bases at a

nonleaf level. And the coupling matrix is SA
i,jB̃jS

B
j,k. For case-1, the row transfer

matrices of the product need to be updated. Meanwhile, the column transfer matrices

need updates for case-2.

21

In order to update row transfer matrix TA
i,r, we need two steps. The first step is

from case-4 multiplication. We first calculate the Gram matrix sum as:

TA
i,new1 =

O(Csp)∑
j=1

O(Csp)∑
k=1

(NLA
i,jNLB

j,k)(NLA
i,jNLB

j,k)
H . (2.14)

The NLA
i,jNLB

j,k product is calculated at lower level multiplication and merge the

resulting coupling matrices. The second step update is due to case-1 multiplication

at non-leaf level. We find all the NLA
i,j blocks for i’s nonleaf cluster and multiply

them with corresponding transfer matrices TB
j,r. And we calculate the Gram matrix

sum as

TA
i,new2 =

O(Csp)∑
j=1

((NLA
i,j)mergeT

B
j,r)((NLA

i,j)mergeT
B
j,r)

H . (2.15)

Again, we normalize the two Gram matrices and get

TA
i,new = T̂A

i,new1 + T̂A
i,new2. (2.16)

We then use this TA
i,new to augment the transfer matrix of TA

i,r by calculating GA
i =

[I − TA
i,r(T

A
i,r)

H] × TA
i,new × [I − TA

i,r(T
A
i,r)

H]H . After this, we perform an SVD on

GA
i to obtain the additional transfer matrices TA,add

i,r for non-leaf cluster i based on

prescribed accuracy εadd. Then the updated row transfer matrices for i’s row cluster

in CH2 is T̃
A

i,r = [TA
i,r TA,add

i,r]. Similarly, we can update the column transfer matrices

for non-leaf cluster k, which is TB
k,c. The first part is

TB
k,new1 =

O(Csp)∑
i=1

O(Csp)∑
j=1

(NLA
i,jNLB

j,k)
T (NLA

i,jNLB
j,k)
∗. (2.17)

And the second part is

TB
i,new2 =

O(Csp)∑
j=1

[(TA
j,r)

T (NLB
i,j)merge]

T [(TA
j,r)

T (NLB
i,j)merge]

∗. (2.18)

Then we normalize the two Gram matrices and get

TB
k,new = T̂B

k,new1 + T̂B
k,new2. (2.19)

22

We then use this TB
k,new to augment the transfer matrix of TB

k,c by calculating GB
k =

[I − TB
k,c(T

B
k,c)

H] × TB
k,new × [I − TB

k,c(T
B
k,c)

H]H . After this, we perform an SVD on

GB
k to obtain the additional transfer matrices TB,add

k,c for nonleaf cluster k based on

prescribed accuracy εadd. Then the updated column transfer matrices for k’s column

cluster in CH2 is T̃
B

k,c = [TB
k,c TB,add

k,c]. After updating row and column transfer

matrices, we now can calculate the coupling matrices of these four cases products at

non-leaf level as:

SC
i,k =

(T̃
A

i,r)
H(NLA

i,j)mergeT
B
j,rS

B
j,k case-1

SA
i,j(T

A
j,c)

T (NLB
j,k)merge(T̃

B

k,c)
∗ case-2

SA
i,jB̃jS

B
j,k case-3.

(T̃
A

i,r)
HNLA

i,jNLB
j,k(T̃

B

k,c)
∗ case-4

(2.20)

Since there are many case-1 and case-2 products encountered at the non-leaf level, we

again collect NL matrix blocks in AH2 by (T̃
A

i,r)
HNLA

i,jT
B
j,r and NL blocks in BH2

by (TA
j,c)

TNLB
j,k(T̃

B

j,c)
∗ in advance.

In conclusion, at a non-leaf level, we do:

1. Merge four small collected blocks to NL for AH2 and BH2 ;

2. Updating row and column transfer matrices to T̃;

3. Collect the NL blocks in AH2 and BH2 using updated T̃;

4. Perform four cases of multiplications.

After we finish one-way bottom-up tree traversal to calculate block matrix prod-

ucts at all the levels, i.e. from leaf level to minimal admissible level. We need to

perform post-processing for the coupling matrices at a nonleaf level if the resulting

matrix block in CH2 is NL. This could be efficiently done by performing one-way

top-down split process, as shown in [7]. The post processing stage is just split the

coupling matrices at NL to lower level admissible blocks or inadmissible blocks.

23

2.2.2 Accuracy and Complexity Analysis

In this section, we analyze the accuracy and computational complexity of the

proposed algorithm to calculate H2-matrix-matrix products.

Accuracy

Different from existing formatted H2-matrix-matrix products [7], in the proposed

new algorithm, the accuracy of the product is directly controlled. When generating

an H2 matrix to represent the original dense matrix, the accuracy is controlled by

εH2 , which is the same as in [15]. The accuracy of the proposed H2-matrix-matrix

products is controlled by εadd.

Time and Memory Complexity

The proposed structure-preserving MMP involves O(L) levels of computation.

At each level, there are 2l clusters. For each cluster, we have O(Csp) admissible

and inadmissible blocks. For each block, we need to perform O(Csp) block matrix

multiplications. Each of them costs O(k3l). The time complexity of the proposed

MMP can be found as

Time Complexity =
L∑
l=0

C2
sp2

lk3l = Csp
2

L∑
l=0

2lk3l . (2.21)

And the storage for each block is O(k2l), with each cluster having Csp blocks. So the

memory complexity is

Memory Complexity =
L∑
l=0

Csp2
lk2l = Csp

L∑
l=0

2lk2l . (2.22)

Recall kl is the rank at tree level l. Hence, (2.21) and (2.22) show that the overall

complexity is a function of rank kl. Taking into account the rank’s growth with elec-

trical size as shown in [32], we can get the time and memory complexity of proposed

MMP for different rank scaling. For constant-rank H2 matrices, since kl is a constant

24

irrespective of matrix size, the complexity of the proposed direct solution is strictly

O(N) in both CPU time and memory consumption. The analysis is as below:

For constant kl:

Time Complexity = C2
spk

3
l

L∑
l=0

2l = O(N), (2.23)

Memory Complexity = Cspk
2
l

L∑
l=0

2l = O(N). (2.24)

For electrodynamic analysis, to ensure a prescribed accuracy, the rank becomes a

function of electrical size, and thereby tree level. Different H2-matrix representations

can result in different complexities, because their rank’s behavior is different. Using

a minimal-rank H2-representation, as shown by [32], the rank grows linearly with

electrical size for general 3-D problems. In a VIE, kl is proportional to the cubic root

of matrix size at level l, because this is the electrical size at level l. Hence for a VIE,

(2.21) and (2.22) become

For kl linearly growing with electrical size:

Time Complexity = Csp
2

L∑
l=0

2l

[(
N

2l

) 1
3

]3
= O(NlogN), (2.25)

Memory Complexity = Csp

L∑
l=0

2l

[(
N

2l

) 1
3

]2
= O(N). (2.26)

So the time complexity of proposed MMP algorithm for 3-D electrodynamic analysis

is O(NlogN), and the memory complexity is O(N).

2.2.3 Numerical Results

In order to demonstrate the accuracy and low computational complexity of the

proposed fast H2-matrix-matrix multiplication for general H2 matrices, we use H2

matrices resulting from large-scale capacitance extraction and volume integral equa-

tions (VIE) for electromagnetic analysis. The capacitance extraction matrix is shown

25

in [9]. The VIE formulation we use is based on [31] with SWG vector bases for ex-

panding electric flux density in each tetrahedral element. A variety of large-scale

examples involving over one million unknowns are simulated to examine the accuracy

and complexity of the proposed MMP algorithm. The H2 matrix for each example

is constructed based on the method described in [14, 15]. The capacitance matrix is

used to demonstrate the proposed MMP algorithm performance for constant-rank H2

matrices. And we also simulate large scale 2-D and 3-D examples to show the time

and memory complexity for the proposed MMP with other rank scalings.

Two-layer Cross Bus

The first example is the capacitance extraction of a 2-layer cross bus structure. In

each layer, there are m conductors, and each conductors has a dimension of 1× 1×

(2m+1) m3. We simulate a suite of such structures with 16, 32, 64, 128 and 256 buses

respectively. The parameters used in the H2-matrix construction are leafsize = 30,

admissibility condition [7] η = 1.0, and εH2 = 10−4. For the proposed H2 MMP,

the updated cluster bases are truncated at 10−2, 10−4 and 10−6. As shown in Fig.

2.4(a) and Fig. 2.4(b), the proposed MMP has linear time and memory performance

for different truncation thresholds. We also check the product error by matrix-vector

product as

εrel =
||CH2x−AH2(BH2x)||F
||AH2(BH2x)||F

. (2.27)

The reference vector is AH2 × (BH2 × x), in which x is a random right hand side.

We first calculate y = BH2 × x, and then AH2 × y. The H2 matrix vector product is

carried out as shown in [7], which is exact. From Table 2.1, we can see the accuracy

of proposed MMP is directly controlled by εadd used in appending cluster bases.

Since no executable of [7] is available in public domain, We have implemented our

own version of the formatted MMP, and termed it existing H2 MMP. In this way,

we are able to compare our proposed MMP with the existing one using exactly the

same H2 matrix. This is more objective comparison since the different H2 matrices

26

0 2 4 6 8 10 12

Number of unknowns(N) ×105

0

2000

4000

6000

8000

10000

12000

M
M

P
 t
im

e
(s

)

1E-6

1E-4

1E-2

(a)

0 2 4 6 8 10 12

Number of unknowns(N) ×105

0

0.5

1

1.5

2

2.5

3

3.5

M
M

P
 m

e
m

o
ry

(M
B

)

×104

1E-6

1E-4

1E-2

(b)

Fig. 2.4.: Structure-preserving MMP performance for AH2 ×BH2 of large-scale

capacitance extraction. (a) Time scaling v.s. N . (b) Memory scaling v.s. N .

Table 2.1.: Structure-preserving MMP error at different εadd for large-scale

capacitance extraction.

N 4,480 17,152 67,072 265,216 1,054,720

1E-2 8.05E-4 8.45E-4 6.84E-4 6.25E-4 1.45E-3

1E-4 9.50E-5 1.31E-4 9.11E-5 7.39E-5 5.98E-5

1E-6 5.63E-6 6.12E-6 5.59E-6 6.16E-6 1.04E-5

would have different detailed structure and content, resulting different MMP time and

memory. In Fig. 2.5, we compare the CPU run time and memory usage of the two

MMP algorithms as a function of N . Clear linear scaling can be observed from these

two MMP, but the proposed on takes only about half time as well as achieve better

accuracy. For the last case having 1,054,720 unknowns, the proposed one only takes

36 minutes to do MMP, while the existing formatted one takes 75 minutes. This can

be shown in Table 2.2. Since the accuracy of existing H2-MMP are uncontrollable,

we can only achieve similar random RHS error by not updating cluster bases for

27

0 2 4 6 8 10 12

Number of unknowns(N) ×105

0

1000

2000

3000

4000

5000

M
M

P
 t

im
e

(s
)

Existing H
2
 MMP

Proposed

Fig. 2.5.: Structure-preserving MMP time comparison with existing MMP for

capacitance matrix.

proposed one. So the memory usage is the same for these two methods, which is the

original H2-matrix memory.

Table 2.2.: Structure-preserving MMP error comparison for the large-scale

capacitance extraction.

N 4,480 17,152 67,072 265,216 1,054,720

Existing [7] 5.88E-3 1.11E-2 1.04E-2 2.01E-2 5.02E-2

Proposed 5.76E-3 2.75E-3 2.33E-3 4.38E-3 9.22E-3

Large-scale Dielectric Slab

We then simulate a dielectric slab with εr = 2.54 at 300 MHz. The thickness

of the slab is fixed to be 0.1λ0. The width and length are simultaneously increased

from 4λ0, 8λ0, 16λ0, to 28λ0. With a mesh size of 0.1λ0, the resultant N ranges

28

0 2 4 6 8 10 12

Number of unknowns(N) ×105

0

0.5

1

1.5

2

M
M

P
 t
im

e
(s

)

×104

1E-4

1E-2

1E-1

(a)

0 2 4 6 8 10 12

×10
5

0

1

2

3

4

5

6
×10

4

1E-4

1E-2

1E-1

(b)

Fig. 2.6.: Structure-preserving MMP performance for AH2 ×AH2 of 2-D slab from

4λ to 28λ. (a) Time scaling v.s. N . (b) Memory scaling v.s. N .

from 22,560 to 1,098,720 for this suite of slab structures.The parameters used in the

H2-matrix construction are leafsize = 40, admissibility condition [7] η = 2.0, and

εH2 = 10−4. For the proposed H2 MMP, the updated cluster bases truncation εadd

are 10−1, 10−2 and 10−4 respectively, to examine the computational complexity and

error controllability of the proposed MMP. Based on [32], the rank’s growth rate with

electrical size for 2-D slab is lower than linear, and being a square root of he log-linear

of the electric size. Substituting such a rank’s growth into the complexity analysis in

(2.23) and (2.24), we will obtain linear complexity in both memory and time.

In Fig. 2.6(a), we plot the structure-preserving MMP time with respect to N ,

for all three different choices of cluster bases truncation. It is clear that the smaller

εadd value, the larger the MMP time. However, the complexity remains the same as

linear regardless of the choice of εadd. The memory cost is plotted in Fig. 2.6(b).

Obviously, it scales linearly with the number of unknowns. The error of the proposed

structure-preserving MMP is measured the same by random right hand side error

as shown in equation (2.27). In Table 2.3, we list the error ad a function of εadd.

29

Excellent accuracy can be observed in the entire unknown range. Furthermore, the

accuracy can be controlled by εadd, and overall smaller εadd results in better accuracy.

Table 2.3.: Structure-preserving MMP error at different εadd for 2-D large-scale

dielectric slab.

N 22,560 89,920 359,040 1,098,720

1E-1 5.66E-3 7.47E-3 1.14E-2 8.20E-3

1E-2 1.40E-3 1.67E-3 2.70E-3 2.81E-3

1E-4 1.54E-4 1.99E-4 2.69E-4 2.76E-4

Large-scale Array of Dielectric Cubes

Next, we simulate a large-scale array of dielectric cubes at 300 MHz. The relative

permittivity of the cube is εr = 4.0. Each cube is of size 0.3λ0 × 0.3λ0 × 0.3λ0. The

distance between adjacent cubes is kept to be 0.3λ0. The number of the cubes is

increased along the x−, y−, and z− directions simultaneously from 2 to 16, thus

producing a 3-D cube array from 2 × 2 × 2 to 16 × 16 × 16 elements. The number

of unknowns N is respectively 3,024, 24,192, 193,536, and 1,548,288 for these arrays.

During the construction of H2 matrix, we set leafsize = 20, η = 1 and εH2 = 10−2.

For the proposed H2 MMP, the updated cluster bases are truncated at 10−1, 10−2

due to limit of server memory.

Table 2.4.: Csp as a function of N for the dielectric cube array.

N 3,024 24,192 193,536 653,184 1,548,288

Csp 16 42 95 595 126

For cubic growth of unknowns for 3-D problems, we observe that constant Csp is

not saturated until in the order of millions of unknowns, as can be seen from Table

30

0 0.5 1 1.5 2

Number of unknowns(N) ×106

0

0.2

0.4

0.6

0.8

1

1.2

M
M

P
 t
im

e
(s

)
/
C

s
p

2

1E-2

1E-1

(a)

0 0.5 1 1.5 2

Number of unknowns(N) ×106

0

100

200

300

400

500

600

M
M

P
 m

e
m

o
ry

(M
B

)
/

C
s
p 1E-2

1E-1

(b)

Fig. 2.7.: Structure-preserving MMP performance for AH2 ×AH2 of 3-D cube array.

(a) Time scaling v.s. N . (b) Memory scaling v.s. N .

2.4. It is thus, important to analyze the performances of the proposed structure-

preserving MMP as Memory/Csp and Multiplicationtime/C2
sp respectively. In Fig.

2.7 (a) and Fig. 2.7 (b), we plot the H2-matrix-matrix multiplication time divided

by C2
sp, and the storage cost normalized with Csp with respect to N. As can be seen,

their scaling rate with N agrees very well with our theoretical complexity analysis.

For the over one-million unknown case which is a 16 × 16 × 16 cube array having

thousands of cube elements, the error is still controlled to be as small as 0.82% at

εadd = 10−1. The random RHS error of the proposed structure-preserving MMP is

listed in Table 2.5 for this example, which again reveals excellent accuracy and error

controllability of the proposed MMP. We also compare the time usage for proposed

Table 2.5.: Structure-preserving MMP error at different εadd for 3-D dielectric cube

array.

N 3,024 24,192 193,536 1,548,288

1E-1 5.66E-3 7.47E-3 1.14E-2 8.20E-3

1E-2 1.40E-3 1.67E-3 2.70E-3 2.81E-3

31

Table 2.6.: Structure-preserving MMP error comparison with existing MMP for 3-D

cube array.

N 3,024 24,192 193,536 1,548,288

Existing [7] 9.02E-2 1.01E-1 1.77E-1 2.74E-1

Proposed 8.03E-2 7.39E-2 1.03E-1 1.25E-1

0 0.5 1 1.5 2

Number of unknowns(N) ×106

0

0.1

0.2

0.3

0.4

0.5

0.6

M
M

P
 t

im
e

(s
)

/
C

s
p2

Existing H
2
 MMP

Proposed

Fig. 2.8.: Structure-preserving MMP time comparison with existing MMP for 3-D

cube array VIE matrix.

MMP with existing MMP [7] using this 3-D example. As shown in Fig. 2.8, the

proposed structure-preserving MMP take about half time as compared to the existing

one. But the proposed one has better accuracy even not updating cluster bases, i.e.

setting εadd = 0. This is listed in Table 2.6.

32

2.3 H2-Matrix-Matrix Product without Formatted Multiplications

2.3.1 Proposed Alorithm

In an H2 matrix shown in chapter 1.3.2, the entire matrix is partitioned into

inadmissible blocks at leaf level, noted as F, and admissible blocks at multiple nonleaf

levels, noted as R. A large matrix block consisting of F and R is called a nonleaf block

NL. An admissible block has the following form Zt,s = (Vt)#t×r(St,s)r×r(Vs)
T
#s×r.

The cluster basis V in an H2 matrix is nested [7].

To compute AH2 × BH2 = C, unlike the existing H2 formatted MMP [7] that

is recursive, we propose to perform a one-way tree traversal from leaf level to root

level. While doing the multiplications at each level, we update the row and column

cluster bases based on prescribed accuracy to represent the product accurately. The

proposed algorithm also facilitates parallelization. We will use the H2 matrices shown

in Fig. 2.9 to illustrate the algorithm, but the algorithm is valid for any H2 matrix.

In this figure, green blocks are admissible, and red ones are inadmissible.

At leaf level (l = L), there are in total four matrix-matrix product cases, i.e., 1)

F × F → F; 2) F × R → R; 3) R × F → R; 4) R × R → R. The computation of

(a) (b) (c)

Fig. 2.9.: An H2-matrix structure. (a) AH2 . (b) BH2 . (c) CH2 .

33

the first case is exact, like FA
1,2 × FB

2,1 = FC
1,1 in the example of Fig. 2.9. The fourth

case is also exact because

RA
i,j ×RB

j,k = VA
i,rS

A
i,j(V

A
j,c)

T ×VB
j,rS

B
j,k(V

B
k,c)

T . (2.28)

The target block is obviously admissible and it preserves the original row cluster basis

VA
i,r, and column cluster basis VB

k,c. One only needs to calculate the coupling matrix,

which is the center part, SA
i,jB̃jS

B
j,k, where B̃j is cluster bases product (VA

j,c)
T ×VB

j,r,

which can be computed in advance in linear complexity. For the second and third

cases, the products are clearly low rank due to the low-rank property of admissible

blocks. For the second case, we compute it as

FA
i,j ×RB

j,k = (FA
i,jV

B
j,r)× SB

j,k × (VB
k,c)

T . (2.29)

Meanwhile, we also use FA
i,jV

B
j,r to update the row cluster basis VA

i,r. This is

because the row cluster basis of the product block is no longer VA
i,r, if FA

i,jV
B
j,r con-

tains new information not included in VA
i,r. Since there are many case-2 products

encountered at the leaf level, to systematically update the i’s row cluster basis VA
i,r,

we first find all the dense matrices in i’s row of AH2 , whose number is bounded by

constantCsp. We then multiply them with corresponding row cluster basis VB
j,r in

BH2 , obtaining Gram matrix sum VA
i,new =

∑O(Csp)
j=1 (FA

i,jV
B
j,r)(F

A
i,jV

B
j,r)

H . We then

use this to augment the cluster basis by computing GA
i = [I−VA

i,r(V
A
i,r)

H]×VA
i,new×

[I − VA
i,r(V

A
i,r)

H]H . After this, we perform an SVD on GA
i to obtain the additional

cluster bases VA,add
i.r for cluster i based on prescribed accuracy εadd. Now the updated

i’s row cluster bases Ṽ
A

i,r = [VA
i,r VA,add

i,r] can be used to accurately represent the ad-

missible blocks in i’s row of CH2 . For the case-3 MMP at the leaf level, we compute

it as RA
i,j×FB

j,k = VA
i,r×SA

i,j× [(VA
j,c)

TFB
j,k]. Meanwhile, we update j’s column cluster

basis in BH2 using (VA
j,c)

TFB
j,k in a similar way as updating row cluster bases to ac-

curately represent the admissible blocks in j’s column of CH2 . In order to speed up

leaf level multiplications, we can collect the F blocks in AH2 by (Ṽ
A

i,r)
HFA

i,jV
B
j,r and F

blocks in BH2 by (VA
j,c)

TFB
j,k(Ṽ

B

j,c)
∗ in advance to facilitate case-2 products FA

i,j×RB
j,k

34

for different k and case-3 products RA
i,j ×FB

j,k for different i by computations of rank

size. Note that this collect is accurate now because it is for products between F and

R, and the products’ row and column cluster bases have been updated to account for

F×R and R× F cases. Here, we conclude all the operations at the leaf level:

1. Prepare cluster bases product B̃;

2. Updating row and column cluster bases to Ṽ;

3. Collect the F blocks in AH2 and BH2 using Ṽ;

4. Perform four cases of multiplications.

At each non-leaf level, we perform three types of matrix products: 1) NL × R→

R; 2) R × NL→ R; and 3) R × R→ R. These products are performed as they are

without assuming their target structure. Case-3 again does not require any update

on the cluster bases. The NL block at level l is a merged matrix of the collected

F matrices and coupling matrices at level (l + 1) so that the block is of rank size,

whose expressions are as shown in equation (2.12) and (2.13). Such a merged NL

block of rank size, denoted by ÑL, resembles F at the leaf level. Again, for case-1,

the row cluster basis of the product needs to be updated. This is performed by using∑O(Csp)
j=1 (ÑLijTj)(ÑLijTj)

H to augment the transfer matrix of Ti. So at a non-leaf

level, we do:

1. Merge four small blocks to ÑLi,j for AH2 and BH2 ;

2. Updating row and column transfer matrices to T̃;

3. Collect the ÑL blocks in AH2 and BH2 using updated T̃;

4. Perform three cases of multiplications.

After we finish one-way bottom-up tree traversal to calculate block matrix prod-

ucts at all the levels, we split the coupling matrices in the admissible blocks in the

original C structure to the newly introduced admissible blocks at different levels to

35

get the final CH2 , as shown in Fig. 2.9(c). At each tree level l, there are 2lC2
sp prod-

ucts to be computed, each of which costs O(r3l), where rl is the rank at level l. The

resulting complexity is clearly O(N) for constant rank or rank that changes logarith-

mically with electrical size. For electrodynamic analysis, the rank grows linearly with

electrical size for general 3-D problems. In a VIE, rl is proportional to the cubic root

of matrix size at level l, because this is the electrical size at level l. Hence for a VIE,

the time complexity is

Time Complexity = Csp
2

L∑
l=0

2l

[(
N

2l

) 1
3

]3
= O(NlogN). (2.30)

And the memory complexity is

Memory Complexity = Csp

L∑
l=0

2l

[(
N

2l

) 1
3

]2
= O(N). (2.31)

2.3.2 Numerical Results

In order to demonstrate the accuracy and low computational complexity of the

proposed fast H2-matrix-matrix multiplication for general H2 matrices, we use H2

matrices resulting from large-scale capacitance extraction and volume integral equa-

tions (VIE) for electromagnetic analysis. The capacitance extraction matrix is shown

in [9]. The VIE formulation we use is based on [31] with SWG vector bases for

expanding electric flux density in each tetrahedral element.

Two-layer Cross Bus

The first example is the capacitance extraction of a 2-layer cross bus structure. In

each layer, there are m conductors, and each conductors has a dimension of 1× 1×

(2m+ 1) m3. We simulate a suite of such structures with 8, 16, 32, 64, and 128 buses

respectively. The parameters used in the H2-matrix construction are leafsize = 30,

admissibility condition [7] η = 1, and cluster bases truncation at 10−4. For the

proposed H2 MMP, the updated cluster bases are truncated at 10−2,10−4 and 10−6.

36

0 2 4 6 8 10 12

Number of unknowns(N) ×105

0

1000

2000

3000

4000

5000

6000

M
M

P
 t
im

e
(s

)

1E-6

1E-4

1E-2

(a)

0 2 4 6 8 10 12

Number of unknowns(N) ×105

0

2

4

6

8

10

12

M
M

P
 m

e
m

o
ry

(M
B

)

×104

1E-6

1E-4

1E-2

(b)

Fig. 2.10.: MMP performance for AH2 ×BH2 of large-scale capacitance extraction.

(a) Time scaling v.s. N . (b) Memory scaling v.s. N .

As shown in Fig. 2.10, the proposed MMP has linear time and memory performance

for different truncation thresholds. The time and memory of the proposed MMP in

comparison with existing H2 MMP [7] are also shown in Fig. 2.11, and the accuracy

comparison is in Table 2.7.

Table 2.7.: H2 MMP error performance at different εadd and comparison with

existing MMP for large-scale capacitance extraction.

N 4,480 17,152 67,072 265,216 1,054,720

Existing H2 [7] 5.88E-3 1.11E-2 1.04E-2 2.01E-2 5.02E-2

Proposed at 10−2 6.81E-4 6.16E-4 5.40E-4 3.95E-4 3.80E-4

Proposed at 10−4 7.08E-5 8.89E-5 6.31E-5 1.09E-4 2.37E-4

Proposed at 10−6 5.15E-6 5.41E-6 5.41E-6 5.14E-6 1.24E-5

Large-scale Dielectric Slab

We also simulate a suite of dielectric slabs at 300 MHz using VIE formulation,

and λ/10 meshing rule. The simulation parameters are leafsize = 40, η = 2, 10−3

37

0 2 4 6 8 10 12

Number of unknowns (N) ×105

0

1000

2000

3000

4000

5000

M
M

P
 t

im
e

 (
s
)

Proposed MMP

Existing H
2
 MMP

0 2 4 6 8 10 12

Number of unknowns (N) ×105

0

1

2

3

4

5

6

7

M
M

P
 m

e
m

o
ry

 (
M

B
)

×104

Proposed MMP

Existing H
2
 MMP

Fig. 2.11.: MMP performance for AH2 ×BH2 of large-scale capacitance extraction

and comparison with existing MMP. (a) Time scaling v.s. N . (b) Memory scaling

v.s. N .

accuracy for generating the H2 matrix, 10−1 and 10−2 for updating cluster bases in

MMP. The time and memory complexity is shown in Fig. 2.12, which is clearly linear.

The MMP error is shown at Table 2.8 for the four unknown cases simulated.

Table 2.8.: H2 MMP error at different εadd for 2-D dielectric slab.

N 22,560 89,920 359,040 1,098,720

1E-1 7.97E-3 9.30E-3 1.16E-2 1.03E-2

1E-2 2.81E-3 3.34E-3 5.97E-3 3.52E-3

Large-scale Array of Dielectric Cubes

We also simulate a large-scale array of dielectric cubes at 300 MHz. The relative

permittivity of the cube is εr = 4.0. Each cube is of size 0.3λ0 × 0.3λ0 × 0.3λ0. The

distance between adjacent cubes is kept to be 0.3λ0. The number of the cubes is

increased along the x−, y−, and z− directions simultaneously from 2 to 16, thus

producing a 3-D cube array from 2 × 2 × 2 to 16 × 16 × 16 elements. The number

38

0 2 4 6 8 10 12

Number of unknowns(N) ×105

0

500

1000

1500

2000

2500

3000

M
M

P
 t
im

e
(s

)

1E-2

1E-1

0 2 4 6 8 10 12

Number of unknowns(N) ×105

0

1

2

3

4

5

6

7

M
M

P
 m

e
m

o
ry

(M
B

)

×104

1E-2

1E-1

Fig. 2.12.: MMP performance for AH2 ×AH2 of electrically large dielectric slab

scattering from 8λ to 28λ. (a) Time scaling v.s. N . (b) Memory scaling v.s. N .

of unknowns N is respectively 3,024, 24,192, 193,536, and 1,548,288 for these arrays.

During the construction of H2 matrix, we set leafsize = 40, η = 2 and εH2 = 10−1.

For the proposed H2 MMP, the updated cluster bases are truncated at 10−1, 10−2

due to limit of server memory. The time and memory performance is shown in Fig.

2.13 and the errors are shown in Table 2.9.

Table 2.9.: H2 MMP error at different εadd for 3-D dielectric cube array.

N 3,024 24,192 193,536 1,548,288

1E-1 2.25E-2 2.28E-2 3.23E-2 4.19E-2

1E-2 5.67E-3 5.30E-3 6.68E-2 1.42E-2

39

0 0.5 1 1.5 2

Number of unknowns(N) ×106

0

200

400

600

800

1000

M
M

P
 t

im
e

(s
)

1E-2

1E-1

0 0.5 1 1.5 2

Number of unknowns(N) ×106

0

2000

4000

6000

8000

10000

12000

14000

M
M

P
 m

e
m

o
ry

(M
B

)

1E-2

1E-1

Fig. 2.13.: MMP performance for AH2 ×AH2 of a suite of cube array from 2× 2× 2

to 16× 16× 16. (a) Time scaling v.s. N . (b) Memory scaling v.s. N .

2.4 Conclusion

In this chapter, we first develop a fast algorithm to calculate H2-matrix-matrix

products for generalH2 matrices. The key feature of this algorithm is that it preserves

the H2-matrix structure and the accuracy of the product is explicitly controlled. We

then introduce a fast algorithm to calculate H2-matrix-matrix products for general

H2 matrices without assuming a target format. The cluster bases are updated based

on the prescribed accuracy during the computation of the matrix-matrix product.

The proposed algorithms have been applied to calculate H2-matrix-matrix products

for large-scale capacitance extraction whose kernel is static and real-valued and elec-

trically large VIEs whose kernel is oscillatory and complex-valued. For constant-rank

H2 matrices, the proposed MMP algorithms have an O(N) complexity in both time

and memory. For rank growing with the electrical size linearly, the proposed MMPs

have an O(NlogN) complexity time and O(N) complexity in memory. H2-matrix

products with millions of unknowns are simulated on a single core CPU in fast CPU

run time. Comparisons with existing H2-matrix-matrix products have demonstrated

excellent accuracy and efficiency of the proposed new MMP algorithms.

40

3. RANK-MINIMIZED AND STRUCTURE-KEPT

H2-MATRIX-MATRIX PRODUCT IN LINEAR

COMPLEXITY WITH CONTROLLED ACCURACY

3.1 Introduction

Under the H2-matrix framework, it has been shown that an H2-matrix-based

addition, matrix-vector product (MVP), and matrix-matrix product (MMP) all can

be performed in linear complexity for constant-rank H2 [7]. However, the accuracy

of existing H2-MMP algorithm like [7] is not directly controlled and the efficiency

can be further improved for accuracy controlled MMP. The exact MMP introduced

in chapter 7 of [4] overcomes the limitations of the formatted multiplications in [7]

as we discussed in chapter 2. It could calculate the exact product of AH2 and BH2

without any approximation error. However, it can never encounter the situation that

the target block Ci,k is admissible, but the Ai,j and Bj,k are inadmissible. Besides,

the exact MMP count all the potential spaces together as product cluster bases VC
t ,

which will lead to a very high computational complexity and further affect higher-

level operators like LU factorization and inversion. The posteriori multiplication in

chapter 8 of [4] combines the advantages of the obove two MMP algorithms, which

is more accurate than the formatted multiplication in [7] and more efficient than the

exact MMP in [4]. However, it needs to calculate intermediate product in H-matrix

format and then convert the H-matrix to an H2-matrix, which needs much more

computational time and memory during the process. The complexity is not linear

for constant-rank H2. And it still need to avoid the situation that the target block

Ci,k is admissible, but the Ai,j and Bj,k are inadmissible, which is not for general

H2-matries.

41

Recently, in [33, 34], a new linear complexity algorithm is developed to compute

the product of two H2 matrices in controlled accuracy. The original cluster bases are

changed by appending new cluster bases to account for the updates to the original

matrix generated during MMP. The product structure can be preserved as in [34], or

can be changed based on the structure of the two multipliers as in [33]. However, the

rank of the changed cluster bases by appending new ones can only be higher than the

original rank.

In this work, we propose a new algorithm to do the H2 matrix-matrix multiplica-

tion with controlled accuracy. The cluster bases are calculated based on the prescribed

accuracy during the computation of the matrix-matrix product. Meanwhile, we are

able to keep the computational complexity to be linear for constant-rank H2. For

variable-rank cases such as those for electrically large analysis, the proposed MMP is

also efficient since it only involves O(2l) computations at level l, each of which costs

O(r3l) only, where rl is the rank at tree level l. This algorithm serves as a funda-

mental arithmetic in the error-controlled fast inverse, LU factorization, solution for

many right hand sides, etc. Numerical experiments have demonstrated its accuracy

and low complexity. Compared to the MMP algorithm developed in chapter 2, the

algorithm in this chapter is more efficient in memory. Meanwhile, it provides more

flexibility in developing error-controlled fast inverse, LU factorization, solution for

many right hand sides, etc. Numerical experiments have demonstrated its accuracy

and low complexity.

3.2 Proposed H2 Matrix-Matrix Product Algorithm—Leaf Level

To compute AH2×BH2 = CH2 , unlike the existingH2 formatted MMP [7], which is

recursive, we propose to perform a one-way tree traversal from leaf level all the way up

to the level that has largest admissible block. Here we call it minimal admissible level.

While doing the multiplications at each level, we calculate the row and column cluster

bases based on prescribed accuracy to represent the products accurately. We will use

42

Fig. 3.1.: An H2-matrix structure. (a) AH2 . (b) BH2 . (c) CH2 .

the H2 matrices shown in Fig. 3.1 to illustrate the algorithm, but the algorithm is

valid for any H2 matrix. In this figure, green blocks are admissible, and red ones

are inadmissible. Here the structures of AH2 , BH2 and CH2 matrices are based on

the admissibility condition in equation (1.13). During the product calculation, the

following algorithm that we introduced here will keep the structure of product CH2

matrix. However, the algorithm can easily modified to another version where the the

product structure will be changed due to the two multipliers as shown in [33].

In this section, we detail proposed algorithm for leaf-level multiplications.

(a) (b) (c)

Fig. 3.2.: H2 matrix at leaf level. (a) AL
H2 . (b) BL

H2 . (c) CL
H2 .

43

We start from leaf level (l = L). Let F denote an inadmissible block, which is

stored as a full matrix, and R be an admissible block. At leaf level, there are in total

four matrix-matrix multiplication cases, i.e.,

• Case-1: FA × FB

• Case-2: FA × RB

• Case-3: RA × FB

• Case-4: RA × RB

The resulting matrix block in C is of two kinds: First, full matrix block, denoted

by FC, marked in red in Fig. 3.2(c); Second, admissible block of leaf size, which

could be located at leaf level, denoted by RC,L as marked in green in Fig. 3.2(c);

which could also appear as a subblock in the non-leaf level l as marked in blue in Fig.

3.2(c). The blue blocks in Fig. 3.2(c) are only for temporary storage, which will be

changed to green admissible blocks during the upper level multiplication to preserve

the structure of CH2 matrix. The white blocks in Fig. 3.2 denote those blocks that

are not involved in the leaf level multiplication. Next we show how to perform each

matrix-matrix multiplication based on the two kinds of target blocks.

3.2.1 Product is an inadmissible block (full matrix) in C

If the product matrix is a full block FC, we can perform the four cases of mul-

tiplications exactly as they are by full matrix multiplications. For the admissible

leaf blocks in four cases, we convert them into full matrices and then compute prod-

ucts. Since the size of these matrices is of leafsize, a user-defined constant, the

computational cost is constant for each of such computations.

44

3.2.2 Product is an admissible block in C

If the product is admissible in C whether it is a leaf-level block or a subblock of a

non-leaf admissible block, case-4 can be performed as it is since the product matrix is

obviously admissible, which also preserves the original row and column cluster bases.

In other words, the row cluster basis of A is that of C; and the column cluster basis

of B is kept in C. To see this point clearly, we can write

case-4: RA
i,j ×RB

j,k = VA
irS

A
i,j(V

A
jc)

T ×VB
jrS

B
j,k(V

B
kc)

T , (3.1)

where subscripts i, j, and k denote cluster index, subscript r denotes the correspond-

ing cluster is a row cluster, whereas c denotes the cluster is a column cluster. For

example, VA
ir denotes the cluster basis of row cluster i in A, and VB

kc denotes the

cluster basis of column cluster k in B. Equation (3.1) can be written in short as

RA
i,j ×RB

j,k = VA
irS

C
i,k(V

B
kc)

T , (3.2)

in which SC
i,k is the part in between the two cluster bases, which denotes the coupling

matrix of the product admissible block in C. Clearly, this case of multiplication does

not change the original row and column cluster bases.

For the other three cases, in existing MMP algorithms, a formatted multiplication

is performed, which is done in the same way as case-4, i.e., using the original cluster

bases of A and B or pre-assumed bases as the cluster bases of the product block. This

obviously can be inaccurate since cases-1, 2, and 3, if performed as they are, would

result in different cluster bases in the product matrix, which cannot be assumed.

Specifically, case-1 results in a different row as well as column cluster bases in the

product admissible block because

case-1: FA
i,j × FB

j,k; (3.3)

case-2 yields a different row cluster basis since

case-2: FA
i,j ×RB

j,k = (FA
i,jV

B
jr)× SB

j,k × (VB
kc)

T ; (3.4)

45

whereas case-3 results in a different column cluster basis in the product admissible

block, because

case-3: RA
i,j × FB

j,k = VA
ir × SA

i,j ×
(
(VA

jc)
TFB

j,k

)
. (3.5)

If we do not update the cluster bases in the product matrix, the accuracy of the

multiplication is not controllable. Therefore, in the proposed algorithm, we update

row and column cluster bases for multiplication cases 1, 2, and 3 based on prescribed

accuracy. We also have to do so with the nested property taken into consideration so

that the computation at nonleaf levels can be performed efficiently.

For case-1, both row and column cluster bases of the product block need to be

updated. For case-2, we need to use FA
i,jV

B
jr to update the original row cluster basis

VA
ir . For case-3, we need to use (VA

jc)
TFB

j,k to update column cluster basis VB
kc . Since

there are many case-1, 2 and 3 products encountered at the leaf level for the same

row or column cluster, we develop the following algorithm to systematically update

the cluster bases. In this procedure, we also have to take the computation at

all nonleaf levels into consideration so that the changed cluster bases at

the leaf level can be reused at the nonleaf levels. To achieve this goal, when

we update the cluster basis due to the case-1, 2, and 3 multiplications associated with

this cluster, not only we consider the product admissible block in the leaf level, but

also the admissible blocks at all nonleaf levels. In other words, when computing Ai,j

multiplied by Bj,k, if the Ci,k block is part of a non-leaf admissible block, we will

take the corresponding multiplication into account to update the cluster bases. The

detailed algorithms are as follows.

3.2.3 Computation of new cluster bases in matrix product CH2

First, we show how to calculate the new row cluster bases of CH2 . Take an

arbitrary row cluster i as an example, let its cluster basis in C be denoted by VC
ir .

This cluster basis is affected by both case-1 and case-2 multiplications, as analyzed

in the above. We first find all the case-1 multiplications associated with cluster i,

46

i.e., all FA
i,j ×FB

j,k whose product block Ci,k is admissible. Again, notice that the Ci,k

can be either admissible at leaf level or be part of a non-leaf admissible block. For

any cluster i, the number of FA
i,j is bounded by constant Csp, since the number of

inadmissible blocks that can be formed by a cluster is bounded by Csp. For the same

reason, the number of FB
j,k for cluster j is also bounded by constant Csp. Hence, the

total number of FA
i,j × FB

j,k multiplications is bounded by C2
sp, thus also a constant.

Then we calculate the Gram matrix sum of these products as:

GC,L
ir1

=

O(Csp)∑
j=1

O(Csp)∑
k=1

(FA
i,jF

B
j,k)(F

A
i,jF

B
j,k)

H , (3.6)

in which superscript H denotes a Hermitian matrix. We also find all case-2 products

associated with cluster i, which is the number of FA
i,j formed by cluster i at leaf level

in AH2 . This is also bounded by Csp. Since in case-2 products, FA
i,j is multiplied by

an admissible block in B, and hence VB
jr , we compute

GC,L
ir2

=

O(Csp)∑
j=1

(FA
i,jV

B
jr)(F

A
i,jV

B
jr)

H , (3.7)

which incorporates all of the new cluster bases information due to case-2 products.

For case-3 and case-4 multiplications, the row cluster bases of AH2 matrix are

kept to be those of C. So we account for the contribution of VA
ir as

GC,L
ir3

= VA
ir (VA

ir)H . (3.8)

The column space spanning GC,L
ir1

, GC,L
ir2

and GC,L
ir3

would be the new cluster basis of

i, since it takes both the original cluster basis and the change to the cluster basis due

to matrix products into consideration. Since the magnitude of the three matrices may

differ greatly, we normalize them before summing them up so that each component

is captured. We thus obtain

GC,L
ir3

= ĜC,L
ir1

+ ĜC,L
ir2

+ ĜC,L
ir3

. (3.9)

The ̂ above GC,L
ir1

, GC,L
ir2

and GC,L
ir3

denotes a normalized matrix. We then perform an

SVD on GC,L
ir3

to obtain the row cluster bases for cluster i of CH2 based on prescribed

47

accuracy εtrunc. The singular vectors whose normalized singular values are greater

than εtrunc make the new row cluster basis VC
ir . It can be used to accurately represent

the admissible blocks related to cluster i in CH2 . Here, notice that the proposed

algorithm for computing matrix-product cluster bases keeps nested property of VC
ir .

This is because the Gram matrix sums in (3.6), (3.7) and (3.8) take the upper level

admissible products into account.

To compute the column cluster bases in CH2 , the steps are similar to the row

cluster basis computation. We account for the contributions from all the four cases

of products to compute column cluster bases. As can be seen from (3.3) and (3.5), in

case-1 and case-3 products, the column cluster bases are changed from the original

ones; whereas in case-2 and case-4 products, the column cluster bases are kept the

same as those in B.

Consider an arbitrary column cluster k in CH2 . We find all of the case-1 products

associated with k, which is FA
i,j ×FB

j,k with target Ci,k being admissible either at the

leaf or non-leaf level. The number of such multiplications is bounded by C2
sp. We

then compute the sum of their Gram matrices as:

GC,L
kc1

=

O(Csp)∑
i=1

O(Csp)∑
j=1

(FA
i,jF

B
j,k)

T (FA
i,jF

B
j,k)
∗. (3.10)

Here, the superscript ∗ denotes a complex conjugate. We also find all of the case-3

products associated with k, which is RA
i,j × FB

j,k with target Ci,k being admissible

either at the leaf or non-leaf level. Hence, the new column cluster basis takes a form

of (VA
jc)

T × FB
j,k. The number of such multiplications is also bounded by Csp. The

sum of their Gram matrices can be computed as:

GC,L
kc2

=

O(Csp)∑
j=1

(
(VA

jc)
TFB

j,k

)T (
(VA

jc)
TFB

j,k

)∗
. (3.11)

For case-2 and case-4 products, the original column cluster bases of BH2 are kept in

CH2 , hence, we compute

GC,L
kc3

= VB
kc(V

B
kc)

H . (3.12)

48

We also normalize these three Gram matrices GC,L
kc1

, GC,L
kc2

and GC,L
kc3

and sum them

up as:

GC,L
kc

= ĜC,L
kc1

+ ĜC,L
kc2

+ ĜC,L
kc3

. (3.13)

We then perform an SVD on this GC,L
kc

and truncate the singular values based on

prescribed accuracy εtrunc to obtain the column cluster bases VC
kc for cluster k. Now

this new column cluster basis VC
kc can be used to accurately represent the admissible

blocks formed by column cluster k in CH2 .

3.2.4 Computation of the four cases of multiplications with the product

block being admissible

After computing the new row and column cluster bases of the product matrix, for

the multiplication whose target is an admissible block described in Section 3.2.2, the

computation becomes the coupling matrix computation since the cluster bases have

been generated. For the four cases of multiplications, their coupling matrices have

the following expressions:

SC
i,k =

(VC
ir)

HFA
i,jF

B
j,k(V

C
kc)
∗ case-1

(VC
ir)

HFA
i,jV

B
jrS

B
j,k(V

B
kc)

T (VC
kc)
∗ case-2

(VC
ir)

HVA
irS

A
i,j(V

A
jc)

TFB
j,k(V

C
kc)
∗ case-3

(VC
ir)

HVA
irS

A
i,jBjS

B
j,k(V

B
kc)

T (VC
kc)
∗ case-4.

(3.14)

The resulting admissible blocks in CH2 are nothing but RC
i,k = VC

ir × SC
i,k × (VC

kc)
T .

In (3.14), the Bj is the cluster bases product, which is as shown below:

Bj = (VA
jc)

T ×VB
jr . (3.15)

Since it is only related to the original cluster bases, it can be prepared in advance

before the MMP computation. Using the nested property of the cluster bases, Bj can

be computed in linear time for all clusters j, be j a leaf or a non-leaf cluster.

In (3.14), the (VC
ir)

HVA
ir is simply the projection of the original row cluster basis of

A onto the new cluster basis of the product matrix C. Similarly, (VB
kc)

T (VC
kc)
∗ denotes

49

the projection of the original column cluster basis of B onto the newly generated

column cluster basis in C. The two cluster basis projections can also be computed

for every leaf cluster after the new cluster bases have been generated. Hence, we

compute

PA
i = (VC

ir)
HVA

ir ;

PB
k = (VB

kc)
T (VC

kc)
∗

(3.16)

for each leaf row cluster i, and each column leaf cluster k. In this way, it can be

reused without recomputation for each admissible block formed by i or k.

In (3.14), we can also see that the F block is front and back multiplied by cluster

bases. It can be viewed as an F block collected based on the front (row) and back

(column) cluster bases, which becomes a matrix of rank size. Specifically, in (3.14),

there are three kinds of collected blocks

(FA
i,jF

B
j,k)coll. = (VC

ir)
H(FA

i,jF
B
j,k)
(
VC
kc

)∗
(FA

i,j)coll. = (VC
ir)

HFA
i,jV

B
jr

(FB
j,k)coll. = (VA

jc)
TFB

j,k

(
VC
kc

)∗
,

(3.17)

which is used in case-1, 2, and 3 multiplication respectively.

As can be seen from (3.14), the case-1 multiplication with an admissible block be-

ing the target can be performed by first computing the full-matrix product, and then

collecting the product onto the new row and column cluster bases of the product ma-

trix. This collect operation is accurate because the newly generated row and column

cluster bases have taken such a case-1 multiplication into consideration when being

generated. As for the case-2 multiplication, as can be seen from (3.14), we can use

the Fi,j collected based on the new row cluster basis and the original column cluster

basis, the size of which is rank, to multiply the coupling matrix of Sj,k, and then mul-

tiply the column basis projection matrix since the column bases have been changed.

Similarly, for case-3, we use the collected block (FB
j,k)coll., and front multiply it by the

coupling matrix of Si,j, and then front multiply a row cluster basis transformation

matrix. As for case-4, we multiply the coupling matrix of A’s admissible block by

the cluster basis product, and then by the coupling matrix of B’s admissible block.

50

Since the row and column cluster bases have been changed to account for the other

cases of multiplications, at the end, we need to front and back multiply the cluster

basis transformation matrices to complete the computation of case-4. Summarizing

the aforementioned, the coupling matrix in (3.14) can be efficiently computed as

SC
i,k =

(VC
ir)

HFA
i,jF

B
j,k(V

C
kc)
∗ case-1

(FA
i,j)coll.S

B
j,kP

B
k case-2

PA
i SA

i,j(F
B
j,k)coll. case-3

PA
i SA

i,jBjS
B
j,kP

B
k case-4.

(3.18)

3.2.5 Summary of overall algorithm at leaf level

Here, we conclude all the operations related to leaf level computation when the

target is an admissible block:

1. Prepare cluster bases product B;

2. Compute all the leaf-level row and column cluster bases of product matrix CH2 ;

3. Collect the F blocks in AH2 and BH2 based on the new row and/or column

cluster bases, also prepare cluster bases transformation matrix P ;

4. Perform four cases of multiplications.

After leaf level multiplications, we need to merge four coupling matrices at a

non-leaf level admissible block, as shown by the blue blocks in Fig. 3.2 (c). These

matrices correspond to the multiplication case of a nonleaf block NL multiplied by

a nonleaf block NL generating an admissible block at next level. The merged block

is the coupling matrix of this next-level admissible block. It will be used to update

next level transfer matrices. The details will be given in next section.

51

Fig. 3.3.: H2-matrix block at non-leaf level (L− 1). (a) AL−1
H2 . (b) BL−1

H2 . (c) CL−1
H2 .

3.3 Proposed H2 Matrix-Matrix Product Algorithm—Non-Leaf Level

After finishing the leaf level multiplication, we proceed to non-leaf level multipli-

cations. In Fig. 3.3, we use level L− 1 as an example to illustrate AL−1
H2 , BL−1

H2 , and

CL−1
H2 .

At a nonleaf level l, there are also in total four matrix-matrix multiplication cases,

i.e.,

• Case-1: NLA × NLB

• Case-2: NLA × RB

• Case-3: RA × NLB

• Case-4: RA × RB,

where NL denotes a non-leaf block. The resulting matrix block in C is also of two

kinds: 1) non-leaf block NL at this level, marked in red in Fig. 3.3 (c), and 2)

admissible block R, marked in green in Fig. 3.3 (c). Next we show how to perform

each case of multiplications based on the two kinds of target blocks.

52

3.3.1 Product is an NL block in C

The NL target block would not exist for a case-1 multiplication, since if a case-1

multiplication results in an NL block, that computation should have been performed

at previous level. As for the other three cases of multiplications, since at least one

admissible block is present in the multipliers, the product must be an admissible block.

Hence, we compute them as having an admissible block as the product, using the

algorithm described in the following subsection, and associate the resulting admissible

block with the NL block. After the computation is done at all levels, we perform a

backward split operation to split the admissible block associated with each NL block

to each leaf block of C based on its structure.

3.3.2 Product is an admissible block in C

Similar to the leaf level, if the product is an admissible block in C whether at

the same non-leaf level or at an upper level, case-4 can be performed as it is since

the product matrix is obviously admissible, which also preserves the original row and

column cluster bases. We can write

case-4: RA
i,j ×RB

j,k = VA
ichr

TA
irS

A
i,j(T

A
jc)

T (VA
jchc

)T ×VB
jchr

TB
jrS

B
j,k(T

B
kc)

T (VB
kchc

)T ,

(3.19)

where T denotes a transfer matrix, and superscript ch denotes the two children clus-

ters of the non-leaf cluster i. If the cluster bases at leaf level and the transfer matrices

at non-leaf levels are kept the same as before, then the computation of (3.19) is to

calculate the coupling matrix at level l, which is

SC
i,k = SA

i,j(Bj)S
B
j,k. (3.20)

It is a product of three small matrices whose size is the rank at this tree level.

Rewriting (3.19) as

case-4: RA
i,j ×RB

j,k = VA
ichr

TA
irS

C
i,k(T

B
kc)

T (VB
kchc

)T . (3.21)

53

If we exclude the children cluster bases in the front and at the back, we can see that

T serves as the new cluster basis at this level. In other words, at a non-leaf level l, if

we treat this level as the bottom level of the remaining tree, then the transfer matrix

of the non-leaf cluster is nothing but the leaf cluster basis of the shortened tree.

Similar to the leaf-level computation, the other three cases of multiplications will

result in a change of cluster basis in the matrix product. Specifically, case-1 results

in a different row as well as column cluster bases in the product admissible block

because

case-1: NLA
i,j ×NLB

j,k; (3.22)

case-2 yields a different row cluster basis since

case-2: NLA
i,j ×RB

j,k = (NLA
i,jV

B
jr)× SB

j,k × (VB
kc)

T ; (3.23)

whereas case-3 results in a different column cluster basis in the product admissible

block, because

case-3: RA
i,j ×NLB

j,k = VA
ir × SA

i,j ×
(
(VA

jc)
TNLB

j,k

)
. (3.24)

If we do not update the cluster bases in the product matrix, the accuracy of the

multiplication is not controllable. However, if we update the cluster basis as they are,

it is computationally very expensive since the matrix block size keeps increasing when

we proceed from leaf level towards the root level. In addition to the cost of changing

cluster bases, if we have to carry out the multiplications at each non-leaf level using

the actual matrix block size, then the computation is also prohibitive. Therefore, the

fast algorithm we develop here is to perform all computations using the rank size at

each tree level, and meanwhile control the accuracy.

In the proposed algorithm, to account for the updates to the original matrix

during the MMP procedure, the cluster bases of C are computed level by level,

which are manifested by the changed leaf cluster bases and the transfer matrices

at nonleaf levels. At a non-leaf level, its children-level cluster bases have already

been computed, and they are different from the original ones in A and B. However,

54

the new cluster bases have taken the upper-level multiplications into consideration.

Hence, we can accurately represent the multiplication at the current non-leaf level

using newly generated children cluster bases.

Take case-1 product as an example, where we perform NLA
i,j×NLB

j,k obtaining an

admissible RC
i,k.We can accurately represent this product using the children cluster

bases of i and k as follows:

case-1: NLA
i,j ×NLB

j,k =

VC
i1r

VC
i2r

 (NLA
i,jNLB

j,k)coll.

(VC
k1c)

T

(VC
k2c)

T

 ,
(3.25)

in which

(NLA
i,jNLB

j,k)coll. =

(VC
i1r)

H

(VC
i2r)

H

(NLA
i,jNLB

j,k

)(VC
k1c)

∗

(VC
k2c)

∗

 . (3.26)

This collected block, (NLA
i,jNLB

j,k)coll., is actually the coupling matrix merged from

the four small coupling matrices computed at previous level, when dealing with the

multiplication case of having a target block as a subblock in the upper-level admissible

block. It can be written as

(NLA
i,jNLB

j,k)coll. =

SC
i1,k1

SC
i1,k2

SC
i2,k1

SC
i2,k2

 . (3.27)

Each of the four coupling matrices has been obtained at previous level. From (3.26),

it is clear that using the nested property of the cluster bases, the collect operation

does not need to start from leaf level, but using the four blocks obtained at previous

one level.

For case-2 product, it can also be accurately expanded in the space of the children

row cluster bases, and hence

case-2: NLA
i,j ×RB

j,k =

VC
i1r

VC
i2r

NLA
i,jcoll.

TB
jrS

B
j,k(V

B
kc)

T , (3.28)

55

where

NLA
i,jcoll.

=

(VC
i1r)

H

(VC
i2r)

H

NLA
i,j

VB
j1r

VB
j2r

 , (3.29)

which is NLA
i,j collected based on the children’s new row cluster bases in C and the

original column cluster bases in B. From (3.28), it can be seen that if excluding the

children cluster bases, then NLA
i,jcoll.

TB
jr resembles the FA

i,jV
B
jr in the leaf level case-2

product. In other words, if we treat the current non-leaf level as the leaf level, then

NLA
i,jcoll.

is equivalent to a full matrix block, whereas T is the leaf cluster basis. An

example of NLA
i,jcoll.

block at level (L− 1) in AH2 can be seen below:

(NLA
i,j)coll. =

 (FA
i1,j1

)coll. PA
i1

SA
i1,j2

Bj2

PA
i2

SA
i2,j1

Bj1 (FA
i2,j2

)coll.

 , (3.30)

which consists of collected full matrices whose expressions are shown in (3.17), and

projected coupling matrices of admissible blocks. Again, using the nested property

of both new and original cluster bases, the collect operation does not need to start

from leaf level, but using the four blocks obtained at previous one level. Each collect

operation only costs O(kl)
3, where kl is the rank at level l.

Since the cluster bases at the previous level have been computed, for case-1 and

case-2 products at a non-leaf level, we only need to compute the center block associ-

ated with the current non-leaf level, and this computation can be carried out in the

same way as how we carry out leaf-level computation, if we treat the current non-leaf

level as the leaf level of the remaining tree. The same is true to case-3 product, where

we have

case-3: RA
i,j ×NLB

j,k = VA
irS

A
i,j(T

A
jc)

TNLB
j,kcoll.

(VC
k1c)

T

(VC
k2c)

T

 , (3.31)

in which

NLB
j,kcoll.

=

(VA
j1r)

T

(VA
j2r)

T

NLB
j,k

(VC
k1c)

∗

(VC
k2c)

∗

 . (3.32)

56

We can see that (TA
jc)

TNLB
j,kcoll.

resembles the (VA
jc)

TFB
j,k in the leaf level case-3

product. An example of collected NL block in BH2 is given as follows

(NLB
i,j)coll. =

 (FB
i1,j1

)coll. Bi1S
B
i1,j2

PB
j2

Bi2S
B
i2,j1

PB
j1

(FB
i2,j2

)coll.

 , (3.33)

which consists of collected full matrices whose expressions are shown in (3.17), and

projected coupling matrices of admissible blocks.

Since the cluster bases have been changed at previous level, we also represent the

case-4 product using the new children cluster bases of i and k, thus

case-4: RA
i,j ×RB

j,k =

(VC
i1r)

(VC
i2r)

RC
i,k,proj

(VC
k1c)

T

(VC
k2c)

T

 , (3.34)

and

RC
i,k,proj =

(PA
i1)

(PA
i2)

 (TA
irS

C
i,k(T

B
kc)

T)

(PB
k1)

(PB
k2)

 , (3.35)

which can be written in short as

RC
i,k,proj = PA

ich(TA
irS

C
i,k(T

B
kc)

T)PB
kch , (3.36)

where ch denotes children. Here, there is a cluster basis transformation matrix in the

front and at the back.

3.3.3 Computation of the new non-leaf level transfer matrices in C

If the target block is an admissible block at a nonleaf level, we need to represent

it as Rt,s = TtSt,s(Ts)
T in controlled accuracy. Hence, we need to calculate new row

and column transfer matrices T of product matrix CH2 . First, we introduce how to

calculate the row transfer matrices. Similar to leaf level, case-1 and 2 products result

in a change in the row cluster basis and hence row transfer matrix. Case-3 and 4

products do not require a change of transfer matrix if the cluster bases have not been

changed at previous level. However, since the cluster bases have been changed at

previous level, the transfer matrix requires an update as well.

57

For an arbitrary non-leaf cluster i, we first find all of the case-1 products associated

with i. Each of such a product leads to a coupling matrix merged from the four cou-

pling matrices obtained at previous level computation, denoted by (NLA
i,jNLB

j,k)coll..

Using them, we calculate the Gram matrix sum as:

GC,l
ir1

=

O(C2
sp)∑

#(i,k)=1

(NLA
i,jNLB

j,k)coll.((NLA
i,jNLB

j,k)coll.)
H . (3.37)

The second step is to take case-2 multiplications at a non-leaf level into consid-

eration for row transfer matrix calculation of product matrix CH2 . We find all the

collected nonleaf blocks NLA
i,jcoll.

of cluster i at level l in AH2 matrix and multiply

them with corresponding transfer matrices TB
jr from BH2 matrix. And we calculate

the Gram matrix sum as

GC,l
ir2

=

O(Csp)∑
j=1

((NLA
i,j)coll.T

B
jr)((NLA

i,j)coll.T
B
jr)

H . (3.38)

Finally, we count the contributions from case-3 and case-4 products by computing

GC,l
ir3

= PA
ichT

A
ir (TA

ir)H(PA
ich)H . (3.39)

Again, we normalize these three Gram matrices and obtain

GC,l
ir

= ĜC,l
ir1

+ ĜC,l
ir2

+ ĜC,l
ir3
. (3.40)

We then calculate an SVD of this GC,l
ir

and truncate the singular values based on

prescribed accuracy εtrunc to obtain row transfer matrix TC
ir for cluster i at nonleaf

level.

Similarly, we can compute the new column transfer matrices for non-leaf cluster

k, which is TC
kc . The first part is

GC,l
kc1

=

O(Csp)∑
i=1

((NLA
i,jNLB

j,k)coll.)
T ((NLA

i,jNLB
j,k)coll.)

∗. (3.41)

The second part is

GC,l
kc2

=

O(Csp)∑
j=1

((TA
jc)

T (NLB
j,k)coll.)

T ((TA
jc)

T (NLB
j,k)coll.)

∗. (3.42)

58

The third part is

GC,l
kc3

= (PB
kch)T (TB

kc)
∗(TB

kc)
T (PB

kch)∗. (3.43)

Then we normalize the three Gram matrices and sum them up as

GC,l
kc

= ĜC,l
kc1

+ ĜC,l
kc2

+ ĜC,l
kc3
. (3.44)

After we perform an SVD on GC,l
kc

matrix and truncate the singular values based on

prescribed accuracy εtrunc, we get new column transfer matrix TC
kc .

3.3.4 Computation of the four cases of multiplications with the product

block being admissible

Now we obtain both row and column transfer matrices for product matrix CH2 ,

hence, the four multiplications become the computation of the coupling matrices, so

that the admissible block at the current level has a form of Rt,s = TtSt,s(Ts)
T . The

coupling matrix S’s calculation is similar to that of leaf level in (3.14), which has the

following expressions:

SC
i,k =

(TC
ir)

H(NLA
i,jNLB

j,k)coll.(T
C
kc)
∗ case-1

(TC
ir)

H(NLA
i,j)coll.T

B
jrS

B
j,k(V

B
kc)

T (VC
kc)
∗ case-2

(VC
ir)

HVA
irS

A
i,j(T

A
jc)

T (NLB
j,k)coll.(T

C
kc)
∗ case-3

(VC
ir)

HVA
irS

A
i,jBjS

B
j,k(V

B
kc)

T (VC
kc)
∗ case-4.

(3.45)

Again, we should prepare some matrix products in advance so that we can achieve

linear complexity MMP for constant rank H2-matrix. For nonleaf levels, the cluster

bases product Bj can be readily calculated using children’s cluster bases based on the

nested property. For example, given a nonleaf cluster j, we can generate Bj by using

the cluster bases product of its children clusters j1 and j2, which is shown as:

Bj = (TA
j1c

)TBj1T
B
j1r

+ (TA
j2c

)TBj2T
B
j2r
. (3.46)

Besides, since the cluster bases product Bj only involve original cluster bases in AH2

and BH2 matrices, we can prepare the above Bj for all leaf and nonleaf clusters before

59

MMP algorithm. In addition, the nonleaf level cluster bases projection (transforma-

tion) can also be calculated using children’s ones as shown in (3.16). The formulas

are given below:

PA
i = (VC

ir)
HVA

ir = (TC
i1r

)HPA
i1

TA
i1r

+ (TC
i2r

)HPA
i2

TA
i2r

;

PB
k = (VB

kc)
T (VC

kc)
∗ = (TB

k1c
)TPB

k1
(TC

k1c
)∗ + (TB

k2c
)TPB

k2
(TC

k2c
)∗.

(3.47)

We also compute the collected NL matrix block in AH2 and BH2 at current level l

by the following equation,

(NLA
i,j)

(l)
coll. = (TC

ir)
H(NLA

i,j)
(l+1)
coll. TB

jr

(NLB
j,k)

(l)
coll. = (TA

jc)
T (NLB

j,k)
(l+1)
coll. (TC

kc)
∗

(3.48)

where superscript l denotes tree level. After we prepare the matrix products in

(3.46), (3.47), and (3.48), we can proceed to calculate the coupling matrices in (3.45)

efficiently as:

SC
i,k =

(TC
ir)

H(NLA
i,jNLB

j,k)
(l)
coll.(T

C
kc)
∗ case-1

(NLA
i,j)

(l)
coll.S

B
j,kP

B
k case-2

PA
i SA

i,j(NLB
j,k)

(l)
coll. case-3

PA
i SA

i,jBjS
B
j,kP

B
k case-4.

(3.49)

All the coupling matrices calculation are performed in rank size kl. So the computa-

tional cost is O(k3l). After coupling matrices calculation in (3.49), all the admissible

products at this nonleaf level multiplication can be represented as RC
i,j = TC

irS
C
i,jT

C
jc .

3.3.5 Summary of overall algorithm at each non-leaf level

The cluster bases products Bj have been computed for all clusters j before the

MMP starts, since they are only related to the original cluster bases.

At each non-leaf level, we do the following:

1. Collect four blocks in an NL block in AH2 to a block of O(kl+1) size, using the

newly generated children row cluster bases of C (transfer matrices if children

60

are not at the leaf level) and the original column cluster bases of B (or transfer

matrices). This is to generate the (NLA
i,j)coll., shown in (3.29).

2. Collect four blocks in an NL block in BH2 to a block of O(kl+1) size, using

the original row cluster bases of A (or transfer matrices) and the new children

column cluster bases of C (transfer matrices if children are not at the leaf level).

This is to generate (NLB
j,k)coll., shown in (3.32).

3. Merge four blocks in an R block in CH2 . This corresponds to the (NLA
i,jNLB

j,k)
(l)
coll.

in (3.49).

4. Calculate new row and column transfer matrices of product matrix CH2 at this

level.

5. Prepare cluster bases projections PA
i , PB

k , and perform an NL block collect

shown in (3.48);

6. Perform four cases of multiplications shown in (3.49).

After we finish one-way bottom-up tree traversal to calculate block matrix prod-

ucts at all the levels, i.e. from leaf level all the way up to minimal admissible level, we

need to perform a post-processing for the coupling matrices associated with the NL

blocks in CH2 . They exist because of the multiplications cases described in Section

3.3.1. This could be efficiently done by performing one-way top-down split process,

the same as the matrix backward transformation shown in [7]. This post processing

stage is to split the coupling matrices in NL to lower level admissible or inadmissible

blocks.

3.4 Accuracy and Complexity Analysis

In this section, we analyze the accuracy and computational complexity of the

proposed algorithm to compute H2-matrix-matrix products.

61

3.4.1 Accuracy

Different from existing formatted H2-matrix-matrix products [7], in the proposed

new algorithm, the accuracy of the product is directly controlled by εtrunc. No format-

ted multiplications are performed, and the cluster bases are changed to represent the

updates to the original matrix accurately. This makes each operation performed in

the proposed MMP controlled by accuracy or exact. When generating an H2-matrix

to represent the original dense matrix, the accuracy is controlled by εH2 , which is the

same as in [15].

3.4.2 Time and Memory Complexity

The proposed MMP involves O(L) levels of computation. At each level, there are

2l clusters. For each cluster, the cost of changing the cluster bases at the leaf level

due to four cases of multiplications is to perform O(Csp)
2 multiplications, and each of

which has a constant cost, as can be seen from (3.10), (3.11), and (3.12). The cost of

changing the cluster bases at the non-leaf level due to the four cases of multiplications

is also to perform O(Csp)
2 multiplications for each cluster, and each of which has a

cost of O(kl)
3, as can be seen from (3.37), (3.38), (3.39). Notice that the NL blocks in

A and B are collected level by level, at each level, there are 2lO(Csp) NL block, and

each collect operation also costs O(kl)
3 only. Other auxiliary matrices are generated

using a similar computational cost.

As for the computation of the four cases of multiplications at each level, each case

involves O(Csp)
2 multiplications for each cluster, and each of which costs O(kl)

3 at

the non-leaf level and O(leafsize)3 at the leaf level as can be seen from (3.18), and

(3.49).

Hence, the time complexity of the proposed MMP can be found as

Time Complexity =
L∑
l=0

C2
sp2

lO(kl)
3 = C2

sp

L∑
l=0

2lO(kl)
3. (3.50)

62

And the storage for each block is O(k2l), with each cluster having Csp blocks. So the

memory complexity is

Memory Complexity =
L∑
l=0

Csp2
lO(kl)

2 = Csp

L∑
l=0

2lO(kl)
2. (3.51)

Recall kl is the rank at tree level l. Hence, (3.50) and (3.51) show that the overall

complexity is a function of rank kl. Taking into account the rank’s growth with elec-

trical size as shown in [32], we can get the time and memory complexity of proposed

MMP for different rank scaling. For constant-rank H2-matrices, since kl is a constant

irrespective of matrix size, the complexity of the proposed direct solution is strictly

O(N) in both CPU time and memory consumption, as shown below.

For constant kl:

Time Complexity = C2
spk

3
l

L∑
l=0

2l = O(N), (3.52)

Memory Complexity = Cspk
2
l

L∑
l=0

2l = O(N). (3.53)

For electrodynamic analysis, to ensure a prescribed accuracy, the rank becomes a

function of electrical size, and thereby tree level. Different H2-matrix representations

can result in different complexities, because their rank’s behavior is different. Using

a minimal-rank H2-representation, as shown by [32], the rank grows linearly with

electrical size for general 3-D problems. In a VIE, kl is proportional to the cubic root

of matrix size at level l, because this is the electrical size at level l. Hence for a VIE,

(3.50) and (3.51) become

For kl linearly growing with electrical size:

Time Complexity = Csp
2

L∑
l=0

2l

[(
N

2l

) 1
3

]3
= O(NlogN), (3.54)

Memory Complexity = Csp

L∑
l=0

2l

[(
N

2l

) 1
3

]2
= O(N). (3.55)

So the time complexity of the proposed MMP algorithm for 3D electrodynamic anal-

ysis is O(NlogN), and the memory complexity is O(N).

63

3.5 Numerical Results

In order to demonstrate the accuracy and low computational complexity of the

proposed fast H2-matrix-matrix multiplication for general H2 matrices, we again use

H2 matrices resulting from large-scale capacitance extraction and volume integral

equations (VIE) for electromagnetic analysis.

3.5.1 Two-layer Cross Bus

The first example is the capacitance extraction of a 2-layer cross bus structure. In

each layer, there are m conductors, and each conductors has a dimension of 1× 1×

(2m+1) m3. We simulate a suite of such structures with 16, 32, 64, 128 and 256 buses

respectively. The parameters used in the H2 matrix construction are leafsize = 30,

admissibility condition [7] η = 1.0, and εH2 = 10−4. For the proposed H2 MMP,

the calculated cluster bases are truncated at 10−2, 10−4 and 10−6. As shown in

Fig. 3.4, the proposed MMP has linear time and memory performance for different

truncation thresholds. We also check the product error by matrix-vector product as

equation (2.27). From Table 3.1, we can see the accuracy of proposed MMP is directly

controlled by εtrunc used in appending cluster bases.

Table 3.1.: H2 MMP error at different εtrunc for large-scale capacitance extraction

matrices.

N 4,480 17,152 67,072 265,216 1,054,720

1E-2 4.35E-2 5.72E-2 5.73E-2 5.80E-2 5.97E-2

1E-4 3.71E-3 3.72E-3 3.86E-3 3.80E-3 3.67E-3

1E-6 2.82E-4 3.28E-4 3.86E-4 4.50E-4 5.66E-4

64

0 2 4 6 8 10 12

Number of unknowns(N) 105

0

2000

4000

6000

8000

M
M

P
 t
im

e
(s

)

1E-6

1E-4

1E-2

(a)

0 2 4 6 8 10 12

Number of unknowns(N) 105

0

0.5

1

1.5

2

2.5

M
M

P
 m

e
m

o
ry

(M
B

)

104

1E-6

1E-4

1E-2

(b)

Fig. 3.4.: MMP performance for AH2 ×BH2 of cross buses. (a) Time scaling v.s. N .

(b) Memory scaling v.s. N .

3.5.2 Large-scale Dielectric Slab

We then simulate a dielectric slab with εr = 2.54 at 300 MHz. The thickness of

the slab is fixed to be 0.1λ0. The width and length are simultaneously increased from

4λ0, 8λ0, 16λ0, to 28λ0. With a mesh size of 0.1λ0, the resultant N ranges from 22,560

to 1,098,720 for this suite of slab structures.The parameters used in the H2-matrix

construction are leafsize = 40, admissibility condition [7] η = 2.0, and εH2 = 10−3.

For the proposed H2 MMP, the calculated cluster bases truncation εtrunc are 10−2,

10−3, 10−4, 10−5and 10−6 respectively, to examine the computational complexity and

error controllability of the proposed MMP. Based on [32], the rank’s growth rate

with electrical size for 2-D slab is lower than linear, and being a square root of the

log-linear of the electric size. Substituting such a rank’s growth into the complexity

analysis in (2.21) and (2.22), we will obtain linear complexity in both memory and

time.

In Fig. 3.5 (a), we plot the MMP time with respect to N , for all different choices

of cluster bases truncation. It is clear that the smaller εtrunc value, the larger the

MMP time. However, the complexity remains the same as linear regardless of the

65

choice of εtrunc. The memory cost is plotted in Fig. 3.5 (b). Obviously, it scales

linearly with the number of unknowns. The error of the proposed MMP is measured

the same by random right hand side error as shown in equation (2.27). In table 3.2,

we list the error as a function of εtrunc. Excellent accuracy can be observed in the

entire unknown range. Furthermore, the accuracy can be controlled by εtrunc, and

overall smaller εtrunc results in better accuracy.

Table 3.2.: H2 MMP error for 2-D slab.

N 22560 89920 359040 1098720

1E-2 8.54E-3 1.06E-2 1.49E-2 1.07E-2

1E-3 2.52E-3 3.17E-3 4.23E-3 3.79E-3

1E-4 7.86E-4 9.76E-4 1.38E-3 1.23E-3

1E-5 2.91E-4 3.37E-4 4.22E-4 4.11E-4

1E-6 8.04E-5 9.85E-5 1.27E-4 1.36E-4

0 2 4 6 8 10 12

Number of unknowns(N) 105

0

0.5

1

1.5

2

2.5

3

M
M

P
 t

im
e

(s
)

104

1E-6

1E-5

1E-4

1E-3

1E-2

(a)

0 2 4 6 8 10 12

Number of unknowns(N) 105

0

1

2

3

4

5

6

7

M
M

P
 m

e
m

o
ry

(M
B

)

104

1E-6

1E-5

1E-4

1E-3

1E-2

(b)

Fig. 3.5.: MMP performance for AH2 ×AH2 of 2-D slab from 4λ to 28λ. (a) Time

scaling v.s. N . (b) Memory scaling v.s. N .

66

3.5.3 Large-scale Array of Dielectric Cubes

Next, we simulate a large-scale array of dielectric cubes at 300 MHz. The relative

permittivity of the cube is εr = 4.0. Each cube is of size 0.3λ0 × 0.3λ0 × 0.3λ0. The

distance between adjacent cubes is kept to be 0.3λ0. The number of the cubes is

increased along the x−, y−, and z− directions simultaneously from 2 to 16, thus

producing a 3-D cube array from 2 × 2 × 2 to 16 × 16 × 16 elements. The number

of unknowns N is respectively 3,024, 24,192, 193,536, and 1,548,288 for these arrays.

During the construction of H2 matrix, we set leafsize = 20, η = 1 and εH2 =

10−2. For the proposed H2 MMP, the calculated cluster bases are truncated at 10−2,

10−3 and 10−4. In Fig. 3.6 (a) and Fig. 3.6 (b), we plot the H2-matrix-matrix

multiplication time divided by C2
sp, and the storage cost normalized with Csp with

respect to N . As can be seen, their scaling rate with N agrees very well with our

theoretical complexity analysis. For the over one-million unknown case which is a

16×16×16 cube array having thousands of cube elements, the error is still controlled

to be as small as 0.809% at εtrunc = 10−4. The random RHS error of the proposed

MMP is listed in Table 3.3 for this example, which again reveals excellent accuracy

and error controllability of the proposed MMP. We also compare the accuarcy for

Table 3.3.: H2 MMP error at different εtrunc for 3-D cube array.

N 3024 24192 193536 1548288

Existing [7] 9.02E-2 1.01E-1 1.77E-1 2.74E-1

1E-2 1.91E-2 2.38E-2 3.82E-2 6.58E-2

1E-3 5.51E-3 7.23E-3 1.06E-2 2.16E-2

1E-4 1.48E-3 2.46E-3 3.69E-3 8.09E-3

proposed MMP with existing MMP [7] using this 3-D example. As shown in Table

3.3, the proposed MMP has much better accuracy.

67

0 5 10 15

Number of unknowns(N) 105

0

1

2

3

4

5

M
M

P
 t

im
e

(s
)

/
C

s
p

2

1E-4

1E-3

1E-2

(a)

0 5 10 15

Number of unknowns(N) 105

0

200

400

600

800

M
M

P
 m

e
m

o
ry

(M
B

)
/

C
s
p 1E-4

1E-3

1E-2

(b)

Fig. 3.6.: MMP performance for AH2 ×AH2 of 3-D cube array. (a) Time scaling v.s.

N . (b) Memory scaling v.s. N .

3.6 Conclusion

In this chapter, we develop a fast algorithm to calculate H2-matrix-matrix prod-

ucts for general H2 matrices. This proposed algorithm not only has explicitly con-

trolled accuracy of the product, but also generate the minimal-rank representation of

the product. As compared with the MMP algorithm in chapter 2, whose old cluster

bases are kept, this new MMP algorithm proposed here is more memory efficient.

Besies, the proposed algorithm has been applied to calculate H2-matrix-matrix prod-

ucts for large-scale capacitance extraction matrices whose kernel is static and real-

valued and electrically large VIEs whose kernel is oscillatory and complex-valued. For

constant-rank H2 matrices, the proposed MMP has an O(N) complexity in both time

and memory. For rank growing with the electrical size linearly, the proposed MMP

has an O(NlogN) complexity time and O(N) complexity in memory. H2-matrices

products with millions of unknowns are simulated on a single core CPU in fast CPU

run time. Comparisons with existing H2-matrix-matrix products have demonstrated

the excellent accuracy and efficiency of this new MMP algorithm.

68

4. ACCURACY DIRECTLY CONTROLLED FAST

DIRECT SOLUTION OF GENERAL H2 MATRICES

4.1 Introduction

The H2 matrix has be utilized to develop fast solvers for electromagnetic analysis.

In [4, 14], fast H2-matrix inversion algorithms are developed. They have shown a

complexity of O(N) for solving electrically small and moderate problems for both

surface and volume IEs (VIEs); and a complexity of O(NlogN) for solving electrically

large VIEs. Despite a significantly reduced complexity, in existing direct solutions

of H2 matrices, the cluster bases used to represent a dense matrix are also used to

represent the matrix’s inverse as well as LU factors. Physically speaking, such a choice

of the cluster bases often constitutes an accurate choice. However, mathematically

speaking, the accuracy of the inversion and factorization cannot be directly controlled.

The lack of a direct accuracy control is also observed in the H2-based matrix-matrix

multiplication in mathematical literature. Algorithm wise, the collect operation in [3]

involves approximations. This operation is performed when multiplying a non-leaf

block with a non-leaf block, or multiplying a nonleaf block with an admissible block,

with the target block being admissible. In this operation, the four admissible or

inadmissible blocks at the children level are collected to a single admissible block

based on the cluster bases used to represent the target block in the original matrix.

During the inversion and factorization procedure, only the coupling matrix of each

admissible block is computed, while the cluster bases are not changed. When the

accuracy of the direct solution is not satisfactory, one can only change the original

H2-representation, i.e., change the cluster bases or the rank of the original matrix,

with the hope that they can better represent the inverse and LU factors.

69

Recently, an HSS matrix has also been introduced to develop fast direct solutions

of exact arithmetic. However, the structure of the HSS matrix is not efficient for

representing general electromagnetic problems. The resultant rank of HSS matrix

can be too high to be computed efficiently, especially for electrically large analysis.

From this perspective, an H2 matrix is a more efficient structure for general applica-

tions, since the distance between the sources and observers can be used to represent

a dense matrix with a much reduced rank. However, its accuracy-controlled direct

solution is still lacking in the open literature. The contribution of this work is such

an accuracy-controlled direct solution of general H2 matrices, which is also applied

to solve electrically large VIEs. As a demonstration of its performance, we show how

it is used to solve electrically large VIEs, with an O(NlogN) complexity in factor-

ization and O(N) complexity in solution and memory, and with a strictly controlled

accuracy.

4.2 Proposed Factorization and Inversion Algorithms

Given a general H2 matrix Z, the proposed direct solution is a one-way tree

traversal from the leaf level all the way up to the root level of the H2-tree. At each

level, the factorization proceeds from the left to the right across all the clusters. This

is very different from the algorithm of [9, 11, 14, 15], where a recursive procedure is

performed. To help better understand the proposed algorithm, while we present a

generic algorithm, we will use the H2 matrix shown in Fig. 4.1(a), as an example

to illustrate the overall procedure. In this figure, green blocks are admissible blocks,

and red ones represent inadmissible blocks.

70

4.2.1 Computation at the Leaf Level

For the first leaf cluster

We start from the leaf level (l = L). For the first cluster, whose index is denoted

by i = 1, we perform three steps as follows.

Step 1. We compute the complementary cluster basis V⊥i , which is orthogonal

to Vi (cluster basis of cluster i). This can be easily done by carrying out an SVD or

QL factorization on Vi. The cost is not high, instead, it is constant at the leaf level.

We then combine Vi with V⊥i to form Q̃i matrix as the following

Q̃i = [(V⊥i)#i×(#i−kl) (Vi)#i×kl], (4.1)

in which kl is the rank at level l (now l = L), and # denotes the number of unknowns

contained in a set.

Step 2. Let Zcur be the current matrix that remains to be factorized. For leaf

cluster i = 1, Zcur = Z. We compute a transformed matrix QH
i ZcurQi, and use it to

overwrite Zcur, thus

Zcur = QH
i ZcurQi, (4.2)

where QH
i denotes Qi’s complex conjugate transpose, and

Qi = diag{I1, I2, ..., Q̃i, ..., I#{leaf clusters}}, (4.3)

is a block diagonal matrix. The i-th diagonal block in Qi is Q̃i, and other blocks are

identity matrices I, the size of each of which is the corresponding leaf-cluster size.

The subscripts in the right hand side of (4.3) denote the indexes of diagonal blocks,

which are also the indexes of leaf clusters, and #{leaf clusters} stands for the number

of leaf clusters. If leaf cluster i = 1 is being computed, Q̃i appears in the first block

of (4.3). In addition, the Qi in (4.2) denotes the complex conjugate of Qi, as the

cluster bases we construct are complex-valued to account for general H2-matrices.

In (4.3), Qi only consists of one Q̃i, where i is the current cluster being computed.

This is because Q̃i for other clusters are not ready for use yet, since in the proposed

71

(a) (b)

Fig. 4.1.: (a) Original H2 matrix. (b) Illustration of QH
1 ZQ1.

algorithm, we will update cluster bases to take into account the contribution from

fill-ins. This will become clear in the sequel.

The purpose of doing this step, i.e., obtaining (4.2), is to introduce zeros in the

matrix being factorized, since

Q̃
H

i ×Vi =

0(#i−kl)×kl

Ikl×kl

 (4.4)

VT
i × Q̃i = [0kl×(#i−kl) Ikl×kl]. (4.5)

The operation of (4.2) thus zeros out the first (#i− kl) rows of the admissible blocks

formed by row cluster i, as well as the first (#i − kl) columns in Zcur, as shown

by the white blocks in Fig. 4.1(b). The real computation of (4.2) is, hence, in the

inadmissible blocks of cluster i, as shown by the four red blocks associated with cluster

i = 1 in Fig. 4.1(b).

Step 3. After Step 2, the first (#i−kl) rows and columns of Zcur in the admissible

blocks of cluster i become zero. Hence, if we eliminate the first (#i − kl) unknowns

of cluster i via a partial LU factorization, the admissible blocks of cluster i at these

rows and columns would stay as zero, and thus not affected. As a result, the resulting

72

L and U factors, as well as the fill-in blocks generated, would only involve a constant

number of blocks, which is bounded by O(C2
sp).

In view of the above property, in Step 3, we perform a partial LU factorization to

eliminate the first (#i− kl) unknowns of cluster i in Zcur. Let this set of unknowns

be denoted by i′. Zcur can be cast into the following form accordingly

Zcur =

Fi′i′ Zi′c

Zci′ Zcc

 , (4.6)

in which Fi′i′ denotes the diagonal block of the (#i−kl) unknowns, Zi′c is the remain-

ing rectangular block in the row of set i′. Here, c contains the rest of the unknowns

which do not belong to i′. The Zci′ is the transpose block of Zi′c, and Zcc is the diag-

onal block formed by unknowns in set c. It is evident that Zi′c (Zci′) only consists of

O(Csp) inadmissible blocks, as the rest of the blocks are zero. Take leaf cluster i = 1

as an example. It forms inadmissible blocks with clusters i = 2, 4, 6, as shown by the

red blocks in Fig. 4.1(b). Hence, Zi′c = [F12,F14,F16].

After performing a partial LU factorization to eliminate the unknowns contained

in i′, we obtain

Zcur =

 Li′i′ 0

Zci′U
−1
i′i′ I

I 0

0 Z̃cc

Ui′i′ L−1i′i′Zi′c

0 I

 , (4.7)

where

Fi′i′ = Li′i′Ui′i′ , (4.8)

and the Schur complement is

Z̃cc = Zcc − Zci′U
−1
i′i′L

−1
i′i′Zi′c, (4.9)

in which Zci′U
−1
i′i′L

−1
i′i′Zi′c represents the fill-in blocks introduced due to the elimination

of i′-unknowns. Because of the zeros introduced in the admissible blocks, the Zi′c and

Zci′ only consist of inadmissible blocks formed by cluster i, the number of which is

bounded by constant Csp. Hence, the number of fill-in blocks introduced by this step

is also bounded by a constant, which is O(C2
sp).

73

Equation (4.7) can further be written in short as

Zcur = Ll
i

I 0

0 Z̃cc

Ul
i, (4.10)

in which the first matrix of (4.7), which is the L factor generated after a partial LU

of cluster i at level l, is denoted by Ll
i. Similarly, the rightmost matrix of (4.7), which

is the U factor generated after a partial LU of cluster i at level l, is denoted by Ul
i.

The center matrix is the one that remains to be factorized. Thus, we let

Zcur =

I 0

0 Z̃cc

 . (4.11)

This matrix is illustrated in Fig. 4.2(a), where the fill-in blocks are added upon

previous Zcur. If the fill-in block is added upon an inadmissible block, we add the

fill-in directly to the inadmissible block. For the example shown in Fig. 4.1(a), these

blocks are the blocks marked in dark blue in Fig. 4.2(a) after the i′ set of unknowns

in cluster i = 1 is eliminated. If the fill-in appears in an admissible block, we store

the fill-in block temporarily in this admissible block for future computation. These

blocks are the blocks marked in light blue in Fig. 4.2(a). To explain in more detail,

from (4.9), it can be seen that the fill-in block formed between cluster j and cluster

k has the following form

Fj,k = Zji′U
−1
i′i′L

−1
i′i′Zi′k, (4.12)

which is also low rank in nature. The row cluster j and column cluster k belong

to the set of clusters that form inadmissible blocks with cluster i, whose number is

bounded by Csp. If the original block formed between j and k, Zcur,jk, is admissible,

no computation is needed for Fj,k, i.e., we do not add it directly to the admissible

block. Instead, we store it with this admissible block temporarily until cluster j

is reached during the factorization. At that time, Fj,k will be used to compute an

updated cluster basis for j. If the elimination of different clusters results in more than

one fill-in block in admissible Zcur,jk block, the later ones are added upon existing

74

I

(a)

IIII

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
I

I

I
I

II

(b)

Fig. 4.2.: (a) Zcur after partial LU of cluster 1 with fill-in blocks marked in blue. (b)

Fill-in blocks of cluster 2 turned green after cluster basis update.

Fj,k. In other words, the fill-ins at the admissible Zcur,jk block are summed up and

stored in a single Fj,k.

In summary, Step 3 is to perform a partial LU factorization as shown in (4.7)

to eliminate the first #i − kl unknowns in cluster i. The storage and computation

cost of this step can be analyzed as follows. In (4.7), the LU factorization of Fi′i′

into Li′i′ and Ui′i′ costs O(leafsize3) in computation, and O(leafsize2) in memory,

which is hence constant. Zci′ (Zi′c) only involves O(Csp) inadmissible blocks. Hence,

the computation of Zci′U
−1
i′i′ as well as L−1i′i′Zi′c is simply O(Csp) operations, each of

which scales as O(leafsize3), and hence the cost is constant also. The results of the

partial factorization, i.e., Ll
i and Ul

i, are stored in O(Csp) blocks of leafsize. Thus, the

memory cost is also constant. As for the fill-in blocks, their number is bounded by

C2
sp, and each of which is of leafsize. Hence, the computation and storage associated

with fill-in blocks are constant too, at the leaf level for each cluster.

75

For other leaf clusters

Next, we proceed to the second leaf cluster i = 2 and other leaf clusters. For these

leaf clusters, all the steps are the same as those performed for the first leaf cluster,

except for adding another step before Step 1. We term this step as Step 0.

Step 0. This step is to update cluster basis Vi to account for the contributions

of the fill-ins due to the elimination of previous clusters. If we do not update cluster

bases Vi, they are not accurate any more to represent the admissible blocks formed by

cluster i, since the contents of these blocks have been changed due to the addition of

the fill-in blocks. However, if we let the admissible block updated by fill-ins become

a full-matrix block, i.e., an inadmissible block, the number of fill-ins would keep

increasing after each step of partial factorization, and hence the resultant complexity

would be too high to tolerate. To overcome this problem, we propose to update

cluster bases as follows.

For cluster i, we take all the fill-in blocks associated with its admissible blocks,

and use them to update cluster basis Vi. These fill-in blocks are shown in (4.12),

which have been generated and stored in the corresponding admissible blocks during

the elimination of previous clusters. Let them be Fi,jk(k = 1, 2, ..., O(Csp)), where

the first subscript denotes the row cluster i, and the second being the column cluster

index. The number of such blocks is bounded by O(Csp) because the number of

admissible blocks formed by a single cluster, like i, is no greater than Csp. Next, we

compute

Gi = (I−ViV
H
i)(
∑

k
Fi,jkF

H
i,jk

)(I−ViV
H
i)H . (4.13)

We then perform an SVD on Gi, and truncate the singular vector matrix based on

prescribed accuracy εfill−in, obtaining

Gi

εfill−in
= (Vadd

i)Σ(Vadd
i)H . (4.14)

76

The Vadd
i is the additional cluster basis we supplement, since it captures the part of

the column space of the fill-in blocks, which is not present in the original Vi. The

cluster basis can then be updated for cluster i as

Ṽi = [Vi Vadd
i]. (4.15)

By doing so, we are able to keep the original admissible blocks to be admissible while

accurately taking into account the fill-in’s contributions. Hence, the number of fill-ins

introduced due to the elimination of each cluster can be kept to be a constant, instead

of growing. In addition, by keeping the original cluster basis Vi in the new bases

instead of generating a completely new one, we can keep the nested relationship in

the original H2-matrix for efficient computations at upper levels. The computational

cost of such a supplement of cluster bases is constant at leaf level, and scales as O(k3l)

at other levels (this will become clear soon) for each cluster.

IIII

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
I

I

I
I

I

(a)

IIII

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
I

I

I
I

III

I

(b)

Fig. 4.3.: (a) QH
2 ZcurQ2. (b) Zcur after partial LU of cluster 2.

In Fig. 4.2(b) , the Step 0 is reflected by turning the light blue blocks associated

with cluster i = 2 in Fig. 4.2(a) back to green blocks, symbolizing that they become

77

admissible again. After Vi is updated to Ṽi, we find its complementary bases, i.e.,

perform Step 1, to obtain

Q̃i = [(Ṽ
⊥
i)#i×(#i−kl) (Ṽi)#i×kl]. (4.16)

We then use Q̃i to generate (4.3), and project the current matrix to be factorized,

shown in Fig. 4.2(b), to the matrix shown in (4.2). This again will zero out the first

(#i − kl) rows (columns) of the admissible blocks formed by cluster i, as illustrated

in Fig. 4.3(a). We then proceed to Step 3 to perform a partial LU factorization.

After this step, the matrix Zcur, which remains to be factorized, is illustrated in Fig.

4.3(b). Steps 0 to 3 are then repeated for the rest of the leaf clusters.

Updating the coupling matrix at the leaf level and the transfer matrix at

one level higher

After the computation at the leaf level is finished, before proceeding to the next

level, we need to update the coupling matrices at the leaf level, as well as the transfer

matrices at one level higher. This is because the cluster bases have been updated at

the leaf level.

For admissible blocks without fill-ins, their coupling matrices can be readily up-

dated by appending zeros. For example, considering an admissible block formed

between clusters i and k . Its coupling matrix Si,k is updated to

S̃i,k =

Si,k 0

0 0

 , (4.17)

because in this way

ṼiS̃i,kṼ
T

k = ViSi,kV
T
k . (4.18)

For admissible blocks with fill-ins, their coupling matrices are updated by adding the

fill-in part onto the augmented coupling matrix, shown in (4.17), as

S̃i,k = S̃i,k + Ṽ
H

i Fi,kṼk, (4.19)

78

in which Fi,k represents the fill-in block associated with the admissible block.

We also need to update the transfer matrices at one level higher, i.e., at the

l = L − 1 level. This can be readily done by adding zeros to the original transfer

matrices. To be clearer, consider a non-leaf cluster t, whose two children clusters are

t1 and t2, its cluster basis can be written as

 Vt1Tt1

Vt2Tt2

 =

 [Vt1V
add
t1

] 0

0 [Vt2V
add
t2

]

Tt1

0

Tt2

0

 , (4.20)

where Tt1 and Tt2 are original transfer matrices associated with non-leaf cluster t.

IIII

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
I

I

I
I

III

I

I

I

I

I

I

I

I

I

Fig. 4.4.: Zcur left to be factorized after leaf-level computation.

The transfer matrices and coupling matrices at other levels all remain the same

as before. They are not updated until corresponding levels are reached.

4.2.2 Computation at the Non-leaf Level

After all the leaf-level computation, we obtain a matrix shown in Fig. 4.4, which is

current Zcur left to be factorized. All the empty blocks are zero blocks. The diagonal

79

blocks corresponding to the unknowns that have been eliminated are identity matrices

shown as I. The nonzero blocks, shown as shaded blocks, each is of size (kl+1× kl+1),

where l is current tree level, l + 1 is the previous tree level whose computation is

finished, and kl+1 denotes the rank at the (l + 1)-th level. The structure shown in

Fig. 4.4 is not only true for l = L − 1 level, i.e., one level above the leaf level, but

also true for every non-leaf level l, except that the size of each block is different at

different tree levels, since kl+1 is different especially for electrically large analysis. The

computation at a non-leaf level is performed as follows.

Merging and permuting

In Zcur, whose structure is shown in Fig. 4.4, we permute the matrix, and merge

the four blocks of a non-leaf cluster, formed between its two children clusters and

themselves, to a single block, as shown by the transformation from Fig. 4.4 to Fig.

4.5(a). After this, we further permute the unknowns that have not been eliminated

to the end. This results in a matrix shown in Fig. 4.5(b). As a result, the bottom

right block becomes the matrix that remains to be factorized. This matrix is of size

2l(2kl+1) × 2l(2kl+1), because it is formed between 2l clusters at the non-leaf level l,

and each cluster is of size 2kl+1. Obviously, this matrix is again an H2-matrix, as

shown by green admissible blocks and red inadmissible blocks in Fig. 4.5(b). The

difference with the leaf level is that each block, be its inadmissible or admissible, now

is of size 2kl+1 × 2kl+1. Hence, in the proposed direct solution algorithm, at each

non-leaf level, the computation is performed on the matrix blocks whose size is the

rank at that level, and hence efficient.

Now, each admissible block is of size only 2kl+1× 2kl+1. Its expression is different

from that at the leaf level. Consider an admissible block formed between clusters t

and s at a non-leaf level l, as shown by the green blocks in Fig. 4.5(a). It has the

following form:

(Admissible block)(l)t,s = TtSt,sT
T
s , (4.21)

80

where Tt is the transfer matrix for non-leaf cluster t, whose size is O(2kl+1 × kl), Ts

is the transfer matrix for cluster s whose size is also O(2kl+1 × kl), and St,s is the

coupling matrix whose size is O(kl × kl).

Since the matrix block left to be factorized after merging and permutation is again

an H2-matrix, we can apply the same procedure performed at the leaf level, i.e., from

Step 0 to Step 3, to the non-leaf level. In addition, from (4.21), it can also be seen

clearly that now, transfer matrix T at a non-leaf level plays the same role as cluster

basis V at the leaf level. Therefore, wherever V is used in the leaf-level computation,

we replace it by T at a non-leaf level. In the following, we will briefly go through the

Steps 0–3 performed at a non-leaf level, as the essential procedure is the same as that

in the leaf level.

IIII

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
I

I

I
I

III

I

I

I

I

I

I

I

I

I

I

I

I

I

(a)

IIII

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
I

(b)

Fig. 4.5.: (a) Merging to next level. (b) Permuting to obtain Zcur to be factorized at

next level.

Steps 0 to 3

Step 0 at the non-leaf level. This step is to update transfer matrix Ti to

account for the contributions of the fill-ins due to the elimination of previous clusters.

81

For cluster i, we take all the fill-in blocks associated with its admissible blocks, and use

them to update transfer matrix Ti. These fill-in blocks are shown in (4.12), which

have been generated and stored during the factorization of previous clusters. Let

them be Fi,jk(k = 1, 2, ..., O(Csp)), where the first subscript denotes the row cluster

i. Different from the fill-ins at leaf level, the Fi,jk now is of (2kl+1 × 2kl+1) size at a

non-leaf level l. We then compute

Gi = (I−TiT
H
i)(
∑

k
Fi,jkF

H
i,jk

)(I−TiT
H
i)H , (4.22)

where all the k admissible blocks formed by cluster i are considered. Performing an

SVD on Gi, and truncating the singular vector matrix based on prescribed accuracy

εfill−in, we obtain

Gi

εfill−in
= (Tadd

i)Σ(Tadd
i)H . (4.23)

The Tadd
i is hence the additional column space we should supplement in the transfer

matrix. The new transfer matrix T̃i can then be obtained as

T̃i = [Ti Tadd
i]. (4.24)

The cost of this step for each cluster at level l is O(kl
3).

Step 1 at a non-leaf level. We compute the complementary cluster basis T̃i

⊥
,

which is orthogonal to T̃i. This computation is not expensive, as it costs only O(kl
3)

at level l. We then combine T̃i with T̃i

⊥
to form Q̃i matrix as the following

Q̃i = [(T̃i

⊥
)2kl+1×(2kl+1−kl) (T̃i)2kl+1×kl]. (4.25)

Step 2 at a non-leaf level. With Q̃i computed, we build a block diagonal

matrix

Qi = diag{I1, I2, ..., Q̃i, ..., I#{clusters at level l}}, (4.26)

using which we construct

Zcur = QH
i ZcurQi, (4.27)

where Zcur only consists of the block that remains to be factorized, as shown by the

bottom right matrix block in Fig. 4.5(b), which is not an identity. Similar to that

82

in the leaf level, by doing so, we zero out first (2kl+1 − kl) rows of the admissible

blocks formed by row cluster i, as well as their transpose entries in Zcur. The real

computation of (4.27) is hence in the inadmissible blocks of non-leaf cluster i, the

cost of which is O(kl)
3.

Step 3 at a non-leaf level. We perform a partial LU factorization to eliminate

the first (2kl+1 − kl) unknowns of cluster i in Zcur. Let this set of unknowns be

denoted by i′. We obtain

Zcur =

 Li′i′ 0

Zci′U
−1
i′i′ I

I 0

0 Z̃cc

Ui′i′ L−1i′i′Zi′c

0 I

 (4.28)

where Fi′i′ = Li′i′Ui′i′ , and Z̃cc is a Schur complement. Each fill-in block is again

either directly added, if the to-be added block is inadmissible, or stored temporarily

in the corresponding admissible block. Equation (4.28) can further be written in short

as

Zcur = Ll
i

I 0

0 Z̃cc

Ul
i. (4.29)

At a non-leaf level l, each of Li′i′ and Ui′i′ is of size at most (2kl+1 − kl)× 2kl+1.

The Zi′c (Zci′) has only Csp blocks which are also inadmissible, each of which is of

size at most 2kl+1 × 2kl+1. The Schur complement involves C2
sp fill-in blocks, each of

which is of size at most 2kl+1 by 2kl+1. Therefore, generating the L and U factors, as

well as computing the fill-in blocks, only involves a constant number of computations,

each of which scales as O(kl
3) at a non-leaf level. The storage of the L and U factors,

as well as the fill-in blocks, only takes O(kl
2) multiplied by constant O(C2

sp).

Updating the coupling matrix at current level and the transfer matrix at

one level higher

After the computation at the current non-leaf level l is finished, before proceeding

to the next level, l − 1, we need to update the coupling matrices at current level, as

well as the transfer matrices at one level higher. This is because the transfer matrices

have been updated at the current level.

83

Similar to the procedure at the leaf level, for admissible blocks without fill-ins,

their coupling matrices can be readily updated by appending zeros, as shown in (4.17).

For admissible blocks with fill-ins, their coupling matrices are updated by adding the

fill-in part onto the augmented coupling matrix S̃i,k as

S̃i,k = S̃i,k + T̃
H

i Fi,kT̃k, (4.30)

in which Fi,k represents the fill-in block associated with the admissible block formed

between clusters i and k.

We also need to update the transfer matrices at one level higher, i.e., at the l− 1

level. This can be readily done by adding zeros to the original transfer matrices,

corresponding to the matrix block of Tadd
i .

4.2.3 Algorithm Summary

The aforementioned computation at the non-leaf level is continued level by level

until we reach the minimal level that has admissible blocks, denoted by l0. The

overall procedure can be realized by the pseudo-code shown in Algorithm 1, where

the detail of each step can be found from previous section.

The aforementioned direct solution procedure results in the following factorization

of Z:

Z = LU ,

L =

{∏l0

l=L

[(∏2l

i=1
Ql
iL

l
i

)
PT
l

]}
L,

U = U
{∏L

l=l0

[
Pl

(∏1

i=2l
Ul
iQ

l
i

T
)]}

.

(4.31)

In the above, Ql
i denotes Qi at level l. For leaf level, it is shown in (4.3), and for a

non-leaf level, it is shown in (4.26). Each Ql
i has only one block that is not identity,

whose size is 2kl+1 × 2kl+1 at the non-leaf level, and leafsize × leafsize at the leaf

level. Each Ll
i is shown in (4.10) or (4.29), which has O(Csp) blocks of leafsize at the

leaf level, and O(Csp) blocks of O(kl+1) size at a non-leaf level. The same is true to

Ul
i. The L and U without sub- and super-scripts are the L and U factors of the final

84

Algorithm 1 Proposed direct solution of general H2-matrices

1: Let Zcur = Z

2: for l = L to l0 do

3: for cluster : i =1 to 2l do

4: Update cluster basis (Step 0)

5: Obtain projection matrix Qi (Step 1)

6: Do Zcur = QH
i ZcurQi (Step 2)

7: Perform partial LU Zcur = Ll
iZcntU

l
i (Step 3)

8: Let Zcur = Zcnt

9: end for

10: Update coupling matrices at level l

11: Update transfer matrices at level l − 1

12: Permute and merge small kl × kl matrices to next level

13: end for

14: Do LU on the final block, Zcur = LU.

matrix that remains to be factorized in level l0. The non-identity blocks in L and U

are of size O(2l0kl0). The Pl matrix is a permutation matrix that merges small kl×kl
matrices at level l to one level higher.

The factorization shown in (4.31) also results in an explicit form of Z’s inverse,

which can be written as

Z−1 ={∏l0

l=L

[(∏2l

i=1
Q
l

i(U
l
i)
−1
)

PT
l

]}
U−1×

L−1
{∏L

l=l0

[
Pl

(∏1

i=2l
(Ll

i)
−1Ql

i

H
)]}

.

(4.32)

In addition, in the proposed direct solution, one can also flexibly stop at a level

before l0 is reached. This may be desired if at a tree level, the number of zeros

introduced is small as compared to the block size at that level. Although one can still

proceed to the next level, the efficiency gain may be smaller than that gained if one

85

just stops at the current level, and finishes the factorization. This typically happens

at a few levels lower than the l0 level.

4.3 Proposed Matrix Solution (Backward and Forward Substitution) Al-

gorithm

After factorization, the solution of Zx = b can be obtained in two steps: Ly = b

which can be called as a backward substitution, and Ux = y called as a forward sub-

stitution. Rigorously speaking, since projection matrix Ql
i and permutation matrix

Pl are involved in L and U factors, the matrix solution here is not a conventional

forward/backward substitution.

4.3.1 Forward Substitution

I

I

I

I

00
0 0

0

0

00

0 0 0

0 0 0

11L
1

11 11F U

1

21 11F U

1

31 11F U

(a)

I

I

I

I

0

0

0

00

0 0 0

0 0 0

0 0 0

-1

11 11L F11U -1

11 12L F
-1

11 13L F

(b)

Fig. 4.6.: (a) L1 matrix. (b) U1 matrix.

In this step, we solve

Ly = b. (4.33)

86

From (4.32), it can be seen that the above can be solved as

y = L−1b = L−1
{∏L

l=l0

[
Pl

(∏1

i=2l
(Ll

i)
−1Ql

i

H
)]}

b. (4.34)

Take a 3-level H2-matrix as an example, the above is nothing but

y = L−1P1L
−1
4 QH

4 L−13 QH
3 L−12 QH

2 L−11 QH
1 b. (4.35)

Obviously, three basic operations are involved in the forward substitution: multiplying

(Ql
i)
H by a vector, multiplying (Ll

i)
−1 by a vector, and Pl-based permutation.

Algorithm 2 Forward Substitution b← L−1b
1: for l = L to l0 do

2: for cluster : i = 1 to 2l do

3: Update b’s bi part by bi ← (Q̃i

l
)Hbi.

4: Do b← (Ll
i)
−1b

5: end for

6: Permute b by multiplying with Pl

7: end for

8: Do b← L−1b

The algorithm of the forward substitution is shown in Algorithm 2. The (Ll
i)
−1b

in step 4 of this algorithm only involves O(Csp) matrix-vector multiplications of leaf-

size or rank size associated with cluster i at level l. To see this point more clearly, we

can use the L1 matrix shown in Fig. 4.6(a) as an example, where L1 is resultant from

the partial factorization of cluster 1 in an H2-matrix. It can be seen that L1 has only

O(Csp) blocks that need to be computed and stored, each of which is leafsize at the

leaf level, or rank size at a non-leaf level l. These blocks are the inadmissible blocks

87

formed with cluster i. For such type of Li, the L−1i b can be readily computed. For

L1 shown in Fig. 4.6(a), the L−11 b is

L−11 b =

 L−111 0

−T11L
−1
11 I

 0 0 0[
−T21L

−1
11 0

]
I 0 0[

−T31L
−1
11 0

]
0 I 0

0 0 0 I

 b11

b12

b2

b3

b4

=

 b̃1,1

b1,2 −T11b̃1,1

b2 −T21b̃1,1

b3 −T31b̃1,1

b4

(4.36)

where Ti1 = Fi1U
−1
11 (i = 1, 2, 3), and b̃1,1 = L−111 b1,1. Therefore, this operation

actually only involves O(Csp) matrix-vector multiplications related to clusters 1, 2

and 3, which are those clusters that form inadmissible blocks with cluster 1, the

number of which is bounded by Csp. After forward substitution, the right hand side

b vector is overwritten by solution y.

4.3.2 Backward Substitution

After finishing forward substitution, we solve

Ux = y (4.37)

From (4.32), it can be seen that the above can be solved as

x = U−1y =

{∏l0

l=L

[(∏2l

i=1
Q
l

iU
l
i

−1
)

PT
l

]}
U−1y. (4.38)

For the same 3-level H2-matrix example, the above is nothing but

x = Q1U
−1
1 Q2U

−1
2 Q3U

−1
3 Q4U

−1
4 PT

1 U−1y. (4.39)

88

The backward substitution starts from minimal admissible block level l0, and

finishes at the leaf level, as shown in Algorithm 3. The (Ul
i)
−1y in step 5 is performed

efficiently similar to how (4.36) is used to compute (Ll
i)
−1b, which also only involve

O(Csp) dense blocks as the example shown in Fig. 4.6(b). There are also three

basic operations in Algorithm 3: (Ul
i)
−1-based matrix-vector multiplication, Q

l

i-

based matrix-vector multiplication, and Pl-based permutation. After the backward

substitution is done, y is overwritten by solution x.

Algorithm 3 Backward Substitution y ← U−1y
1: Do y ← U−1y

2: for l = l0 to L do

3: Permute y by front multiplying PT
l

4: for clusteri = 2l to 1 do

5: Do y ← (Ul
i)
−1y

6: Update yi ← (Q
l

i)yi.

7: end for

8: end for

4.3.3 Accuracy and Complexity Analysis

In this section, we analyze the accuracy and computational complexity of the

proposed direct solver.

Accuracy

When generating an H2-matrix to represent the original dense matrix, the ac-

curacy is controlled by εH2 , which is the same as the accuracy parameter used in

equations (6), (7), (11), and (15) of [16]. The accuracy of the proposed direct so-

lution is controlled by εfill−in. This is different from [9, 11, 15], since it is directly

controlled.

89

As can be seen from chapter 4.2, there are no approximations involved in the

proposed solution procedure, except that when we update the cluster bases to account

for the contribution from the fill-ins, we use (4.14) or (4.23) to truncate the singular

vectors. The accuracy of this step is controlled by parameter εfill−in, which can be

set to any desired value.

Time and Memory Complexity

From (4.31), it is evident that the whole computation involves Ql
i, Ll

i, and Ul
i

for each cluster i at every level l, the storage and computation of each of which are

respectively O(k2l), and O(k3l) at a non-leaf level, and constant at the leaf level. Recall

that Ql
i is obtained from Step 0 and Step 1, Ll

i, and Ul
i are obtained from Step 3,

whose underlying blocks are generated in Step 2. As for the permutation matrix Pl,

it is sparse involving only O(2l) integers to store at level l, and hence having an O(N)

cost in both memory and time.

From another perspective, the overall procedure of the proposed direct solution is

shown in Algorithm 1. It involves O(L) levels of computation. At each level, there

are 2l clusters. For each cluster, we have performed four steps of computation from

Step 0, 1, 2, to 3, as shown by the tasks listed at the end of lines 4–7 in Algorithm

1. Each of these steps costs O(kl)
3 for each cluster, as analyzed in chapter 4.2. After

each level is done, we update coupling matrices, and transfer matrices at one-level

higher, the cost of which is also O(kl)
3 for every admissible block, or cluster. So the

factorization and inversion complexity are similar as shown in chapter 2.2.2.

4.4 Numerical Results

In order to demonstrate the accuracy and low computational complexity of the

proposed direct solution of general H2-matrices, we apply it to solve VIEs for elec-

tromagnetic analysis. Both circuit and large-scale scattering problems are simulated.

The VIE formulation we use is based on [31] with SWG vector bases for expanding

90

electric flux density in each tetrahedral element. First, the scattering from a dielec-

tric sphere, whose analytical solution is known, is simulated to validate the proposed

direct solver. Then, a variety of large-scale examples involving over one million un-

knowns are simulated on a single CPU core to examine the accuracy and complexity

of the proposed direct solver. The H2-matrix for each example is constructed based

on the method described in [14–16]. The accuracy parameter εH2 used is 10−3 for the

H2-matrix construction. The accuracy parameter εfill−in used in the direct solution is

varied to examine the error controllability of the proposed direct solution. Frobenius

norm is used whenever norm is calculated.

4.4.1 Scattering from Dielectric Sphere

We simulate a dielectric sphere of radius a with different electric sizes k0a and

dielectric constant εr. The incident electric field is a normalized −z propagating plane

wave polarized along the x-direction. This incident field is also used in the following

examples. During the H2-matrix construction, leafsize = 25 and η = 1 are used.

The accuracy parameter in the direct solution is set to be εfill−in = 10−6. In Fig. 4.7,

the radar cross section (RCS in dBsm) of the sphere is plotted as a function of θ for

zero azimuth for k0a = 0.408, εr = 36; k0a = 0.408, εr = 4; k0a = 0.816, εr = 4; and

k0a = 1.632, εr = 4 respectively. They all show good agreement with the analytical

Mie Series solution, which validates the proposed direct solution.

We have also investigated the accuracy of the proposed direct solution as a function

of the accuracy-control parameter εfill−in. In Table 4.1, we list the relative residual

error for all the four sphere examples simulated using εfill−in = 10−4, 10−5, and 10−6

respectively. Examples 1, 2, 3, and 4 in Table 4.1 correspond to Fig. 4.7(a), (b),

(c), and (d) respectively. As can be seen from Table 4.1, the smaller the εfill−in, the

better the solution accuracy, verifying the error controllability of the proposed direct

solution. We have also compared RCS obtained from this direct solver against the

91

0 50 100 150

Theta (degrees)

-70

-60

-50

-40

-30

-20

R
C

S
 (

d
B

s
m

)

Proposed solver

Mie series

(a)

0 30 60 90 120 150 180

Theta (degrees)

-100

-80

-60

-40

-20

R
C

S
 (

d
B

s
m

)

Proposed solver

Mie series

(b)

0 30 60 90 120 150 180

Theta (degrees)

-60

-50

-40

-30

-20

-10

R
C

S
 (

d
B

s
m

)

Proposed solver

Mie series

(c)

0 30 60 90 120 150 180

Theta (degrees)

-20

-15

-10

-5

R
C

S
 (

d
B

s
m

)

Proposed solver

Mie series

(d)

Fig. 4.7.: Simulated RCS of a dielectric sphere for different electric sizes and

dielectric constants. (a) k0a = 0.408, εr = 36.0. (b) k0a = 0.408, εr = 4.0. (c)

k0a = 0.816, εr = 4.0. (d) k0a = 1.632, εr = 4.0.

analytical Mie Series solution for εfill−in = 10−4, 10−5, and 10−6. The difference only

appears after the fourth- or fifth-digit.

92

Table 4.1.: Direct solution error measured by relative residual εrel of the dielectric

sphere as a function of εfill−in.

εfill−in Ex. 1 Ex. 2 Ex. 3 Ex. 4

10−6 0.01% 0.002% 0.003% 0.011%

10−5 0.04% 0.006% 0.01% 0.04%

10−4 0.11% 0.015% 0.024% 0.1%

4.4.2 Large-scale Dielectric Slab

Simulation using proposed direct solution

We then simulate a dielectric slab with εr = 2.54 at 300 MHz, which is also

simulated in [14, 15]. The thickness of the slab is fixed to be 0.1λ0. The width and

length are simultaneously increased from 4λ0, 8λ0, 16λ0, to 32λ0. With a mesh size of

0.1λ0, the resultant N ranges from 22,560 to 1,434,880 for this suite of slab structures.

The leafsize is chosen to be 25 and η = 1. The εfill−in is set to be 10−2, 10−4, and

10−6 respectively to examine the solution accuracy, computational complexity, and

error controllability of the proposed direct solution.

Notice that this example represents a 2-D problem characteristics. Based on [32],

the rank’s growth rate with electric size is lower than linear, and being a square-root

of the log-linear of the electric size. Substituting such a rank’s growth rate into the

complexity analysis shown in (2.23) and (2.24), we will obtain linear complexity in

both memory and time. The rank numerically found is 12, 17, 28, and 49 respectively

for the four slab examples, whose growth rate with electrical size is clearly no greater

than linear.

In Fig. 4.8(a), we plot the factorization time with respect to N , for all three

different choices of εfill−in. It is clear that the smaller the εfill−in, the larger the

factorization time. However, the complexity remains the same as linear regardless

of the choice of εfill−in. In addition, the factorization time is not increased much by

93

10
4

10
5

10
6

10
7

10
1

10
2

10
3

10
4

Number of Unknowns (N)

F
a

c
to

ri
z
a

ti
o

n
 t

im
e

 (
s
)

ε
fill−in

=10
−6

ε
fill−in

=10
−4

ε
fill−in

=10
−2

(a)

10
4

10
5

10
6

10
7

10
−1

10
0

10
1

10
2

Number of Unknowns (N)

S
o

lu
ti
o

n
 t

im
e

 (
s
)

ε
fill−in

=10
−6

ε
fill−in

=10
−4

ε
fill−in

=10
−2

(b)

10
4

10
5

10
6

10
7

10
2

10
3

10
4

10
5

Number of Unknowns (N)

F
a

c
to

ri
z
a

ti
o

n
 M

e
m

o
ry

 (
M

B
)

ε
fill−in

=10
−6

ε
fill−in

=10
−4

ε
fill−in

=10
−2

(c)

Fig. 4.8.: Solver performance of a large-scale dielectric slab for different choices of

εfill−in. (a) Factorization time v.s. N . (b) Solution time v.s. N . (c) Memory v.s. N .

decreasing εfill−in. This is because the εfill−in is used to append the original cluster

bases with additional ones to capture the fill-ins’ contribution. When the number

of additional cluster bases added is small, the cost is still dominated by the original

number of cluster bases. The solution time and memory cost are plotted in Fig.

4.8(b), and Fig. 4.8(c) respectively. Obviously, both scale linearly with the number

of unknowns. The error of the proposed direct solution is measured by computing

the relative residual εrel = ||ZH2x− b||/||b||, where ZH2 is the input H2-matrix to be

solved. The relative residual εrel of the proposed direct solution is listed in Table 4.2

as a function of εfill−in. Excellent accuracy can be observed in the entire unknown

94

range. Furthermore, the accuracy can be controlled by εfill−in, and overall smaller

εfill−in results in better accuracy.

Table 4.2.: Direct solution error measured by relative residual, εrel, for the dielectric

slab example.

εfill−in 10−2 10−4 10−6

εrel (N=22, 560) 0.86% 0.19% 0.03%

εrel (N=89, 920) 1.32% 0.25% 0.057%

εrel (N=359, 040) 3.59% 1.88% 0.66%

εrel (N=1, 434, 880) 2.68% 1.05% 0.56%

Table 4.3.: Performance comparison between this solver with εfill−in = 10−5

and [14–16] for the dielectric slab example.

N 89,920 359,040

Factorization (s) [This] 353 1,662

Solution (s) [This] 1.68 7.07

Inversion (s) [14–16] 2.75e+03 1.65e+04

Relative Residual [This] 0.18% 0.40%

Inverse Error [14–16] 3.9% 7.49%

Comparison with direct solvers in [14–16]

Since this example is also simulated in our previous work [14–16], we have com-

pared the two direct solvers in CPU run time and accuracy. The εfill−in = 10−5 is

used. For a fair comparison, we set up this solver to solve the same H2-matrix solved

in [16], and also use the same computer. As can be seen from Table 4.3, the proposed

new direct solution takes much less time than that of [14–16]. The speedup is more

95

than one order of magnitude in large examples. Even though the factorization time

is shown, as can be seen from (4.32), the inversion time in the proposed algorithm is

similar to factorization time. In addition, because of a direct error control, the error

of the proposed solution is also much less than that of [14–16].

4.4.3 Large-scale Array of Dielectric Cubes

Simulation with proposed direct solution

2 4 6 8 10 12 14 16
0

20

40

60

80

100

Number of Array Elements

R
a

n
k

Numerical

Linear

Fig. 4.9.: Rank of the dielectric cube array example v.s. number of array elements.

Next, we simulate a large-scale array of dielectric cubes at 300 MHz. The relative

permittivity of the cube is εr = 4.0. Each cube is of size 0.3λ0 × 0.3λ0 × 0.3λ0.

The distance between adjacent cubes is kept to be 0.3λ0. The number of the cubes is

increased along the x-, y-, and z-direction simultaneously from 2 to 14, thus producing

a 3-D cube array from 2× 2× 2 to 14× 14× 14 elements. The number of unknowns

N is respectively 3,024, 24,192, 193,536, and 1,037,232 for these arrays. The leafsize

is 25 and η = 1. The εfill−in is chosen as 10−3, 10−4, and 10−5 respectively.

96

For the cubic growth of unknowns for 3-D problems, we observe that constant Csp

is not saturated until in the order of millions of unknowns, as can be seen from Table

4.4. It is thus important to analyze the performances of the proposed direct solver as

(Memory or Solution time)/Csp and (Factorization time)/C2
sp respectively.

Table 4.4.: Csp as a function of N for the dielectric cube array.

N 3,024 24,192 193,536 378,000 1,037,232

Csp 16 42 95 327 270

As for the rank of this example, we plot the maximal rank of each unknown case

in Fig. 4.9. It can be clearly seen that the rank’s growth rate with the number of

array elements, thereby electrical size, is no greater than linear. For such a growth

rate, the resultant complexities are given in (2.25) and (2.26). In Fig. 4.10(a) and

Fig. 4.10(b), we plot the direct factorization time normalized by C2
sp, and the storage

cost normalized with Csp with respect to N . As can be seen, their scaling rate with

N agrees very well with our theoretical complexity analysis regardless of the choice

of εfill−in. The relative residual εrel of the proposed direct solution is listed in Table

4.5 for this example, which again reveals excellent accuracy and error controllability

of the proposed direct solution.

Table 4.5.: Direct solution error measured by relative residual for the cube array.

εfill−in 10−3 10−4 10−5

εrel (N=3, 024) 0.27% 0.14% 0.09%

εrel (N=24, 192) 0.74% 0.31% 0.15%

εrel (N=193, 536) 2.22% 0.88% 0.36%

εrel (N=1, 037, 232) 5.32% 4.02% 1.3%

97

0 2 4 6 8 10 12

Number of Unknowns (N) ×105

0

0.5

1

H
2
 F

a
c
to

ri
z
a
ti
o
n
 T

im
e
/C

s
p

2
 (

H
) ×10-4

0

0.2

0.4

H
2
 S

o
lu

ti
o
n
 T

im
e
/C

s
p
 (

s
)Factorization

Solution

(a)

0 2 4 6 8 10 12

Number of Unknowns (N) ×105

0

50

100

150

200

M
e
m

o
ry

/C
s
p
 (

M
B

)

Matrix factorization

Matrix

(b)

Fig. 4.10.: Solver performance of a suite of cube arrays for different choices of

εfill−in. (a) Factorization time v.s. N . (b) Memory v.s. N .

Comparison with direct solvers in [14–16]

Since this example with dielectric constant εr = 2.54 is also simulated in our

previous work [16], we have compared the two direct solvers in CPU run time and

accuracy. As can be seen from Table 4.6, the proposed new direct solution again takes

much less time, while achieving better accuracy.

Table 4.6.: Performance comparison with [14–16] for the dielectric cube array

example.

N 3024 24,192 193,536

Factorization (s) [This] 4.24 52.6 503

Solution (s) [This] 0.03 0.3 3.07

Inversion (s) [14–16] 13.95 444.01 1.15e+04

Relative Residual [This] 0.04% 0.13% 0.13e%

Inverse Error [14–16] 0.9% 1.73% 3.03%

98

4.5 Conclusion

In this chapter, we develop fast factorization and inversion algorithms for general

H2 matrices. The key features of this new direct solution are its directly controlled

accuracy and low computational complexity. The entire direct solution does not in-

volve any approximation, except that the fill-in block is compressed to update the

cluster basis. However, this compression is well controlled by accuracy parameter

εfill−in. For constant-rank H2 matrices, the proposed direct solution has an O(N)

complexity in both time and memory. For rank growing with the electrical size lin-

early, the proposed direct solution has an O(N logN) complexity in factorization and

inversion, and O(N) in solution time and memory when solving VIEs. The proposed

direct solution has been applied to solve electrically large VIEs whose kernel is oscil-

latory and complex-valued, which has been difficult to solve. Millions of unknowns

are directly solved on a single core CPU in fast CPU run time. Comparisons with

state-of-the-art H2-based direct VIE solvers have demonstrated the accuracy of this

new direct solution as well as significantly improved computational efficiency. Being

a generic direct solution to an H2 matrix, this algorithm can also be applied to solve

other integral equations and partial differential equations.

99

5. DIRECT SOLUTION OF GENERAL H2-MATRICES

WITH CONTROLLED ACCURACY AND CONCURRENT

CHANGE OF CLUSTER BASES FOR

ELECTROMAGNETIC ANALYSIS

5.1 Introduction

Many fast solvers have been developed to solve large-scale electromagnetic prob-

lems [6, 18, 19, 21–25, 30, 35–37]. To meet real-world modeling and simulation chal-

lenges, there is a continued need to accelerate the computation as well as increase the

accuracy and modeling capabilities of existing computational electromagnetic meth-

ods.

Recently, in [38], a new fast direct solution algorithm with controlled accuracy

is developed for solving general H2 matrices. In this algorithm, the additions and

multiplications are performed as they are without using formatted operations. Each

operation is either exact or controlled by a prescribed accuracy. However, the cluster

bases of the original H2 matrix are appended with new ones to account for the fill-

in’s contributions. The resulting rank, i.e., the number of cluster bases can only be

higher than the original one instead of lower. If the cluster bases can be changed

based on the updated matrix obtained during the direct solution procedure, and with

prescribed accuracy, the resulting solver can be potentially more efficient. Despite

such an advantage, it is difficult to completely change the cluster bases during the

direct solution procedure, since the original nested structure can be ruined, and the

computational complexity would become very high.

In this chapter, we develop an efficient direct solution algorithm to overcome the

aforementioned challenge. The cluster bases of the original H2 matrix are completely

changed to a new set during the factorization procedure based on accuracy. Mean-

100

while, the complexity of the overall algorithm is not increased. As a result, the

updates to the original matrix during the direct solution procedure are efficiently and

accurately represented by the new cluster bases. The proposed new direct solver has

been applied to both static capacitance extraction and full-wave scattering analysis.

A clear O(N) complexity is observed in factorization, solution time, memory, and

with a strictly controlled accuracy for constant-rank H2 matrices. For variable-rank

H2 matrices like those commonly encountered in electrically large problems, the com-

plexity is also low, and can be analytically derived based on the rank’s behavior for a

given problem. The solver is also shown to outperform state-of-the-art direct solvers

in both accuracy and efficiency. The details of this algorithm are given in chapter

5.3. In addition, we have demonstrated the performance of the proposed new direct

solution by a large number of numerical experiments. Detailed comparisons with

state-of-the-art direct solvers in both accuracy and efficiency are also performed.

5.2 Proposed Direct Solution

The proposed direct solution is a one-way bottom-up tree traversal of the H2-tree.

At each tree level, the factorization proceeds across all clusters, and for each cluster

a partial factorization is performed. We also transform the matrix that remains to be

factorized in such a way that the computation is performed only on small matrices

of rank size at each tree level. The accuracy of every operation is either exact or

strictly controlled by desired accuracy. The whole algorithm is very different from

the recursive inverse and formatted multiplications performed in [8, 9]. To make the

proposed algorithm easier for understanding, we use the H2 matrix shown in Fig.

5.1(a) as an example to illustrate the overall procedure. However, the algorithm

presented here is generic applicable to any H2 matrix.

101

(a) (b) (c) (d) (e)

I

I
I

(f) (g) (h)

I

I
I

(i) (j)

II

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Fig. 5.1.: (a) An H2-matrix structure. (b) QH
1 ZQ1. (c) After partial LU of cluster

1. (d) After cluster basis 2 update. (e) QH
2 ZQ2. (f) After partial LU of cluster 2.

(g) H2 matrix after leaf-level elimination. (h) Merging to next level. (i) Ancestor

level structure. (j) Ancestor level QH
t ZQt.

5.2.1 Computation at Leaf Level

Denote the tree level of the leaf level to be L, the computations at level l = L

include the following steps:

• Let Zcur = Z. For each leaf cluster i, do:

1. Step 1. Change the original cluster basis Vi to a new cluster basis Ṽi to

account for fill-ins, for i > 1.

2. Step 2. Compute the complementary basis Ṽ
⊥
i to form Q̃i = [(Ṽ

⊥
i) (Ṽi)].

3. Step 3. Compute projected matrix QH
i ZcurQi.

4. Step 4. Perform a partial LU factorization to eliminate the first (#i − k)

unknowns of cluster i in Zcur = QH
i ZQi.

QH
i ZQi=

 Li′i′ 0

Fci′U
−1
i′i′ I

I 0

I F̃cc

Ui′i′ L−1i′i′Fi′c

0 I

 , (5.1)

102

• Update the coupling matrix of each admissible block at the leaf level

• Merge and permute the matrix to prepare for Zcur for next-level computation

The details of the aforementioned steps can be found in [38], and the overall procedure

is illustrated in Fig. 5.1. In [38], the cluster bases are updated by appending new

ones to the original set. Here, we propose an efficient algorithm to completely change

cluster bases as follows. To change cluster basis Vi to accommodate the matrix

updates, we first put all the i-related admissible matrix blocks into a single matrix

denoted by Zi. Since the cluster bases need to be nested, the i-related matrix blocks

include not only those admissible blocks formed at the same tree level as that of

cluster i, but also those admissible blocks formed by the parents of i at all upper

levels. Thus, we have

Zi =
[
Zi,j1 Zi,j2 ... ZL−1

ip,jp1
ZL−1
ip,jp2

... Zl0
ip,jp1

Zl0
ip,jp2

...
]
. (5.2)

where Zi,j1 ,Zi,j2 ... are admissible blocks at the tree level of cluster i, and the rest are

from upper levels; the superscript represents tree level, and L is the leaf level, while

l0 is the minimum level that has admissible blocks; the ip denotes cluster i’s parent

clusters at level l, and jp1, jp2...stand for the column cluster indices of the admissible

blocks formed with row cluster ip. To construct a new cluster basis for cluster i, we

compute the Gram matrix of Zi, which is

Zi,2 = ZiZ
H
i , (5.3)

The computation of Zi,2 appears to be expensive. In this work, we develop a fast

linear-time tree traversal algorithm to obtain Zi,2 efficiently. The detailed procedure

will be elaborated in chapter 5.3. After computing Zi,2, we then add the fill-in’s

contributions to update the cluster basis of cluster i by computing

Z̃i,2 = Zi,2 +
∑

m
Fi,jmFH

i,jm , (5.4)

where Fi,jm are fill-in blocks associated with the admissible blocks of cluster i. The

Z̃i,2 is a small matrix whose size is leafsize. We then perform an SVD on Z̃i,2, the

103

resultant singular vector matrix truncated based on accuracy εacc is the new cluster

basis for cluster i, denoted by Ṽi. Thus,

Z̃i,2
εacc≈ ṼiΣṼ

H

i . (5.5)

Hence, 5.5 can be obtained in constant complexity for each cluster using SVD. This

step is reflected in Fig. 5.1(d) where the light blue blocks are turned into green

admissible blocks for cluster 2.

5.2.2 Computation at Non-leaf Levels

At a non-leaf level l, the matrix to be factorized is of size 2l(2kl+1) by 2l(2kl+1),

as shown by the bottom right block in Fig. 5.1 (i). This is because it is formed

between 2l clusters at the non-leaf level l, and each block is of size 2kl+1 × 2kl+1.

Obviously, this matrix is again an H2 matrix, as shown by green admissible blocks

and red inadmissible blocks in Fig. 5.1 (j). The difference with the leaf level is that

each block, be its inadmissible or admissible, now is of size 2kl+1 × 2kl+1. Hence,

in the proposed direct solution algorithm, at each non-leaf level, the computation

is performed on the matrix blocks whose size is the rank at that level, and hence

efficient.

Take an admissible block formed between clusters t and s at non-leaf level l = L−1

an an example. These blocks are shown by the green blocks in Fig. 5.1 (j). Originally,

this block has a form of VtSt,sV
T
s . Due to the left multiplication with QH

t1
and QH

t2
,

and the right multiplication with Qs1 and Qs2 , where t1,2 and s1,2 are the two children’s

of t, and s respectively, this admissible block has been zeroed out in some of its rows

and columns, leaving the following part only:

(Admissible block)(L−1)t,s = Tnew
t St,s (Tnew

s)T , (5.6)

where

Tnew
t =

 Ṽ
H

t1
Vt1Tt1

Ṽ
H

t2
Vt2Tt2

 =

 BT
t1

Tt1

BT
t2

Tt2

 (5.7)

104

in which

Bi = VT
i Ṽi (5.8)

is the projection of the new leaf cluster basis of cluster i generated at the leaf level

onto the original cluster basis of cluster i. As can be seen from (5.7), BT
i can be

viewed as a modified cluster basis at the leaf level.

For an admissible block at a level l higher than L− 1, it has the following form

(Admissible block)lt,s = Tnew
t TL−2

t ...Tl
tSt,s

(
Tl
s

)T
...
(
TL−2
s

)T
(Tnew

s)T , (5.9)

where T without superscript new is the original transfer matrix, and the integer index

in the superscript denotes the tree level of the transfer matrix.

If we view the current non-leaf level L− 1 being computed as the leaf level of the

tree that remains to be factorized, then from (5.6) and (5.9), it can be seen that Tnew
t

is the new leaf-level cluster basis, while the transfer matrices at upper levels remain

the same as before. We also notice that the new leaf-level cluster basis Tnew
t is of

dimension O(2kl+1 × kl), whereas the St,s is of size O(kl × kl).

The above is for non-leaf level L − 1. For an arbitrary non-leaf level lc, we start

the computation from the following bottom-level (we can view it as current leaf level)

admissible blocks:

(Admissible block)(lc)t,s = Tnew
t St,s (Tnew

s)T , (5.10)

where

Tnew
t =

 T̃
new,H

t1
Tnew
t1

Tt1

T̃
new,H

t2
Tnew
t2

Tt2

 =

 BT
t1

Tt1

BT
t2

Tt2

 , (5.11)

in which

Bi = (Tnew
i)T T̃

new

i (5.12)

is the projection of the new cluster basis of cluster i generated at previous level (lc+1

level) onto the original cluster basis of cluster i at previous level (lc+1 level). Similar

to (5.9), for an admissible block at a level l higher than lc, it has the following form

(Admissible block)lt,s = Tnew
t Tlc−1

t ...Tl
tSt,s

(
Tl
s

)T
...
(
Tlc−1
s

)T
(Tnew

s)T , (5.13)

105

where T without superscript new is the original transfer matrix.

Since at every level, we are factorizing anH2 matrix, the computation at a non-leaf

level l follows what is done at the leaf level, which is summarized below:

• For each cluster i, do

1. Step 1. Change transfer matrix Tnew
i to a new T̃i to account for fill-ins

(algorithm described in Section 5.3)

2. Step 2. Compute the complementary basis T̃
⊥
i and build Q̃i

3. Step 3. Compute QH
i ZcurQi to introduce zeros into the admissible blocks

of i, which only involves the computation of O(Csp) blocks of rank size

4. Step 4. Let Zcur = QH
i ZcurQi. Perform a partial LU factorization of Zcur

to eliminate the first (2kl+1 − kl) unknowns in cluster i, where kl is the

rank of T̃i

• Update the coupling matrix of each admissible block at current level

• Merge and permute the matrix to prepare for Zcur, the matrix that remains to

be factorized

The aforementioned computation is continued level by level until we reach the minimal

level l = l0 that has admissible matrix blocks.

5.2.3 Overall Factorization

The overall procedure, results in the following factorization of Z:

Z = LU ,

L =

{∏l0

l=L

[(∏2l

i=1
Ql
iL

l
i

)
PT
l

]}
L,

U = U
{∏L

l=l0

[
Pl

(∏1

i=2l
Ul
iQ

l
i

T
)]}

.

(5.14)

In the above, Ql
i denotes Qi at level l. Each Ql

i has only one block that is not identity,

whose size is 2kl+1 × 2kl+1 at the non-leaf level, and leafsize × leafsize at the leaf

106

level. Each Ll
i has O(Csp) blocks of leafsize at the leaf level, and O(Csp) blocks

of O(kl+1) size at a non-leaf level. The same is true to Ul
i. The L and U without

sub- and super-scripts are the L and U factors of the final matrix that remains to

be factorized at level l0. The non-identity blocks in L and U are of size O(2l0kl0) by

O(2l0kl0). For l0 = 1, it is simply 2kl0 by 2kl0 . The Pl matrix is a permutation matrix

that merges small kl × kl matrices at level l to one level higher. The factorization

shown in (5.14) also results in an explicit form of Z’s inverse. We can solve the linear

equation Zx = B in two ways. One is to use the inverse to multiply right hand side

B. The other is to perform a forward and backward substitution based on (5.14), as

shown in [38].

5.3 Algorithm for Concurrent Change of Cluster Bases During Matrix

Factorization

In this section, we detail the proposed algorithm on how to change the cluster

basis concurrently with the matrix factorization, so that the update to the original

matrix during factorization can be accurately and efficiently represented.

Fig. 5.2.: Illustration of Zi for i = 1 and i = 4.

107

5.3.1 Concurrent Change of Cluster Bases at Leaf Level

At the leaf level, for each cluster, we assemble a Zi matrix as shown in (5.2), which

is repeated below for convenience of explanation:

Zi =
[
Zi,j1 Zi,j2 ... ZL−1

ip,jp1
ZL−1
ip,jp2

... Zl0
ip,jp1

Zl0
ip,jp2

...
]
. (5.15)

This is nothing but all the admissible blocks formed by cluster i at its tree level as

well as those in i’s parent levels. In Fig. 5.2, we give two examples: Zi for cluster

i = 1 highlighted in red rectangular box, and that for cluster i = 4 highlighted in blue

box. In [39–41], we used the admissible blocks in the original matrix to construct Zi.

In this case, Zi,jm and Zl
ip,jpm in (5.15) have the following expressions:

Zi,jm = ViSi,jmVT
jm (m = 1, 2, ..O(Csp)) (5.16)

Zl
ip,jpm = ViT

L−1
i ...Tl

iS
l
ip,jpmVT

jpm (l = L− 1, L− 2, ..., l0), (5.17)

where Tl
i denotes the transfer matrix associated with cluster i or its parent cluster at

level l.

We then compute Gram matrix, Zi,2, which is

Zi,2 = ZiZ
H
i . (5.18)

Due to the nested property of admissible blocks as can be seen from (5.17), Zi,2

can be efficiently obtained through a top-down tree traversal procedure. To explain,

substituting (5.16) and (5.17) into (5.15), and then (5.18), we obtain

Zi,2 = ViS
i
sumVH

i , (5.19)

where

Sisum =

S̃
i

sum l(i) = l0

S̃
i

sum + TiS
ip
sumTi

H l0 < l(i) ≤ L

(5.20)

in which l(i) denotes the tree level of cluster i, ip is the immediate parent cluster of

i, Ti denotes the transfer matrix between i and ip, l0 is the minimum level that has

admissible blocks, and

S̃
i

sum =

O(Csp)∑
j=1

Si,jBjB
H
j SHi,j, (5.21)

108

Fig. 5.3.: Illustration of top-down tree traversal for computing Sisum.

with

BjB
H
j = VT

j Vj = I (5.22)

for unitary cluster basis Vj. Obviously, S̃
i

sum includes all of the admissible blocks at

i’s own level, and Si,j are coupling matrices of these blocks. In contrast, the non-tilted

Sisum includes both S̃
i

sum and the aggregated contribution from i’s parent admissible

blocks, as can be seen from (5.20).

To compute (5.19) efficiently, we need to obtain Sisum for each cluster i, be it

nonleaf or leaf. To do so, as can be seen from (5.20), we need to first compute S̃
i

sum

for each cluster i. The S̃
i

sum can be obtained for all clusters i in linear time for

constant-rank H2 matrices, as the computational cost of (5.21) is O(Csp)k
3 for each

cluster, and there are in total O(N) clusters. After obtaining S̃
i

sum, based on (5.20),

the non-tilted Sisum for all non-leaf and leaf clusters can be obtained by performing

a top-down traversal of the cluster tree from level l0 down to the leaf level. This

procedure is illustrated in Fig. 5.3. First, starting from level l0 (which is the level of

cluster i = {1− 8} in Fig. 5.3), for a cluster i at this level, Sisum = S̃
i

sum, since there

are no parent-level admissible blocks. In Fig. 5.3, S{1−8}sum = S̃
{1−8}
sum . Such an Sisum is

then split to its two children clusters, which is to perform TiS
ip
sumTi

H for its left, and

right child cluster i respectively. As a result, the Sisum for the two children clusters

109

can be obtained. As can be seen from Fig. 5.3, S{1−4}sum is obtained by adding S̃
{1−4}
sum

with T{1−4}S
{1−8}
sum T{1−4}

H . Such a procedure continues until we reach the leaf level.

Since each split and addition operation of
(
+TiS

ip
sumTi

H
)

costs O(k3), and there are

O(N) clusters in the tree, the whole process of obtaining Sisum after S̃
i

sum is computed

also costs O(N) operations.

After computing Sisum, and thereby the Gram matrix shown in (5.19) for each leaf

cluster, we add the fill-in’s contributions as shown in (5.4). We then perform an SVD,

from which the new cluster basis of each leaf cluster is obtained. Since the matrix on

which SVD is performed is of leafsize, and there are O(N) such matrices, the total

cost of this step is also linear.

{1,2,3,4,5,6,7,8}

{1,2,3,4} {5,6,7,8}

{1,2} {3,4} {7,8}{5,6}

{1} {3}{2} {5}{4} {6} {8}{7}

Tree level=0

l=1

l=2

L=3

(a)

I

I

I

(b)

Fig. 5.4.: (a) H2-tree with eliminated and uneliminated nodes. (b) Zi matrix

(orange box) for i = 4.

However, during the factorization procedure, when eliminating a cluster i, among

all of its admissible blocks shown in (5.15), some have already been changed due

to the computation performed on previous clusters. To see this point clearly, take

cluster i = 4 shown in Fig. 5.4 (a) as an example. When this cluster is being

eliminated, clusters i = 1, 2, 3, colored in red, are already eliminated, while clusters

i = 5, 6, 7, 8, colored in black, are not eliminated yet. The admissible blocks formed

between cluster i = 4 and eliminated clusters, which are Z4,1 and Z4,2 shown in orange

box, are different from those in the original matrix, because cluster bases of i = 1, 2

110

have been changed, and the Z4,1 and Z4,2 blocks have been multiplied from the right

by Q1, and Q2 respectively.

If we number the clusters based on their elimination order in sequence, then,

for jm > i and jpm > ip, the admissible blocks Zi,jm and Zl
ip,jpm are formed with

uneliminated clusters. They have the same form as those shown in (5.16) and (5.17).

However, the admissible blocks Zi,jm and Zl
ip,jpm for jm < i and jpm < ip, i.e., those

formed with eliminated clusters are not the same as those in the original H2-matrix

Z anymore. Instead, they have the following form due to Q matrix multiplication

performed in Step 1 :

Z̃i,jm = ViSi,jmVT
jmṼjm (jm < i) (5.23)

Z̃
l

ip,jpm = ViT
L−1
i ...Tl

iS
l
ip,jpmVT

jpmṼjpm (jpm < ip). (5.24)

To highlight the fact that the aforementioned blocks are different from those in

the original matrix, in (5.23) and (5.24), we use Z̃ instead of Z to represent these

blocks. Similarly, we update (5.15) as follows to reflect the fact that some of the

underlying blocks have been changed.

Z̃i = [Z̃i,j1 Z̃i,j2 ...,Zi,jm , ..., Z̃
L−1
ip,jp1

Z̃
L−1
ip,jp2

...,ZL−1
ip,jm, ..., Z̃

l0

ip,jp1
Zl0
ip,jp2

...]. (5.25)

We then use (5.25) to compute the Gram matrix of Zi, which becomes

Zi,2 = Z̃iZ̃
H

i = ViS
i,new
sum VH

i , (5.26)

where

Si,newsum =

S̃
i,new

sum l(i) = l0

S̃
i,new

sum + TiS
ip,new
sum Ti

H l0 < l(i) ≤ L

(5.27)

Using nested property, the above can still be computed via a top-down tree traversal

procedure similar to Fig. 5.3. However, the S̃
i,new

sum now is different from (5.21). We

can divide the S̃
i,new

sum into two parts as

S̃
i,new

sum = S̃
i

sum,1 + S̃
i

sum,2. (5.28)

111

The first part, denoted by S̃
i

sum,1, is from the admissible blocks formed between cluster

i and eliminated clusters at i’s tree level, as shown in (5.23) and (5.24). The second

part, denoted by S̃
i

sum,2, is from the admissible blocks formed between cluster i and

uneliminated clusters, whose expressions are given in (5.16) and (5.17). For the first

part, since the admissible block has a form of (5.23), we compute it as

S̃
i

sum,1 =
∑
j(j<i)

Si,jB
new
j

(
Bnew
j

)H
SHi,j, (5.29)

where Bnew
j is the projection of the new cluster basis onto the original cluster basis

as shown below,

Bnew
j = VT

j Ṽj. (5.30)

For a non-leaf cluster j, using the nested property of cluster basis Vj, Bnew
j can be

computed from B of its two children clusters, Bnew
j1 and Bnew

j2 , which can be written as

Bnew
j =

[
TT

1 Bnew
j1 TT

2 Bnew
j2

]
. Here, T1 and T2 are the left and right transfer matrices

of a non-leaf cluster j. The Bnew
j is nothing but the rightmost part of (5.23) and

(5.24). Hence, (Bnew
j)T can be viewed as the new cluster basis for j. For the second

part, since the admissible block has its original form shown in (5.16), we have

S̃
i

sum,2 =
∑
j(j>i)

Si,jBjB
H
j SHi,j =

∑
j(j>i)

Si,jS
H
i,j. (5.31)

Like S̃
i

sum, the S̃
i,new

sum can be obtained for all clusters in linear time. However,

unlike S̃
i

sum, the S̃
i,new

sum cannot be generated in advance before the factoriza-

tion, since the updated admissible blocks formed by i are not known until

we reach the step of eliminating cluster i. Hence, S̃
i,new

sum should be generated

instantaneously during the factorization procedure, when it is time to eliminate clus-

ter i. The same holds true for the top-down process of splitting the parent cluster’s

Si,newsum to its children clusters to obtain Si,newsum for each cluster i. In what follows, we

use the cluster tree shown in Fig. 5.5 to illustrate the entire process of obtaining

Si,newsum for each leaf cluster.

We number leaf clusters from left to right as 1, 2, 3, ..., which is also the order of

elimination. For the first cluster i = 1, we first compute its S̃
i,new

sum , denoted by a circle

112

Fig. 5.5.: Illustration of the procedure for instantaneously computing Si,newsum .

around cluster i = 1 in Fig. 5.5. Since no clusters have been eliminated, S̃
i,new

sum is

the same as that in the original matrix, thus S̃
i

sum. We then check whether Sip,newsum

is known or not. Since the immediate parent cluster of i = 1 has not been updated

either in its admissible blocks, Sip,newsum = Sipsum. As a result, (5.27) can be readily

computed for cluster i = 1. The arrow from i = 1’s parent cluster to i = 1 represents

the (+TiS
ip,new
sum Ti

H) operation in (5.27), which is to split Sip,newsum to its child, and then

add it with the child’s S̃
new

sum.

For cluster i = 2, since when it is factorized, cluster i = 1 has been factorized, we

compute its S̃
i

sum,1 using (5.29), where Bnew
1 is employed. Meanwhile, we compute

its S̃
i

sum,2 using (5.31), which captures the admissible blocks formed between i = 2

and uneliminated clusters. The sum of the two makes S̃
i,new

sum , which can be different

from that in the original matrix, i.e., S̃
i

sum. Notice that considering all eliminated

and uneliminated clusters, there are at most O(Csp) clusters that can form admissible

blocks with a cluster. The step of computing S̃
i,new

sum for i = 2 is denoted by a circle

surrounding cluster i = 2 in Fig. 5.5. Since i’s immediate parent cluster ip has a

known Sip,newsum , which is equal to Sipsum, summing up the S̃
i,new

sum and the second term

113

in (5.27) (denoted by the red arrow pointing from i = 2’s parent to i = 2), we obtain

Si,newsum for cluster i = 2.

We then proceed to cluster i = 3. When this cluster is factorized, both clusters i =

1 and i = 2 have been factorized, we hence compute its S̃
i

sum,1 using (5.29), and S̃
i

sum,2

using (5.31), the sum of which makes S̃
i,new

sum . As for the parent cluster’s contribution

to i = 3, since now the parent cluster of clusters 1 and 2, cluster i = {1, 2}, has an

updated Bnew
i , S̃

{3,4},new
sum would have to be computed as it may be different from the

original one. Thus, we compute S̃
i,new

sum for i = 3’s parent cluster {3, 4}, the step of

which is denoted by the circle around {3, 4}, and then S{3,4},newsum can be found from

(5.27) by realizing that Sip,newsum = S{1,2,3,4}sum , which is cluster {1, 2, 3, 4}’s Ssum in the

original matrix. After S{3,4},newsum is found, the Si=3,new
sum can be readily computed by

splitting S{3,4},newsum ’s contribution to it, denoted by the arrow labeled as h.

For cluster i = 4, we first compute its S̃
4,new

sum . We then check whether its parent

cluster’s Snewsum is known or not, which turns out to be known since S{3,4},newsum has been

found when cluster i = 3 is computed. Thus, a single splitting of S{3,4},newsum to i = 4,

and adding it with S̃
4,new

sum yields S{4},newsum . This step is represented by the yellow arrow

in Fig. 5.5.

The algorithm shown in Algorithm 4 summarizes the overall procedure of in-

stantaneously computing Si,newsum for all leaf clusters. Basically, for an arbitary leaf

cluster i, we first compute its S̃
i,new

sum . We then check whether Sip,newsum is known or not.

If known, then using (5.27), the Si,newsum is obtained for leaf cluster i. If not, that means

ip’s admissible blocks have been changed, thus we compute ip’s S̃
new

sum. After that, we

move one level up and check whether the Snewsum is known for ip’s parent cluster. We

continue to do so until we reach the level where i’s parent cluster has a known Snewsum.

This cluster’s Snewsum is known either because it is the first cluster at that level, thus

Si,newsum is equal to the original Sisum, or because it is at the minimal level where admis-

sible block exists, and thus Si,newsum = S̃
i,new

sum , or because it has been obtained during

previous cluster computation. For example, for cluster i = 4 shown in Fig. 5.5, its

Sip,newsum is known from the computation done for cluster i = 3. As another example,

114

Algorithm 4 Proposed Algorithm for Computing Si,newsum for All Leaf Clusters

1: for cluster : i =1 to 2L do

2: Compute S̃
i,new

sum (using (5.28)).

3: l = l(i): Let l to be the tree level of cluster i

4: j = i

5: while Sparent(j),newsum is not known do

6: j = parent(j): Let next j be j’s parent

7: Compute S̃
j,new

sum .

8: end while

9: for l = l(j) to l(i)− 1 do

10: k = parent(i, l): Let k be i’s parent at level l

11: Compute Sk,newsum = S̃
k,new

sum + TkS
parent(k),new
sum Tk

H .

12: end for

13: Compute Si,newsum = S̃
i,new

sum + TiS
parent(i),new
sum Ti

H .

14: end for

115

for cluster i = 9, we have to reach its parent cluster at level L − 4, where Si,newsum is

known. After that, we perform a top down tree-traversal to split Si,newsum to children

clusters and compute the Si,newsum of children clusters level by level down until we reach

leaf level. The sequence of computation is marked in purple for cluster i = 9 using

letters from a to g.

In Fig. 5.5, a circle around a cluster denotes the computation of its S̃
i,new

sum , and

an arrow denotes a split and add operation from its parent Si,newsum . The sequence

of computation is also marked in letters from a to i for the computation of Si,newsum

for clusters from i = 1 to i = 4. Obviously it is different from that shown in Fig.

5.3, which is performed in advance before the matrix factorization. The procedure

shown in Fig. 5.5 is performed concurrently with the factorization. Thus, the S̃
i,new

sum

is computed based on the updated admissible blocks at the time when cluster i is fac-

torized. In Fig. 5.5, we also use different color to denote the computation associated

with the generation of Si,newsum for a leaf cluster i. For example, the circles and arrows

in red are the computations performed for cluster i = 5; and those in purple are the

computations performed for cluster i = 9. Since each arrow in Fig. 5.5 is associated

with a cost of O(k3), each circle is associated with a cost of O(k3)Csp, and there are

in total O(N) clusters in the tree, the overall cost is O(N).

Before we move to next level, we update the S̃
i,new

sum for each cluster which is now

S̃
i,new

sum,1 only as all clusters at the current level have been eliminated. After that, we

obtain Si,newsum for each cluster, which now can be performed based on the procedure

shown in Fig. 5.3 since every block is known. This Si,newsum will be used as the initial

Sisum to start the process of new cluster basis computation at the next non-leaf level.

5.3.2 Concurrent Change of Cluster Bases at a Non-Leaf Level

At a non-leaf level l, the computation of changing cluster bases is similar to that

at the leaf level, because we can view the current non-leaf level l as the new leaf level,

and the Tnew
t shown in (5.6) and (5.10) as new leaf level cluster bases. Meanwhile,

116

the coupling matrices at this level and up, and the transfer matrices at upper levels

all stay the same as those in the original matrix.

Similar to the leaf-level computation, for every cluster at level l (viewed as current

leaf level), we assemble all of the i-related blocks into Zi like (5.15), which includes the

i-related admissible blocks at not only i’s tree level but also i’s parent levels. Similar

to leaf level’s situation, some of the admissible blocks are formed between cluster i

and eliminated clusters, while the others are from uneliminated clusters. Notice that

now the row dimension of these blocks is only 2kl+1 as can be seen from (5.6). The

Gram matrix for non-leaf Zi can then be computed as

Zi,2 = ZiZ
H
i = Tnew

i Si,newsum Tnew,H
i (5.32)

where the Si,newsum is obtained using a process similar to that at the leaf level. The

procedure is illustrated in Fig. 5.6. Again, we instantaneously compute S̃
i,new

sum and

Si,newsum . Now, we have

Fig. 5.6.: Illustration of instantaneously computing Si,newsum during a non-leaf level

factorization.

S̃
i

sum,1 =
∑
j(j<i)

Si,jB
new
j

(
Bnew
j

)H
SHi,j, (5.33)

where Bnew
j is

Bnew
j =

(
Tnew
j

)T
T̃
new

j , (5.34)

117

and

S̃
i

sum,2 =
∑
j(j>i)

Si,jBjB
H
j SHi,j, (5.35)

with

Bj =
(
Tnew
j

)T
T
new

j . (5.36)

Here, different from (5.31), at a non-leaf level, BjB
H
j may not be identity any more.

We then add fill-in’s contributions to update the cluster basis of cluster i by

computing

Z̃i,2 = Zi,2 +
∑

m
Fi,jmFH

i,jm , (5.37)

where Fi,jm are fill-in blocks associated with the admissible blocks of cluster i. The

Z̃i,2 is a small matrix whose size is rank k. Its singular value decomposition (SVD)

can be readily performed. The resultant singular vector matrix truncated based on

prescribed accuracy εacc is the new transfer matrix T̃
new

i , thus

Z̃i,2,O(kl)×O(kl)

εacc≈ T̃
new

i Σ′T̃
new,H

i . (5.38)

The overall computational cost is again linearly proportional to the number of

clusters in the H2-tree being handled at level l. As a result, the overall computational

cost of changing cluster basis is O(2L−1) at tree level L−1, O(2L−2) at tree level L−2,

etc. Hence, the total computational cost is O(N).

5.4 Accuracy and Complexity Analysis

The accuracy of the proposed direct solution is controlled by εacc. This is different

from [8, 9], since it is directly controlled. As can be seen from previous sections,

there are no approximations involved in the proposed solution, except that when we

change the cluster bases to account for the contribution from the fill-ins, we use (5.5)

to truncate the singular vectors at the leaf level, and (5.38) to truncate the singular

vectors at a non-leaf level. The accuracy of this step is controlled by parameter εacc,

which can be set to any desired value.

118

From (5.14), it is evident that the whole computation involves Ql
i, Ll

i, and Ul
i

for cluster i at level l, the storage and computation of each of which are respectively

O(k2l), and O(k3l) at a non-leaf level, and constant at the leaf level. Since there

are O(N) clusters in a tree, the total cost of generating these factors is linear for

constant-rank H2 matrices. As for the permutation matrix Pl, it is sparse involving

only O(2l) integers to store at level l, and hence having an O(N) cost in both memory

and time. The change of the cluster basis costs O(N) in time and memory also as

analyzed in Section 5.3. As a result, the time and memory complexity of the proposed

direct solution is linear for constant-rank H2 matrices. For variable-rank H2, the

complexity of the proposed direct solution can also be analytically derived based on

rank’s behavior.

5.5 Numerical Results

The accuracy and complexity of the proposed direct solver are examined by per-

forming both capacitance extraction and full-wave electromagnetic analysis of large-

scale structures.

5.5.1 Two-Layer Cross Bus

The first example is a 2-layer cross bus structure in a uniform dielectric, as shown

in [9]. In each layer, there are m conductors, and each conductor has a dimension of

1×1×(2m+1) m3. We simulate a suite of such structures with m = 16, 32, 64, 128 and

512 respectively, whose number of unknowns N is respectively 17,152, 67,072, 265,216,

1,055,232 and 4,206,592. The parameters used in the proposed direct solver are

leafsize = 20, η = 1, and εH2 = 1e− 4 for H2-matrix construction, and εacc = 1e− 8

for direct solution. The resultant rank in the H2 matrix as well as the proposed direct

solution is found to be a constant no greater than 5 at each tree level. FastCap [35]

and the O(N) inverse solver in [9] are also used to simulate the same example. The

expansion order used in FastCap is 3. In Fig. 5.7(a), we compare the total CPU run

119

time of the three solvers as a function of N . Clear linear scaling can be observed

from the proposed direct solver and that of [9], and also the proposed direct solver is

shown to take less CPU time. We also compare the memory usage of the three solvers

shown in Fig. 5.7(b). The fast H2-inverse solver keeps original H2-matrix memory,

which need least memory. The proposed solver costs only slightly more memory

than fast H2-inverse method due to cluster basis change during factorization, while

both of them are much more memory efficient than FastCap. We have also used the

capacitance matrix extracted from FastCap with expansion order 3 as the reference to

compare the accuracy of the proposed direct solver with that of the fast H2-inverse.

The error is assessed by ||C−Cref ||/||Cref ||, where Cref is from FastCap, and C is

from either this direct solver or fast H2-inverse. As can be seen from Fig. 5.7(c), the

proposed direct solver exhibits better accuracy while using less CPU time.

5.5.2 On-Chip Interconnects

We have also performed a full-wave VIE simulation of on-chip interconnects. A

suite of large-scale on-chip bus structures from a 4 × 4 to 64 × 64 are simulated at

30 GHz, with an x-polarized incident electric field. The conductivity of the metal is

5.8× 107 S/m. The dimensions of each bus are 1µm× 1µm× 20µm. The horizontal

distance between the centers of two neighboring buses is 20µm. And the vertical

distance is 40µm. Each bus is discretized into 322 unknowns. The total number of

unknowns ranges from 5,152 to 1,318,912. For theH2 tree construction, we set leafsize

to be 25 and η = 1, with εH2 = 10−4. The accuracy parameter for controlling the

direct solution is set to be εacc = 10−4. In Fig. 5.8(b), we compare the memory cost

versus N of [38] with this new solver. In Fig. 5.8(a), we compare factorization time as

a function of N . Clear linear complexities can be observed in CPU time and memory

consumption for both solvers. However, in [38], the cluster bases are appended instead

of completely changed during matrix factorization. The same accuracy parameter

10−4 is used to append the original cluster bases to take into account the fill-ins

120

0 1 2 3 4 5

Number of Unknowns (N) 106

0

500

1000

1500

2000

2500

3000

T
im

e
 (

m
in

)

FastCap

Fast H2 Inverse

This Direct Solver

(a)

0 1 2 3 4 5

Number of Unknowns (N) 106

0

20

40

60

80

M
e
m

o
ry

 (
G

B
)

FastCap

This Direct Solver

Fast H2 Inverse

(b)

0 1 2 3 4 5

Number of Unknowns (N) 106

0.01

0.015

0.02

0.025

0.03

0.035

0.04

C
a
p
a
c
it
a
n
c
e
 M

a
tr

ix
 E

rr
o
r

Fast H2 Inverse

This Direct Solver

(c)

Fig. 5.7.: Capacitance extraction of a two-layer cross bus interconnect. (a) Time

complexity. (b) Memory complexity. (c) Capacitance matrix error.

contribution during the factorization. To be specific, after deducting the fill-in blocks

component in the original space of cluster bases from the fill-in block, we truncate the

remainder using 10−4 tolerance to determine additional cluster bases to append. As

can be seen from Fig. 5.8(b) and Fig. 5.8(a), this new direct solver with a concurrent

change of the cluster basis is computationally more efficient. The accuracy of the

proposed direct solver is assessed by relative residual and listed in Table 5.1. Excellent

accuracy can be observed in the entire unknown range.

121

Table 5.1.: Direct solution error measured by relative residual εrel for the full-wave

VIE interconnect simulation example.

N 5152 20,608 82,432 329,728 1,318,912

This solver 1.008e-5 1.005e-5 1.004e-5 1.003e-5 1.002e-5

0 5 10 15

Number of Unknowns (N) 105

0

1

2

3

4

5

H
2
 F

a
c
to

ri
z
a

ti
o

n
 T

im
e

 (
m

in
)

Append bases

Change bases

(a)

0 5 10 15

Number of Unknowns (N) 105

0

1

2

3

4

M
e

m
o

ry
 (

G
B

)

Append bases

Change bases

(b)

Fig. 5.8.: Solver performance of lossy on-chip buses. (a) Factorization time v.s. N .

(b) Memory v.s. N .

5.5.3 Large-scale Dielectric Slab

We then simulate a dielectric slab with εr = 2.54 at 300 MHz, which is also

simulated in [15]. The thickness of the slab is fixed to be 0.1λ0. The width and

length are simultaneously increased from 4λ0, 8λ0, 16λ0, to 32λ0. With a mesh

size of 0.1λ0, the resultant N ranges from 22,560 to 1,434,880 for this suite of slab

structures. The leafsize is chosen to be 25 and η = 1. The εacc is set to be 10−2, 10−4,

and 10−6 respectively to examine the solution accuracy, computational complexity,

and error controllability of the proposed direct solution.

In Fig. 5.9(a), we plot the factorization time with respect to N , for all three

different choices of εacc. It is clear that the smaller the εacc, the larger the factorization

time. However, the complexity remains the same as linear regardless of the choice of

122

0 5 10 15

Number of Unknowns (N) 105

0

50

100

150

200

250

F
a

c
to

ri
z
a

ti
o

n
 t

im
e

 (
m

in
) 1E-6

1E-4

1E-2

(a)

0 5 10 15

Number of Unknowns (N) 105

0

10

20

30

40

50

F
a

c
to

ri
z
a

ti
o

n
 M

e
m

o
ry

 (
G

B
)

1E-6

1E-4

1E-2

(b)

Fig. 5.9.: Solver performance of a suite of dielectric slab for different choices of εacc.

(a) Factorization time v.s. N . (b) Memory v.s. N .

εacc. The memory cost are plotted in Fig. 5.9(b) respectively. Obviously, both scale

linearly with the number of unknowns. The error of the proposed direct solution is

measured by computing the relative residual εrel = ||ZH2x − b||/||b||, where ZH2 is

the input H2 matrix in the equation to be solved. The relative residual εrel of the

proposed direct solution is listed in Table 5.2 as a function of εacc. Excellent accuracy

can be observed in the entire unknown range. Furthermore, the accuracy can be

controlled by εacc, and overall smaller εacc results in better accuracy.

Table 5.2.: Direct solution error measured by relative residual, εrel, for the dielectric

slab example.

εacc 10−2 10−4 10−6

εrel (N=22, 560) 0.0290 0.0014 0.0002

εrel (N=89, 920) 0.0311 0.0021 0.0010

εrel (N=359, 040) 0.0368 0.0056 0.0033

εrel (N=1, 434, 880) 0.0471 0.0113 0.0020

123

Since this example is also simulated in our previous work [15, 16], we have com-

pared the two direct solvers in CPU run time and accuracy. The εacc = 10−4 is used.

For a fair comparison, we set up this solver to solve the same H2 matrix solved in [16],

and also use the same computer. As can be seen from Table 5.3, the proposed new

direct solution takes much less time than that of [15, 16], which is direct H2-matrix

inversion. The speedup is about one order of magnitude in large examples. In addi-

tion, because of a direct error control, the error of the proposed solution is also much

less than that of [15, 16].

Table 5.3.: Performance comparison between this solver with εacc = 10−4 and [15,16]

for the dielectric slab example.

N 89,920 359,040

Factorization (s) [This] 358 1676

Solution (s) [This] 1.59 6.76

Inversion (s) [15, 16] 2.75e+03 1.65e+04

Relative Residual [This] 0.21% 0.56%

Inverse Error [15,16] 3.9% 7.49%

5.5.4 Large-scale Array of Dielectric Cubes

We also simulate a large-scale array of dielectric cubes at 300 MHz. The relative

permittivity of the cube is εr = 4.0. Each cube is of size 0.3λ0 × 0.3λ0 × 0.3λ0. The

distance between adjacent cubes is kept to be 0.3λ0. The number of the cubes is

increased along the x−, y−, and z− directions simultaneously from 2 to 14, thus

producing a 3-D cube array from 2 × 2 × 2 to 14 × 14 × 14 elements. The number

of unknowns N is respectively 3,024, 24,192, 193,536, and 1,037,232 for these arrays.

During the construction of H2 matrix, we set leafsize = 25, η = 1 and εH2 =

10−4. The εacc is chosen as 10−3, 10−4, and 10−5 respectively. The time and memory

124

0 2 4 6 8 10 12

Number of Unknowns (N) 105

0

1

2

3

4

5

F
a

c
to

ri
z
a

ti
o

n
 t

im
e

/C
s
p

2
 (

m
in

)

10-3

1E-4

1E-3

(a)

0 2 4 6 8 10 12

Number of Unknowns (N) 105

0

0.05

0.1

0.15

0.2

F
a

c
to

ri
z
a

ti
o

n
 M

e
m

o
ry

/C
s
p
 (

G
B

)

1E-4

1E-3

(b)

Fig. 5.10.: Solver performance of a suite of cube array from 2× 2× 2 to

14× 14× 14. (a) Time scaling v.s. N . (b) Memory scaling v.s. N .

performance is shown in Fig. 5.10(a) and Fig. 5.10(b) and the errors are shown in

Table 5.4. In Fig. 5.10(a) and Fig. 5.10(b), we plot the direct factorization time

Table 5.4.: Direct solution error measured by relative residual for the cube array

example.

N 3024 24192 193536 1037232

1E-3 0.0110 0.0258 0.0378 0.1641

1E-4 0.0012 0.0033 0.0048 0.0282

normalized by C2
sp, and the storage cost normalized with Csp with respect to N . As

can be seen, their scaling rate with N agrees very well with our theoretical complexity

analysis regardless of the choice of εacc.

5.6 Conclusion

In this chapter, we develop a new direct solution for generalH2 matrices. This new

direct solution not only features a directly controlled accuracy, but also a complete

125

change of cluster basis that is done concurrently with the factorization to efficiently

represent the update to the original H2 matrix. The complexity of the overall direct

solution, however, is still kept linear for constant-rank H2 matrices by developing

fast algorithms. Millions of unknowns are directly solved on a single core CPU in

fast CPU run time. Comparisons with state-of-the-art H2-based direct solvers have

demonstrated the accuracy of this new direct solution as well as significantly improved

computational efficiency. Being a generic direct solution to an H2 matrix, this work

can also be applied to solve other integral equations and partial differential equations.

126

6. FAST H2-BASED ALGORITHMS FOR DIRECTLY

SOLVING SPARSE MATRIX IN LINEAR COMPLEXITY

6.1 Introduction

Prevailing sparse matrix solvers for solving large-scale electromagnetic problems

are iterative solvers. Although the original finite-element matrix is sparse, thus one

matrix-vector multiplication only costs O(N), the computational complexity of it-

erative finite-element solvers depends on the number of iterations, the number of

right hand sides, and the cost of preconditioners. Since the L and U factors as well

as the inverse of a sparse matrix are generally dense, the optimal complexity of a

direct FEM solution in exact arithmetic has been found to be O(N2), where N is

matrix size. In [42], a linear-complexity direct finite-element solver is developed for

large-scale electromagnetic analysis with controlled accuracy. This solver takes ad-

vantage of the sparse linear algebra, and meanwhile accelerates all the dense matrix

computations incurred during the direct solution procedure by H-matrix-based fast

techniques. An H matrix, unlike H2 matrices [7], does not have a nested represen-

tation. The resultant computational complexity is, in general, higher than that of

an H2-based nested algorithm. However, it is challenging to develop an H2-based

direct solution for sparse matrices since to take advantage of the zeros in the orig-

inal matrix, we cannot treat the entire sparse matrix as an H2 matrix and directly

invert or factorize it. If we do so, many more fill-ins will be introduced in the L

and U factors, which makes the resultant direct solver slower than prevailing direct

sparse solvers such as multifrontal methods. However, leveraging the framework of

the multifrontal solver and accelerating all the dense frontal matrix computations is

challenging, since every node in the elimination tree has its own structure, and it is

difficult to communicate between different H2 matrices while keeping the computa-

127

Fig. 6.1.: H2-tree of a node (separator or domain) in the elimination tree.

0
2d

1
2d

0
2s

2
2d

3
2d

1
2s

2
2s

3
2s

0
2d

1
2d

2
2d

3
2d

(a) (b)

0
1d

1
1d

0
1s

0
0d

0
2s

1
2s

0
1s

Fig. 6.2.: (a) Nested dissection. (b) Elimination tree.

tion nested across the elimination tree. In this work, we successfully overcome this

challenge and develop a linear complexity H2-based direction solution to reduce the

complexity of directly solving an FEM matrix to linear. Numerical experiments have

demonstrated its performance.

6.2 Proposed Direct Solution

We partition the unknowns using nested dissection since such a scheme minimizes

fill-ins in the factorization. This partition is shown in Fig. 6.2(a), which yields

128

an elimination tree shown in Fig. 6.2(b), where domains are at the leaf level, and

separators are at the non-leaf levels. The size of the separators increases from the

leaf level to the root level of the elimination tree. For large separators close to root

level, we perform a binary bisection for fast computation. The proposed direct sparse

matrix solution is a bottom-up traversal of the elimination tree. In the levels close

to leaf level, where the separator size is small, we perform direct LU factorization on

those separators (nodes in the elimination tree). For each node n in the elimination

tree, we first find its boundary nodes, the set of which is denoted by b. This set

includes all unknowns that have a crosstalk with the unknowns in set n. We then

form the frontal matrix of node n and LU factorize this frontal matrix asYnn Ynb

Ybn Ybb

 =

 Lnn 0

HnbU
−1
nn I

I 0

0 Ỹbb

Unn L−1nnYnb

0 I

 . (6.1)

It is known that the frontal matrix becomes denser and denser during the elimination

procedure because of fill-ins generated from the factorization of previous nodes. In

order to speed up the factorization, we first construct an H2 matrix representation

of Ynn, Ynb, and Ybn. This starts from a level lb, where the node size is small, and

hence the computational cost is a constant. Then at levels above lb, there is no need to

construct anH2 matrix from full matrices, as the computations at previous levels have

already been carried out in H2-format. The H2-tree of a node n in the elimination

tree is illustrated in Fig. 6.1. An example of the H2-based frontal matrix is shown

in Fig. 6.3(a), where all green blocks are admissible, and red ones are inadmissible.

The conventional factorization of 6.1 costs cube complexity. We develop a fast H2-

factorization algorithm to compute 6.1 in linear complexity, and also to make the

resultant Schur complement, i.e., fill-ins in the Ybb, be represented in H2-format and

conformal to the H2-structure of the b nodes. Notice that these b nodes are located

in the levels above the level of n in the elimination tree, and each of which has its

own tree like that shown in Fig. 6.1. In addition, often the fill-ins are only added to

a portion of the blocks in the node contained in b, rather than the entire block of the

node. Different from the dense matrix scenario, here, we cannot completely factorize

129

n

n

b

b

n

n

b

b

n

n

b

b

n

n

b

b

(a) (b)

(c) (d)

Fig. 6.3.: (a) H2-based frontal matrix of a node n. (b) Frontal matrix after leaf-level

factorization of Ynn. (c) Frontal matrix merged after leaf-level factorization of Ynn.

(d) Illustration of fill-ins in Ybb.

the entire frontal matrix since only the Ynn part is ready for factorization. Hence, we

go through the H2-tree of node n only, and factorize Ynn level by level with the fast

H2-algorithm developed in this work. Take the leaf level of node n as an example,

to zero out the rows in the admissible blocks of leaf cluster t of node n, we also need

to consider the admissible blocks in Ynb. The computations at the leaf level of node

130

n hence include the following steps. Let Ycur = Ynn. For each leaf cluster i, do the

following steps: 1) Change the original cluster basis of Vi to a new cluster basis Ṽi to

account for fill-ins in both Ynn and Ynb. (2) Compute the complementary basis Ṽ
⊥
i

and build Q̃i = [(V⊥i)#i×(#i−kl) (Vi)#i×kl] (3) Compute QiYcurQi to introduce zeros

into admissible blocks, which only involves the computation of O(Csp) inadmissible

blocks. (4) Let Ycur = QiYcurQi. Perform partial LU factorization of Ycur to

eliminate the first unknowns in cluster i, where ki is the rank of Ṽi. Finally, update

the coupling matrix of each admissible block at the leaf level; Merge and permute the

matrix to next level. At the end of the leaf-level computation, we obtain a matrix

shown in Fig. 6.3(b), which is then merged to become a matrix shown in Fig. 6.3(c).

Before we factorize this matrix, we have to prepare for cluster bases for clusters in b.

Otherwise, the fill-ins, i.e.,Ycur,bnYcur,nb in Fig. 6.3(c) would have to be performed

on the size of b, which is large. For every cluster in b, we consider all the fill-in

blocks in b’s admissible as well as inadmissible blocks (which are red blocks of low

rank now) as shown in Fig. 6.3(c). We use them to generate the cluster basis for

the clusters in b. After this operation, we are able to accurately collect the partially

factorized Ycur,bn and Ycur,nb to rank size and then compute fill-ins. We also append

the newly generated cluster basis to the existing ones in b so that the H2 matrix for

the nodes to be eliminated after node n can be readily assembled. When we reach the

root level of elimination tree, we do a root level H2-LU factorization. After we finish

the factorization, we perform forward and backward substitution using the factors

obtained to solve matrix equation. Since each step is computed either in rank size

or leafsize, the overall complexity is smaller than that of [42]. This is because the

non-nested H-based computation in [42] involves the row and column dimensions of

underlying matrix blocks, which are larger than rank.

131

6.3 Numerical Results

The proposed sparse direct solver is then tested on both Laplacian matrix and

FEM matrix.

6.3.1 Laplacian Matrix

The first example is Laplacian matrix ∇2Φ = 0 on a 3-D cube grid with side grid

length from 20 to 160. The resulting unknown size is from 8, 000 to 4, 096, 000. As

shown in figure 6.4, the proposed solver outperforms state of the art direct sparse

solver in both factorization time and memory. From the test results in our group [42],

the Pardiso solver from Intel is the most efficient one among state-of-the-art sparse

direct solvers. So the comparison with Pardiso shows that our proposed solver is

much more efficient and also obtains linear complexity.

0 1 2 3 4 5

Number of Unknowns (N) 106

0

1

2

3

4

5

F
a

c
to

ri
z
a

ti
o

n
 T

im
e

 (
s
)

104

Multifrontal

PARDISO

Proposed

(a)

0 1 2 3 4 5

Number of Unknowns (N) 106

0

0.5

1

1.5

2

M
e

m
o

ry
 (

M
B

)

105

Multifrontal

PARDISO

Proposed

(b)

Fig. 6.4.: Solver performance of a 3-D cube grid as comparison of state of the art

direct sparse solver. (a) Factorization time v.s. N . (b) Memory v.s. N .

We also checked the accuracy of proposed solver at different εfill−in = 1E−4, 1E−

6, 1E− 8. The relative residual of proposed direct sparse solver is plotted in Fig. 6.5.

132

0 1 2 3 4 5

Number of Unknowns (N) 106

10-6

10-5

10-4

10-3

10-2

R
e

la
ti
v
e

 r
e

s
id

u
a

l

1E-4

1E-6

1E-8

(a)

Fig. 6.5.: Solver relative residual of a 3-D cube grid.

6.3.2 FEM Matrix of Dielectric Slab

A dielectric object is discretized into a tetrahedron mesh with a mesh size of

wavelength over 10 at frequency of 300MHz. The dielectric constant is 2.54. We

then increase the size of the object, resulting in N from 64, 641 to 1, 026, 561. The

leafsize is 10, and the factorization accuracy is set as 1e− 6 in the proposed direct

sparse solver. The FEM formulation is as shown in chapter 1.2.2. In Fig. 6.6, we

draw the factorization, solution time and memory as a function of N . Clear linear

scaling can be observed. We also list the relative residual error in Table 6.1.

Table 6.1.: Direct sparse solver error measured by relative residual.

N 64,641 257,281 1,026,561

Relative residual 3.494E-2 5.568E-2 8.537E-3

133

0 2 4 6 8 10 12

Number of Unknowns (N) 105

0

50

100

150

200

F
a

c
to

ri
z
a

ti
o

n
 T

im
e

 (
s
)

0

1

2

3

4

5

6

S
o

lu
ti
o

n
 T

im
e

 (
s
)

(a)

0 2 4 6 8 10 12

Number of Unknowns (N) 105

0

500

1000

1500

2000

2500

3000

3500

M
e

m
o

ry
 (

M
B

)

(b)

Fig. 6.6.: Solver performance of FEM matrix on a dielectric slab. (a) Factorization

and solution time v.s. N . (b) Memory v.s. N .

6.4 Conclusion

A new nested direct sparse matrix solution is developed for directly solving the

sparse system matrix in linear complexity. In this solver, we accelerate all dense

matrix computations underlying the state-of-the-art multifrontal based direct solver

by developing fast H2-based algorithms. Each computation is performed on small

matrices of rank size, which is also the rank of the separator instead of the rank of

the original 3-D problem. Direct solutions of millions of unknowns in a few minutes

on a single CPU core have demonstrated the superior performance of the proposed

direct finite element solver.

134

7. NEW HSS MATRIX INVERSION WITH DIRECTLY

CONTROLLED ACCURACY

7.1 Introduction

State-of-the-art fast IE solvers have significantly reduced the computational com-

plexity of dense matrix-vector multiplications from O(N2) to O(NlogN) for solving

electrically large problems [15]. Due to the fundamental difference between wave

physics and static physics, it is challenging to further reduce the complexity. Re-

cently, a VIE solver with O(N) matrix-vector multiplication and O(NlogN) matrix

inversion has been successfully developed for electrically large analyses [16], and a

subsequent fast H2-inversion algorithm. The inversion is observed to involve approx-

imate arithmetic, although its accuracy can be controlled.

In this chapter, we develop a new HSS recursive inverse with directly controlled

accuracy. In this new direct solver, we first represent the dense VIE system matrix

by an HSS matrix with controlled accuracy. The HSS matrix is then inverted with

directly controlled accuracy. An HSS matrix [28] has only one admissible block for

each node in the cluster tree, which can be viewed as a special class ofH2 matrix. This

representation is feasible because as long as the sources are separated from observers,

there exists a low-rank representation irrespective of electrical size. In mathemati-

cal literature, a fast HSS factorization algorithm has been developed for symmetric

positive definite (SPD) matrices [28]. In this work, we develop new HSS inversion

algorithms for solving general HSS matrices. The proposed algorithm also preserves

the HSS matrix structure during the direct solution procedure. And by updating

the cluster bases, we are able to control the accuracy of proposed direct solution and

achieve machine precision via keeping the original rank. The resultant direct VIE

solver is shown to have O(NlogN) complexity in inversion, O(N) complexity in so-

135

lution and memory for solving electrically large problems, which are also numerically

demonstrated.

(a)

T T

2 3 1VS V

T T

5 6 4VS V

T

1 3 2VS V

T

4 6 5VS V

T

4 41 1

7

5 52 2

VTVT
S

VTVT

T

4 4 1 1T

7

5 5 2 2

VT VT
S

VT VT

1F

2F

4F

5F

(b)

Fig. 7.1.: Illustration of an HSS matrix (a)tree. (b) A two-level matrix.

7.2 Proposed Algorithm

The HSS system matrix G can be rewritten as

G =

G11 G12

G21 G22

 . (7.1)

In the above equation, we know G11 and G22 are full matrices or nonleaf matrices,

while G12 and G21 are low-rank admissible matrices in the HSS matrix structure.

For the matrix shown in equation 7.1, we can recursively obtain its inverse by using

the Matrix Inversion Lemma [43]

G−1 =

G−111 + G−111 ×G12 × S−1 ×G21 ×G−111 −G−111 ×G12 × S−1

−S−1 ×G21 ×G−111 S−1

 (7.2)

where S−1 = G22 −G21 ×G−111 ×G12. The above recursive inverse can be realized

level by level by the follow steps,

136

1. HSS-inverse(G11, X11);

2. G21 ×G11 → X21, G11 ×G12 → X12;

3. G22 −X21 ×G12 → G22;

4. HSS-inverse(G22, X22);

5. −G22 ×X21 → G21,−X12 ×G22 → G12;

6. G11 −G12 ×X21 → G11.

in which the G that is different from the original G is underlined. The underlined G

is overwritten by G−1 in the recursive computation.

As can be seen from the six steps in the above, we compute the inverse level by

level. We start from the root level. We descend the block cluster tree of G all the way

to the leaf level. At each level, we perform a number of matrix-matrix multiplications.

For leaf level blocks, we perform a normal full matrix inverse.

Here, we show how to accurately invert HSS matrix by updating cluster bases

and transfer matrices during the inverse procedure. We will use the example HSS

matrix in Fig. 7.1(b) to illustrate the computations at leaf level and nonleaf level.

7.2.1 Leaf Level

At the leaf level, we first compute the dense matrix inverse of GL
11, which is

F1 matrix in Fig. 7.1(b). Then we compute two matrix-matrix multiplications as

GL
21 ×GL

11 → XL
21, GL

11 ×GL
12 → XL

12, where the GL
11 is the inverse of the original

GL
11. Because the GL

21 and GL
12 are low-rank admissible blocks, we have.

XL
21 = GL

21 ×GL
11 = V2 × S21 × (VT

1 ×GL
11)

XL
12 = GL

11 ×GL
12 = (GL

11 ×V1)× S3 ×VT
2 .

(7.3)

137

As can be seen from the above equation, the XL
21 and XL

12 are also low-rank admissible

blocks. In order to calculate the two products accurately, we need to update the

cluster bases of cluster 1 by

Ṽ1 = orth(GL
11 ×V1). (7.4)

The original cluster bases V1 is then updated to Ṽ1 and the updated rank is bounded

by the original rank. The products hence can be accurately represented using the

updated cluster basis as

XL
21 = V2 × (ST3 ×VT

1 ×GL
11 × Ṽ1)× Ṽ

T

1

XL
12 = Ṽ1 × (Ṽ

T

1 ×GL
11 ×V1 × S3)×VT

2 .
(7.5)

Since the row and column cluster bases are known or generated, the computation of

the above is to compute the matrices in the parentheses, which are the two coupling

matrices: S21×VT
1 ×GL

11×Ṽ1 as the coupling matrix of XL
21; and Ṽ

T

1 ×GL
11×V1×S12

as the coupling matrix of XL
12. Since the two are transpose of each other, only one

needs to be computed. This is done by computing (GL
11)collect = Ṽ

T

1 × GL
11 × V1,

which can be viewed as collecting GL
11 block using the original cluster bases as the

column bases, and the updated ones as the new row bases. The computational cost is

just O(k3). Then we multiply the collected block with the original coupling matrix,

the cost of which is also O(k3).

Next, we proceed to compute updated GL
22 block as GL

22 − XL
21 × GL

12. At leaf

level, this can be readily done by converting the two admissible matrices XL
21 and GL

12

to full matrices and perform full matrix multiplication. The computational cost is

O(leafsize3), a constant. We then calculate the inverse matrix of the updated GL
22

by normal full matrix inverse.

Now we come to computer the following two products

GL
21 = −GL

22 ×XL
21 = (−GL

22 ×V2)× S21 × Ṽ
T

1

GL
12 = −XL

12 ×GL
22 = −Ṽ1 × S12 × (VT

2 ×GL
22),

(7.6)

which are shown as Step 5 in the procedure given at the beginning of this section.

The two make the GL
21 and GL

12 in the inverse matrix. As can be seen, they remain

138

to be admissible as their counterparts in the original G. However, the cluster bases

2 should be updated as Ṽ2 = orth(GL
22 ×V2). Using the new cluster bases, we can

rewrite (7.6) as the following

GL
21 = Ṽ2 × (−Ṽ

T

2 ×GL
22 ×V2 × S21)× Ṽ

T

1

GL
12 = Ṽ1 × (−S12 ×VT

2 ×GL
22 × Ṽ2)× Ṽ

T

2 ,
(7.7)

where we can first compute (GL
22)collect = Ṽ

T

2 × GL
22 × V2, then multiply it with

coupling matrix S21, the computation cost of which is O(k3). The computation of

(7.7) only involves the new coupling matrix computation, which is the matrix shown

in the parentheses of (7.7).

In Step 6, we calculate GL
11 = GL

11 −GL
12 ×XL

21. At leaf level, this can be readily

done by converting admissible blocks GL
12 and XL

21 to full matrices. Now we obtain

the inverse of G11 at the (L− 1)-th level, which is

GL−1
11 =

 F̃1 Ṽ1 × S̃12 × Ṽ
T

2

Ṽ2 × S̃
T

21 × Ṽ
T

1 F̃2

 (7.8)

and continue the computation to the non-leaf level.

7.2.2 Nonleaf Level

The computation at nonleaf levels l is similar to that at the leaf level. We need to

collect the nonleaf blocks correctly to perform multiplications. For nonleaf level, we

only need to perform six matrix-matrix multiplications, which can be reduced to the

computation of four matrix-matrix multiplications using symmetry. The step-by-step

multiplications are given as follows.

Since Step 1 has been performed at previous level, the computation starts from

Step 2 of the procedure, where Gl
21×Gl

11 → Xl
21, and Gl

11×Gl
12 → Xl

12 are computed.

Here, again the Gl
21 and Gl

12 are the low-rank admissible blocks in the original G.

139

But the Gl
11 block is a nonleaf matrix block, as shown in (7.8). Rewriting it for a

non-leaf level l, we have

Gl
11 =

 F1 Ṽ1 × S3 × Ṽ
T

2

Ṽ2 × ST3 × Ṽ
T

1 F2.

 . (7.9)

Since this block is used for computing Gl
11 ×Gl

12, i.e., it will be back multiplied by

V1, we can first project (collect) it to a small matrix of 2k × 2k size using the row

cluster bases of Ṽ1 and the column cluster bases of V1. The collected Gl
11 has the

following form

(Gl
11)collect =

Ṽ
T

1 × F1 ×V1 S3 × Ṽ
T

2 ×V2

ST3 × Ṽ
T

1 ×V1 Ṽ
T

2 × F2 ×V2

 =

(Gl+1
11)collect S3 ×B2

ST3 ×B1 (Gl+1
22)collect

 .
(7.10)

Here we use B to denote cluster bases product, which are B2 = Ṽ
T

2 ×V2 and B1 =

Ṽ
T

1 ×V1. Since the (GL
11)collect and (GL

22)collect blocks has already been collected at

the leaf level, we only need to merge the four small k×k blocks to obtain (Gl
11)collect.

The G12 block in Fig. 7.1(b) is

Gl
12 =

 V1T1

V2T2

× S7 ×

 V4T4

V5T5

T . (7.11)

Since the product Gl
11 × Gl

12 → Xl
12 will result in a different transfer matrix, for

accuracy we need to update the transfer matrix as follows T̃1

T̃2

 = orth

(
(Gl

11)collect ×

 T1

T2

). (7.12)

With the transfer matrix T updated to T̃, we compute

Xl
12 =

 Ṽ1T̃1

Ṽ2T̃2

×(
 T̃1

T̃2

T × (Gl
11)collect×

 T1

T2

×S7

)
×

 V4T4

V5T5

T , (7.13)

which is also a nonleaf admissible block with nested cluster bases. The computation

in the above equation can be performed efficiently by using collected (Gl
11)collect as

(Gl
11)collect =

 T̃1

T̃2

T × (Gl
11)collect ×

 T1

T2

 . (7.14)

140

Then the computation of (7.13) only involves collected block matrix and coupling

matrix, whose size is k× k. The resulting computational cost is O(k3). Similarly, we

use the symmetry property to get Xl
21, whose coupling matrix is the transpose matrix

of coupling matrix in Xl
12.

Then we need to calculate Gl
22 − Xl

21 × Gl
12 and store it in original Gl

22 block.

Here Xl
21 and Gl

12 are admissible blocks, for which we only need to calculate the

coupling matrices product. We call this product of Xl
21 and Gl

12 an auxiliary block

R. However, at a nonleaf level l, Gl
22 is a non-leaf block, apparently, we have to

split the R block representing Xl
21 ×Gl

12 all the way down to the leaf blocks of Gl
22

to obtain its Schur complement, and thereby the inverse. However, in this way, the

complexity cannot be linear. We address this problem by developing a procedure of

simultaneous splitting and inverse of the Gl
22, where the splitting is performed based

on the sequence of the inverse computation of G22 such that only one splitting is

needed between a parent block and its direct children block. Since the inverse is

recursive, in order to compute the inverse of the nonleaf block Gl
22, we need to first

compute the inverse of Gl
22’s 11 child block. In general, 11 is also a nonleaf block,

in order to compute its inverse, we again need to split the auxiliary block R in the

11 block, respectively, to their children. This process continues until 11 becomes

full matrix, the inverse of which can be directly computed. In this procedure, we

only need to do one split operation from the current level to the children that is one

level down, and the auxiliary blocks can be added together due to different level’s

computation to process only once.

The computation of the inverse of Gl
22 is similar to that of Gl

11 after the con-

tribution of the Schur-complement is added. We need to update the cluster bases

of V4 and V5 as shown in Fig. 7.1(b) in a similar way as we update cluster bases

V1 and V2. After we get the inverse of Gl
22, we need to compute two products

as −Gl
22 × Xl

21 → Gl
21,−Xl

12 × Gl
22 → Gl

12. Similarly, we only need to calculate

141

−Gl
22×Xl

21 due to symmetry property. The product is also an admissible block, the

computation of which is done by first generating

(Gl
22)collect =

Ṽ
T

4 × F4 ×V4 S6 × Ṽ
T

5 ×V5

ST6 × Ṽ
T

4 ×V4 Ṽ
T

5 × F5 ×V5

 =

(Gl+1
11)collect S6 ×B5

ST6 ×B4 (Gl+1
22)collect

 .
(7.15)

The transfer matrix is then updated as T̃4

T̃5

 = orth

(
(Gl

22)collect ×

 T4

T5

). (7.16)

Then the output GL
21 block is

Gl
21 =

 Ṽ4T̃4

Ṽ5T̃5

×(
 T̃4

T̃5

T ×(Gl
22)collect×

 T4

T5

×ST7

)
×

 Ṽ1T̃1

Ṽ2T̃2

T . (7.17)

The computation in the above equation only involves collected matrix and coupling

matrix multiplication, the cost of which is O(k3). And the collected matrix block is

(Gl
22)collect =

 T̃4

T̃5

T × (Gl
22)collect ×

 T4

T5

 . (7.18)

The final step at a nonleaf level is to calculate Gl
11 = Gl

11 − Gl
12 × Xl

21, which

is similar to Gl
22 computation. Since Gl

12 and Xl
21 are low-rank admissible blocks,

we first compute their auxiliary product R. We store the auxiliary block R in Gl
11,

without splitting it all the way down to the leaf blocks. Because if we do so, the

complexity cannot be linear. At the end of the inverse, we perform a one-way top-

down tree traversal to split all the R blocks associated with G11 level by level until

we reach the leaf level. Since G11’s inverse is involved in the subsequent computa-

tion, this R block is added upon the collected G11 at level l to do the block matrix

multiplication with G12 at level l. We conclude the algorithm in the above discussion

in the pseudocode shown in Algorithm 5.

The overall computation involves updating cluster bases and collecting dense

blocks at leaf level and nonleaf blocks at nonleaf level to perform multiplications.

142

Algorithm 5 Proposed new HSS-inverse, (G, X) (G is input matrix, output G is

its inverse, X is for temporarily storage)

1: if matrix G is a nonleaf matrix block then

2: Split auxiliary block R if it’s in G11

3: HSS-inverse(G11, X11)

4: Update cluster bases or transfer matrices using G11

5: G21 ×G11 → X21, G11 ×G12 → X12,

6: G22 −X21 ×G12 → G22,

7: Split auxiliary block R if it’s in G22

8: HSS-inverse(G22, X22)

9: Update cluster bases or transfer matrices using G22

10: −G22 ×X21 → G21,−X12 ×G22 → G12,

11: G11 −G12 ×X21 → G11,

12: else

13: DirectInverse(G)(normal full matrix inverse)

14: end if

15: Backward transformation after inverse procedure

At each tree level l, there are 2l clusters to be computed, each of which costs O(k3),

where k is the rank at level l. The resulting complexity is clearly O(N) for constant

rank or rank that changes logarithmically with electrical size. For electrodynamic

analysis, the rank grows linearly with electrical size for general 3-D problems. In a

VIE, k is proportional to the cubic root of matrix size at level l, because this is the

electrical size at level l. Hence for a VIE, the time complexity is

Time Complexity =
L∑
l=0

2l

[(
N

2l

) 1
3

]3
= O(NlogN), (7.19)

and the memory complexity is

Memory Complexity =
L∑
l=0

2l

[(
N

2l

) 1
3

]2
= O(N). (7.20)

143

7.3 Numerical Results

In order to demonstrate the accuracy and low computational complexity of the

proposed new HSS recursive inverse for general HSS matrices, we use HSS matrices

resulting from large-scale capacitance extraction and volume integral equations (VIE)

for electromagnetic analysis for both circuit and scattering applications.

7.3.1 Two-layer Cross Bus

The first example is the capacitance extraction of a 2-layer cross bus structure. In

each layer, there are m conductors, and each conductors has a dimension of 1× 1×

(2m+ 1) m3. We simulate a suite of such structures with 8, 16, 32, 64, and 128 buses

respectively. The parameters used in the H2-matrix construction are leafsize = 30,

admissibility condition [7] η = 1, and cluster bases truncation at 10−4. As shown in

Fig. 7.2, the proposed new HSS inverse has linear time and memory performance

with different unknown size N . We also check the inverse residual error as shown in

Table 7.1. The proposed new HSS inverse has machine precision with the rank being

the same as the original HSS matrix.

0 2 4 6 8 10 12

Number of unknowns (N) ×105

0

5

10

15

20

H
S

S
 i
n

v
e

rs
e

 t
im

e
 (

s
)

(a)

0 2 4 6 8 10 12

Number of unknowns (N) ×105

0

100

200

300

400

500

600

700

H
S

S
 i
n

v
e

rs
e

 m
e

m
o

ry
 (

M
B

)

(b)

Fig. 7.2.: New HSS inverse performance for 2-layer bus array example. (a) Time

performance. (b) Memory performance.

144

Table 7.1.: New HSS inversion relative residual for 2-layer bus array.

N 4,480 17,152 67,072 265,216 1,054,720

Relative residual 4.41E-15 6.27E-15 7.28E-15 1.52E-14 1.52E-14

7.3.2 Dielectric Cube Array

We then simulate a large-scale dielectric cube array incident by a plane wave at

3e+5 Hz. The number of array elements simulated is from 2× 2× 2 to 16× 16× 16,

with 1 m spacing between adjacent cubes. The N ranges from 3,024 to 1,548,288. In

Fig. 7.3, we plot the time and memory complexity with unknown N. The complexities

are shown to agree very well with theoretical prediction. And the relative residual

errors remains almost constant at 10−15 order as shown in Table 7.2.

0 2 4 6 8 10 12

Number of unknowns (N) ×105

0

5

10

15

20

H
S

S
 i
n

v
e

rs
e

 t
im

e
 (

s
)

(a)

0 2 4 6 8 10 12

Number of unknowns (N) ×105

0

100

200

300

400

500

600

700

H
S

S
 i
n

v
e

rs
e

 m
e

m
o

ry
 (

M
B

)

(b)

Fig. 7.3.: New HSS inverse performance for cube array at 3e+5 Hz. (a) Time

performance. (b) Memory performance.

145

Table 7.2.: New HSS inversion relative residual for cube array at 3e+5 Hz.

N 3,024 24,192 193,536 1,548,288

Relative residual 1.51E-15 1.49E-15 1.50E-15 1.50E-15

We also simulate a large-scale dielectric cube array from 2× 2× 2 to 8× 16× 16

elements at 3e+8 Hz, whose unknown number N is from 3,024 to 774,144. Each

cube is of size 0.3 × 0.3 × 0.3 m3. The dielectric constant is 2.54 and the leafsize

used is 378. The center-to-center distance between cube elements is set to keep the

admissibility parameter η constant. In Fig. 7.4, we plot the inverse time and memory

as a function of N. A clear linear scaling with N is observed. And the relative residual

errors are very small as shown in Table 7.3.

0 2 4 6 8 10 12

Number of unknowns (N) ×105

0

5

10

15

20

H
S

S
 i
n

v
e

rs
e

 t
im

e
 (

s
)

(a)

0 2 4 6 8 10 12

Number of unknowns (N) ×105

0

100

200

300

400

500

600

700

H
S

S
 i
n

v
e

rs
e

 m
e

m
o

ry
 (

M
B

)

(b)

Fig. 7.4.: New HSS inverse performance for cube array at 3e+8 Hz. (a) Time

performance. (b) Memory performance.

Table 7.3.: New HSS inversion relative residual for cube array at 3e+8 Hz.

N 3,024 24,192 193,536 774,144

Relative residual 1.73E-15 2.37E-15 3.84E-15 4.17E-15

146

7.4 Conclusion

In this chapter, we propose a new HSS recursive inverse with directly controlled

accuracy. The inverse matrix has the same structure as original HSS matrix, but

the content is completely changed. Instead of performing formatted multiplications,

we update the cluster bases of the inverse HSS matrix to accurately represent the

inversion. Numerical results involving capacitance extraction and scattering analysis

show that the proposed new algorithm is error controllable, and it can reach machine

precision.

147

8. SUMMARY AND FUTURE WORK

8.1 Summary

The following is a summary of the contributions of this work:

8.1.1 Accuracy Controlled H2-Matrix-Matrix Product With Appended

Cluster Bases in Linear Complexity

In this work, we develop a method to calculate the H2-matrix-matrix product

with controlled accuracy in linear complexity. Instead of projecting the product onto

existing cluster bases, we update the cluster bases by appending to the original cluster

bases while calculating the matrix product. This product H2-matrix structure can

be preserved or changed based on two multipliers.

8.1.2 Rank-Minimized and Structure-Kept H2-Matrix-Matrix Product in

Linear Complexity with Controlled Accuracy

In this work, we propose a new algorithm to do the H2 matrix-matrix multipli-

cation with controlled accuracy and also preserve the original H2-matrix structure,

which is determined by admissibility condition. The cluster bases are completely

changed instead of being appended to existing ones based on the prescribed accuracy

during the computation of the matrix-matrix product. Meanwhile, we are able to

keep the computational complexity to be linear.

148

8.1.3 Accuracy Directly Controlled Fast Direct Solution of General H2-

Matrices

In this work, we develop a new fast direct solution for general H2 matrices, in-

cluding both factorization and inversion. During the factorization of H2-matrices, we

append new cluster bases to the original ones to account for the contributions of the

fill-ins introduced due to elimination of previous clusters. This solution has a directly

controlled accuracy, while still achieving the linear computational complexity.

8.1.4 Direct Solution of General H2-Matrices with Controlled Accuracy

and Concurrent Change of Cluster Bases for Electromagnetic Anal-

ysis

In this work, we develop a new fast direct solution for general H2 matrices with

completely new cluster bases. During the factorization of H2-matrices, we compute

the cluster bases for the factorized matrices and inversion based on prescribed accu-

racy. So the resulting matrix’s rank is minimized. The cluster bases are completely

different from the cluster bases of the original H2-matrix.

8.1.5 Fast H2-Based Algorithms for Directly Solving Sparse Matrix in

Linear Complexity

In this work, a new nested direct sparse matrix solution is developed for directly

solving sparse system matrix in linear complexity. In this solver, we accelerate all

dense matrix computations underlying the state-of-the-art multifrontal based direct

solver by developing fast H2-based algorithms. Each computation is performed on

small matrices of rank size, which is also the rank of the separator instead of the rank

of the original 3-D problem. Direct solutions of millions of unknowns in a few minutes

on a single CPU core have demonstrated the superior performance of the proposed

direct sparse solver.

149

8.1.6 New HSS Recursive Inverse with Directly Controlled Accuracy

In this work, we propose a new way to calculate the inverse matrix of HSS-

matrices. Instead of doing formatted multiplications and additions, whose accuracy

is not controllable, we propose to calculate the new cluster cluster bases for the

inversion. Furthermore, the inversion keeps original HSS-matrix structure and we

are able to control the inversion accuracy.

8.2 Future Work

The presented dissertation also leads to possible research directions as listed below:

1. The new accuracy controlled and structure kept H2-matrix-matrix product in

chapter 2 and 3 can be used to develop new error-controlledH2-matrix recursive

inverse.

2. Further reduction on computational complexity will be pursued for solving elec-

trically large surface and volume IEs in order to achieve a strict O(N) complex-

ity for large-scale electrodynamic analysis.

3. Employing hardware acceleration techniques, like parallelization on the H2-

matrix based direct solvers and H2-matrix-matrix product so as to further re-

duce the computational time.

4. Various applications of this work will be conducted, such as the analysis of

larger-scale realistic integrated circuits and scattering problems.

REFERENCES

150

REFERENCES

[1] W. Hackbusch and K. B., “A sparse matrix arithmetic based on H-matrices.
Part I: Introduction to H-matrices,” Computing, vol. 62, pp. 89–108, 1999.

[2] ——, “A sparse matrix arithmetic. Part II: Application to multi-dimensional
problems,” Computing, vol. 64, pp. 21–47, 2000.

[3] B. S., G. L., and H. W., Hierarchical Matrices. Lecture Note 21 of the Max
Planck Institute for Mathematics in the Sciences, 2003.

[4] S. Borm, Efficient Numerical Methods for Non-local Operators: H2-Matrix Com-
pression Algorithms, Analysis. Zurich, Switzerland: European Math. Soc., 2010.

[5] V. Rokhlin, “Diagonal forms of translation operators for the helmholtz equation
in three dimensions,” Appl. Comput. Harmon. Anal., vol. 1, pp. 82–93, Dec 1993.

[6] W. C. Chew, J. M. Jin, E. Michielssen, and J. M. Song, “Fast and efficient
algorithms in computational electromagnetics,” Norwood, MA: Artech House,
2001.

[7] S. Börm, “H2-matrix arithmetics in linear complexity,” Computing, vol. 77, pp.
1–28, 2006.

[8] W. Chai, D. Jiao, and C. C. Koh, “A direct integral-equation solver of linear
complexity for large-scale 3D capacitance and impedance extraction,” in Proc.
46th ACM/EDAC/IEEE Design Automat. Conf., July 2009, pp. 752–757.

[9] W. Chai and D. Jiao, “Dense matrix inversion of linear complexity for integral-
equation based large-scale 3-D capacitance extraction,” IEEE Trans. MTT,
vol. 59, no. 10, pp. 2404–2421, October 2011.

[10] ——, “An LU decomposition based direct integral equation solver of linear com-
plexity and higher-order accuracy for large-scale interconnect extraction,” IEEE
Trans. Adv. Packag., vol. 33, no. 4, pp. 794–803, Nov 2010.

[11] ——, “Direct matrix solution of linear complexity for surface integral-equation
based impedance extraction of complicated 3-D structures,” Proceedings of the
IEEE, special issue on Large Scale Electromagnetic Computation for Modeling
and Applications, vol. 101, pp. 372–388, Feb 2013.

[12] ——, “Linear-complexity direct and iterative integral equation solvers acceler-
ated by a new rank-minimized-representation for large-scale 3-D interconnect
extraction,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 8, pp. 2792–2805,
Aug 2013.

151

[13] S. Omar and D. Jiao, “A linear complexity direct volume integral equation solver
for full-wave 3-D circuit extraction in inhomogeneous materials,” IEEE Trans.
Microw. Theory Techn., vol. 63, no. 3, pp. 897–912, Mar 2015.

[14] ——, “An O(N) iterative and O(NlogN) direct volume integral equation solvers
for large-scale electrodynamic analysis,” the 2014 International Conference on
Electromagnetics in Advanced Applications (ICEAA), Aug 2014.

[15] ——, “Minimal-rank H2-matrix based iterative and direct volume integral equa-
tion solvers for large-scale scattering analysis,” Proc. IEEE Int. Symp. Antennas
Propag., Jul 2015.

[16] ——, “O(N) iterative and O(NlogN) fast direct volume integral equation solvers
with a minimal-rank H2-representation for large-scale 3-D electrodynamic anal-
ysis,” http://arxiv.org/abs/1703.01175, Mar 2017.

[17] P. G. Martinsson and V. Rokhlin, “A fast direct solver for scattering problems
involving elongated structures,” J. Comput. Phys., vol. 221, pp. 288–302, 2007.

[18] J. Shaeffer, “Direct solve of electrically large integral equations for problem sizes
to 1 m unknowns,” IEEE Trans. Antennas Propag., vol. 56, no. 8, pp. 2306–2313,
Aug 2008.

[19] R. J. Adams, Y. Xu, X. Xu, J. Choi, S. D. Gedney, and F. X. Canning, “Modular
fast direct electromagnetic analysis using local-global solution modes,” IEEE
Trans. Antennas Propag., vol. 56, no. 8, pp. 2427–2441, Aug 2008.

[20] E. Winebrand and A. Boag, “A multilevel fast direct solver for em scattering
from quasi-planar objects,” Proc. Int. Conf. Electromagn. Adv. Appl., pp. 640–
643, Sept 2009.

[21] L. Greengard, D. Gueyffier, P. G. Martinnson, and V. Rokhlin, “Fast direct
solvers for integral equations in complex three-dimensional domains,” Acta Nu-
merica, vol. 18, pp. 243–275, May 2009.

[22] A. Heldring, J. M. Rius, J. M. Tamayo, J. Parron, and E. Ubeda, “Multiscale
compressed block decomposition for fast direct solution of method of moments
linear system,” IEEE Trans. Antennas Propag., vol. 59, no. 2, pp. 526–536, Feb
2011.

[23] A. Freni, P. D. Vita, P. Pirinoli, L. Matekovits, and G. Vecchi, “Fast-factorization
acceleration of MoM compressive domain-decomposition,” IEEE Trans. Anten-
nas Propag., vol. 59, no. 12, pp. 4588–4599, Dec 2011.

[24] ——, “Fast direct solver for essentially convex scatterers using multilevel non-
uniform grids,” IEEE Trans. Antennas Propag., vol. 62, pp. 4314–4324, 2014.

[25] H. Guo, Y. Liu, J. Hu, and E. Michielssen, “A butterfly-based direct integral
equation solver using hierarchical LU factorization for analyzing scattering from
electrically large conducting objects,” arXiv preprint arXiv:1610.00042, 2016.

[26] S. Ambikasaran and E. Darve, “The inverse fast multipole method,” arXiv:
1407.1572, 2014.

152

[27] P. Coulier, H. Pouransari, and E. Darve, “The inverse fast multipole method: us-
ing a fast approximate direct solver as a preconditioner for dense linear systems,”
arXiv: 1508.01835v2, 2016.

[28] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, “Fast algorithms for hierar-
chically semiseparable matrices,” Numerical Linear Algebra with Applications,
vol. 17, pp. 953–976, 2010.

[29] A. B. Manić, B. M. Notaros̆, F. Rouet, and X. S. Li, “Efficient EM scattering
analysis based on MoM, HSS direct solver, and RRQR decomposition,” Proc.
IEEE Int. Symp. Antennas Propag., Jul 2015.

[30] A. B. Manić, A. Smull, B. M. Notaros̆, F. Rouet, and X. S. Li, “Efficient scalable
parallel higher order direct MoM-SIE method with hierarchically semiseparable
structures for 3d scattering,” IEEE Trans. AP, Feb 2017.

[31] D. H. Schaubert, D. R. Wilton, and A. W. Glisson, “A tetrahedral modeling
method for electromagnetic scattering by arbitrarily shaped inhomogeneous di-
electric bodies,” IEEE Trans. Antennas Propag., vol. 32, no. 1, pp. 77–85, 1984.

[32] W. Chai and D. Jiao, “Theoretical study on the rank of integral operators for
broadband electromagnetic modeling from static to electrodynamic frequencies,”
IEEE Trans. Compon. Packag. Manuf. Technol., vol. 3, no. 12, pp. 2113–2126,
Dec 2013.

[33] M. Ma and D. Jiao, “Accuracy controlled 〈2-matrix-matrix product in linear com-
plexity and its applications,” 2018 IEEE International Symposium on Antennas
and Propagation & USNC URSI National Radio Science Meeting, Jul 2018.

[34] ——, “Accuracy-controlled and structure-preserved 〈2-matrix-matrix product in
linear complexity,” 2018 International Conference on Electromagnetics in Ad-
vanced Applications (ICEAA), Sep 2018.

[35] K. Nabors and J. White, “Fastcap: A multipole accelerated 3-D capacitance
extraction program,” IEEE Trans. on CAD, vol. 10, no. 11, pp. 1447–1459, Nov
1991.

[36] Z. Zhu, B.Song, and J.White, “Algorithms in fastimp: A fast and wide- band
impedance extraction program for complicated 3-D geometries,” in Proc. 40th
Design Automat. Conf., 2003, pp. 712–717.

[37] W. Shi, J. Liu, N. Kakani, and T. Yu, “A fast hierarchical algorithm for 3-D
capacitance extraction,” IEEE Trans. on CAD, pp. 330–336, 2002.

[38] M. Ma and D. Jiao, “Accuracy directly controlled fast direct solution of gen-
eral H2-matrices and its application to solving electrodynamic volume integral
equations,” IEEE Trans. MTT, vol. 66, no. 1, pp. 35–48, Aug 2017.

[39] ——, “Accuracy controlled direct integral equation solver of linear complexity
with change of basis for large-scale interconnect extraction,” IEEE MTT-S In-
ternational Microwave Symposium (IMS2018), Jun 2018.

[40] ——, “Direct solution of general H2-matrix with controlled accuracy and change
of cluster bases for large-scale electromagnetic analysis,” IEEE MTT-S Interna-
tional Conference on Numerical Electromagnetic and Multiphysics Modeling and
Optimization (NEMO2018), Aug 2018.

153

[41] ——, “Linear-complexity direct integral equation solver with explicit accu-
racy control for large-scale interconnect extraction,” Appl. Comput. Electromag.
(ACES), Mar 2018.

[42] B. Zhou and D. Jiao, “Direct finite element solver of linear complexity for large-
scale 3-d electromagnetic analysis and circuit extraction,” IEEE Trans. MTT,
vol. 63, no. 10, pp. 3066–3080, Oct 2015.

[43] H. Boltz, “Matrix inversion lemma,” Wikipedia 2011, p. [Online], Avail-
able:https://en.wikipedia.org/wiki/Invertible matrix.

VITA

154

VITA

Miaomiao Ma received the B.S. degree in electronic engineering and information

science from the University of Science and Technology of China, Hefei, China, in 2014.

Since 2014, she has been working toward the Ph.D. degree at Purdue University, West

Lafayette, IN, USA. She is with the School of Electrical and Computer Engineering,

Purdue University, as a member of the On-Chip Electromagnetics Group. Her cur-

rent research interests include computational electromagnetics, fast and high-capacity

numerical methods and scattering analysis.

Ms. Ma was the recipient of an Honorable Mention Award of the IEEE Interna-

tional Symposium on Antennas and Propagation in 2016 and 2018. She also received

the Best Student Paper Award from the IEEE International Conference on Wireless

Information Technology and Systems (ICWITS) and Applied Computational Elec-

tromagnetics (ACES) in 2016.

