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GLOSSARY

GPU – Graphical Processing Unit. A single/multi chip processor with multiple, rendering

cores that can process millions of instructions per second.

Machine Learning - It is the ability of a machine to learn from the data and is used for the

purpose of decision making.

Deep Learning - It is a study that involves working on sequential data or finding patterns

from large amount of data for use in decision making.

UAVs - An aerial vehicle that can autonomously fly and can be piloted remotely with

minimum human intervention.
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ABSTRACT

Following a natural disaster, one of the most important facet that influence a persons

chances of survival/being found out is the time with which they are rescued. Traditional

means of search operations involving dogs, ground robots, humanitarian intervention; are

time intensive and can be a major bottleneck in search operations. The main aim of these

operations is to rescue victims without critical delay in the shortest time possible which

can be realized in real-time by using UAVs. With advancements in computational devices

and the ability to learn from complex data, deep learning can be leveraged in real time

environment for purpose of search and rescue operations. This research aims to solve the

traditional means of search operation using the concept of deep learning for real time

object detection and Photogrammetry for precise geo-location mapping of the

objects(person,car) in real time. In order to do so, various pre-trained algorithms like

Mask-RCNN, SSD300, YOLOv3 and trained algorithms like YOLOv3 have been

deployed with their results compared with means of addressing the search operation in

real time.
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CHAPTER 1. INTRODUCTION

This chapter gives a brief introduction to the research study conducted. First, we

present a background on floods, followed by a brief description of the problem statement,

the scope of the study and the significance of it.

1.1 Floods

Hydrological natural disasters such as floods, flash floods, debris flow are a typical

example of fast-developing disaster. Since it is a fast process, the disaster management

team gets little time and information to assess the seriousness and scale of it. Cities that

are based in the low-lying plains get seriously affected and can leave people trapped

thereby reducing their chances of survival with the course of time. Therefore, the areas

that get inundated by floods need to be mapped in such a way so that precise search

operations can be maximized. In these situations, manned aerials or unmanned aerial

vehicles (drones) can be deployed in segmented areas for precise search operations.

Post-disaster flood activity can be assisted by using unmanned aerial vehicles and

informing the responsible disaster management authority of any unusual activity so that

they can react in time and carry out search operations. In case of unaccepted damage to

dams during a natural disaster, humans get trapped in the flooded areas due to rapid runoff

of water from the dam, and thus evacuation by traditional search operations is not

recommended as the affected areas are oversized, hence managing these disasters by aerial

imagery is the most suitable thing to do.

In the case of runoff or unwanted inundation of the land by flood, drones can be

used in many ways. These devices can be used to predict the floods, and capture images of

the location from where the people need to be evacuated and what buildings are at a risk.

The essence of this application is to use unmanned aerial vehicles that can assist the

disaster management team with precise search operations using deep learning.
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1.2 Deep Learning

Object recognition or object classification means identifying a feature or an object

in an image. This approach has been a topic of research in the field of science and

engineering. The algorithms based on object detection rely on learning, matching or

finding patterns in an image based on various feature-based techniques. Machine learning

is the process of learning from data and making informed decisions with minimum human

intervention. Deep learning algorithms are used to translate complex hierarchical concepts

into simpler ones.

Deep learning algorithms can perform tasks like planning, perception, control, and

localization and can learn from complex data that has been acquired from the environment

in real-time which makes it suitable for image processing and similar applications.

Traditional methods of machine learning as shown in Figure 1.1 involved feature

extraction/engineering methods which were manually driven by statistics and

computational mathematics (complex design) and did not perform well in terms of

accuracy because feature extraction of unstructured data was very difficult. With the

introduction of better computational devices in the market, new methods of extracting

features and classifying them in a single shot were made possible with the aid of deep

learning. It was found out, with an increase in the amount of data fed in the machines the

performance of traditional machine learning algorithms reduced but the performance of

deep learning algorithms was maximized.
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Figure 1.1. Traditional Machine Learning Vs Deep Learning from Wikipedia, the free

encyclopedia (2013).

1.3 Problem Statement

In case of a flood, one of the most important aspects to be considered in search

operations is the survival time of the victims. In the research conducted by Haegeli, Falk,

Brugger, Etter, and Boyd (2011) it was found out that the survival time was even lower

than previously predicted and hence precise search operations were necessary. With

advancements in technology and hardware, a more promising approach is the use of

computer vision and deep learning for precise search operations, especially during a flood.

In this research, we have deployed various pre-trained algorithms like YOLOv3, SSD and

Mask-RCNN and trained algorithm like YOLOv3 and compared the results of all the

algorithms to find the best algorithm that can be deployed for search operations in

real-time.
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1.4 Scope

The number of natural disasters (hydrological, geophysical, meteorological or

climatological) has shown an upward trend in the last five decades. The annual disaster

statistical review in its report describes that there have been 345 naturally triggered

disasters in 2016 alone and have claimed a countless number of lives which is less than

the average number of disasters (376.4) observed during the decade from 2005 to 2015

(Guha-Sapir, Below, & Hoyois, 2016). The average number of deaths (8,733) caused due

to natural disasters in 2016 was the second-lowest reported since 2006, where the average

number of annual deaths stood at 69,827. Since 2006, a record number of people (565

million) have been affected by the natural disasters and an estimated economic annual

damage of USD 100 billion has been reported (Guha-Sapir et al., 2016). Looking at the

upward movement in the number of floods and the loss of lives, one of the most important

aspects to be considered is the ways to rescue these victims during the disasters.

Disaster search operation can be facilitated using UAV such as drones, which have

various benefits viz. small size, low cost of operation, exposure to dangerous environments

and can offer a high rate of success with no loss to human lives. These benefits offer an

edge over remote sensing techniques like the use of satellites. Unmanned aerial vehicles

in the past have been equipped with optical cameras that can be operated in the visible

light of spectrum or the infrared light spectrum (in case of low light condition) to capture

different spectra of events of interest. The videos and images captured by these sensors

can then be processed remotely or locally which is often cumbersome and time intensive.

In both cases of local and remote processing, automatic identification of events of interest

(i.e. potential disasters) are important for search operations during the disaster while it is

happening, taking immediate life-saving actions, either by governmental organizations or

humanitarian organizations (Kamilaris & Prenafeta-Boldú, 2018). A modern and more

promising technique for object detection is the use of convolutional neural networks for

precise search operations. It has been found that deep learning methodology seems to

have better performance in image recognition tasks (Guo et al., 2016), in comparison to

common techniques used for analyzing images such as SVMs and ANN (Saxena &
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Armstrong, 2014). My research study comprises of utilization of these unmanned aerial

vehicles equipped with optical sensors for deep learning models to identify victims (in a

flood) for the following reasons 1) the identification is fast (i.e. in seconds after the model

has learned the problem), 2) these models are flexible (i.e. many events can be identified

at once) and 3) scalable (i.e. learning process is continuous and adaptable) in real-time.

1.5 Significance

One of the prime elements of a disaster response is situational awareness –

knowing the people who have been affected by the disaster, when, how (the type of

disaster) and where (the location). Once a disaster subdues, the humanitarian search

organizations carry out assessments to monitor the extent of disaster before the rescue

operations can be carried out. One of the key factors to be considered here is the amount

of time it takes the rescue teams to assess these disasters which can be utilized to speed the

life-saving efforts and help them respond quickly (Al-Khudhairy, 2010). In 2013, one of

the most powerful typhoons recorded in human history (“Typhoon Haiyan”) made landfall

in the Philippines where thousands of humans lost their lives with no proper devices at the

disposal for the government (Calantropio, Chiabrando, Sammartano, Spanò, & Losè,

2018). There are various types of sensors that can be put on UAVs such as the thermal

sensor or the optical sensors as these sensors can capture high-resolution images and

videos in visible light of spectrum and even in the infrared spectrum. Since they capture

high-resolution images, they have a tendency of capturing terabytes of data in a single day

which is not possible to assess manually and can be a difficult and time-consuming task

(Ezequiel et al., 2014). During a disaster in Haiti, an unmanned aerial vehicle (UAV)

mission took the analysts more than 25 days to capture an image dataset of 5600 images

(Corbane et al., 2010). In Namibia, it took more than 400 hours, approximately 18 days

for a team of four analysts to search for wildlife and fauna from an image data set of more

than 15,000 images (Fornace, Drakeley, William, Espino, & Cox, 2014). This research

study aims to make use of deep learning techniques to make improved decisions for search

operations and provide aid to the people stuck in flood real time.
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1.6 Research Question

The goal of this research is object detection for search operations in a flood in

real-time. To identify objects in real-time the detection speed should be more than 20

frames per second or better and it is one of the prime factors of choosing the model for

object detection. This research answers the following question:

• Does the proposed modified version of trained YOLOv3 perform faster (inference

time) and accurately (performance metrics) than the existing version of pre-trained

models of Mask-RCNN, SSD300, and YOLOv3 to classify specific objects in

real-time (20 fps) in flood scenes for search operations?

1.7 Assumptions

• The I/O object detection used in the simulation experiment can reflect the real-world

object detection for search operations.

• Specific computer hardware and software used to implement deep learning models

do not alter the generalization of the results unless specifically mentioned.

• The execution environment would remain constant and work with equal reliability

and efficiency for all the algorithms considered for comparison.

• The flood data set is representative of the future natural disaster flood data set in its

data format and size.

1.8 Limitations

• The research study will be tested on systems with GPUs. The models will not be

tested on systems with CPUs due to computational constraints.
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• The accuracy grade of the performance measurement of various models is limited

by precision, recall.

• The data set used in research is limited to hydrological disasters like flash floods,

floods, and debris flow.

1.9 Delimitations

• Even though there exist many deep learning models, this research focuses only on

three deep learning models that can be deployed in real-time (Mask-RCNN,

SSD300, YOLOv3). It does not consider other deep learning algorithms for

comparison.

• For higher classification rate on the server end, it is expected that the height and

velocity of the drone at which it is being flown should be as minimum as possible.

• The image pre-processing time will not be used as a metric to evaluate the

performance of the model in real-time.
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1.10 Summary

This chapter provides a brief introduction to the research conducted. It also

underlined the scope of our research study in floods, the significance of having a UAV

system capable of on the go object detection, the research question along with

assumptions, limitations, delimitations of the research study.
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CHAPTER 2. REVIEW OF LITERATURE

In this section, we will first discuss the need of search operations in a natural

disaster (floods) then review the traditional methods being deployed in search operations

like the use of humans, ground robots, thermal imagery and various methods of machine

learning: supervised and unsupervised. Later, we will review some of the most influential

approaches of deep learning used for object detection, such as the CNN based approach

depicted in our study. Here, the architecture, the advantages and the disadvantages of each

method will be discussed.

2.1 Background

Natural disasters are catastrophic events that can jeopardize the well-being of

people who are incapable of combating the affliction arising from them thereby causing

social environment disruption and negative economic impacts (Blaikie, Cannon, Davis, &

Wisner, 2014). Natural disasters can be classified into various types such as hydrological

(debris flow from runoff, flash-floods due to human activities and floods), geophysical

(tsunami, landslide, volcanic eruptions, earthquake), meteorological (sandstorm,

hurricane, tropical storm and heavy rainfall) and climatological (wildfire, drought and

extreme temperature). In the past 30 years, there has been a significant increase in the

material loss caused by these disasters which stands at an order of 100-150 percent

(Munich, 2015). Few of the most important factors to be considered while assessing a

natural disaster are the availability of resources in disaster areas, the unpredictability and

environmental changes (Celik & Corbacioglu, 2010). Unpredictability in the underlying

context implies, the severe impact on property and people during these disasters which

cannot be forecasted with admissible accuracy (Sutanta, Bishop, & Rajabifard, 2010).

Hence, the allocation of adequate resources is not possible in advance. Prediction of

damages and movement of people is difficult to forecast with increased dynamic changes

in the environment (de Moel et al., 2015).
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Following a disaster, a commercial satellite can take close to twenty-four to

forty-eight hours to acquire and process the imagery. In the year of 2013, when a powerful

typhoon Haiyan made landfall in the Philippines it took more than sixty-four hours for the

satellite images of the damage to be made available to the first responders (Ofli et al.,

2016). On the contrary, disaster monitoring and rescue operations can be facilitated using

UAV which is becoming more and more famous, having various benefits such as small

size, low cost of operation, exposure to dangerous environments and high probability of

mission success. These and other benefits are explained in related work, either

independently (Petrides, Kolios, Kyrkou, Theocharides, & Panayiotou, 2017), (C. Zhang

& Kovacs, 2012), or in relation to other remote sensing techniques such as airplanes and

satellites (Matese et al., 2015). UAVs have shown the ability to compete with traditional

platforms for acquisition (i.e. aircraft and satellite) due to high flexibility offered for

operation and high resolution. Since the wake of typhoon Haiyan, several organizations

have deployed UAVs and it is expected the number of UAV missions will increase

significantly in the years ahead (C. Zhang & Kovacs, 2012).

Preserving human lives is one of the most important aspects when a disaster

occurs. In this context, when a disaster strikes, the first 72 hours are the most crucial,

which implicates that the search operations must be carried out efficiently and quickly

(Wzorek et al., 2006). One of the major challenges during a disaster is lack of situational

awareness and communication, forcing the first responder teams to prepare impromptu

thereby degrading the efficiency of the search operations. Situational awareness in the

underlying context means – knowing who, where, how and when has been affected.

Situational awareness can be achieved in the most efficient way through aerial

assessment-via UAV networks (Guha-Sapir, Vos, Below, & Ponserre, 2012). With the use

of UAVs and computer vision, the first responders can better understand the potential

number of people affected by the disaster, the extent of damage caused to the

infrastructure, the state of transportation infrastructure and the structures affected by the

disaster.
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In the past, UAVs have been successfully used in scenarios to detect

earthquake-triggered roof holes (S. Li et al., 2015), oil spills and flooding (Luo,

Nightingale, Asemota, & Grecos, 2015), and locate victims (Andriluka et al., 2010), etc.

A recent report from red cross advocated the use of UAVs to be one of the most powerful

technologies for real-time insights in driving search operations. Based on current

advancements in the field of UAVs can be used to provide mapping and reconnaissance

support, identify survivors stranded in a disaster and redirect the disaster management

personnel to reach them in the most optimized way. They are also used for structural

assessment (Erdelj & Natalizio, 2016).

In recent times there have been tremendous efforts to forecast and recognize the

occurrence of natural disasters to efficiently assess the damage and react in a timely

manner by carrying out search operations and restore normalcy. With latest advances in

the field of technology, here we describe a vision for leveraging the use of unmanned

aerial vehicles along with deep learning technology to amplify the ability of computer

vision assisted disaster assessment and response.

2.2 Humanitarian search operations

In the bygone century, natural and man-made disasters have taken the lives of

millions of people and caused the destruction of billions of assets around the world.

Supernatural events such as the China floods in 1931, the Russian wildfire in 2010 and the

Portugal wildfire in 2017 have claimed millions of lives and caused damages worth

billions thereby affecting the communities. Man-made disasters such as the civil war,

terrorism, engineering hazards, oil spills such as the Adana massacre in 1907, the Ennore

oil spill in 2017 have caused even more casualties than those caused by natural disasters.

In humanitarian search operations, structural damage is a common sight. They are

hindered by a multitude of confined spaces and dangerous conditions which hinder the

entry to the cavity that may have survivors stuck beneath them. In such cases, it is strictly



24

prohibited to use heavy machinery for search operation as they risk the life of the victims

and the rescuers (Ezequiel et al., 2014). One of the other factors that hamper these

operations is the affluence of sensory distractors like false odor, random noise and

scattered false readings.

In the past, cameras, advanced sensors, heavy lift equipment, search dogs have

been used for humanitarian search operations to find victims. While the cameras with the

help of probes could only be used in depths no more than 4 to 6 meters, the dogs even

though capable of locating victims buried underground were unable to provide the precise

location of the burial of the victim (Rehor, 2007). This has made the humanitarian search

operation very difficult as various constraints need to be imposed on the rescue teams.

Some of the constraints that need to be addressed have been discussed in the following

paragraphs.

2.2.1 Fire and hazardous materials

The pacific rim is one of the most persistent earthquake-prone activity regions that

can lead to collateral damage at the disaster site. Disrupted public utilities and emergency

services by the personnel can lead to toxic contamination, fires for prolonged hours. With

no adequate supply of electricity and water, even the superbly trained firefighters and the

search personnel must hold up until the collateral warnings have been taken care of to gain

entry to scathing flood struck areas. Even when suitable resources and shelter is at

disposal, sensory distress caused by heavy gloves, safety gear, and thick masks can hinder

the team’s rescue process (Blitch, 1996).
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2.2.2 Confined workspace

Void spaces are often created during a structural collapse and they vary in volume

and size as in the collapse of Maryland freeway in 1987. This generally creates voids

anywhere between 2 to 6 ft in height. Localizing and finding these voids is one of the most

important tasks of the search operation in confined spaces (Blitch, 1996; Mills &

Navarro, 1995).

2.3 Search operations with the assistance of ground robots

Robot-assisted search operations are well suited to address the limitations of

humanitarian search operations. To expedite the search process, several robots can be

deployed in response to a disaster. They can navigate through confined spaces and

deteriorating unstable structures where dogs cannot make an access and can be used to

check the survivor’s body temperature and heart rate with the help of probes mounted on it

(Snyder, 2001).

Robots can also be used to assess the physical strength of the structure damaged by

the flood with minimal intervention of humans which otherwise can take up to three to

four critical early hours by engineers (Scassellati, Admoni, & Matarić, 2012). They can

also carry radiation, carbon monoxide, pH level, temperature, oxygen sensors on board

and conduct hazardous material and atmospheric reading and warn the rescue personnel

based on their analysis.

In scientific literature, the use of robots for search operations has been discussed

since the 1980s, but none of the robots had been fielded until 2001. With an exponential

increase in the speed, miniaturization of sensors and improved processing speed of the

microcontrollers, robots have been used in the catastrophic areas since 2001. After the

bombing of the Oklahoma City in 1995 (Murphy, 2004), the first real research on search

operations by the robots was initiated. At the bombing response, the robots were not used

but the suggestions and the response had been taken from the robots. After the bombing of
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the World Trade Center in 2001, the first documented usage of robots for search operations

was recorded. While carrying out these search operations, various robots of different

shapes, sizes and capacities were deployed (Snyder, 2001). Here, the primary reason for

using these robots was to identify potential hazards and search victims stuck in the debris.

2.4 Search operations using UAVs (Drones)

UAVs have been used in the past to aid and find humans who were critically

injured, lost in rivers, mountains, lakes, deserts, and remote setting. Search operations

using human aid has been challenging as it either needed search personnel with

specialized training or it consumed thousands of man-hours and dollars per year.

Humanitarian search operation can be a very slow process if the area of collateral damage

is large along with challenging terrain. The use of UAVs can be used to improve the speed

at which the victims can be found and the probability of the missing person (Giitsidis,

Karakasis, Gasteratos, & Sirakoulis, 2015).

There has been extensive research on human factors using semi-autonomous

UAVs. One of the key and foremost aspects that should be considered when using these

UAVs for search operations is people needed to operate it. In the work cited by Murphy

(2004) it was suggested that a third person could be sometimes useful to monitor the

behavior of the person flying the UAV and the sensor operator to facilitate higher

situational awareness. Important research was conducted by Cummings (2004); Olsen Jr

and Wood (2004) which analyzed the number of humans that could be used to manage the

unmanned aerial vehicles. It was suggested that the outreach was limited as

information-rich videos from multiple UAVs would be difficult to monitor for search

operations.
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To address the problem of using semi-autonomous unmanned aerial vehicles; an

enhanced autonomous information acquisition and presentation using the unmanned aerial

vehicle was suggested by Murphy (2004). The goal of this research was to focus on

different interface designs and hardware to cut down on the number of humans needed to

perform the task, which included algorithms based on path, altitude and attitude

stabilization at low lying plains and path generation.

In more recent work, techniques for search operations using thermal imagery have

been suggested. One of the examples uses an infrared camera to map a plan to find a

correlation between humans extracted from the infrared camera and a color camera in a

static environment using image extraction techniques (Rudol & Doherty, 2008).Kang,

Gajera, Cohen, and Medioni (2004) in their research suggested a technique for detecting

and tracking moving objects by using a probabilistic framework. Their work was tested on

footage collected by an unmanned aerial vehicle, but the authors did not discuss its

usability onboard nor the computational requirements needed to identify the humans in a

simulated search operation. Keck and Davis (2008) in their research discuss an approach

of using a fast screening template using ADA-boosted ensemble classifier to locate a

potential person location.

2.5 Machine learning for search operations

Machine Learning is defined as the ability of a machine to learn insights from data

and perform tasks thereby reducing human intervention. My research lies in the interplay

of assessing the hydrological disasters (flash floods, floods and debris flow) by means of

machine intelligence using deep learning.

Machine learning in search operations can be used to prevent life loss and damage

to the property when a hydrological disaster strike. Recent advancements in technology

have had a major impact on the prediction and forecasting methodologies for search

operations. Remotely sensed data over the last two decades has been used to assess the

hazards and distinct types of phenomenon (Pradhan, 2010; Pradhan, Hagemann, Tehrany,
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& Prechtel, 2014) by use of active and passive sensors. In flood disaster management,

Schumann, Neal, Mason, and Bates (2011) showed that mapping was an essential step. In

addition to mapping, it was even depicted that geographic information system (GIS) was

an important tool to probe the flooding events.

Some of the machine learning developed methods that were used in identification

of the flood areas for search operations included quantitative and qualitative techniques

such as tree-based models like decision trees (DT) (Tehrany, Pradhan, Mansor, & Ahmad,

2015) , multicriteria evaluation (Cireşan, Meier, & Schmidhuber, 2012) adaptive

neuro-fuzzy interface system (Bubeck, Botzen, & Aerts, 2012), classification based

models like logistic regression (Pradhan et al., 2014), and hierarchy-based algorithms like

analytical hierarchy process (Feng & Wang, 2011). The advantages and disadvantages of

the use of statistical machine learning were reviewed by Tehrany et al. (2015). It was

found out that these algorithms did not give promising accuracies with an increase in a

few predictors as the models were overfitting thus restricting their use for search

operations. In South Korea, bivariate probability models were used to map inundated

regions, but they had a drawback as it considered the relationship between each

independent layer and flood occurrence separately (Feng & Wang, 2011). The use of

multivariate logistic regression (Pradhan, 2010) involved finding relationship between the

response variable and predictors to predict the area that was inundated by floodwater and

then carry out search and rescue operations in a simulated flood area. He noted the use of

logistic regression had several advantages: It was able to handle non-linear effects. It was

robust as the predictors did not specifically need to have gaussian distribution or have

equal variance in the group and the variables could be continuous or discrete. He showed

the accuracy of the model by means of area under the area under curve-receiver operating

characteristic (AUC-roc) curve and confusion matrix but the impact of classes of each

variable was not taken into consideration. Statistical machine learning algorithms like

logistic regression and bivariate probability have found much appreciation by the research

community for susceptibility mapping of region inundated by flood for search and rescue

operations but have major limitations in terms of being deployed in real-time which

moved the focus of my research to deep learning.
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2.6 Deep Learning in the context of machine learning

Conventional machine learning methods were based on shallow-structured

learning architectures and were restricted in the ability to process large amounts of data as

well as process data in unstructured form (Chen, Lin, Zhao, Wang, & Gu, 2014) as shown

in Figure 2.1. In the past, constructing a machine learning structure or a pattern

recognition system needed considerable experience and domain knowledge with the

expertise to craft a feature extractor that could transform the data into suitable

representation or feature support vector to a group and categorize, detect or classify the

pattern in the input. He, Zhang, Ren, and Sun (2016) compared deep learning models and

statistical machine learning models on equal footing and by using same data

pre-processing and augmentation techniques used with convolutional neural networks on

traditional statistical machine learning. In his research, he explored the importance of

color information and showed how it made a significant difference by using deep learning

methodology. He found out that deep learning had an upper edge over traditional

statistical learning. The color information, data augmentation, and pre-processing tasks

were precisely measured by using this technique.

Figure 2.1. Performance graphs of machine learning methods from Armin Wasicek (2018)
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Deep learning has been inspired by biological nervous systems and learns from

depictions of data with multiple layers of abstraction (H. Li, Zhao, & Wang, 2014). They

have been used to discover intricate patterns in large and raw data sets by using the

concept of backpropagation to tune the hyperparameters and their representation in each

layer.

2.6.1 Neural Network

A neural network comprises of three things just like any other machine learning

algorithm, they are the parametric model (shape of the function), the cost function and the

optimization approach to fit the structure of the model. The neural networks were

proposed in the 1950s and have originated from the perceptron which has one output and

more than one input. The structure of a perceptron can be understood from Figure 2.2.

The output of the perceptron is a binary value (Jain, Mao, & Mohiuddin, 1996).

Figure 2.2. Structure of Perceptron from Jose Ariza (2018)
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The output of the perceptron will change to 0 or 1 when the summation of the

input changes. A small step of change in input won’t affect the output. In order to obtain

outputs between 0 to 1, activation functions are used. There are prominently four different

types of activation functions namely: ReLU, Maxout, Sigmoid, and Softmax. The

function is then applied elementwise to the summation of inputs and weights to obtain the

output which lies in the range of 0 and 1 (Jain et al., 1996).

2.6.1.1 Structure of a neural network

It is a parametric machine learning algorithm which comprises of multiple layers as

depicted in Figure 2.3. It has an input layer; also known as the first layer, an arbitrary

number of hidden layers; which are also known as the middle layers, an output layer; also

known as the last layer, a set of weight and biases between each layer and an activation

function for each hidden layer. The neurons are connected to each other to pass

information from one layer to the other layer (G. Zhang, Patuwo, & Hu, 1998).

Figure 2.3. A Fully Connected Network from Andrey Kurenkov (2015)

When the network is connected in tandem then the decisions made by the first

layer are passed on to the second layer as input. The second layer then can make more

smart and improved decisions. The information is then propagated so that the network can

make more informed decisions.
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2.6.1.2 Cost Function

Neural networks are parametric models where the distribution of the data is defined.

Training a neural network involves learning how to perform a task. Every machine

learning algorithm learns from its errors between ground truth and predictions and tries to

minimize it as much as it can by using the concept of maximized likelihood estimation or

ordinary least squares. The prediction error can be computed by using a cost function. In

the euclidean space since the default choice of metric is euclidean metric, similarly, in a

neural network, the choice for a cost function is information gain which works on the

principle of maximum likelihood.

During the training, the neural network tries to minimize the error as much as it

can and once the error cannot be reduced any further the training process is said to be

completed. There exist a different kind of cost functions such as quadratic functions like

RMSE (root mean square error) or MSE (mean square error). Figure 2.4 gives you the

visualization of the cost function. The black dot in the bowl-shaped convex function,

which is also known as prediction error that tries to attain a minimum value by moving to

the bottom of the convex function (G. Zhang et al., 1998).

Figure 2.4. 2D representation of a cost function from Conor McDonald (2017)
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2.6.2 Convolutional Neural Networks

In the early 1990s, the use of neural networks for handwritten zip code

identification was first documented. The convolutional neural networks were first

introduced in 1998 but were only showed to be an effective tool for image detection and

recognition in 2012 at the image net computer vision competition.

CNN’s have brought about a breakthrough in videos and images whereas RNNs

have been used for sequential data such as speech and text (Schmidhuber, 2015). For

digit recognition, LeCun, Bottou, Bengio, Haffner, et al. (1998) made use of convolutional

neural networks. With improved computational speed and faster processing capability it

has found applications in the field of CV and ML as they have been said to achieve the

start of the art performance for various tasks (Tompson, Goroshin, Jain, LeCun, &

Bregler, 2015). Figure 2.5 shows an illustration of a convolutional neural network.

Figure 2.5. Illustration of CNN from Adit Deshpande (2016)

Krizhevsky, Sutskever, and Hinton (2012) first used the deep CNN in the image

detection task in 2012. They attained a successful test error of 15.3 percent on training the

model on more than one million images with over 1000 classes. Since then there has been

extensive research to reduce the test error rate of the convolutional neural networks and

recent work got better results by reducing the test error rate to 13.24 percent by training

the model to continuously locate and classify objects (Ibrahim, Muralidharan, Deng,

Vahdat, & Mori, 2016). (Howard, 2013) in their work found out that object detection

could also benefit from convolutional neural networks apart from image classification
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tasks. Researchers in 2014 shifted their focus to multiple object detection tasks. In such

cases, more than one object in the image is to be detected and the system tries to identify

the object’s location and class. Since then, numerous regions based on convolutional

neural networks approaches came out. In recent times, faster object detection and

classification algorithms like Mask R-CNN, SSD, YOLOv3 have been crafted by

researchers to provide object detection solutions in real-time.

2.7 Mask R-CNN

The underlying structure that is used to build a Mask R-CNN is Faster R-CNN.

The architecture leverages two networks in parallel for object detection, one: region

proposal network and two: binary mask classifier. In this type of algorithm, the

conventional RoI pooling layer has been replaced with more accurate RoI align module.

Additionally, a branch from the module is fed in parallel to the two convolutional layers.

These layers are responsible for classification and localization. The output from these

layers is the masked segmented image, with bounding box surrounding it (He, Gkioxari,

Dollár, & Girshick, 2017). The architecture can be understood from Figure 2.6.

Figure 2.6. Architecture of Mask R-CNN from Chanuk Lim (2017)

The network comprises of Faster R-CNN and a binary mask classifier.
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2.7.1 Faster R-CNN

The RCNN and Fast RCNN use selective search method to extract regions of

interest that form an object. An object has four regions that the selective search approach

intends to identify: textures, scalers, enclosures, and colors. It takes the input image and

sub-segments it to generate multiple regions. Large regions are formed by combining

similar regions (based on shape, compatibility, size, and texture). Finally, these regions

generate RoI. The method is a slow and time-consuming process and cannot be used in

real-time on large real-time datasets. A promising approach for on the go object detection

involves the use of region proposal networks which generates object proposals based on

feature maps Ren, He, Girshick, and Sun (2015). Figure 2.7 illustration shows that Faster

R-CNN can be used for on the go object detection as it is much faster than its predecessor

algorithms based on region-based proposal method.

Figure 2.7. Comparison of test time speed of R-CNN based algorithms from Fei-Fei Li

(2017)

The Faster R-CNN has two networks: one that extracts feature maps from the

CNN for generating region proposal networks and a second network for detecting objects

using these proposals. When the region proposal network slides over the image, it

generates anchors of different shapes and sizes. Here, the region proposal network ranks

the region boxes also known as the anchor and proposes the one most likely containing the
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objects. The predictions are made for each anchor based on two things: one, the

probability that an anchor is an object, two, the bounding box regressor to better fit the

object. From here, the anchors are passed through the ROI layer to extract feature maps

from the anchor. It is then passed through an FCN which has a soft-max and a linear

regressor layer to make predictions of the objects Ren et al. (2015). The architecture of the

Faster R-CNN algorithm can be understood from Figure 2.8:

Figure 2.8. Architecture of Faster R-CNN for object detection from Shaoqing Ren (2016)

2.7.2 RoI Align Layer

The RoI Pooling Layer has a negative impact in predicting the masking operations

which impacts the classification to a large extent hence it can be used. In a typical RoI

pooling layer, a feature map is first extracted by first quantizing it to discrete granularity.

It is then divided into spatial bins which are quantized and aggregated by using max

pooling. The process of quantization generally inserts misalignment between the extracted

features and the Region of Interest and hence it is not robust for classification task as it

does not generate accurate masks. To address this problem RoI align layer is used in Mask

R-CNN (He et al., 2017).
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In RoI Align Layer, no quantization is performed. Here, bilinear interpolation is

computed for each RoI bin and the result is later aggregated by using (average or max

pooling). This leads to a large improvement in classification tasks thereby reducing the

misalignment.

Figure 2.9. Accurate mapping of original image to feature maps by using RoI align layer

from Lilian Weng (2017)

2.8 Single Shot Multi-Box Detector 300

The R-CNN based algorithms cannot be used for on the go object detection as they

face following problems, one: In these networks, training happens in multiple phases,

two: the network is too slow at inference time, three: training the data is too long and

unwieldy. To address the bottlenecks of the R-CNN based algorithms, SSD detector was

introduced (Liu et al., 2016).

A typical CNN for object detection contracts the feature map and grows the depth

as it penetrates to the deeper layers. The shallow layers enfold smaller receptive field

while the deeper layers are responsible for the construction of more abstract features and

cover larger receptive fields. Thus, deeper layers are used to predict big objects while

shallow layers are used to predict small objects.
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The SSD-300 architecture has been derived from VGG-16 architecture with FCN

layers discarded from it. The VGG-16 architecture can be used for image classification

task as it offers high performance and can be used for improving the accuracy by transfer

learning. The features here are extracted by reducing the size of each layer of the input

and using a set of convolutional layers (Liu et al., 2016).

The underlying architecture of the SSD has VGG net as base net where the first

feature map is generated from the VGG net layer with a depth of 512 and size of 38x38.

For every point, there exist 512 channels and the feature map of size 38x38 can be used to

map the complete image using this. Image classification can be done using the features in

512 channels and various labels can be predicted at every point. As the network moves

forward, the size of the feature map is reduced to 19x19 which can now detect larger

objects as it can cover the bigger receptive field. The last layer just has one point which is

used for detecting big objects (Liu et al., 2016).

Figure 2.10. Architecture of Single Shot Multi-Box Detector from Wei Liu (2016)
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2.9 You Only Look Once (YOLOv3)

The pre-existing object detection framework is based on RPN which involves

refining the bounding boxes, rescoring the bounding boxes based on other objects and

eliminating duplicate detections. Here, each individual component needs to be trained

separately as the pipeline is complex and slow. An alternate approach to detect objects is

using you only look once (YOLO). Multiple bounding boxes can be detected by a single

convolutional network. Here are some of the benefits of using YOLO over other models.

Firstly, it can run at 45 fps and can process streaming video in real-time which

makes it a very fast object detection network. Also, it does not need any batch processing

and can run at 150 fps on a Titan X GPU. The mean average precision achieved by this

network is twice as much as the traditional networks. Secondly, it doesn’t make use of a

sliding window and RPN technique to make predictions of the class. During the training

period, it sees the entire image and encodes the contextual information of the appearance

as well as the class. YOLO suffers from some trade-offs as it struggles to precisely

localize small objects and thus the start-of-art performance is not guaranteed.

2.9.1 Network Design of YOLOv3

Initially, the YOLO model was implemented on the PASCAL VOC dataset where

initial layers of the CNN were used for feature extraction and the FCN layers were used

for prediction of coordinates and probabilities. The network has 24 convolutional layers

along with 2 FCN layers. It uses a 1x1 reduction layer from the GoogleNet followed by

3x3 convolutional layer. The architecture of the YOLO network has been depicted in

Figure 16. Here, the task is to predict (7,7,30) tensor. The spatial dimension of the

network is reduced by using a CNN network and it has 1024 channels. The algorithm

performs regression using the 2 FCN layers to make predictions. The objects with high

prediction score are kept while the remaining ones are discarded.
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Figure 2.11. Architecture of YOLO from Joseph Redmon (2016)

Even though YOLO can be used for real-time object detection, the model has high

localization errors and recall thus reducing the overall accuracy of the model. A better

version of YOLO; YOLOv2 and YOLOv3 have been found to improve the accuracy of the

model while making it faster. YOLOv2 can achieve a mean average precision (mAP) of

76.8 at 67 fps outperforming pre-existing traditional algorithms like Faster R-CNN and

SSD. YOLOv2 tries to address the problem of accuracy by improving localization and

recall while maintaining accuracy.

• Batch Normalization: It eliminates the need for regularization and leads to

significant improvement in convergence. By doing this, an improvement of 2

percent mAP is obtained in the pre-existing YOLO model. Dropout from the model

is removed by using batch normalization which prevents overfitting.

• High-Resolution classifier: The original YOLO network trains the network at

224x224 and followed by 448 for object detection. Meanwhile, the YOLOv2

network tunes the network at 448x448 with only 10 epochs. This improves the mAP

by up to 4 percent.
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• Convolution with anchor boxes: The traditional object detection algorithms use

convolutional layers to predict offsets and confidence for anchor boxes. YOLO, on

the other hand, is used for prediction of coordinates of the bounding boxes using

FCN layers on top of feature extractor. Predicting offsets is better than predicting

coordinates as the task of learning is simplified and made easier, thus we remove the

FCN layers from YOLO and predict bounding boxes using anchor boxes.

On using YOLOv2 for Object Detection in real-time it was found by the

researchers that YOLOv2 often struggled with small object detection even with a 19-layer

architecture. The YOLOv2 lacked one of the most important features that are stapled to

most state of art algorithms: The residual block, Upsampling, and No skip connections.

All these problems were addressed by YOLOv3. The YOLOv3 is based on Darknet-53

architecture that has been trained on ImageNet. For detection task, another 53 layers have

been stacked on top of it, which makes the object detection task a little slow at 30 frames

per second, but it has an edge over YOLOv2 for the following reasons:

• It is better at detecting small objects: In YOLOv3 the 52x52 layer is responsible for

detecting the small objects whereas the 13x13 layer is responsible for the detection

of large objects. Meanwhile, the 26X26 layer is responsible for the detection of

medium objects. In YOLOv3 the upsampled layers concatenated with previous

layers are responsible for the detection of small objects, a feature that is not seen in

YOLOv2 (Redmon & Farhadi, 2018).

• More bounding boxes per image: YOLOv3 predicts bounding boxes at 3 different

scales and thus it can predict more bounding boxes than YOLOv2. For instance, for

a 416x416 resolution image, the YOLOv2 can predict only 13x13x5 boxes which is

equivalent to 845 but the YOLOv3 can detect 10,647 boxes for the same image

(Redmon & Farhadi, 2018).
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Figure 2.12. Inference time comparison of YOLOv3 with other models from Joseph

Redmon (2017b)

YOLOv3 performs at par with other states of art detectors like Retina Net. It is

also better than SSD and its variants. Here’s a comparison of performances right from the

paper.
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2.10 Summary

One of the most important factors influencing a person’s survival following a

natural disaster is the rate at which they are rescued. With increased disasters (natural or

man-made) in the last five decades and traditional methods of search operations

(humanitarian, ground robot) the rescue rate is incredibly low which needs to be

addressed. With advancements in technology and hardware, a more promising way of

search operations during a disaster is the use of deep learning and photogrammetry for

precise search and rescue operations to maximize the rescue rate and reduce casualties.

The literature review first discusses the traditional methods of search and rescue

operations which later shifts the focus to current trend of machine learning and deep

learning for object detection in real time.
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CHAPTER 3. METHODOLOGY

In this chapter, we will discuss the framework and the proposed methodology used

in this research. The methodology includes details on the experimental setup, the

hardware platform, the parameters on which the models will be assessed and steps on how

the results will be validated through this research.

3.1 Research Framework

The aim of this research is to address the traditional methods of search operations

using deep learning. Using the concept of object detection, classes (objects) can be

identified in real-time with precise geo-location using the concept of photogrammetry.

This location can then be shared with the rescue teams to carry out rescue operations and

therefore minimize the downtime (usually 48-72 hours post floods) it takes to carry out

these operations. The study focuses on answering the following research question: Does

the proposed modified version of trained YOLOv3 perform faster (inference time) and

accurately (performance metrics) than the existing version of pre-trained models of

Mask-RCNN, SSD300 and YOLOv3 to classify objects (person, car) in real-time (20 fps)

in flood scenes for search operations?

3.2 General Methodology

This section talks about the methodology used to address the research question.

Figure 3.1 and Figure 3.2 represent the overall procedure of object detection in flood

videos using drones for the real-time search operation.
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Figure 3.1. Workflow architecture for object detection using pre-trained and modified

trained YOLOv3 model

Figure 3.2. A visual illustration of object detection using modified trained YOLOv3
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3.3 Modifications to YOLOv3

Section 2.9 gives a detailed explanation of the YOLOv3 algorithm for object

detection. To summarize the YOLOv3 algorithm: It is based on Darknet-53 architecture

and makes detections at three different scales which are obtained by down sampling the

dimensions of the input image by 32,16 and 8. It is better at detecting small objects which

help in improving the accuracy of the algorithm and it is capable of predicting more

bounding boxes than YOLOv2. In the study done by Joseph Redmon (2017) the YOLOv3

algorithm was able to process images at 30fps with a mAP of 57.9 percent in 51ms

inference time. The overall performance of the model dropped significantly. Hence in

order to improve the performance of the model, the YOLOv3 model is trained to detect

only 2 objects in a flood scenario i.e. inference time and performance metrics are taken

into consideration for comparison with pre-trained models.

The proposed version of YOLOv3 model is trained on 5152 images. Before

training the YOLOv3 model, the labels of choice (person, car) have been labeled for every

image using the software LabelImg as shown in Figure 3.3.

Figure 3.3. A visual illustration of object detection using modified trained YOLOv3
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Table 3.1. Hyperparameter values for YOLOv3
Hyperparameter Value

Batch 64
Momentum 0.9

Decay 0.0005
Epochs 5000

Learning Rate 0.001
Max Batches 40100

Saturation 1.5
Exposure 1.5

Hue 0.1
Subdivision 8

Width 416
Height 416

Channels 3

The images were then trained on only 2 classes (person, car) with hyperparameter

values as stated above.

3.4 Object detection using pre-trained models

Since the purpose of object detection here is mainly to carry out search operations,

it is expected that the models identify humans in real-time with maximum accuracy.

Training a neural network is a time-intensive task and it is expected that pre-trained

models be used for search and operations for on the go object detection. To train a neural

network from scratch requires training the neural network with random weights. The

weights are saved once the training is completed. To perform similar object detection

tasks, it is intended to use the weights that can be trained and be optimized on the new

dataset rather than training the dataset again. The process of using random weights from

the training network is known as pre-training.
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When trying to pre-train a network with large data set one common way to do so is

by removing weights of FCN layers and replacing it with random weights. There are

several advantages to using a pre-trained network. First, in order to obtain good accuracy

on the test sets, it requires training a neural network which is not always available in

researching field. The color patterns, circles, arcs, and edges are common to all objects

and we can learn a variety of information and basic features from these data sets.

Fine-tuning can be done when a pre-trained network is to be applied to a small data set.

Second, ample time can be saved by using pre-trained networks. To train a neural network

from scratch we can take weeks to months even if one wants to train these networks on

GPUs with multiple cores. A small revision in the neural network could cost multiple

hours of time which is not a feasible thing to do. In my experiments in order to save time I

have used pre-trained models. Below is the description of the pre-trained models I used

for my research:

3.4.1 ResNet-101 for Mask R-CNN

In the past, state of art CNN architectures like AlexNet had only 5 convolutional

layers, the GoogleNet had 22 convolutional layers and the VGG Network had 22 layers.

As the network goes deeper, its performance starts degrading rapidly as these networks are

hard to train because of the vanishing gradient problem. A way to tackle the problem was

to introduce a short-cut connection that skipped one or more layers as shown in Figure

3.4. The introduction of the shortcut connection helps skip one or more layers forming the

bases of ResNet. A lower training error and a faster convergence were observed in the

ResNet.
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Figure 3.4. Building Block for ResNet-101 from Kaiming He (2015)

3.4.2 Darknet-53 for YOLOv3

The Darknet-53 model used in YOLOv3 is a hybrid approach between Darkent-19

and the residual network. It has 53 convolutional layers and so it is called as Darknet-53.

The nertwork uses successive 3X3 and 1X1 convolutional layers along with shortcut

connections. The network is more powerful and efficient than ResNet-101 and

Darknet-19. Darknet is 1.5 times faster than ResNet-101 and can perform state-of-art

classifications with more speed.
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Table 3.2. Comparisons of underlying backbone used in research from Joseph Redmon
(2017a)

Backbone Top-1 Top-5 Bn Ops BFLOP/s FPS
Darknet-19 74.1 91.8 7.29 1246 171
ResNet-101 77.1 93.7 19.7 1039 53
ResNet-152 77.6 93.8 29.4 1090 37
DarkNet-53 77.2 93.8 18.7 1457 78

3.5 Photogrammetry - Mapping detected objects from algorithms to GPS location

The science of making measurements from photographs is known as

photogrammetry. By using the concept of photogrammetry, the exact positions of the

surface points can be estimated. The distance between two points on a photographic

image plane can be determined if the scale on the image is known (Mikhail et al., 2001).

Using the concept of photogrammetry, precise search and rescue operation can be carried

out. The geo-location of the center of the image can be calculated by using the concepts,

• Ground Sample Distance.

• Haversine Formula

• Elevation from the ground

3.5.1 Ground Sample Distance

It is the distance between the center of two points on the earth surface. The

concept of the ground sample distance can be understood in figure 3.5. To calculate the

GSD the specifics of the camera sensor of the drone must be known Drone Blocks (2013).

The equation to calculate the GSD is given by,

Ds =
sw∗al ∗100

f l ∗ iw
(3.1)
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Figure 3.5. Concept of Ground Sample Distance from Drone Blocks (2013)

where,

sw - sensor width of the sensor fitted on the drone

al - altitude of the drone from the ground

fl - focal length

iw - image width

Once the Ground Sample Distance has been calculated, the width of the camera

footprint needs to be calculated. It is given by the following formula,

Wf = Ds ∗Wp (3.2)
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where,

Ds - Ground Sample Distance

Wf - Width of camera footprint

Wp - Pixel Width of the Image

3.5.2 Haversine Formula

The haversine formula is used for mapping distance between two points on the

sphere given their latitude and longitude. Concurrently, the haversine formula can even be

used to find the geo-location of the second point provided the geo-location of the first

point and the distance between two points are known. By using haversine formula, the

objects can be mapped in real-time and precise location of objects can be shared with the

search and rescue team. The formula is given by,

θ =
d
r

(3.3)

hav(θ) = hav(τ2 − τ1)cos(τ1)cos(τ2)hav(λ2 −λ1) (3.4)

hav(θ) = sin2 θ

2
(3.5)

r - radius of the sphere

d - distance between two points on the sphere

θ - central angle between two points

τ2, τ1 - latitude of point 2 and latitude of point 1

λ2, λ1 - longitude of point 2 and longitude of point 1

From this formula, the latitude and the longitude of the center of the image can be

calculated.
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3.5.3 Elevation from the ground

By the use of the Google Elevation API, the elevation on the ground can be

determined by using a simple HTTP request. Below is the code:

1 import http.client
2 from pygeocoder import Geocoder
3 import pandas as pd
4 import numpy as np
5 import simplejson
6 import urllib
7

8 def get_elevation(lat , lon):
9

10 base_url = ’https :// maps.googleapis.com/maps/api/elevation/json’
11 url_params = "locations =%.7f,%.7f" % (lat , lon)
12 url = "%s?%s" % (base_url , url_params)
13 result = simplejson.load(urllib.urlopen(url))
14 elevation = result["results"][0]["elevation"]
15

16 return (elevation)
17

18

19 if __name__ == ’__main__ ’:
20

21 lat = -29.26399994
22 lon = -61.02799988
23 elevation = get_elevation(lat , lon)
24 print(elevation)

Listing 3.1: Extraction of elevation from ground based on latitude and longitude

3.6 Assumptions made in the research study

Here, it has been assumed that the metadata from the drone (GPS coordinates) can

be easily extracted for every frame which then could be used to estimate the GPS

coordinates and the distance of humans in a flood. To demonstrate how the metadata could

be used for precise search and rescue operation in a flood, the flight log of DJI drone was

extracted from the website http://app.airdata.com/share/yLhFyj. Here, the

metadata (drone latitude, drone longitude, time, altitude, speed, voltage, compass heading,

battery percentage) was being recorded every 100 milliseconds. Based on this metadata
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Table 3.3. Flight log of DJI Drone
Time (ms) Datetime (utc) Latitude (deg) Longitude (deg) Altitude (m)

42000 8/28/2017 9:39:48 55.588606 38.932124 123.7562
42100 8/28/2017 9:39:48 55.589939 38.935163 123.7562
42200 8/28/2017 9:39:49 55.589984 38.935193 123.7564
42400 8/28/2017 9:39:49 55.589997 38.935207 123.7566
42600 8/28/2017 9:39:50 55.590156 38.935248 123.7570
42700 8/28/2017 9:39:50 55.59114 38.935295 123.7590

the drone’s latitude, longitude for every image could be then used to map the human

location by the concept of photogrammetry for precise search operations. Currently, in my

research, the GPS coordinates of the drone have been hardcoded due to lack of availability

of GPS drone data. Table 3.3 gives an illustration of the metadata of the drone flight.

3.7 Research Type

This is qualitative research with the aim to study the YOLOv3 thoroughly and

investigate many ways by which the speed (inference time) and the accuracy (performance

metrics) of the algorithm can be improved while preserving the quality of the algorithm at

the same time. The results are based on a statistical analysis of the running time and

performance metrics of the pre-trained models like Mask-RCNN, SSD300, YOLOv3 and

running time and performance metrics of the proposed version of the trained YOLOv3.

3.8 Evaluation Criteria

A Deep Learning model can be evaluated based on two parameters:

• Inference time

• Performance Metrics
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3.8.1 Inference time

Inference time is one of the key parameters that should be considered while assessing a

model’s performance. By using this metric along with the performance metric, we have

tried assessing the model that can be deployed in real-time for a typical search operation

in a flood.

3.8.2 Performance Metrics

The results of object detection can be verified by using two criteria’s, overall recall

and overall precision. Figure 3.1 depicts the overall precision and recall. Precision means

the identification of values that are actually correct.” Recall means identification of actual

positives correctly.” The formula, of precision and recall, are given by,

Precision =
T P

T P+FP
(3.6)

Recall =
T P

T P+FN
(3.7)

3.9 Experimental setup of computational resources on google colaboratory

For my research, I have used google colaboratory, a jupyter notebook environment

that supports Python 2.7 and Python 3.6. google colaboratory is a research tool for

machine learning, deep learning education, and research. The service doesn’t require any

setup to use and runs entirely on the cloud. With colaboratory, codes can be written,

executed and shared as it gives free access to powerful computing resources from the web

browser. The codes are executed in a virtual machine but if the machines are kept idle for

too long, the machines are recycled, and the notebook should be executed again. Here are

the hardware specifications of the system I will be using for my research:
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• GPU: 1xTesla K80 , 2496 CUDA cores, compute 3.7, 12GB (11.439GB Usable)

GDDR5 VRAM

• CPU: 1xsingle core hyper threaded (1 core, 2 threads) Xeon Processors @2.3Ghz

(No Turbo Boost) , 45MB Cache

• Disk: 320 GB (HDD)

For my analysis of deep learning models, I have used the Tesla K80 GPU with all

other hardware configurations intact and have found serious improvement in computation

speed.

3.10 Summary

Here, we first discussed the research framework and the general methodology of

how we have set up the experiment for object detection and geo-location mapping of the

object to the drone by using the concept of photogrammetry. Later in the chapter, we

discussed evaluation metrics methods like inference time, performance metrics like

precision and recall followed by the experimental setup we used during our research.
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CHAPTER 4. EXPERIMENT RESULTS

In this chapter, we will present the results of the experiments we conducted in this

research. First, we will discuss the procedure in which data has been collected and

prepared in our research. Next, we will introduce the data sets like COCO that have been

used to label our objects followed by the implementation methodology discussed in

Chapter 3. In the end, the results have been compared that best suits our needs.

4.1 Data collection and preparation

The dataset of the flood was scraped from google manually. More than 1700

images were extracted on querying floods from the search engine. The search queries have

images dating as old as of June 2000. The dataset collected from google has been

collected over a span of over 20 years. Over 200 images and 10 videos were fit (test set)

on the models (pre-trained and trained) to test the inference timing and the performance

metrics of these models for a precise search operation in real-time.

4.2 Annotation of objects using COCO (Common Objects in Context)

In the original work done by He et al. (2017); Redmon and Farhadi (2018) state

art of performance was obtained when the models were fit on COCO data set, hence in

order to obtain same results COCO annotations have been used. Object recognition can be

divided into three categories to address the following: semantic scene labeling, object

classification, and object detection. The MS COCO data set was designed for detection,

segmentation and scene labeling of objects occurring in a natural context. The data set has

few categories but more instances per category which can help in precise 2D localization.

Additionally, the contextual information is aided by the number of labeled instances per

image (Lin et al., 2014). Some of the key features of the COCO data set are:

• 328,000 images with 2,500,000 labeled instances
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• 82 object categories with more than 5000 labeled instances

• Overall 91 object categories

• Object Segmentation

• 5 captions per image

• Super pixel stuff segmentation

• Recognition in context

The MS COCO dataset has been used for annotation of all the detected classes in

pre-trained models Mask R-CNN, SSD-300, and YOLOv3.

4.3 Implementation details and results

4.3.1 Pre-trained Mask-RCNN model on 80 classes

As inference time and prediction metrics are very critical for any deep learning

model, in this section, the pre-trained Mask-RCNN model fit on 80 classes (COCO

annotations). The inference time and performance metrics for the pre-trained are then

compared with the proposed YOLOv3 model for both videos and images for precise

search operations of humans in floods.

In this section, the Mask-RCNN configuration file and pre-existing weights were

downloaded from https://github.com/matterport/Mask RCNN.The Mask-RCNN

model is based on ResNet-101 architecture. The classes (annotations) were retrieved from

the COCO website https://github.com/cocodataset/cocoapi for annotation

purpose once the masked objects were identified on the pre-trained Mask-RCNN model.

For every frame in case of videos/image in the Mask-RCNN, the bounding box

coordinates of the objects were first extracted as shown in Figure 4.1. Based on the

bounding box image coordinates of the objects, the distance from the drone to the object

along with GPS coordinates of the object were estimated using the concept of
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photogrammetry (ground sample distance and haversine formula) for precise search

operation of the objects in floods. Figure 4.1 shows the GPS coordinates of the object and

distance estimation from the drone to the object obtained by us for every image in the

Mask-RCNN model.

Figure 4.1. GPS estimation of objects using Mask R-CNN model
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The distance between the GPS coordinates of the object and the GPS coordinates

of the drone was further validated on the haversine calculator available on

https://andrew.hedges.name/experiments/haversine/ with GPS coordinates of

the two points provided in the calculator as shown in Figure 4.2.

Figure 4.2. Validation of distance obtained in Figure 4.2 using Haversine Formula

The experiment was conducted on a test set of 10 videos of 2 minutes each and on

200 images separately. On fitting the Mask-RCNN model on batches of 10 images for 200

images, it was found that the inference time taken by 200 images on google colaboratory

varied between 96.5s to 99s with a median of 98.2 and an outlier on 95.5s. Similarly,

when the Mask-RCNN model was fit on 10 flood videos of 2 minutes each, the inference

time varied between 2800s to 2600s with a couple of outliers at 3500s and 1750s as

depicted in the boxplot in Figure 4.3.
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Figure 4.3. Inference time for pre-trained Mask R-CNN model

The performance metric parameters, precision, and recall for the Mask-RCNN

model were found based on the threshold set in the algorithm. For every object, the IoU

(Intersection over Union) was computed and compared with the threshold value we set in

the algorithm. The threshold was set at 0.5 for images and 0.2 for videos. If the IoU was

more than a threshold, then a true positive was confirmed. If IoU was less than the
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Table 4.1. Pre-trained Mask-RCNN confusion matrix - Images
Predicted

(1) (0) Total

Actual
(1) T P = 834 FN = 96 834+96
(0) FP = 90 T N = 303 90+303
Total 729+70 86+438 1323

Table 4.2. Pre-trained Mask-RCNN confusion matrix - Videos
Predicted

(1) (0) Total

Actual
(1) T P = 3104 FN = 4124 3104+4124
(0) FP = 1278 T N = 1730 1278+1730
Total 3104+1278 4124+1730 10236

threshold, a false positive was confirmed. For no objects detected in the images/frames, a

true negative was confirmed otherwise a false negative was confirmed. Once the TP, FP,

FN, and TN was found out for the images and the videos, a confusion matrix was

computed. For images and videos for Mask-RCNN, as depicted in the confusion matrix,

there were a considerable number of false negatives and false positives which played a

crucial role in the determination of precision and recall values. The precision and recall

curve for pre-trained Mask-RCNN model has been depicted below.
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Figure 4.4. Precision Recall curve for pretrained Mask-RCNN

4.4 Pre-trained SSD300 model on 80 classes

As inference time and prediction metrics are very critical for any deep learning

model, in this section, the pre-trained SSD300 model fit on 80 classes (COCO

annotations). The inference time and performance metrics for the pre-trained data were

then compared with the proposed YOLOv3 model for both videos and images for precise

search operations of humans in floods.

In this section the SSD300 configuration file and pre-existing weights were

downloaded from https://github.com/pierluigiferrari/ssdkeras.The SSD300

architecture is based on VGG16 architecture. The classes (annotations) were retrieved

from the COCO website https://github.com/cocodataset/cocoapi for annotation

purpose once the predictions were made on the pre-trained SSD300 model.

For every frame in case of videos/image in the SSD300, the bounding box

coordinates of the objects were first extracted as shown in Figure 4.4. Based on the first

bounding box image coordinates of the person, the distance from the drone to the object

along with GPS coordinates of the object were estimated using the concept of
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photogrammetry (ground sample distance and haversine formula) for precise search

operation of the humans in floods. Figure 4.5 shows the GPS coordinates of the object and

distance estimation from the drone to the object obtained by us for every image in the

SSD300 model.

Figure 4.5. GPS estimation of objects using pre-trained SSD300 model
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The distance between the GPS coordinates of the object and the GPS coordinates

of the drone was further validated on the haversine calculator available on

https://andrew.hedges.name/experiments/haversine/ with GPS coordinates of

the two points provided in the calculator as shown in Figure 4.5.

Figure 4.6. Validation of distance obtained in Figure 4.5 using Haversine Formula

The experiment was conducted on a test set of 10 videos of 2 minutes each and on

200 images separately. On fitting the pre-trained SSD300 model on batches of 10 images

for 200 images, it was found that the inference time taken by 100 images on google

colaboratory varied between 68s to 62s with an outlier on 63.5s. Similarly, when the

SSD300 model was fit on 10 flood videos of 2 minutes each, the inference time varied

between 1020s and 550s with a median on 800s as depicted in the boxplot in Figure 4.6.
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Figure 4.7. Inference time for pre-trained SSD300 model

The performance metric parameters, precision, and recall for the SSD300 model

were found based on the threshold set in the algorithm. For every object, the IoU

(Intersection over Union) was computed and compared with the threshold value we set in

the algorithm. The threshold was set at 0.5 for images and 0.2 for videos. If the IoU was

more than a threshold, then a true positive was confirmed. If IoU was less than the
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Table 4.3. Pre-trained SSD300 Confusion Matrix - Images
Predicted

(1) (0) Total

Actual
(1) T P = 316 FN = 736 316+736
(0) FP = 58 T N = 213 58+213
Total 316+58 736+213 1323

Table 4.4. Pre-trained SSD300 Confusion Matrix - Videos
Predicted

(1) (0) Total

Actual
(1) T P = 978 FN = 5862 978+5862
(0) FP = 1366 T N = 2030 1366+2030
Total 978+1366 5862+2030 10236

threshold, a false positive was confirmed. For no objects detected in the images/frames, a

true negative was confirmed otherwise a false negative was confirmed. Once the TP, FP,

FN, and TN was found out for the images and the videos, a confusion matrix was

computed. For images and videos for SSD300, as depicted in the confusion matrix, there

were a considerable number of false negatives and false positives which played a crucial

role in the determination of precision and recall values. The precision and recall curve for

pre-trained SSD300 model has been depicted below.
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Figure 4.8. Precision Recall curve for pretrained SSD300

4.5 You Only Look Once (YOLOv3)

As inference time and prediction metrics are very critical for any deep learning

model, in this section, the pre-trained YOLOv3 model fit on 80 classes (COCO

annotations). The inference time and performance metrics for the pre-trained are then

compared with the proposed YOLOv3 model for both videos and images for precise

search operations of humans in floods.

For the pre-trained YOLOv3 model, the configuration file and pre-existing weights

were downloaded from https://pjreddie.com/darknet/yolo/. The YOLOv3 model

is based on Darknet-53 architecture. The classes (annotations) were retrieved from the

COCO website https://github.com/cocodataset/cocoapi for annotation purpose

once the predictions were made on the pre-trained YOLOv3 model.

For every frame in case of videos/image in the YOLOv3, the bounding box

coordinates of the objects were first extracted as shown in Figure 4.8. Based on the

bounding box image coordinates of the objects, the distance from the drone to the object

along with GPS coordinates of the object were estimated using the concept of
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photogrammetry (ground sample distance and haversine formula) for precise search

operation of the humans in floods. Figure 4.7 shows the GPS coordinates of the object and

distance estimation from the drone to the object obtained by us for every image in the

YOLOv3 model.
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Figure 4.9. GPS estimation of objects using pre-trained YOLOv3 model

The distance between the GPS coordinates of the object and the GPS coordinates

of the drone was further validated on the haversine calculator available on

https://andrew.hedges.name/experiments/haversine/ with GPS coordinates of

the two points provided in the calculator as shown in Figure 4.8.
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Figure 4.10. Validation of distance obtained in Figure 4.8 using Haversine Formula

The experiment was conducted on a test set of 10 videos of 2 minutes each of

resolution 1080p, 720p and 360p and on 200 images separately. On fitting the pre-trained

YOLOv3 model on batches of 10 images for 200 images, it was found that the inference

time taken by 200 images on google colaboratory varied between 39s to 34s with a

median on 36.5s as depicted in boxplot in Figure 4.9.
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Figure 4.11. Inference time for pre-trained YOLOv3 model

The performance metric parameters, precision, and recall for the YOLOv3 model

were found based on the threshold set in the algorithm. For every object, the IoU

(Intersection over Union) was computed and compared with the threshold value we set in

the algorithm. The threshold was set at 0.5 for images. If the IoU was more than

threshold, then a true positive was confirmed. If IoU was less than threshold, a false

positive was confirmed. For no objects detected in the images/frames, a true negative was

confirmed otherwise a false negative was confirmed. Once the TP, FP, FN, and TN was

found out for the images and the videos, a confusion matrix was computed.
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Table 4.5. Pre-trained YOLOv3 Confusion Matrix - Images
Predicted

(1) (0) Total

Actual
(1) T P = 728 FN = 274 728+274
(0) FP = 60 T N = 261 60+261
Total 728+60 274+261 1323

4.5.0.1 Pre-trained YOLOv3 on videos of resolution 1080p

On fitting the pre-trained YOLOv3 model on videos of resolution 1080p it was found out

that the inference time varied between 178s and 140s with a median on 170s and an

outlier on 250s as depicted in the boxplot in Figure 4.10.

Figure 4.12. Inference time for pre-trained YOLOv3 model of resolution 1080p

The performance metric parameters, precision, and recall for the YOLOv3 model

were found based on the threshold set in the algorithm. For every object, the IoU

(Intersection over Union) was computed and compared with the threshold value we set in

the algorithm. The threshold was set at 0.2 for videos. If the IoU was more than threshold,

then a true positive was confirmed. If IoU was less than threshold, a false positive was
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Table 4.6. Pre-trained YOLOv3 Confusion Matrix - Videos of resolution 1080p
Predicted

(1) (0) Total

Actual
(1) T P = 5095 FN = 2728 5095+2728
(0) FP = 583 T N = 1830 583+1830
Total 5095+583 2728+1830 10236

confirmed. For no objects detected in the images/frames, a true negative was confirmed

otherwise a false negative was confirmed. Once the TP, FP, FN, and TN was found out for

the images and the videos, a confusion matrix was computed. For videos, as depicted in

the confusion matrix, there were considerable number of false negatives and false

positives which played a crucial role in determination of precision and recall values. The

precision and recall curve for pretrained YOLOv3 has been depicted below.

Figure 4.13. Precision Recall curve for pretrained YOLOv3-1080p
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4.5.0.2 Pre-trained YOLOv3 on videos of resolution 720p

On fitting the pre-trained YOLOv3 model on videos of resolution 720p it was

found out that the inference time varied between 200s and 240s with an outlier on 120s as

depicted in the boxplot in Figure 4.11. The inference time of videos of resolution 720p

was 4s less than the videos of resolution 1080p.

Figure 4.14. Inference time for pre-trained YOLOv3 model of resolution 720p

The performance metric parameters, precision, and recall for the YOLOv3 model

were found based on the threshold set in the algorithm. For every object, the IoU

(Intersection over Union) was computed and compared with the threshold value we set in

the algorithm. The threshold was set at 0.2 for videos. If the IoU was more than threshold,

then a true positive was confirmed. If IoU was less than threshold, a false positive was

confirmed. For no objects detected in the images/frames, a true negative was confirmed

otherwise a false negative was confirmed. Once the TP, FP, FN, and TN was found out for

the images and the videos, a confusion matrix was computed. For videos, as depicted in



76

Table 4.7. Pre-trained YOLOv3 Confusion Matrix - Videos of resolution 720p
Predicted

(1) (0) Total

Actual
(1) T P = 4823 FN = 2871 4823+2871
(0) FP = 621 T N = 1921 621+1921
Total 4823+621 2871+1921 10236

the confusion matrix, there were considerable number of false negatives and false

positives which played a crucial role in determination of precision and recall values. The

precision and recall curve for pre-trained YOLOv3 for videos of resolution 720p has been

depicted below.

Figure 4.15. Precision Recall curve for pretrained YOLOv3-720p
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4.5.0.3 Pre-trained YOLOv3 on videos of resolution 360p

On fitting the pre-trained YOLOv3 model on videos of resolution 360p it was found out

that the inference time varied between 180s to 228s with an outlier at 110s as depicted in

the boxplot in Figure 4.12. In terms of inference time, the videos of resolution 360p was

faster (20s) than the videos of resolution 1080p.

Figure 4.16. Inference time for pre-trained YOLOv3 model of resolution 360p

The performance metric parameters, precision, and recall for the YOLOv3 model

were found based on the threshold set in the algorithm. For every object, the IoU

(Intersection over Union) was computed and compared with the threshold value we set in

the algorithm. The threshold was set at 0.2 for videos. If the IoU was more than threshold,

then a true positive was confirmed. If IoU was less than threshold, a false positive was

confirmed. For no objects detected in the images/frames, a true negative was confirmed

otherwise a false negative was confirmed. Once the TP, FP, FN, and TN was found out for

the images and the videos, a confusion matrix was computed. For videos, as depicted in
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Table 4.8. Pre-trained YOLOv3 Confusion Matrix - Videos of resolution 360p
Predicted

(1) (0) Total

Actual
(1) T P = 4517 FN = 2989 4517+2989
(0) FP = 1027 T N = 1709 1027+1709
Total 4517+1027 2989+1709 10236

the confusion matrix, there were considerable number of false negatives and false

positives which played a crucial role in determination of precision and recall values. The

precision and recall curve for pre-trained YOLOv3 for videos of resolution 360p has been

depicted below.

Figure 4.17. Precision Recall curve for pretrained YOLOv3-360p
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4.6 Modified trained YOLOv3 model on 2 classes

The YOLOv3 was trained on a dataset of 5152 images downloaded from google.

The VOC development kit dataset (4952 images) contained bounding box annotations of

the objects (person, car). The dataset had 5227 instances of person and 1541 instances of

car in 5152 images. The remaining 200 flood images were collected manually from

google and annotated using LabelImg. The entire dataset was kept for training. Next, the

Darknet-53 model was downloaded from https://pjreddie.com/darknet/yolo/.

The configuration file was modified to be trained and tested for only 2 classes (person,

car). The labels.txt file was modified in such a way that it could detect only two classes.

The intent of compiling the model from scratch was to find a trade-off between

performance metrics and inference time and compare these results with the pre-trained

model for precise search and rescue operations.

For every frame in case of videos/image in the YOLOv3, the bounding box

coordinates of the objects were first extracted as shown in Figure 4.13. Based on the

bounding box image coordinates of the objects, the distance from the drone to the object

along with GPS coordinates of the object were estimated using the concept of

photogrammetry (ground sample distance and haversine formula) for precise search and

rescue operation of the humans in floods. Figure 4.13 shows the GPS coordinates of the

object and distance estimation from the drone to the object obtained by us for every image

in the YOLOv3 model.
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Figure 4.18. GPS estimation of objects using trained YOLOv3 model
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The distance between the GPS coordinates of the object and the GPS coordinates

of the drone was further validated on the haversine calculator available on

https://andrew.hedges.name/experiments/haversine/ with GPS coordinates of

the two points provided in the calculator as shown in Figure 4.14.

Figure 4.19. Validation of distance obtained in Figure 4.12 using Haversine Formula

The experiment was conducted on a test set of 10 videos of 2 minutes of resolution

1080p and on 200 images separately. On fitting the trained YOLOv3 model on batches of

10 images for 200 images, it was found that the inference time taken by 200 images on

google colaboratory varied between 5s to 6.6s with a median on 5.8s. The inference time

for trained YOLOv3 model was found out to be smaller than the inference time for the

pre-trained model.
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Figure 4.20. Inference time for trained YOLOv3 model

The performance metric parameters, precision, and recall for the YOLOv3 model

were found based on the threshold set in the algorithm. For every object, the IoU

(Intersection over Union) was computed and compared with the threshold value we set in

the algorithm. The threshold was set at 0.5 for image. If the IoU was more than a

threshold, then a true positive was confirmed. If IoU was less than threshold, a false

positive was confirmed. For no objects detected in the images/frames, a true negative was

confirmed otherwise a false negative was confirmed. Once the TP, FP, FN, and TN was

found out for the images and the videos, a confusion matrix was computed. The precision

and recall for trained YOLOv3 model for 200 images were found out to be 0.9800 and

0.94.
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Table 4.9. Trained YOLOv3 Confusion Matrix - Images
Predicted

(1) (0) Total

Actual
(1) T P = 736 FN = 40 736+40
(0) FP = 15 T N = 532 15+532
Total 736+15 40+532 1323

4.6.0.1 Modified trained YOLOv3 on videos of resolution 1080p On fitting the trained

YOLOv3 model on videos of resolution 1080p it was found out that the inference time

inference time varied between 200s and 240s with a median on 230s and an outlier on

130s as depicted in the boxplot in Figure 4.16.

Figure 4.21. Inference time for trained YOLOv3 model of resolution 1080p

The performance metric parameters, precision, and recall for the YOLOv3 model

were found based on the threshold set in the algorithm. For every object, the IoU

(Intersection over Union) was computed and compared with the threshold value we set in

the algorithm. The threshold was set at 0.2 for videos. If the IoU was more than threshold,

then a true positive was confirmed. If IoU was less than threshold, a false positive was
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Table 4.10. Trained YOLOv3 Confusion Matrix - Videos of resolution 1080p
Predicted

(1) (0) Total

Actual
(1) T P = 4895 FN = 408 4895+408
(0) FP = 147 T N = 4786 583+1830
Total 5095+583 2728+1830 10236

confirmed. For no objects detected in the images/frames, a true negative was confirmed

otherwise a false negative was confirmed. Once the TP, FP, FN, and TN was found out for

the images and the videos, a confusion matrix was computed. For videos, as depicted in

the confusion matrix, there were considerable number of false negatives and false

positives which played a crucial role in determination of precision and recall values. The

precision and recall for modified trained YOLOv3 for videos of resolution 1080p has been

depicted below.

Figure 4.22. Precision Recall curve for modified YOLOv3-1080p
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4.7 Results and Analysis

The original version of pre-trained models like Mask-RCNN, SSD300, YOLOv3

and the modified version of trained YOLOv3 were tested on 200 images and 10 videos of

length 2 minutes each and the performance metrics and inference time were compared.

From the values obtained on executing these algorithms it was found out that, the

modified version of YOLOv3 outperformed in terms of performance metrics (precision

and recall) but the inference time only improved slightly. The pre-trained YOLOv3 model

was also tested on videos of different resolutions like 360p, 720p and 1080p. Based on the

values obtained, it can be concluded that, the modified version of YOLOv3 had better

model accuracy and very less loss as depicted in the graph below and thus could be used

in real time for search operations as it out performed over the pre-trained models.

Figure 4.23. Accuracy of Modified YOLOv3-1080p
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Table 4.11. Comparison of results
Inference Time (sec) Precision (max val:1) Recall(max val:1)

PT Mask R-CNN-1080p 2780 0.7083 0.4294
PT SSD300-1080p 800 0.4172 0.1429
PT YOLOv3-1080p 240 0.8973 0.6512
PT YOLOv3-720p 242 0.8859 0.6268
PT YOLOv3-360p 222 0.8147 0.6017

Modified YOLOv3-1080p 238 0.9708 0.9230

*PT - Pretrained
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4.8 Summary

Here, we first discussed the procedure of data collection and preparation followed

by class annotation we used in our research. Later in the chapter, we have discussed and

validated results of various deep learning models we obtained during our research on

pre-trained models like Mask-RCNN, SSD300, YOLOv3 and modified version of trained

YOLOv3 on parameters like inference time and performance metrics.



88

CHAPTER 5. CONCLUSION AND FUTURE PLAN

This chapter briefly explain the research conducted. It also concludes the results of

the research and last includes relevant discussion and future direction.

5.1 Conclusion

The principal focus of the thesis was to modify the YOLOv3 algorithm to detect

persons and cars for search operation in flood videos and compare it with pre-trained

models like Mask-RCNN, SSD300, YOLOv3 for search operations in real time.

Traditional means of search operations are time-intensive and can be a major bottleneck in

search operations. This study focused to solve the issues of real time search operations

using the concept of deep learning and photogrammetry.

Literature states that Mask-RCNN, SSD300, YOLOv3 algorithms are one of the

faster algorithms and can detect objects in real time. Till today there has been plethora of

work done on making these algorithms fast (in terms of inference time) and more accurate

(in terms of performance metrics). One of the famous researches in the area of deep

learning has been done by Redmon and Farhadi (2018). The researchers have in the past

worked on deep learning models to detect multiple objects but none of them focused on

detecting specific objects and measuring the performance of the algorithm based on these

parameters. The thesis focuses on detection of specific objects (person, car) in a flood in

real time with focus on algorithm parameters like inference time and performance metrics.

Chapter 4 gives details on the results obtained by executing pre-trained models like

Mask-RCNN, SSD300 and YOLOv3 and the modified YOLOv3 on the same set of inputs.

The performance metrics like precision and recall and inference time were observed when

these algorithms were executed. It was found out that the performance metrics (precision

and recall) of the modified algorithm improved significantly while there was slight change

in the inference time of the model thus concluding that it could be used to make search

operations in real time in a flood.
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5.2 Future Plan

A future direction to this study is to investigate deeper into why the inference time

of the model didn’t improve significantly and why the performance metrics of the

algorithm was still failing to give impressive numbers. The current experimentation uses

only 2D information for detection and segmentation. In the future, a study can be

conducted where lidar data can be used in the modified algorithm for detection. The use of

lidar data can only help improve the overall accuracy of the model by mapping more TP

and TN over FP or FN. The research study even focuses on the inference time of the

algorithm to make object detections. A study can be conducted to improve the inference

time of the algorithm and ensuring that the performance metrics of the algorithm is not

being hampered.
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