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ABSTRACT

Xue, Yutong. Ph.D., Purdue University, December 2019. Modeling and Design
Methodologies for Sound Absorbing Porous Materials when Used as Layered Vibra-
tion Dampers. Major Professor: J. Stuart Bolton, School of Mechanical Engineering.

Modeling methodologies based on state-of-the-art and classic theories of acoustics

have been developed to provide a comprehensive toolbox, which can be used to model

multilayer systems that involve acoustical and/or damping treatments, and to opti-

mize these treatments’ performance by designing their geometrical structures. The

objective of this work was to understand, predict and optimize conventional sound

absorbing porous media’s near-field damping performance, so that automotive and

aerospace industries can take full advantage of layered porous treatments’ lightness

and multi-functionality: i.e., absorption of airborne sound and reduction of structure-

borne vibration, for noise control applications. First, acoustical models that include

the Transfer Matrix Method and the Arbitrary Coefficient Method were developed

to build connections between the bulk properties and acoustical properties of porous

media when coupled into layered systems. Given a specified layered system consisting

of a vibrating panel and a porous damping treatment, the acoustics models were then

incorporated into the Near-Field Damping model to predict the acoustical near-field

and spatial response of the panel, based on which the near-field damping performance

can be evaluated for a limp or an elastic porous layer when applied on different struc-

tures including an infinitely-extended panel, a partially-constrained panel, an aircraft

fuselage-like structure and a vehicle floor pan-like structure. Furthermore, the rela-

tions between the material’s microstructural details and bulk properties were estab-

lished via an Air-Flow Resistivity model for porous media that are made of fibers,

and the optimal fiber size that provides the largest damping for certain vibrating

structures was identified. Relatively large fibers were found to be better at reducing
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lower frequency vibrations; fibers made of polymer were found to have manufacturing

benefits over fibers made of glass to achieve equivalent optimal damping performance;

and elastic fibers were found to have both manufacturing and damping advantages

over limp fibers.
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1. INTRODUCTION

1.1 Motivations and Objectives

Subject to considerations of cost-effectiveness and fuel-economy, the automotive

and aerospace industries are actively seeking acoustical solutions that do not require

the addition of substantial weight. Conventionally, there are two separate solutions

that are applied to reduce vehicle or aircraft interior noise. First, porous media in-

cluding various types of fibers and foams are used for absorbing cabin noise since

they effectively dissipate the acoustic energy of propagating sound waves. Second,

damping treatments like constrained viscoelastic solid layers are applied to panel

structures (e.g., vehicle roof/door panel, floor pan, aircraft fuselage, etc.) to con-

trol structure-borne noise by attenuating the structural vibrations. However, several

previous studies [1–10] have shown that porous “acoustical” materials can also pro-

vide levels of structural damping comparable to conventional dampers while holding

a prominent advantage of lightness over the latter. For example, Lai et al. [2] demon-

strated that layers of fibrous material placed on panels could effectively reduce the

panel motion by removing energy from the near-field acoustical motion generated by

the panel vibration. That idea was verified by Gerdes et al.’s [3] numerical models.

Afterwards, Gerdes et al. [4] showed that fibrous dampers could provide damping

performance equivalent to three other traditional viscoelastic dampers. Furthermore,

the effectiveness of fibrous layered damping treatments was also verified by Nadeau

et al. [5] through aircraft fuselage tests. Cummings et al. [6] and Tomlinson et al. [7]

studied the damping effect of plastic foams placed close to vibrating plates by exper-

imental measurements and analytical models. Fricke [8] also experimentally verified

the damping performance of low-density granular materials. And recently, Kim et

al. [10] proposed and experimentally verified a numerical method to design the thick-
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nesses of different lightweight fibrous sound absorbers for them to be used as structural

dampers for automotive applications. A review of the literature shows that the struc-

tural damping by porous media is primarily effective in the sub-critical frequency

range of the vibrating panel. In that frequency range, the acoustical near-field of a

panel consists of oscillatory flow oriented primarily parallel with the panel surface.

When a porous layer occupies that region, energy is dissipated by the viscous interac-

tion of the evanescent (i.e., non-propagating) near-field and the porous medium, and

the result is a damping of the panel motion. Due to this specific damping mechanism,

the structural damping by porous media is referred to as “near-field damping” in the

current study. Note that the near-field damping described in this article is achieved

by the action of porous media removing energy from the near-field acoustical motion

(i.e., mostly from the in-plane direction motion), and relies on a distinctly different

mechanism than that resulting from the application of viscoelastic damping layers, as

described in Refs. [11–13], for example, where the damping is due to viscoelastic en-

ergy dissipation. The acoustical performance of conventional sound absorbing porous

materials has, of course, been studied for many years, in contrast, the focus here is

specifically on the examination of these materials’ near-field damping performance, so

that when a properly-designed porous layer is placed adjacent to a vibrating structure

as shown in Figure 1.1, it will serve multi-functional roles by attenuating both air-

borne noise and panel structural vibration, and the near-field damping performance

of the porous layer makes the addition of a separate damping treatment unnecessary,

thus reducing the number of elements required to achieve a specified level of noise

and vibration reduction, with the result that the cost and total weight of the sound

package in a vehicle or an aircraft can be reduced.

Based on the definition of the near-field damping, an obvious question here is:

How thick is the acoustical near-field, i.e., what is the near-field damping effective

depth perpendicular to the panel toward the adjascent medium. As an example,

parameters listed in Tables 4.1 and 4.2 were input into the models to be introduced

in Chapters 2 to 4 for a 3 mm thick aluminum panel driven by a harmonic line force at
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different frequencies, and loaded by an air half-space above it, and the solution of the

equation e−ikzdnf = 0.1 quantified the near-field depths, dnf, as the z-location of 90%

decay of the evanescent wave having wavenumber, k = 2πf/c, and trace wavenumber,

kx, where kz =
√
k2 − k2

x is the normal direction evanescent wavenumber on the

transmission side of the panel when k2 < k2
x. Details about these wavenumbers

will be further introduced in Chapter 2. The near-field depths, dnf, for the panel

configuration mentioned above were evaluated in terms of kx and f , and are plotted

in Figure 1.2, and the results provide a general impression on damping effective depth

of such a panel structure: i.e., near-field depths are becoming larger for the evanescent

wavenumber components that are closer to but outside of the speed of sound lines

(k2 = k2
x), and there are no evanescent near-field existing between the speed of sound

lines, because when k2 > k2
x, all the wave components are propagating in that region.

The main objective of the current study was thus to build connections between

porous materials’ parameters (microstructure details or macroscopic properties) and

their performances (acoustical properties, damping properties), so that damping per-

formance of certain porous treatment could be predicted based on the specification

of a layered structure, and so that parametric studies can be conducted to help un-

derstand the connection between the materials’ structures and their performances.

Further, the objective here also relates to designing the microstructure for certain

types of porous dampers, for example, a porous damping layer that is made of fibers.

In particular, the intention here is to develop an approach to relate fibers’ micro-

scopic properties with the damping properties of the fibrous layer, so that the fibrous

material’s microstructure can be designed to achieve optimal damping performance

in a particular circumstance.

1.2 Modeling Outline and Approach

Based on the objectives mentioned in the last section, it was decided to build

the various connections mentioned above mainly by analytical models. There were
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three reasons for this choice. First, analytical models have relatively high calculation

efficiency compared to numerical simulations using finite element methods, for ex-

ample, which is convenient for the relatively large load of calculations involved when

performing parametric studies. Secondly, an analytical approach can accurately cap-

ture specific acoustical and damping characteristics (e.g., the spatial resonance at a

panel’s critical frequency), which is useful when studying the connections between the

material structure and its performance. Thirdly, there are well-developed analytical

models related to porous media that allow their macroscopic properties (alternatively

referred to as bulk properties), acoustical properties and damping properties to be

evaluated.

As shown on the right-hand side of Figure 1.1, a typical configuration to describe

a near-field damping problem consists of two parts: the substrate (i.e., the panel

structure) and the treatment (i.e., the porous layer). To simulate a near-field damping

problem, the substrate with a certain type of excitation should first be modeled to

represent the target vibrating panel structure being studied. Also, the general type

of porous layer: i.e., rigid, limp or elastic [14], should first be chosen according to

the nature of the target material’s solid phase. Cummings et al. [6] and Tomlinson

et al. [7], for example, modeled a damping treatment consisting of plastic foam as

a rigid-framed porous layer. Due to the low stiffness and density of the lightweight

porous materials typically used in the automobile and aerospace industries, the porous

layer in this study was first modeled as being limp, which means that the influence

of the elasticity of the bulk solid phase of the material is assumed to be negligible.

However, earlier Bruer and Bolton [1] indicated that compared to just one type of

wave that propagates within a rigid or limp porous layer, multiple types of waves

could propagate within a poro-elastic layer [15] with non-negligible bulk elasticity

of the frame, and that together they acted to create additional means of energy

dissipation. Further, Varanasi and Nayfeh [9] applied modal expansion to compute

the damping effect of low-density, low-wave-speed media, which verified the damping

advantage of poro-elastic materials. Therefore, here, a near-field damping (NFD)
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model was developed that incorporated both limp porous and poro-elastic media in

order to examine a poro-elastic medium’s potential damping advantages over the limp

porous media considered previously.

Furthermore, proper acoustical models should be developed to couple the treat-

ment and the substrate into a layered system, as well as to accurately evaluate the

acoustical near-field of the panel, which directly relates to the damping of the panel

motion. A typical acoustical model that relates porous media’s bulk properties and

their acoustical properties can be summarized in Figure 1.3. First, the fundamen-

tal acoustical properties including effective density and bulk modulus of a porous

medium can be predicted based on classic acoustical theories such as the Johnson-

Champoux-Allard (JCA) model [16] model given the porous medium’s bulk proper-

ties. Then complex wavenumber(s) within the porous medium can be solved for based

on the Biot theory [15, 17–20]. Finally, the acoustical properties of a layered system

that involves the porous medium can be predicted based on the implementation of

the boundary conditions (B.C.s) of the system, and the B.C.s implementation can

be achieved by using either the Transfer Matrix Method (TMM) [21] or the Arbi-

trary Coefficient Method (ACM) [18] given the complex wavenumber(s) of the porous

medium. In Chapter 2, all of these classic acoustical theories are reviewed, and as an

extension of the study, these theories were also modified to be capable of predicting

acoustical properties for a specific type of porous medium consisting of two compo-

nents: i.e., fibers and particles. In Chapter 3, the TMM was further modified to be

capable of coupling a poro-elastic layer or an elastic solid layer into a layered system,

which made it an alternative method of the ACM for multilayered acoustical system

modeling, and the prediction accuracy of the modified TMM was validated by the

ACM [18]. The modification of the TMM was meant to increase the modeling effi-

ciency when predicting either acoustical properties or damping properties of porous

media in a layered system that involves layered acoustical elements having different

matrix dimensions. Therefore, as an extension of this coupling methodologies study,

different layered acoustical elements, including the micro-perforated panel (MPP) and
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transversely isotropic poro-elastic (TIP) materials, were also built into the modified

TMM to improve its modeling capability.

The development and evaluation of the acoustical models including the TMM

model and the ACM model provide a reliable connection between porous media’s

bulk properties and acoustical properties, which served as fundamental prerequisites

for the near-field damping modeling. Based on the validated acoustical models, the

general methodology that incorporates the TMM and the ACM models into the NFD

model is shown in Figure 1.4 and is introduced in Chapter 4, which helped to further

transfer porous media’s acoustical properties to the layered system’s damping prop-

erties. Based on a certain near-field damping configuration with a vibrating panel

treated with a layer of porous medium, first, the bulk properties of the porous medium

(i.e., airflow resistivity, σ, porosity, φ, bulk density, ρb, layer thickness, d, and tortu-

osity, α∞, for the limp porous medium, plus Young’s modulus, E1, Poisson’s ratio, ν,

and mechanical loss factor, ηm, for the poro-elastic medium) were given to calculate

the layer’s acoustical properties by using either the TMM [21] or the ACM [18], which

are both based on the JCA model [16], Biot theory [15,17–20] and the implementation

of boundary conditions of the layered system [18, 21]. Note that when incorporated

with the NFD model, the TMM was used to calculate the acoustical properties for

limp porous media, and the ACM was used to calculate the acoustical properties for

poro-elastic media, since the ACM was proven to perform equivalently as the TMM

model for coupling a poro-elastic layer, but it holds an advantage over the modi-

fied TMM model on numerical stability, which is especially important for the NFD

modeling. At the same time, the governing equation of the panel motion was gener-

ated in the time and space domain based on the Euler-Bernoulli beam theory, and it

was then Fourier transformed to the frequency and wavenumber domain, so that the

wavenumber domain response of the panel was obtained given the previously-specified

acoustical properties and the panel structure-related properties. The wavenumber

domain response was then inverse discrete Fourier transformed (IDFT) [22] to the

spatial domain, from which the power dissipation within the porous layer could be
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calculated based on a power analysis, and the system equivalent damping loss factor

(also abbreviated as “damping loss factor” or “loss factor” in this thesis), ηe, could be

evaluated by using the power injection method (PIM) [23]. Note that ηm mentioned

above represents the loss factor that accounts for the mechanical energy dissipation

associated with the motion of the solid phase of the poro-elastic medium, and it is

distinct from the ηe introduced here. The process connected by the purple arrows in

Figure 1.4 describes the NFD analytical model, which is elaborated here in Section

4.2 to describe how it was incorporated with the TMM or ACM models, and in Sec-

tions 4.5 and 4.6 to illustrate how to evaluate the panel’s spatial response and the

porous layer’s damping performance. Finally in Section 4.7, the spatial responses are

compared to results based on finite element models to validate the near-field damping

prediction accuracy.

The TMM or the ACM model combined with the NFD model provides an ana-

lytical toolbox for connecting a porous medium’s bulk properties with its damping

performance: following the black blocks in Figure 1.4 leads to a prediction of the

damping properties of the porous medium given its bulk properties (by following the

calculation routine of TMM/ACM–NFD). The damping predictions and parametric

studies of porous media based on their bulk properties are introduced in Chapter

5. The prediction model developed here was first used to show the damping effec-

tiveness of a limp porous layer based on the observation of the spatial response of

a harmonically line-driven, infinitely-extended (unconstrained) panel treated by the

layer as shown in Figure 1.5. Parametric studies on a limp porous layer’s bulk prop-

erties were also conducted based on this configuration. The same configuration was

then used to compare the power dissipated by either a poro-elastic or a limp porous

treatment when resting on an unconstrained panel, in which case, the cause of the

improved damping performance of the poro-elastic layer compared with the limp layer

was established through a power distribution analysis. Also, two types of boundary

conditions (i.e., bonded and unbonded) between the poro-elastic layer and the uncon-

strained panel were compared to highlight the importance of bonding the poro-elastic
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layer to the panel to achieve better damping performance. The NFD modeling based

on the unconstrained panel structure is introduced in Section 4.2, and the NFD per-

formance predictions on limp and elastic porous damping media are introduced in

Sections 5.2 and 5.3.

Though it is convenient to model an unconstrained panel structure to observe

general damping characteristics, that type of structure does not closely represent

practical industrial applications. Thus, the panel was then given two identical dis-

continuities (also referred to as constraints in this thesis) with finite translational

and rotational inertias to create a partially-constrained panel structure as shown in

Figure 1.6. The velocity response spectrum of the partially-constrained panel model

was validated by comparison with a closely-related finite element model. The NFD

modeling based on the partially-constrained panel structure is introduced in Section

4.3, and the NFD performance predictions based on limp and elastic porous damping

media are introduced in Section 5.3.

Furthermore, identical discontinuities with finite translational and rotational iner-

tias and stiffnesses were uniformly distributed along the panel to create a periodically-

constrained structure, as shown in Figure 1.7, which was driven by a distributed

convective pressure. The intention was to create a fuselage-like structure driven by

a boundary layer excitation, and to examine the damping effectiveness of different

types of limp porous treatments under this condition. The velocity response spec-

trum of the periodically-constrained panel model was validated by comparison with

a closely-related finite element model. The NFD modeling based on the periodically-

constrained panel structure is introduced in Sections 4.4, and the NFD performance

predictions on limp porous damping media are introduced in Section 5.4.

On the other hand, there are multiple existing models, such as the airflow re-

sistivity (AFR) model (a specific model introduced in Chapter 6 that was used for

fibrous media), that relate a porous medium’s microstructure with its bulk properties.

Therefore, the micro-bulk relations shown as the red block and arrows in Figure 1.4

can be added into the analytical toolbox, so that the damping properties can be pre-
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dicted given either the porous medium’s microstructure (by following the calculation

routine of AFR–TMM/ACM–NFD). Furthermore, optimizations can be conducted

(by following the calculation routine of TMM/ACM–NFD–AFR) to find the optimal

bulk properties and corresponding optimal microstructures of the porous layer that

would create the largest damping at certain frequencies for certain panel structures.

This optimization process was described here in Section 7.2, to specifically design

porous damping media that are made of fibers.

Finally, a damping-oriented microstructural design process for fibrous damping

media based on this micro-bulk relations model is introduced in Chapter 7, and this

process was applied to design the microstructures for fibrous media to achieve the

largest ηe’s given different frequencies and panel structures of interest: the NFD

performance optimizations on fibrous damping media applied to an unconstrained, a

partially-constrained, a periodically-constrained and an arbitrarily-shaped panels are

introduced in Sections 7.3, 7.4, 7.5 and 7.7, respectively.

To realize a more practical application of the NFD model, a case study of an

arbitrarily-shaped panel driven by a harmonic line force, as shown in Figure 1.8, is

introduced in Section 7.6 in order to create a very simple representation of a vehicle

floor pan-like structure. The spatial/frequency response of this structure was calcu-

lated based on a finite element model, and then was transformed to the wavenum-

ber/frequency domain, based on which a strong vibration region can be identified.

At the same time, the damping performance of a limp fibrous layer was evaluated in

terms of power dissipation in the wavenumber/frequency domain (shown in Section

7.6.3), and parametric studies were then conducted for the limp layer of fibers to

maximize its damping performance based on the identified strong vibration region.

To conclude, fibrous damper design concepts and recommendations for future work

are summarized in Chapter 8.
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Figure 1.1. The reduction of both airborne noise and structural
vibration after the substrate is treated with a multi-functional porous
layer.

Figure 1.2. The near-field damping depth of a 3 mm thick, harmonic
line force-driven, aluminum panel.

Figure 1.3. A typical acoustical model that connects porous media’s
bulk properties and their acoustical properties.



11

Figure 1.4. General modeling process consisting of the NFD model
with the TMM or the ACM acoustical model and the AFR micro-bulk
model for either damping prediction or optimization.

Figure 1.5. A harmonic line force-driven, infinitely-extended panel
treated with a porous damping layer.

Figure 1.6. A harmonic line force-driven, partially-constrained panel
treated with a porous damping layer.

Figure 1.7. A convective pressure-driven, periodically-constrained
panel treated with a porous damping layer.

Figure 1.8. A harmonic line force-driven, arbitrarily-shaped panel.
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2. ACOUSTICAL PROPERTIES EVALUATION BASED ON BULK

PROPERTIES OF POROUS MEDIA

2.1 Introduction

Due to the mechanism of near-field damping mentioned in Chapter 1, the acous-

tical properties of the porous media need to be accurately captured as a prerequisite

for the prediction of their damping performance. In this chapter, classic acousti-

cal theories that include the Johnson-Champoux-Allard (JCA) model [16, 24, 25],

the Biot theory [15, 17–20] and boundary condition (B.C.s) implementation meth-

ods (the Transfer Matrix Method (TMM) [21] and the Arbitrary Coefficient Method

(ACM) [18]) are introduced respectively in Sections 2.2, 2.3 and 2.4. These various

parameters help to build the connection between a porous medium’s bulk properties

and its acoustical properties. These theories will further be used in the study of lay-

ered system coupling methodologies introduced in Chapter 3, and were also applied

in combination with the NFD model for simulating near-field damping problems as

described in Chapter 4. As an extension of the study, these acoustical theories were

also modified and evaluated in Section 2.5 for modeling a double-component porous

material that consists of polymeric fibers and activated carbon particles.

2.2 The JCA Model for Evaluating the Effective Density and Bulk Mod-

ulus of Porous Media

With characterized bulk properties of a porous medium, the first step of the acous-

tical property evaluation is usually to calculate the effective density, and bulk modulus

of the fluid phase (i.e., air) of the material by quantifying the viscous and thermal

effects in the pores, based on the assumption that the bulk frame of the material

does not move (i.e., that the material is rigid-framed). The history of how to quan-
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tify viscous and thermal effects of porous media was comprehensively summarized in

Chapters 4 and 5 of Refs. [16, 17] and in Section 2.2 of Ref. [19]. The theory used in

the current study is the Johnson-Champoux-Allard (JCA) model described on pages

92–93 of Ref. [16] plus the content described on page 89 of Ref. [17], in which the vis-

cous characteristic length, Λ, and thermal characteristic length, Λ′, can be evaluated

given porous media’s airflow resistivity, σ, porosity, φ, and tortuosity, α∞, as

Λ =
1

c

(
8α∞η

φσ

)
, (2.1)

and

Λ′ =
1

c′

(
8α∞η

φσ

)
, (2.2)

respectively, where shape factors, c = 1 and c′ = 0.5, and the dynamic viscosity of

air, η = 1.846 × 10−5 kg/(s · m), are commonly used for the fibrous type of porous

media involved in this study. Then the effective density, ρeff, and bulk modulus, Kf ,

of the fluid phase within the pores can be evaluated as

ρeff = α∞ρ0

[
1 +

σφ

iωρ0α∞
GJ(ω)

]
, (2.3)

and

Kf = γP0

/[
γ − (γ − 1)

[
1 +

σ′φ

iB2ωρ0α∞
G′J(ω)

]−1
]
, (2.4)

respectively, where

GJ(ω) =

(
1 +

4iα2
∞ηρ0ω

σ2Λ2φ2

)1/2

, (2.5)

and

G′J(B2ω) =

(
1 +

4iα2
∞ηρ0B

2ω

σ′2Λ′2φ2

)1/2

, (2.6)

and where the Prandtl number, B2 = 0.71, the specific heat ratio, γ = 1.402, and

the ambient pressure, P0 = 1.015 × 105 Pa, are commonly used in this study. Note

that γP0 = ρ0c
2
0 per the definition of the speed of sound, so the speed of sound in the
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air, c0 = 343 m/s, and the density of air, ρ0 = 1.21 kg/m3, are also commonly used

in this study. Also note that σ′ = c′2σ, and that ω = 2πf is the angular frequency.

Furthermore, the effective density, ρ′eff, and bulk modulus, K ′f , of the porous medium

can be calculated, per Ref. [17], as

ρ′eff = ρeff/φ, (2.7)

and

K ′f = Kf/φ, (2.8)

respectively. Note that there were many follow-up parametric studies such as the one

in Ref. [26] that have tested the fundamental acoustical properties’ sensitivities due

to the change of each JCA input parameter (Λ, Λ′, σ, φ and α∞), which will not be

discussed here, but can be a potential future study.

2.3 The Biot Theory for Rigid, Limp, Elastic Porous Media

The JCA model helped to calculate the fundamental acoustical properties related

to the fluid phase of the porous medium assuming that the solid phase does not move,

and the Biot theory originally developed by Maurice Anthony Biot [15] extended the

fluid-solid interaction in porous media to a more general situation, where motions

are allowed for the solid phase (frame) of the material, and where the elasticity

of the frame is non-negligible. Therefore, for acoustical purpose, all porous media

can be divided into three general types: i.e., rigid-framed, limp-framed and elastic-

framed [14], or referred to as a rigid porous, limp porous or elastic porous (poro-

elastic) medium, where rigid or limp should be understood as extreme cases of an

elastic porous medium when the bulk elasticity of the frame is extremely large or

small, respectively. As was mentioned in Chapter 1, to model a porous layer, the

general type of the porous medium should first be chosen according to the nature

of the target material’s solid phase. Based on that choice, the wavenumber of the



15

propagating wave within the porous medium should then be solved for given the

fundamental acoustical properties described in the last section.

If the solid phase of the target material is very hard and heavy, such as a layer of

hard plastic foam, metal foam, or packed granules, it can be modeled as rigid-framed,

and there will be one longitudinal wave propagating within the rigid porous medium

with a complex wavenumber calculated as

kc = ω (ρeff/Kf )
1/2 = ω

(
ρ′eff/K

′
f

)1/2
, (2.9)

and the complex density of the rigid porous medium can be expressed as

ρc = ρ′eff = ρeff/φ. (2.10)

If the solid phase of the target material is soft and light such as a lightweight

polymeric fibrous layer, it can be modeled as limp-framed, and there will also just

be one longitudinal wave propagating within the limp porous medium with complex

wavenumber calculated as

kc =

[
ω2 (ρ∗11ρ

∗
22 − ρ∗212)

ρ∗11R− 2ρ∗12Q+ ρ∗22P

]1/2

, (2.11)

and the complex density of the limp porous medium can be expressed in terms of the

limp porous medium complex wavenumber as

ρc =
k2
c (P +Qa+Q+Ra)

ω2 (1− φ+ φa)
, (2.12)

with

a =
ρ∗12Q− ρ∗11R

ρ∗12R− ρ∗22Q
, (2.13)

where the elasticity coefficients P , Q and R of the limp porous medium can be

expressed as

P =
Kf (1− φ)2

φ
= K ′f (1− φ)2, (2.14a)

Q = Kf (1− φ) = K ′fφ(1− φ), (2.14b)
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R = Kfφ = K ′fφ
2, (2.14c)

and Biot’s modified mass densities coefficients, ρ∗11, ρ∗12 and ρ∗22, can be expressed, per

Refs. [17, 27], as

ρ∗22 = φρ0α∞ − iσφ2GJ(ω)

ω
= φρeff = φ2ρ′eff, (2.15a)

ρ∗12 = −φρ0(α∞ − 1) +−iσφ2GJ(ω)

ω
= ρ0φ− ρ∗22, (2.15b)

ρ∗11 = ρb + φρ0(α∞ − 1)− iσφ2GJ(ω)

ω
= ρb − ρ∗12, (2.15c)

where ρb is the bulk density of the porous medium, which can be calculated given the

density of the solid material used for making the porous medium, ρs, and porosity, φ,

by ρb = ρs(1 − φ). Note that the detailed derivation of the Biot limp porous theory

can be found in Refs. [19,20].

If the solid phase of the target material has a finite elasticity like a layer of

polyurethane foam, it can be modeled as elastic-framed, and there will be three types

of waves (two longitudinal and one transverse) that can propagate through a poro-

elastic medium. The complex wavenumbers of the two longitudinal (compressional)

waves, k1 and k2, and of the transverse (shear) wave, k3, can be calculated as

k1 =

ω2
(
Pρ∗22 +Rρ∗11 − 2Qρ∗12 −

√
∆
)

2 (PR−Q2)

1/2

, (2.16a)

k2 =

ω2
(
Pρ∗22 +Rρ∗11 − 2Qρ∗12 +

√
∆
)

2 (PR−Q2)

1/2

, (2.16b)

k3 =

[
ω2 (ρ∗11ρ

∗
22 − ρ∗212)

Nρ∗22

]1/2

, (2.16c)

where ∆ is given by

∆ = (Pρ∗22 +Rρ∗11 − 2Qρ∗12)2 − 4
(
PR−Q2

) (
ρ∗11ρ

∗
22 − ρ∗212

)
, (2.17)
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and the shear modulus of the poro-elastic medium, N , can be expressed in terms of

the Young’s modulus, E1, Poisson’s ratio, ν, and mechanical loss factor, ηm, for an

isotropic poro-elastic medium, as

N =
E1(1 + iηm)

2(1 + ν)
. (2.18)

At the same time, the elasticity coefficient, P , of the poro-elastic medium can be

expressed as

P =
4

3
N +Kb +

Kf (1− φ)2

φ
=

4

3
N +Kb +K ′f (1− φ)2, (2.19)

where Kb is the bulk modulus of the poro-elastic medium given by

Kb =
2N(1 + ν)

3(1− 2ν)
. (2.20)

Note that the expressions of Q, R, ρ∗11, ρ∗12 and ρ∗22 for poro-elastic medium are the

same as those for limp porous medium, and that the complete derivation of Biot

poro-elastic medium theory can be found in Refs. [15,17,18].

2.4 The TMM and the ACM for Multilayered Acoustical System Bound-

ary Condition Implementation

2.4.1 The TMM Model Used for Rigid and Limp Porous Medium

When modeling a rigid or limp porous medium, as shown in Figure 2.1, if the

layer is open to the fluid (air) medium on both sides: i.e., the B.C.s comprise motion

continuity and stress-pressure continuity, then the acoustical properties: i.e., acoustic

pressures, p, and particle velocities, vz, on both sides of the layer can be connected

by the two-by-two transfer matrix of the porous layer: i.e., p
vz


z=0

=
[
T
]

2×2

 p
vz


z=d

, (2.21)

where[
T
]

=

T11 T12

T21 T22

 =

 cos
√
k2
c − k2

xd i ρcω√
k2c−k2x

sin
√
k2
c − k2

xd

i

√
k2c−k2x
ρcω

sin
√
k2
c − k2

xd cos
√
k2
c − k2

xd

 . (2.22)
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Here, kc and ρc are the complex wavenumber and complex density of the rigid or limp

layer with the expressions shown in the last section, kx = k sin θ is the in-plane (x)

direction wavenumber component of k = ω/c0, which is the wavenumber of the wave

propagating within the fluid (air), θ is the incident angle shown in Figure 2.1, and

d is the thickness (depth) of the layer. Note that kx is also referred to as the trace

wavenumber.

On the other hand, if there is a thin surface treatment (e.g., resistive screens, limp

impermeable membranes, stiff panels, micro-perforated panels, etc.) applied to either

side of the rigid or limp porous layer, the B.C.s comprise motion continuity and the

equation of motion of the treatment. In that case, the treatment is conventionally

modeled as a separate two-by-two matrix, [S]: i.e.,

[
S
]

=

1 zm

0 1

 , (2.23)

where zm is the transfer impedance of the treatment, and in this case, [S] can be

multiplied by the porous layer transfer matrix depending on which side the treatment

is applied to. For example, if the surface treatment is applied to the incident side

(i.e., a front treatment applied at z = 0), then the transfer matrix of the layered

system combining the porous layer and the surface treatment can be expressed, in

this case, as

[
T
]

=

1 zm

0 1


 cos

√
k2
c − k2

xd i ρcω√
k2c−k2x

sin
√
k2
c − k2

xd

i

√
k2c−k2x
ρcω

sin
√
k2
c − k2

xd cos
√
k2
c − k2

xd

 . (2.24)

For a rigid resistive screen that allows no motion of the treatment, but having

flow resistance, Rf ,

zm = Rf . (2.25)

For a limp impermeable membrane that has negligible flow resistance, but allows

motion and having mass per unit area (surface density), ms,

zm = iωms. (2.26)
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And a flexible resistive screen with flow resistance, Rf , and mass per unit area (surface

density), ms, is a parallel combination of the two treatments mentioned above, where

zm = 1

/(
1

iωms

+
1

Rf

)
=

iωmsRf

iωms +Rf

. (2.27)

For a stiff panel that allows for the motion of the panel, and has non-negligible flexural

stiffness,

zm = i
(
ωms −Dk4

x/ω
)
, (2.28)

where ms = ρphp is the mass per unit area of the panel based on its density, ρp,

and thickness, hp, and D =
[
h3
pE0(1 + iηp)

]
/
[
12(1− ν2

p)
]

is the flexural stiffness of

the panel per unit width in the y-direction, respectively, based on hp, the Young’s

modulus, E0, the loss factor, ηp, and the Poisson’s ratio, νp. For a rigid micro-

perforated panel (MPP) per Ref. [28],

zm = zmr = ρ0c0(rmpp + iωmmpp), (2.29)

where rmpp is the relative resistance of the MPP expressed in terms of the perforate

constant, kmpp, perforation ratio (porosity of the MPP), φmpp, the diameter of the

perforation (hole) of the MPP, dmpp, and the thickness of the hole of the MPP (here

equal to the thickness of the MPP), tmpp, as

rmpp =

[
32ηtmpp

φmppρ0c0d2
mpp

][(
1 +

k2
mpp

32

)1/2

+

√
2kmppdmpp

32tmpp

]
, (2.30)

where

kmpp = dmpp

√
ωρ0/4η, (2.31)

and mmpp is the normalized mass per unit area of the MPP expressed as

mmpp =

[
tmpp

φmppc0

][
1 +

(
9 +

k2
mpp

2

)−1/2

+
0.85dmpp

tmpp

]
. (2.32)

For a flexible (limp) MPP that allows for the motion of the panel,

zm = 1

/(
1

iωms

+
1

zmr

)
=

iωmszmr

iωms + zmr

. (2.33)
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And for a stiff MPP that allows for the motion of the panel, and has non-negligible

flexural stiffness,

zm = 1

/(
1

i (ωmsmpp −Dmppk4
x/ω)

+
1

zmr

)
=

i (ωmsmpp −Dmppk
4
x/ω) zmr

i (ωmsmpp −Dmppk4
x/ω) + zmr

,

(2.34)

where msmpp = ρmpptmpp is the mass per unit area of the panel based on its density,

ρmpp, and thickness, tmpp, and Dmpp =
[
t3mppE0mpp(1 + iηmpp)

]
/
[
12(1− ν2

mpp)
]

is the

flexural stiffness of the panel per unit width in the y-direction, based on tmpp, the

Young’s modulus, E0mpp, the loss factor, ηmpp, and the Poisson’s ratio, νmpp, of the

MPP. Note that the flexible and stiff MPPs’ transfer impedance expressions were

inspired by the development presented in Ref. [29], and that more detailed theories

and coupling methodologies related to the MPP are introduced in Section 3.6.2 of

this thesis.

Further, if there is a fluid (air) gap with depth, da, between a thin surface treat-

ment and a rigid or limp porous layer, another two-by-two transfer matrix, [A], that

represents the fluid (air) layer can be expressed as

[
A
]

=

 cos kzda i ρ0c0
cos θ

sin kzda

i cos θ
ρ0c0

sin kzda cos kzda

 , (2.35)

where kz = k cos θ =
√
k2 − k2

x is the normal (z) direction wavenumber component

of k, and θ is the angle between the propagating directions of k and kz. Note that

θ is also used in Figure 2.1 to represent the incident angle. In this case, [A] can be

placed in between [S] and the transfer matrix of the porous layer. For example, if the

air gap is between the front surface treatment and the porous layer, then the transfer

matrix of the layered system combining the porous layer, the air gap and the surface

treatment can be expressed, in this case, as

[
T
]

=

1 zm

0 1

[A]
 cos

√
k2
c − k2

xd i ρcω√
k2c−k2x

sin
√
k2
c − k2

xd

i

√
k2c−k2x
ρcω

sin
√
k2
c − k2

xd cos
√
k2
c − k2

xd

 . (2.36)
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Finally, Eq. (2.21) can be rewritten in terms of the transmission coefficient, TC,

and reflection coefficient, RC, as 1 + RC

(1− RC) cos θ/(ρ0c0)


z=0

=
[
T
]

2×2

 TCe−ikzds

TCe−ikzds cos θ/(ρ0c0)


z=d

, (2.37)

where ds is the depth of the whole layered system. For example, ds = d for the bare

porous layer, or for a front and/or back surface(s)-treated porous layer, and ds = da+d

for a layered system where there is an air gap having depth da between the front or

back surface treatment and the porous layer. Based on the elements in the layered

system transfer matrix, T = [T11, T12;T21, T22], TC and RC of an anechoically-backed

layered system can be calculated, based on Ref. [30], as

TC =
2eikzds

T11 + T12 cos θ/ (ρ0c0) + T21ρ0c0/ cos θ + T22

, (2.38)

and

RC =
T11 + T12 cos θ/ (ρ0c0)− T21ρ0c0/ cos θ − T22

T11 + T12 cos θ/ (ρ0c0) + T21ρ0c0/ cos θ + T22

. (2.39)

Also, the reflection coefficient of a rigid-backed layered system can be calculated as

RC =
T11 cos θ/ (T21ρ0c0)− 1

T11 cos θ/ (T21ρ0c0) + 1
. (2.40)

Further, the absorption coefficient, AC, and transmission loss, TL, can be calculated

as

AC = 1− |RC|2, (2.41)

and

TL = 10 log10

(
1/|TC|2

)
. (2.42)

The TMM of a limp porous layer is further used in Section 2.5 to model a double-

component porous medium, and the incorporation of the TMM with the NFD for limp

porous layer near-field damping modeling is introduced in Chapter 4 (with details of

the incorporated TMM given in Appendix B).
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2.4.2 The ACM Model Used for Poro-Elastic Medium

As shown above, the TMM model is convenient when modeling multilayered acous-

tical systems including elements that can all be modeled as two-by-two transfer ma-

trices. However, when a layered system involves higher-order elements such as poro-

elastic or elastic solid layers, the B.C.s need to be implemented differently to realize

the coupling. The ACM developed by Bolton et al. in Ref. [18] is a classical method

that can be used to couple poro-elastic layers, and it is further used in Chapter 3 as a

comparison to validate the modified TMM model for coupling higher-order elements.

The incorporation of the ACM with the NFD model for poro-elastic layer near-field

damping modeling is introduced in Chapter 4 (with details of the incorporated ACM

in Appendix C).

2.5 A Case Study of the JCA-Biot-TMM Model for Modeling a Limp-

Framed Double-Component Fiber-Particle Porous Medium

To evaluate the models mentioned above, and as an extended case study, the JCA

model combined with the Biot limp porous theory and the TMM model are used

to predict the acoustical performance of a double-component limp porous medium

that consists of polymeric fibers and activated carbon particles. A sample layer of

this material is shown in Figure 2.2, and fibers can be seen embedded between the

carbon particles, and the pore structures of the particle can be divided into three

scales: intergranular-scale, micro-scale and nano-scale. An intergranular-scale SEM

of a single particle and its pore structures can be seen in Figure 2.3

First, the viscous and thermal effects due to the intergranular-scale pores of the

particles were accounted for in combination with the polymeric fibers by using the

JCA model. To be more specific, given the material’s characterized airflow resistivity,

σ = 1.44 × 105 Rayls/m, porosity, φ = 0.48, and α∞ = 1.55, together with shape

factors c = 1 and c′ = 0.5, and the ambient parameters, ρ0 = 1.21 kg/m3, c0 = 343

m/s, B2 = 0.71, γ = 1.402, P0 = 1.015 × 105 Pa and η = 1.846 × 10−5 kg/(s ·
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m), the viscous and thermal characteristic lengths, Λ = 57 µm and Λ′ = 114 µm

were calculated by using Eqs. (2.1) and (2.2), and the effective density, ρ′eff, and

intergranular bulk modulus, Ep, were predicted by using Eqs. (2.7) and (2.8). Then

Ep was coupled with the micro-scale and nano-scale bulk moduli, Em and En, by using

the Granular Activated Carbon (GAC) bulk modulus model described in Eq. (42) of

Ref. [31] (also introduced here in Appendix A) to return the overall bulk modulus, K ′f ,

of the material. Further, the complex wavenumber, kc, and complex density, ρc, were

predicted by using Eqs. (2.11) and (2.12) given ρ′eff, K ′f and the characterized bulk

density, ρb = 275 kg/m3, of the material. Finally, kc and ρc together with the depth

of the material, d = ds = 1.2 cm, and the incident angle, θ = 0◦ (normal incidence),

were input into Eqs. (2.22), (2.40) and (2.41) for the prediction of the absorption

coefficient of the double-component material when applied to a rigid backing, and

the predicted results are shown as the blue line in Figure 2.4. Further, if the micro-

scale and nano-scale pores are closed by making Em = En = 0 (i.e., K ′f = Ep) from

the GAC model, then an obvious drop of the absorption coefficient can be observed

by comparing the green to the blue dashed lines. Also, the drop occurred mainly

in the low frequency region. This result was as expected, since the high frequency

region acoustical performance results mainly from the intergranular-scale viscous and

thermal effects resulting from Ep and ρ′eff, which were both modeled by the JCA model.

In contrast, the low frequency region acoustical performance of this material results

from the absorptive effect due to both the micro- and nano-scales pores modeled in the

GAC model. Therefore, a larger absorption reduction will occur in lower frequency

regions when closing smaller-scales pores from the GAC model, while maintaining the

intergranular-scale viscous and thermal effects from the JCA model: see the green

line in Figure 2.4.

On the other hand, a 10-layer stack of this material with total a thickness of 1.2 cm

was tested by using the two-microphone impedance tube method based on standard

E1050-12 [32]. The comparison of the prediction and the measurement is shown in

Figure 2.4. A good agreement can be observed between the prediction (blue dashed
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lines) and the repeated measurements (red line and error bounds) especially in the

high frequency region, which validated the prediction accuracy of the JCA model,

the Biot limp porous theory and the TMM model used for limp porous layers. Note

that the difference between the prediction and measured results in the low frequency

region was mainly due to the fact that the particle parameter inputs used in the

GAC model were only based on empirical approximations (i.e., input the micro- and

nano-geometries by using the data characterized in Ref. [31] rather than an accurate

characterization of the target material shown here). A more accurate characterization

of the micro- and nano-geometries will result in a better low frequency fit between the

predictions and measurements. The main point here is that the small-scale geometries

and porosities of the particles have a significant impact on low frequency absorption.

In contrast, the material’s high frequency absorption performance is mainly controlled

by the inter-granular scale porosity and geometries of the particles and fibers, which

were already accurately-captured by using experimental and analytical methods dur-

ing and after the material manufacturing process. As potential studies in the future,

the GAC model can be modified as to the characterization of the boundary layer

depth and radius of the particles’ micro- and nano-pores, and the inter-granular JCA

parameters can be further optimized to enhance the high frequency performance.

2.6 Conclusions

Classic acoustical theories were introduced in this chapter; the theories include the

JCA model to predict a porous medium’s effective density and bulk modulus based on

their bulk properties, the Biot theory to solve for the wavenumber(s) of the wave(s)

propagating within the porous medium based on the assumption of the nature of

the solid phase of the material (rigid, limp or elastic), and the B.C.s implementation

methods including the TMM and the ACM.

The JCA-Biot-TMM model was then used to predict the absorption coefficient

of a limp-framed double-component porous medium that consists of polymeric fibers
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and activated carbon particles. The JCA model was first used to predict the ef-

fective density, ρ′eff, and bulk modulus, Ep, of the material based on the character-

ized intergranular-scale bulk properties of the material that include σ = 1.44 × 105

Rayls/m, φ = 0.48, α∞ = 1.55, Λ = 57 µm and Λ′ = 114 µm, plus shape factors c = 1

and c′ = 0.5, and ambient parameters ρ0 = 1.21 kg/m3, c0 = 343 m/s, B2 = 0.71,

γ = 1.402, P0 = 1.015 × 105 Pa and η = 1.846 × 10−5 kg/(s · m). Given additional

particle structural-related parameters that include φp = 0.55, φm = 0.71, φn = 0.26,

rp = 0.74 mm, rm = 0.41 µm, rn = 0.33 nm, and Lb = 3.47 × 10−6 Pa−1, and

ambient parameters that include Rg = 287.05 J/(kg · K), Tg = 293.15 K (20◦C),

Dc = 1.35×10−10 m2/s, Cp = 1006.1 J/K, κ = 0.02587 W/(m · K), mm = 4.8×10−26

kg and Sm = 4.3 × 10−19 m2, the intergranular bulk modulus, Ep, was then coupled

with the micro-scale bulk modulus, Em, and nano-scale bulk modulus, En, by using

the GAC model described in Ref. [31] and summarized in Appendix A, which re-

turned the overall bulk modulus, K ′f , of the material. Then, based on the Biot limp

porous theory, the complex wavenumber, kc, and complex density, ρc, of the material

were solved given ρ′eff, K ′f , and ρb = 275 kg/m3. Finally, given ds and θ, the TMM

model helped to predict the absorption coefficient of the target material in a wide

frequency range, based on which, the low frequency sound absorption mainly due to

the absorptive effects resulting from micro-scale and nano-scale pores was success-

fully captured by the GAC model, and the high frequency sound absorption mainly

due to the intergranular viscous and thermal effects was successfully modeled by the

JCA model. A good agreement between the repeated E-1050-12 normal incidence

sound absorption test and the predicted absorption coefficient helped to verify the

model prediction accuracy, which also proves that these acoustical models are reli-

able enough to be used in the following multilayered acoustical system model to be

described in Chapter 3 and the near-field damping model to be described in Chapter

4.
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Figure 2.1. The Transfer Matrix Method (TMM) for a rigid or limp porous layer.

Figure 2.2. (a) Front and (b) back views of a double-component limp porous layer.
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Figure 2.3. (a) An intergranular-scale SEM of a single particle of the
double-component limp porous medium, (b) pore structures of the
particle to show micro-scale and nano-scale pores.

Figure 2.4. Absorption coefficient prediction for a 1.2 cm thick
double-component limp porous medium that consists of fibers and
activated carbon particles.
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3. ACOUSTICAL MODELING OF A MULTILAYERED SYSTEM

3.1 Introduction

Based on the Introduction, there are two prerequisites for modeling a near-field

damping problem: (1) acoustical modeling of the damping treatment (porous layer),

and (2) a modeling methodology to couple the porous layer and the substrate (vibrat-

ing panel structure) so that the damping performance due to the interaction at the

acoustical near-field of the panel can be accurately predicted. The acoustical theories

that were reviewed and evaluated in Chapter 2 provide reliable tools for the acoustical

modeling of a porous layer. The necessary coupling methodologies were studied and

are introduced in this chapter to allow convenient modeling of multilayered acoustical

structures, and to ensure a proper coupling between the porous treatment and the

vibrating panel.

When a limp or rigid porous damping treatment is placed adjacent to a vibrating

panel, both limp and rigid layers can be modeled as two-by-two transfer matrices,

which share the same dimension as the transfer matrix of the panel. This is due

to the fact that both limp and rigid porous layers are “fluid-equivalent”, which be-

have as an acoustically-effective fluid that contains one longitudinal wave propagating

through the medium. Therefore, the TMM model introduced in Section 2.4.1 is ef-

ficient to couple any “effective fluid” treatments with the panel, and the coupling is

straightforward through motion and stress-pressure continuities.

On the contrary, the ACM model is normally preferred when a poro-elastic layer

or any damping treatment that has more than one wave (e.g., an elastic solid layer) is

applied to a vibrating structure, or when the whole multilayered system is complex.

Although the ACM approach has many advantages, such as being numerically stable

when modeling most layered structures, one disadvantage of the ACM model is lower
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modeling efficiency, because the equation sets that implement the B.C.s need to be

reconstructed every time when there is a change made to the system, such as swapping

one layered element in the system to another type, or adding a layer to or eliminating

a layer from the system. Therefore, to take advantage of the modeling efficiency of

the TMM, the focus of this chapter is to modify the TMM model by using matrix

dimension reduction procedures for it to be capable of coupling higher-order layered

element such as the poro-elastic layer (introduced in Section 3.4) or an elastic solid

layer (introduced in Section 3.5) into multilayered acoustical systems. In that case, the

TMM can serve as an alternative method to the ACM when a complex multilayered

acoustical or damping system needs to be modeled. Further, to make the TMM

model even more comprehensive, methodologies are also introduced in Sections 3.6.1,

3.6.2 and 3.7 to couple a poro-elastic layer with impermeable surface treatments,

with rigid/flexible/stiff micro-perforated panels (MPP), and to couple transversely

isotropic poro-elastic layers (e.g., a layer of honeycomb structure) with stiff panels,

respectively.

3.2 A Review of Multilayered Acoustical System Modeling Methodolo-

gies

The modeling of multilayered acoustical systems is a classical topic in noise and

vibration control engineering. Despite the fact that numerical analyses based on the

finite element or boundary element methods are becoming more and more popular,

especially for modeling artificial, complex structures such as acoustic metamaterials

and/or metasurfaces, analytical methods remain popular for modeling systems that

consist of sequential layers of conventional acoustical treatments (e.g., fibers, foams,

scrims, panels, etc.) since the analytical models are based on well-developed and

reliable theories, and allow a straightforward modeling process and relatively high

calculation efficiency. When modeling different layered acoustical treatments, a layer

of limp or rigid porous media (e.g., fibers with either negligible or extremely high bulk
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frame elasticity) [14] can usually be treated as an equivalent fluid medium like air,

in which only one longitudinal wave propagates [33]. In contrast, two types of waves

(one longitudinal and one transverse) propagate through an elastic solid layer, while

three types of waves (two longitudinal and one transverse) can propagate through a

poro-elastic layer (e.g., foams with non-negligible bulk frame elasticity) [15]. As a

result, one of the challenges during the modeling process is to couple two contacting

layers that possess an inconsistent number of propagating waves.

Previously, two major coupling solutions have been used. One solution that was

proposed by Bolton et al. [18, 34], for example, consists of representing the multilay-

ered system by field variables expressed in terms of the propagating waves’ amplitude

coefficients, and then constructing the equation system that results from the appli-

cation of the boundary conditions (B.C.s) at the interfaces of the layered structure.

This method has been referred to as the “Arbitrary Coefficient Method” (ACM) in

recent publications [35–38]. The alternative solution proposed by Brouard et al. [39]

was based on modeling each layer by using a transfer matrix. The matrix represen-

tation methodology was first described in the 1920’s by Mason [40] in the form of an

acoustical-electrical analogy that allows two-by-two transfer matrices to be used to

model acoustical lumped elements that are combined in series to form acoustic filters

or horns, for example. This procedure was later described in Pierce’s book [41] as the

concept of “Acoustical Two-Ports”, and it has been used by various researchers for

modeling layered acoustical elements. For example, Lai et al. [21] modeled resistive

scrims, limp impermeable membranes, flexurally-stiff panels, air spaces and limp fi-

brous layers as two-by-two transfer matrices; Thompson [33], Brekhovskikh [42], Folds

and Loggins [43] and Scharnhorst [44] modeled elastic solid layers by using four-by-

four transfer matrices; and Allard et al. [45] modeled poro-elastic layers as six-by-six

transfer matrices owing to the three types of Biot waves [15] that propagate within

such a layer.

Thus, from a mathematical point-of-view, the challenge then becomes coupling

multilayered acoustical elements that are described by transfer matrices having dif-
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ferent dimensions. Brouard et al. [39] solved this problem by assembling the inter-

layer B.C.s into a “global transfer matrix” (GTM). The GTM approach was later

summarized in Allard and Atalla’s book. [17] The ACM and GTM differ from each

other only in the form of their expressions, since the principles behind the calculation

routines are the same, which is to connect the propagating waves in different layers

by assembling the B.C.s into a global system.

Recall that, in contrast, when several two-port acoustical lumped elements are

combined in series, they are coupled simply by multiplying all the transfer matrices

together, which is possible since they share the same two-by-two dimension. Inspired

by this idea, presented in this chapter is a modified transfer matrix method (TMM)

based on the use of matrix operations, including singular value decomposition (SVD)

and QR decomposition (QRD) that make it possible to reduce the higher-dimension

transfer matrices of an elastic solid or poro-elastic layer (i.e., higher-order elements)

to two-by-two, so that they can then be easily coupled with other two-by-two elements

in series simply by multiplication. Note that other multilayer modeling methods that

involve transfer matrix representations are also introduced below, for the purpose of

comparing different methodologies, but in this thesis, the abbreviation “TMM” refers

only to the coupling approach proposed here.

Both similarities and differences can be recognized when comparing the TMM

proposed here with previous multilayer models. For example, a similar method of

matrix dimension reduction was introduced by Lauriks et al. [46] to explicitly derive

a two-by-two matrix from a six-by-six matrix of a double-panel plus poro-elastic layer

sandwich structure, but the TMM proposed here is different in that the dimension

reduction is achieved through implicit matrix operations (SVD and QRD), so that

the process used to derive the two-by-two matrix can be simplified. Also, the TMM

is similar to the GTM since they are both based on a matrix representation of each

layered element, but compared to either the ACM or the GTM, the TMM handles the

B.C.s in a different way: i.e., it represents the B.C.s in the form of matrices (so called

boundary condition matrices), and the boundary condition matrices are manipulated



32

separately for each layer to realize the dimension reduction of the higher-order ma-

trices. Most recently, Dazel et al. [47] proposed a method that makes it possible to

couple different order transfer matrices in series based on an implicit and recursive

process applied to the whole layered system, while the current study was focused

on the manipulation of individual element matrices to facilitate the coupling process.

The further advantages, applications and development in terms of the transfer matrix

dimension reduction process of the modified TMM are illustrated in Sections 3.3 to

3.7. Finally, the proposed TMM is verified through a comparison with predictions

made using the ACM, and the results are shown in Section 3.8, and model compar-

isons are drawn in Section 3.9 among the TMM proposed here, the recursive transfer

matrix method [47] and the ACM.

3.3 The Modified TMM Model to Couple Higher-Order Elements in a

Layered System

To further illustrate the advantages and application of the TMM, the general ap-

proach to the prediction and optimization of a porous medium’s acoustical and/or

damping performance when applied to a vibrating, stiff panel can be recalled and is

illustrated in Figure 1.4. In this approach, multiple models are combined to connect

the porous medium’s parameters (micro-geometry and/or bulk properties) with its

performance (acoustical attenuation and/or damping). First, for different types of

porous media, certain relations can be established between their microstructural de-

tails and bulk properties. For example, an airflow resistivity (AFR) model [35, 48]

was previously developed to connect a fibrous material’s fiber size distribution with

its airflow resistivity. Secondly, bulk properties, including airflow resistivity, can be

connected with a porous medium’s acoustical properties by using acoustical mod-

els, such as the ACM and the TMM. In a third stage, the acoustical properties

can be connected to the damping properties by using the near-field damping (NFD)

model [36–38, 49–52], for example. Therefore, the acoustical model (i.e., the ACM
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or TMM) plays an intermediate role in connecting the material’s parameters and its

performance.

Typically, in the acoustical model, the TMM model has only been used for cases

that involve a limp porous layer [38, 49–52] (or as described in Sections 2.4.1, 4.2

and Appendix B in this thesis), and the ACM model has been used for modeling

cases that involve a poro-elastic layer [36, 37] (or as described in Sections 2.4.2, 4.2

and Appendix C in this thesis). However, when changing configurations, the ACM

model requires a redevelopment of the global system of B.C. equations, which is

potentially time-consuming and awkward to automate. That observation motivated

the current focus on modifying the TMM model to be capable of coupling higher-order

layered elements, so that instead of reassembling the B.C.s, the modeling of different

configurations only requires the individual transfer matrix elements to be changed,

which is a more straightforward approach that allows greater modeling efficiency

especially when the layered system is complex.

A more specific modified TMM modeling process for a layered system involving a

higher-order element (e.g., a poro-elastic layers) can be recalled in Figure 1.3, in which

bulk properties can be input to predict the layered system’s acoustical properties. The

modeling comprises three steps. For a poro-elastic layer, the first step is based on

the Johnson-Champoux-Allard (JCA) model [16,24,25], and involves the calculation

of the viscous and thermal characteristic lengths, effective density, and bulk modulus

of the fluid phase and/or of the material given the bulk properties of the material

and the ambient properties (as described in Section 2.2). Note that the JCA model

was originally developed for fully-isotropic porous media with arbitrary pore shapes,

and was then extended by Lafarge [53] to a more comprehensive form by allowing for

anisotropic situations and by modifying the JCA model to account for low frequency

thermal effects; the result became known as the JCAL model. [17] The JCA model was

also refined by both Pride et al. [54] and Lafarge et al. [53] to account for situations

when there are constrictions between the pores, thus creating the JCAPL model.
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Given the properties predicted in the first step, the second step is based on the Biot

theory, in which stress-strain relations and dynamic equations are applied to calculate

the complex wavenumbers in the poro-elastic material (as described in Section 2.3).

Note that for an elastic solid layer, the bulk moduli and complex wavenumbers can

be easily found based on the elasticity and wave theory of elastic solid media. [17]

In the third step, satisfactory solutions for the stress and displacement waves

propagating within the medium can be constructed in terms of wavenumbers and

arbitrary amplitude coefficients; the details of that construction process for poro-

elastic media were introduced in Refs. [18,34]. Based on those satisfactory solutions,

B.C.s can finally be applied in different ways to solve for acoustical properties such as

the absorption coefficient or transmission loss. Recall that both the ACM and GTM

implement B.C.s by assembling them into a global equation or matrix system, followed

by a solution of the global system for the acoustical properties of interest. In contrast,

the implementation of B.C.s based on the TMM described here principally consists

of two parts: i.e., constructing the transfer matrix of the higher-order layer, and then

reducing the order of that transfer matrix. The construction of the transfer matrices

for an elastic solid and a poro-elastic layer, four-by-four and six-by-six, respectively,

were previously introduced in Refs. [43,45]. From those starting points, the dimension

reduction process for higher-order transfer matrices is introduced next, in Sections

3.4 and 3.5.

3.4 Transfer Matrix Dimension Reduction for a Poro-Elastic Layer

A poro-elastic layer being driven by an oblique incidence plane wave is shown

in Figure 3.1 to help frame the general approach to the matrix dimension reduction

process.
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3.4.1 Introduction of Matrices

First, the state vectors of propagating waves (also referred to as “field variables”)

at the two surfaces of the poro-elastic layer can be connected by a six-by-six transfer

matrix, [T]: i.e.,[
σz uz s Uz τxz ux

]T

z=0
=
[
T
]

6×6

[
σz uz s Uz τxz ux

]T

z=d
, (3.1)

where σz is the force per unit material area acting on the solid phase of the poro-

elastic medium in the z-direction, s is the force per unit material area acting on the

fluid phase of the poro-elastic medium (opposite in sign to a pressure), uz and Uz are

the z-direction displacements of the solid and fluid phases of the poro-elastic medium,

respectively, τxz is the shear force per unit material area acting on the solid phase in

the x-z plane, and ux is the x-direction displacement of the solid phase. The detailed

form of [T] for a poro-elastic layer can be found in previous literature, for example,

Refs. [17, 45].

Further, by applying the appropriate B.C.s, the field variable vectors can be con-

nected with the acoustic pressures, p, and particle velocities, vz, on both sides of the

layer. That process can be implemented by using boundary condition matrices: i.e.,

[M1] and [N1][
M1

]
4×6

[
σz uz s Uz τxz ux

]T

z=0
=
[
N1

]
4×2

[
p vz

]T

z=0
, (3.2)

and [M2] and [N2][
M2

]
4×6

[
σz uz s Uz τxz ux

]T

z=d
=
[
N2

]
4×2

[
p vz

]T

z=d
. (3.3)

To be more specific, when the layer has fluid on both sides (e.g., open to air or

adjacent to limp or rigid porous layers), the B.C.s to be satisfied are two normal stress

conditions, one normal volume velocity condition and one shear stress condition as

described in Ref. [18]: i.e.,

s = −φp, (3.4a)
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σz = −(1− φ)p, (3.4b)

iω(1− φ)uz + iωφUz = vz, (3.4c)

τxz = 0, (3.4d)

where φ is the porosity of the layer, and ω is the angular frequency. Therefore,

[
M1

]
=
[
M2

]
=


1 0 0 0 0 0

0 0 1 0 0 0

0 iω(1− φ) 0 iωφ 0 0

0 0 0 0 1 0

 , (3.5)

and

[
N1

]
=
[
N2

]
=


−(1− φ) 0

−φ 0

0 1

0 0

 . (3.6)

On the other hand, when the layer is bonded to a stiff panel, the B.C.s to be satisfied

include four motion continuity conditions, one shear stress condition and one panel

equation of motion, as per Ref. [18]: i.e.,

vz = iωwt, (3.7a)

uz = wt, (3.7b)

Uz = wt, (3.7c)

ux = wp(−/+)ikx
hp
2
wt, (3.7d)

(+/−)τxz =
(
Dpk

2
x −msω

2
)
wp, (3.7e)
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(+/−)p(+/−)s(+/−)σz − ikx
hp
2
τxz =

(
Dk4

x −msω
2
)
wt, (3.7f)

where recall kx = ω sin θ/c0 is the trace wavenumber in terms of incidence an-

gle, θ, and the speed of sound in the air, c0. Further, wt and wp are the trans-

verse and in-plane displacements of the panel, respectively, ms = ρphp is the mass

per unit area of the panel based on its density, ρp, and thickness, hp, and D =[
h3
pE0(1 + iηp)

]
/
[
12(1− ν2

p)
]

and Dp = E0hp are the flexural and longitudinal stiff-

nesses of the panel per unit width in the y-direction, respectively, based on hp, the

Young’s modulus, E0, the loss factor, ηp, and the Poisson’s ratio, νp. Note that this

set of boundary conditions appears in slightly different forms in the literature (e.g.,

Lauriks et al. [46]) depending on whether or not the shear stress coupling is fully

accounted for. Also note that in B.C.s (3.7d) to (3.7f), and for the coordinate system

shown in Figure 3.1, the first signs are used when the panel is bonded to the incident

side of the layer, and the second signs are used when the panel is bonded to the

transmission side of the layer. Therefore, in this case, wt and wp can be eliminated

by algebra, and

[
M1

]
=


−1 Dk4

x −msω
2 −1 0 ikxhp/2 0

0 −ikxhp/2 0 0 −1/ (Dpk
2
x −msω

2) 1

0 iω 0 0 0 0

0 0 0 iω 0 0

 , (3.8a)

[
M2

]
=


1 Dk4

x −msω
2 1 0 ikxhp/2 0

0 ikxhp/2 0 0 1/ (Dpk
2
x −msω

2) 1

0 iω 0 0 0 0

0 0 0 iω 0 0

 , (3.8b)

and

[
N1

]
=


1 0

0 0

0 1

0 1

 , (3.9a)
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[
N2

]
=


−1 0

0 0

0 1

0 1

 . (3.9b)

Note that the panel displacements, wt and wp, have been eliminated here so that

the six B.C.s in Eq. (3.7) can be simplified to four to make the dimension of the

boundary condition matrices for the bonded panel case the same as the open air case.

Although only two sets of boundary conditions are listed above, specifically for the

cases when the poro-elastic layer is adjacent to a fluid or is bonded to a stiff panel,

the boundary condition matrices in each case share the same dimensions (i.e., four-

by-six for [M1] and [M2] and four-by-two for [N1] and [N2]), with the result that

the matrix operations described next are also applicable when the poro-elastic layer

is connected to other surface treatments (e.g., resistive screens, limp membranes,

micro-perforated panels, etc.). The intention of maintaining the same dimension for

each boundary condition matrix is to realize a more universal applicability of the

SVD and QRD procedure described in following sections. Also note that if a surface

treatment is bonded to the poro-elastic layer, the boundary condition matrices will

always involve the equation of motion of the surface treatment, which will further

be applied in the higher-order matrix dimension reduction process. However, when

a surface treatment is not directly bonded to the poro-elastic layer (i.e., when it

is separated from the porous layer by a fluid gap), fluid surface boundary condition

matrices will be applied in the dimension reduction process, and the surface treatment

(together with the fluid gap between the treatment and the poro-elastic layer, if the

thickness of the gap is non-negligible) will be treated as separate layered elements

and modeled using two-by-two transfer matrices, which will then be multiplied with

the dimension-reduced, two-by-two transfer matrix of the poro-elastic layer after the

matrix dimension reduction process.
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In addition, if the rear surface (z = d) of the poro-elastic layer is bonded to

a rigid wall, the B.C.s comprise one stress-pressure continuity condition and four

motion termination conditions: i.e.,

σz + s = p, (3.10a)

vz = 0, (3.10b)

uz = 0, (3.10c)

Uz = 0, (3.10d)

ux = 0. (3.10e)

In this case, boundary condition matrices, [M2] and [N2], in Eq. (3.3) can be ex-

pressed as

[
M2

]
=


−1 0 −1 0 0 0

0 iω 0 0 0 0

0 0 0 iω 0 0

0 0 0 0 0 1

 , (3.11)

and

[
N2

]
=


1 0

0 1

0 1

0 0

 . (3.12)

Note that here uz and Uz were made equal to vz to keep the dimensions of the bound-

ary condition matrices the same as in the previous cases, and the rigid termination

condition is applied by setting vz = 0, which results in a reflection coefficient, RC, ex-

pression shown as Eq. (2.40) instead of the Eq. (2.39), which applies to the anechoic

termination case.
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3.4.2 Singular Value Decomposition (SVD)

The SVD is applied in two steps. In the first step, the SVD is applied to [N1],[
N1

]
4×2

=
[
U1

]
4×4

[
S1

]
4×2

[
V1

]H

2×2
, (3.13)

where [U1] and [V1] are orthogonal matrices containing the singular vectors, and [S1]

consists of the singular values, λ1 and λ2, in the form

[
S1

]
4×2

=


λ1 0

0 λ2[
0
]

 , (3.14)

so that Eq. (3.2) can be rewritten as[
M1

]
4×6

[
σz uz s Uz τxz ux

]T

z=0
=
[
U1

]
4×4

[
S1

]
4×2

[
V1

]H

2×2

[
p vz

]T

z=0
,

(3.15)

and an intermediate matrix, [A], is introduced here, which takes the form

[
A
]

4×6
=
[
U1

]H

4×4

[
M1

]
4×6

=

[Aa]2×6

[Ab]2×6

 , (3.16)

so that Eq. (3.2) can further be rewritten as

[
A
]


σz

uz

s

Uz

τxz

ux


z=0

=


λ1 0

0 λ2[
0
]


[
V1

]H

 p
vz


z=0

. (3.17)

Therefore, a coupling matrix, [C1], can be defined as

[
C1

]
4×6

=

[C1a]2×6

[C1b]2×6

 , (3.18)
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where

[
C1a

]
=
[
V1

]λ1 0

0 λ2

[Aa

]
, (3.19)

and [
C1b

]
=
[
Ab

]
, (3.20)

so that


p

vz

0

0


z=0

=
[
C1

]


σz

uz

s

Uz

τxz

ux


z=0

. (3.21)

The first two rows of [C1] (i.e., the rows in [C1a]) consist of two modes of the

singular values and vectors, and the projection of the field variables of the poro-

elastic material (i.e., the state vector of σz, uz, s, Uz, τxz and ux) onto these singular

modes results in the acoustic field variables, p and vz. The last two rows in [C1]

(i.e., the rows in [C1b]) can be viewed as two independent modes of the poro-elastic

material state vector. From Eq. (3.21), it can be seen that the inner products of these

two rows with the state vector is zero, which means that for this type of interface, the

field variables should not have any components of these two modes. In a geometrical

interpretation, the projection of the state vector onto these two modes is zero, which

means that the field variables are orthogonal to the space spanned by these two modes.

This suggests that there are certain relations among the field variables that create

zero impact on the incident surface. This conclusion can be drawn equally when a

poro-elastic material is exposed to open air, or for a different interface type (e.g.,

when the interface of the poro-elastic material has a surface treatment such as a stiff

panel) by following the same SVD decomposition process, but the identified modal
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space to which the state is orthogonal may be different and may have a different

dimension as well.

In the second step, the SVD is applied to [M2], so that[
M2

]
4×6

=
[
U2

]
4×4

[
S2

]
4×6

[
V2

]H

6×6
, (3.22)

which allows Eq. (3.3) to be rewritten as[
U2

]
4×4

[
S2

]
4×6

[
V2

]H

6×6

[
σz uz s Uz τxz ux

]T

z=d
=
[
N2

]
4×2

[
p vz

]T

z=d
,

(3.23)

where [S2] can similarly be expressed in terms of its singular values as[
S2

]
4×6

=

[ [
Σ
]

4×4
[0]

]
, (3.24)

and an intermediate matrix, [B], can be defined as[
B
]

4×2
=
[
U2

]H

4×4

[
N2

]
4×2

, (3.25)

so that Eq. (3.3) can be rewritten as

[ [
Σ
]

[0]
] [

V2

]H



σz

uz

s

Uz

τxz

ux


z=d

=
[
B
] p

vz


z=d

. (3.26)

In contrast to splitting the matrices, as in the first step, here the matrices are given

supplemental fifth and sixth rows


[
Σ
]

[0]

[0]
[
I
]

2×2

[V2

]H



σz

uz

s

Uz

τxz

ux


z=d

=


[
B
]

[0]

[0]
[
I
]

2×2



p

vz

X1

X2


z=d

, (3.27)
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where

X1 = V2(5, 1)σz + V2(5, 2)uz + V2(5, 3)s+ V2(5, 4)Uz + V2(5, 5)τxz + V2(5, 6)ux,

(3.28)

and

X2 = V2(6, 1)σz + V2(6, 2)uz + V2(6, 3)s+ V2(6, 4)Uz + V2(6, 5)τxz + V2(6, 6)ux.

(3.29)

In Eq. (3.26), when the rows of the matrix [V2] are interpreted as modes for the

poro-elastic material state vector at the interface on the transmission side (i.e., z = d)

of the porous material, it is noted that the coefficients of the last two modes (i.e.,

the inner product of the last two rows of [V2] to the state vector) do not produce

any impact on acoustic field variables, p and vz, in the interface equation. Those two

modes can thus be identified as two free modes for the state vector, meaning that

the components of these two modes in the state vector cannot be identified by just

looking at this particular interface, nor do they have any impact on the acoustic field.

Another reason for introducing the two unity diagonal elements in the Eq. (3.27) is

to add the two arbitrary modal coefficients (i.e., X1 and X2) to the state vector that

is projected by using transfer matrix formulation. The formulation involving p and vz

is shown as the right-hand side in Eq. (3.27), and the SVD operation is then used to

reduce the six-by-six poro-elastic layer transfer matrix to four-by-four, as explained

below.

A second coupling matrix, [C2], can then be defined as

[
C2

]
6×4

=
[
V2

]
[
Σ
]−1

4×4
[0]

[0]
[
I
]

2×2



[
B
]

4×2
[0]

[0]
[
I
]

2×2

 , (3.30)
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so that 

σz

uz

s

Uz

τxz

ux


z=d

=
[
C2

]

p

vz

X1

X2


z=d

. (3.31)

Finally, based on Eqs. (3.1), (3.21) and (3.31), a relation can be found between

the acoustic properties, p and vz, on both sides of the layer, and it is expressed as
p

vz

0

0


z=0

=
[
C1

]
4×6

[
T
]

6×6

[
C2

]
6×4


p

vz

X1

X2


z=d

=
[
TSVD

]
4×4


p

vz

X1

X2


z=d

, (3.32)

where [TSVD] denotes the dimension-reduced transfer matrix of the poro-elastic layer

after the SVD but before the QRD process, described in the next subsection.

Previously, it has been noted that, by looking at the two interfaces separately,

two zero modes can be identified on the incident side of the layer, and two free modes

can be identified on the transmission side; however, Eq. (3.32) implies that the

undetermined coefficients of the two free modes can only be calculated by combining

the information on both interfaces. This means that the zero modal coefficients on

one interface provide the necessary information to determine the coefficients of the

free modes on the other interface.

3.4.3 QR Decomposition (QRD)

The application of SVD has made it possible to reduce the six-by-six transfer

matrix to a dimension of four-by-four. That is, in Eq. (3.32), a formulation relating

p and vz at z = 0 with those at z = d has been derived but with additional zeros

and free modes. In this section, QR decomposition (QRD) is applied to condense this
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matrix relation, i.e., to remove the additional zeros and free modes, which then gives

the final transfer matrix formulation after a further reduction of the transfer matrix

dimension from four-by-four to two-by-two. To achieve this further reduction, the

QRD is applied to [TSVD]: i.e.,[
TSVD

]
4×4

=
[
Q
]

4×4

[
R
]

4×4
, (3.33)

where [Q] is orthogonal, and [R] is upper-triangular, so that, Eq. (3.32) can be

rewritten as

[
D
]

4×2

 p
vz


z=0

=


R11 R12 R13 R14

0 R22 R23 R24

0 0 R33 R34

0 0 0 R44




p

vz

X1

X2


z=d

, (3.34)

where

[
D
]

=



[
D̃
]

2×2[
~d3

]T

1×2[
~d4

]T

1×2


=
[
Q
]H

4×4


1 0

0 1

0 0

0 0

 . (3.35)

Further X1 and X2 can be expressed in terms of elements in [D] and [R], and so Eq.

(3.34) can be rewritten as

[
E
]

2×2

 p
vz


z=0

=

R11 R12

0 R22

 p
vz


z=d

, (3.36)

where [
E
]

=
[
D̃
]
− 1

R33

R13

R23

(~d3 −
R34

R44

~d4

)
− 1

R44

R14

R24

 ~d4. (3.37)

Finally, the acoustical properties on both sides of the layered structure can be con-

nected by the dimension-reduced, two-by-two transfer matrix as p
vz


z=0

=
[
TSVDQR

]
2×2

 p
vz


z=d

=

T11 T12

T21 T22

 p
vz


z=d

, (3.38)
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where T11 T12

T21 T22

 =
[
E
]−1

2×2

R11 R12

0 R22

 . (3.39)

Note that the dimension-reduced, two-by-two matrix represents the poro-elastic

layer when it has fluid on both sides; when the layer is bonded (glued) to facing

panel(s), it represents the poro-elastic layer plus the stiff panel(s), which means that

the higher-order element to be reduced is either the poro-elastic layer itself or the

poro-elastic layer with its surface treatment(s).

3.4.4 An Alternative Matrix Dimension Reduction Method and a Com-

parison to the SVD+QRD Method

Recall that the main motivation of the matrix dimension reduction was to shrink

the higher-order elements to two-by-two so that all the layered elements can be mul-

tiplied together as a series of two-by-two matrices. Here, an alternative calculation

routine is presented, which is numerically-equivalent to the SVD+QRD method in-

troduced in Sections 3.4.2 and 3.4.3, and which may allow more straight-forward

computation. The introduction of this alternative method serves to emphasize some

advantage of the SVD+QRD method, as well as to point out there is more than one

way to achieve the matrix dimension reduction. This approach was originally sug-

gested by the reviewer of an article submitted to the Journal of Applied Physics by

Xue, Bolton and Liu [55].

First, Eqs. (3.2) and (3.3) can be written in matrix form as

[
A
]

8×8
X =


[0][

N2

]
4×2


 p
vz


z=d

, (3.40)
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where

[
A
]

=


−
[
N1

] [
M1

]
[0]

[
M2

] [
T
]−1

 (3.41)

and X is a vector combining the field variables at z = 0: i.e.,

X =
[
p vz σz uz s Uz τxz ux

]T

z=0
. (3.42)

Therefore Eq. (3.40) can be rewritten as

X =
[
A
]−1


[0][

N2

]
4×2


 p
vz


z=d

, (3.43)

where

[
A
]−1

=


[
A11

]
2×4

[
A12

]
2×4[

A21

]
6×4

[
A22

]
6×4

 (3.44)

Then a relation between p and vz at z = 0 and those at z = d can be written as p
vz


z=0

=

T11 T12

T21 T22

 p
vz


z=d

, (3.45)

where T11 T12

T21 T22

 =
[
A12

]
2×4

[
N2

]
4×2

. (3.46)

This alternative calculation process is certainly much briefer than the SVD+QRD

procedure described above. However, an important advantage of the SVD+QRD

method is the ability to identify physical information including the zero and free

modes on either side of the layered structure, which do not arise naturally from the

alternative method.
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3.4.5 Calculation of Acoustical Properties

Based on the elements in the dimension-reduced transfer matrix, [T11, T12;T21, T22],

the transmission coefficient, TC, reflection coefficient, RC, the absorption coefficient,

AC, and transmission loss, TL, can then be calculated based on Ref. [30], and as

described in Eqs. (2.38) to (2.42) of Section 2.4.1.

3.5 Transfer Matrix Dimension Reduction for an Elastic Solid Layer

The configuration shown in Figure 3.2 will help to illustrate the general approach

of the matrix dimension reduction process by the SVD-QRD method for an elastic

solid layer. Due to the similarity of the reduction process to that described in Section

3.4, this section is not divided into subsections.

First, the vectors of propagating waves within the layer at both surfaces of the

solid layer can be connected by a four-by-four transfer matrix, [T]: i.e.,[
vsx vsz σsz τ sxz

]T

z=0
=
[
T
]

4×4

[
vsx vsz σsz τ sxz

]T

z=d
, (3.47)

where vsx and vsz are the x- and z-direction velocities, respectively, and σsz and τ sxz

are the normal and shear stresses, respectively. The detailed expression of [T] for an

elastic solid layer can be found in earlier literature, such as in Refs. [17,43].

Similarly, the field variable vectors for the acoustic field and elastic solid field on

both sides of the layer can be connected by boundary condition matrices, [M1] and

[N1], on the incident side[
M1

]
3×4

[
vsx vsz σsz τ sxz

]T

z=0
=
[
N1

]
3×2

[
p vz

]T

z=0
, (3.48)

and by [M2] and [N2] on the transmission side[
M2

]
3×4

[
vsx vsz σsz τ sxz

]T

z=d
=
[
N2

]
3×2

[
p vz

]T

z=d
. (3.49)
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To be more specific, when the layer has fluid on both its sides, the B.C.s to be satisfied

are one normal stress condition, one normal velocity condition and one shear stress

condition: i.e.,

σsz = −p, (3.50a)

vsz = vz, (3.50b)

τ sxz = 0. (3.50c)

Thus,

[
M1

]
=
[
M2

]
=


0 1 0 0

0 0 1 0

0 0 0 1

 , (3.51)

and

[
N1

]
=
[
N2

]
=


0 1

−1 0

0 0

 . (3.52)

Further, when the layer is bonded to a stiff panel, the B.C.s to be satisfied include

three motion continuity conditions, one shear stress condition, and one panel equation

of motion, as per Ref. [18]: i.e.,

vz = iωwt, (3.53a)

vsz = iωwt, (3.53b)

vsx = iω

[
wp(−/+)ikx

hp
2
wt

]
, (3.53c)

(+/−)τ sxz =
(
Dpk

2
x −msω

2
)
wp, (3.53d)
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(+/−)p(+/−)σsz − ikx
hp
2
τ sxz =

(
Dk4

x −msω
2
)
wt. (3.53e)

Note that in B.C.s (3.53c) to (3.53e), and for the given coordinate system, the first

signs are used when the panel is bonded to the incident side of the layer, and the

second signs are used when the panel is bonded to the transmission side of the layer.

Therefore, in this case,

[
M1

]
=


0 −i (Dk4

x −msω
2) /ω −1 ikxhp/2

−i/ω −kxhp/(2ω) 0 −1/ (Dpk
2
x −msω

2)

0 1 0 0

 , (3.54a)

[
M2

]
=


0 −i (Dk4

x −msω
2) /ω 1 ikxhp/2

−i/ω kxhp/(2ω) 0 1/ (Dpk
2
x −msω

2)

0 1 0 0

 , (3.54b)

and

[
N1

]
=


1 0

0 0

0 1

 , (3.55a)

[
N2

]
=


−1 0

0 0

0 1

 . (3.55b)

Then, by the application of SVD, [N1] can be decomposed as follows[
N1

]
3×2

=
[
U1

]
3×3

[
S1

]
3×2

[
V1

]H

2×2
, (3.56)

and Eq. (3.48) can be rewritten as[
M1

]
3×4

[
vsx vsz σsz τ sxz

]T

z=0

=
[
U1

]
3×3

[
S1

]
3×2

[
V1

]H

2×2

[
p vz

]T

z=0
, (3.57)
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where [S1] consists of the singular values, λ1 and λ2, in the form

[
S1

]
3×2

=


λ1 0

0 λ2[
0
]

 , (3.58)

and the intermediate matrix, [A], for the elastic solid case is introduced here as

[
A
]

3×4
=
[
U1

]H

3×3

[
M1

]
3×4

=

[Aa]2×4

[Ab]1×4

 , (3.59)

so that Eq. (3.48) can further be rewritten as

[
A
]

vsx

vsz

σsz

τ sxz


z=0

=


λ1 0

0 λ2[
0
]


[
V1

]H

 p
vz


z=0

. (3.60)

Therefore, the coupling matrix, [C1], for the elastic solid case can be defined as

[
C1

]
3×4

=

[C1a]2×4

[C1b]1×4

 , (3.61)

where [
C1a

]
=
[
V1

]λ1 0

0 λ2

[Aa

]
, (3.62)

and [
C1b

]
=
[
Ab

]
, (3.63)

so that 
p

vz

0


z=0

=
[
C1

]
3×4


vsx

vsz

σsz

τ sxz


z=0

. (3.64)
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Note that in contrast to poro-elastic cases, Eq. (3.64) shows that only one zero mode

can be identified for the field variables (i.e., vsx, v
s
z, σ

s
z and τ sxz) on the incident side of

an elastic solid layer-involved structure.

In the second step, the SVD is applied to [M2] such that[
M2

]
3×4

=
[
U2

]
3×3

[
S2

]
3×4

[
V2

]H

4×4
, (3.65)

and so that Eq. (3.49) can be rewritten as[
U2

]
3×3

[
S2

]
3×4

[
V2

]H

4×4

[
vsx vsz σsz τ sxz

]T

z=d
=
[
N2

]
3×2

[
p vz

]T

z=d
, (3.66)

where [S2] can similarly be expressed in terms of its singular values as[
S2

]
3×4

=

[ [
Σ
]

3×3
[0]

]
, (3.67)

and the intermediate matrix, [B], for the elastic solid case is introduced here as[
B
]

3×2
=
[
U2

]H

3×3

[
N2

]
3×2

, (3.68)

so that Eq. (3.49) can be rewritten as

[ [
Σ
]

3×3
[0]

] [
V2

]H


vsx

vsz

σsz

τ sxz


z=d

=
[
B
] p

vz


z=d

. (3.69)

In contrast to splitting the matrices, as in the first step, here the matrices are given

a single supplemental row: i.e.,


[
Σ
]

3×3
[0]

[0] 1

[V2

]H


vsx

vsz

σsz

τ sxz


z=d

=


[
B
]

[0]

[0] 1



p

vz

X3


z=d

, (3.70)

where X3, like X1 and X2 previously, is an intermediate value, for the QRD below,

that can be expressed as

X3 = V2(4, 1)vsx + V2(4, 2)vsz + V2(4, 3)σsz + V2(4, 4)τ sxz. (3.71)
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Also, X3 is the one undetermined modal coefficients that can be observed on the

transmission side of the solid layer. Therefore, a second coupling matrix, [C2], can

be defined as

[
C2

]
4×3

=
[
V2

]
[
Σ
]−1

3×3
[0]

[0] 1



[
B
]

3×2
[0]

[0] 1

 , (3.72)

so that 
vsx

vsz

σsz

τ sxz


z=d

=
[
C2

]
4×3


p

vz

X3


z=d

. (3.73)

Finally, based on Eqs. (3.47), (3.64) and (3.73), a relation can be found between

the acoustic properties, p and vz, on both sides of the layer, and it is expressed as
p

vz

0


z=0

=
[
C1

]
3×4

[
T
]

4×4

[
C2

]
4×3


p

vz

X3


z=d

=
[
TSVD

]
3×3


p

vz

X3


z=d

, (3.74)

where [TSVD] is the dimension-reduced transfer matrix of the elastic solid layer after

the SVD, but before the QRD.

The QRD can then be applied to [TSVD] of the elastic solid, and Eq. (3.74) can

be rewritten as

[
D
]

3×2

 p
vz


z=0

=


R11 R12 R13

0 R22 R23

0 0 R33



p

vz

X3


z=d

, (3.75)

where

[
D
]

=


[
D̃
]

2×2[
~d3

]T

1×2

 =
[
Q
]H

3×3


1 0

0 1

0 0

 . (3.76)
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Further X3 can be solved for in terms of the elements in [D] and [R], and finally

the acoustical properties on both sides of the elastic solid layered structure can be

connected by a dimension-reduced, two-by-two transfer matrix as p
vz


z=0

=

T11 T12

T21 T22

 p
vz


z=d

, (3.77)

where T11 T12

T21 T22

 =
[
E
]−1

2×2

R11 R12

0 R22

 , (3.78)

and

[
E
]

=
[
D̃
]
− 1

R33

R13

R23

 ~d3. (3.79)

Further, the relation shown in Eqs. (3.77) to (3.79) can be combined with Eqs. (2.38)

to (2.42) described in Section 2.4.1 to calculate the acoustical properties for cases that

involve an elastic solid layer.

Note that an adhesive layer or sound insulation panel involved in an acoustical

treatment can both be modeled as an elastic solid layer by using the calculation

described above in Section 3.5. The elastic solid layer considered in Section 3.8 below

was simply used to verify the proposed TMM model accuracy, and it does not refer

to a practical treatment.

3.6 Poro-Elastic Layer Surface Treatments Coupling Methodologies

3.6.1 Impermeable Thin Treatments Coupling Methodologies

In the last chapter, different surface treatments were introduced in terms of two-

by-two matrices (see Eq. (2.23) and expressions of zm in Eqs. (2.25) to (2.34)) to

couple with a rigid or limp porous layer, and previously in this chapter, the mod-

ified TMM has been introduced to allow stiff panels to be bonded to poro-elastic
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layers in Section 3.4. Here, coupling methodologies can be applied similarly to other

impermeable surface treatments to allow those to be bonded to a poro-elastic layer.

When a rigid or flexible resistive screen, or a limp impermeable membrane is

bonded to a poro-elastic layer, the B.C.s comprise three motion continuity conditions,

one normal stress-pressure condition (i.e., equation of motion of the treatment), and

one shear stress condition: i.e.,

vz = iωwt, (3.80a)

wt = uz, (3.80b)

wt = Uz, (3.80c)

(+/−)p(+/−)s(+/−)σz = iωzmwt, (3.80d)

τxz = 0, (3.80e)

where the poro-elastic layer field variables, σz, s, τxz, uz and Uz are as have been

introduced previously in this chapter, zm is the transfer impedance of the surface

treatment, for which the expressions can be found in Eqs. (2.25), (2.26) and (2.27)

for a rigid resistive screen, a limp impermeable membrane, and a flexible resistive

screen, respectively, and wt is the transverse displacement of the treatment, which

can be eliminated to ensure that the dimensions of boundary condition matrices,

[M1], [M2], [N1] and [N2], are consistent with previous cases: i.e.,

[
M1

]
=


−1 iωzm −1 0 0 0

0 0 0 0 1 0

0 iω 0 0 0 0

0 0 0 iω 0 0

 , (3.81a)
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[
M2

]
=


1 iωzm 1 0 0 0

0 0 0 0 1 0

0 iω 0 0 0 0

0 0 0 iω 0 0

 , (3.81b)

and

[
N1

]
=


1 0

0 0

0 1

0 1

 , (3.82a)

[
N2

]
=


−1 0

0 0

0 1

0 1

 . (3.82b)

3.6.2 Rigid/Flexible/Stiff Micro-Perforated Panels Coupling Methodolo-

gies

Originally introduced by Maa [56] in 1975 and then extended to a more compre-

hensive theory [28,57], the Micro-Perforated Panel (MPP) has been proven to be an

effective sound absorber in a variety of applications, such as duct or fan noise reduc-

tion [58], or serving as acoustical liners for a vehicle engine room [59]. Similar to a

porous layer, an MPP can be generally divided into three types depending on the

nature of its solid part: i.e., (1) a rigid MPP that does not allow the motion of the

panel, while the sound absorption is achieved only by the power dissipation due to

the viscous and thermal effects within the perforations (holes); (2) a flexible (limp)

MPP that allows the motion of the panel, but has negligible flexural stiffness; and (3)

a stiff MPP that allows motion of the panel, and has non-negligible flexural stiffness.

Previously, the coupling between each of these three types of MPP and a limp or

rigid porous layer has been briefly introduced in Section 2.4.1, which was achieved
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by multiplying the two-by-two transfer matrices of both layered elements together.

Here, in this section, coupling methodologies are introduced to achieve bonding a

rigid/flexible/stiff MPP with a poro-elastic layer.

When a rigid MPP is bonded to a poro-elastic layer, the B.C.s comprise two normal

volume velocity conditions, one normal stress-pressure condition (i.e., equation of

motion of the fluid in the hole), one motion termination condition for the solid part

of the panel, and one shear stress condition: i.e.,

vz = φmppvh, (3.83a)

φmppvh = iωφUz, (3.83b)

(+/−)p(+/−)φs(+/−)(1− φ)σz = φmppzmrvh, (3.83c)

uz = 0, (3.83d)

τxz = 0, (3.83e)

where vh is the normal (z-direction) acoustic particle velocity of the fluid (air) in the

hole, φmpp and φ are the perforation rate (porosity) of the MPP and the porosity of

the poro-elastic layer, respectively, and zmr is the rigid MPP transfer impedance as

introduced in Eq. (2.29) of Section 2.4.1. Similarly to the bonded stiff case and the

cases to be introduced in the following, and for the coordinate system specified here,

the first signs in Eq. (3.83c) are used when the MPP is bonded to the incident side of

the layer, and the second signs are used when the MPP is bonded to the transmission

side of the layer. Therefore, in this case, vh can be eliminated by algebra to maintain

the same dimension of boundary condition matrices, and

[
M1

]
=


0 1 0 0 0 0

−(1− φ) 0 −φ iωφzmr 0 0

0 0 0 iωφ 0 0

0 0 0 0 1 0

 , (3.84a)
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[
M2

]
=


0 1 0 0 0 0

1− φ 0 φ iωφzmr 0 0

0 0 0 iωφ 0 0

0 0 0 0 1 0

 , (3.84b)

and

[
N1

]
=


0 0

1 0

0 1

0 0

 , (3.85a)

[
N2

]
=


0 0

−1 0

0 1

0 0

 . (3.85b)

When a flexible (limp) MPP is bonded to a poro-elastic layer, the B.C.s comprise

two normal volume velocity conditions, two normal stress-pressure conditions (i.e.,

equation of motion of the fluid in the hole, and equation of motion of the panel), one

motion continuity condition between the solid part of the panel and the poro-elastic

medium solid phase, and one shear stress condition: i.e.,

vz = (1− φmpp)vs + φmppvh, (3.86a)

φmppvh = iω(1− φ)uz + iωφUz, (3.86b)

(+/−)(1− φmpp)p(+/−)(1− φmpp)s(+/−)(1− φmpp)σz = iωmsmppvs, (3.86c)

(+/−)p(+/−)φs(+/−)(1− φ)σz = φmppzmrvh, (3.86d)

vs = iωuz, (3.86e)



59

τxz = 0, (3.86f)

where vs is the normal (z-direction) velocity of the solid part of the panel, and

msmpp = ρmpptmpp is the mass per unit area of the panel based on its density, ρmpp,

and thickness, tmpp. In this case, vh and vs can both be eliminated by algebra to

maintain consistent boundary condition matrices dimensions, and

[
M1

]
=


−(1− φmpp) −msmppω

2 −(1− φmpp) 0 0 0

−(1− φ) iω(1− φ)zmr −φ iωφzmr 0 0

0 iω(2− φ− φmpp) 0 iωφ 0 0

0 0 0 0 1 0

 , (3.87a)

[
M2

]
=


1− φmpp −msmppω

2 1− φmpp 0 0 0

1− φ iω(1− φ)zmr φ iωφzmr 0 0

0 iω(2− φ− φmpp) 0 iωφ 0 0

0 0 0 0 1 0

 , (3.87b)

and

[
N1

]
=


1− φmpp 0

1 0

0 1

0 0

 , (3.88a)

[
N2

]
=


−(1− φmpp) 0

−1 0

0 1

0 0

 . (3.88b)

When a stiff MPP is bonded to a poro-elastic layer, the B.C.s are similar to the

flexible MPP case except for the additional consideration of flexural and longitudinal

stiffnesses in the solid part of the panel for the normal stress-pressure equation of

motion, and for the shear stress condition: i.e.,

vz = (1− φmpp)vs + φmppvh, (3.89a)
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φmppvh = iω(1− φ)uz + iωφUz, (3.89b)

(+/−)(1− φmpp)p(+/−)(1− φmpp)s(+/−)(1− φmpp)σz − ikx
tmpp

2
(1− φmpp)τxz

=
(
Dmppk

4
x −msmppω

2
) vs
iω
, (3.89c)

(+/−)p(+/−)φs(+/−)(1− φ)σz = φmppzmrvh, (3.89d)

vs = iωuz, (3.89e)

(+/−)τxz =
(
Dpmppk

2
x −msmppω

2
) [
ux(+/−)ikx

tmpp

2

vs
iω

]
, (3.89f)

where ux is the x-direction displacement of the solid phase of the poro-elastic layer,

Dmpp =
[
t3mppE0mpp(1 + iηmpp)

]
/
[
12(1− ν2

mpp)
]

and Dpmpp = E0mpptmpp are the flex-

ural and longitudinal stiffnesses of the panel per unit width in the y-direction, re-

spectively, based on tmpp, the Young’s modulus, E0mpp, the loss factor, ηmpp, and the

Poisson’s ratio, νmpp, of the MPP. In this case, vh and vs can both be eliminated by

algebra to maintain consistent boundary condition matrices dimensions, and[
M1

]
=

−(1− φmpp) Dmppk
4
x − ω2msmpp −(1− φmpp) 0 ikx

tmpp

2
(1− φmpp) 0

−(1− φ) iω(1− φ)zmr −φ iωφzmr 0 0

0 iω(2− φ− φmpp) 0 iωφ 0 0

0 −ikx tmpp

2
0 0 −1

(Dpmppk2x−ω2msmpp)
1

 ,

(3.90a)

[
M2

]
=

1− φmpp Dmppk
4
x − ω2msmpp 1− φmpp 0 ikx

tmpp

2
(1− φmpp) 0

1− φ iω(1− φ)zmr φ iωφzmr 0 0

0 iω(2− φ− φmpp) 0 iωφ 0 0

0 ikx
tmpp

2
0 0 1

(Dpmppk2x−ω2msmpp)
1

 ,

(3.90b)
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and

[
N1

]
=


1− φmpp 0

1 0

0 1

0 0

 , (3.91a)

[
N2

]
=


−(1− φmpp) 0

−1 0

0 1

0 0

 . (3.91b)

Note that the flexible and stiff MPPs-related B.C.s that are introduced here were

developed based on the inspiration from Ref. [29],

3.7 Transversely Isotropic Poro-Elastic Layers Coupling Methodology

Previously in this chapter, the poro-elastic layer was assumed to be fully isotropic,

i.e., the material’s elasticity and other density properties are the same for x- y- and

z-directions within the material. However, a more realistic situation of transverse

isotropy should be considered, where a material’s properties are the same for in-plane

directions, x and y, but the normal direction z has different properties. The acoustical

theories of transversely isotropic poro-elastic (TIP) media have been studied and

comprehensively summarized in Refs. [60] (for the study of smart foams) and [61] (for

the study of honeycomb composite structures), from both of which the B.C.s were

implemented by using the ACM to realize coupling of the TIP with other layered

element.

For the purpose of brevity, the acoustical theories of TIP media will not be fully

recalled in this thesis. None-the-less, it should be highlighted that there are also six

field variables, σz, uz, s, Uz, τxz and ux, propagating within a TIP medium, which are

the same variables as the fully isotropic poro-elastic medium. This is important for
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the modified TMM to be implemented to couple the TIP media with either a surface

treatment, a panel structure, or any other layered elements represented by two-by-two

matrices, since only the six-by-six transfer matrix [T] needs to be swapped from the

fully isotropic [17, 45] to the TIP expression, but the rest of the matrix dimension

reduction process maintains exactly the same as described previously in this chapter,

and the expression and derivation of [T] of a TIP medium can also be found in

Refs. [60, 61].

3.8 The Modified TMM Model Validation

By assigning the bulk properties of the poro-elastic medium (i.e., the airflow

resistivity, σ, porosity, φ, tortuosity, α∞, bulk density, ρb, layer thickness, d, Young’s

modulus, E1, mechanical loss factor, ηm, and Poisson’s ratio, ν, as listed in Table

3.1), the properties of the elastic solid layer (i.e., the bulk density, ρsb, layer thickness,

ds, Young’s modulus, Es
1, mechanical loss factor, ηsm, and Poisson’s ratio, νs, as listed

in Table 3.2), the panel properties (i.e., hp, E0, ηp, νp and ρp as listed in Table 3.3),

and the ambient properties including the dynamic viscosity of air, η, Prandtl number,

B2, specific heat ratio, γ, plus ρ0, c0 and θ, as listed in Table 3.4, the AC and TL

were calculated for different layered configurations by using both the classical ACM

model and the TMM model proposed here, and the results are shown in Figures 3.3 to

3.9. The comparisons for all the layered structures show excellent agreement, which

confirms the accuracy of the newly-developed TMM model. At the same time, it

can be observed by comparing Figures 3.5 and 3.6, that the introduction of air gaps

between the panel and the poro-elastic treatment helps to increase the high frequency

transmission loss. Also, it can be seen that whether an air gap is introduced, either

just at the front or back of the treatment, does not significantly affect the results:

compare Figures 3.6 and 3.7.

Further validation of the modified TMM model was conducted by regenerating the

absorption coefficient of a classic case study described in Ref. [62], which predicted
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the normal incidence sound absorption coefficient of four cases that all included a limp

impermeable membrane and a poro-elastic foam with a rigid backing. By putting an

1 mm air gap (airspace) between the membrane and the foam and/or between the

foam and the backing, the absorption coefficient results for the four cases: i.e., (1)

bonded membrane-bonded backing (BB), (2) unbonded membrane-bonded backing

(UB), (3) bonded membrane-unbonded backing (BU), and (4) unbonded membrane-

unbonded backing (UU), are shown in Figure 3.10. On the other hand, given the

same parameters as in Ref. [62] for the poro-elastic layer (σ = 1.3 × 105 Rayls/m,

φ = 0.9, α∞ = 6.025, ρb = 30 kg/m3, d = 2.5 cm, E1 = 4 × 105 Pa, ηm = 0.265 and

ν = 0.39), the limp membrane (ms = 45 g/m2), and the ambient parameters as listed

in Table 3.4 (except for θ = 0◦ in this case), the results of those four cases were easily

regenerated by using the modified TMM model, and are plotted in Figure 3.11. The

regeneration of the classic results again verified the modeling efficiency and prediction

accuracy of the modified TMM when coupling a poro-elastic layer with other layered

elements. And by comparing the absorption among the four cases described above,

an important finding, which was presented 25 years ago, should now be reemphasized

here that low frequency acoustical performance can be distinctly enhanced (without

sacrificing treatment depth) by separating the front surface treatment and/or rigid

backing from the poro-elastic layer.

3.9 Conclusions

In this chapter, a modified transfer matrix method (TMM) has been developed

for modeling and coupling multilayered acoustical systems that include higher-order

elements, such as fully isotropic poro-elastic, transversely isotropic poro-elastic (TIP)

and elastic solid layers. Based on the application of matrix operations, including sin-

gular value decomposition (SVD) and Q-R decomposition (QRD), to the boundary

condition matrices, the four-by-four or six-by-six transfer matrix (plus bonded sur-

face treatment(s) if applicable) can be reduced to a dimension of two-by-two, which
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facilitates their coupling with other elements represented by two-by-two matrices,

such as fluid (air) layers, and limp and/or rigid porous layers, limp impermeable

membranes, rigid/flexible resistive screens, flexurally-stiff panels, rigid/flexible/stiff

micro-perforated panels (MPPs), etc. The accuracy of the TMM model was verified

by comparison with the classical ACM model [18] for seven different cases involving

a poro-elastic layer or an elastic solid layer. And the prediction accuracy was also

verified by regenerating the normal incidence absorption coefficient results of four

layered systems that all involved a limp membrane and a poro-elastic layer with a

rigid backing.

Potential studies can be focused in the future on the Rayleigh wave effects [63] of

an elastic solid layer, which was investigated in Ref. [64], and by using the modified

TMM model, it can be observed in Figure 3.12 that the Rayleigh angle (marked by a

blue solid line) can be easily captured, below which structural resonances between field

variables within the elastic solid layer (ρsb = 2700 kg/m3, ds = 2.5 cm, Es
1 = 7× 1010

Pa, ηsm = 0, νs = 0.33, plus ρ0 = 1.21 kg/m3, c0 = 343 m/s, and θ ranging from 0 to

10 ◦) can also be observed.

The most obvious advantage of the proposed TMM pertains to modeling efficiency,

since every layer is treated separately and the coupling process is handled simply by

multiplication, which makes the redesign or remodeling of any multilayer configura-

tion easier compared to the classic ACM and GTM (global assembly) methods. Also,

the TMM model makes it convenient to observe the physical properties of interest

at any location or depth within the layered system, since the modeling process is

based on physical properties (note that a pseudo-inverse operation will cause a loss

of physical meaning, so it cannot be used here). On the contrary, for the recursive

transfer matrix method [47] mentioned above, the multilayer system is treated glob-

ally as a single system, and the coupling is achieved through a recursive mathematical

process involving the application of a series of matrix operations, so that the physical

meanings of properties within the layered system are suppressed. Furthermore, the

SVD process in the proposed TMM method also helps to identify the zero modes
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and free modes on the boundary of the layered treatment, which provides physical

insights that cannot be easily derived from the simple calculation routine introduced

in Section 3.4.4, for example.

The modified TMM model with full capability of model rigid/limp/elastic porous

media can now serve as an alternative method to the ACM to be used for the incor-

poration into the near-field damping (NFD) modeling process as showing in Figure

1.4. Note that in following chapters, rigid porous media will not be considered as an

ideal damping treatment due to their heavinesses in contrast to the lightweight re-

quirements in automotive and aerospace industries, and the TMM model was further

used in combination of the NFD model to predict and optimize limp porous layers’

near-field damping performance when applied to different vibrating structures in fol-

lowing chapters. On the other hand, the poro-elastic layer’s damping performance

will be examined still by using the combination of the NFD model and the ACM

model instead of the TMM model introduced in this chapter, and that decision was

mainly because of the numerical-stability of the ACM model and the simpleness of

the target layered structure to be studied in following chapters. It should be noted

that the TMM model will still be a preference when the target multilayered acousti-

cal/damping structure is complex and when the numerical-stability criteria are less

strict.
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Table 3.1. Parameters for the poro-elastic layer.

σ φ α∞ ρb d E1 ηm ν

40000 Rayls/m 0.9871 1.2 13.3 kg/m3 3 cm 106 Pa 0.005 0.3

Table 3.2. Parameters for the elastic solid layer.

ρsb ds Es
1 ηsm νs

1000 kg/m3 1 cm 107 Pa 0.5 0.4

Table 3.3. Parameters for the aluminum panel.

hp E0 ηp νp ρp

3 mm 7× 1010 Pa 0.003 0.33 2700 kg/m3

Table 3.4. Parameters for the air ambient environment when the
temperature is 25 ◦C.

η B2 γ ρ0 c0 θ

1.8×10−5 kg/(s·m) 0.71 1.402 1.21 kg/m3 343 m/s 40◦
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Figure 3.1. The general idea of the matrix dimension reduction pro-
cess for a poro-elastic layer-involved case by using the modified Trans-
fer Matrix Method (TMM).

Figure 3.2. The general idea of the matrix dimension reduction
process for an elastic solid layer-involved case by using the modified
Transfer Matrix Method (TMM).
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Figure 3.3. The predictions of the acoustical properties for a front-
open, rigid-backed poro-elastic layer: the modified TMM vs. the clas-
sical ACM.



69

Figure 3.4. The predictions of the acoustical properties for a poro-
elastic layer having open surfaces on both sides: the modified TMM
vs. the classical ACM.
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Figure 3.5. The predictions of the acoustical properties for a poro-
elastic layer having bonded stiff panels on both sides: the modified
TMM vs. the classical ACM.
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Figure 3.6. The predictions of the acoustical properties for a poro-
elastic layer having a bonded stiff panel at its front surface, and an
unbonded stiff panel with 1 cm air gap from its back surface: the
modified TMM vs. the classical ACM.
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Figure 3.7. The predictions of the acoustical properties for a poro-
elastic layer having an unbonded stiff panel with 1 cm air gap in front
of its front surface, and a bonded stiff panel at its back surface: the
modified TMM vs. the classical ACM.
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Figure 3.8. The predictions of the acoustical properties for an elastic
solid layer having open surfaces on both sides: the modified TMM vs.
the classical ACM.



74

Figure 3.9. The predictions of the acoustical properties for an elastic
solid layer having bonded stiff panels on both sides: the modified
TMM vs. the classical ACM.
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Figure 3.10. Normal incidence absorption coefficient for four cases
with a limp membrane bonded/unbonded with the poro-elastic foam,
and/or with the foam bonded/unbonded to the rigid backing.



76

Figure 3.11. Regeneration of the normal incidence absorption coeffi-
cient for the four cases with a limp membrane bonded/unbonded with
the poro-elastic foam, and/or with the foam bonded/unbonded to the
rigid backing.
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Figure 3.12. Structural resonances between Rayleigh waves below
the Rayleigh angle (blue line) of an aluminum layer modeled as an
elastic solid by the modified TMM model.



78

4. THE NEAR-FIELD DAMPING (NFD) MODEL

4.1 Introduction

In this chapter, the NFD modeling process is introduced in Sections 4.2, 4.3 and

4.4 by showing the derivation for the wavenumber and frequency domain responses

of three different panel structures including an infinitely-extended (unconstrained)

panel, a partially-constrained panel and a periodically-constrained panel. The process

of combining the acoustical model, TMM or ACM, and the NFD model is described

in Section 4.2 and Appendices B and C based on the unconstrained panel-involved

configuration, which provides a connection between the bulk properties and damping

performance of porous media. In Sections 4.2 and 4.3, the unconstrained and the

partially-constrained panels were modeled, respectively, when driven by a harmonic

line force excitation and with either a layer of limp porous or a poro-elastic damping

treatment. In Section 4.4, the periodically-constrained panel was modeled as being

driven by a distributed convective pressure wave excitation and with a layer of limp

porous damping treatment to simulate a porous damping layer-treated aircraft fuse-

lage structure. The process of Fourier transforming the wavenumber domain response

to the spatial domain is introduced in Section 4.5, and the power analysis based on

either wavenumber or spatial domain response is introduced in Section 4.6. Further,

the NFD model validation process is shown in Section 4.7 based on the partially-

constrained and periodically-constrained panel-involved cases.

4.2 A Layered Structure with a Harmonic Line Force-Driven, Infinitely-

Extended Panel: the Incorporation of Acoustical Models

For unconstrained panel structures, as shown in Figures 4.1, 4.2 and 4.3 (i.e.,

panels loaded by an acoustical medium on top and driven by a harmonic line force in
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a vacuum beneath), the governing equation of motion for the transverse displacement,

wt, can be expressed in the time and space domain as

D
∂4wt(x, t)

∂x4
+ms

∂2wt(x, t)

∂t2
= −p1(x, t) + Feiωtδ(x). (4.1)

where ms = ρphp is the mass per unit area of the panel based on its density, ρp, and

thickness, hp, and D =
[
h3
pE0(1 + iηp)

]
/
[
12(1− ν2

p)
]

is the flexural stiffness per unit

length in the y-direction of the panel based on hp, the Young’s modulus, E0, the loss

factor, ηp, and the Poisson’s ratio, νp. Note that ηp is the mechanical loss factor of

the panel, which is distinct from either ηm or ηe mentioned in the Introduction. In

addition, F is the forcing magnitude per unit length in the y-direction, and ω = 2πf is

the excitation frequency. Further, the governing equation can be Fourier transformed

to the frequency and wavenumber domain, and can be expressed in terms of ω and

trace wavenumber, kx, as

(
Dk4

x −msω
2
)
wt(kx, ω) = −p1(kx, ω) + F, (4.2)

At z = 0, the relation between the acoustic pressure, p1, and the acoustic particle

velocity, vz1, can be expressed as

p1 = Za1vz1, (4.3)

where Za1 is the normal acoustic impedance looking into the porous treatment: i.e.,

a layer of limp porous or poro-elastic medium. At z = d, a similar relation relates

the acoustic pressure, p2, and the acoustic particle velocity, vz2: i.e.,

p2 = Za2vz2, (4.4)

where Za2 is the normal acoustic impedance looking into the acoustic half-space, i.e.,

air, above the porous layer, which can be expressed as

Za2(kx, ω) =
ωρ0√
k2
a − k2

x

, (4.5)
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where ρ0 is the density of air, and ka is the complex wavenumber in the air expressed

as

ka =
ω(1− iηa)

c0

, (4.6)

in terms of the angular frequency, ω, the speed of sound in the air, c0, and the loss

factor of the air, ηa. Note that the air is here made slightly lossy to avoid a numerical

issue, which will be discussed in Section 4.5.1 in connection with an example involving

a unconstrained stiff panel that is directly loaded by an air half-space.

Therefore, the governing equation can be rewritten as

Zm(kx, ω)vt(kx, ω) = −Za1(kx, ω)vz1(kx, ω) + F, (4.7)

where Zm is the mechanical impedance of the panel, which can be expressed as

Zm(kx, ω) = i
[
ωms − (D/ω)k4

x

]
. (4.8)

Note that vz1 = vt = iωwt, due to the motion continuity between the panel and the

porous layer.

When an unconstrained panel is loaded by a limp porous layer plus an air half-

space as shown in Figure 4.1, the wavenumber domain velocity response of the panel

can be expressed as

vt(kx, ω) = vz1(kx, ω) =
F

Zm(kx, ω) + Za1(kx, ω)
, (4.9)

where vt(kx, ω) together with Za1(kx, ω) and vz2(kx, ω) can be implicitly solved by

using the TMM model [21] given the bulk properties (σ, φ, ρb, d and α∞) of the limp

porous medium and the ambient properties (ρ0, ηa, c0, Prandtl number, B2, specific

heat ratio, γ, and the dynamic viscosity of air, η). The details of that solution process

are given in Appendix B.

If the limp porous layer is replaced by a poro-elastic layer as shown in Figure 4.2,

and the layer is assumed to be bonded to the panel, then p1 at z = 0 in Eq. (4.2) can

be expressed as

p1 = −s− σz + ikx
hp
2
τxz, (4.10)
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and the boundary conditions at z = 0 can be expressed as

uz = wt, (4.11a)

Uz = wt, (4.11b)

ux = wp + ikx
hp
2
wt, (4.11c)

τxz =
(
Dpk

2
x −msω

2
)
wp, (4.11d)

s+ σz − ikx
hp
2
τxz + F =

(
Dk4

x −msω
2
)
wt, (4.11e)

and at z = d as

s = −φpb, (4.11f)

σz = −(1− φ)pb, (4.11g)

iω(1− φ)uz + iωφUz = vzb, (4.11h)

τxz = 0, (4.11i)

where wt and wp are the transverse and longitudinal displacements of the panel,

respectively, Dp = E0hp is the longitudinal stiffness per unit length in the y-direction

of the panel, uz and Uz are the z-direction displacements for the solid and fluid phases

of the poro-elastic medium, respectively, ux is the x-direction displacement for the

solid phase, τxz is the shear force per unit material area acting on the solid phase

in the x-z plane, s is the force per unit material area acting on the fluid phase of

the poro-elastic medium (opposite in sign to a pressure), σz is the force per unit

material area acting on the solid phase of the poro-elastic medium in the z-direction,
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and pb and vzb are the acoustic pressure and acoustic particle velocity when z ≥ d,

respectively.

If the connection between the poro-elastic layer and the panel is changed from

“bonded” to “unbonded” as shown in Figure 4.3, and assuming that the layer is

resting on the panel without any additional means of connection (i.e., when it is

assumed that the panel and poro-elastic layer are separated by a zero-depth airspace),

then p1 at z = 0 in Eq. (4.2) can be expressed as

p1 = pa, (4.12)

and the boundary conditions at z = 0 can be expressed as

−pa + F =
(
Dk4

x −msω
2
)
wt, (4.13a)

vza = iωwt, (4.13b)

s = −φpa, (4.13c)

σz = −(1− φ)pa, (4.13d)

iω(1− φ)uz + iωφUz = vza, (4.13e)

τxz = 0, (4.13f)

and at z = d as

s = −φpb, (4.13g)

σz = −(1− φ)pb, (4.13h)

iω(1− φ)uz + iωφUz = vzb, (4.13i)
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τxz = 0, (4.13j)

where pa and vza are the acoustic pressure and acoustic particle velocity, respectively,

in the infinitesimal space between the panel and the poro-elastic layer when they are

unbonded.

The wavenumber domain velocity response of the panel for a poro-elastic medium-

involved case (either bonded or unbonded) can then be expressed as

vt(kx, ω) = vz1(kx, ω) = iωwt(kx, ω), (4.14)

where wt(kx, ω) together with Za1(kx, ω) and vz2(kx, ω) can be evaluated explicitly by

using the ACM model [18] given the bulk properties (σ, φ, ρb, d, α∞, E1, ν and ηm)

of the poro-elastic medium and the ambient properties (ρ0, ηa, c0, B2, γ and η). The

details of that solution process are included in Appendix C.

4.3 A More Realistic Structure with a Harmonic Line Force-Driven,

Partially-Constrained Panel

To create a more realistic scenario, two identical constraints both with finite trans-

lational inertia, ml, and finite rotational inertia, Jl, were then added to the panel

structure to make it partially-constrained as shown in Figures 4.4 and 4.5. The gov-

erning equation of the partially-constrained layered structure can then be formed by

adding the reaction force term, fr, to Eq. (4.1), as in

D
∂4wt(x, t)

∂x4
+ms

∂2wt(x, t)

∂t2
= −p1(x, t) + Feiωtδ(x) + fr(x, t), (4.15)

where fr can be expressed as a summation of the reaction forces due to the transla-

tional and rotational inertias of the two identical constraints as

fr(x, t) =
2∑
j=1

(
−ml

∂2wt(x, t)

∂t2

)
δ(x− xl,j) +

2∑
j=1

(
−Jl

∂2θ(x, t)

∂t2

)
δ′(x− xl,j),

(4.16)
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and where xl,j is the location of each constraint, and θ = ∂wt/∂x = −ikxwt is the

angular displacement of the panel.

By Fourier transforming Eq. (4.15) from the time and space domain to the fre-

quency and wavenumber domain, the governing equation can be expressed as

Zm(kx, ω)vt(kx, ω) = −Za1(kx, ω)vz1(kx, ω) + F + fr(kx, ω), (4.17)

where Zm (by using Eq. (4.8)) and Za1 (either by using Eq. (B.2) for the limp layer

case, or by using Eq. (C.19) for the elastic layer case) can both be evaluated based

on the unconstrained calculation routine described in Section 4.2. Then the motion

continuity: i.e., vt = vz1, and the relation between the linear and angular velocities

of the panel: i.e., θ̇ = −ikxvt, can be applied to Eq. (4.17) to derive the wavenumber

domain linear and angular velocity responses of the panel

vt(kx, ω) = vz1(kx, ω) =
F + fr(kx, ω)

Zm(kx, ω) + Za1(kx, ω)
, (4.18a)

θ̇(kx, ω) = −ikxvt(kx, ω) = −ikx
F + fr(kx, ω)

Zm(kx, ω) + Za1(kx, ω)
, (4.18b)

with

fr(kx, ω) = −iωml

2∑
j=1

vt(xl,j, ω)eikxxl,j − kxωJl
2∑
j=1

θ̇(xl,j, ω)eikxxl,j . (4.19)

Equations (4.18a) and (4.18b) can be inverse wavenumber Fourier transformed at

x = xl,1 and x = xl,2 to obtain

vt(xl,1, ω) =
1

2π

∫ +∞

−∞

F + fr(kx, ω)

Zm(kx, ω) + Za1(kx, ω)
e−ikxxl,1dkx, (4.20a)

vt(xl,2, ω) =
1

2π

∫ +∞

−∞

F + fr(kx, ω)

Zm(kx, ω) + Za1(kx, ω)
e−ikxxl,2dkx, (4.20b)

θ̇(xl,1, ω) =
−i
2π

∫ +∞

−∞
kx

F + fr(kx, ω)

Zm(kx, ω) + Za1(kx, ω)
e−ikxxl,1dkx, (4.20c)
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θ̇(xl,2, ω) =
−i
2π

∫ +∞

−∞
kx

F + fr(kx, ω)

Zm(kx, ω) + Za1(kx, ω)
e−ikxxl,2dkx, (4.20d)

then a system of equations can be formed by substituting Eq. (4.19) into Eqs. (4.20)

to obtain [
N
] [

Y
]

=
[
K
]
. (4.21)

Here [Y] is a 4× 1 vector of unknown constraint responses, and[
Y
]T

=
[
vt(xl,1, ω) vt(xl,2, ω) θ̇(xl,1, ω) θ̇(xl,2, ω)

]
, (4.22)

and [N] is a 4× 4 coefficient matrix, where

N(1, 1) = −iωml

∫ +∞

−∞

1

Zm(kx, ω) + Za1(kx, ω)
dkx − 2π, (4.23a)

N(1, 2) = −iωml

∫ +∞

−∞

eikx(xl,2−xl,1)

Zm(kx, ω) + Za1(kx, ω)
dkx, (4.23b)

N(1, 3) = −ωJl
∫ +∞

−∞

kx
Zm(kx, ω) + Za1(kx, ω)

dkx, (4.23c)

N(1, 4) = −ωJl
∫ +∞

−∞

kxe
ikx(xl,2−xl,1)

Zm(kx, ω) + Za1(kx, ω)
dkx, (4.23d)

N(2, 1) = −iωml

∫ +∞

−∞

e−ikx(xl,2−xl,1)

Zm(kx, ω) + Za1(kx, ω)
dkx, (4.23e)

N(2, 2) = −iωml

∫ +∞

−∞

1

Zm(kx, ω) + Za1(kx, ω)
dkx − 2π, (4.23f)

N(2, 3) = −ωJl
∫ +∞

−∞

kxe
−ikx(xl,2−xl,1)

Zm(kx, ω) + Za1(kx, ω)
dkx, (4.23g)

N(2, 4) = −ωJl
∫ +∞

−∞

kx
Zm(kx, ω) + Za1(kx, ω)

dkx, (4.23h)
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N(3, 1) = −ωml

∫ +∞

−∞

kx
Zm(kx, ω) + Za1(kx, ω)

dkx, (4.23i)

N(3, 2) = −ωml

∫ +∞

−∞

kxe
ikx(xl,2−xl,1)

Zm(kx, ω) + Za1(kx, ω)
dkx, (4.23j)

N(3, 3) = iωJl

∫ +∞

−∞

k2
x

Zm(kx, ω) + Za1(kx, ω)
dkx − 2π, (4.23k)

N(3, 4) = iωJl

∫ +∞

−∞

k2
xe
ikx(xl,2−xl,1)

Zm(kx, ω) + Za1(kx, ω)
dkx, (4.23l)

N(4, 1) = −ωml

∫ +∞

−∞

kxe
−ikx(xl,2−xl,1)

Zm(kx, ω) + Za1(kx, ω)
dkx, (4.23m)

N(4, 2) = −ωml

∫ +∞

−∞

kx
Zm(kx, ω) + Za1(kx, ω)

dkx, (4.23n)

N(4, 3) = iωJl

∫ +∞

−∞

k2
xe
−ikx(xl,2−xl,1)

Zm(kx, ω) + Za1(kx, ω)
dkx, (4.23o)

N(4, 4) = iωJl

∫ +∞

−∞

k2
x

Zm(kx, ω) + Za1(kx, ω)
dkx − 2π. (4.23p)

Also [K] is a 4× 1 forcing vector, and

K(1, 1) = −F
∫ +∞

−∞

e−ikxxl,1

Zm(kx, ω) + Za1(kx, ω)
dkx, (4.24a)

K(2, 1) = −F
∫ +∞

−∞

e−ikxxl,2

Zm(kx, ω) + Za1(kx, ω)
dkx, (4.24b)

K(3, 1) = iF

∫ +∞

−∞

kxe
−ikxxl,1

Zm(kx, ω) + Za1(kx, ω)
dkx, (4.24c)

K(4, 1) = iF

∫ +∞

−∞

kxe
−ikxxl,2

Zm(kx, ω) + Za1(kx, ω)
dkx. (4.24d)

The constraint responses in [Y] can be evaluated as[
Y
]

=
[
N
]−1 [

K
]
, (4.25)

and the wavenumber domain velocity response of the partially-constrained structure

can be evaluated by substituting the constraint responses into Eqs. (4.19) and (4.18a).
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4.4 A Fuselage-Like Structure with a Convective Pressure-Driven, Periodically-

Constrained Panel

Previously, the NFD modeling has been demonstrated for line-driven, infinite

panels and panels with isolated constraints. In this section, the focus is instead on

presenting the modeling process of periodically-constrained panels driven into motion

by a distributed convective pressure wave as shown in Figure 4.6. The constraints were

allowed to have finite translational and rotational inertias and stiffnesses, and were

uniformly distributed along the panel to create a panel with frames. This arrangement

was intended to represent a very simple model of an aircraft fuselage structure like

the one shown in Figure 4.7(a) [5]. And the fuselage acoustical treatment as shown

in Figure 4.7(b) [65] was modeled here as limp porous layer for near-field damping

purposes. Note that previous studies [66–69] have relied on modeling a periodic

structure by using various different methods, such as the principle of virtual work,

for example, while here the periodic structure was modeled based on the equation of

motion of the panel in order both to conveniently incorporate the NFD model and to

allow the use of the Inverse Discrete Fourier Transform (IDFT) in the analysis [22],

which has already proven to be an efficient tool when analyzing the spatial and

frequency responses of layered vibrating structures.

Based on the configurations shown in Figure 4.6, the periodically-constrained

panel was modeled being loaded by a layer of limp porous material, and a half-space

of air above the layer. Instead of a harmonic line force as used previously, a convective

pressure was considered to exist below the panel to simulate a boundary layer exci-

tation of the outer surface of the fuselage. The constraints were modeled as having

identical translational inertias per unit length in the y-direction, ml, translational

stiffnesses per unit length in the y-direction, kl, rotational inertias per unit length

in the y-direction, Jl, and rotational stiffnesses per unit length in the y-direction, sl.

Based on the Euler-Bernoulli beam theory and the acoustical theory applied in the
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NFD model, the governing equation of motion for the panel transverse displacement

can now be expressed as

D
∂4wt(x, t)

∂x4
+ms

∂2wt(x, t)

∂t2
= −p1(x, t) + fin(x, t) + fre(x, t), (4.26)

where the input forcing term, fin, due to the convective pressure excitation can be

expressed as

fin(x, t) = Pe+iωte−ikvx, (4.27)

where P is the forcing magnitude per unit area of the panel, ω is the angular frequency,

and kv the convective wavenumber, which is expressed as

kv =
ω

Mc0

, (4.28)

indicating a subsonic excitation when the Mach number, M < 1, and a supersonic

excitation when M > 1. The reaction force term, fre, can be expressed as a summation

of the reaction forces due to the translational and rotational inertias and stiffnesses

of the periodic constraints as

fre(x, t) =

Nl∑
j=1

[
−ml

∂2wt(x, t)

∂t2
− klwt(x, t)

]
δ(x− xl,j)

+

Nl∑
j=1

[
−Jl

∂2θ(x, t)

∂t2
− slθ(x, t)

]
δ′(x− xl,j), (4.29)

where Nl is the total number of the constraints, xl,j is the location of each constraint,

and θ = ∂wt/∂x = −ikxwt.

By substituting equations (4.27) and (4.29) into equation (4.26), the governing

equation can then be rewritten as

D
∂4wt(x, t)

∂x4
+ms

∂2wt(x, t)

∂t2
= −p1(x, t) + Pe+iωte−ikvx

+

Nl∑
j=1

[
−ml

∂2wt(x, t)

∂t2
− klwt(x, t)

]
δ(x− xl,j)

+

Nl∑
j=1

[
−Jl

∂2θ(x, t)

∂t2
− slθ(x, t)

]
δ′(x− xl,j). (4.30)



89

Then by Fourier transforming equation (4.30) from the time domain to the frequency

domain, and forward wavenumber Fourier transforming from the spatial domain to

the wavenumber domain, the governing equation can be expressed as

Zm(kx, ω)vt(kx, ω) = −Za1(kx, ω)vz1(kx, ω) + 2πPδ(kx − kv)

− i
(
ωml −

kl
ω

) Nl∑
j=1

vt(xl,j, ω)eikxxl,j − kx
(
ωJl −

sl
ω

) Nl∑
j=1

θ̇(xl,j, ω)eikxxl,j , (4.31)

where Zm (by using Eq. (4.8)) and Za1 (by using Eq. (B.2) for the limp layer case)

can both be evaluated based on the unconstrained calculation routine described in

Section 4.2.

The relation between the linear and angular velocities of the panel, θ̇ = −ikxvt,

and the motion continuity, vz1 = vt, can then be applied to Eq. (4.31), and the

wavenumber domain linear and angular velocity responses of the panel can be ex-

pressed as

vt(kx, ω) =
2πPδ(kx − kv) + fre(kx, ω)

Zm(kx, ω) + Za1(kx, ω)
, (4.32a)

θ̇(kx, ω) = −ikx
2πPδ(kx − kv) + fre(kx, ω)

Zm(kx, ω) + Za1(kx, ω)
, (4.32b)

with

fre(kx, ω) =− i
(
ωml −

kl
ω

) Nl∑
j=1

vt(xl,j, ω)eikxxl,j

− kx
(
ωJl −

sl
ω

) Nl∑
j=1

θ̇(xl,j, ω)eikxxl,j . (4.33)

In order to evaluate vt(kx, ω), all the constraint responses, vt(xl,j, ω) and θ̇(xl,j, ω),

need to be evaluated first. Since the periodic structure has uniformly-spaced, identical

constraints, it can be assumed that the responses of all the constraints must have the
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same amplitude, but any two adjacent constraint responses differ in phase by e−ikvl,

with l being the constraint separation [66]. Equation (4.33) can then be rewritten as

fre(kx, ω) =[
−i
(
ωml −

kl
ω

)
vt(xl,1, ω)− kx

(
ωJl −

sl
ω

)
θ̇(xl,1, ω)

] Nl∑
j=1

eikxxl,j−ikv(xl,j−xl,1), (4.34)

with the constraint at x = xl,1 being the base point to which all the other constraints

are referred: thus, there are just two unknown constraint responses, vt(xl,1, ω) and

θ̇(xl,1, ω).

Further, Eqs. (4.32a) and (4.32b) can be inverse Fourier transformed at x = xl,1

to obtain

vt(xl,1, ω) =
1

2π

∫ +∞

−∞

2πPδ(kx − kv) + fre(kx, ω)

Zm(kx, ω) + Za1(kx, ω)
e−ikxxl,1dkx, (4.35a)

θ̇(xl,1, ω) =
−i
2π

∫ +∞

−∞
kx

2πPδ(kx − kv) + fre(kx, ω)

Zm(kx, ω) + Za1(kx, ω)
e−ikxxl,1dkx. (4.35b)

Then a system of equations can be formed by substituting Eq. (4.34) into Eqs. (4.35)

to obtain

N11vt(xl,1, ω) +N12θ̇(xl,1, ω) = K1, (4.36a)

N21vt(xl,1, ω) +N22θ̇(xl,1, ω) = K2, (4.36b)

with

N11 = −i
(
ωml −

kl
ω

)∫ +∞

−∞

∑Nl
j=1 e

i(kx−kv)(xl,j−xl,1)

Zm(kx, ω) + Za1(kx, ω)
dkx − 2π, (4.37a)

N12 = −
(
ωJl −

sl
ω

)∫ +∞

−∞

kx
∑Nl

j=1 e
i(kx−kv)(xl,j−xl,1)

Zm(kx, ω) + Za1(kx, ω)
dkx, (4.37b)

N21 = −
(
ωml −

kl
ω

)∫ +∞

−∞

kx
∑Nl

j=1 e
i(kx−kv)(xl,j−xl,1)

Zm(kx, ω) + Za1(kx, ω)
dkx, (4.37c)
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N22 = i
(
ωJl −

sl
ω

)∫ +∞

−∞

k2
x

∑Nl
j=1 e

i(kx−kv)(xl,j−xl,1)

Zm(kx, ω) + Za1(kx, ω)
dkx − 2π, (4.37d)

K1 = −2πP

∫ +∞

−∞

e−ikxxl,1

Zm(kx, ω) + Za1(kx, ω)
δ(kx − kv)dkx, (4.37e)

K2 = i2πP

∫ +∞

−∞

kxe
−ikxxl,1

Zm(kx, ω) + Za1(kx, ω)
δ(kx − kv)dkx. (4.37f)

Now, vt(xl,1, ω) and θ̇(xl,1, ω) can be evaluated by calculating all the coefficients in Eq.

(4.37), and by substituting those coefficients into Eq. (4.36). Finally, the wavenumber

domain transverse velocity response, vt(kx, ω), can be evaluated by using Eqs. (4.32a)

and (4.34) along with the constraint responses, vt(xl,1, ω) and θ̇(xl,1, ω).

4.5 Wavenumber Response Inverse Discrete Fourier Transform (IDFT)

for the Spatial Response of the Panel

Based on the wavenumber domain response acquired in previous sections, the

spatial domain response can be evaluated by using the IDFT [22], given properly-

chosen sampling rates, γs’s, and number of sampling points, Ns, at each frequency,

as

G(m∆x, ω) =
1

Ns∆x

Ns−1∑
n=0

G(n∆kx, ω)e
−i2πmn
Ns , (4.38)

where

∆x =
2π

γs
, (4.39)

and

∆kx =
γs
Ns

. (4.40)

Note that G can be a discretized function of vt, Zm, vz1, vz2, Za1, Za2, p1 or p2

depending on the actual requirements. Also note that Ns = 214 for all the calculations

in this thesis to ensure a large enough sampling points number, and γs’s were chosen
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based on appropriate cutoff levels at each frequency, which is further introduced in

Section 4.5.1 based on the evaluation of the wavenumber domain velocity levels of

three different kinds of panel structures.

4.5.1 Choices of Sampling Rates

According to Ref. [22], different γs’s should be chosen at different driving frequen-

cies for the evaluation of the IDFT to avoid windowing or truncation effects. The

NFD model was developed here to be capable of automatically adjusting the sampling

rates when the input driving frequency is varied over a wide range, so that the spatial

response of the panel can be observe at dispersive frequencies without significant bias.

Based on the configuration as shown in Figure 4.8, an example based on a 3 mm

thick, harmonic line force-driven, unconstrained aluminum panel is presented here to

address the sampling rates self-adjusting process. In this case, the panel was directly

loaded by an air half-space, which means the normal acoustic impedance at z = 0 is

equal to the normal acoustic impedance of the air: i.e., Za1 = Za2. Given hp = 3 mm,

F = 1 N/m, and the input properties listed in Tables 4.1 and 4.2, the wavenumber

domain velocity response, vt(kx, ω), of the panel was evaluated by using Eqs. (4.9)

and (4.5) over a wide range of trace wavenumbers, kx (i.e., evenly-discretized into 214

points from −500 to 500 rad/m), and over a wide range of temporal frequencies, f

(i.e., at 500 different frequencies equally-spaced from 10 to 10000 Hz), and the result

in terms of the velocity level, 20 log10 |vt(kx, ω)|, is plotted in Figure 4.9, based on

which a cutoff level (e.g., −130 dB) can be selected as shown in Figure 4.10. The

values of the required γs’s can finally be selected based on the cutoff level for each

frequency as shown in Figure 4.11.

The example here also helps to explain the reason why the air was made slightly

dissipative by including ηa (which is usually much smaller than unity) in ka. Without

ηa, ka = ω/c0 will be purely real, and the z-direction wavenumber in the air, kza =

(k2
a − k2

x)
1/2, will be purely imaginary when ka < kx. In this case, a negative sign of
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the square root must be selected for kza so that kza = −i(k2
x − k2

a)
1/2 to ensure that

the disturbance decays (rather than grows) exponentially in the panel near-field [70].

By adding the loss factor, ka and kza are both made complex in such a way that a

decay in the positive z-direction is ensured.

The sampling rates self-adjusting process was then repeated for another example

with a 1 mm thick, harmonic line force-driven, partially-clamped panel (by assigning

two large and heavy constraints) directly loaded by an air half-space. To be more

specific, given hp = 1 mm, F = 1 N/m, and the input properties listed in Tables

4.1, 4.2 and 4.3, the wavenumber domain velocity response, vt(kx, ω), of the panel

was evaluated by using Eq. (4.18a) over a wide range of trace wavenumbers, kx (i.e.,

evenly-discretized into 214 points from −500 to 500 rad/m), and over a wide range of

temporal frequencies, f (i.e., at 500 different frequencies equally-spaced from 10 to

10000 Hz), and the wavenumber domain velocity level, 20 log10 |vt(kx, ω)|, is plotted

in Figure 4.13, from which the sampling rates, γs’s, at each frequency were selected

based on a fixed cutoff level, e.g., −200 dB, are marked as the magenta solid line.

A similar sampling rates self-adjusting process was further conducted for an ex-

ample with a 1 mm thick, subsonic convective pressure-driven, periodically-clamped

panel (by assigning periodic large and heavy constraints) directly loaded by an air

half-space. To be more specific, given hp = 1 mm, P = 1 N/m2, M = 0.8, and the

input properties listed in Tables 4.1, 4.2 and 4.4, the wavenumber domain velocity

response, vt(kx, ω), of the panel was evaluated by using Eq. (4.32a) over a wide

range of trace wavenumbers, kx (i.e., evenly-discretized into 214 points from −6000 to

6000 rad/m), and over a wide range of temporal frequencies, f (i.e., at 500 different

frequencies equally-spaced from 10 to 10000 Hz), and the wavenumber domain ve-

locity level, 20 log10 |vt(kx, ω)|, is plotted in Figure 4.15, based on which the original

wavenumber domain sampling rates, γor’s (black solid line), at each frequency were

based on a fixed cutoff level, e.g., −300 dB, but the γor’s were just raw estimates of

the sampling rates needed to minimize bias due to windowing and truncation effects.

These sampling rates were then further adjusted to the closest sampling rates that
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corresponded to an integer spatial span, xspan (i.e., a multiple of the constraint sepa-

ration), which ensures that the IDFT is conducted on a complete periodic structure.

The adjusted sampling rates, γs’s, are marked as the magenta dashed line in Figure

4.15. According to the adjusted xspan, the constraint locations, xl,j, were assigned at

±0.5 m, ±1.5 m, ..., ±(|xspan|/2 − 0.5) m. Note that in all the calculation routines

used in this model, kv is always first evaluated by using Eq. (4.28), and is then

approximated by the closest wavenumber from the sampled kx array. This approxi-

mation also ensures that the IDFT is conducted on a complete periodic structure by

making xspan an integer multiple of the excitation wavelength. And in this case, Eqs.

(4.39) and (4.40) can be rewritten as

∆x =
2π

γs
=
xspan

Ns

, (4.41)

and

∆kx =
γs
Ns

=
2π

xspan

. (4.42)

4.5.2 Identification of Conventional Panel Critical Frequencies

The conventional critical frequency, fc, for the panel (regardless if the panel is

constrained or unconstrained) can be evaluated as

fc =
(c0)2

2π

√
ms

Re(D)
. (4.43)

and is identified as shown in Figure 4.16 (i.e., for a 3 mm aluminum panel in this ex-

ample, fc = 4008.4 Hz). The conventional critical frequency separates the supersonic

and sub-critical regions. Note that the damping provided by the porous layer was

mainly due to the viscous interaction between the near-field evanescent acoustical

motion that results from the sub-critical panel motion. Thus, the panel damping is

mainly effective within the sub-critical frequency region. On the other hand, a spatial

resonance occurs in the supersonic region when the trace wave speed in the air and

the free flexural wave speed of the panel match each other. Therefore, the identifi-
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cation of fc helps to verify and understand the acoustical and damping phenomena

observed in different frequency regions (see Section 5.2).

Besides, if the panel is excited by a convective pressure wave, the intersection

between the excitation line and the panel wavenumber domain dispersion curves cor-

responds to the convective critical frequency, fcv, which shifts with the increase of M,

and which can be calculated using the equation

fcv =
(Mc0)2

2π

√
ms

Re(D)
. (4.44)

The comparison between fc and fcv will be discussed in Section 5.4.1.

4.6 Power Analysis

4.6.1 Power Distribution in a Layered Structure

The power distribution within the layered structure can be analyzed based on

either spatial or wavenumber domain responses.

The input power per unit length in the y-direction for a line-driven structure can

be evaluated as

Pinp(ω) =
1

2
Re (Fv∗t (x = 0, ω)) =

1

4π
Re

(
Ns∑
j=1

Fv∗t (kx,j, ω)

)
∆kx. (4.45)

For a convective pressure-driven structure, the input power per unit length in the

y-direction, on the other hand, can be evaluated as

Pinp(ω) =
1

2
Re

(
Ns∑
j=1

Pe−ikvxjv∗t (xj, ω)

)
∆x =

1

4π
Re (2πPvt(kv, ω))

=
1

4π
Re

(
Ns∑
j=1

[Za1(kx,j, ω) + Zm(kx,j, ω)] |vt(kx,j, ω)|2
)

∆kx. (4.46)

The power radiation per unit length in the y-direction from the panel to the (limp or

elastic) porous layer above it can be evaluated by using either spatial or the wavenum-

ber domain integrations as

P1(ω) =
1

2
Re

(
Ns∑
j=1

p1(xj, ω)v∗z1(xj, ω)

)
∆x, (4.47a)
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or

P1(ω) =
1

4π
Re

(
Ns∑
j=1

p1(kx,j, ω)v∗z1(kx,j, ω)

)
∆kx

=
1

4π
Re

(
Ns∑
j=1

Za1(kx,j, ω)|vz1(kx,j, ω)|2
)

∆kx. (4.47b)

To be more specific, P1 for a bonded poro-elastic layer case can be divided into three

parts, and be expressed as

P1(ω) = P1,s(ω) + P1,σ(ω) + P1,τ (ω), (4.48)

where

P1,s(ω) =
1

4π
Re

(
Ns∑
j=1

−s(kx,j, ω)v∗z1(kx,j, ω)

)
∆kx, (4.49)

is the power radiating into the fluid phase of the poro-elastic medium,

P1,σ(ω) =
1

4π
Re

[
Ns∑
j=1

(
−σz(kx,j, ω) + ikx

hp
2
τxz(kx,j, ω)

)
v∗z1(kx,j, ω)

]
∆kx, (4.50)

is the power radiating into the solid phase of the poro-elastic medium via normal

direction motion, and

P1,τ (ω) =
1

4π
Re

[
Ns∑
j=1

τxz(kx,j, ω) (iωux(kx,j, ω))∗
]

∆kx, (4.51)

is the power radiating into the solid phase of the poro-elastic medium via in-plane

panel motion. The frequency and wavenumber domain field variables ux, τxz, s, and

σz, can all be evaluated at z = 0 by substituting the ACM-solved complex amplitude

coefficients (C1 to C6) into Eqs. (C.3), (C.4), (C.5) and (C.6), respectively. The

power radiation per unit length in the y-direction from the top surface of the (limp

or elastic) porous layer to the acoustic half-space above it can be evaluated by using

either spatial or wavenumber domain integrations as

P2(ω) =
1

2
Re

(
Ns∑
j=1

p2(xj, ω)v∗z2(xj, ω)

)
∆x, (4.52a)
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or

P2(ω) =
1

4π
Re

(
Ns∑
j=1

p2(kx,j, ω)v∗z2(kx,j, ω)

)
∆kx

=
1

4π
Re

(
Ns∑
j=1

Za2(kx,j, ω)|vz2(kx,j, ω)|2
)

∆kx. (4.52b)

The power staying in the panel can then be evaluated as

Pp(ω) = Pinp(ω)− P1(ω), (4.53)

and the power dissipation within the porous (either limp or elastic) layer can be

evaluated as

Pd(ω) = P1(ω)− P2(ω). (4.54)

4.6.2 System Equivalent Damping Loss Factor

Based on the spatial domain response and the power injection method (PIM) [23],

the system equivalent damping loss factor can be calculated as

ηe(ω) =
Einj(ω)

Etot(ω)
, (4.55)

where the energy injected into the panel per cycle, Einj, can be expressed as

Einj(ω) =
Pinp(ω)− P2(ω)

ω
, (4.56)

and the total energy of the panel, Etot, can be expressed as

Etot(ω) = PE(ω) + KE(ω) = 2KE(ω) = 2

(
1

2

Ns∑
j=1

mj
|vt(xj, ω)|2

2

)
, (4.57)

where mj = ρphp∆x is the discretized mass of each panel element. The potential

energy, PE, and the kinetic energy, KE, are assumed to be equal to each other.
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4.7 Model Validations

4.7.1 Model Validation for a Partially-Constrained Structure by Using a

Finite Element Model

A finite element model developed by using COMSOL Multiphysics was applied

to validate the NFD analytical model used for the current study. The validation was

based on three different configurations: (1) a 1 mm thick aluminum panel clamped

at the ends and directly loaded by an air half-space as shown in Figure 4.12; (2)

a 1 mm thick aluminum panel clamped at the ends and loaded by a limp porous

layer plus an air half-space as shown in Figure 4.17; (3) a 1 mm thick aluminum

panel clamped at the ends and loaded by a poro-elastic layer plus an air half-space as

shown in Figure 4.18. The finite element cases that correspond to (1), (2) and (3) are

shown in Figures 4.19, 4.20 and 4.21, respectively. For the NFD model, the clamped

boundary conditions were created by assigning two large and heavy discontinuities

(i.e., ml = 200 kg/m, Jl = 0.7083 kg·m, located at xl,1 = −0.5 m and xl,2 = 0.5 m),

to the 1 mm thick panel. For the COMSOL model, a 1 mm thick, 1 m long panel

(modeled using 2-D elastic elements with a 1 mm triangular mesh) was clamped by

specifying zero deflection and zero rotation at the ends for all three configurations.

Given hp = 1 mm, F = 1 N/m and the parameters of the air (Table 4.1), the panel

(Table 4.2), the constraints (Table 4.3), the limp porous (Table 4.5) and the poro-

elastic (Table 4.6) treatments, the velocity response spectrum at the driving point

(x = 0 m) was evaluated using both models for each configuration at 500 equally-

spaced frequencies ranging from 1 to 1000 Hz, and the comparisons of responses are

plotted in Figures 4.22, 4.23 and 4.24 for configurations (1) to (3), respectively, from

which excellent agreement can be observed, which verifies the calculation accuracy of

the NFD model.
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4.7.2 Model Validation for a Periodically-Constrained Structure by Using

a Finite Element Model

Another finite element model was implemented to validate the NFD model for the

periodically-constrained structure. The parameters as shown in Tables 4.1, 4.2, 4.4

and 4.5 together with hp = 1 mm, P = 1 N/m2 and M = 0.8 were input to the NFD

model to create the case of a 1 mm thick, convective pressure-driven, periodically-

clamped aluminum panel treated with a 3 cm thick limp fibrous layer as shown in

Figure 4.25. The finite element model consisted of a baffled 1 mm thick, 1 m long

aluminum panel modeled using 2-D elastic elements with a 1 mm triangular mesh,

and clamped (i.e., zero deflection and zero rotation) at both ends with the same limp

fibrous layer on top as in the periodic case, along with the air half-space (see Figure

4.26). The comparison of the velocity response spectrum from 20 to 1000 Hz at x = 0

m for this subsonic convective excitation case is shown in Figure 4.27, which shows

reasonable agreement, especially given that the COMSOL model represents a stand-

alone fully-clamped structure in contrast to the configuration in the NFD model in

which the panel is one channel of a periodically-constrained structure distributed

with constraints having large but finite inertias and stiffnesses to approximate fully-

clamped boundary conditions at the constraints. Furthermore, inspired by the idea

of mode localization [71], the NFD model was rerun with the periodic constraints all

shifted to nearby locations to break the symmetry, however, the “wiggling” between

peaks did not disappear after the addition of this slight randomness, which means

the unstable results between natural frequencies was not due to numerical errors, and

the reason for it can be potentially studied in the future.

4.7.3 Model Validation for a Periodically-Constrained Structure by Using

an Analytical Model

Due to the fact that the COMSOL validation introduced in Section 4.7.2 did

not perfectly match the NFD results especially when comparing the results between
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the peaks, the periodically-constrained case was further validated by using Mead’s

space harmonic model described in Ref. [66] (also introduced here in Appendix D) to

reconfirm the prediction accuracy of the NFD model on the periodically-constrained

cases. Since the Mead’s model was derived for a periodically-supported beam in a

vacuum, the NFD model was also changed to remove the air half-space from the

layered system as shown in Figure 4.14. Given c0 = 343 m/s, hp = 3 mm, P = 1

N/m2, M = 0.8, and the panel parameters listed in Table 4.2, plus l = 1 m and

kl = 1.77 × 109 kg/(s2·m) (ml = Jl = sl = 0), the velocity response spectra from

10 to 10000 Hz (500 logarithm-spaced frequencies) at x = 0.61 were calculated by

using Mead’s rigid or flexible model, and by using the NFD model with adjustable

γs’s (chosen based on −300 dB cutoff level on a −6000 rad/m to 6000 rad/m range

of kx’s) or a fixed γs for each frequency. The results are shown in Figure 4.28. It

can be observed that the results from Mead’s rigid support model (green dashed

line) generally repeated the flexible support model (blue solid line) except for at

high frequencies. This is reasonable since the translational stiffness assigned to the

supports were extremely high, which created a nearly-rigid support condition at the

periodic constraint locations, and note that the flexible model was more accurate in

the high frequency region per Mead’s 1971 paper [66]. Also, both lines from the NFD

periodically-constrained model showed good agreement with Mead’s model especially

at peak locations, and the agreements between peaks are seen to be better than in

Section 4.7.2, which reconfirmed the prediction accuracy of the NFD model. Further,

a fixed γs for some cases will stabilize the results between the peaks.

4.8 Conclusions

Near-field damping (NFD) modeling methodologies were presented in this chapter

based on three different panel structures. First, a layered structure that involves a

harmonic line force-driven, infinitely-extended (unconstrained) panel was introduced

to demonstrate the coupling process between the limp or elastic porous treatment
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and the vibrating panel based on the Transfer Matrix Method (TMM) [21] (to couple

the limp porous layer), and the Arbitrary Coefficient Method (ACM) [18] (to couple

the poro-elastic layer), so that the near-field acoustical properties can be interpreted

in terms of the damping properties for acquiring the wavenumber domain response

of the panel. Then two identical discontinuities (constraints) were added to the

unconstrained panel to create a more realistic structure with a harmonic line force-

driven, partially-constrained panel coupled with either a limp porous or a poro-elastic

layer. Further, periodic constraints were assigned to the panel, and a convective

pressure wave was used to replace the line-driven excitation to create an aircraft

fuselage-like structure.

Based on the wavenumber domain velocity response of either an unconstrained, a

partially-constrained or a periodically constrained structure, a self-adjusting process

was introduced to choose the sampling rates of the inverse discrete Fourier transform

(IDFT) [22], and it was made adaptive to the change of the excitation frequency, so

that the IDFT accurately returns the spatial response of the panel from the wavenum-

ber domain response. Also, the conventional critical frequency of the panel can be

identified and used to separate the wavenumber or spatial domain response into sub-

critical and super-critical frequency regions.

Power distributions can then be calculated based on either the wavenumber do-

main or the spatial domain response of the panel, and the system equivalent damping

loss factor can also be evaluated for the porous damping treatment by using the power

injection method (PIM) [23].

Finally, the calculation accuracy of the NFD model was validated by using fi-

nite element models based on three cases each involving partially-constrained and

periodically-constrained (fuselage-like) structure(s). The prediction and optimization

results based on the validated NFD model will be introduced in Chapters 5 and 7.
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Table 4.1. Parameters for the air ambient environment when the
temperature is 25 ◦C.

η B2 γ ηa ρ0 c0

1.846×10−5 kg/(s·m) 0.71 1.402 0.0005 1.21 kg/m3 343 m/s

Table 4.2. Parameters for the aluminum panel.

E0 ηp νp ρp

7× 1010 Pa 0.003 0.33 2700 kg/m3

Table 4.3. Parameters of the discontinuity (constraint) having a
dimension of 20 cm × 5 cm and a density of 20000 kg/m3 to create a
partially-clamped condition.

xl,1 xl,2 ml Jl

−0.5 m 0.5 m 200 kg/m 0.7083 kg·m

Table 4.4. Parameters of the discontinuity (constraint)the disconti-
nuity (constraint) having a dimension of 20 cm × 5 cm and a density
of 20000 kg/m3 to create a periodically-clamped condition.

l ml kl Jl sl

1 m 200 kg/m 0 0.7083 kg·m 0

Table 4.5. Parameters for the limp porous layer.

σ φ α∞ ρb d

20000 Rayls/m 0.9871 1.2 10 kg/m3 3 cm
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Table 4.6. Parameters for the poro-elastic layer.

σ φ α∞ ρb d E1 ηm ν

20000 Rayls/m 0.9871 1.2 10 kg/m3 3 cm 106 Pa 0.3 0.3

Figure 4.1. A harmonic line force-driven, infinitely-extended alu-
minum panel treated with a limp porous damping layer.

Figure 4.2. A harmonic line force-driven, infinitely-extended panel
treated with a bonded poro-elastic damping layer.
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Figure 4.3. A harmonic line force-driven, infinitely-extended panel
treated with an unbonded poro-elastic damping layer.

Figure 4.4. A harmonic line force-driven, partially-constrained panel
treated with a limp porous damping layer.

Figure 4.5. A harmonic line force-driven, partially-constrained panel
treated with a bonded poro-elastic damping layer.
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Figure 4.6. Aircraft fuselage-like structure modeled for the current study.

(a) (b)

Figure 4.7. A typical aircraft fuselage structure as shown in Nadeau
et al.’s study [5] and a fuselage acoustical treatment as shown in Klos
et al.’s study [65].

Figure 4.8. A harmonic line force-driven, unconstrained aluminum
panel directly loaded by an air half-space.
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Figure 4.9. Evaluation of the wavenumber/frequency domain re-
sponse for a 3 mm thick aluminum panel driven by a harmonic line
force and loaded by an air half-space as shown in Figure 4.8.
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Figure 4.10. Selection of the cutoff level of −130 dB based on the
evaluation as shown in Figure 4.9.

Figure 4.11. Choice of the sampling rate for a certain frequency based
on the cutoff level of −130 dB as marked in Figure 4.10.
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Figure 4.12. A 1 mm thick, harmonic line force-driven, partially-
clamped aluminum panel directly loaded by an air half-space in the
NFD model.

Figure 4.13. Choices of the sampling rates (marked as the magenta
curve) based on the wavenumber/frequency response for the panel
shown in Figure 4.12 at a cutoff level of −200 dB.
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Figure 4.14. A 1 mm thick, harmonic line force-driven, periodically-
clamped aluminum panel directly loaded by an air half-space in the
NFD model.

Figure 4.15. Choices of the original sampling rates (marked as the
black curve) based on the wavenumber/frequency response for the
panel shown in Figure 4.14 at a cutoff level of −300 dB, and further
adjusted sampling rates (marked as the magenta curve) to ensure a
complete periodic structure.
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Figure 4.16. Identification of the critical frequency of a 3 mm alu-
minum panel in the NFD model.

Figure 4.17. A 1 mm thick, harmonic line force-driven, partially-
clamped aluminum panel loaded by a limp porous layer plus an air
half-space in the NFD model.
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Figure 4.18. A 1 mm thick, harmonic line force-driven, partially-
clamped aluminum panel loaded by a poro-elastic layer plus an air
half-space in the NFD model.

Figure 4.19. A 1 mm thick, 1 m long, harmonic line force-driven,
aluminum panel directly loaded by an air half-space, and fixed at the
ends in COMSOL model.

Figure 4.20. A 1 mm thick, 1 m long, harmonic line force-driven,
aluminum panel loaded by a limp porous layer plus an air half-space,
and fixed at the ends in COMSOL model.
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Figure 4.21. A 1 mm thick, 1 m long, harmonic line force-driven,
aluminum panel loaded by a poro-elastic layer plus an air half-space,
and fixed at the ends in COMSOL model.

Figure 4.22. NFD vs. COMSOL of the velocity response spectrum
at the driving point (x = 0 m) for configuration (1): a bare clamped
panel.
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Figure 4.23. NFD vs. COMSOL of the velocity response spectrum
at the driving point (x = 0 m) for configuration (2): a clamped panel
treated by a limp porous layer.
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Figure 4.24. NFD vs. COMSOL of the velocity response spectrum
at the driving point (x = 0 m) for configuration (3): a clamped panel
treated by a poro-elastic layer.

Figure 4.25. A 1 mm thick, convective pressure-driven, periodically-
clamped aluminum panel loaded by a limp porous layer plus an air
half-space in the NFD model.
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Figure 4.26. A 1 mm thick, 1 m long, convective pressure-driven,
aluminum panel loaded by a limp porous layer plus an air half-space,
and fixed at the ends in COMSOL model.

Figure 4.27. NFD vs. COMSOL of the velocity response spectrum
at x = 0 m for the convective pressure-driven, periodically-clamped
structure.
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Figure 4.28. NFD vs. Mead’s space harmonic model of the velocity
response spectrum at x = 0.11 m for the convective pressure-driven,
periodically-clamped structure in a vacuum.
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5. PREDICTIONS OF DAMPING PERFORMANCE FOR POROUS DAMPING

TREATMENTS BASED ON THE NFD MODEL

5.1 Introduction

The prediction of the damping performance starts in Section 5.2, with an uncon-

strained structure involving an infinitely-extended vibrating panel and a layer of limp

porous medium plus an air-half space above it, which was used to prove the damp-

ing effectiveness of the limp porous layer. Parametric studies are also described in

this section, performed on the same configuration to study the connection between

the treatment’s bulk properties and its damping performance, in terms of ηe’s at

different frequencies. The porous treatment was then made poro-elastic in Section

5.3, by adding bulk elasticity to the solid phase of the material, based on which the

reason why a poro-elastic damping layer outperforms a limp porous layer was ana-

lyzed, and the importance of bonding the poro-elastic layer to the vibrating panel

was emphasized for maintaining this better performance. Also, the damping per-

formance between the poro-elastic and limp porous layers was compared based on

a partially-constrained panel. In Section 5.4, the damping effectiveness of a limp

porous treatment was further verified based on a periodically-constrained (fuselage-

like) structure.

5.2 Limp Porous Damping Treatments Applied to an Infinitely-Extended

Vibrating Panel

The results shown here are mainly based on two cases: (1) a harmonic line force-

driven, unconstrained panel loaded by an air half-space (i.e., the same configuration

as shown in Figure 4.8 of Section 4.5.1); and (2) a harmonic line force-driven, un-
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constrained panel with a limp porous layer adjacent to it, and then loaded by an air

half-space (i.e., the same configuration as shown in Figure 4.1 of Section 4.2).

5.2.1 Spatial Response: Treated vs. Untreated Panels

Based on the NFD model, the spatial velocity response of the panel was evaluated

based on the IDFT (by using Eq. (4.38)) of the wavenumber domain response of the

panel for the two cases mentioned above. For case (1), the inputs for air and panel

were set as listed in Tables 4.1 and 4.2 plus hp = 3 mm and F = 1 N/m, and the

wavenumber domain evaluation was based on Eqs. (4.9), (4.5) and Za1 = Za2. For

case (2), the inputs for the air and panel (hp = 3 mm) were also set as listed in Tables

4.1 and 4.2, and the inputs for the limp porous layer were set as listed in Table 4.5,

and the wavenumber domain evaluation was based on Eqs. (4.9) and (B.2). To begin

with, a comparison of the spatial velocity level, 20 log10 |vt(x, ω)| (dB), between case

(1) (solid lines) and case (2) (dashed lines) is shown in Figure 5.1 at five randomly-

picked driving frequencies: 10 Hz, 56 Hz, 316 Hz, 1778 Hz and 10000 Hz. Note that

only half of the spatial response is shown here due to the spatial symmetry to the

results (i.e., the harmonic force was driving at x = 0 m), and the spatial span is

only shown up to 10 m. It can be observed that the porous layer causes the velocity

level to generally decay more quickly than in the bare panel case (indicating the

damping effect), but this is especially true in the sub-critical frequency region. Note,

for example, that at 10 kHz, i.e., in the super-critical region, there is essentially no

difference between the two cases, while in the sub-critical region, the differences are

relatively large.

Next, the spatial velocity level was calculated for cases (1) and (2) at a finer

input frequency resolution, and the results are shown separately in Figures 5.2 and

5.3, respectively. At each frequency, the velocity level differences at 10 m between

the case (1) and case (2) (i.e., case (1) minus case (2)) are shown in Figure 5.4(a).

There, it can be observed that below the panel critical frequency fc = 4008.4 Hz,
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the differences are all positive (i.e., case (1) shows the higher velocity level in the

sub-critical region), while above the panel critical frequency fc = 4008.4 Hz, the

differences are negative except at the highest frequency considered (i.e., case (2) shows

the higher velocity level in the super-critical region). This observation reconfirmed

that significant attenuation can be achieved in the sub-critical region by adding the

porous layer. In the super-critical region, the velocity level was lower without the

porous layer because of the relatively large acoustic loading applied by the radiating

sound field at, and above, the critical frequency; this effect is reduced by the addition

of the porous layer. Therefore, the porous layer does not add damping in the super-

critical region, but note, nevertheless, that the sound power radiation is reduced in

the super-critical region by the addition of the porous layer (see the power analysis

in Section 5.2.2).

For all the results shown above, the panel thickness was 3 mm (with the critical

frequency being 4008.4 Hz). To see the effect of changing the critical frequency, the

panel thickness was then changed to 1.5 mm or 6 mm. It can be observed in Figure

5.4(b) that the critical frequency is shifted up to 8016.9 Hz when the thickness of

the panel is 1.5 mm, and in Figure 5.4(c), the critical frequency is shifted down to

2004.2 Hz when the thickness of the panel is 6 mm. It can be seen in both cases that

the damping action is effective below the critical frequency, and that, as might be

expected, the damping effectiveness (i.e., the decrease in velocity level caused by the

layer in the sub-critical region) increases as the panel thickness decreases.

5.2.2 Power Distribution: Treated vs. Untreated Panels

Given the parameters as listed in Tables 4.1, 4.2 and 4.5 plus hp = 3 mm and

F = 1 N/m, the power distributions within the layered system were calculated by

using Eqs. (4.45), (4.47), (4.52), (4.53) and (4.54) for the same two cases mentioned

above. The results for cases (1) and (2) are shown in Figures 5.5 and 5.6, respectively.

For the bare panel, it can be observed in Figure 5.5 that most of the input power
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(blue) remains in the panel (purple) in the sub-critical region, while the greater part

of the input power radiates into the air (red) in the super-critical region above 4 kHz.

On the other hand, when there was a porous layer adjacent to the panel, it can be

observed in Figure 5.6 that a large fraction of input power (blue) was taken out of the

panel (orange), and that most of that power was dissipated within the layer (green).

At the same time, the porous layer reduced the power (red) radiating from the surface

of the porous layer into the adjacent air space in the super-critical region. Thus, the

addition of the porous layer acts both to reduce the panel vibration and the radiated

sound.

5.2.3 Damping Loss Factor: Parametric Studies on Limp Fibrous Treat-

ments

To understand the connection between the bulk properties and damping perfor-

mance for limp porous damping treatments, parametric studies were then conducted

on case (2) mentioned above with an harmonic line force-driven (F = 1 N/m), un-

constrained aluminum panel (hp = 1 mm, other parameters as listed in Table 4.2)

and a limp porous layer (α∞ = 1.2, φ = 0.9871), by changing one or two of the in-

put bulk properties (layer thickness, d, airflow resistivity, σ, and bulk density, ρb) of

the porous layer while fixing the others, and by observing the ηe’s (evaluated by Eq.

(4.55)) resulting from different bulk property combinations to compare their damping

performance. Note that there are three groups of studies, and that the limp porous

layer was assumed to be made of fibers in all of these three groups in order to provide

a more specific and figurative impression.

In group 1, d was fixed as 3 cm, σ as MKS 20000 Rayls/m, and ρb was increased

from 10 kg/m3 (i.e., a typical bulk density of polymeric fiber) to 30 kg/m3 (i.e., a

typical bulk density of glass fiber with the same microstructure as the polymer fiber).

The resulting ηe’s for a frequency range of 10–10000 Hz are shown in Figure 5.7,

which indicates that with the same micro-geometry details (indicated by the fixed σ)
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and the same layer depth (indicated by the fixed d), an increase of the bulk density

of the fibrous layer (e.g., making the fibers from a heavier solid material like glass)

will increase the peak value of the equivalent loss factor and move the peak to a lower

frequency region.

In group 2, σ was fixed at 20000 Rayls/m, and ρb was gradually increased from

10 kg/m3 to 30 kg/m3 while decreasing d from 3 cm to 1 cm, which kept the mass

per unit area constant. Based on the ηe’s shown in Figure 5.8, it can be observed

that with the same micro-geometry details (indicated by the fixed σ) and the same

bulk weight (indicated by the combinations of ρb and d), increasing the bulk density

of the fibrous layer (e.g., making the fibers from a heavier solid material like glass)

while decreasing the layer thickness moves the peak equivalent loss factor to a lower

frequency region.

In group 3, d was chosen to be 3 cm, ρb to be 10 kg/m3, and σ was varied from

10000 Rayls/m to 50000 Rayls/m. It can be observed from the ηe’s shown in Figure

5.9 that with the same bulk weight and the same layer depth (indicated by the fixed

ρb and d), the fibrous layer with relatively low airflow resistivity (e.g., made of sparse,

coarse glass fibers) provides better damping in the low frequency region, while the

fibrous layer with relatively high airflow resistivity (e.g., made of dense, fine polymeric

fibers) provides better damping in the high frequency region.

5.3 The Effects of Adding Bulk Elasticity to the Porous Media

To examine the effect of adding bulk elasticity to the porous media on its near-field

damping, a comparison of the damping performance of limp porous and bonded poro-

elastic treatments based on an unconstrained panel structure was performed first, and

the comparison is illustrated in Section 5.3.1 in terms of power dissipation. The power

dissipation was also evaluated for the unbonded poro-elastic treatment case, and the

bonding effect on a poro-elastic layer’s damping performance is analyzed in Section

5.3.2. Further, the damping performance in terms of loss factor, ηe, was evaluated
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based on the partially-constrained structure of Section 4.2), and is compared between

the limp porous and the bonded poro-elastic cases in Section 5.3.3.

5.3.1 Power Dissipation: Limp Layer vs. Elastic Layer

The power dissipation, Pd, was calculated (by using Eq. (4.54)) and normalized

by the power input, Pinp, (evaluated by using Eq. (4.45)) at 50 log-spaced frequencies

within the 10 Hz to 10000 Hz range, given F = 1 N/m, hp = 1 or 3 mm and the

parameters listed in Tables 4.1, 4.2, 4.5 and 4.6, to represent harmonic line force-

driven, unconstrained aluminum panels treated by either a limp porous layer as shown

in Figure 4.1 or a bonded poro-elastic layer as shown in Figure 4.2, and the results

are shown in Figure 5.10, from which the poro-elastic treatment (red solid lines) was

found to have a generally larger ratio of power dissipation than the limp porous layer

(green dashed lines) for either a 1 mm (lines with circles) or 3 mm (lines with stars)

panel, especially in the frequency regions that are below 100 Hz and above 1000 Hz;

the better performance is also more obvious when the panel structure is thinner.

It is believed that the improved performance results from the additional structural

dissipation within the solid phase of the porous medium when the porous layer is

elastic and is bonded to the panel, in contrast to the case when there is only viscous

and thermal dissipation within a limp porous layer.

5.3.2 Bonding Effect for Poro-Elastic Damping Media

The normalized power dissipations were then calculated for the configuration as

shown in Figure 4.3 with either a 1 mm or 3 mm thick line-driven, unconstrained

aluminum panel treated by an unbonded poro-elastic layer given F = 1 N/m, hp = 1

or 3 mm and the parameters listed in Tables 4.1, 4.2 and 4.6, and the results are

plotted as blue-dotted lines in Figure 5.11 in addition to the previous bonded poro-

elastic cases and limp porous cases. It can be seen that for both 1 mm (blue dotted

line with circles) and 3 mm (blue dotted line with stars) panels, the unbonded poro-
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elastic layer still outperforms the limp porous layer in the low frequency region, but

provides a similar amount of power dissipation to that of the limp porous layer above

300 Hz. This finding indicates that bonding the layer to the panel is very important

(especially in the high frequency region) if the poro-elastic layer is to perform better

than the limp porous layer, which also makes sense in that the power radiation in the

high frequency region mostly depends on the solid phase of the poro-elastic medium,

and bonding the poro-elastic layer to the panel will ensure better power radiation

efficiencies through both P1,σ and P1,τ , so that the structural dissipation can be

enhanced.

5.3.3 Damping Loss Factor: Limp Layer vs. Elastic Layer

The system equivalent damping loss factor, ηe, was calculated at 500 equally-

spaced frequencies ranging from 1 Hz to 1000 Hz for configurations as shown in

Figures 4.4 and 4.5, which includes a 1 mm thick, line-driven and partially-constrained

aluminum panel treated by either a limp porous layer or a bonded poro-elastic layer,

given F = 1 N/m, hp = 1 mm and the parameters listed in Tables 4.1, 4.2, 4.5 and

4.6 together with discontinuity parameters as listed in Table 5.1, and the comparison

between the limp layer and the elastic layer in terms of damping performance based

on the ηe’s is shown in Figure 5.12, from which the overall superior damping of the

bonded poro-elastic treatment can be observed.

5.4 Limp Porous Damping Treatments Applied to a Fuselage-Like Struc-

ture

The results to be presented in this section were primarily based on a fuselage-like

configuration: i.e., a 3 mm thick periodically-constrained aluminum panel as shown

in Figure 4.6. The input parameters for this configuration are listed in Tables 4.1, 4.2,

4.5 together with the discontinuity parameter as listed in Tables 5.2, plus hp = 3 mm

and P = 1 N/m2. The wavenumber domain velocity level responses are presented
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in Section 5.4.1 for different M’s in order to illustrate the shift of the convective

excitation critical frequency. And a comparison of the frequency and spatial responses

for a bare fuselage-like panel vs. a panel treated with a limp porous layer on top are

presented in Sections 5.4.2 and 5.4.3, respectively, to show the damping effectiveness

of the treatment. Finally, the damping loss factor evaluation is presented in Section

5.4.4.

5.4.1 Wavenumber Response and the Identification of Convective Exci-

tation Critical Frequencies

The wavenumber domain velocity level (based on Eq. (4.32a)) was calculated over

a range of kx from −500 rad/m to 500 rad/m, and a range of f from 10 to 10000 Hz for

M = 0.8 (subsonic excitation), M = 1.0 (sonic excitation) and M = 1.2 (supersonic

excitation). The results are plotted in Figure 5.13, and it can be observed that

the excitation (black dashed line) and the panel dispersion curves intersects at the

convective critical frequency, fcv, which shifts with the increase of M. Also, of course,

for the sonic excitation case, fcv is the same as the conventional critical frequency, fc,

of the panel.

5.4.2 Velocity Response Spectrum: Treated vs. Untreated Panels

A comparison of the velocity response spectrum from 10 Hz to 10000 Hz at x =

0.11 m (a randomly-selected point between two adjacent constraints at x = ±0.5

m) between a bare fuselage-like structure and a fuselage-like structure treated with

the 3 cm limp porous layer is shown in Figure 5.14 for both subsonic (M = 0.8)

and supersonic (M = 1.2) convective pressure excitation cases. It can be observed

that vibration peaks below fc were reduced by 5 to 15 dB by the porous layer. This

observation is in-line with the previous finding that the porous near-field damping is

primarily effective below the critical frequency, in which case the panel motion creates

a strong, evanescent, acoustical near-field.
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5.4.3 Spatial Response: Treated vs. Untreated Panels

To show in greater detail, Figure 5.14 was then replotted as Figure 5.15 over the

frequency range from 100 Hz to 1200 Hz. The reduction in vibration level at the

peaks is more easily discernible in this view. Two vibration peak frequencies, 420

Hz and 531 Hz, were selected for further observation of the spatial velocity response

between the constraints at x = ±0.5 m for both subsonic (M = 0.8) and supersonic

(M = 1.2) convective pressure excitation cases, respectively. The spatial responses

are plotted in Figure 5.16, from which a 10 to 15 dB reduction of vibration can be

observed at the peak frequencies (420 Hz, 531 Hz) across the observation area.

5.4.4 Damping Loss Factor: Parametric Studies on Limp Fibrous Treat-

ments

A parametric study on airflow resistivity was conducted, where the system damp-

ing loss factor, ηe, was calculated for the fuselage-like structure treated by a limp

porous layer at three different input σ’s, which represent three different types of

porous media’s microstructures (here all assumed to be fibrous media for a more fig-

urative impression): the results are plotted in Figure 5.17. A general trend that can

be observed from both the subsonic and supersonic cases is that a fibrous layer with

a relatively low airflow resistivity effectively reduces lower frequency vibration, while

a layer with a relatively high airflow resistivity effectively reduces higher frequency

vibration. This general trend is consistent with what was observed in Figure 5.9 on

Section 5.2.3 for the unconstrained structure.

5.5 Conclusions

In this chapter, damping performance was predicted for both limp porous and

poro-elastic damping treatments given their bulk properties.
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In Section 5.2, the prediction started with the simplest and the most general con-

figuration with a harmonic line force-driven, unconstrained aluminum panel treated

by a layer of limp porous medium. Spatial responses and power distributions were

acquired for both a treated and an untreated (bare) panels, and the comparison be-

tween these two cases shows that the porous layer’s damping primarily corresponds to

the power dissipation within the layer, which is effective below the critical frequency,

and that the level of damping increases as the panel thickness decreases. Also, the

multi-functionality of the porous media comes from the sub-critical damping and

super-critical absorbing based on the power distributions.

In Section 5.3, the damping was compared mainly between limp porous and poro-

elastic treatments. With the same micro-/macro-geometries, poro-elastic media give

better damping then limp porous media over a broad range of excitation frequen-

cies (10–10000 Hz), and this overall advantage results from the additional structural

dissipation due to the bulk elasticity of the solid material of a poro-elastic medium,

but bonding the poro-elastic layer to the vibrating substrate is very important to

maintain this outperformance.

The damping performance in terms of both spatial response of the panel was then

evaluated in Section 5.4 based on a fuselage-like (periodically-constrained) structure,

and a significant level of damping of the vibration peaks was observed below the

sub-critical frequency of the structure.

Last but not least, given different combinations of bulk properties, the damping

performance in terms of system equivalent damping loss factor, ηe, was evaluated for

limp porous treatments that were assumed to be made of fibers, which helped the

understanding of the connections between a material’s parameters and its damping

performance. In both unconstrained and periodically-constrained cases, the general

trend shows that certain combinations of bulk properties contribute to the largest

damping (also referred to as the “optimal damping”) at certain excitation frequency

for a given structure. This finding led to the following studies (shown in Chapters 6

and 7) to design the optimal micro-/macro-geometry for fibrous damping media.
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Table 5.1. Parameters of discontinuity (constraint) to create a
partially-constrained condition.

xl,1 xl,2 ml Jl

−0.5 m 0.5 m 6.75 kg/m 0.0028 kg·m

Table 5.2. Parameters of discontinuity (constraint) to create a
periodically-clamped condition.

l ml kl Jl sl

1 m 6.75 kg/m 2.66× 108 kg/(s2·m) 0.0028 kg·m 1.11× 105 kg· m/s2

Figure 5.1. Spatial velocity level comparison between case (1): a bare
3 mm thick, unconstrained aluminum panel (solid lines) and case (2):
a 3 mm thick, unconstrained aluminum panel with a 3 cm layer of
limp porous media (dashed lines), both driven by the harmonic force
under different frequencies: 10 Hz, 56 Hz, 316 Hz, 1778 Hz and 10000
Hz.
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Figure 5.2. Spatial velocity level for case (1): a bare 3 mm thick,
unconstrained aluminum panel, driven by a harmonic force under 100
different frequencies: log-spaced within 10–10000 Hz.
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Figure 5.3. Spatial velocity level for case (2): a 3 mm thick, un-
constrained aluminum panel with a 3 cm layer of limp porous media,
driven by a harmonic force under 100 different frequencies: log-spaced
within 10–10000 Hz.
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(a) (b)

(c)

Figure 5.4. A side view of the spatial velocity level differences at
x = 10 m between case (1): an unconstrained aluminum panel driven
by a harmonic force under 100 different frequencies (log-spaced within
10–10000 Hz), and case (2): the panel treated with a 3 cm layer of
limp porous medium with (a) 3 mm, (b) 1.5 mm and (c) 6 mm as
panel thicknesses.
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Figure 5.5. Power distribution for case (1): a bare 3 mm thick,
unconstrained aluminum panel, driven by a harmonic force under 100
different frequencies: log-spaced within 10–10000 Hz.
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Figure 5.6. Power distribution for case (2): a 3 mm thick, uncon-
strained aluminum panel with a 3 cm layer of limp porous medium,
driven by a harmonic force under 100 different frequencies: log-spaced
within 10–10000 Hz.
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Figure 5.7. System equivalent damping loss factor of a 1 mm thick,
unconstrained aluminum panel treated with limp fibrous layers with
the same thickness and airflow resistivity but different bulk densities,
driven by a harmonic force under 100 different frequencies: log-spaced
within 10–10000 Hz.
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Figure 5.8. System equivalent damping loss factor of a 1 mm thick,
unconstrained aluminum panel treated with limp fibrous layers with
the same airflow resistivity but different combinations of thicknesses
and bulk densities, driven by a harmonic force under 100 different
frequencies: log-spaced within 10–10000 Hz.
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Figure 5.9. System equivalent damping loss factor of a 1 mm thick,
unconstrained aluminum panel treated with limp fibrous layers with
the same thickness and bulk density but different airflow resistivities,
driven by a harmonic force under 100 different frequencies: log-spaced
within 10–10000 Hz.
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Figure 5.10. Normalized power dissipations within either a bonded
poro-elastic layer (red solid lines) or a limp porous layer (green dashed
lines) acting on a 1 mm (circled lines) or a 3 mm (starred lines) thick,
unconstrained aluminum panel, driven by a harmonic force under 50
different frequencies: log-spaced within 10–10000 Hz.

Figure 5.11. Adding normalized power dissipations within an un-
bonded poro-elastic layer acting on a 1 mm (blue dotted-circled line)
or a 3 mm (blue dotted-starred line) thick, unconstrained aluminum
panel, driven by a harmonic force under 50 different frequencies: log-
spaced within 10–10000 Hz.
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Figure 5.12. System equivalent damping loss factor for a 1 mm thick,
partially-constrained aluminum panel treated either by a bonded
poro-elastic layer (red solid line) or a limp porous layer (green dashed
line), driven by a harmonic force under 500 different frequencies: log-
spaced within 1–1000 Hz.
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(a) (b)

(c)

Figure 5.13. Wavenumber domain velocity level for a 3 mm thick,
fuselage-like structure treated by a 3 cm thick, limp porous layer,
driven by (a) subsonic convective pressure (M = 0.8), (b) sonic convec-
tive pressure (M = 1.0 ), (c) supersonic convective pressure (M = 1.2),
with the convective excitations marked as black dashed lines.
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(a) (b)

Figure 5.14. Velocity response spectrum from 10 Hz to 10000 Hz
of the velocity at x = 0.11 for the 3 mm thick, bare fuselage-like
structure (blue line) or the limp porous layer-treated, fuselage-like
structure (orange line) both driven by (a) subsonic (M = 0.8), (b)
supersonic (M = 1.2) convective pressure, both with conventional
and convective critical frequencies marked by red arrows.

(a) (b)

Figure 5.15. Velocity response spectrum from 100 Hz to 1200 Hz
of the velocity at x = 0.11 for the 3 mm thick, bare fuselage-like
structure (blue line) or the limp porous layer-treated, fuselage-like
structure (orange line) both driven by (a) subsonic (M = 0.8, with
420 Hz selected as a spatial response observation frequency), (b) su-
personic convective pressure (M = 1.2, with 521 Hz selected as a
spatial response observation frequency).
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(a) (b)

Figure 5.16. Spatial responses between the constraints at x = ±0.5
m for the 3 mm thick, bare fuselage-like structure (blue line) or the
limp porous layer-treated fuselage-like structure (orange line) both
driven by (a) subsonic convective pressure (M = 0.8) at 420 Hz, (b)
supersonic convective pressure (M = 1.2) at 521 Hz.

(a) (b)

Figure 5.17. System equivalent damping loss factor for the 3 mm
thick, fibrous layer-treated fuselage-like structure driven by (a) sub-
sonic convective pressure (M = 0.8), (b) supersonic convective pres-
sure (M = 1.2), with input fibrous layer’s airflow resistivity as 10000
Rayls/m (orange line), 20000 Rayls/m (magenta line), 50000 Rayls/m
(blue line).
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6. THE AIRFLOW RESISTIVITY (AFR) MODEL TO BUILD THE

MICRO-BULK RELATIONS FOR FIBROUS MEDIA

6.1 Introduction

The predictions shown in the last chapter were all based on porous media’s bulk

properties inputs, and the results indicated that for a specified vibrating structure, the

optimal damping performance at certain excitation frequencies results from certain

bulk property combinations of the treatment, and that the optimal bulk property

combinations at different frequencies could be easily identified by parametric studies.

Inspired by the previous findings, the studies presented in this chapter focus on

building the relations between the microstructure and bulk properties (also referred

to as “micro-bulk relations”) of porous media that are made of fibers, so that the

identified optimal bulk properties can be further translated into optimal microstruc-

ture details in terms of fiber sizes, based on which fibrous layers can be designed to

maximize their damping performances.

For both limp porous and poro-elastic media, there are five geometry-related

macroscopic properties to be taken account of: layer thickness, d, porosity, φ, tor-

tuosity, α∞, bulk density, ρb, and airflow resistivity, σ. All of these bulk properties

can be easily characterized by analytical, experimental or numerical methods [72–77].

For certain types of fibers, the first four bulk properties do not change very much

when changing the microstructural parameters such as the fiber size: so they can be

treated as empirical or fixed values. In contrast, the airflow resistivity results from

the viscous drag exerted on the fibers by the oscillatory fluid flow, and it is very

sensitive to microstructure variations. That behavior makes the airflow resistivity

the most significant bulk property when building the dynamic connections between

microscopic geometries and damping properties of fibrous layers.
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Presented here is a new airflow resistivity (AFR) prediction model that accounts

for situations in which a fibrous medium comprises more than one fiber component,

and when the radius of each fiber component varies within a certain range. The

intention of developing this model was to broaden the airflow resistivity prediction

capability, since most of the existing models are only able to predict AFR for single

component fibrous medium uniform fiber size, but there are novel fibrous material

having multiple fiber components and varying fiber radii. Therefore, the target fi-

brous material selected for the current study (as shown in Figure 6.1) consists of one

fiber component with relatively small and varying radius, here referred to as fiber

component 1, and a second fiber component with relatively large and nearly uniform

radius, here referred to as fiber component 2.

6.2 Single-Component Fibrous Media with Uniform Fiber Radius (SCUR)

The study started with the evaluation of existing AFR models, which were mostly

developed for single-component fibrous media with uniform radius (SCUR). After

comparing the SCUR prediction results with AFR measurements of single-component

fiber samples, a model of Tarnow’s [78] was shown to yield reasonable and accurate

predictions and was chosen as the starting point for further development.

6.2.1 AFR-SCUR Models Review and General Comparison

All of the AFR-SCUR models that could be found in the literature were identi-

fied including Carman’s model [79, 80], Langmuir’s model [81], Davies’ model [82],

Happel’s [83], Kuwabara’s model [84], Pich’s model [85], Tarnow’s models [78], the

BAL-semi-empirical model [19], Lind-Nordgren and Goransson’s model [86], Doutres

et al.’s model [87], and Pelegrinis et al.’s model [88]. The mathematical expressions

of the models from 1997 and earlier were taken from Ref. [19], and all of the formulae

are summarized in the Appendix E. In the literature, these AFR-SCUR models were

originally developed for different kinds of porous media based on different assump-
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tions of material microstructure. To explain this, a general view of the microstructure

difference between two different porous media is shown in Figures 6.2(a)–fibers [89]

and 6.2(b)–foams [90]. In the former case, the visco-thermal boundary layers are

assumed to form around the exterior of the cylindrical fibers, while in the latter case,

the boundary layers are assumed to form on the interior surface of pores of the par-

tially or fully open foam cells. Despite being developed for different porous media, the

reviewed AFR-SCUR models were found to be capable of predicting AFR for SCUR

fibrous media due to their similarity in microscopically defining AFR, as they all de-

fined the AFR of a porous layer as the cross-sectional drag force per mean spacing per

unit mean flow velocity. This definition is physically reasonable since it corresponds

with the AFR arising due to viscous drag from the solid phase of the porous material

on the fluid flow. The definition is also mathematically reasonable since it has the

same dimensions as the macro-definition of the airflow resistivity: the pressure drop

per unit thickness per unit mean flow velocity. Due to that definition similarity, it

can be seen that all the models mentioned above are similar in form. That is, all of

these models allow us to calculate σ given the material’s solidity, C, and the mean

spacing, b2, of the Voronoi cells (shown in Figure 6.2(c)) [91].

To illustrate the calculation process, an example is presented here involving Tarnow’s

model [78] for the case of perpendicular airflow through a random fiber lattice (also

referred to as the Tarnow Perpendicular-Random model). In that model, the AFR is

expressed as

σ =
4πη

b2 (−0.64 lnC − 0.737 + C)
, (6.1)

where recall η = 1.846 × 10−5 kg/(s·m) is the dynamic viscosity of air when the

temperature is 25 ◦C. In addition, the solidity, C, can be expressed as

C =
ρb
ρ
, (6.2)

where ρb is the bulk density of the porous material and ρ is the density of the solid

material of which the porous material is made. Furthermore, b2 is a function of C

and fiber radius (or strut radius of foams).
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To fix the relation between C and b2, two assumptions need to be made. The first

assumption is that the solid part of the porous material contributes all of the mass

of the bulk porous material. The second assumption is that the fiber cylinders are

uniformly distributed in an average sense within the porous material space. Then

from the definition of solidity in Eq. (6.2), C is the ratio of the bulk density and the

solid density, which, based on the first assumption, can be written as the total volume

occupied by the fibers over the total volume of the porous material. Then for any

cross-sectional area of a porous material sample, based on the second assumption,

the ratio can be written as the total cross-sectional area of cylindrical fibers over the

total cross-sectional area (or the fiber cross-sectional circle area per unit area). For

SCUR fibrous media with a fiber radius, r, Eq. (6.2) can thus be written as

C =
πr2

b2
, (6.3)

which also explains why the sum of the solidity and porosity equals 1; and further,

the mean spacing, b2, of the Voronoi cells is

b2 =
πr2

C
. (6.4)

Given the porous material microstructure details, C and b2 can be easily calculated

by using Eqs. (6.2) and (6.4), respectively, and their values can then be substituted

into Eq. (6.1) to evaluate σ. Note that for SCUR fibrous media, Eq. (6.1) can also

be written as

σ =
4ηC

r2 (−0.64 lnC − 0.737 + C)
. (6.5)

Based on the calculation routine mentioned in this example, all the AFR-SCUR

models were first evaluated by calculating σ given C in the range of 0 to 0.03 (i.e.,

porosities from 1 to 0.97 since fibrous media typically have high porosities), and r

was set equal to 24.8 µm: the AFR results given by each model are plotted in Figure

6.3.

First note the very wide spread of the results, the spread being almost an order of

magnitude. But, from the general comparison, some of the results can be numerically
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grouped together. For example, the BAL-semi-empirical model gives results similar

to Carman’s model. Lind-Nordgren and Goransson’s calculation is close to Doutres

et al.’s, the Tarnow Perpendicular-Random model results are numerically similar to

Langmuir’s, Davies’ and Pich’s, and the Tarnow Perpendicular-Square model gives

the same results as Kuwabara’s. This general comparison provides a first view of

where certain models stand compared to all the others.

6.2.2 AFR-SCUR Models Prediction Accuracy Evaluated by Comparison

to Measurements

To help evaluate the accuracy of the various models, measurements of σ were made

on six samples according to ASTM C522-03 [92] using the Gas Permeameter GP-05A-

C-522 shown in Figure 6.4(a). All of the samples were made of the fiber component 2

mentioned above. A scanning electron micrograph view of this component is shown

in Figure 6.4(b) to illustrate the uniformity of the fiber radii, and to confirm that

they matched the SCUR case. Several pieces of material were gradually compressed

to create different samples, which then differed in bulk density and solidity. In the

measurements, the SCUR fiber AFR was estimated as

σ =
∆p

vmd
, (6.6)

where ∆p was the measured pressure drop, vm was the measured mean velocity of

the airflow, and d was the thickness of the sample. Five measurements were made

on each sample to show the measurement repeatability. For each sample, ρb could be

measured. Then ρ and r could be specified so that C and b2 could be calculated. For

all of the samples, ρ was set equal to 1380 kg/m3, and r was set equal to 25 µm.

Based on the calculation routine mentioned in Section 6.2.1, the corresponding

σ’s were then predicted for each of the six samples using the different AFR-SCUR

models. Then the predicted σ results from each model were plotted and compared to

the measured σ results: see Figure 6.5. Due to the numerical similarity discussed in

Section 6.2.1, only certain of the AFR-SCUR models are plotted in Figure 6.5.
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From Figure 6.5, it can be seen that the measured results (consisting of five

different measurements at each value of solidity) together with their least square fit

lie between the Tarnow Perpendicular-Random model and Tarnow Parallel-Square

model. Based on that result, it was decided to use the former model as a basis for

further development for a number of reasons. First, that model is free of empirical

or phenomenological parameters. Secondly, the case described in that model was

considered to be closest to the actual situation when sound propagates through SCUR

fiber. Thus, based on its prediction accuracy and these other factors, the Tarnow

Perpendicular-Random model was chosen to be the candidate for further development.

6.3 Two-Component Fibrous Media with Various Fiber Radii (TCVR)

The Tarnow Perpendicular-Random (SCUR) model was then modified to make it

capable of predicting the AFR for two-component fibrous media with various radii

(TCVR) or uniform radii (TCUR) by adding the effect of multiple fiber components

and fiber radii distributions. The AFR-TCVR model prediction accuracy was again

verified by comparing predictions and repeated measurements.

6.3.1 AFR-TCVR Model Development

Previously, different approaches were proposed in the literature, Refs. [19, 72, 74,

75, 77], for taking account of the presence of multiple fiber components and/or fiber

size distributions. The most appropriate approach for the current case was proposed

in Ref. [19] and was applied here. As described in Section 6.2.1, σ can be predicted

given C and b2 by using the Tarnow Perpendicular-Random model. That is also

true for the modified models, which means that modifications can be made to C and

b2 to account for the presence of multiple fiber components without changing the

expression for σ given in Eq. (6.1).
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The first modification converts C and b2 from SCUR to TCUR by adding one

more component to the model. For a TCUR fibrous media, the solidity is the sum of

the fractional solidities of each component. Therefore, Eq. (6.2) can be written as

C =
X1ρb
ρ1

+
X2ρb
ρ2

, (6.7)

where X1 and ρ1 are the weight fraction and solid phase density of fiber component

1, and X2 (X2 = 1 − X1) and ρ2 are the weight fraction and solid phase density of

fiber component 2. Then based on the same assumptions mentioned in Section 6.2.1,

Eq. (6.3) can be written as

C =
n1πr

2
1 + n2πr

2
2

b2(n1) + n2

, (6.8)

where r1 and r2 are the fiber radii of TCUR fiber components 1 and 2, respectively,

and n1 and n2 are the corresponding fiber counts. The fiber count for the TCUR

fibrous media is defined as the number of fibers per unit cross-sectional area with the

same radius (or the number of fibers of each fiber component). It follows that the

ratio of the weight fractions of the two fiber components can then be written as

X1

X2

=
ρ1n1r

2
1

ρ2n2r2
2

. (6.9)

By using Eqs. (6.8) and (6.9), the mean spacing, b2, of the Voronoi cells for a TCUR

fibrous medium becomes

b2 =
π(X1ρ2 +X2ρ1)r2

1r
2
2

C(X1ρ2r2
2 +X2ρ1r2

1)
. (6.10)

Given the inputs of fiber radii r1 and r2, densities ρ1 and ρ2, and weight fractions

X1 and X2, the σ predictions can be made using the Tarnow Perpendicular-Random

model by substituting C from Eq. (6.7) and b2 from Eq. (6.10) into Eq. (6.1).

The second modification converts C and b2 from TCUR to TCVR by adding

discrete radii distributions to each component. The expression of C for a TCVR

fibrous medium remains the same as Eq. (6.7) because it is calculated macroscopically

and covers both the TCUR and TCVR cases. However, since the radii for each
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component are not uniform for TCVR fibers, b2 must be evaluated in a different way

so that the variation of the fiber radii for each component is taken into account.

Therefore, Eqs. (6.8) and (6.9) must now be written as

C =
π
(∑j

p=1 n1,pr
2
1,p +

∑k
q=1 n2,qr

2
2,q

)
b2
(∑j

p=1 n1,p +
∑k

q=1 n2,q

) , (6.11)

X1

X2

=
ρ1

∑j
p=1 n1,pr

2
1,p

ρ2

∑k
q=1 n2,qr2

2,q

, (6.12)

and then the mean spacing, b2, of the Voronoi cells for a TCVR fibrous medium is

b2 =
π
(∑j

p=1 n1,pr
2
1,p +

∑k
q=1 n2,qr

2
2,q

)
C
(∑j

p=1 n1,p +
∑k

q=1 n2,q

) , (6.13)

where the fiber component 1 has discretized fibers radii ranging from r1,1, r1,2, r1,3,

· · · , to r1,j (r1,1 < r1,2 < r1,3 < · · · < r1,j), and corresponding fiber counts of n1,1,

n1,2, n1,3, · · · , to n1,j, respectively. Similarly, the fiber component 2 has discretized

fiber radii ranging from r2,1, r2,2, r2,3, · · · , to r2,k (r2,1 < r2,2 < r2,3 < · · · < r2,k),

and corresponding fiber counts of n2,1, n2,2, n2,3, · · · , to n2,k, respectively. Here,

the fiber count, n1,1, means the number of fibers whose radii lie in the radius range

[0, r1,1 + 0.5(r1,2 − r1,1)], and the fiber count, n1,2, means the number of fibers whose

radii lie in the radius range [r1,2 − 0.5(r1,2 − r1,1), r1,2 + 0.5(r1,3 − r1,2)], etc.

To evaluate b2 by using Eq. (6.13) in the AFR-TCVR model, recall r1 and r2 that

appear in Eqs. (6.8), (6.9) and (6.10) of the AFR-TCUR model. Here, distribution

parameters were first applied to r1 and r2 to generate random numbers obeying certain

types of distributions. Then for each component, the discretized fiber radii with their

corresponding fiber counts can be quantified by the histogram-estimated probability

density function of the random numbers. The histogram is referred to as the fiber

radii distribution function. And r1 and r2 are referred to as the peak fiber radii in

the fiber radii distribution functions.
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To be more specific, based on the weight fraction criterion expressed in Eqs.

(6.7), (6.8) and (6.9), the raw estimation of total fiber counts, nii, for component ii

(ii = 1, 2) can be first calculated from

nii =
Xiiρb
ρii(πr2

ii)
. (6.14)

Then, random numbers obeying a gamma distribution can be generated based on

component 1 fiber total counts, n1, peak fiber radius, r1, the shape factor, s1 and the

scale factor, θ (i.e., θ = r1/s1), and the fibers of radii ranging from r1,1, r1,2, r1,3, · · · ,

to r1,j, and corresponding fiber counts of n1,1, n1,2, n1,3, · · · , to n1,j, can be estimated

from the histogram of the probability density function of the gamma distributed

random numbers. Similarly, random numbers obeying a normal distribution can be

generated based on component 2 fiber total counts, n2, peak fiber radius, r2, the

standard deviation, s2 and the expectation, µ (i.e., µ = r2), and the fibers of radii

ranging from r2,1, r2,2, r2,3, · · · , to r2,k, and corresponding fiber counts of n2,1, n2,2,

n2,3, · · · , to n2,k, can be estimated from the histogram of the probability density

function of the normally distributed random numbers. Finally, by substituting C

from Eq. (6.7) and b2 from Eq. (6.13) into Eq. (6.1), the σ prediction can be made

using the Tarnow Perpendicular-Random model for TCVR fibers.

6.3.2 AFR-TCVR Model Validation by Measurements

The validation focused on demonstrating the model prediction accuracy when all

the fiber parameters, including the distribution of the fiber radii, were known. First,

σ, together with ρb, X1, ρ1, r1, X2, ρ2, r2 were measured or known for six TCVR

samples. It should be noted that these samples are slightly different in ρb based on

their basis weight (mass per unit area) measurements, but in this case these samples’

X1’s, ρ1’s, r1’s, X2’s, ρ2’s and r2’s were all the same since they were composed of the

same kind of fibrous components. And similar to the SCUR sample measurements,

five groups of measurements were made on each sample to show the measurement

repeatability. In addition, the fiber radii distributions were verified for all of the
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samples based on micro-CT measurements. The micro-CT scanned distribution is

shown in Figure 6.6(a). The regenerated distributions are shown in Figure 6.6(b),

and the parameters used to regenerate the distributions are shown in Table 6.1. Now

consider the fiber radii characteristics of the two-component fibrous medium captured

by the micro-CT scan. During the distribution regeneration process, the gamma

distributed random numbers mentioned in Section 6.3.1 were used for component 1,

with a relatively large variation of fiber radius, and the normally distributed random

numbers mentioned in Section 6.3.1 were used for component 2, with a nearly uniform

fiber radius generated by setting the standard deviation to be very small. Thus,

it should be noted that the predictions are based on repeated realizations of the

model for a range of ρb that covered all the samples’ bulk densities, so the n1 and n2

are different numbers in ranges corresponding to each realization from a single bulk

density input. Given the samples’ ρb, X1, ρ1, r1, X2, ρ2, r2 as well as the distribution

parameters corresponding to the regenerated fiber radii characteristics, the values of

σ for the various samples were then predicted using Eqs. (6.1), (6.7) and (6.13), and

the results are plotted in Figure 6.7. The blue dots show the predicted results of

repeated realizations of the model for a range of bulk densities, and at the same time,

allowing some randomness on the fiber radius distribution. The green dots show the

predicted results of repeated realizations of the model for a range of bulk densities and

certain verified fiber radii distribution shown in Table 6.1. In addition, the red crosses

show the repeated measured σ’s for six different samples and the black dashed line is

the least square fitting of the measured results. Thus finally, the prediction accuracy

of the Tarnow Perpendicular-Random AFR-TCVR model was verified by the good

agreement between the predictions (green dots) and the measurements (black line).

6.4 Conclusions

In this chapter, representative AFR-SCUR models were chosen for review and

evaluation because of their similar form and micro-definition of AFR. On the one



151

hand, these models could be divided into different groups due to their implicit differ-

ence (fiber model, foam model, etc.). On the other hand, they could be divided into

several groups due to the numerical similarity of the σ calculation.

The Tarnow Perpendicular-Random SCUR model was chosen to be the starting

point of the AFR-TCVR model development because of its SCUR fiber AFR predic-

tion accuracy, physical reasonableness, modernity, and its non-empirical nature.

By adding a second fiber component and radii distributions, the Tarnow Perpen-

dicular Random SCUR model was modified to the Tarnow Perpendicular-Random

TCVR model, and its TCVR fiber AFR prediction accuracy was also verified. The

modified AFR-TCVR model provides us with a powerful tool to understand the micro-

macro connections for fibrous acoustical materials including SCUR, TCUR and TCVR

fibers. Combined with the acoustical and NFD models, the AFR-TCVR model will

be beneficial for both performance prediction and microstructural optimization for

porous acoustical plus damping treatments.
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Table 6.1. Inputs for regenerating the measured TCVR fiber radii distributions.

ρ1 n1 r1 s1 θ

910 kg/m3 7760–9830 5.5 µm 5 1.1×10−6

ρ2 n2 r2 s2 µ

1380 kg/m3 912–1155 13.1 µm 2.8×10−7 13.1×10−6

Figure 6.1. Target fibrous material of the current study with two
fiber components and varying fiber radii.

(a) (b) (c)

Figure 6.2. (a) Fibrous material microstructure [89], (b) partially-
reticulated foam microstructure [90], (c) Voronoi cells [91].



153

Figure 6.3. General comparison among AFR-SCUR models.

(a) (b)

Figure 6.4. (a) Gas Permeameter GP-05A-C-522 for ASTM-C522-03
AFR measurements, (b) SEM view of fiber component 2.
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Figure 6.5. AFR-SCUR models predictions compared to measurements.
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(a)

(b)

Figure 6.6. (a) Micro-CT scanned TCVR fiber radii distributions,
(b) regenerated TCVR fiber radii distributions as inputs.
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Figure 6.7. AFR-TCVR model predictions (marked as the blue dots)
based on 500 normally-distributed (with mean value of 5.5 µm and
standard deviation of 0.2 µm) inputs of r1’s corresponding to 500
uniformly-distributed (within 0.3–0.38 kg/m2) inputs of basis weights,
or (marked as the green line) based on a constant input of r1 as 5.5
µm corresponding to 500 line-spaced (within 0.3–0.38 kg/m2) inputs
of basis weights, compared to the repeated measurements (marked as
the red crosses) for six samples with verified microstructure details,
and the 1st-degree polynomial fitting of the measured results (marked
as the black line).
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7. MICROSTRUCTURAL OPTIMIZATIONS FOR FIBROUS DAMPING

TREATMENTS BASED ON THE AFR MODEL

7.1 Introduction

Based on the TMM/ACM, NFD and AFR models, an optimization process is

introduced in Section 7.2 to find the optimal airflow resistivity and its corresponding

optimal fiber radius which contribute to the largest damping given a specific frequency

and panel of interest, and the optimized results of various types of fibrous damping

media applied to different kinds of vibrating substrates are introduced in Sections

7.3, 7.4 and 7.5.

Finally, a practical case study is introduced in Section 7.6 to show the applica-

tion of the validated NFD model and the Fourier transform technique to investigate

limp porous media’s damping performance when applied on a vibrating vehicle floor

pan-like structure represented by a harmonic line force-driven, arbitrarily-shaped alu-

minum panel.

7.2 Finding Optimal Fiber Radii of Fibrous Damping Treatments

With well-developed micro-bulk relations based on the AFR model, a typical pro-

cess for using analytical models to calculate the acoustical and damping properties

of fibrous materials can be summarized as shown in Figure 7.1. After the characteri-

zation of the microstructure of the material, σ can be predicted by using an airflow

resistivity (AFR) model. Then, the acoustical properties of the fibrous material can

be predicted given the ambient properties (e.g., the sound speed, air density, etc.)

and the material bulk properties (including σ) by using the Transfer Matrix Method

(TMM) [21] (for limp fibrous media) or Arbitrary Coefficient Method (ACM) [18] (for

elastic fibrous media), which here incorporate the Johnson-Champoux-Allard (JCA)
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model [16] (for calculating the viscous and thermal characteristic lengths, effective

density and bulk modulus of the fluid phase of the material), the Biot theory, with

either a limp [19–21] or elastic [15, 16, 18] frame approximation (for calculating the

fundamental acoustical properties such as the complex density and complex wave

number(s) of the material) and the layered structure Boundary Conditions (B.C.’s).

Furthermore, the structural damping that the fibrous layer exerts on a nearby stiff

panel due to the near-field damping (NFD) effect can be predicted using a specific

beam theory (e.g., Euler-Bernoulli beam theory) and numerical methods such as the

inverse discrete Fourier transform (IDFT).

The process just described provides an approach for predicting acoustical and

damping properties given the material’s microstructural details. On the other hand,

to realize the design of the microstructure, which means, in the first instance, that the

microstructural details are assumed unknown, the process shown in Figure 7.1 must be

reorganized as shown in Figure 7.2. For design purposes, first, the airflow resistivity,

together with other bulk properties, are input as fixed values to the TMM/ACM

and NFD models in a range, which returns a range of damping property predictions.

Then the optimal damping property is selected together with its corresponding input

airflow resistivity (referred to as the optimal airflow resistivity). Finally, based on

the selected optimal airflow resistivity, a numerical optimization method performed

by least squares fitting is applied, combined with the AFR model, to identify the

microstructure that will create this optimal airflow resistivity, which means, with this

microstructure, the optimal damping performance of the fibrous layer will be realized.

Note that there were mainly two reasons for the airflow resistivity to be chosen among

all the bulk properties as the connection between fibrous media’s microstructure and

their damping performance: (1) fibrous materials’ acoustical/damping performance

is highly sensitive to the variation of the airflow resistivity so that it serves as a good

optimization variable; and (2) the microstructure of a fibrous material in terms of the

fiber size has a linear relation with its airflow resistivity, which ensures that a global

instead of local optimal point can be found.
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Thus, according to this design process, given any frequency and panel of interest,

there are four objectives: (1) find an appropriate property to evaluate the damping

performance; (2) find the optimal damping and the corresponding optimal airflow re-

sistivity; (3) translate the optimal airflow resistivity into the optimal microstructure

to realize the microstructure design; and (4) understand the relation between optimal

microstructure and optimal damping performance, and summarize the design insights

related to damping-oriented fibrous materials. It should be noted that the optimal

airflow resistivity and corresponding microstructure provide the optimal damping by

taking energy out of the oscillatory, evanescent, short-wavelength near-field. Though

it has been found that the designed material also helps with the acoustical perfor-

mance (as shown in Section 5.2.2), it is unlikely that the material would provide the

optimal acoustical performance at the same time since the acoustical attenuation is

achieved by taking energy out of a propagating, relatively long-wavelength sound field.

The acoustical properties referred to here primarily serves as intermediate properties

in the design process.

Based on the prediction and parametric studies described in Chapter 5, both the

power dissipation, Pd, within the porous layer and the system equivalent damping

loss factor, ηe, can be used as an appropriate property to evaluate the damping

performance. In this chapter, the optimization process is introduced based on finding

the optimal airflow resistivity and optimal fiber radius that contribute to the largest

ηe for certain frequencies and panels of interest. At a specific frequency, ω0, when we

input an array of σ’s over a relatively wide range (e.g., 500–5000000 MKS Rayls/m),

each of those σ’s will return a corresponding ηe calculated using the TMM/ACM and

NFD models given the other material bulk properties, panel-related properties and

properties of the air. Then amongst all the returned ηe’s, the largest value can be

easily found and referred to as ηeo(ω0), which then identifies the optimal damping

performance at ω0. Thus, among the input σ’s, the one corresponding to ηeo(ω0) is

the optimal airflow resistivity, σo, at ω0.
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Further, if the microstructure of certain type of fibers is to be designed, then the

AFR model can be used in an inverse sense to find the optimal material microstruc-

ture based on the optimal airflow resistivity. To be more specific, a microstructure

design target should be chosen first (e.g., r1 of TCVR fibers, since it was found that

component 1 was the main contributor to the airflow resistivity). Then instead of

inputting one value of r1 as for the prediction, one can input an array of r1’s covering

a reasonable range. Each of these r1’s will return a corresponding σ by use of the

AFR model given the other microstructural details including the fiber radii distribu-

tion parameters. Among all the σ results, the value closest to the σo can be found by

least squares fitting and will be referred to as σfit. Finally, amongst the input r1’s,

the one corresponding to σfit is chosen as the fibrous medium’s optimal fiber radius.

This optimization procedure is illustrated in Section 7.3 for the design of a TCVR

fibrous damping treatment applied to an unconstrained aluminum panel. Note that

TCVR fibrous media are the target materials studied here due to their novel mi-

crostructure, but the AFR model prediction capability and the microstructure design

procedure are not limited to TCVR fibers but are also applicable to fibers with simpler

(e.g., SCUR fibers) or more complicated microstructure (e.g., multiple components).

The optimization procedure for SCUR fibers applied to more realistic structures in-

cluding a partially-constrained structure and a fuselage-like structure is introduced

in Section 7.4 and 7.5, respectively.

7.3 Optimized Limp Fibrous Damping Treatments for an Infinitely-Extended

Vibrating Panel

For a 3 mm thick, harmonic line force-driven, unconstrained aluminum panel

treated by a 3 cm limp TCVR fibrous layer (as shown in Figure 4.1), the ηeo’s and

σo’s were identified based on the procedure described above at 10 different frequencies

within the range from 100 to 1000 Hz, given hp = 3 mm, F = 1 N/m and the bulk

property inputs for the air, the panel and the treatment as listed in Tables 4.1, 4.2 and
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4.5, respectively, except that there were 200 log-spaced σ’s being input in a range from

500 to 500000 Rayls/m for each frequency. The microstructural parameters shown

in Table 7.1 (including 100 r1’s ranging from 0.11 to 11 µm) were then input to the

AFR model to return 50 predictions of σ’s as the optimization candidates. Recall

that s1 and s2 that appear in Table 7.1 are parameters that characterize the fiber

radii distributions. Then based on the σo’s (plotted as blue stars in Figure 7.3) found

previously, the least-squares-fitted σfit’s were selected from the candidates and plotted

as orange stars in Figure 7.3. Finally, the optimal r1’s corresponding to the σfit’s were

found and are shown in Figure 7.4.

Further, four optimal r1’s designed at 100 Hz (blue dashed circle), 300 Hz (red

dashed circle), 500 Hz (green dashed circle) and 700 Hz (purple dashed circle) are

highlighted in Figure 7.4. The fiber radii distributions corresponding to these fre-

quencies were regenerated based on the AFR model and are shown in Figure 7.5. It

can be seen clearly from the results that the optimal r1’s tend to be smaller when

considering higher frequency excitation, which conversely means that relatively large

fibers are more effective at damping lower frequency vibration.

7.4 Optimized Limp vs. Elastic Fibrous Damping Treatments for a Partially-

Constrained Vibrating Panel

For a 1 mm thick, harmonic line force-driven, partially-constrained aluminum

panel treated by a 3 cm limp or elastic SCUR fibrous layer (as shown in Figure 4.4

or 4.5, respectively), the ηeo’s and σo’s were identified, given hp = 1 mm, F = 1

N/m and the parameters listed in Tables 4.1, 4.2 and 4.5, 4.6 and 5.1, except for

an array of 200 log-spaced σ candidates ranging from 500 to 500000 Rayls/m, the

optimal σ’s that result in the largest ηe’s at ten frequencies (equally-spaced from 100

to 1000 Hz) were found for either a limp porous or a poro-elastic layer. The optimal

σ’s are plotted in Figure 7.6, from which it can be observed that larger σ’s are better

at reducing higher frequency vibration. The resulting largest ηe’s at each frequencies
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are plotted in Figure 7.7, which shows that a layer of properly-designed poro-elastic

layer can achieve larger optimal damping than the corresponding limp porous layer.

Furthermore, the microstructural design for a specific type of porous medium can

be realized by translating the optimal airflow resistivity into the optimal microstruc-

ture of the SCUR fibrous medium based on a given micro-bulk relation. In the current

study, the optimal σ’s shown above were translated into the optimal fiber radii, r1’s,

based on the AFR model previously described in Chapter 6, and an assumption that

both the poro-elastic and limp porous media comprised single component, uniformly-

sized fibers, with a solid material density of 910 kg/m3 (typical of a polymer fiber).

Similar to the unconstrained panel case described above, the optimal r1’s for either a

limp or elastic fibrous layer were chosen from a range of 0.11–11 µm, and are shown in

Figure 7.8, which generally shows that relatively large fibers are required to achieve

optimal damping at lower frequencies (the same trend as observed in Section 7.3).

Also, it can be observed the optimal damping for elastic fibers is achieved at a larger

fiber size than is required for limp fibers. That finding could translate into a potential

manufacturing benefit from using a stiffer fibrous medium as a damping treatment,

since it is generally easier and less costly to manufacture relatively large fibers.

7.5 Optimized Glass vs. Polymeric Fibrous Damping Treatments for a

Fuselage-Like Structure

The optimal microstructure of the fibrous layer expressed in terms of the optimal

fiber radius, r1, is then introduced based on a 3 mm thick, fuselage-like structure in

this section. Given fibrous layer microstructural parameters as listed in Table 7.2 and

the same parameters as described in Section 7.3 plus the constraint parameters as

listed in Table 5.2, together with hp = 1 mm and P = 1 N/m2, r1 was optimized for

both polymeric and glass fibers at ten different equally-spaced frequencies between

100 and 1000 Hz through the optimal damping selection process. The largest ηeo

achieved by the two kinds of fibers’ optimal fiber radii at each frequency under both
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subsonic and supersonic convective excitations is shown in Figures 7.9, which shows

that an equivalent level of damping can be achieved by the two kinds of fibers after

the microstructural optimization. Note that the sudden rise of ηeo corresponds to the

“dip” at 1000 Hz shown in Figures 5.14 and 5.15.

Further, the optimal fiber radii are shown in Figure 7.10, which generally shows

that relatively large fibers are required to achieve optimal damping at lower frequency.

Also it can be observed that a larger fiber size is required for polymeric fibers than for

glass fibers to achieve an equivalent optimal damping (the same trend as observed in

Sections 7.3 and 7.4). That finding could contribute to a potential benefit from using

polymeric fibers (with fiber material density of 910 kg/m3) instead of glass fibers

(with fiber material density of 2730 kg/m3) as a damping treatment for a aircraft

fuselage due to manufacturing benefit.

7.6 Practical Case Study: A Vehicle Floor Pan-Like Structure with a

Harmonic Line Force-Driven, Arbitrarily-Shaped Panel

Based on the validated TMM, NFD and AFR models, and on the idea that vibrat-

ing structures exhibit a certain wavenumber/frequency response spectrum such as the

ones shown in Figures 4.9, 4.13 and 4.15, a case study is demonstrated in this section

in order to extend the applications of the NFD model from vibrating structures with

regular shapes to arbitrarily-shaped panel, which makes the modeling scenario more

realistic. The objective in this case study was to optimize the damping performance

of porous (fibrous) treatments when applied to this more realistic structure than the

regular structures mentioned above. Therefore, the analytical models were combined

with a numerical simulation based on a finite element model, owing to the fact that

a finite element model is more flexible in creating realistic (irregular) geometries.

It should be noted that the damping optimization process introduced here can be

applied to different realistic structures, although only one representative example is

shown in the following sections to illustrate this design and optimization approach.
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7.6.1 General Approach

The first step of this approach was to build a irregular structure, like the very

simple two-dimensional vehicle floor pan-like structure studied in this section, by

using the finite element model, and to identify a target region from the wavenum-

ber/frequency response of the structure, within which the response was to be reduced.

At the same time, the damping performance of a fibrous layer was evaluated in terms

of power dissipation in the wavenumber/frequency domain, and based on those re-

sults, the fibrous layer’s damping was maximized within the target region, and the

microstructure in terms of fiber radius that provides the maximum damping was

found by using the design process mentioned above. Also, note that all the fibrous

media studied here were assumed to be limp-framed and to consist of a single fiber

component with a uniform fiber size.

Recall the flow chart shown in Figure 7.2 illustrates the analytical design process

used to find the fiber radius that provides the largest damping (here referred to as the

optimal damping) for a specific vibrating structure. There are two basic steps in this

process: (1) evaluating the damping property of a fibrous layer by conducting a para-

metric variation of its bulk properties (typically based on its airflow resistivity); and

(2) identifying the optimal damping and translating the corresponding optimal airflow

resistivity into the optimal fiber radius. The details of this process are omitted from

this thesis since they have been introduced and described several times previously.

Also, when previously studying fibrous damping for regular vibrating structures, the

optimal damping property was evaluated based on identifying either the largest power

dissipation or the largest system equivalent damping loss factor at different excitation

frequencies, without particular regard to the spatial effect of the damping.

In the current study, a wavenumber/frequency domain velocity response was cal-

culated for a floor pan-like structure by applying the spatial Fourier transform to the

output of the finite element model, and a certain wavenumber/frequency region of the

response that showed a salient response was specified as the “strong vibration region”.



165

The energy dissipation per cycle was integrated within the strong vibration region to

evaluate a fibrous layer’s damping performance. By following the analytical design

process shown in Figure 7.2, the damping performance of a specific fibrous layer was

maximized within that strong vibration region, and the corresponding optimal fiber

radius that contributed to the optimal damping was finally identified.

7.6.2 Identification of the Strong Vibration Region for a Floor Pan-like

Structure

A simple line-driven, two-dimensional (2D) floor pan-like structure was created

by using 2D beam elements and triangular mesh in COMSOL Multiphysics, and it

is shown in Figure 7.11. The whole structure was a 1 meter long, baffled panel,

clamped at both ends, made of 1 mm thick aluminum, loaded by an air half-space

above it, and driven by a harmonic line force beneath it (in a vacuum) at x = 0.382

m. The input parameters for the panel and ambient medium (air) are as listed in

Tables 4.2 and 4.1 plus F = 1 N/m. By changing the excitation frequency, the panel’s

transverse velocity response spectra can be calculated at different spatial points, and

the responses at two points are shown as velocity amplitudes in Figure 7.12. Also, at

different excitation frequencies, the panel’s response can be plotted as a functions of

space, giving the so-called “spatial response”, and three spatial responses are shown

in terms of the real parts of the transverse velocities in Figure 7.13.

The spatial response of the panel at any excitation frequency can then be Fourier

transformed to the wavenumber domain. It should be noted that the 3148 spatial

points output directly from COMSOL were not evenly distributed from x = 0 m to

x = 1 m. Therefore, these 3148 spatial points were cubic-interpolated to give 213

evenly-spaced response points and were further zero-padded to 216 points to ensure

good resolution and accuracy of the Fourier transform. The wavenumber/frequency

domain velocity level (dB) of the line-driven, floor pan-like structure was evaluated

at 1000 evenly-spaced frequencies ranging from 10 to 10000 Hz, and the resulting
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wavenumber/frequency spectrum is shown in Figure 7.14. It can be observed that

the response of this structure is largely subsonic by comparing the response curve

and the sonic lines (marked in magenta): i.e., the response that lies outside the sonic

lines are created by waves propagating more slowly than the speed of sound in the

ambient medium. This observation indicates that the velocity response spectrum up

to 10000 Hz of this floor pan-like panel is sub-critical (i.e., the critical frequency of

this structure is above 10000 Hz). Finally, based on the observation of the velocity

level of the spectrum (i.e., areas in red show salient vibration, and areas in blue

show relatively weak vibration), a wavenumber/frequency region showing prominent

vibration was selected, and it is shown as a blue rectangle (500 to 1000 rad/m, 900

to 1600 Hz) in Figure 7.14. The objective is then to design a porous (fibrous) layer

that effectively damps the motion within that region.

7.6.3 Evaluation of the Damping Performance for a Limp Fibrous Layer

The wavenumber/frequency response of the floor pan-like structure was evaluated

to first identify the strong vibration region: i.e., the target region. Then, for an

infinitely-extended limp fibrous layer driven by a harmonic line force at x = 0 m

(as shown in Figure 7.15), the near field damping performance of the layer can be

evaluated based on the NFD model and power analysis as described in Chapter 4.

According to the TMM and NFD analytical models, the acoustic particle velocity

at z = 0 for a bare limp layer can be expressed as

vz1(kx, ω) =
F

Za1(kx, ω)
, (7.1)

where F is the amplitude of the harmonic force per unit length in the y-direction, and

Za1 is the normal acoustic impedance at z = 0. Then, the acoustic particle velocity

at z = d can be expressed, per Eq. B.4 in Appendix B, as

vz2(kx, ω) =
vz1(kx, ω)

T21Za2(kx, ω) + T22

. (7.2)
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where Zaa2 is the normal acoustic impedance at z = d, and T21 and T22 are the

elements of the transfer matrix, [T11, T12;T21, T22], for a limp fibrous layer, which can

all be evaluated by using the TMM model as described in Appendix B, so that vz1

and vz2 can both be evaluated as functions of trace wavenumber, kx, and angular

frequency, ω = 2πf . Then the power input into the system by the harmonic line

force that was mapped as a function of kx and ω can be expressed as

Pinp(kx, ω) =
1

4π
Re (Fv∗z1(kx, ω)) , (7.3)

the power radiation at z = 0 can be expressed as

P1(kx, ω) =
1

4π
Re
(
Za1(kx,j, ω)|vz1(kx,j, ω)|2

)
, (7.4)

and the power radiation at z = d can be expressed as

P2(kx, ω) =
1

4π
Re
(
Za2(kx,j, ω)|vz2(kx,j, ω)|2

)
. (7.5)

Given the bulk properties of the limp fibrous layer together with the ambient (air)

properties as listed in Tables 4.5 (except for layer depth d = 5 cm instead of 3 cm in

this case study) and 4.1, the power dissipation within the fibrous layer could then be

evaluated as

Pd(ω) = P1(kx, ω)− P2(kx, ω), (7.6)

and that function is mapped in Figure 7.16 over 216 evenly-spaced kx’s ranging from

−250 to 250 rad/m and 1000 evenly-spaced f ’s ranging from 10 to 10000 Hz. Note

that the strong vibration region and the sonic lines are also marked in Figure 7.16

for reference. The energy dissipation per cycle per unit length in the y-direction can

also be integrated within the strong vibration region to give

Ed =
1600∑
f=900

∑100
kx=50 Pd(kx, 2πf)∆kx

2πf
, (7.7)
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7.7 Optimization of the Limp Fibrous Damping Treatment for a Vehicle

Floor Pan-Like Structure

By following the forward design process shown in Figure 7.2, instead of a single

airflow resistivity input, an array of 64 log-spaced airflow resistivities ranging from

5000 to 500000 Rayls/m were input to the analytical model, and the power dissi-

pation within the fibrous layer corresponding to 16 of these airflow resistivities are

plotted together in Figure 7.17. Also, Ed can be evaluated for each airflow resistivity,

and that result is plotted in Figure 7.18, from which a peak value can be identified

with a corresponding optimal airflow resistivity around 12000 Rayls/m. By using the

AFR model described in Chapter 6 for a fibrous medium that has a single fiber com-

ponent and uniform fiber size, the optimal airflow resistivity can then be translated

into an optimal fiber radius of 3.6 µm. Further, to show the damping effectiveness of

the microstructurally-optimized fibrous treatment, the wavenumber/frequency spec-

tra within the strong vibration region for the untreated and treated panels are plotted

in Figures 7.19(a) and 7.19(b), respectively, and the velocity level difference between

an untreated and a treated panel within the strong vibration region is plotted in

Figure 7.19(c), which shows vibration level reductions of up to 10 dB (especially at

peak locations) when the floor pan-like panel was treated by the optimized fibers.

A comparison between the treated and untreated panel in terms of spatial response

at peak frequencies within the strong vibration target region is also shown in Figure

7.20 for the observation of the vibration reduction.

7.8 Conclusions

Based on the TMM/ACM, NFD and AFR models, predictions of near-field damp-

ing performance can now start with porous layers’ microstructures. On the other

hand, the microstructures of porous media can also be designed to maximize the ma-

terial’s damping performance. The microstructural design process based on the AFR

model of fibrous media and optimization was first shown in Section 7.2.
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The design process was then applied to three different cases: (1) an unconstrained

panel treated by limp TCVR fibrous layer, (2) a partially-constrained panel treated

by either a limp or elastic SCUR fibrous layer, and (3) a periodically-constrained

panel (fuselage-like structure) treated by a limp SCUR fibers made of either glass or

polymer. All three cases showed that relatively large fibers were found to be better

at reducing lower frequency vibrations, while relatively small fibers were better at

higher frequency damping. In addition, the elastic fibers were found to have not

only damping but also manufacturing advantages over limp fibers after optimization,

because the optimal damping for elastic fibers is achieved at a larger fiber size than

is required for limp fibers, but the optimal damping level achieved by the optimized

elastic fibers was higher than it was for limp fibers. A similar manufacturing benefit

was also found for limp fibers made of polymer compared to the situation when it

was made of glass, which could be a valuable design concept for aerospace industries.

Finally, based on the idea that vibrating structures exhibit a certain wavenum-

ber/frequency response spectrum, the NFD model plus the optimization process was

further applied to evaluate the power dissipated by a fibrous treatment as a func-

tion of wavenumber and frequency, and on identifying the material microstructure

(i.e., fiber size) required to maximize the power dissipation, and hence damping, in a

specific wavenumber/frequency range. To demonstrate the wavenumber/frequency-

matching procedure, an example involving a simplified model of a vehicle component

was considered here, which showed how a fibrous layer can be designed to maxi-

mize its damping effectiveness when applied to a realistic base structure, such as an

automotive floor pan.
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Table 7.1. Parameters for the limp TCVR fibrous layer applied to
the unconstrained structure.

ρ1 X1 r1 s1

910 kg/m3 0.5 0.11–11 µm 5

ρ2 X2 r2 s2

1380 kg/m3 0.5 13.1 µm 2.8×10−7

Table 7.2. Parameters for the limp SCUR fibrous layer applied to
the fuselage-like structure.

r1 ρ1 (polymeric fiber) ρ1 (glass fiber)

0.01–11 µm 910 kg/m3 2730 kg/m3

Figure 7.1. Fibrous material acoustical and damping properties pre-
diction by an analytical approach.

Figure 7.2. Fibrous material microstructure design by an analytical approach.
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Figure 7.3. Optimal airflow resistivity, σo’s (blue stars) selected from
200 log-spaced σ candidates ranging from 500 to 500000 Rayls/m, and
the AFR-TCVR model-fitted airflow resistivity, σfit’s (orange stars)
corresponding to the optimal r1 shown in Figure 7.4 for a 3 mm thick,
unconstrained aluminum panel with a 3 cm layer of limp fibers, driven
by a harmonic force under 10 different frequencies: line-spaced within
100–1000 Hz.

Figure 7.4. σfit-corresponded optimal r1 (orange stars) identified from
100 line-spaced r1 candidates ranging from 0.01 µm (blue dashed line)
to 11 µm (red dashed line) for a 3 mm thick, unconstrained aluminum
panel with a 3 cm layer of limp fibers, driven by a harmonic force
under 10 different frequencies: line-spaced within 100–1000 Hz, with
the optimal r1 at four different frequencies: 100 Hz (in blue circle),
300 Hz (in red circle), 500 Hz (in green line) and 700 Hz (in purple
line) being selected for radii distribution observation.



172

Figure 7.5. Regenerated fiber radii distributions corresponding to the
optimal r1’s designed for TCVR fibers for a 3 mm thick, unconstrained
aluminum panel with a 3 cm layer of limp fibers (σ ranging from 500
to 500000 Rayls/m), driven by a harmonic force under four different
frequencies: 100 Hz (blue line), 300 Hz (red line), 500 Hz (green line)
and 700 Hz (purple line).

Figure 7.6. Optimal σ’s for either a 3 cm thick bonded poro-elastic
layer (red solid line) or a limp porous layer (green solid line) to achieve
the largest ηe’s when acting on a 1 mm thick, partially-constrained
aluminum panel, driven by a line force at ten equally-spaced frequen-
cies ranging from 100 to 1000 Hz.



173

Figure 7.7. The largest ηe’s achieved by either a 3 cm thick bonded
poro-elastic layer (red solid line) or a limp porous layer (green solid
line) applied to a 1 mm thick, partially-constrained aluminum panel,
driven by a line force at ten equally-spaced frequencies ranging from
100 to 1000 Hz.

Figure 7.8. Optimal r1’s for either a 3 cm thick bonded poro-elastic
layer (red solid line) or a limp porous layer (green solid line) to achieve
the largest ηe’s when acting on a 1 mm thick, partially-constrained
aluminum panel, driven by a line force at ten equally-spaced frequen-
cies ranging from 100 to 1000 Hz.
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(a) (b)

Figure 7.9. Optimal damping in terms of ηe achieved by a 3 cm thick
layer of microstructural-optimized polymeric fibers (blue solid line) or
glass fibers (red dashed line) for a 3 mm thick fuselage-like structure
driven by (a) subsonic convective pressure (M = 0.8), (b) supersonic
convective pressure (M = 1.2) at ten equally-spaced frequencies rang-
ing from 100 to 1000 Hz.

(a) (b)

Figure 7.10. Optimal fiber radii, r1, designed for a 3 cm thick layer of
polymeric fibers (orange line) or glass fibers (green line) to achieve the
optimal damping for a fuselage-like structure driven by (a) subsonic
convective pressure (M = 0.8), (b) supersonic convective pressure
(M = 1.2) at ten equally-spaced frequencies ranging from 100 to 1000
Hz.
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Figure 7.11. A 1 mm thick, harmonic line force-driven, arbitrarily-
shaped aluminum panel to model a vehicle floor pan-like structure.

Figure 7.12. Transverse velocity response spectra at x = 0.382 m
(blue line) and x = 0.8 m (green line) returned by the COMSOL
finite element model.
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Figure 7.13. Transverse velocity (real part) spatial response at f =
100 Hz (blue line), f = 1000 Hz (green line) and f = 10000 Hz (red
line).
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Figure 7.14. Wavenumber/frequency domain transverse velocity level
(dB) of the bare (untreated) floor pan-like structure, with the strong
vibration region marked in blue rectangle, and speed of sound (sonic)
lines mark in magenta.

Figure 7.15. A line-driven, infinitely-extended bare limp fibrous layer
for damping evaluation based on the NFD analytical model.
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Figure 7.16. Power dissipation [W/m2] within a line-driven, infinitely-
extended limp fibrous layer.
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Figure 7.17. Parametric study of the effect of airflow resistivity on the
fibrous layer’s damping performance in terms of the power dissipation
[W/m2].
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Figure 7.18. Energy dissipation per cycle per unit length of y-
direction [J/m] within the strong vibration region under different air-
flow resistivities to identify the optimal airflow resistivity for the limp
fibrous damping treatment.
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(a) (b)

(c)

Figure 7.19. Wavenumber/frequency velocity level (dB) spectrum
within the strong vibration region of (a) the untreated floor pan-like
structure, (b) the floor pan-like structure treated by the optimized
fibrous damping layer, (c) the difference between (a) and (b) to show
the vibration reduction.



182

(a)

(b)

Figure 7.20. Spatial responses at peak frequencies within the target
region of (a) the untreated floor pan-like structure, and (b) the floor
pan-structure treated by the optimized fibrous damping layer.
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8. CONCLUSIONS AND NEXT STEPS

8.1 Summary of Conclusions

Based on the state-of-the-art and classic theories of acoustics, modeling method-

ologies have been developed here into a comprehensive toolbox to model multilayer

systems that involve acoustical and/or damping treatments, as well as to optimize

the performance of those treatments by designing their geometrical structures, which

allows the understanding, prediction and optimization of the near-field damping per-

formance for porous media. Thus, the damping effectiveness can be maximized for

porous materials, and that attribute can be exploited in combination with their con-

ventional sound absorption features , lightness, and the advantage of temperature

independence in contrast to conventional visco-elastic damping layer. The impor-

tant conclusions based on the near-field damping studies on different porous damping

treatments applied to various vibrating structures are summarized here.

There were three kinds of analytical models involved in this study: (1) the acousti-

cal models including the Johnson-Champoux-Allard model introduced in Section 2.2,

the Biot theory introduced in Section 2.3, the Transfer Matrix Method (TMM) for

limp porous media introduced Section 2.4.1 and Appendix B, the Arbitrary Coeffi-

cient Method (ACM) for poro-elastic media introduced in Section 2.4.2 and Appendix

C and the TMM for the poro-elastic media introduced in Chapter 3, (2) the near-

field damping (NFD) model (introduced in Chapter 4 and its incorporation with

the TMM-limp model in Appendix B and ACM-poro-elastic model in Appendix C),

mainly consisting of Euler-Bernoulli beam theory, inverse discrete Fourier transform

(IDFT), and power analysis (power distribution and system equivalent damping loss

factor); and (3) the micro-bulk relations in terms of the AFR model (introduced in

Chapter 6, for SCUR, TCUR and TCVR fibers).
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There were two types of porous damping treatments that were studied: limp

porous media with negligible bulk elasticity of their solid frames, and poro-elastic

media with non-negligible bulk elasticity of their solid frames, and they were studied

based on four different kinds of vibrating structures (also referred to as “panels” or

“substrates” in the thesis): (1) a harmonic line force-driven, infinitely-extended (un-

constrained) panel; (2) a partially-constrained panel with two identical discontinuities

(constraints); (3) a convective pressure-driven, periodically-constrained (fuselage-like)

panel with uniformly-distributed discontinuities (constraints); and (4) a harmonic line

force-driven, arbitrarily-shaped (vehicle floor pan-like) finite panel.

First, connections were built between porous media’s bulk properties and their

fundamental acoustical properties, based on which, different acoustical models were

then introduced for coupling and modeling multilayer acoustical systems that involve

porous media. Given a specified layered structure consisting of a vibrating panel

and a porous damping treatment, the acoustical models that include the Transfer

Matrix Method (TMM) and the Arbitrary Coefficient Method (ACM) were then

applied to characterize the acoustical properties of the panel’s acoustical near-field.

Then, the incorporation of these acoustical models into the near-field damping (NFD)

model makes it possible to predict the spatial response of the panel and the damping

performance of the porous layer. Additional studies were also conducted during the

near-field damping modeling process; for example, the relations between a porous

medium’s bulk properties and acoustical properties were also modified to be applied

for modeling double-phase porous media: i.e., materials consisting of two different

components such as fibers plus particles. In that case, the TMM model originally used

for limp porous media was modified to be capable of coupling with poro-elastic layers

or elastic solid layers in order to improve multilayer systems modeling efficiency. In

addition, layered acoustical elements including various kinds of surface treatments,

micro-perforated panels (MPP) and transversely isotropic poro-elastic (TIP) layers

were also built into this toolbox to extend its modeling capability.
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The application of the TMM/ACM plus NFD models provides a prediction toolbox

to help us evaluate the damping performance of certain limp porous or poro-elastic

layers acting on the specified panels. First, for both unconstrained and periodically-

constrained panels, the toolbox verified that a limp porous layer provided significant

attenuation of the panel motion, but primarily in the sub-critical frequency region,

and that the damping effectiveness increased when the panel thickness decreased.

And the layer also proved effective at controlling the sound radiation from the panel

in the super-critical region (see Section 5.2 and 5.4). Also, the prediction toolbox

was used to compare the normalized power dissipations within a poro-elastic and a

limp porous layer when acting on an unconstrained panel structure, which revealed

that a poro-elastic layer results in greater power dissipation than the limp porous

layer due to the additional structural dissipation in the former medium, but that this

superior performance could not be maintained when the poro-elastic layer was not

directly bonded to the vibrating panel. The bonded poro-elastic layer was further

shown to possess an overall damping advantage over the limp porous layer based

on the system equivalent damping loss factor, ηe (see Section 5.3), when applied

to a partially-constrained harmonic line-driven panel. Furthermore, the prediction

models were used to study the damping performance of different layered porous media

resting on either an unconstrained or a periodically-constrained panel (see Sections 5.2

and 5.4), according to which, limp porous damping treatment application guidelines

can be summarized in three main findings: (1) with limited space and the same

microstructure, a layer of glass fiber is heavier compared to a layer of polymeric fiber,

but will improve the low frequency damping; (2) with limited weight and the same

microstructure, a thin layer of glass fiber gives better low frequency damping, while

a thick layer of polymeric fiber gives better high frequency damping; and (3) with

limited space, limited weight and different microstructures, a layer of sparse, coarse

glass fibers is better at reducing low frequency vibration, while a layer of dense,

fine polymeric fibers is better at reducing high frequency vibration. These findings

can thus be used as guidelines when applying these media in structural damping
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applications. In addition, limp porous (fibrous) media’s damping effectiveness were

proven on both the fuselage-like and floor pan-like structures.

On the other hand, the process of microstructural design on the fibrous damping

media was introduced in Section 7.2, and can be conducted based on using the AFR

model in combination with the TMM/ACM and NFD models, in order to maximize

a fibrous treatment’s damping performance for a certain frequency and panel of inter-

est. Limp TCVR fibers were designed for a harmonic line force-driven, unconstrained

panel; limp and elastic SCUR fibers were designed for a partially-constrained panel

(fuselage structure, see Section 7.5) and an arbitrarily-shaped panel (floor pan struc-

ture, see Section 7.7); and limp SCUR fibers that were made of either polymer or

glass were both designed based on a fuselage-like panel. From the observation of the

designed microstructures, design concepts for fibrous dampers can be summarized as:

(1) larger fibers (i.e., smaller airflow resistivities) were found to be more effective at

reducing lower frequency vibrations; (2) elastic fibers have advantages with respect to

both optimal damping and manufacturing over limp fibers, and (3) polymeric fibers

were found to have a potential manufacturing benefit over glass fibers due to the

larger fiber size required by the former material to achieve the optimal damping for

a fuselage-like structure.

8.2 Recommendation of Next Steps

There are several potential studies that can be focused on in the future:

(1) Micro-bulk relations can be further developed for porous media with different

types of microstructures: e.g., open- or closed-cell foams, or for fibrous media taking

the orientation of fibers into account by using numerical simulation and statistical

methods.

(2) Sensitivity study can be conducted on the JCA inputs to understand and to

modify the relations between porous media’s bulk properties and their fundamental
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acoustical properties especially for trendy materials such as nano-fibers and double-

porosity materials.

(3) Adhesives can be modeled as elastic solid layers to bond a poro-elastic layer

with a panel, and Rayleigh waves effect can be studies by using the TMM model

proposed in Chapter 3 to make it more comprehensive.

(4) Zero modes and free modes appeared during the SVD process in Chapter 3

can be studied in combination with the conditioning of the TMM-poro-elastic model

to make the package more numerically-stable and comprehensive especially for large

layer depth, high frequencies and special case, such as double poro-elastic layers with

a stiff panel bonded in between.

(5) Joint optimization can be applied to multilayered treatments considering prac-

tical limitations and materials’ randomness to maximize both their acoustical and

damping performance.

(6) A finite element periodic structure can be built for further validating, and mode

localization literatures can be reviewed to understand and stabilize the results for the

NFD fuselage-like cases. Three-dimensional (point excitation) NFD cases involving

poro-elastic treatments can be modeled as a comparison of finite panel power injection

method damping loss factor measurements.
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A. THE GRANULAR ACTIVATED CARBON (GAC) MODEL USED TO

COUPLE BULK MODULI FROM DIFFERENT SCALES OF PORES OF THE

DOUBLE-COMPONENT FIBER-PARTICLE POROUS MEDIUM

The process for calculating the micro-scale and nano-scale bulk moduli attributable

to an activated carbon particle, and coupling those with the intergranular-scale bulk

modulus by using the GAC model is described in Ref. [31] and is summarized here

for the sake of completeness.

First, the bulk moduli resulting from three different scales of porosity were com-

bined as

K ′f =

(
1

Ep
+

(1− φp)Fd
Eu

)−1

, (A.1)

where Ep is the bulk modulus calculated by using the JCA model described in Chapter

2 for the fiber plus particle on the intergranular scale, which is coupled by the factor,

Fd, and the intergranular-scale porosity, φp, with the micro-scale plus nano-scale, Eu.

And φp, Fd and Eu can be expressed as

φp =
φtb − (φm + (1− φm)φn)

1− (φm + (1− φm)φn)
, (A.2)

Fd = 3z−2
d (1− zd cot zd), (A.3)

and

Eu =

(
1

Em
+

(1− φm)Fnm
En

)−1

. (A.4)

In Eq. (A.2), φtb, φm and φn are the overall porosity, the micro-scale porosity and

the nano-scale porosity, respectively, where φtb = 1− ρbc/ρsc can be calculated given

the solid density of the carbon material, ρsc = 2200 kg/m3, and the bulk density

of the particle component, ρbc = 214.5 kg/m3 (based on particle component weight
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fraction, 0.78, and bulk density, ρb, of the double-component porous medium, 275

kg/m3), and φm = 0.71 and φn = 0.26 were previously characterized in Ref. [31].

In Eq. (A.3), interscale coupling, zd, was calculated given a particle radius, rp =

0.74 mm, micro-scale pore radius, rm = 0.41 µm, micro-scale bulk modulus, Em, and

dynamic viscous permeability, km: i.e.,

zd = rpω
√
η/ (iωkmEm), (A.5)

where

km = −iφmη(1−Gc)/(ρ0ω), (A.6)

Gc =
2J1 (sc)

sc [J0 (sc)−KnscJ1 (sc)]
, (A.7)

sc =
i3/2rm√
η/ρ0ω

, (A.8)

and the Knudsen number in terms of specific gas constant, Rg = 287.05 J/(kg · K),

and temperature, Tg = 293.15 K (20◦C) is,

Kn =
η
√
πRgTg/2

P0rm
. (A.9)

In Eq. (A.4), another interscale coupling factor, Fnm, was calculated given the

configurational diffusivity of air, Dc = 1.35× 10−10 m2/s, by

Fnm = 1− iωs

iωs +
√

1 + iωsMb/2
, (A.10)

where

ωs =
ω

ωdnm
, (A.11)

Mb =
8B0

Λ2
d (1− φm)

, (A.12)

ωdnm =
Dc (1− φm)

B0

, (A.13)
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B0 =
r2
m (− lnφm − 3/2 + 2φm − φ2

m/2)

4φm
, (A.14)

Λd =
rm (1− φm)

φm
. (A.15)

The micro-scale bulk modulus, Em, was calculated given the thermal permeability,

k′m, constant pressure heat capacity, Cp = 1006.1 J/K, and thermal conductivity,

κ = 0.02587 W/(m · K) (Note that the Prandtl number B2 = Cpη/κ = 0.71), by

Em =
γP0

φm

(
γ − iωρ0Cp (γ − 1)

k′m
φmκ

)−1

, (A.16)

where

k′m = −iφmB2η(1−G′c)/(ρ0ω), (A.17)

G′c =
2J1 (st)

st [J0 (st)−Kn′stJ1 (st)]
, (A.18)

st =
i3/2rmB√
η/ρ0ω

, (A.19)

and the Knudsen number was rewritten in thermal effect form as

Kn′ =
2γKn

(γ + 1)B2
. (A.20)

Also, the nano-scale bulk modulus, En, was calculated given nano-scale pore radius,

rn = 0.33 nm, Langmuir constant, Lb = 3.47 × 10−6 Pa−1, mass of the saturating

fluid (air) molecule, mm = 4.8 × 10−26 kg, and area occupied by each molecule,

Sm = 4.3× 10−19 m2, by

En =
P0

φn (1 + ρnΨ/ρ0)
, (A.21)

where

Ψ =
P0Lb

(1 + P0Lb)
2 , (A.22)

and

ρn =
2φnmm

rnSm
. (A.23)
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B. THE TRANSFER MATRIX METHOD (TMM) USED TO PREDICT

ACOUSTICAL PROPERTIES FOR LIMP POROUS MEDIA

The process for calculating acoustical properties including Za1, vz1, Za2 and vz2 by

using the TMM model is summarized here for the sake of completeness.

The near-field acoustical properties and the far-field acoustical properties can be

connected by the transfer matrix of the limp porous layer, and that relation can be

expressed as Za1vz1

vz1

 =

T11 T12

T21 T22

Za2vz2

vz2

 , (B.1)

based on which the normal acoustic impedance at z = 0 looking into the acoustic

medium, Za1(kx, ω), can be expressed as

Za1(kx, ω) =
T11Za2(kx, ω) + T12

T21Za2(kx, ω) + T22

. (B.2)

The transfer matrix of the limp porous layer can be expressed asT11 T12

T21 T22

 =

 cos
√
k2
c − k2

xd i ρcω√
k2c−k2x

sin
√
k2
c − k2

xd

i

√
k2c−k2x
ρcω

sin
√
k2
c − k2

xd cos
√
k2
c − k2

xd

 , (B.3)

where the kc is the complex wavenumber, and ρc is the complex density of the limp

porous layer. Both of these values can be evaluated at each frequency based on

the Johnson-Champoux-Allard (JCA) model [16] and the Biot limp porous medium

theory [19–21], given the properties that include the limp porous layer’s σ, φ, α∞

and ρb, in addition to ρ0, c0, B2, γ and η. The elements of the matrix can then

be evaluated as functions of ω and kx, given kc, ρc and the porous layer thickness,

d, by using Eq. (B.3). Finally, Za1(kx, ω) can be evaluated by using Eq. (B.2), and
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vt(kx, ω) = vz1(kx, ω) can then be evaluated by using Eq. (4.9). In addition, vz2(kx, ω)

can be evaluated as

vz2(kx, ω) =
vz1(kx, ω)

T21Za2(kx, ω) + T22

. (B.4)

Note that Za1 = Za2 when there is no porous layer but only a bare panel loaded by

the acoustic half-space.
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C. THE ARBITRARY COEFFICIENT METHOD (ACM) USED TO PREDICT

ACOUSTICAL PROPERTIES FOR PORO-ELASTIC MEDIA

The calculation process that gives the acoustical properties of the poro-elastic medium

and the wavenumber domain response of the panel by using the ACM model is sum-

marized here.

The main idea of the ACM model is to construct the equation system resulting

from the boundary conditions of a layered structure, then to solve the matrix equation

for all the arbitrary complex amplitude coefficients (C1–C6, Wt, A2, Wp, A1 and B1) of

the propagating waves in the frequency and wavenumber domain. These propagating

waves (also referred to as “field variables”) include the z-direction displacement for

the solid phase of the poro-elastic medium

uz(kx, ω) = i
k1z

k2
1

(
C1e

−ik1zz − C2e
ik1zz

)
+ i

k2z

k2
2

(
C3e

−ik2zz − C4e
ik2zz

)
+ i

kx
k2

3

(
C5e

−ik3zz + C6e
ik3zz

)
, (C.1)

the z-direction displacement for the fluid phase of the poro-elastic medium

Uz(kx, ω) = ib1
k1z

k2
1

(
C1e

−ik1zz − C2e
ik1zz

)
+ ib2

k2z

k2
2

(
C3e

−ik2zz − C4e
ik2zz

)
+ ig

kx
k2

3

(
C5e

−ik3zz + C6e
ik3zz

)
, (C.2)

the x-direction displacement for the solid phase of the poro-elastic medium

ux(kx, ω) = i
kx
k2

1

(
C1e

−ik1zz + C2e
ik1zz

)
+ i

kx
k2

2

(
C3e

−ik2zz + C4e
ik2zz

)
− ik3z

k2
3

(
C5e

−ik3zz − C6e
ik3zz

)
, (C.3)
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the shear force per unit material area acting on the solid phase in the x-z plane

τxz(kx, ω) = 2N
kxk1z

k2
1

(
C1e

−ik1zz − C2e
ik1zz

)
+ 2N

kxk2z

k2
2

(
C3e

−ik2zz − C4e
ik2zz

)
+N

k2
x − k2

3z

k2
3

(
C5e

−ik3zz + C6e
ik3zz

)
, (C.4)

the force per unit material area acting on the fluid phase of the poro-elastic medium

s(kx, ω) = (Q+ b1R)
(
C1e

−ik1zz + C2e
ik1zz

)
+ (Q+ b2R)

(
C3e

−ik2zz + C4e
ik2zz

)
, (C.5)

the force per unit material area acting on the solid phase of the poro-elastic medium

σz(kx, ω) =

(
2N

k2
1z

k2
1

+ A+ b1Q

)(
C1e

−ik1zz + C2e
ik1zz

)
+

(
2N

k2
2z

k2
2

+ A+ b2Q

)(
C3e

−ik2zz + C4e
ik2zz

)
+

(
2N

kxk3z

k2
3

)(
C5e

−ik3zz − C6e
ik3zz

)
, (C.6)

the transverse displacement of the panel

wt(kx, ω) = Wt, (C.7)

the longitudinal displacement of the panel

wp(kx, ω) = Wp, (C.8)

the acoustic pressure above the poro-elastic layer (z ≥ d)

pb(kx, ω) = iωρ0A2e
−ikzz, (C.9)

the acoustic particle velocity above the poro-elastic layer (z ≥ d)

vzb(kx, ω) = ikzA2e
−ikzz, (C.10)
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the acoustic pressure between the panel and the poro-elastic layer when they are

unbonded

pa(kx, ω) = iωρ0

(
A1e

−ikzz +B1e
ikzz
)
, (C.11)

and the acoustic particle velocity between the panel and the poro-elastic layer when

they are unbonded

vza(kx, ω) = ikz
(
A1e

−ikzz −B1e
ikzz
)
, (C.12)

where kz =
√

[ω(1− iηa)/c0]2 − k2
x is the z-direction wavenumber in the air expressed

in terms of ω and kx given ρ0, ηa and c0, and where the stress-strain relation constants,

A, N , Q, R, the complex wavenumbers, k1, k2, k3, and the velocity or displacement

ratios, b1, b2, g, can all be found by using the JCA model [16] and the Biot poro-elastic

medium theory [15, 16, 18], given the poro-elastic layer’s σ, φ, α∞, ρb, E1, ν and ηm,

in addition to ρ0, c0, B2, γ and η. The z-direction wavenumbers k1z =
√
k2

1 − k2
x,

k2z =
√
k2

2 − k2
x, k3z =

√
k2

3 − k2
x, can then be evaluated in terms of ω and kx.

Note that the harmonic time dependence, eiωt, and the x-direction harmonic spatial

dependence, e−ikxx, are both eliminated for all the field variables mentioned above

after Fourier transferring them from the time and space domain to the frequency and

wavenumber domain. These frequency and wavenumber domain field variables can

be combined with appropriate boundary conditions to construct the matrix equation

system [
M
] [

X
]

=
[
J
]
. (C.13)

Based on the boundary conditions (B.C.s) listed in Eqs. (4.11): i.e., (4.11)(a)–(i)

interpreted as B.C. (1)–(9) here for the bonded layered structure as shown in 4.2, [X]

is a 9× 1 vector of unknown amplitudes, and[
X
]T

=
[
C1 C2 C3 C4 C5 C6 Wt A2 Wp

]
. (C.14)
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[M] is a 9× 9 coefficient matrix with row number, p, corresponding to the pth B.C.,

and with column number, q, corresponding to the qth element in [X]. The elements

in [M] are

M(1, 1) = k1z/k
2
1, M(1, 2) = −k1z/k

2
1, M(1, 3) = k2z/k

2
2,

M(1, 4) = −k2z/k
2
2, M(1, 5) = kx/k

2
3, M(1, 6) = kx/k

2
3, M(1, 7) = i,

M(2, 1) = b1k1z/k
2
1, M(2, 2) = −b1k1z/k

2
1, M(2, 3) = b2k2z/k

2
2,

M(2, 4) = −b2k2z/k
2
2, M(2, 5) = gkx/k

2
3, M(2, 6) = gkx/k

2
3, M(2, 7) = i,

M(3, 1) = kx/k
2
1, M(3, 2) = kx/k

2
1, M(3, 3) = kx/k

2
2, M(3, 4) = kx/k

2
2,

M(3, 5) = −k3z/k
2
3, M(3, 6) = k3z/k

2
3, M(3, 7) = −hpkx/2, M(3, 9) = i,

M(4, 1) = 2Nkxk1z/k
2
1, M(4, 2) = −2Nkxk1z/k

2
1, M(4, 3) = 2Nkxk2z/k

2
2,

M(4, 4) = −2Nkxk2z/k
2
2, M(4, 5) = N

(
k2
x − k2

3z

)
/k2

3,

M(4, 6) = N
(
k2
x − k2

3z

)
/k2

3, M(4, 9) = −
(
Dpk

2
x −msω

2
)
,

M(5, 1) = 2Nk2
1z/k

2
1 + A+ b1Q+Q+ b1R− ihpNk2

xk1z/k
2
1,

M(5, 2) = 2Nk2
1z/k

2
1 + A+ b1Q+Q+ b1R + ihpNk

2
xk1z/k

2
1,

M(5, 3) = 2Nk2
2z/k

2
2 + A+ b2Q+Q+ b2R− ihpNk2

xk2z/k
2
2,

M(5, 4) = 2Nk2
2z/k

2
2 + A+ b2Q+Q+ b2R + ihpNk

2
xk2z/k

2
2,

M(5, 5) = 2Nkxk3z/k
2
3 − ihpNkx

(
k2
x − k2

3z

)
/k2

3/2,

M(5, 6) = −2Nkxk3z/k
2
3 − ihpNkx

(
k2
x − k2

3z

)
/k2

3/2,

M(5, 7) = −
(
Dk4

x −msω
2
)
,

M(6, 1) = (Q+ b1R)e−ik1zd, M(6, 2) = (Q+ b1R)eik1zd,

M(6, 3) = (Q+ b2R)e−ik2zd, M(6, 4) = (Q+ b2R)eik2zd,

M(6, 8) = iωρ0φe
−ikzd,
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M(7, 1) =
(
2Nk2

1z/k
2
1 + A+ b1Q

)
e−ik1zd,

M(7, 2) =
(
2Nk2

1z/k
2
1 + A+ b1Q

)
eik1zd,

M(7, 3) =
(
2Nk2

2z/k
2
2 + A+ b2Q

)
e−ik2zd,

M(7, 4) =
(
2Nk2

2z/k
2
2 + A+ b2Q

)
eik2zd,

M(7, 5) =
(
2Nkxk3z/k

2
3

)
e−ik3zd,

M(7, 6) =
(
−2Nkxk3z/k

2
3

)
eik3zd, M(7, 8) = iωρ0(1− φ)e−ikzd,

M(8, 1) =
(
−ω(1− φ+ φb1)k1z/k

2
1

)
e−ik1zd,

M(8, 2) =
(
ω(1− φ+ φb1)k1z/k

2
1

)
eik1zd,

M(8, 3) =
(
−ω(1− φ+ φb2)k2z/k

2
2

)
e−ik2zd,

M(8, 4) =
(
ω(1− φ+ φb2)k2z/k

2
2

)
eik2zd,

M(8, 5) =
(
−ω(1− φ+ φg)kx/k

2
3

)
e−ik3zd,

M(8, 6) =
(
−ω(1− φ+ φg)kx/k

2
3

)
eik3zd, M(8, 8) = −ikze−ikzd,

M(9, 1) =
(
2Nkxk1z/k

2
1

)
e−ik1zd, M(9, 2) =

(
−2Nkxk1z/k

2
1

)
eik1zd,

M(9, 3) =
(
2Nkxk2z/k

2
2

)
e−ik2zd, M(9, 4) =

(
−2Nkxk2z/k

2
2

)
eik2zd,

M(9, 5) =
[
N
(
k2
x − k2

3z

)
/k2

3

]
e−ik3zd, M(9, 6) =

[
N
(
k2
x − k2

3z

)
/k2

3

]
eik3zd.

[J] is a 9× 1 forcing vector with row number, p, corresponding to the pth B.C., and

J(5, 1) = −F,

and all the other elements in [M] and [J] are equal to zero.

From the boundary conditions as shown in Eqs. (4.13): i.e., (4.13)(a)–(j) inter-

preted as B.C. (1)–(10) here for the unbonded layered structure as shown in 4.3, [X]

is a 10× 1 vector of unknown amplitudes, and[
X
]T

=
[
C1 C2 C3 C4 C5 C6 Wt A2 A1 B1

]
. (C.15)
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[M] is a 10× 10 coefficient matrix with the elements being

M(1, 7) = Dk4
x −msω

2, M(1, 9) = iωρ0, M(1, 10) = iωρ0,

M(2, 7) = iω, M(2, 9) = −ikz, M(2, 10) = ikz,

M(3, 1) = Q+ b1R, M(3, 2) = Q+ b1R, M(3, 3) = Q+ b2R,

M(3, 4) = Q+ b2R, M(3, 9) = iωρ0φ, M(3, 10) = iωρ0φ,

M(4, 1) = 2Nk2
1z/k

2
1 + A+ b1Q, M(4, 2) = 2Nk2

1z/k
2
1 + A+ b1Q,

M(4, 3) = 2Nk2
2z/k

2
2 + A+ b2Q, M(4, 4) = 2Nk2

2z/k
2
2 + A+ b2Q,

M(4, 5) = 2Nkxk3z/k
2
3, M(4, 6) = −2Nkxk3z/k

2
3,

M(4, 9) = iωρ0(1− φ), M(4, 10) = iωρ0(1− φ),

M(5, 1) = −ω(1− φ+ φb1)k1z/k
2
1, M(5, 2) = ω(1− φ+ φb1)k1z/k

2
1,

M(5, 3) = −ω(1− φ+ φb2)k2z/k
2
2, M(5, 4) = ω(1− φ+ φb2)k2z/k

2
2,

M(5, 5) = −ω(1− φ+ φg)kx/k
2
3, M(5, 6) = −ω(1− φ+ φg)kx/k

2
3,

M(5, 9) = −ikz, M(5, 10) = ikz,

M(6, 1) = 2Nkxk1z/k
2
1, M(6, 2) = −2Nkxk1z/k

2
1,

M(6, 3) = 2Nkxk2z/k
2
2, M(6, 4) = −2Nkxk2z/k

2
2,

M(6, 5) = N
(
k2
x − k2

3z

)
/k2

3, M(6, 6) = N
(
k2
x − k2

3z

)
/k2

3,

M(7, 1) = (Q+ b1R)e−ik1zd, M(7, 2) = (Q+ b1R)eik1zd,

M(7, 3) = (Q+ b2R)e−ik2zd, M(7, 4) = (Q+ b2R)eik2zd,

M(7, 8) = iωρ0φe
−ikzd,

M(8, 1) =
(
2Nk2

1z/k
2
1 + A+ b1Q

)
e−ik1zd,

M(8, 2) =
(
2Nk2

1z/k
2
1 + A+ b1Q

)
eik1zd,

M(8, 3) =
(
2Nk2

2z/k
2
2 + A+ b2Q

)
e−ik2zd,

M(8, 4) =
(
2Nk2

2z/k
2
2 + A+ b2Q

)
eik2zd,

M(8, 5) =
(
2Nkxk3z/k

2
3

)
e−ik3zd,

M(8, 6) =
(
−2Nkxk3z/k

2
3

)
eik3zd,

M(8, 8) = iωρ0(1− φ)e−ikzd,
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M(9, 1) =
(
−ω(1− φ+ φb1)k1z/k

2
1

)
e−ik1zd,

M(9, 2) =
(
ω(1− φ+ φb1)k1z/k

2
1

)
eik1zd,

M(9, 3) =
(
−ω(1− φ+ φb2)k2z/k

2
2

)
e−ik2zd,

M(9, 4) =
(
ω(1− φ+ φb2)k2z/k

2
2

)
eik2zd,

M(9, 5) =
(
−ω(1− φ+ φg)kx/k

2
3

)
e−ik3zd,

M(9, 6) =
(
−ω(1− φ+ φg)kx/k

2
3

)
eik3zd, M(9, 8) = −ikze−ikzd,

M(10, 1) =
(
2Nkxk1z/k

2
1

)
e−ik1zd, M(10, 2) =

(
−2Nkxk1z/k

2
1

)
eik1zd,

M(10, 3) =
(
2Nkxk2z/k

2
2

)
e−ik2zd, M(10, 4) =

(
−2Nkxk2z/k

2
2

)
eik2zd,

M(10, 5) =
[
N
(
k2
x − k2

3z

)
/k2

3

]
e−ik3zd, M(10, 6) =

[
N
(
k2
x − k2

3z

)
/k2

3

]
eik3zd.

[J] is a 10× 1 forcing vector with the element

J(1, 1) = F,

and all the other elements in [M] and [J] are equal to zero.

For both the bonded and the unbonded cases, [M] and [J] were conditioned by

dividing each element, M(p, q), by the Euclidean norm of the pth row of [M], which

ensured a unity norm for each row of [M], and which helped avoid numerical errors

during the matrix solution process due to the fact that some non-zero terms were much

smaller than the other non-zero terms in the same row [93]. Note that alternative

conditioning methods were studied in Refs. [94, 95], which can also be applied here.

After the row-conditioning, the vector of unknowns was solved for in either the bonded

or unbonded case by calculating [
X
]

=
[
M
]−1 [

J
]
, (C.16)

and for both the bonded and the unbonded cases, the wavenumber domain velocity

response of the panel can be evaluated as

vt(kx, ω) = iωWt = iωX(7, 1), (C.17)
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and vz2(kx, ω) can be evaluated by

vz2(kx, ω) = −ikzA2e
−ikzd = −ikzX(8, 1)e−ikzd. (C.18)

In addition, Za1(kx, ω) can be calculated given vz1(kx, ω) = vt(kx, ω) by using Eq.

(4.7)

Za1(kx, ω) =
F

vz1(kx, ω)
− Zm(kx, ω). (C.19)
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D. SPACE-HARMONIC ANALYSIS TO PREDICT THE RESPONSES OF

PERIODICALLY-SUPPORTED BEAMS

The process for calculating the spatial response of a periodically-supported beam by

using the space-harmonic theory described in Ref. [66] is summarized here, which was

used in Section 4.7.3 to validate the NFD case having a two-dimensional stiff panel

that is periodically-constrained by translational and rotational stiffnesses.

First, the time and space domain transverse displacement of a periodically-supported

beam can be expressed as

wt(x, t) =
n=+∞∑
n=−∞

Ane
−i(µv+2nπ)x/leiωt, (D.1)

and it can be transform to frequency and space domain as

wt(x, ω) =
n=+∞∑
n=−∞

Ane
−i(µv+2nπ)x/l, (D.2)

so the frequency and space domain transverse velocity of the beam can be expressed

as

vt(x, ω) = iω
n=+∞∑
n=−∞

Ane
−i(µv+2nπ)x/l, (D.3)

where l is the separation between any two of the supports, µv = kvl = Ω/CV is the

dimensionless excitation wavenumber parameter in terms of the excitation wavenum-

ber (convective wavenumber in the NFD model), kv, and the spacing, l (= 1 m), or in

terms of the dimensionless frequency parameter, Ω, and the dimensionless convection

velocity parameter, CV . The expressions for Ω and CV are

Ω =
(
msω

2l4/D
)1/2

, (D.4)

and

CV = (ms/D)1/2 ωl/kv, (D.5)
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where ms and D are mass per unit area and complex flexural stiffness of the panel

defined in Section 4.2 of this thesis. And the amplitude coefficients, An’s, in Eq. (D.3)

can then be solved by using a set of equations derived by the principle of virtual work.

For a rigid support case, the set of equations can be expressed as

n=+∞∑
n=−∞
n 6=0

(
µ4
v − Ω2

)
An + κr

n=+∞∑
n=−∞
n 6=0

(2nπ)(2mπ)An +
[
(µv + 2mπ)4 − Ω2

]
Am = −Pv,

(D.6)

where κr = sll/D is the dimensionless rotational stiffness parameter, Pv = Pl4/D is

the dimensionless loading parameter, and by summing up the index n ranging from

−20 to 20 except for 0, 40 An’s (A−20 to A20 except for A0) can be solved by using

the 40 equations that result from assigning m from −20 to 20, except for 0 in Eq.

(D.6). Then A0 can be calculated by

A0 = −
n=+∞∑
n=−∞
n6=0

An. (D.7)

For a flexible support case, the set of equations can be expressed as

κt

n=+∞∑
n=−∞

An + κr

n=+∞∑
n=−∞

(µv + 2nπ)(µv + 2mπ)An +
[
(µv + 2mπ)4 − Ω2

]
Am

= 0, when m 6= 0

= Pv,when m = 0 (D.8)

where κt = kll/D is the dimensionless translational stiffness parameter, and by sum-

ming up the index n ranging from −20 to 20, 41 An’s (A−20 to A20) can be solved by

using 41 equations resulted from assigning m from −20 to 20 in Eq. (D.8).

Finally, by submitting An’s, µv and l to Eq. (D.3), the frequency and space

domain response of the periodically-supported beam can be calculated and used as a

comparison to the periodically-constrained panel case of the NFD model.
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E. SUMMARY OF THE FORMULAE FROM THE AFR-SCUR CLASSIC

MODELS

All the formulae and some original applications related to the reviewed AFR-SCUR

models including the ones mentioned in Ref. [19] are summarized here.

Carman’s model from 1939 was developed for saturated sands or porous clay

granules involved in petroleum engineering problems, and was expressed as

σ =
4ηkC2

r2(1− C)3
, (E.1)

where the factor k is the Kozeny constant.

Langmuir’s model from 1942 was developed for bounded cylinders and was ex-

pressed as

σ =
5.6ηC

r2
(
− lnC + 2C − C2

2
− 3

2

) . (E.2)

Davies’ model from 1949 was developed for diffused particles in a wide vessel and

was expressed as

σ =
16ηC1.5 (1 + 56C3)

r2
. (E.3)

Happel’s model from 1959 was developed for arrays of cylinders and was expressed

as

σ =
8ηC

r2
[
− lnC − (1−C2)

(1+C2)

] . (E.4)

Kuwabara’s model from 1959 was developed for distributed parallel cylinders and

was expressed as

σ =
8ηC

r2
(
− lnC + 2C − C2

2
− 3

2

) . (E.5)
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Pich’s model from 1966 was developed for dispersive aerosols passing a cylinder

and was expressed as

σ =
8ηC(1 + 1.996Kn)

r2
[
− lnC + 2C − C2

2
− 3

2
+ 1.996Kn

(
− lnC + C2

2
− 1

2

)] . (E.6)

where Kn is the Knudsen number, which is the ratio of the mean free path of the air

molecules to the fiber radius.

Tarnow’s models from 1996 were developed for fibrous acoustical materials and

they were expressed as

σ =
4ηC

r2 (−0.64 lnC − 0.737 + C)
, (E.7a)

σ =
4ηC

r2 (−0.5 lnC − 0.75 + C − 0.25C2)
, (E.7b)

σ =
4ηC

r2 (−1.28 lnC − 1.474 + 2C)
, (E.7c)

σ =
4ηC

r2 (− lnC − 1.5 + 2C)
, (E.7d)

where Eq. (E.7a) was developed for random lattice fiber cylinders with perpendicular

passing-by flow and it is the one same as Eq. (6.1), which was used for the modified

AFR-TCVR model; Eq. (E.7b) was developed for square lattice fiber cylinders with

perpendicular passing-by flow; Eq. (E.7c) was developed for random lattice fiber

cylinders with parallel passing-by flow; Eq. (E.7d) was developed for square lattice

fiber cylinders with parallel passing-by flow.

The BAL-semi-empirical AFR-TCUR model from 1997 developed by Lai et al.

for fibrous acoustical materials was expressed as

σ = 10−5.7ρ1.61
b

(
X1.61

1

ρ1.61
1 r2.25

1

+
X1.61

2

ρ1.61
2 r2.25

2

)
. (E.8)

Lind-Nordgren and Goransson’s model from 2010 was developed for open porous

foam and was expressed as

σ =
32ηα∞C

2

r2c2
gφ

, (E.9)
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where cg is the pore shape dependent constant, which is equal to 1 when the pore is

cylinder.

Doutres et al.’s model from 2011 was developed for polyurethane foam and was

expressed as

σ =
32ηα∞C

2

r2c2
g

. (E.10)

Pelegrinis et al.’s model from 2016 was developed for polyester fiber and was

expressed as

σ =
45ηC2

r2(1− C)3
. (E.11)
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