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ABSTRACT

Sutton, Brian M. PhD, Purdue University, December 2019. On Spin-inspired Real-
ization of Quantum and Probabilistic Computing. Major Professor: Supriyo Datta.

The decline of Moore’s law has catalyzed a significant effort to identify beyond-

CMOS devices and architectures for the coming decades. A multitude of classical and

quantum systems have been proposed to address this challenge, and spintronics has

emerged as a promising approach for these post-Moore systems. Many of these archi-

tectures are tailored specifically for applications in combinatorial optimization and

machine learning. Here we propose the use of spintronics for such applications by ex-

ploring two distinct but related computing paradigms. First, the use of spin-currents

to manipulate and control quantum information is investigated with demonstrated

high-fidelity gate operation. This control is accomplished through repeated entangle-

ment and measurement of a stationary qubit with a flying-spin through spin-torque

like effects. Secondly, by transitioning from single-spin quantum bits to larger spin

ensembles, we then explore the use of stochastic nanomagnets to realize a probabilistic

system that is intrinsically governed by Boltzmann statistics. The nanomagnets ex-

plore the search space at rapid speeds and can be used in a wide-range of applications

including optimization and quantum emulation by encoding the solution to a given

problem as the ground state of the equivalent Boltzmann machine. These applica-

tions are demonstrated through hardware emulation using an all-digital autonomous

probabilistic circuit.
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1. INTRODUCTION

The decline of Moore’s law [1] has generated a significant push to identify beyond-

CMOS computing paradigms that can satisfy the commercial demand for ever improv-

ing devices. The benefits lost due to the physical limits of device scaling are likely to

be overcome through new architectures and computational approaches [2,3], especially

those with non-Von Neumann architectures. Already quantum [4, 5] and bioinspired

architectures [6,7] are opening the door to exciting new possibilities including machine

learning [6, 8, 9], combinatorial optimization [10–18], inference problems [19–21], and

general purpose acceleration [22, 23]. While general purpose processors can be used

in these applications, often hardware tailored to specific applications [22] is leveraged

to provide performance gains. As these applications continue to emerge, hardware

designed to accelerate their performance [24] are likely to be of significance, especially

when provided as a service [25], for example via cloud-based computing.

Amongst the many approaches being pursued, spintronics has emerged as a lead-

ing candidate for satisfying this need with demonstrated success in memory applica-

tions [26]. The rich array of observed spintronic phenomena [27–36] provide immense

promise for new engineering applications beyond those of digital storage. However,

after its initial foray into logic applications [37,38], spintronics appears to fall short of

the capabilities of CMOS when assessed from an energy-delay perspective [39]. This

present limitation of spin in traditional logic applications has motivated the explo-

ration of spintronics in non-traditional, or non-Boolean, applications such as quantum

computing [40–49]and more recently probabilistic spin logic [17, 20,50].

These two fields, quantum computing and probabilistic computing, in many ways

originated with thoughts Feynman gave in his seminal work on simulating physics with

computers [51]. In this talk, he explored the use of different computing approaches

to efficiently simulate physical systems. Understanding that nature is governed by
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quantum phenomena that are inherently unpredictable, he first explored the use of

purely probabilistic, though classical, means to simulate the world. Such an approach

would lead to a situation in which the classical computer would explicitly disagree

with physical reality, effectively recasting Bell’s inequality with additional clarity

[52]. Feynman’s conclusion was that the only efficient means to simulate physical

reality was with a system governed by its same fundamental constituents: quantum

phenomena. Indeed this thought spawned significant study in quantum computing

[53–58] that has burgeoned into a vast multi-disciplinary field [4] of which spintronics

is a strong contender [40–49]

Given this potential for revolutionary computational power provided via quantum

computing, there has been a significant effort to build systems demonstrating this ad-

vantage with companies like Google, Intel, IBM, and Microsoft [59] all pursuing the

development of commercially viable quantum computers demonstrating “quantum

supremacy” [60]. However, there is uncertainty about when scalable quantum com-

puters will be viable [61]. While it is believed by many that experimental quantum

supremacy may be demonstrated in the next few years [62], we are likely a decade or

more away from a scalable quantum computer that will support large-scale practical

use of the numerous quantum algorithms [63] that have been identified.

This prospect for quantum computing, though exciting, has highlighted a compu-

tational performance gap between modern computing devices and the scalable quan-

tum computers ahead. It may be possible to help bridge this gap with non-traditional

architectures and approaches that overcome the von Neumann bottleneck, disrupt-

ing the computational landscape [3]. While quantum approaches may change the

asymptotic behavior of various problems, such as factorization, these non-von Neu-

mann approaches seek to improve the constant pre-factor of the classical algorithms

for these problems through innovative software and hardware co-design. In this work,

we will discuss one such non-von Neumann approach to computing that provides the

enticing possibility of bridging the computational gap between the classical systems

of today and the quantum computers of tomorrow.
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Prior to introducing the necessity of quantum computers to simulate reality, Feyn-

man first suggested a computing approach that uses intrinsically probabilistic devices

and highlighted their corresponding limitations. While probabilistic systems are not

able to efficiently simulate reality, their practicality for other applications is still rel-

evant. Such probabilistic computers fall naturally between two extremes, classical

deterministic computers and the quantum systems as discussed above. Digital com-

puters are built, using spintronics for the analogy, using collections of stable quantum-

spins behaving classically as an ensemble. As these stable magnets are scaled down to

individual spins [43], they are described using quantum physics [52] and in turn form

the “bit” of a quantum computer, a qubit. Quantum computers constructed from

single spins are, unsurprisingly, governed by quantum mechanics which is inherently

probabilistic. In between these scaling extremes, a computer made from a collection

of unstable spins [64] would provide a probabilistic, though classical computer. While

it is possible that deterministic, digital, computers can efficiently simulate probabilis-

tic computers [65], i.e. P ≡ BPP, in practice, randomness has been very useful to

achieve polynomial time solutions to problems [66,67] while searching for an efficient,

deterministic counterpart [68]. It is this utility of stochastic operation that helps

motivate the exploration of probabilistic devices for beyond-Moore applications.

Algorithms that leverage randomness typically run on digital hardware and obtain

entropy using dedicated True Random Number Generators (TRNGs) or perhaps even

pseudo-random algorithms [69]. If instead of using RNGs simply as co-processors, the

stable bits of the digital hardware are replaced with compact, distributed RNGs, a

probabilistic circuit (p-circuit) comprising probabilistic bits (p-bits) is formed. Many

of the applications discussed above can leverage such a probabilistic hardware as their

implementation inherently involves randomness [70]. Probabilistic Spin Logic (PSL1)

seeks to explore the design and use of probabilistic hardware built-on p-bits as a

natural representation of the stochastic elements used in these applications.

1The use of “spin” in PSL was originally motivated by the strong ties to magnetic-devices. However,
it also has a natural connection to spin-glass systems used in a wide-range of problems.
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Indeed such stochastic elements are used in several neuromorphic applications

forming the neuron for neural networks. Several computational models, such as the

Ising model [71] and artificial models for neuromorphic hardware [72], are based on

the use of weighted summations where a “neuron” is influence via a weighted sum

of “synapse” inputs. The output of a neuron is governed by one of several types

of response function such as linear, binary threshold, sigmoidal [73], and stochastic

[74,75] where the output of the neuron has a probabilistic response function

p(xi = 1) =
1

1 + e−bi+
∑
j xjwj

(1.1)

If a natural physical implementation of such a probabilistic bit could be found

it would serve as a platform upon which to build dedicated hardware to accelerate

applications based on these neurons. As proposed by Behin-Aein et al., magnets [20,

76] are a natural building-block with which to form probabilistic bits, and provide the

possibility of continuous, asynchronous operation at GHz speeds, rapidly exploring the

configuration space of a problem [17,77]. When organized into relevant topologies [9,

73], these p-bits form circuits with useful characteristics for post-Moore applications.

In this work, we continue this exploration into applications motivated by the use of

spintronics with a specific focus on: (a) extending the established field of spin-based

quantum computing to use a non-traditional method of qubit control, manipulation,

and readout with spin currents [78], (b) revisiting probabilistic computing with the

use of stochastic nanomagnets that are tuned with spin currents [17] to show how the

approach can be used to solve similar problems as those being explored in adiabatic

quantum computing applications [70], and (c) provide [79] a concrete demonstration

of an autonomous probabilistic computer, highlighting its potential to bridge the

gap between the limitations of today’s computing devices for such applications and

tomorrow’s quantum computers.
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The remainder of this report is outlined as follows:

• Chapter 2 will discuss a proposal for a quantum computer based on repeated

interaction with ancillary spins as would be realized through carefully controlled

spin-currents in a semiconductor

• Chapter 3 will introduce the use of low-barrier stochastic nanomagnets to solve

combinatorial optimization problems using the natural behavior of a physical

network of coupled devices as an alternative to solving combinatorial optimiza-

tion problems

• Chapter 4 provides an exploration of autonomous probabilistic computing that

eliminates the use of sequencing logic, projecting the possibility of building a

chip with petaflips per second with millions of neurons

• Chapter 5 will summarize this work and provide a look ahead, providing some

suggested areas of exploration for probabilistic computing
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2. SPIN TORQUE DRIVEN QUANTUM COMPUTING

The material in this chapter is based on our Scientific Reports publication

“Manipulating quantum information with spin torque” [78] along with

some unpublished results.

Over the past several decades quantum computing has emerged as a thriving

area of research with multiple physical systems being explored for its realization [4].

Scalability is one of the primary challenges for the realization of these computers and

no approach has emerged as the clear answer. To-date only a handful qubits [80] have

been successfully manipulated in a coherent fashion to perform traditional gate-based

quantum computing (distinct from adiabatic quantum computing [81] that now claims

to have over 1000 qubits [82]). One of the limitations to improving the number of

qubits is the ability to perform long-range coherent manipulation of qubits in addition

to improving their coherence times.

In this chapter, we focus on a leading semiconductor based quantum computer

the may provide the answer to scalability. These semiconductor quantum computers

do not currently have a convenient mechanism to perform all on-chip single qubit and

long-range two qubit interactions. Here, we discuss an alternative method of control-

ling the qubits that may reduce the required control necessary for implementation:

spin-currents.

2.1 Quantum Computing with Dots and Donors

One influential proposal [40, 41]that seeks to satisfy the DiVincenzo criteria [42]

is based on the use of donor and nuclear spins of phosphorous 31P atoms in a silicon

matrix and much experimental progress has been reported in the last fifteen years

towards the realization of structures that could enable proposals of this type [43–49].
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In such systems, typically individual qubits, ~S, are selected and rotated using

either AC electric or magnetic fields for nuclear magnetic resonance (NMR) and elec-

tron spin resonance (ESR) [44], while two qubit operations are realized by activating

an effective exchange interaction J ~S1 · ~S2 between them. These structures require DC

magnetic fields and tuned resonant frequencies [83] in order to provide individual ad-

dressability [46] of qubits on a chip. This peripheral circuitry represents an obstacle

that must be overcome for scalability and a completely on-chip solution.

These systems currently provide a robust method with which to perform single

qubit initialization and single-shot readout of the state [43,46], a necessary component

of any quantum computing architecture. Furthermore, these nuclear spin qubits

provide excellent coherence times at low temperatures. Significant advances have

been made in the long-term storage of quantum information in semiconductor systems

based around donor and defect spins with experimental results of 31P nuclear spin

T2 times ∼ 30 seconds [84], and high-purity silicon donor electrons with T2 times ∼

seconds [85, 86]. High-purity silicon also shows promise for spin transport with spin

lifetimes of over 500 ns at 60 K reported in undoped Si [87].

The question we seek to explore in the remainder of the chapter is whether or

not we can improve on our ability to control the spin qubit while maintaining the

excellent properties that have been experimentally demonstrated by these systems.

2.2 Manipulating Quantum Information with Spin Torque

The use of spin torque as a substitute for magnetic fields is now well established for

classical operations like the switching of a nanomagnet. Here, our primary objective

is to show that “spin torque” like effects can be used to implement quantum processes

involving single qubit initialization and rotation as well as two qubit entanglement.

Qubit readout using ensemble-measurement can be implemented using the same ar-

chitecture if a collection of identically initialized and transformed qubits, prepared

using replicated physical structures, are available for measurement. Alternatively



8

the proposed architecture could be used in conjunction with established single shot

readout techniques [44], especially for specific applications requiring multi-qubit state

tomography or Bell state experiments [49].

In this chapter we will first show that (1) all standard single qubit operations

can be effected without any magnetic field through interactions of the form J~σ · ~S

with the itinerant or “flying” non-equilibrium spin population ~σ while (2) two qubit

operations can be implemented through separate interactions of the form J~σ · ~S1 and

J~σ · ~S2 with the flying spin population ~σ. The latter process has been discussed earlier

by several authors [88–98] and we draw on this work, but there is a key distinction

with the present work as will be explained.

2.3 Architecture

The overall architecture envisioned is shown schematically in Figure 2.1 using four

localized spins for illustrative purposes. A complete implementation could include

additional qubits as well as multiple versions of the same qubit to allow ensemble

readout. All qubits are embedded in a spin-coherent semiconductor channel so that

the itinerant or “flying” (f) spins in the conduction band interact with the static (Si)

qubits located at xi through an interaction of the form

H = J~σ · ~Siδ(x− xi) (2.1)

The static qubit could be a charge-neutral nuclear spin like 29Si with J representing

the hyperfine interaction, or 31P where the donor level is used to mediate a hyperfine

interaction, or it could be the electronic donor spin with J representing the exchange

interaction, or perhaps a nanoscale magnet embedded in the semiconductor [99,100].

Each qubit has gates, Ri and Gi, on either side that can be used to deplete the

channel underneath to couple and decouple the qubits from the itinerant spins as

desired for specific operations. The spin-coherent channel has additional gates, Bi,

that provide isolation and direct the flow of electrons. These gates could be realized
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Fig. 2.1. Quantum computing with “spin torque”: (a) Schematic
showing overall architecture with qubits S1 and S2 configured for single
qubit operations and qubits S0 and S3 for two qubit operations. (b) Equiv-
alent configuration for qubit S1 redrawn in one dimension. (c) Equivalent
configuration for qubits S0 and S3 redrawn in one dimension.
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using top-gates [84] or through contacts capable of modulating the electrostatics of

the channel [46]. A general itinerant electron has a low probability of interacting with

a static nuclear spin due to the minuscule size of the nucleus. In order to effect an

interaction, the gates, Ri and Gi, are used to produce standing waves for the itinerant

electrons. These standing waves should in-turn provide the necessary wavefunction

overlap to realize the coupled interaction with a static spin [101].

The semiconducting channel could be realized using silicon [102] or other material

supporting coherent spin injection and transport [103, 104]. Itinerant spins can be

connected as desired to spin reservoirs held at specific spin potentials [105] along the

x, y or z directions. These can be generated using various well-established spintronic

phenomena such as magnetic contacts [106,107], the giant spin Hall effect [32,108], or

spin pumping [34], at both low [109] and room temperatures [110, 111]. Integration

of semiconductors with magnetic materials is a viable prospect [36,112] and has been

used in silicon double dot experiments to generate local magnetic fields [113], estab-

lishing precedent for the prospect of device fabrication. Table 2.1 summarizes these

experimental demonstrations and also outlines the essential requirements necessary

for realization of this proposal.

Figure 2.1(a) shows qubits S1 and S2 configured for single qubit operations and

can be redrawn in one dimension as shown in Figure 2.1(b). Qubits S0 and S3

on the other hand are configured for two qubit operations and can be redrawn as

shown in Figure 2.1(c). Note that in either case the two reservoirs shown are purely

conceptual; in practice these would likely be a single reservoir with a spin potential

~µ in some direction n̂. With a single contact under steady-state conditions there is

no net current flow, however there is a continual exchange of electrons. Electrons are

preferentially injected from the contact with spins in direction n̂ which interact with

the static qubits and are then removed by the same contact. It is this flow of electrons

to and from the same contact that drives the scattering phenomena described in the

following sections.
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Requirement Discussion

1. Spin-injection into semiconductors

Threshold : p > 0

Objective: p = 1.0

Precedent:

p = 0.1− 0.3 in Si at 5 K [114]

p = 0.046 in n-Si at 300 K [111]

a. Polarization is highly temperature dependent

b. Can compensate for low polarization (e.g. p = 0.01) through

modulation of N via α if barrier height/position is tunable

c. p = 1.0 is not a fundamental requirement for gate operations

d. Heusler alloys may enable higher polarizations [36]

e. Two distinct spin-potentials (~µ) needed for universality

f. Polarized current not required for two-qubit operations

2. Coherent spin transport

Threshold : λS ∝ d, d0
Objective: λS =∞

Precedent:

λS ≈ 10µm in Si at 85 K [102]

λS ≈ 5µm in graphene at room temp [104]

a. Minimum distance governed by proximity of qubits to each other

and to neighboring barriers

b. Low-temperatures best for long spin-coherence length

c. Isotopically enriched semiconductor ideal for coherence

d. Non-locality directly related to obtainable λS

e. Small λS may still facilitate nearest-neighbor approaches

f. Channel confinement necessary to ensure “1D” operation

3. Exchange/Hyperfine coupling between

itinerant and static spins:

H = J~σ · ~Siδ(x− xi)

Precedent:

Nuclear polarization with spin-current [101]

a. 31P donors ideal for Si, but interaction with donor electron war-

rants discussion

b. Itinerant spins simultaneously coupled to static qubits may com-

plicate this model

c. Quasi-static model used to describe interaction

d. Alternate qubits may fit into this model (e.g. quantum dots,

nanomagnets)

4. Single-shot initialization and readout

compatibility

Precedent:

31P donors in Si [43,44]

a. Spin polarization of 1.0 needed for fiducial state preparation

b. Single-shot readout needed for correlation measurements and tra-

ditional implementations of quantum algorithms

c. Architecture is compatible with demonstrated single-shot initial-

ization and readout mechanisms

d. Ensemble-measurement computing is inherently supported

Table 2.1.
Essential Requirements: There are a number of requirements that

must be satisfied in order for the proposed architecture to be viable.
Shown in the table are a few of the most essential requirements for the
proposal along with precedent for their satisfaction.
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The density matrix of the incident spins from this reservoir is given by ρf =

[I + n̂ · ~σ]/2, where I is the 2× 2 identity matrix and ~σ the Pauli spin matrices. The

Kronecker product of this flying spin density matrix with the 2q × 2q density matrix

ρS describing the q-qubit system (q = 1 for Figure 2.1(b), q = 2 for Figure 2.1(c))

gives the initial overall 2q+1 × 2q+1 density matrix of the system. The initial density

matrix gets modified to

ρ = [R][ρf ⊗ ρS][R†] (2.2)

by the reflection process described by a 2q+1 × 2q+1 reflection matrix [R] which is

computed taking into account the barrier(s) and the interaction of the itinerant spins

with the qubits and depends on the specific structure at hand.

The reflected itinerant spins are returned to the spin reservoir (+n̂ or −n̂) causing

a collapse of the quantum state described by a partial trace of the density matrix over

the flying spins represented by Tracef :

ρs(n+ 1) = Tracef
(
[R][ρf ⊗ ρS(n)][R†]

)
(2.3)

Equation (2.3) defines the basic approach used to model the quantum gates dis-

cussed in this chapter. It provides a recursive relation expressing the q-qubit density

matrix after interacting with (n+1) itinerant spins in terms of the density matrix after

interacting with n itinerant spins. A time-independent model for quantum transport

is used assuming that the time variation of signals is slow enough to be treated as

quasi-static. For example, ~/1 ns ≈ 1 µeV which is much smaller than other energy

scales of interest.

The use of “flying spins” to manipulate static qubits has been discussed in the

past [88–98] and it has been noted that the reflection matrix [R] in equation (2.2)

represents a unitary transformation suitable for quantum operations if the barriers at

x = −d0 in Figs. 2.1(b) and 2.1(c) are large enough to reflect the incident electrons

completely [97,98], which we employ in this proposal. What is new about the present

proposal’s method is the use of sequential interactions with a large number of itinerant

electrons, each interaction involving a process of entanglement and reflection, equation
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(2.2), followed by a collapse, without post-selection, of the quantum state, equation

(2.3), resulting in a deterministic, approximately unitary operation. Every interaction

evolves the density matrix according to equation (2.3) which can be used iteratively

to determine the final density matrix after interacting with a specified number of

electrons.

Note that unlike equation (2.2), the collapse of the density matrix described by

equation (2.3) is a non-unitary process and it may seem surprising that an overall

operation involving a large number (N) of such non-unitary collapses could still be

useful for implementing unitary transformations suitable for quantum computing.

However, we will show that with proper choice of parameters the degree of non-

unitarity can be made arbitrarily small at the expense of speed.

We seek to show that the non-unitarity that is inevitable with multiple collapses

can be held to acceptably low levels so that useful quantum gates can be implemented.

This is established first for single qubit operations and then for two qubit operations

using the basic approach embodied in equations (2.2) and (2.3). Finally, as a capstone

example, we present the implementation of a complete CNOT gate using the proposed

architecture, and show that the fidelity under ideal conditions can be made acceptably

close to one.

2.4 Gate Operations

2.4.1 Single Qubit Operations

In order to further understand the prescription of Equation 2.3, consider the case

of a single nuclear spin repeatedly interacting for a time t with a donor electron

governed by the Hamiltonian H = A~S1 · ~S2. This can be accomplished with repetitive

population and depopulation of the donor state using a SET as in [43].

This system can be modeled using the repetitive measurement process as depicted

in Figure 2.2(b). Each load and unload of the donor electron systematically produces

some degree of entanglement between the donor and nuclear spin and subsequent col-
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Fig. 2.2. Pseudo-Unitary Evolution: (a) A single iteration of the
repeated entanglement and measurement process is depicted. A mediating
particle (ρmediator) and a target quantum system (ρsystem) are prepared,
both are then evolved to produce some level of entanglement, and finally
the ρmediator is measured. (b) This iterator is applied multiple times to the
target system to produce the desired pseudo-unitary operation. Shown
in this example are two spin-1

2
particles that are entangled through a

time-evolved exchange interaction. On each measurement of the mediator
(red), the spin will have either flipped with probability P (|1〉) or will
have remained up with probability P (|0〉). If the mediator remained up,
the system (blue) will have experience an ideal rotation about the axis
specified by the spin-direction of the mediator. (c) If the approximately
ideal rotations are plotted on the bloch sphere for various iterations, the
pure state evolution can be seen with only a minimal error introduced
represented by the off-axis component of the spin vector. (d) The spin-
flip processes, coupled with the ideal rotation, produce a mixed state
that ultimately converges to the spin-direction of the mediating particle.
As shown, an initial state |X〉 rotates about ẑ with each iteration until
eventually converging towards |0〉. The rate of decoherence is related
on the interaction strength J with large couplings increasing the rate of
decoherence.

lapse of the composite state, see Figure 2.2. This repetitive process produces approx-

imately ideal rotations of the nuclear spin, though with some degree of decoherence,

Figure 2.2(d)).
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In this example, all of the qubits were stationary, or at least localized, during

evolution. Remarkably, even with the repetitive measurement and collapse of the

quantum state, an effective rotation can be realized of the nuclear spin state. We

can turn this time-based view and extend it to one in which the rotation-mediating

electron is now mobile and produced with a spin current.

Fig. 2.3. Single and Two Qubit Reflection Matrices: Reflection
matrix [R] for (a) single qubit operations and (b) two qubit operations.

Figures 2.1(b) and 2.3(a) show the basic configuration for a single qubit operation:

in the following discussion we will assume that n̂ points along the z-direction, so that

the reservoir injects electrons with +z spins and extracts both ±z spins. Every time

an electron is injected it gets entangled with the static spin, while the extraction

represents a measurement that collapses the quantum state of the static spin. We
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show in Appendix A.1 that after interaction with N electrons, the z-component of

the static spin ~S is given by

sz(N) = 1− (1− sz(0))(cosα)2N (2.4)

while the transverse component st ≡ sx + isy is given by

st(N) = st(0)eiNα(cosα)N (2.5)

where α represents the effective interaction strength between the flying spin and the

static qubit and is given by

tanα =
8Ω sin2 kd0

1− 2Ω sin(2kd0)− 6Ω(1− cos 2kd0)
(2.6)

→ 8Ω(kd0)2 , if kd0 << 1

where k is the wavenumber of the itinerant electrons, v the corresponding velocity

and

Ω ≡ J/~v (2.7)

Equations (2.4) and (2.5) describe our numerical results accurately, as evident from

Figure 2.4, and provide the basis for single qubit initialization and rotation respec-

tively.

Single qubit initialization: Equation (2.4) tells us that a static spin can be ini-

tialized in a state with sz → 1, after interaction with a large number of flying spins

(N → ∞). This is similar to the well-known Overhauser effect whereby nuclear

spins get polarized through interaction with a spin reservoir driven out of equilib-

rium [27, 101] or other proposals for state purification using repeated measurements

of a coupled quantum system with post-selection [115–117].

Single qubit rotation: Equation (2.5) suggests the possibility of single qubit ro-

tation by an angle θ = Nα around the z-axis through interaction with the itinerant

spins. Note, however, that in the process the spin is also attenuated by a factor



17

0 200 400 600 800 1000

−1

−0.5

0

0.5

1

1.5

Number of Electrons (N)

Analytical
Numerical

sz(N)

sx(N)

sy(N)

Fig. 2.4. Single Qubit Rotation: Evolution of the spin of a single
qubit initially pointing along x as it interacts with an increasing number
of flying spins, N . The numerical results are described very well by the
analytical solutions (2.4) and (2.5) described in the text.

(cosα)N which is an undesirable side effect. For a given total rotation θ = Nα we

can write the resulting error probability per unit rotation as

Pe
θ

=
1

θ

(
1−

(
cos

θ

N

)N)
≈ θ

2N
, if

θ

N
<< 1 (2.8)

which shows that Pe can be made arbitrarily small for a given rotation θ by choosing a

large N and hence a small α. The results in Figure 2.4 were obtained with a relatively

large value of α with N ∼ 100 spins for a rotation of θ = π/2 in order to make the

non-unitary effects apparent with a large error probability. But with N ∼ 104, we

have an error probability Pe ∼ 1.23× 10−4.

The use of a large N also gives enhanced control over the process since each

electron makes only a small difference to the result. A large N requires a small α,
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and equation (2.6) suggests a convenient mechanism for the control of α, namely by

adjusting the effective distance d0 of the reflective barrier through the barrier voltage.

In this discussion, the polarization of the magnetic contact, n̂, was taken as 100%

in the z-direction. In practice, the polarization P = (Nup − Ndn)/(Nup + Ndn) will

be less than 100%. The angle of rotation will then be determined by Nup − Ndn,

while the non-unitarity will depend on Nup + Ndn, making the error probability in

equation (2.8) larger by (1/P ). For example, a spin polarization of 0.01 would increase

the error probability by 102. In order to compensate for this increase in error, we

would need (1/P ) times more electrons, N ′ = P−1N , which could be accomplished

by making α smaller. In silicon, spin polarizations an order of magnitude larger than

0.01 have been obtained at low temperatures [114] with promising progress at room

temperature [109].

Single qubit readout: Note that the interaction we just discussed also provides a

mechanism for readout if we have multiple replicas of each qubit available so that

ensemble measurements can be made, similar to [94]. We could measure the average

spin current Isz that flows initially at the terminals

(Isz)N=0 =
dN

dt

dsz
dN N=0

= (1− sz(0))
dN

dt
2 ln cosα (2.9)

and deduce sz(0) from it. Similarly the initial spin in the x- and y-directions can be

obtained by measuring the spin current that flows when connected to a spin reservoir

with an x- and y-component respectively and using equations (2.4)(2.5). Knowing

si(0), i =x,y,z, we can write down the initial density matrix as follows:

ρ =
1

2

[
I + sx(0)σx + sy(0)σy + sz(0)σz

]
(2.10)

Ensemble measurement techniques provide a mechanism to obtain the expectation

value of a given qubit and may be useful for certain computations [118]. However, as

the architecture is compatible with single-shot readout methods, replicated physical

structures are a non-essential aspect of the proposal.
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2.4.2 Two Qubit Operations

Fig. 2.1(c) shows the basic configuration for a two qubit operation which is very

similar the configuration for a single qubit operation, Fig. 2.1(b), except that the

channel has two embedded qubits instead of one. The overall approach is the same,

based on equation (2.3), but the reflection matrix [R] is 8× 8 in size instead of 4× 4,

making the algebra less straightforward.

In the two qubit subspace we are seeking to implement a unitary transformation

of the form



12 12̄ 1̄2 1̄2̄

12 1 0 0 0

12̄ 0 cos γ −i sin γ 0

1̄2 0 −i sin γ cos γ 0

1̄2̄ 0 0 0 1

 (2.11)

which could be viewed as a “rotation” in the 12̄ − 1̄2 space: a rotation of γ = π/2

corresponds to a SWAP while γ = π/4 corresponds to the universal
√

SWAP operation

that we will use for the CNOT gate.

The approach used is based on the general principle of using itinerant spins as

“messengers” that interact with the static spins through separate terms of the form

J~σ · ~S1, J~σ · ~S2. Each messenger causes a small rotation, and an overall rotation is

achieved through the integrated effect of many messengers.

To see how this works we need the reflection matrix [R] which is calculated using

an extension of the method used in Supplemental Section A.1. The interaction with

each of the qubits is described by transmission and reflection matrices given by

t1 =
[
I8 + iΩS̃1

]−1

and r1 = t1 − I8 (2.12)

t2 =
[
I8 + iΩS̃2

]−1

and r2 = t2 − I8 (2.13)

where S̃1 = ~σ ·~S1 and S̃2 = ~σ ·~S2 are 8×8 matrices (see Supplemental Section A.3 for

the explicit form of these matrices) describing the interactions of the itinerant spin
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with qubits 1 and 2 respectively. Note that the two qubit structure (Fig. 2.3(b)) has

an additional barrier on the left with spin-independent transmission and reflection

matrices given by

tB =
1

1 + iΓ
I8 and rB = tB − I8 (2.14)

where Γ = U/~v represents the barrier height normalized to ~v, assuming a delta

function barrier Uδ(x).

The overall reflection matrix [R] is calculated by repeated cascade of the reflection

matrices for the structure in Fig. 2.3(b).

R1 = r1 + ei2kd0t1
[
I8 − ei2kd0R0r1

]−1
R0t1 (2.15)

R2 = r2 + ei2kdt2
[
I8 − ei2kdR1r2

]−1
R1t2 (2.16)

R3 = rB + ei2kd0tB
[
I8 − ei2kd0R2rB

]−1
R2tB (2.17)

It is straightforward to use equations (2.15)(2.16)(2.17) to calculate the reflection

matrix [R] for a given set or parameters Ω, Γ, kd, and kd0.

Consider the two impurity spin system show in Fig. 2.5(a). A single flying spin

(σf ) interacts with the two static spins (S1, S0). On either side of the static spins are

two barriers, the rightmost barrier is a perfect reflector. The leftmost barrier is an

arbitrary height Γ. The static spins are separated from each barrier by a distance d0

and from each other by a distance of d.

Here we use a scattering model of the system, found by cascading of multiple

reflection matrices together. We will approach the problem assuming kd = π for ease

of computation. With kd = π, the two static spins are effectively located at the same

position. The Hamiltonian for the system is then given by:

H = A~σf · ~S1δ(x) + A~σf · ~S0δ(x) (2.18)

In this model, the two static spins have an effective distance d = 0 between them,

but are non-interacting. Each static spin only interacts with the flying spin through a

hyperfine coupling A~σf ·~Si. Given the minuscule size of a nucleus, a typical conduction

band-electron will not interact with the nucleus; however, the barriers present in
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Fig. 2.5. Model System for Two-Spin Bell State Preparation:
(a) Two stationary spins, ρs1 and ρs0 , are placed before an infinite barrier
and after a short delta barrier Uδ(x − (d + d0)). Repetitive interaction
with itinerant spins, ρmediator, according to the interaction Hamiltonian,
H, shown in the figure is used to model the dynamics of the two stationary
spins. (b) The normalized mediating-spin densities for the three lowest
eigenenergies, ε0,1,2, are shown to convey a qualitative perspective of the
itinerant spin standing waves. These spin-densities were obtained using
numerical modeling of the system with an open boundary on the left.

the system produce standing-waves for the incident spins, producing the necessary

wavefunction overlap for the hyperfine interaction. This can be seen in Fig. 2.5(b)

which was producing using NEGF modeling of the system with a contact on the left.

We will solve this problem by partitioning the physical model into two regions,

the first region is the barrier R1 and the second is the two-static spin system and

barrier R0. From the two scattering matrices for these regions, we can solve for the
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total system scattering matrix R. The general solution is found by cascading matrices

based on the following expression:

R = r + ei2kdt
[
I8 − ei2kdR0r

]−1
R0t (2.19)

where t = [I8 + iΩS̃]−1, r = t − I8, and we let S̃ = S̃1 + S̃2. Instead of solving the
problem in the 23× 23 subspace, we recognize that the system is block-diagonal. The
reflection matrix R has the form shown in equation (2.20), where the columns have
been re-ordered to display the block-diagonal form of the matrix.

[R] : (2.20)



f12 f12̄ f 1̄2 f̄12 f 1̄2̄ f̄12̄ f̄ 1̄2 f̄ 1̄2̄

f12 1 0 0 0 0 0 0 0

f12̄ 0 a c c′ 0 0 0 0

f 1̄2 0 c a c′′ 0 0 0 0

f̄12 0 c′ c′′ b 0 0 0 0

f 1̄2̄ 0 0 0 0 b c′′ c′ 0

f̄12̄ 0 0 0 0 c′′ a c 0

f̄ 1̄2 0 0 0 0 c′ c a 0

f̄ 1̄2̄ 0 0 0 0 0 0 0 1


As this matrix is block-diagonal we can focus on the sub-spaces of interest, namely

f12̄, f 1̄2, f̄12 and f 1̄2̄, f̄12̄, f̄ 1̄2. The f12 and f̄ 1̄2̄ basis vectors remain unchanged

by the scattering operation as spin is conserved. For the remainder of this discussion,

we will focus on f12̄, f 1̄2, f̄12 as the other sub-space is equivalent with spin-up and

spin-down reversed.

The resulting expression for the Bell state wavefunction as a function of the num-

ber of electrons is given by (see Appendix A.4):

Ψ0(n) =
1

2

[
eiχn +

[
1

6
(−2eiφ − 4e−iφ

]n]
Ψ0(0)+

i

2

[
eiχn +

[
1

6
(−2eiφ − 4e−iφ

]n]
Ψ1(0)

(2.21)

In order to better understand how this state evolves as a function of the number

of electrons n, we can proceed by finding Ψ0(n)Ψ0(n)∗. Assume that initially the

system is in the 0th Bell state such that Ψ0(0) = 1 and Ψ1(0) = 0. Then

Ψ0(n) =
1

2

[
eiχn +

[
1

6

(
−2eiφ − 4e−iφ

)]n]
=

1

2

[
eiχn + ηn

]
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Simplifying η:

η = −1

3

(
eiφ + 2e−iφ

)
= −1

3
(3 cosφ− i sinφ) (2.22)

Finding |η|2 and arg(η):

|η|2 =
1

9
(9 cos2 φ+ sin2 φ)

= 1− 8

9
sin2 φ

−θ = arg(η) = arctan

(
−1

3
tanφ

)
Therefore

η =

√
1− 8

9
sin2 φe−iθ = ze−iθ (2.23)

Now,

Ψ0(n)Ψ0(n)∗ =
1

4

(
eiχn + zne−inθ

) (
e−iχn + zneinθ

)
=

1

4

[
1 + zne−in(θ+χ) + znein(χ+θ) + z2n

]
=

1

4

[
1 + z2n + 2zn cos (n(χ+ θ))

]

Ψ0Ψ0(n)∗ =
1

4

[
1 +

(
1− 8

9
sin2 φ

)n
+ 2

(
1− 8

9
sin2 φ

)n
2

cos

(
n

(
χ+ arctan(

1

3
tanφ

))]
(2.24)

This can be re-written as

Ψ0Ψ0(n)∗ =
1

4

[
1 + αn + 2

√
α
n

cos(nβ)
]

(2.25)

The α terms represent decay of the wavefunction as a function of the number of

electrons as |α| < 1. The cos term describes the oscillation of the Bell state through

an angle β for each electron.

β = χ+ arctan

(
1

3
tanφ

)
(2.26)
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In order to determine the probability of error, we first find

Ψ1Ψ1(n)∗ =
1

4

[
1 + αn − 2

√
α
n

cos(nβ)
]

(2.27)

For coherent operation, Ψ0Ψ∗0(n)+Ψ1Ψ∗1(n) should equal 1. We define the probability

of error, PE as 1− (Ψ0Ψ∗0(n) + Ψ1Ψ∗1(n)):

PE = 1− 1

4

[
1 + αn + 2

√
α
n

cos(nβ) + 1 + αn − 2
√
α
n

cos(nβ)
]

=
1

2
[1− αn]

PE =
1

2

[
1−

(
1− 8

9
sin2 φ

)n]
(2.28)

Notice that

lim
n→∞

PE =
1

2

as |α| < 1. This demonstrates that there is a partial steady-state Bell state prepara-

tion.

As shown in Fig. 2.6, the numerical results and analytical result of Eq. (2.24) are

in agreement. As the number of electrons increases, the system continues to oscillate

between the two Bell states with a non-unitary operation (non-zero probability of

failure). Shown in 2.6(b), the density matrix in the standard basis performs a swap

between |01〉 and |10〉 with a Bell state obtained for N = 22.

√
SWAP

The direct approach to implementing a two qubit rotation is through an interac-

tion of the form J~S1 · ~S2 between the two static spins as, for example, in the Kane

architecture [40] or more recently in the quantum dot approaches proposed by Tri-

funovic et al. [119, 120]. Using the proposed itinerant spin approach to mediate an

effective exchange interaction leads to an inherent imperfection in the gate opera-

tions. These imperfections arise as a result of the undesirable coefficients c′ and c′′ of
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Fig. 2.6. Bell-State Oscillation: (a) Numerical and analytical model-
ing of the system shown in Fig. 2.5 yields oscillations in the Bell-basis as a
function of the number of incident electrons. Using kd0 = 0.45π,Ω = 0.06,
and Γ = 5.5, the first element of ρ is shown. As can be see, the numerical
and analytical results are in agreement. The success probability, defined
as 1 − PE, represents the probability the Bell state remains coherent as
additional incident spins are provided. The parameters were selected to
highlight the oscillations and quickly decreasing success probability. (b)
In an alternate depiction, the two-qubit density matrix in the standard
basis is shown after N electrons have been injected.

(2.20) due to the interactions ~σ · ~S1, ~σ · ~S2. This is apparent if we compare the matrix
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representation of these operators with [R] in equation (2.20). On the other hand, the

desirable coefficient c arises from product terms of the form

[~σ · ~S1][~σ · ~S2] + [~σ · ~S2][~σ · ~S1]

which are independent of the spin of the itinerant electrons, ~σ, so that the two qubit

operation, unlike the single qubit operations, does not require a spin potential; an

ordinary unpolarized reservoir should be fine. The lack of phase symmetry of Eq.

(2.20) for up and down flying spins, and hence imperfection in the
√

SWAP, is some-

what mitigated with the use of un-polarized itinerant spins as, on average, the |12〉

and |1̄2̄〉 states will pick up the same overall phase.

Note that if c′, c′′ were zero in (2.20), our reflection matrix would nearly provide

the transformation we are looking for with term c providing the two qubit rotation

γ in equation (2.11). But the terms c′ and c′′ cause undesirable non-unitary effects

leading to an average error probability

Pe ∼ (|c′|2 + |c′′|2)/2

so that the error probability per unit rotation for the two qubit gate can be estimated

from
Pe
θ
∼ |c

′|2 + |c′′|2

2|c|
(2.29)

which is plotted in Fig. 2.7 as function of kd and kd0 assuming Ω ≡ J/~v = 1, Γ = 5.

Note that with

kd = π and kd0 ≈ π/2

the error probability is quite small ∼ 10−4.

The fidelity of the two-qubit
√

SWAP gate is strongly dependent on the height

of the initial barrier, Γ. To illustrate the importance of adding the additional semi-

transparent barrier of strength Γ in front, we have also shown the results without it

(Γ = 0) in dashed lines which show much larger error probability.

Fig. 2.8(a) shows the evolution of the diagonal elements of the density matrix as

it interacts with itinerant spins starting from an initial state with ρ(12̄, 12̄) = 1. Note
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Fig. 2.7. Figure of merit: Figure of merit for two qubit operations as
a function of (a) kd0 for kd = π and (b) kd for kd0 = π/2 with Ω = 1 and
Γ = 0 and Γ = 5.
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Fig. 2.8. Two qubit rotation: (a) Two qubit rotation with kd = π,
kd0 = π/2, Ω = 0.1, and Γ = 20. (b) Two qubit concurrence showing
the oscillation of entanglement as a function of the number of incident
electrons.

that entangled states with very high concurrence, see equation (10) from [121], are

obtained with the proper number of electrons (Fig. 2.8(b)).

For Γ 6= 0, the enhancement in gate fidelity, being due to multiple reflection, is

wavelength dependent, and hence k dependent. At low temperatures the relevant k

is the Fermi wavevector kf corresponding to the Fermi energy which is related to the

electron density ns [122]:

kf =
√

2πns (2.30)
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In general, however, a thermal average over wavevectors is involved and the degree

of enhancement from multiple reflections will be averaged accordingly.

It should also be noted that since the reduced error probability with Γ 6= 0 comes

from multiple coherent reflections, this gain in performance can be expected to be

more sensitive to processes that cause a loss of spin coherence. Such processes are

ignored in our present model.

Using the analytical simplification, that is kd0 = π, the error probability and num-

ber of electrons as a function of kd0, Ω, and PE for a
√

SWAP operation were plotted

in Fig. 2.9. Using these results, an optimal operation point can be identified. Using

an optimal operation point, and unpolarized electrons, quantum process tomography

was used to observe a
√

SWAP gate operation.

The unpolarized electrons help reduce the overall PE for the system. This is

understood by recognizing that in our analysis, we presumed only z-up electrons were

incident. As a result, anytime the system was driven into the |12〉 state, there was

no mechanism whereby a spin could flip. However, with unpolarized electrons, this

is now possible as the other 3 × 3 sub-space we didn’t consider during the analysis

comes into play. A down flying-spin can drive the |12〉 state back into the {|12̄〉, |1̄2〉}

states.

CNOT

We end this section with an example of another universal two qubit quantum

gate, the CNOT, implemented using the spin potential-based architecture described

here. Fig. 2.10(a) shows a CNOT gate in terms of elementary single qubit and two

qubit operations [123]. The circuit can be realized using the basic structure shown

in Fig. 2.1(a) gated appropriately to obtain two qubits embedded in a spin coherent

channel. These qubits can be selectively connected or disconnected from contacts

held at specified spin potentials.
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Fig. 2.9. Error Minimization for Practical
√

SWAP: (a) The
probability of error for the two-qubit system under a

√
SWAP operation

is shown as a function of kd0 and Ω for a fixed Γ = 10. With increasing
Ω, the probability of error decreases. kd0 values near π/2 yield lower PE
with specific resonance values yield high PE. (b) The number of electrons
necessary for the gate operation is also shown as a function of Ω and
kd0. Regions of minimal color gradient provide ideal operating conditions
in order to minimize the influence of any single electron on the system,
providing increased robustness. (c) Using these results as a guide, with
kd0 = 0.7π, Ω = 1, and Γ = 5, state-process tomography for the system
was performed for the

√
SWAP operation. The operation was performed

using un-polarized incident electrons.

The timing diagram in Fig. 2.10(c) shows the sequence of single qubit and two

qubit operations needed to implement the required gate:

1. H-gate: This involves π/2 rotations of |S0〉 around the x, z, and x axes in

sequence. The barrier gates Gi, Ri and Bi are used to isolate |S0〉 which is then
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Fig. 2.10. Controlled-NOT: (a) Circuit representation for CNOT
based on the controlled-Z with Hadamard gates to obtain a controlled-
X. (b) Physical picture for single and two qubit operations on |S0〉 and
|S3〉 with electrostatically controlled gates. (c) Waveforms depicting the
manipulations necessary for the various nets of Fig. (b) to perform a
CNOT operation between |S0〉 and |S3〉.

rotated by connecting the ~µ0 terminal to reservoirs with x and z-directed spin

potentials, each for the length of time needed to provide the π/2 rotation.
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2.
√

SWAP gate: This involves a two qubit rotation on |S0〉 and |S3〉 of the type

discussed in the previous section. This gate is realized with the use of an

unpolarized spin potential for the length of time appropriate for a π/4 “rotation”

(equation (2.11)). Note the use of barrier gates R0 and R3 to implement the

completely reflective barrier and the semitransparent barrier respectively.

3. Z-gate: This rotation of qubit |S3〉 around the z-axis is achieved by using gate G3

for isolation and then connecting to a z-directed spin potential for an appropriate

duration.

4.
√

SWAP gate: same as step 2.

5. S and S† gates: This involves a π/2 rotation of |S0〉 and a 3π/2 rotation of |S3〉,

both around the z-axis.

6. H-gate: same as step 1.

The complete CNOT gate was simulated with single qubit and two qubit operations

as described earlier with Ω = π/16 and Γ = 102. A 0.5% error in the desired values

of kd and kd0 was assumed:

kd = 0.995π and kd0 = 0.995π/2

The fidelity of the gate was estimated using the prescription laid out by Trifunovic

et al. [119]. The CNOT gate was simulated with each of the four (1/
√

2(|01〉 ± |11〉),

and 1/
√

2(|00〉 ± |10〉)) initial states that give rise to Bell states, and the fidelity of

the final state ρ′ was evaluated by comparing to the ideal Bell state ρ:

f(ρ,ρ′) =
√√

ρρ′√ρ (2.31)

The minimum value of f was 99.8%.

Finally, the fidelity of the complete CNOT implementation of 99.8% is sufficient

for fault tolerant quantum computing [119].
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2.5 Discussion

The proposed architecture has a number of features that may be advantageous

for building a quantum computer in semiconductor based architectures. The itiner-

ant spins generate localized magnetic fields for any target qubit, providing individual

qubit selectivity, parallel operation, and qubit isolation. This localized field genera-

tion removes the need for AC electric and magnetic fields used for nuclear magnetic

resonance (NMR) and electron spin resonance (ESR). Removing the need for these

magnetic fields reduces the complexity of system design for qubit manipulation.

External DC magnetic fields can be eliminated if perfect half-metallic contacts

can be obtained to produce 100% spin polarized currents suitable for high-fidelity

qubit initialization. These ideal spin currents are currently difficult to realize ex-

perimentally, and an alternative initialization method is needed in the near-term.

Alternatively, this architecture is compatible with existing approaches that leverage

an external magnetic field to produce Zeeman splitting such that single qubit initial-

ization and readout can be accomplished with single electron transistors.

Using itinerant spins for gate operations must be compatible with the decoherence

times of the qubits. Given the recent advances in long-term storage of quantum

information, semiconductor systems are continuing to show promise for the realization

of a scalable quantum computer.

While single qubit gates in the architecture require the use of spin polarized cur-

rents and hence the integration of magnetic materials, two qubit gates can be real-

ized with traditional contacts that produce un-polarized spin currents. Furthermore,

these two qubit gates can be used to obtain non-local entanglement between selective

qubits, a limitation of nearest neighbor proposals. The degree of non-locality will be

limited by the spin coherent transport length of the itinerant quasi-particles which,

depending on the material and the temperature, can range from tens of nanometers

to tens of microns. However, coupling to channel contacts along with multiple reflec-

tions from barriers, increasing the effective transport length of the itinerant spins,
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will limit their range. As long as spin coherence can be maintained over a gate length

(see Figure 2.1) between two qubits, it should be possible to entangle them.

The use of a large number of itinerant spins to effect a given qubit operation allows

fine tuning and control since a deviation of one electron represents a small error in

a process involving, say, 104 electrons. We envision controlling the actual number of

electrons using gates to connect or disconnect the qubits from the itinerant spins as

desired. The use of all-electrical control of qubits is beneficial for producing a scal-

able architecture using semiconductor based qubits. Other proposals for all-electrical

control exist, however, these proposals are largely based on spin-orbit interactions

and are likely to be susceptible to charge noise [124].

Many proposals for qubit manipulations require sensitive gate control and the

ability to manipulate single electrons. Here, the control for gate operations is based on

a large number of electrons drawn from a reservoir which can be controlled accurately.

Additionally, the architecture does not require a bound donor electron to perform

nuclear spin manipulation which may provide a path for higher temperature operation

[125]. As a further example of the reduction in control necessary to implement the

architecture, the gate operations do not require precise placement of donors in the

lattice.

Nevertheless, there are a number of challenges that are incurred by the archi-

tecture. Prominently is the inherent loss of gate fidelity as a result of repeated

measurement. This loss of gate fidelity requires error correction even before other

sources of decoherence and dephasing are considered. Magnetic material integration

into semiconductor processing is another obstacle that must be overcome for ex-

perimental realization of high-fidelity initialization, single qubit gates, and ensemble

qubit readout. There has been progress towards integration of these materials into

fabrication processes as a result of modern magnetic memory technologies, however,

this integration is still emerging and does not have mainstream adoption. Addition-

ally, an interaction of the form given by (2.1) was assumed throughout the proposal.
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Based on this assumption, a more detailed exploration of the interaction between

conduction-band flying electrons and donor-based nuclear spins is warranted.

In summary, we have outlined a quantum computing architecture based on the

use of non-equilibrium spin potentials enabled by modern spintronics to perform all

basic qubit operations including initialization, arbitrary single qubit rotation, single

qubit readout, and two qubit rotation on selected pairs of qubits. A key feature of

our architecture is the use of repeated entanglement with itinerant electrons and a

subsequent collapse of the quantum state. The latter process is non-unitary, but

we have shown that the overall non-unitary component can be kept below tolerable

limits with proper design. Finally we presented the implementation of a complete

CNOT gate using the proposed spin potential based architecture, and showed that

the fidelity under ideal conditions is acceptable for fault tolerant quantum computing.

This all-electrical architecture provides a means of qubit control for semiconductor

donor systems without the use of magnetic fields while providing qubit selectivity

and isolation, and non-local two qubit operation. Future research may include nu-

merical modeling of representative experimental structures and investigation of the

interaction between conduction band flying electrons and donor-based nuclear spins.

Experimental investigation of the operations described herein would be valuable to

assess the validity of the proposal.



36

3. ANNEALING, THE ISING MODEL, AND

COMBINATORIAL OPTIMIZATION

The material in this chapter is based on our publication “Intrinsic opti-

mization with stochastic nanomagnets” [17].

3.1 Solving NP-Hard Problems

The use of Ising computers to solve NP-hard problems has a rich heritage in both

theory [126] and practice. These computers seek to solve a wide range of optimiza-

tion problems by encoding the solution to the problem as the ground-state of an Ising

energy expression. Many diverse systems have been proposed to solve NP-hard opti-

mization problems such as those based on simulated annealing [10], DNA [127, 128],

quantum annealing [12,129], Cellular Neural Networks [130–132], CMOS [14], trapped

ions [133], electromechanics [134], optics [15,16,135–140], and magnets [20,141,142].

A common objective of many of the Ising-based approaches is the identification of

hardware configurations that can efficiently solve optimization problems of interest.

A popular approach to solving such problems is to map the problem onto an Ising

Hamiltonian whose minimum energy represents the solution to the problem. Once

mapped, the system is then annealed until it resolves to its ground-state. Commer-

cial companies like D-Wave have developed a business model that centers on the

use of quantum processes to perform this annealing [12, 129], harnessing adiabatic

evolution. These systems find the ground-state of an Ising energy expression by adia-

batically increasing the “spin”-“spin” couplings and biases. Unfortunately, it is easy

for the system to escape the ground-state due to thermal noise, requiring operation

temperatures on the order of ∼mK.
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While quantum annealing provides potential promise, it is worth asking the fol-

lowing question: can a classical system provide similar benefits (such as parallelism)

without many of the shortcomings associated with the operation of qubits? In this

chapter we introduce once such possibility, namely the use of probabilistic computing

elements similar to those proposed by Feynman [51].

3.2 Classical Annealing with Stochastic Nanomagnets

Herein, we demonstrate the possibility of a hardware implementation that does

not just mimic the Ising model, but embodies it as a part of its natural physics

[20, 141, 142]. It uses a network of N “soft” nanomagnets operating in a stochastic

manner [64], each with an energy barrier ∆ comparable to kBT so that they switch

between the two Ising states, ±1, on time scales τ ∼ τ0 exp(∆/kBT ) where τ0 ∼ 0.1−1

ns. The natural laws of statistical mechanics guide the network through the 2N

collective states at GHz rates, with an emphasis on low energy states. We show how an

optimization problem of interest is solved by engineering the spin-mediated magnet-

magnet interactions to encode the problem solution and to simulate annealing without

any change in temperature simply by continuously adjusting their overall strength.

As proof-of-concept for the potential applications of this natural Ising computer, we

present detailed simulation results for standard NP-complete examples, including a

16-city traveling salesman problem. This involves using experimentally benchmarked

modules to simulate a suitably designed network of 225 stochastic nanomagnets and

letting the hardware itself rapidly identify solutions within the 2225 possibilities. It

should be possible to integrate such hardware into standard solid state circuits, which

will govern the scalability of the solution.

The Ising Hamiltonian for a collection of spins, Si, which can take on one of two

values, ±1,

H = −
∑
i,j

JijSiSj −
∑
i

hiSi (3.1)
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was originally developed to describe ferromagnetism where the Jij are positive num-

bers representing an exchange interaction between neighboring spins Si and Sj, while

hi represents a local magnetic field for spin Si. Classically, different spin configurations

σ{Si} have a probability proportional to exp(−H(σ)/kBT ), T being the temperature,

and kB, the Boltzmann constant. At low temperatures, the system should be in its

ground state σG, the state with the lowest energy H(σ). With hi = 0, and positive

Jij, it is easy to see that the ground state is the ferromagnetic configuration σF with

all spins parallel.

Much of the interest in the Ising Hamiltonian arises from the demonstration of

many direct mappings of NP-complete and NP-hard problems to the model [70, 126,

143] such that the desired solution is represented by the spin configuration σ corre-

sponding to the ground state. However, in general this mapping may require a large

number of spins, and may require the parameters Jij and hi to take on a wide range

of values, both positive and negative. Finding the ground state of this artificial spin

glass is the essence of Ising computing, and broadly speaking it involves abstractly

representing an array of spins, their coupling, and thermal noise through software and

hardware that attempts to harness the efficiencies of physical equivalence [144]. These

representations may take the form of abstract models of the spins, the use of random

number generators to produce noise, and logical or digital adders for the weighted

summing. If enough layers of abstraction can be eliminated, the underlying hardware

will inherently solve a given problem as part of its natural, intrinsic operation and

this should be reflected in increased speed and efficiency.

3.3 Engineering Correlations Through Spin Currents

Here we describe a natural hardware for an Ising computer based on the repre-

sentation of an Ising spin Sk by the magnetization m of a stochastic nanomagnet

(SNM), which we believe will compare well with other alternative representations.

These SNMs are in the “telegraphic” switching regime [64, 145] requiring the exis-
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tence of a small barrier in the magnetic energy (∆ ≈ kBT ), that gives a small, but

definite preference for a given axis, with two preferred states ±1. In the absence of

currents, these SNMs continually switch between +1 and −1 on the order of nanosec-

onds, and can be physically realized by a reduction of the magnetic grain volume [146]

or by designing weak perpendicular magnetic anisotropy (PMA) magnets [147]. Fig-

ure 3.1 shows the response of such a monodomain PMA magnet in the presence of an

external spin current in the direction of the magnet’s easy axis.

How do we couple the SPMs to implement the Ising Hamiltonian of Equation

(3.1)? The usual forms of coupling involve dipolar or exchange interactions that are

too limited in range and weightability. Instead, one possibility is an architecture [20]

that uses charge currents which can be readily converted locally into spin currents

through the spin Hall effect (SHE). These charge currents can be arbitrarily long-range

and the total number of cross-couplings is only limited by considerations of routing

congestion and delay. The couplings may also be confined to nearest-neighbors, sim-

plifying the hardware design complexity while promoting scalability and retaining

universality [143].

The Ising Hamiltonian of Equation (3.1) can be implemented by exposing each

SNM mk to a spin current Ik

Ik(mj) =
2qα

~

(
hk +

∑
j

2Jkjmj

)
(3.2)

which has a constant bias determined by hk together with a term proportional to the

magnetization of the jth SNM mj. The future state of magnet mi at time (t + ∆t)

is related to the state of the other magnets at time t through the current Ik. This

expression is derived analytically in Section 3.3.1 using the Fokker-Planck equation

for the system [148].

The spin current Ik can be generated using well-established phenomena and the

prospects for physical realization of such a system is discussed further in Section 3.5.

The distinguishing feature of the present proposal arises from the intrinsic stochas-

ticity of SNMs and their biasing through the use of weighted spin currents (Figure
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Fig. 3.1. Response of stochastic nanomagnet to spin current: (a)
The magnetization of a stochastic nanomagnet is shown for varying spin
currents. The five number summary of the magnetization ~mz is shown
throughout the simulation. (b) Obtaining stochastic operation for a mag-
net can be accomplished with a reduction of the energy barrier of the mag-
net EB through device geometry or by increasing its temperature. The
response of the magnet to thermal noise under these conditions is modeled
using a stochastic Landau-Lifshitz-Gilbert (LLG) circuit element based on
the input spin current IS and magnetic field H. (c) Sample time slices
are shown at various set points along the sigmoid in order to visualization
the magnetization dynamics.
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3.1(a)). How the SNMs are interconnected to implement Equation (3.2) can evolve

as the field progresses.

Getting a large system to reach its true ground state is non-trivial as it tends to

get stuck in local minima [149]. It is common to guide the system towards the ground

state through a process of “annealing” [10] which is carried out differently in different

hardware implementations. For example, systems based on superconducting flux

qubits make use of quantum tunneling, which is referred to as quantum annealing

[150], whereas classical CMOS approaches make use of random number generators

[151] to produce random transitions out of local minima.

For our system of coupled SNMs, random noise is naturally present and can be

easily controlled (Figure 3.1(a)), causing the system of SNMs coupled according to

Equation (3.2) to explore the configuration space of the problem on a nanosecond

timescale. Annealing could be performed through a controlled lowering of the actual

temperature, or equivalently through a controlled increase in the magnitude of the

current Ik, even at room temperature. It has been noted that certain annealing

schedules can guarantee convergence to the true ground state, but these schedules

may be too slow to be used in practice [152]. Here we only present a straightforward

annealing process and does not seek out optimal annealing schedules. Consequently,

as we show in one of our combinatorial optimization examples, we may find only an

approximate solution which, however, may be adequate for many practical problems.

3.3.1 Steady-State Fokker-Planck Description

Our goal is to interconnect magnets such that their equilibrium state is governed

by Boltzmann statistics with thermal noise as an inherent characteristic of the system.

To see that this is possible, consider a system of N magnets where we want

ρ(m1, · · · ,mN) = ρ0e
−E(m1,··· ,mN )/kBT (3.3)
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and

E(m1, · · · ,mN) =
∑
i

(
Aim

2
i + himi

)
+
∑
i,j

Jijmimj (3.4)

where mk represents the z-component of the magnets.

Suppose each magnet is driven by a spin current derived from the others. Using

the Fokker-Planck equation [148] for the N -magnet system:

∂ρ

∂τ
=

∂

∂mk

{
(1−m2

k)

[
(ik −mk)ρ+

1

2∆k

∂ρ

∂mk

]}
(3.5)

where ∆k = µ0HkMsV/2kBT and ik = Ik/I0 with I0 as the critical switching spin

current I0 = (2qα/~)2∆kkBT . At equilibrium, ∂ρ/∂τ = 0 yielding from (3.3) and

(3.5):
∂(ln ρ)

∂mk

= −2∆k(ik −mk) (3.6)

∂(ln ρ)

∂mk

= − 1

kBT

(
2Akmk + hk +

∑
j

(Jkj + Jjk)mj

)
(3.7)

respectively. Comparing equations (3.6) and (3.7) while assuming symmetric cou-

pling, Jkj ≡ Jjk, for the system we find

∆k = −Ak/kBT (3.8)

and arrive at (3.2):

ik =
hk +

∑
j 2Jkjmj

µ0HKMSV

3.3.2 Stochastic Landau-Lifshitz-Gilbert (LLG) Model

In this section we briefly describe the simulation framework and stochastic LLG

model used throughout this chapter. We start with the LLG equation [148] for a

monodomain magnet with magnetization mi in the presence of a spin current (~Is =

I0ẑ)

(1+α2)
dm̂i

dt
= −|γ|m̂i × ~Hi−α|γ|(m̂i×m̂i× ~Hi)+

1

qNi

(m̂i×~ISi×m̂i)+

(
α

qNi

(m̂i × ~ISi)
)

(3.9)
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The magnetic thermal noise enters the equation through the effective field of the

magnet, Hi = H0 +Hn, as an uncorrelated external magnetic field in three dimensions

with the following mean and variance:

〈H~r
n〉 = 0 〈|H~r

n|2〉 =
2αkT

|γ|MsVol.
(3.10)

The numerical model is implemented as an equivalent circuit for SPICE-like simula-

tors and reproduces the equilibrium (Boltzmann) distribution from a Fokker-Planck

Equation [148].

A given system of magnets is simulated using a collection of independent, though

current-coupled, stochastic LLG models. Delays associated with the communication

from one magnet to the next are neglected assuming that the response time of the

nanomagnets is much greater than associated wire-delays. Given the response time

of experimental stochastic magnets (∼ms) [146], this is a reasonable approximation.

However, this approximation must be revisited if the nanomagnets intrinsic response

time is on the same order as any communication delays.

Many options exist for physical realization of the proposed system of stochastic

nanomagnets as discussed in Section 3.5. For the simulations in this chapter we

simply use Equation (3.2) without assuming any specific hardware to implement it,

since it is likely that better alternatives will emerge in the near future, given the rapid

pace of discovery in the field of spintronics, see for example [32,35,153,154].

3.4 Combinatorial Optimization

We will focus on two specific examples to demonstrate the ability of such an engi-

neered spin glass to solve problems of interest [155]: an instructive example based on

the satisfiability problem (SAT), and a representative example based on the traveling

salesman problem (TSP). The first known NP-complete problem is the problem of

Boolean satisfiability [156], namely, deciding if some assignment of boolean variables

{xi} exists that satisfies a given conjunctive normal form (CNF) expression. Find-
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ing the collection of inputs that makes the clauses of the CNF expression true is

computationally difficult, but easy to verify.

It is known that any given CNF expression can be mapped to a collection of

Ising constraints using the fundamental building blocks of NOT (m1 = m̄2), AND

(m1 = m2 ∧m3), and OR (m1 = m2 ∨m3) each subject to the Ising constraints given

by [157]:

HNOT = 1− (−m1m2) (3.11)

HAND = 3− (−m2m3 + 2m1m2 + 2m1m3)− (−2m1 +m2 +m3) (3.12)

HOR = 3− (−m2m3 + 2m1m2 + 2m1m3)− (2m1 −m2 −m3) (3.13)

Using these building blocks, a network capable of finding the truth table for XOR

(m1 = (m2∨m3)∧ (m2 ∧m3)) was prepared (Figure 3.2). For simplicity, the solution

uses a naive method to construct the network and leverages the use of ancillary spins

to represent (m2 ∨m3) and (m2 ∧m3) respectively (note that four spins could have

been used [158]). The array of spins from Figure 3.2(b) are connected as specified

by (3.11),(3.12),(3.13), driven by a reference current I0. As the magnets explore the

configuration space, their outputs are digitized and used to compute the overall energy

of the system (Figure 3.2(c)). The regions of zero energy correspond to solutions of

the problem. The digitized outputs are aggregated to determine their probability

of occurrence. By looking at the first three bits of the most probable outputs, the

solution to the problem can be directly found (Figures 3.2(d) and 3.2(e)). While this

problem helps convey the essence of the approach, a more demonstrative application

is worth considering.

The decision form of the TSP is NP-complete, that is, for a collection of N cities,

does there exist a closed path for which each city is visited exactly once that has

a tour length less than some value d. Finding tours that satisfy this problem is

computationally challenging and also of great practical interest. There are well-

known mappings that translate the TSP to the Ising model [70, 159]. Here we adopt

the following:
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Fig. 3.2. Boolean satisfiability: (a) Each magnet ~mi is influenced by
problem-specific bias, Bi, and weighted-coupling, W(ji), to magnet ~mj. (b)
The truth table of the XOR operation is found by mapping the problem
on an Ising expression. (c) The magnetization response of the magnets
during a time slice is digitized in order to compute the energy of the
system over time (d) Each digitized magnetization represents the logical
bits xi. (e) Steady-State Fokker-Planck equation analytical solution.
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H =
N∑
v=1

(
1−

N∑
j=1

xv,j

)2

+
N∑
j=1

(
1−

N∑
v=1

xv,j

)2

+ λ
∑
uvj

W(uv)xu,jxv,j+1 (3.14)

where xi,j is a Boolean variable that is TRUE when city i is stop number j and FALSE

otherwise, and W(uv) are directed weights based on the distance between cities u and v.

This Hamiltonian is mapped to a spin system by replacing each xij with 1/2(mij + 1)

and weights W(uv) with i(uv) given by (3.2).

If the interconnections between each city are symmetric, then a Boltzmann ma-

chine [74] with each of the 2N×N states associated with an effective energy H is

realized, and the probability of the system visiting a particular state is proportional

to exp(−H/kBT ). In order to find low-energy, optimized states, direct annealing of

the glass can be performed. Using the ulysses16 reference dataset [160], annealing of

a problem specific magnetic array through control of the effective temperature was

performed (Figure 3.3). Two specific traits of interest arise, namely the energy de-

cays in a sigmoidal relationship with the lnT , and the specific heat of the system,

C(T ) = (〈E(T )2〉 − 〈E(T )〉2)/kBT
2, shows a defined peak about a critical tempera-

ture. At high temperatures, the system is disordered and corresponds to high energy

states (Figure 3.3(c)). As the temperature is reduced, the system continues to ex-

plore the energy landscape on a nanosecond timescale while gradually converging to

a low-energy solution. For the given annealing profile and simulation duration, a low-

energy, though not ideal, solution is found to the problem, highlighting the heuristic

nature of the optimization [159]. Note that in principle these simulation results could

be obtained directly from actual hardware. For example, Figures 3.2(d) and 3.3(d)

could be obtained by continuously monitoring the states of the individual SNMs using

spin valves.

3.5 Considerations for Physical Realization

Physical realization of these engineered spin glasses requires the integration of

multiple functional elements as highlighted in Figure 3.2(a). The magnetization of
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Fig. 3.3. Annealing stochastic nanomagnets for heuristic opti-
mization of the traveling salesman problem: (a) An N = 16 city
traveling salesman problem based on the ulyssess16 data set [160] was
simulated using an array of (N − 1)2 = 225 stochastic magnets, assuming
a fixed starting city. Each magnet represents if city i was stop j using
mz = +1 or was skipped mz = −1 (insets). The magnets are prepared
in a random initial configuration and gradually annealed until eventu-
ally frozen in a low-energy configuration. The normalized average energy
of the system at each temperature is shown as the system is gradually
annealed. (b) The specific heat of the array versus temperature is shown
along with insets of the array configuration at early and late temperatures.
(c) The state of the array is shown as a TSP graph at various tempera-
tures, shown as green diamonds in (a), during the annealing process with
the ideal configuration shown on the top left. (d) Average magnetization
shown at the temperatures of (c).

each magnet mi is first sensed with a read unit. The signal produced by this read

unit is then propagated to all of the magnets with couplings dependent on the read

magnetization mi. Each of these connections is independently weighted with weights
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W(ij) and provided as input, along with an on-site bias Bi to write units. The write

units in turn influence and control the state of magnet mj.

There are a number of design options available for each functional unit as shown

in Table 3.1 and Figure 3.4. Write-control of the magnets can be affected through a

number of means including the spin Hall effect (SHE) [32] or perhaps through voltage

control [154]. The use of the SHE effect provides a convenient mechanism with which

to sum several, independently weighted, input currents. Readout of the magnetiza-

tion can be accomplished using well-established tunnel junctions [161] which have

been demonstrated for stochastic nanomagnets [146]. Alternatively, readout could

perhaps be accomplished using the inverse SHE [32]. Assuming the use of a SHE

material and tunnel junction stack, care must be given to accomodate the simulta-

neous use of write and read currents. One approach would be to introduce the use

of a time-multiplexed scheme that disassociates the write and read operations [162].

Alternatively, structures that provide write and read isolation may be used [163].

The ability to write and read the magnetization is of fundamental importance,

however, once read, the likely weak signal must be amplified to satisfy the fanout

requirements of the network. This transistor-like gain can be realized using all-spin

based approaches [20,163] or perhaps with the use of a hybrid-CMOS design [164,167].

These proposed approaches may introduce power dissipation challenges during the

read operation, e.g. the short-circuit current produced with the use of amplifying

inverters. Power dissipation considerations must be carefully evaluated to assess the

viability of scaling the proposed system.

The output from the amplification stage can be selectively weighted so that a wide

range of problems based on (3.1) can be encoded onto the network. The weighting

of inputs can be based on an approach using re-programmable floating-gate volt-

ages [165] that would enable the use of analog weights for the circuit. While floating-

gate regulation would enable convenient re-programmability, the design would be

complicated with the requirement for peripheral drivers to control the floating-gate

array. Others proposals have suggested the use of memristors [64, 166, 167] or other
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Function Technique

Writing
Spin-Orbit Torque [32,35]

Voltage Control [154]

Reading
Spin-Valves/Tunnel Junctions [161]

Inverse Spin-Hall Effect [32]

Amplification
Spin-Switches [163]

CMOS [164]

Weighting

Floating-gate Regulators [165]

Memristive Elements [64,166,167]

Digital Logic [14]

Fixed Voltages

Routing
Tailored Topologies [168]

FPGA-Like Interconnect [169]

Table 3.1.
Options for Physical Realization: Many options exist for physical

realization of the proposed system of stochastic nanomagnets. These mag-
nets must be written, read, possibly amplified, weighted, and routed for
the network to form a Boltzmann machine. The design options shown in
this table reflect various approaches that can be used to perform each of
these functions.
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Fig. 3.4. Possibilities for Physical Realization: Numerous possi-
bilities exist for physical realization of a nanomagnet based probabilistic
architecture. Shown in the figure are a number of functional elements that
must be integrated to form an engineered spin glass. Shown in the dotted
boxes are examples (not exhaustive) of the types of design elements that
could implement the functions.

programmable elements in a cross-bar like configuration [162,170], though with con-

strained fanout. Note that one weighting scheme that still retains the ability to encode

NP-hard problems onto the network is with the use of {−1, 0, 1} weights [126]. Using

this simple approach removes the necessity for tunable weights and instead relegates

the problem to one of routing, connectivity, and area.

All of the simulations used in this chapter assume a fully connected network of

magnets in which each magnet talks to all other magnets. For small networks this is

OK, however, such an assumption is invalid for large networks as the number of routes

grows as NN . Instead, different topologies [168] and routing considerations must be

made to account for congestion and long-distance communication. By limiting the

connections to local-neighbors [14,132], the network may still be used to perform NP-

hard optimization while also simplifying routing complexity. One design possibility is
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to leverage the lessons learned from the advances in the design of Field-Programmable

Gate Array (FPGA) interconnects [169]. FPGAs are designed with routing topologies

that facilitate both short and long-range interconnections while also providing re-

programmability.

The fidelity of the programmed weights and number of high-fanout signals needed

for robust solutions may impose challenges on the selected weighting and routing

schemes. Additionally, the propagation delay of these high-fanout signals must be

balanced with the response time of the magnets in order for the system to be gov-

erned by (3.1). While flexibility in the allowed weights and number of couplings is

convenient for encoding problems onto the model [70], it is important to note that

discrete nearest-neighbor couplings still retain NP-hardness [126] and may greatly

simplify the hardware design, improving scalability at the expense of increased en-

coding complexity and area.

The main point of this chapter is the remarkable high-speed search through Fock

space enabled by the intrinsic physics of a network of stochastic nanomagnets in-

teracting via spin-mediated interactions. We hope this work fosters an interest in

the physical realization and exploration of stochastic nanomagnets as a viable Ising

computer.
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4. AUTONOMOUS PROBABILISTIC COMPUTING

The material in this chapter is based on our pre-print “Autonomous Prob-

abilistic Coprocessing with Petaflips per Second” [79].

Stochastic neural networks (SNN) are widely used for machine learning, inference

and many other emerging applications [9]. As discussed earlier, a common version of

such algorithms is based on the concept of a binary stochastic neuron (BSN) [74,75]

which fluctuates between -1 and +1 with probabilities that can be controlled through

an input, Ii, constructed from the outputs of other BSNs, mj. The synaptic function,

Ii({m}), can have many different forms depending on the desired functionality, but

we will restrict this discussion to linear functions defined by a set of weights Wij such

that

Ii(t+ τS) = β
∑
j

Wijmj(t) (4.1)

where β is a constant and τS is the ‘synapse time’, that is the time it takes to recom-

pute the inputs {I} every time the outputs {m} change. In software implementations,

each BSN is updated repeatedly according to

mi(t+ τN) = sgn
[
tanh (Ii(t))− r[−1,+1]

]
(4.2)

where r[a,b] represents a random number in the range [a, b], and τN is the ‘neuron’

time, that is the time it takes for a neuron to provide stochastic output mi with the

correct statistics dictated by a new input Ii.

It is well-known [171] that to ensure fidelity of operation it is important to avoid si-

multaneous updates of two BSNs that are causally connected through a non-zero Wij.

The standard approach is to update each BSN sequentially according to Eq. (4.2),

recomputing the input from Eq. (4.1) after each update, a procedure known as Gibbs

sampling [172]. By contrast, the objective of this chapter is to explore the feasibility
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of ultrafast operation through an autonomous architecture whereby each BSN con-

tinually fluctuates between -1 and +1 with probabilities that are controlled by the

input Ii. We refer to this autonomous BSN as a p-bit to highlight its role as the

key element of an autonomous p-computer (ApC), similar to the role of a qubit in a

quantum computer.

As a quantitative measure of an ApC’s speed of operation we use the number

of flips per second (f ), a flip being defined as a p-bit update attempt. For purely

sequential updating, the number of flips per second is ∼ 1/(τS + τN). However,

updating need not be purely sequential since unconnected BSNs can be simultaneously

updated without loss of fidelity. If a number (Np) out of the total number (N) of

BSNs can be updated in parallel, then the number of flips per second will be much

larger ∼ Np/(τS+τN). Note, however, that in order to achieve this enhanced flip rate,

the number of neurons that are simultaneously updated, Np, have to be deliberately

selected using a digital sequencer, so that the clock period, τclock, limits the maximum

number of flips per second:

f ≤ Np

τclock

(Sequenced mode) (4.3a)

This clock speed will be limited by τS, τN , and the overhead associated with clock

distribution [173].

The objective of this chapter is to present a framework for clockless operation

[171,174] whose speed is limited only by the neuron and synapse speeds

f ≤ N

τN
=
sN

τS
(Autonomous mode) (4.3b)

where s ≡ τS/τN . We will show that this autonomous mode provides high fidelity

results without supervision keeping the fraction of detrimental simultaneous updates

down to an acceptably low. Detrimental updates are managed simply by choosing

a small s so that τN is much longer than τS, without using a digital sequencer to

enforce a deliberate update order. As a result, f is not limited by τclock and can

continue to operate faster as the synapse time τS is lowered. For example if we have
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nearest neighbor connections with weights of {−1, 0,+1}, then the synapse can be

implemented with short wires which respond in times less than 10 to 100 ps [175],

much shorter than typical clock periods, reminiscent of the “intrinsic parallelism”

observed in dynamical systems [176].

Eqs. (4.3a) and (4.3b) suggest that an autonomous design will allow faster oper-

ation (that is, more flips per second) if

τS <
sN

Np

τclock (4.4)

The factor Np/N represents the fraction of neurons that can be updated simultane-

ously, which depends on the fan-in and the nature of interconnections and problem

topology. For example, with nearest neighbor connections on a 2D square lattice as

in Fig. 4.1(b), half the nodes can be updated simultaneously so that Np/N = 1/2.

The factor s also depends on the interconnections, but it additionally depends on the

nature of the problem and the degree of solution fidelity needed, as we will show in

this chapter.

This chapter demonstrates the feasibility of an ApC that performs the weight logic

and p-bit functions defined by Eqs. (4.1) and (4.2) without the aid of sequencers as

portrayed in Figs. 4.1(a) and 4.1(b). Our work is motivated by the compact, fast,

energy efficient hardware that are currently being developed for the implementation

of these functions [177,178] as shown in Fig. 4.1(c), which we emulate using existing

CMOS devices on an easily reconfigurable, cloud accessible digital FPGA platform,

Fig. 4.1(d). The detailed methodology for constructing this p-computing coproces-

sor is described in the Methods section of this chapter. In the following sections

we will describe the implementation approach and discuss results for two distinct

applications, one involving combinatorial optimization and one involving emulated

quantum annealing. These applications will help show that accurate results can be

obtained with a sequencerless probabilistic computer of the type envisioned by Feyn-

man [51], implemented using modern devices to enable operation at ultrafast rates

unconstrained by the available clock speed.
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Fig. 4.1. Autonomous p-Computer (ApC): (a) A weighted p-bit
building block is used to construct an ApC that comprises four com-
ponents supporting weight logic, p-bit logic, weight programming, and
p-bit readout. (b) The individual building blocks are interconnected to
construct an ApC with a desired topology. A nearest-neighbor coupling
layout is depicted. (c) A projected MRAM based ApC using nanomag-
netic devices for the p-bit with resistor-based weight logic can be used
to form a compact, efficient building block. (d) Using all-digital technol-
ogy, an FPGA was used to construct and ApC that emulates the MRAM
based design. An example composition of a p-bit with a linear, register
based weight logic, a lookup table based activation function, a linear-
feedback shift register based pseudo random number generator, and a
pseudo-asynchronous attempt logic is shown.
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4.1 ApC Implementation

The building block for our ApC has four components as shown in Fig. 4.1(a):

• weight logic to implement Eq. (4.1),

• p-bit to implement Eq. (4.5),

• write unit to program the weights Wij and β

• read unit to access the individual p-bit outputs

Fig. 4.1(b) shows how multiple building blocks can be interconnected to form

a p-computer. The tiling shown is based on nearest-neighbor connections, but the

connections need not be limited to nearest-neighbor. We have also implemented all-

to-all networks using the digital emulator shown in Fig. 4.1(d), as discussed in the

Methods section.

Superficially Fig. 4.1 looks like other existing neural network architectures, like

the one used for TrueNorth [179]. However, to our knowledge, earlier implemen-

tations have used time-multiplexing [179, 180] to share the same resource among

different neurons and synapses, while our objective is to eliminate sequencing and

time-multiplexing altogether so that we are not constrained by available clock speeds.

TrueNorth for example uses 4096 neuronsynaptic cores, each core having dedicated

neuron and synaptic memory forming 256 logical neurons that are time multiplexed

sequentially to implement 4096× 256 ≈ 1M logical neurons [179]. For our sequencer-

less operation we would need 1M distinct building blocks for the same number of

neurons. This would be impractical if we were relying on fully digital implementa-

tions, but the compact hardware implementations currently being developed makes

such a design feasible. As an example, stochastic behavior of nanomagnets has re-

cently attracted attention in the context of novel computing paradigms, and they

show promise in probabilistic and neuromorphic applications [7, 20, 181–185]. For

example, an MRAM-based p-bit requires only 3 transistors and a magnetic tunnel

junction [186], while its digital emulation requires significantly more transistors. With

such compact hardware, it is feasible to have one building block for every p-bit in
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order to support sequencerless, autonomous operation that is not limited by clock

speeds.

Since digital platforms are inherently synchronous, we mimic autonomous opera-

tion by replacing Eq. (4.2) with a new hardware-inspired model, Eq. (4.5) (PPSL),

that we benchmarked against established state-of-the-art physical models as described

in the Methods section. These equations are based on SPICE simulations of Boltz-

mann networks where the update order of p-bits is irrelevant given symmetric coupling

between connected p-bits. However, for certain networks such as those with directed

connections, the update ordering of p-bits may be important and other hardware

models more appropriate for these systems are likely required. These models are

not discussed herein, but the overall FPGA architecture was designed to support the

exploration of different hardware models and network topologies, hence they can be

included here with minor effort.

At each time step, all p-bits are free to flip and they do so with a probability ∼ s

that is controlled by the input Ii having a zero-input value s(Ii = 0) = s0 � 1.

mi(n+ 1) = mi(n)× sgn[e−s − r[0,1]] (4.5a)

s = s0e
−mi(n)Ii(n) (4.5b)

In each time step the p-bit flips with a probability ∼ s, so that the average time

taken for it to respond is 1/s. Since time steps are measured in units of τS, we have

τN = (1/s) × τS as stated earlier. Unlike Eq. (4.2), Eq. (4.5) can be used to update

all p-bits in parallel without explicitly worrying about simultaneous updates. With

small values of s0, the fraction of simultaneous updates is sufficiently small such that

Eq. (4.5) in an unsequenced mode gives results equivalent to those obtained from

Eq. (4.2) with careful sequencing.
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Annealing Schedule

a b

c

d

e

LatticeFig. 4.2. Max-Cut Combinatorial Optimization: (a) An 8K spin
(90×90) nearest-neighbor Ising lattice of p-bits supporting {±1, 0} weights
can be used to solve a Max-Cut combinatorial optimization problem. Here
a black and white image is used to generate magnetic domains correspond-
ing to each character. The problem is then solved leveraging an FPGA
ApC co-processor (see Methods). (b) Online annealing is used to tran-
sition the network from a high to low temperature through a reduction
of T (n + 1) = 0.9 T (n) where T = β−1 (inset). During this process the
network converges to a low energy state solution to the problem of inter-
est. (c) The network features begin to emerge as lower temperatures are
reached. The probability of an individual p-bit flipping is controlled to
explore how simultaneous updates effect the network or s = 1 (c), s = 1/2
(d), and s = 1/4 (e). If s is too large, there is no convergence to the ideal
solution. As s is lowered, the network is more effective at finding low
energy solutions, even at higher temperatures.
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4.2 Combinatorial Optimization

Ising computers designed to solve problems in combinatorial optimization con-

tinue to emerge using a wide-range of underlying technologies. Solvers for such prob-

lems have been explored using quantum effects, optical approaches, digital logic, and

magnetic technologies [5,14–17,187–191]. In general, these systems map a given opti-

mization problem onto a hardware whose operation is guided by a cost function [70].

A common architecture used for such problems is the nearest-neighbor Ising model

as shown in Fig. 4.2(a).

In the Ising model, each p-bit is connected to its neighbor through a coupling

matrix, Jij, and is influenced by an on-site bias hi. Note that this is trivially mapped

into Wij as in Eq. (4.1). By mapping a problem of interest to this system, an Ising

computer will intrinsically search for the lowest energy solution to the problem.

Typical implementations of these systems leverage some form of simulated anneal-

ing in hardware to guide the system into a low energy solution, using careful control

and sequencing of spin-flip updates to avoid non-ideal spin updates [14, 192, 193]. In

the context of a nearest-neighbor topology, the network can be split into two groups

in a checkerboard-like pattern such that all spins in a given group can be updated

in parallel [194]. This results in the ability to update half of all spins within a given

clock period. According to Eq. (4.3a) this results in

f =
N

2τclock
(4.6)

An ApC can be used to solve the same class of problems, but to do so a value of s

must be found that produces a solution with the desired fidelity. By identifying this

limit for s, an upper bound is placed on the synapse speed that must be obtained to

achieve a competitive f from Eq. (4.4).

Shown in Fig. 4.2 is a Max-Cut problem for which a black and white image was

used to encode magnetic domains for the p-bits. The network is initialized to run

at a high effective-temperature (low β) resulting in an effectively uncoupled network.

The temperature is then gradually reduced according to an annealing scheduling
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until the network crystallizes at a low energy, in this case ideal, solution as shown

in Fig. 4.2(b). Shown in Figs. 4.2(c), 4.2(d), 4.2(e), different values of s are used to

convey how simultaneous updating affects the ability of the network to converge to

the solution. As s is decreased from 1 to 1/2 and 1/4, the smaller values of s result in

a more effective convergence. While these results are heuristic in nature given their

visual display, a quantitative energy based analysis conveys the same relationship

as discussed in the following section with a demonstration of simulated quantum

annealing.

For this problem, a value of s = 1/4 resulted in effective convergence to the ideal

solution and well-behaved network operation. Given this result, the ApC has

f =
N

4τS
(4.7)

Comparing (4.6) and (4.7), as long as the synapse is twice as fast as the best τclock

that could be obtained from a synchronous implementation, the network will perform

the same number of flips per second without needing a sequencer.

4.3 Quantum Emulation

Simulating the behavior of quantum systems using classical models has long at-

tracted interest. Since the seminal work of Suzuki [195], it has been known that

thermodynamic features of quantum systems that avoid the “sign problem” [196] can

be efficiently simulated by classical computers. This allows Quantum Annealing (QA)

algorithms designed for quantum systems to be simulated on classical computers, an

approach that is called Simulated Quantum Annealing (SQA). Computationally, SQA

uses a finite number of “replicas” where each replica is sized to match the size of the

original quantum system. This replication enables a mapping of the quantum system

to a classical collection of p-bits. The number of replicas that are needed depends on

the temperature of the quantum system [197,198] and the desired accuracy to emulate

the quantum system. SQA algorithms are typically run on software [197–199] and

on sequencer-based hardware designs [187,200]. Here, we demonstrate how quantum



61

systems can be emulated using our ApC by solving a model quantum system, the

Transverse Ising Hamiltonian, and establish how ApC exactly reproduces the ther-

modynamics of a many-body quantum system at finite temperatures and magnetic

fields.

Recently, it was theoretically argued [201] that a network of p-bits described by

Eq. (4.1) and interconnected according to Eq. (4.2) can be used to emulate a quantum

system with a finite number of classical replicas, where a p-bit is represented in

hardware by the stochastic MTJ-based implementation of Fig. 4.1(c).

We start from the nearest neighbor Transverse Ising Hamiltonian in 1D [202]:

HQ=−

(
M∑
i

Ji,i+1σ
z
i σ

z
i+1 + Γx

M∑
i

σxi + Γz

M∑
i

σzi

)
(4.8)

where Ji,i+1 represents the interaction between neighboring spins, Γx and Γz are local

magnetic fields in the x̂ and ẑ directions. After a Suzuki-Trotter mapping, the 2D

classical Hamiltonian that approximates this system with n replicas is given as:

HC = −
( n∑

k=1

M∑
i=1

(J‖)i,i+1 mi,kmi+1,k + γzmi,k + J⊥ mi,kmi,k+1

)
(4.9)

where (J‖)i,j = Ji,j/n, γz = Γz/n and the vertical coupling term is

J⊥ = −1/(2β)log tanh(βΓx/n) and mi,j ∈ {−1,+1}.

Eq. (4.9) can be used to find each diagonal element of the quantum density matrix

and therefore, all diagonal operators, and their correlations can be calculated from

it. The corresponding interaction matrix (Jij) to perform a p-bit simulation can

be calculated from the mapped classical Hamiltonian, such that Ii = −∂HC/∂mi

to yield the weight coefficients. Note that the Suzuki-Trotter decomposition adds

another dimension to the classical system, therefore a 1D linear chain for a quantum

system is emulated by a 2D classical system.

In Fig. 4.3, we simulate a ferromagnetic linear chain (Ji,j = +2) using M = 8

spins with periodic boundary conditions at different transverse magnetic fields and we

compute the average magnetization, 〈mz〉. We include a symmetry breaking field in

the +z direction (Γz = +1) to obtain a net magnetization at vanishing transverse fields
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Fig. 4.3. Emulating the Transverse Ising Hamiltonian: (a) A 1D
ferromagnetic linear chain (Jij=+2) with M = 8 spins described by the
quantum transversing Ising Hamiltonian is solved as a function of the
transverse magnetic field Γx at an inverse temperature of β = 20 using
a network of 8 × 250 p-bits with periodic boundary conditions. The 250
p-bits serve as replicas (b) generated using a Suzuki-Trotter decomposi-
tion. The exact quantum Boltzmann solution is compared against the
average z magnetization for different values of s. As s is decreased, the
system converges to the Boltzmann solution for a value of s = 1/12. As s
decreases beyond s = 1/12, the system begins to diverge from the solution
for larger Γx/J due to the chosen precision of the digital implementation.
For each ΓX and s, 200 samples from a free-running FPGA implementa-
tion were collected spaced ≈ 30, 000 synapse delays apart. (c) Boxplots
are shown of the difference in computed mean at each Γx/J from the ideal
Boltzmann solution, for each value of s.
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(Γx = 0). We obtain the exact density matrix by directly diagonalizing the quantum

Hamiltonian (Eq. (4.9)): ρ = exp(−βHQ), where we chose an inverse temperature of

β = 20. Once ρ is known, we compute the average magnetization by tracing it with

the magnetization operator Sz, 〈m〉 = tr[Szρ]/tr[ρ]. The exact solution is shown as

a black solid line in Fig. 4.3(a).

The corresponding average magnetization is obtained by running the classical

system that is described by Eq. (4.9) with n = 250 replicas (250 × 8 = 2000 spins)

using Eq. (4.5) in the FPGA emulator. Fig. 4.3(a) shows different s values that

are used to obtain the exact result. Clearly, choosing s too high (s = 1/1) fails, but

gradually decreasing s allows the result to approach the exact result. We observe that

s = 1/12 seems to be an optimal choice, as decreasing s further does not yield more

improvement due to the chosen precision in the digital implementation. Specifically,

as s continues to reduce, the chosen precision of the arithmetic logic and look-up

tables in the FPGA emulator design limits the accuracy of the solution (please see

Methods). Fig. 4.3(b) quantitatively shows a boxplot of the error incurred at each

s value across 200 trials. In the the Suzuki-Trotter decomposition, increasing ΓX/J

systematically increases the error but a reasonably close agreement is observed for

s ≤ 1/8.

Typically, SQA algorithms initialize the system at a high magnetic field (ΓX) and

slowly remove it to keep the system in its ground state and guide it to the desired

ground state of the Ising Hamiltonian. In Fig. 4.3, however, we have not changed the

magnetic field as a function of time, but rather sampled from 200 ensembles, each

separated by ∼ 30, 000 synapse delays, to obtain the system statistics. This means

that not only was the system guided to the expected ground state (ΓX → 0, 〈m〉 → 1),

but it also followed the correct average magnetization at high magnetic fields. As such,

this could be viewed as an example of sampling a probability distribution rather than

finding the ground state of the system [74], an important problem space where an

ApC could be useful.
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It is important to note that to solve optimization problems using SQA, an exact

mapping of the quantum system may not be optimal and a finite number of replicas

that only approximate the thermodynamics of the quantum system could lead to more

efficient results. In the present context, optimizing the number of replicas for a given

system can be arranged since our system is not a natural quantum system nor is it

trying to faithfully reproduce the behavior of such a system. Therefore, optimizing

the number of physical replicas or finding the replica with the lowest energy becomes

possible in our engineered system [198].

4.4 Discussion

These examples demonstrate the feasibility of an ApC governed by Eq. (4.5) to

follow Boltzmann statistics without the need for a controlling sequencer. But in order

to make use of ultrafast flip rates, f, enabled by short τS times, it is important that

the building blocks be energy efficient to ensure that power levels are acceptable:

P = f ε (4.10)

where P is the power budget and ε is the energy required per flip.

In Table 4.1, we compare representative Ising computers based on sequenced de-

signs [14,192] to the autonomous designs implemented in and projected by this work.

The last row of the table shows ε for both the sequenced and autonomous designs.

As shown in the table, the FPGA based 8K-spin ApC achieves an energy per flip that

is similar to the Janus II sequenced FPGA implementation. However, this compari-

son applies some artificial constraints on the Janus II design: namely that all spins

must be simultaneously resident in the device at one time. This is a requirement

for unclocked autonomous designs that for the sake of comparison we applied to the

sequenced design. A clocked, sequenced design can pause the system and leverage

external memory for storage of neuron state, providing a large pool of logical neu-

rons, though limited by available memory bandwidth. Additionally, the ability to
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Sequenced Autonomous (This Work)

Hitachia Janus IIb 2K QAc 8K Isingc Projectedd

Technology CMOS (SRAM) CMOS (FPGA) CMOS (FPGA) CMOS (FPGA) CMOS + MTJ

Total Power (W) 0.05 25 55 32 19.25

Number of Neurons (N) 20K (80× 256) 2K 2K (8× 250) 8.1K (90× 90) 1M

s ≡ τS/τN 1† 1† 1/12 1/4 1/10

Synapse Delay (τS) (ps) 10,000 4,000 8,000 8,000 10

Neuron Delay (τN ) (ps) 10,000 4,000 96,000 32,000 100

Flips per Second (f) 1× 1012 2.5× 1011 2.08× 1010 2.5× 1011 1× 1016

Spin Update Time (1/f) (ps/flip) 1 4 48 4 0.0001

Energy per Flip (ε) (nJ/flip) 5× 10−5 0.1 2.64 0.13 1.93× 10−6

a Calculations based on information extracted from [14]. Design used sequential implementation, therefore we assume

(†) s = 1 and an optimal updating scheme such that half of all neurons are updated every step such that f = (0.5)N/τS .

Synapse and neuron delays assumed to operate at interaction frequency of 100 MHz.

b Calculations based on information extracted from [192]. Janus II supports a much larger number of neurons using

external memory, multiple FPGAs, and data shuttling between devices. Here we limit the comparison to only a single

spin processor assuming all spins are co-located on one FPGA, as would be required for an autonomous design. As

with (a), we assume (†) s = 1. With all spins on one chip, an optimal updating scheme updates half of all neurons

every step for f = (0.5)N/τS . Based on this, the spin update time calculated here is 4 instead of 2 as in [192]. Design

assumed to operate at operating frequency of 250 MHz.

c Power consumption measured from maximum power draw during computation. 2K QA topology based on 16-bit

precision operations and 8K Ising is based on 2-bit precision operations. Selected s values based on Figs. 4.2 and 4.3.

d Assuming chip density of 1M based on memory density available from commercial ST-MRAM [203]. With nearest-

neighbor connections, a synapse delay of 10 ps assumed [175]. Assumed neuron delay of ∼100 ps and a steady-

state neuron power consumption 10 µW [177]. Overhead from nearest-neighbor resistive cross-bar and external

communication logic estimated as ∼ 9.25 W using 5 memresistors and 1 op-amp per neuron [204].

Table 4.1.
Comparison of Sequential and Asynchronous Ising Computers:

Ising computers proposed to-date have used sequential updating mech-
anisms based on CMOS technology. These designs achieve spin update
times of ∼ 1−4 ps/flip. The 20K SRAM chip from [14] achieves an energy
of 50 fJ per flip. The autonomous CMOS implementations demonstrated
in this work obtain a similar spin update time as sequenced implementa-
tions and comparative energy per flip as sequential FPGA implementa-
tions. Using CMOS and MTJ technologies as proposed herein, a highly
efficient design with petaflips per second with 2 fJ per flip is projected.
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pause the network enables time-multiplexing and can harness the ability to re-use

logic resources.

The FPGA results naturally consume more power and have reduced density [205].

The 8K spin result of Table 4.1 has ∼ 18 W of static power dissipation due to the

periphery included in the FPGA design, not all of which is used. Using the FPGA

to ASIC power ratio [205] of 14, a naive migration of the design to an ASIC would

result in an ε of ∼ 4.0 × 10−3. By translating these approaches to a tailored ASIC

implementation, the energy efficiency per flip increases and the ability to increase the

density of resident neurons within a device increases substantially. Extending this

further, it should be feasible to obtain designs with ∼ 10 petaflips per second with

a power budget of ∼ 10 W, but we need devices with ε ∼ 1 fJ that also support a

density of 1M devices. We note that the corresponding flip time (100 attoseconds per

flip) is orders of magnitude shorter than what is achieved in highly parallelized GPU

implementations (33 picoseconds per flip) that implement Monte Carlo simulations

of Ising models [206].

The CMOS based SRAM design of Hitachi [14] has an estimated energy per flip

of ε ∼ 50 fJ, though the neuron density limits the ability of the approach to obtain

an f of petaflips per second. Using a hybrid CMOS and MTJ design as would be

encountered in modern commercial MRAMs [203], it should be feasible to obtain ∼ 10

petaflips per sec as projected in the last column of Table 4.1 [177]. Modern MRAMs

can achieve Gb densities; however, we limit the projection to a 1 Mb density based on

a target power consumption of ∼ 20 W for the neurons and synapses in the design.

It should be noted that the 20 W power target was arbitrarily chosen. In principle

the autonomous designs can leverage clocking to choose when global p-bit updates

should occur, much like the FPGA emulator discussed in the methods section. While

this approach can save power, it limits the utility of the MTJ based approach by

constraining the flips per second (f) to the same limits of Eq. (4.3a) due to the

clocking scheme. Even with this limit in place, as the connectivity between neurons

increases beyond nearest-neighbor, the sequencing logic becomes more complex while
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the ApC only requires a balance of s to ensure proper convergence. In the case of

all-to-all connectivity, the sequencing logic reduces in complexity and technically can

be implemented with a single time-multiplex weighted p-bit. In this situation, the

benefits of an ApC begin to degrade, except for the elimination of memory bottlenecks

with the use of distributed weights and the avoidance of time-multiplexing. A 500

node all-to-all network was implemented using the FPGA emulator, and the resulting

s was directly proportional to the number of neurons, affirming the reduced benefit.

Based on these results, the removal of sequencers, ability to run at speeds limited

only by synapse delays, and ability scale to millions of neurons, all within an accessible

power budget, makes an ApC a compelling alternative to clocked, sequential designs

for SNN coprocessing.

4.5 Methods

4.5.1 FPGA p-computing coprocessor

An all-digital framework based on Eqs. (4.5a) and (4.5b) was developed, Fig. 4.4,

to facilitate architectural exploration of an ApC, study various trade-offs in p-bit,

weight logic, and topology design, and to accelerate the combinatorial optimization

and sampling problems used in this work. The digital framework leverages reconfig-

urable computing devices to support rapid exploration of different designs. A Xilinx

Virtex Ultrascale+ xcvu9p-flgb2104-2-i provided via Amazon Web Services F1 cloud-

accessible EC2 compute instances was used for the problems of Figs. 4.2 and 4.3.

While a Xilinx FPGA was used in this work, the design is hardware agnostic and

another device, e.g. an Intel Stratix FPGA, can be used.

As shown in Fig. 4.1(b) and Fig. 4.4(b), an ApC comprises multiple weighted p-

bits arranged in various topologies, each supporting programmable problem instances.

There are many options for the implementation of programmable control, weight logic,

p-bits, and p-bit readout in a digital platform. The digital ApC of Fig. 4.4 comprises

a modular weighted p-bit, Fig. 4.4(c), that can be organized into various topologies,
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Fig. 4.4(b), supporting programmed problem instances. An example weighted p-bit

implementation is shown in Fig. 4.1(d) leveraging a memory-mapped weight-logic

register bank supporting linear weight coupling. The output of the weight logic

block is provided to a programmable, activation function look-up table that is used

in conjunction with a Linear Feedback Shift Register (LFSR) based pseudo-random

function to implement Eqs. (4.5a) and (4.5b). Multiple options were developed and

explored for these building block elements, see Fig. 4.6 beyond what is shown in

Fig. 4.1(d).

Interaction with the framework is provided through MATLAB MEX programs in

a client-server command based model, Fig. 4.4(a). Clients issue commands to select

which of the pre-built topologies to program into the cloud FPGA instance, the cur-

rent pseudo-temperature for the network, problem specific weights, and options to

pause or resume the network. Commands are also provided to support random sam-

pling from the network for readout operation. Online annealing is directly supported

through global update operations of the activation function look-up. All weights are

dynamically programmable through memory-mapped operations as discussed in the

following section. The server interfaces with a PCIe attached FPGA, interacting with

the programmed design as commanded. Other clients such as Octave and Python are

readily supported through a C++ abstraction layer leveraging networking and seri-

alization libraries.

4.5.2 FPGA ApC Logical Organization

Fig. 4.5 depicts the logical organization of the ApC used in this work. All in-

teraction with the FPGA is performed using a PCIe Gen3 x16 interface supporting

direct memory access (DMA) transactions. Programmable control of the design is

accomplished using an AXI lite 32-bit slave interface and memory map decoder. The

address space for the ApC is divided into a few regions: global control and informa-
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cific weights, and current pseudo-temperature through a network accessi-
ble pool of dedicated servers. The servers provide general purpose process-
ing, network connectivity, and PCIe accessible FPGA accelerators. After
loading the desired topology into the FPGA, the system operates and pro-
vides a sampling interface for the current state of the network p-bits. (b)
The architecture supports multiple topologies depending on the problem
of interest ranging from nearest-neighbor connectivity to all-to-all con-
nectivity. (c) Each of the modular p-bits in the network comprises a bus
accessible programmable interface, synapse block, and neuron. The neu-
ron is further modularized to support different approaches for flip-attempt
logic, pseudo random number generation, and activation function imple-
mentations.
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endpoint within the FPGA. This endpoint provides logical access to the
internal memory map of the ApC. The ApC contains global information
and control registers, a global p-bit array facilitating readout, and finally
individual control of each weighted p-bit through a localized, dedicated
address space.
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tion registers, p-bit array for readout, and individual control for each weighted p-bit

in the design.

The global address space provides information on the ApC pertinent for client

interaction with the system. This includes information such as the total number of p-

bits in the design, the p-bit connectivity graph topology, weight precision, and other

useful runtime information such as the number of elapsed synapse delays between

client sampling requests. Additionally, global control functions include the ability to

pause and resume the network so that a client can access the global p-bit readout

array. This readout array holds the current output of all p-bits sampled on each

system clock cycle. Reads from this interface are performed when the network is

paused to ensure atomic readout of all p-bits given the limited bandwidth of the

readout interface.

Each p-bit in the system has a local memory space supporting programmable con-

trol of its function. Each p-bit has localized programmable weights enabled through

registers or internal memory (RAM), a programmable activation function lookup ta-

ble supporting direct look-up or interpolation, support for seeding the chosen psuedo

random number generation (PRNG) function, and finally a set of control registers

for the p-bit. The output of the p-bit programmable elements directly interface

with the weight logic, activation function, PRNG, and comparator operation of the

weighted p-bits. Online annealing is accomplished using a global bus broadcast when

programming the activation function lookup tables, so that all p-bits are updated

simultaneously. Alternatively, each p-bit’s activation lookup table can be indepen-

dently controlled, allowing the exploration of non-uniform bias, local temperature

effects, and other non-idealities, facilitating future opportunities for exploration.

4.5.3 Digital p-bit Implementation Flexibility

A modular digital p-bit was designed to support different options for the p-bit

building block elements. Each p-bit is logically partitioned into a unit for psuedo-
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randomness or “entropy”, a block for computing the activation function, and a portion

that uses the results of a comparison between the activation function and PRNG to

determine if a p-bit update attempt should occur. There are various ways to construct

these elements using digital logic. In this design, a few select implementations were

explored as shown in Fig. 4.6.

Fig 4.6(a) and 4.6(b) show two methods for performing autonomous updates of

each p-bit. Shown in Fig. 4.6(a) is the logic corresponding to Eq. (4.5a) where

the comparator provides sgn
(
e−s − r[0,1]

)
. This approach emulates autonomy while

preserving fully synchronous operation of the digital design. This p-bit update logic

was used for the problems in this work. The activation look-up is programmed with

e−s.

Alternative approaches were explored and implemented for the p-bit updates in-

cluding the use of free-running ring oscillators, Fig. 4.6(b), to mimic the naturally

stochastic update frequency of an MTJ based p-bit as described by (4.2). In this

implementation, each p-bit has a dedicated free running ring oscillator that generates

asynchronous “attempt” edges that are synchronized into a system clock domain.

Each asynchronous edge determines when the p-bit should attempt to update based

on the current output from a comparator according to Eq. (4.2), in which case the

activation look-up is programmed with tanh.

While the attempt logic is used to determine when an update attempt should be

made, the logic relies on the output of a comparator to determine if a flip should

occur. The comparator computes the sign of the difference between the output of a

PRNG and the output of the programmed activation function. Shown in the second

row of Fig. 4.6 are two PRNG implementations. A LFSR is a PRNG that provides

pseudo randomness in a compact design at the expense of output quality, Fig. 4.6(c).

While the LFSR may be sufficient for many problems, a higher-quality PRNG was

implemented that requires minimal FPGA resources, but significantly improves the

PRNG quality [207].
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The second input to the comparator is from an activation function output, shown

on the third row if Fig. 4.6(e). As implemented, a straight-forward look-up table was

sufficient for the designs in this chapter. However, an improved interpolation based

activation function [208] would improve the accuracy of the lookup results and may

be necessary for certain problem classes.

Finally, an additional building block was created to leverage physical randomness

and a built-in sigmoidal response from within a digital design as shown in Fig. 4.6(g).

Leveraging a delay based building block [209] and flip-flop metastability, “true” en-

tropy was used to construct a sigmoidal response as depicted in Fig. 4.6(f). However,

over continued operation within the device, temperature and other variations caused

the sigmoidal curves to drift, resulting in non-uniform bias and operation. As a result,

this building block is not currently being used in the design; however, it does provide

insight into non-idealities that may be encountered in a chip design.

4.5.4 Benchmarking Eq. (4.5) with stochastic LLG

A coupled stochastic Landau-Lifshitz-Gilbert (sLLG) equation is solved and bench-

marked against the autonomous p-bit model of (4.5a) and (4.5b) (PPSL). Magnetiza-

tion dynamics of a circular stochastic nanomagnet are captured by solving the sLLG

equation in the macrospin assumption within a modular [153] SPICE framework ,

(1 + α2)
dm̂

dt
= −|γ|m̂× ~H − α|γ|(m̂× m̂× ~H)

+
1

qNs

(m̂× ~IS × m̂) +

(
α

qNs

(m̂× ~IS)

)
(4.11a)

where α is the damping coefficient, γ is the electron gyromagnetic ratio, Ns =

MsVol./µB is the total number of Bohr magnetons in the magnet, Ms is the satu-

ration magnetization, ~H = ~Hd + ~Hn is the effective field including the out-of-plane

(x̂ directed) demagnetization field ~Hd = −4πMsmxx̂, as well as the thermally fluc-

tuating magnetic field due to the three dimensional uncorrelated thermal noise Hn

with zero mean 〈Hn〉 = 0 and standard deviation 〈H2
n〉 = 2αkT/|γ|MsVol. along each

direction, ~IS is the applied spin current to the nanomagnet.



75

Individual p-bits are coupled according to:

Izs,i(t+ ∆t) = βIs0
∑
j

Wij sgn(mz
j(t)) (4.12)

where, Is0 is the tanh fitting parameter of the sigmoidal response (sgn(mz) versus

spin current Izs along z-direction). In the benchmark, a circular disk magnet with

a vanishing anisotropy (HK) is used with the parameters: diameter D = 150 nm

and thickness t = 2 nm, α = 0.01, Ms = 1100 emu/cc, HK = 1 Oe resulting in an

autocorrelation time of τcorr = 1.372 ns and Is0 = 1 mA. A fitting parameter of 1.4 is

used in the PPSL model for τN , i.e. τN = 1.4τcorr.

Fig. 4.7. Benchmarking the PPSL Model with sLLG using Eu-
clidean distance: Using a random Sherrington-Kirkpatrick spin glass
instance for different network sizes, N , the PPSL model is benchmarked
against sLLG as a function of time. Each point on the graph represents
the Euclidean distance from the ideal Boltzmann distribution and the en-
semble solution obtained from PPSL and sLLG. The steady state error
will depend on the number of ensembles as shown by the black dotted
line.

The simulated network is a Sherrington-Kirkpatrick [210] spin glass with a random

coupling matrix and random bias between -1 and +1. The benchmarking of the
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proposed PPSL model with the coupled sLLG network, analogous to the probabilistic

circuit proposed in [50], is accomplished by comparing two different quantities: (1)

Euclidean distance and (2) Free energy.

Euclidean distance is defined by:

ED =

√√√√ 2N∑
i=1

(Pi − Pi,Boltzmann)2 (4.13)

where Pi is the probability of occurrence of the i-th configuration computed out of

4000 ensembles at each time step of the simulation. Pi,Boltzmann is computed from the

joint probability distribution obtained from a Boltzmann law.

Fig. 4.8. Benchmarking the PPSL Model with sLLG using
Free Energy: The free energy calculated for the random Sherrington-
Kirkpatrick spin glass instance of Fig. 4.7 from the PPSL model is bench-
marked against sLLG as a function of time for network sizes N = 16 and
N = 24, showing convergence to the free energy obtained from Boltzmann
law.
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The second benchmark approach is based on a comparison of the free energy of

the system with what is expected from the principles of statistical mechanics. Free

energy is defined by [211] the partition function Z:

FE =
ln(Z)

−β
(4.14)

where, β is the pseudo-inverse temperature. Partition function Z is given by:

Z =
∑
k

exp(−βEk) (4.15)

where k represents different configurations of the network. Energy of a specific con-

figuration is defined by:

Ek = −0.5
∑
i,j
i 6=j

Wijmimj − himi − hjmj (4.16)

When numerically calculating free energy from the sLLG data, the following steps

have been applied (similar to the importance sampling method described in [212]):

1. The probability of different configurations, Pi, are calculated out of 4000 en-

sembles for each time step

2. For each Pi larger than a certain threshold value Pth, the partition function

Zi = exp(−I0Ei)/Pi is calculated, so that outliers are excluded

3. For each Zi, the free energy FEi = − ln(Zi)/I0 is calculated.

4. Finally the mean of all FEi is computed.

The above method is suitable for small examples, but may not scale to large

examples due to the difficulty in empirically calculating different probabilities Pi as

the network size grows. The striking agreement between the sLLG model and the

behavioral model given by Eq. (4.5) shown in Figs. 4.7 and ref4.14 establishes the

validity of Eq. 4.5 as a suitable model for the projected autonomous, stochastic MTJ-

based computer.
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5. LOOKING AHEAD

In this work, we explored areas related to reducing the control complexity for semi-

conductor spin-based quantum systems, Chapter 2, discussed in Chapter 3 how the

intrinsic nature of stochastic nanomagnets forms a natural Boltzmann machine for

use in combinatorial optimization, and finally introduced a framework to emulate au-

tonomous probabilistic computers in Chapter 4 and highlighted the potential speed-up

enabled by a truly clockless, scaled ApC. As we look ahead towards additional areas

of exploration, a number of opportunities stand-apart in the near-term. In the follow-

ing sections we will highlight some of these areas, extending on the work presented

herein.

5.1 Quantum and Probabilistic Computing

With the promise of quantum computing, numerous endeavors are underway to

build a viable quantum computer with spin-based quantum computing highlighted

in Chapter 2 amongst them. The continued prevalence of systems that require so-

phisticated and complex control of qubits, e.g. through microwave control, continues

to imply scaling will remain an elusive challenge. It is my hope that methods to

reduce the difficulty of qubit control, for example spin-torque based manipulation of

a semiconductor spin, will help enable continued scalability of these systems.

Throughout this report, we have continually alluded to the seminal work of Feyn-

man [51] who initially explored the relationship between computing with classical

probabilities and those of quantum. He conveyed a clear distinction between the two

approaches leveraging an example of Bell’s inequality in the process [52]. However,

while this fundamental difference is clearly present in nature, many advances in quan-
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tum computing translate directly to probabilistic systems either through algorithmic

advances or in some cases efficient emulation of such systems, see 4.3.

Indeed, continued research into the area of quantum computing, especially for

those systems based on Ising like connectivities naturally aids the probabilistic com-

puters discussed in this work. There are a number of open areas to explore such as

finding embeddings of problems onto a given hardware topology given finite connec-

tivity graphs and weight values [213–216]. While it is straightforward, based on the

work of Lucas [70], to identify a mapping from a given problem to a general con-

nectivity graph, in practice the physical topology of a hardware places limitations

on the available connections and weights. As additional embedding approaches are

identified, the embeddings can be applied to both adiabatic quantum systems as well

as their probabilistic counterparts.

5.2 Realization of Autonomous Probabilistic Computing

Beyond the influences of quantum computing, the probabilistic computers dis-

cussed in this work, Chapters 3 and 4 and in several other sources help motivate

continued investigation into beyond-Moore, non-Von Neumann architectures. Within

the field of probabilistic computing, there are numerous areas ripe for additional

exploration.

While an efficient magnet based p-bit has been identified as a viable building-

block [186], other materials and approaches may enable an alternate approach. For

example, nanoscale ferroelectric materials [217] could in theory be used to realize a

probabilistic element that conveniently couples to well-established CMOS technology

[218, 219]. By leveraging a stochastic ferroelectric material, it should be possible

to amplify the noise at the input of a MOSFET or inverter, providing a source of

amplified entropy. How this can be engineered into a competitive p-bit remains to be

seen, but to that end a time-domain stochastic SPICE model based on [217, 220] is

provided in Appendix B to facilitate such exploration.
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In addition to exploring alternatives for the p-bit building block, and the contin-

ued exploration to find an efficient, compact synaptic implementation, see for example

Table 3.1., an important area to explore is the scaled physical realization of the au-

tonomous probabilistic computer highlighted in Table 4.1. Combining the predictive

emulation of Chapter 4 and the recent experimental results demonstrating viable

stochastic nanomagnets coupled in a clockless design [178], realization of a scaled

heterogeneous autonomous probabilistic computer should be possible in the coming

years. Such a device could provide a concrete performance improvement over exist-

ing clock-based Ising computers used in optimization. Indeed the discussion of 4.3

highlights the pragmatic means with which such a system could effectively emulate

quantum, stoquastic systems.
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A. CHAPTER 2 SUPPLEMENTARY INFORMATION

A.1 Derivations of equations (2.4) and (2.5)

Since the discussion of single qubit operations using non-equilibrium spins is all

based on equations (2.4) and (2.5) let us now describe how these are obtained. Our

starting point is equation (2.3) which relates the qubit density matrix after it has

interacted with n + 1 spins to the earlier density matrix after it had interacted with

n spins.

The density matrix for the qubit can be written as

ρs(n) =
1

2

 1 + sz(n) s∗t (n)

st(n) 1− sz(n)

 (A.1)

while the itinerant z-directed spins are describe by a density matrix ρf = [ 1 0 ]T[ 1 0 ].

We can write from equation (2)

ρ =
1

2
R


1 + sz(n) s∗t (n) 0 0

st(n) 1− sz(n) 0 0

0 0 0 0

0 0 0 0

R† (A.2)

To find the reflection matrix [R] we note that it is related to the reflection matrix

[R0] for the barrier and the reflection and transmission matrices [r], [t] describing the

interaction of the itinerant spins with the static qubit (Figure 3(a))

R = r + ei2kd0t
[
I4 − ei2kd0R0r

]−1
R0t (A.3)

Here I4 is the 4× 4 identity matrix and the matrices [r] and [t] can be written as

(see Supplementary Section A.2)

t =
[
I4 + iΩS̃

]−1

and r = t− I4 (A.4)
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S̃ being the 4 × 4 matrix, ~σf · S̃, describing the basic itinerant spin(f)-qubit(s)

interaction in equation (1):

S̃ =



fs f s̄ f̄s f̄ s̄)

fs 1 0 0 0

fs̄ 0 −1 2 0

f̄ s 0 2 −1 0

f̄ s̄ 0 0 0 1

 (A.5)

Assuming the barrier reflection coefficient to be given by R0 = −[I4] and using

equations (A.4) and (A.5), we obtain the desired reflection matrix [R] from equation

(A.3) (see Supplementary Section A.1 for details)

R =



fs f s̄ f̄s f̄ s̄

fs e−iα 0 0 0

fs̄ 0 cosα −i sinα 0

f̄ s 0 −i sinα cosα 0

f̄ s̄ 0 0 0 e−iα

 (A.6)

where α is given by equation (2.6) as stated earlier.
Using [R] in equation (2.3) we have for ρ (dropping the argument n for clarity)

1

2


1 + sz s∗t cosαe−iα iS∗t sinαe−iα 0

st cosαeiα (1− sz) cos2 α i(1− sz) cosα sinα 0

−iSt sinαeiα −i(1− sz) cosα sinα (1− sz) sin2 α 0

0 0 0 0



which upon collapsing, as indicated in equation (2.3), gives the static qubit density
matrix after interacting with (n+ 1) spins

ρs(n+ 1) =
1

2

 (1 + sz(n)) + (1− sz(n)) sin2 α s∗t (n) cosαe−iα

st(n) cosαeiα (1− sz(n)) cos2 α


which by definition must equal

ρs(n+ 1) =
1

2

 1 + sz(n+ 1) s∗t (n+ 1)

st(n+ 1) 1− sz(n+ 1)
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so that we can write

sz(n+ 1) = sz(n) + (1− sz(n)) sin2 α (A.7)

st(n+ 1) = st(n) cosαeiα (A.8)

It is straightforward to check that the solutions stated earlier in (2.4) and (2.5) satisfy

the recurrence relations in equations (A.7) and (A.8).

A.2 Derivation of Equation (A.4)

S̃ can be written in the standard basis as

S̃ = ~σf · ~S =


1 0 0 0

0 −1 2 0

0 2 −1 0

0 0 0 1

 (A.9)

Under basis transformation U to the |fs〉, (|fs̄〉 + |f̄ s〉)/
√

2, (|fs̄〉 − |f̄ s〉)/
√

2, |f̄ s̄〉

basis, this matrix becomes diagonal.

U†S̃U =



fs fs̄+f̄s√
2

fs̄−f̄s√
2

f̄ s̄)

fs 1 0 0 0

fs̄+f̄s√
2

0 1 0 0

fs̄−f̄s√
2

0 0 −3 0

f̄ s̄ 0 0 0 1

 (A.10)

As a result the scattering problem can be treated as four independent one-dimensional

channels with transmission matrix U†tU given by

U†tU =


(1 + iΩ)−1 0 0 0

0 (1 + iΩ)−1 0 0

0 0 (1− 3iΩ)−1 0

0 0 0 (1 + iΩ)−1


U†tU = [I4 + iΩ(U†S̃U)]−1
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Which yields equation (A.4)

t = [I4 + iΩS̃]−1 (A.11)

We can write from equation (A.3) with R0 = −I4

R = r− ei2kd0t
[
I4 + ei2kd0r

]−1
t (A.12)

where

t =
[
I4 + iΩS̃

]−1

and r = t− I4 (A.13)

We can diagonalize r and t as well as R by diagonalizing S̃:

S̃ = ~σ · ~S =



fs fs̄+f̄s√
2

fs̄−f̄s√
2

f̄ s̄)

fs 1 0 0 0

fs̄+f̄s√
2

0 1 0 0

fs̄−f̄s√
2

0 0 −3 0

f̄ s̄ 0 0 0 1

 (A.14)

so that

R = ~σ · ~S =



fs fs̄+f̄s√
2

fs̄−f̄s√
2

f̄ s̄)

fs RT 0 0 0

fs̄+f̄s√
2

0 RT 0 0

fs̄−f̄s√
2

0 0 RS 0

f̄ s̄ 0 0 0 RT

 (A.15)

where

Rm = rm −
t2me

2ikd0

1 + rme2ikd0
, m = T, S (A.16)

tT = 1 + rT =
1

1 + iΩ
(A.17)

tS = 1 + rS =
1

1− 3iΩ
(A.18)

Using equations (A.16), (A.18), and (A.17) we can write

Rm = −e2iθm (A.19)
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where

tan θT =
sin kd0

cos kd0 + 2Ω sin kd0

(A.20)

tan θS =
sin kd0

cos kd0 − 6Ω sin kd0

(A.21)

Consider first the triplet coefficient RT with tT = 1 + rT and rT = (−iΩ)/(1 + iΩ)

and let P = eikd0 . We can then write, dropping the sub-scripts for convenience

R = r − (1 + r)2P 2

1 + rP 2

=
r + (r2 − (1 + r)2)P 2

1 + rP 2
=
r − (2r + 1)P 2

1 + rP 2

1 + iΩ

1 + iΩ

=
−iΩ− (1− iΩ)P 2

1 + iΩ− iΩP 2
= −iΩP

∗ + (1− iΩ)P

(1 + iΩ)P ∗ − iΩP

= − Xeiθ

Xe−iθ

where

Xeiθ = iΩP ∗ + (1− iΩ)P

= iΩ(cos kd0 − i sin kd0) + (1− iΩ)(cos kd0 + i sin kd0)

= (cos kd0 + 2Ω sin kd0) + i sin kd0

which allows us to write

tan θT =
sin kd0

cos kd0 + 2Ω sin kd0

(A.22)

Similarly, tan θS can be found by replacing Ω→ −3Ω

tan θS =
sin kd0

cos kd0 − 6Ω sin kd0

(A.23)

corresponding to equations (A.20) and (A.21) respectively. We can then write the

reflection matrix as

R =



fs fs̄+f̄s√
2

fs̄−f̄s√
2

f̄ s̄)

fs e−iα 0 0 0

fs̄+f̄s√
2

0 e−iα 0 0

fs̄−f̄s√
2

0 0 e+iα 0

f̄ s̄ 0 0 0 e+iα

 (A.24)
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where α ≡ θS− θT and we have dropped the overall phase factor of e−i(θT+θS). Trans-

forming back to the original basis we have:

R =



fs f s̄ f̄s f̄ s̄

fs e−iα 0 0 0

fs̄ 0 cosα −i sinα 0

f̄ s 0 −i sinα cosα 0

f̄ s̄ 0 0 0 e−iα

 (A.25)

Finally, making use of equations (A.20) and (A.21) we can write

tanα = tan(θS − θT ) =
tan θS − tan θT

1 + tan θS tan θT

=
sin kd0

cos kd0−6Ω sin kd0
− sin kd0

cos kd0+2Ω sin kd0

1 + sin2 kd0

(cos kd0−6Ω sin kd0)(cos kd0+2Ω sin kd0)

=
(cos kd0 + 2Ω sin kd0) sin kd0 − (cos kd0 − 6Ω sin kd0) sin kd0

cos2 kd0 − 4Ω cos kd0 sin kd0 − 12Ω sin2 kd0 + sin2 kd0

=
8Ω sin2 kd0

1− 4Ω cos kd0 sin kd0 − 12Ω sin2 kd0

which yields the result of (2.6)

tanα =
8Ω sin2 kd0

1− 2Ω sin(2kd0)− 6Ω(1− cos 2kd0)
(A.26)

A.3 Matrices S̃1 and S̃2 in equations (2.12) and (2.13)

S̃1 = ~σ · ~S1 →



f12 f12̄ f 1̄2 f 1̄2̄ f̄12 f̄12̄ f̄ 1̄2 f̄ 1̄2̄

f12 1 0 0 0 0 0 0 0

f12̄ 0 1 0 0 0 0 0 0

f 1̄2 0 0 −1 0 2 0 0 0

f 1̄2̄ 0 0 0 −1 0 2 0 0

f̄12 0 0 2 0 −1 0 0 0

f̄12̄ 0 0 0 2 0 −1 0 0

f̄ 1̄2 0 0 0 0 0 0 1 0

f̄ 1̄2̄ 0 0 0 0 0 0 0 1
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S̃2 = ~σ · ~S2 →



f12 f12̄ f 1̄2 f 1̄2̄ f̄12 f̄12̄ f̄ 1̄2 f̄ 1̄2̄

f12 1 0 0 0 0 0 0 0

f12̄ 0 −1 0 0 2 0 0 0

f 1̄2 0 0 1 0 0 0 0 0

f 1̄2̄ 0 0 0 −1 0 0 2 0

f̄12 0 2 0 0 −1 0 0 0

f̄12̄ 0 0 0 0 0 1 0 0

f̄ 1̄2 0 0 0 2 0 0 −1 0

f̄ 1̄2̄ 0 0 0 0 0 0 0 1



(S̃1S̃2 + S̃2S̃1)/2→



f12 f12̄ f 1̄2 f 1̄2̄ f̄12 f̄12̄ f̄ 1̄2 f̄ 1̄2̄

f12 1 0 0 0 0 0 0 0

f12̄ 0 −1 2 0 0 0 0 0

f 1̄2 0 2 −1 0 0 0 0 0

f 1̄2̄ 0 0 0 1 0 0 0 0

f̄12 0 0 0 0 1 0 0 0

f̄12̄ 0 0 0 0 0 −1 2 0

f̄ 1̄2 0 0 0 0 0 2 −1 0

f̄ 1̄2̄ 0 0 0 0 0 0 0 1
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A.4 Derivation of (2.21)

In the 3× 3 sub-space we find

S̃1 =


1 0 0

0 −1 2

0 2 1

 = ~σf · ~S1

S̃2 =


−1 0 2

0 1 0

2 0 −1

 = ~σf · ~S2

S̃ = 2


0 0 1

0 0 1

1 1 −1

 = S̃1 + S̃2 (A.27)

In order to simplify the algebra, we first diagonalize S̃ in our 3 dimensional subspace.

This yields

S̃ = UJU−1 =


−1/
√

6 −1/
√

2 1/
√

3

−1/
√

6 1/
√

2 1/
√

3

2/
√

6 0 1/
√

3



−4 0 0

0 0 0

0 0 2



−1/
√

6 −1/
√

6 2/
√

6

−1/
√

2 1/
√

2 0

1/
√

3 1/
√

3 1/
√

3


(A.28)

With basis vectors

|Φ0〉 =
1√
6

(
−|f12̄〉 − |f 1̄2〉+ 2|f̄12〉

)
|Φ1〉 =

1√
2

(−|f12̄〉+ |f 1̄2〉)

|Φ2〉 =
1√
3

(
|f12̄〉+ |f 1̄2〉+ |f̄12〉

)
Now consider the impurity system with the infinite barrier reflective R0. Let

R0 = −I3 and ei2kd0 = δ.

[I3 − ei2kd0R0r
′]−1 = [I3 + δr′]−1 (A.29)
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The only term missing in the expression is r′. We find r′ by first finding t and r in the

standard basis and then perform a basis transformation to the diagonal basis {Φ}.

t = [I + iΩS̃]−1

U−1tU = U−1[I + iΩS̃]−1U

t′ = [I + iΩU−1S̃U ]−1

t′ =


(1− 4iΩ)−1 0 0

0 1 0

0 0 (1 + 2iΩ)−1

 =


α′ 0 0

0 1 0

0 0 β′

 (A.30)

We can now easily write r′ = t′ − I.

r′ =


α′ − 1 0 0

0 1 0

0 0 β′ − 1

 (A.31)

Equation (A.29) can be written as

[I3 + δr′]−1 =


(1 + δ(α′ − 1))−1 0 0

0 1 0

0 0 (1 + δ(β′ − 1))−1


Let η = [1 + δ(α′ − 1)]−1 and µ = [1 + δ(β′ − 1)]−1. We can now write the complete

reflection matrix for first region

R′region 1 = r′ − δt′ [I3 + δr′]
−1
t′

R′region 1 =


α′ − 1− δα′ηα′ 0 0

0 −δ 0

0 0 β′ − 1− δβ′µβ′

 (A.32)

We now find the complete reflection matrix for the system by cascading this matrix

with the first arbitrary height barrier. The barrier is a diagonal reflection matrix with

tB = 1/(1 + iΓ) = ξ and r = tB − I. Therefore

R′ = r′b + δt′B[I3 − δR′region 1r
′
B]−1R′region 1t

′
B (A.33)
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We can write [I3 − δR′region 1r
′
B]−1 as

[I3 − δR′region 1r
′
B]−1 =

1− δ(α′ − 1− δ(α′)2η)(ξ − 1) 0 0

0 1− δ2(1− ξ) 0

0 0 1− δ(β′ − 1− δ(β′)2µ)(ξ − 1)


Letting η2 = (1−δ(α′−1−δ(α′)2η)(ξ−1))−1 , µ2 = (1−δ(β′−1−δ(β′)2µ)(ξ−1))−1,

and κ2 = (1− δ2(1− ξ))−1 we find

R′ =
(ξ − 1) + δξ2η2(α′ − 1− δ(α′)2η) 0 0

0 (ξ − 1)− δ2ξ2κ2 0

0 0 (ξ − 1) + δξ2µ2(β′ − 1− δ(β′)2µ)


We can now simplify these expressions to find a solution of the form

R′ =


−ei2θa 0 0

0 ei2θb 0

0 0 −ei2θc

 = ei(θa+θc)


−eiφ 0 0

0 eiχ 0

0 0 −e−iφ


where φ = θa − θc and χ = 2θb − (θa + θc). With some algebra, we find:

tan θa =
sin(2kd0)− 8Ω sin2(kd0)

−16ΩΓ sin2(kd0) + cos(2kd0) + 2(Γ− 2Ω) sin(2kd0)
(A.34)

tan θb = −2Γ sin(2kd0) + cos(2kd0)

sin(2kd0)
(A.35)

tan θc =
sin(2kd0) + 4Ω sin2(kd0)

8ΩΓ sin2(kd0) + cos(2kd0) + 2(Γ + Ω) sin(2kd0)
(A.36)

We are now in a position to transform back to the standard basis. Doing so we

find

R = −ei(θa+θc)
1

6


eiφ − 3eiχ + 2e−iφ eiφ + 3eiχ + 2e−iφ −2eiφ + 2e−iφ

eiφ + 3eiχ + 2e−iφ eiφ − 3eiχ + 2e−iφ −2eiφ + 2e−iφ

−2eiφ + 2e−iφ −2eiφ + 2e−iφ 4eiφ + 2e−iφ

 (A.37)
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We can neglect the phase factor in-front without loss of generality. We immediately

recognize that this matches the form of (2.20) where c′ ≡ c′′.

As we are interesting in two-qubit entanglement, it is helpful to transform to

the Bell-state basis {1/
√

2(i12̄ − 1̄2), 1/
√

2(i12̄ + 1̄2)} to directly observe rotations

between the Bell states.

R′′ = U †BRUB =


−i/
√

2 −1/
√

2 0

−i/
√

2 1/
√

2 0

0 0 1



a c d

c a d

d d b




i/
√

2 i/
√

2 0

−1/
√

2 1/
√

2 0

0 0 1



R′′ =


a −ic − d√

2
(i+ 1)

ic a − d√
2
(i− 1)

d√
2
(i− 1) d√

2
(i+ 1) b

 (A.38)

We are interested in understanding how this matrix manipulates a static two-

spin wavefunction |Ψ〉 = {Ψ0,Ψ1,Ψ2}. Assume for the sake of analysis that each

flying electron is provided in the up-state. If this is true, the wavefunction has only

two components involved in the operation, Ψ0 and Ψ1 with Ψ2 zero (f̄12 has no

component). Therefore R′′|Ψ〉 yields the following three recurrence relations:

|Ψ(n+ 1)〉 =


aΨ1(n)− icΨ2(n)

icΨ1(n)− aΨ2(n)

d√
2
(i− 1)Ψ1(n) + d√

2
(i+ 1)Ψ2(n)

(A.39)

Recognizing that the eigenvalues of equation (A.38) are a − c and a + c we can find

the solution to the recurrence equation:

Ψ1(n) =
1

2
[(a− c)n + (a+ c)n] Ψ1(0) +

i

2
[(a− c)n − (a+ c)n] Ψ2(0) (A.40)

Ψ2(n) = − i
2

[(a− c)n − (a+ c)n] Ψ1(0) +
1

2
[(a− c)n + (a+ c)n] Ψ2(0) (A.41)
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Notice that, neglecting the overall global phase factor ei(θa+θc)

a− c = −1

6

[
eiφ − 3eiχ + 2e−iφ − eiφ − 3eiχ − 2e−iφ

]
a− c = eiχ (A.42)

a+ c = −1

6

[
2eiφ + 4e−iφ

]
(A.43)

We can plug these in to find

Ψ0(n) =
1

2

[
eiχn +

[
1

6
(−2eiφ − 4e−iφ

]n]
Ψ0(0)+

i

2

[
eiχn +

[
1

6
(−2eiφ − 4e−iφ

]n]
Ψ1(0)

(A.44)
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B. STOCHASTIC FERROELECTRIC CAPACITOR

B.1 SPICE Model

1 ∗∗ 1D Time−Dependent Landau−Khalatnikov solver for ferroelectric

capacitors

2 ∗∗ Adapted from Aziz , VOL . 32 , NO . 6 , IEEE (2016)

3 ∗∗ Includes support for thermal noise

4 ∗∗ Brian M . Sutton

5 ∗∗ bmsutton@purdue . edu

6

7 ∗∗Parameters :

8 ∗∗alpha , beta , and gamma are the Landau coefficients

9 ∗∗rho is the resistivity of the material

10 ∗∗A_FE is the area of the ferroelectric capacitor

11 ∗∗T_FE is the thickness of the ferroelectric capacitor

12 ∗∗TEMP is the temperature of the material

13 ∗∗nS is the noise suppression factor

14

15 . subckt FEC V_FE_P V_FE_N alpha=’−11.57e7 ’ beta= ’2.1e8 ’ gamma=’25e−6’

rho=’25e−6’ A_FE=’1e−9∗1e−9’ T_FE=’1e−9’ TEMP= ’200 ’ nS= ’1 ’

16

17 ∗SPICE noise suppression factor

18 . param noiseSupress=’nS ’

19

20 ∗Permittivity of free space

21 . param e0= ’8.85418782e−12’

22

23 ∗Boltzmann Constant

24 . param kB= ’1.38064852e−23’

25

26 ∗Thermal Energy
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27 . param kT=’kB∗TEMP ’

28

29 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗NOISE MODEL ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

30 ∗Polarization modeled using a capacitor and current source

31 C_P P 0 c=’rho ’

32 G_P 0 P cur=’−alpha∗v (P ) − beta∗v (P ) ˆ3 −gamma∗v (P ) ˆ5 + V ( V_FE_P , V_FE_N ) /

T_FE ’

33

34 ∗Noise modeled with a current source out of P

35 G_PN 0 P noise=’4∗kT∗rho /( A_FE∗T_FE ) ∗(1/ noiseSupress ˆ2) ’

36

37 ∗Voltage drop across the ferroelectric capacitor

38 E_VD V_DEL_FE 0 vol=’V ( V_FE_P , V_FE_N ) ’

39

40 ∗Charge conserved capacitor model of ferroelectric

41 C_FE V_FE_P V_FE_N Q=’V (P ) ∗A_FE ’

42

43 ∗Linear capacitance

44 C_0 V_FE_P V_FE_N C=’e0∗A_FE/T_FE ’

45 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

46

47 . ends
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