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ABSTRACT

Wang, Wenyu PhD, Purdue University, December 2019. Sequential Procedures for
the ”Selection” Problems in Discrete Simulation Optimization. Major Professor:
Hong Wan.

The simulation optimization problems refer to the nonlinear optimization prob-

lems whose objective function can be evaluated through stochastic simulations.

We study two significant discrete simulation optimization problems in this the-

sis: Ranking and Selection (R&S) and Factor Screening (FS). Both R&S and FS are

the ”selection” problems defined upon a finite set of candidate systems or factors.

They vary mainly in their objectives: the R&S problems is to find the ”best” sys-

tem(s) among all alternatives; whereas the FS is to select important factors that are

critical to the stochastic systems.

In this thesis, we develop efficient sequential procedures for these two prob-

lems. For the R&S problem, we propose fully-sequential procedures for selecting

the ”best” systems with a guaranteed probability of correct selection (PCS). The

main features of the stated methods are: (1) a Bonferroni-free model, these pro-

cedures overcome the conservativeness of the Bonferroni correction and deliver

the exact probabilistic guarantee without overshooting; (2) asymptotic optimal-

ity, these procedures achieve the lower bound of average sample size asymptoti-

cally; (3) an indifference-zone-flexible formulation, these procedures bridge the

gap between the indifference-zone formulation and the indifference-zone-free for-

mulation so that the indifference-zone parameter is not indispensable but could be

helpful if provided. We establish the validity and asymptotic efficiency for the pro-

posed procedure and conduct numerical studies to investigates the performance

under multiple configurations.
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We also consider the multi-objective R&S (MOR&S) problem. To the best of our

knowledge, the procedure proposed is the first frequentist approach for MOR&S.

These procedures identify the Pareto front with a guaranteed probability of correct

selection (PCS). In particular, these procedures are fully sequential using the test

statistics built upon the Generalized Sequential Probability Ratio Test (GSPRT).

The main features are: 1) an objective-dimension-free model, the performance

of these procedures do not deteriorate as the number of objectives increases, and

achieve the same efficiency as KN family procedures for single-objective rank-

ing and selection problem; 2) an indifference-zone-flexible formulation, the new

methods eliminate the necessity of indifference-zone parameter while makes use

of the indifference-zone information if provided. A numerical evaluation demon-

strates the validity efficiency of the new procedure.

For the FS problem, our objective is to identify important factors for simulation

experiments with controlled Family-Wise Error Rate. We assume a Multi-Objective

first-order linear model where the responses follow a multivariate normal distri-

bution. We offer three fully-sequential procedures: Sum Intersection Procedure

(SUMIP), Sort Intersection Procedure (SORTIP), and Mixed Intersection procedure

(MIP). SUMIP uses the Bonferroni correction to adjust for multiple comparisons;

SORTIP uses the Holms procedure to overcome the conservative of the Bonferroni

method, and MIP combines both SUMIP and SORTIP to work efficiently in the

parallel computing environment. Numerical studies are provided to demonstrate

the validity and efficiency, and a case study is presented.
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1. INTRODUCTION

The Simulation Optimization (SO) problem refers to the optimization problem

specified by a stochastic simulation. Specifically, the objective function of SO is

stochastic and the goal is to find the optimal set of simulation inputs that lead to

the best simulation output. It is used extensively to analyze and optimize complex

systems in which closed-form analytical solutions do not exist due to the inher-

ent complexities and randomnesses. For such problems, simulation allows one to

accurately model the dynamics of the complex, stochastic systems and evaluate

the performances using simulated outputs. Therefore, SO is widely applicable to a

variety areas from transportation to health care, manufacturing, and supply chain

management. For details on these and other applications of SO, see [1] for a library

of SO problems. For overviews of SO methods, see, e.g. [2–5].

This thesis studies two discrete SO problems: the Ranking and Selection (R&S)

problem, and the Factor Screening (FS) problem. Both of these two problems are

defined on a finite set of decision variables and can be seen as the ”selection”

problems: RS is the ”selection-of-the-best” problem to identify the best system(s)

among all alternatives; FS is the ”selection-of-the-important” problem to screen

out all variables that are critical to the simulation system. Moreover, they both

rely heavily on statistical methods. Indeed, this thesis models both problems as

sequential hypothesis testings and applies the Sequential Probability Ratio Test

(SPRT) methods; although these two problems differ a lot in their assumptions

and objectives.

The organization of this thesis is as follows. In Chapter 2, we propose two

frameworks for the R&S problem, give the validity and efficiency results, and pro-

vide implementations under normality assumptions. Chapter 3 extends the scope
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to the Multi-Objective Ranking and Selection problems. Two procedures to select

the Pareto front is proposed. Theoretical analysis and numerical evaluation are

also provided. In Chapter 4, we propose several procedures for the Factor Screen-

ing problem, and evaluate the procedures numerically.
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2. BONFERRONI-FREE SEQUENTIAL ELIMINATION

PROCEDURES FOR RANKING AND SELECTION

2.1 Introduction

The Ranking and Selection (R&S) problem is to select the best system among a

finite set of alternatives. In this paper, the best system refers to the system with the

highest expected outcome. It is applied when the decision makers want to compare

different alternatives whereas the expected performances are not available and can

only be assessed through stochastic simulations. Typical applications of R&S pro-

cedures include inventory management that the decision maker needs to choose

the optimal inventory level to minimize inventory costs; portfolio management

that the investor compares the performances of various investment strategies, and

so forth.

Ranking and Selection can be formulated as an unconstrained discrete simula-

tion optimization problem

arg max
i∈Ω

µ?
i = E[Xi] (2.1)

where Ω = {1, ..., K} is a finite set of index, µ?
i is the unknown quantity and can

only be evaluated through stochastic observations obtained from simulation. In

this paper, we assume systems are independent, i.e., there is no topological or

structural relationship among systems.

There is a substantial body of literature on R&S procedures. Most R&S pro-

cedures fall into two categories: (a) the fixed-precision approaches that achieve a

pre-specified probability of correct selection (PCS); (b) the fixed-budget approaches

that efficiently allocate a finite computing budget among alternatives in order to

optimize an objective, i.e., maximize the posterior PCS. For the fixed-budget ap-
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proaches, the Optimal Computing Budget Allocation (OCBA) algorithm in [6] is

one of the most widely applied and studied algorithms. See [7–9] for thorough

overviews on R&S procedures.

In this paper, we focus on the fixed-precision approaches that aims to attain

a target PCS. For this objective, the fixed-precision approaches often take one of

three formulations: (a) the subset-selection formulation, (b) the indifference-zone

formulation, and (c) the indifference-zone-free formulation. The subset-selection

formulation [10, 11] guarantees to select a subset of alternatives that includes the

best system with high probability. The indifference-zone formulation guarantees

the selection of the best system with a pre-specified PCS when an indifference-

zone δ > 0 is assumed such that the mean performance of the best system is

larger than all other systems by at least δ, see [12–15]. If there are systems within

the indifference-zone distance from the best system, then the procedures achieve

the probability of good selection (PGS) that guarantees to select a system within the

indifference-zone distance from the best system. Leading procedures using the

indifference-zone formulation includes KN procedure [13], KN++ procedure [14],

BIZ procedure [16], and so forth. Recently, Fan and Hong designed a new formula-

tion in [17,18], the indifference-zone-free formulation, to deliver the PCS guarantee

without the indifference-zone setting. Under either the indifference-zone formu-

lation or the indifference-zone-free formulation, procedures often run sequentially

and terminate after eliminating all inferior systems. In addition, the probably ap-

proximately correct (PAC) selection [19] have also been studied in this stream of

works.

Among the aforementioned formulations, there is a gap between the indifference-

zone formulation and the indifference-zone-free formulation. As noted in [18], the

correct specification of the indifference-zone parameter may significantly reduce

the sample size. However, the indifference-zone formulation is valid only when

the indifference-zone parameter is correctly specified, whereas the indifference-

zone-free formulation does not require an indifference zone parameter. Therefore,
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we are motivated to design a flexible formulation that delivers the PCS guarantee

with or without the indifference-zone parameter, and, can take advantage of the

indifference-zone information if it is provided.

Another troublesome problem is the usage of Bonferroni correction to adjust

the error probability for multiple comparisons. Leading procedures, such as KN

family procedures, divide the probability of correct selection by a factor of K − 1,

where K is the total number of systems, and therefore the implementations of R&S

procedures are expensive for the R&S problems with a large number of alterna-

tives. A significant breakthrough is the BIZ procedure proposed in [16]. Under

the indifference-zone formulation and the normality assumption, the BIZ proce-

dure sequentially eliminates inferior systems without the Bonferroni correction.

The numerical analysis confirms the BIZ outperforms other leading methods on

the large-scale R&S problems.

To address the aforementioned challenges, we propose two new R&S proce-

dures with the following characteristics:

1. A Bonferroni-free model. Many other leading procedures use Bonferroni

correction to adjust the error probability when conducting multiple pairwise

comparisons [13, 14, 17, 18]. In this paper, we model the R&S problem as

a single comparison problem: a multiple hypotheses testing, to avoid the

Bonferroni correction.

2. An indifference-zone-flexible formulation. The newly proposed procedures

admit the indifference-zone parameter if provided while remaining valid

even if the indifference-zone information is not specified. This new formula-

tion is an extension of the indifference-zone-free formulation to eliminate the

necessity of the indifference-zone parameter. Moreover, it utilizes indifference-

zone information to eliminate inferior systems faster and preciser.

The technical contribution of this paper is the proposal of a set of likelihood

methods for the studies of the R&S problems and, the method can be easily ex-
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tended to the simulation optimization. In our proposed procedures, we model the

R&S problem as a multiple-hypotheses testing problem and apply the Generalized

Sequential Probability Ratio Test (GSPRT) methods to construct the continuation

region.

The classic Sequential Probability Ratio Test (SPRT) was proposed by Wald [20,21]

in response to the need of efficient testing tools. The SPRT is a sequential proce-

dure that does not fix the sample size. Let x1, x2, ... be i.i.d. random numbers gener-

ated from the same distribution f . The classic SPRT tests a simple null hypothesis

H0 : f = f0 versus a simple alternative hypothesis H1 : f = f1. It calculates the

likelihood ratio (LR) statistic Λn = ∏n
i ( f1(xi)/ f0(xi)) at each turn, and terminates

when the LR statistic exits the continuation region. [20,21] show that, to control the

Type I and Type II error probabilities at α1 and α2, respectively, the continuation

region is formed by two time-invariant boundaries (A, B) = ( α2
1−α1

, 1−α2
α1

). They

further prove that SPRT is optimal in terms of minimizing the average sample size

among all tests that control type I and type II error probabilities at α1 and α2 lev-

els [21].

A natural generalization of the SPRT method is to test two or more composite

hypothesis. Consider a multiple hypotheses testing problem

Hi : θ ∈ Θi i = 1, 2, ..., K (2.2)

where Θi are disjoint subsets of the parameter space Θ. For multiple hypotheses

testing problems, the generalized likelihood ratio (GLR) instead of the simple like-

lihood ratio is used as the testing statistic. Note that there are different forms of

the GLR statistic in literature. The GLR statistic, in essence, ”self-tunes” to infor-

mation about the true θ over the course of the test. Various continuation regions

are designed and proved to achieve asymptotically optimality under their corre-

sponding conditions [22–27]. In this thesis, we adopt the adaptive GLR statistic

proposed in [25, 28] with the following form

Λ(1)
i,n =

supθ∈Θi
∏n

m=1 f (xm|θ)
∏n

m=1 f (xm|θ̂m−1)
(2.3)
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where {xm, m = 1, ..., n} are observations and {θ̂m, m = 1, ..., n} are the MLE of θ

of the first m observations. See Section 5.4 in [29] for more discussions on this GLR

statistic.

The rest of this section is organized as follows. We consider a R&S problem

under normality assumption with known variance and propose Procedure 1 and

Procedure 2 in Section 2.2. In Section 2.3, we consider the situation under normal-

ity assumption with unknown variance. In both sections, we show that the pro-

posed procedures are valid to deliver the PCS guarantee. Simulation experiments

are conducted in Section 2.4. We end the paper with conclusions and discussions

in Section 2.5.

2.2 Normal Distribution with Known Variance

We consider a R&S problem to select the best system from K candidates. Let

us denote Ω = {1, ..., K} as the set of all candidate systems. In this section, we

assume that random observations of system i, {Xi,n, n = 1, 2, ..}, are from normal

distribution, N(µ?
i , σ2

i ), where σ2
i is known beforehand and µ?

i is the unknown

true mean value of the alternative i. For for sake of simplicity, we assume that only

independent and identical random observations {Xi,n, n = 1, 2, ..} are available

from system i.

Throughout this section, we denote µ? = [µ?
1 , ..., µ?

K] as the vector of true mean

values, and µ = [µ1, ..., µK] as the dummy vector of mean values with µ ∈ U ⊆

RK, where U represents the set of any possible value of µ. We assume that U

is a compact set. Let us denote δ > 0 as the indifference-zone parameter. If the

indifference-zone is specified, then the mean of the best system is better than all

other systems by at least δ. Correspondingly, let us denote Ui as the parameter

space that the system i is the best among all systems, i.e., Ui = {µ|µi ≥ µj +

δ, ∀ j 6= i}. An indifference-zone space U0 contains all possible scenarios that µ

does not satisfy the indifference-zone requirement. Therefore, {U0, U1, U2, ..., UK}
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are disjoint subspaces of the decision space U ⊆ RK, i.e., U , ∪K
i=0Ui. If the

indifference-zone parameter is not provided, then we have parameter space, Ui =

{µ|µi > µj, ∀i 6= j} as well as the indifference zone space U0 = {µ|µi = µj >

µk, ∃i such that ∀i 6= j 6= k}, so that U = ∪K
i=0Ui is still a compact space.

The objective is to select the ”best” system with the guaranteed PCS, i.e., se-

lecting the true best system with probability at least 1− α. Meanwhile, we aim to

design the procedure that uses samples as minimum as possible. For such objec-

tives, we model the R&S problem as a multiple-hypotheses testing problem. The

multiple hypotheses testing problem is to determine whether the system i is the

best, i.e., whether the parameter subspace, Ui, contains the true mean vector µ?,

Hi : µ? ∈ Ui, i = 1, ..., K (2.4)

The main difference between our modeling approach and other approaches,

i.e., KN family procedures, is that we use a single test to find the best system;

whereas KN family approaches require K− 1 two-ended hypotheses tests. There-

fore KN family procedures need to adjust the error probability for multiple com-

parisons using the Bonferroni correction. By doing so, our proposed methods de-

liver the PCS guarantee without the Bonferroni correction.

Let us denote gi(·|µi) as the density function of system i under µi. Thus, the

random samples, {Xi,n, n = 1, 2, 3...}, are generated from the density gi(·|µ?
i ), i.e.,

the density function with µ?
i . Throughout this section, we assume following con-

ditions hold:

A1 Systems have different mean values, i.e., µ?
i 6= µ?

j for i 6= j. The best system

is better than other systems by at least δ, where δ is the indifference-zone

parameter; if the indifference-zone is not specified, then we have the degen-

erated indifference zone parameter δ > 0;

A2 Systems are independent, i.e., Xi,n and Xj,n are independent for all i 6= j;

A3 The parameter space U is compact;
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A4 gi(·|µi) is the Normal density function of system i ∈ Ω for a given µi;

A5 ρi(µi, µ′i) > 0 for all µi 6= µ′i, where ρi(µi, µ′i) is the Kullback-Leibler divergence

from g(·|µi) to g(·|µ′i):

ρi(µi, µ′i) = Egi(·|µi)
[log gi(·|µi)− log gi(·|µ′i)] (2.5)

where Egi(·|µi)
represents taking the expectation with respect to gi(·|µi);

A6 ∑∞
m=1 Egi(·|µi)

[ρi(µi, µ̂i,m)] < ∞, where µ̂i,m represents the MLE estimator of µi

with the first m observations.

For the sake of brevity, we define f (·|µ) = ∏K
i=1 gi(·|µi) as the joint density

function, and thus the Kullback-Leibler divergence from µ = [µ1, ..., µK] to µ′ =

[µ′1, ..., µ′K] is defined by,

ρ(µ, µ′) = E f (·|µ)[log
f (·|µ)
f (·|µ′i)

] (2.6)

where E f (·|µ) represents taking the expectation with respect to f (·|µ).

Lemma 2.2.1 Under Condition A2, A5, and A6, ρ(µ, µ′) > 0 and ∑∞
m=1 E f (·|µ)[ρ(µ, µ̂m)] <

∞, where µ̂m is the MLE of µ using the first m observations..

Proof From Condition A2 and A5, we have

ρ(µ, µ′) = E f (·|µ)[
K

∑
i=1

(
log gi(·|µi)− log gi(·|µ′i)

)
] (2.7)

=
K

∑
i=1

E f (·|µ)[log gi(·|µi)− log gi(·|µ′i)] (2.8)

=
K

∑
i=1

Egi(·|µi)
[log gi(·|µi)− log gi(·|µ′i)] =

K

∑
i=1

ρi(µi, µ′i) > 0 (2.9)

The last equality holds since Condition A2 states that gi(·|µi) for i ∈ Ω are

independent density kernels.

From Condition A2 and A6, we have
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∞

∑
m=1

E f (·|µ)[ρ(µ, µ̂m)] =
∞

∑
m=1

E f (·|µ)[
K

∑
i=1

ρi(µi, µ̂i,m)] (2.10)

=
∞

∑
m=1

K

∑
i=1

Egi(·|µi)
[ρi(µi, µ̂i,m)] < ∞ (2.11)

Condition A1 assumes that the indifference-zone parameter is provided cor-

rectly and avoids the situations when two or more systems tie with each other.

Condition A2 requires no dependencies among alternatives so that the early elim-

inations of inferior systems do not compromise the validity of the GLR statistic.

It can be replaced by the less-restricted conditional-independent condition to al-

low the usage of common random numbers. Condition A3 and A4 assume density

functions are of normal distributions with a compact parameter space. Condition

A5 ensures the validity of the likelihood ratio method. Condition A6 states that the

MLE µ̂m converges to the true parameter µ fast enough so that, for a sufficiently

large enough n, ρ(µ, µ̂n) ≈ 0. It is worth noting that it is satisfied for many distri-

butions, i.e., Gaussian, Poisson, Bernoulli, etc, where ρ(µ, µ̂m) ≤ C|µ− µ̂m|2 [29].

2.2.1 The Procedure

The first procedure is demonstrated in Procedure 1. It is in a fully sequential

manner. In particular, at each iteration, Procedure 1 uses all samples collected

up to the current iteration to calculate the generalized likelihood ratio (GLR) [29]

statistic for each system, and eliminate weak systems when their GLR statistics hit

the elimination boundary. The procedure terminates when only one candidate is

left.

Let us denote Scand,n as the set of systems that are not eliminated at the nth

iteration. The procedure starts with considering all systems as candidates of the

best system, Scand,1 = Ω, and keeps rejecting systems from Scand,n until there is
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only one system left. Scand,n also represents the set of systems to be sampled at

the nth iteration. As to the systems removed from Scand,n, the procedure will not

sample them anymore; nonetheless, their samples are still used to calculate the

GLR statistics after eliminations.

Remark 2.2.1 We denote Scand,n as the set of systems that are not rejected yet, and Sin f erior,n

as the set of systems that are already rejected.

The generalized likelihood ratio (GLR) statistics for Procedure 1 have the fol-

lowing form. For the system i,

Λ(1)
i,n =

supµ∈Ui
Ln(µ)

πn
(2.12)

where Ln(µ) is the likelihood of all observations collected up to the nth iteration:

Ln(µ) =
n

∏
m=1

∏
i∈Scand,m

gi(Xi,m|µi) (2.13)

and πn in Equation 2.12 is the adaptive maximum likelihoods using µ̂i,m−1, the

MLE of µ?
i based on the first m− 1 observations on the system i, as the estimate of

µ?
i to calculate the density at the mth round.

πn =
n

∏
m=1

∏
i∈Scand,m

gi(Xi,m|µ̂i,m−1) (2.14)

We provide the calculations of Λ(1)
i,n for normal distribution with known vari-

ance in Section 2.2.2.

Intuitively, Λ(1)
i,n measures how likely the system i is the best system. The smaller the

Λ(1)
i,n , the less likely that the system i is the best system. By this intuition, Procedure

1 eliminates the systems when their GLR statistics are lower than a threshold.

The behavior of Procedure 1 is illustrated in Figure 2.1, in which we consider

an example with K = 4 alternatives. In this example, the observations of the sys-

tem i are from the normal distribution N(−i, 20). The 1st system is the best. The

procedure sequentially drops inferior candidates when their GLR statistics hit the

elimination boundary. It concludes when there is only one system left.
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Algorithm 1 Procedure 1 for R&S problems
Inputs:

1: PCS = 1− α . Desired PCS level

2: Ω = {1, ..., K} . Pool of candidate systems

3: gi(·|µi) for i ∈ Ω . Normal density functions under µi

Procedure:

1: generate n0 samples for each system in Ω;

2: set n = n0;

3: set Sin f erior,n+1 = ∅ and Scand,n+1 = Ω;

4: repeat

5: set n = n + 1;

6: generate 1 more sample for all systems in Scand,n;

7: set Scand,n+1 = Scand,n and Sin f erior,n+1 = Sin f erior,n;

8: for i ∈ Scand,n do

9: calculate the GLR statistic Λ(1)
i,n for the system i;

10: if the Λ(1)
i,n ≤ α then

11: set Scand,n+1 = Scand,n+1/{i} and Sin f erior,n+1 = Sin f erior,n+1 ∪ {i};

12: end if

13: end for

14: until |Scand,n+1| = 1 . Terminate when only one system is left in Scand,n+1

15: return Scand,n+1
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To start the procedure, the candidate pool Scand,1 contains all 4 alternatives. At

the nth iteration, we generate one more sample for each system in the candidate

pool Scand,n and calculate and plot the GLR statistics. In the plot, at n = 1, the

alternative 4 is eliminated from the candidate pool since its GLR statistic hits the

elimination boundary. We keep sampling the remaining three systems and cal-

culating the GLR statistics until the second elimination happens at n = 12 when

the GLR statistic of the alternative 3 hits the elimination boundary. After that, the

GLR statistics are plotted for the system 1 and 2, until the GLR statistic of system 2

crosses the elimination boundary. Since all systems are excluded except the system

1, the procedure ends and returns the alternative 1 as the best.

To show the asymptotic efficiency of Procedure 1, i.e., the asymptotic sample

size before the procedure terminates, we introduce Procedure 2 which provides a

lower bound of the asymptotic efficiency of Procedure 1.

The main difference between Procedure 1 and Procedure 2 is the choice of GLR

statistics, where the GLR statistics used in Procedure 2 utilize the pairwise com-

parisons.

Let us denote Λ(2)
i,j,n as the generalized likelihood ratio of the event that the sys-

tem i is better than the system j,

Λ(2)
i,j,n ,

supθ∈Ui,j
Ln(µ)

πn
(2.15)

where the numerator of Λ(2)
i,j,n is maximized over the parameter space of µ that

µi > µj, Ui,j = {θ|µi > µj}.

The GLR statistic used in Procedure 2 is the minimum of all Λ(2)
i,j,n,

Λ(2)
i,·,n = min

j 6=i
Λ(2)

i,j,n (2.16)

The statistic, Λ(2)
i,·,n, is essentially the worst pairwise comparison between the

system i and all other systems. We have the following theorem regarding Λ(1)
i,n and

Λ(2)
i,·,n.

Theorem 2.2.1 Under the preceding definitions of Λ(1)
i,n and Λ(2)

i,·,n, Λ(2)
i,·,n ≥ Λ(1)

i,n .
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Figure 2.1.: Illustration of the Procedure 1 with K = 4 alternatives. The elimination

boundary, log α, is plotted as a horizontal line. The procedure follows the log of

the GLR statistic log Λ(1)
i,n and screens out alternatives as they hit the elimination

boundary at log α. The procedure terminates when there is only one system left in

the candidate pool. And this remaining system is reported as the best system.

Remark 2.2.2 This theorem states that Λ(2)
i,·,n is bounded below by Λ(1)

i,n for any possible

realizations. Thus, Procedure 2, which uses Λ(2)
i,·,n as the GLR statistic, provides the lower

bound of efficiency for Procedure 1, which uses Λ(1)
i,n as the GLR statistic.

Proof Recall that the numerator of Λ(1)
i,n in Procedure 1 is the maximum likelihood

under the condition that the system i is the best system. Since

Ui = {µ|µi > µl, ∀l 6= i} ⊆ {µ|µi > µj} = Ui,j, ∀j 6= i (2.17)
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therefore, for any possible realization of the samples, we have, Λ(2)
i,j,n ≥ Λ(1)

i,n for all

j, and

Λ(2)
i,·,n = min

j 6=i
Λ(2)

i,j,n ≥ Λ(1)
i,n (2.18)

Algorithm 2 Procedure 2 for R&S problems
Inputs:

1: PCS = 1− α . Desired PCS level

2: Ω = {1, ..., K} . Pool of candidate systems

3: gi(·|µi) for i ∈ Ω . Normal density functions under µi

Procedure:

1: generate n0 samples for each system in Ω;

2: set n = n0;

3: set Sin f erior,n+1 = ∅ and Scand,n+1 = Ω;

4: repeat

5: set n = n + 1;

6: generate 1 more sample for all systems in Scand,n;

7: set Scand,n+1 = Scand,n and Sin f erior,n+1 = Sin f erior,n;

8: for i ∈ Scand,n do

9: calculate the GLR statistic Λ(2)
i,·,n for the alternative i;

10: if the Λ(2)
i,·,n ≤ α then

11: set Scand,n+1 = Scand,n+1/{i} and Sin f erior,n+1 = Sin f erior,n+1 ∪ {i};

12: end if

13: end for

14: until |Scand,n+1| = 1 . Terminate when only one system is left in Scand,n+1

15: return Scand,n+1
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2.2.2 The Implementation

This section considers the implementations of Λ(1)
i,n in Procedure 1. We consider

two cases: (1) normal distribution with equal known variance; and (2) normal

distribution with heterogeneous known variance. For both cases, we assume the

knowledge of the indifference-zone parameter δ. When the indifference-zone is

not specified, the implementations set δ = 0.

Case 1: Normal Distribution with Equal Known Variance

Let {Xi,n, n = 1, 2, 3, ...} be the i.i.d. random observations of the system i. Thus,

{Xi,n} are normally distributed with unknown mean µ?
i and equal known variance

σ2.

Recall that the Procedure 1 models the R&S problem as a multiple hypotheses

testing problem, in which the ith hypothesis corresponds to testing whether µ?
i is

the largest among the mean vector µ? = [µ?
1 , ...µ?

K],

Hi : µ? ∈ Ui = {µ|µi ≥ µj + δ, ∀j 6= i} (2.19)

Remark 2.2.3 We assume the indifference-zone parameter, δ, is specified. If the indifference-

zone information is not provided, the hypothesis Hi and the parameter space Ui have the

degenerated form as follows

Hi : µ? ∈ Ui = {µ|µi > µj, ∀j 6= i} (2.20)

The GLR statistic, Λ(1)
i,n , has the form of

Λ(1)
i,n =

supµ∈Ui
Ln(µ)

πn
(2.21)

The key to obtain the GLR statistic, Λ(1)
i,n , is to calculate: (a) µ̂n the MLE estima-

tor of µ and, (b) the constrained optimal solution, µ̂
Ui
n = arg supµ∈Ui

Ln(µ). Under

the normality assumption, µ̂n is as follows

µ̂j,n =
∑

nj
m=1 Xj,m

nj
, with nj = min{n, τ

(1)
j } (2.22)
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where τ
(1)
j is the elimination time of the system j in Procedure 1. Stopping time τ

(1)
j

is introduced since, in Procedure 1, if a system is eliminated, it will not be sampled

in the future iterations, however, the samples of the eliminated system generated

before its termination are still in used.

As to the calculation of µ̂
Ui
n , we have the following theorem:

Theorem 2.2.2 Under the normality assumption with equal known variances, denote

µ̂
Ui
n = arg supµ∈Ui

Ln(µ) as the constrained MLE of mean vector µ achieved within the

parameter space Ui at the nth iteration. µ̂
Ui
n = [µ̂Ui

1,n, µ̂
Ui
2,n, ...µ̂Ui

K,n] is calculated as follows,

µ̂
Ui
j,n =


µ̂

Ui·,n + δ, if j = i

µ̂
Ui·,n , if µ̂j,n > µ̂i,n − δ

µ̂j,n, if µ̂j,n ≤ µ̂i,n − δ

(2.23)

where µ̂
Ui·,n is the average of observations from all systems whose MLEs are higher than the

MLE of the system i.

µ̂
Ui·,n =

∑n
m=1 ∑j∈Scand,m

Xj,m · 1µ̂j,n≥µ̂i,n − nδ

∑n
m=1 ∑j∈Scand,m

1µ̂j,n≥µ̂i,n

(2.24)

Remark 2.2.4 The intuition of the theorem is as follows. If the unconstrained MLE µ̂i,n ≥

µ̂j,n + δ, then the constrained solution, µ̂
Ui
j,n , coincides with the unconstrained MLE µ̂j,n;

otherwise, the µ̂
Ui
j,n is adjusted so that µ̂

Ui
j,n is less than µ̂

Ui
i,n by δ.

Proof Under the normality assumption with equal known variance σ2, Ln(µ) and

gj(Xj,m|µj) are defined by

Ln(µ) =
n

∏
m=1

∏
j∈Scand,m

gj(Xj,m|µj) (2.25)

gj(Xj,m|µj) =
1√

2πσ2
exp{−

(Xj,m − µj)
2

2σ2 } (2.26)

where Scand,n contains systems that have not been eliminated by the nth iteration.

Given the definition of µ̂
Ui
n , we have
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µ̂
Ui
n = arg sup

µ∈Ui

Ln(µ) (2.27)

= arg sup
µ∈Ui

n

∏
m=1

∏
j∈Scand,m

gj(Xj,m|µj) (2.28)

= arg sup
µ∈Ui

n

∏
m=1

∏
j∈Scand,m

exp{−
(Xj,m − µj)

2

2σ2 } (2.29)

= arg sup
µ∈Ui

n

∑
m=1

∑
j∈Scand,m

(
−

(Xj,m − µj)
2

2σ2

)
(2.30)

This optimization problem is solvable by using Lagrangian method. Denote

λ = [λ1, ..., λi−1, λi+1, ...λK] as the Lagrangian multipliers. We have the following

KKT conditions.

1
σ2 (µi − µ̂i,n)−∑

j 6=i
λj = 0 (2.31)

1
σ2 (µj − µ̂j,n) + λj = 0 (2.32)

λj · (µj − µi + δ) = 0, ∀j 6= i (2.33)

µi − µj − δ ≥ 0, ∀j 6= i (2.34)

λj ≥ 0 (2.35)

It is straightforward to verify that 2.24 satisfies the above conditions.

Case 2: Normal Distribution with Unequal Known Variance

Let {Xi,n, n = 1, 2, 3, ...} be the i.i.d. observations of the system i. {Xi,n} are

normally distributed with unknown mean µ?
i and known variance σ2

i . The GLR

statistic Λ(1)
i,n has the form of

Λ(1)
i,n =

supµ∈Ui
Ln(µ)

πn
(2.36)
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where, in this case, Ln(µ) and πn are defined by

Ln(µ) =
n

∏
m=1

∏
j∈Scand,m

gj(Xj,m|µj) (2.37)

πn =
n

∏
m=1

∏
j∈Scand,m

gj(Xj,m|µ̂j,m−1) (2.38)

gj(Xj,m|µj) =
1√

2πσ2
i

exp{−
(Xj,m − µj)

2

2σ2
i

} (2.39)

Recall that Scand,n is the candidate set that contains systems that have not been

eliminated by the nth iteration, and µ̂j,n as the MLE of µj based on observations

collected before and at the nth iteration. Moreover, denote τ
(1)
j as the elimination

time of the system j, we have

µ̂j,n =
∑n′

m=1 Xj,m

n′
, with n′ = min{n, τ

(1)
j } (2.40)

We have the following theorem to solve supµ∈Ui
Ln(µ). The proof of this theo-

rem is included in Appendix 2.6.2.

Theorem 2.2.3 Under the normality assumption with unequal known variances, denote

µ̂
Ui
n = arg supµ∈Ui

Ln(µ) as the constrained MLE of mean vector µ achieved within the

parameter space Ui at the nth iteration. µ̂
Ui
n = [µ̂Ui

1,n, µ̂
Ui
2,n, ...µ̂Ui

K,n] is calculated as follows,

µ̂
Ui
j,n =


µ̂

Ui·,n + δ, if j = i

µ̂
Ui·,n , if µ̂j,n > µ̂i,n − δ

µ̂j,n, if µ̂j,n ≤ µ̂i,n − δ

(2.41)

where µ̂
Ui·,n is the average of observations from all systems whose MLEs are higher than the

MLE of the system i.

µ̂
Ui·,n =

∑n
m=1 ∑j∈Scand,m

Xj,m

σ2
j
· 1µ̂j,n≥µ̂i,n −

nδ
σ2

i

∑n
m=1 ∑j∈Scand,m

1
σ2

j
1µ̂j,n≥µ̂i,n

(2.42)
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2.2.3 The Validity

In this subsection, we show that Procedure 1 and Procedure 2 are valid to de-

liver the PCS guarantee. The first theorem states that Procedure 1 and Procedure

2 terminate in finite time with probability 1. The proof of the following theorem is

included in Appendix 2.6.3.

Theorem 2.2.4 Under the Conditions A1-A6, Procedure 1 and Procedure 2 terminate in

finite time with probability 1.

With the guarantee that both Procedure 1 and Procedure 2 terminate in finite

time, we can further show that they deliver the PCS guarantee. Denote PCS(1) and

PCS(2) as the probability of correct selection under Procedure 1 and Procedure 2,

respectively.

Theorem 2.2.5 Under the Conditions A1-A6, Procedure 1 and 2 select the best system

with probability at least 1− α, i.e.,

PCS(1) ≥ 1− α, PCS(2) ≥ 1− α (2.43)

Proof We first show that Procedure 1 delivers the PCS guarantee.

Let us denote µ? = [µ?
1 , µ?

2 , ..., µ?
K] as the true mean vector. Without loss of gen-

erality, we assume that the system 1 is the best system. Thus, the true hypothesis

is H1 : µ? ∈ U1.

Moreover, let us denote τ
(1)
i = min{n|Λ(1)

i,n ≤ α} as the elimination time of the

alternative i in Procedure 1. For any arbitrary number N > 0, the probability of

correct selection can be put as

PCS(1) ≥P(CS ∩ Procedure 1 terminates before N)

=P(Procedure 1 terminates before N)P(CS|Procedure 1 terminates before N)

≥P(Procedure 1 terminates before N)(1− P(τ(1)
1 < N))

≥P(Procedure 1 terminates before N)(1− P(τ(1)
1 < ∞))
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The inequality holds for any N > 0. Using the property that Procedure 1 termi-

nates in finite time, i.e., limN→∞ P(Procedure 1 terminates before N) = 1, we have

PCS(1) ≥ lim
N→∞

P(Procedure 1 terminates before N)(1− P(τ(1)
1 < ∞)) = 1− P(τ(1)

1 < ∞)

(2.44)

By definition, τ
(1)
1 = min{n|Λ(1)

1,n ≤ α}, where the GLR statistic, Λ(1)
1,n, is calcu-

lated by

Λ(1)
1,n =

supµ∈U1
Ln(µ)

πn
(2.45)

with

Ln(µ) =
n

∏
m=1

∏
i∈Scand,m

gi(Xi,m|µi) (2.46)

πn =
n

∏
m=1

∏
i∈Scand,m

gi(Xi,m|µ̂i,m−1) (2.47)

Since, by assumption, µ? ∈ U1, we have

Λ(1)
1,n =

supµ∈U1
Ln(µ)

πn
≥ Ln(µ?)

πn
(2.48)

Denote Γn = πn
Ln(µ?)

. Therefore, E f (·|µ?)[Γn] = 1 since

EE f (·|µ?) [Γn] =
∫

Γn ·
n

∏
m=1

∏
i∈Scand,m

gi(·|µ?
i )dXi,m =

∫ n

∏
m=1

∏
i∈Scand,m

gi(·|µ̂i,m−1)dXi,m = 1

(2.49)

This integration equals to 1 since gi(·|µi) are valid density functions.

We claim that Γn is a martingale since

Γn =
πn−1

Ln−1(µ?|·) × ∏
i∈Scand,n

gi(Xi,n|µ̂i,n−1)

gi(Xi,n|µ?
i )

= Γn−1 × ∏
i∈Scand,n

gi(Xi,n|µ̂i,n−1)

gi(Xi,n|µ?
i )

(2.50)

E f (·|µ?)[Γn|Γn−1] = Γn−1 ×E f (·|µ?)

[
∏

i∈Scand,n

gi(·|µ̂i,n−1)

gi(·|µ?
i )

]
(2.51)

= Γn−1

∫
∏

i∈Scand,n

gi(·|µ̂i,n−1)

gi(·|µ?
i )
·

n

∏
m=1

∏
i∈Scand,m

gi(·|µ?
i )dXi,m = Γn−1

(2.52)
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Using the fact that Γn is a non-negative martingale with E f (·|µ?)[Γn] = 1, we

have the following inequality according to the Theorem of Doob’s Inequality on

Martingale [30],

P( max
n=1,...,N

Γn ≥
1
α
) ≤ α ·E f (·|µ?)[Γn] = α, ∀N = 1, 2, ... (2.53)

Moreover, since Λ(1)
1,n ≥ 1/Γn, we have

P( min
n=1,...,N

Λ(1)
1,n ≤ α) ≤ P( max

n=1,...,N
Γn ≥

1
α
) ≤ α (2.54)

Therefore, P(τ(1)
1 < N) = P(minn=1,...,N Λ(1)

1,n ≤ α) ≤ α for any N, and

PCS(1) ≥ 1− P(τ(1)
1 < ∞) ≥ 1− α (2.55)

Next, we prove that Procedure 2 also delivers the PCS guarantee.

Let us denote τ
(2)
i = min{n|Λ(2)

i,·,n ≤ α} as the elimination time of the alternative

i in Procedure 2.

The PCS(2) is bounded below as follows

PCS(2) ≥P(Procedure 2 terminates before N)(1− P(τ(2)
1 < ∞))

This inequality holds for any N > 0. Using the property that Procedure 2 ter-

minates in finite time w.p.1, limN→∞ P(Procedure 2 terminates before N) = 1, we

have

PCS(2) ≥ lim
N→∞

P(Procedure 2 terminates before N)(1− P(τ(2)
1 < ∞)) = 1− P(τ(2)

1 < ∞)

(2.56)

Using the inequality in 2.18, Λ(2)
i,·,n ≥ Λ(1)

i,n for any n, we have

P(τ(2)
1 < N) = P( min

n=1,...,N
Λ(2)

i,·,n ≤ α) ≤ P( min
n=1,...,N

Λ(1)
1,n ≤ α) ≤ α, ∀N (2.57)

where the last inequality is from the proof for Procedure 1.

Thus, P(τ(2)
1 < ∞) ≤ α and PCS(2) ≥ 1− α.
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The preceding theorem states that the proposed procedure selects the best sys-

tem with probability at least 1− α when it terminates. Nonetheless, if Procedure 1

is stopped before the termination criteria is met, i.e., |Scand,n| > 1, it is still guaran-

teed that Procedure 1 selects a subset of systems that contains the best system with

a probabilistic guarantee.

Lemma 2.2.2 Under the settings of Procedure 1 and Procedure 2, denote Scand,n as the

subset of systems that have not been eliminated before the first n iterations. If Procedure

1 and Procedure 2 deliver the PCS guarantee as stated in Theorem 2.2.5, then, for any n,

Scand,n contains the best system with probability at least 1− α.

Proof The proof of Theorem 2.2.5 states that P(τ(1)
1 < ∞) ≤ α. Therefore, P(τ(1)

1 <

n) ≤ α for all n. Thus, P(system 1 ∈ Scand,n) < α.

2.2.4 The Asymptotic Efficiency

In this subsection, we demonstrate that the proposed procedures achieve asymp-

totic efficiency. Let us assume that the system 1 is the best system, i.e., µ?
1 > µ?

i for

all i = 2, ..., K. Thus, we have µ? ∈ U1. Let us denote τ
(1)
i and τ

(2)
i as the number

of iterations used by Procedure 1 and Procedure 2, respectively, to eliminate the

system i. Let Ui,1 = {µ|µi ≥ µ1 + δ} be the parameter space that the system i is

better than the system 1. The following theorem gives the asymptotic limits of the

expectation of τ
(1)
i and τ

(2)
i , as the error probability α approaches to 0. The proof

of the following theorem is included in Appendix 2.6.4.

Theorem 2.2.6 Under the Conditions A1-A6 and the settings of Procedure 1 and Proce-

dure 2, the average sample size to eliminate the alternative i has the following asymptotic

approximation

E f (·|µ?)[τ
(1)
i ] ≤ E f (·|µ?)[τ

(2)
i ]→ log α−1

infµ∈Ui,1 ρ(µ?, µ)
(1 + o(1)) (2.58)

as α→ 0, for all µ? ∈ U1, i = 1, ..., m.
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The theorem may be interpreted as follows. The numerator, log α−1, is the

amount of ”information” to make an elimination decision. The denominator, infµ∈Ui,1 ρ(µ?, µ),

is the expected amount of ”information” obtained from one round of observations.

Therefore, the expected sample size to reject the system i is, roughly, log α−1/ infµ∈Ui ρ(µ?, µ).

Using Theorem 2.2.6, for the case of the normal distribution with equal known

variance, we have the following asymptotic efficiency result.

Lemma 2.2.3 Under the setting of Procedure 1 and Procedure 2, assume Xi,n ∼ N(µ?
i , σ2).

Assume the system 1 is the best system, i.e., µ?
1 > µ?

i ∀i 6= 1. The asymptotic average

sample size to eliminate the system i is

E f (·|µ?)[τ
(1)
i ] ≤ E f (·|µ?)[τ

(2)
i ]→ −4 log(α) · σ2

(µ?
1 − µ?

i + δ)2 (2.59)

where δ ≥ 0 is the indifference-zone parameter.

Proof Given that Xi ∼ N(µ?
i , σ2), the Kullback-Leibler divergence from µ?

i to µi is

ρi(µ
?
i , µi) = Egi(·|µ?

i )
[log

gi(·|µ?
i )

gi(·|µi)
] =

(µ?
i − µi)

2

2σ2 (2.60)

Thus, the Kullback-Leibler divergence from µ? to µ is

ρ(µ?, µ) =
K

∑
i=1

(µ?
i − µi)

2

2σ2 (2.61)

The infinitum of ρ(µ?, µ) for µ ∈ Ui,1 is achieved at

inf
µ∈U1,i

ρ(µ?, µ) = inf
µi≥µ1+δ

(µ?
i − µi)

2

2σ2 +
(µ?

1 − µ1)
2

2σ2 =
(µ?

1 − µ?
i + δ)2

4σ2 (2.62)

Thus, we conclude the proof.

Table 2.1 compares the asymptotic average sample size of the KN++ procedure,

IZ-free procedure, and Procedure 1 as functions of the true difference ∆ , µ?
1 − µ?

i ,

the indifference-zone parameter δ, and the true variance σ2. The theoretical results

on the efficiencies of the KN++ procedure and IZ-free procedure are from [18].

Despite the usage of Bonferroni correction, we have two exciting findings from

Table 2.1. First, Procedure 1 has of the same order of the IZ-free procedure when
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the indifference-zone is not specified. Second, Procedure 1 utilizes the indiffer-

ence zone much more efficient than the KN++ procedure. The indifference-zone

parameter, if defined correctly, will significantly boost the efficiency of Procedure

1.

Table 2.1.: Asymptotic Average Sample Size of KN++ procedure, IZ-free proce-

dure, and the Procedure 1. ∆ , µ?
1 − µ?

i is the true difference between system i

and system 1, δ > 0 is the indifference-zone parameter, and σ2 is the variance;

f 2 = log( k−1
2α ) and c are parameters defined in the KN procedure and the IZ-free

procedure, respectively. Please refer to [18] for the calculation of c.

Procedures KN++ IZ-free Procedure 1

Asymptotic Avg Sample Size 2 f 2σ2

(∆−δ/2)δ
2cσ2

∆2
−4 log(α)·σ2

(∆+δ)2

2.3 Normal Distribution with Unknown Variance

In this section, we relax the assumption that the variances are known. We

consider a R&S problem to select the system with the largest mean value from

K candidates. Denote Ω = {1, ..., K} as the set of all candidate systems. The in-

dependent and identical random observations of system i, {Xi,n, n = 1, 2, ..}, are

the only available information to infer the expected value, µi. In this section, we

assume that observations of system i, {Xi,n, n = 1, 2, ..}, are of normal distribution,

N(µi, σ2
i ), where both µi and σ2

i are unknown.

Throughout this section, we denote θ? = [θ?1 , ..., θ?K] = [[µ?
1 , σ2?

1 ], ..., [µ?
K, σ2?

K ]] as

the vector of true parameters, including both mean values and variances, and θ =

[[µ1, σ2
1 ], ..., [µK, σ2

K]] as the dummy vector of parameters with θ ∈ Θ ⊆ [R×R+]K,

where Θ represents the set of any possible value of θ. We assume that Θ is a
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compact set. Let us denote Θi as the parameter space that the system i is the best

among all systems, i.e., Θi = {θ|µi > µj, ∀ j 6= i}. Therefore, {Θi, i = 1, ..., K}

are subspaces of the entire decision space. If the indifference-zone parameter is

provided, then Θi = {θ|µi ≥ µj + δ, ∀i 6= j}. An indifference-zone set Θ0 may be

introduced so that Θ = ∪K
i=0Θi is still a compact space. Similar as Procedure 1, we

formulate the R&S problem as a multiple hypotheses test to determine whether

the system i is the best, i.e., whether the parameter subspace, Θi, contains the true

parameter vector θ?,

Hi : θ? ∈ Θi, i = 1, ..., K (2.63)

Let us denote gi(·|θi) = gi(·|µi, σ2
i ) as the density function of system i under

θi = [µi, σ2
i ]. The random samples, {Xi,n, n = 1, 2, 3...}, are generated from the

density gi(·|θ?), i.e., the density function with the true but unknown parameters,

θ?i = [µ?
i , σ2?

i ]. Throughout this section, we assume following conditions hold:

B1 Systems have different mean values, i.e., µ?
i 6= µ?

j for i 6= j. The best system

is better than other systems by at least δ, where δ is the indifference-zone

parameter; if the indifference-zone is not specified, then δ = 0;

B2 Systems are independent, i.e., {Xi,n} and {Xj,n} are independent for all i 6= j;

B3 The parameter space Θ is compact;

B4 gi(·|θi) is the Normal density function for all i ∈ Ω;

B5 ρi(θi, θ′i) > 0 for all θi 6= θ′i , where ρi(θi, θ′i) is the Kullback-Leibler divergence

from θi to θ′i :

ρi(θi, θ′i) = Egi(·|θi)
[log gi(·|θi)− log gi(·|θ′i)] (2.64)

where Egi(·|θi)
represents taking the expectation with respect to gi(·|θi);

B6 ∑∞
m=1 Egi(·|θi)

[ρi(θi, θ̂i,m)] < ∞ where θ̂i,m represents the MLE estimator of θi

with the first m observations.
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Let us define the Kullback-Leibler divergence from θ = [θ1, ..., θK] to θ′ =

[θ′1, ..., θ′K] as

ρ(θ, θ′) = E f (·|θ)[
K

∑
i=1

log
gi(·|θi)

gi(·|θ′i)
] (2.65)

where E f (·|θ) represents taking the expectation with respect to f (·|θ) = ∏K
i=1 gi(·|θ′i).

Under the Condition B2, Conditions B5 and B6 can be easily extended to ρ(θ, θ′) >

0 and ∑∞
m=1 EE f (·|θ) [ρ(θ, θ̂m)], where θ̂m is the MLE of θ using the first m observa-

tions.

Conditions B1 to B6 are almost identical to Conditions A1 to A6, except that

the parameter space and parameter set are expanded to take account of the un-

known variances. In fact, with the knowledge of σ2
i , Conditions B1 to B6 implies

Conditions A1 to A6.

2.3.1 The Procedure

To adopt Procedure 1 proposed in Section 2.2.1 for R&S problems under nor-

mality assumption with unknown variance, we need to calculate the correspond-

ing GLR statistic as follows

Λ(1)
i,n =

supθ∈Θi
Ln(θ)

πn
(2.66)

where Ln(θ) is the likelihoods of all observations collected up to the nth iteration

Ln(θ) =
n

∏
m=1

∏
i∈Scand,m

gi(Xi,m|θi) (2.67)

and πn in Equation 2.12 is the adaptive maximum likelihoods using θ̂i,m−1, the

MLE of θi based on the first m− 1 observations on the system i, as the estimate of

θi to calculate the density at the mth round.

πn =
n

∏
m=1

∏
i∈Scand,m

gi(Xi,m|θ̂i,m−1) (2.68)

However, the calculation of Λ(1)
i,n is too expensive due to the fact that there is

no closed-form solution to the optimization problem Λ(1)
i,n . Therefore, we suggests
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to implement Procedure 2 to solve R&S problems under normality assumption

with unknown variance. As stated in the previous section, the GLR statistic used

in Procedure 2 is defined upon the pairwise comparisons. Denote Λ(2)
i,j,n as the

generalized likelihood ratio of the event that the system i is better than the system

j,

Λ(2)
i,j,n ,

supθ∈Θi,j
Ln(θ)

πn
(2.69)

where the parameter space of θ that µi > µj, Θi,j = {θ|µi > µj}.

The GLR statistic used in Procedure 2 is the minimum of all Λ(2)
i,j,n,

Λ(2)
i,·,n = min

j 6=i
Λ(2)

i,j,n (2.70)

Although Λ(2)
i,·,n is more conservative than Λ(1)

i,n , Λ(2)
i,·,n is much easier to calculate.

Recall that the numerator of Λ(1)
i,n is the maximum likelihood under the condition

that the system i is the best system. Since

Θi = {θ|µi > µl, ∀l 6= i} ⊆ {θ|µi > µj} = Θi,j, ∀j 6= i (2.71)

We have, Λ(2)
i,j,n ≥ Λ(1)

i,n for all j. Thus,

Λ(2)
i,·,n ≥ Λ(1)

i,n (2.72)

meaning that Λ(2)
i,·,n is bounded below by Λ(1)

i,n .

The calculation of Λ(2)
i,·,n is based on a collection of pairwise comparisons be-

tween the system i and the system j, whose closed-form solution can be easily

found.

2.3.2 The Implementation

We consider the implementation the GLR statistic Λ(2)
i,j,n in Procedure 2. It is

worth mentioning that the optimization problem in Λ(1)
i,n is solvable under the nor-

mality assumption with unknown variance as the kernel function is convex. How-

ever, since Procedure 1 requires the calculation of Λ(1)
i,n for each system at each
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iteration, if the optimization problem solving Λ(1)
i,n has no closed-form solution,

then the computation burden could be heavy. Thus, we prefer the usage of Λ(2)
i,·,n as

an alternative to reduce the computation complexity.

Let {Xi,n, n = 1, 2, 3, ...} be the i.i.d. observations of the alternative i. {Xi,n}

are normally distributed with unknown mean µ?
i and unknown variance σ2?

i . The

GLR statistic Λ(2)
i,j,n has the form as

Λ(2)
i,j,n =

supθ∈Θi,j
L(θ)

πn
(2.73)

where Θi,j is the parameter space that Θi,j = {θ|µi ≥ µj + δ}.

Under the normality assumption with unknown variance σ2, Ln(θ) and πn are

defined by

Ln(θ) =
n

∏
m=1

∏
l∈Scand,m

gl(Xl,m|µl, σ2
l ) (2.74)

πn =
n

∏
m=1

∏
l∈Scand,m

gl(Xl,m|µ̂l,m−1, σ̂2
l,m−1) (2.75)

gl(Xl,m|µl, σ2
l ) =

1√
2πσ2

l

exp{− (Xl,m − µl)
2

2σ2
l

} (2.76)

where Scand,n contains systems that are not eliminated at the nth iteration, and µ̂l,n

and σ̂2
l,n are the MLEs of µl and σ2

l at the nth iteration. In the proposed procedure,

we denote τl as the elimination time of the system l, then we have

µ̂l,n =
∑n′

m=1 Xl,m

nl
, (2.77)

σ̂2
l,n =

∑nl
m=1(Xl,m − µ̂l,n)

2

nl
(2.78)

with nl = min{n, τl}.

Under Condition B2 that all systems are independent, Λ(2)
i,j,n can be written as

Λ(2)
i,j,n =

supµi∈Θi,j
L(θ)

πn
(2.79)

=
n

∏
m=1

∏
l∈Scand,m

gl(Xl,m|µ̂l,n, σ̂2
l,n)

gl(Xl,m|µ̂l,m−1, σ̂2
l,m−1)

·
n

∏
m=1

gi(Xi,m|µ̃i,n, σ̃2
i,n) · gj(Xj,m|µ̃j,n, σ̃2

j,n)

gi(Xi,m|µ̂i,m−1, σ̂2
i,m−1) · gj(Xj,m|µ̂j,m−1, σ̂2

j,m−1)

(2.80)
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where [µ̃i,n, µ̃j,n, σ̃2
i,n, σ̃2

j,n] are the MLE of mean values (µi, µj) and variances (σ2
i , σ2

j )

under the constrain µi > µj at the nth iteration.

To speed up the calculation of Λ(2)
i,j,n, in implementation, we approximate the

[µ̃i,n, µ̃j,n, σ̃2
i,n, σ̃2

j,n] with

[µ̃i,n, µ̃j,n] ≈

[µ̂i,n, µ̂j,n] if µ̂i,n ≥ µ̂j,n + δ

[
µ̂i,n+µ̂j,n+δ

2 ,
µ̂i,n+µ̂j,n−δ

2 ] otherwise
(2.81)

[σ̃2
i,n, σ̃2

j,n] ≈ [
∑n

m=1(Xi,m − µ̃i,n)
2

n
,

∑n
m=1(Xj,m − µ̃j,n)

2

n
] (2.82)

2.3.3 The Validity

In this subsection, we show that both Procedure 1 and Procedure 2 are valid

to deliver the PCS guarantee, although Procedure 1 is difficult, if still possible,

to implement in the case of unknown variance. The proofs of the following two

theorems are included in Appendix 2.6.4.

Theorem 2.3.1 Under the Conditions B1-B6, both Procedure 1 and Procedure 2 termi-

nates in finite time with probability 1.

With the guarantee that these two procedures terminate in finite time, we can

further show that both procedures deliver the PCS guarantee.

Theorem 2.3.2 Under the Conditions B1-B6, Procedure 1 selects the best system with

probability at least 1− α, i.e.,

P(CS) ≥ 1− α (2.83)

Proof Let us denote θ? = [[µ?
1 , σ2?

1 ], ..., [µ?
K, σ2?

1 ]] as the true parameter. Without

loss of generality, we assume that the system 1 is the best system. Thus, the true

hypothesis is H1 : θ? ∈ Θ1. Let us denote τ
(1)
i = min{n|Λ(1)

i,n ≤ α} as the elimina-

tion time of the alternative i in Procedure 1.
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Using the same logic as in the proof of Theorem 2.2.5 and the result of Theorem

2.3.1, for arbitrary choice of N > 0, we have

P(CS) ≥ lim
N→∞

P(Procedure 1 terminates before N)(1− P(τ(1)
1 < ∞)) = 1− P(τ(1)

1 < ∞)

(2.84)

The GLR statistic, Λ(1)
1,n, is calculated by

Λ(1)
1,n =

supµ∈Θ1
Ln(θ)

πn
(2.85)

with

Ln(θ) =
n

∏
m=1

∏
i∈Scand,m

gi(Xi,m|θi) (2.86)

πn =
n

∏
m=1

∏
i∈Scand,m

gi(Xi,m|θ̂i,m−1) (2.87)

where θ̂i,n is the MLE of θi using the first n observations on system i.

Since θ? ∈ Θ1, we have

Λ(1)
1,n =

supθ∈Θ1
Ln(θ)

πn
≥ Ln(θ?)

πn
(2.88)

This integration equals to 1 since gi(X|θi) are valid density functions.

Denote Γn = πn
Ln(θ?|·) . Using the exactly same arguments as in the proof of

Theorem 2.2.5, we have Γn is a positive martingale with E f (·|θ?)[Γn] = 1. Apply

the Theorem of Doob’s Inequality on Martingale,

P( max
n=1,...,N

Γn ≥
1
α
) ≤ αE f (·|θ?)[Γn] = α, ∀N = 1, 2, ... (2.89)

Since Λ(1)
1,n ≥ 1/Γn, we have

P( min
n=1,...,N

Λ(1)
1,n ≤ α) ≤ P( max

n=1,...,N
Γn ≥

1
α
) ≤ α (2.90)

Therefore, P(τ(1)
1 < N) = P(minn=1,...,N Λ(1)

1,n ≤ α) ≤ α for any N, and

P(CS) ≥ 1− P(τ(1)
1 < ∞) ≥ 1− α (2.91)
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Procedure 2 has the same validity as the Procedure 1. The result is stated in the

next theorem.

Theorem 2.3.3 Under the Conditions B1-B6, Procedure 2 selects the best system with

probability at least 1− α, i.e.,

P(CS) ≥ 1− α (2.92)

Proof Using the same notations and assumptions as in the proof of Theorem 2.3.2,

let us denote τ
(2)
i = min{n|Λ(2)

i,·,n ≤ α} as the elimination time of the alternative i

in Procedure 2.

The P(CS) is bounded below as follows

P(CS) ≥P(Procedure 2 terminates before N)(1− P(τ(2)
1 < ∞))

This inequality holds for any N > 0. Using the property that Procedure 2 termi-

nates in finite time w.p.1, limN→∞ P(Procedure 2 terminates before N) = 1. Thus,

we have

P(CS) ≥ lim
N→∞

P(Procedure 2 terminates before N)(1− P(τ(2)
1 < ∞)) = 1− P(τ(2)

1 < ∞)

(2.93)

Using the inequality in 2.72, Λ(2)
i,·,n ≥ Λ(1)

i,n for any n, we have

P(τ(2)
1 < N) = P( min

n=1,...,N
Λ(2)

i,·,n ≤ α) ≤ P( min
n=1,...,N

Λ(1)
1,n ≤ α) ≤ α, ∀N (2.94)

where the last inequality is from the proof of the Theorem 2.3.2.

Thus, P(τ(2)
1 < ∞) ≤ α and P(CS) ≥ 1− α.

With the preceding theorem, Procedure 2 selects the best system with prob-

ability at least 1 − α when the proposed procedure terminates. Nonetheless, if

Procedure 2 is stopped before the termination criteria is met, i.e., |Scand,n| = 1, it is

still guaranteed that the set |Scand,n| contains the best system with a probabilistic

guarantee.
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Lemma 2.3.1 Under the settings of Procedure 2, denote Scand,n as the subset of systems

that are not eliminated during the first n iterations. If Procedure 2 delivers the PCS guar-

antee as stated in Theorem 2.3.3, then, for any n, Scand,n retains the best system with

probability at least 1− α.

Proof The proof of Theorem 2.3.3 states that P(τ(2)
1 < ∞) ≤ α. Therefore, P(τ(2)

1 <

n) ≤ α for all n.

2.3.4 The Asymptotic Efficiency

In this subsection, we present the asymptotic efficiency result of Procedure 2.

Denote τ
(2)
i as the sample sizes used by Procedure 2 to eliminate the alternative

i. The following theorem gives the asymptotic limit of the average of τ
(2)
i , as the

error probability α approaches to 0. The proof of the following theorem is included

in Appendix 2.6.6.

Theorem 2.3.4 Under the Conditions B1-B6 and the settings of Procedure 2, the average

sample size to eliminate the alternative i has the following asymptotic approximation

E f (·|θ?)[τ
(2)
i ]→ log α−1

infθ∈Θi,1 ρ(θ?, θ)
(1 + o(1)) (2.95)

as α→ 0, for all θ? ∈ Θ1, i = 1, ..., m.

2.4 Simulation Studies

In this section, we conduct numerical experiments to test the performance of

the proposed procedures and compare it with other leading R&S procedures.

In the first example, we establish the efficiency of Procedure 1 by examining its

average sample size under a R&S problem with 2 systems. In the second study, we

assess the performance of Procedure 2 under different indifference-zone configu-

rations. The third numerical study tests the proposed procedure under the context

of heterogeneous variance.
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2.4.1 Study 1: Validity and Efficiency

In this study, we evaluate the performance of Procedure 1. We consider the

case of only two alternatives with normally distributed observations. Let Xi ∼

N(µ?
i , 1), where µ?

i is the mean value of the system i. We examine how the con-

figurations of PCS and (µ?
1 , µ?

2) impact the average sample size and compare the

numerical results with the analytical lower bound provided in Theorem 2.2.6.

Table 2.2.: Study 1: the estimated PCS (Est. PCS) and the average sample size

(Avg. SSize) of a R&S problem with K = 2 alternatives and observations from

N(µ?
i , 1). Numbers are summarized from 10,000 independent macroreplications

of Procedure 1 .

µ?
1 − µ?

2

Target PCS = 0.05 Target PCS = 0.025 Target PCS = 0.0125

Avg. SSize Est. PCS Avg. SSize Est. PCS Avg. SSize Est. PCS

23 6.006 1.000 6.030 1.000 6.148 1.000

22 6.474 1.000 7.010 1.000 7.632 1.000

21 10.002 1.000 12.272 1.000 14.380 1.000

20 24.848 0.998 31.754 0.997 38.412 0.998

2−1 79.230 0.976 107.122 0.987 127.222 0.994

2−2 306.512 0.960 395.592 0.976 457.404 0.988

2−3 1001.188 0.934 1454.400 0.971 1808.962 0.985

2−4 4053.468 0.950 5354.470 0.979 6960.056 0.988

We implement Procedure 1 with the GLR statistics calculated under the normal

distribution with unknown mean and known variance. For each combination of

the (µ?
1 , µ?

2) and the target PCS, we repeat the experiment for 10,000 times, and

report the average sample size and the estimated PCS in Table 2.2. Figure 2.2

compares the average sample sizes with the analytical of Theorem 2.2.6, which
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Figure 2.2.: Study 1: the log-log plot of average sample sizes (y-coordinate) against

the true difference µ?
1 − µ?

2 . Orange dots are analytical average samples according

to Theorem 2.2.6; blue triangles are average sample size from Table 2.2

states the average sample size asymptotically approaches to the limit 4·log α
(µ?

1−µ?
2)

2 as

α→ 0.

From Table 2.2 and Figure 2.2, we have two interesting findings. First, Proce-

dure 1 tends to overshoot the PCS when the when the gap between two alterna-

tives, µ?
1 − µ?

2 , is large. As the gap decreases, the estimated PCS drops steadily

to the level of the target PCS. It is because the slope of the expected GLR statis-

tic is proportional to the square of the gap. The larger the gap, the more likely

the GLR statistic overshoot the elimination boundary, and therefore, the higher

achieved (estimated) PCS. As a result, the estimated PCS converges to the target

PCS as the gap decreases. The second finding is that the average sample size used

by Procedure 1 approaches to the theoretical lower bound as the gap decreases.
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Still, there is a gap between the numerical and analytical results. There are two

explanations. First of all, in the numerical evaluation, the GLR statistic is a discrete

stochastic process; whereas, in theoretical analysis, the GLR statistic is approxi-

mated as continuous. Secondly, the analytical result assumes the knowledge of µ?,

the true mean of the distribution; this information, however, is unknown from the

numerical evaluations.

2.4.2 Study 2: Indifference-Zone Parameter

This study examines the indifference-zone setting. We use the KN++ procedure

and the IZ-free procedure as benchmarks. This study uses the same setting as

the experiment in [17] and [18]. Part of the numerical results are cited from [18].

Consider a R&S problem with K alternatives, with µi = 1.5− 0.5i and σ2
i = 10 for

all i = 1, ...K. Note that the major difference between our proposed procedures

and other procedures is that our procedures do not use the Bonferroni correction.

Let us denote the IZ parameter as δ. In the experiment, δ takes values from 0

to 0.5, where 0 means indifference-zone information is not available, and 0.5 is the

true gap between the best system and all other systems. For K = 20, 50, 100, 500,

we report the estimated PCS and average sample sizes over 1,000 independent

evaluations in Table 2.3.

From Table 2.3, we obtain the following three findings related to the indifference-

zone. Firstly, Procedure 1 outperforms the KN++ procedure and the IZ-free proce-

dure regarding using fewer samples. Secondly, Procedure 1 is valid with or with-

out the IZ parameter, and therefore it fills the gap between the indifference-zone

formulation and the indifference-zone-free formulation.

2.4.3 Study 3: Unknown and Heterogeneous Variance

In this study, we investigate the efficiency of our proposed procedures in the

context of unknown and heterogeneous variance.
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We consider three configurations of variance: σ2 = 10 (Equal Var.), σ2 = 10×

(0.95 + 0.05i) (Increasing), and σ2 = 10/(0.95 + 0.05i) (Decreasing). We adopt all

other configurations from last example, except we set δ = 0.5 here. The results

are reported in Table 2.4. From Table 2.4, Procedure 2 demonstrates validity and

efficiency across all three configurations of variance.

2.5 Conclusion

In this paper, we propose two new procedures for ranking and selection. Under

normality assumptions on distributions, the proposed procedures are designed to

select the best system with a PCS guarantee. Unlike many other leading proce-

dures in R&S, the new methods do not use the Bonferroni correction. They also

bridge the gap between the indifference-zone formulation and the indifference-

zone-free formulation so that the indifference-zone information is not indispens-

able and yet valuable if provided correctly.

2.6 Appendix: Technical Proofs

2.6.1 Technical Theorems

We need the following technical results for our proofs.

Theorem 2.6.1 (Theorem 2.3.5 Part iii in [29])[Moment Inequality of Martingales] Let

Sn = X1 + X2 + ... + Xn, n ≥ 1 be a square integrable martingale with independent

increments. Then for any 0 < p ≤ 2 and any stopping time T, there is a positive constant

Cp, independent of T and X, such that

E

[(
sup
t≤T
|St|
)p]
≤ CpE[DT]

p/2 (2.96)

where Dt = Var[Xt].

The preceding theorem leads to the following lemma.
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Lemma 2.6.1 Let Sn = X1 + X2 + ... + Xn, n ≥ 1 random walk. Where Xi are inde-

pendent increments with E[Xi] = 0. If E[X2
i ] < ∞. Then there is a positive constant C,

independent of n and X, such that

E[|Sn|] ≤ C · n1/2 (2.97)

for all n ≥ 1.

Proof Consider a constant n as the stopping time T in Theorem 2.6.1 and set p = 1.

Therefore, we have

E[|Sn|] ≤ E

[(
sup
t≤T
|St|
)]
≤ C1E[Dn]

1/2 = C1(
n

∑
m=1

Var[Xn])
1/2 ≤ C · n1/2 (2.98)

The following two theorems, Theorem 2.6.2 and Theorem 2.6.3, provide the

convergent properties of the log of the GLR statistic Λ(2)
i,j,n

λ
(2)
i,j,n = log Λ(2)

i,j,n (2.99)

Theorem 2.6.2 Under the Conditions A1-A6, assuming that the systems i and j, with

µ?
i < µ?

j , are exempt from the elimination step, then
λ
(2)
i,j,n
n converges almost surely to

− infµ∈Ui,j ρ(µ?, µ).

Remark 2.6.1 The proof of this theorem follows the proof of Theorem 5.4.2 in [29].

Proof In the following proof, for the sake of brevity, we use τl to represent the

stopping time of system l.
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For any n, the log GLR can be written as

λ
(2)
i,j,n , log Λ(2)

i,j,n = sup
µ∈Ui,j

log Ln(µ)− log πn (2.100)

= sup
µ∈Ui,j

n

∑
m=1

∑
l∈Scand,m

log gl(Xl,m|µl)−
n

∑
m=1

∑
l∈Scand,m

log gl(Xl,m|µ̂l,m−1) (2.101)

= sup
µ∈Ui,j

[ n

∑
m=1

∑
l∈Scand,m/{i,j}

log gl(Xl,m|µl)−
n

∑
m=1

∑
l∈Scand,m/{i,j}

log gl(Xl,m|µ̂l,m−1)+

(2.102)
n

∑
m=1

∑
l∈{i,j}

log gl(Xl,m|µl)−
n

∑
m=1

∑
l∈{i,j}

log gl(Xl,m|µ̂l,m−1)

]
(2.103)

= ∑
l∈Ω/{i,j}

[min{n,τl}

∑
m=1

[log gl(Xl,m|µ̂l,n)− log gl(Xl,m|µ̂l,m−1)]

]
+ (2.104)

[
sup
µi>µj

n

∑
m=1

∑
l∈{i,j}

log gl(Xl,m|µl)−
n

∑
m=1

∑
l∈{i,j}

log gl(Xl,m|µ̂l,m−1)

]
(2.105)

where µ̂l,n represents the unconstrained MLE of µl using the first n observations

on the system l. It is valid since the, according to Condition A2, systems are (con-

ditional) independent with each other. For cases that τl < n, we set µ̂l,n = µ̂l,τl
.

In the following, we show the almost sure convergences of expression 2.104

and 2.105, respectively.

First, let us consider the expression 2.104. For any l 6= {i, j}, let us denote

κl =
min{n,τl}

∑
m=1

[log gl(Xl,m|µ̂l,n)− log gl(Xl,m|µ̂l,m−1)] (2.106)

=
min{n,τl}

∑
m=1

[log
gl(Xl,m|µ̂l,n)

gl(Xl,m|µ?
l )
− log

gl(Xl,m|µ̂l,m−1)

gl(Xl,m|µ?
l )

] (2.107)

Denote the Kullback Leibler divergence for each system as

ρl(µ
?
l , µl) = Egl(·|µ?

l )
[log

gl(·|µ?
l )

gl(·|µl)
] (2.108)
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Therefore, we can expand κl as

κl =
min{n,τl}

∑
m=1

[
[log

gl(Xl,m|µ̂l,n)

gl(Xl,m|µ?
l )

+ ρl(µ
?
l , µ̂l,n)]− ρl(µ

?, µ̂l,n) (2.109)

− [log
gl(Xl,m|µ̂l,m−1)

gl(Xl,m|µ?
l )

+ ρl(µ
?
l , µ̂l,m−1)] + ρl(µ

?
l , µ̂l,m−1)

]
(2.110)

Let

κl1 =
min{n,τl}

∑
m=1

[log
gl(Xl,m|µ̂l,n)

gl(Xl,m|µ?
l )

+ ρl(µ
?
l , µ̂l,n)] (2.111)

κl2 =
min{n,τl}

∑
m=1

ρl(µ
?
l , µ̂l,n) (2.112)

κl3 =
min{n,τl}

∑
m=1

[log
gl(Xl,m|µ̂l,m−1)

gl(Xl,m|µ?
l )

+ ρl(µ
?
l , µ̂l,m−1)] (2.113)

κl4 =
min{n,τl}

∑
m=1

ρl(µ
?
l , µ̂l,m−1) (2.114)

Since Egl(·|µ?
l )
[log gl(·|µl)

gl(·|µ?
l )
+ ρl(µ

?
l , µl)] = 0 for any µl; thus, κl1 and κl3 are zero-

sum independent incremental martingales. By Condition A4 that gl(·|µl) > 0 for

all µl, we have | log gl(Xl |µl)
gl(Xl |µ?

l )
| < ∞ uniformly for all Xl and µl. By Lemma 2.6.1, we

have

Egl(·|µ?
l )
[|κl1 |] < constant · n1/2 (2.115)

Egl(·|µ?
l )
[|κl3 |] < constant · n1/2 (2.116)

Thus,
κl1
n and

κl3
n converges almost surely to 0.

By Condition A6, Egl(·|µ?
l )
[∑∞

m=1 ρl(µ
?
l , µ̂l,m)] < ∞, we have

κl2
n and

κl4
n con-

verges almost surely to 0, as well.

Thus, κl
n = 1

n [κl1 − κl2 − κl3 + κl4 ] converges almost surely to 0.

Next, we consider the expression 2.105. Let us denote the joint density of sys-

tems i and j as

fij(Xi, Xj|µij) = gi(Xi|µi) · gj(Xj|µj) (2.117)

where µij = [µi, µj].
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Denote the Kullback Leibler divergence as

ρij(µ
?
ij, µij) = E fi,j(·|µ?

ij)
[log

fij(·|µ?
ij)

fij(·|µij)
] (2.118)

where µ?
ij = [µ?

i , µ?
j ] is the true mean vector of systems i and j.

Denote the expression 2.105 as

κij = sup
µi>µj

n

∑
m=1

∑
l∈{i,j}

log gl(Xl,m|µl)−
n

∑
m=1

∑
l∈{i,j}

log gl(Xl,m|µ̂l,m−1) (2.119)

= sup
µi>µj

n

∑
m=1

log fij(Xi,m, Xj,m|µij)−
n

∑
m=1

log fij(Xi,m, Xj,m|µ̂ij,m−1) (2.120)

where µ̂ij,m−1 is the MLE of µij using the first m− 1 observations on the system i

and j.

κij can be expanded as

κij = sup
µij∈{µi>µj}

n

∑
m=1

log fij(Xi,m, Xj,m|µij)−
n

∑
m=1

log fij(Xi,m, Xj,m|µ̂ij,m−1) (2.121)

= sup
µij∈{µi>µj}

n

∑
m=1

log
fij(Xi,m, Xj,m|µij)

fij(Xi,m, Xj,m|µ?
ij)
−

n

∑
m=1

log
fij(Xi,m, Xj,m|µ̂ij,m−1)

fij(Xi,m, Xj,m|µ?
ij)

(2.122)

= sup
µij∈{µi>µj}

n

∑
m=1

[log
fij(Xi,m, Xj,m|µij)

fij(Xi,m, Xj,m|µ?
ij)

] +
n

∑
m=1

ρij(µ
?
ij, µ̂ij,m−1) (2.123)

−
n

∑
m=1

[log
fij(Xi,m, Xj,m|µ̂ij,m−1)

fij(Xi,m, Xj,m|µ?
ij)

+ ρij(µ
?
ij, µ̂ij,m−1)] (2.124)

Denote

κij1 = sup
µij∈{µi>µj}

n

∑
m=1

[log
fij(Xi,m, Xj,m|µij)

fij(Xi,m, Xj,m|µ?
ij)

] (2.125)

κij2 =
n

∑
m=1

ρij(µ
?
ij, µ̂ij,m−1) (2.126)

κij3 =
n

∑
m=1

[log
fij(Xi,m, Xj,m|µ̂ij,m−1)

fij(Xi,m, Xj,m|µ?
ij)

+ ρij(µ
?
ij, µ̂ij,m−1)] (2.127)

By the same logic for the almost sure convergences of κj3/n and κj4/n, it is easy

to verify that κij2/n and κij3/n converges almost surely to 0.
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Given Condition A3 that the parameter space is compact, Condition A4 that

gi(Xi|µi) is continuous and gi(Xi|µi) > 0 for all Xi and µi, we can apply the Uni-

form Law of Large Number to show that, almost surely,

sup
µij∈{µi>µj}

∣∣∣∣ 1n n

∑
m=1

log
fij(Xi,m, Xj,m|µij)

fij(Xi,m, Xj,m|µ?
ij)

+ ρij(µ
?
ij, µij)

∣∣∣∣→ 0 (2.128)

κij1
n

= sup
µij∈{µi>µj}

1
n

n

∑
m=1

log
fij(Xi,m, Xj,m|µij)

fij(Xi,m, Xj,m|µ?
ij)
→ − inf

µij∈{µi>µj}
ρij(µ

?
ij, µij) (2.129)

Therefore,
κij
n = 1

n [κij1 + κij2 − κij3 ]→ − infµij∈{µi>µj} ρij(µ
?
ij, µij) almost surely.

Given the fact that − infµij∈{µi>µj} ρij(µ
?
ij, µij) = − infµ∈Ui,j ρ(µ?, µ), we have

λ
(2)
i,j,n

n
=

1
n
[ ∑
l∈Ω/{i,j}

κl + κij]→ − inf
µ∈Ui,j

ρ(µ?, µ) (2.130)

Thus, we conclude the proof.

Theorem 2.6.3 Under the Conditions A1-A6, there exists a number N and a pair of (s, ε)

with s ∈ [0, 1/2] and ε > 0, such that

E f (·|µ?)[(Λ
(2)
i,j,n)

s] ≤ constant · e−εn (2.131)

for all n > N.

Proof Consider the log of the GLR statistic λ
(2)
i,j,n

λ
(2)
i,j,n , log Λ(2)

i,j,n = sup
µ∈Ui,j

log Ln(µ)− log πn (2.132)

By Theorem 2.6.2, we have
λ
(2)
i,j,n
n → − infµ∈Ui,j ρ(µ?, µ). By Condition A5, ρi(µ

?
i , µi) >

0 for any µ 6= µ? and i ∈ Ω; thus there exists a constant c1 > 0 such that

infµ∈Ui,j ρ(µ?, µ) = infµ∈Ui,j ∑K
l=1 ρl(µ

?
l , µl) ≥ c1 for any µ? 6∈ Ui,j.
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Let µ̂n = [µ̂1,n, ..., µ̂K,n] and µ̃n = [µ̃1,n, ..., µ̃K,n] = arg supµ∈Ui,j
log Ln(µ) be the

unconstrained and constrained MLEs of µ? at the nth round, respectively. Then

denote λ
(2)
i,j,n as the summation of the sequence {hm,n, m = 1, ..., n}

λ
(2)
i,j,n =

n

∑
m=1

[
∑

l∈Scand,m

log gl(Xl,m|µ̃l,n)− ∑
l∈Scand,m

log gl(Xl,m|µ̂l,m−1)

]
=

n

∑
m=1

hm,n

(2.133)

It can be verified that E f (·|µ?)[hm,n] = ∑l∈Scand,m
ρl(µ

?
l , µ̂l,m−1)− ρl(µ

?
l , µ̃l,n).

By Condition A6, Egl(·|µ?
l )
[∑∞

m=1 ρl(µ
?
l , µ̂l,m)] < ∞, and the fact that ρl(µ

?
l , µ̂l,m)

are bounded and non-negative, we have the almost sure convergence of ρl(µ
?
l , µ̂l,m)→

0 as m, n → ∞. Therefore, there exists a number N such that ρl(µ
?
l , µ̂l,m) ≤ c1

2K for

all m ≥ N and l.

Thus, for any n and m with N < m < n, we have

E f (·|µ?)[hm,n] = ∑
l∈Scand,m

ρl(µ
?
l , µ̂l,m−1)− ρl(µ

?
l , µ̃l,n) (2.134)

≤ c1

2
− inf

µ∈Ui,j

K

∑
l=1

ρl(µ
?
l , µl) ≤ −

c1

2
(2.135)

The first inequality holds since µ̃n ∈ Ui,j.

Consider the function

γ(s) = E f (·|µ?)[e
s·hm,n ] (2.136)

To find an upper bound of γ(s), we firstly show that γ(s) is twice differentiable

and bounded.

To verity that γ(s) is twice differentiable with respect to s within [0, S], it is

sufficient to show E f (·|µ?)[h2
m,nes·hm,n ] < ∞ for s ∈ [0, S].

E f (·|µ?)[h
2
m,nes·hm,n ] =

∫
h2

m,nes·hm,n f (·|µ?)dX ≤
[ ∫

h4
m,n f (·|µ?)dX

]1/2[ ∫
e2·s·hm,n f (·|µ?)dX

]1/2

(2.137)

Given Conditions A3, fµ(X) is continuous and fµ(X) > 0 for all X and µ ∈ U,

thus, the first term
∫

h4
m,n fµ?(x)dx is bounded above; the second term is less than

1 for any s ∈ [0, 1/2] by the definition of hm,n. Therefore, there exists a constant c2

such that
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γ′′(s) = E f (·|µ?)[h
2
m,nes·hm,n ] ≤ c2 < ∞ (2.138)

The first order derivative of γ(s) is γ′(s) = E f (·|µ?)[hm,nes·hm,n ] with γ′(0) ≤

− c1
2 .

Therefore, γ(s) < 1− c1
2 s + c2

2 s2 for all s ∈ [0, 1/2]. Thus ,there exists a pair of

(s, ε) with s ∈ [0, 1/2] and ε > 0 such that γ(s) ≤ e−ε < 1.

Thus, there exists a large number N, such that, for any n > N,

E f (·|µ?)[(Λ
(2)
i,j,n)

s] = E f (·|µ?)[e
s ∑n

m=1 ·hm,n ] ≤ E f (·|µ?)[e
s ∑N

m=1 ·hm,n ] · e−ε(n−N) ≤ c · e−ε·n

(2.139)

where c is a constant.

Thus, we conclude the proof.

Next, we give similar results of aforementioned theorems under the Conditions

B1 to B6.

Theorem 2.6.4 Under the Conditions B1-B6 and the settings of Procedure 1 and Proce-

dure 2, assuming that the systems i and j, with µ?
i < µ?

j , are exempt from the elimination

step, then
λ
(2)
i,j,n
n converges almost surely to − infθ∈Ui,j ρ(θ?, θ).

Remark 2.6.2 The proof follows the exactly same logic as in the proof of Theorem 2.6.2,

except that the parameter set is expanded from µ to θ.

Proof In the following proof, for the sake of brevity, we use τl to represent the

stopping time of system l in both Procedure 1 and Procedure 2.
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For any n, the log GLR can be written as

λ
(2)
i,j,n , log Λ(2)

i,j,n = sup
θ∈Ui,j

log Ln(θ)− log πn (2.140)

= sup
θ∈Ui,j

n

∑
m=1

∑
l∈Scand,m

log gl(Xl,m|θl)−
n

∑
m=1

∑
l∈Scand,m

log gl(Xl,m|θ̂l,m−1) (2.141)

= sup
θ∈Ui,j

[ n

∑
m=1

∑
l∈Scand,m/{i,j}

log gl(Xl,m|θl)−
n

∑
m=1

∑
l∈Scand,m/{i,j}

log gl(Xl,m|θ̂l,m−1)+

(2.142)
n

∑
m=1

∑
l∈{i,j}

log gl(Xl,m|θl)−
n

∑
m=1

∑
l∈{i,j}

log gl(Xl,m|θ̂l,m−1)

]
(2.143)

= ∑
l∈Ω̃/{i,j}

[min{n,τl}

∑
m=1

[log gl(Xl,m|θ̂l,n)− log gl(Xl,m|θ̂l,m−1)]

]
+ (2.144)

[
sup
µi>µj

n

∑
m=1

∑
l∈{i,j}

log gl(Xl,m|θl)−
n

∑
m=1

∑
l∈{i,j}

log gl(Xl,m|θ̂l,m−1)

]
(2.145)

where θ̂l,n represents the unconstrained MLE of θl using the first n observations on

the system l. It is valid since the, according to Condition B2, systems are (condi-

tional) independent with each other. For cases that τl < n, we set θ̂l,n = θ̂l,τl
.

In the following, we show the almost sure convergences of expression 2.144

and 2.145, respectively.

First, let us consider the expression 2.144. For any l 6= {i, j}, let us denote

κl =
min{n,τl}

∑
m=1

[log gl(Xl,m|θ̂l,n)− log gl(Xl,m|θ̂l,m−1)] (2.146)

=
min{n,τl}

∑
m=1

[log
gl(Xl,m|θ̂l,n)

gl(Xl,m|θ?l )
− log

gl(Xl,m|θ̂l,m−1)

gl(Xl,m|θ?l )
] (2.147)

Denote the Kullback Leibler divergence for each system as

ρl(θ
?
l , θl) = Egl(Xl,m|θ?l )[log

gl(Xl,m|θ?l )
gl(Xl,m|θl)

] (2.148)
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Therefore, we can expand κl as

κl =
min{n,τl}

∑
m=1

[
[log

gl(Xl,m|θ̂l,n)

gl(Xl,m|θ?l )
+ ρl(θ

?
l , θ̂l,n)]− ρl(θ

?, θ̂l,n) (2.149)

− [log
gl(Xl,m|θ̂l,m−1)

gl(Xl,m|θ?l )
+ ρl(θ

?
l , θ̂l,m−1)] + ρl(θ

?
l , θ̂l,m−1)

]
(2.150)

Let

κl1 =
min{n,τl}

∑
m=1

[log
gl(Xl,m|θ̂l,n)

gl(Xl,m|θ?l )
+ ρl(θ

?
l , θ̂l,n)] (2.151)

κl2 =
min{n,τl}

∑
m=1

ρl(θ
?
l , θ̂l,n) (2.152)

κl3 =
min{n,τl}

∑
m=1

[log
gl(Xl,m|θ̂l,m−1)

gl(Xl,m|θ?l )
+ ρl(θ

?
l , θ̂l,m−1)] (2.153)

κl4 =
min{n,τl}

∑
m=1

ρl(θ
?
l , θ̂l,m−1) (2.154)

Since Egl(·|θ?l )[log gl(·|θl)
gl(·|θ?l )

+ ρl(θ
?
l , θl)] = 0 for any θl; thus, κl1 and κl3 are zero-

sum independent incremental martingales. By Condition B4 that gl(·|θl) > 0 for

all θl, we have | log gl(Xl,m|θl)
gl(Xl,m|θ?l )

| < ∞ uniformly for all Xl and θl. By Lemma 2.6.1, we

have

Egl(·|θ?l )[|κl1 |] < constant · n1/2 (2.155)

Egl(·|θ?l )[|κl3 |] < constant · n1/2 (2.156)

Thus,
κl1
n and

κl3
n converges almost surely to 0.

By Condition B6, Egl(·|θ?l )[∑
∞
m=1 ρl(θ

?
l , θ̂l,m)] < ∞, we have

κl2
n and

κl4
n converges

almost surely to 0, as well.

Thus, κl
n = 1

n [κl1 − κl2 − κl3 + κl4 ] converges almost surely to 0.

Next, we consider the expression 2.145. Let us represent the joint density of

systems i and j as

fij(Xi, Xj|θij) = gi(Xi|θi) · gj(Xj|θj) (2.157)

where θij = [θi, θj] = [[µi, σ2
i ], [µj, σ2

j ]].
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Denote the Kullback Leibler divergence as

ρij(θ
?
ij, θij) = E f (·|θ?ij)[log

fij(·|θ?ij)
fij(·|θij)

] (2.158)

where θ?ij = [θ?i , θ?j ] is the true parameters of systems i and j.

Denote the expression 2.145 as

κij = sup
µi>µj

n

∑
m=1

∑
l∈{i,j}

log gl(Xl,m|θl)−
n

∑
m=1

∑
l∈{i,j}

log gl(Xl,m|θ̂l,m−1) (2.159)

= sup
µi>µj

n

∑
m=1

log fij(Xi,m, Xj,m|θij)−
n

∑
m=1

log fij(Xi,m, Xj,m|θ̂ij,m−1) (2.160)

where θ̂ij,m−1 is the MLE of θij using the first m− 1 observations on the system i

and j.

κij can be expanded as

κij = sup
θij∈{µi>µj}

n

∑
m=1

log fij(Xi,m, Xj,m|θij)−
n

∑
m=1

log fij(Xi,m, Xj,m|θ̂ij,m−1) (2.161)

= sup
θij∈{µi>µj}

n

∑
m=1

log
fij(Xi,m, Xj,m|θij)

fij(Xi,m, Xj,m|θ?ij)
−

n

∑
m=1

log
fij(Xi,m, Xj,m|θ̂ij,m−1)

fij(Xi,m, Xj,m|θ?ij)
(2.162)

= sup
θij∈{µi>µj}

n

∑
m=1

[log
fij(Xi,m, Xj,m|θij)

fij(Xi,m, Xj,m|θ?ij)
] +

n

∑
m=1

ρij(θ
?
ij, θ̂ij,m−1) (2.163)

−
n

∑
m=1

[log
fij(Xi,m, Xj,m|θ̂ij,m−1)

fij(Xi,m, Xj,m|θ?ij)
+ ρij(θ

?
ij, θ̂ij,m−1)] (2.164)

Denote

κij1 = sup
θij∈{µi>µj}

n

∑
m=1

[log
fij(Xi,m, Xj,m|θij)

fij(Xi,m, Xj,m|θ?ij)
] (2.165)

κij2 =
n

∑
m=1

ρij(θ
?
ij, θ̂ij,m−1) (2.166)

κij3 =
n

∑
m=1

[log
fij(Xi,m, Xj,m|θ̂ij,m−1)

fij(Xi,m, Xj,m|θ?ij)
+ ρij(θ

?
ij, θ̂ij,m−1)] (2.167)

By the same logic for the almost sure convergences of κj3/n and κj4/n, it is easy

to verify that κij2/n and κij3/n converges almost surely to 0.
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Given Condition B3 that the parameter space is compact, Condition B4 that

gi(Xi|θi) is continuous and gi(Xi|θi) > 0 for all Xi and θi, we can apply the Uniform

Law of Large Number to show that, almost surely,

sup
θij∈{µi>µj}

∣∣∣∣ 1n n

∑
m=1

log
fij(Xi,m, Xj,m|θij)

fij(Xi,m, Xj,m|θ?ij)
+ ρij(θ

?
ij, θij)

∣∣∣∣→ 0 (2.168)

κij1
n

= sup
θij∈{µi>µj}

1
n

n

∑
m=1

log
fij(Xi,m, Xj,m|θij)

fij(Xi,m, Xj,m|θ?ij)
→ − inf

θij∈{µi>µj}
ρij(θ

?
ij, θij) (2.169)

Therefore,
κij
n = 1

n [κij1 + κij2 − κij3 ]→ − infθij∈{µi>µj} ρij(θ
?
ij, θij) almost surely.

Given the fact that − infθij∈{µi>µj} ρij(θ
?
ij, θij) = − infθ∈Ui,j ρ(θ?, θ), we have

λ
(2)
i,j,n

n
=

1
n
[ ∑
l∈Ω/{i,j}

κl + κij]→ − inf
θ∈Ui,j

ρ(θ?, θ) (2.170)

Thus, we conclude the proof.

Theorem 2.6.5 Under the Conditions B1-B6 and the settings of Procedure 1 and Proce-

dure 2, assuming that the systems i and j, with µ?
i < µ?

j , are exempt from the elimination

step, then there exists a number N and a pair of (s, ε) with s ∈ [0, 1/2] and ε > 0, such

that

E f (·|µ?)[(Λ
(2)
i,j,n)

s] ≤ constant · e−εn (2.171)

for all n > N.

Remark 2.6.3 The proof follows the exactly same logic as in the proof of Theorem 2.6.2,

except that the parameter set is expanded from µ to θ.

Proof Consider the log of the GLR statistic λ
(2)
i,j,n as

λ
(2)
i,j,n , log Λ(2)

i,j,n = sup
θ∈Ui,j

log Ln(θ)− log πn (2.172)

By Theorem 2.6.4, we have
λ
(2)
i,j,n
n → − infθ∈Ui,j ρ(θ?, θ). By Condition B5, ρi(θ

?
i , θi) >

0 for any θ 6= θ? and i ∈ Ω, so there exists a constant c1 > 0 such that infθ∈Ui,j ρ(θ?, θ) =

infθ∈Ui,j ∑K
l=1 ρl(θ

?
l , θl) ≥ c1.
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Let θ̂n = [θ̂1,n, ..., θ̂K,n] and θ̃n = [θ̃1,n, ..., θ̃K,n] = arg supθ∈Ui,j
log Ln(θ) be the

unconstrained and constrained MLEs of θ? at the nth round, respectively. λ
(2)
i,j,n can

be stated as a summation of a sequence {hm,n, m = 1, ..., n} such that

λ
(2)
i,j,n =

n

∑
m=1

[
∑

l∈Scand,m

log gl(Xl,m|θ̃l,n)− ∑
l∈Scand,m

log gl(Xl,m|θ̂l,m−1)

]
=

n

∑
m=1

hm,n

(2.173)

It can be verified that E f (·|θ?)[hm,n] = ∑l∈Scand,m
ρl(θ

?
l , θ̂l,m−1)− ρl(θ

?
l , θ̃l,n).

By Condition B6, Egl(·|θ?l )[∑
∞
m=1 ρl(θ

?
l , θ̂l,m)] < ∞, and the fact that ρl(θ

?
l , θ̂l,m)

are bounded and non-negative, we have the almost sure convergence of ρl(θ
?
l , θ̂l,m)→

0 as m, n → ∞. Therefore, there exists a number N such that ρl(θ
?
l , θ̂l,m) ≤ c1

2K for

all m ≥ N and l.

Thus, for any n and m with N < m < n, we have

E f (·|θ?)[hm,n] = ∑
l∈Scand,m

ρl(θ
?
l , θ̂l,m−1)− ρl(θ

?
l , θ̃l,n) (2.174)

≤ c1

2
− inf

θ∈Ui,j

K

∑
l=1

ρl(θ
?
l , θl) ≤ −

c1

2
(2.175)

The first inequality holds since θ̃n ∈ Ui,j.

Consider the function

γ(s) = E f (·|θ?)[e
s·hm,n ] (2.176)

To find an upper bound of γ(s), we firstly show that γ(s) is twice differentiable

and bounded.

To verity that γ(s) is twice differentiable with respect to s within [0, S], it is suffi-

cient to show Eθ? [h2
m,nes·hm,n ] < ∞ for s ∈ [0, S]. Let us denote fθ(·) , ∏K

i=1 gi(Xi|θi).

E f (·|θ?)[h
2
m,nes·hm,n ] =

∫
h2

m,nes·hm,n f (X|θ?)dX (2.177)

≤
[ ∫

h4
m,n f (X|θ?)dX

]1/2[ ∫
e2·s·hm,n f (X|θ?)dX

]1/2

(2.178)

Given Conditions B3, f (·|θ) is continuous and positive for all θ ∈ U, thus, the

first term
∫

h4
m,n fθ?(x)dx is bounded above; the second term is less than 1 for any

s ∈ [0, 1/2] by the definition of hm,n. Therefore, there exists a constant c2 such that
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γ′′(s) = E f (·|θ?)[h
2
m,nes·hm,n ] ≤ c2 < ∞ (2.179)

The first order directive of γ(s) is γ′(s) = E f (·|θ?)[hm,nes·hm,n ] with γ′(0) ≤ − c1
2 .

Therefore, γ(s) < 1− c1
2 s + c2

2 s2 for all s ∈ [0, 1/2]. Thus ,there exists a pair of

(s?, ε) with s? ∈ [0, 1/2] and ε > 0 such that γ(s?) ≤ e−ε < 1.

Thus, there exists a large number N, such that, for any n > N,

E f (·|θ?)[(Λ
(2)
i,j,n)

s? ] = E f (·|θ?)[e
s? ∑n

m=1 ·hm,n ] ≤ E f (·|θ?)[e
s? ∑N

m=1 ·hm,n ] · e−ε(n−N) ≤ c · e−ε·n

(2.180)

where c is a constant.

Thus, we conclude the proof.

2.6.2 Proof of Theorem 2.2.3

Proof Under the normality assumption with unequal known variance σ2, Ln(µ)

and gj(Xj,m|µj) are defined by

Ln(µ) =
n

∏
m=1

∏
j∈Scand,m

gj(Xj,m|µj) (2.181)

gj(Xj,m|µj) =
1√

2πσ2
i

exp{−
(Xj,m − µj)

2

2σ2
i

} (2.182)

where Scand,n contains systems that have not been eliminated by the nth iteration.

Given the definition of µ̂
Ui
n , we have
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µ̂
Ui
n = arg sup

µ∈Ui

Ln(µ) (2.183)

= arg sup
µ∈Ui

n

∏
m=1

∏
j∈Scand,m

gj(Xj,m|µj) (2.184)

= arg sup
µ∈Ui

n

∏
m=1

∏
j∈Scand,m

exp{−
(Xj,m − µj)

2

2σ2
i

} (2.185)

= arg sup
µ∈Ui

n

∑
m=1

∑
j∈Scand,m

(
−

(Xj,m − µj)
2

2σ2
i

)
(2.186)

This optimization problem is solvable by using Lagrangian method. Denote

λ = [λ1, ..., λi−1, λi+1, ...λK] as the Lagrangian multipliers. We have the following

KKT conditions.

1
σ2

i
(µi − µ̂i,n)−∑

j 6=i
λj = 0 (2.187)

1
σ2

i
(µj − µ̂j,n) + λj = 0 (2.188)

λj · (µj − µi + δ) = 0, ∀j 6= i (2.189)

µi − µj − δ ≥ 0, ∀j 6= i (2.190)

λj ≥ 0 (2.191)

It is straightforward to verify that Equation 2.24 satisfies the above conditions.

2.6.3 Proof of Theorem 2.2.4

Proof We will prove that P(Procedure 1/2 terminates after N iterations) → 0 as

N → ∞.
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The proposed procedures terminate when the cardinality of Scand,N+1 is 1. Thus,

we can write the probability that the procedure terminates after N iterations as

P(Procedure 1/2 terminates after N iterations) (2.192)

=P(|Scand,N+1| ≥ 2) (2.193)

=P(∪i,j∈Ω[(i ∈ Scand,N+1) ∩ (j ∈ Scand,N+1)]) (2.194)

≤ ∑
i,j∈Ω

P((i ∈ Scand,N+1) ∩ (j ∈ Scand,N+1)) (2.195)

To prove that P(Procedure 1/2 terminates after N iterations)→ 0 as N → ∞, it

is sufficient to show that P((i ∈ Scand,N+1) ∩ (j ∈ Scand,N+1))→ 0 for any i, j ∈ Ω.

Without loss of generality, let us assume µ?
i < µ?

j , i.e., system j is better than

system i.

By Bayes rule,

P((i ∈ Scand,N+1) ∩ (j ∈ Scand,N+1)) = P(j ∈ Scand,N+1))× P(i ∈ Scand,N+1|j ∈ Scand,N+1)

(2.196)

For Procedure 1, P(i ∈ Scand,N+1|j ∈ Scand,N+1) is bounded above by

P(i ∈ Scand,N+1|j ∈ Scand,N+1) = P( min
n=1,...,N

Λ(1)
i,n > α|j ∈ Scand,N+1) ≤ P(Λ(1)

i,N > α|j ∈ Scand,N+1) ≤ P(Λi,j
N > α|j ∈ Scand,N+1)

(2.197)

The last inequality holds since Ui = {µ|µi > µl∀l 6= i} ⊂ Ui,j = {µ|µi > µj}

and thus

Λ(1)
i,N =

supµ∈Ui
LN(µ|·)

πN
≤

supµ∈Ui,j
LN(µ|·)

πN
= Λ(2)

i,j,N (2.198)

For Procedure 2, P(i ∈ Scand,N+1|j ∈ Scand,N+1) is bounded above by

P(i ∈ Scand,N+1|j ∈ Scand,N+1) = P( min
n=1,...,N

Λ(2)
i,·,n > α|j ∈ Scand,N+1) (2.199)

≤ P(Λi,·
N > α|j ∈ Scand,N+1) (2.200)

≤ P(Λi,j
N > α|j ∈ Scand,N+1) (2.201)

The last inequality holds since, by the definition of Λi,·
N, Λi,·

N = minl 6=i Λi,l
N ≤

Λ(2)
i,j,N.
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Summarizing the above two inequalities, we have

P((i ∈ Scand,N+1) ∩ (j ∈ Scand,N+1)) (2.202)

=P(j ∈ Scand,N+1))× P(i ∈ Scand,N+1|j ∈ Scand,N+1) (2.203)

≤P(j ∈ Scand,N+1))× P(Λ(2)
i,j,N > α|j ∈ Scand,N+1) (2.204)

≤P(1
Λ(2)

i,j,N>α
∩ (j ∈ Scand,N+1)) (2.205)

≤P(Λ(2)
i,j,N > α) (2.206)

Thus, to prove that both procedures terminate in finite time is necessary to

show that P(Λi,j
N > α)→ 0.

Apply Chebyshev inequality to P(Λ(2)
i,j,N > α)

P(Λ(2)
i,j,N > α) ≤

E f (·|µ?)[(Λ
(2)
i,j,N)

s]

αs

for any real number s > 0.

By Theorem 2.6.3, there exists a number n and a pair of (s, ε) with s ∈ [0, 1/2]

and ε > 0, such that

E f (·|µ?)[(Λ
(2)
i,j,N)

s] ≤ constant · e−εN (2.207)

for all N > n.

Therefore, we have P(Λ(2)
i,j,N > α)→ 0 as N → ∞. Thus, we conclude the proof.

2.6.4 Proof of Theorem 2.2.6

Proof Recall that τ
(1)
i = min{n|Λ(1)

i,n < α} and τ
(2)
i = min{n|Λ(2)

i,·,n < α}. And by

definition, Λ(1)
i,n < Λ(2)

i,·,n for all n and i. Thus, we have

P(τ(1)
i > N) = P( min

n=1,...,N
Λ(1)

i,n > α) ≤ P( min
n=1,...,N

Λ(2)
i,·,n > α) = P(τ(2)

i > N), ∀N > 0

(2.208)

Therefore, E f (·|θ?)[τ
(1)
i ] ≤ E f (·|θ?)[τ

(2)
i ].
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Recall that we defined Λ(2)
i,·,n as Λ(2)

i,·,n = minj∈Scand,n Λ(2)
i,j,n, therefore, we have

Λ(2)
i,·,n ≤ Λ(2)

i,1,n. Thus, τ
(2)
i = min{n|Λ(2)

i,·,n < α} ≤ min{n|Λ(2)
i,1,n < α}. Therefore, it is

sufficient to derive asymptotic properties of τ
(2)
i using min{n|Λ(2)

i,1,n < α}. Another

reason that we want to use Λ(2)
i,1,n is that, by Theorem 2.2.5, as α → 0, system 1 is

not eliminated w.p.1.

Let us denote A = log α−1. Assume a large constant M > 0 and split the

expected elimination time

E f (·|µ?)

[
τ
(2)
i /A

]
= E f (·|µ?)

[
τ
(2)
i /A · 1{τ(2)

i /A≤M}
]
+ E f (·|µ?)

[
τ
(2)
i /A · 1{τ(2)

i /A>M}
]

(2.209)

To prove the asymptotic limit of E f (·|µ?)

[
τ
(2)
i /A

]
, we will show that (1) the first

term is approximated by 1
infµ∈Ui,1 ρ(µ?,µ) as α → 0 (or, equivalently, A → ∞) and (2)

the second term approaches to o(1).

To begin with, we examine the first term. Consider the limiting process of the

log of the GLR statistic λ
(2)
i,1,n = log Λ(2)

i,1,n.

By Theorem 2.6.2, λ
(2)
i,1,n/n → − infµ∈Ui,1 ρ(µ?, µ) almost surely. Given that

τ
(2)
i
A ≤ M, there exists m < M such that bA · mc = τ

(2)
i . Thus, the first term in

the Equation 2.209 converges to a limit

E f (·|µ?)

[
τ
(2)
i
A
· 1{τ(2)

i /A≤M}

]
≈ E f (·|µ?)

[
A ·m

−λ
(2)
i,1,bA·mc

]
→ 1

infµ∈Ui,1 ρ(µ?, µ)
as A→ ∞

(2.210)

Next we verify the second term in Equation 2.209 is o(1).

Recall that

P(τ(2)
i > n) ≤ P(Λ(2)

i,1,n > α) = E f (·|µ?)

[
(Λ(2)

i,1,n)
s

(Λ(2)
i,1,n)

s
1

Λ(2)
i,1,n>α

]
≤ α−sE f (·|µ?)[(Λ

(2)
i,1,n)

s]

(2.211)

for any real number s > 0.

By Theorem 2.6.3, there exist a number N, a positive constant c, and a pair of

(s, ε) with s ∈ [0, 1/2] and ε > 0, such that

E f (·|µ?)[(Λ
(2)
i,1,n)

s] ≤ c · e−ε·n (2.212)
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for all n > N. Hence,

P(τ(2)
i > n) ≤ c · es·A−ε·n (2.213)

For a sufficient large M, there exists an ε′ with 0 < ε′ = ε− s
M < ε− s

n for all

n > M; then we have

P(τ(2)
i > A · n) ≤ c · es·A−ε·A·n = c · e−(ε− s

n )A·n ≤ c · e−ε′·A·n for n > M (2.214)

It states that, with a sufficient large M, the tail probability of τ
(2)
i > A · n decays

exponentially for n > M. Thus, we have

E f (·|µ?)[τ
(2)
i /A · 1{τ(2)

i /A≥M}] =
∫ ∞

M
n · P(

τ
(2)
i
A

> n)dn ≤
∫ ∞

M
n · c · e−ε′·A·ndn→ o(1)

(2.215)

as A→ ∞.

Combining Equations 2.210 and 2.215 together, we conclude the proof.

2.6.5 Proof of Theorem 2.3.1

Remark 2.6.4 The proof for Procedure 1 can be easily verified since Λ(1)
i,n ≤ Λ(2)

i,·,n ≤ Λ(2)
i,j,n

for all j 6= i. If Procedure 2 terminates in finite time, then Procedure 1 should terminate in

finite time.

Proof We will prove that P(Procedure 2 terminates after N iterations)→ 0 as N →

∞.

The procedure terminates when the cardinality of Scand,N+1 is 1. Thus, we can

write the probability that the procedure terminates after time N as

P(Procedure 2 terminates after N iterations) (2.216)

=P(|Scand,N+1| ≥ 2) (2.217)

=P(∪i,j∈Ω[(i ∈ Scand,N+1) ∩ (j ∈ Scand,N+1)]) (2.218)

≤ ∑
i,j∈Ω

P((i ∈ Scand,N+1) ∩ (j ∈ Scand,N+1)) (2.219)
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To prove that P(Procedure 2 terminates after N iterations)→ 0 as N → ∞, it is

sufficient to show that P((i ∈ Scand,N+1) ∩ (j ∈ Scand,N+1))→ 0 for any i, j ∈ Ω.

Without loss of generality, let us assume µ?
i < µ?

j , i.e., system j is better than

system i.

By Bayes rule,

P((i ∈ Scand,N+1) ∩ (j ∈ Scand,N+1)) = P(j ∈ Scand,N+1))× P(i ∈ Scand,N+1|j ∈ Scand,N+1)

(2.220)

P(i ∈ Scand,N+1|j ∈ Scand,N+1) is bounded above by

P(i ∈ Scand,N+1|j ∈ Scand,N+1) = P( min
n=1,...,N

Λ(2)
i,·,n > α|j ∈ Scand,N+1) (2.221)

≤ P(Λi,·
N > α|j ∈ Scand,N+1) ≤ P(Λi,j

N > α|j ∈ Scand,N+1)

(2.222)

The last inequality holds since, by definition of Λi,·
N, Λi,·

N = minl 6=i Λi,l
N ≤ Λ(2)

i,j,N.

Thus,

P((i ∈ Scand,N+1) ∩ (j ∈ Scand,N+1)) (2.223)

=P(j ∈ Scand,N+1))× P(i ∈ Scand,N+1|j ∈ Scand,N+1) (2.224)

≤P(j ∈ Scand,N+1))× P(Λ(2)
i,j,N > α|j ∈ Scand,N+1) (2.225)

≤P(1
Λ(2)

i,j,N>α
∩ (j ∈ Scand,N+1)) (2.226)

≤P(Λ(2)
i,j,N > α) (2.227)

Apply Chebyshev inequality to P(Λ(2)
i,j,N > α)

P(Λ(2)
i,j,N > α) ≤

E f (·|µ?)[(Λ
(2)
i,j,N)

s]

αs

for any real number s > 0.

By Theorem 2.6.5, there exists a number n and a pair of (s, ε) with s ∈ [0, 1/2]

and ε > 0, such that

E f (·|µ?)[(Λ
(2)
i,j,N)

s] ≤ constant · e−εN (2.228)
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for all N > n.

Therefore, we have P(Λ(2)
i,j,N > α)→ 0 as N → ∞. Thus, we conclude the proof.

2.6.6 Proof of Theorem 2.3.4

Proof The second half of the proof uses the Theorem 5.4.3 in [29] on MASPRT

asymptotic optimality.

Recall that we defined Λ(2)
i,·,n as Λ(2)

i,·,n = minj∈Scand,n Λ(2)
i,j,n, therefore, we have

Λ(2)
i,·,n ≤ Λ(2)

i,1,n and τ
(2)
i = min{n|Λ(2)

i,·,n < α} ≤ min{n|Λ(2)
i,1,n < α}. Thus, it is

sufficient to derive asymptotic properties of τ
(2)
i using min{n|Λ(2)

i,1,n < α}. Another

reason that we want to use Λ(2)
i,1,n is that, by Theorem 2.3.3, as α → 0, system 1 is

not eliminated w.p.1.

Let us denote A = log α−1. Assume a large constant M > 0 and split the

expected elimination time

E f (·|θ?)
[
τ
(2)
i /A

]
= E f (·|θ?)

[
τ
(2)
i /A · 1{τ(2)

i /A≤M}
]
+ E f (·|θ?)

[
τ
(2)
i /A · 1{τ(2)

i /A>M}
]

(2.229)

To prove the asymptotic limit of E f (·|θ?)
[
τ
(2)
i /A

]
, we will show that (1) the first

term is approximated by 1
infθ∈Θi,1

ρ(θ?,θ) as α → 0 (or, equivalently, A → ∞) and (2)

the second term approaches to o(1).

To begin with, we examine the first term. Consider the limiting process of the

log of the GLR statistic λ
(2)
i,1,n = log Λ(2)

i,1,n.

By Theorem 2.6.4, λ
(2)
i,1,n/n → − infθ∈Θi,1 ρ(θ?, θ) almost surely. Given that

τ
(2)
i
A ≤ M, there exists m < M such that bA · mc = τ

(2)
i . Thus, the first term in

the Equation 2.229 converges to a limit

E f (·|θ?)

[
τ
(2)
i
A
· 1{τ(2)

i /A≤M}

]
≈ E f (·|θ?)

[
A ·m

−λ
(2)
i,1,bA·mc

]
→ 1

infθ∈Θi,1 ρ(θ?, θ)
as A→ ∞

(2.230)

Next we verify the second term in Equation 2.229 is o(1).



60

Recall that

P(τ(2)
i > n) ≤ P(Λ(2)

i,1,n > α) = E f (·|θ?)

[
(Λ(2)

i,1,n)
s

(Λ(2)
i,1,n)

s
1

Λ(2)
i,1,n>α

]
≤ α−sE f (·|θ?)[(Λ

(2)
i,1,n)

s]

(2.231)

for any real number s > 0.

By Theorem 2.6.5, there exist a number N, a positive constant c, and a pair of

(s, ε) with s ∈ [0, 1/2] and ε > 0, such that

E f (·|θ?)[(Λ
(2)
i,1,n)

s] ≤ c · e−ε·n (2.232)

for all n > N. Hence,

P(τ(2)
i > n) ≤ c · es·A−ε·n (2.233)

For a sufficient large M, there exists an ε′ with 0 < ε′ = ε− s
M < ε− s

n for all

n > M; then we have

P(τ(2)
i > A · n) ≤ c · es·A−ε·A·n = c · e−(ε− s

n )A·n ≤ c · e−ε′·A·n for n > M (2.234)

It states that, with a sufficient large M, the tail probability of τ
(2)
i > A · n decays

exponentially for n > M. Thus, we have

E f (·|θ?)[τ
(2)
i /A · 1{τ(2)

i /A≥M}] =
∫ ∞

M
n · P(

τ
(2)
i
A

> n)dn ≤
∫ ∞

M
n · c · e−ε′·A·ndn→ o(1)

(2.235)

as A→ ∞.

Combining Equations 2.230 and 2.235 together, we conclude the proof.
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3. BONFERRONI-BASED PROCEDURES FOR

MULTI-OBJECTIVE RANKING AND SELECTION

3.1 Introduction

The Ranking and Selection (R&S) problems are to select the best system among

a finite set of alternatives. In terms of single-objective R&S problem, the best sys-

tem refers to the system with the largest expected performance. In the past few

decades, there is a substantial body of literature on single-objective R&S proce-

dures. See [7–9] for thorough overviews on single-objective R&S procedures.

A less studied R&S problem is in the presence of multiple performance mea-

sures. We call this problem the multi-objective Ranking and Selection (MOR&S).

Existing procedures fall into two categories: (a) the fixed-budget approaches that

efficiently allocate a finite computing budget among alternatives in order to op-

timize an objective, i.e., the posterior probability of correct selection (PCS); and

(b) the fixed-precision approaches that attain a target precision by using a random

total number of simulation budget.

The fixed-budget approaches include the multi-objective optimal computing

budget allocation (MOCBA) [31, 32], which proposes a computing allocation pro-

cedure for MOR&S under the assumption of normally distributed outputs and in-

dependent objectives; optimal sampling laws proposed by [33] that allocates sam-

pling budget accounting for dependence between the objective vector estimates for

a single system in the context of bi-objective; myopic strategy, M-MOBA [34, 35],

that targets to minimize the difference in hyper-volume between the observed

means of the perceived Pareto front and the Oracle Pareto front; SCORE for multi-

objective Ranking and Selection proposed in [36,37] that allocates simulation bud-
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get among suboptimal systems according to their corresponding squared stan-

dardized optimality gaps.

As to the researches on the fixed-precision procedures, Batur and Choobineh

[38] present a fixed-precision procedure designed for bi-objective R&S where the

objectives are the mean and variance of the system performances. [39] provides

three general fixed-precision MOR&S procedures based on an indifference-zone

formulation, where the indifference zone on one objective is the smallest difference

in system performances that a decision-maker cares to detect. Interesting readers

may refer to [40] for an overview of the existing MOR&S literature.

Same as other researches on multi-objective optimization, we consider the ”best”

systems characterized by the Pareto front. Loosely speaking, systems within the

Pareto front are better than any other systems in at least one objective. In the

context of multi-objectives, there might be more than one ”best” systems since

comparisons can be made along many objectives. In this thesis, we aim to design

procedures that achieve a target PCS, namely, the probability of correctly selecting

the exact Pareto front.

Procedures that control PCS for the single-objective R&S problems are well-

studied, i.e., KN procedure [13], KN++ procedure [14], BIZ procedure [16], and

IZ-free procedure [17, 18]. These procedures and many others conduct pairwise-

comparison between a system and the perceived best system in order to test whether

a system is inferior. This strategy fails in the context of multi-objective since there

may be more than one best system in the Pareto front.

To attain a target PCS for MOR&S problems, we directly test whether a system

is in the Pareto front or not. We call such a test the candidacy test and group the

candidacy tests together to form our procedures. For a candidacy test, we approach it

using the generalized sequential probability ratio test (GSPRT) procedure [27, 41].

In essence, the GSPRT procedure conducts sequential sampling, and calculates the

generalized likelihood ratio (GLR) statistics. Moreover, it constructs the threshold

on the GLR statistics in order to control the level of error probabilities. For imple-
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mentation, we give the closed-form solution of the GLR statistic under normality

assumption. The proposed procedures have the following properties,

1. An indifference-zone-free formulation. The new formulation eliminates the

necessity of specifying the indifference-zone parameter.

2. A GLR-based procedure for MOR&S problems. We propose to test directly

on whether an alternative is the best, i.e., in the Pareto front. We call such a

test the candidacy test and approach it using the generalized sequential prob-

ability ratio test (GSPRT).

The rest of this chapter is organized as follows. In Section 3.2, we introduce the

problem statement on a Multi-Objective Ranking and Selection Problem under the

normality assumption. Section 3.3 presents the algorithms and properties of the

proposed procedures. Section 3.4 gives numerical evaluations.

3.2 The Problem Statement

Multi-Objective Ranking and Selection (MOR&S) problems are the natural ex-

tensions of single-objective Ranking and Selection problems. In this section, we

consider a MOR&S problem with K independent candidate systems. Let Ω =

{1, ..., K} be the set of all candidate systems. In the context of multi-objective,

each system can be measured in D objectives. Let us denote the vector of the

true objectives of the system i as µ?
i = [µ?

i1, µ?
i2, ..., µ?

iD]
′, where µ?

i is an unknown

vector. We assume that only samples from normally distributed random vector

Xi,n ∼ N(µ?
i , Σi) are available. In this section, we assume that the covariance ma-

trix, {Σi, i = 1, ..., K}, is known beforehand. We denote fi(·|µi) as the density

function of the system i with respect to the parameter µi.

For the sake of brevity, let us denote θ? = [µ?
1 , ..., µ?

K] as the matrix of true mean

vectors across all systems. Assume Θ is the parameter space of all possible con-

figurations of θ?, i.e., θ? ∈ Θ ⊂ RD×K. Throughout the paper, we use notations
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with superscript ? to denote the true parameters, i.e., µ?
i , and notations without

superscript to denote the dummy parameters and decision variables, i.e., µi.

The R&S problems are to identify the ”best” system(s). In the context of multi-

objective, we consider the ”best” systems as the systems that are not-dominated by

any others.

Definition 3.2.1 The system i is dominated by the system j, denoted by µ?
i � µ?

j , if

µ?
id ≤ µ?

jd for all objectives d = 1, 2, ..., D.

The system i is not dominated by the system j, denoted by µ?
i � µ?

j , if µ?
id > µ?

jd for

at least one objective.

The system i is Pareto optimal if it is not dominated by all other systems; and the

set of all Pareto optimal system is called the Pareto front. Denote the Pareto front as

Sp f , {i|∀j ∈ Ω, µ?
i � µ?

j } and the non-Pareto-front as Snp f , {i|∃j ∈ Ω, µ?
i � µ?

j }.

Remark 3.2.1 In the context of multi-objective optimization, the definition of dominated

above is also called the weakly dominated, as opposed to the concept of strongly dominated

that requires µ?
id < µ?

jd for all objectives. This distinction, in stochastic optimization, how-

ever, is impractical as a sharp distinction is not possible due to sampling error. Therefore,

we do not distinguish these two concepts.

The objective of the proposed procedure is to correctly identify the Pareto front,

Sp f with a guaranteed probability of correct selection. Let us denote Sep f as the em-

pirical Pareto front selected by the procedure; then, PCS can be put as PCS =

P(Sep f = Sp f ) ≥ 1− α, where α is the pre-specified error probability.

To deliver the PCS guarantee, we introduce the following two types of hypoth-

esis tests, namely, pairwise test and candidacy test.

Definition 3.2.2 The pairwise test between the system i and the system j determines

whether the system i is dominated by the system j.

H0 : µ?
i � µ?

j and H1 : µ?
i � µ?

j (3.1)



65

The candidacy test of the system i determines whether the system i is in the Pareto

front or not.

H0 : i /∈ Sp f and H1 : i ∈ Sp f (3.2)

The pairwise test defined above differs from pairwise comparison in single-

objective R&S procedures (i.e. KN, KN++, and IZ-free) in two aspects. First, those

procedures only compare the system with the practical best system; whereas the

pairwise test in our procedure considers comparisons between all pairs of systems.

Second, pairwise comparisons in those procedures are reflexive: µ?
i > µ?

j is equiv-

alent to µ?
j < µ?

i ; whereas µ?
i � µ?

j doesn’t imply µ?
j � µ?

i in our procedures.

Throughout this section, we assume the following conditions hold:

C1 Systems have different mean values, i.e., µ?
i,d 6= µ?

j,d for i 6= j;

C2 Observations of systems are independent with each other, i.e., {Xi,n} and {Xj,n}

are independent for all i 6= j;

C3 The parameter space Θ is compact;

C4 fi(·|µi) is the Normal density function with µi as the mean vector;

C5 ρi(µi, µ′i) > 0 for all µi 6= µ′i, where ρi(µi, µ′i) is the Kullback-Leibler divergence

from f (·|µi) to f (·|µ′i):

ρi(µi, µ′i) = E fi(·|µi)
{log fi(X|µi)− log fi(X|µ′i)} (3.3)

where E fi(·|µi)
represents taking the expectation with respect to fi(·|µi);

C6 ∑∞
m=1 E fi(·|µi)

[ρi(µi, µ̂i,m)] < ∞ where µ̂i,m is the MLE estimator of µi based on

the first m observations of the system i.

For the sake of simplicity, we denote the Kullback-Leibler divergence from θ =

[µ1, ..., µK] to θ′ = [µ′1, ..., µ′K] as

ρ(θ, θ′) = E f (·|θ)[
K

∑
i=1

log
fi(Xi|µi)

fi(Xi|µ′i)
] (3.4)
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where E f (·|θ) represents taking the expectation with respect to f (·|θ) , ∏K
i=1 fi(Xi|µi).

Under the Conditions C2, C5, and C6, it is easy to verify that ρ(θ, θ′) > 0 and

∑∞
m=1 E f (·|θ)[ρ(θ, θ̂m)] < ∞, where θ̂m is the MLE of θ using the first m observa-

tions of all systems.

Condition C1 is set to avoid the situations when two or more systems tie with

each other. Condition C2 requires no dependencies among alternatives so that the

early eliminations of inferior systems do not compromise the validity of the pro-

posed procedure. It may be replaced by the less-restricted conditional-independent

condition to allow the usage of the common random number. Condition C3 and

C4 assume that the observations are from multivariate normal densities and the

parameter space of the joint density function is compact. Condition C5 ensures

the validity of the likelihood ratio method. Note that Condition C5 can be easily

deducted from Conditions C3 and C4. Condition C6 states that the MLE µ̂m con-

verges to the true parameter µ fast enough so that, for a sufficient large enough

n, ρ(µ, µ̂n) ≈ 0. It is worth noting that Conditions C5 and C6 are automati-

cally fulfilled by many distributions, i.e., Gaussian, Poisson, Bernoulli, etc, where

ρ(µ, µ̂m) ≤ C|µ− µ̂m|2 [29].

3.3 The Procedures

In this section, we propose three procedures for Multi-Objective R&S problems

and provide theoretical results that the first two procedures attain the target PCS

asymptotically.

3.3.1 Procedure 3

Procedure 3 is illustrated in Algorithm 3. Over the course of Procedure 3, it

records three set of systems: (1) the undetermined pool, Spool,n, that contains systems

have not been determined as either Pareto optimal or non-Pareto optimal ; (2) the

empirical Pareto front, Sep f ,n, that contains systems are identified as Pareto optimal;
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and (3) the empirical non-Pareto front, Senp f ,n. Procedure 3 starts with considering all

systems are within the undetermined set Spool,n. It sequentially eliminates systems

from Spool,n and puts them into either Sep f ,n or Senp f ,n. When terminates, systems

within the empirical Pareto front are returned as the ”best” system.

Note that the mis-classification may happen since Procedure 3 is stochastic. To

control the probability of the mis-classification at the level of α = 1 − PCS, the

procedure applies the generalized sequential probability test (GSPRT) and uses

the generalized likelihood ratio (GLR) as the testing statistic. This test requires two

testing boundaries: the elimination boundary at A = α
K and the acceptance boundary at

B = K
α . As the name suggests, systems with the GLR statistics above the acceptance

boundary are accepted as Pareto optimal; whereas systems with the GLR statistics

below the elimination boundary are considered as non-Pareto optimal.

The procedure is an iterative method. In the nth iteration, the procedure sam-

ples each system in Ω. Given the previous samples as well as the newly obtained

samples, the procedure calculates the GLR statistics for systems remained in Spool,n

and compares them against the testing boundaries. The procedure sequentially

eliminates systems from Spool,n by comparing their corresponding GLR statistics

with the testing boundaries. It terminates when there is no system left in Spool,n.

When terminates, those systems with the GLR statistics that are above the accep-

tance boundary are identified as the Pareto front; whereas other systems are the

non-Pareto front.

Figure 3.1 illustrates the behavior of the proposed procedure. In Figure 3.1, we

consider an example with K = 10 systems. In this example, the observations of the

alternative i are from a normal distribution N(µi,

4, 0

0, 4

). The configurations of

{µi} are plotted in the upper left of Figure 3.1. The Pareto front contains system 3,

9, and 10. In Figure 3.1, initially, the undetermined set Spool,1 contains all alterna-

tives. At each iteration, the procedure requests one more sample for each system

in the set Ω and calculate the GLR statistics. The procedure sequentially elim-
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Algorithm 3 Procedure 3 for Multi-Objective Ranking and Selection
Inputs:

1: PCS = 1− α . Desired PCS level

2: Ω = {1, ..., K} . Pool of candidate systems

3: fi(X|µi) . Density functions under µi

Procedure:

1: set n = n0;

2: set A = α
K and B = K

α ; . A and B are the GSPRT test boundaries

3: set Spool,n+1 = Ω, Senp f ,n+1 = ∅ and Sep f ,n+1 = Ω;

4: generate n0 samples for each system in Ω;

5: repeat

6: set n = n + 1;

7: generate 1 more sample for each system in Ω;

8: set Spool,n+1 = Spool,n, Sep f ,n+1 = Sep f ,n, Senp f ,n+1 = Senp f ,n;

9: for i ∈ Spool,n+1 do

10: calculate the GLR statistic Λ(3)
i,·,n;

11: if Λ(3)
i,·,n < A then

12: set Spool,n+1 = Spool,n+1/{i}, Senp f ,n+1 = Senp f ,n+1 ∪ {i}, and

Sep f ,n+1 = Sep f ,n+1/{i};

13: end if

14: if Λ(3)
i,·,n > B then

15: set Spool,n+1 = Spool,n+1/{i};

16: end if

17: end for

18: until |Spool,n+1| = 0 or |Sep f ,n+1| = 1

19: return Sep f = Sep f ,n+1

inates the inferior candidates when their corresponding GLR numbers cross the

elimination boundary. For instance, in the plot, the system 6 is eliminated since at
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n = 2 when it hits the elimination boundary. The procedure keeps sampling all

the systems and calculating the GLR numbers until the termination criteria is met.

Figure 3.1.: Illustration of the proposed procedures with K = 10 systems. The log

of the acceptance boundary is at log 10/α, and the log of the elimination bound-

ary is at log α/10. The procedure follows the log of the GLR statistic log Λ(4)
i,n

and screens out alternatives when their GLR numbers hit the elimination bound-

ary. The procedure terminates when the corresponding GLR statistics are either

above the acceptance boundary or below the elimination boundary. Those sys-

tems with the GLR statistics that are above the acceptance boundary are accepted

as the Pareto front.
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The GLR statistic used in Procedure 3, Λ(3)
i,·,n , is defined upon the GLR statistic

of the pairwise tests. Recall that the pairwise test between the system i and the

system j determines whether the system i is dominated by the system j or not, i.e.,

H0 : µ?
i � µ?

j and H1 : µ?
i � µ?

j

Let Λ(3)
i,j,n be the GLR statistic of the pairwise test between the system i and the

system j:

Λ(3)
i,j,n =

supθ∈{θ|µi�µj} Ln(θ)

supθ∈{θ|µi�µj} Ln(θ)
(3.5)

where θ = [µ1, ..., µK] are the decision variables, {θ|µi � µj} corresponds to the

feasible set of θ that the system i is not dominated by the system j, {θ|µi � µj} the

set of θ that the system i is dominated by the system j, and Ln(θ) is the likelihood

functions of all observations up to the nth iterations under the parameter θ.

Ln(θ) = Ln(θ|all observations up to the nth round) (3.6)

=
n

∏
m=1

∏
j∈Ω

f j(Xj,m|µj) (3.7)

The GLR statistic used in Procedure 3 is defined as

Λ(3)
i,·,n , min

j 6=i
Λ(3)

i,j,n (3.8)

The procedure uses Λ(3)
i,·,n to test whether the system i is in Pareto front or not.

Intuitively, Λ(3)
i,j,n measures how likely that the system i is not dominated by the

system j. The higher the Λ(3)
i,j,n, the more likely that the system i is not dominated by

the system j. Since the scenario that the system i is in Pareto front implies that the

system i is not dominated by any other systems. In other words, we are confident

that the system i is in Pareto front if all of the pairwise tests between the system i

and other systems are in favor of the decision that the system i is not dominated.

Under this intuition, we are motivated to use the Λ(3)
i,·,n as the GLR statistic. Section

3.3.5 provides a rigorous proof on Λ(3)
i,·,n as a valid testing statistic.
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3.3.2 Procedure 4

Procedure 4 is introduced to analyze the validity of Procedure 3. It is exactly

the same as Procedure 3 except with the different GLR statistics. In this procedure,

the GLR statistic is defined as

Λ(4)
i,n =

supθ∈{θ|µi�µj,∀j 6=i} Ln(θ)

supθ∈{θ|µi�µj,∃j 6=i} Ln(θ)
(3.9)

where θ = [µ1, ..., µK] are the decision variables.

The numerator of Λ(4)
i,n is the maximized likelihood that any other systems

within Sep f ,n do not dominate the system i; the denominator is the maximized

likelihood that the system i is dominated by at least one system within Ω.

The closed-form expression of Λ(4)
i,n is difficult, if still possible, to obtain since

the optimization problem is constrained by all possible scenarios that the system

i is (not-)dominated by another system. However, it is of theoretical importance

as it bounded the GLR statistic Λ(3)
i,·,n so that the error rates in Procedure 3 can be

analyzed.

The following theorem states the relation between Λ(4)
i,n and Λ(3)

i,·,n.

Theorem 3.3.1 Under the Conditions C1 to C6, and the definitions of Λ(4)
i,n as in 3.9 and

Λ(3)
i,·,n as in 3.8, we have

1. Λ(3)
i,·,n > 1 if Λ(4)

i,n > 1

2. Λ(3)
i,·,n < 1 if Λ(4)

i,n < 1,

3. and | log Λ(4)
i,n | ≥ | log Λ(3)

i,·,n|.

Remark 3.3.1 Λ(3)
i,·,n > 1 if Λ(4)

i,n > 1 and Λ(3)
i,·,n < 1 if Λ(4)

i,n < 1 means that Λ(4)
i,n and

Λ(3)
i,·,n are in favor of the same decision. | log Λ(4)

i,n | ≥ | log Λ(3)
i,·,n| indicates Λ(4)

i,n overshoots

the decision boundaries (the elimination boundary and the acceptance boundary) when
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Algorithm 4 Procedure 4 for Multi-Objective Ranking and Selection
Inputs:

1: PCS = 1− α . Desired PCS level

2: Ω = {1, ..., K} . Pool of candidate systems

3: fi(X|µi) . Density functions under µi

Procedure:

1: set n = n0;

2: set A = α
K and B = K

α ; . A and B are the GSPRT test boundaries

3: set Spool,n+1 = Ω, Senp f ,n+1 = ∅ and Sep f ,n+1 = ∅;

4: generate n0 samples for each system in Ω;

5: repeat

6: set n = n + 1;

7: generate 1 more sample for each system in Ω;

8: set Spool,n+1 = Spool,n, Sep f ,n+1 = Sep f ,n, Senp f ,n+1 = Senp f ,n;

9: for i ∈ Spool,n+1 do

10: calculate the GLR statistic Λ(4)
i,n ;

11: if Λ(4)
i,n < A then

12: set Spool,n+1 = Spool,n+1/{i}, Senp f ,n+1 = Senp f ,n+1 ∪ {i}, and

Sep f ,n+1 = Sep f ,n+1/{i};

13: end if

14: if Λ(4)
i,n > B then

15: set Spool,n+1 = Spool,n+1/{i};

16: end if

17: end for

18: until |Spool,n+1| = 0 or |Sep f ,n+1| = 1

19: return Spool = Sep f ,n+1

Λ(3)
i,·,n crosses the boundaries. Therefore, Λ(3)

i,·,n is a less powerful GLR statistic than Λ(4)
i,n .

Thus,

Pθ(Λ
(3)
i,·,τ ≤ B) ≤ Pθ(Λ

(4)
i,τ ≤ B) if B > 1 (3.10)

Pθ(Λ
(3)
i,·,τ ≥ A) ≤ Pθ(Λ

(4)
i,τ ≥ A) if A < 1 (3.11)
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for any θ.

3.3.3 Procedure 5: a heuristic procedure

We propose Procedure 5 as a modified version of Procedure 3. In Procedure 3,

all systems are sampled in each iteration; even for systems that are already classi-

fied as non-Pareto optimal; whereas procedure 5 stops sampling systems when they

are identified as non-Pareto optimal. An intuitive justification for such a modifi-

cation is that a system is Pareto optimal if and only if it is not dominated by any

other Pareto optimal systems, and non-Pareto optimal systems are not necessary to

identify other non-Pareto optimal systems.

Procedure 5 differs from Procedure 3 in two places. Firstly, Procedure 5 samples

only system within Sep f ,n+1 and Spool,n+1 in the nth iteration; secondly, the GLR

statistic in Procedure 5 is Λ(5)
i,·,n, which is defined as

Λ(5)
i,·,n , min

j 6=i,j∈Sep f ,n+1∪Spool,n+1
Λ(3)

i,j,n (3.12)

Remark 3.3.2 For the deterministic multi-objective optimization problem, it is solid that

the identified non-Pareto optimal systems are unnecessary for identifying other non-Pareto

optimal systems. However, given the stochastic nature of MOR&S problem, the probability

that we mis-classify the Pareto optimal system as non-Pareto optimal system is nonzero.

And the events of mis-classifications, together, form the error probability of the entire pro-

cedure. To analyze the error probability of the proposed procedures, we desire the events

of mis-classifications are independent. This property, however, does not stand if the future

tests are dependent on the previous decisions. ( Λ(5)
i,·,n in Procedure 5 depends on Sep f ,n+1,

Senp f ,n+1, Spool,n+1).

The behavior of the proposed procedure is illustrated in Figure 3.2. We use the

same example as in Figure 3.1. We consider a bi-objective ranking and selection

problem with K = 10 systems. Samples of the system i are from a normal distribu-
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Algorithm 5 Procedure 5 for Multi-Objective Ranking and Selection
Inputs:

1: PCS = 1− α . Desired PCS level

2: Ω = {1, ..., K} . Pool of candidate systems

3: fi(X|µi) . Density functions under µi

Procedure:

1: set n = n0;

2: set A = α
K and B = K

α ; . A and B are the GSPRT test boundaries

3: set Spool,n+1 = Ω, Senp f ,n+1 = ∅ and Sep f ,n+1 = Ω;

4: generate n0 samples for each system in Ω;

5: repeat

6: set n = n + 1;

7: generate 1 more sample for each system in Spool,n+1 or Sep f ,n;

8: set Spool,n+1 = Spool,n, Sep f ,n+1 = Sep f ,n, Senp f ,n+1 = Senp f ,n;

9: for i ∈ Spool,n+1 do

10: calculate the GLR statistic Λ(5)
i,·,n;

11: if Λ(5)
i,·,n < A then

12: set Spool,n+1 = Spool,n+1/{i}, Senp f ,n+1 = Senp f ,n+1 ∪ {i}, and

Sep f ,n+1 = Sep f ,n+1/{i};

13: end if

14: if Λ(5)
i,·,n > B then

15: set Spool,n+1 = Spool,n+1/{i};

16: end if

17: end for

18: until |Spool,n+1| = 0 or |Sep f ,n+1| = 1

19: return Sep f = Sep f ,n+1

tion N(µi,

4, 0

0, 4

). The configurations of µi are plotted in the upper left of Figure
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3.2. The Pareto front contains system 3, 9, and 10. In the beginning, the undeter-

mined set Spool,0 contains all alternatives. At each iteration, the procedure requests

one more sample for each system in the set Spool,n and Sep f ,n, and calculates and

plots the GLR numbers. The inferior candidates are sequentially eliminated when

their corresponding GLR numbers cross the elimination boundary. The procedure

keeps sampling the remaining systems and calculating the GLR numbers until no

system is left in Spool,n.

The differences between Figure 3.1 and Figure 3.2 are remarkable. First, Pro-

cedure 5 uses much less number of samples since inferior systems are stopped

sampling as soon as they touch the elimination boundary; second, Procedure 5 ter-

minates earlier than Procedure 3. This relates to the choice of the GLR statistics:

Λ(3)
i,·,n is more conservative than Λ(5)

i,·,n as Λ(3)
i,·,n considers all systems, whereas Λ(5)

i,·,n

only considers a subset of systems.

3.3.4 The Implementation

In this subsection, we implement Λ(3)
i,j,n under the assumption that observations

are from multi-normal distribution with known variance.

Let us denote {Xi,1, ..., Xi,n} as the i.i.d. random observations obtained from the

alternative i. Assume {Xi,n} are from multivariate normal distribution N(µ?
i , Σi),

where µ?
i is the unknown mean and Σi is the known covariance matrix. The direct

approach to calculate Λ(3)
i,j,n is to consider θ as the decision variable in the following

formula

Λ(3)
i,j,n =

supθ∈{θ|µi�µj} Ln(θ)

supθ∈{θ|µi�µj} Ln(θ)
(3.13)

where Ln(θ) is the likelihood function under θ,

Ln(θ) =
n

∏
m=1

∏
l∈Ω

fl(Xl,m|µl) (3.14)
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Figure 3.2.: Illustration of the proposed procedures with K = 10 alternatives. The

log of the acceptance boundary is at log 10/α and the log of the elimination bound-

ary is at log α/10 . The procedure follows the log of the GLR statistic log Λi
n and

screens out alternatives when their GLR numbers hit the elimination boundary.

The procedure terminates when there is no system left between the acceptance

boundary and elimination boundary. The systems that are above the acceptance

boundary are reported as the Pareto front.

Given the fact that the feasible regions, {θ|µi � µj} and {θ|µi � µj}, only

restrict µi and µj, it is easy to verify that

Λ(3)
i,j,n =

sup[µi,µj]∈{µi�µj}∏n
m=1 fi(Xi,m|µi) f j(Xj,m|µj)

sup[µi,µj]∈{µi�µj}∏n
m=1 fi(Xi,m|µi) f j(Xj,m|µj)

(3.15)

=
sup[µi,µj]∈{µi�µj}∏n

m=1 exp{− (Xi,m−µi)
′Σ−1

i (Xi,m−µi)
2 −

(Xj,m−µj)
′Σ−1

j (Xj,m−µj)

2 }

sup[µi,µj]∈{µi�µj}∏n
m=1 exp{− (Xi,m−µi)′Σ

−1
i (Xi,m−µi)
2 −

(Xj,m−µj)′Σ
−1
j (Xj,m−µj)

2 }

(3.16)
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Λ(3)
i,j,n, in Equation 3.16, is solvable since the density kernel is convex. How-

ever, in general cases, it is still difficult to find the analytical solution. To speed up

the calculation, we are motivated to find an approximated solution. Let us denote

Zij,m = Xi,m − Xj,m as the differences between {Xi,m} and {Xj,m}. Since {Xi,m, m =

1, ..., n} and {Xj,m, m = 1, ..., n} are normally distributed, it is evident that {Zij,m}

are also of Normal distribution, i.e, Zij,m ∼ N(µ?
ij , µ?

i − µ?
j , Σij , Σi + Σj). More-

over, let us denote fij(Z|µij) as the density function of Zij under the parameter µij.

The intuition behind this approximation is that, the test using {Xi,m} and {Xj,m},

H0 : µ?
i � µ?

j and H1 : µ?
i � µ?

j (3.17)

is equivalent to the test using {Zij,m}

H0 : µ?
ij � 0 and H1 : µ?

ij � 0 (3.18)

Thus, we approximate Λ(3)
i,j,n by calculating the likelihood of {Zij,m}, instead of

the likelihood of {Xi,m} and {Xj,m}.

Λ(3)
i,j,n ≈

supµij∈{µij�0}∏n
m=1 fij(Zij,m|µij)

supµij∈{µij�0}∏n
m=1 fij(Zij,m|µij)

(3.19)

=
supµij∈{µij�0}∏n

m=1 exp{−
(Zij,m−µij)

′Σ−1
ij (Zij,m−µij)

2 }

supµij∈{µij�0}∏n
m=1 exp{−

(Zij,m−µij)′Σ
−1
ij (Zij,m−µij)

2 }
(3.20)

The approximation reduces the number of decision variables and thus signifi-

cantly saves the computation.

3.3.5 The Validity of Procedure 3 and 4

In this section, we show that the proposed procedure is asymptotically valid to

deliver the PCS guarantee. This section contains two parts. In the first part, we

present asymptotic error probabilities of the GSPRT method. In the second part,

we show the asymptotic validities for the proposed procedures.
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The Asymptotic Error Probabilities of GSPRT

Let us denote Θ as the parameter space of the decision variable θ and consider

a composite hypothesis test of the form

H0 : θ? ∈ Θ0 and H1 : θ? ∈ Θ1 (3.21)

where Θ0 and Θ1 are compact and disjoint subsets of Θ.

For such a test, the corresponding generalized likelihood ratio (GLR) statistics

is defined as,

Λn =
supθ∈Θ1

Ln(θ)

supθ∈Θ0
Ln(θ)

(3.22)

where Ln(θ) is the likelihood function with observations collected up to the nth

iteration.

Essentially, the GLR statistic ”self-tunes” to information about the true parame-

ter, θ?, over the course of the test. To determine whether the null hypothesis or the

alternative hypothesis is supported, the GSPRT stops sampling after the nth obser-

vations if the GLR crosses one of the two boundaries B or A. The null hypothesis

is rejected if Λn ≥ B and is accepted if Λn ≤ A. For a given pair of A and B, denote

the stopping time as

τ = inf{n : Λn ≥ B or Λn ≤ A} (3.23)

The error probabilities at the stopping time τ is asymptotically approximated in

the following theorem.

Theorem 3.3.2 Under the Conditions C1-C6, consider the composite null hypothesis against

composite alternative hypothesis given as in (3.21). Let τ be the first time that the GLR

statistic crosses one of the boundaries, A and B with A < 1 < B, i.e.,

τ = inf{n : Λn ≥ B or Λn ≤ A} (3.24)
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The maximal error probability admits following approximations

sup
θ∈Θ1

Pθ(Λτ ≤ B) ∼= B−1 (3.25)

sup
θ∈Θ0

Pθ(Λτ ≥ A) ∼= A (3.26)

as A→ 0 and B→ ∞, where Pθ represents the probability measure for a given θ.

Proof The result can be easily verified using Theorem 2.1 in [27] which presents

this result under a set of less restricted conditions. Similar results can also be found

in [42] and [29].

Remark 3.3.3 supθ∈Θ0
Pθ(Λτ ≥ A) ∼= A is equivalent to limA→0

supθ∈Θ0
Pθ(Λτ≥A)

A =

1.

Remark 3.3.4 In the classic SPRT method, the thresholds A = α2
1−α1

and B = 1−α2
α1

,

where α1 and α2 are the pre-specified type I and type II error probabilities, have the same

decay rate as in 3.25.

The Asymptotic Validity

With above theorems, we are ready to present the statistical validity of Proce-

dure 3. Please refer to the appendix for the proof of the following theorem.

Theorem 3.3.3 Under the Conditions C1 to C6, Procedure 3 terminates in finite time with

probability 1 and selects the Pareto front with probability at least 1− α in asymptotically

sense, i.e.,

lim sup
α→0+

1− P(CS)
α

≥ 1 (3.27)

The above theorem states that Procedure 3 selects the entire Pareto front at the

termination with a statistical guarantee. Nonetheless, if the procedure stops before

the termination criteria, the candidate pool Sep f ,n contains the Pareto front with a

guaranteed probability. The result is stated as the following Theorem.
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Theorem 3.3.4 Under the Conditions C1 to C6, if Procedure 3 is stopped at iteration

n before termination, then the candidate set Sep f ,n+1 contains the Pareto front Sp f with

probability at least 1− α, in asymptotically sense, i.e.,

lim sup
α→0+

1− P(Sp f ∈ Sep f ,n+1)

α
≥ 1 (3.28)

3.4 Simulation Studies

In this section, we conduct numerical experiments to test the performance of

the proposed procedures.

3.4.1 Study 1: MOR&S under different number of objectives

The first numerical study considers MOR&S problems with 20 or 50 systems

and 2 to 5 objectives. The configurations of true mean vectors Θ? are randomly

generated and reported in Appendix. We use the independent and identical vari-

ance configuration Σ = IK. We apply Procedure 3 and Procedure 5 ,and conduct

1,000 macroreplications for each scenario. The estimated PCS and average sample

size are reported in Table 3.1.

Table 3.1.: Procedure 3 for MOR&S to select the Pareto front with the target PCS =

0.95. (In each cell, the first line is the estimated PCS, the second line is the average

sample size with 95% confidence interval over 1,000 macroreplications.)

K
Sequential Procedure (Σ = IK)

D = 2 D = 3 D = 4 D = 5

20
1.000 1.000 1.000 1.000

547.0± 5.7 643.8± 8.3 865.2± 9.3 1075.4± 10.5

50
1.000 0.999 1.000 1.000

1064.3± 12.5 1456.2± 20.4 2532.5± 35.1 3139.2± 41.1
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Table 3.2.: Procedure 5 for MOR&S to select the Pareto front with PCS = 0.95

and three variance structures. (In each cell, the first line is the estimated PCS,

the second line is the average sample size with 95% confidence interval over 1,000

macroreplications.)

K
Sequential Procedure (Σ = IK)

D = 2 D = 3 D = 4 D = 5

20
1.000 0.994 1.000 0.996

266.0± 4.0 376.8± 4.6 478.4± 6.4 494.4± 8.0

50
1.000 0.996 0.999 1.000

636.6± 6.4 1061.5± 12.4 1812.3± 23.6 1939.2± 30.9
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3.4.2 Study 2: MOR&S with various covariance configuration

We consider bi-objective R&S problems with 20, 50, 100 candidates. True means

are generated randomly and depicted in Figure 3.3. We consider three variance

configurations: (1) Independent, Σ1 =

4 0

0 4

, (2) Positive-Correlated, Σ2 =

4 1

1 4

,

(3) Negative-Correlated, Σ3 =

 4 −1

−1 4

. We conduct 1,000 independent macrorepli-

cations for each scenario and report the estimated PCS and the average sample size

in Table 3.3. The results indicate the proposed procedure is valid for various types

of covariance structure.

Table 3.3.: Procedure 5 for Bi-Objective R&S to select the Pareto front from K nor-

mal variables with PCS = 0.95 and three variance structures. (In each cell, the

first line is the estimated PCS, the second line is the average sample size with 95%

confidence interval over 1,000 macroreplications.)

K
Sequential Procedure (D = 2)

Σ1 =

4 0

0 4

 Σ2 =

4 1

1 4

 Σ3 =

 4 −1

−1 4


20

1.000 1.000 1.000

283.3± 3.6 381.5± 6.1 397.9± 5.9

50
1.000 1.000 1.000

368.7± 2.7 422.6± 3.9 423.6± 4.5

100
1.000 0.999 1.000

816.6± 4.6 998.8± 8.2 993.5± 7.9

These two studies test the validity of the proposed procedure from two impor-

tant aspects: (1) covariance structure, (2) number of objectives. From the above re-

sults, we have two interesting findings. Firstly, the independent covariance struc-
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ture uses the fewer samples than the dependent covariance structure (Note that the

proposed procedure does not assume a particular covariance structure). It makes

sense since dependent samples provide redundant due to correlation and thus, to

achieve the same amount of information, the procedure needs less independent

samples. Secondly, the sample size increases as the number of objectives increases.

3.5 Conclusion

In this chapter, we propose three sequential testing procedures for MOR&S

with a guaranteed PCS. The new procedures are adapted from the Generalized

Sequential Probability Ratio tests and solve the multiple-testing problem using

Bonferroni Correction over the number of systems. It is worth noting that the

procedures disregard the number of objectives and achieves the same level of effi-

ciency as the KN family procedures.

3.6 Appendix: Technical Proofs

3.6.1 Proof of Theorem 3.3.1

Proof Recall that

Λ(4)
i,n =

supθ∈{θ|µi�µj,∀j 6=i} Ln(θ)

supθ∈{θ|µi�µj,∃j 6=i} Ln(θ)

Λ(3)
i,·,n = min

j 6=i
Λ(3)

i,j,n = min
j 6=i

supθ∈{θ|µi�µj} Ln(θ)

supθ∈{θ|µi�µj} Ln(θ)

where θ is the matrix of decision variables.

Let us denote θ̂n = [µ̂1,n, ..., µ̂K,n] as the MLE of θ at the nth iteration. Clearly,

θ̂n maximize Ln(θ).

To prove the theorem, we consider two scenarios:

Scenario 1: µ̂i,n � µ̂l,n for all l 6= i.

This scenario implies that the empirical evaluations of all systems left in Sep f ,n

show that any other systems do not dominate system i.
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Under this scenario, it is easy to verify that

sup
θ∈{θ|µi�µj,∀j 6=i}

Ln(θ) = Ln(θ̂n) (3.29)

since θ̂n ∈ {θ|µi � µj, ∀j 6= i} and θ̂n maximizes the Ln(θ).

Similarly, for the numerator in Λ(3)
i,·,n, we also have, for any j,

sup
θ∈{θ|µi�µj}

Ln(θ) = Ln(θ̂n) (3.30)

The denominator in Λ(4)
i,n can be written as

sup
θ∈{θ|µi�µj,∃j 6=i}

Ln(θ) = max
j 6=i

sup
θ∈{θ|µi�µj}

L(θ) (3.31)

Note that the RHS is equal to the denominator in Λ(3)
i,·,n.

Put these together, we have

Λ(3)
i,·,n = min

j 6=i

supθ∈{θ|µi�µj} Ln(θ)

supθ∈{θ|µi�µj} Ln(θ)
(3.32)

= min
j 6=i

Ln(θ̂n)

supθ∈{θ|µi�µj} Ln(θ)
(3.33)

=
Ln(θ̂n)

supθ∈{θ|µi�µj,∃j 6=i} Ln(θ)
= Λ(4)

i,n (3.34)

Moreover, Λ(4)
i,n ≥ 1 since Ln(θ̂n) > L(θ) for all θ 6= θ̂n.

Scenario 2: ∃l 6= i such that µ̂i,n � µ̂l,n

This scenario represents that the empirical evaluations show that system i is

dominated by some systems within the set Ω.

The numerator of Λ(4)
i,n can be written as

sup
θ∈{θ|µi�µj,∀j 6=i}

Ln(θ) ≤ sup
θ∈{θ|µi�µj}

Ln(θ), ∀j 6= i (3.35)

the above inequality holds for any j 6= i. Therefore,

sup
θ∈{θ|µi�µj,∀j 6=i}

Ln(θ) ≤ min
j 6=i

sup
θ∈{θ|µi�µj}

Ln(θ) (3.36)
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As to the denominator, we have

sup
θ∈{θ|µi�µj,∃j 6=i}

Ln(θ) = max
j 6=i

sup
θ∈{θ|µi�µj}

L(θ) (3.37)

Thus,

Λ(3)
i,·,n = min

j 6=i

supθ∈{θ|µi�µj} Ln(θ)

supθ∈{θ|µi�µj} Ln(θ)
(3.38)

≥
minj 6=i supθ∈{θ|µi�µj} Ln(θ)

maxj 6=i supθ∈{θ|µi�µj} Ln(θ)
(3.39)

≥
supθ∈{θ|µi�µj,∀j 6=i} Ln(θ)

supθ∈{θ|µi�µj,∃j 6=i} Ln(θ)
= Λ(4)

i,n (3.40)

Moreover, under the scenario that there exists a system l such that µ̂i,n � µ̂l,n,

Λ(3)
i,l,n < 1. We have, Λ(3)

i,·,n = minj∈Sep f ,n Λ(3)
i,j,n ≤ Λ(3)

i,l,n < 1.

To sum it up, in Scenario 1, Λ(4)
i,n = Λ(3)

i,·,n > 1; in Scenario 2, 0 < Λ(4)
i,n ≤ Λ(3)

i,·,n <

1. In conclusion, we have | log Λ(4)
i,n | ≥ | log Λ(3)

i,·,n|.

3.6.2 Proof of Theorem 3.3.3

Proof There are two parts of the theorem. The first part is that the procedure

terminates in finite time; the second part is that it is asymptotically valid to deliver

the PCS guarantee.

Part 1: the procedure terminates in finite time w.p.1

To begin with, we show that the procedure terminates in finite time with prob-

ability 1. The proposed procedure sequentially removes systems from the set

Spool,n+1. Let us denote τi = min{n|Λ(3)
i,·,n > B or Λ(3)

i,·,n < A} with A = α
K and

B = K
α , as the first time that the system i crosses A or B. The procedure terminates

at time N when Spool,N+1 is empty or the cardinality of Sep f ,N+1 is 1. Thus, we

have the following inequality
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P(Procedure 3 does not terminate before N) (3.41)

=P(1|Spool,N+1|≥1 ∩ 1|Sep f ,N+1|≥2) (3.42)

≤P(1|Spool,N+1|≥1
∣∣|Sep f ,N+1| ≥ 2) = P(∪i∈Ω1i∈Spool,N+1

∣∣|Sep f ,N+1| ≥ 2) (3.43)

≤ ∑
i∈Ω

P(i ∈ Spool,N+1
∣∣|Sep f ,N+1| ≥ 2) = ∑

i∈Ω
P(τi > N

∣∣|Sep f ,N+1| ≥ 2) (3.44)

For the sake for brevity, in the following proofs, we denote Pc(·) as P(·
∣∣|Sep f ,N+1| ≥

2). To prove that the procedure terminates in finite time with probability 1, it is suf-

ficient to show that limN→∞ Pc(τi > N)→ 0 for all i.

To demonstrate, we consider two scenarios.

Scenario 1. there exists a system j such that µ?
i � µ?

j .

In this scenario, there exists a system j that dominates the system i. Moreover,

both systems i and j survive after N iterations.

By definition, Λ(3)
i,·,N , minl∈Ω/i Λ(3)

i,l,N, where

Λ(3)
i,j,N =

supθ∈{θ|µi�µj} LN(θ)

supθ∈{θ|µi�µj} LN(θ)
(3.45)

where LN(θ) is the likelihood of all observations up to the N iterations,

LN(θ) = LN(θ|all observations up to the nth round) (3.46)

=
N

∏
m=1

∏
j∈Ω

f j(Xj,m|µj) (3.47)

Therefore,

Pc(τi > N) ≤ Pc(A < Λ(3)
i,·,N < B) ≤ Pc(Λ

(3)
i,·,N > A) ≤ Pc(Λ

(3)
i,j,N > A) (3.48)

The last inequality holds since, by definition, Λ(3)
i,·,N = minl∈Ω/i Λ(3)

i,l,N ≤ Λ(3)
i,j,N.

By Chebyshev inequality,

Pc(Λ
(3)
i,j,N > A) ≤

E[(Λ(3)
i,j,N)

s]

(A)s , ∀s > 0 (3.49)
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Under the Conditions C1 to C5, the maximized likelihood is solvable. Thus,

there exists θ̃N = arg supθ∈{θ|µi�µj} LN(θ), with θ̃N = [µ̃1,N, ..., µ̃K,N]. We have

Λ(3)
i,j,N =

supθ∈{θ|µi�µj} Ln(θ)

supθ∈{θ|µi�µj} Ln(θ)
(3.50)

=
LN(θ̃N)

supθ∈{θ|µi�µj} LN(θ)
≤ LN(θ̃N)

LN(θ?)
(3.51)

The last inequality holds since, Scenario 1 asserts that µ?
i � µ?

j , the true param-

eters θ? are within the parameter space {θ|µi � µj}.

E[(Λ(3)
i,j,N)

s] ≤ E

[(LN(θ̃N)

LN(θ?)

)s
]

(3.52)

=E

[ N

∏
m=1

∏
l∈Ω

( fl(Xl,m|µ̃l,N)

fl(Xl,m|µ?
l )

)s
]

(3.53)

=
N

∏
m=1

∏
l∈Ω

E

[( fl(Xl,m|µ̃l,N)

fl(Xl,m|µ?
l )

)s
]

(3.54)

=
N

∏
m=1

∏
l∈{i,j}

E

[( fl(Xl,m|µ̃l,N)

fl(Xl,m|µ?
l )

)s
]
×

N

∏
m=1

∏
l∈Ω/{i,j}

E

[( fl(Xl,m|µ̃l,N)

fl(Xl,m|µ?
l )

)s
]

(3.55)

The equality in 3.54 holds because {Xl,m} are independent for all l and m. We next

show that Equation 3.55 is strictly less than 1 and approaches to 0 as N → ∞.

For any 0 < s < 1 and l, by Jensen’s inequality, we have

E

[( fl(Xl,m|µl)

fl(Xl,m|µ?
l )

)s
]
≤ E

[
fl(Xl,m|µl)

fl(Xl,m|µ?
l )

]s

=

[ ∫ fl(Xl,m|µl)

fl(Xl,m|µ?
l )

fl(Xl,m|µ?
l )dXl,m

]s

= 1

(3.56)

Moreover, for any µl 6= µ?
l , E

[( fl(Xl,m|µl)
fl(Xl,m|µ?

l )

)s
]
< E

[
fl(Xl,m|µl)
fl(Xl,m|µ?

l )

]s

.

Thus, by replacing the first half of Equation 3.55 with 1, we have

E[(Λ(3)
i,j,N)

s] ≤
N

∏
m=1

∏
l∈Ω/{i,j}

E

[( fl(Xl,m|µ̃l,N)

fl(Xl,m|µ?
l )

)s
]

(3.57)

= E

[( fi(Xi|µ̃i,N)

fi(Xi|µ?
i )

f j(Xj|µ̃j,N)

f j(Xj|µ?
j )

)s
]N

(3.58)
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Since (µ?
i , µ?

j ) /∈ {(µi, µj)|µi � µj}, we have E

[( fi(Xi,m|µi)
fi(Xi,m|µ?

i )

f j(Xj,m|µj)

f j(Xj,m|µ?
j )

)s
]
< 1 for

any (µi, µj) ∈ {(µi, µj)|µi � µj}. Thus, there exists a positive number ε such that

sup
(µi,µj)∈{µi�µj}

E

[( fi(Xi,m|µi)

fi(Xi,m|µ?
i )

f j(Xj,m|µj)

f j(Xj,m|µ?
j )

)s
]
≤ 1− ε < 1

. Furthermore, E[(Λ(3)
i,j,N)

s] ≤ (1− ε)N → 0 as N → ∞.

In summary, under this scenario, we have Pc(τi > N) ≤ Pc(Λ
(3)
i,j,N > Ai) ≤

E[(Λ(3)
i,j,N)s]

(A)s → 0 as N → ∞.

Scenario 2: µ?
i � µ?

j for all j ∈ Ω/{i}

This scenario considers the situations that system i is not eliminated from Spool,N+1

given that any other systems do not dominate it in Sep f ,N+1

Pc(τi > N) ≤ Pc(A < Λ(3)
i,·,N < B) ≤ Pc(Λ

(3)
i,·,N < B) ≤ Pc(min

j∈Ω
Λ(3)

i,j,N < B) ≤ ∑
j∈Ω

Pc(Λ
(3)
i,j,N < B)

(3.59)

We need to show that Pc(Λ
(3)
i,j,N < B)→ 0 as N → ∞.

By Chebyshev inequality,

Pc(Λ
(3)
i,j,N < B) = Pc(

1

Λ(3)
i,j,N

>
1
B
) ≤

E[(Λ(3)
i,j,N)

−s]

(B)−s , ∀s > 0 (3.60)

Under the Conditions C1 to C5, the maximized likelihood is solvable. Thus,

there exists θ̃′N = arg supθ∈{θ|µi�µj},θ LN(θ), with θ̃′N = [µ̃′1,N, ..., µ̃′K,N]. We have

Λ(3)
i,j,N =

supθ∈{θ|µi�µj} LN(θ)

supθ∈{θ|µi�µj} LN(θ)
(3.61)

=
supθ∈{θ|µi�µj},θ LN(θ)

LN(θ̃′N)
≥ LN(θ

?)

LN(θ̃′N)
(3.62)

The last inequality holds since, by assumption that µ?
i � µ?

j , the true parameters

θ? are within the parameter space defined by {θ|µi � µj}.
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Using the same logic as the proof in Scenario 1, it is evident that E[(Λ(3)
i,j,N)

−s]→

0 as N → ∞. Thus, we have Pc(τi > N) ≤ ∑j∈Ω Pc(Λ
(3)
i,j,N < B) ≤ ∑j∈Ω

E[(Λ(3)
i,j,N)−s]

(B)−s →

0 as N → ∞.

Part 2: the procedure delivers the PCS guarantee

Recall that the PCS for MOR&S is defined by

PCS = P(Sep f = Sp f )

meaning the selected Pareto front, Sep f , should match the true Pareto front, Sp f .

The proposed procedure uses the Bonferroni correction to deliver the PCS guar-

antee.

PCS = P{Sep f = Sp f }

= 1− P{Sep f 6= Sp f }

= 1− P{[∪i∈Sp f i /∈ Sep f ] ∪ [∪i/∈Sp f
i ∈ Sep f ]}

≥ 1− ∑
i∈Sp f

P(i /∈ Sep f )− ∑
i/∈Sp f

P(xi ∈ Sep f )

= 1− ∑
i∈Ω

P(system i is classified incorrectly)

Next, we need to show that P(system i is classified incorrectly) is controlled at

approximately α/K level. Recall the candidacy test:

H0,i : i /∈ Sp f and H1,i : i ∈ Sp f

Λ(4)
i,n is defined as

Λ(4)
i,n =

supθ∈{θ|µi�µj,∀j∈Ω/i} Ln(θ)

supθ∈{θ|µi�µj,∃j∈Ω/i} Ln(θ)
(3.63)

By Theorem 3.3.2, by setting A = α
K and B = K

α , we have the error rate is

approximately at α
K since

sup
θ∈Θ1

Pθ(Λ
(4)
i,τ ≤ B) ∼= B−1 =

α

K
(3.64)

sup
θ∈Θ0

Pθ(Λ
(4)
i,τ ≥ A) ∼= A =

α

K
(3.65)
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as α→ 0.

By Theorem 3.3.1, we have

sup
θ∈Θ1

Pθ(Λ
(3)
i,·,τ ≤ B) ≤ sup

θ∈Θ1

Pθ(Λ
(4)
i,τ ≤ B) ∼= B−1 =

α

K
(3.66)

sup
θ∈Θ0

Pθ(Λ
(3)
i,·,τ ≥ A) ≤ sup

θ∈Θ0

Pθ(Λ
(4)
i,τ ≥ A) ∼= A =

α

K
(3.67)

as α→ 0.

Thus, the error probability of each test on the alternative i is α
K . Therefore, we

conclude that the PCS is bounded below by 1−∑ α
K = 1− α.
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4. SEQUENTIAL PROCEDURES FOR MULTI-OBJECTIVE

FACTOR SCREENING

4.1 Introduction

Simulation models for complex systems typically involve hundreds to thou-

sands of factors. According to Pareto or sparsity-of-effects principle, in many

cases, only a few factors among many are responsible for most of the response

variation [43]. Factor screening experiments are designed to identify a small sub-

set of important factors efficiently so that the later effort can be focused on them,

therefore significantly save the overall experimental effort.

There has been considerable research in this area. Procedures including one-

factor-at-a-time designs [44], edge designs [45], and the Trocine screening pro-

cedure [46] are designed for stochastic simulation experiments. However, these

procedures are based on homogeneous variance assumption and, more impor-

tantly, do not consider the error control. Later, procedures including Controlled

Sequential Bifurcation [47], Two-stage Controlled Fractional Factorial Screening

(TCFF) [47], Controlled Sequential Factorial Design [48], and hybrid method of

CSB and CSFD [49] were proposed to address both Type I and Type II error con-

trols, and relax the homogeneous variance requirement. The interested reader

should refer to [50] for a thorough review.

Most of the past literature as discussed above focused on the single response

model. In practice, however, there are usually multiple responses of interest that

can be observed simultaneously in one experiment. For example, risk and return

are two responses of a portfolio and finding factors that significantly contribute

to both responses is of great importance. The primary challenge for multiple re-
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sponse factor screening is to achieve desired error control with efficiency. Note

that the multiple responses add another layer of complexity to the error control.

The definitions of important and unimportant factors for single response exper-

iments, for example, are not applicable anymore. Lee et al. [31] studied how to

allocate computation resources efficiently to identify “Pareto Set” of designs for

a multiple objective Ranking and Selection Problem. The concept of “Pareto Set”

inspires our definition of important/unimportant factors in this paper. In this re-

search, we want to identify all factors that are important to at least one response.

In other words, a factor is considered as unimportant if it is unimportant for all

responses. Multiple responses factor screening problem has been firstly studied

by Shi et al. [51]. They proposed Multiple Sequential Bifurcation (MSB) to identify

important factors. MSB extends CSB error control for each response and adopts

sequential bifurcation to classify a group or an individual factor as important or

unimportant. However, MSB is conservative since it controls error rate and power

across responses through Bonferroni procedures. It also fails to incorporate covari-

ance information among responses.

Most of these researches involve multiple inferences, which is defined as per-

forming more than one statistical inference procedure on the same data set. How-

ever, none of these researches so far, to the best knowledge of the authors, perform

multiple inferences without adjusting the Type I error rate accordingly. Accord-

ing to the American Statistical Association, ”Running multiple tests on the same

data set at the same stage of analysis increases the chance of obtaining at least one

wrong result. Selecting the one ”significant” result from a multiplicity of parallel

tests poses a grave risk of an incorrect conclusion. Failure to disclose the full extent

of tests and their results in such a case would be highly misleading.” (Profession-

alism Guideline 8 [52]).

To account for multiple inferences, we target our proposed procedures to con-

trol the Family-Wise Error Rates (FWERs), instead of individual Type I error rate



94

and power for each factor. We consider two types of FWER, Family-Wise Error

Rate I and Family-Wise Error Rate II, which are defined as follows:

Definition 4.1.1 Let V denote the number of true null hypotheses being rejected and T the

number of false null hypotheses being accepted. The Family-Wise Error Rate I (FWERI) is

defined as the probability to reject at least one true null hypothesis; the Family-Wise Error

Rate II (FWERII) is the probability of accepting at least one false null hypothesis.

FWERI = Prob (V ≥ 1) (4.1)

FWERII = Prob (T ≥ 1) (4.2)

Note that FWERI and FWERII are independent of the number of individual

tests. See more discussions on FWERI and FWERII in [53].

Most previous studies on multiple hypothesis testings are non-sequential. Such

procedures, including Bonferroni, Sidak, and Holm’s step-down methods, are de-

signed to control FWERI. Due to the non-sequential nature, these procedures are

unable to provide controls on FWERII. De and Baron first explored the sequential

analogs of these procedures in [54]. They extended the Holm’s step-down meth-

ods into likelihood ratio test; and proposed Holm’s intersection Procedure (HIP) to

control the FWERI and FWERII in the strong sense. HIP is rigorous, yet conserva-

tive. This paper proposes two stronger stopping criteria than HIP, Sum Intersection

Procedure (SUMIP) and Sort Intersection Procedure (SORTIP).

Both SUMIP and SORTIP are Sequential Probability Ratio Test (SPRT) proce-

dures. SPRT is a fully sequential likelihood-ratio testing procedure that varies with

the specifics of hypotheses and assumed distributions. From Neyman-Pearson

lemma, among all tests with the same significance level, likelihood ratio test has

the most significant power. Moreover, the sequential nature of SPRT allows it to

achieve the same power more efficiently than the fixed number of samples [21].

SPRT first chooses a pair of constants A and B with 0 < A < 1 < B < ∞ as

thresholds of likelihood ratio. After each observation, SPRT will calculate Λ, the



95

likelihood ratio of hypothesis H1 against H0, and choose H0 if Λ is smaller than

A, H1 if Λ is higher than B, or take one more observation. The smaller the A, the

smaller the value of Λ needed to accept the null hypothesis, and then the higher

the power; and the higher the B, the larger the value of Λ needed to reject the null

hypothesis and then the smaller the Type I error.

There are two phases in SUMIP and SORTIP. Phase 1 is to calculate Likelihood

Ratio (LR) for each factor; phase 2 is to check whether LRs of all factors are suffi-

cient to categorize factors into important and unimportant sets within permitted

FWERI and FWERII. For Phase 1, we derive formula and algorithm to calculate

the likelihood ratio for each factor. In multiple-response factor screening prob-

lem, individual test on each factor takes the forms of multivariate normal union-

intersection tests. Literature provides two other test methods. The first method is

to approximate the test as Hotelling t test or χ2 test. These tests are substantially

less powerful than likelihood ratio test (LRT) for testing multivariate normal mean

vector H0 : µ = 0 against H1 : µ 6= 0 according to Neymann-Pearson Lemma [21].

Moreover, χ2 or Hotelling t tests are bias for one-sided test [55]. Another choice is

to decompose the testing problem into a collection of sub-problems and treat them

independently. [56,57] discussed procedures in this fashion. However, their proce-

dures neither fit sequential manner nor take advantage of covariance information.

In this paper, we provide the exact likelihood ratio and prove that maximum like-

lihood estimator (MLE) is the solution of a quadratic programming problem. Also,

our method is robust under various covariance structure as demonstrated in our

numerical evaluation.

For Phase 2, we propose two efficient and powerful stopping criteria to control

FWERI and FWERII. The complexity of such schemes lies in the number of pos-

sible hypotheses combinations. For the test on a single factor, there are only two

possibilities H0 and H1. However, for familywise test that formed by I individual

tests, the decision schemes should be able to make decisions among 2I possibilities.

The common practice is to apply Bonferroni method among these I tests, which is
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intuitive but too conservative in large-scale case. In literature, the most efficient

procedure is the Holm Intersection Procedure (HIP). Our procedures are more ef-

ficient than the HIP concerning using fewer samples. Numerical results show that

our proposed methods achieve the same power as HIP with only approximately

half of the sample size.

In our numerical evaluation, we use a factorial design to estimate factor coeffi-

cients. Thus, one sample is equivalent to one replicate of the factorial design. It is

worth noting here that SUMIP and SORTIP can be used for any designs, as long as

the estimated coefficient vector of each factor follows a multivariate normal distri-

bution.

The rest of this paper is organized as follows: Section 4.2 states the problem

details and assumptions. Section 4.3 presents the two proposed procedures. Nu-

merical evaluate are given in Section 4.4. We conclude the paper with discussions

of future research in Section 5.

4.2 Problem Statement

In this paper, we assume a first-order model for all responses,

Yj = β0j +
I

∑
i=1

βijxi + εj, εj ∼ N(0, σ2
j ), j = 1, 2, ...J (4.3)

which could also be written in matrix form as

Y = X′β + ε (4.4)

where Y =
[
Yj
]

J , X = [xi]I , ε =
[
εj
]

J and β =
[
βij
]

I×J . Assume Yj is the

output of the jth response, and βij represents the main effect of the ith factor on

the jth response. Quantitative inputs, xi, are normalized such that they have only

two levels which are arbitrarily denoted as -1 or 1. ε are the metamodel residuals

with mean 0. Furthermore, we assume εj for j = 1, 2, ..., J can be correlated and

their scale may depend on the size of the output. In other words, we assume (1)
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unknown covariance structure among different responses, and (2) heterogeneous

variance condition.

In this paper, we define “important factor” in multiple responses setting. We

use definitions from Lee et al. (2010) and Shi et al. (2014), where important factors

are defined as factors which have an important effect on at least one response. Let

∆0j be the threshold for important effect on the jth response, and ∆1j the threshold

for critical effect on the jth response.

Definition 4.2.1 The ith factor βi is unimportant if
∣∣βij
∣∣ ≤ ∆0j for all j = 1, 2, ..., J,

important if there exists at least one j such that
∣∣βij
∣∣ ≥ ∆0j, and critical if there exists at

least one j such that
∣∣βij
∣∣ ≥ ∆1j. Specifically,

Θc =

{
βi| max

j∈{1,2,..,J}

(∣∣βij
∣∣− ∆1j

)
≥ 0, i ∈ {1, 2, ..I}

}
Θimp =

{
βi| max

j∈{1,2,..,J}

(∣∣βij
∣∣− ∆0j

)
≥ 0, i ∈ {1, 2, ..I}

}
Θ0 =

{
βi| max

j∈{1,2,..,J}

(∣∣βij
∣∣− ∆0j

)
≤ 0, i ∈ {1, 2, ..I}

}

With this definition, our goal is, under proper error control, to screen out factors

within Θ0 and claim them unimportant, and to find out factors in Θc, which have

significant impacts on responses and claim them important. For factors within the

”indifference zone”, which means factor is in Θimp but not in Θc, although they

are important, it is neither possible nor our intention to control the power for these

factors.

To distinguish, we call the single test for each factor the elementwise test, and

the I elementwise tests form the familywise test. In this paper, elementwise test is

defined as follows:

Hi
0 : βi ∈ Θ0 Hi

1 : βi ∈ Θimp for i = 1, ..., I (4.5)

This elementwise test can be shown in the Union-Intersection form,

Hi
0 =

J⋂
j=1

Hij
o Hi

1 =
J⋃

j=1

Hij
1
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where

Hij
0 : βij < ∆0j Hij

1 : βij ≥ ∆0j for j = 1, ..., J (4.6)

Familywise test includes I elementwise tests. As discussed earlier, we intend to

control FWERI and FWERII, where FWERI is the probability of identifying at least

one unimportant factor as important, and FWERII is the probability of classifying

at least one critical factor as unimportant.

4.3 The Procedures

Procedures proposed in this paper contain two phases as depicted in 4.1. Phase

1 is to calculate Likelihood Ratio (LR) for each factor, whose effects follow multi-

variate normal distribution; phase 2 is to aggregate LRs of all factors and decide

whether the LRs are sufficient to make statistic inference with control of FWERI

and FWERII. This section will discuss these two phases and state the algorithms.

4.3.1 Phase 1: Elementwise Likelihood Ratio

Recall the test for factor i,

Hi
0 : βi ∈ Θ0 Hi

1 : βi ∈ Θimp (4.7)

From experiments, we have {Zi1, Zi2, ...ZiK} as K estimators of βi, where Zik

is of dimension J × 1 and from distribution N(βi, Σi) with unknown mean βi and

covariance matrix Σi. If K ≥ J + 1, then Si = ∑K
k=1 (Zik − Z̄i) (Zik − Z̄i)

′ is posi-

tive definite with probability one. In the scope of factor screening problem, these

estimators can be derived via regression analysis.

Assuming {Zi1, Zi2, ...ZiK} are independent. Z̄i and Si are then sufficient statis-

tics for βi and Σ, and
√

KZ̄i ∼ N(βi, Σi), Si ∼Wishart(K− 1, Σi), and Z̄i and Si are

independent. Based on these assumptions, the likelihood function and likelihood

ratio for (4.7) are,
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Figure 4.1.: Procedure flowchart

Λi (Θ0, Θc) =
L1

L0
=

(
1 + ‖Z̄i − βmle (Z̄i, Si, Θc)‖2

Si
K

)− K
2

(
1 + ‖Z̄i − βmle (Z̄i, Si, Θ0)‖2

Si
K

)− K
2

(4.8)

where ‖Z− β‖2
S = (β− Z)′ S−1 (β− Z) and βmle (Z, S, Θ) is the maximum

likelihood estimator for β within the parameter space Θ,

βmle (Z, S, Θ) = arg min
β∈Θ
‖Z− β‖2

S

See the appendix for the proof.
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For Θ = Θ0, βmle (Z, S, Θ0) is the solution of the following quadratic program-

ming problem with convex constraints,

min (β− Z)′ S−1 (β− Z)

s.t.
∣∣β j
∣∣ ≤ ∆0j for j = 1, 2, ..., J (4.9)

For Θ = Θc, βmle (Z, S, Θc) is the solution of the following problem,

min (β− Z̄)′ S−1 (β− Z̄)

s.t.
∣∣β j
∣∣ ≥ ∆1j for at least one j, j = 1, 2, ..., J (4.10)

Note that this is no longer a convex quadratic programming problem. We prove

that it can be solved as a convex problem as demonstrated in Theorem 4.3.1.

Theorem 4.3.1 If Z ∈ Θc, βmle (Z, S, Θc) = Z;

If Z /∈ Θc, βmle (Z, S, Θc) is the solution of the following quadratic programming

problem,

min (β− Z)′ S−1 (β− Z)

s.t. β j? = sign(Zj?)∆1j? (4.11)

where j? = arg minj=1,...,J
(∆1j−zj)

2

sj
with sj > 0 as the jth diagonal element of S.

Thus, both βmle(Z, S, Θ0) and βmle(Z, S, Θc) could be modeled as quadratic op-

timization problems with linear constraints and, thus, be solved easily.

4.3.2 Phase 2: Familywise Stopping Scheme

For the familywise test, we could choose whether to decide for elementwise

tests simultaneously or separately, which correspond to two types of stopping

rules. One is the intersection rule, which makes inferences simultaneously; the

other one is the maximum rule, which treats I elementwise tests separately. The

intersection rule is less conservative since it dynamically allocates the “allowed er-

rors” according to the likelihood ratios, instead of assigning the same amount of

errors to each factor [54].
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Intersection Rule

Let Ai and Bi (0 < Ai < 1 < Bi < ∞) be the pair of thresholds for Like-

lihood Ratio Test of the ith elementwise test. The intersection rule states that if

all elementwise tests reach decision regions, which means that the likelihood ra-

tio Λi /∈ (Ai, Bi) for all i ∈ {1, 2, ...I}, then stop sampling and choose H0i if Λi is

smaller than Ai or H1i if Λi is greater than Bi; otherwise take one more observa-

tion for all elementwise tests. Therefore, the intersection rule stops at the first time

when Λi
n /∈ (Ai, Bi) for all i = 1, 2, 3, ...I.

Nint = inf

{
n :

I⋂
i=1

Λi
n /∈ (Ai, Bi)

}
Intersection rule is a proper stopping time since it stops in finite time with

probability 1 (De and Baron, 2012). The following corollary reveals the connec-

tion between thresholds, Ai, and Bi, moreover, Type I error and Type II error for

the intersection rule.

Theorem 4.3.2 (De and Baron, 2012) Let τ be any stopping time satisfying

Prob
(

Λi
τ ∈ (Ai, Bi)

)
= 0 f or Ai < 1, Bi > 1 f or i ∈ {1, 2, ..., I}

with the decision rule of rejecting Hi
0 if and only if Λi

τ ≥ Ai. For such a test

Prob
(

Type I on ith test
)
= Prob

(
Λi

τ > Bi|H0i is true
)
≤ B−1

i

Prob
(

Type II on ith test
)
= Prob

(
Λi

τ < Ai|H1i is true
)
≤ Ai

Based on Theorem 4.3.2, we propose two schemes, Sum Intersection Scheme

and Sort Intersection Scheme, to connect thresholds, Ai, and Bi, with Family Wise

Error Rate.
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Sum Intersection Scheme

We propose Sum Intersection Scheme with the intersection stopping time and

boundaries as

Nint = inf

{
n :

I⋂
i=1

Λi
n /∈ (Ai, Bi)

}
, ∑

i∈IA

Ai ≤ γ, ∑
i∈IB

B−1
i ≤ α (4.12)

where IA =
{

i : Λi
n ≤ 1

}
, IB =

{
i : Λi

n > 1
}

and α and γ are the predefined FWERI

and FWERII, respectively. IA and IB are determined after each iteration and hence

may change at each step.

Intuitively, this scheme applies Bonferroni procedure, and sets Bi = ∞ for fac-

tors to be claimed as unimportant (factors within IA) and Ai = 0 for factors to

be claimed as unimportant (factors within IB); so we have FWERI≤ ∑I
i=1 B−1

i =

∑i∈IB
B−1

i ≤ α. Same logic applies to FWERII. At Nint, factors within IB are claimed

important, while factors within IA unimportant. We have following result regard-

ing to Sum Intersection Scheme (See proof in appendix 4.7.3.

Theorem 4.3.3 The Sum Intersection Scheme strongly controls both FWERI and FW-

ERII. That is,

FWERI = Prob (At least 1 Type I error among I tests) ≤ α

FWERII = Prob (At least 1 Type II error among I tests) ≤ γ

Sort Intersection Scheme

We define Sort Intersection Scheme with stopping time and boundaries as,

Nint = inf

n :

⋂
i∈IA

Λ(i)
n /∈ (Ai, 1)

⋂⋂
j∈IB

Λ(j)
n /∈

(
1, Bj

) , Ai =
γ

|IA| − i + 1
, Bj =

j
α

(4.13)

where α and γ be the upper bounds of FWERI and FWERII, and Λ(i)
n is the ith

smallest likelihood ratios. After each sampling, factors are sorted in increasing

order and then separated into two groups according to their likelihood ratios, IA =
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{
i : Λi ≤ 1

}
and IB =

{
i : Λi > 1

}
, with cardinalities |IA| and |IB|. For factors

within IA, it is certain that we would not commit Type I error. Thus, we only need

to consider FWERI for factors within IB. The same logic applies to factors within

IB.

Theorem 4.3.4 The Sort Intersection Scheme strongly controls both FWERI and FW-

ERII. That is,

FWERI = Prob (At least 1 Type I error among I tests) ≤ α

FWERII = Prob (At least 1 Type II error among I tests) ≤ γ

4.3.3 Procedures

We now apply the schemes mentioned above into screening procedures. It is

worth mentioning that the hypothesis testing procedures can be applied in screen-

ing problem with any experimental designs as long as the estimator of the factor

effect follows a multivariate normal distribution.

Sum Intersection Procedure

The first procedure, Sum Intersection Procedure (SUMIP for short), is a two-

phase procedure.

Phase 1 calculates likelihood ratio for each elementwise test. Phase 2 applies

Sum Intersection Scheme. This procedure calculates Likelihood Ratios (LRs) after

sampling; then assigns factors into IB if LR > 1 or IA otherwise. If LRs in IB and

IA satisfy (4.12), then we claim that factors within IA are unimportant and IB are

important. If not, we collect one more set of samples. Notice that Yk is the kth

simulation result.
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Algorithm 6 SUMIP Procedure
Step 0 Select a factorial design X for I factors, generate n0 replications of observa-

tions. Let n = n0.

Step 1

Likelihood Ratio Calculate Likelihood Ratio Λi
n for each factor i ∈ {1, 2, ..., I}

with

Zk =
(
X′X

)−1 X′Yk, k = 1, 2, ...n0

Sn =
n

∑
k=1

(Zk − Z̄) (Zk − Z̄)′

Stopping Criteria Apply Sum Intersection Scheme

Divide factors into two set IA =
{

i : Λi
n ≤ 1

}
and IB =

{
i : Λi

n > 1
}

If α ≥ ∑i∈IB

(
Λi

n
)−1 and γ ≥ ∑i∈IA

Λi
n, go to Step 2.

Otherwise, generate 1 more observation with X, and make n = n + 1; back

to Step 1.

Step 2 Claim factors within IB are important, and factors within IA are unimpor-

tant.

Sort Intersection Procedure

This procedure, Sort Intersection Procedure (SORTIP), is based on Sort Inter-

section Scheme. It has the same structure as SUMIP except for stopping criteria.

This procedure will run n0 initial replications of the design at first, where n0 ≥ J;

then split factors into two groups, IA =
{

i : Λi ≤ 1
}

and IB =
{

i : Λi > 1
}

. If like-

lihood ratios satisfy (4.13), then we claim factors within IB as important and IA as

unimportant. If not, we conduct one more factorial design for all factors.
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Algorithm 7 SORTIP Procedure
Step 0 Select a factorial design X for I factors, generate n0 replications of observa-

tions. Let n = n0.

Step 1

Stopping Criteria Calculate Likelihood Ratio Λi
n for each factor i ∈ {1, 2, ..., I}

with

Zk =
(
X′X

)−1 X′Yk, k = 1, 2, ...n0

Sn =
n

∑
k=1

(Zk − Z̄) (Zk − Z̄)′

Stopping Criteria Apply Sort Intersection Scheme

Divide factors into two set IA =
{

i : Λi
n ≤ 1

}
and IB =

{
i : Λi

n > 1
}

and sort

Λi
n, i ∈ IA and Λj

n, j ∈ IB ascending.

If Λ(i)
n /∈ (Ai, 1) where Ai =

γ
IA−i+1 , and Λ(j)

n /∈
(
1, Bj

)
where Bj =

j
α for all

i ∈ IA, j ∈ IB, then go step 2.

Otherwise, generate 1 more observation with X, and make n = n + 1; back

to step 1.

Step 2 Claim factors within IB are important, and factors within IA are unimpor-

tant.

Mixed Intersection Procedure

We now turn from SUMIP and SORTIP to a procedure under parallel fashion.

Assume P workers and one master available in the parallel environment. The

worker-master structure requires us to (a) Balance workload among workers, and

(b) Reduce communications between workers and master.

While, both SUMIP and SORTIP are sequential procedures and not ready for

the parallel environment. Recall that both SUMIP and SORTIP are a two-phase
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procedure, whereas stage 1 is to calculate the likelihood ratio for each factor and

stage 2 is to test if there is enough information to make a decision. For the first

requirement, both SUMIP and SORTIP could divide factors into P groups (or close

to) evenly. Since all factors will be sampled for the same times, the workload on

each worker is well-balanced if the number of factors assigned to workers is the

same. For the second requirement, neither SUMIP nor SORTIP could meet if the

number of factors is enormous. If workers send all likelihood ratios information to

master, communications would be the bottleneck.

To address this problem, we implement an additional step at worker level and

send only two numbers αp and γp, namely, the minimum amount of error levels

to decide for a worker, back to master after each sampling stage and keep on sam-

pling until master says not. At master level, master makes decision according to

Bonferroni rules, go on sampling if ∑p αp ≤ α and ∑p γp ≤ γ, for p ∈ {1, 2, ..., P}.

αpn and γpn are defined in as follow.

αpn = max
i={1:|IB|}

{
i

Λ(i+|IA|)
p,n

}

γpn = max
i={1:|IA|}

{
(|IA − i + 1| ·Λ(i)

p,n

}
where Λi

p,n be the likelihood ratio for the ith factor on worker p, Ip
A =

{
i : Λi

p,n ≤ 1
}

and Ip
B =

{
i : Λi

p,n > 1
}

; then sort Λi
p,n in ascending order.

For worker p, it is easy to verify that FWERIp ≤ αpn and FWRIIp ≤ γpn accord-

ing to 4.3.3. For master, let V be the number of unimportant factor classified as

important among all factors and Vp the number among factors in worker p.

FWERI =Prob (V ≥ 1) = Prob

(
∑
p

Vp ≥ 1

)

=Prob

(⋃
p

(
Vp ≥ 1

))
≤∑

p
Prob

(
Vp ≥ 1

)
=∑

p
FWERIp ≤∑

p
αpn

The first “≤” sign holds since Boole’s inequality.
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4.4 Simulation Studies

In this section, we compare our proposed procedures, SORTIP and SUMIP, with

HIP proposed by De and Baron (2012) and MSB (Shi et.al 2014) to demonstrate the

efficiency and validity of both SORTIP and SUMIP. MSB procedure controls Type

I error rate and Type II error rate for the elementwise test. Thus, we compare the

Likelihood ratio testing procedure used as Phase 1 in SUMIP and SORTIP with

MSB. HIP differs from SUMIP and SORTIP in stopping criteria. We run all three

procedures for factor screening in the second experiment to compare their perfor-

mances and conclude both SUMIP and SORTIP outperform HIP.

Numerical simulations use common random numbers across different methods

to compare these algorithms.

4.4.1 Study 1: Single-Factor Multiple-Responses Factor Screening

This experiment is to show the performance of the proposed Likelihood Ratio

Test, which is phase 1 of SORTIP and SUMIP, with MSB. Consider a factor screen-

ing problem with a single factor and multiple responses. Parameters are set as

follows:

In all cases, the presented results are the averages of 1000 independent macro

replications. For this example, we take three covariance matrix forms to repre-

sent independent case, positive dependent case, and nested case, respectively. For

nested case, there are both positive and negative correlations among responses.

Σ1 =


4 0 0

0 4 0
. . . ...

0 0 · · · 4

 Σ2 =


4 1 1

1 4 1
. . . ...

1 1 · · · 4

 Σ3 =


4 (−1)2 (−1)J

(−1)2 4 (−1)J+1

. . . ...

(−1)J (−1)J+1 · · · 4


Table 4.2 and Figure 4.2 present the average sample sizes required by our pro-

posed likelihood ratio test and MSB. Table 4.2 shows the average samples and

achieved errors for Likelihood Ratio Test and MSB when J = 5. Notice that we
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Table 4.1.: Study 1: Configurations of Simulation Experiment on a Single Factor

Screening

Parameter Value Meaning

J Specified below Number of Responses

∆0 2 Threshold of Important Factors

∆1 4 Threshold of Critial Factors

α 0.05 Upperbound of Type I Error

γ 0.05 Upperbound of Type II Error

β Specified below Responses size

Σ Specified below Covariance matrix

n0 6 Initial sample size

have many “-” in Table 4.2 since, for instance, if the factor is unimportant, we can-

not commit Type II error. Figure 4.2 compares the performance of likelihood ratio

test with MSB under different setting of J, the number of responses. We set J to

take value from 2 to 10. Let us assume β take one of three following configurations

β′1 = (0, 0, ..., 0, 1) β′2 = (0, 0, ..., 0, 2) β′3 = (0, 0, ..., 0, 5)

We can see the proposed likelihood ratio test are more efficient than MSB. The

advantage of the likelihood ratio test over MSB is even more apparent when fac-

tors are within the indifferent zone. In the five response case, likelihood ratio test

saves 30% simulation effort on average when compared with MSB. When the fac-

tor is important but not critical, likelihood ratio test needs only approximately 1/4

of the computation effort of MSB. Figure 4.2 indicates that in some case, the gap

between the likelihood ratio test and MSB is closing as the number of responses is

increasing. However, the likelihood ratio test still performs universally better than

MSB regarding computational effort. Moreover, for MSB, the computational effort

highly depends on the coefficient of the factors and the average sample size varies
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Table 4.2.: Study 1: the average sample size (Avg. SSize) and the estimated er-

ror probability (Est. Errors) of a factor screening problem with I = 1 factor and

observations from N(β, Σ). Numbers are summarized from 10,000 independent

macroreplications of likelihood ratio test procedure we proposed and the MSB pro-

cedure.

Likelihood Ratio Test MSB

β Covariance Avg. SSize Est. Errors Avg. SSize Est. Errors

(0, 0, 0, 0, 1) Σ1 6.154 0.1% 9.513 0.0%

Σ2 6.163 0.2% 9.456 0.0%

Σ3 6.100 0.9% 9.549 0.0%

(1, 1, 1, 1, 1) Σ1 6.536 2.2% 11.895 0.0%

Σ2 6.495 3.4% 11.598 0.1%

Σ3 6.418 3.3% 11.954 0.0%

(0, 0, 0, 0, 3) Σ1 9.818 - 36.606 -

Σ2 9.121 - 38.307 -

Σ3 9.214 - 39.753 -

(3, 3, 3, 3, 3) Σ1 6.350 - 22.766 -

Σ2 7.008 - 27.678 -

Σ3 6.174 - 22.097 -

(0, 0, 0, 0, 5) Σ1 6.141 0.0% 8.535 0.1%

Σ2 6.063 0.2% 8.278 0.0%

Σ3 6.073 0.3% 8.405 0.0%

(5, 5, 5, 5, 5) Σ1 6.000 0.0% 6.192 0.0%

Σ2 6.001 0.0% 6.296 0.0%

Σ3 6.000 0.0% 6.201 0.0%

from 10 to 40 when j = 10. As for the likelihood ratio test, the average sample size

is between 10 to 12 when j = 10.
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4.4.2 Study 2: Multiple-Factors Multiple-Responses Factor Screening

This experiment is to compare SUMIP and SORTIP with the HIP. Resolution III

fractional factorial design is used in all three procedures. Consider a factor screen-

ing problem with five responses. Table 4.3 lists all parameters for this experiment.

Table 4.3.: Study 2: Configurations of Simulation Experiment on a multiple Factor

Screening Problem

Parameter Value Meaning

I 50, 100, and 150 Number of Factors

J 4 Number of Responses

∆0 2 Threshold of Important Factors

∆1 4 Threshold of Critial Factors

α 0.05 Upperbound of FWERI

γ 0.1 Upperbound of FWERII

β Specified below Responses

Σ Specified below Covariance matrix

n0 5 Initial sample size

We consider two scenarios for βij. Scenario one has 5% critical factors, 5% im-

portant but not critical factors, moreover, 90% unimportant factors. Scenario two

has 10% critical factors, 10% important but not critical factors, and 80% unimpor-

tant factors. Critical factors’ coefficients are randomly generated from uniform dis-

tribution on (∆1, 6), unimportant factors’ coefficients are generated from uniform

distribution (0, ∆0), the important factors are generated from uniform distribution

(∆0, ∆1).
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For the ith factor, its covariance is one of the three cases,

Σi =


4 1 1 1

1 4 1 1

1 1 4 1

1 1 1 4

+ mi


βi1 0 0 0

0 βi2 0 0

0 0 βi3 0

0 0 0 βi4


where m1 = 0, m2 = 0.5 and m2 = 2.

We randomly generate two scenarios of β and Table 4.4 and Table 4.5 present

the average sample sizes of 1,000 independent experiments required by SUMIP,

SORTIP, and HIP. The sample size of each experiment is the product of two parts:

(1) the number of factors in the Resolution III fractional factorial design, (2) the

number of replications to conclude. For instance, if we have 50 factors and ten

replications to conclude since the number of the design points in Resolution III

fractional factorial design is 64, the sample size would be 64 times 10. In all cases

in these two scenarios, both SUMIP and SORTIP dominate HIP regarding aver-

age sample size. SUMIP and SORTIP use approximately 50% to 60% sample size

required in the HIP in most cases without the loss in power. Although SUMIP

performs little worse than SORTIP, its stopping criteria is much simpler than both

SORTIP’s and HIP.

4.5 Case Study

The case study discussed in this section is a re-entrant bottleneck simulation

model with attributes of the real-world wafer fabrication environment of a semi-

conductor facility production system. The significant characteristics of the sim-

ulation model include re-entrant process, unreliable machines, and batching ma-

chines. The simulation model is made up of 11 stations. In this study, we assume

all the jobs follow the same routing through the system as in Figure ??. The system

contains 11 stations. For a particular production job, ?? shows a sequence of sta-
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tions to process that job. Some stations are used more than once in the processing

sequence.

Figure 4.3.: Case Study: job processing sequence chart

One interesting question of this simulation model is to predict the lead time of

a particular order, which is the time between receiving an order and the promised

due date. More specifically, given the current status of the system, how to reli-

ably quote a tight time for the newly arrived order. Literature suggests a three

parameter Gamma distribution to model the lead time [58].

g(y; γ, α, β) =
1

Γ(α)βα
[y− γ]α−1 exp{−y− γ

β
} (4.14)

To solve the problem by multiple-response factor screening, we model these

three parameters (α, β, γ in Gamma distribution) as responses and system status

as factors. Note that, our factor screening procedure does not intend to fit the

distribution, but rather to select those influential/important factors that shape this

distribution so that these critical factors can be more thoroughly studied in the

later experiment as in [59].

Table 4.6 lists 41 inputs variable. To generate the responses, we run the simu-

lation model for multiple times to get finishing time ti, and then estimates three

responses α, β, γ using
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µ̂ =
1
n

n

∑
i

ti (4.15)

σ̂2 =
1
n

n

∑
i
[ti − µ̂]2 (4.16)

γ̂ = 2.2t(1) − 1.2t(2) (4.17)

α̂ =
[µ̂− γ̂]2

σ̂2
(4.18)

β̂ =
σ̂2

µ̂− γ̂
(4.19)

To solve the problem by factor screening, we assume the functional form is of

the following form

F(X, θ) =
14

∑
i=1

XA,i +
14

∑
i=1

XB,j(1+XC,i)+ ∑
j=1

XD,j(1+XE,j)+ (1−XD,j)(1+XF,j)+XR

(4.20)

These factors are of different types: qualitative variables and continuous/discrete

variables. Also, these factors are not independent, for example, if a station is down,

then the downtime should be non-zero; if a station is up, then the uptime should

be positive. Follow the 2-stage D-optimal design generation procedure in [59], we

obtained a 84× 41 screening design.

We conducted the SORTIP procedure for different importance importance thresh-

old ∆0 and ∆1. Note that the bigger ∆0 and ∆1 are, the fewer factors are identified

as important. Since factors are of different natures, it is wise to pick various sets

of ∆0 and ∆1 for different factors. In our experiment, we set ∆0 and ∆1 so that a

small number of factors in XA, XB, and XC are selected as important. For WIP fac-

tors in XA, when ∆0 increases to [0.25, 0.25, 0.25] and ∆1 increases to [0.5, 0.5, 0.5],

the two most important WIP factors are selected, which are XA,9 and XA,13, both

corresponding to the 4th station.1. For busy/idle factors, when we set the ∆0 as

1the 4th station is the most-visited station and accumulates the most WIPs during simulation
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Table 4.6.: Case Study: descriptions of factors

Levels Number Description

XA ? 14 number of jobs at each buffers

XB 2 10 the busy or idle status of server

XC 3 10 the elapsed processing time of a busy server

XD 2 2 the up or down status of unreliable server

XE 3 2 the elapsed down time of a currently down server

XF 3 2 the elapsed up time of a currently up server

XR 3 1 arrival rate of the future order

XA: is generated via uniform design algorithm by setting the overall WIP levels is at

a low (15) or high (75) level.

XC: it is related to Xb. If a station XB,i is idle, then its processing time Xproc,i is 0;

otherwise, Xproc,i takes two values [MLi, HLi], where HLi is the 95th percentile

of the distribution of the station’s processing time and MLi = HLi/2.

XE: down time. There are two stations subject to failure. When the station is up,

then XE is 0; otherwise, XE takes value from [MLi, HLi], where HLi is the 95th

percentile of the distribution of the station’s down time and MLi = HLi/2.

XF: up time. There are two stations subject to failure. When the station is down,

then XF is 0; otherwise, XF takes value from [MLi, HLi], where HLi is the 95th

percentile of the distribution of the station’s up time and MLi = HLi/2.

XR: arriving rate. The system is jammed when the rate is high. We take three levels

of arriving rate, [0.5, 0.7, 0.9].



118

[1, 100, 1 and ∆1 as [2, 200, 2], then the 3rd and 7th station status are determined as

important; when we decrease the threshold to include more factors, the 4th factors

is then selected as important. These results confirms [59] that the [3, 4, 7] stations

are bottleneck stations.

4.6 Conclusion

SUMIP and SORTIP are sequential multiple responses factor screening proce-

dures that provide strong controls on FWERI and FWERII simultaneously. With

the option of using efficient screening designs, SUMIP and SORTIP can handle

large-scale problems efficiently. Numerical evaluation indicates the performances

of SUMIP and SORTIP are robust and efficient across different simulation configu-

rations.

Our future research will concentrate on developing sequential bifurcation or

grouping procedure that controls the FWERI and FWERII. Besides, since previous

research of simulation factor screening focused on controlling the error rate with

economical designs, a related research topic would be the optimal computational

budget allocations, which is how to allocate design budgets in order to minimize

the error rates and maximize the power of the tests.

It worths mentioning that these procedures do not fit all factor screening prob-

lems. One drawback is that since our model only considers the main effects, factors

with strong interactions may not be selected as important factors due to their cor-

responding main effect are not important.

4.7 Appendix: Technical Proofs

4.7.1 Proof of Equation 4.8

Proof The likelihood function of Z is



119

L = (2π)−
KJ
2 |Σ|−

K
2 exp

{
−1

2

K

∑
k=1

(Zk − β)′ Σ−1 (Zk − β)

}

While,

K

∑
k=1

(Zk − β)′ Σ−1 (Zk − β)

=
K

∑
k=1

tr
(

Σ−1 (Zk − β) (Zk − β)′
)

=tr
K

∑
k=1

(
Σ−1 (Zk − β) (Zk − β)′

)
=tr

(
Σ−1

K

∑
k=1

(Zk − β) (Zk − β)′
)

Then, the likelihood function is proportional to

L = (2π)−
KJ
2 |Σ|−

K
2 exp

{
−1

2

K

∑
k=1

(Zk − β)′ Σ−1 (Zk − β)

}

∝ |Σ|−
K
2 exp

{
−1

2
tr

(
Σ−1

K

∑
k=1

(Zk − β) (Zk − β)′
)}

(4.21)

Then, we need to find the maximum likelihood estimators of β and Σ.

For fixed β, let D = ∑K
k=1 (Zk − β) (Zk − β)′ = EE′ and H = E′Σ−1E. Then, D

is a positive definite matrix with rank J.

Take log on the right-hand side of likelihood function L, then let

f (Σ) = −K · ln |Σ| − tr
(

Σ−1D
)

Since tr
(
Σ−1D

)
= tr

(
Σ−1EE′

)
= tr (H) and |Σ| =

∣∣EH−1E′
∣∣ = |E| ∣∣H−1

∣∣ |E′| =
|D|
|H| ,

f (Σ) = −K · ln |D|+ K · ln |H| − tr (H) (4.22)
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Let H = TT′, where T =
[
tij
]

J×J is lower triangular. Then 4.22 is

f (Σ) = −K · ln |D|+ K · ln |T|2 − tr
(
TT′

)
= −K · ln |D|+

J

∑
j=1

(
K · ln t2

jj − t2
jj

)
−∑

i>j
t2
ij (4.23)

Maximum of 4.23 occurs at t2
ii = K and tij = 0, i 6= j. That is H = K · I. Then,

Σ = D
K .

Since

K

∑
k=1

(Zk − β) (Zk − β)′

=
K

∑
k=1

(
(Zk − Z̄) (Zk − Z̄)′ + (Z̄− β) (Z̄− β)

′
+ (Zk − Z̄) (Z̄− β)

′
+ (Z̄− β) (Zk − Z̄)′

)
=

K

∑
k=1

(Zk − Z̄) (Zk − Z̄)′ + K (Z̄− β) (Z̄− β)
′

=S + K (Z̄− β) (Z̄− β)
′

The third and forth terms on the right hand side are 0 because ∑ (Zk − Z̄) = 0.

Then, L is maximized when Σ = 1
K S + (Z̄− β) (Z̄− β)

′ . Thus,

max
Σ�0

L ∝
∣∣∣∣ 1
K

S + (Z̄− β) (Z̄− β)
′
∣∣∣∣− K

2

∝ |S|−
K
2
(

1 + K (Z̄− β)
′ S−1 (Z̄− β)

)− K
2

Let X′A−1X = ‖X‖2
A and πS (Z, Θi) denote the MLE of µ under the restriction

β ∈ Θi with Σ unknown. Then,

Li = max
Σ�0, µ∈Θi

L ∝ |S|−
K
2
(

1 + ‖Z̄− πS (Z, Θi)‖
2
S
K

)− K
2 (4.24)

Therefore, likelihood ratio Λ is
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Λ =
L1

L0
=

(
1 + ‖Z̄− πS (Z, Θ1)‖2

S
K

)− K
2

(
1 + ‖Z̄− πS (Z, Θ0)‖2

S
K

)− K
2

4.7.2 Proof of Theorem 4.3.1

Proof If Z̄ ∈ Θ1, πS (Z, Θ1) = Z̄ is clearly the optimal solution.

If Z̄ /∈ Θ1, without loss of generality, assume elements of Z̄ are nonnegative. It

is easy to show that the optimal solution should lay on one of hyperplanes β j = ∆1

for j = 1, 2, 3, ...J. Denote these hyperplanes as Pβ j=∆1 respectively.

Let

S =



√
s1 0 · · · 0

0
√

s2 · · · 0
...

... . . . ...

0 0 · · · √sJ




1 s12√

s1s2
· · · s1J√s1sJ

s21√
s1s2

1
... . . .

sJ1√s1sJ
1





√
s1 0 · · · 0

0
√

s2 · · · 0
...

... . . . ...

0 0 · · · √sJ


Then,

(β− Z̄)′ S−1 (β− Z̄) = η′Kη

where

η =





√
s1 0 · · · 0

0
√

s2 · · · 0
...

... . . . ...

0 0 · · · √sJ



−1

(β− Z̄)



K =


1 s12√

s1s2
· · · s1J√s1sJ

s21√
s1s2

1 · · ·
...

... . . .
sJ1√s1sJ

1



−1
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(β− Z̄)′ S−1 (β− Z̄) would be represented as a family of ellipse η′Kη with 1 =

(1, 1, ...1) as its symmetric axis. Hyperplanes Pβ j=∆j under β is then equivalent to

Pηj=vj under η. Rotate hyperplanes Pηj=vj around 1 = (1, 1, ...1) to get Pη1=vj . Since

hyperplanes Pη1=vj for j = 1, .., J are all parallel with each other, clearly, the optimal

solution lays on the plane who is closest to the origin.

Recall j∗ = arg minj=1,...,J
(z̄j−∆1)

2

sj
, so Pηj∗=vj∗ has the shortest distance to the

origin. Thus, the optimal solution is on hyperplane Pβ j∗=∆1

4.7.3 Proof of Theorem 4.3.3

Proof From Theorem 2, SPRTi(Ai, Bi) with boundaries Ai = γi and Bi = α−1
i

strongly controls FWERI and FWERII at levels αi and γi respectively at Nint =

inf
{

n :
⋂I

i=1 Λi
n /∈ (Ai, Bi)

}
.

Then, at Nint, Ai and Bi satisfy

α ≥ ∑
i=1,...,I

B−1
i

γ ≥ ∑
i=1,...,I

Ai

And Λi
Nint

could be one of these two situations: Λi
Nint
≥ Bi and Λi

Nint
≤ Ai.

Let IA =
{

i : Λi ≤ 1
}

and IB =
{

i : Λi > 1
}

. Then IA is the index of factors

that are accepted, and IB The index of rejected factors. For factors within IA, set

Bi = ∞; for factors within IB, set Ai = 0. Then we have

α ≥ ∑
i=1,...,I

B−1
i = ∑

i∈IB

B−1
i ≥ ∑

i∈IB

(
Λi

Nint

)−1
(4.25)

γ ≥ ∑
i=1,...,I

Ai = ∑
i∈IA

Ai ≥ ∑
i∈IA

Λi
Nint

(4.26)

Hence, if 4.25 and 4.26 are satisfied, FWERI and FWERII are at level α and γ.
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4.7.4 Proof of Theorem 4.3.4

Proof We need to show that

Nint = inf

n :

⋂
i∈IA

Λ(i)
n /∈ (Ai, 1)

⋂⋂
j∈IB

Λ(j)
n /∈

(
1, Bj

) , Ai =
γ

|IA| − i + 1
, Bj =

j
α

(4.27)

controls FWERI and FWERII in the strong sense.

Recall that we will not reject Hi
0 if Λi

Nint
≤ 1. So, we seperate factors into two

sets, IA =
{

i : Λi ≤ 1
}

and IB =
{

i : Λi > 1
}

, with cardinalities |IA| and |IB|.

Let IA0 =
{

i ∈ IA : Hi
0 is true

}
be the set of true null hypotheses in IA, and

IA1 =
{

i ∈ IA : Hi
1 is true

}
be the set of true alternative hypotheses in IA, IB0 ={

i ∈ IB : Hi
0 is true

}
be the set of true null hypotheses in IB, and IB1 =

{
i ∈ IB : Hi

1 is true
}

be the set of true alternative hypotheses in IB, with cardinalities |IA0|,|IA1|,|IB0|,

and |IB1| respectively.

If there is no FWERI error, then IB0 = ∅ and IB1 = IB; if there is no FWERII

error, then IA0 = IA and IA1 = ∅.

Let

i0 = arg max
i∈IB0

Λ(i)

i1 = arg min
i∈IA1

Λ(i)

where i0 denote the “first true null” in IB and i1 denote the “first true alternative”

in IA. If there are no such i0 and i1, then FWERI and FWERII are 0.

In other words, if H(i)
0 denotes the null hypothesis that is tested by the likeli-

hood ratio Λ(i) for i = 1, 2, ..., I, then i0 is such that all H(i)
0 are false for i > i0 where

H(i0)
0 is true and i1 is such that all H(i)

0 are true for i < i0 where H(i0)
0 is false.

Thus, there are at least (|IB| − i0) false hypotheses in IB and (i1 − 1) true hy-

potheses in IA, so that |IB| − i0 ≤ |IB1| and i1 − 1 ≤ |IA0|.
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For FWERI, no Type I error can be made on hypothesis H(i)
0 where i ∈ IA and

hypothesis H(i)
0 where i ≥ i0. If there is no such i0 exists, then there is no Type I

error at all.

FWERI = Prob
(

Λ(i0)
Nint
≥ Bi0

)
≤ Prob

(
Λ(i0)

Nint
≥ B|IB|−|IB1|

)
= Prob

(
max
i∈IB0

Λ(i)
Nint
≥ B|IB|−|IB1|

)
≤ ∑

i∈IB0

Prob
(

Λ(i)
Nint
≥ B|IB|−|IB1|

)
Recall that rejection boundaries are chosen as Bi =

i
α . Therefore, by theorem

4.3.2,

Prob
(

Λ(i)
Nint
≥ B|IB|−|IB1|

)
≤ α

|IB| − |IB1|
We have

FWERI ≤ ∑
i∈IB0

α

|IB| − |IB1|
= α

For FWERII, no Type II error can be made on hypothesis H(i)
0 where i ∈ IB and

hypothesis H(i)
0 where i ≤ i1. If there is no such i1 exists, then there is no Type II

error at all.

FWERII = Prob
(

Λ(i1)
Nint
≤ Ai0

)
≤ Prob

(
Λ(i1)

Nint
≤ A|IA0|+1

)
= Prob

(
max
i∈IB0

Λ(i)
Nint
≤ A|IA0|+1

)
≤ ∑

i∈IA1

Prob
(

Λ(i)
Nint
≤ A|IA0|+1

)
Recall that acceptance boundaries are chosen as Ai = γ

|IA|−i+1 . Therefore, by

Theorem 4.3.2,

Prob
(

Λ(i)
Nint
≤ A|IA0|+1

)
≤ γ

|IA| − |IA0|
Therefore, we have
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FWERII ≤ ∑
i∈IA1

γ

|IA| − |IA0|
= γ

4.8 Appendix: Holm Intersection Procedure

This procedure is based on HIS proposed by De and Baron (2012). In this paper,

we call it as Holm Intersection Procedure (HIP). This procedure is for comparison.

It is used to demonstrate the effectiveness and efficiency of our proposed proce-

dures. This procedure will run n0 initial replications at first, where n0 ≥ J. If

likelihood ratios of all factors satisfy 4.28, then we claim factors with Λi > Bi as

important, while Λi < Ai as unimportant. If not, we carry one more factorial

design for all factors.

Nint = inf

{
n :

I⋂
i=1

Λ(i)
n /∈ (Ai, Bi)

}
, Ai =

γ

I − i + 1
, Bi =

i
α

(4.28)
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Algorithm 8 MIP Procedure
Step 1

Master

Assign Ip factors to worker p, where p = {1, 2, ..., P}, refer the factors on

worker p as βp.

Worker

Select a factorial design for Ip factors with design matrix Xp, generate n0

replications of observations. Each observation of βp is estimated as

Zp,n =
(

X′pXp

)−1
X′pYp,n, n = 1, 2, ...n0

Sp =
n0

∑
n=1

(
Zp,n − Z̄p

) (
Zp,n − Z̄p

)′
Let n = n0.

Step 2

Worker

1. For factors βp,1, βp,2, βp,3, ...βp,Ip, calculate their corresponding Λi
p,n

for i ∈ {1, 2, ..., I}. Divide factors into two set Ip
A =

{
i : Λi

p,n ≤ 1
}

and Ip
B =

{
i : Λi

p,n > 1
}

;

2. Sort Λi
p,n, i ∈ IA and Λj

p,n, j ∈ IB in ascending order,

and calculate αp,n = maxi={1:|IB|}

{
i

Λ
(i+|IA |)
p,n

}
and γp,n =

maxi={1:|IA|}

{
(|IA − i + 1| ·Λ(i)

p,n

}
;

3. Send αp,n and γp,n back to master.

Master If ∑p αp,n ≤ α and ∑p γp,n ≤ γ , go step 3; otherwise, go step 2.

Step 3

Master Send a terminate instruction to all worker, Claim factors within

Ip,B are important, and factors within Ip,A are not important for p ∈

{1, 2, ...P}.
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Algorithm 9 HIP Procedure
Step 1 Select a factorial design for I factors with design matrix X, generate n0

replications of observations. Each observation of β is estimated as

Zn =
(
X′X

)−1 X′Yn, n = 1, 2, ...n0

S =
n0

∑
n=1

(Zn − Z̄) (Zn − Z̄)′

Let n = n0.

Step 2 DO

1. For factors β1, β2, β3, ...β I , calculate their corresponding Λi
n for i ∈

{1, 2, ..., I}.

2. Rank Λi
n according to its value. If Λ(i)

n /∈ (Ai, Bi) where Ai =
γ

I−i+1 , Bi =

i
α for all i = 1, ..., I, then go step 3. Otherwise, for I factors with design

matrix X, generate 1 more observations, and make n = n + 1; back to

step 2.

Step 3 Claim factors within IB are important, and factors within IA are not impor-

tant.
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