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ABSTRACT 

Understanding protein-protein interactions (PPIs) in a cell is essential for learning protein 

functions, pathways, and mechanisms of diseases. This dissertation introduces the computational 

method to predict PPIs. In the first chapter, the history of identifying protein interactions and some 

experimental methods are introduced. Because interacting proteins share similar functions, protein 

function similarity can be used as a feature to predict PPIs. NaviGO server is developed for 

biologists and bioinformaticians to visualize the gene ontology relationship and quantify their 

similarity scores. Furthermore, the computational features used to predict PPIs are summarized. 

This will help researchers from the computational field to understand the rationale of extracting 

biological features and also benefit the researcher with a biology background to understand the 

computational work. After understanding various computational features, the computational 

prediction method to identify large-scale PPIs was developed and applied to Arabidopsis, maize, 

and soybean in a whole-genomic scale. Novel predicted PPIs were provided and were grouped 

based on prediction confidence level, which can be used as a testable hypothesis to guide biologists’ 

experiments. Since affinity chromatography combined with mass spectrometry technique 

introduces high false PPIs, the computational method was combined with mass spectrometry data 

to aid the identification of high confident PPIs in large-scale. Lastly, some remaining challenges 

of the computational PPI prediction methods and future works are discussed.  
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CHAPTER 1. INTRODUCTION 

1.1 History of Protein and Protein-Protein Interaction 

The term “protein” was commonly assumed to be first originated in the letter between the 

Swedish chemist Jons Jacob Berzelius Berzelius and the Dutch Chemist Gerardus Johannes 

Mulder in 1838. Protein was described as the substance commonly presenting in the plant and 

animal albumin, silk, eggs, blood serum, and blood fibrin. At that time, the biological function of 

the protein and how the molecules made up the protein were not clear. Later, as the discovery of 

enzyme and fermentation process, it was shown that proteins play an important role in metabolism 

[1]. With the invention of ultracentrifugation, Svedberg did sedimentation experiments on 

hemocyanins and suggested that the protein consisted of small subunits in 1928 [2]. After Sanger 

and Thompson determined the complete amino acid sequence of insulin A and B in the 1950s, the 

consistent of protein were concluded as “each protein has its own unique (amino acid) arrangement; 

an arrangement that endows it with its particular properties and specificities and fits it for the 

function that it performs in nature” [3, 4]. 

One of the first identified regulatory protein-protein interaction is between trypsin and its 

inhibitor antitrypsin by a quantitative kinetic study of the trypsin activity. The activity of the 

enzyme-inhibitor complex was decreased slower than pure enzyme after dilution, which indicates 

that the dissociation of the enzyme-inhibitor complex results in the slower decreased activity [1, 

5]. Later on, with more and more protein-protein interactions (PPIs) were identified, the 

importance of PPIs started to become appreciated. 

1.2 Experimental Methods to Identify Protein-Protein Interactions 

Identification of protein-protein interactions (PPIs) is important for understanding how 

proteins work together in a coordinated fashion in a cell to perform cellular functions. The 

experimental identification methods could be classified by biochemical and biophysical methods  

into two broader categories. 
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1.2.1 Biochemical methods 

Several biochemical experimental methods are available for determining individual PPIs. 

Co-immunoprecipitation [6], is the most common method to identify PPIs in vivo. In this method, 

one protein binds with a specific antibody. If the other protein interacts with the antibody bond 

protein, the interacting partner is be pulled down together and identified by western plot. However, 

it is also possible that two proteins bind together via bridge proteins. Tandem affinity purification 

is an immunoprecipitation-based technique for identifying PPIs. The two proteins of interest are 

bound to two types of agarose beads so that they can be separated by purification. If the two 

proteins are co-purified, it indicates a PPI. Cross-linking is another biochemical method to create 

a chemical cross-linker between interacting proteins [7]. This method can help to stabilize the 

weak or transient protein interactions. Commonly used cross-linkers include non-cleavable NHS-

ester cross-linker and the imidoester cross-linker dimethyl dithiobispropionimidate [8]. 

1.2.2 Biophysical methods 

A type of biophysical method is called protein-fragment complementation assay [9]. Where 

a reporter protein is fragmented into two pieces and expressed together with two query proteins. 

If the query protein pairs interact with each other, the reporter gene can fuse together and fold into 

an active reporter. Bimolecular fluorescence complementation is one of this type of biochemical 

experimental methods when the reporter protein is fluorescent protein. Another very similar type 

to protein-fragment complementary assay is called fluorescence resonance energy transfer [10]. 

When the query protein pairs interact, fluorescence resonance energy transfer occurs between the 

pairs of fluorophore molecules bond with query protein pairs. Because environmental conditions 

can significantly affect the protein expression, posttranslational modifications, and protein folding 

and therefore interfere the protein interactions. Moreover, from late 1990s, another in vivo protein-

fragment complementary assay called yeast two-hybrid was developed [11]. In this method, the 

binding domain of transcription factor with bait binds to upstream activating sequence. If the prey 

protein with activating domain of transcription factor binds to the bait, it will activate the 

downstream reporter gene. However, yeast-two hybrids assay yields to high false-positive rate [12]. 

Previous methods require the attachment of proteins to the query protein pairs. Surface 

plasmon resonance [13] is the most common label-free method to detect PPIs. In this method, one 
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protein is immobilized on the metal surface of the biosensor. And its partner protein flows through 

the immobilized protein. If two proteins interact and bind together, the light reflection on the metal 

surface changes. The most quantitative biophysical experiment to identify PPIs is isothermal 

titration calorimetry [14]. It measures the binding affinity, the stoichiometry, and entropy of the 

PPIs in a single experiment. Ultimately, biophysical methods such as nuclear magnetic resonance 

spectroscopy (NMR) [15, 16], X-ray crystallography [17], and electron microscopy [18], can be 

used to determine the tertiary structure of protein complexes to obtain detailed atomic or molecular 

level information about how the proteins interact. Another large-scale identification method is 

affinity chromatography combined with mass spectrometry [19-22]. However, this method also 

generates false positive interactions. Because proteins can co-elute from the chromatography 

because of the similar protein size or charge, it doesn’t necessarily indicate their physical 

interactions. In the next section, the limitations of the experimental methods will be further 

discussed. 

1.3 Limitations of experimental methods 

However, experimental methods have several shortcomings for detecting PPIs. First, these 

experimental methods are time-consuming and labor-intensive. Second, the applicability of 

experimental methods depends on how well assay protocols are established in target organisms. 

Also, a method might not work on some classes of proteins [23, 24]. Third, it is known that 

experimental methods often have difficulty in identifying weak interactions, which leaves out 

many transient interactions [25]. Fourth, it is discussed that results of large-scale methods often 

have a substantial disagreement with each other, which might be partly due to false positives and 

false negatives [26-28]. 

Consequently, PPIs have been identified only for a limited number of organisms; moreover, 

the coverage of PPI networks is very small for the majority of organisms. This is particularly true 

for plant species. Table 1.1 shows the statistics of experimentally identified PPIs in representative 

plant species taken from the BioGRID database [29]. Surprisingly, except for Arabidopsis thaliana, 

virtually no other plant species have experimentally determined PPI data available. Even for 

Arabidopsis, known PPI data cover interactions with only about 35% of proteins. Other 

representative plant species cover even less protein involved in known PPIs. Thus, it is apparent 

that plants are largely lagged behind from PPI studies (Table 1.1). In this omics era when various 
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types of large-scale data are combined and used for formulating hypotheses and to interpret 

experimental data, PPI networks are fundamental reference data to have for studying an organism.  

Table 1.1 Statistics of the number of experimentally determined PPIs in representative plant 
species.  

Organism Common 

Name 

Number of 

Protein genes 

Identified 

unique PPIs 

Unique 

Proteins 

in PPIs 

Fraction of proteins 

involved in known 

PPIs (%) 

Arabidopsis 

thaliana  

mousear 

cress 
27,636 35,908 9,574 34.55 

Zea mays maize 37,376 13 21 0.06 

Glycine max soy bean 46,993 39 43 0.09 

Oryza sativa 

(Japonica) 
rice 35,679 90 72 0.20 

Solanum 

lycopersicum 
tomato 25,613 107 44 0.17 

Solanum 

tuberosum 
potato 28,463 2 3 0.01 

Note: The statistics of PPIs were taken from the BioGRID database. The number of protein genes were taken from the 
KEGG database. 

1.4 Contributions 

The major contribution of this work is to develop a computational method to predict PPIs 

which can be applied to the large-scale prediction on other plant genome and can aid PPIs 

identification by size-exclusion chromatography combined with mass spectrometry (SEC-LC/MS) 

method. There are several barriers to predict PPIs with computational methods including the 

availability of some features such as annotated gene ontology (GO) terms. To fill this gap, the 

protein without annotated GO terms can be predicted by Protein Function Prediction (PFP) web 

server [30]. The PFP assigns the GO terms to query protein based on sequence similarity between 

the query protein sequence and proteins with annotated GO terms. Then the protein functional 

similarity can be quantified with a very convenient web application NaviGO. Chapter 2 introduces 

how to visualize the GO term relationship and quantify functional similarity.  
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There are several ways to extract useful features for predicting PPIs. Chapter 3 summarizes 

the common types of features which have been proven to be effective in prediction PPIs, including 

sequence-based, genomic-based, functional-based, co-expression based, protein tertiary structure-

based, and PPI network topology based features. 

Another problem faced by computational prediction of PPIs is the reliability of 

experimentally identified PPIs. Based on the statistics, BioGrid database, there are 1,345,800 PPIs 

are identified by experimental method [29]. 50.5% (679,718 out of 1,345,800) are physical 

interactions. When the known PPIs are used as training data to build the model, the reliability of 

the PPIs needs to be checked. The training data used in Chapter 4 only includes the physical PPIs, 

therefore our prediction focuses on physical interaction. The PPI prediction method was applied 

to common commercial plants including maize and soybean to increase the number of PPIs in 

these two species.  

Finally, in Chapter 5, the computational PPI prediction method was applied with SEC-

LC/MS to aid the identification of high-confident PPIs. In this work, I’m not only able to identify 

the commonly known protein complexes but also identified some interesting protein complexes 

with high probability score in the STRING database and high functional correlation of their 

subunits. 

PPIs is very important to establish functionality in the cellular processes. Computational 

methods are an important complement to experimental methods to boost up the number of PPIs in 

the not very well studied species. Computationally predicted PPIs, as well as their predicted 

probabilities and feature scores, can serve as the testable hypothesis to guide biologists. 
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CHAPTER 2. COMPUTING AND VISUALIZING GENE AND 

PROTEIN FUNCTION SIMILARITY WITH NAVIGO1 

2.1 Background 

The Gene ontology (GO) is a widely-used vocabulary for representing gene functions across 

all species [33, 34]. It is maintained and updated by the Gene Ontology Consortium. Currently, 

GO terms are classified into three categories: Biological Process (BP), which describes pathway 

information of gene products such as cellular physiological process or signal transduction, 

Molecular Function (MF), which describes molecular level activities such as enzymatic activity, 

and Cellular Component (CC), which describe cellular localization of gene products. Currently, 

there are over 46,000 GO terms, which are organized in a hierarchical structure, a directed acyclic 

graph (DAG). GO is very useful, particularly for computational analysis of gene functions; 

however, the volume of the vocabulary and the complicated relationships often make analysis 

cumbersome. 

NaviGO was developed to facilitate easy handling of GO terms, particularly for quantifying 

and visualizing relationships between GO terms [31]. NaviGO has four main functions: “GO 

Parents”, “GO Set”, “GO Enrichment”, and “Protein Set”. “GO Parents” maps and visualizes the 

hierarchical relationship of GO terms in an interactive fashion and “GO Set” calculates six 

functional similarity and association scores, and provides two visualization tools,  a network and 

a multidimensional scaling visualization. For a list of proteins and associated GO terms, “GO 

Enrichment” performs GO enrichment analysis, while “Protein Set” identifies functionally related 

proteins. Compared with other related online tools [35, 36], NaviGO server has several advantages: 

first, it provides multiple similarity scores, which not only compare GO terms in the same GO 

category but also across GO categories. NaviGO provides biologists an intuitive and interactive 

tool to visualize parental relationships between GO terms. NaviGO is also integrated into the 

popular gene function prediction webservers PFP [30, 37] and ESG [38, 39]. 

 
1 Portions of this chapter have been previously published 31. Wei, Q., et al., NaviGO: interactive tool for 
visualization and functional similarity and coherence analysis with gene ontology. BMC Bioinformatics, 2017. 18(1): 
p. 177, 32. Ding, Z., Q. Wei, and D. Kihara, Computing and Visualizing Gene Function Similarity and 
Coherence with NaviGO, in Data Mining for Systems Biology. 2018, Springer. p. 113-130. 
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2.2 Methods 

2.2.1 Access to NaviGO 

NaviGO can be freely accessed at http://kiharalab.org/web/navigo/. It is a web application 

and does not require any platform other than a web browser. The source codes of NaviGO and 

GOVisualizer, a tool for visualizing the hierarchy of GO terms, can be downloaded from Github 

at https://github.com/kiharalab/NaviGO and https://github.com/kiharalab/GOVisualizer under the 

terms of the GNU Lesser General Public License Ver. 2.1. 

In order to use NaviGO, users need to provide a set of GO terms or a set of UniProt IDs of 

proteins and associated GO terms to be analyzed. These can be retrieved from the Gene Ontology 

Consortium website  (http://www.geneontology.org/) [33] or from the UniProt database 

(http://www.uniprot.org/) [40], respectively. 

2.2.2 GO similarity/association scores 

In NaviGO, six scores can be used to quantify similarity or association relationship of GO 

terms. Three scores are for quantifying semantic similarity of GO terms: Resnik’s, Lin’s, and the 

relevant semantic similarity score. The other three scores, CAS, PAS, and IAS are for quantifying 

GO associations. Detailed explanation of the scores is provided in separate sections below. 

To quantify the functional similarity of two genes, the funsim score [30, 41] is used. Funsim of 

two sets of terms, i.e. GO annotations of two genes, is calculated from an all-by-all similarity 

matrix, where each entry of the matrix is a similarity score of users’ choice between a GO pair. 

2.2.3 CAS and PAS 

Previously two function association scores, Co-occurrence Association Score (CAS) and 

PubMed Association Score (PAS) were developed [42]. CAS quantifies frequency of co-occurring 

GO terms within the gene annotations in the GOA database while PAS takes consideration of co-

occurrence of GO terms in PubMed abstracts. A characteristic differentiating the two methods 

from other methods is that the two scores can be defined cross-domain associations between GO 

terms, i.e. terms from Molecular Function (MF) and Biological Process (BP), those from MF and 

Cellular Component (CC), and those from BP and CC. 

)*+(", () =

/(0,1)
∑ /(0,1)01
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∑ /(3)3
)(

/(1)
∑ /(3)3

)
        (Equation 2.1) 
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where C(i,j) is the number of sequences in the database that contain both the GO terms i 

and j.  Similarly, C(i) is the total number of sequences annotated with the GO term i, and so is the 

C(j). The numerator of Eqn. 1, 
4(5,6)

∑ 4(5,6)01
, is essentially the fraction of sequences that are annotated 

with two particular GO terms, i and j, among all the sequences in the database. The denominator 

multiplies the fraction (probability) of sequences in the database that are annotated with GO term 

i and the fraction of sequences in the database that are annotated with GO term j. Thus, it is the 

expected fraction of sequences in the database with the two GO annotations, i and j, if i and j are 

randomly assigned to sequences. Using the numerator and the denominator, altogether CAS 

quantifies how often two GO terms i and j co-annotate sequences relative to the random chance. 

CAS = 1 means that the observation of co-annotation of i and j is the same as expected by the 

random chance, and a larger value indicates that i and j are correlated in gene annotation. 

 Similarly, PAS is defined as: 

7*+(", () =

89:(0,1)	
∑ 89:(0,1)0,1

(
89:(0)

∑ 89:(3)3
)(

89:(1)
∑ 89:(3)3

)
	=

;<=(5,6)

;<=(5);<=(6)
∙
(∑ ;<=(?)3 )@

∑ ;<=(?,A)3,B
		    (Equation 2.2) 

Here, Pub(i,j) is the number of PubMed abstracts which contain both the GO terms i and j. 

Similarly, Pub(i) is the number of abstracts that contain GO term i and the same is applicable for 

Pub(j). The numerator of Eqn. 2, 
;<=(5,6)

∑ 	;<=(5,6)01
, is the fraction of abstracts in PubMed that mention 

two particular GO terms, i and j, among all the abstracts in the PubMed database. The denominator 

multiplies the fraction (probability) of abstracts in PubMed that mention GO term i and the fraction 

of abstracts that mention GO term j. Thus, it is the expected fraction of abstracts in the database 

with the two GO annotations, i and j, if i and j randomly show up in abstracts. Altogether, PAS 

quantifies how often two GO terms i and j are co-mentioned in PubMed abstracts relative to the 

random chance. PAS = 1 means that GO term i and j are not related, and a larger value indicates 

that i and j are related and frequently co-mentioned in biological contexts. Importantly, it is 

possible that GO terms that do not have a high functional similar scores (Resnik, Lin’s, and 

Relevance Similarity scores) have a high CAS or PAS. High PAS and CAS implies that proteins 

with the GO term annotation are functionally related and play roles in the same biological context, 

e.g. pathways.  
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2.2.4 IAS 

The Interaction Association Score (IAS) [43] captures the propensity of GO term pairs to 

occur in interacting proteins by counting the number of GO term pair that occur in interacting 

proteins normalized by random chance. Thus, high IAS between a protein pair indicates a high 

possibility that the protein pairs interact with each other. The GO_IAS for each GO term pair was 

computed as follows:  

CD_F*+(CDG, CDH) =
I(JKL,JKM)
#O.QRSTU

V
I(JKL)
#O.IWRTU

XV
I(JKM)
#O.IWRTU

X
	       (Equation 2.3) 

where N(GOx-GOy) is the number of times GO term pair GOx and GOy interact in PPI networks, 

#T.Edges is the total number of interactions (edges) in PPI networks, N(GOx) and N(GOy) are the 

number of times GOx and GOy independently occur in proteins the networks, and #T.Nodes is the 

total number of proteins in the PPI networks. Figure 2.9 shows an example of a small PPI network. 

This network has 5 edges between 5 proteins; 3 proteins are annotated with GO:1, and 2 proteins 

with GO:2. There are 2 edges that connects between GO:1 and GO:2 (P1 to P2 and P2 to P4). 

From this network, GO_IAS for GO:1 and GO:2 is computed as (2/5)/((3/5)(2/5)) = 1.67. Similar 

to PAS and CAS, IAS quantifies how often two GO terms i and j are observed in physically 

interacting proteins in a protein-protein interaction network relative to the expected number of 

observations by the random chance. If two proteins are annotated with GO terms that have high 

IAS, it suggests that the proteins might physically interact with each other. 

Significant difference between CAS, PAS, and IAS from conventional GO functional 

similarity scores described in the next section is that the former three scores quantifies functional 

relevance of GO term pairs in biological contexts, co-annotation to genes (CAS), co-mention in 

PubMed abstracts (PAS), and interacting protein pairs (IAS). Due to the design, these scores are 

capable of identifying proteins in the same pathways (CAS, PAS) [42] and physical interacting 

proteins (IAS) [43]. Correlation of CAS/PAS/IAS to regular functional similarity scores (below) 

is not very high [42, 43], because proteins in the same pathway and physically interacting proteins 

are not necessarily having similar function. 
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2.2.5 Resnik, Lin’s, and Relevance Similarity Scores 

For quantifying GO term similarity, NaviGO provides three score options. The Resnik’s 

[41] similarity score measures the semantic similarity of a GO term pair according to the lowest 

common ancestor (LCA) of the GO term pair, while the Lin’s similarity is based on the information 

content of LCA and the GO term pair queried [42]. 

Y"Z[\]^5?(_`, _a) 	= max
4∈f(4g,4@)

(− log l(_))       (Equation 2.4) 

Y"Zm5^(_`, _a) 	= max
4∈f(4g,4@)

(
a∙Ano	p(4)

Ano	p(4g)qAno	p(4@)
)                  (Equation 2.5) 

 

Here p(c) is the probability of a GO term c, which is defined as the fraction of the occurrence of c 

in the GO Database. s(c1,c2) is the set of common ancestors of the GO terms c1 and c2. The root 

of the ontology has a probability of 1.0. 

The relevance semantic similarity score (simRel) [41] for computing functional similarity 

of a pair of GO terms, c1 and c2: 

Y"Z[\A(_`, _a) 	= max
4∈f(4g,4@)

(
a∙Ano	p(4)

Ano	p(4g)qAno	p(4@)
∙ (1 − l(_)))    (Equation 2.6) 

 

The first term considers the relative depth of the common ancestor c to the average depth of the 

two terms c1 and c2 while the second term takes into account how rare it is to identify the common 

ancestor c by chance. 

2.2.6 Functional Similarity Score of Gene Pairs  

To quantify the functional similarity of two annotated genes, the funsim score was used 

[30, 41]. The funsim score of two sets of terms, GOA and GOB for gene A and B, of a respective 

size of N and M, is calculated from an all-by-all similarity matrix sij. 

Y56 = Y"ZsCD5
t, CD6

uv
∀5∈{`..y},∀6∈{`..{}

                       (Equation 2.7) 

For sim(GOi
A, GOi

B), the relevance similarity score is usually used but other scores can be 

used, too. Since the relevance similarity score is defined only for GO pairs of the same category, 

a matrix is computed separately for the three categories, BP, CC, and MF:   
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GOscore will be any of the three category scores (MFscore, BPscore, CCscore). Finally, 

the funsim score is computed as  

ÅÇÉY"Z =
`
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{Ü]4n|\

áàâ({Ü]4n|\)
X
a
+ V

u;]4n|\

áàâ(u;]4n|\)
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áàâ(ãã]4n|\)
X
a
å  (Equation 2.9) 

where max(GOscore) = 1 (maximum possible GOscore) and the range of the funSim score is [0, 

1].  

2.2.7 Gene Ontology Enrichment Analysis 

The probability of a GO term X being annotated to a protein in the cluster is computed by: 

Å(ç;è,Z, É) = 	
sê3 vs

Iëê
íëì v

sIív
                                       (Equation 2.10) 

where k is the number of proteins in the cluster annotated with X, N is the number of annotated 

proteins in the organism, m is the number of proteins in the organism annotated with X, and n is 

the number of annotated proteins in the cluster. To calculate a p-value for overrepresentation of a 

term, the following equation is used: 

7îo(ï) = ∑ Å("; è,Z, k)^
5�?                                        (Equation 2.11) 

2.3 Using NaviGO to Visualize GO Terms and Quantify Similarity 

2.3.1 Overview of NaviGO 

The NaviGO server has four main functions (Figure 2.1). Either a set of GO terms or a set 

of proteins (with their GO terms) can be analyzed. For a set of GO terms, the “GO Parents” tab 

visualizes input GO terms in the GO DAG, and the “GO Set” tab calculates the functional 

similarity and association scores and visualizes them. On the other hand, for a list of proteins with 

their GO terms, the “GO Enrichment” tab performs GO enrichment analysis and the “Protein Set” 

tab calculates functional similarity and association scores between proteins (Figure 2.1). 

Throughout this tutorial, the following six proteins were used, which are involved in the 

light signaling pathway, as examples: phytochrome A (PHYA, UniProt ID: P14712), phytochrome 

B (PHYB, UniProt ID: P14713), phytochrome D (PHYD, UniProt ID: P42497), phytochrome-

interacting factor 3 (PIF3, UniProt ID: O80536), pseudo-response regulator 7 (PRR7, UniProt ID: 

A0A1P8BCB0), and histone deacetylase 15 (HDA15, UniProt ID: Q8GXJ1) (Table 1). PHYA, 

PHYB, and PHYD are from the phytochrome family and mainly function as red and far-red 
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photoreceptors. They have been experimentally verified to interact with each other [44]. 

Interaction of the transcription factor PIF3 with the phytochrome family causes phosphorylation 

and degradation of phytochrome [45, 46]. Interaction of PIF3 with HDA15, a transcriptional 

repressor, represses the chlorophyll biosynthesis and the photosynthesis [47]. PRR7 is one of the 

key components of molecular clock in Arabidopsis and involved in the phytochrome- mediated 

red light signal transduction pathway [48]. PRR7 interacts with phytochrome and PIF to regulate 

the red light signal transduction. Known physical interactions of the six proteins are summarized 

in Figure 2.2. 

 

 

Figure 2.1 Overview of NaviGO functionality. Input to be analyzed can be either a set of GO 
terms or a set of protein 
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Figure 2.2 The interaction relationship of the six example proteins. These six proteins are involved 
in the light signaling pathway. 

 

2.3.2 Quantification and visualization of GO term association and similarity 

The “GO Set” tab computes six GO term similarity and association scores for all the pairs of 

input GO terms. The scores are Resnik’s, Lin’s, Relevance similarity score (RSS), the interaction 

association score (IAS), the PubMed association score (PAS), and the co-occurrence association 

score (CAS). The first three scores quantify similarity of a GO term pair of the same category. 

They are calculated based on the frequencies of two GO terms in the gene annotation database and 

their location in the GO DAG [41, 49, 50]. Among the three scores, RSS not only considers the 

relative depth of the common ancestor between the two GO terms, but also considers how rare the 

query GO terms are to identify the common ancestor. The last three semantic-based functional 

similarity scores were developed by our group. IAS quantifies the probability that two GO terms 

appear in physically interacting protein pairs [51]. PAS and CAS quantify the frequency with 

which two GO terms appear in the same PubMed abstract and in a single gene annotation, 

respectively [52].  

To use the “GO Set” tab, please follow the steps described below: 

1. Enter your input in the box. The input format of the “GO set” tab is a list of GO terms 

separated by comma. Users can upload a formatted file or type in the GO term ID. As a 
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GO term ID is being typed, NaviGO will automatically recognize the GO term with the 

number and show candidates in a pull-down list. Thus, users can choose one from the list.  

2. For example, “GO:0005737” can be retrieved after typing “5737” and clicking the first 

GO term in the pull-down list (Figure 2.3). 

3. To empty inputs, click the “Reset button” located above the input box. To delete a single 

GO terms in the input box, click the “X” sign at the GO term. 

4. Click the “Submit” button below the input box will start the analysis and show a result 

page when done. 

At the top of the results page, query GO term scores are listed in colors that indicate categories: 

BP terms are in red, MF in blue, and CC in yellow (Figure 2.4, top). The numbers on the right side 

of GO terms are the counts of each GO term in the input. Clicking the BP/MF/CC Visualizer button 

below the query GO term list will open a new page that shows the GO terms of the category in the 

GO DAG (Figure 2.5). The color legends of GO terms are listed on the right side, and colors of 

GO term relationships are shown in the left upper corner of the page. The query GO terms are 

shown in a larger font in the DAG. Clicking a GO term in a graph will expend links to all the 

children GO terms. In the example shown in Figure 2.5, seven molecular function GO terms are 

mapped (Figure 2.5). We can see that the GO terms locate in two branches, photoreceptor activity 

and protein binding activity. 

Pairwise GO term scores are calculated and listed in the table below the input GO term list 

(Figure 2.4, bottom). GO pairs in the table can be sorted by a score by clicking the title of the 

score column. If the members of a pair of GO terms do not belong to the same category or the 

score of the pair is not available, “n/a” is shown. The significance level of scores in each column 

are indicated in a color scale, from light pink to red as the significance level increases. Clicking 

the “+” in the “common parents” column expands the list of all common parents of the GO pair 

in the GO DAG. Clicking a GO term will take users to the AmiGO website, which provides 

more detailed information of the term. The results table can be also downloaded in a comma 

separated data file (a CSV format file) by clicking the “CSV file” button. 
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Figure 2.3 Example of inputting GO terms 
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Figure 2.4 In Figure 2.4, a part of the result page for the example input in Table 2.1 is 

shown. IAS of the BP term GO:0009584 (related to detection of visible light) and the MF term 

GO:00031516 (far-red light photoreceptor activity) is highlighted in red, because the score 

1480.737 is within the top 1% of scores relative to the score background distribution. Both GO 

terms annotate the phytochrome proteins, which are known to form heterodimers [44], so it is 

reasonable that the two GO terms annotating these interacting proteins have a very high IAS.
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Figure 2.5 Hierarchical graph representation using GO Visualizer. Seven molecular function GO 
terms are visualized here, GO:0031517, GO:0009881, GO:0009883, GO:0031516, GO:0042802, 
GO:0042803, and GO:0046983. Clicking a GO term expands edges to all the children GO terms. 
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NaviGO provides two types of visualizations for GO pairwise score results.  One is a 

network visualization available under the “Network Visualization” tab (Figure 2.6). In the network, 

functionally related GO terms are connected by edges. The score cutoff value to define edges can 

be controlled by a sliding the bar or by typing the value in a text box. The scores to visualize can 

be chosen at the upper left corner of the page. In the example in Figure 2.6, the same set of GO 

terms as Figure 2.5 was used. In the network with RSS (Figure 2.6, left), the GO terms were 

clustered into two groups, which is consistent with the two branches in the GO hierarchy shown 

in Figure 2.5. Using IAS, all GO terms are connected (Figure 2.6B). This is also reasonable 

because these terms are associated with light signaling proteins, and they are known to interact 

with each other as shown in Figure 2.2. 

The second visualization is available at the “Multidimensional Scaling Visualization” tab. 

In this two-dimensional (2D) graph, GO terms are classified and mapped onto a 2D space with 

two scores selected by users. Placing the cursor over a GO term will show the normalized 

functional score of the GO term. In the example in Figure 2.7, the x-axis is RSS and the y-axis is 

PAS. The GO terms are largely classified in two groups, which is again consistent with the results 

in Figure 2.5 and Figure 2.6. 

2.3.3 GO enrichment analysis 

The goal of GO enrichment analysis is to find if any GO term appears more frequently in 

a set of proteins than would be expected from the background frequency of the term in the genome. 

The significance of protein is quantified by a p-value. A p-value of a GO term for a protein set is 

calculated by considering the number of proteins in the set, the number of proteins annotated with 

the GO term in the genome, and the total number of proteins in the organism. The smaller the p-

value is, the more significant the GO term is.  

The input format of the “GO Enrichment” tab is a list of UniProt IDs associated with GO 

terms, e.g. “A0A1P8BCB0 GO:0005634, GO:0000160”.  NaviGO automatically identifies the 

organism based on the UniProt ID of the first protein in the input. 

In the results page, GO terms of input proteins are sorted by their p-value (Figure 2.8). The 

significant p-value (below 0.00005 or top 30) GO terms are highlighted in red. The total number 

of significantly enriched GO terms is counted in the box on the left from “Open GO Visualizer”. 

The third column shows the number of input proteins that have the GO term. In the example shown 
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in Figure 2.8, the most enriched GO term among the proteins from Arabidopsis is 

GO:0000155 phosphorelay sensor kinase activity with a p-value of 3.57E-10 and 

GO:0018298 protein-chromophore linkage with a p-value of 8.11E-9. 

Enriched GO terms with p-value above 0.00005 (or the top 30 GO terms) can be mapped 

to the GO hierarchy by clicking “open GO Visualizer”. The enriched GO terms are shown in a 

larger font and colored based on p-value from red to yellow indicating most to least significance.  

The figure can be downloaded by clicking “Download Figure Here”. In the example in Figure 2.9, 

the significantly enriched GO terms are involved in the signal receptor activity such as GO: 

0000155, “phosphorelay sensor kinase activity” with p-value of 3.57e-10 and GO:0009883, “red 

or far-red light photoreceptor” with p-value of 8.43e-8. Also, GO terms identified as enriched are 

involve in red or far-red light signaling pathway such as GO:0010161, “red light signaling pathway” 

with p-value of 8.43e-8, and detection of light stimulus such as GO:0009854, “detection of visible 

light” with p-value of 4.10e-8. 

 

 
Figure 2.6 The network of functional association score of seven GO terms. The GO terms are 

GO:0031517, GO:0009881, GO:0009883, GO:0031516, GO:0042802, GO:0042803, and 
GO:0046983. (a) Network using RSS with a cut-off value of 0.3. (b) Network using IAS with a 

cut-off value of 100. 
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Figure 2.7 The multidimensional scaling visualization of seven GO terms. The GO terms are 

GO:0031517, GO:0009881, GO:0009883, GO:0031516, GO:0042802, GO:0042803 and 
GO:0046983. 
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Table 2.1 List of the six example proteins and their associated GO terms. 

Protein 
Name 

Uniprot ID CC MF BP 

PHYA P14712 GO:0005737, 
GO:0016604, 
GO:0016607, 
GO:0005634 

GO:0031516, 
GO:0042802, 
GO:0003729, 
GO:0000155, 
GO:0042803, 
GO:0004672, 
GO:0009883 

GO:0009584, GO:0009630, 
GO:0017148, GO:0009640, 
GO:0009638, GO:0018298, 
GO:0017006, GO:0010161, 
GO:0006355, GO:0046685, 
GO:0010201, GO:0010218, 
GO:0010203, GO:0006351 

PHYB P14713 GO:0005829, 
GO:0016604, 
GO:0016607, 
GO:0005634 

GO:0031516, 
GO:0042802, 
GO:0000155, 
GO:1990841, 
GO:0042803, 
GO:0031517, 
GO:0009883, 
GO:0043565 

GO:0009687, GO:0006325, 
GO:0010617, GO:0009584, 
GO:0009649, GO:0009630, 
GO:0009867, GO:0045892, 
GO:0009640, GO:0015979, 
GO:0009638, GO:0018298, 
GO:0017012, GO:0010161, 
GO:0031347, GO:2000028, 
GO:0010029, GO:0009409, 
GO:0010218, GO:0010244, 
GO:0010202, GO:0009266, 
GO:0010374, GO:0006351, 
GO:0010148 

PRR7 A0A1P8BCB0 GO:0005634 NA GO:0000160 

PIF3 O80536 GO:0005634 GO:0003677, 
GO:0042802, 
GO:0046983, 
GO:0003700 

GO:0009704, GO:0009740, 
GO:0031539, GO:0010017, 
GO:0009585, GO:0006355, 
GO:0009639, GO:0006351 

PHYD P42497 GO:0005634 GO:0042802, 
GO:0000155, 
GO:0009881, 
GO:0042803 

GO:0018298, GO:0017006, 
GO:0009585, GO:0006355, 
GO:0006351 

HDA15 Q8GXJ1 GO:0005634 GO:0046872, 
GO:0032041 

GO:0006355, GO:0006351 
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2.3.4 Quantifying functional association of proteins 

This function identifies protein pairs in a query protein set that have functional relevance. 

Using a GO pair score, functional relevance of a protein pair is evaluated by the funSim score [53], 

which is in essence the average GO pair scores of GO annotations of the two proteins. Eight 

different GO pair scores are used in NaviGO (Figure 2.10): “MF”, “BP”, and “CC” use RSS of the 

particular GO category, “BP+MF” is the funSim score using BP and MP, while “All” is the funSim 

using MF, BP, and CC. “PAS”, “CAS”, and “IAS” use the corresponding functional association 

scores to compute funSim. 

For example, when studying whether proteins exist in the same cellular component, it 

would be interesting to check the CC funSim score. When studying whether proteins are involved 

in the same pathway or biological process, users would want to check “BP”, “MF” or “BP+MF” 

columns. 

The input data is a list of proteins and their GO annotations, the same as described in the 

GO enrichment analysis. In the results table (Figure 2.10), the significance levels of scores are 

shown in color-scale (red to pink for high to low). Since the significant cut-off is defined by the 

score distribution of a particular organism, there is a pull-down menu above the table to select the 

reference organism. In this example of six proteins, they all have the same RSS score of CC (Figure 

2.10a), reflecting that all proteins are located in nucleus. PHYA (P14712) and PHYB (P14713) 

have a significantly high IAS of 1992.12, because they physically interact  with each other [54]. 

Sometimes, it is difficult to see the functional association between proteins by looking at the 

score numbers in the output table. NaviGO provides a network visualization, which is available at 

“Open in new Window” (Figure 2.10b). In the network, proteins are connected if their association 

scores are above a cut-off value. In the example, only HDA15 is not connected in the association 

network with IAS cut-off value set to 100. This is consistent with the STRING database [55], 

where only HDA15 has low binding scores with all the other proteins in this network. 

2.4 Function-Based PPI Prediction Methods 

Because interacting proteins belong to the same pathway and share function, therefore, 

functional similarity of proteins can be a clue for predicting PPIs. Functional similarity of proteins 

are usually quantified by a similarity score of Gene Ontology (GO) terms [56] that annotate the 
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proteins. Similarity of GO terms are defined by the closeness of the terms on the GO hierarchy 

tree and/or the frequency of the GO terms in gene annotations observed in an protein annotation 

database, e.g. UniProt [41, 49, 50] [57]. It was shown that including both common parental and 

children terms of GO terms, where common children terms are not used in the aforementioned 

scores that focus on quantifying similarity of parental terms in the GO hierarchy, improved PPI 

prediction accuracy [58]. Jain and Bader defined a GO similarity score by considering the distance 

to the leaf nodes in order to reduce the influence of imbalanced branch depths in the GO hierarchy 

[59]. 

GO term similarity (or relevance) can be also defined by counting frequency of co-

occurrence of GO term pairs in biological contexts, in gene annotation or PubMed abstracts [52] 

or in known PPIs [31, 51].  

Since PPI prediction is a suitable and handy application of GO term similarity scores, all the GO 

term scores above have been tested and compared for their performance of PPI predictions [51, 57, 

59, 60]. Maetsche et al. showed that when using GO terms for PPI prediction in machine learning 

framework, induced GO term sets, e.g. common parental terms of annotated GO terms, performed 

better rather than using the original GO annotations of proteins [61]. 

2.5 Discussion 

A web-based tool for analyzing GO terms and gene annotation was developed. Results are 

visualized by a user-friendly interactive panel, which provides intuitive understanding of gene 

function. A strength of NaviGO is that similarity or association of GO terms can be quantified in 

six different scores and it is equipped with real-time rendering of GO terms in the GO hierarchy. 

The unique feature of NaviGO should provide great convenience in functional analysis with GO 

for both bioinformatics researchers and biologists. Furthermore, NaviGO can also be used to 

compute the protein function similarity scores including the Relevance Semantic Similarity (RSS) 

score of 3 GO categories (MF, BP, CC), RSS of individual MF, BP or CC, RSS of BP and MR, 

IAS, PAS, and CAS. These functional similarity scores can be used as functional-based features 

to predict PPIs. 
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Figure 2.8 The GO enrichment analysis result of six proteins. The proteins are PHYA (P14712), 

PHYB (P14713), PRR7 (A0A1P8BCB0), PIF3 (O80536), PHYD (P42497), and HDA15 
(Q8GXJ1). 

  



 

 41 

 

 

 

 

 

 

Figure 2.9 Visualization of twelve significantly enriched GO terms. 
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Figure 2.10 Example of Protein Set analysis. (a) Results of Ppairwise protein association scores. 

(b) The protein association network of six proteins PHYA (P14712), PHYB (P14713), PRR7 

(A0A1P8BCB0), PIF3 (O80536), PHYD (P42497), and HDA15 (Q8GXJ1) with a cut-off value 

of 100. 
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CHAPTER 3. COMPUTATIONAL METHOD TO IDENTIFY 
PROTEIN- PROTEIN INTERACTIONS2 

3.1 Background 

To complement experimental methods for identifying PPIs, several computational methods 

have been developed [62]. These methods typically use a machine learning framework and 

consider various features of proteins as input. Protein features used for PPI prediction include 

occurrence of functional domains [63-65], short sequence patterns (e.g. n-grams, auto-covariation) 

[66-70], interlog (interaction inferred from homology) [71-75], codon usage [76], function [43, 

77], similarity in phylogenetic trees [78-80], phylogenetic profiles [55], gene expression [81], and 

protein docking prediction [82-85]. Although many approaches were explored, there are not many 

works that applied developed methods to provide new proteomics-scale PPI predictions. 

PPI prediction methods were classified into six large categories based on features of proteins 

considered as input information of the prediction. Protein sequence-based, comparative genomics-

based, structure-based, PPI network topology-based methods, and methods using integrated 

features have been employed. Below ideas behind methods that fall into each category are 

discussed.  

To develop a computational prediction method, one needs a dataset of known interacting 

protein pairs (a positive set) and a dataset of non-interacting protein pairs (a negative set), because 

the method needs to maximize its ability to distinguish between positive and negative datasets. A 

positive dataset is constructed from known PPIs stored in existing PPI databases (Table 3.1). On 

the other hand, constructing a negative dataset is not straightforward, because there are few 

collections protein pairs that are experimentally directly verified not to interact. To facilitate 

construction of a negative dataset, there is a database named Negatome, which collects protein 

pairs that are unlikely to interact by manual curation of literature and by analyzing protein 

complexes from the PDB [86]. Other commonly used strategies to construct a negative dataset is 

to pair proteins from different cellular locations or randomly pair proteins that appeared in the 

positive dataset excluding interacting pairs.

 
2 This chapter have been previously published 62. Ding, Z. and D. Kihara, Computational Methods for Predicting 
Protein‐Protein Interactions Using Various Protein Features. Current Protocols in Protein Science, 2018: p. e62. 
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Table 3.1 List of available protein-protein interaction databases. 

Database # of 
interactions 

Description Organisms Website Last update 

BioGrid  1,110,310 Manually curated PPIs 62 https://thebiogrid.or
g/ 

Mar 2017 

STRING  932,553,897 Protein associations 
including PPIs 

2,031 http://string-db.org/ Jan 2017 

DIP  81,731 Experimentally identified 
PPIs 

834 http://dip.doe-
mbi.ucla.edu/dip/M
ain.cgi 

Mar 2017 

CORUM  6,375 Manually curated protein 
complexes in mammals  

10 http://mips.helmhol
tz-
muenchen.de/coru
m/ 

Dec 2016 

IntAct  718,180 PPIs taken from literature 
and from user submissions 

Model organisms including 
human, mouse, yeast, fruitfly, C. 
elegans, E. coli, A. thaliana 

http://www.ebi.ac.u
k/intact/ 

Mar 2017 

MINT  125,464 Experimentally verified PPIs 
from literature 

611 http://mint.bio.unir
oma2.it/ 

Mar 2017 

InnateDB  367,478 Manually curated PPIs for 
mammalian innate immune 
response 

Human, mouse, 
B. taurus 

http://www.innated
b.com/ 

Nov 2016  

HPRD  41,327 PPI network of H. sapiens human http://www.hprd.or
g/ 

April 2010 

EcoCyc  6,399 Manually curated PPIs in E. 
coli K-12 MG1655 

E. coli https://ecocyc.org/ Dec 2016 

TAIR  8,826 Experimentally identified 
PPIs in A. thaliana 

A. thaliana https://www.arabid
opsis.org/ 

Sep 2011 

Note: References of databases: BioGrid: [29]; STRING: [87]; DIP: [88]; CORUM: [89]; IntAct: [90]; MINT: [91]; InnateDB: [92]; HPRD: [93]; EcoCyc: [94]; 
TAIR: [95]. 
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3.2 PPI Prediction Methods 

3.2.1 Sequence-Based Methods 

Many methods have been developed that use the amino acid sequence information of target 

proteins. The obvious advantage of using sequence information is that it is available for all proteins 

in an organism as long as its genome sequence is available.  

3.2.1.1 Motif/Domain-based approach 

The most straightforward approach in this category is to predict that two proteins interact 

with each other if they possess known sequence patterns of interacting proteins in their amino acid 

sequences. For example, Becerra et al. predicted PPIs between human immunodeficiency virus 1 

(HIV-1) and human cells by detecting sequence motifs of  protein interacting regions that have 

disordered structures [96]. Sequence patterns of known functional regions including PPI sites, 

which are called motifs or domains depending on the sequence length, are stored in public 

databases, such as ELM [97], InterPro [98], PROSITE [99], PRINTS [100], Pfam [101], and 

ProDom [102, 103].  

Instead of detecting specific motifs that are known as protein interaction sites, Sprinzak 

and Margalit computed the log-odds score of observing two motifs from the InterPro database in 

known interacting yeast protein pairs [104]. The log-odds value was computed as log$(&'(/&'&(), 

where &'( is the observed frequency of motif pair (i, j) observed in interacting proteins, and &' and 

&( are the frequencies of motif i and j in the data, respectively. If a query protein pair contains at 

least one of motif pairs that have a log-odds value above a threshold, they are predicted as 

interacting. Later, essentially the same approach was taken to count motif pairs in interacting 

proteins in the DIP database [105]. Above methods consider only single motif pair from each 

protein pair. Chen and Liu extended the methods by considering contributions of all the possible 

pairs of 4293 Pfam domain combinations [106]. Each protein pair was represented with 4293 

dimensional vectors with 0 indicating absence of a domain in neither of the proteins, 1 indicating 

one of the proteins contains the domain, and 2 indicating presence of the domain in the both 

proteins. Then protein pairs are predicted to interact or not to interact by classifying its feature 

vector using a machine learning method, random forest, which makes a prediction by voting from 

many decision trees. 
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Pitre et al. considered sequence similarity rather than detecting exact sequence patterns of 

interacting proteins [107]. The algorithm called Protein-Protein Interaction Prediction Engine 

(PIPE) they developed, considers the co-occurrence of all short subsequences. In this method, the 

query protein sequences A and B are fragmented into ai and bj using 20 amino acid-long sliding 

window. Then the fragment ai is compared with fragments of proteins in a known PPI network 

using the PAM120 amino acid similarity matrix. Once matched fragment of known proteins 

similar to ai are found, the known interacting partners to the matched proteins are compared with 

fragment bj using the PAM120 matrix. Finally, two proteins A and B are predicted to interact if 

frequency of matched fragment pairs from known PPIs is above a threshold (set to 10). Another 

similar method called D-MIST adopted position-specific scoring matrix (PSSM) to evaluate the 

similarity of motifs in a query protein pair to binding motifs in known PPIs with solved tertiary 

structures [108]. 

3.2.1.2 Methods that capture sequence features 

The motif/domain-based methods described in the previous section examine occurrence of 

known functional sequence motifs/domains in databases or in known interacting proteins. 

Sequence-based approaches can be extended to consider any sequence patterns including patterns 

that are not necessarily known to be involved in PPIs or in any function by simply extracting short 

sequences of a fixed length systematically from query protein sequences. A typical method in this 

category segments an amino acid sequence of a target protein into overlapping fragments (n-gram) 

by applying a small sliding window of a certain length (n), and to consider counts of sequence 

patterns of fragments as a feature vector of the protein (Figure 3.1). Then, a machine learning 

method is trained on a dataset of feature vectors of known interacting proteins and non-interacting 

protein pairs so that the method distinguishes between the two datasets [109, 110]. Instead of raw 

counts of sequence patterns, statistical significance of the counts relative to the background 

frequency of amino acids was also used  [111].  Another variant of the n-gram approach was to 

consider sequence patterns that skip a certain number of sequence positions [112]. Martin et al. 

used a so-called signature molecular descriptor, which considers the frequency of adjacent (i.e. 

preceding and following) amino acids for each amino acid,  which essentially captures sequence 

patterns of 3-grams [113]. Ding et al. considered both multivariate mutual information of 3-gram 

and mutual information of 2-gram, i.e. 
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I (a,b,c) = I(a,b) – I (a,b|c),         (Equation 3.1) 

where I (a,b,c) is the multivariate mutual information of 3-gram, I(a,b) is the mutual information 

of 2-gram, a, b, c are amino acid classes, and I(a,b|c) denotes the conditional mutual information 

of a and b given that c exists in the 3-gram [68]. Wong et al. considered amino acid pairs in a 

protein sequence (every pairs; including non-adjacent pairs) and represented it as an n*n matrix 

(n: the length of the protein) where each element is the sum of hydrophobicity value of every 

combination of two amino acids in the sequence [114]. An  used PSSM to represent a protein 

sequence, which considers similarity of 19 other amino acids at each position of a sequence [115]. 

Using PSSM, 2-gram was represented as a 400-dimensional vector (=20*20), which was subject 

to the dimension reduction to 350 vectors. 

The number of sequence combinations of n-grams will be quite large, for example, there 

are 20*20*20 = 8000 combinations for 3-grams for protein sequences which consist of 20 different 

amino acids. A large number of combinations will generate unnecessarily long feature vectors for 

proteins and will causes a data sparseness problem when some sequence patterns are not well 

sampled. Therefore, for computing n-grams, it is common to reduce the number of letters in 

sequences by clustering amino acids into a smaller number of groups. Shen et al. classified amino 

acids to seven classes considering their polarity and volume [110] and several later papers used 

the classification.  

Besides using n-grams and its variants, there are several other ideas for capturing sequence 

patterns that were used for PPI prediction. To capture general characteristics of a protein sequence, 

three features, namely, the composition of amino acids, transition probabilities between two 

consecutive amino acids, and distribution describing the position of sequences from the N-

terminus that contains the first, first 25%, 50%, 75%, and 100% of each amino acid (class) over 

the sequence were used [116].  The combination of these three sequence features is called the local 

descriptor [117] [118] [119] [120] (Figure 3.2). 
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Figure 3.1 The n-gram features for a protein sequence. The 20 amino acids are clustered into 
seven classes based on their physicochemical properties.  A window of length n (e.g. n=3) is 

sliding along the sequence and captures amino acid class patterns in the window. Then the 
occurrences of every combination of amino acid class are counted to generate a feature vector for 

the sequence. For example, when n equals 3, the total number of combinations of amino acid 

class is 7*7*7=343. 
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Figure 3.2 The local descriptors. Amino acids are clustered into seven classes (C1-C7). (A) The 

distribution of the lengths of sequences from the N-terminus that contain the first, first 25%, 
50%, 75%, and 100% of each amino acid class in the protein sequence are represented in blue, 

pink, green, and yellow, respectively. The dotted line represents the position of the first, first 
25%, 50%, 75%, and 100% of Class 1 in the local region. The number of distribution descriptor 

is 7 (classes) *5 (distribution values) =35 for a local region. (B) The composition of each amino 
acid class in a local region is considered. (C) The transition accounts for the frequency of the 

transition from one class to another. The number of transition descriptor is (7*6)/2=21. 

Therefore, each local region is represented by 35+7+21=63 descriptors. 
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Guo et al. used a feature called auto covariance (AC) for represent protein sequences [121]. 

AC is intended to capture the periodicity of physicochemical properties along a protein sequence 

(Figure 3.3). To compute AC of a protein sequence for a physicochemical property, amino acids 

are assigned with a property values, e.g. hydrophobicity, hydrophilicity, side-chain volume, 

polarity, solvent-accessible surface area, or the net charge index of side chain. Then, AC is defined 

as follows: 
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where lag is the distance between covariant residues to consider, which ranges from 1 to 30, j is 

the j-th physiochemical descriptor, i is the position in the sequence, and L is the length of sequence. 

Thus, AC of a property with a certain lag length will be large if amino acids with a large (or small) 

property value appear periodically with an interval of lag. There is a similar value called Moran 

auto correlation (MAC), which is defined as 

GHI
(J) =

K

L8M
∑ (&( − &) 	× (&(PM − &)
L8M

(QK
/	

K

L
∑ R&( − &S

$
L

(QK
   (Equation 3.3) 

 

where d is the distance between covariant residues which ranges from 1 to 30, &( and &(PM are the 

physiochemical property of j-th and (j+d)-th amino acid, respectively, N is the length of the protein 

sequence,  & =
∑ 57	
T

7;9

L
 is the average value of the physiochemical property [120]. Thus, MAC is 

AC divided by variance of the physiochemical property, 
K

L
∑ R&( − &S

$
L

(QK
.  

Intention behind computing the local descriptor, MC, and MAC is to capture global, long range 

sequence features of proteins, in contrast to n-gram and its variants that capture local patterns of 

sequences. As these features are complementary to each other, often both types were combined 

[68]. For example, in the method by You et al., there were four components in the protein sequence 

feature representation [120]: 1) 3-grams. Amino acids were classified to seven classes and the 

frequency of 3-grams was considered as a feature of a protein. Thus, a protein pair is represented 

by a vector of 686 (= 2*7*7*7) features. 2) AC. Six physicochemical properties of amino acids 

were considered, which were hydrophobicity, side-chain volume, polarity, polarizability, solvent-

accessible surface area, and the net charge of side chains. For each of the properties, AC was 

computed using 1 to 30 lag values following Eq. 2. Thus, the length of the vector for a protein pair 

was 360 (= 2*6*30). 3) MAC. Similar to AC, a 360-dimension vector was constructed for a protein 
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pair. 4) Local descriptors. Amino acids were classified to seven classes and the local descriptor, 

the composition, the transition, and the distribution, were computed for each of the seven amino 

acid classes for ten local regions in a protein. Thus, a pair of proteins was represented by a vector 

of 1260 = 2* 10* (7 compositions + 21 transitions + 35 distributions) values. Overall, considering 

the all four features, a protein pair was represented by a vector of 2666 (= 686 + 360 + 360 + 1260) 

features. 

 

Figure 3.3 Schematic view of calculating Auto-covariance (AC). The black line in the plot 

represents the value of the j-th physiochemical property along the amino acid sequence. The 
dashed grey line represents the average value of the j-th physiochemical property. The grey 

bracket regions are the difference from the average value of i-th and (i+lag)-th amino acid, 

respectively. AC is the average of U',DEF,	(.  

 

With these sequence features prediction of PPIs was made using various machine learning 

algorithms. Algorithms used include support vector machine (SVM) [110, 113, 119, 121-123], 

relevance vector machine [115], random forest [68, 106, 117], rotation forest [114], linear 

discriminant classifier and cloud points [109], relaxed variable kernel density estimator (RVKDE) 

[111], an ensemble classifier [112], extreme learning machine (ELM) [120], and k-nearest 

neighbors (KNNs) [118].  

These sequence-based methods reported surprisingly high accuracies. For example, Shen 

et al., reported 83.90% accuracy on the HPRD dataset [93, 110]. Yang et al. reported 86.15% 
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accuracy on a yeast dataset [118]. Yu et al. achieved 93.7% accuracy on a highly unbalanced 

HPRD dataset where positive-to-negative ratio is 1:15 [111]. Zhu et al. reported over a 75% 

accuracy on five organisms including yeast, C. elegans, E. coli, human, and mouse [119]. Wong 

et al. achieved 93.92% on the S. cerevisiae dataset [114]. You et al. achieved 93.46% to 97.01% 

accuracy on six different organisms including yeast, H. pylori, C. elegans, E. coli, human, and 

mouse  [117]. Ding et al. achieved 95.01% on the yeast dataset and 87.59% on the H. pylori dataset 

[68]. An et al. achieved 94.57% and 90.57% on the S. cerevisiae and the H. pylori dataset, 

respectively, also 97.15% accuracy on an imbalanced yeast dataset [115]. Wei showed over 81% 

accuracy using different features on the Negatome and the DIP dataset [86, 88, 112]. Although the 

reported accuracy values are high and encouraging, it needs to be noted that the datasets on which 

the methods are tested are limited to several organisms.  

3.2.1.3 Using homology 

So far the methods that use partial sequence patterns and statistical features in protein 

sequences were reviewed. In this section methods that use similarity of entire protein sequences 

are introduced. Many functionally important proteins in an organism are conserved across species, 

which is the rationale of sequence similarity search for annotating function of genes [30, 124, 125]. 

Several databases, such as KEGG Orthology [126], OrthoDB [127], OrthoMCL-DB [128], 

HomoloGene  [129],  and INPARANOID [130], contain lists of precomputed homologous genes 

in different species. As interactions with other proteins is a part of a protein’s important function, 

it is known that PPIs are often conserved across species. These conserved interactions are noted as 

“interlogs” [131]. Matthew et al. mapped PPIs in the yeast interaction map to predict PPIs in C. 

elegans, and identified 257 potential interlogs [132]. Further experimental validation performed 

on 72 predicted interactions gave 19 positive results, which were roughly 25% among tested. The 

POINT web service provides human PPIs inferred from interlogs with mouse, fruitfly, yeast, and 

C. elegans [133]. Taking advantage of an increasing number of experimentally identified protein 

interactions, Lee et al. then expanded orthologous pairs to consider to those from 18 eukaryotic 

species [134]. The idea of interlogs were also applied to predict PPIs in plants, to A. thaliana by 

considering homologs with yeast, fruitfly, human, and C. elegans [135] [136] and to rice (Oryza 

sativa) by considering interlogs with the six species including the same four species with E. coli 

and A. thaliana [137]. Dutkowski et al. developed a statistical model, which represents 
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specification and duplication events of genes along an evolutionary tree, on which known 

interacting protein pairs in seven eukaryotic organisms were mapped and used for predicting PPIs 

[138]. Interactome3D is a database that provides the tertiary structure models of protein complexes 

built based on known structure information of interlogs [139]. Wang et al. merged prediction 

results from an interlog-based method and a motif-based method to cover a larger number of 

predicted PPIs in the pig proteome [140].  

3.2.1.4 Codon usage 

Interestingly, it was shown that the codon usage of genes can be used to predict PPIs. Using 

difference of codon usage of protein pairs, Najafabadi et al. predicted PPIs in E. coli, yeast, and 

Plasmodium falciparum with reasonably good accuracy [141].  For a pair of genes i and j the 

difference of usage of codon c among 64 codons is simply defined as 

dij(c) = |fi(c) – fj(c)|         (Equation 3.4) 

where fi(c) and fi(c) are the usage frequency of codon c of gene i and j repectively. Then, the 

difference of each codon usage (dij) is binned into 50 intervals, and the likelihood ratio of the 

fraction in interacting and non-interacting proteins in a training dataset was computed. A PPI 

prediction for a protein pair is performed with a naïve Bayes approach using the likelihood ratio. 

Zhou et al. used SVM with the codon usage difference and applied to the yeast genome [142].  

One might wonder why codon usage is related to PPIs. But it is reasonable considering that codon 

usage is known to be correlated with gene expression levels [143] and also that neighboring genes 

have similar codon usage. As discussed later in this review, both gene expression level and 

conserved neighboring genes (gene order) have been successfully used to predict PPIs. 

3.2.2 Comparative Genomics-Based Methods 

The last level of sequence information that can be used for PPI prediction is from genome 

sequences from various species. Since important features in a genome sequence including gene 

sequences, intergenic sequences, gene orders, are conserved during evolution, identifying such 

conserved features in genomes can be a clue for to identify proteins that are functionally related, 

which often also involve physical interactions between the proteins. Under this category, which 

we call the comparative genomics-based methods, the phylogenetic tree topology analysis, the 

phylogenetic profile, considering gene fusion events, and conserved gene orders (Figure 3.4). An 

important point to note is that these methods are not aiming for predicting physical PPIs directly 
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but for identifying functionally related proteins, but quite often functionally related proteins do 

physically interact with each other. A strong advantage of the comparative genomics-based 

approaches is that, due to the increasing number of determined genome sequences, many proteins 

can now find related (and maybe interacting) proteins through these approaches [144].  

3.2.2.1 Phylogenetic tree topology analysis 

It has been observed that the phylogenetic trees between interacting proteins were more 

similar than a general divergence between the corresponding species [145-147]. The similarity 

between the phylogenetic trees of interacting proteins was explained as maintenance of the 

complex functionality and suffering similar evolutionary pressure. The sequence signal of the 

coevolution is strong at binding interface of proteins, but also come from other regions of proteins 

[148].  

The tree topology similarity can be measured as the correlation between the evolutionary 

distance matrices used to build the trees. The algorithm to calculate similarity of distance matrices 

is called the mirror tree method [147]. It contains following steps (Figure 3.4 A):  1) To construct 

a multiple sequence alignment for each protein against a list of reference organisms; 2) To 

construct a phylogenetic tree for the proteins; 3) Then, for a pair of proteins in question, distances 

against orthologous proteins in different species are computed (distance matrices) and the 

correlation coefficient between two distance matrices is obtained. A protein pair is predicted to be 

interacting if the coefficient value is above a cut-off value, which is determined by known 

interacting and non-interacting proteins.  

The mirror tree method was modified for improvement in several different ways. The 

method was extended to handle interacting protein families, such as a ligand family and a receptor 

family, to be able identify interacting specific protein pairs from the two families [149]. Sato et al. 

removed a background tree similarity that arises by the overall evolutionary distance of organisms 

from distance matrices of individual proteins, which made improvement of PPI prediction 

accuracy [150]. They further considered partial correlation of distance matrices that can more 

effectively remove background organism-level similarity from the tree similarity of a query protein 

pair, where the background organism-level similarity was represented by a linear combination of 

distance matrices of many proteins in the organisms [151]. Besides the background similarity of 

organisms, another source of noise in the mirror tree method is that a protein coevolves with 
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multiple interacting proteins. Instead of evaluating tree similarity of a query protein pair, Juan et 

al. considered a network of similarities between all pairs of proteins simultaneously [152]. In the 

mirror tree method, selection of reference genomes is a key for successful prediction. Effective 

ways to select organisms for building trees were examined by Herman et al. [153]. Instead of using 

correlation coefficient, SVM was also used to make predictions from distance matrices [154].
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Figure 3.4 Comparative genomics-based methods. (A) Phylogenetic tree topology-based method. 
A pair of query sequences, A and B, are compared with n reference organisms and multiple 

sequence alignments are constructed. Based on the alignments, phylogenetic trees are computed, 
from which distances between all pairs of sequences are computed and stored in matrices. Then 

the similarity between two matrices is evaluated with a correlation coefficient. (B) Phylogenetic 
profiles. Genes in a query organism is compared with n reference organisms by BLAST search. 1 

represents the presence of the gene in the reference organism 0 for the absence. The table can 
also be filled with real-values, such as BLAST bit scores. (C) Gene fusion. Two protein genes A 

and B are predicted as interacting if they fuse to form one protein gene AB in another organism. 
(D) Gene order. If protein gene orders of proteins are conserved among different species, they 

are predicted as interacting proteins with each other. 



 

 57 

3.2.2.2 Phylogenetic profiles 

Phylogenetically related and thus possibly interacting protein pairs can be identified in a 

simpler way of using comparative genomics. In the approach called the phylogenetic profiling co-

presence and co-absence of orthologous proteins across organisms are examined rather than 

comparting phylogenetic trees of protein pairs as discussed in the previous section [155]. If PPIs 

are needed for realizing a certain biological function, an organism needs to possess both proteins 

if the function is required while both are not needed if it does not need the function. Coding one 

of the proteins only in its genome is meaningless. 

There are three major steps to perform this method (Figure 3.4 B). The first step is to 

identify orthologous proteins for all the proteins in a query genome against other reference 

genomes by sequence similarity search. Then, construct a phylogenetic profile for each protein in 

the query genome, which has binary values with 1 indicating the presence of an orthologous gene 

and 0 for the absence of the ortholog in a reference genome. Thus, the dimension of the profile is 

the number of reference genomes used. Finally, protein pairs that have similar profiles are 

predicted to be interacting (more precisely, functionally related). Similar to the phylogenetic tree 

topology methods, the choice of reference genome is crucial for this approach [156]. Also, a 

threshold value (E-value) in sequence similarity search for detecting orthologous proteins strongly 

affects to profiles, and thus to the prediction performance of the method [157]. To accommodate 

the strong dependency of the performance to a threshold value in the similarity search, real value 

vectors of an alignment score was used for constructing profiles rather than binary values [158]. 

In the method by de Vienne and Azé a combination of the phylogenetic tree topology and profile 

was used as features in a machine learning framework  [159]. 

3.2.2.3 Gene fusion events 

A gene fusion refers to an event in the comparative genomics where two individual genes 

in one organism fuse as a continuous sequence in another organism [160] (Figure 3.4 C). Fused 

genes are usually functionally related and further implies physical interactions between the 

proteins [161-163]. Computationally, fused genes can be found by gene sequence similarity search 

between genomes. It was reported that metabolic enzymes are frequently involved in gene fusions 

[164].  
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3.2.2.4 Conserved gene orders 

Through evolution genomes undergo various rearrangements and transfers, therefore 

locations of genes in a genome tend to be shuffled unless an evolutionary pressure keeps the order 

of some genes together [165] (Figure 3.4D). Thus, conservation of gene orders, i.e. common local 

clusters of genes in genomes, indicates that there is a requirement or an advantage to keep the gene 

order for the organisms, and in fact many cases genes in a conserved cluster are involved in the 

same function [166]. In bacterial and archaeal genomes, operon structures are conserved across 

many species, which code genes in the same pathways or complexes [167]. After initial findings 

of the conserved gene orders, more systematic studies have been done [168, 169]. Similar to the 

other comparative genomics-based methods, a key for successful application of this analysis is to 

choose an appropriate set of reference genomes, which should not be too evolutionary distant but 

not too close to each other, so that only clusters of functionally related genes can are conserved. A 

related work was done by Kihara & Kanehisa where transmembrane protein complexes were 

predicted from genomes by identifying gene clusters that have predicted transmembrane domains 

[170]. 

3.2.3 Gene Co-Expression-Based Methods 

Gene co-expression data such as microarray and RNA-sequencing data are valuable 

experimental data that can be used to infer PPIs. Intuitively, interacting protein pairs are expected 

to have similar gene expression levels under variety conditions. Indeed significant correlation 

between the gene co-expression level and PPIs was shown in bacteriophage T7 [171], yeast [172, 

173], human, mouse, and E. coli [174]. Fraser et al. showed that gene expression level of 

interacting proteins co-evolve using four closely related yeast species, where the expression level 

was estimated by the codon usage [175]. Databases that provides large-scale gene co-expression 

information includes GEO [176], ATTED-II [177], and COXPRESdb [178]. ATTED-II and 

COXPRESdb are pre-calculated gene co-expression databases of plant organisms and animal 

species, respectively.  

Although gene expression is shown to have significant correlation to PPIs, a major 

challenge is that co-expression data is noisy due to various types of systematic and stochastic 

fluctuations. Soong et al. adopted principle component analysis (PCA) and independent 

component analysis (ICA) to filter out noise in microarray data before feeding the data to SVM 
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classifier [179].  As we see later in the section for integrated methods, gene expression is used 

frequently as one of input features for proteins. 

3.2.4 Protein Tertiary Structure-Based Methods 

The tertiary (3D) structure of proteins can be an important information to predict PPIs if 

available, or if the structures can be computationally reliably modeled. Many computational 

methods are developed that “docks” two protein structures to provide the tertiary structures of a 

protein complex from individual protein structures, which include  LZerD [180-183], GRAMM-

X [184], ZDOCK [185], RosettaDock [186], HADDOCK [187], SwarmDock [188], HEX [189], 

and ClusPro [190]. These docking methods build structure models of a protein complex given 

individual protein structures, which provide structural insights of the PPI. However, these docking 

methods do not predict whether a protein pair actually interact or not. 

Then how to use structure information for predicting PPIs? There are two approaches 

explored. The first approach is to detect energetic characteristics of interacting protein pairs 

observed in protein docking prediction. A protein docking program generates typically over tens 

of thousands of different docking poses for a pair of input protein structures. Wass et al. reported 

the score distribution of docking poses of interacting protein pairs can be distinguished from those 

of non-interacting proteins, because the former distribution is skewed toward favorable scores 

[191]. This is an observation, because a docking pose distribution include both near-native (i.e. 

almost correct) and incorrect poses, therefore, the report implies that even incorrect docking poses 

have relatively favorable scores (i.e. more favorable geometric complementary) in instances of 

interacting proteins. In MEGADOCK, a protein docking method aimed for fast large-scale protein 

docking screening, a protein pair is predicted as interacting if a pool of docking poses generated 

by the algorithm include clusters of similar poses that have significantly favorable docking scores 

in comparison with the rest of the poses [192]. 

The second approach to use protein structure information for PPI prediction is, for two 

query protein structure, to find similarity in known protein complexes. PRISM, developed by 

Keskin and his colleagues, is one of the first to take this approach [193, 194]. PRISM takes two 

query protein structures as input, and examines if surface shapes of the proteins have similarity to 

docking interfaces from known protein complexes structures. To perform this comparison, PRISM 

has a database of docking interface regions of known protein complexes extracted from the PDB 
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database [195]. Identified potential interface regions in the two query proteins that are identified 

by comparison to known interface regions are examined for structural similarity to the template, 

sequence conservation, and the binding energy. Although the prediction power of PRISM relies 

on the coverage of template dataset, the method will be able identify interactions between proteins 

that are globally dissimilar but has similar local interface regions to known protein complexes. 

PrePPI takes a similar approach PRISM [196]. A difference is that PrePPI takes sequences of the 

query proteins and model their structures by homology modeling. Subsequently, the two structures 

are mapped to known protein complex structures, which are then evaluated by structure and 

sequence similarity scores to the known complex structures. Final prediction is made by a 

composite score that integrates five other features, gene co-expression, essentiality of the proteins, 

functional similarity, and the phylogenetic profile. Similarly, Coev2Net models a complex 

structure of two query proteins by mapping their sequences to a known complex structure with a 

threading method, and then evaluates the complex model by a logistic regression classifier that 

considers structural and sequence features taken from its interface [197]. In a recent method, 

InterPred, a similar approach is taken [198]: for a query protein sequence pair, structures are 

modelled, then known protein complexes are sought by structure comparison. Finally, the 

feasibility of the model is evaluated using a random forest classifier that considers interface 

structure and sequence features as well as overall structure similarity between individual models 

to the template complex structure.

Although protein structures can provide unique features for PPI prediction, a drawback is 

that not many proteins have known structures. In Table 3.2, the number of protein genes with GO 

terms, gene expression data, and experimentally determined/computationally-modelled protein 

structures for ten genomes are shown. Compared to GO terms and gene expressions, proteins with 

known structures are substantially fewer. This is more evident for genomes that are less studied. 

On the other hand, as shown in the right-most column, most of the protein structures can be 

computationally modelled [199]. Thus, there is a room for new structure-based approaches that 

use modelled protein structures. 
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Table 3.2 Lists of available information such as number of coding genes, number of genes with annotated GO terms, genes with co-
expression information, number of solved structure, and number of redundant modeled structure, in each organism. 

Organism # of genes 
with protein 
productsa 

# of proteins 
with annotated 
GO termsb 

# of genes 
with co-
expression 
informationc  

# of proteins with a 
solved structured  

Fraction of modeled structure among all 
proteins 
(%)e[200][200][200][203][203][203](Pieper 
et al., 2006)(Pieper et al., 2006) 

Human 109,018 46,331 19,816 16620 82.21 

Yeast 6,002 5,582 4,461 1340 90.25 

Mouse 76,216 28,727 20,403 2891 84.07 

A. thaliana 48,350 16,123 20,836 584 77.44 

Fruitfly 30,482 6,886 13,099 875 88.92 

Asian rice 28,555 100 20,625 1 NAf 

X. 

tropicalis 

39,662 1,998 11,095 10 91.06 

D. rerio 46,451 2,723 10,112 26 NA 

C. annuum 45,410 20 17,453 0 NA 

P. persica 28,927 2 11  0 NA 

Note: a Counted in the NCBI reference sequence (RefSeq) [201]. b Protein entries in RefSeq was mapped to UniProt, where the number of proteins with at least 
one annotated Gene Ontology term was counted [202]. c Gene expression data of human, yeast, mouse, fruitfly, and D. rerio were taken from COXPRESdb [178]. 
Data for A. thaliana and O. Sativa were taken from the ATTED-II database [177]. Expression data for the rest of the three organisms were taken from literature: 
X. tropicalis: [203]. C. annuum: [204]. P. persica: [205]. d After mapping  RefSeq IDs of protein genes to UniProt, the number of proteins was counted with at 
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least one crosslinked PDB entry [202]. e It is computed from the statistics provided in the ModBase base [200]. f  NA (0) indicates that no modeled structures 
provided on ModBase (but some proteins in a genome may be modelled by a standard modeling procedure. 
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3.2.5 PPI Network Topology-Based Methods  

Methods in this category start from an existing PPI network of an organism, and predict 

new interactions between proteins by evaluating their network topology features. In the IRAP 

method, a missing interaction is predicted if a protein pair has a high score that reflects the number 

of common neighbors between them in the current PPI network [206]. Another idea by Yu et al. 

is to predict a PPI if two proteins are neighbors of a clique, a fully-connected graph, in the PPI 

network of the organism and connecting them would complete a larger clique, because most 

probably the two proteins are subunits of a protein complex [207]. In the work by L. Wong and 

his colleagues, a prediction of a PPI is made using a combination of two scores, a score for 

capturing local network topology of proteins that is based on the number of common neighbors 

and a global topology-based score that accounts for the memberships of the proteins in protein 

groups where member proteins interact with each other [208]. Kuchaiev et al. applied Multi-

Dimensional Scaling (MDS), a dimension reduction method in statistics, to a PPI network, where 

distances are based on edge distances between proteins [209]. New PPIs are predicted if proteins 

are closer than a threshold in the projected space by MDS. Lei and Ruan applied a random walk-

based approach, where the probability of reaching each node from each of the other nodes in the 

network is computed by assuming a random walk [210]. The resulting probability matrix contains 

information of the topology of the PPI network. Based on the probability matrix, protein pairs are 

connected if they are similar in their probability vectors to reach the other nodes. 

3.2.6 Integration of Multiple Features 

PPIs can be predicted from different perspectives as discussed above. Naturally, there are 

methods that use multiple features to be able to combine strengths of different features and to 

increase the prediction confidence and coverage. Features can be combined using machine learning 

methods, such as random forest, Naïve Bayesian Network, artificial neural network, SVM, and 

logistic regression [211]. Table 3.3 summarized methods that use multiple features. 

From the table, the most popular feature integrated was gene co-expression data (COX). 

The next most popular ones are GO functional similarity (GO), and homology (HOM). Several 

features in the table are not explained yet in this review. The physicochemical features (PCH) 

concerns features such as charge and aromaticity of amino acids in a protein sequence. The post-
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translational modification feature (PTM) indicates that PTM motifs are found in UniProt and 

HPRD. The disordered region (DIS) is a protein structure feature, non-structured regions in a 

protein, which can be predicted from its sequence. Thus, besides obvious sequence-based features, 

DIS, PCH, and PTM are features that are predicted from protein sequences. Direct experimental 

data of PPIs (EXP) used by Qi et al. were yeast-two-hybrid and  mass spectrometry data [211], 

and those used by Miller et al. were data from yeast two-hybrid system [212]. The protein 

functional class (CLA) in yeast are taken from the MIPS Protein Class Catalogue, which were 

determined by experiments [213]. Gene essentiality (ESN), synthetic lethality (SNL), and MIPS 

mutant phenotype (MUT) were determined by knockout mutants [211]. Text mining (TXT) counts 

co-mentions of two proteins in PubMed abstracts.  

Regarding combinations of features, methods by Ben-Hur et al., Xu et al. combine mostly 

sequence-based features [214, 215]. On the other hand, PrePPI [196], FpClass [216], and 

Taghipour et al. [217] are intended to combine different types of features. Turning our attention to 

algorithms used, naïve Bayes is the most frequently used among the multiple feature-based 

methods in Table 3. SVM was the next frequently used in the three methods. Qi et al. tested five 

integrating algorithms with different feature combinations 

[211].  
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Table 3.3 Features and algorithms used in multiple-feature integrative methods.    

  Feature 

Ben-

Hur et 

al. a 

Miller 

et al. b 

Qi et al. 
c 

Scott et 

al. d 

Xu et al. 
e 

PAIR f 
PrePPI 

g 

FpClass 
h 

STRI-

NG i 

Taghi--

pour et 

al. j 

# of times 

used 

Sequence 

MOT/DOM X   X X X X   X     6 

NGM X                   1 

PCH               X     1 

HOM X   X X X X   X X   7 

COD   X                 1 

PHP     X   X X X   X   5 

FUS     X   X       X   3 

GNB     X   X       X   3 

PTM       X       X     2 

Function 
GO X X X   X X X X   X 8 

MIPS             X       1 

Experiment 

COX   X X X X X X X X X 9 

XPI   X X               2 

CLA     X               1 

ESN   X X       X       3 

LOC   X   X   X         3 

COR                   X 1 

SNL     X               1 
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MUT     X               1 

Structure 
STR             X       1 

DIS       X             1 

Network NET X X   X       X   X 5 

Literature TXT                 X   1 

Integrating 

method 
  LPK SVM 

RF, 

KNN, 

NB, DT, 

LR, 

SVM 

NB NB SVM NB NOR LNR 
NB, 

MCL 
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3.3 Discussion 

The identification of PPIs is vital for systems level understanding of molecular activity of 

living cells. To complement experimental approaches, many computational tools were developed, 

which use different types of protein features. Through writing this article, we felt that a wide 

variety of features were explored already, and development of novel computational approaches 

would need new types of experimental data. Also, large scale PPI networks are experimentally 

revealed only for a limited number of organisms, and thus many computational methods were 

developed and benchmarked on those organisms. Therefore, for further advancement of PPI 

prediction, proteomics-scale PPIs of many more organisms would be needed. 

Current PPI networks constructed both experimental and computational methods only 

represent a static snapshot of interactions of proteins in a cell, which are dynamically changing 

over time, containing both transient and permanent interactions. Therefore, the next generation of 

PPI studies would aim to capture the time-dependent, dynamic aspects of PPIs. Computationally, 

this direction would eventually meet and integrated with other computational approaches, such as 

pathway simulations and molecular dynamics simulation of molecules in a cell.  
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CHAPTER 4. COMPUTATIONAL METHOD TO IDENTIFY PROTEIN- 
PROTEIN INTERACTIONS IN PLANT GENOME3 

4.1 Background 

Identification of protein-protein interactions (PPIs) is important for understanding how 

proteins work together in a coordinated fashion in a cell to perform cellular functions. PPIs are 

essential for individual protein functions, forming various cellular pathways, and are also involved 

in the development of diseases. PPI data is directly useful for identifying protein multimeric 

complexes[219, 220], identifying biological pathways as well as predicting protein function[221-

223]. For more on the application side, PPIs are also important targets for drug design[224] and 

artificial design of protein complexes[225]. 

In this work, a computational method for PPI prediction was developed, named PPIP (PPI 

prediction for Plant genomes), and applied to three major plant proteomes, Arabidopsis thaliana, 

Zea mays (maize), and Glycine max (soybean). To capture different aspects of proteins that are 

relevant to PPIs, a combination of four features for predicting PPIs was used, i.e. protein sequence 

properties, protein functional similarity, co-expression patterns, and phylogenetic profile similarity. 

To provide a confidence level of predictions, two machine learning methods, support vector 

machine (SVM) and random forest (RF), were separately trained on different features, and 

commonly predicted PPIs by the two methods were considered to have high confidence. The 

machine learning methods were trained on known PPIs from Arabidopsis. The accuracy on the 

testing dataset of Arabidopsis achieved a high accuracy of over 90%. PPIP predicted 50,220, 

13,175,414, and 13,527,834 confident PPIs in Arabidopsis, maize, and soybean, respectively. 

 Examples of predicted novel PPIs with high confidence are discussed. All confident predictions 

are provided on our lab website (http://kiharalab.org/PPIP_results/) so that they can be referenced 

by plant biologists. 

 
3 This chapter have been previously published 218. Ding, Z. and D. Kihara, Computational identification of 
protein-protein interactions in model plant proteomes. Scientific Reports, 2019. 9(1): p. 8740. 
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4.2 Methods 

4.2.1 Sequence-based prediction 

Protein sequence features used in PPIP is explained. It is the left branch of the flowchart in 

Figure 4.2. To capture physicochemical properties of interacting proteins the following seven 

features are assigned to each amino acid of query protein sequences [226-232]: hydrophobicity, 

hydrophilicity, side-chain volumes, polarity, polarizability, solvent-accessible surface area, and 

net charge index (NCI) of side-chains. Then each query protein sequence is represented with auto-

covariance (AC) using strings of the seven features as follows: 

!"($%&, () =
∑ ,-.,/0

1
2
∑ -.,/2
.31 4×,-(.6789),/0

1
2
∑ -./2
.31 42:789

.31

;0<=>
,    (Equation 4.1) 

where lag is the distance between covariant residues to consider, which ranges from 1 to 30, j is 

the j-th physiochemical feature, i is the position in the sequence, Pi,j is the value of the 

physicochemical feature j of amino acid position i, and L is the length of the sequence. Thus, AC 

of a physicochemical feature with a certain lag length will be large if amino acid with a large (or 

small) property value appears periodically with an interval of lag. AC is computed for each protein 

sequence, and thus a query protein pair is represented as a 2 (sequences) * 7 (features) * 30 (lag 

intervals) = 420-dimensional vector. The vector representation was used as input of SVM for 

predicting if protein pairs are interacting or not interacting. This approach was adopted because it 

was reported to be successful in a previous paper [121]. 

4.2.2 Gene expression features 

On the other branch of PPIP (Figure 4.2), three features were used inlcuding gene co-

expression, functional similarity, and phylogenetic profile similarity in the framework of RF to 

predicted PPI of a query protein pair. The three features in the following three subsections were 

dicussed .  

  If two proteins are upregulated or down-regulated simultaneously under various conditions, 

it is highly likely that the two proteins are involved in the same pathway and have a higher chance 

that they physically interact with each other. Thus, co-expression patterns can provide indirect 

evidence for predicting PPIs. The gene coexpression information were obtained from microarray 

experiments and RNA-seq experiments from the ATTED-II database (http://atted.jp/)[177]. It is a 

database of pre-calculated Pearson’s correlation coefficients (PCC) and the mutual rank (MR) of 
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co-expressed genes. MR is defined as the geometric mean of the rank of the correlation gene A to 

gene B among proteins in the genome and the rank of gene B to gene A. The smaller MR is, the 

stronger the genes are co-expressed. Since gene expression data are provided in two sources, 

microarray and RNA-seq, four features (microarray MR, microarray PCC, RNA-seq MR, and 

RNA-seq PCC) were used to represent the co-expression profile of protein pairs. 

4.2.3 Protein function features 

The second feature used is protein functional similarity. Proteins with the same or similar 

biological functions are likely to physically interact because they might form permanent 

complexes or take part in the same pathway. Functional similarity of proteins was quantified by 

established similarity scores of Gene Ontology (GO) terms[233].  GO annotations were obtained 

from UniProt[40] and TAIR (for Arabidopsis). Three GO similarity/relevance scores, Interaction 

association score (IAS)[43], Co-Occurrence Association Score (CAS), and PubMed Association 

Score (PAS) was used [31, 32, 234]. IAS, CAS, and PAS quantify how significantly a pair of GO 

terms appear in physically interacting proteins, annotations of individual genes, and PubMed 

abstracts. Thus, they evaluate co-occurrence of GO terms in biological contexts and shown to be 

effective in identifying proteins that physically interact )[43] or in the same pathways[235]. 

4.2.4 Phylogenetic profile similarity 

It has been observed that interacting proteins tend to coevolve [145]. The phylogenetic 

profile is used to exploit the evolutionary co-occurrence patterns of interacting proteins. The basic 

assumption of the phylogenetic profile method is that interacting proteins either co-present or co-

absent across organisms [236]. The original phylogenetic profile [236] is a binary pattern of 

presence or absence of homologs in a set of reference genomes, but a modified version of the 

profile is applied that used BLAST bit score instead of binary values as follows [158]:  

?@A(@, () =
∑ B.C×B/C
D
C31

EF∑ B.C
GD

C31 H×,∑ B/C
GD

C31 4I
1/G       (Equation 4.2) 

Where KLM =
N.C
N..

         (Equation 4.3) 

The similarity of protein i and j are defined in Equation 4.2. k is the k-th reference genome, 

KLM is the BLAST search bit score of homolog of protein i in the k-th genome divided by the 

BLAST search bit score of i in the query genome (Equation 4.3). 100 reference genomes (n = 100) 
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was used (Figure 4.1). These genomes were selected in the following steps: BLAST searches from 

all Arabidopsis protein sequences against the UniProt database was performed using the default 

E-value cutoff of 10. Then, a phylogenetic tree was constructed for the genomes and manually 

selected the genomes from each branch of the tree so that the selected genomes are well distributed 

and represent the tree. 
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 Figure 4.1 The phylogenetic tree of selected 100 reference organisms used to compute 
phylogenetic profile of proteins. The tree was generated with phyloT (http://phylot.biobyte.de/).  
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4.2.5 Machine learning methods 

Two machine learning methods was used in PPIP, SVM for making predictions from 

sequence features and RF for predicting from a combination of four other features (Figure 4.2). 

For SVM, the software package libsvm 2.84 was used [237]. SVM uses a kernel function to 

transform input features and two hyper-parameters that need to be determined, a regularization 

parameter g, which defines how far each training data influences the model and C, which controls 

the tradeoff of misclassification on training examples. For our kernel function, a radial kernel was 

used following previous works that predict PPI prediction from protein sequence features [70, 238-

240]. The two hyper-parameter values, C and g, were determined to be $O&P" = 5 and $O&PR =

−1 for SVMloc as shown in Table 4.1 and $O&P" = 1 and $O&PR = 1 for SVMrand as shown in 

Table 4.2 by performing nested cross-validation [241, 242].  

In parallel to the sequence-based prediction with SVM, RF was used to make an independent 

prediction from three features, functional similarity, gene co-expression, and phylogenetic profile 

similarity. RF is an ensemble learning method, which combines predictions made by a number of 

decision trees by a majority vote. RF can also determine important variables that contributed most 

in classification by calculating two metrics, the mean decrease of accuracy (MDA) and the mean 

decrease of Gini importance (MDGI) [243, 244]. MDA is the difference of the error rate of 

classification caused by permuting feature values with values of other data points in a dataset. 

MDGI tells how much less a particular feature is selected as a node in the random forest after 

permuting this feature. The larger MDA and MDGI of a certain feature are, the more important 

that feature is. Similarly to SVM, nested cross-validation was performed to determine three hyper-

parameter values used in RF (Table 4.3 to Table 4.6). 
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Table 4.1 Prediction accuracy for validation sets from six-fold nested cross-validation on the 
Arabidopsis PPIloc dataset using SVM with a radial kernel.  

SVMloc c g Accuracy 

1 log2c= 5 log2g= -1 0.934 

2 log2c= 5 log2g= -1 0.932 

3 log2c= 5 log2g= -1 0.937 

4 log2c= 5 log2g= -1 0.930 

5 log2c= 5 log2g= -1 0.929 

6 log2c= 5 log2g= -1 0.933 

Average   0.932 

 

Note: To run SVM, two hyper-parameters, g and C, need to be determined. From the Arabidopsis PPI dataset, short 
proteins whose length is less than 50 amino acids were excluded. The resulting dataset includes 4,759 interacting 
protein pairs and 4,759 non-interacting pairs. This dataset was separated into six subsets, where one subset was used 
for test and remaining five subsets were used for training and validation following the nested cross-validation 
procedure. By changing the test set among the six, the process was repeated six times. This corresponds to each row 
in the table. In nested cross-validation, the five subsets were used further for five-fold cross-validation. Four out of 
the five subsets were used for training and one subset was used for validation of the trained model under each hyper-
parameter combination. This was repeated five times using a different subset for validation, and a hyper-parameter 
combination that gave the best average accuracy over the five validation subsets was selected. The accuracy is 
calculated as the total number of corrected prediction (true positive and true negative) divided by the total number of 
data (including true positive, true negative, false positive, and false negative). The table shows the best hype-
parameter combination found and the average accuracy obtained by the hyper-parameter combination for each of the 
test – training/validation separation.  $O&P" value was explored from -5 to 15 with a step size of 2 while $O&PR was 
changed from 3 to -15 with a step size of -2. Thus, in total 11 * 10 = 110 combinations were examined. For the PPIloc 

dataset, $O&P" = 5 and $O&PR = −1 were chosen because it was selected as the best for all six training/validation 
sets.  
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Table 4.2 Prediction accuracy for validation sets from six-fold nested cross-validation on the 
Arabidopsis PPIrand dataset using SVM with a radial kernel.  

SVMrand c g Accuracy 

1 log2c= 1 log2g= 1 0.768 

2 log2c= 1 log2g= 1 0.765 

3 log2c= 1 log2g= 1 0.775 

4 log2c= 1 log2g= 1 0.766 

5 log2c= 1 log2g= 1 0.760 

6 log2c= 3 log2g= -1 0.774 

Average   0.768 
Note: For the PPIrand data set, the combination of $O&P" = 1 and $O&PR = 1 was chosen because it was selected as 
the best in five out of six training/validation sets (a majority vote).  
 

Table 4.3 Results of a six-fold cross-validation on the PPIloc dataset using random forest as the 
classifier. Eight features (RF8) including the mutual rank and Pearson’s correlation coefficient 

calculated for gene expression from microarray experiments and RNA-seq data, IAS, PAS, CAS, 
and the phylogenetic profile similarity score were used. 

 

Note: To run random forest, three parameters, ntree, mtry, and cutoff need to be determined. Four co-expression 
features, the Pearson correlation coefficients and mutual ranks from microarray data and RNA-sequencing data, three 
functional association scores, IAS, PAS, and CAS, and the phylogenetic profile similarity score were used as features. 
Nested cross-validation was performed. Since, only 3,427 interacting protein pairs from the golden standard dataset 
have all eight features, 3,427 non-interacting protein pairs was randomly selected to balance the dataset. The ntree 
value was explored from 200 to 1400 with a step size of 200, mtry was explored from 3 to 6 with a step size of 1, and 
the cutoff value was explored from 0.3 to 0.7 with a step size of 0.2. For the PPI8loc data set, the combination of ntree 
= 800, mtry = 4, and cut-off = 0.5 were chosen because this combination achieved highest accuracy among six 
training/validation sets.  
  

RF8loc ntree mtry cutoff Accuracy 

1 1400 5 0.5 0.796 

2 1200 4 0.5 0.801 

3 800 4 0.5 0.812 

4 200 4 0.5 0.798 

5 1400 3 0.5 0.790 

6 600 5 0.5 0.798 

Average    0.799 
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Table 4.4 Results of a six-fold cross-validation on the PPIrand dataset using random forest as the 
classifier. Eight features (RF8) including the mutual rank and Pearson’s correlation coefficient 

calculated for gene expression from microarray experiments and RNA-seq data, IAS, PAS, CAS, 
and the phylogenetic profile similarity score were used. 

 

 

 

 

 

 

 

 
 
Note: The combination of ntree = 400, mtry = 6, and cut-off = 0.5 were chosen because it was selected as the best in 
three out of six training/validation sets (a majority vote). In Table 4.10, these hyper-parameters were used to retrain 
the RF8rand model and applied to the test set.  
 

Table 4.5 Results of a six-fold cross-validation on the PPIloc dataset using random forest as the 
classifier. Four features (RF8) including IAS, PAS, CAS, and the phylogenetic profile similarity 

score were used. 

RF4loc ntree mtry cutoff Accuracy 

1 400 2 0.5 0.793 

2 200 2 0.5 0.794 

3 800 2 0.5 0.808 

4 1000 2 0.5 0.790 

5 400 2 0.5 0.788 

6 200 2 0.5 0.797 

Average       0.795 
Note: The nested cross-validation was performed as in Table 4.2. The ntree value was explored from 200 to 1000 with 
a step size of 200, mtry was explored from 2 to 4 with a step size of 1, and cutoff was explored from 0.3 to 0.7 with a 
step size of 0.2. The combination of ntree = 200, mtry = 2, and cut-off = 0.5 were chosen for RF4loc because this 
combination was selected in two out of six training/validation sets and achieved higher accuracy than ntree = 400, 
mtry = 2, and cut-off = 0.5. 
 
  

RF8rand ntree mtry cutoff Accuracy 

1 400 6 0.5 0.923 

2 1200 6 0.5 0.923 

3 400 4 0.5 0.924 

4 400 6 0.5 0.910 

5 400 6 0.5 0.915 

6 1000 6 0.5 0.916 

Average    0.919 
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Table 4.6 esults of a six-fold cross-validation on the PPIrand dataset using random forest as the 
classifier. Four features (RF8) including IAS, PAS, CAS, and the phylogenetic profile similarity 

score were used. 

RF4rand ntree mtry cutoff Accuracy 

1 400 2 0.5 0.931 

2 200 2 0.5 0.930 

3 600 3 0.5 0.928 

4 1000 4 0.5 0.915 

5 400 3 0.5 0.921 

6 1000 2 0.5 0.923 

Average       0.925 
Note: From the results, the combination of ntree = 400, mtry = 2, and cut-off = 0.5 was chosen because this 
combination achieved highest accuracy among six training/validation sets. 

4.3 Results 

4.3.1 Constructing a benchmark dataset of known Arabidopsis PPIs 

First, two machine learning prediction algorithms was tested in our prediction method, 

PPIP, namely, support vector machine (SVM) and random forest (RF) on the dataset of known 

Arabidopsis PPIs obtained from the TAIR database[95] (Additional file 1: Supplemental Table 

S1). These PPIs were determined by experiments including X-ray crystallography, affinity-capture 

mass spectrometry, co-immunoprecipitation, fluorescent resonance energy transfer, isothermal 

titration calorimetry, and surface plasmon resonance. The downloaded known Arabidopsis PPI 

dataset contained 4,908 PPIs, which were reduced to 4,759 PPIs after removal of short proteins of 

less than 50 amino acid residues and PPI identified by genetic experimental systems. 

To train and test a machine learning method, a negative dataset is also needed, i.e. a dataset 

of protein pairs that do not interact. Negative sets were constructed in two different ways as 

mentioned by Guo[121]. One is to pair proteins from different cellular localizations and thus highly 

unlikely to interact with each other. The cellular localization information was downloaded from 

the TAIR database. The dataset with the positive set and the negative set constructed in this way 

is named as PPIloc. Another one is to randomly pair proteins in the positive set and then exclude 

pairs that are already in the list of positive interacting pairs. The dataset with the positive set and 
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the negative set constructed in this way is named as PPIrand. Both PPIloc and PPIrand included the 

equal number of interacting and non-interacting pairs; thus there are 9,518 pairs in total. 

For training and testing RF, protein pairs that lack co-expression information needed to be 

removed. This reduced the number of interacting pairs to 3,427. By adding the equal number of 

non-interacting protein pairs either from PPIloc or PPIrand, the total number of the dataset for RF 

has become 6,854. The dataset was were split into a training, a validation, and a testing set, 

respectively, and a rigorous nested cross-validation evaluation was performed to evaluate the 

prediction accuracy of PPIP. 

4.3.2 The design of PPIP 

PPIP predicts if a pair of proteins is likely to have physical interaction or not in 

physiological condition from the proteins’ sequence and proteomic features. As illustrated in 

Figure 4.2, for a query protein pair, their physical interaction is predicted from physiochemical 

property features of amino acid sequences of the protein pairs using SVM. The SVM protocol was 

named as SVMloc and SVMrand corresponding to the PPIloc and PPIrand dataset used, respectively. 

The features used were hydrophobicity, hydrophilicity, side-chain volumes, polarity, polarizability, 

solvent-accessible surface area, and net charge index (NCI) of side-chains. In parallel, the 

complementary features of gene co-expression, functional similarity, and the phylogenetic 

profile[236] were used to make another independent prediction by RF. The RF protocol was named 

as RFloc and RFrand corresponding to refer to the PPIloc and PPIrand dataset used, respectively. 

Predictions with RF were performed in two settings, one with all the features and the other without 

gene expression features (thus three functional similarity features and the phylogenetic profile) 

because gene expression data is currently not available for maize and soybean. See Methods for 

more details about the features. 

4.3.3 Prediction Performance on the Known Arabidopsis PPIs 

On the PPIloc and PPIrand datasets of known PPIs and non-interacting protein pairs of 

Arabidopsis, parameters of SVM and RF were trained and tested using six-fold nested cross-

validation. In this rigorous validation procedure, the dataset is split into six subsets, and prediction 

accuracy was measured on each of the subsets using parameters optimized on the rest of the five 

subsets. Using SVM, the overall prediction accuracies for the PPIloc and PPIrand datasets were 91.9% 
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and 70.8%, respectively (Table 4.7 and Table 4.8). Thus, SVM performed better on the negative 

set with protein pairs from different cellular locations than on negative protein pairs that were 

randomly combined from the interacting pairs (Table 4.7 and Table 4.8). This is consistent with 

the conclusion in the paper by Guo[121], who performed a similar comparison of negative datasets. 

On the other hand, RFrand trained on PPIrand performed better than RFloc, which was trained 

on PPIloc (Table 4.9 and Table 4.10). This order was consistently observed when the eight and the 

four features were used in RF. The accuracy of RF8rand and RF4rand were 92.0% and 92.6% accuracy, 

respectively. On the PPIloc, the accuracies were lower, 80.0% and 79.6% for RF8loc and RF4loc, 

respectively (Table 4.9 and Table 4.10). 

Table 4.7 The prediction results on the PPIloc dataset of known Arabidopsis PPIs using SVM 
(SVMloc). 

SVMloc Number 

of PPIs 

True  

Pos. 

True 

Neg. 

False 

Pos. 

False 

Neg. 

Test Set 

Accuracy 

1 1586 685 777 16 108 0.922 

2 1586 717 707 86 76 0.898 

3 1586 701 716 77 92 0.893 

4 1586 721 742 51 72 0.922 

5 1586 739 790 3 54 0.964 

6 1588 663 791 3 131 0.916 

Average      0.919 

Table 4.8 The prediction results on the PPIrand dataset of known Arabidopsis PPIs using SVM 
(SVMrand). 

SVMrand Number 

of PPIs 

True  

Pos. 

True 

Neg. 

False 

Pos. 

False 

Neg. 

Test Set 

Accuracy 

1 1587 353 698 97 440 0.662 

2 1586 557 649 144 236 0.760 

3 1586 470 676 117 323 0.723 

4 1586 377 692 101 416 0.674 

5 1586 482 679 114 311 0.732 

6 1586 428 674 119 364 0.695 

Average      0.708 
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Table 4.9 The prediction results on the PPIloc dataset using RF with the eight features (RF8loc) 
and four features (RF4loc), respectively. 

With eight features 

RF8loc Number 

of PPIs 

True  

Pos. 

True 

Neg. 

False 

Pos. 

False 

Neg. 

Test Set 

Accuracy 

1 1142 435 504 67 136 0.822 

2 1142 430 460 111 141 0.779 

3 1142 382 447 124 189 0.726 

4 1142 438 483 88 133 0.806 

5 1142 458 518 53 113 0.855 

6 1144 476 453 119 96 0.812 

Average      0.800 

With four features 

RF4loc Number 

of PPIs 

True  

Pos. 

True 

Neg. 

False 

Pos. 

False 

Neg. 

Test Set 

Accuracy 

1 1142 433 498 73 138 0.815 

2 1142 421 470 101 150 0.780 

3 1142 399 437 134 172 0.732 

4 1142 439 483 88 132 0.807 

5 1142 450 498 73 121 0.830 

6 1144 466 459 113 106 0.809 

Average      0.796 
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Table 4.10 The prediction results on the PPIrand dataset using RF with the eight features (RF8rand) 
and four features (RF4rand), respectively. 

With eight features 

RF8rand Number 

of PPIs 

True  

Pos. 

True 

Neg. 

False 

Pos. 

False 

Neg. 

Test Set 

Accuracy 

1 1142 482 545 26 89 0.899 

2 1142 494 537 34 77 0.903 

3 1142 479 543 28 92 0.895 

4 1142 528 540 31 43 0.935 

5 1142 549 535 36 22 0.949 

6 1144 546 531 40 25 0.941 

Average      0.920 

With four features 

RF4rand Number 

of PPIs 

True  

Pos. 

True 

Neg. 

False 

Pos. 

False 

Neg. 

Test Set 

Accuracy 

1 1142 487 540 32 85 0.899 

2 1142 493 536 36 79 0.901 

3 1142 495 542 30 77 0.908 

4 1142 534 550 22 38 0.950 

5 1142 553 539 33 19 0.956 

6 1144 544 536 36 28 0.944 

Average      0.926 
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An advantage of random forest is that it can provide the importance of each feature in 

making correct classification using two metrics, the mean decrease of accuracy (MDA) and the 

mean decrease of Gini importance (MDGI) [243]. As shown in Table 4.11, two functional 

association scores, IAS, PAS, were found to be the two most important features for both RF8loc and 

RF8rand models. The IAS score was calculated based on the frequency of two GO terms annotating 

interacting proteins while the PAS score was calculated from the co-occurrence of two GO terms 

in PubMed abstracts. Therefore, it is reasonable that these two scores contribute largely to 

classifying interacting and non-interacting protein pairs, because they evaluate biological contexts 

of GO terms. The results in the table also showed that the phylogenetic profile was more 

informative than gene expression features.  
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Table 4.11 The importance of variables for classifying positive and negative data using RF. 

RF8loc Negative Positive MDA MDGI 

micro_MR 38.6121 22.57167 49.13145 187.8184 

micro_PCC 29.49857 20.7819 38.0066 179.3132 

RNA_MR 51.68748 21.52674 60.84656 214.8184 

RNA_PCC 35.877 21.73235 47.67577 194.7815 

IAS 118.53192 149.28542 198.01382 783.0412 

PAS 88.13659 145.18851 181.64305 1096.2835 

CAS -11.86095 62.29549 50.44961 396.5665 

PHY 49.57318 73.07908 81.35968 373.8518 

 

 

 

 

 

 

 

 

 

 

 
Note: micro_MR, micro_PCC, the mutual rank (MR) and the Pearson’s correlation coefficient (PCC) from 
microarray data; RNA_MR, RNA_PCC, MR and PCC for RNA-sequencing data. IAS, PAS, CAS, three functional 
association scores. PHY, the phylogenetic profile similarity score. Negative, the mean decrease of the true negative 
rate in classifying non-interacting protein pairs; Positive, the mean decrease of the true positive rate in classifying 
interacting protein pairs. Instead of using decreased accuracy (DA), "positive" and "negative" are using decreased 
true positive rate (recall) and decreased true negative rate (specificity), respectively.  MDA, the mean decrease of 
accuracy; MDGI, the mean decrease of Gini importance. The importance of each feature for making correct 
classification was measured with MDA and MDGI. The larger of the value is, the more important the feature is in 
classifying protein pairs. From these results, IAS and PAS are the two most important features.  
 

RF8rand Negative Positive MDA MDGI 

micro_MR 9.692238 7.019082 10.45622 58.2901 

micro_PCC 11.20431 8.213752 13.44388 58.13418 

RNA_MR 20.07403 7.774314 13.95462 60.91505 

RNA_PCC 12.833527 8.10697 14.92287 56.76476 

IAS 126.754812 118.383743 170.353 1908.49263 

PAS 50.476012 111.477796 99.08722 750.90133 

CAS 53.036897 39.316735 55.15384 433.29671 

PHY 6.013217 13.609914 13.19855 99.69469 
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Figure 4.2 The schematic workflow of protein-protein interaction prediction by PPIP. Given a 
pair of protein A and B, physiochemical property features from their amino acid sequences are 

extracted and their interaction is predicted by support vector machine (SVMloc). In parallel, 
functional features including functional similarity scores, gene co-expression scores, and 

phylogenetic profile similarity score are used to make an independent prediction of interaction 
by random forest (RFrand).

Query	Protein	A
Query	Protein	B

Sequence	
physiochemical	

property
Functional	
similarity

Co-expression Phylogenetic	
similarity

RFrandSVMloc

Common
positive
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4.3.4 Comparison with STRING confidence scores 

Our prediction with the confidence score of protein-protein interactions was compared with 

the STRING database[55]. Since SVM used in the PPIP pipeline perform binary classifications 

and do not provide probability values that are comparable to the STRING scores, SVM regression 

was used for this comparison. Two types of SVM regression models were used, SVM-U and SVM-

V[245]. SVM-U controls the error tolerance in the training set whereas SVM-V uses an additional 

parameter V to control the proportion of the data points to be used as support vectors. These two 

SVM regression models was trained using the same hyperparameters as SVMloc and SVMrand. As 

for RF, the fraction of decision trees in RF that vote for protein-protein interaction as the 

probability was used. 

First, I checked how consistent the predictions by SVM-e and SVM-n were with the SVM 

models in PPIP if a probability value of 0.5 in the SVM regressions was used to convert a 

probability value of SVM-e and SVM-n to binary prediction. On the PPIloc dataset, the prediction 

by SVMloc-e was consistent with SVMloc on 99.2% (9445 among 9518) of the cases while SVMloc-

n was consistent with SVMloc on 97.8% of the cases (9312 among 9518). On the PPIrand dataset, 

SVMrand-e’s results were consistent with SVMrand on 73.9% (7032 among 9518) of the cases while 

SVMrand-n’s results agreed with SVMrand on 73.4% (6987 among 9518) of the proteins. 

With these agreement results, the performance of SVM-e, SVM-n, and RF was compared 

with STRING. The two datasets, PPIloc and PPIrand, were used, and the comparison was made using 

Area Under the Curve (AUC) of Receiver operating characteristic (ROC) (Figure 4.3).  On the 

PPIloc dataset (Figure 4.3A), two SVM models, SVMloc-e and SVMloc-n showed substantially 

higher AUC (0.98 and 0.97, respectively) than STRING. RF showed the same AUC value as 

STRING (0.88). On PPIrand, RFrand performed the best with AUC of 0.98 and STRING came the 

second (AUC: 0.86) (Figure 4.3B). Thus, on the both datasets, at least one of our methods showed 

substantially better AUC than STRING. 

Based on these results (Figure 4.3), SVMloc and RFrand was combined in the PPIP pipeline 

(Figure 4.2) since they achieved a very high AUC, substantially better than STRING, in the 

genome-scale prediction in Arabidopsis, maize, and soybean. 
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Figure 4.3 Comparison of PPI detection performance with STRING in identifying interacting 
protein pairs in Arabidopsis. Area Under the Curve (AUC) of Receiver operating characteristic 

(ROC) was used for comparison. A, Evaluation on the PPIloc dataset; B, Evaluation on the PPIrand 
dataset. SVMloc/rand-e and –n are SVM regression models trained on the PPIloc or PPIrand, 

respectively. The probability for RF was computed as the fraction of votes from decision trees. 
For STRING, protein pairs were not included if they are not listed in STRING. A dashed line 

shows a random retrieval, which has an AUC of 0.5.  
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4.3.5 PPI detection by taking overlap between SVM and RF 

In Table 4.12, PPI detection performance was examined by combining SVM and RF on 

the two datasets, PPIloc and PPIrand. As shown in the table, precision improved by taking consensus: 

On PPIloc, while the precision of SVMloc and RFloc were 0.947 and 0.823, respectively, the 

combination of the two methods showed a higher value of 0.980. Similarly, On PPIrand, the 

combination of the two methods showed the perfect precision of 1.0. Note that the improvement 

of precision was a tradeoff with the accuracy, which decreased because apparently PPIs are missed 

if they are not detected by both SVM and RF. However, maintaining a high precision is more 

important when it comes to a genome-scale prediction because producing many false positive 

would be a serious concern. 

The performance of SVMloc and RFrand were further tested on a large negative dataset of 

2,038,222 protein pairs that are assembled by exhaustively pairing proteins from different cellular 

locations. The false positive rate of SVMloc on this dataset was 63.7%. RFrand was also tested after 

excluding pairs that do not have gene expression data (so that the RF model can run with gene 

expression features), which remained 1,048,575 pairs in the dataset. RFrand recorded a small false 

positive rate of 4.36%. Finally, as designed in the PPIP pipeline, the overlap between SVMloc and 

RFrand was taken, which yielded a very small false positive rate of 2.68%. The results confirm that 

the design of PPIP was effective in reducing false positives and that PPIP is suitable for a genome-

scale prediction. 
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Table 4.12 PPI prediction by overlap with SVM and RF.  

Model Precision Accuracy 

SVMloc 0.947 (4226/4426) 0.919 (8749/9518) 

RF8loc 0.823 (2619/3181) 0.800 (5484/6854) 

SVMrand 0.794 (2667/3359) 0.708 (6735/9518) 

RFrand 0.940 (3078/3273) 0.920 (6309/6854) 

SVMloc & RF8loc 0.980 (1857/1894) 0.676 (4634/6854) 

SVMrand & RFrand 1.0 (1260/1260) 0.713 (4884/6854) 
Note: PPI detection performances by combining SVM and RF are examined on the two datasets, PPIloc and PPIrand. 
Precision is defined as the number of true interacting pairs predicted over the number of true interacting pairs and 
wrongly predicted interacting pairs (these numbers are shown in the parentheses of the precision column). Accuracy 
is defined as the number of corrected prediction (true positive and true negative) over the total number of data 
(including true positive, true negative, false positive, and false negative). 

4.3.6 Prediction Performance on the BioGRID Arabidopsis Dataset 

The prediction ability of our prediction method PPIP was further tested on a different 

Arabidopsis dataset, which was obtained from the BioGRID database[29]. BioGRID contained 

PPI data that were not included in the TAIR database, partly because it was updated more recently. 

In total, 3,280 Arabidopsis physical PPIs which have been verified by at least two experiments and 

not included in the TAIR-based dataset were found in BioGRID. The data were further pruned by 

the sequence identity cutoffs, 80%, 50%, and 30% (Table 4.13). The overlaps between the training 

dataset (PPIloc and PPIrand) were excluded. The sequence identity is a measurement of the protein 

sequence similarity from BLAST. Prediction by RF was applied for a smaller fraction of PPIs, 

only to those which have co-expression information. The data sets used by SVM and RF with 

different sequence identify cutoffs are provided in Supplemental Table S4.2. While an evaluation 

on over-prediction of our methods was extensively performed on a large negative dataset in the 

previous section, this benchmark provides an additional check of the SVM and RF models in terms 

of recall. 

The recall values of SVM were somewhat lower than what was observed on the TAIR-

based dataset (0.8880 for SVMloc and 0.5606 for SVMrand, which can be computed as the fraction 

of the sum of “True Positives” from the 1-6 test sets among the total of positives, i.e. the sum of 

True Positives” and “False Negatives” in Table 4.7 and Table 4.8). On the other hand, the recall 

values of RF were in the same range as the value observed on the TAIR-based dataset (0.7642 for 

RF8loc, 0.7610 for RF4loc, 0.8984 for RF8rand and 0.9050 for RF4rand from Table 4.9 and Table 4.10, 
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which can be computed in the same way). RF’s two predictions with different feature sets, the full 

features and the feature set without gene expression features, yielded almost identical recall. 

Among the two SVM models, SVMloc showed a higher recall. When the two RF models were 

compared, RFrand achieved a higher recall than the counterpart, RFloc. These results are consistent 

with the TAIR-based dataset (Table 4.9 and Table 4.10), which would justify our earlier choice of 

combining SVMloc and RFrand for the genome-scale PPI predictions to be discussed in the 

subsequent sections. 

Table 4.13 The prediction accuracy (recall) on the BioGRID PPI dataset.  
Seq. 
Identity 
cutoff 

PPIs subject 
to prediction 
by SVM 
(RF)a) 

Recall by 
SVMlocb) 

Recall by 
RFlocc) 

Recall by 
SVMrandb) 

Recall by 
RFrandc) 

All PPIs 3280 (2468) 0.7466 
(0.7057)  

0.8440 
(0.8327) 

0.3250 
(0.2565) 

0.9444 
(0.9444) 

80% 1123 (797) 0.7266 
(0.7114) 

0.7804 
(0.7604) 

0.2654 
(0.2597) 

0.9448 
(0.9448) 

50% 937 (660) 0.7033 
(0.6818) 

0.7758 
(0.7561) 

0.2465 
(0.2303) 

0.9470 
(0.9470) 

30% 825 (585) 0.6909 
(0.6667) 

0.7641 
(0.7453) 

0.2364 
(0.2239) 

0.9470 
(0.9470) 

Note: The PPIs were clustered by the sequence identity cutoffs of 80%, 50%, and 30% to reduce similar sequences. 
The sequence identity of protein pairs was computed with the Needleman-Wunsch (global sequence alignment) 
algorithm implemented in the nwalign python library. On this dataset, recall was evaluated, i.e. the fraction of PPIs 
in the datasets that were correctly predicted as interacting protein pairs.  SVM trained by PPIloc or PPIrand were named 
as SVMloc or SVMrand. RF trained by PPIloc or PPIrand were named as RFloc or RFrand. a) RF with the eight features was 
able to be applied only for PPIs that have gene co-expression data available. The numbers in the parentheses count 
such PPIs with expression data available. b) Recall is the fraction of PPIs that are correctly predicted. In the 
parentheses, SVM recall values measured on the PPIs with co-expression data i.e. the same dataset as used for 
prediction by RF with the eight features, are shown. c) The values show the recall of RF using the eight features 
including the gene expression features. Results with the four feature combinations that only use the functional 
association scores and the phylogenetic profile are provided in the parentheses. 

4.3.7 PPI prediction for three plant genomes 

Next, PPIP was applied to the three plant genomes, Arabidopsis, Zea mays (maize), and 

Glycine max (soybean). The genome sequences of the three plants were downloaded from the 

UniProt database[40]. Since the number of all possible protein pairs in the whole genome is too 

large, PPIP was applied only for protein pairs that are likely to co-locate in a cell, having a 

sufficient similarity in their Cellular Component (CC) Gene Ontology (GO) category terms[233], 
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which describe the sub-cellular locations of proteins. Since many protein genes in maize and 

soybean do not have GO term annotations in UniProt, a function prediction method was used, 

PFP[30, 39, 246] to predict GO terms to supplement annotations to proteins. PFP is one of the top 

performing function prediction methods, which performs better than conventional methods, e.g. 

BLAST[247], as was also demonstrated in a community-wide function annotation assessment, 

CAFA[248, 249]. From PFP, only high confidence GO predictions with a score of over 10,000 

were used[39]. The similarity of CC terms of two proteins was evaluated by the FunSim score, 

which essentially is the average pairwise similarity of CC GO terms[31, 250]. Protein pairs with a 

FunSim score of CC terms over 0.4 were subject to the prediction with PPIP. This cutoff was 

determined from the distribution of the CC-FunSim score of predicted Arabidopsis PPIs in three 

previous papers that made predictions based on the assumption that PPIs are conserved across 

species[135, 136, 138] (Figure 4.4). Proteins that do not have CC annotations even with PFP 

prediction were also discarded from the PPI prediction. Applying this pre-screening reduced the 

number of protein pairs to 21.36% (133,074,361 pairs), 13.54% (24,814,793 pairs), and 15.27% 

(54,814,995 pairs) of all possible protein pairs for Arabidopsis, maize, and soybean, respectively. 

This pre-screening process would likely miss some true PPIs that do not satisfy the CC similarity 

criteria, nevertheless, I decided to apply the process because having a common subcellular co-

localization can serve as additional supporting evidence of PPIs. 

 
Figure 4.4 The distribution of the similarity of Cellular Component terms of predicted 

Arabidopsis interlogs.  
Note: PPIs predicted in three papers, Geisler-Lee et al. [135], De Bodt et al. [136], Dutkowski et al [138] were 
analyzed. There were in total 50,949 PPIs predicted in the three papers, among which 2,786 pairs had CC GO term 
annotations. The FunSim score of only CC terms was computed. From this plot, 0.4 was used as a cutoff to pre-screen 
protein pairs for the genome-scale screening of the three genomes, Arabidopsis, soybean, and maize. 61.31% of PPIs 
in the distribution had the score above 0.4. 
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The numbers of predicted PPIs in the three genomes by PPIP are summarized in Table 3. 

For protein pairs that satisfied the CC GO term similarity, SVMloc and RFrand were independently 

applied, and commonly predicted PPIs by SVMloc and RFrand were selected. Among protein pairs 

with CC-FunSim > 0.4, SVMloc selected about 10%, 56% and 56% as interacting pairs while RFrand 

predicted 1.83%, 17.45%, and 18.06% as interacting, for Arabidopsis, maize, and soybean, 

respectively (Table 3). The final PPI predictions, which are the PPIs predicted commonly by 

SVMloc and RFrand, were 0.0081%, 7.19%, and 3.77% out of all the possible protein pairs for 

Arabidopsis, maize, and soybean, respectively. Compared to the fraction of known PPIs in several 

other well-studied organisms in Table 4.14, the fraction of Arabidopsis, maize, and soybean PPIs 

from the current study is at the same level. Particularly, the fraction of predicted PPIs for 

Arabidopsis (0.0081%) seems relatively small, but this fraction is consistent in Table S9. All the 

predicted PPIs for the three plant genomes are available as Supplemental data on our lab website 

(http://kiharalab.org/PPIP_results/). 
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Table 4.14 The percentage of known PPIs among all possible protein pairs in well-studied 
organisms. 

Organism Number 
of 
Proteins 

Number of 
PPIs 

Percentage of 
experimentally 
identified PPIs 
over all possible 
protein pairs (%) 

Arabidopsis thaliana  27,636 35,896 0.00939% 

Homo sapiens 20,213 332,829 0.163% 

Escherichia coli 

(K12) 
4,140 12,801 0.149% 

Saccharomyces 

cerevisiae 

(S288c) 

6,002 108,088 0.600% 

Drosophila 

melanogaster 
13,931 47,068 0.0485% 

Mus musculus 22,089 38,587 0.0158% 
Note: The number of proteins are taken from the KEGG database. The number of PPIs are taken from the BioGRID 
database. 
 

It is known that the degree distribution of a PPI network of an organism follows a power-

law distribution, i.e. the histogram of the number of interactions (called the degree) for each protein 

is well approximated with a power-law, p(k) ~ k-g  where k is the fraction of proteins with a certain 

number of interactions, and g is a parameter called the degree exponent, which determines the 

slope of the distribution [53, 251, 252]. Figure 4.5 shows that the PPIs of the three plants detected 

in the current work follow the power-law, with g being 1.362 in Arabidopsis, 0.204 in maize, and 

0.401 in soybean Table 4.15. Smaller degree exponents for maize and soybean indicate that these 

two plants have more hub proteins that interact with many proteins. 
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Table 4.15 The Summary of the number of predicted PPIs in the three plant genomes.  

Organism CC > 0.4 SVMloc RFrand Common Degree 

exponent 

Arabidopsis 133,074,561 

(21.36%all) 

13,682,168 

(10.28%cc) 

2,440,139 

(1.83%cc) 

50,220 

(0.0081%all) 

1.362 

maize 24,814,793 

(13.54%all) 

13,902,459 

(56.02%cc)  

23,223,947 

(17.45%cc) 

 13,175,414 

(7.19%all) 

0.204 

soybean 54,814,995 

(15.27%all) 

30,844,273 

(56.27%cc) 

24,031,016 

(18.06%cc) 

13,527,834 

 (3.77%all) 

0.401 

Note: CC> 0.4, the number and the percentage of protein pairs among all the possible protein pairs that satisfied the 
CC FunSim score criterion of over 0.4; (%all); SVMloc and RFrand, predicted PPIs among pairs that satisfied the CC > 
0.4 criterion by SVMloc and RFrand, respectively; Common, commonly predicted PPIs by SVMloc and RFrand; Degree 
exponent, the parameter value of the power-law distribution of PPIs (Figure 4.5).  %all is the percentage relative to 
the all possible protein pairs of the organism while %cc is the percentage relative to the protein pairs that satisfied 
CC > 0.4. 
 

 

Figure 4.5 Degree distribution of proteins in the predicted protein-protein interaction network. 
The X-axis is the degree of proteins in the PPI network and the Y-axis is the frequency of 

proteins with a certain number of degrees. A log scale is used for both axes. A, Arabidopsis 
thaliana; B, Zea mays (maize); C, Glycine max (soybean). The exponents of power-law 

distribution are 1.362, 0.204, 0.401, respectively. 
 

 Next, our PPI prediction on Arabidopsis was compared with three existing genome-scale 

prediction results. These three works used a very different approach for prediction, the interlog 

concept[131], which assumes that interactions of orthologous proteins across different species are 

conserved. Geisler-Lee et al.[135] and De Bodt et al.[136] used the same reference organisms, S. 

cerevisiae, C. elegans, D. melanogaster, and H. sapiens, whereas Dutkowski et al.[138] used the 
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same four organisms with two more organisms, M. musculus, and R. norvegicus (Table 4.16). 

Table 4.17 shows the number of PPIs predicted by the three works. All the three works predicted 

about the same number of PPIs, 14,009 to 19,974. The works by Geisler-Lee et al. and De. Bodt 

et al. made a very similar number of predictions, which is probably due to them using the same set 

of reference organisms. In Table 4.17, commonly predicted PPIs was compared by pairs of works 

including our method, PPIP. Geisler-Lee et al. and De. Bodt et al. had the largest number of 

common predictions, although the common predictions would be small considering the same 

approach and the reference organisms they used. Common predictions by other pairs including 

pairs with PPIP are roughly about the same numbers. Thus, PPIP has a similar level of agreement 

with the three previous works, although they took a very different approach from ours. 

Table 4.16 The summary of predicted PPIs in Arabidopis with the interlog concept. 

Authors Number of predicted 

PPIs 

Reference organisms 

Geisler-Lee et al. 19,979 S. cerevisiae, C. elegans, D. 

melanogaster, H. sapiens 

De Bodt et al. 18,674 S. cerevisiae, C. elegans, D. 

melanogaster, H. sapiens 

Dutkowski et al. 14,009 S. cerevisiae, C. elegans, D. 

melanogaster, H. sapiens, M. 

musculus, R. norvegicus 
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Table 4.17 Commonly predicted PPIs by using interlogs and PPIP. 

Method Combination Number of commonly 

predicted PPIs 

Geisler-Lee & De Bodt 934 

Geisler-Lee & Dutkowski 294 

De Bodt & Dutkowski 188 

PPIP & Geisler-Lee 118 

PPIP & De Bodt 208 

PPIP & Dutkowski 47 

4.3.8 Examples of predicted PPIs in Arabidopsis 

From the predicted PPIs for the three plant genomes (http://kiharalab.org/PPIP_results/), 

here examples with three different levels of confidence are discussed. Supplemental Table S4.2-

4.10 provide examples from Arabidopsis. All the listed PPIs in the tables were predicted 

consistently by the SVMloc and RFrand and the probability score of RFrand was over 0.95. The 

difference of the confidence levels is based on the availability of additional supporting data. 

The predictions are separated into three classes for each genome according to the 

availability of other evidence that supports the predictions. Supplemental Table S4.2 lists predicted 

PPIs with two more supporting evidence: a very high score of over 900 in the STRING database[55] 

and also satisfy at least one of the following three conditions: a) the two proteins are known to 

locate in the same pathway in the KEGG database[253], b) the two proteins are co-mentioned in a 

literature. The predicted PPIs with correlated elution profile in PPI detection using mass 

spectrometry (MS) [254, 255] are also included in Supplemental Table S4.2. STRING collects 

several different types of evidence for the functional association of protein pairs and provides a 

score that ranges from 0 to 1000 with 1000 as the most confident score. In the works by Aryal et 

al.[254, 255], proteins in Arabidopsis were fractionated using size exclusion chromatography, and 

abundance profiles across the column fractions were quantified using label-free precursor ion 

(MS1) intensity. Proteins with correlated profiles and clustered together among all detected 

proteins were more likely to form complexes (see the original papers for more details). 

Supplemental Table S4.3 lists predicted PPIs with at least one piece of additional evidence, either 

a common KEGG pathway or literature that co-mention the two proteins. Protein pairs listed in 



 

96 
 

the Supplemental Table S4.4 do not have additional evidence because the proteins were not much 

studied before but were predicted with the highest score (1.0) by RFrand. 

The first half of Supplemental Table S4.2 lists predicted Arabidopsis PPIs with literature 

that describes evidence of their interaction. This list selected the most confident prediction in the 

Arabidopsis. Most of the interacting proteins are ribosomal proteins. Besides ribosomal proteins, 

several pairs of Sm-like proteins are predicted to interact, which are known as subunits of the 

heteroheptameric complexes and function in mRNA splicing and degradation[256, 257]. Another 

predicted PPI is plastid division protein PDV2 (AT2G16070) and protein accumulation and 

replication of chloroplasts 6 ARC6 (AT5G42480), which has been shown to interact in the 

intermembrane space to coordinate the division machinery of chloroplast membrane[258].  Our 

predicted PPIs also included some subunits of known complexes such as coatomer, RNA 

polymerase, DNA directed RNA polymerase, augmin, and adaptor complex 1 (AP-1). 

The latter half of the table provides PPIs with similar MS elution profiles[254, 255].  For 

example, V-type proton ATPase subunit C (AT1G12840) and V-type proton ATPase subunit G2 

(AT4G23710) are predicted to interact by RF and SVM. Additionally, they have highly correlated 

protein elution profile and are involved in the two common KEGG pathway including oxidative 

phosphorylation (ath00190), and phagosome (ath04145). 

Supplemental Table S4.3 lists predicted PPIs in Arabidopsis with the next level of 

confidence, which has extra evidence but no information available in STRING or with a low 

STRING score (<400). An interesting example is asymmetric leaves 2 (AS2) (AT1G65620) and 

histone deacetylase 6 (HDA6) (AT5G63110). Although they have a very low STRING score a 

previous study showed that HDA6 functions with AS2 to regulate the leaf development and 

suggested that HDA6 may be the part of the AS1-AS2 repression complex to repress KNOX gene 

expression in Arabidopsis[259]. Another interesting example is protection of telomeres protein 1a 

POT1a (AT2G05210) and CST complex subunit TEN1 (AT1G56260). It is known that CTC1, 

STN1, and TEN1 consist of telomere complex and POT1a interplay with CST components to 

regulate the telomerase enzyme activity[260]. 

The last table for Arabidopsis, Supplemental Table S4.4, shows a list of PPIs with the highest RF 

probability score yet have no other known evidence. An interesting example in this table is 

pentatricopeptide repeat-containing protein (AT1G05600 and AT5G27270). They might function 

in RNA editing in chloroplast[261].  
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4.3.9 Examples of predicted PPIs in maize 

Predictions for maize are shown in Supplemental Table S4.5, S4.6, S4.7, and Figure 4.6A. 

PPIs shown in these tables are predicted both by the SVMloc and RFrand with a high RF probability 

score of 0.9 or higher. As in the tables for Arabidopsis, Supplemental Table S4.5 lists predicted 

PPIs with two additional supporting pieces of evidence, and Supplemental Table S4.6 is for PPIs 

with a single existing piece of additional evidence, in this case having a common KEGG pathway, 

while Supplemental Table 4.7 includes the predicted PPIs with no existing evidence for interaction. 

In Supplemental Table S4.5, 12 protein pairs out of 18 listed turned out to be NAD(P)H-

quinone oxidoreductase subunits. This list also includes interaction between 

hydroxymethylglutaryl-CoA synthase (UniProt ID: B6U9M4) and acetyl-CoA acetyltransferase 

(UniProt ID: B4F9B2), both of which are involved in the four same pathways including terpenoid 

backbone biosynthesis (zma00900), valine leucine and isoleucine degradation (zma00280), 

butanoate metabolism (zma00650), and synthesis and degradation of ketone bodies (zma00072), 

and they have a very high database score in STRING. 

Supplemental Table S4.6 shows predicted PPIs with the highest RF score (1.0) locating in 

at least one common KEGG pathway. For these PPIs, a STRING score was not available. As 

shown, most of the proteins are kinases in the same pathways, the plant hormone signal 

transduction (KEGG: zma04075) or the plant-pathogen interaction pathway (KEGG: zma04626). 

Thus, it is reasonable to conclude that they are interacting. In the table, protein functional 

association score (FunSim) with IAS scores are also provided. As mentioned in the Methods, IAS 

directly indicates the likelihood that proteins with the GO annotations interact. Since the IAS 

scores listed in the table are very high relative to the background distribution (within top 1 % for 

IAS and PAS for proteins in Arabidopsis protein pairs), these scores also support the PPI 

predictions. 

The third list, Supplemental Table S4.7, includes PPIs that were predicted with a high 

confidence score (RF probability = 1) and high functional correlations (IAS>200 and PAS>20 and 

phylogenetic similarity > 0.9), but do not have other existing supporting information or protein 

annotations. When the 226 proteins involved in these PPIs were represented into a network by 

connecting protein pairs in the PPIs using Cytoscape[262], 224 of them (99.1%) are clustered into 

four subnetworks (Figure 4.6A). Since they have no functional annotations, PFP was used to 

predict their GO terms and performed GO enrichment analysis using NaviGO[31, 32] as shown in 
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Table 4.18. It turned out that each of the subnetworks has enriched GO terms that are common in 

the proteins in the network: The largest subnetwork involved in 101 proteins were predicted by 

PFP to be involved in flavonoid glucuronidation, flavonoid biosynthetic process, cellular 

glucuronidation, and quercertin 3-O-glucosyltransferase activity. In the second largest subnetwork, 

57 out of 59 proteins were predicted to be involved in the RNA metabolic process and RNA 

secondary structure unwinding. All proteins in the third subnetwork were predicted to function in 

proteolysis and protein catabolic process while proteins in the last subnetwork were predicted to 

be involved in the regulation of the metabolic process, regulation in gene expression, and 

regulation of transcription DNA-templated. Thus, proteins in the predicted PPI networks have 

coherent biological functions. 

4.3.10 Examples of predicted PPIs in soybean 

The last plant genome to be analyzed was soybean. Soybean has much less available 

functional information in databases comparing with Arabidopsis and maize. Supplemental Table 

S4.8 selected a list of predicted PPIs using the same standard as Supplemental Table S4.5 for maize, 

i.e. PPIs supported by two additional evidence. This list includes subunits from known complexes, 

including ATP synthase, chalcone synthase, cytochrome, and NADH dehydrogenase. 

The next table, Supplemental Table S4.9 shows PPIs without conclusive information in STRING. 

However, two proteins in each pair are found in the same KEGG pathway, and most of them have 

a similar function, judging from the name in KEGG or UniProt annotation. The predicted PPIs in 

this list include protein interaction between glycosyltransferase and protein kinase involved in 

plant hormone signal transduction, plant-pathogen interaction, zeatin biosynthesis, and carotenoid 

biosynthesis signaling pathway. 

Supplemental Table S4.10 lists high confident PPIs (RF probability = 1, IAS>200, PAS>20 

and phylogenetic similarity > 0.9), which do not have other existing supporting evidence and 

functional annotation in UniProt. As I did for the predicted PPIs in maize, in Figure 4.6B networks 

with 224 proteins was constructed that are involved in the PPIs in Table S10 and performed the 

functional enrichment analysis using predicted GO terms by PFP (Supplemental Table 4.13, the 

bottom half). 215 (96.0%) out of 224 proteins were included in four subnetworks. As observed in 

the subnetworks in maize (Figure 4.6A), proteins in each subnetwork are highly functionally 

relevant and would be reasonable to conclude that they are most likely to interact. All proteins in 
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the largest subnetwork were predicted to be involved in the MAPK signaling pathway in response 

to stimuli. The second largest subnetwork with 41 proteins was predicted to be involved in the 

flavonoid biosynthetic process. Proteins in the third subnetwork are predicted to be involved in 

RNA processing and intracellular protein transport. The fourth subnetwork with 9 proteins is in a 

pathway for signal transduction and cell communication in response to the stimulus. 
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Figure 4.6 The networks constructed with predicted PPIs with the highest RF confidence scores 
(1.0) but do not have documented other supporting evidence. Connected PPIs are predicted by 
both SVMloc and RFrand. PPIs were further selected by high functional similarity scores: IAS-

FunSim (> 200), PAS-FunSim (> 20), and the phylogenetic profile similarity (> 0.9). A, 
Predicted PPIs for maize. 224 out of 226 proteins in the PPIs qualified for the criteria are 

included in four subnetworks shown. The number of proteins in each network is 101, 59, 41, and 
23 for the subnetwork 1 to 4, respectively. Table 4.18 provides the subnetwork index of each 
predicted PPI. B, predicted PPIs for soybean. 215 out of 224 proteins in the PPIs qualified for 

these criteria are included in four subnetworks shown. The number of proteins in each network is 
145, 41, 20, and 9 for the subnetwork 1 to 4, respectively. Supplemental Table S4.10 provides 

the subnetwork index of each predicted PPI. See Table 4.18 for the results of the functional 
enrichment analysis of the subnetworks. 
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Table 4.18 Functional analysis of proteins in PPIs of maize and soy bean in Figure 4.6. 

Sub-networks Number 
of 
proteins 

Number 
of 
common 
GO terms 

Number 
of 
common 
GO terms 
with P-
value < 
0.001 

Function 

Maize 1 101 5 5 flavonoid glucuronidation, flavonoid 
biosynthetic process, cellular 
glucuronidation, and quercertin 3-O-
glucosyltransferase activity 

Maize 2 59 8* 6* RNA metabolic process and RNA 
secondary structure unwinding 

Maize 3 41 2 2 proteolysis and protein catabolic 
process 

Maize 4 23 92 21 MAPK signaling, protein 
phosphorylation, neuron 
development, pathway in response to 
stimuli 

Soybean 1 145 87 87 MAPK signaling pathway in response 
to stimuli 

Soybean 2 41 5 5 flavonoid glucuronidation, flavonoid 
biosynthetic process, cellular 
glucuronidation, and quercertin 3-O-
glucosyltransferase activity 

Soybean 3 20 17 12 RNA processing and intracellular 
protein transport 

Soybean 4 9 9 9 signal transduction and cell 
communication in response to the 
stimulus 

 

Note: The “Number of common GO terms” column shows the predicted GO terms by PFP shared by all proteins 
involved in the subnetwork. For the maize subnetwork 2, there was no commonly shared GO term, but there are 8 
commonly predicted biological process GO terms that are shared by 57 out of 59 proteins. The p-value indicates the 
rarity of the GO term in the protein set considering the number of proteins in the set, the number of proteins with that 
GO term in the organism, and the number of proteins in the organism (the function enrichment analysis). 
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4.4 Discussion 

A PPI network is fundamental for understanding an organism’s functional and structural 

units.  For example, PPIs are very useful for predicting the function of individual proteins[124] as 

well as pathways of protein groups[263]. Although large-scale PPIs of several model organisms 

have been revealed by experimental methods[212, 264, 265] and by computational methods[74, 

135, 138, 266], the works for plant PPIs were sparse. This work is intended to fill the gap for plant 

PPIs by providing PPI predictions with the method that was calibrated on known PPIs in 

Arabidopsis. 

 It is inevitable that a computational method often makes wrong PPI predictions. However, 

as discussed in the introduction, the situation would be similar in experimental methods, as it has 

been reported that independent experiments have substantial disagreements [26-28]. To reduce 

errors of a method, either computational or experimental, it would be useful to compare outputs 

from multiple methods. Having this idea in mind, PPIP was designed such that it combines two 

independent predictions, one using sequence-based features and the other with a combination of 

orthogonal features (Figure 4.2). This architecture sacrificed the recall rate but in return achieved 

a very low false positive rate, which is considered as a higher priority since all predicted PPIs are 

provided for reference information for biologists. Also, in the genome-scale predictions for the 

three genomes, additional evidence is provided from other sources whenever available. In the 

analysis, predicted PPIs with three levels of confidence are highlighted. All the PPIs in these three 

levels were predicted not only with high scores but with additional supporting evidence. PPIs in 

the first (best) confidence have direct literature information or multiple supporting data, including 

a high score in STRING and co-existence in the same pathway. In the second level, PPIs have at 

least one evidence including the co-existence in the same pathway. PPIs of the third level 

confidence are between proteins with functional coherence. While it is true that functional 

similarity between proteins does not necessarily indicate physical interaction between them, it is 

certainly highly related with each other as it is a common practice to verify experimentally detected 

PPIs by checking their functional similarity[212, 267, 268] and functional similarity is an 

informative feature of proteins for predicting PPIs[43, 77, 211, 269, 270]. PPI predictions made 

for the three plants are made available on our lab website (http://kiharalab.org/PPIP_results/). I 

hope they are used as a reference and found informative. 
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CHAPTER 5. COMBINATION OF COMPUTATIONAL METHOD 
AND MASS SPECTROMETRY DATA TO AID IDENTIFICATION OF 

PROTEIN-PROTEIN INTERACTIONS IN LARGE SCALE4 

5.1 Background 

Cyanobacteria are photosynthetic organisms that have played important roles in harvesting 

solar energy on a global scale and in the evolution of the oxygenic atmosphere [272]. They have 

great potential as a platform for carbon sequestration and biological energy production [273-276]. 

Flexible and diverse metabolic capabilities allow them to adapt to a wide range of environments. 

Among them, unicellular species such as Cyanothece 51142 can also fix atmospheric N2, a process 

highly sensitive to oxygen [277].  This ability to carry out two opposite biological processes within 

the same cell makes it an interesting model system to investigate the fundamental processes of 

photosynthesis, respiration, biological N2-fixation, and carbon sequestration [278, 279]. 

Cyanothece 51142 produces oxygen and stores photosynthetically fixed carbon in the form of 

glycogen granules during the day, and subsequently metabolizes stored carbon to produce excess 

energy and to create an O2-limited intracellular environment [280, 281]. Respiratory electron 

transport scavenges oxygen to establish anaerobic intracellular conditions necessary for N2-

fixation. Thus cyanobacteria are known to perform substantially different metabolic processes 

during the light-dark periods. The diversity of metabolic pathways allows them to succeed in a 

wide variety of environments and provide a wealth of targets for metabolic engineering of energy-

rich biomolecules. These diverse metabolic processes are governed not only by the expression and 

relative abundances of proteins but also by their association, localization, modifications as well as 

the spatial and temporal distribution of functionally active protein complexes. Protein 

oligomerization is a central feature of many cellular control mechanisms, and the changes in 

metabolic activities of these microbes between the light and dark periods must originate, in part, 

from the assembly and disassembly of protein complexes and cellular structure along the cycle. A 

thorough understanding of the biology of cyanobacteria requires in-depth knowledge of the 

composition and dynamics of multi-protein complexes, an area that has not been thoroughly 

investigated.  

 
4 This chapter has been previously published 271. Aryal, U.K., et al., Proteomic analysis of protein complexes in 
photosynthetic cyanobacteria Cyanothece ATCC 51142. Journal of Proteome Research, 2018. Submitted. 
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Cyanothece 51142 show distinct circadian rhythms of photosynthesis and N2-fixation with 

peaks every 24 hours that are 12 hours out of phase from each other. The genome indicates a 

wealth of metabolic potential, in addition to very active photosynthesis and CO2 uptake 

mechanisms [279]. Under N2-fixing conditions, Cyanothece 51142 cells become filled with large 

granules between the photosynthetic membranes [280, 282]. These granules contain semi-

amylopectin and are more similar to starch than to typical bacterial glycogen. The branching 

pattern of this starch-like material is quite different from glycogen, and Cyanothece 51142 has a 

series of branching and de-branching enzymes that might be involved. The composition and 

dynamics of assembly/disassembly enzyme complexes in Cyanothece 51142 for these glycogen 

granules are still outstanding. The sequencing of the genome [279] and the analysis of the 

transcriptome [283-285] and the proteome [278, 286-288] have uncovered many diurnal and 

circadian controlled genes and protein expressions. However, the oscillation of proteins were less 

pronounced compared to the transcripts [289], leaving us to speculate that the inventory of the 

genes and the proteins alone are not adequate to comprehend this organizational hierarchy. This 

led to the hypothesis that the molecular adaptation of Cyanothece 51142 occurs at a higher-level 

organization of protein complexes and protein-protein interactions (PPIs).  

In recent years, there have been increasing efforts directed toward generating proteome-wide 

maps of PPIs [254]. The most commonly used high-throughput methods for the study of protein 

complexes are yeast-two-hybrid (Y2H) screens [290, 291] or affinity purification-mass 

spectrometry (AP-MS) [292-294]. The Y2H screens are expensive, time consuming, and 

incomplete [295]. The N- or C-terminal tagging in the AP-MS method can affect the expression 

and interaction of endogenous proteins [294, 296], and the application of an AP-MS method is 

also limited by the availability of tagged-constructs or antibodies.  

An alternative size-based fractionation of native proteins via an SEC column combined with 

the high-resolution LC-MS/MS has been recently introduced [297]. SEC combined with LC-MS 

was applied to a non-N2-fixing cyanobacterium Synechococcus elongates PCC 7942 [298], 

Arabidopsis cytosol [254, 299] and chloroplast [300] as well as human cell lysates [301, 302]. In 

this study, size fractionation of native proteins using Superdex 6 column was combined with label-

free LC-MS profiling and bioinformatic analysis to identify subunits of protein complexes in 

Cyanothece 51142. Many proteins involved in key physiological processes including the capture 

of sunlight to produce energy and evolve O2, the capture of N2 to make fixed nitrogen, the capture 
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of CO2 for fixed carbon, the storage of large amounts of carbohydrates that represent potential 

energy, and ridding the cytoplasm of toxic oxygen, were identified as large protein complexes. 

The quality of the LC-MS profiling and complex prediction was evaluated by comparing two 

independent biological experiments in parallel, and by the identification of previously 

characterized protein complexes.  

5.2 Methods 

5.2.1 2.1. Cell growth and protein extraction  

Cyanothece 51142 cells were maintained as previously described [277] in ASP2 medium 

with NaNO3 at 30 °C and continuous illumination of white light at 50 μmol of photons m−2 s −1. 

Cultures for this study were also grown in the same growth medium by inoculating 1/10 volume 

of the stock cell cultures and maintained at 30 °C under 12-h light/dark cycle for 7 days before 

harvesting at 6h into the light period. Cells were exposed to 50 μmol of photons m−2 s −1white light 

during the light period. Cells were harvested by centrifugation at 14,000 rpm for 10 min at 4˚C. 

Pelleted cells were gently washed 2× with ice-cold cell lysis buffer (20 mM Tris-HCl, pH 7.5, 5% 

glycerol, 50 mM KOAc, 2 mM Mg(OAc)2, 1 mM EDTA, 1 mM EDTA, 0.5 mM DTT) followed 

by resuspension in 1 ml of the ice-cold lysis buffer. Cells were broken using a Precellys ® 24 Bead 

Mill Homogenizer (Bertin) at 6500 rpm for 3 cycles, each cycle lasting for 30s. Cell lysate was 

centrifuged at 14000 rpm for 20 min at 4 °C, and proteins in the supernatant were separated using 

size exclusion chromatography (SEC). Protein concentration was measured using a bicinchoninic 

acid (BCA) assay (Pierce Chemical Co., Rockford, IL) before being separating in the SEC column. 

5.2.2 Size exclusion chromatography 

The soluble fraction (0.5 ml, ~1 mg) was separated on a Superdex 200 10/300 GL column 

(GE Healthcare) using an ÄKTA FPLC system (Amersham Biosciences). Elution from the SEC 

column was performed with 20 mM Tris-HCl, pH 7.5, 100 mM NaCl, 10 mM MgCl2, and 5% 

glycerol at a flow rate of 0.2 ml/min, and absorbance was monitored at 280 nm. Two biological 

replicates were processed identically. The column was calibrated using protein standards 

(MWGF1000, Sigma-Aldrich, St. Louis, MO) covering a mass range from 29 kDa to 669 kDa. 
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The void volume was measured with blue dextran. SEC separation was performed at 6°C, and 20 

SEC fractions of 500 µL were collected for mass spectrometry analysis as described below.  

5.2.3  Sample preparation for LC-MS analysis 

Sample preparation was carried out as described previously [286]. Briefly, proteins were 

denatured by adding 50 µl of 8 M urea for 1 h at room temperature, and the concentration in each 

fraction was determined by BCA assay. Proteins were reduced with 10 mM dithiothreitol (DTT), 

then cysteines were alkylated with IAA. Digestion was performed at 37˚C overnight using mass 

spec grade trypsin and Lys-C mix from Promega at a 1:25 (w/w) enzyme-to-substrate ratio. The 

digested peptides were desalted using Pierce C18 spin columns (Pierce Biotechnology, Rockford, 

IL). Peptides were eluted using 80% acetonitrile (ACN) containing 0.1% Formic Acid (FA) and 

dried in vacuum concentrator at room temperature. Dried clean peptides were re-suspended in 80 

µl of the buffer containing 97% purified water, 3% ACN and 0.1% FA. Peptides were loaded to 

the LC column by equal volume (5 µl), not by equal amount or concentration. In an 80 µl solution, 

peptide concentration of the fraction that contained the highest protein amount (in this case fraction 

21 in both the biological replicate) was 0.2 µg/µl.  

5.2.4 LC-MS/MS data acquisition 

Samples were analyzed by reverse-phase HPLC-ESI-MS/MS using the Dionex UltiMate 

3000 RSLC nano System coupled to the Q-ExactiveTM High Field (HF) Hybrid Quadrupole 

OrbitrapTM Mass Spectrometer (Thermo Scientific, Waltham, MA) and a Nano- electrospray 

FlexTM ion source (Thermo Scientific). Purified peptides were loaded onto a trap column (300 µm 

ID ´ 5 mm) packed with 5 µm 100 Å PepMap C18 medium and washed using a flow rate of 5 

µl/minute with 98% purified water/2% ACN /0.01% FA. The trap column was then switched in-

line with the analytical column after 5 minutes. Peptides were separated using a reverse phase 

AcclaimTM PepMapTM RSLC C18 (75 µm x 15 cm) analytical column using a 120-min method at 

a flow rate of 300 nl/minute. The analytical column was packed with 2 µm 100 Å PepMap C18 

medium (Thermo Scientific). Mobile phase A consisted of 0.01% FA in water and a mobile phase 

B consisted of 0.01 % FA in 80% ACN.  The linear gradient started at 5% B and reached 30% B 

in 80 minutes, 45% B in 91 minutes, and 100% B in 93 minutes. The column was held at 100% B 

for the next 5 minutes before being brought back to 5% B and held for 20 minutes to equilibrate 
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the column. Sample was injected into the QE HF through the Nanospray Flex™ Ion Source fitted 

with a stainless steel emission tip from Thermo Scientific. Column temperature was maintained at 

35˚C. MS data was acquired with a Top20 data-dependent MS/MS scan method. The full MS 

spectra was collected over 300-1,650 m/z range with a maximum injection time of 100 

milliseconds, a resolution of 120,000 at 200 m/z, and AGC target of 1 ×106. Fragmentation of 

precursor ions was performed by high-energy C-trap dissociation (HCD) with the normalized 

collision energy of 27 eV. MS/MS scans were acquired at a resolution of 30,000 at m/z 200. The 

dynamic exclusion was set at 20 s to avoid repeated scanning of identical peptides.  Instrument 

optimization and recalibration was carried out at the start of each batch run using the Pierce 

calibration solution. The sensitivity of the instrument was also monitored using an E. coli digest 

at the start of sample runs.  

5.2.5 Data analysis  

All LC-MS/MS data were analyzed using MaxQuant software (v. 1.5.3.28) [303-305] 

against the Cyanothece 51142 genome (http://img.jgi.doe.gov/cgi-bin/w/main.cgi) that contained 

5,300 non-redundant protein sequences. MaxQuant includes common contaminants as a default. 

No external contaminants were added to the database. The minimal length of six amino acids was 

required in the database search. The database search was performed with the precursor mass 

tolerance set to 10 ppm and MS/MS fragment ions tolerance was set to 20 ppm. The database 

search was performed with the enzyme specificity for trypsin/Lys-C, allowing up to two missed 

cleavages. Oxidation of methionine (M) and phosphorylation of STY (pSTY) were defined as 

variable modifications, and carbamidomethylation of cysteine was defined as a fixed modification. 

MaxQuant search was performed as target-decoy, and the false discovery rate (FDR) of peptide 

spectral match (PSM) and protein identification was set at 0.01. After the search peptides without 

any identifiable peak (0 intensity) and with no MS/MS counts were removed from consideration. 

At the protein level, proteins with 0 intensity and with 1 MS/MS counts were also removed from 

consideration. The ‘unique plus razor peptides’ were used for peptide quantitation. Razor peptides 

are the non-unique peptides shared between the protein groups with the most other peptides. To 

increase the number of peptides that can be used for protein quantification and relative abundance 

profiling across SEC fractions, the “match between runs” function was enabled with a maximum 

retention time window of 1 min. This “match between runs” allows the transfer of peptide 



 

108 
 

identification between fractions in the absence of peptide sequencing by MS/MS spectra, utilizing 

their accurate mass and aligned retention time [303]. The identified peptides and protein groups 

with their raw intensities were exported to Microsoft Access 2010 to perform subsequent analyses. 

The correlation coefficients between SEC fractions were calculated using Data Analysis and 

Extension Tool (DAnTE) [306]. 

5.2.6 Data normalization and clustering of protein profiles 

In a protein elution profile, the peak is defined as the elution fraction with the largest 

abundance among all fractions in each SEC experiment. Since the SEC experiment was repeated 

twice independently, the two independent experiments should generate similar elution profiles for 

the same protein. To ensure the quality of the elution profiles, the difference of the index of peak 

fraction was checked between the two SEC experiments, and only proteins with a peak index shift 

within 2 fractions were selected for clustering analysis, which indicates the SEC experimental 

results are consistent. Since the experiments were performed independently, the elution profiles 

generated by the two independent experiments were normalized independently by dividing the 

corresponding maximum intensity among each experiment. The elution profiles of Bio1 and Bio2 

were normalized separately by dividing the LFQ intensities by the maximum intensity among the 

twenty fractions. The normalized 20 fractions from Bio1 and 20 fractions from Bio2 were 

concatenated into 40 fraction, and clustered using the Euclidean distance measurement and the 

different combination of hierarchical methods such as average, complete, mcquitty and ward. For 

each clustering method, different number of clusters were applied by cutting the dendrogram tree 

at different distances to determine the optimum number of clusters. Clustering results were 

compared with some known protein complexes to determine the cluster quality and the optimal 

cluster numbers.   

5.2.7 Sequence-based PPI prediction 

For sequence-based pair-wise PPI prediction [62], the amino acid sequences of Cyanothece 

51142 proteins were downloaded from CyanoBase (http://genome.annotation.jp/CyanoBase) 

[307]. The experimental results contained GeneBank protein IDs starting with “gi” and were 

converted into RefSeq ID following instructions on the GenBank webpage and the UniProt 

database [308]. For predicting PPI based on sequence information, seven physiochemical 
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properties were considered including hydrophobicity, hydrophilicity, volumes of side chains of 

amino acids, polarity, polarizability, solvent-accessible surface area (SASA), and net charge index 

(NCI) of side chains of amino acids. The protein sequences were then represented as periodicity 

of each physicochemical property (Equation 5.1): 

AC(lag, j) =
∑ ,]^,_0
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`
∑ ]^,_`
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^31
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      (Equation 5.1) 

where lag is the distance between covariant residues to consider, which ranges from 1 to 30, j is 

the j-th physiochemical descriptor, i is the position in the sequence, and L is the length of sequence. 

Each protein pair was transformed into 420 dimensional vectors [70]. Then support vector machine 

(SVM) (the software libsvm 2.84 http://www.csie.ntu.edu.tw/~cjlin/libsvm/) [309] was used to 

predict PPIs. SVM is a supervised learning method which uses the kernel function to transform 

the nonlinear features into linearly separable data. A total of 4908 experimentally verified non-

redundant protein interactions in Arabidopsis were used as a training dataset for the SVM. A radial 

basis function (RBF) was chosen as the kernel function with regularization parameters C and 

kernel parameter g optimized as 32 and 0.5 because of the highest cross validation accuracy.  

5.2.8 Quantify gene co-expression 

Next, the current protein complex profiles and the computationally predicted PPI were 

compared with previously published gene [285] and protein expression [287] data sets. The mRNA 

gene expression data set by Stockel et al. [285] includes 1443 genes of Cyanothece 51124. 572 out 

of 1443 proteins overlap with our experiment. The protein expression data set by Aryal et al. [287] 

was collected under day and night period and  includes 976 proteins. 561 out of 976 proteins 

overlap with our experiment. Co-expression level of protein pairs were evaluated by the Pearson’s 

correlation coefficient (PCC) (Equation 5.2): 

 

  PCC = ijk(l,m)
nonp

  ,      (Equation 5.2) 

where cov(A, B) is a covariance of protein A and B, σl  and σm  are the standard deviation of 

protein A and B, respectively. In Table S3, the PCC of the day, night expression and the average 

of the two (overall PCC) was provided. For the protein co-expression data [287], the  mutual Rank 

(MR) of co-expression strength was also computed as following: 

 MR = xRl→m ∗ Rm→l   ,    (Equation 5.3) 



 

110 
 

which is the geometric mean of the correlation rank of gene A to gene B (Rl→m) and of gene B to 

gene A (Rm→l) (Eq. 3). A small MR correlates to a stronger co-expression of the gene. MR is 

useful in evaluating co-expression when some genes weakly co-expressed with all other genes and 

have spurious PCC values. In Table S3, PCC and MR for the protein expression data were provided 

[287]. 

5.3 Results 

5.3.1 SEC fractionation and LC-MS reproducibility  

Native Cyanothece 51142 proteins were separated into 20 SEC fractions (Figure 5.1, 

Supplemental Figure S5.1). The void volume was determined based on the elution peak of blue 

dextran (Supplemental Figure S5.1A). The molecular weight of proteins eluting in each SEC 

fraction was determined based on calibration curve (Supplemental Figure S5.1B). Two 

independent SEC fractionations were performed (Supplemental Figures S5.1C and S5.1D). 

Accuracy of label-free protein quantitation is limited if peptide intensity measurement is 

inconsistent. The reproducibility of peptide signal intensity and peptide retention time on the LC 

column was tested by analyzing three technical replicates from one of the fractions (F9 of Bio2). 

Of the total 1170 peptides and 335 proteins, 971 (83%) peptides and 298 (89%) proteins 

overlapped in all the 3 technical replicates (Supplemental Figures S5.2A and S5.2B), which is a 

good indication of LC-MS reproducibility for protein identification. The average coefficient of 

variation (CV) of MS1 intensity was ~15.1% and the CV of the peptide retention time was <1.0% 

(Supplemental Figures S2C and S2D), which also indicated good reproducibility for intensity-

based label free quantitation. 

5.3.2 Global analysis of the expressed proteome  

In total, 1,567 proteins in Bio1 and 1,436 proteins in Bio2 were identified, of which 1386 

proteins (88% of Bio1 and 96% of Bio2) were common (Figure 5.2A). Pearson’s correlation 

coefficient of 1386 protein intensities as a function of SEC fraction numbers (Figure 5.2B) showed 

the highest correlation coefficients along the diagonal, which indicated that protein elution peaks 

were reproducible between the biological replicates. However, the high correlation of signal 

intensities expanded to several adjacent fractions for high molecular weight protein complexes. 

This is because molecular weight of these proteins were beyond the size limit of the SEC column.  
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The box plots in Figure 5.2C further confirmed that quantitation were consistent across column 

fractions. Reproducibility of protein elution peaks in SEC column between the replicates is 

important to predict protein complexes based on their apparent mass (size). To check the 

reproducibility, the shift in the elution peak fraction (global maximum) of all the identified proteins 

between Bio1 and Bio2 was compared (Figure 5.2D). 55% of the proteins were identified without 

any peak shift (0 fraction shift) and >90% of the proteins were identified within 0-2 fraction shift, 

confirming good SEC reproducibility. 

 
Figure 5.1 Experimental workflow. (A) Proteins extracted under native condition were 

fractionated by SEC, and analyzed by Q Exactive Orbitrap HF mass spectrometer. Data were 
analyzed using MaxQuant [303-305] for protein identification and label free MS1 quantitation. 

Peak elution fraction of each identified protein, Mapp, and Rapp were determined as described 
previously [254]. Mapp, apparent molecular mass; Mmono, predicted molecular mass of monomer. 

Rapp, the ratio of the Mapp to the Mmono (Mapp / Mmono). Proteins with an Rapp > 2 in both the 
replicate were considered to be in a complex. 

5.3.3 Hierarchical clustering of protein elution profiles 

Proteins with a similar elution profile were clustered and further subjected to 

bioinformatics predictions of PPI. Proteins interacting within complexes should display similar 

SEC elution profiles and belong to the same cluster. The results of different clustering methods 

(see method for details) were compared using several known protein complexes such as PSI, PSII, 

light harvesting complex, ribosomal proteins and others, and the method which assigned most of 
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the known protein complex subunits within the same cluster were selected. Since these known 

protein complexes stably exist in the Cyanothece 51142, the clustering results did not differ much 

with different combinations of clustering methods. Because the computational method was used 

to further filter out the false interacting pairs with similar elution profiles, the smaller number of 

clusters with more proteins within each cluster was adopted in order to generate more protein pairs 

subject to prediction within the same cluster. The average linkage hierarchical clustering method 

with 30 clusters was used. The heat map of the Euclidean distance of elution profiles was plotted 

in the Figure 5.6A. The heat map of elution throughout the SEC fractions shows that a significant 

number of proteins peaked at the high molecular weight fractions, which indicates that many 

proteins are migrating through the SEC column as complexes. To roughly estimate the proportion 

of proteins that migrate as stable complexes, the peak elution fraction (global max) of each protein 

was determined and used that global peak fraction to estimate the size or apparent (native) 

molecular weight (Mapp). Many proteins eluted in high mass fractions suggesting that they 

remained intact during SEC separation.  
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Figure 5.2 LC-MS reproducibility. (A) Venn diagram showing the overlap of proteins identified 
between two biological replicates. (B) Heat map showing the Pearson’s correlation coefficients 

(PCC) of protein abundances (MS1 intensity) across SEC fractions. The correlations coefficients 
were calculated using Data Analysis and Extension Tool (DAnTE) [306]. (C) Box plot showing 
the median distribution of protein intensities. (D) Shift in peak elution fraction of proteins in two 
SEC separations. ~90% proteins were identified within 0-2 fractions shift indicating good SEC 

reproducibility. 
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5.3.4 Determination of protein complexes  

Figure 5.3B shows the distribution of the monomer (Mmono) and the Mapp of proteins. The 

Mmono is concentrated in the lower molecular weight ranges and Mapp is concentrated in high 

molecular weight ranges. Previously, Rapp (apparent ratio = Mapp divided by Mmono) have been used 

[254, 310, 311] to define a protein complex as those having an Rapp value of 2 or higher in both 

the biological replicates. Despite several limitations, Rapp is a useful metric to globally predict 

putative protein complexes. Figure 5.6C shows the Rapp distribution of proteins in the two 

biological replicates. The circles along the solid line represent proteins eluting in exactly the same 

fraction, thus the same Rapp values, in both the biological replicates (0 fraction shift in elution 

peak). ~55% of the proteins fell in this category. Circles along the dotted lines indicate proteins 

with 1 fraction shift, and ~30% of the proteins had 1 fraction shift in their elution peaks. Our Rapp 

predictions agreed well with the oligomerization state of several known protein complexes. For 

example, the Mapp of PSI complex subunits ranged from ~376-550 kDa (Supplemental Table S2, 

row 565-578) in agreement with the previous report [312]. Enolase peaked in fraction 11 with an 

Mapp of ~105 kDa, close to the known dimeric structure [313]. Enolase also peaked in a fraction 

with Mapp of ~105 kDa in our previous analysis using Arabidopsis [254]. Another glycolytic 

enzyme, phosphoenolpyruvate carboxylase (Ppc; cce_3822), was identified with Rapp 4.6 in both 

the replicates, close to the known tetrameric structure of this enzyme [314]. Arabidopsis PEPC 

(PEPC1 and PEPC2) were also detected with Rapp of ~4 in our previous study [254, 299]. Using 

Rapp values, 64% (946 out of 1386) of the proteins detected in both the biological replicates were 

predicted as complexes. The protein complexes were functionally diverse including those involved 

in translation, carbohydrate metabolism, photosynthesis, respiration, ion transport, folding, and 

ATP and metal ion binding (Figures 5.3A and 5.3B). Despite our mild lysis buffer, the protein list 

included both cytosolic and membrane proteins (Figure 5.3C). Our membrane protein list included 

many cytoplasmic and thylakoid membrane proteins, and both cytoplasmic (hydrophilic) and 

membrane (hydrophobic) domain proteins. However, cytoplasmic domain proteins were detected 

with higher relative abundances than membrane domain proteins indicating that they are more 

accessible for solubilization during extraction. It is important to mention here that PsaA, PsaB, 

PsaC, PsbB, PsbC and PsbA2 were detected, and all are known to be hydrophobic.  
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Figure 5.3 Pie charts showing distribution of proteins into diverse biological processes (A), 
molecular functions (B) and cellular components (C). 
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Protein sizes were also diverse ranging from ~20 kDa to ~800 kDa. About 50% of those 

putative complexes eluted either in the void or high molecular weight (> 600 kDa) fractions, 

including many 30S and 50S ribosomal proteins, PSI and PSII proteins (Figure 5.4), 

phycobilisomes, thioredoxins, ferroredoxins, glutaredoxins, NDH-1 complex (Figure 5.6), 

elongation factors and many unknown or hypothetical proteins. One-third of the proteins eluting 

in the void were unknown or hypothetical proteins. Many of these unknown proteins showed 

highly correlated elution profiles with other known protein complexes and also were predicted as 

interacting pairs by computational method. For example, unknown protein cce_4744 showed 

correlated elution profile with cytochrome f (PetC1; cce_2958) (Figure 5.5A); another unknown 

protein cce_0494 co-eluted with PSII reaction center protein PsbB (cce_1837) and PsbC 

(cce_0659) (Figure 5.5B). In addition, uncharacterized proteins cce_1749, cce_3678, and 

cce_3430 have highly correlated elution profiles with the protein involved in disulfide bond 

formation (cce_1972) (Figure 5.5C), and their protein-level expression are highly correlated 

(Supplemental Table S5.3). These and several other evidences suggest that many novel and 

apparently large protein complexes that are currently characterized as unknown have been 

uncovered.  
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Figure 5.4 SEC elution profiles of PSI (A) and PSII (B) polypeptides. PSI and PSII polypeptides 
eluted in high molecular weight (669 kDa) fraction.  
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Figure 5.5 Correlated elution of unknown proteins with known protein complexes. (A) Unknown 
protein cce_4744 eluting with PetC1, (B) cce_0494 eluting with PsbB and PsbC, and (C) protein 

involved in disulfide bind formation cce_1972 eluting with unknown protein cce_1749, 
cce_3678, and cce_3430. 
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Of the 1386 proteins, ~400 proteins were annotated as unknown and ~70 proteins were 

classified as hypothetical proteins. Two-third of these proteins (~300) have Rapp ≥ 2 in both the 

biological replicates (Supplemental Table S2). This suggests that many protein complexes have 

been detected, whose function is currently unknown, and highlights the significant challenge ahead 

for functional characterization of these unknown proteins, as in general, >40% of the proteome in 

prokaryotes and >50% in eukaryotes are not characterized [315]. 

Our experimental system also detected proteins that are partitioned between the cytosol 

and the cytoplasmic and/or thylakoid membrane; indeed, there are a number of proteins with 

known membrane localization that were detected as apparent subunits of large complexes. Most 

of those detected membrane proteins are abundant proteins such as light harvesting 

phycobilisomes proteins (Figures 5.4A and 5.4B), subunits of NDH-1 complex (Figure 5.9), PSI 

and PSII complexes (Supplemental Figure S5.4)), and the ATP synthases (Supplemental Figure 

S6). It appears that subunits of these complexes are easily accessible for solublization during cell 

lysis due to cytoplasmic domain localization.  

Key enzymes of glycolysis (GlgP1, Pgi1, Pgi2, PfkA1, Fda, Gap, Pgk, Eno1, Eno2, Ppc), 

TCA cycle (GltA, AcnB, SucC, SdhB, FumC), pentose phosphate (PP) pathways (Zwf, Gnd, TalA, 

Rpe, Pkt), and amino acid biosynthesis (AroQ, IlvN, TrpD, AroK, CysK, LeuB) (Supplemental 

Table S2) eluted as stable complexes. Proteins involved in glycogen synthesis, GlgA1 (cce_3396) 

and GlgA2 (cce_0890) were identified as large protein complexes with Mapp of 466 kDa and Rapp 

>5 in both the replicates (Figure 5.6C). Of the three circadian clock (Kai) proteins, KaiB (cce_0423) 

and KaiC (cce_0422; cce_4716) were identified, and eluted with multiple but consistent elution 

peaks in Bio1 and Bio2 (Supplemental Table S2, rows 236-238). The first elution peak 

corresponding to fraction 5 represents approximately 466 kDa in both the replicates (Figure 5.7F). 

In cyanobacteria, KaiA and KaiB work together to modulate the activity of KaiC in a 

phosphorylation dependent manner [316]. The link between metabolic activity and the circadian 

behavior has previously been reported [316], and this link might be important in Cyanothece 51142 

as these microbes are typically dependent on photosynthesis as an energy source.  
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Figure 5.6 Determination of protein oligomerization states. (A) Hierarchical clustering of protein 
elution profiles. Proteins were clustered using Euclidean distance and average linkage 

hierarchical clustering method. In this plot, each row represents a protein and each column 
represents the index of protein elution fraction. Numbers on the top show molecular masses of 
protein standards, and the peak elution fraction for each of the standard was used to determine 

the Mapp of proteins. (B), Histogram showing the distribution of the monomeric (blue) and 
experimentally determined apparent masses (green and red) of proteins that were identified in 

both the biological replicates. (C), Scatter plots showing Rapp distribution of proteins between the 
two biological replicates. Each circle represents Rapp values for Bio1 and Bio 2. Circles along the 
black solid line represent proteins without any fraction shift in elution peak (same Rapp values) in 

both the replicates. Circles along the black dotted lines represent proteins with 1 fraction shift 
and circles along the blue dotted lines represent proteins with 2 fraction shifts between the 

replicates. Bio1; biological replicate 1, Bio2; biological replicate 2.  
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Figure 5.7 Elution profiles of phycobilisomes (PBS) and other complexes. (A, B), Elution 
profiles of phycocyanin (Cpc) and allophycocyanin (Apc) subunits. Elution profiles varied 
among the individual polypeptide. (C), Elution profiles of Rubisco large (RbcL) and small 

(RbcS) subunits. Both RbcL and RbcS peaked at fraction 12 with calculated Mapp of 105 kDa. 
(D), Elution profiles of CO2 concentrating mechanism (Ccm) proteins. CcmM showed major 

elution peak as a complex while others showed major peaks as monomers.
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Figure 5.8 NDH-1 complex. (A-D), Elution profiles and structure of multiple forms of NDH-1 

complex subunits. All the subunits eluted in high molecular weight (669 kDa) fraction. The 
existence of NDH-1L (respiratory), and NDH-1MS and NDH-1MS’ (CO2 uptake) forms of 

NDH-1 complexes were determined by comparing SEC co-elution profiles and known functional 
and structural multiplicity in the literature [317, 318]. Hydrophilic domain subunits showed 

higher abundance than the membrane domain subunits. Both hydrophilic (I, J, K, H) and 
hydrophobic domain subunits (A, B, C, D1, F1, D3, F3, D4) as well as Oxygenic-

Photosynthesis-Specific (OPS)-domain subunits (O, M, N) were identified. Results show the 
existence of functional multiplicity of NDH-1 complexes in Cyanothece 51142 cells that are 

responsible for a variety of functions including respiration, cyclic electron flow and CO2 uptake.
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5.3.5 Computational protein-protein interaction prediction 

Pair-wise sequence-based PPI prediction [121] identified  74,822 putative PPI pairs among 

all the 1386 proteins, of which 561 proteins have been found in the previously published protein 

expression data by Aryal et al.[287], and 572 genes overlap with mRNA expression data by Stockel 

et al.[285]. To further select predicted PPI pairs with high confidence, I referred to these protein-

level and mRNA-level co-expression information. In Table S5.3, predicted PPI pairs among the 

561 proteins are selected that have a protein co-expression correlation [287] above 0 

(Supplemental Table S5.3, column F) or mutual rank below 100 (Supplemental Table S5.3, column 

G), and with at least one of mRNA co-expression correlation [285] above 0 (Supplemental Table 

S5.3, column C)). There were in total 2,461 such protein pairs. These proteins are plotted in Figure 

5.10 with the Euclidean distance of protein elution profiles and Pearson’s correlation coefficient 

of the mRNA-level co-expression information. If protein pairs are both annotated, the number of 

common GO terms of the protein pairs is indicated in a color scheme with a darker color for 

stronger function similarity. The figure shows such pairs with functional similarity mainly locate 

at the top left of the plot, which indicates that they have a higher co-expression correlation and 

similar elution profiles with each other. Thus the plot implies that the similarity of elution profile 

and high expression correlation indeed capture physically interacting protein pairs. 

The predicted PPI list (Supplemental Table S5.3, Figure 5.9) includes pairs of obviously 

similar function such as PSI and PSII proteins, ribosomal proteins, cytochrome b6f complex, ATP 

synthases, NADPH- related proteins, chaperones, amino acid synthesis and carbohydrate 

metabolism. Figure 5.9 visualizes the interaction network of the pairs using Cytoscape [262]. For 

example, PBS complex subunits ApcA and ApcB, which co-elute together (Figure 5.4A), have a 

very high co-expression correlation at both protein and mRNA levels and share four GO terms 

(Supplemental Table S3), and were predicted as interacting proteins (Figure 5.9A). CcmK1 and 

CcmK2 were also predicted as interacting pairs with a very high protein level and mRNA level 

co-expression (Figure 5.9B), as well as AtpE and AtpB1 proteins (Supplemental Table S5.3) and 

PSI and PSII polypeptides (Supplemental Table S5.3, Figures 5.9C and 5.9D). PsaB and PsaA 

(MR=2.83, PCC=0.98) and CpcG, ApcE and CpcC2 (Figure 5.4A) were predicted as interacting 

pairs with strong co-expression (Supplemental Table S5.3). The NDH-1 complex subunits NdhO 

and NdhM (Figure 5.8) were predicted as interacting pairs with high protein co-expression score 

(MR: 39.87, PCC: 0.81) and 3 common GO terms (Supplemental Table S3). 
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Figure 5.9 Sequence-based prediction of protein-protein interaction (PPI) network. The edge 
represents the predicted interaction between two proteins. The predicted network is drawn by 

Cytoscape.
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Additionally, I have referred to the STRING score for the predicted protein pairs in the 

Supplemental Table S3. STRING is a database which provides various data that indicate functional 

and physical interactions of protein pairs in over 2,000 organisms [55]. The plausibility of 

interactions are indicated by a score, which ranges from 0 to 1000, with 1000 for the most confident 

interaction. Thus, STRING provides further additional support of identified interacting protein 

pairs. Among the predicted PPIs with STRING combined score above 900, four interesting 

examples are discussed. 

Putative homologs of Glucose-1-phosphate adenylytransferase (GlgC2; cce_2658) and 

phosphoglucomutase (cce_0770) are both involved in the glycogen biosynthesis pathway in ten 

other organisms. Since proteins involved in the same pathway have a higher probability to interact, 

it is highly possible that these two proteins interact. Another example is the type IV pilus assembly 

protein (PilM; cce_1578) and hypothetical protein (cce_1579). Their genes are coded in the 

vicinity on the Cyanothece genome within only 4 bp intergenic distance, and they also co-occur 

across multiple organisms. Studies of protein interactions show that genes encoding interacting 

proteins are kept close to each other on the genome [166, 167], and thus these two proteins have 

high probability of interacting. The third example is uroprophyrinogen decarboxylase (HemE; 

cce_2966) and corproporphyrinogen III oxidase (HemF; cce_3201). They are both involved in the 

heme biosynthesis pathway and porphyrin chlorophyll metabolism pathway not only in 

Cyanothece 51142 but also in other 4 Cyanothece strains. Also, their putative homologous proteins 

are found to have correlated expression patterns in other organism. The fourth example is the 

pyrroline-5-carboxylate reductase (ProC; cce_2615) and bifunctional proline dehydrogenase 

(PutA; cce_1595). They are both involved in the arginine and proline metabolism pathway. 

Furthermore, it has been shown in Thermus thermophilus HB27 that PutA catalyzes the conversion 

of proline to prroline-5-carboxylate, which is the target of ProC [319]. Therefore, it is highly 

possible that these two homologous proteins also interact in Cyanothece 51142. Overall, many 

large and apparently novel protein complexes were identified in Cyanothece 51142 and further 

discuss several more complexes below, which are highlighted in yellow in Supplemental Table 

S5.3.  
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Figure 5.10 The plot of Euclidean distance of protein elution profiles vs. Pearson’s correlation 
coefficient of the mRNA-level co-expression information [285]. The dots are colored based on 
the number of common GO terms. Grey indicates no common GO terms. Blue to black color 

indicates the number of common GO terms is from 1 to 10.  
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5.4 Discussion 

The physiology of unicellular Cyanothece 51142 is diverse. An understanding of its 

physiology requires the analysis of the full complement of proteins and the way they are organized 

and regulated in the cell. I started this by analyzing the Cyanothece 51142 protein complexes using 

the combination of SEC fractionation and quantitative LC-MS/MS profiling. This technique opens 

up the possibility for systems-wide studies of protein complex dynamics and interactions in 

cyanobacteria under various physiological conditions. I note that while this technique is very 

suitable for mapping stable complexes, transient or weak complexes have a higher chance to 

dissociate during lysis (and dilution) and SEC fractionation and consequently, missed from the 

detection. Therefore there is still a great need to develop a method that can better discover transient 

PPIs. Nonetheless, a number of protein complexes were successfully identified that are involved 

in key metabolic processes, which indicates the validity of our approach, and furthermore, many 

other known and unknown interacting pairs were identified (Supplemental Table S3), which can 

serve as valuable reference for future biological works. 

In this work, bioinformatics analysis was used to follow up the experiments to provide 

further supporting evidence of detected PPIs. Since the protein clusters with their elution profiles 

from the SEC fractionation only provides sets of proteins that have similar profiles, bioinformatics 

analysis is necessary to actually identify interacting pairs. As a future direction of this work, 

tertiary structure of protein complexes can be further constructed using protein docking programs 

[320-322] to provide residue- and atom-level information of protein complexes. 

In conclusion, this work represents the first comprehensive analysis on large-scale protein 

complex study in Cyanothece 51142. So far, differential and quantitative proteomic analysis of 

soluble and membrane proteins of this strain has been well established, and wealth of information 

of proteins involved in major metabolic pathways is known. However, how these proteins 

assemble into complexes and function was largely unknown. Here, I was able to add protein 

complex information with other qualitative and quantitative information, and established an 

isolation procedure and analytical platform for future studies to reveal how these protein 

complexes assemble and disassemble as a function of diurnal and circadian rhythms. 
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CHAPTER 6. DISCUSSION AND SUMMARY 

6.1 Remaining Challenges 

Current computational methods to predict PPIs mainly relies on the knowledge of the 

experimentally verified PPIs. These are several disadvantages of predicting PPIs based on the 

signatures of the experimentally verified PPIs. 

First, lots of PPIs are identified by large-scale experimental methods, such as two-yeast 

hybrid and mass spectrometry. These experimental methods bear high false-positive rate. If the 

data is used as training data to build the prediction model, it leads to the mistakenly labeling of the 

interacting pairs and non-interacting pairs in the training data. The prediction model built on these 

PPIs can introduce some false predictions and lower the reliability of the prediction results. 

Second, current classifiers try to detect the underlying patterns of the known PPIs and make the 

prediction on the unknown protein pairs. Therefore, if some types of PPIs have not been discovered 

before, it will not be included in the prediction model. This situation would result in the loss of 

some true PPIs while I am making the predictions. Only the protein pairs with similar patterns as 

the previously identified PPIs are predicted as PPIs. 

Another challenge of computational PPI prediction is feature extraction. Protein sequences 

can be easily accessed through UniProt or NCBI databases, so lots of sequence-based 

computational methods were developed. Functional similarity calculated from gene ontology 

terms requires the query protein with annotated GO terms. However, for some not well-studied 

species, only very few proteins have annotated GO terms. To overcome this challenge, PFP can 

be used to predict the GO terms [39]. When gene/protein coexpression level is used as a feature, 

genome-scale experiment on the query species is required in order to quantify the co-expression 

level. However, only several model species have large-scale gene co-expression level stored in the 

databases such as ATTED-II and COXPRESdb [323, 324]. Otherwise, small-scale experiments on 

the genes/proteins of interest with a limited number of conditional variants can be used as a filter 

to select the high confident PPIs. However, this type of experiment can only indicate the co-

expression association under such conditional variants. The structure-based feature is a very 

powerful feature in predicting PPIs and getting more insights about how proteins interact. Only a 

limited number of protein structures are solved and available on PDB and EMDB. To extract the 
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protein structure-based features, structural models need to be first generated. This process is not 

only time consuming but also have a deviation from the native structure. Therefore, more reliable 

protein modeling methods are required in order to use the structure-based feature for PPI 

predictions. 

6.2 Future work 

Nowadays, lots of deep learning methods are applied to solve biological questions. One 

strategy is to extract the features the same way as the previous strategies and input them into a 

neural network. An example is to extract the same physiochemical auto-covariant features based 

on amino acid sequences, but input into the stacked autoencoder. The accuracy has been improved 

to 97.19% [325]. Another example is to extract various sequence-based features including amino 

acid composition, dipeptide composition, amino acid transition, amino acid distribution, and 

amphiphilic pseudo-amino acid composition and input into a deep recurrent neural network 

combined with the embedding techniques [326]. It also achieved higher accuracy than You’s 

method who used similar features but input into the SVM model [117]. 

Another strategy is to develop innovated ways to extract features from protein sequences. 

One example is transferring the method, that how computational linguists encode the sentences 

into numerical vectors, to encode the protein sequences using a type of recurrent neural network 

called long-short term memory (LSTM). In the natural language processing field, there is a very 

famous LSTM structural called Siamese neural network. It was used to detect the semantic 

similarity between two sentences. After applying it to predict the PPIs, it also achieved very high 

accuracy [327]. This model can be improved by considering the physiochemical proprieties of 

amino acid while encoding the sequences.  

Besides the improving the PPI prediction methods by adopting deep learning methods, PPI 

structural models are also needed to better understand the mechanism of interaction including the 

shape complementary, interacting residues, and the functionality of PPIs. PPI structural modeling 

methods will generate thousands of models. Quality assessment is necessary to select the one 

closest to the native structure. Commonly used quality assessment methods including calculation 

of protein model energy scores such as DFIRE, GOAP, ITScore, and Soap [328-331]. These scores 

provide lookup tables with distance and angle probability distributions of pairwise atom type, 

which are calculated based on the statistics of the known protein structures. The close-to-native 
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protein structures should have lower energy scores. A very naïve but efficient way to select 

the best model is called RankSum. It selects the model with the smallest sum of the rank of each 

energy score. Other than calculating the energy scores, several deep learning methods using the 

3D convolutional neural network (CNN) are also been applied to assess the quality of the single 

protein structural models [332-334]. In Derevyanko’s method, the kernel of the CNN is just simply 

checking the presence of the 11 atom types [335]. This method can be improved by subdividing 

the atom types or changing the kernel function to the energy score probability distribution function.  

6.3 Outlook 

Previous work has used structural information from the homologous modeled protein 

complex to predict the PPIs [336]. In the long term, I also hope that the structure of PPIs can be 

accurately modeled. In this field of work, computational docking can help to locate the interface 

[180]. Direct coupling analysis has been proven to successfully predict hot-spot residues [337]. 

This analysis is based on the assumption that the structure of the protein complex is conserved to 

conserve the functionality during the evolution. Therefore, structural conservation constrains the 

sequence variability and forces the interacting residues to coevolve. Understanding the interface 

and hot-spot residues are important and they will guide biologist to design mutagenesis 

experiments, as well as to gain further understanding of the functionality and interacting 

mechanisms. The modeled protein structures can also give some insights to the drug discovery 

targeting PPIs [338]
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A. SUPPLEMENTAL INFORMATION FOR CHAPTER 4 

Supplemental Table S4.1 (in a separate Excel file) The experimentally verified protein-protein 
interactions (PPIs) downloaded from TAIR database. Only the 4,776 PPIs identified by physical 
experimental systems are included. The PPIs only identified by genetic experimental systems are 
discarded and they are listed at the right side of the table highlighed in grey. After removing the 
protein length less than 50 residues, only 4,759 PPIs are used for training.  The number in each 
cell indicates the number of the same type of experiment which identifies such PPI. 
 

Supplemental Table S4.2, S4.3, S4.4 (in a separate Excel file) Predicted PPIs in Arabidopsis 

thaliana with different levels of confidence. 

 

S4.2:  PPI predictions with two additional evidence in Arabidopsis thaliana.  

S4.3: PPI predictions with additional evidence in Arabidopsis thaliana. 

S4.4: PPI predictions with no known evidence in Arabidopsis thaliana. 

 

Supplemental Table S4.5, S4.6, S4.7 (in a separate Excel file) Predicted PPIs in Zea mays 

(maize) with different levels of confidence. 

 

S4.5: PPI predictions with two additional evidence in Zea mays (maize). 

S4.6: Predicted PPIs with additional evidence in Zea mays (maize). 

S4.7: Predicted PPIs with no known evidence in Zea mays (maize). 

 

Supplemental Table S4.8, S4.9, S4.10 (in a separate Excel file) Predicted PPIs in Glycine max 

(soybean) with different levels of confidence. 

 

S4.8:  PPI predictions with two additional evidence in Glycine max (soybean). 

S4.9: Predicted PPIs with an additional evidence in Glycine max (soybean). 

S4.10: Predicted PPIs with no other known evidence in Glycine max (soybean). 
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B. SUPPLEMENTAL INFORMATION FOR CHAPTER 5 

Supplementary Figure S5.1 Size Exclusion Chromatography (SEC) protein elution profiles. (A) 

Dextran blue elution peak. (B) Elution peaks of six protein standards. (C and D) Elution profiles 

of Cyanothece 51142 native proteins in biological replicate 1 and 2, respectively.  
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Supplementary Table S5.1 (in a separate Excel file) List of peptides commonly identified in 

duplicate biological runs with matched proteins/protein groups, intensity and MS/MS counts. 

Supplementary Table S5.2 (in a separate Excel file) List of proteins commonly identified in 

duplicate biological runs with their intensity profiles, Mapp and Rapp values.  

Supplementary Table S5.3 (in a separate Excel file) List of computationally predicted protein-

protein interactions. 
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