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ABSTRACT

Cheng, Ching-Wei PhD, Purdue University, December 2019. Enhancing Multi-Model
Inference with Natural Selection. Major Professor: Guang Cheng.

Multi-model inference covers a wide range of modern statistical applications such

as variable selection, model confidence set, model averaging and variable importance.

The performance of multi-model inference depends on the availability of candidate

models, whose quality has been rarely studied in literature. In this dissertation,

we study genetic algorithm (GA) in order to obtain high-quality candidate models.

Inspired by the process of natural selection, GA performs genetic operations such

as selection, crossover and mutation iteratively to update a collection of potential

solutions (models) until convergence. The convergence properties are studied based

on the Markov chain theory and used to design an adaptive termination criterion that

vastly reduces the computational cost. In addition, a new schema theory is established

to characterize how the current model set is improved through evolutionary process.

Extensive numerical experiments are carried out to verify our theory and demonstrate

the empirical power of GA, and new findings are obtained for two real data examples.
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1. INTRODUCTION

A collection of candidate models serves as a first and important step of multi-model

inference, whose spectrum covers variable selection, model confidence set, model av-

eraging and variable importance [1, 2]. The importance of a candidate model set

is highlighted in [3]: “all results of the multi-model analyses are conditional on the

(candidate) model set.” However, in literature, candidate models are either given

(e.g., [4, 5]) or generated without any justifications (e.g., [6, 7]). As far as we know,

there is no statistical guarantee on the quality of such candidate models, no matter

the parameter dimension is fixed or diverges.

In this paper, we study genetic algorithm (GA, [8–10]) in order to search for

high-quality candidate models over the whole model space. GA is a class of iterative

algorithms inspired by the process of natural selection, and often used for global

optimization or search problems; see Figure 1.1. There are two key elements of GA:

a genetic representation of the solution domain, i.e., a binary sequence, and a fitness

function to evaluate the candidate solutions such as all kinds of information criteria.

A GA begins with an initial population of a given size that is improved through

iterative application of genetic operations, such as selection, crossover and mutation,

until convergence; see Figure 1.2.

Specifically, we employ three basic genetic operations, i.e., selection, crossover and

mutation, for the GA. In each generation (the population in each iteration), we adopt

elitism and proportional selection so that the fittest model is kept into the next gen-

eration, and that fitter models are more likely to be chosen as the “parent” models

to breed the next generation, respectively. Uniform crossover is then performed to

generate one “child” model by recombining the genes from each pair of parent models.

Finally, a mutation operator is applied to randomly alter chosen child genes. Besides

the uniform mutation, we propose a new adaptive mutation strategy using the vari-
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A population of size 5

1 1 1 0 0 0 0 0 0 0

1 1 0 0 1 0 0 0 1 0

1 1 0 1 0 0 0 0 1 1

0 1 1 0 0 0 1 0 0 0

1 1 1 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0

1-st model/solution of size 10

6-th variable/position/gene of the 1-st model

Figure 1.1.: An example of GA terminology. Note that the term population in GA
is different from what a “population” means in statistics.

able association strength to enhance the variable selection performance. The genetic

operations are iteratively performed until the size of the new generation reaches that

of the previous one; see Figure 2.2. It is worth noting that the crossover operator

generates new models similar to their parents (i.e., local search), while the mutation

operator increases the population diversity to prevent GAs from being trapped in

local optimum (thus resulting in global search). See Section 2 for more details.

In theory, we investigate the convergence properties of the GA in Theorem 3.1.1

based on the Markov chain theory. A practical consequence is to design an adaptive

termination strategy that significantly reduces the computational cost. Furthermore,

we prove that a fitter schema (a collection of solutions with specific structures; see

Definition 3.2.1) is more likely to survive and be expanded in the next generation,

using the schema theory (Theorem 3.2.1 and Corollary 3.2.1). This implies that

the average fitness of the subsequent population gets improved, which entitled the

“survival of the fittest” phenomenon of the natural selection.

Our results are applied to variable selection and model confidence set (MCS). In

the former, the GA generates a manageable number of models (that is much smaller

than all models up to some pre-determined size), over which the true model is found;

see Proposition 4.1.1. As for the latter, the collected models in the model confidence
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Population

Is termination
criterion met? Genetic Operators

Selection

Crossover

Mutation

Initialization

Output

Yes

No

Update

Figure 1.2.: A flowchart of a generic GA. It starts with an initial population and is
updated with genetic operations until a termination criterion is met.

sets constructed by the GA are shown to be not statistically worse than the true

model with a certain level of confidence; see Proposition 4.2.1.

As far as we are aware, two other methods can also be used to prepare candidate

models: (i) collecting distinct models on regularization paths of penalized estimation

methods (e.g., Lasso [11], SCAD [12] and MCP [13]), called as “regularization paths

(RP)” method; (ii) a simulated annealing (SA) algorithm recently proposed by [14].

The former has no rigorous control on the quality of candidate models since model

evaluation is not taken into account, and the latter needs a pre-determined model

size and an efficiency threshold to filter out bad models. In comparison, the GA uses

information criterion based fitness function to search for good models, and produces

models of various sizes. As a result, the candidate models produced by the GA lead to

much improved multi-model inference results, as demonstrated in Sections 5 and 6. [6]
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and [15] proposed approaches to prepare candidate models that do not work for gen-

eral multi-model inference applications. Best subset selection and forward stepwise

regression can generate solution paths similar to the Lasso [16,17]. However, the for-

mer imposes intractable computational burden and the latter lacks of comprehensive

theoretical investigation.

Extensive simulation studies are carried out in Section 5 to demonstrate the power

of the GA in comparison with the RP and the SA in terms of computation time, qual-

ity of the candidate model set, and performance of multi-model inference applications.

In particular, the GA-best model exhibits the best variable selection performance in

terms of the high positive selection rate and low false positive rate. For model aver-

aging and variable importance, the GA results in at least comparable performance to

the RP and the SA, but exhibits greater robustness than the SA. Additionally, the GA

is also shown to possess better applicability than the RP in optimal high-dimensional

model averaging.

Two real data examples are next carried out to illustrate the practical utility of

the GA. For the riboflavin dataset [18], the GA-best model finds an informative gene

which has not stood out in the literature (e.g., [18–22]). For the residential building

dataset [23, 24], we identify factors, such as preliminary estimated construction cost,

duration of construction, and 1-year delayed land price index and exchange rate,

relevant to construction costs. These findings are further confirmed by the variable

importance results using the SOIL [7]. Moreover, compared with the aforementioned

competing methods, we again find that the GA generates the best candidate model

set and results in the best model averaging performance on both datasets.

The rest of this dissertation is organized as follows. In Section 2 we present the

GA for global model search, and list several possible ways for improving the imple-

mentation. In Section 3 the GA is analyzed using the Markov chain and schema

theories. In Section 4 we illustrate how the GA assists multi-model inference tools

such as variable selection and model confidence set. Sections 5 and 6 present exten-

sive simulation studies and two real data analysis. In Section 7, we discuss future
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works. All proofs and supplementary materials are presented in Sections A and B,

respectively, in the appendix.
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2. METHODOLOGY

Consider a linear regression model

Y = Xβ0 + ε, (2.1)

where Y = (Y1, . . . , Yn)> is the response vector, X = [X1, . . . ,Xd] is the design

matrix with Xj representing the j-th column for j = 1, . . . , d, and ε = (ε1, . . . , εn)>

is the noise vector with E[εi] = 0 and Var(εi) = σ2. Suppose β0 = (β0
1 , . . . , β

0
d)
> is

s-sparse (i.e., ‖β0‖0 = s) with s � min(n, d). Throughout this paper, s and d are

allowed to grow with n.

Genetic representation for variable selection. The genetic representation of

a model is defined as a binary sequence of length d, say u = (u1, . . . , ud), and

variable j is said to be active (inactive) if uj = 1 (uj = 0). For example, u =

(1, 1, 1, 0, 0, 0, 0, 0, 0, 0) denotes the model with d = 10 variables but only the first

three variables being active. Note that |u| = ∑d
j=1 uj denote the model size. Denote

Xu as the submatrix of X subject to u, andM = {0, 1}d as the model space.

Fitness function. Let Ψ(t) denote the t-th generation of population, and Ψ(t) =

∪tt′=0Ψ(t′) the collection of all models that have appeared up to the t-th generation.

For any model u ∈ Ψ(t), the fitness function is then defined as

f(u) =


−GIC(u) if |u| < n

min
v∈Ψ(t),|v|<n

−GIC(v) if |u| ≥ n
, (2.2)
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where

GIC(u) = n log σ̂2
u + κn|u|, (2.3)

is the generalized information criterion (GIC, [25,26]) and

σ̂2
u = Y >

[
In −Xu(X

>
uXu)

−1X>u
]
Y /n

is the mean squared error evaluated by the model u. GIC covers many types of

information criteria (e.g., AIC [27] with κn = 2, BIC [28] with κn = log n, modified

BIC [29] with κn = log log |u| log n with d < n and extended BIC [30] with κn �
log n+2 log d with p ≥ n). Since GIC cannot be computed for |u| ≥ n, we define it as

the worst fitness value up to the current generation. The rational is that any model

with size larger than n should be unfavorable to all models with size smaller than n

given the assumption that s� min(n, d). This definition warrants an unconstrained

optimization, which is convenient for subsequent theoretical analysis. This is different

from other ways to deal with the “infeasible solutions” in the GA literature, e.g., the

“death penalty” in [31] and [32], which lead to constrained optimization.

2.1 A Genetic Algorithm for Candidate Model Search

We propose a genetic algorithm to search for good candidate models in Algo-

rithm 1. Specifically, we use the RP method to generate an initial population, and

then adopt proportional selection, uniform crossover and mutation operators to con-

stitute the evolutionary process. Besides uniform mutation, we propose another mu-

tation strategy based on the strength of variable association for improving empirical

performances. An adaptive termination strategy is also proposed to enhance the

computational efficiency. See Algorithm 1 for the overview of the GA.
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Algorithm 1 A Genetic Algorithm for Model Search
Require: Population size K and mutation rate πm
1: Generate initial population Ψ(0) =

{
u1(0), . . . , uK(0)

}
2: t← 0
3: Converge ← False
4: do
5: t← t+ 1
6: (Fitness evaluation) Compute fitness values f

(
uk(t− 1)

)
, k = 1, . . . , K

7: (Elitism selection) Set u1(t) = arg maxu∈Ψ(t−1) f(u)
8: for k = 2, . . . , K do
9: (Proportional selection) Randomly select two models from Ψ(t− 1) using
wk in (2.4)

10: (Uniform crossover) Breed a child model using (2.5)
11: (Mutation) Mutate the child genes using (2.6) or (2.7)
12: end for
13: Set Ψ(t) =

{
u1(t), . . . , uK(t)

}
14: if Convergence criterion (2.8) is met then
15: T ← t
16: Converge ← True
17: end if
18: while Converge is False
19: return Ψ(T ) =

{
u1(T ), . . . , uK(T )

}

Initialization: The initial population Ψ(0) =
{
u1(0), . . . , uK(0)

}
only has very

minimal requirement as follows: (i) K ≥ 2 and (ii) |uk(0)| < n for some k = 1, . . . , K

(i.e., at least one model with commutable GIC). The condition (i) allows the GA to

explore through the model spaceM; see Section 3.1, and (ii) ensures f
(
uk(0)

)
, k =

1, . . . , K, are all available. The choice of K will be discussed in Section 2.2.1. For fast

convergence of the GA, we recommend the RP method to generate initial population.

Please see Figure 2.1 for how models produced by RP are improved by the GA in

terms of GIC.

Given the (t−1)-th generation Ψ(t−1) =
{
u1(t−1), . . . , uK(t−1)

}
, the GA pro-

duces the next generation Ψ(t) =
{
u1(t), . . . , uK(t)

}
through proportional selection,

uniform crossover and mutation operations. See Figure 2.2 to visualize the evolution

process. In what follows, we give details for each step in our main algorithm.
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Figure 2.1.: Fitness values of the models obtained from the regularization paths of
Lasso, SCAD and MCP. The two red horizontal lines indicate the best and worst
fitness values of the GA models, and the vertical lines locate the best λ selected by
10-fold cross-validation. The right panel is a zoomed view of the left panel around
the selected λ. Among the 304 RP models, only 10 of them have fitness values not
smaller than the GA-worst model. The result is obtained from the first dataset under
the simulation Case 1 with (n, d, s, ρ) = (200, 400, 6, 0.5).

u1(t − 1)
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uK(t − 1)
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u1(t) = u∗(t − 1)

up1,k

up2,k
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Ψ(t)

Elitism Selection

Proportional
Selection

Uniform
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k = 2, . . . ,K

Figure 2.2.: Illustration of the evolution process of the GA. u∗(t − 1) denotes the
best model in Ψ(t− 1). The candidate pool of the proportional selection is the entire
Ψ(t−1), which still includes u∗(t−1). For each k = 2, . . . , K, a pair of parent models
are selected according to the probability wk and one child model uc,k is generated
through uniform crossover (2.5). Finally, uc,k is processed by the mutation (2.6) or
(2.7) to produce uk(t).

In the elitism selection step, we choose u∗(t − 1) := arg maxu∈Ψ(t−1) f(u), i.e.,

the best model in Ψ(t − 1) is kept into Ψ(t), and define it as u1(t) for simplicity.

The proportional selection step chooses parent models from Ψ(t − 1) (including

u∗(t − 1)) based on the exponentially scaled fitness as follows. Define the fitness
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fk = f
(
uk(t− 1)

)
according to (2.2). For k = 1, . . . , K, first compute the weight wk

for uk(t− 1) as

wk =
exp (fk/2)∑K
l=1 exp (fl/2)

, k = 1, . . . , K. (2.4)

Then (K − 1) pairs of models are randomly selected with replacement from Ψ(t− 1),

where the probability of selecting uk(t− 1) is wk. Note that the exponentially scaled

information criteria are often used for model weighting in multi-model inference (e.g.,

[1, 33,34]).

Each pair of parent models produces a child model by performing uniform crossover

with equal mixing rate (i.e., each child position has equal chance to be passed from

the two parents). That is, let up1,k = (up1,k1 , . . . , up1,kd ) and up2,k = (up2,k1 , . . . , up2,kd ) be

the chosen parent models, and then the genes in the child model uc,k = (uc,k1 , . . . , uc,kd )

is determined by

uc,kj =

u
p1,k
j with probability 1/2

up2,kj otherwise
, j = 1, . . . , d. (2.5)

In the last step, we apply mutation to the child model uc,k. Given a mutation

probability πm (usually low, such as πm = 0.01 or 1/d), we consider the following

two mutation schemes. Denote by uk(t) =
(
u1
d(t), . . . , u

k
d(t)
)
the resulting model after

mutation being applied to uc,k.

• Uniform mutation: Genes in uc,k are randomly flipped with probability πm,

i.e.,

ukj (t) =

1− uc,kj with probability πm

uc,kj otherwise
, j = 1, . . . , d. (2.6)

• Adaptive mutation: We propose a data-dependent mutation operator based

on the variable association measures γj. For example, γj can be either the
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marginal correlation learning
∣∣Ĉor(Xj,Y )

∣∣ [35] or the high-dimensional ordinary

least-squares projection
∣∣Xj(XX

>)−1Y
∣∣ [36] (available only for d ≥ n). Let

V k
+ = {j : uc,kj = 1} and V k

− = {j : uc,kj = 0}. Define the mutation probability

for the uc,kj as

π̄km,j =


γ−1
j∑

l∈V k+
γ−1
l

|V k
+ |πm if j ∈ V k

+

γj∑
l∈V k−

γl
|V k
− |πm if j ∈ V k

−

.

Then the proposed mutation operation is performed by

ukj (t) =

1− uc,kj with probability π̄km,j

uc,kj otherwise
, j = 1, . . . , d. (2.7)

By defining π̄km,j this way, unimportant active variables are more likely to be

deactivated, and important inactive variables are more likely to be activated.

Also, it can be easily seen that this mutation operation results in the same ex-

pected number of deactivated and activated genes as those of uniform mutation

operation. As far as we are aware, this is the first data dependent mutation

method in the GA literature.

In numerical experiments, we note that the adaptive mutation performs slightly better

than the uniform mutation. For space constraint, we just focus on the adaptive

mutation with πm = 1/d.

As for termination, we propose an adaptive criterion by testing whether the

average fitness becomes stabilized; see Section 2.2.2 for more details. This is very

different from the user specified criteria used in GA literature such as the largest

number of generations (e.g., [37]) or the minimal change of the best solution (e.g.,

[38]).
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Figure 2.3.: The overlapped distributions of the sizes of the final candidate models
collected by the GA, with the blue vertical line indicating the true model size. The
results are obtained under the simulation Case 1 (see Section 5 for more details) and
other cases exhibit similar patterns.

Remark 2.1.1 We note that the models collected by the GA are in nature sparse

since their sizes are around the true model size s; see Figure 2.3 for example. This

empirically appealing feature allows us to construct GA-based sparse model confidence

sets in the later sections.

2.2 Computational Considerations

Computational concern has been the major critiques that prevent GAs from being

popular over other optimization methods such as gradient descent in machine learning

and statistical communities. In our experience, the most computational cost is taken

by the calculation of the fitness evaluation, which could be alleviated by reducing the

population size (Section 2.2.1) and the number of generations (Section 2.2.2).



13

2.2.1 Population Sizing

The population size K plays an important role in GAs. It is obvious that larger

population makes GAs computationally more expensive. On the other hand, empirical

results indicate that small population would jeopardize performance (e.g., [39–41]).

We found that the minimum population size suggested in [42] makes a good balance.

The idea is to have a population such that every possible solution in the search space

should be reachable from an randomly generated initial population by crossover only.

In binary gene coding cases, it means that the solutions in the initial population

cannot be all 0 or 1 for any position. For any K, the probability of such an event can

be found by

P ∗ = (1− 1/2K−1)d = exp
[
d log(1− 1/2K−1)

]
≈ exp(−d/2K−1).

Accordingly, for every given P ∗, we can calculate the minimum population size

K∗ ≈
⌈
1 + log(−d/ logP ∗)/ log 2

⌉
,

where dae is the smallest integer larger than a ∈ R. For example, a population of

size K = 25 is enough to ensure that the required probability exceeds 99.99% when

d = 1,000.

In our implementation, we conservatively use

K = 4
⌈
1 + log(−d/ logP ∗)/ log 2

⌉
with P ∗ = 0.9999, to specify the population size according to model dimension.
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2.2.2 Adaptive Termination

To adaptively terminate, we perform an independent two-sample t-test on whether

the average fitness of Ψ(t) and Ψ(t− 10) are the same at a significance level 0.05:

H t
0 : f̄

(
Ψ(t)

)
= f̄

(
Ψ(t− 10)

)
v.s. H t

1 : f̄
(
Ψ(t)

)
6= f̄

(
Ψ(t− 10)

)
, (2.8)

where f̄
(
Ψ(t)

)
is the average fitness of the t-th generation. The T -th generation is

set to be the final generation if T is the smallest t ≥ 10 such that H t
0 is rejected. The

generation gap 10 is meant to weaken the correlation between the two generations

being tested. Note that the GA can be regarded as a Markov chain (see Section 3.1

for details) and therefore there exists dependence among generations. Hence, it is not

appropriate to perform two-sample t-test of the average fitness from two consecutive

generations.

Remark 2.2.1 This termination criterion is constructed based on the limiting dis-

tribution derived for the associated Markov chain (see the discussion below Theo-

rem 3.1.1 for more details) and results in huge computational efficiency. In the liter-

ature, the GA iteration is often terminated at a fixed, predetermined number of gener-

ations, say Tmax, which is usually large such as 50, 100 or even larger (e.g., [43,44]).

Our termination criterion, on the other hand, entitles a scientific check for the con-

vergence. With the RP used for generating the initial population, the GA enters the

stationary distribution (as the average fitness is tested to be stabilized) in just a few

generations (say, around 20 generations). In addition, we note that the computational

cost incurred by the independent two-sample t-test (2.8) is negligible, as the fitness

values are computed as the models are generated.
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3. THEORETICAL PROPERTIES

In this section, we study the theoretical properties of the GA, which belongs to the so-

called canonical GA (CGA) family1 [8]. The proposed GA is a CGA that specifically

employs elitism and proportional selection, uniform crossover and uniform or adaptive

mutation as described in Section 2. We first investigate the convergence properties

for a general CGA family based on Markov chain theory, i.e., Theorem 3.1.1. Further-

more, Theorem 3.1.2 presents a brand new theoretical framework to construct MCSs

for the globally best model. We next establish a new schema theory (Theorem 3.2.1

and Corollary 3.2.1) to elicit the evolutionary mechanism for the GA. It is worthy

noting that the theoretical results established in this section apply to the general

CGA framework and hence not restricted to the specific variable selection problem.

3.1 Convergence Analysis

In this section, we show that the Markov chain associated with a CGA class has

a unique stationary distribution from which the asymptotic inclusion of the globally

best model, i.e., global convergence, can be deduced. Such a result justifies the

adaptive termination rule in Section 2.2.2, and can be used to reduce the search

space for variable selection problems; see Proposition 4.1.1. Note that the theoretical

results obtained in this section hold for any finite sample size.

Recall that Ψ(t) =
{
u1(t), . . . , uK(t)

}
represents the t-th generation of the pop-

ulation, and denote by
{

Ψ(t)
}
t≥0

the associated Markov chain with values on the

finite state (population) spaceMK . The corresponding transition matrix is defined
1CGAs are also called as simple or standard GAs in the literature. CGA uses binary sequence for
solution representation, and updates a fixed-sized population via selection, crossover and mutation
operators.
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as P =
[
Puv

]
u,v∈MK , where Puv = P

(
Ψ(t+1) = v

∣∣Ψ(t) = u
)
. We need the following

definitions for our subsequent analysis.

Definition 3.1.1 A square matrix A = [aij] ∈ RK×K is said to be non-negative

(positive) if aij ≥ 0 (aij > 0) for all i, j ∈ {1, . . . , d}. A non-negative square matrix

A is said to be

(a) primitive if there exists a positive integer k such that Ak is positive;

(b) reducible if there exists two square matrices A11 and A22 and a matrix A21 with

suitable dimensions such that A can be expressed as the form

A =

A11 O

A21 A22

 ,
where O denotes a zero matrix with suitable dimensions, by applying the same

permutations to rows and columns;

(c) irreducible if it is not reducible;

(d) stochastic if
∑K

j=1 aij = 1 for all i = 1, . . . , K.

Let

u∗ := arg max
u∈M

f(u)

denote the best model in M and suppose it is unique, i.e., f(u∗) > f(u) for all

u ∈M− {u∗}. Moreover, denote the collection of states that contains u∗ by

Mmax =
{
u =

{
u1, . . . , uK

}
∈MK : u∗ ∈ u

}
. (3.1)

The following theorem describes two important convergence properties.

Theorem 3.1.1 Let P denote the transition probability matrix of the Markov chain

associated with a CGA with elitism selection, population size K ≥ 2 and mutation

rate πm ∈ (0, 1).
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(a) There exists a unique stationary distribution π =
(
π(u) : u ∈ MK

)> that

satisfies π> = π>P and π(u) = limt→∞ P
(
Ψ(t) = u

)
with π(u) > 0 for

u ∈Mmax and π(u) = 0 for u 6∈ Mmax.

(b) (Theorem 6 of [45]) We have

lim
t→∞

P
(
u∗ ∈ Ψ(t)

)
= 1. (3.2)

As far as we are aware, the existence of the stationary distribution stated in

Theorem 3.1.1 (a) for CGAs with elitism selection is new, even though similar results

for non-elitist CGAs has been presented for over decades (e.g., [45, 46]). This is

in contrast with the GA literature that typically concerns global convergence (e.g.,

[45–47]) rather than the stationary distribution. As for Theorem 3.1.1 (b), the elitism

selection is a necessary condition [45,47] and it is different from the path-consistency

property of non-convex penalization approaches (e.g., [48, 49]) in that the former

captures the best model for any sample size n as t→∞ and the latter targets at the

true model as n→∞. Later, Theorem 3.1.1 (b) is extended to a selection consistency

result as n→∞; see Proposition 4.1.1.

Part (a) of Theorem 3.1.1 has the following implication. Recall that f̄(u) is the

average fitness of any population u, and thus we have

lim
t→∞

E
[
f̄
(
Ψ(t)

)]
=
∑

u∈MK

π(u)f̄(u),

which is a constant given data (X,Y ). This indicates that the average fitness oscil-

lates around a constant in the long run, as Ψ(t) becomes stabilized (i.e., the associated

Markov chain converges). This justifies the termination check in (2.8).

Remark 3.1.1 It is worth noting that Theorem 3.1.1 does not only apply to the GA

but also any CGA with elitism selection. The key reason is that the child solutions

generated through selection, crossover and mutation operators always remain in the

search space for unconstrained optimization or search problems. Accordingly, instead
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of the ones mentioned in Section 2, Theorem 3.1.1 still holds for any other selection,

crossover and mutation operations (e.g., rank-based or tournament selection [50] and

the newly proposed crossover and mutation operations developed in [51] and [52],

respectively).

In contrast to the asymptotic result in Theorem 3.1.1 (b) as t → ∞, it is also of

practical relevance to construct a 100(1 − α)% MCS that covers the best model u∗

after a finite number of generations. A particularly appealing feature is that every

model in this set is sparse. This is conceptually different from the MCS constructed

based on the debiased principle [53–55], which mostly contains dense models.

Theorem 3.1.2 Let Ψ(t) denote the t-th population of a CGA with elitism selection,

K ≥ 2 and πm ∈ (0, 1). Then for any α ∈ (0, 1) there exists a positive integer Tα

such that

P
(
u∗ ∈ Ψ(t)

)
≥ 1− α (3.3)

for any t ≥ Tα.

The proof of Theorem 3.1.2 implies the global convergence property described

in Theorem 3.1.1 (b) by letting α = 0 and thus T0 = ∞. From the proof of The-

orem 3.1.2, we note that obtaining the value of Tα requires the knowledge of the

constant ξ as defined in (A.4), which is often unknown. By definition, ξ can be ob-

tained by estimating the submatrix R in the transition matrix P . That is, ξ is the

smallest of the row sums of R. Since R has
∣∣MK

∣∣− ∣∣Mmax

∣∣ =
(
K+2d−1

K

)
−
(
K+2d−2
K−1

)
rows and

∣∣Mmax

∣∣ =
(
K+2d−2

K

)
columns, the size of R is massive. For instance, when

(K, d) = (10, 5), there are about 3× 1017 elements in R. Albeit [56] provides a useful

formula to compute the elements in the P , the computational cost is too large to be

carried out in practice. Hence, we leave an accurate estimation or approximation of

ξ to future study.
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3.2 Evolvability Analysis

In this section, we establish a schema theorem to study the evolution process of the

GA. Specifically, it is proven that the average fitness gets improved over generations.

To the best of our knowledge, we are the first to develop a schema theorem for GAs

with proportional selection, uniform crossover and uniform mutation at the same

time in the GA literature. The most closely related schema theorems are provided

by [57, 58] for GAs with proportional selection and one-point crossover, and by [59]

for GAs with uniform crossover alone.

In the following we give the definition of a schema with general GA terminology

(i.e., using “solutions” instead of “models”), followed by an example as illustration.

Definition 3.2.1 A schema H = (H1, . . . , Hd) ∈ {0, 1, ∗}d is a ternary sequence of

length d, where the “∗” is a wildcard symbol, meaning that we do not care whether it

is 0 or 1. The indices where the schema has a 0 or 1 are called the fixed positions.

We say a solution u = (u1, . . . , ud) matches H if all fixed positions of H are the

same as the corresponding positions in u. The order of a schema H, denoted by

ord(H), is defined by the number of fixed positions in H. Moreover, by adopting

the notations used in the order theory (e.g., [60]), for any schema H we define the

expansion operator ↑(H) to map H to the set of all possible solutions that match H,

i.e.,

↑(H) =
{
u ∈M : uj = Hj or Hj = ∗ for each j = 1, . . . , p

}
.

Example 3.2.1 Suppose a schema H = (1, 0, ∗, 0, ∗). In this case, ord(H) = 3, and

↑(H) =
{

(1, 0, 0, 0, 0), (1, 0, 0, 0, 1), (1, 0, 1, 0, 0), (1, 0, 1, 0, 1)
}
.

Let m(H, t) denote the number of solutions that match a schema H in the t-th

generation, and α(H, t) the probability that the schema H survives or is created after
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the t-th generation. [61] noted that m(H, t + 1) follows a binomial distribution with

the number of trials K and success probability α(H, t), i.e., (K is the population size)

m(H, t+ 1) ∼ Binomial
(
K,α(H, t)

)
. (3.4)

Hence, we have E
[
m(H, t + 1)

]
= Kα(H, t). Accordingly, higher α(H, t) leads to

higher E
[
m(H, t + 1)

]
and thus tends to result in more solutions of H in the next

generation. Since the population size is fixed, more solutions of a fitter schema imply

higher average fitness in the subsequent generation. Hence, we will show that α(H1, t)

is larger than α(H2, t) if the average fitness of H1 is larger than that of H2.

To prove the above result, we need to define the following different notions of Ham-

ming distance. The first concerns two models u = (u1, . . . , up) and v = (v1, . . . , vp),

i.e., δ(u, v) =
∑p

j=1 1(uj 6= vj), while the second type of Hamming distance is be-

tween a model and a schema H on the fixed positions: δ(u,H) =
∑

j:Hj 6=∗ 1(uj 6= Hj).

The last one is Hamming distance between models u and v with respect to the fixed

positions of any schema H: δH(u, v) =
∑

j:Hj 6=∗ 1(uj 6= vj).

We are now ready to characterize α(H, t) explicitly for the GA with uniform

mutation. Recall from (2.4) that wk denotes the probability that model uk is selected

as a parent model.

Theorem 3.2.1 Given the t-th generation Ψ(t) = {u1, . . . , uK} and a schema H, de-

fine the probability that a solution matching H is selected by the proportional selection

operator as

αsel(H, t) =
∑

k:uk∈↑(H)

wk.
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For the GA with uniform mutation, we have

α(H, t) = α2
sel(H, t)(1− πm)ord(H) + αsel(H, t)

∑
l:ul 6∈↑(H)

wl
(1− πm)ord(H)[

2(1− πm)
]δ(ul,H)

+
∑

k,l:uk,ul 6∈↑(H)

wkwl
(2πm)hkl(1− πm)ord(H)[

2(1− πm)
]δH(uk,ul)

, (3.5)

where hkl =
∣∣{j : Hj 6= ∗, ukj = ulj 6= Hj}

∣∣.
The general result in Theorem 3.2.1 provides an exact form of α(H, t), which is

quite difficult to interpret and analyze. Accordingly, we derive a simple-to-analyze

lower bound for α(H, t).

Corollary 3.2.1 Suppose conditions in Theorem 3.2.1 hold. For πm ≤ 0.5, we have

α(H, t) ≥ (1− πm)ord(H)αsel(H, t)
2 + 2− ord(H)αsel(H, t)

[
1− αsel(H, t)

]
+
[
1− αsel(H, t)

]2
πord(H)
m . (3.6)

It can be seen from (3.6) that the lower bound of α(H, t) gets larger when the

schema selection probability αsel(H, t) increases or the schema H has lower order

(i.e., ord(H) is small). By definition, fitter schema H leads to larger αsel(H, t) and

therefore higher α(H, t) and E
[
m(H, t+ 1)

]
. Since an expansion of the fitter schema

H is expected in a fixed-size population, fitter models matching H are more likely to

be generated in place of weaker models; see Section 5.2 for a numerical verification.

Accordingly, the subsequent generation is anticipated to have higher average fitness.

This entitles the “survival of the fittest” phenomenon of the natural selection and

acknowledges the evolvability of the GA.
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4. GA-ASSISTED MULTI-MODEL INFERENCE

In this section, we describe how the GA helps multi-model inferences. Note that

existing information-criteria based variable selection (e.g., [30,62,63]) and MCS pro-

cedures (e.g., [4,64,65]) typically concern the true model rather than the globally best

model, which is the target of the GA. To bridge this gap, we first present a lemma

suggesting that the true model indeed possess the lowest GIC value and therefore

become the globally best model in large samples.

The following regularity condition is needed.

Assumption 4.0.1 (A1) There exists a positive constant C1 such that λmin

(
X>u0Xu0/n

)
>

C1 for all n, where u0 denotes the true model;

(A2) There is a positive constant C2 such that

inf
u6=u0,|u|<s̃

µ>(I −Hu)µ ≥ C2n,

where µ = Xβ0 and Hu = Xu(X
>
uXu)

−1X>u denotes the hat matrix of the

model u, for some positive integer s̃ with s ≤ s̃ < n.

Condition (A1) ensures the design matrix of the true model is well-posed and Condi-

tion (A2) is the asymptotic identifiability condition used in [30], indicating that the

model is identifiable if no model with comparable size can predict as well as the true

model.

Recall that κn is defined in the GIC formulation (2.3).
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Lemma 4.0.1 Suppose Assumption 4.1 holds, ε ∼ N (0, σ2I), log d = O(nτ ), κn =

O(nτ ) and κn → ∞ for some positive constant τ < 1. Then for any positive integer

s̃ satisfying s̃ ≥ s and s̃ log d = o(n), we have, as n→∞,

min
u∈Ms̃−{u0}

GIC(u)−GIC(u0) > 0, (4.1)

whereMs̃ =
{
u ∈M : |u| ≤ s̃

}
.

4.1 Variable Selection

The GA offers a practical way to perform variable selection by only searching

the models generated by the GA instead of the whole model space. The existing

information-criterion based selection methods search a constrained model spaceMs̃

for some s ≤ s̃ � n. However, by using the GA, we only need to evaluate at

most K × T models (recall that K and T are the population size and the number

of generations to convergence, respectively). For example, under the simulation Case

1 with (n, d, s, ρ) = (200, 400, 6, 0.5) (see Section 5.1), it is nearly impossible to go

through
(

400
6

)
≈ 5.5 × 1012 models with the true size 6, not to mention to compare

all the models with sizes at most s̃ for some 6 ≤ s̃ � n. On the other hand, the

GA searches for the true model in all 500 simulation runs, each with less than 1,750

models evaluated (K = 92 and T ≤ 19 generations to convergence).

By combining Theorem 3.1.1 (b) and Lemma 4.0.1, Proposition 4.1.1 shows that

the true model becomes the best model in large samples and is eventually captured by

the GA. Let Ψs̃(t) denote the t-th generation of a GA population on the constrained

model spaceMs̃. The fitness function (2.2) makes models of sizes at least n nearly

impossible to be generated. Accordingly, it is equivalent to setting s̃ = n− 1.
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Proposition 4.1.1 Suppose conditions in Lemma 4.0.1 hold and Ψs̃(t) satisfies the

conditions in Theorem 3.1.1. Define

û(t) = arg min
u∈Ψs̃(t)

GIC(u).

Then we have

lim
t→∞

lim
n→∞

P
(
û(t) = u0

)
= 1. (4.2)

4.2 Model Confidence Set

In this section, we construct practically feasible model confidence sets with the

aid of the GA, in comparison with the one based on Theorem 3.1.2. The main idea

is to employ the two-step testing procedure of [66], given that the candidate models

are produced by GA.

Given a candidate model set Ψ =
{
u1, . . . , uK

}
, let u# = arg minu∈Ψ GIC(u)

denote the best candidate model in Ψ. Collect

Aα =
{
u ∈ Ψ : H0,u is not rejected at a significance level α

}
(4.3)

by performing the hypothesis testing

H0,u : Model u is not worse than u# vs. H1,u : Model u is worse than u#.

(4.4)

for every u ∈ Ψ−{u#} at significance level α. We name the model confidence set Aα
as survival model set (SMS) since the models therein survive the elimination testing

(4.4). Recall from Section 3.2 that the GA models, even after the globally best model

is found, keep being improved until convergence. Accordingly, a manageable number

of good (and sparse) models are included in the SMS when the GA is used to provide
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candidate models. Later, we use the relative size |Aα|/|Ψ| to measure the quality of

the candidate model set in Section 5.3.3.

To perform the hypothesis testing (4.4) where u and u# may not be nested, we

employ the two-step procedure of [66] by decomposing (4.4) as first model distin-

guishability test

Hdis
0,u : u and u# are indistinguishable vs. Hdis

1,u : u and u# are distinguishable

(4.5)

and if Hdis
0,u is rejected, then a superiority test

Hsup
0,u : E

[
GIC(u)

]
≤ E

[
GIC(u#)

]
vs. Hsup

1,u : E
[

GIC(u)
]
> E

[
GIC(u#)

]
. (4.6)

The rejection of H0,u at significance level α is equivalent to that Hdis
0,u and Hsup

0,u are

both rejected at significance level α. We note that the original superiority test in [66]

is based on likelihood ratio, and therefore certain adjustment is needed for our case;

see Section B.1.1 for detailed description. The R package nonnest2 [67] is used to

test (4.5) and extract necessary quantities for the GIC-based superiority test (4.6).

The following proposition justifies the asymptotic validity of the constructed SMS.

Proposition 4.2.1 Suppose conditions in Proposition 4.1.1 hold and Ψs̃(t) satisfies

the conditions in Theorem 3.1.1. Let Aα(t) denote a 100(1 − α)% SMS with Ψs̃(t)

serving as the candidate model set. Then we have

lim
t→∞

lim
n→∞

P
(
u ∈ Aα(t)

)
≥ 1− α

for all u ∈ Ψs̃(t)− {u0} such that H0,u is not rejected at significance level α.
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5. SIMULATION STUDIES

In this section, we conduct extensive simulation studies to provide numerical support

for the new schema theory supplied in Section 3.2 and show that the GA outperforms

the RP method and the SA algorithm of [14]. The simulated data were generated

based on the linear model (2.1) with ε ∼ Nn(0, I). Each row of the design matrix X

was generated independently from Nd(0,Σ), where Σ is a Toeplitz matrix with the

(k, l)-th entry Σkl = ρ|k−l| for ρ = 0, 0.5 and 0.9. Results were obtained based on 500

simulation replicates.

5.1 Simulation Settings

We consider six simulation cases below with both high-dimensional (i.e., d ≥ n;

Cases 1–4) and low-dimensional (Cases 5 and 6) settings. Cases 1 and 2 with ρ =

0 refers to the first two simulation cases used in [7]. Case 3 is inspired from the

simulations settings used in [14], but our settings ensure Xs+1 and Xs+2 are always

marginally distributed as N (0, 1) for any ρ ∈ [0, 1). Case 4 is similar to Case 3 but

with weak signals. Cases 5 and 6 refers to the simulation example 2 of [29], with weak

signals in Case 6.

Let 1p and 0p denote the p-dimensional vectors of 1’s and 0’s, respectively.

Case 1: β0 = (41>s−2,−6
√

2, 4
3
,0>d−s)

>.

Case 2: β0 as in Case 1. Re-defineXs+1 = 0.5X1+2Xs−2+η1, where η1 ∼ N (0, 0.01).

Case 3: β0 = (31>s ,0
>
d−s)

>. Re-define Xs+1 = 2

3
√

(1+ρ)
(X1 + X2) + η2 and Xs+2 =

2

3
√

(1+ρ)
(X3 +X4) + η3, where η1, η2

iid∼ N (0, 1/9).

Case 4: β0 = (3 log(n)/
√
n1>s ,0

>
d−s)

>. Re-define Xs+1 and Xs+2 as in Case 3.
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Two cases are set up for moderate dimensional (i.e., d < n) scenarios:

Case 5: β0
1 ≥ · · · ≥ β0

s are iid Uniform(0.5, 1.5), sorted decreasingly, and βj = 0 for

j > s.

Case 6: β0 = (3 log(n)/
√
n1>s ,0

>
d−s)

>.

For the GA implementation, we use

GIC(u) = n log σ̂2
u + 3.5|u| log d, (5.1)

to evaluate models. This choice of κn = 3.5 log d makes the GIC coincide with the

pseudo-likelihood information criterion [68] and the high-dimensional BIC [63]. The

penalization constant 3.5 is specifically used due to the superior performance shown in

the simulation studies in [63]. It should be mentioned that (5.1) works well regardless

the relationship between n and d (e.g., [63, 68]). Our Python implementation of

the GA, the RP and the SA is publicly available in the Github repository https:

//github.com/aks43725/cand.

5.2 Schema Evolution

The discussion followed by Corollary 3.2.1 concludes that fitter schema H leads

to larger αsel(H, t) (the probability of selecting a model matching H in the t-th

generation) and hence larger E
[
m(H, t+1)

]
(the expected number of models matching

H in the (t + 1)-th generation). In the following we provide empirical evidence by

observing that m(H, t+ 1) aligns with αsel(H, t) for three schemata:

H1 = (1s,02s, ∗, . . . , ∗), H2 = (1s+2, ∗, . . . , ∗) and H3 = (1s−1, 0, ∗, . . . , ∗),

which represent good, fair and bad performing schemata, respectively. In particular,

H1 is expected to perform the best by covering good models such as the true model.

The 2s 0’s are placed to deteriorate its overall performance through ruling out some

https://github.com/aks43725/cand
https://github.com/aks43725/cand
https://github.com/aks43725/cand
https://github.com/aks43725/cand
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models that are too good to observe the evolution of m(·, t) and αsel(·, t). H2 is

expected to be slightly worse thanH1 because models matching it are all overfitting by

having at least two false discoveries. We anticipate H3 to have the worst performance

due to missing one true signal. Note that ↑(H1) ∩ ↑(H2) ∩ ↑(H3) does not cover the

whole model spaceM. For implementation, we used uniform mutation as needed in

the theoretical conditions. Moreover, since the GA with initial population provided

by the RP is too good to observe the evolution process, we used an approach proposed

in Section B.1.3 to randomly generate an initial population.

Figure 5.1 is obtained under Case 3 with (n, d, s, ρ) = (200, 400, 6, 0.5) and serves

as a representative example since other cases (included in supplementary, Section B.2.1)

exhibits similar patterns. The upper panel confirms our performance assertion on the

overall schema performance, i.e., H1 is slightly better than H2 and H3 is the worst.

From the lower panel, it is evident that the pattern of m(H1, t + 1) aligns with that

of αsel(H1, t) in all cases. In addition, the strong schema H1 evolves to take over the

whole population eventually even it is a minority at the beginning, and vise versa for

the weaker schema H2. On the other hand, the evolution process of H3 illustrates a

typical example that a particularly weak schema extincts soon and never rises again.

In summary, a good schema expands and a weak one diminishes over generations,

resulting in an improved average fitness until convergence.

5.3 Comparison with Existing Methods

In this section, we compare the GA with the RP and the SA in terms of computa-

tion time, quality of candidate model sets, and performance of multi-model inference

applications such as variable importance, model confidence set and model averaging.

For the RP, we collect the unique models on the regularization paths of Lasso, SCAD

and MCP using the Python package pycasso. Recall that the GA takes the RP for

the initial population. The SA is implemented to search for models of sizes appeared

in the last GA generation, and the best K models are kept as the final candidate
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Figure 5.1.: Schema performance (upper panel) and evolution (lower panel) under
Case 3 with (n, d, s, ρ) = (200, 400, 6, 0.5).

model set. Other tuning parameters are settled according to the simulation settings

in [14].

In the following, we show that the GA evidently improve the models generated

by the RP in reasonable computation time, and that the SA takes a long time to

implement but produces at most comparable results to those of the GA. In particular,

the GA exhibits the best performance in all cases in terms of variable selection and

quality of candidate model set. In terms of model averaging and variable importance,

the GA performs at least comparably to the RP and the SA in high-dimensional

cases, while just comparably under low-dimensional settings.

5.3.1 Computation Time

The averaged computation time for the three methods are depicted in Figure 5.2.

It is obvious that the GA is a bit slower than the RP but way much (like more than

10 times) faster than the SA.
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Figure 5.2.: Computation time. (The RP method is too fast to be visualized.)

5.3.2 Variable Selection

To evaluate the performance of variable selection, the boxplots of the positive

selection rate (PSR, the proportion of true signals that are active in the best model)

and the false discovery rate (FDR, the proportion of false signals that are active in the

best model) are drawn in Figure 5.3 and Figure 5.4, respectively. We see that the GA-

best model gives fairly high PSR and low FDR in all cases, demonstrating excellent

variable selection performance. Under high-dimensional settings (Cases 1–4), the RP

produces high PSR but also high FDR, while the SA results in the opposite (PSR

and FDR are both low). For moderate dimensional cases (Cases 5 and 6), both of the
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Figure 5.3.: Positive selection rate (PSR) of the best model.

RP and the SA give low PSR and FDR. In summary, the GA-best model possesses

much better variable selection performance than those from the RP and the SA.

5.3.3 Quality of Candidate Models

We evaluate the quality of candidate model sets using two criteria: (i) the average

fitness and (ii) the relative size of 95% SMSs (see Section 4.2 for the SMS construction)

to the original candidate model set. Figure 5.5 exhibits the boxplots of average fitness

and suggests that the GAs produce the fittest models in all cases. The SA takes the

second place in high-dimensional cases (Cases 1–4), yet is outperformed by the RP in
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Figure 5.4.: False discovery rate (FDR) of the best model.

moderate dimensional cases (Cases 5 and 6) with ρ = 0 and 0.5, where the covariates

are not strongly correlated. To conclude, the candidate model set produced by the

GA possesses the best quality among the three approaches.

Figure 5.6 displays the boxplots of the relative size of 95% SMSs A0.05 against the

original candidate model set Ψ, i.e., |A0.05|/|Ψ|, where larger values indicate better

quality of Ψ. We see that the relative sizes for the GA are typically higher than those

from the RP and SA in all cases, and are close to 1 in high-dimensional settings (e.g.,

Cases 1–4). This supports the conclusion we made about the quality of candidate

models in the previous paragraph.
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Figure 5.5.: Boxplots of the average fitness of the candidate model sets.

5.3.4 Model Averaging

Model averaging, especially in high-dimensional predictive analysis, is a prominent

application of multi-model inference. The GA does not perform significantly better

than the RP and the SA in model averaging, but exhibits better applicability than

the RP, and greater robustness than the SA.

Given a candidate model set Ψ =
{
u1, . . . , uK

}
, the model averaging predictor is

defined by

Ŷ =
K∑
k=1

wkŶuk , (5.2)
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Figure 5.6.: Relative size of 95% SMS over the original candidate model set.

where Ŷuk = Xu(X
>
uXu)

−1X>u Y are the least-squares predictors and wk with 0 ≤
wk ≤ 1 denote the model weights of uk for k = 1, . . . , K. We use the root mean

squared error (RMSE) defined by

√
n−1(Y − Ŷ )>(Y − Ŷ )

to assess the performance of model averaging.

Two model weighting schemes are considered to obtain the model weights wk: (i)

GIC-based weights as in (2.4) with fk replaced by −GIC(uk), and (ii) the weighting

approach proposed by [6], which we called it the “AL weighting” hereafter (see Sec-
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tion B.1.2 for detailed construction). We note that (i) is the the most commonly used

model weighting scheme in multi-model inference (e.g., Akaike weights [1, 33, 69, 70]

and Bayesian model averaging [34]), and (ii) is developed for optimal predictive per-

formance in high-dimensional model averaging.

Figure 5.7 displays the boxplots of the RMSE using the GIC-based model weight-

ing, showing that the GA exhibits good and robust (in contrast to the wildly high

RMSE by SA in Case 4 with (n, d, s, ρ) = (400, 1000, 50, 0.9); see Remark 5.3.1 for

more details) results over all cases. On the other hand, the RP is obviously worse

than the GA in Case 2, and the SA’s performance is just comparable to that of the

GA. The three methods perform similarly in the rest cases (i.e., Cases 1, 3, 5 and 6).

The RMSEs obtained by the AL weighting are shown in Figure 5.8. Different

from the results using the GIC-based model weights, the GA behaves slightly better

than SA in some cases (e.g., Case 1 with ρ = 0.0 and 0.5 and Case 3 with ρ = 0.0)

and comparably in the rest. Yet similarly, the GA performs robustly and the SA has

wildly high RMSE in Case 4 with (n, d, s, ρ) = (400, 1000, 50, 0.9). On the other hand,

the results for the RP are omitted due to the computational infeasibility (inverting

a singular matrix) in generating the AL weights. Accordingly, the GA is shown to

possess better applicability in optimal high-dimensional model averaging.

5.3.5 Variable Importance

To evaluate the performance of high-dimensional variable importance, we employ

the sparsity oriented importance learning (SOIL, [7]) defined by

SOILj ≡ SOIL(j;w,Ψ) =
K∑
k=1

wk1(ukj = 1)

with the GIC-based model weights wk given in (2.4). It can well separate the variables

in the true model from the rest in the sense that SOILj rarely gives 0 (1) if the variable

j is (not) in the true model. Moreover, it rarely gives variables not in the true model
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Figure 5.7.: Boxplots of the RMSE obtained by model averaging using the GIC-based
weighting.

significantly higher values than those in the true model even if the signal is weak.

In the original work [7], the candidate models were generated using the RP method.

Our results indicate that the GA performs at least comparably to the SA and the RP

in separating the true signals from the rest.

Figure 5.9 and Figure 5.10 depict the averaged SOIL values for the first 2s variables

for Cases 2 and 4, respectively, where the active ones are before the vertical gray line

and the rest are not shown due to SOILj ≈ 0 for j > 2s no matter which method was

used for candidate model preparation. Results for Cases 1, 3, 5 and 6 are presented

in supplementary (Section B.2.2) due to high similarity among the three methods.
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Figure 5.8.: Boxplots of the root mean squared error obtained by high-dimensional
model averaging approach of [6]. The RP method fails to perform in all cases and
thus is not shown.

the GA exhibits the best performance that separate the true signals from the rest.

Specifically, the resulting SOIL values are by no means close to 0 and 1 for truly

active and inactive variables, respectively. On the other hand, in Case 2 the RP

results in SOILs−2 ≡ 1 and SOILs+1 = 0, where Xs−2 is a true signal and Xs+1 is

not. Moreover, in Case 4 with (n, d, s, ρ) = (200, 1000, 50, 0.9), since the SA results

in SOILj ≤ 0.03 for j = 38, . . . , 50, these 13 true signals may easily be regarded as

not important.
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Figure 5.9.: (Case 2) Averaged SOIL measures.
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Figure 5.10.: (Case 4) Averaged SOIL measures.

Remark 5.3.1 From Case 4 with (n, d, s, ρ) = (200, 1000, 50, 0.9), we note that the

SA’s performance in model averaging and variable importance critically depends on
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the model size specification. Recall that the SA only searches for the models with

sizes resulting from the GA candidate models. For this simulation case, the GA

model sizes are around a half of the number of strong signals, i.e., s/2. Such model

size misspecification causes the SA to perform poorly in model averaging and variable

importance. On the other hand, the GA still behaves well even when all of its resulting

candidate models miss certain number of true signals.
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6. REAL DATA EXAMPLES

In this section, we present two real data examples to exhibit the usefulness of the

proposed GA. Additionally, hypothesis testing (4.4) was conducted to compare models

in terms of the GIC.

6.1 The Riboflavin Dataset

We first introduce the riboflavin (vitamin B) production dataset that was widely

studied in high-dimensional variable selection literature (e.g., [18–22]). The response

variable is the logarithm of the riboflavin production rate in Bacillus subtilis for n =

71 samples and the covariates are the logarithm of the expression level of p = 4,088

genes. Please see more details in Supplementary Section A.1 of [18].

The proposed GA delivers new insights by yielding better variable selection results

than the existing works. From Table 6.1, the GA-best model contains only one active

gene XHLA-at which was not identified by previous approaches. However, it turns out

to be the fittest model (with all p-values < 0.0001) among those listed. Moreover,

the importance of the gene XHLA-at is confirmed by having SOILXHLA-at = 1 and all

other SOIL values less than 0.01. Accordingly, we suggest a further investigation on

the gene XHLA-at is needed from scientists.

Table 6.2 summarizes the results of 95% SMSs (see Section 4.2), and shows the GA

outperforms the RP and the SA in terms of the quality of candidate model set and

model averaging. For the former, besides the much fittest (i.e., lowest GIC) model,

the GA also gives the highest relative size of 95% SMSs of 56/67 = 83.58% (compared

to 1/54 = 1.85% for the RP and 11/16 = 68.75% for the SA). For model averaging,

the GA results in the smallest RMSE using the GIC-based weighting. Moreover, as

the only method leading to successful AL weighting (see Section 5.3.4) computation,
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Table 6.1.: Variable selection results and GIC values of the selected models for the
riboflavin dataset.

Method Active Covariates GIC
Proposed GA XHLA-at −20.520
Multisplit procedure [71]† YXLD-at −14.357
Stability selection [72]† YXLD-at, YOAB-at, LYSC-at −1.431
Debiased Lasso [19] YXLD-at, YXLE-at 15.643
B-TREX [20] YXLD-at, YOAB-at, YXLE-at 10.624
AV∞ [21] YXLD-at, YOAB-at, YEBC-at, −5.681

ARGF-at, XHLB-at
RP, SA, and Ridge-type projection [73]† None −11.775

†Obtained by [18] using the R package hdi.

Table 6.2.: Results of the relative size of 95% SMSs and model averaging for the
riboflavin dataset.

RMSE of Model Averaging
Method #(Candidate Models) #(Models in 95% SMS) GIC-based AL
GA 67 56 0.6941 0.6162
RP 54 1 0.9139 N/A
SA 16 11 0.9139 N/A

the GA is shown to possess better applicability in optimal high-dimensional model

averaging.

6.2 Residential Building Dataset

The second dataset was used to study n = 372 residential condominiums from as

many 3- to 9-story buildings constructed between 1993 and 2008 in Tehran, Iran [23,

24]. Construction cost, sale price, 8 project physical and financial (PF) variables and

19 economic variables and indices (EVI) with up to 5 time lags before the construction

were collected on the quarterly basis. Similar to the analysis in [24], we study how

construction cost is influenced by the PF and delayed EVI factors, but exclude the

only categorical PF variable, project locality. Accordingly, we have d = 7 + 19× 5 =

102 covariates. We define the variable coding in Table B.1 for the ease of presentation.
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Table 6.3.: Summary of the best models for the residential building dataset.

Method Active Variables GIC
GA PF-5, PF-7, EVI-05-Lag1, EVI-07-Lag4, EVI-12-Lag5, EVI-13-Lag4 2571.49
RP (None) 3788.05
SA PF-2, PF-3, PF-4, PF-5, PF-6, PF-7 2699.63

Table 6.4.: SOIL values of the important variables for the residential building dataset.
SOIL values less than 0.05 are not listed.

SOIL
Variable Code GA RP SA
PF-2 1.000
PF-3 1.000
PF-4 1.000
PF-5 1.000 1.000
PF-6 1.000
PF-7 1.000 1.000
EVI-05-Lag1 1.000
EVI-07-Lag4 1.000
EVI-12-Lag5 1.000
EVI-13-Lag4 1.000
EVI-19-Lag1 1.000

Table 6.3 and Table 6.4 respectively summarize the variable selection and variable

importance results of the GA, the RP and the SA. From the former, we see that

the GA-best model gives the best performance (i.e., lowest GIC), and its variable

structure agrees with the findings by [24], which suggest that PF and EVI factors

(especially 4-quarter delayed ones) be informative. Moreover, the second column in

Table 6.4 confirms the relevance of PF-5, PF-7, 1-quarter delayed EVI-05, 4-quarter

delayed EVI-07 and EVI-13, and 5-quarter delayed EVI-12. We also note that the RP-

and SA-best models do not consist of sensible variable structures and are significantly

worse than the GA-best model (p-values < 0.0001).

Figure 6.1 and Table 6.5 respectively display the boxplots of the fitness values of

the candidate models and the multi-model analysis results to evaluate the quality of

candidate model sets and model averaging. The former (Figure 6.1) suggests that the
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Figure 6.1.: Boxplots of the fitness values of the candidate models for the residential
building dataset.

Table 6.5.: Results of relative size of 95% SMSs and model averaging for the resi-
dential building dataset.

RMSE of Model Averaging
Method #(Candidate Models) #(Models in 95% SMS) GIC-based AL
GA 48 41 27.5553 28.4411
RP 11 3 104.9914 N/A
SA 84 13 32.7367 32.2841

GA models generally possess higher fitness (i.e., lower GIC) values. Again, the GA

is shown to produce the best candidate model set by having the fittest best model

(all p-values < 0.0001) and the highest relative size of 95% SMS of 41/48 = 85.41%

(compared to approximately 14% for the RP and the SA). In addition to generating

the best candidate model set, the GA also results in the lowest RMSE of model

averaging using both the GIC-based and AL weighting methods. These results suggest

that good candidate models be helpful in enhancing the performance of multi-model

inference.

To further investigate the predictive performance via model averaging with the

AL weighting, we randomly split the dataset using five ratios of validation to training

(RVTs) of 10%, 20%, 30%, 40% and 50%. For each RVT, 100 randomly selected vali-

dation and training datasets were generated by splitting the original dataset, and the

boxplots of RMSE are drawn in Figure 6.2. In summary, the GA generally results in

lower RMSE, suggesting its superior predictive performance.
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Figure 6.2.: Boxplots of RMSE of model averaging using the AL weighting for the
residential building dataset. The RP method failed in weight calculations in all cases
and therefore is not shown.
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7. DISCUSSION

In the end, we propose three future directions. Firstly, we are interested in develop-

ing more implementable algorithms for Theorem 3.1.2 to construct the proposed MCS

procedure. Secondly, we believe that incorporating GAs into modern computational

tools such as neural networks may produce more powerful statistical inference pro-

cedures. For instance, the deep neuroevolution developed by the Uber AI Labs uses

GAs to train deep reinforcement learning (DRL) models and demonstrates amaz-

ing performance on hard DRL benchmarks such as Atari and Humanoid Locomotion

(e.g., [74–76]); see https://eng.uber.com/deep-neuroevolution/ for a comprehen-

sive introduction. Lastly, we want to investigate more advanced GA variants (e.g.,

adaptive GAs (e.g., [77–80]), the immune GAs (e.g., [32, 81, 82]) or the hybrid GAs

(e.g., [83–86])) from statistical and machine learning perspectives.

https://eng.uber.com/deep-neuroevolution/
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A. PROOFS

A.1 Proofs for Section 3

A.1.1 Proof of Theorem 3.1.1

To prove (a), first note that given u∗ ∈ Ψ(t) the subsequent generations cannot

travel to any state that does not contain u∗ due to elitism selection. This means P

is reducible, andMmax is closed (in the sense that P
(
u∗ 6∈ Ψ(t′)

∣∣u∗ ∈ Ψ(t)
)

= 0 for

all t′ > t).

Without loss of generality, there exists square matrices A and T , and a matrix R

with suitable dimensions such that

P =

A O

R T

 ,
where A is a |Mmax| × |Mmax| transition probability submatrix corresponding to

the states in Mmax. According to Lemma A.3.1 (Theorem 2 of [45]), it suffices to

show that A = [auv]u,v∈Mmax is stochastic and primitive, and R and T are not zero

matrices.

To show A is stochastic and primitive, first note that A corresponds to the transi-

tion probability matrix for the states u ∈Mmax. Since any P
(
Ψ(t+1) 6∈ Mmax

∣∣Ψ(t) ∈
Mmax

)
= 0 for any t ≥ 0, we must have

∑
v∈Mmax

auv = 1. This indicates that A is

stochastic.

For any fixed-size population u, the child models generated by selection and

crossover operations still belong to M, and they can be transformed to any other

models through the mutation operator with πm ∈ (0, 1). In other words, any model

u ∈ u with u 6= u∗ can be mapped to any v ∈ M. This implies any state in Mmax
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can travel to any other state in Mmax with positive probability. Accordingly, A is

positive and thus primitive.

Similar argument yields that Puu = P
(
Ψ(t + 1) = u

∣∣Ψ(t) = u
)
> 0 for all

u ∈ MK , and therefore T , the transition probability matrix corresponding to the

states not inMmax, is not zero. Moreover, since the generational best model can only

be improved, any model u can be transformed to u∗ with positive probability due to

the mutation operator with pm ∈ (0, 1). Hence for any t ≥ 0 we have

P
(
Ψ(t+ 1) = v

∣∣Ψ(t) = u
)
> 0 for all u 6∈ Mmax and v ∈Mmax. (A.1)

Note that the entries of R collects all such transition probabilities. Consequently, it

is a positive, and thus nonzero matrix.

The result of (b) is a straightforward consequence of (a). That is, since π is a

distribution overMK and π(u) = 0 for all u 6∈ Mmax, we have
∑

u∈Mmax
π(u) = 1.

By the definition of Mmax, it further implies the asymptotic inclusion of the best

model as t→∞.

A.1.2 Proof of Theorem 3.1.2

It suffices to show that

P
(
Ψ(Tα) ∈Mmax

)
≥ 1− α. (A.2)

Since the GA with elitism selection satisfies

{
Ψ(t) ∈Mmax

}
⊂
{

Ψ(t+ 1) ∈Mmax

}
for all t ≥ 0,

it suffices to show that there exists a positive integer Tα such that

P

(
Tα⋃
t=1

{
Ψ(t) ∈Mmax

} ∣∣∣∣∣Ψ(0) = u

)
≥ 1− α for any u ∈MK . (A.3)
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Let

PuMmax =
∑

v∈Mmax

P
(
Ψ(t+ 1) = v

∣∣Ψ(t) = u
)

denotes the total probability that a population u is transmitted into any population

with the best solution in one iteration. According to (A.1), define

ξ := inf
u∈MK

PuMmax = inf
u∈MK

∑
v∈Mmax

P
(
Ψ(t+ 1) = v

∣∣Ψ(t) = u
)
> 0. (A.4)

Note that, for all u ∈MK and positive integer t,

1− ξ ≥ P
(

Ψ(t) 6∈ Mmax

∣∣∣Ψ(0) = u
)

= E
[
1
(
Ψ(t) 6∈ Mmax

∣∣Ψ(0) = u
)]
.

It then holds, for any u ∈MK and positive integer T ,

P

(
T⋂
t=1

{
Ψ(t) 6∈ Mmax

} ∣∣∣∣∣Ψ(0) = u

)

= E

[
1

(
T⋂
t=1

{
Ψ(t) 6∈ Mmax

})∣∣∣∣∣Ψ(0) = u

]

= E

[
T∏
t=1

1
(
Ψ(t) 6∈ Mmax

)∣∣∣∣∣Ψ(0) = u

]

= E

[
E
[
1
(
Ψ(T ) 6∈ Mmax

) ∣∣∣Ψ(T − 1)
] T−1∏
t=1

1
(
Ψ(t) 6∈ Mmax

)∣∣∣∣∣Ψ(0) = u

]

≤ (1− ξ)E
[
T−1∏
t=1

1
(
Ψ(t) 6∈ Mmax

)∣∣∣∣∣Ψ(0) = u

]
,

where the third equality is due to the Markov property. By keeping doing this we

obtain

P

(
T⋂
t=1

{
Ψ(t) 6∈ Mmax

} ∣∣∣∣∣Ψ(0) = u

)
≤ (1− ξ)T .
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Since ξ ∈ (0, 1), there exists a positive integer Tα such that (1−ξ)Tα ≤ α < (1−ξ)Tα−1.

Accordingly, the desired confidence statement (A.3) follows.

A.1.3 Proof of Theorem 3.2.1

We first characterize the individual probabilities caused by the selection, crossover

and mutation operations. Firstly, it is obvious that the probability that models uk

and ul are selected is wkwl. Secondly, the probability that the uniform mutation

operation transforms a given model v into a solution that matches H is πδ(v,H)
m (1 −

πm)ord(H)−δ(v,H).

Finally, we discuss the effect of the uniform crossover operation, given two parent

models uk and ul are selected. Due to the mechanism of the uniform crossover, all

possible child models has equal probabilities to be generated. This allows us to focus

on the fixed positions of H. Note that it is possible that uk and ul can never generate

a child model that is a solution that matches H. Therefore, we define

hkl =
∣∣{j : Hj 6= ∗, ukj = ulj 6= Hj}

∣∣
as the minimum δ(v,H) among all the child models v produced by the uniform

crossover with parent models uk and ul. Now, suppose v is a model generated through

uniform crossover with uk and ul, we have

P
(
δH(v,H) = h+ hkl

∣∣ parent models uk, ul
)

=

(
δH(uk,ul)−hkl

h

)
2δH(uk,ul)

for h = 0, 1, . . . , δH(uk, ul)− hkl.
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Accordingly, a general form of α(H, t) can be written by

α(H, t) =
∑

k,l:uk,ul∈Ψ(t)

wkwl

δH(uk,ul)−hkl∑
h=0

(
δH(uk,ul)−hkl

h

)
2δH(uk,ul)−hkl

πh+hkl
m (1− πm)ord(H)−h−hkl


=

∑
k,l:uk,ul∈Ψ(t)

wkwl
πhklm (1− πm)ord(H)−δH(uk,ul)

2δH(uk,ul)−hkl

×

δH(uk,ul)−hkl∑
h=0

(
δH(uk, ul)− hkl

h

)
πh+hkl
m (1− πm)δH(uk,ul)−h−hkl


=

∑
k,l:uk,ul∈Ψ(t)

wkwl
πhklm (1− πm)ord(H)−δH(uk,ul)

2δH(uk,ul)−hkl
(A.5)

Note that on the right hand side of (A.5), the summation can be tore apart to three

cases based on whether the parents are solutions that match H. That is,

α(H, t) = P
(
Case 1

)
+ P

(
Case 2

)
+ P

(
Case 3

)
, (A.6)

where Cases 1, 2 and 3 refer to the events that the final child model after crossover

and mutation is a solution that matches H given that

1. both parents match H (i.e., k, such that uk, ul ∈ ↑(H)),

2. only one of the parents matchesH (i.e., k such that uk ∈ ↑(H) and l : ul 6∈ ↑(H)),

and

3. neither of the parents matches H (i.e., k, l such that uk, ul 6∈ ↑(H)),

respectively.
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For Case 1, since both parents belong to ↑(H), it follows that δH(uk, ul) = 0 and

hkl = 0, and hence

P
(
Case 1

)
=

∑
k,l:uk,ul∈↑(H)

wkwl(1− πm)ord(H)

=

 ∑
k:uk∈↑(H)

wk

2

(1− πm)ord(H)

= αsel(H, t)
2(1− πm)ord(H). (A.7)

For Case 2, since one of the parents matches H, it holds hkl = 0 and δH(uk, ul) =

δ(ul, H). It then holds that

P
(
Case 2

)
=

∑
k:uk∈↑(H)

l:ul 6∈↑(H)

wkwl
(1− πm)ord(H)[

2(1− πm)
]δ(ul,H)

= αsel(H, t)
∑

l:ul 6∈↑(H)

wl
(1− πm)ord(H)[

2(1− πm)
]δ(ul,H)

. (A.8)

For Case 3, there seems no simplification available, and therefore we have

P
(
Case 3

)
=

∑
k,l:uk,ul 6∈↑(H)

wkwl
(2πm)hkl(1− πm)ord(H)[

2(1− πm)
]δH(uk,ul)

. (A.9)

The proof is then complete by plugging (A.7), (A.8) and (A.9) into (A.6).
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A.1.4 Proof of Corollary 3.2.1

First note that 2(1 − πm) > 1 since πm ≤ 0.5. Since δ(ul, H) ≤ ord(H) for all

ul 6∈ ↑(H), it follows that

P (Case 2) = αsel(H, t)
∑

l:ul 6∈↑(H)

wl
(1− πm)ord(H)[

2(1− πm)
]δ(ul,H)

≥ 2− ord(H)αsel(H, t)
∑

l:ul 6∈↑(H)

wl

= 2− ord(H)αsel(H, t)
[
1− αsel(H, t)

]
.

Similarly, since 2πm < 1, hkl ≤ ord(H) and δH(uk, ul) ≤ ord(H) for all uk, ul 6∈ ↑(H),

we have

P (Case 3) =
∑

k,l:uk,ul 6∈↑(H)

wkwl
(2πm)hkl(1− πm)ord(H)[

2(1− πm)
]δH(uk,ul)

≥ πord(H)
m

[
1− αsel(H, t)

]2
.

Accordingly, we have the desired result (3.6).

A.2 Proof for Section 4

A.2.1 Proof of Lemma 4.0.1

Without loss of generality, let u0 denote the binary sequence with first s genes

active and the rest inactive and σ2 = 1. Recall that Xu denotes the submatrix of X

subject to the active variable indices in u. LetHu = Xu(X
>
uXu)

−1X>u the projection

matrix of the submatrix Xu.
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We first consider the case u 6⊇ u0, i.e., model umisses at least one relevant variable.

We can write

GIC(u)−GIC(u0) = n log

(
1 +

RSS(u)− RSS(u0)

RSS(u0)

)
+ κn

(
|u| − s

)
≥ n log

(
1 +

RSS(u)− RSS(u0)

RSS(u0)

)
− κns.

Note that

RSS(u0) = Y >(I −Hu0)Y = ε>(I −Hu0)ε =
d−s∑
i=1

Z2
i = n(1 + o(1)), (A.10)

where the Zi are independent N (0, 1) variables, and

RSS(u)− RSS(u0) = Y >(I −Hu)Y − ε>(I −Hu0)ε

= µ>(I −Hu0)µ+ 2µ>(I −Hu)ε− ε>Huε+ ε>Hu0ε, (A.11)

where µ = Xu0β
0
u0 . By Condition (A2), uniformly over u with |u| ≤ s̃, it holds

min
u∈Ms̃−{u0}

µ>(I −Hu)µ ≥ C2n. (A.12)

Write

µ>(I −Hu)ε =
√
µ>(I −Hu)µZu, where Zu =

µ>(I −Hu)ε√
µ>(I −Hu)µ

∼ N (0, 1).

Note that for any model u with |u| ≤ s̃, there exists a positive constant C3 such that

P
(
|Zu| > t

)
= C3 exp

(
−t

2

2

)
.
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By the union bound, it follows that

P

(
max

u∈Ms̃−{u0},u6⊇u0
|Zu| > t

)
≤

∑
u∈Ms̃−{u0},u6⊇u0

P
(
|Zu| > t

)
≤ 2s̃C3 exp

(
−t

2

2

)
.

Let t =
√

2s log d, we arrive at

P

(
max

u∈Ms̃−{u0},u6⊇u0
|Zu| > t

)
≤ C3

(
2

d

)s̃
→ 0

as n→∞. Accordingly,

max
u∈Ms̃−{u0},u6⊇u0

|Zu| = OP

(√
s̃ log d

)
= oP

(√
n
)
,

and therefore we have

max
u∈Ms̃−{u0},u6⊇u0

µ>(I −Hu)ε ≤
√
µ>(I −Hu)µ max

u∈Ms̃−{u0},u6⊇u0
Zu

=
√
µ>(I −Hu)µ oP (

√
n)

= oP

(√
µ>(I −Hu)µ

)
. (A.13)

Now we deal with the last two terms in (A.11). Note that we can write

ε>Huε =

|u|∑
i=1

Z2
i ∼ χ2

|u|,

where Zi are some independent N (0, 1) variables. By the union bound, it then holds

P

(
max

u∈Ms̃−{u0},u6⊇u0
ε>Huε > t

)
≤

s̃∑
j=1

(
d

j

)
P
(
χ2
j > t

)
≤ ds̃P

(
χ2
s̃ > t

)
.

It is east to see that (see, for example, [87])

P
(
χ2
s̃ > t

)
≤ exp

(
−t− s̃

2

)(
t

s̃

)s̃/2
.
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Let t = 3s log d, we arrive at

P

(
max

u∈Ms̃−{u0},u 6⊇u0
ε>Huε > t

)
≤
(
e log d

d

)s̃/2
→ 0

as n→∞. Consequently, we have

max
u∈Ms̃−{u0},u 6⊇u0

ε>Huε = OP

(
s̃ log d

)
= oP (n). (A.14)

Similarly,

ε>Hu0ε = oP (n). (A.15)

By (A.12), (A.13), (A.14) and (A.15), it is easy to see that RSS(u)− RSS(u0) is

dominated by µ>(I −Hu0)µ. Coupled with (A.10), there is a positive constant C4

such that

log

(
1 +

RSS(u)− RSS(u0)

RSS(u0)

)
≥ log(1 + C4)

in probability. Since κn = o(n), we conclude that

min
u∈Ms̃−{u0},u6⊇u0

GIC(u)−GIC(u0) ≥ n log(1 + C4)− κns > 0 (A.16)

as n→∞.

Now we consider the case u ⊇ u0 but u 6= u0. Since (I −Hu)Xu0 = O, we have

Y >(I −Hu)Y = ε>(I −Hu)ε and

RSS(u0)− RSS(u) = ε>(Hu −Hu0)ε =

|u|−s∑
i=1

Z2
u,i ∼ χ2

|u|−s,
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where Zu,i are some independent N (0, 1) variables depending on u. By the union

bound we have

P

(
min

u∈Ms̃−{u0},u⊇u0
GIC(u)−GIC(u0) ≤ 0

)
≤

∑
u∈Ms̃−{u0},u⊇u0

P
(
RSS(u0)− RSS(u) ≥ κn(|u| − s)

)
=

∑
u∈Ms̃−{u0},u⊇u0

P
(
ε>(Hu −Hu0)ε ≥ κn(|u| − s)

)
≤

∑
u∈Ms̃−{u0},u⊇u0

[
κn exp(1− κn)

] |u|−s
2

=
s̃∑

j=s+1

(
d− s
j − s

)[
κn exp(1− κn)

] j−s
2

≤
d−s∑
m=0

(
d− s
m

)[
κn exp(1− κn)

]m
2 − 1

=

(
1 +

√
eκn

expκn

)d−s
− 1→ 0 as n→∞,

where the second inequality follows from the sharp deviation bound on the χ2 distri-

bution (see Lemma 3 of [35]). Hence we have

min
u∈Ms̃−{u0},u⊇u0

GIC(u)−GIC(u0) > 0 (A.17)

with probability tending to 1. Accordingly, the desired result (4.1) follows from (A.16)

and (A.17).

A.2.2 Proof of Proposition 4.1.1

From Lemma 4.0.1 we know that the true model u0 is the best model in the model

spaceMs̃ with probability tending to 1. Along with Theorem 3.1.1 (b) we have

lim
t→∞

lim
n→∞

P
(
u0 = u∗ ∈ Ψs̃(t)

)
= 1.
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By the definition of û(t), we arrive at

lim
t→∞

lim
n→∞

P
(
û(t) = u0

)
= 1.

This completes the proof.

A.2.3 Proof of Proposition 4.2.1

By the construction of the Aα(t), we have

lim
n→∞

P
(
u ∈ Aα(t)

)
≥ 1− α

for all u ∈ Ψs̃(t) − {û(t)} with H0,u not rejected and any t ≥ 0. Along with Propo-

sition 4.1.1, which ensures that limt→∞ limn→∞ P (û(t) = u0) = 1, the desired result

then holds.

A.3 Auxiliary Lemmas

In this section we provide technical lemmas, with a bit abuse of notations.

Lemma A.3.1 (Theorem 2 of [45]) Let P be a n× n reducible stochastic matrix

that can be decomposed into

P =

C O

R T

 ,
where C is an m×m primitive stochastic matrix with m ≤ n and R and T are two

non-zero matrices with suitable dimensions. Then there exists an (n−m)×n positive

matrix R∞ such that

P∞ = lim
k→∞

P k = lim
k→∞

 Ck O∑k−1
i=0 T

iRCk−i T k

 =

C∞ O

R∞ O


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is a stable stochastic matrix with P∞ = 1π>, where 1 = (1, . . . , 1)> is the vector of

1’s with suitable length, π = (π1, . . . , πn)> = π>0 P
∞ is unique regardless of the initial

distribution π0, and π satisfies πi > 0 for i = 1, . . . ,m and πi = 0 for i = m+1, . . . , n.
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B. SUPPLEMENTARY MATERIALS

B.1 Details of the Auxiliary Methods

B.1.1 GIC-Based Superiority Test

A natural test statistic for the GIC-based superiority test (4.6) can be derived

based on the difference of the GIC values of models u and u#. Note that the first

term in the GIC (2.3) comes from simplifying the log likelihood with Gaussian noise.

That is, the general form for GIC can be written as

GIC(u) = −2 logL(β̂u;X,Y ) + κn|u|,

where L(βu;X,Y ) is the likelihood function of model u evaluated at βu given data

(X,Y ), and β̂u =
(
X>uXu

)−1
XuY for any model u ∈ M with |u| < n. As a result,

we write

GIC(u)−GIC(u#) =
(
|u| − |u#|

)
κn − 2 log

L(β̂u;X,Y )

L(β̂u# ;X,Y )
.

Note that the first term on the R.H.S. is merely a constant and the sampling variation

comes only from the second term. When u and u# are distinguishable (i.e., Hdis
0,u in

(4.5) is rejected), [66] showed that the normalized log likelihood ratio

n−1/2 log
L(β̂u;X,Y )

L(β̂u# ;X,Y )
=⇒ N (0, ω2

u), (B.1)

where

ω2
u = Var

(
log

L(β0
u;X,Y)

L(β0
u#

;X,Y)

)
,
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denotes the population variance of the log likelihood ratio of u and u#, β0
u is the true

regression coefficient under model u, and X and Y are the population counterparts of

the design vector and the response scalar, respectively. Accordingly, under Hsup
0,u , the

result (B.1) can be used to show that

n−1/2
[

GIC(u)−GIC(u#)
]

= n−1/2

[(
|u| − |u#|

)
κn − 2 log

L(β̂u;X,Y )

L(β̂u# ;X,Y )

]
=⇒ N (0, 4ω2

u). (B.2)

In practice, we plug-in a consistent estimate of ω2
u, denoted by ω̂2

u (see [66] for the

formula), into (B.2) to perform the test. Accordingly, we reject Hsup
0,u if

GIC(u)−GIC(u#) > 2z1−αω̂u
√
n,

where z1−α is the (1 − α)-quantile of standard normal distribution, and the value

of ω̂2
u can be extracted from the R package nonnest2 [67] when implementing the

distinguishability test (4.5).

B.1.2 Model Averaging Approach of [6]

Given a candidate model set Ψ = {u1, . . . , uK}, let Dk be a n×n diagonal matrix

with the l-th element being (1− hkl)−1, where hkl is the l-th diagonal element of the

hat matrix Huk = Xuk
(
X>

uk
Xuk

)−1
X>

uk
, and H̃k = Dk(Huk − I) + I. Following [6],

the K-dimensional weight vector w = (w1, . . . , wK)> can be computed by

ŵ = arg min
w∈[0,1]K

(
Y >Y − 2w>a+w>Bw

)
, (B.3)

where a = (a1, . . . , aK)> with ak = Y >H̃kY , and B is a K × K matrix with the

(k, j)-th element Bkl = Y >H̃>k H̃lY . Note that the common constraint
∑K

k=1wk = 1

for model weights does not necessarily to be imposed. In fact, [6] show that their
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weighting approach leads to the smallest possible estimation error of the model aver-

aging predictor (5.2) without the constraint.

B.1.3 A Variable Association Measure Assisted Approach for Generating

the Initial Population

Given variable association measures γj, j = 1, . . . , d (e.g., the marginal correlation

learning
∣∣Ĉor(Xj,Y )

∣∣ [35] or the HOLP
∣∣Xj(XX

>)−1Y
∣∣ [36] (available only for d ≥

n), we introduce an approach to randomly generate the initial population {u0, . . . , u0
K}

for the GA as follows.

Step 1: Assign the model sizes |u0
k|, k = 1, . . . , K, by generating K independent

HyperGeom
(
6 min(n, d), 2 min(n, d),min(n, d)

)
random variables, where

HyperGeom(N,M, n) denotes the hypergeometric distribution with the proba-

bility mass function

P
(
HyperGeom(N,M, n) = m

)
=

(
M
m

)(
N−M
n−m

)(
N
n

) ,

m = min(0, n+M −N), . . . ,min(n,M).

Step 2: For k = 1, . . . , K, the active positions of u0
k are determined by randomly

selecting |u0
k| numbers from [d] without replacement according to the probability

distribution
{
γj/
∑d

l=1 γl
}
j=1,...,d

.

This approach ensures the model sizes are around min(n, d)/3 and never exceed

min(n, d). Moreover, by making use of the variable association measures γj, the

resulting models are likely to contains the true signals so that their performance are

by no means poor.
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Figure B.1.: (Case 1) Schema performance (upper panel) and evolution (lower panel)
obtained from 500 simulation runs. Subfigure titles indicate simulation parameter
settings (n, d, s, ρ).

B.2 Supplementary Simulation Results

B.2.1 Schema Evolution

Figure B.1–B.6 present the additional results of schema evolution. The conclusions

we draw in Section 5.2 still applies for these results, even though the patterns for

high-dimensional (Cases 1–4) and low-dimensional (Cases 5 and 6) results are clearly

different.
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Figure B.2.: (Case 2) Schema performance (upper panel) and evolution (lower panel)
obtained from 500 simulation runs. Subfigure titles indicate simulation parameter
settings (n, d, s, ρ).

B.2.2 Variable Importance

Figure B.7–B.10 present additional simulation results of variable importance under

Cases 1, 3, 5 and 6. In Cases 1 and 3 (Figure B.7 and Figure B.8), we see the results

of GA and the SA are comparable, and slightly better than the RP in separating the

true signals from the rest in some cases (e.g., Xs under Case 1 with ρ = 0.9 and Xs+1

and Xs+2 under Case 3 with ρ = 0). However, under Cases 5 and 6 (Figure B.9 and

Figure B.10) the three methods are just comparable.
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Figure B.3.: (Case 3) Schema performance (upper panel) and evolution (lower panel)
obtained from 500 simulation runs. Subfigure titles indicate simulation parameter
settings (n, d, s, ρ).

B.3 Variable Coding for the Residential Building Dataset

The variable coding with descriptions and units for the residential building dataset

used in Section 6.2 is listed in Table B.1. Detailed explanations are omitted and can

be found in Table 1 of [24].
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Figure B.4.: (Case 4) Schema performance (upper panel) and evolution (lower panel)
obtained from 500 simulation runs. Subfigure titles indicate simulation parameter
settings (n, d, s, ρ).
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Figure B.5.: (Case 5) Schema performance (upper panel) and evolution (lower panel)
obtained from 500 simulation runs. Subfigure titles indicate simulation parameter
settings (n, d, s, ρ).
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Figure B.6.: (Case 6) Schema performance (upper panel) and evolution (lower panel)
obtained from 500 simulation runs. Subfigure titles indicate simulation parameter
settings (n, d, s, ρ).
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Figure B.7.: (Case 1) Averaged SOIL measures.
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Figure B.8.: (Case 3) Averaged SOIL measures.
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Figure B.9.: (Case 5) Averaged SOIL measures.
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Figure B.10.: (Case 6) Averaged SOIL measures.
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Table B.1.: Variable coding for the residential building dataset.

Code Descriptions Unit
Project Physical and Financial (PF) Variables
PF-1 Project locality defined in terms of zip codes N/A
PF-2 Total floor area of the building m2

PF-3 Lot area m2

PF-4 Total preliminary estimated construction cost based on the
prices at the beginning of the project

107 IRRm

PF-5 Preliminary estimated construction cost based on the prices
at the beginning of the project

105 IRRm

PF-6 Equivalent preliminary estimated construction cost based
on the prices at the beginning of the project in a selected
base year

105 IRRm

PF-7 Duration of construction Time resolution
PF-8 Price of the unit at the beginning of the project per m2 105 IRRm

Economic Variables and Indexes (EVI)
EVI-01 The number of building permits issued N/A
EVI-02 Building services index (BSI) for a preselected base year N/A
EVI-03 Wholesale price index (WPI) of building materials for the

base year
N/A

EVI-04 Total floor areas of building permits issued by the
city/municipality

m2

EVI-05 Cumulative liquidity 107 IRRm

EVI-06 Private sector investment in new buildings 107 IRRm

EVI-07 Land price index for the base year 107 IRRm

EVI-08 The number of loans extended by banks in a time resolution N/A
EVI-09 The amount of loans extended by banks in a time resolution 107 IRRm

EVI-10 The interest rate for loan in a time resolution %
EVI-11 The average construction cost of buildings by private sector

at the time of completion of construction
105 IRRm/m2

EVI-12 The average of construction cost of buildings by private sec-
tor at the beginning of the construction

105 IRRm/m2

EVI-13 Official exchange rate with respect to dollars IRRm

EVI-14 Nonofficial (street market) exchange rate with respect to
dollars

IRRm

EVI-15 Consumer price index (CPI) in the base year N/A
EVI-16 CPI of housing, water, fuel and power in the base year N/A
EVI-17 Stock market index N/A
EVI-18 Population of the city N/A
EVI-19 Gold price per ounce IRRm
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