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ABSTRACT 

Disaster debris management is critical to the success of disaster recovery systems. While there are 

multiple disaster mitigation strategies and post-disaster debris management plans, it is hard to 

implement because of: (i) the uniqueness of disaster incidents and randomness of its impacts; (ii) 

complexity of disaster debris removal operations, policy and regulations and (iii) interdependency 

of multiple infrastructure networks. Also, delayed debris removal operation affects following 

emergency response activities. Furthermore, uncontrolled debris removal activities can result in 

significant environmental and public health consequences. Therefore, there is a need for a 

systematic approach to optimizing post-disaster debris management systems.  

 

This research is aimed to understand the complexity of debris management and associated 

emergent dynamics through the lens of an adaptive system-of-systems (SoS). To develop the 

adaptive decision support system, this research (a) identifies the interdependent infrastructure 

network within a community and its relative importance; (b) develops real-time GIS database to 

integrate the data associated with critical infrastructure and geographical characteristics in the  

community map; (c) designs and selects a TDMS network to analyze the required number, capacity 

and resources, based on engineering-technical, managerial, and social-political dynamics; (d) 

simulate the productivity of debris-management SoS based on the real-time GIS database to gain 

insight into the impact of the dynamical nature of a disaster-affected area; and (e) develop a 

visualized interactive GIS-based platform for debris management to communicate real-time debris 

clearance strategies and operations among different agencies and organizations. 

 

To evaluate the proposed framework and decision support system, this research conducted a case 

study, debris removal operation in the city of Baton Rouge, after the 2016 Louisiana flood. The 

results demonstrated the influence of sub-systems such as TDMS locations and capacity, road 

network condition, available resources, existing regulations and policies, characteristics of 

community on the behavior of the entire disaster debris removal management as a whole.  

 

The proposed decision support system for effective disaster debris management will be beneficial 

for emergency agencies and disaster-prone communities to evaluate and optimize their disaster 
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debris management system. Also, the system can be systematically integrated with other 

emergency response systems to maximize the efficiency of the entire disaster responses during 

post-disaster situations.  

 

 

 

 

 

 

 



 

17 

 INTRODUCTION 

1.1 Introduction 

Over the last twenty years, the majority (90%) of natural disasters have been caused by weather-

related events such as floods, storms, earthquakes, and heatwaves (UNISDR and CRED 2015). 

EM-DAT (CRED’s emergency events database) recorded 6,557 weather-related disasters 

worldwide: natural disasters claimed 606,000 lives (i.e., average of some 30,000 annually) with 

around 4.1 billion people injured, left homeless, or in need of emergency aid. According to 

UNISDR’s report, China has the highest number of natural disasters, 286, from 2005 to 2014 

(UNISDR 2017) (see Figure 1-1). Interestingly, the U.S. has incurred the most economic damage 

($443 billion). Similarly, there were less number of natural disasters in Japan, but their economic 

looses from the disasters are as significant as that of China, $ 239 vs. $ 265 billion. 

  

 

Figure 1-1 Top 10 countries with most disasters, 2005 – 2014  

Note: China has the highest number of disasters from 2005-2014, but the US has incurred the most 

economic damages, and while Japan is far behind in the number of disasters, its economic loss is 

as significant as that of China (image from UNISDR 2017). 
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Economic losses from disasters are increasing every year. The estimated economic losses ($ 153.9 

billion) in 2016 were the fourth-highest since 2006 (i.e., almost 12% above the annual 2006-2015 

damages average, $ 137.6 billion) (Guha-sapir et al. 2011): This increase in total costs is partially 

related to the $ 59 billion damages coming from hydrological disasters. Another part of this 

increase is attributable to the $ 16 billion damages caused by weather-related disasters, which 

corresponds to 1.69 times the annual average. For example, the wildfire in Canada made US$ 4 

billion damages while one drought in China cost $ 3 billion. The 2016 economic losses from 

meteorological disasters ($ 46.6 billion) remained close to the 2006-2015 annual average ($ 48.4 

billion). However, damages from geophysical disasters ($ 32.8 billion - this is mainly influenced 

by 2011 tsunami in Japan) appeared below their annual average ($ 46.1 billion). When removed 

from the average, the 2016 costs from geophysical disasters are, then ,30.6% above the revalued 

average ($ 25.1 billion).  

 

Disasters in the U.S.  

In 2017, there were 16 weather-related disasters across the U.S., including Hurricane Harvey, Irma, 

and Maria: the economic losses exceeded $1 billion each. Disaster recovery costs exceeded $300 

billion in 2017 (NOAA 2018).  
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Figure 1-2 Type and number of disasters in the U.S.  

Note: 95% confidence interval (CI) probability is a representation of the uncertainty associated 

with the disaster cost estimates. Monte Carlo simulations were conducted to generate the upper 

and lower bounds under the given uncertainty. The number of events in 2018 was updated on April 

6, 2018 (NOAA 2018). 

 

Debris includes wasted soils and sediments, vegetation (e.g., trees, limbs, shrubs), construction 

and demolition debris (e.g., entire residential structures and their contents), vehicles, food waste, 

white goods (e.g., refrigerators, freezers, air conditioners), household hazardous waste (e.g., 

cleaning agents, pesticides, pool chemicals), and municipal solid waste (e.g., standard household 

garbage, personal belongings) (FEMA 2007; Oregon Department of Environmental Quality 2011; 

U.S. EPA 2008). Sometimes, disasters results in the generation of mixed debris that increases the 

complexity of seperation, tranportation and disposal processes (Roper 2008). The objectives of 

debris management are slight different in short- and long-term period. In the short term, rapid 

debris clearance on road network is critical for emergency responses including medical, shelter 
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and food services. For a long-term perspective, appropriate debris management methods are 

required to prevent any environmental issues or contamination from piles of debris or debris in 

temporary sites (Luther 2010). 

 

  

Debris in the residential area 

Photo by J.T. Blatty/FEMA 

Debris accumulated on the curbside  

Photo by Laura Guzman/FEMA 

  

Piles of mixed debris on the curbside  

Photo by J.T. Blatty/FEMA 

Piles of debris line near the shopping centers after a week 

of flood  

Photo by J.T. Blatty/FEMA 

Reference: (Blatty 2016; FEMA 2016a) 

Figure 1-3 Debris generated after the 2016 Louisiana flood  

 

Debris management is the first process during disaster recovery 

While debris management is one of many competing priorities for emergency agencies, it has been 

often overlooked (US EPA 2017a). Disaster debris should be systematically managed to 1) protect 

human health from any environmental contaminations from a pile of debris, and 2) save existing 

capacity of landfills or other waste-related facilities by minimizing direct debris input from an 

disaster-affected community for future generations. Thus, it involves advanced planning and 
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operation management to systematically coordinate collaborations among 

individuals/groups/parties at different levels of state- and local municipals as well as private sector 

with experience and expertise in debris and solid waste management. 

 

A huge amount of debris generated a disaster easily hampers emergency responses, recovery and 

reconstruction phases. The amount of debris is sometimes similar to 5 ~ 10 times of the annual 

solid waste generation (see in Table 1-1). For example, the 2015 Nepal earthquake generated 

around 4 million tons of debris in Kathmandu valley, and it was almost 11 times higher than the 

annual solid waste (Bogaty 2015).  

 

Table 1-1 Amount of debris generated by disasters 

Year Event Volume/Weight Data 

2017 Hurricane Harvey, Texas, USA 8 million CY (CBS 2017) 

2016 
Louisiana Flood 

(East Baton Rouge) 
1.3 million CY (Gallo 2016) 

2015 Earthquake, Nepal 10 million tons* (Singh 2015) 

2012 Hurricane Sandy, USA 5.25 million CY (FEMA 2013) 

2010 Earthquake, Haiti 23~60 million CY (Booth 2010) 

2005 Hurricane Katrina, USA 76 million CY (Luther 2006) 

* This study used the reported units rather than converting it to CY to tons, or, tons to CY, as the 

exact types of debris were not included in the reports.  

 

After the 2016 Louisiana flood, 1.4 million CY of debris was generated in the city of Baton Rouge. 

According to the Louisiana annual solid waste report, estimated annual solid waste in East Baton 

Rouge was about 502,994 CY/year (see Table 1-2). Thus, the 1.4 million CY of debris was about 

three times higher than the amount of the annual solid waste generation.   
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Table 1-2 Municipal solid waste landfill in East Baton Rouge 

Name 
Remaining capacity 

(cubic yards) 

Remaining capacity 

(months) 

East Baton Rouge Parish 

North Landfill 
18,317,400 CY 437 months 

Reference: (LEDQ 2015) 

 

Debris management should be carefully calibrated for each debris removal operation because of  

1) the uniqueness of incidents and 2) randomness of impacts associated with low-probability and 

high-consequence events (Altay and Green 2006; Cutter et al. 2010; Kunreuther et al. 2013). In 

the 2010 Haiti earthquake, the debris generated from the partial destruction of the port blocked 

certain road segments and it hampered emergency supplies and responses for a couple of months 

(DesRoches et al. 2011; UNDP 2013).  

 

The Robert T. Stafford Disaster Relief and Emergency Assistance Act (i.e., Public Law 93-288), 

stated that state and local governments should develop a disaster mitigation plan for receving 

certain types of non-emergency disaster assistances (e.g., funding for disaster mitigation project) . 

It provides the legal basis to state- and local governments for developing their own disaster 

mitigatin planning (FEMA 2013b). It is also advised that plans for debris management should 

include detailed strategies for each stage of debris management: debris collection, installment of 

temporary debris management sites, recycling, disposal, hazardous waste identification/handling, 

emergency information dissemination to the public, and administrations (U.S. Department of 

Homeland Security 2011; U.S. EPA 2008). 
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Figure 1-4 Difficulties to understand the complex debris management system 

 

Hills (1998) suggested that disaster management implies a degree of control, which rarely exists 

in real situations. Altay and Green (2006) agreed that disaster mitigation plans is required before 

a disaster, but it should have some rooms to adapt unusual challenges created from a catastrophic 

event. Thus, debris management models should, by their very nature, provide a systematic and 

flexible approach that is adaptable to a disaster situation and able to expedite debris removal 

operations (Celik et al. 2015). 

 

1.2 Problem statement  

There is a lack of an integrated debris management system to handle the debris generated. 

Depending on the nature and severity of human-made or natural disasters, and built environments 

in a community, a disaster can create substantial volumes/types of debris. It can overwhelm the 

capacity and resources of the existing solid waste management systems and affect multiple 

following disaster recovery phases. Besides, poorly managed debris can directly affect the entire 

disaster recovery processes as well as environmental and public health impacts. While the extent 

and criticality of the impact of debris removal on economic, environmental, and social dimensions 

of recovery plans, current studies underestimate emergent dynamics of debris management 

prioritizing its collection or disposal locations, as well as real-time management of resources such 



 

24 

as equipment fleets. Thus, it is critical to developing a decision support system integrating the 

entire debris removal stages such as collection, processing, recycling, and disposal stages.  

 

Also, the effectiveness of disaster debris management depends on not only efficient debris 

management planning and operation, but also existing capacities and serviceability of critical 

infrastructure and facilities related to the debris removal after a catastrophic event. Classical 

reliability theories are widely used to model large complicated systems (Eusgeld et al. 2011). For 

example, stochastic models such as the Markov and Poisson processes were applied to predict 

system behaviors under multiple uncertainties. However, these methods/approaches are limited to 

capture 1) the underlying structure of the system as well as 2) the ability to adapt to failures of 

subsystems when strong system interdependencies exist. Existing literature and studies in the field 

of disaster debris management are limited to investigate system efficiency of a debris management 

component such as type and amount of debris, temporary debris management site, debris 

transportation, and processing. There is a lack of models to capture the complex interactions in 

disaster debris removal operations as a complex adaptive system (i.e., a high degree of coupling 

between the systems). This research clarifies this problem on the specific example, debris 

management, and then presents the advantages of the system of systems approach with a case study, 

the 2016 Louisiana flood, and the debris management.  

 

Finally, different agencies lack established channels to communicate debris removal strategies and 

operation plans as platforms for collaboration to expedite the entire disaster recovery process as 

well as disaster debris management. The extent and criticality of disaster debris management 

necessitate an adaptive decision support system, which reflects 1) the unexpected impacts of a 

disaster, 2) characteristics of the community, its interdependent infrastructure network, and 3) 

efficient utilization of available resources and infrastructure in real-time. 

1.3 Thesis statement 

Effective disaster debris management is a crucial component for community resilience from a 

catastrophic event.  Therefore, the thesis of this research is the following:  

 



 

25 

A new paradigm is required that optimizes the debris management system by analyzing the system 

behaviors under different planning and operational strategies that effectively adapt both the 

uncertainty of a catastrophic event and the interdependencies within the components of the debris 

management system.  

  

Thus, this research proposes a decision support system (DSS) applying an adaptive system of 

systems approach for effective debris management that considers the uncertainty of a catastrophic 

event and the interdependency in sub-systems of debris management systems. The DSS can be 

used to develop, analyze, and communicate mitigation strategies for effective debris management 

at the interface of community needs, infrastructure performance, and environmental impacts. 

1.4 Research objectives  

The research objective is to develop an adaptive decision support system (DSS) that can navigate 

the complexity of post-disaster debris management as well as support optimal decision making 

after a catastrophic event. The adaptive DSS uncovers emergent characteristics of disaster debris 

management at the relationship of communities, infrastructure, and the environment. The output 

would be generalizable: the GIS-based modules in the adaptive DSS can be used to support state- 

and local decision-makers to identify promising TDMS locations that are robust to uncertainty in 

disaster characteristics and impacts. This model is calibrated and validated using a case study, 

debris management in the city of Baton Rouge after the 2016 Louisiana flood, and through agent-

based simulation of various adaptive debris management strategies. Specific objectives include: 

 

i. Develop a framework for post-disaster debris management based on the concept of SoS, 

ii. Identify a network of interdependent infrastructure systems that influence debris removal 

within a community and their relative importance, 

iii. Develop real-time GIS database to integrate the data associated with 1 and 2 above, and 

make it available for analysis for the remaining objectives, 

iv. Model the selection/design of a TDMS network including (1) geographical characteristics 

(GIS data) and interdependent infrastructure as identified in 1 and 2 above, (2) availability 

of resources for debris removal, 
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v. Simulate the productivity of debris-management on the real-time GIS data to gain insight 

into the impact of the dynamical nature of a disaster-affected area, 

vi. Develop a visual, interactive GIS-based simulation platform for effective coordination 

among agencies and monitoring on-going debris removal operations under dynamic 

conditions, and 

vii. Establish a feedback loop to incorporate real-time data on debris removal operations in the 

simulation model for updating corresponding disaster management activities. 

1.5 Scope of the research 

This research focuses on the development of the adaptive decision support system (through the 

lens of a complex coupled system) that assists a decision-maker by 1) analyzing complex post-

debris management systems, 2) simulating multiple scenarios to understand system behaviors 

under multiple uncertainties, and 3) identifying optimal solutions given the 

circumstances/environments after a catastrophic event. The scope of the research includes 

debris/waste-related management facilities (TDMSs, landfills and recycling facilities), critical 

infrastructure (physical infrastructure supporting debris  (civil, civic, environmental and social), 

TDMS design and selection model under the consideration of technical, environmental and social 

performance, the optimal number of resources and the allocations in terms of loaders, hauling 

trucks and chippers.  

 

To predict the volume and location of debris generated by a disaster, this research used FEMA’s 

Hazus-MH (ver. 4.0.). The types of debris in this study are limited to wood, steel, concrete, and 

masonry. Other data including road network, built and natural environments, infrastructure was 

acquired from USGS, city of Baton Rouge, FEMA Hazus-MH, and ArcGIS. The developed 

research framework and adaptive decision support system are fully scalable to include multi-

dimensional system interdependency (temporal and spatial). It can be applied to both natural and 

man-made disasters in any given circumstance.   
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1.6 Outline of the dissertation  

The main body of this study consists of six chapters. Chapter 1 provides a general overview of this 

research, including research background and needs, thesis, objectives, and scopes. Chapter 2 

reviews extensive literature in the field of disaster debris management, critical infrastructure as 

well as complex system and simulations. It includes systematic reviews on historical disaster 

debris management strategies and operations in the U.S., existing debris management plans from 

FEMA, state- and local-level emergency agencies, numerous subjects related to debris removal 

including economic, social, and environmental issues. Finally, it illustrates the gap of knowledge 

and needs for developing an adaptive decision support system for effective post-disaster debris 

management from a catastrophic event. Chapter 3 illustrates the research approach, framework, 

methodologies, and expected results. Chapter 4 discusses the development of the adaptive decision 

support system, including four modules and the detail methodologies applied in each module. 

Chapter 5 demonstrates an application of the proposed decision support system into a real-world 

problem using a case study, debris management in the city of Baton Rouge after the 2016 Louisiana 

flood. Chapter 6 summarizes research conclusions, theoretical and practical contributions, 

limitations on this research, and future research directions.  
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 LITERATURE REVIEW 

The main objective of the literature review is to review and summarize a body of knowledge related 

to disaster debris management, critical infrastructure and complex system modeling. This chapter 

establishes existing the gap of knowledge in effective disaster debris management, and support the 

needs of this research and point of departure.  

2.1 Disaster debris management 

2.1.1 Phases in disaster debris management 

Debris management generally has three phases  (Baycan 2004): emergency response, recovery, 

and rebuild. Sometimes, each phase is not separate with the other phases. Also the duration of each 

phase can vary depending on disaster severity and community resiliency.  

 

In an emergency response phase, the main priorities of debris removal focus on enhancing 

emergency responses by cleaning up certain debris on road as well as resulting in public 

health/safety issues. This phase can go up to between a few days and two weeks (Haas et al. 1977). 

Recycling efforts on curbside are very limited in this phase (Solid Waste Association of North 

America 2005). 

 

In the recovery phase, the main objectives are to restore critical infrastructure and demolish 

damaged buildings and houses: The most of debris comes from this phase. The duration of the 

recovery phase can be affected by numerous decision factors as well as certain circumstances that 

is out of control from debris management teams. In case of debris removal in Louisiana after 2005 

Hurricane Katrina, it took up to five years because of the huge amount of debris (Luther 2006). 

Sometimes, police investigations at certain areas hamper the access to disaster-affected areas of 

equipment. Finally, a slow return of residents results in slow debris collection on curbside (Cook, 

BA 2009).  

 

In the rebuild phase, debris is mostly generated from the reconstruction. The duration can be up 

to 10 years (Haas et al. 1977).  
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Table 2-1 Three phases and durations in debris management  

Emergency Recovery Rebuild 

Few days ~ 

two weeks 
Up to 5 years Up to 10 years 

 

US EPA (2017a) suggested that a community should prepare their own debris management plan 

ahead of any catastrophic event: It will 2) minimize debris removal costs, 3) protect residents from 

possible public health issues from a pile of mixed debris around a community, and 3) increase the 

performance of the entire disaster recovery activities including debris cleanup. Thus, a decision-

maker must identify the characteristics of community affecting a type of or the amount of debris 

generated, and develop immediate-, short- and long-term goals to enhance debris removal 

performance based on the community’s needs and existing capacity and resources. However, most 

of the existing state- and local-level debris management plans are limited to repeat the general 

debris management plans and guidelines provided from FEMA and US EPA. State- and local 

municipals should examine their communities including available resources, capacity, and 

serviceability of waste-related facilities, as well as communication platforms between agencies, 

contractors and residents.  

 

2.1.2 Characteristic of debris  

2.1.2.1 Types of debris 

Multiple types of debris are generated based on the characteristics of built environment (e.g., 

geographic location, population density, and socioeconomic setting) and a type of disasters (U.S. 

EPA 2008). The variations sometimes require a different debris management approach.  

 

Baycan (2004) classified debris components into three categories: 

 

• Recyclable  

• Non-recyclable  

• Hazardous  
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US EPA (2008) categorized debris into five types: 

• Damaged buildings 

• Sediments 

• Green waste  

• Personal property  

• Ash and charred wood 

 

FEMA (2007) listed types of debris by a type of disasters (See Table 2-2).  

Table 2-2 Typical types of debris by a different type of disaster  

 Types of disasters 
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Vegetative O O O O  O O 

Construction and demolition O O O O O   

Personal property/ 

Household 
O O O O O O  

Hazardous waste O O O O    

Household hazardous waste O O O O O O O 

White goods O O O O O O  

Soil and sand O O  O O O  

Vehicles, vessels O O O O    

Note: Hazardous materials can enter the debris stream from various sources, including 

households, commercial activities, and institutional sources, as well as industrial sources. 

Reference : (FEMA 2007) 
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Types of debris in urban areas: A composition of debris generated in urban areas is very similar 

to that of construction and demolition (C&D). In general, C&D materials consist of the followings: 

 

• Concrete, asphalt, brick and blocks  

• Woods in various forms 

• Metals such as steel and pipes 

• Frames such as doors, windows  

• Plumbing components 

• Insulation materials 

• Soil and earthen materials  

• Vegetation 

 

Types of debris in rural areas: In rural areas, most of debris include natural or organic materials 

and it may contain a low amount of C&D materials (e.g., synthetic, composite, and metallurgical 

components).  

 

2.1.2.2 Debris quantities 

Debris quantities have been reported in terms of either mass (tons) or volume (cubic yards or 

meters). However, most of the reports did not include their measurement approaches or methods 

(e.g., it is hard to identify where and how the volume of debris is measured such as truckloads or 

landfill volumes) (FEMA 2007).  
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Table 2-3. Historical disasters and debris quantities 

Year Event Debris quantity* Reference 

2017 
Hurricane Harvey,  

Texas, USA 
8 million CY (CBS 2017) 

2016 
Louisiana Flood 

(East Baton Rouge) 
1.3 million CY (Gallo 2016) 

2015 Earthquake, Nepal 10 million tons Singh (2015) 

2012 Hurricane Sandy, USA 5.25 million CY FEMA (2013) 

2011 Japan tsunami 70 - 180 million tons Yesiller (2012) 

2010 Haiti earthquake 23 - 60 million tons Booth (2010) 

2009 
L’Aquila, Italy 

earthquake 
1.5 -3 million tons Di.Coma.C. (2010) 

2008 
Sichuan, China 

earthquake 
20 million tons Taylor (2008) 

2005 
Hurricane Katrina 

Louisiana USA 
99.4 million CY 

Luther (2008) 

 

2004 
Hurricanes 

Florida, USA 
3.9 million cubic meters 

Solid Waste Authority 

(2004) 

2004 
Indian Ocean 

Tsunami 
13 million cubic meters Bjerregaard (2010) 

2004 Hurricane Charley, USA 2.6 million cubic meters MSW (2006) 

* Unit for the debris quality is either volume or weight. This study did not convert a unit (e.g., CY 

to tons, or tons to CY) as the detail types of debris were not reported in the references.  
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Estimating debris quantity in a pre- or post-disaster situation is highly recommended to prepare 

disaster mitigation plans and develop action plans for debris removal operations (EPA 2008). 

There have been numerous studies/reports that have retrospectively quantified disaster debris. 

These studies were mainly conducted to improve debris estimation methods and techniques, and 

support the development of debris management planning and preparedness. This study introduces 

several debris estimation methods from the literature.  

 

Inoue et al. (2007) studied the specific gravities of the debris generated by the 1995 Great Hanshin-

Awaji earthquake. They identified that debris weight in the middle of transportation was generally 

increased compared to the average weight (see Table 2-4).  

  

Table 2-4 Gravity of debris  

Average gravity 
Increased gravity 

(In the middle of transportation) 

0.59 ton/m3 0.73 ton/m3 

 

Hirayama et al. (2010) estimated the volume and weight of debris per house and unit floor area. 

They identified that 30 ~ 113 tons/household of debris were generated based on building types and 

the level of damaged by a disaster.  

 

Chen et al. (2007) studied the correlation between the volume of debris and flood using the case 

study of the flood in Taiwan. Three parameters were applied to estimate the volume of debris in a 

flood scenario: population density (x1), total rainfall (x2), and flooded area (x3). They identified 

that the high non-linear correlation with the three variables, but, which could be used to predict 

the volume of debris (𝓎). 

 

log 𝓎 =  −4.137 + 0.718 log 𝑥1 + 0.600 log 𝑥2 + 1.422 log 𝑥3 

 

While many scholars developed debris estimation models, there are still high uncertainties and 

complexities involved in debris generation. In the following sections, this study discusses multiple 

debris estimation methods.  
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2.1.2.3 Three methods to estimate debris quantity  

FEMA (2010) provided several methods available to estimate the volume of debris. The debris 

task force leader in FEMA recommended that appropriate method should be selected based on the 

accuracy level, operation schedule requirements, and resource availability such as personnel and 

equipment. Three methods are outlined here, and these methods could be combined if needed: 

Ground measurement, aerial/satellite images, and computational modeling. 

 

2.1.2.3.1 Ground measurement 

Ground measurement methods use visual observations and field data collections with measuring 

tapes and GPS units. FEMA developed an equation to estimate debris quantity associated with 

demolished single-family residence based on their empirical data studies coming from data 

collection after Hurricane Floyd in 1999: 

 

𝐷𝑒𝑏𝑟𝑖𝑠 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 = 0.20 × 𝐿𝑒𝑛𝑔𝑡ℎ × 𝑊𝑖𝑑𝑡ℎ × 𝑆 ×  𝑉𝐶𝑀 

𝑆 = Number of stories in the building 

0.20 = Constant based on the study data 

𝑉𝐶𝑀 = Vegetative cover multiplier 

Note: Unit for length and width should be “feet” 

 

For a multiple-story residence, the debris quantity should be calculated using the total number of 

stories. A list of vegetative cover multiplier is decribed in Table 2-5. 
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Table 2-5 Table for single-family and single-story home 

Typical house 

(S.F.) 

Vegetative Cover Multiplier  

(VCM) 

 None 
Light 

(1.1) 

Medium 

(1.3) 

Heavy 

(1.5) 

1000 SF 200 CY 220 CY 260 CY 300 CY 

1200 SF 240 CY 264 CY 312 CY 360 CY 

1400 SF 280 CY 308 CY 364 CY 420 CY 

1600 SF 320 CY 352 CY 416 CY 480 CY 

1800 SF 360 CY 396 CY 468 CY 540 CY 

2000 SF 400 CY 440 CY 520 CY 600 CY 

 

2.1.2.3.2 Aerial and satellite images  

Aerial and satellite images taken before and after a catastrophic event have been used to estimate 

1) disaster impact areas and 2) debris quantities and types. Lanorte et al. (2017) estimated 

agricultural plastic wastes using Landsat 8 satellite images (Landsat 8 satellite orbits the Earth ,and 

circles the Earth every 99 minutes (USGS 2017)). They applied support vector machines (SVMs) 

to classify satellite images and estimate the quantities of plastic wastes: SVM is a linear model 

designed for classification or regression problems. The accuracy and coefficient of the estimation 

were 94.54% and 0.934, respectively.  

 

However, using satellite and aerial images has several limitations, including limited accessibility 

to the public, data acquisition frequency, and weather condition (e.g., cloud can block a certain 

part of satellite images). To overcome the constraints, unmanned aerial vehicles (UAVs) are 

frequently used to collect aerial images. Adams et al. (2016) applied UAVs to map the 

consequence of debris flow in Austria (the accuracy and precision was 0.05 – 0.5m and of 0.05m 

RMSE, respectively). They highlighted the several advantages of UAV application including 

higher flexibility, easier repeatability, less operational constraints comparing to satellite data, and 

high spatial resolutions.  
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While these image-based methods have very high accuracy and operational flexibility in 

identifying debris around a disaster-affected community, it is limited to identify the amount of 

debris inside buildings and houses (e.g., debris inside buildings and facilities is taken out when 

residents come back after evacuation. It might take a week or more depending on the severity of 

disasters). It might be tough to estimate debris generation after a flood because of water-damaged 

properties are mainly in buildings and houses.   

 

2.1.2.3.3 Computational model  

In the U.S., Hazus-MH is a standard method to estimate potential losses from multiple types of 

disasters including earthquakes, floods, and hurricanes (FEMA 2018). It is designed to be 

integrated into Geographic Information Systems (GIS), particularly ArcGIS, to estimate the 

physical, economic, and social impacts. In a GIS platform, users can project the spatial 

relationships between populations and other geographic assets/resources. Hazus-MH’s results can 

be used in an assessment step or the mitigation planning process, which is the foundation for a 

community's long-term strategy to decrease disaster losses (see Figure 2-1). There are several 

advantages and benefits on computational modeling and simulation such as Hazus-MH. Remo et 

al. (2016) applied Hazus-MH’s flood loss assessment to support their flood vulnerability index in 

Illinois. However, they pointed out that national-level infrastructure data in Hazus-MH contains 

approximations of structure, contents, and inventory replacement values for a specific census block; 

it could increase the uncertainty of simulation results. They suggested that the results of Hazus-

MH might be beneficial for comparative purposes. Shultz (2017) analyzed the accuracy of Hazus-

MH general building stock data. They illustrated the two issues in the study: (1) underestimate 

building square footage (15-20%) and (2) overestimate replacement costs (31-56%). The 

overestimate could reach between 51 and 81%. As discussed, while Hazus-MH has several 

limitations on predicting multiple losses by a catastrophic event, it is the only available multi-level 

disaster-impact assessment tool.   
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(a) Debris estimation – estimates of debris generated by the Hurricane Ivan 

  

(b) Estimates of debris generated for return period 250-year earthquake 

 

Figure 2-1 Estimates of debris using Hazus-MH  

Reference : (FEMA 2013c; FEMA et al. 2017) 
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2.1.2.3.4 Debris conversion factors 

The weight and volume of debris are generally represented using tons and CY. Thus, unit 

conversion factors (between weight and volume) are sometimes necessary. USACE developed 

several conversion factors for converting between weight and volume of debris (see Table 2-6). 

 

Table 2-6 Debris conversion factors 

Type Ton Cubic Yard 

Construction and demolition debris 1 ton 2 CY 

Mixed debris 1 ton 4CY 

Vegetative debris (hardwoods) 1 ton 4CY 

Vegetative debris (softwoods) 1 ton 6CY 

Note: In debris removal practices and reports in the U.S., the unit, CY, is mainly used. 

 

2.1.3 Debris collection and treatment options 

2.1.3.1 On-site debris/waste segregation and collection 

U.S EPA and FEMA recommend disaster-affected residents to place debris on the curbside (Figure 

2-2): Debris should be placed outside of the sidewalk because debris removal contractors are 

limited to access private property (e.g., inside of the sidewalk). Also, debris on the curbside should 

be segregated into six categories; house garbage, construction debris, vegetation debris, 

household hazardous waste, white goods, and electronics. These efforts can increase debris 

collection performance as well as the recycling rate of mixed debris. 
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Figure 2-2 U.S. EPA’s guideline for debris separation by homeowners  

Image from (U.S. EPA 2017a) 

 

Equipment for solid waste collection equipment is limited to be used during the initial stages of 

debris clean-up because of the size and weight of debris on curbside (Solid Waste Association of 

North America 2005). In general, a single debris removal contractor is assigned to collect debris 

on the curbside. They utilize end-dump trucks and tracked excavators with grapples and/or 

wheeled bucket loaders to haul large-size debris (see Figure 2-3). After a couple of truck passes, 

traditional collection equipment (e.g., roll-off containers, and rear- and front-end loading packer 

trucks) starts solid waste collection service. 
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(a) Self-loader truck (b) Loader + Truck 

Figure 2-3 Types of debris collection equipment  

 

2.1.3.2 Temporary debris management site 

A temporary debris management site (TDMS) is recognized as one of the critical facilities for 

effective debris management (FEMA 2007, EPA 2008, UNEP and OCHA 2011). It is mainly 

designed as a buffer to appropriately sort, recycle, and dispose of debris (FEMA 2007; Lipton and 

Semple 2012)(see Figure 2-4). To handle 1 million CY of debris, a recommended size of TDMS 

is 100 acres.  

 

  

TDMS layout 

TDMS during the NYC debris management 

after the 2012 Hurricane Sandy  

 
Photo by Doug Kuntz, The New York Times 

Figure 2-4 Temporary debris management site   

 

There is a trade-off between 1) speed of clean-up, 2) degree of diversion, 3) recycling debris, 4) 

treatment options, and 5) disposal options (Brown and Milke 2009). The overall period of debris 
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removal depends on 1) selected debris treatment options and 2) resource availability, 3) supporting 

infrastructure capacity and serviceability. FEMA (2007) released a new pilot program providing 

incentives for debris recycling efforts. Fetter et al. (2010) developed a decision model with 

recycling incentives for locating TDMSs. 

 

  

Breezy Point, NY after 2012 Hurricane Sandy 

Photo by Tim Burkitt/FEMA 

East Baton Rouge, LA after the 2016 Louisiana flood 

 Photo by J.T. Blatty/FEMA 

Figure 2-5 Operations in TDMS  

Note: The images were reprinted from FEMA (2014a; b, 2016b) 

 

However, an inappropriate location of TDMSs can bring unexpected or negative effects. For 

instance, TDMS operation can bring extra expenses for double-handling debris and acquiring lands 

(FEMA 2007). Also, locating TDMSs in unsuitable areas such as playgrounds, swamps, and rice 

paddies can potentially affect the environments and the livelihood of residents nearby (Kim et al. 

2018a).  

 

A TDMS may 1) attract rodents and other pests, 2) make noise, 3)produce odors that can be easily 

above the acceptable level of residents nearby, and 4) increase traffic nearby. Thus, US EPA (2008) 

provided several guidelines: 

 

• Sufficient size of TDMS  

• Appropriate topography and soil type. 

• Certain distance from rivers, lakes, and water streams. 

• Distance from floodplains and wetlands. 
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• Avoid any obstructions, including power lines and pipelines. 

• Close to a disaster-affected area, but far enough away from residential and commercial 

areas and infrastructure facilities that could be easily affected during TDMS operations. 

• Locate in public land because the approval process is easier. However private lands can 

be used if necessary: consider potential agreements on the land uses with private 

landowners in advance. 

 

While identification of TDMS in a pre-disaster scenario has been studied as a way to avoid 

potential adverse effects (Kobayashi 1995, Skinner 1995, FEMA 2007, USEPA 2008, Johnston et 

al. 2009), most of the existing guidelines focus on environmental regulations. Further research is 

required to explore technical and social impacts of TDMS location in a short- and long-term period.  

 

Recently, emergency agencies take an effort to share TDMS operation information during debris 

removal. For example, the Texas Commission of Environmental Quality opened multiple TDMSs 

to handle debris generated by the 2017 Hurricane Harvey. The TDMS information was shared by 

their GIS platform (Texas Commission on Environmental Quality 2017). It included site contact 

information and accepted type of debris in each facility (see Figure 2-6).  
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Figure 2-6 TDMS locations during debris removal after Hurricane Harvey in Texas, USA 

 

2.1.3.3 Recycling 

U.S. EPA (2009) recommended that a debris management plan should include specific resue, 

recycle, compost strategies for multiple types of debris. These efforts can reduce 1) capacity 

burdens in TDMS and landfills, 2) decrease potential costs, and 3) provide a valuable material 

resource from recycled debris. It is also reported that most of debris components are recyclable. 

These materials can be reused for several post-disaster applications, including soil for covering 

landfills; aggregate for concrete; and plant material (Channell et al. 2009). The benefits from debris 

reuse/recycling have been discussed in multiple debris management practices: Marmara 

earthquake (Baycan and Petersen 2002, Baycan 2004); Northridge Earthquake (Gulledge 1995, 

USEPA 2008); Indian Ocean Tsunami, Thailand, and Sri Lanka (UNDP 2006). The benefits of 

recycling debris are the followings: 

 

• Reduction of landfill capacity required 

• Revenue generation 

• Cost reduction from transporting raw materials and debris 
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• Job creation (for developing countries in particular) 

 

The main component of disaster debris is construction and demolition (C&D) waste. While 

Reinhart and McCreanor (1999a) and Skinner (1995) provided recommendations for recycling 

C&D debris and practices, other studies identified existing barriers on C&D recycling (see Table 

2-7). 

 

Table 2-7 Main issues on C&D recycling during debris removal 

Issues References 

Time consuming to collect/sort/process recyclable debris Baycan and Petersen 2002 

Require special equipment and facilities 
Baycan and Petersen 2002 

Baycan 2004 

Lack of market for recycled materials  

 

Facility capacity to handle the large amount of recyclable debris  

Lauritzen 1998 

 

 

Whereas the literature above provides the advantages and existing obstacles to debris recycling, 

there have been no quantitative assessments or feasibility analysis for post-disaster recycling 

options. For instance, the recycling capacity in California is estimated to be approximately 60 

million tons per year (Yesiller 2012): The available recycling capacity is considerably less than 

the available disposal capacity. 

 

2.1.3.4 Open burning and air curtain incineration 

Two burning methods are recommended: open pit and incinerator. These burning methods had 

been used in multiple debris removal operations such as the Indian Ocean Tsunami (Basnayake et 

al. 2006), and the Great Hanshin-Awaji earthquake (Irie 1995). Lauritzen (1998) and Petersen 

(2004) highlighted that open burning is appropriate in certain situations, but a few guidance exists 

U.S. EPA (2008) reported that a portable air curtain incinerator is am efficient debris burning 

method. During disaster recovery after Hurricane Irma and Maria, multiple air curtain incinerators 
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were operated under the supervisions from USACE and US EPA: This method was applied as  60% 

of debris generated (850,000 CY) were identified as trees, fronds, brush, and grass. (FEMA 2017a).   

 

 

Figure 2-7 Air curtain incinerator (left) and open burning system (right) 

Photo credit: Clay Church and Billy Birdwell / USACE 

 

2.1.3.5 Debris disposal 

Direct disposal of debris generated is the fastest way to clean up debris on a community, but there 

are significant concerns on debris disposal options. FEMA recommends that municipal officials 

should determine debris collection and disposal options suited for their own circumstance/situation. 

However, in the aftermath of large-scale disasters, the volume of debris significantly exceeds the 

existing capacity and serviceability of permanent disposal sites (EPA 2008). Also, mixed debris 

on sites hampered the general debris separation/transportation process. While a TDMS plays a 

critical role as a buffer to reduce the volume of debris transferred to landfills as well as sort out 

mixed debris, mixed debris with hazardous materials can be transported to landfills without any 

appropriate sorting or treatment process.  

 

For asbestos and other hazardous materials, there are several regulations and policies from FEMA, 

U.S. EPA and the state’s department of environmental protection. However, several studies 

identified that these hazardous materials were transported to landfills without appropriate sorting 

or treatments (Brown et al. 2011; Channell et al. 2009; Dubey et al. 2007). There are still few 
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studies investigating environmental effects from hazardous substances in disaster waste and 

landfills.  

 

2.1.4 Disaster debris management facility database  

There are ten US EPA regional offices and each office is responsible for several states (U.S. EPA 

2017b).  

 

 

Figure 2-8 US EPA regions   

(Image from U.S. EPA)  

 

Recently, EPA Region 5 developed a database of 12 types of landfills and recyclers managing 

disaster debris in the region. The GIS-based interactive map provides information and location of 

over 6,000 facilities capable of managing different types of  (US EPA 2017b).  
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data link: https://r5.ercloud.org/WAB/DDRT/ 

Figure 2-9 Information and locations of disaster debris related facilities in EPA region 5  

Note: Green, orange and purple points on the map represent recyclers, landfills and landfill & 

recyclers, respectively. In the search bar on the left side, a user can identify facilities handling a 

specific type of disaster debris.  

 

2.1.5 Issues on disaster debris management  

This study classified multiple issues reported during debris management into three categories 

(economic, environmental, and social issues) and discussed it with case studies.  

 

2.1.5.1 Economic impacts 

A disaster creates a huge financial burden on the state- and local municipals to clean up a 

tremendous amount of debris generated. Costs for debris removal consist of direct and indirect 

costs. Direct costs refer to costs used for debris cleanup, and indirect costs refer to any costs made 

from debris treatment/removal options.  

 

https://r5.ercloud.org/WAB/DDRT/
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Direct costs include debris collection, treatment and disposal costs. FEMA (2007) analyzed debris 

removal costs during disaster recovery between 2007 and 2007. They reported that 27% of the 

total disaster recovery costs spent for debris removal. Similarly, Califonia Emergency 

Management Agency (2011) informed that direct debris removal costs could be up to 40% of the 

total disaster recovery cost.  

 

Indirect costs are defined as all costs associated with any follow-up activities from delayed debris 

removal or losses from different debris treatment options. Thus, it is relatively difficult to 

estimate/report than direct costs. For example, delay in debris removal may result in 1) public 

health issues (e.g., noises and odors from TDMSs, and heavy traffic nearby), 2) environmental 

contaminations and 3) illegal dumping of hazardous or mixed debris. Also, inappropriate debris 

treatment options may delay in debris removal speed as well as result in ground contaminations 

from mixed or hazardous debris. Cost-benefit analysis for multiple debris treatment and removal 

options has been done (Bolyard and Reinhart 2016; Petersen 2004; Reinhart and McCreanor 1999a; 

UN 2011) such as (1) cost minimization under the parameters including disposal, transportation 

and equipment type, (2) revenue generation through recycling, and (3) job creation. While 

recycling materials during debris management are highly recommended, cost-benefit analysis 

should be conducted to compare benefits and losses generated from recycling options. Methods 

including life cycle assessment (LCA) or life cycle cost (LCC) are recommended to be employed 

in recycling options. Wakabayashi et al. (2017) applied LCA and LCC frameworks to evaluate 

environmental and economic costs for multiple debris removal strategies. 

 

So far, a few information or reports regarding debris removal costs are accessible. In the U.S., 

FEMA shared historical debris removal funds (i.e. public assistant grant program). This study 

summarized the published debris removal cost data in Table 2-8. 
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Table 2-8. Historical debris removal cost 

Event Location Debris quantity* Cost ($) Reference 

Hurricane Katrina LA, USA  118 million cubic yards 4.1 billion Luther (2010) 

Indian Ocean 

Tsunami(2004) 
Sri Lanka 0.5 million tons 5-6 million Basnayake et al. (2006) 

Indian Ocean 

Tsunami(2004) 
Thailand 0.8 million tons 2.8 million Basnayake et al. (2006) 

Typhoon 

Tokage(2004) 

Tokage,  

Japan 
44,780 tons 15-20 million UNEP (2005) 

Hurricane 

Charley 
FL, USA 19 million CY 286 million FEMA (2009) 

Central Florida 

Tornado 

Osceola 

County, US 
250,000 CY 8 million 

Reinhart and McCreanor 

(1999a) 

Note: Unit for debris quantity is either CY or tons. This study used the original unit used in the 

references.    
 

Reinhart and McCreanor (1999) and the Solid Waste Authority (2004) pointed out the reported 

debris removal costs were sometimes inconstant, or it only included small parts such as unit cost 

for cubic yard,  disposal costs, or costs in small part of disaster- affected areas. Most of them did 

not include costs from individual clean-up efforts. Thus, it is required to investigate the entire 

debris removal mechanisms to understand the fundamental characteristics of debris removal costs.   

 

2.1.5.2 Public health and environmental impacts 

In a phase of post-disaster debris management, the debris removal speed is critical. Consequently, 

the majority of debris-related studies and reports have focused on maximizing debris removal 

performance. Few studies attempted to measure the environmental impacts (Brown et al. 2011). 

For example, Dubey et al. (2007) investigated the quantity of arsenic disposed in demolition debris 

(e.g., treated wood) after the Hurricane Katrina,. They emphasized the potential for leaching of 

arsenic from pressure-treated wood should be examined and studied. Chandrappa and Das (2012) 
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discussed possible public health problems from (1) human contact (2) vectors and rodents, (3) 

collapse of disaster-damaged structures, and (4) environmental system disturbance (e.g., change 

in the population of certain species, and loss of agricultural crops areas).  

 

2.1.5.3 Human/social behaviors in a disaster 

Before collecting debris on the curbside, residents need to segregate on-site debris based on 

guidelines from local emergency agencies. However, Returning to their houses or properties might 

take several days or weeks depending on disaster impacts and their property damages (Groen and 

Polivka 2010). For example, most of residents in Louisiana were not able to return to their houses 

because of severe disaster impacts and damaged their properties (Luther 2008): the population in 

Orleans and St. Bernard parishes reached around 70% and 41% of pre-Katrina levels for more than 

two years. This slow return of residents resulted in the higher number of debris removal truck 

passes on each road segment. According to the USCE, debris collectors generally pass two or three 

times to collect debris. More than 20 truck passes, however, were made in the certain areas in 

Louisiana (Luther 2008). Thus, this relationship between resident return rates should be integrated 

into debris management systems to enhance the overall debris removal performance (truck routing 

and allocation) as well as identify the optimal number of equipment (trucks) over time. Brown et 

al. (2011) proposed further research on psycho-social implications in the speed of debris removal 

process, and emotional attachment on certain items in mixed debris. 

 

2.1.6 Factors on debris management performance 

To maximize debris removal performance, a debris management team should recognize existing 

waste management systems and debris management plans. In general, debris management systems 

are operated based on existing solid waste management systems. For example, temporary debris 

management sites and additional resources such as mobile incinerators, hauling trucks, and power 

generators are integrated into the existing solid waste management systems (see Figure 2-10). 
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Figure 2-10 Process to build an effective debris management system 

 

Guerrero et al. (2013) examined various factors related to waste management performance (see 

Table 2-9). They identified critical infrastructure including transportation, technologies, and 

facilities for treatment, recycle and disposal. Critical resources are identified as hauling trucks and 

other equipment including incinerators, chippers and grinders (Karunasena et al. 2009). Finally, 

they highlighted that knowledge in debris treatment and disposal options are beneficial to 

maximize debris removal systems (Guerrero et al. 2013).  

  

Solid waste 
management 

system

Infrastructure 
serviceability

Resource 
availabilty

Debris 
management 

system
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Table 2-9 Waste management factor analysis  

Stage Affecting factors 

Collection, 

transfer and 

transport 

Truck routing and allocation 

Infrastructure capacity and serviceability 

Type of resources for collection  

Waste management organization structure  

Transportation  

Treatment Knowledge and information for treatment options  

Knowledge of existing waste management issues  

 

Disposal Containers and hauling distances  

Disposal price  ($/cy or $/ton) 

Recycle  
Recycling markets 

Capacity of Recycling facility  

State- and local government’s financial support  

Collection efficiency (sorting process) 

Technologies for low-cost recycling process  

Reference: (Guerrero et al. 2012)  

2.2 Critical infrastructure related to disaster debris removal 

Critical infrastructure’s capacity and serviceability significantly affect the performance of post-

disaster debris management systems. Thus, infrastructure capacity and serviceability are 

considered as one of critical components in disaster debris management systems. ASCE (2006) 

defines critical infrastructure as “any systems and assets that is so critical that any destructions on 

systems would have tremendous impacts on national economy, public health and safety. It includes 

built environments, natural and virtual systems”. 

 

Bruneau et al. (2003) examined infrastructure resiliency by four determinants: robustness, 

redundancy, resourcefulness, and rapidity. In addition, Deshmukh and Hastak (2009) mentioned 
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that the impact of disasters is further escalated by failures of any component of critical 

infrastructure systems. To prevent cascading failures, capacity building of critical infrastructure is 

essential for community resiliency (Deshmukh and Hastak 2012): They defined capacity as 

available resources after a disaster and capacity building as the ability to acquire additional 

capacity on existing infrastructure capacity. While several types of critical infrastructure are 

defined, this study focuses on three types of infrastructure: civil, civic, and social infrastructure.  

 

2.2.1 Civil infrastructure 

Civil infrastructure such as transportation, power systems and waste management systems is 

considered as a critical component in disaster debris management systems. The capacity and 

serviceability of infrastructure systems during or after a disaster directly affect the entire debris 

removal performance. According to the ASCE, the average GPA of US infrastructure was D+ in 

2017: Most of the critical infrastructure related to debris management received low grades such as 

bridges, dams, energy, hazardous waste, levees, ports, rail and solid waste (see Figure 2-11).   

 

  

Figure 2-11 2017 U.S. Infrastructure grades  
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American Planning Association (2014) emphasized that continuous resilient planning by 

communities advanced a more resilient infrastructure system from a catastrophic event. They 

highlighted four points below: 

 

• Understand the risks to infrastructure.  

• Identify risk mitigation actions and the implementation feasibilities in terms of functional 

benefits, costs, and impacts 

• Identify federal, state and local-level funds for mitigation planning as well as a partnership 

with utility companies of critical infrastructure 

 

Here is an example of how Infrastructure failures in terms of capacity and serviceability affect 

debris removal. The Haitian government highlighted debris removal (13 million CY of debris) is 

one of their top priorities after the 2010 Haiti earthquake. However, the tremendous amount of 

debris in the city hampered emergency response and recovery projects (UN Development 

Programme 2010). Damaged infrastructure and insufficient resources also delayed in transporting 

debris to designated locations. After several months, cholera outbreaks began in October 2010 and 

killed at least 7,000 Haitians (It was recorded as the worst epidemic (WHO 2017)). Even after an 

year of the earthquake, only 3~10% of the total debris was removed (UN 2011). 

 

2.2.2 Civic infrastructure 

Civic infrastructure entails debris-related regulations and policies from governmental agencies. In 

the U.S., state- and local-agencies have responsibilities to manage their own debris generated.  

Federal agencies, including FEMA, USACE, and U.S. EPA often provide grants for debris 

removal or are directly involved in certain activities such as monitoring debris treatment options 

or providing equipment (Luther 2017). During the 2019 Nebraska flood, USACE supported right-

of-way clearance, debris pickup on curbside and private property, and demolition (FEMA 2019a). 

U.S. EPA awarded $100 million to the city of Flint, Michigan, for replacing or upgrading water 

infrastructure, including pipelines (US EPA 2017c).  
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The DHS (2011) highlighted that municipal officials should monitor debris collection activities on 

site because most of the debris removal costs are coming from over-estimated volumes of collected 

debris. For example, FEMA identified that they might have overpaid $20 million for debris 

removal and disposal because 1) qualified monitors did not exist, and 2) the overestimated debris 

load volumes occurred after Hurricanes Gustav and Ike (FEMA revealed that an overestimated 

volume would be 20% or more). Currently, guidelines for debris pickup monitoring are limited to  

use existing guidelines from FEMA or U.S. EPA. For a better debris monitoring system, local-

level municipals should include step-by-step debris monitoring guidelines based on their unique 

debris management circumstances  as well as monitoring techniques/methods. While it is not 

realistic to manually monitor all of hauling trucks coming to a TDMS, laser scanning methods and 

equipment (e.g., LoadScanner) could be an alternative to measure the volume of debris in a hauling 

truck. Finally, most of the debris removal contacting is unit-price contract (that is very common 

contract type in particular public works such as road construction and maintenance). 

 

Further research is required to examine the benefits of laser scanning systems as well as different 

contract types for debris removal. These regulations and policies should be examined and 

developed by collaborations with federal, state- and local emergency agencies.  

2.2.3 Social Infrastructure 

Studies on critical infrastructure have been focusing on securing and protecting hard capital 

resources such as facilities and technologies for a while. While studies and recognition of soft 

capital (e.g., people and knowledge) has been slower than other infrastructure, many scholars start 

investigating social infrastructure as a critical component for community resiliency (O’Sullivan et 

al. 2013).  Nakagawa and Shaw (2004) identified that both leadership and social capital are critical 

attributes for rapid disaster recovery. They also investigated the relationships between three 

aspects of social capital: bonding, bridging and linking (see Figure 2-12). Aldrich (2011) 

highlighted that the power of people is the most robust predictor of disaster recovery performance. 

Aldrich and Meyer (2014) highlighted that emergency agencies and local municipals should 

strengthen social infrastructure at the community level.  
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Figure 2-12. Conceptual diagram of social capital  

Note: the image is re-created based on the original image by (Nakagawa and Shaw 2004) 

Many scholars also investigated social media, as one of social infrastructure as a communication 

channel, during a disaster. Liu et al. (2014) studied emergency information channels and sources 

in terms of their ability to generate desired public outcomes. Kim and Hastak (2018) demonstrated 

how disaster-affected communities and external organizations were linked through social media, 

and bonded together to improve information diffusion during the 2016 Louisiana flood. It is well-

recognized that governments alone cannot achieve significant, sustainable emergency information 

systems.  

 

2.3 Complex system and system modeling 

Systems are defined as a sum of entities with well-defined components. In general, simple systems 

are characterized by few components with their static or dynamic behaviors. It can be 

understandable and predictable. For example, hauling truck systems (considered as a part of debris 

management systems) can be represented by trucks (entities) and truck behaviors (components). 

If hauling truck systems consist of a single hauling truck and one route (with a single point of 
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origin and destination), the systems can be considered as simple systems: It can be easily 

understandable and predictable. Several methods are applicable to develop a prediction model such 

as mathematical modeling and simulation (Fortunato 2010; Grabowski and Strzalka 2008a).  

 

Comparing to simple systems, complex systems have many components that collaborate to create 

a functioning whole. Here are several definitions of a complex system.  

 

"A system comprised of a (usually large) number of (usually strongly) interacting entities, 

processes, or agents, the understanding of which requires the development, or the use of, new 

scientific tools, nonlinear models, out of equilibrium descriptions and computer simulations." 

[Advances in Complex Systems Journal] 

 

"A system that can be analyzed into many components having relatively many relations among 

them, so that the behavior of each component depends on the behavior of others. "[Herbert Simon] 

 

"A system that involves numerous interacting agents whose aggregate behaviors are to be 

understood. Such aggregate activity is nonlinear; hence, it cannot simply be derived from the 

summation of individual components behavior." [Jerome Singer] 
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The comparison between simple and complex systems is described in Table 2-10.  

 

Table 2-10 Basic properties of simple and complex systems  

 

Simple systems Complex systems 

E
x
p

lo
it

a
ti

o
n

 /
 P

h
y
si

ca
l 

p
a
ra

m
et

er
s 

Specialized structures (dedicated) 

deterministic, circuit switching 

Algorithmic processing 

 

Executing structure and connections 

topology fitted to tasks unchanged in time 

Linear scalability, unbounded system 

resources 

 

Lack of congestions and collapse 

Static planning of performance, Mean 

Value analysis 

 

Process control independent of system re- 

sources management 

 

Static or dynamic workload equalization, 

but short-range dependent (post-fact) 

guaranteed quality of service 

 

Structures for general use, non- 

deterministic, packet switching interactive 

processing 

 

Volatility of tasks lead to mismatch between 

executing structure and connections 

 

Non-linearity of characteristics (e.g., 

performance and response time) 

 

Sensitivity to congestions and infections, 

constant collapse 

 

Dynamic planning of performance at the 

edge of chaos 

 

Process control and resources management 

connected together 

 

Dynamic workload equalization with long- 

term control prediction 

Reference: (Grabowski and Strzalka 2008b) 

 

Borshchev and Filippov (2004) mentioned “Modeling is a way of solving real-world problems 

when prototyping or experimenting within the real systems is expensive or almost impossible”. 

Complex systems can be approached by analytical and simulation modeling (see Figure 2-13). 
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Figure 2-13 Analytical (static) and simulation (dynamic) modeling 

image from Borshchev and Filippov (2004) 

 

Analytical (static) model: An analytical model is quantitative and computational. It represents a 

system with a set of mathematical equations: it specifies parametric relationships and their 

associated parameter values as a function of system parameters (e.g., time and space) (Friedenthal 

et al. 2015). This process can be accomplished by modeling the underlying phenomena to predict 

or assess how well the system performs or other system characteristics. 

 

An analytical model characterizes parameter values that do not change over time. An analytical 

model may be solved via a closed form solution (e.g., an equation is called as a closed-form 

solution if it solves a given problem in terms of functions and mathematical operations from a 

given generally-accepted set). For example, it includes the position of a point mass given an initial 

position, velocity, and acceleration. Other solutions require numerical analysis methods to 

determine the change in state of the system as a function of time, space, and other parameters. 

Finally, parameter values can be deterministic or probabilistic. In the latter case, parameters may 

be defined with an associated probability distribution. 
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Simulation (dynamic): In the simulation, a modeler considers a set of rules such as equations, 

flowcharts, state machines, cellular automata. It defines how the designed system will change in 

the future (given its present state). That is, simulation is the process of model “execution” that 

takes the model through (discrete or continuous) state changes over time. In general, simulation 

modeling is better suitable for understanding complex systems where time dynamics are essential.   

 

In a simulation, three system modeling methods are generally applied to analyze system 

interdependence and performance under different scenarios; discrete event, system dynamics and 

agent-based model.   

 

Discrete Event (DE): Connelly and Bair (2004) applied discrete event simulation (DES) to 

advance system-level investigation of emergency department operations. They developed the 

Emergency Department SIMulation (EDSIM) to simulate ED activity at a Level 1 trauma center. 

Duguay and Chetouane (2007) applied DES to reduce patient waiting times and improve overall 

service delivery and system throughput. They compared multiple scenario results to identify 

feasible operation planning.  Siddiqui et al. (2017) illustrated that high variability in patient flow 

and changing patient acuity in perianesthesia care units is a challenge to the efficient management 

of nurse staffing. They applied DES to evaluate nurse staffing levels in perianesthesia care units. 

They verified the application of DES at estimating staffing levels in multiple scenarios.  

 

System Dynamics (SD):  Lane et al. (2000) studied complex hospital systems including the 

interaction of demand patterns, accident and emergency resource deployment, other hospital 

processes, and bed numbers using system dynamics. 

Peng et al. (2014) proposed a system dynamics model to analyze the dynamic behaviors of the 

disaster relief supply chain by experimenting the uncertainties associated with predicting the post-

seismic road network and delayed information. Langroodi and Amiri (2016) studied multi-level, 

multi-product and multi-region supply chain systems under demand uncertainty. They simulated 

the supply system under normal conditions, oscillating demands, variations in price, changes in 

costs, and a combination of these variations.  Kim et al. (2018b) investigated the system 

interdependency related to disaster debris removal including the amount of debris generation, 

serviceability of transportation, facility capacity and available resources using SD.  
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Agent-Based Model (ABM): Agent-base model has been used in disaster-related evacuation 

models. Wagner and Agrawal (2014) investigated crowd evacuation modeling using agent-based 

modeling. It allowed for multiple scenario testing and decision support for the planning and 

preparedness s phase of emergency management with regards to fire disaster at concert venues. 

Tan et al. (2015) also developed an agent-based simulation model by combining human behavior 

with predictable spatial accessibility in a fire emergency. Wang et al. (2016) studied a multimodal 

evacuation simulation for a near-field tsunami through ABM in Netlogo to identify impacts of 

varying decision time on the mortality rate, different means of transportation and impacts of 

vertical evacuation gates on the estimation of casualties.   

 

A comparison of three system modeling methods is described in Table 2-11  
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Table 2-11 Summary of three simulation methods including SD, DE and ABM 

 System dynamics 

(SD) 

Discrete Event  

(DE) 

Agent-Based Model 

(ABM) 

F
ea

tu
re

s 

- Applied to understand complex 

system behaviors for a long-term 

and emergent behaviors from 

feedback loop 

 

- Understand system flows under 

certain scenarios 

 

- Widely applied in policy 

research at a strategic level 

 

- Applied systems having a queue 

network (e.g., pedestrians or bank 

service line) 

 

- Focus queue system in a process 

 

- Widely applied for equipment 

operation 

- Applied to identify 

interactions of agents in the 

environment 

 

- Bottom-up approach 

A
d

v
a
n

ta
g
es

 

- Identify the relevant 

factors that exist in complex 

systems 

 

- Scenario testing can be 

modified based in order to get 

different results 

 

- Flexible to design agent 

behaviors in a system 

 

- Straightforward modeling 

approach once problem set is 

clearly defined 

 

- Identify emergent agent 

behaviors in a designed 

system 

 

D
is

a
d

v
a

n
ta

g
es

 

- Not easy to represent too 

complex system with many 

components  

 

- When not easy to identify clear 

problem set from the real-world, it 

is hard to implement in SD 

 

- Not applicable for human 

behaviors 

 

- Require higher 

computational skills to 

develop a large complex 

system  

 

- Require 

tremendous 

efforts to design 

each agent based 

on observations or 

dataset 

 

Reference: (Borshchev and Filippov 2004; Sumari and Ibrahim 2013) 

 

Borshchev and Filippov (2004) suggested that a simulation is an appropriate tool for solving 

complex problems with emergent dynamics. Fiedrich and Burghardt (2007) emphasized that 

agent-based modeling can be used to support multiple phases of the disaster management from 

mitigation to emergency response/recovery. Many studies have focused on generic research on 
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agents and possible applications in the domain of disaster management such as robocup rescue 

(Kitano and Tadokoro 2001), combined systems (Veelen et al. 2006), Aladdin (Jennings et al. 

2006), EQ-Rescue (Fiedrich 2006), or FireGrid/I-Rescue (Tate 2006).  

2.4 Point of departure 

In this chapter, this study systematically summarized cutting edge knowledge and debris 

management process, related policies and regulations to handle debris generated. While many 

studies explore the multifaceted and complex post-disaster management, there are few studies 

developing a model adapting system-of-systems approaches to capture the complexity and 

dynamics during disaster debris operation. Also, the research body still lacks a set of theories and 

organized framework that will be critical for researchers, agencies and practitioners in the area of 

post-disaster management. Finally, there is a need to increase the transparency of the decision 

making especially with respect to compromise between engineering/technical efficiency for 

social/political reality of the context: traditional methods of risk assessment to analyze dynamics 

of the context and do not facilitate the integration of behavior of different actors within the decision 

context.  

 

To sum up, an effective disaster debris management system is required to cover the entire disaster 

debris management operation, including the collection, processing, recycling, and disposal stages. 

Disaster debris management is still understudied (Mendonça et al. 2014), despite the extent and 

criticality of its impact on economic, environmental, and social dimensions of recovery plans. 

Current studies underestimate emergent dynamics of debris management, social and political 

dynamics associated with prioritizing its collection or disposal locations, as well as real-time 

management of resources such as equipment fleets. In addition, different agencies lack established 

channels to communicate debris removal strategies and operation plans as platforms for 

collaboration to expedite the entire recovery process. The extent and criticality of disaster debris 

management necessitate an adaptive decision support system, which reflects 1) the unexpected 

impacts of a disaster, 2) characteristics of the community, its interdependent infrastructure network 

and its social and political dynamics, and 3) efficient utilization of available resources and 

infrastructure in real-time. 
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 RESEARCH METHODOLOGY AND FRAMEWORK 

3.1 Introduction 

To navigate the complexity of post-disaster debris management systems, a new paradigm is 

required that optimizes the debris management system by analyzing the system behaviors under 

different planning and operational strategies that effectively adapt both the uncertainty of a 

catastrophic event and the interdependencies within the components of the debris management 

system. In this chapter, this study introduces a research framework and methodologies used for 

developing an adaptive decision support system (DSS) applying an adaptive system of systems 

approach for effective debris management under the considerations of the uncertainty of a 

catastrophic event and the interdependency in the sub-systems of the debris management systems.  

 

Figure 3-1 describes the proposed research methodology framework. The research methodology 

framework consists of four phases: a literature review, a methodological framework for the 

adaptive decision support system, the development of an adaptive decision support system, and 

the application of the decision support system within debris management in the city of Baton 

Rouge after the 2016 Louisiana flood.  
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Figure 3-1 Research methodology framework 

 

3.2 Research methodology framework 

3.2.1 Phase 1: Literature review 

A systematic and comprehensive literature review is critical to gain a good understanding of the 

complexity of disaster debris management systems, including debris cleanup processes, required 

facilities and resources to transport debris, impacts of infrastructure capacity and serviceability on 

the debris removal performance. This requires data/surveys/interviews to conceptualize and 

construct an effective debris management system and model the system. The literature review 

phase of this study addressed three main areas: disaster debris management systems, the inter-

relationship between critical infrastructure and debris management systems, and system modeling 

for debris management (see Table 3-1).   
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Table 3-1 Three main areas and specific topics in the literature 

Area Topics  

Disaster debris 

management 

Debris removal process; type of debris; debris collection and treatment 

options; temporary debris management sites; general issues during debris 

removal; factor analysis for debris/waste collection performance.  

Critical 

infrastructure 

Type of critical infrastructure affecting debris removal such as civil, 

civic, and social infrastructure; inter-relationship between infrastructure. 

System modeling   

Complex systems; complex system modeling and methodologies; 

simulations, including discrete events, system dynamics, and agent-based 

modeling. 

 

As further discussed in Chapter 2, there are few research articles and relevant data in the area of 

disaster debris management. Thus, efforts of this study were mostly focused on collecting and 

summarizing post-disaster after-action reports published by U.S. state and local agencies, 

documents on FEMA’s debris removal planning and practices, news articles about debris 

management during and after disasters, and interviews with officers in emergency agencies. To 

examine the inter-relationship between the serviceability/capacity of critical infrastructure and 

debris removal performance, this study examined past debris removal practices and articles in the 

field of solid waste management. The comprehensive literature review clearly identified state of 

the art within the field and gaps in knowledge in the domain of disaster debris management. The 

findings strongly support the point of departure of this study, the research methodologies used, 

and the framework developed.  

 

3.2.2 Phase 2: Framework for the adaptive decision support system  

Based on the comprehensive literature review on 1) disaster debris management systems, 2) the 

roles of critical infrastructure and 3) system modeling methods, this study developed a framework 

for an adaptive decision support system for effective disaster debris management. The framework 
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consists of four modules: (i) GIS database, (ii) community structure analysis, (iii) temporary debris 

management site (TDMS) network design and selection, and (iv) resource allocation and routing.
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Figure 3-2 Framework of the adaptive decision support system 

Note: Adaptive DSS consists of four core modules: Modules#1-4. 

6
8
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Module#1 was designed to provide the required information/data for Modules#2-4, such as the 

amount/location of debris generated, serviceability of road networks, community zoning systems, 

and waste-related facilities. Module#2 analyzed community centrality based on the layout of the 

road network, census blocks, and debris generated. These analyses supported the identification of 

optimal locations for TDMSs in Module#3 and allowed prioritization of debris cleanup zones in 

Module#4. In Module#3, TDMS design and selection model was designed to identify feasible 

locations for installing TDMSs based on three types of decision parameters, namely technical, 

environmental, and social perspectives. Agent-based modeling (ABM) was applied in Module#4 

to understand the complex behaviors of debris management systems and optimize such systems 

for multiple scenarios. The simulation results can be reported to decision makers for better 

understanding and to support decision making. Any uncertainties during/after disasters will be 

effortlessly reflected in modules in the framework. This will improve the prediction of debris 

removal performance and support optimal solutions within the existing serviceability of critical 

infrastructure and the locations/amount of debris generated.   

 

3.2.3 Phase 3: Development of the adaptive decision support system  

3.2.3.1 Module 1: GIS database 

A database is a critical component for disaster debris management systems, and it is mainly used 

to store and retrieve data/information required for debris removal planning and operations. In 

debris management, most of the required data are spatial data such as the location of debris 

generated, location of debris treatment facilities, and road networks. These heterogeneous spatial 

data include points, lines, and polygons and can thus be managed in a GIS spatial database. Further, 

multiple agencies, including USGS, FEMA, and state- and local-level emergency agencies, 

provide GIS data during and after disasters that provide information about debris generated, road 

network serviceability, and the status of debris cleanup. Thus, a GIS database is a feasible data 

management method to store and retrieve debris-related data as well as update critical data in real-

time after disasters such as that pertaining to road traffic and blockages and other emergent 

dynamics during debris removal operations.  Table 3-2 outlines the data applied to the adaptive 

decision support system developed in this study.  
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Table 3-2 Spatial data type and sources 

  Data type Sources 

Debris Amount; density (locations); existing debris removal plan 

and operation system 

FEMA’s Hazus-

MH; 

City of Baton 

Rouge; 

Local news articles  

GIS Data Drainage and flood zones; road network; 

city zoning (e.g., commercial and residential); 

location of facilities, including schools, hospitals, 

governmental agencies, landfills, TDMSs, temporary 

medical services, and evacuation centers 

EBRGIS; interview 

Resources Trucks; loaders; chippers City of Baton Rouge 

LDEQ  

Note:All data used in the study is open to the public. 

 

Two types of data are stored in a GIS database: static and dynamic data (see Figure 3-3). Static 

data is defined as data that does not change over time and/or after being recorded. Dynamic data 

is defined as data that may change over time and is continually updated. In the context of disaster 

debris management, static data includes the road network, locations of waste-related facilities, and 

community zoning (e.g., residential, commercial, and industrial zoned properties). These data can 

be obtained from the USGS, EPA, or GIS databases operated by the state- and city-level 

governmental agencies. Dynamic data includes data generated or updated during and after a 

catastrophic event, such as the amount of debris generated, debris locations, road network 

blockages, and capacity and serviceability of waste-related facilities. These data can be obtained 

from Google Crisis Response, city emergency agencies, and non-governmental organizations 

(NGOs). The GIS database establishes a channel to provide this spatial data/information for 

Modules#2-4. 
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Figure 3-3 Types of data in a GIS database: Static and dynamic data 

7
1
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3.2.3.2 Module 2: Community structure analysis  

During debris removal, it is critical to prioritize debris cleanup zones to enhance the overall debris 

removal process and disaster recovery performance in general. For example, debris removal on a 

highway significantly improves road network serviceability, in contrast to debris removal on local 

roads that are used by few drivers on a daily basis. To quantify urban network centrality, this study 

examined multiple prior studies that have established methods to measure spatial network 

characteristics and urban phenomena in terms of the importance of particular junctions, the 

connectedness of rooms in buildings, pedestrian traffic in a city, and the distribution of retail and 

service establishments (see Table 3-3).  

 

Table 3-3 Summary of urban network studies 

Topics References  

Importance of particular junctions in transportation networks 

(Garrison, 1960; 

Garrison and Marble, 1962; 

Kansky, 1963; Haggett and 

Chorley, 1969) 

Flow of pedestrian traffic on street (Hillier et al., 1987) 

Distributions of retail and service establishments in urban 

environments  
(Porta et al., 2005; Sevtsuk, 

2010) 

 

The network centrality in Table 3-3 was calculated using two types of network elements: nodes 

and edges. Several toolboxes are available for spatial network analysis, such as Axwoman, SANET, 

MoSC, and Urban network analysis. In this study, we utilized Urban Network Analysis developed 

by MIT City Form Lab (http://cityform.mit.edu) as it can be used in the GIS platform and ArcGIS 

toolbox and can measure five types of centralities, namely reach, gravity, betweenness, closeness, 

and straightness (Sevtsuk and Mekonnen 2012). Using Urban Network Analysis, this study 

identified community zones with higher centrality and betweenness. These measurements were 

applied to Modules#3 and #4 to identify optimal TDMS locations and to Module#4 to prioritize 

debris removal zones.  

 

http://cityform.mit.edu/


 

73 

3.2.3.3 Module 3: TDMS selection and network design modeling 

TDMSs play a critical role in debris management. Most of the debris generated is transported to a 

TDMS, where it is chipped, ground or burned before being transported to final destinations such 

as landfills or recycling facilities. While the installation of TDMSs has multiple positive impacts 

on debris removal performance, multiple issues have been reported during their operation in the 

United States, such as noise, odors, and heavy traffic near such facilities. However, most studies 

have focused on either land suitability analysis based on existing policies and regulations or 

technical performance. There is a lack of research integrating the multiple factors required before 

and during TDMS operation to identify the optimal location of TDMSs. Based on the broad 

literature review on policies, regulations, and after-action reports related to TDMSs in Chapter 2, 

this study defines three performance parameters for quantification: technical, environmental, and 

social performance.  

 

Technical performance (𝑃𝑇): Engineering design is defined as a systematic approach to generate, 

evaluate, and specify system elements for designed or requested objectives under the consideration 

of certain constraints and requirements (Dym et al. 2005). Technical performance is defined as the 

measured engineering performance due to the spatial characteristics of a TDMS location. To 

quantify technical performance, Kim (2014) developed a mathematical model to identify the 

optimal location for a TDMS and minimize the total distance from debris generated to assigned 

TDMS locations; 𝐼 𝑎𝑛𝑑 𝐽  is a set of debris pickup locations and TDMS candidate locations 

respectively. Constraints are not described in the simplified model below.   

 

Optimal TDMS location = Min ∑ 𝐷𝑖
𝑛,𝑚
𝑖=1,𝑗=1 𝑇𝑗          ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽  

 

DiTj: Distance from Di to Tj 

Di: Collection point of debris generated at location i 

Tj: TDMS candidate at location j 
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Figure 3-4 Results of the TDMS design and selection model 

Note: small boxes on the left refer to TDMS candidate locations. The box with the blue star (in the red circle) is identified as an optimal 

TDMS location to minimize the total debris transporting distances (basic assumption: debris must be hauled from debris pickup 

locations to an assigned TDMS). 

7
4
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As shown in Figure 3-4, the model was able to identify the optimal location of a TDMS among 

multiple TDMS candidate locations. Based on the debris pickup sites and selected TDMS location, 

decision makers can perform statistical analysis to determine TDMS input and output capacity.  

 

Environmental performance (𝑃𝐸): Certain debris streams may pose a risk when it is cumulated, 

staged, and stored in larger quantities to human health. Thus, it is critical to locate TDMSs to 

prevent any possible environmental contamination or pollution during and after TDMS operation. 

For example, piles of scrap tires are a potential fire hazard and can attract disease vectors (U.S. 

EPA 2019). After a disaster, scrap tires may provide a breeding habitat for insects like mosquitoes. 

Most state- and local-level debris management planning is based on the EPA’s Planning for 

Natural Disaster Debris (U.S. EPA 2019). In this study, the environmental performance is 

designed to measure the existing and emergent regulatory performance of different areas zone 

based on the EPA’s guidelines. The following list summarizes the EPA’s guidelines (U.S. EPA 

2019). 

 

i. Sufficient size on appropriate topography and soil type  

ii. Certain distances from potable water wells, rivers, lakes, and streams  

iii. Not be established in/near the areas of 100 year floodplain and wetland 

iv. Control systems to mitigate stormwater runoff, fires, and dust. 

v. Free from any obstructions (e.g., power lines and underground pipelines)  

vi. Accessible to heavy and large equipment during operation 

 

Social performance (𝑃𝑆): Radius distance (i.e., Euclidian distance) from a TDMS location to 

residential areas was measured. While a TDMS operation has multiple positive impacts on debris 

management, several social issues regarding TDMS operation have been reported. For example, a 

TDMS can 1) attract vectors such as rodents and other pests, 2) generate noise and odors at certain 

levels considered unacceptable by residents nearby, and 3) increase traffic around TDMSs.   
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3.2.3.4 Module 4: System simulation by agent-based modeling  

Module#4 was designed to simulate debris cleanup operations based on the results of the previous 

modules (#1-3). This included routing and resource allocation (e.g., loaders and trucks) to assess 

debris removal operations. In simulation experiments, a decision maker can evaluate the efficiency 

of existing or newly adjusted debris cleanup operation strategies based on the dynamic, emergent 

environment after a disaster. For example, the collapse of a bridge may require the relocation of a 

TDMS, which can significantly affect the overall performance of existing debris removal. 

Module#4 enables decision makers to adapt easily to a dynamic environment after a disaster by 

evaluating the performance of multiple debris management scenarios over time.  

 

Module#4 employed agent-based modeling. ABM is a class of computational models for 

simulating the actions and interactions of autonomous agents, including both individual and 

collective entities, with a view to assessing their effects on a system as a whole (see Figure 3-5). 

The purpose of ABM is to search for explanatory insights into the collective behavior of agents 

obeying simple rules in natural systems and engineering problems (Borshchev and Filippov 2004). 
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Figure 3-5 Three critical elements of ABM 

Note: The elements of the ABM model are defined based on Epstein and Axtell (1996) and Macal 

and North (2010), as: (i) a set of agents: resources such as equipment, their attributes and 

behaviors, (ii) a set of agent relationships and methods of interaction: an underlying topology of 

connectedness defines how and with whom agents interact, and (iii) the agents’ environment: 

agents interact with their environment in addition to other agents. 

 

Simulations including discrete events, system dynamics, and ABM have been widely used in the 

field of disaster management as part of decision support systems. Fiedrich and Burghardt (2007) 

applied ABM to support numerous processes throughout different phases of the disaster 

management cycle, from mitigation and preparation to actual response and recovery. Several 

studies have focused on crossing the boundary between generic research on agents and possible 

applications in the domain of disaster management such as Robocup Rescue (Kitano and Tadokoro 

2001), Combined Systems (Veelen et al. 2006), Aladdin (Jennings et al. 2006), EQ-Rescue 

(Fiedrich 2006), and FireGrid/I-Rescue (Tate 2006). Wagner and Agrawal (2014) investigated 

crowd evacuation modeling using ABM. This allowed for multiple scenario testing and decision 

support for the planning and preparedness phase of emergency management regarding fire 

disasters at concert venues. Tan et al. (2015) also developed an agent-based simulation by 

combining human behavior with predictable spatial accessibility in a fire emergency. Wang et al. 

(2016) used Netlogo for multimodal evacuation simulation of a near-field tsunami to identify 
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impacts of varying decision time on the mortality rate, different means of transportation, and 

vertical evacuation gates on the estimation of casualties.  Kim et al. (2018) applied system 

dynamics to analyze the patterns of disaster debris removal based on multiple scenarios.Table 3-4  

compares discrete event, system dynamics, and agent-based models. 
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Table 3-4 Comparison of three simulation methods: SD, DE and ABM 

 System dynamics 

(SD) 

Discrete Event  

(DE) 

Agent-Based Model 

(ABM) 

F
ea

tu
re

 - Used to gain greater 

understanding of long-term 

system behavior and dynamic 

feedback behavior 

 

- Focus on flow of systems in 

different scenarios  

 

- Mostly used in policy making  

 

- Used at the strategy level 

- Used to enact a system that with 

a queue network and to compare 

and predict scenarios 

 

- Focus on processes that involve 

the use of queues 

 

- Mostly used in decision and 

prediction making 

 

- Used at the operational/tactical 

level 

 

- Top-down approach 

 

 

-Used to identify the 

interactions and operations 

among entities in realistic and 

flexible ways 

 

-Focus on the interactions that 

occur in systems 

 

-Mostly used in business areas  

 

- Bottom-up approach 

A
d

v
a
n

ta
g
es

 - Helps understand complex 

systems 

 

- Identifies the relevant 

factors that exist in complex 

systems 

 

- Scenario testing can be 

modified to get different results 

 

-Easy for users to understand 

with the help of animations and 

graphics built into the software 

package 

 

-Has unlimited flexibility to 

determine the behavior of 

entities 

 

- Straightforward modeling once 

the problem has been clearly 

defined 

 

 

-Can capture emerging 

phenomena 

 

-Flexible to use 

 

-Can describe a system in terms 

of actual scenarios 

D
is

a
d

v
a

n
ta

g
es

 -Big systems may be too 

complex for the modeler to 

understand 

 

-Failure to identify problems may 

cause failure when implementing a 

system dynamics approach 

 

-Less effective in showing the 

impacts of variability 

 

-Not suitable for use in 

modeling related to human 

behavior 

 

-Involves highly skilled 

computation for use in large 

systems 

 

-Involves 

significant costs 

for 

communication 

 

Reference: (Borshchev and Filippov 2004; Sumari and Ibrahim 2013) 
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3.2.4 Phase 4: Applications of the adaptive decision support system 

The adaptive decision support system developed using GIS-based ABM can be applied in many 

ways. Major parameters of analysis are operation time and cost. As debris management is a part 

of disaster management, it is critical for predicting the time and cost to clean up debris generated 

by a disaster. This information is critical not only for emergency management teams but also for 

other disaster-related agencies and affected residents. Further, the rate of debris removal in areas 

over time is important to prepare for disaster recovery processes after debris removal. Finally, 

debris removal monitoring based on simulation facilitates the communication of emergent results 

to assist the development of alternatives and gauging the efficiency of the debris removal process. 

 

Figure 3-6 describes the structure of the adaptive decision support system. The environment was 

developed by information and data retrieved from Modules#1-3. The decision space enables users 

to apply multiple rules and scenarios using agents such as regulations and policies. Based on 

environment and rules settings, agents continually interact with each other until a designed time 

or rule. All agents’ movements and interactions are stored, analyzed, and visualized in real time.   

 

 

Figure 3-6 Structure of the adaptive decision support system 
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3.2.4.1 Debris removal zone hierarchy 

Using the community network analysis in Module#2, the adaptive decision support system can 

analyze debris removal start/finish time (date) for different zones (see Figure 3-7). This supports 

decision makers in focusing their efforts and resources on critical zones in an emergency. It also 

enables other emergency agencies to coordinate their operation plans based on debris removal 

schedules. 

 

 

Figure 3-7 Debris removal time for different zones 

 

3.2.4.2 Infrastructure and resource utilization assessment 

The adaptive decision support system assesses the capacity of resources and infrastructure needed 

to clean up debris generated within a designated time and budget. It further analyzes daily and 

weekly performance dynamics of debris removal, TDMSs, and final destinations over time. These 

analyses support the development of effective debris removal operation strategies over time. 

Figure 3-8 describes the types of assessments and associated variables. 
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Figure 3-8 Types of assessments in the adaptive decision support system.  

 

3.2.4.3 Debris removal cost-benefit analysis and visualization 

There is a trade-off between debris removal time and cost. Adaptive SoS identifies optimal 

solutions based on a given time and cost. Time and cost metrics, as controllers in the ABM, allow 

the selection of priorities and the comparison of optimal solutions, considering different social and 

political scenarios. A decision maker then selects an optimal solution based on various alternative 

scenarios (see Figure 3-9). 

 

 

Figure 3-9 Time-cost analysis for alternative debris removal scenarios 
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Further, the proposed decision support system combines geospatial mapping of potential TDMS 

locations with summaries and charts exploring tradeoffs between output metrics such as cost, 

recovery time, and social acceptability. Statistical clustering analysis techniques were used in 

accordance with robust decision-making principles to identify strong TDMS locations and debris 

removal strategies (Groves and Lempert 2007; Lempert et al. 2006). Here, robust solutions are 

those that are high performing not only across a wide range of uncertain disaster scenarios but also 

across preferences in terms of cost and time tradeoffs and differences in the degree to which 

technical, managerial, and socio-political considerations are prioritized. 

 

3.2.4.4 Monitoring debris removal operations using a visualized GIS platform 

Monitoring debris removal performance is critical to bridging the gap between a plan and its 

implementation and operation. This enables decision makers to compare the expected amount of 

debris at a certain time with the actual amount of debris (green line) in a community (see Figure 

3-10). This supports emergency agencies in identifying current bottlenecks of the system and 

determine the need for alternative resource allocation and additional infrastructure and resources 

to expedite debris removal. 
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Figure 3-10 Debris management performance monitoring and feedback loop 

 

8
4
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Previous research has highlighted the importance of sharing and coordinating information between 

disaster relief agencies (Bharosa et al. 2010; Kim et al. 2013, 2018b; Simon et al. 2015). The 

adaptive decision support system developed with a GIS platform interactively provides multi-level 

information/data to users.  

3.3 Expected results 

This chapter discussed the research methodology, framework, and an adaptive decision support 

system for effective decision making and transformed it into a more engaged process that covers 

mitigation and preparedness of response and recovery activities. The expected outcomes of this 

study are: 

• Develop a framework for post-disaster debris management based on the concept of system 

of systems, 

• Identify a network of interdependent infrastructure systems that influence debris removal 

within a community and their relative importance, 

• Develop a real-time GIS database to integrate the data associated with 1 and 2 above and 

make it available for analysis of the remaining objectives, 

• Model the selection/design of a TDMS network, including: (1) geographical characteristics 

(GIS data) and interdependent infrastructure as identified in 1 and 2 above and (2) 

availability of resources for debris removal, 

• Simulate the productivity of debris management using real-time GIS data to gain insights 

on the impacts of the dynamic nature of a disaster-affected area, 

• Develop a visual, interactive GIS-based simulation platform for effective coordination 

among agencies and monitoring of on-going debris removal operations under dynamic 

conditions, and 

• Establish a feedback loop to incorporate real-time data on debris removal operations in the 

simulation model for updating corresponding disaster management activities. 

3.4 Conclusion 

This chapter discussed the research methodology, framework, and applications of an adaptive 

decision support system for effective decision making and monitoring of a debris management 
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system over time. When developing the adaptive decision support system for effective decision 

making in the uncertainty of a disaster and its impacts, it is critical to understand the characteristics 

of debris management and its inter-relationship with critical infrastructure. Thus, this study 

conducts a systemic review of disaster debris management systems, including the entire debris 

management process, related critical infrastructure for debris removal, and complex system 

modeling.  

 

Increasing the understanding of emergency operations at the nexus of the community, 

infrastructure, and the environment: Interactional elements cover broad concepts that can be added 

to policy making, such as economic, environmental, social-political-institutional, as well as 

engineering-technical aspects. Integrating all factors within one framework along with a real-time 

simulation of the process will help emergency agencies to develop strategies at the nexus of the 

communities, infrastructure, and the environment while they uncover emergent dynamics. The 

proposed model aims to reflect the complexity of this nexus within the model and its simulation. 

The methodology consists of four phases: a literature review, the framework of the adaptive 

decision support system, development of the system, and its application. To manage city- or state-

level spatial data, a GIS database was utilized to store, retrieve, and update data before and after a 

disaster. To analyze community centrality and optimal TDMS locations, GIS-based spatial 

analysis methods were applied and developed. Beyond an engineering approach to identify TDMS 

locations, this study defined three performance measures—technical, environmental, and social 

measures—to meet the needs of entities that include emergency agencies, environmental agencies, 

and residents in an affected community. Finally, to develop a simulation model for debris 

management, three simulation methods were discussed in this chapter, namely discrete events, 

system dynamics, and ABM. The three elements of ABM were discussed in terms of how they 

were used to develop a simulation model.  

 

The following chapters discuss the methodology for each module in detail. Chapter 4 discusses 

data visualization for decision making, and Chapter 5 applies the proposed adaptive decision 

support system in a case study—debris management in the city of Baton Rouge after the 2016 

Louisiana flood.  
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 DEVELOPMNET OF ADAPTIVE DECISION SUPPORT 

SYSTEM 

4.1 Introduction 

Complex post-disaster debris management problems require a research methodology that 

integrates multiple models and methods. As further discussed in Chapter 3, this study applied 

multiple models and methods to integrate numerous community characteristics and environments 

regarding civil, civic, environmental and social infrastructure and to develop an adaptive decision 

support system.  

 

This study defined the proposed decision support system for an effective debris management 

system as an adaptive decision support system. In the previous studies, an adaptive decision 

support system was defined as a system that is able to adapt dynamic circumstances to support (1) 

decision maker’s needs, (2) the problem, and (3) the decision context (Druzdzel and Flynn 2002; 

Fazlollahi et al. 1997). The effectiveness of decision support system  (DSS) for debris management 

can be enhanced through dynamic adaptation of circumstances affected by a catastrophic event. In 

a pre-disaster scenario, the adaptive DSS runs a simulation experiment based on the given 

conditions and data (e.g., debris estimation from FEMA’s Hazus-MH, road network status from 

the previous flood inundated areas, available equipment). Thus, a result of simulation includes a 

certain level of uncertainty. Comparing to simulation experiemnts in a pre-disaster scenario, the 

performance of the adaptive DSS in a post-disaster scenario can be enhanced by up-to-date 

geospatial data and information from Module#1. For example, it can reflect the exact amount of 

debris on curbside from field surveys as well as the real-time road network serviceability to 

transport debris on a curbside to TDMSs. As the proposed DSS can adapt these post-disaster 

circumstances into a simulation experiment, this study defined the proposed DSS as an adaptive 

decision support system.  

 

This chapter discusses the four core modules of the adaptive decision support system, namely the 

GIS database, community network structure analysis, spatial data analytics and optimization for 

TDMS design and selection, and agent-based modeling for system simulation and optimization 

(see Figure 4-1).  
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Figure 4-1 The four core modules of the adaptive decision support system  

 

The main functions of the adaptive decision support system are to (1) provide critical 

information/data related to disaster debris management in a visualized GIS platform, (2) identify 

feasible locations of TDMS, (3) perform system performance analytics and optimization, and (4) 

visualize data analytics and simulation. The system strongly supports decision makers by helping 

them to understand the complexity of debris removal operations and open effective lines of 

communications between the involved parties. Figure 4-2 desribes the detail input and output data 

processing in the adaptive decision support system.  
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Figure 4-2 Input and output process in the adaptive decision support system 

 

8
9
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Figure 4-3 describes the detail data flow and process in the adaptive decision support system. To 

support multiple analysis and decision-making for an effective debris management, it consists of 

four modules. As the majority of methods/analysis is based on data and information acquired in 

Module#1, it is critical to acquire a reliable quality of data/information (i.e. data with lower 

uncertainty). The proposed adaptive DSS is capable of experimenting debris removal operation in 

a pre-disaster situation with expected disaster impacts and debris estimation from Hazus-MH. A 

result may contain high uncertainty because of uncertainty in multiple components such as debris 

locations/quantities, road network conditions, as well as the availability of pre-selected TDMSs. 

Thus, the adaptive DSS is able to retrieve up-to-date data and information via Module#1 (GIS 

database). It reflects post-disaster circumstances and impacts on a community into Modules#2-4 

so that the results of simulation experiments and optimization are less uncertainty compared with 

results from pre-disaster scenarios.   

 

 

Figure 4-3 Description of data flow and process in the adaptive decision support system 

Note: After a catastrophic event, up-to-date information and date are stored in Module#1 (see the 

red-colored box and arrows) 
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4.2 Core modules of the adaptive decision support system  

4.2.1 Module#1: GIS database  

A GIS database is a database that is optimized for storing and querying data that represents objects 

defined in a geometric space. Module#1 is designed to store all required and critical data related 

to debris management so that a channel can be established to provide the data required for 

Modules#2-4. There are two types of data: static and dynamic data (see Figure 4-4). Static data 

refers to any data published before a disaster, and dynamic data refers to emergent data published 

after a disaster. Most static data can be obtained from U.S. state and local agencies (e.g., USGS, 

U.S. EPA, and DOTs). In the case of dynamic data, there are multiple data providers (e.g., Google 

Crisis Response, ESRI, NASA). 

 

 

Figure 4-4 Data types in a GIS database 

 

Static and dynamic data include vector, raster, and tables. The vector data structure is used to store 

spatial data that has discrete boundaries such as county borders, land parcels, and streets. These 

data comprise lines or arcs, defined by beginning and end points, that meet at nodes (QGIS 2009). 

A raster consists of a matrix of cells (pixels or grid) systematized into rows and columns such as 

arial and satelliate images. Each grid/cell/pixel includes a certain geospatial-related information 

(It can be numeric or character features):. A table in a geodatabase is also employed to store 

attributes, feature classes, and raster datasets.  
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Table 4-1 Comparison of raster and vector data 

Raster Vector 

Raster data is generally bigger than vector 

data as to contain a value for each cell. 

 

As a raster data has its own resolution, issues 

may be encountered when overlaying 

different images.  

 

Format includes ADRG, RPF, DRG, Esri 

grid, and GeoTIFF 

Easily overlapped with other vector data if 

necessary 

 

Easier to scale and project 

 

much smaller file sizes comparing to raster 

image files 

 

Format includes Autocad DXF, GML, 

GeoJSON, KML 
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Point in vector 

 
Point in raster 

 
Line in vector  

 
Line in raster 

 
Polygon in vector 

 
Polygon in raster 

Figure 4-5 Comparison of vector and raster data 

 

To manage data related to debris from a disaster, this study classified GIS data into four layers: 

civil, civic, social, and environmental infrastructure (see Figure 4-6). Civil infrastructure includes 

all types of physical infrastructure supporting human activities, such as roads, bridges, and waste-

related facilities. Civic infrastructure is associated with spatially related regulations and policies 

during debris removal, such as designated areas for emergency medical and food services, 

governance, police and fire department. Social infrastructure refers to any facilities providing 

social services, such as schools, universities, churches, community center and hospitals. 
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Environmental infrastructure includes wetlands, rivers, lakes, soil types, and other unique 

environmental characteristics that should be examined before installing TDMSs.  

 

 

 

(a) Data structure in a GIS database 

 

(b) Data type – static and dynamic data in a GIS database  

Figure 4-6 Data structure and type in the GIS database 
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For this study, the following data were stored in a GIS database (see Table 4-2). 

Table 4-2 Spatial data type and sources 

Data 

structure  

Data type Sources 

Civil Road network; TDMSs; landfills; recycling 

facilities 

EBRGIS; USGS; 

LDEQ* 

Civic  EPA policies and regulations for a TDMS; city 

zoning (e.g., commercial and residential); 

 

U.S. EPA; City of 

Baton Rouge  

Social Schools; universities  

Environmental Riverline; lakes; soil type; 100-  and 500-year flood 

plains; slope 

USGS; City of Baton 

Rouge; LDEQ 

Dynamic data Debris generated; inundated areas; emergency 

services  

City of Baton Rouge 

*LDEQ: Louisiana Department of Environmental Quality  

 

4.2.2 Module#2: Community structure analysis  

Module#2 is designed to identify debris removal zone hierarchies in a disaster-affected community 

considering multiple layers of critical infrastructure (i.e., civil, civic, social and environmental) 

and the locations of the debris generated. To identify debris removal zone hierarchies, this study 

employed network theory, which is the application of graph-theoretic principles to the study of 

complex, dynamic interacting systems, to measure centrality (see Figure 4-7).  

 



 

96 

 

Image from mathinsight.org 

(Nykamp 2019)  

Figure 4-7 Small network created by vertices and edges  

Note: A network can be defined as a graph (nodes and edges have certain attributes). Network 

theory is also a part of graph theory. 

 

Network theory has been applied in multiple disciplines, including computer science, physics,, 

operation and communication research. Network analysis methods are applied in urban and 

regional studies only occurred in the past decade (Sevtsuk and Mekonnen 2012). In the case of the 

urban street network, edges represent street segments, and nodes represent the junctions where two 

or more edges interest. Sevtsuk and Mekonnen (2012) mentioned several shortcomings from 

previous studies: network analysis focused on road segments, a lack of building-level analysis, and 

unweighted urban network analysis. The authors developed Urban Network Analysis to measure 

the importance of each node in an urban network setting: reach, gravity index, betweenness, 

closeness, and straightness. As suggested by Sevtsuk and Mekonnen (2012), this study applied 

betweenness centrality to identify edges (nodes) with higher centrality in a disaster-affected 

community.  

 

  

https://mathinsight.org/network_introduction
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Betweenness centrality measure node centrality in a graph based on the shortest paths. The 

betweenness centrality of node 𝑣,  𝐶𝑏𝑡𝑤(𝑣), is measured by the following equation: 

 

𝐶𝑏𝑡𝑤(𝑣) =  ∑
𝜎𝑠,𝑡(𝑣)

𝜎𝑠,𝑡𝑠,𝑡 
   

 

 

𝑤ℎ𝑒𝑟𝑒 

 

𝜎𝑠,𝑡 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡ℎ𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑜𝑑𝑒𝑠 𝑠 𝑎𝑛𝑑 𝑡 

 

𝜎𝑠,𝑡(𝑣) = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡ℎ𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑜𝑑𝑒𝑠 𝑠 𝑎𝑛𝑑 𝑡 𝑡ℎ𝑎𝑡 𝑝𝑎𝑠𝑠 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑛𝑜𝑑𝑒 𝑣  
 

For each pair of nodes in a connected network, there exists at least one shortest path between the 

nodes such that either the number of edges that the path passes through or the sum of the weights 

of the edges is minimized. For example, Figure 4-8 illustrates the calculation process of 

betweenness centrality (node B).   

  

 

Figure 4-8 Betweenness centrality of Node B 

 

With the help of computation power, betweenness centrality can be measured in a complex and 

large network (see Figure 4-9). The color represents the betweenness centrality of each node (red 

= min value, and blue = max value).   
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Figure 4-9 Measurement of betweenness centrality in a complex system 

Note: Color (from red = min value to blue = max value) represents betweenness centrality of nodes  

 

In an urban network, the generic betweeness centrality is slightly modified to consider building 

blocks (Sevtsuk and Mekonnen 2012). Betweenness centrality in an urban network, 

𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑒𝑠𝑠 𝑟 [𝑖], of a building 𝑖 in graph 𝐺 estimates the number of times 𝑖 lies on the shortest 

path between pairs of other reachable buildings in 𝐺 that lie within the network raduis 𝑟 (Freeman 

1977).  

 

𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑒𝑠𝑠 𝑟 [𝑖] =  ∑
𝑛𝑠,𝑡[𝑖]

𝑛𝑠,𝑡

∙  𝑊[𝑗]
𝑠,𝑡 ∈𝐺−{𝑖};𝑑 [𝑠,𝑡]≤𝑟  

   

 

 

𝑤ℎ𝑒𝑟𝑒 

 

𝑛𝑠,𝑡 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡ℎ𝑠 𝑓𝑟𝑜𝑚 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 𝑏𝑙𝑜𝑐𝑘 𝑠 𝑡𝑜 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 𝑏𝑙𝑜𝑐𝑘 𝑡 𝑖𝑛 𝐺  
 

𝑛𝑠,𝑡[𝑖]

= 𝑡ℎ𝑒 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝑡ℎ𝑒𝑠𝑒 𝑝𝑎𝑡ℎ𝑠 𝑡ℎ𝑎𝑡 𝑝𝑎𝑠𝑠 𝑡ℎ𝑜𝑢𝑔ℎ 𝑖, 𝑤𝑖𝑡ℎ 𝑠 𝑎𝑛𝑑 𝑡 𝑙𝑦𝑖𝑛𝑔 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑟𝑎𝑑𝑢𝑖𝑠 𝑟  
    𝑓𝑟𝑜𝑚 𝑖  

 

𝑊[𝑗] = 𝑡ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑎 𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑗 

  

This study applied a weight, 𝑊[𝑗], into particular building blocks and locations that represented 

critical infrastructure (see Figure 4-10).  
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Figure 4-10 Schematic diagram of community structure analysis using network theory and 

analysis - betweenness centrality 

 

Figure 4-11 demonstrates an example of betweenness centrality results. In this example, each unit 

(building) has equal weight (1). The color represents the degree of betweenness centrality, with 

green signifying lower and red signifying higher betweenness centrality.  
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Figure 4-11 Example of betweenness centrality measure   

Note: This study used the dataset (Cambridge – Somerville) provided from the Urban Network 

Analysis toolbox to test betweenness centrality analysis (with equal weight on each building block).  

 

4.2.3 Module#3: TDMS design and selection model 

Module#3 is designed to identify an optimal location for TDMSs based on data/information from 

Modules#1-2. The TDMS design and selection model consists of two steps: land suitability 

analysis (LSA) and facility location optimization. LSA is a GIS-based process applied to determine 

the suitability of a specific area for a considered use (i.e., it determines the suitability of an area 

regarding its intrinsic characteristics) (Cheng and Thompson 2016; Grzeda et al. 2014; Jafari and 

Zaredar 2010; Leao et al. 2001). After determining suitable locations for installing TDMSs, the 

optimal location for a TDMS among all suitable locations must be determined. For this 
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determination, facility location problems, location analysis results regarding the optimal placement 

of facilities (i.e., TDMS in this study) to minimize transportation costs, and multiple other 

constraints in a given problem set are considered. 

 

Step#1: Land suitability analysis  

Land suitability for a TDMS is measured by three performance quantifiable parameters: technical, 

environmental, and social performance. This study employed a hybrid mathematical method 

integrating fuzzy and Boolean logic. Figure 4-12 describes the overall LSA process and the three 

performance score systems using fuzzy and Boolean logic.  

 

 

Figure 4-12 Model structure in Module#3   

 

 

Performance score measurement  

As further discussed in Chapter 3, this study defines three quantifiable performance parameters: 

technical, environmental, and social performance. Technical performance (𝑃𝑇)  measures 
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engineering performance due to spatial characteristics; environmental performance (𝑃𝐸) measures 

the existing and emergent regulatory performance of different zones based on EPA guidelines; and 

social performance (𝑃𝑆) measures the social impact (e.g., noise, odor, and traffic) on residential 

areas from certain TDMS locations. Figure 4-13 is a schematic diagram of three performance 

measurements in spatial dimensions. 

 

 

Figure 4-13 Measuring performance for siting TDMSs 

Note: Social performance increases when a TDMS is located far from residential areas, and 

technical performance varies by the locations of debris and final destinations. Environmental 

performance is determined by nature and built environment in a community. 

 

To determine the three performance scores, this study employed Fuzzy and Boolean logic: Fuzzy 

logic is an approach to compute based on “degrees of truth” compared to “true or false approach” 

(i.e., Boolean logic) (Duch 2005). Fuzzy logic can be represented by a sigmoid function (see  

Figure 4-14).  
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Figure 4-14 Sigmoid function graph 

Note: Sigmoid function is a mathematical function with the characteristic of an “S”-shaped curve 

or sigmoid curve.  

 

In spatial analysis, there are seven types of fuzzy membership functions: gaussian, large, linear, 

MS large, MS small, near, and small. In this study, Fuzzy small and MS large functions were used.  

The Fuzzy small function is used when smaller input values are more likely to be a member of the 

set and the Fuzzy large function is applied when larger input values are more likely to be a member 

of the set (see Figure 4-15).  
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(a) Fuzzy Small transformation function (b) Fuzzy MS Large transformation function 

 

Figure 4-15 Fuzzy small and MS large transformation functions for reclassifying/transforming 

the input data to a 0 to 1 scale 

 

Boolean logic is a form of algebra centered on three simple words, called Boolean operators: OR, 

AND, and NOT. Thus, all values are either true or false. Figure 4-16describes how Boolean logic 

is processed with the operator AND.  

 

 

                  Input rater data#1 “AND” input raster data#2        =           output raster  

Figure 4-16 Illustration of Boolean logic 

Note: When a cell in raster data does not have a value, the output will be NULL: Input raster value 

on raster data#1 and 2 is 4 and null. So, the output value becomes 0.    

                   

This study applied Fuzzy and Boolean logics to calculate performance scores (see Table 4-3), for 

example, for road accessibility and residential areas.   



 

105 

Table 4-3 Logic criteria 

Logic Criteria* 
Value* 

References 
0  1 

B
o
o
le

an
 

C1 100-year floodplain   EPA (1995) 

C2 Surface water/water stream 
Buffer 3280 

feet (1km) 
 LDEQ (2017) 

C3 Wetlands/swamp <=100 feet  LDEQ (2017) 

C4 
Distance from 

protected/historical area 
<=1640 feet  

Chen and 

Thompson (2016) 

C5 Land slope Slope > 10% 
Slope 

<=10% 

Chen and 

Thompson (2016) 

C6 

Distance from businesses, 

schools, hospitals, clinics 

(for chipping and grinding) 

<= 300 feet  LDEQ (2017) 

C7 

Distance from businesses, 

schools, hospitals, clinics 

(for burning debris) 

<= 1000 feet  LDEQ (2017) 

C8 Airport 
<=10,000 

feet 
 LDEQ (2017) 

F
u
zz

y
 

C9 Road accessibility <=1640 feet (500m) 
Chen and 

Thompson (2016) 

C10 
Residential area (noise and 

odor) 

328 – 3280 feet (0.1km – 

1km) 

Christensen, 

Manfredi and 

Kjeldsen (2011) 

* Criteria were designed based on guidelines from the U.S. EPA and LDEQ. When certain values 

for a criterion were not provided (e.g., they were left up to the preference of decision makers), 

values were retrieved from the other studies on the reference column on the right side.  
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For example, Boolean logic is applied to C1, which is the 100-year floodplain. This means for any 

cell in raster data within a 100-year floodplain, 0 is given to that cell. The Fuzzy small 

transformation function is applied (midpoint = 500m, spread = 5) in C9.  

 

To integrate the performance scores of each cell, the following performance scoring equation was 

developed: Table 4-4 describes the detail parameter inputs for each performance score. 

   

𝑷 = [𝜶𝑷𝑻 + (1 −  𝜶)𝑷𝒔 ] ∗ 𝑷𝑬  

 

Table 4-4 Parameters in the performance scoring method   

Parameter Description 

𝑃  Total performance score 

𝑃𝑇 =𝑃𝑇 (𝑇𝑅 , 𝑇𝑇𝐷𝑀𝑆, 𝑇𝐹 , … )  

         𝑇𝑅  

         𝑇𝑇𝐷𝑀𝑆 

         𝑇𝐹  

Technical performance score  

 Resource capacity (e.g., number/type of resources) 

 TDMS capacity (e.g., number/location of TDMS) 

 Capacity of final destinations (e.g., location, distance, capacity) 

𝑃𝑆 = 𝑃𝑆 (𝑆𝑁 , 𝑆𝐷 , … )    

           𝑆𝑃  

           𝑆𝐷  

           𝑆𝐬  

Social performance score   

 Perception of need (affected or non-affected) 

 Distance from residential areas to a TDMS  

 Social influence 

𝑃𝐸     
Environmental regulation indicator  

     𝑃𝐸 = 0  : 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 ,   𝑃𝐸 = 1 : 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 

𝛼  
Decision makers’ preference depending on disaster severity and 

community needs (0 ≤ 𝛼 ≤ 1) 

Note: Decision makers’ parameter, α, is applied to give more or less weight to either technical or 

social performance based on decision makers’ preference or circumstances after a catastrophic 

event. 

 

For instance, calculated performance scores are stored in a raster format (see Figure 4-17 ). Then, 

the values of 𝑃𝑇 , 𝑃𝑆 , 𝑎𝑛𝑑 𝑃𝐸  are integrated into 𝑃  
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Figure 4-17 Schematic diagram of the performance scoring method  

Note: The cell size (spatial resolution) used in this study was 625 𝑚2 (25 x 25 m) as this is small 

enough to capture TDMS locations but large enough to perform computational analysis efficiently 

(Esri 2008). 

 

Finally, this study developed a python toolbox using ArcGIS ModelBuilder (version. 10.5) to 

automate the entire process of Step#1 (land suitability analysis). In general, a model in 

ModelBuilder consists of at least three elements: input data (blue square), geoprocessing tools 

(yellow circle), and output data (green square). Figure 4-18 demonstrates a small part of the entire 

geoprocessing model in Figure 4-22.  

 

 

Figure 4-18 Model developed by ArcGIS ModelBuilder for land suitability analysis 

Note: the entire LSA model is described in Figure 4-22. 

 

Based on the school dataset (blue circle - EF:hz School), Euclidean distance is calculated using 

the equation in Figure 4-19. 
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Figure 4-19 How to measure Euclidean distance in a raster data format 

Image from By Kmhkmh, https://commons.wikimedia.org/w/index.php?curid=67617313  

Note: Euclidean distance is calculated from the center of the source cell (where schools are 

located) to the center of each of the surrounding cells.  

 

Figure 4-20 demonstrates how Euclidean distance is measured based on the source raster. The 

Euclidean distance is calculated to the closest source. For instance, the values on the blue circles 

on the right side are calculated based on the distance from the red-colored raster source data:  

 

 

Source_raster                                            Euc_Distance 

Figure 4-20 Measuring Euclidean distance from certain raster  

Note: Syntax in python: EucDistance (in_source_data, {maximum_distance}, {cell_size}, 

{out_direction_raster}). The image was downloaded from Esri ArcGIS  

 

Output data (EucDist_School) is used as input data for the Extract by Mask function. This function 

extracts the cells of a raster that corresponds to the area defined by a mask (EucDist_School).  

1.414 =  √12 + 12 

https://commons.wikimedia.org/w/index.php?curid=67617313
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                InRas                                        InMas                                               OutRas 

Figure 4-21 Illustration of Extract by Mask function 

Note: OutRas contains only the values in InRas under the raster with certain values in InMas. The 

image was downloaded from Esri ArcGIS  

 

The output data (Extract_School) is processed by the Reclassify function to reclassify the values 

in a raster from 0 to 1.  
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Figure 4-22 Python toolbox to automate the entire process of land suitability analysis  

Note: The detail codes in the python toolbox are described in Appendix#A. 

1
1
0
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Step#2: Optimal location of TDMS  

Most of funding for debris removal are spent for transporting debris (U.S. Department of 

Homeland Security 2011). Thus, it is critical to locate TDMSs to minimize the cycle time of debris-

hauling trucks: Peurifoy et al. (2010) defined the cycle time required by a truck for transport of 

materials in divided into the following four elements: load, haul, dump and return time. Searching 

for the optimal location of a TDMS is considered a p-median problem (Daskin and Maass 2015; 

Kim et al. 2018b). A p-median problem is a specific type of a discrete location model designed to 

place p facilities to minimize the (demand-weighted) average distance between a demand node 

and the location in which a facility was placed. This serves as an approximation of total delivery 

cost. In this model, there are no capacity constraints of the facility. 

 

Mathematical model: This study formulates the problem set using an undirected (bi-directional) 

graph 𝐺 = (𝐼, 𝐽, 𝐸), where the demand nodes (i.e., locations of debris) are represented by a set of 

vertices 𝑖 ∈ 𝐼 , the available locations of TDMSs (determined by land suitability analysis) are 

represented by another set of vertices 𝑗 ∈ 𝐽, and edges (road network) 𝑒𝑖,𝑗 ∈ 𝐸 only exist between 

vertices from 𝑖 ∈ 𝐼 to those in 𝑗 ∈ 𝐽 (note: the road network set, 𝐸, could be updated/revised based 

on the condition of the road network before/after a disaster). Further, positive weights are given to 

the edges, 𝑑𝑖,𝑗 ≥ 0,  which represents the distance (measured by the road network dataset in 

Module#1) between vertices 𝑖 and 𝑗 (note: it is possible to have zero distance between a demand 

node 𝑖 and a possible facility location 𝑗). Finally, positive weights are given to the demand nodes 

(i.e., the amount of debris in a pickup location) ℎ𝑖 for 𝑖 ∈ 𝐼. In this problem set, the objective of 

this mathematical model is to place 𝑝 number of TDMSs to minimize the total distances between 

a demand node 𝑖 (debris pickup location) and its assigned TDMS 𝑗. 

 

Integer linear programming (ILP) was applied to solve the problem set above. This study defined 

a decision variable, 𝑌𝑖𝑗 , which signifies which demand node, 𝑖,  are serviced by which facility 

location, 𝑗.  

 

 

 

𝑝 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝐷𝑀𝑆 𝑡𝑜 𝑙𝑜𝑐𝑎𝑡𝑒 
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𝑌𝑖,𝑗 = {
1 𝑖𝑓 𝑑𝑒𝑏𝑟𝑖𝑠 𝑝𝑖𝑐𝑘𝑢𝑝 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 ∈ 𝐼 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑎𝑡 𝑗 ∈ 𝐽

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

Another decision variable is defined below  

 

𝑋𝑗 = {
1,   𝑖𝑓 𝑇𝐷𝑀𝑆 𝑓𝑎𝑐𝑖𝑙𝑡𝑦 𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑎𝑡 𝑗 ∈ 𝐽

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

Given the two decision variables, this study can formulate the p-median problem as the following 

ILP: 

 

ℎ𝑖 = 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑑𝑒𝑏𝑟𝑖𝑠 𝑎𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑖 

𝑑𝑖,𝑗 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑑𝑒𝑏𝑟𝑖𝑠 𝑝𝑖𝑐𝑘𝑢𝑝 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑖 𝑡𝑜 𝑇𝐷𝑀𝑆 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑗 

              

𝑚𝑖𝑛 ∑ ∑ ℎ𝑖 𝑑𝑖𝑗 𝑌𝑖𝑗

𝑗∈𝐽𝑖∈𝐼

 

𝑠. 𝑡. 

∑ 𝑌𝑖𝑗 = 1, ∀𝑖 ∈ 𝐼

𝑗∈𝐽

 

𝑌𝑖𝑗 − 𝑋𝑗 ≤ 0, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽   

∑ 𝑋𝑗 = 𝑝

𝑗∈𝐽

 

𝑋𝑖𝑗 ∈ {0,  1}              ∀𝑗 ∈ 𝐽 

𝑌𝑖𝑗 ∈ {0,  1}, , ∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 

 

The objective function, 𝑚𝑖𝑛 ∑ ∑ ℎ𝑖 𝑑𝑖𝑗 𝑌𝑖𝑗𝑗∈𝐽𝑖∈𝐼 , minimizes the demand-weighted (i.e., weighted 

by ℎ𝑖 ) distance 𝑑𝑖𝑗 𝑌𝑖𝑗  summed over all facilities and demand notes. The first constraint, 

∑ 𝑌𝑖𝑗 = 1,𝑗∈𝐽  implies that a demand node 𝑖 can be serviced by one facility. The second constraint, 
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𝑌𝑖𝑗 − 𝑋𝑗 ≤ 0, indicates that demand node 𝑖 can be serviced by a facility at 𝑗, only if there is a 

facility at 𝑗 , because if 𝑋𝑗 = 0  then it must be that 𝑌𝑖,𝑗 = 0 . The third constraint,  

∑ 𝑋𝑗 = 𝑝𝑗∈𝐽 , indicates that 𝑝  facilities should be located. Lastly,   

𝑋𝑖𝑗 ∈ {0,  1}, 𝑌𝑖𝑗 ∈ {0,  1} forces the decision variables to be binary.  

 

The mathematical model is, then, solved by a heuristic algorithm plugged in ArcGIS’s ArcMap 

(version 10.5). The process is described below (Esri 2019): 

 

1. Location-allocation solver generates an origin-destination matrix of shortest-path costs 

between all the facilities and demand point locations along with the network.  

2. It then constructs an edited version of the cost matrix by a process known as Hillsman 

editing (Hillsman 1980). It enables the same overall solver heuristic to solve numerous 

problem types. 

3. Location-allocation solver produces a set of semi-randomized solutions and applies a 

vertex substitution heuristic (Teitz and Bart 1968) to refine these solutions, creating a group 

of good solutions.  

4. Meta-heuristic combines this group of good solutions to create better solutions. When 

additional improvement is impossible, the metaheuristic returns the best solution. The 

combination of an edited matrix, semi-randomized initial solutions, a vertex substitution 

heuristic, and a refining metaheuristic quickly yields near-optimal results. 

 

This study applied the model above into a small-scale network below to illustrate the general 

process.  
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Figure 4-23 Description of a network example  

Note: Number in a box refers to the amount of debris unit at a specific node, and a number on line 

refers to distance. 

 

The formulation for the given network dataset is below.  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  10(0)𝑌𝐴𝐴 +  20(10)𝑌𝐵𝐴 + 25(14) 𝑌𝐶𝐴 + … + 15(0) 𝑌𝐸𝐸 

Subject to; 

𝑌𝐴𝐴                                                          ≤ 𝑋𝐴 

     𝑌𝐵𝐴                                                     ≤ 𝑋𝐴 

                                                                    … 

                                                     𝑌𝐸𝐸      ≤ 𝑋𝐸 

𝑋𝐴 + 𝑋𝐵 + 𝑋𝐶 +  𝑋𝐷 + 𝑋𝐸 = p (p =1 in this example)        

𝑌𝐴𝐴 + 𝑌𝐴𝐵 + ⋯ + 𝑌𝐴𝐸 = 1   

… 

𝑌𝐸𝐴 + 𝑌𝐸𝐵 + ⋯ + 𝑌𝐸𝐸 = 1   

𝑋𝐴, 𝑋𝐵, … , 𝑋𝐸 ∈ {0,  1}            

𝑌𝐴𝐴, 𝑌𝐵𝐴, … , 𝑌𝐸𝐸 ∈ {0,  1}  

Then, facility C (14*10 + 23*20 + 17*12 + 13*15 = 999) is selected as the optimal location under 

the network dataset above. .         

 

This study involved a hypothetical scenario in which there are 10 available facilities where TDMSs 

can be installed for debris removal operation and 26,513 debris pickup locations in a disaster-
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affected community. The proposed optimization model was applied to determine an optimal 

TDMS location.  

 

 

Figure 4-24 Debris pickup locations and road network  

Note: Black dots represent 26,513 debris pickup locations, and red lines represent the road 

network in a city. There were no road blockages in this scenario.   
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The location-allocation solver generated an origin-destination matrix of shortest-path costs (i.e., 

total length in this scenario) between all the facilities (DestinationID) and demand point (OriginID) 

locations along with the network. The total number of generated records in the OD matrix was 

265,130 (equal to 26,513 (debris pickup points) * 10(TDMS facility locations)). 

 

 

Figure 4-25 Snapshot of OD matrix created 

Note: OrigineID refers to debris pickup locations, DestinationID refers to possible TDMS 

locations, and DestinationRank refers to a rank (based on Total_Length) within a set of OriginID. 

 

Figure 4-26 to 4-27 describes the selected facilities (marked with a red-colored star) for each 

scenario.  
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Figure 4-26 Selected facility when only one TDMS is required 



 

118 

 

Figure 4-27 Selected facilities when two TDMSs are required 
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Figure 4-28 Selected facilities when three TDMSs are required 
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4.2.4 Module#4 Agent-based modeling 

To simulate complex post-disaster debris management systems under multiple post-disaster 

scenarios, this study employed agent-based modeling. Compared to system dynamics and discrete 

events, ABM has several advantages when simulating complex systems (i.e., debris management 

system). These advantages include: (i) ABM captures emergent phenomena generated by either a 

disaster or interactions between agents; (ii) ABM provides a natural description of a system 

(bottom-up approach); and (iii) ABM is flexible to deal with emergent dynamics in complex 

systems (see Figure 4-29) (Cimellaro et al. 2017; Macal and North 2008; Sumari and Ibrahim 2013; 

Turrell 2016; Zheng et al. 2013). 
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Figure 4-29 Comparison of simulation methods: DE, SD and ABM 

1
2
1
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ABM consists of three basic elements: agent, environment, and rules (see Figure 4-30). The 

following outlines the detailed design process of the three elements to simulate debris management 

systems.  

 

 

Figure 4-30 Three basic elements of ABM 

 

Four types of agents were created: debris, TDMS, truck, and landfill (see Figure 4-31). The debris 

agent is created immediately after a disaster event, and locations and amounts of debris are the 

main parameters. This agent is estimated based on the Federal Emergency Management Agency 

(FEMA)’s Hazus-MH debris estimation tool (ver. 4.2. Service Pack 3.0). The truck agent 

represents any vehicles transporting debris generated from the disaster to a designated location. 

The truck agent contains two parameters: vehicle speed and capacity. The average speed of truck 

is 45 miles/hour, and there are two truck capacities, namely 25 and 50 cubic yards.  The TDMS 

agent includes multiple debris processes (represented as discrete events) such as chipping, burning, 

sorting, and storing debris. The landfill agent represents the destination of debris transported from 

TDMS (e.g., landfills and recycling companies). Hourly processing time is a parameter is created 

in the agent. 
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Figure 4-31 Types of agents created in adaptive DSS 

 

Figure 4-32 describes the fundamental structure of ABM. As outlined above, ABM consists of 

agents, environments, and rules. In this study, the environment is designed using the GIS platform 

that is created by Modules#1-2. It includes the transportation network, facility locations, and debris 

locations. The decision space includes rules of agent behavior as well as multiple parameters of 

agents. Finally, agents represent debris, trucks, TDMS, and landfill. 

 

 

Figure 4-32 Elements of ABM in the adaptive decision support system 
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In recent years, the ABM community has developed multiple ABM toolkits that enable individuals 

to develop ABM applications, such as Netlogo, RePast, AnyLogic, and Mesa. This study 

developed a tool to simulate, analyze, and visualize an ABM model with the help of AnyLogic 

simulation software. Table 4-5 describes the basic icons and functions applied in the ABM model.  

 

Table 4-5 AnyLogic icon descriptions 

Icon Type Descriptions 

 

Source Generates agents 

 

Sink Disposes of incoming agents 

 

Delay  Delays agents by the specified delay time 

 

Queue Stores agents in the specified order 

 

Hold  Blocks/unblocks the agent flow 

 

MoveTo Moves an agent from its current location to a new location 

 

ResourcePool Provides resources seized and released by agents 

 

Seize  Seizes the certain number of units/agents 

 

Release  Releases resources previously seized by agent 

 

Service  Seizes resource units for the agent, delays them, and releases seized units 

 

ResourceTaskStart  

Defines the start of the flowchart branch modeling the task process for 

resource units  

 

Resource TaskEnd  End point of flowchart 

 

ResourceTask  

Tasks for certain resources that can not be designed by functions provided 

such as  failures, maintenance, and breaks 

 

Enter Inserts agents created elsewhere into the flowchart 

 

Exit Accepts agents coming to 

 

Batch  Accumulates agents, then outputs them into a new agent 

 

Unbatch Extracts all agents  

Note: Detailed descriptions are in Appendix#C 

 

A event of disaster creates an agent, debris (see Figure 4-33). There is a delay function to consider 

the debris handling time from home to curbside. This study assumed that residents evacuated 

before/during a disaster and returned to the community within 40 days of the disaster event (this 

http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Source.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Sink.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Delay.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Queue.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Hold.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/MoveTo.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/ResourcePool.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Seize.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Release.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Service.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/ResourceTaskStart.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/ResourceTaskEnd.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/ResourceTask.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Enter.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Exit.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Batch.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Unbatch.html
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part was modeled by system dynamics). A ratio of evaluated and backtocommunity was applied in 

the delay function. 

 

 

Figure 4-33 Debris generation process in a pickup location  

 

The TDMS agent model includes multiple debris treatment processes (see Figure 4-34). The TDMS 

processing modeling represents debris pickup by truck and transportation to a TDMS. Debris 

separation (at the bottom left) describes the types of debris treatments available at TDMSs: 

chipping, no processing, and sorting for recycling. Two-time measurements (at the bottom right) 

are designed to identify and control the idle time of equipment during a simulation. Appendix#4 

describes the details of model design and codes. 
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Figure 4-34 Processing model for TDMS agent  

Note: #1 is a part of truck agent behavior (move -> load -> move -> unload -> move). #2 

represents debris separation processes (e.g., sorting materials into chipping/grinding, no 

processing and transporting to recycling facilities).  

 

In the case of a large hauling truck with 50 CY hauling capacity, it is designed to transport debris 

from TDMS to landfills: no type of post-processing in the landfills was considered in this study. 

Batch converts multiple debris agents into one agent (see Figure 4-35). A single debris agent 

represents 25CY of debris. Thus, a large truck agent hauls two debris agents (50CY debris) each 

time.  

 

 

#1 

#2 #3 
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Figure 4-35 Agent behavior design of Large hauling truck   

Note: LTruckSchedule refers to the operation time of trucks. For example, a user can define the 

operation time as being from 8 am to 5 pm. The agents are not in operation from 5 pm to 8 am the 

next day. Batch contains a certain number of debris agents.  

 

4.3 Optimization 

In ABM, an optimization experiment is vital when a decision maker needs to observe the complex 

debris management system behaviors under certain conditions and scenarios, and improve system 

performance. AnyLogic optimization is built on the top of OptQuest optimization engine (Laguna 

2011). Thus, five steps are required to run an optimization experiment: 1) define parameters, 2) 

define objective functions (e.g. minimize or maximize objective functions), 3) define requirements 

and constraints, 4) specify a simulation stop condition, and 5) specify an optimization stop 

condition.  

 

Parameters: Designated parameters in the optimization model are the number of small and large 

hauling trucks, loaders, and chippers for a TDMS and the amount of debris at a pickup site (see 

Figure 4-36).  Users can define the minimum and maximum value for each parameter. Step refers 

to the parameter step in an experiment. Suggested refers to the initial value of the parameter.    

Hauling trucks are moving to TDMS 

Hauling trucks are moving back to the landfill 

Debris agent are processed to being picked up by a truck 

agent 
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Figure 4-36 Parameter settings in an optimization experiment 

 

Objective function: The goal of optimization is to find the optimal parameters within available 

resources under given disaster scenarios to meet the objective function. An objective function is a 

mathematical expression to demonstrate the relationships of optimization parameters or the result 

of an operation (such as simulation) that uses the optimization parameters as inputs. 𝑥𝑖,𝑗
𝑡𝑟𝑢𝑐𝑘 denotes 

the utilization rate of truck, 𝑖 (25 and 50 CY) the truck type, and 𝑗  the truck ID. The objective 

function formulated in this study is described below. 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑧 =   ∑ ∑ 𝑥𝑖,𝑗
𝑡𝑟𝑢𝑐𝑘

𝑖 ∈𝐼𝑗∈𝐽

  ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽 

Note: This was coded as root.tDMS.trucks.utilization() + root.LtruckPool.utilization(). 

 

The resource utilization rate is measured by ResourcePool (the icon and short description are in 

Figure 4-37).  

• Double getUtilization(): returns the unit utilization, which is the fraction of time the unit 

was busy. The returned unit utilization value lies in the range [0, 1]. If the availability of 

the resource unit is defined in the ResourcePool block by a schedule, utilization will be 

calculated during the only designed operating hours of resource unit. 
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Figure 4-37 Resource utilization (e.g., large capacity truck) 

Note: The total number of trucks in the resource pool (All units: 4). Currently, all units are in idle 

(idle unit: 4), and the utilization rate is 0.  

 

Constraints and requirements: A constraint is a defined condition upon optimization parameters 

- each time the optimization engine generates a new set of values from a set of parameters for the 

optimization parameters, it checks whether these values satisfy the defined constraints. This 

reduces a searching dimension  (i.e., space or  a set of solutions). A requirement is defined as an 

additional restriction required for the solutions obtained from the optimization engine. Designged 

requirements are checked at the end of each simulation, and if they are not satisfied with constraints 

and requirements, then a set of parameters used in the specific simulation are rejected. This study 

assumed certain constraints and requirements for conducting simulation studies, including truck 

utilization rate, limit on the number of trucks inside a TDMS, and TDMS capacity (see Table 4-6).  

 

Table 4-6 Constraints and requirements in the optimization model/simulation   

Constraints  

TDMS capacity <= 500,000 CY 

Number of waiting trucks in TDMS <= 50 

Requirements  

Small and large truck utilization rate >=0.6 

% of debris removal within 90 days >= 0.7 
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The idle time of resources (i.e., small and large hauling trucks) is measured by the time trucks wait 

in line to unload/load debris at debris pickup sites, TDMSs, and landfills (see Figure 4-38).  

 

 

Figure 4-38 Time measurement function in TDMS 

Note: timeMeasureStart and timeMeasureEnd measure time of resources in WaitingAtTMDS. 

 

Simulation/optimization stop condition: By default, a simulation experiment in AnyLogic never 

ends. Thus, a user must define a stop condition for simulation and optimization experiments. The 

most common and simple simulation stop condition is “Stopping a simulation or optimization 

experiment at the specific model time”. In the field of debris management, state and local 

emergency agencies have developed debris management strategies aimed at cleaning up generated 

debris within 90 days because FEMA’s cost share for debris removal decreases over time.  

 

Table 4-7 Alternative procedure for federal cost share 

Debris removal work Federal cost share 

1-30 days 85% 

31-90 days 80 % 

91-180 days 75% 

Note: Federal cost share is flexible based on the severity of a disaster. For example, 100% 

retroactive federal funding was approved to cover all debris removal costs, emergency protective 

measures, and direct federal assistance from Oct. 10 to Nov. 24, 2018 for disaster recovery efforts 

by Florida relating to Hurricane Michael (FEMA 2019b).  

 

Thus, this study designed a simulation stop condition that ends the simulation after 90 days of 

debris removal operations (see Figure 4-39): Stop in Model time is set to Stop at specified date so 
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that a simulation and optimization experiment is terminated at the designated date. In this study, 

the start and end dates are Aug. 10 and Nov. 8, 2016, respectively.  

 

 

Figure 4-39 Simulation stop condition 

Note: Real time with scale refers to setting the scale value (number of model time units executed 

per one second).  

4.4 Graphical user interface in the adaptive DSS 

Graphic user interface (GUI) is one of the critical components of ABM to visually examine the 

complex system behaviors under certain parameter setting and environments. The GUI in the 

adaptive decision support system consists of two parts: GIS map and system analytics (see Figure 

4-40).   
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Figure 4-40 GUI in the adaptive DSS 

Note: Red marks on the map refer to debris pickup locations, TDMSs, and landfills. On the right 

side, the bar graph on the top left represents small and large hauling truck utilization rates, and 

the line graph on the right represents utilization rates over time (x-axis = small truck, y-axis = 

large truck). The two-line graphs in the middle represent the amount of debris at TDMSs and 

landfills. The graph on the bottom represents current debris on the curb and at TDMSs and 

landfills.  

 

To demonstrate the GUI, this study run a small-scale simulation and captured a screenshot on 

days#1,5,10 and 15.  Table 4-8 describes the parameters and values applied in the experiment. 
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Table 4-8 Parameters in the simulation experiment 

Parameter Value Notes 

Amount of debris curbside 3 A single debris agent represents 25 CY. Value 3 refers to 

75 CY of debris on each curbside 

Small capacity truck (25CY) 5 - 

Large capacity truck (50CY) 2 - 

Loaders at TDMS 3 - 

Chippers at TDMS 3 - 

 

The following snapshots demonstrate how GUI is represented for a simulation experiment (see   

Figure 4-41 (a)-(d)). The blue squares on the map represent debris pickup locations.  

 

 

(a) Snapshot of simulation experiment at day 1 

Note: Small trucks are located at TDMSs – red circle on the GIS map. The amount of debris on 

the curb increases over time as people move generated debris from their properties to the curb. 

No values on the plots in the red-colored box because debris removal operation is not started yet.   
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(b) Snapshot of simulation experiment at day 5 

 

 

(c) Snapshot of simulation experiment at day 10 

Note: Large capacity truck moves to TDMS to load debris – red circle on the GIS map. 
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(d) Snapshot of simulation experiment at day 20 

Figure 4-41. Snapshots of simulation at days 1, 5, 10, and 20 

Note: Small capacity truck picking up debris curbside – red circle on the GIS map.  

 

Figure 4-42 shows the GUI for an optimization experiment. On the left side, a user can see the 

parameter inputs for each iteration. Objective refers to an output value of the objective function 

(objective function is described in Section 4.3). The Best column shows the best outcome and 

associated parameters from the iterations. On the right side, there are lines of three colors: gray, 

blue, and red lines. The gray line represents the value of the objective function’s outcome. The red 

line represents the best value that does not meet the constraints and requirements before/after a 

simulation. The blue line represents the best outcome that meets all requirements and constraints.   
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Figure 4-42 GUI for an optimization experiment 

 

This computational experiment was conducted using a laptop with Intel Core i7-9750H @2.6 GHz, 

6 core, 16GB ram. It took 5,362 seconds to complete 500 iterations to search optimal parameters 

and maximize the objective function (see Figure 4-43). Optimal parameters were determined to 

maximize the objective function value to 1.979 at the 269th iteration. 

 

 

Figure 4-43 Result of an optimization experiment 
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4.5 Conclusion 

This chapter discussed multiple methods and applications for Modules#1-4. To develop the 

proposed adaptive decision support system, it was critical to use a multi-method approach. This 

chapter discussed a GIS database for spatial data management, GIS-based spatial analysis for 

community structure analysis, TDMS design and selection, and ABM to simulate, understand, and 

optimize a complex post-disaster debris management system. 

 

Further, this chapter discussed in detail the ABM development process, including critical elements 

of ABM, simulation, optimization, and the GUI. The ABM includes four types of agents: debris, 

trucks, TDMSs, and landfills. The agent rules were created based on the general debris 

management process (i.e., debris pickup, transportation, and treatment at TDMSs and 

transportation of debris to final destinations that include landfills, recycling, or other treatment 

facilities). An environment for the agents was created based on the information and data from 

Modules#2-3, including the road network and waste-related facilities. ABM simulations were 

performed using AnyLogic. The simulations were designed to simulate the behavior of debris 

management systems under certain scenarios. Multiple input parameters were designed, such as 

the number of small and large capacity trucks, the number of loaders and chippers at TDMSs, and 

the amount of debris generated in a scenario. This allows decision makers to run multiple scenarios 

before or after a disaster to examine existing debris removal strategies. This enables decision 

makers to examine total debris removal time, equipment utilization rates over time, and the amount 

of debris on curbs and at TDMSs and landfills over time. The optimization model was developed 

based on the objective function (to maximize the equipment utilization rates during debris removal 

operations). Several constraints and requirements were designed to make solutions more feasible 

in the real world, such as TDMS capacity, maximum equipment utilization rate (e.g., the rate 

cannot be 100%), the maximum number of trucks waiting in line at a TDMS (e.g., more than 50 

trucks cannot wait in line). Finally, a GUI for simulation was developed to operate the adaptive 

decision support system in an effective manner. Users can observe the behaviors of the entire 

debris management system through the GIS-based GUI and track the behavior of a single agent 

(e.g., debris or truck agent) over time. This allows multiple agencies and parties to communicate 

and discuss disaster management planning and operations in detail.  
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As discussed here, the adaptive decision support system serves all levels of post-disaster debris 

management, including management, operations, and planning. It supports emergency agencies to 

make effective decisions about issues that may change rapidly and cannot be easily specified in 

advance (i.e., due to the uncertainty of disasters). For example, an emergency agency may be 

unable to use pre-identified TDMSs after a disaster because of road blockages or disconnected 

bridges. In this case, Modules#2-3 of the adaptive decision support system can identify optimal 

TDMS locations based on the circumstances existing after a disaster. Further, Module#4 can assist 

with optimal planning and operations with very limited availability of resources in a disaster-

affected community. This multi-level support from the adaptive decision support system has 

numerous benefits for complex post-disaster debris management.   
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 APPLICATION OF ADAPTIVE DECISION SUPPORT 

SYSTEM 

5.1 Introduction  

This research applied a proposed adaptive decision support system, using a case study, to 

investigate the effectiveness of debris removal in the City of Baton Rouge after the 2016 Louisiana 

flood. The city’s debris management strategies and practices were systematically reviewed in 

terms of debris estimation and classification, temporary debris management sites (TDMSs), and 

bottlenecks and other issues.  

 

The 2016 Louisiana flood was one of the worst recorded disasters in the U.S., after Hurricane 

Sandy in 2012 (Yan & Flores 2016): The slow-moving storm generated extreme rainfall and 

historic flooding in multiple South Louisiana parishes. Within two days, more than two feet of rain 

was measured in certain areas: The highest rainfall recorded was 31.39 inches in Watson parish 

(see Figure 5-1) (The Weather Channel 2016; U.S. Department of Housing and Urban 

Development 2017).  
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Figure 5-1 Cumulative rainfall during August 11 to 14, 2016  

Note: USGS streamflow-gaging stations (gray triangles in the figure) were used to estimate annual 

exceedance probabilities. 
Image from Watson et al. (2017) 

 

 

Table 5-1 Total rainfalls during August 11-14, 2016 in Louisiana  

# Location 
Rainfall amount 

(inches) 
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1 New Roads 5 NE, Pointe Coupee Parish 16.07 

2 Opelousas, St. Landry Parish, Louisiana 15.83 

3 Baton Rouge Metro Airport, East Baton Rouge, 18.07 

4 Livingston, Livingston Parish, Louisiana 26.33 

5 LSU Ben-Hur Farm, Baton Rouge, East Baton Rouge Parish 13.07 

6 Norwood, East Feliciana Parish 23.02 

7 Pine Grove Fire Tower, St. Helena Parish 17.55 

8 Ponchatoula, Tangipahoa Parish 8.61 

9 St. Francisville, West Feliciana Parish 19.38 

10 Abbeville, Vermilion Parish 19.05 

11 Crowley 2 NE, Acadia Parish 16.96 

12 Jennings, Jefferson Davis Parish 16.94 

13 Kaplan, Vermilion Parish 15.23 

14 Lake Arthur 7 SW, Jefferson Davis Parish 15.59 

15 Donaldsonville 4 SW, Ascension Parish 15.59 

16 Lafayette FCWOS, Lafayette Parish 21.35 

17 New Iberia AP-Acadiana Regional, Iberia Parish 23.03 

18 St. Martinsville, St. Martin Parish 25.10 

19 Jeanerette 5 NW, Iberia Parish 17.88 

20 Dutchtown #2, Ascension Parish 16.90 

21 Gonzales, Ascension Parish 14.54 

Note:  The information was reported from the National Oceanic and Atmospheric Administration 

meteorological stations (https://www.ncdc.noaa.gov/data-access/land-based-station-data). 

 

States and local agencies use information about flood zones to prepare disaster mitigation 

strategies and management practices. FEMA explains a special flood hazard area as an area having 

a chance of flood, equal to (or exceeding) 1% in an any given year: One percent flood chance is 

referred to as a base flood or 100-year floodplain. Figure 5-2 compares the 100-year flood zone 

with the estimated flood inundation area during the Louisiana flood: Multiple areas that were not 

in the 100-year flood plain were inundated, which are indicated by the blue-colored areas in Figure 

5-2 (b).   

 

   

  

https://www.ncdc.noaa.gov/data-access/land-based-station-data
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(a) 100-year flood plain 

 

(b) Estimated flood inundation areas  

 

Figure 5-2 100-year flood plain vs. estimated flood inundation area during the 2016 Louisiana 

flood 

Note: 100-year flood areas are represented in red. Inundated areas are represented in blue. 
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Flooding of numerous streams and rivers resulted in at least 13 fatalities and damage to more than 

60,000 homes (Yan & Flores 2016). Monetary losses were estimated to be $10 billion across 

southern Louisiana and Mississippi (NCEI 2018; NOAA 2018).  A couple of parishes in Louisiana 

used social media to share emergency information with people affected by the disaster. For 

example, the City of Baton Rouge actively used social media such as Facebook and Twitter to 

deliver real-time emergency information to affected people in a timely manner. The city operated 

real-time GIS maps to inform the community of estimated flood inundation areas.   

 

The following section summarizes the overall debris management strategies and practices used in 

the City of Baton Rouge. In addition, multiple issues and bottlenecks that occurred during debris 

collection are discussed. This information is used as input data for a TDMS selection model as 

well as agent-based modeling for analyzing and optimizing the debris removal system.  

5.2 Case study: Debris management in the city of Baton Rouge  

5.2.1 Debris removal strategies and practices  

To reduce the financial burden of debris removal on local governments, it is critical to have 

financial assistance and reimbursement from FEMA. During the flood, most of the parishes 

declared a state of major disaster. In Figure 5-3, parishes eligible to receive individual and public 

assistance are indicated in red, and parishes eligible for public assistance are indicated in orange.  
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Figure 5-3 Louisiana areas declaring a major disaster on August 14, 2016 

Note: The designated counties are Acadia (Parish), Ascension (Parish), Avoyelles (Parish), East 

Baton Rouge (Parish), East Feliciana (Parish), Evangeline (Parish), Iberia (Parish), Iberville 

(Parish), Jefferson Davis (Parish), Lafayette (Parish), Livingston (Parish), Pointe Coupee 

(Parish), St. Helena (Parish), St. James (Parish), St. Landry (Parish), St. Martin (Parish), St. 

Tammany (Parish), Tangipahoa (Parish), Vermilion (Parish), Washington (Parish), West Baton 

Rouge (Parish), and West Feliciana (Parish). 

Reference: (FEMA 2016c) 

 

FEMA approved around $535 million for public assistance (see Table 5-2). In general, public 

assistance grants can be used for emergency and permanent works. Emergency works include 

debris removal and emergency protective measures, and permanent works include the restoration 

of infrastructure and public facilities.  

Table 5-2 FEMA assistance program statistics for Louisiana  

Individual Assistance Applications Approved 83,104 
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Total Individual & Households Program $776,923,661 

Total Public Assistance Grants $535,835,048 

Reference: (FEMA 2016c) 

 

For debris clean up, more than $88 million was approved for all eligible parishes (FEMA 2017b). 

FEMA planned to reimburse cities and parishes 75% of debris collection costs, with the remainder 

coming from local landfill funds or reserves. The volume of debris was estimated about 4.4 million 

cubic yards (CY). Three parishes, namely Ascension, East Baton Rouge, and Livingston, received 

the majority of funding for debris removal (see Table 5-3).  

 

Table 5-3 Funding for debris removal from FEMA 

Parish Total amount 

Ascension $7 million 

East Baton Rouge $46 million ($6 million for Central) 

Livingston $25 million 

Note: East Baton Rouge was the most flood-affected parish in LA. 

 

The City of Baton Rouge contracted with DRC Emergency Services, LLC to handle the debris 

generated. In the early stage of debris cleanup, DRC Emergency Services, LLC operated 20 trucks 

and estimated 90 working days would be required to make three passes through every 

neighborhood (Rosengren 2016). The estimated cost of debris removal was $5.6 million to 

transport 325,000 ~ 400,000 CY. The estimated amount of debris from one flooded house is up to 

50 CY (Lau 2016a). For every cubic yard hauled, DRC made $13.98, plus $3.10 a cubic yard for 

processing at a temporary staging site, according to its contract. DRC hired five to six 

subcontractors who were paid $5/CY for debris pickup (Gallo et al. 2016). Each truck can haul 

between 100 ~150 CY of debris, and DRC estimated 6,000 CY as the amount of debris collected 

daily.  

 

Residents in the City of Baton Rouge were asked to separate the debris generated from the flood 

and place it on curbside without blocking the roadway or storm drains. They were asked to avoid 
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placing typical household trash with general debris on the day of debris pickup. Residents were 

asked to separate the debris generated into five categories. 

 

• Vegetative yard waste (tree limb, leaves, etc.) 

• Household chemicals, paint, herbicides, pesticides, caustic and flammable liquids 

• White goods (refrigerators, washers, dryers, stoves, and similar appliances) 

• Electronic appliances (computers, laptops, televisions, stereos, etc.) 

• All other solid, nonhazardous waste/debris (building materials, furniture, etc.) 

 

Social media was used as a communication channel. Residents were also encouraged to continue 

monitoring the City of Baton Rouge’s social media channels such as Facebook or Twitter to 

receive updates on any progress made with debris collection along with announcements regarding 

subsequent zip codes to be serviced. In particular, the city uploaded their daily debris removal 

status on Facebook so that residents could easily access important information. The city also 

updated a GIS map with debris removal progress and the number of truck-passes (see Figure 5-4).  
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(a) GIS map for real-time debris removal status  

 

Note: Yellow lines represent completed debris pickup during Phase 1.  

(b) Example of information provided 

 

Note: Users were able to check debris collection times for specific streets. 

Figure 5-4 Flood debris collection status map 

Images downloaded from CBR Facebook page  



 

148 

While the map was supportive to check the completion of debris removal in the city, it was not 

able to share upcoming debris collection efforts. Thus, residents were not able to know that when 

their debris/waste on curbside will be picked up.  

5.2.2 Issues during debris cleanup efforts  

While the existing debris management system in Louisiana was significantly enhanced due to 

experiences and practices after disaster recovery for the 2005 Hurricane Katrina, several issues 

were identified during debris management for the 2016 flood in terms of debris estimation, 

classification, waste-related facilities, and lack of equipment.  

 

a. Debris estimation  

Compared to other disasters, a flood results in a wide range of debris, including furniture, 

construction materials, and random water-logged waste. It can be somewhat difficult to determine 

the expected or current amount of debris because most of debris from floods is initailly inside of 

houses and facilities. Thus, errors in debris estimates after a flood can be higher than the other 

types of disasters. For example, in the city of Baton Rouge, the initial estimated amount of debris 

was 325,000 to 400,000 CY, and the expected total cost was about $5.6 million (Gallo et al. 2016; 

Rosengren 2016). The estimates continued to grow as people returned home and moved the 

contents of their houses to the curb. A week after the initial estimate, the City of Baton Rouge 

reported that the total amount of debris could be more than 800,000 CY (Lau 2016a). After a month, 

DRC reported that the amount of debris in the city was about 1.3 million CY. DRC operated 134 

trucks, with an additional 30 added to increase the speed of debris removal in September 2016 

(Gallo 2016).  

 

Table 5-4 Changes in debris estimates in the city of Baton Rouge  

Timeline Volume Reference 

Immediately after the 

disaster 
325,000 – 400,000 CY (Rosengren 2016) 

A week later 800,000 CY (Lau 2016a) 

A month later 1.3 million CY (Gallo 2016) 
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b. Debris classification/separation 

According to debris separation guidelines by the Department of Environmental Quality (LDEQ), 

construction and demolition debris does not include carpet, furniture, mattresses, and regulated 

asbestos-containing materials (see Figure 5-5).  

 

 

Figure 5-5 Guidelines for debris separation by LDEQ 

Note: The orange-colored box outlines the construction and demolition debris category. 
Image from Louisiana Department of Environmental Quality (deq.louisiana.gov) 

 

As LDEQ did not update the definition of construction and demolition waste (C&D waste) to 

include mattresses and furniture, residents were required to separate those items and pace them in 

a household trash pile on the curb, as these items are sent to different landfills. This hampered 

overall debris removal performance (Rosengren 2016). LDEQ later issued an emergency order to 

include this debris with C&D waste (CBS 2016).  
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c. Capacity of waste-related facility  

The capacity of waste-related facilities is designed based on the expected/reported amount of solid 

waste in normal conditions. After a disaster, the amount of debris is generally five to ten times 

greater than the annual average solid waste. Thus, multiple bottlenecks can occur during debris 

cleanup efforts, such as lack of capacity and equipment or reduced serviceability due to the road 

network.   

For example, one landfill, Ronaldson Field, was not capable of handling the massive amount of 

debris, with some trucks waiting up to two hours to unload debris. Also, illegal debris dumping 

was reported by LDEQ,  such as tires, carboard, mattresses, and appliances in a location other than 

a landfill (LDEQ 2017). 

 

d. Concerns from residents 

Most concerns surrounding debris management come from residents living near TDMSs and 

landfills and included the high volume of traffic and noise from trucks and special equipment such 

as chippers, grinders, and air incinerators. During debris removal in the City of Baton Rouge, 

similar complaints were reported. For example, residents near Ronaldson Field landfill complained 

that trucks caused heavy traffic and difficulty when travelling to receive medical services. They 

were also concerned that uncontrolled harmful materials might be buried in the landfill and cause 

future health issues (Lau 2016b). Residents near Ronaldson Field landfill and TDMSs were also 

concerned about the air quality during debris removal. Dermansky (2016) reported that LDEQ 

monitored air quality near the North and Ronaldson Field landfills but did not provide clear 

answers about air quality monitoring for the temporary debris management site.    

 

5.2.3 TDMS operations in practice  

As Ronaldson Field landfill was unable to handle the huge amount of debris input, the City of 

Baton Rouge decided to open two additional TDMSs (see Figure 5-6). 
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Figure 5-6 TDMS locations in the city of Baton Rouge 

Note: The blue point represents Ronaldson Field landfill; the two red points represent the 

locations of TDMSs (TDMS #1: 2876 N. Sherwood Forest Drive, Baton Rouge, LA. 70814; TDMS 

#2:  6180 Joor Rd, Baton Rouge, LA, 70811).   

 

These TDMSs were used to expedite debris removal. Debris in the TDMSs was then transferred 

to Ronaldson Field landfill or recycling facilities. The city expected to increase the speed of daily 

debris removal up to three times faster.  

 

5.3 Method 

This research conducts a case study of debris management in the City of Baton Rouge after the 

2016 Louisiana flood to examine the performance of the proposed adaptive decision support 

system in terms of identification of TDMS locations, system behavior analytics, and system 
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optimization. The required data and information were collected from the city’s website and social 

media, USGS, the US Census Bureau, and the EBR GIS database. The basic assumptions are 

described in the followings: 

 

i. The amount of debris generated after the flood was 1.3 million CY, and the density and 

location were estimated based on the Hazus-MH debris estimation results.  

ii. There were no disconnected/damaged transportation networks in the city, and there were 

no reported physical damages on the transportation network after the flood.  

iii. It is assumed that a truck agent speed (vehicle speed) was reduced to random [25,40] 

mile/hr and recovered up to random [35,50] miles/hr over time (e.g., random [25,40] 

generates a random number between 25 and 40 to define a truck agent speed for each trip).  

iv. There were a sufficient number of loaders to load curbside debris into hauling trucks, so 

the number of loaders is not considered in this study.   

v. The TDMS was designed with a maximum capacity of 1 million CY of debris.  In addition, 

the maximum required number of TDMSs in the city is limited to two because the estimated 

debris generated in the city was 1.3 million CY.  

 

Input parameters and constraints in the system optimization process are described in Table 5-5 

Input parameters. Those parameter values and ranges were assumed based on the debris removal 

practices discussed in Section 5.2. Under the parameters, the optimization module in AnyLogic 

along with a scatter search by OptQuest, identifies optimal parameters to maximize the utilization 

rate of trucks to 85%.  
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Table 5-5 Input parameters  

Type 

Value* 

Step** 

Min Max 

Number of small trucks (Cap: 25CY) 150 250 1 

Number of large trucks (Cap. 50CY) 3 50 1 

Number of loaders at TDMS 2 7 1 

Number of chippers/grinders at TDMS 1 10 1 

Amount of debris on curbside 600 600  

Note: Min, Max and Step are designed for parameter variation during simulation experiments.  

*Value refers to an input parameter for each simulation experiment. For example, the min and 

max value of the number of small trucks (cap:25 CY) is 150 and 250 respectively. It refers to the 

number of small trucks is between 150 and 250 during simulation experiments.   

**Step is a parameter step. For example, the number of loaders at TDMS will be 2,3,4,5,6, and 7 

(step = 1) during simulation experiments.  

 

5.4 Results 

5.4.1 Optimal TDMS locations 

Based on the information and data related to the City of Baton Rouge, land suitability analysis was 

conducted to identify feasible locations of TDMSs for debris removal. To represent a score for 

each grid (performance score ranges from 5 – 12), this study applied multiple color hues (blue – 

white - red) for the performance scores (see Figure 5-7). The blue color hue was applied to 

represent grids with lower performance scores ranging from 5 to 9. The red color hue represents 

grids with higher performance scores ranging from 11-12.  Areas (grids) with higher scores 

represent locations where satisfy existing TDMS regulations and policies such as avoidance of 

flooding areas, wetlands, and public facilities.   
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Figure 5-7 Visualization of performance scores by land suitability analysis in the city of Baton 

Rouge 

Note: The performance score for each grid (ranging from 5 to 12) was represented by color hue 

(blue – white – red). The score of blue-colored grid ranges from 5 to 9 and the score of red-colored 

grid ranges from 11 to 12.  

 

The areas with the highest scores are indicated with green-colored points (see Figure 5-8). To 

verify and validate the results, all criteria related to TDMS were manually examined for the 

selected areas. In addition, the selected locations were compared with satellite images from MS 

Bing Maps.  
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   Satellite images of feasible locations                                                                                                                                                                Satellite images of feasible locations 

 

Figure 5-8 Identified feasible TDMS locations with satellite images   

Note: Satellite images from MS Bing Maps (https://www.bing.com/maps).  
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https://www.bing.com/maps
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Three different scenarios were developed based on debris removal strategies in the City of Baton 

Rouge in 2016. In the beginning of debris cleanup, the city operated the landfill to collect the 

debris generated and then opened two additional TDMSs to enhance debris removal performance. 

As the estimated amount of debris was 1.3 million CY in the City of Baton Rouge, this research 

assumed that a maximum of two TDMSs were required in addition to the existing landfill.  

 

(a) Scenario #1: Operating a landfill only, without a TDMS 

(b) Scenario #2: Operating a landfill with one TDMS 

(c) Scenario #3: Operating a landfill with two TDMSs  

 

A result of Module#3 is represented on a GIS map, and spatial data were analyzed by statistical 

tools including a histogram and box plot. A histogram represents a distribution of debris from a 

selected TDMS (see Figure 5-9). The x-axis represents a total distance (i.e.,Total_Length) 

measured by the existing road network (from TDMS to the debris pickup location). The y-axis 

represents the number of debris pickup locations are in each bracket. The line on the histogram is 

called a trend line describing the approximate shape of the debris’ distribution in a community.  A 

box plot is also a graphical method of displaying variation in a set of debris distribution data. While 

a histogram analysis provides enough information on the characteristics of debris distribution, a 

box plot can provide additional details such as minimum, first quartile, median, third quartile, and 

maximum.  
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(a) histogram 

Note: N stands for the total number of data (i.e., N = 22,289) 

 

(b) Box plot (image from towardsdatascience.com) 

Note: Interquartile range (IQR) is the width of the box measured by 𝐼𝑄𝑅 =  𝑄3 − 𝑄1. Outlier is 

any value that lies more than 1.5 times of the length from either Q1 and Q3. Min and max are 

determined by 𝑄1 − 1.5 ∗ 𝐼𝑄𝑅 𝑜𝑟 𝑄3 + 1.5 ∗ 𝐼𝑄𝑅 respectively.  

Figure 5-9 Histogram and box plot to understand the characteristics of debris distributions  

 

The following figures demonstrate the average distance and standard deviation (SD) to the TDMSs. 

https://towardsdatascience.com/
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In Scenario #1, the average distance and SD are 18.3 km and 8 km, respectively. In Scenario #2, 

the average distance and SD to are 14 km and 8 km, and to TDMS #1, they are 7 km and 6 km, 

respectively.  
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Figure 5-10 Results of Scenario #1  

Note: The location marked with the orange star refers to the landfill: In the beginning of the debris cleanup process, the city transported 

the collected debris to this location.  
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Figure 5-11 Results of Scenario #2 

Note: the optimal location of a TDMS is in the center of the city.  
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In Scenario #3, the average distance and SD for the landfill, TDMS ,#1 and TDMS #2 are 4 km 

and 2 km, 13 km and 7.8 km, and 10 km and 6 km, respectively.  

 

 

Figure 5-12 Results of Scenario #3: one landfill and two TDMSs 
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The results of the three scenarios are shown in Figure 5-13. The average distances and SDs for the 

results illustrate the positive impacts of siting additional TDMSs for debris removal. In Scenario 

#1, the distance from the landfill to debris sites is too great, with an average distance of 18.3 km 

and SD of 8 km. According to the Advocate™ (Louisiana's newspaper), it takes around two hours 

for a truck to load, transport, and dump debris at a landfill. This translates into no more than four 

loads/day/truck (Lau 2016c). By locating two TDMSs, the average hauling distances from 

TDMMs to the landfill were reduced to 14 km and 10 km, respectively. In addition, the lower SD 

provided more stable debris input into the TDMS by reducing the variance in the travel time of 

trucks. 
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Figure 5-13 Comparison of average distance and SD for the three scenarios. 
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This research compares the TDMS locations in the City of Baton Rouge with the results of 

Scenario #3, in which one landfill and two TDMSs are in operation. The City of Baton Rouge 

opened two TDMS locations (see Figure 5-14):  

• TDMS #1:  2876 N. Sherwood Forest Driver, Baton Rouge, LA 70814  

• TDMS #2:  6180 Joor Rd, Baton Rouge, LA 70811   

 

 

Figure 5-14 TDMS locations in the City of Baton Rouge during the 2016 Louisiana flood 

Note: TDMS #1 (yellow marker); TDMS #2 (red marker) 

 

TDMS #2 indicated by the yellow marker was also selected in Scenario #3. TDMS #1, indicated 

by the red marker, was not selected by Module#3 (TDMS selection and design model) because of 

its low performance score; the distance from TDMS#1 to water stream  

(Comite River) of only 0.5km was the reason for the low performance score. 
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Next, the amount of debris assigned to each TDMSs was considered under the assumption that 

debris is hauled to the closest facility based on the existing road network (see Table 5-6).  In the 

case of CBR’s debris removal practices, more debris was assigned to TDMSs than in Scenario #3.  

Table 5-6 Comparison of debris assigned to each facility  

Facility Scenario  #3 CBR* Note 

Ronaldson Field 

landfill** 
8,637 6,387 

 

TDMS #1  - 7,250 Red marker in Figure 5-14  

TDMS #2 8,282 8,652 Yellow marker in Figure 5-14 

TDMS #3 5,370 -  

*CBR = City of Baton Rouge 

** The amount of debris assigned to the Ronaldson Field landfill includes only the debris directly 

hauled to the landfill.  

 

The average distances and SDs are outlined in Figure 5-15. In the case of the City of Baton Rouge, 

there are multiple outliers for TDMS #2. This could cause unstable debris input to TDMS #2 due 

to the variance of the distances from on-site debris to the TDMS (Kim et al. 2018b).     

 

  

Scenario #3 CBR 

Figure 5-15 Comparison of travel distance to each facility 
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5.4.2 Debris management system behavior and optimization  

The user interface (UI) for simulation and analysis is described in Figure 5-16. The UI enables a 

user to examine agents’ behaviors, including hauling trucks, TDMSs, and landfills over time. For 

example, the number of trucks waiting to unload/load debris at curbside, TDMSs, and landfills.  

On the right side, the truck utilization rate and the amount of debris in TDMSs and landfills over 

time are visualized. In Figure 5-16, #1 shows the utilization rate of small and large capacity trucks; 

#2 describes the amount of debris on curbside (pickup locations), TDMSs, and landfills; #3 and 

#4 indicate the total amount of debris in TDMSs and landfills over time; and #5 and #6 indicate 

the average waiting time at curbside and TDMSs.  
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Figure 5-16 User interface of the agent-based model for simulation and analysis  

1 2 

3 4 

5 6 
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Based on the input parameters in Table 5-5, a simulation experiment (the number of iterations: 

500) was conducted to find optimal parameters to maximize truck utilization rates. For the 

objective function of the optimization, this study denoted, 𝑥𝑖,𝑗
𝑡𝑟𝑢𝑐𝑘, as truck utilization rate - truck 

type 𝑖 (25 and 50 CY) and truck ID 𝑗 . The objective function used in this study is described 

below (details of optimization functions, parameters and constrains were discussed in depth in 

Chapter 4).  

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑧 =   ∑ ∑ 𝑥𝑖,𝑗
𝑡𝑟𝑢𝑐𝑘

𝑖 ∈𝐼𝑗∈𝐽

  ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽 

 

The objective function was coded using Java below: 

 

root.tDMS.trucks.utilization() + root.LtruckPool.utilization() 

 

A graphical user interface (GUI) for the optimization process and results is shown in Figure 5-17. 

The two columns on the left side show the current and best parameters. The current column shows 

input parameters used for a current simulation experiment (i.e., values for each iteration), and the 

best column shows the optimal parameters to maximize the truck utilization rate, which is the 

objective of the study: It found out the optimal parameters (250, 5,4,2) at the 435th iteration (that 

is the parameters resulting in the maximum utilization rates of small and large trucks out of 500 

simulation experiments).  
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Figure 5-17 Results of system optimization  

Note: On the right side, there are three types of lines: grey, blue and red lines. The grey line 

represents the value of objective function’s outcome. The red line represents the best value, but it 

does not meet the constraints and requirements before/after a simulation. The blue line represents 

the best outcome that meets all requirement and constraints.   

 

Table 5-7 summarizes the optimal parameters to maximize the objective function (maximum truck 

utilization rates during debris removal). The required number of large trucks were very smaller 

than small trucks, 5 vs. 250. There were several reasons behind it. Firstly, the volume of debris 

was reduced up to 50-75% by chippers or grinders in TDMSs. Secondly, the capacity of large 

trucks is twice as large as that of small trucks (50 vs. 25 CY). Lastly, travel distance from the 

TDMSs to the landfill is a fixed distance (11 miles, or 17.7 km), compared to varying distances 

from debris pickup locations to TDMSs (this caused longer waiting time for unloading at certain 

moments in TDMS).  
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Table 5-7 Optimal parameters to maximize truck utilization rates  

Parameters Value 

Number of Small Trucks (Cap: 25CY) 250 

Number of Large Trucks (Cap. 50CY) 5 

Number of Loaders at TDMS 4 

Number of Chippers/Grinders at TDMS 2 

Amount of debris on at each curbside 600 

 

A sensitivity analysis was conducted to examine impacts of the uncertainty of parameters and 

environment on the behaviors of debris management system. The input parameters in the 

sensitivity analysis determined based on the literature in Section 5-2 are described in Table 5-8.  

 

Table 5-8 Input parameters for the sensitivity analysis  

Parameter Type 
Value 

Min Max Step* 

Number of small trucks (25CY) Range 160 200 10 

Number of large trucks (50CY) Range 2 4 2 

Loaders at TDMS Range 2 4 1 

Number of chippers at TDMS Range 1 6 1 

Debris at each location Range 100 300 100 

*Step value refers to an added value on exiting parameter values for a next simulation experiment. 

For example, if the number of small trucks is 160 at the first simulation experiment, the number of 

small trucks at the next round is 170 (=160+10). While a small value of step provides very detail 

results of sensitivity analysis, it requires a tremendous amount of computational time. The 

computational time will be exponentially increased by the number of parameters and step sizes.   

 

The results are described in Figure 5-18. The amount of debris in a TDMS can range from 150,000 

to 450,000 CY. The completion rate for debris removal within 90 days is 80 ~ 100%. A continuous 

line on (a)~(c) represents the amount of debris in TDMS over time and the line color represents 

the number of small trucks at each simulation experiment. The blue line shows the experiment 

results when the number of small trucks is 160 and the red line shows experiment results when the 

number of small trucks is 200. X-axis on (a)~(c) refers to simulation experiment timestep (1 
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timestep represents 1 hour). Y-axis on (a)~(b) refers to the amount of debris, and the percentage 

of debris clean up on (c) respectively. Figures on (d)~(f) refer to the total amount of debris at 

operation day# 30, 60 and 90 in a landfill. The sensitivity analysis supports to identify the expected 

amount of debris in a landfill by different operational strategies. x-axis on (d)-(f) refers to the 

number of small trucks for each simulation experiment and y-axis refers to the amount of debris 

in a landfill.    

 

 

Figure 5-18 Results of sensitivity analysis 

 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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5.5 Discussion 

In this research, the effectiveness of an adaptive decision support system for debris management 

was demonstrated in terms of siting TDMSs and simulating debris removal operations in multiple 

scenarios and optimization. The TDMS design and selection model identified two optimal TDMS 

candidates; one location is the same as the actual TDMS location, and the other location is close 

to the actual location of a TDMS in operation after the 2016 Louisiana flood.  

In the simulation, this study considered critical parameters, including the number of trucks, loaders, 

and chippers and amount of debris at each location for effective disaster debris management. The 

objective function was designed to maximize truck utilization rates during debris removal. The 

sensitivity analysis identified the importance of a balance between parameters. For example, for 

the same number of small trucks (190), the amount of collected debris in a TDMS varied from 

115,000 to 210,000 CY. Thus, emergency agencies should use a database to examine available 

resources, so that they can find the optimal combination to maximize performance during an 

emergency.  

 

Despite these findings, there are several limitations on this study. The following describes the 

limitations of this study and areas for future research: 

 

Uncertainty of debris estimation: Debris estimation is the basic foundation of the process of 

optimizing a debris management system as it determines the required capacity of facilities as well 

as the required resources. While there are several models to estimate the amount of debris by 

USACE and FEMA, the error of margin is almost always 10% or more (Escobedo et al. 2009). In 

multiple after-action reports, many agencies indicated that the unexpected amount of debris 

generated hampered the entire debris removal process. Thus, it is necessary to develop new 

methodologies to estimate the amount of debris generated, such as real-time data collection using 

UAVs and image processing for estimating the volume and type of debris located curbside, as well 

as smartphone-based user input. These methods will help decision makers obtain up-to-date 

information and data related to the amount of debris in a community and examine the effectiveness 

of existing debris removal operation systems over time.  
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Near real-time information and data related to the road network: The travel time of hauling 

trucks significantly affects the overall debris removal time. This research is limited because it 

applies only the average speed of trucks (between 40 and 55 miles per hour) for each truck agent. 

However, travel times may differ during rush hour. Thus, there is a need to develop a method for 

strategic real-time resource routing and allocation based on road condition or traffic status during 

disaster recovery. It enables to reduce the overall idle time of trucks and maximize utilization rates 

during debris removal operation.  

   

TDMS design and layout: Another limitation of this study is its limited focus on TDMS location 

and the optimal number of resources for a TDMS. In addition, the type of debris was limited to 

recyclable and non-recyclable materials. In the real world, the debris would be more complex and 

include numerous types such as hazardous materials, mixed debris, and other materials requiring 

chemical or biological treatment by special equipment and trained staff. Thus, further studies are 

required to design a TDMS layout that maximizes the utilization of space based on the type of 

debris and need for specialized equipment. By integrating these considerations into the adaptive 

decision support system, emergency agencies will have a better decision tool for effective debris 

management.  

5.6 Conclusion 

This study applied the adaptive decision support system to a case study, namely debris removal in 

the City of Baton Rouge after the 2016 Louisiana flood, to examine system performance in terms 

of TDMS locations and system optimization. A sensitivity analysis was also conducted. The 

comprehensive literature related to debris removal practices in the City of Baton Rouge identified 

the main issues and problems during debris removal, including a lack of capacity and resources, 

the installation of TDMSs to increase debris handling capacity, and unclear regulation for certain 

types of debris. Based on the information and data collected, this study included the following: 1) 

identification of TDMSs, 2) system optimization to maximize resource utilization rates (trucks), 

and 3) sensitivity analysis to examine the uncertainty of input parameters such as the number of 

available trucks, chippers, and loaders and the amount of debris generated.   
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The adaptive decision support system developed by the GIS- and agent-based model would enable 

decision makers to: 1) examine existing debris management system performance under multiple 

uncertainties after a catastrophic event and 2) include the impacts of a disaster on a community 

into the adaptive decision support system to re-examine debris removal system performance under 

certain scenarios. In addition, the developed GUI of the system reflected the information and data 

required by decision makers in terms of the amount of debris in TDMSs and landfills over time, 

resource utilization rates (trucks), completion of debris removal in 30, 60, and 80 days, and trucks’ 

waiting time to unload debris. Lastly, each component in the system is designed as a single module 

(agent). Other modules can be easily integrated into the system, such as material recycling systems, 

layout and design of TDMS systems, and real-time traffic information.  
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 SUMMARY AND CONCLUSION 

6.1 Research summary 

Debris management is a critical component of successful disaster management. While there are 

numerous disaster mitigation strategies and post-disaster debris management plans, they are often 

difficult to implement because of the complexity of debris management during a disaster, including 

(i) the uniqueness of disaster incidents and randomness of its impacts; (ii) the complexity of 

disaster debris removal operations, policy, and regulations; and (iii) system interdependency of 

multiple infrastructure networks.  

 

This study systematically summarized cutting-edge knowledge about debris management 

processes and related policies and regulations to handle debris generated by flooding. While many 

studies have explored multi-faceted post-disaster management and its complexities, there are few 

that have developed a model that adopts a system-of-systems approach to capture the complexity 

and dynamics of debris removal operations after a disaster. Further, the existing body of literature 

lacks a set of theories and an organized framework, which will be critical for researchers, agencies, 

and practitioners in the field of post-disaster management. This study also reviewed three 

simulation methods for modeling complex systems, namely discrete events, system dynamics, and 

agent-based modeling. Finally, there is a need to increase the transparency of decision making, 

especially with respect to compromises between engineering and technical efficiency and social 

and political realities of a particular context. Traditional methods of risk assessment that analyze 

the dynamics of a context do not facilitate the integration of the behavior of different actors within 

the decision context. 

 

Based on the broad literature review, this research proposed a framework for effective disaster 

debris management. Within the framework, four modules were designed to systemize each process 

as well integrate sub-systems into the framework. Module #1 is a geo-database to store critical 

GIS data such as that on road networks and waste-related facilities as well as community-related 

data. Module #2 is designed to understand the community structure using network analysis. It 

enables gaining knowledge of the community structure and prioritizing debris removal works. In 
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Module #3, TDMS selection and design model are determined to identify TDMS candidates and 

optimal locations using information and data from Modules #1 and 2. Module #4 involves agent-

based modeling to analyze system behavior and dynamics under multiple disaster impact and 

debris removal scenarios. Hauling trucks and waste-related facilities are represented as agents, and 

data and information from Modules #1 to 3 are used to build an environment for the agents.  

 

This research conducted a case study to test and validate the outcome of the adaptive decision 

support system. Data related to debris removal in the City of Baton Rouge after the 2016 Louisiana 

flood was collected from news, reports, and the City of Baton Rouge. The TDMS candidates 

identified during this research were used in the City of Baton Rouge for handling debris generated. 

With the same amount of equipment (trucks), the estimated debris removal time was very close to 

the actual time. A sensitivity analysis was also conducted to enhance model validity; this was based 

on the impact of the number of trucks to haul debris to the TDMS and/or landfill over time. The 

research provided optimal solutions to maximize debris removal performance under certain 

constraints in terms of equipment utilization levels and TDMS and landfill capacities.  

 

To sum up, this study applied a system-of-systems approach to develop an adaptive decision 

support system to understand the behaviors and dynamics of a complex disaster debris 

management system as well as optimize the system’s efficiency under certain constraints during 

disaster recovery. The proposed adaptive decision support system will be beneficial for emergency 

agencies and disaster-prone communities to evaluate existing disaster debris management plans as 

well as maximize system performance under certain disaster scenarios. Further, the transparency 

of the decision-making process for TDMSs under technical, environmental, and social perspectives 

will help communities minimize opposition to building TDMSs near their areas, such as a NIMBY 

approach.  

 

6.2 Research contributions to the body of knowledge and practices  

In the presence of the identified gap in the existing literature related to debris management, this 

research aimed to develop an adaptive system-of-systems model for the analysis of complex debris 

management systems to understand the inherent and emergent dynamics and associated 
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complexities. Further, the decision support system was aimed at navigating debris removal 

efficiency through modeling, simulation, and visualization of the process. The decision is modeled 

at the interface of the infrastructure network and community preferences. Research contributions 

to the study include: 

 

i. Complex systems modeling using spatial agent-based modeling: This research developed 

spatial agent-based modeling to understand a complex disaster debris management system. 

This will enable decision makers to simulate the complex systems based on designed 

parameters and constraints. The simulation results, optimization, and sensitivity analysis 

will support their understanding of system behaviors over time and enable effective 

decision making on critical components of debris management.     

 

ii. Integrating analysis of technical, environmental, and social dynamics into the engineering 

assessment of post-disaster management: This holistic approach will add to the depth of 

the solution and contribute to a systemic understanding of the emergent dynamics. The 

debris removal process is modeled at the interface of community and the infrastructure 

network, while the TDMS network, as the core of the process, is designed as a multi-layer 

model to facilitate the integration of institutional arrangements into strategy development 

and policy making. These arrangements can be integrated through institutional resources 

and mechanisms in the form of penalties, rewards, or a change of utility for each actor. 

Institutional elements can be regarded as a significant resource for any actor as part of the 

interplay of the actors. The proposed method provides a quantified-descriptive approach 

for communities to choose alternative resources or mechanisms as a modification for 

strategies and policies to promote socially sustainable alternatives or prevent socially 

unacceptable alternatives.  

 

iii. Increasing the transparency of decision making, specifically with respect to compromise 

between engineering and technical efficiency for the social and environmental reality of 

the context: Traditional methods of risk assessment in post-disaster management 1) lack a 

combined quantitative and descriptive approach to include and analyze the  dynamics of a 

context and 2) do not facilitate integrations of the behaviors of different actors/parties 
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within the decision context. This study attempted to reduce this gap through a multi-layer 

decision model for selecting a TDMS network that considers both technical, environmental 

and social aspects. Planners can apply the proposed framework to explore compromises 

between different layers and increase the transparency of decisions in diverse settings, for 

example, the general case of social embeddedness of infrastructure or public displacement. 

This is further enhanced through the visualization of the platform. 

 

iv. A systemic approach to the context that involve multiple decision makers: A potential 

misconception for decision makers in the public policy domain is to suppose that 

consequences are solely determined by their decisions. This misconception often results in 

optimism bias and negligence of the costs accompanying the emergent risks associated 

with interactional dynamics. The proposed framework can facilitate a causal explanation 

of lock-ins within the network and provide a foundation for the development of innovative 

policies and strategies. 

 

v. Increasing the understanding of emergency operations at the nexus of the community, 

infrastructure, and the environment: Interactional elements cover broad concepts that can 

be added to policy making, such as economic, environmental, social-political-institutional, 

as well as engineering-technical aspects. Integrating all factors within one framework along 

with a real-time simulation of the process will help planners to develop strategies at the 

nexus of the communities, infrastructure, and the environment while they uncover 

emergent dynamics. The proposed model aims to reflect the complexity of this nexus 

within the model and its simulation. 

 

vi. Facilitating communication of different agencies to increase the chance of collaborative 

behavior: Visualization is an alternative communication channel for plans, policies, and 

strategies among different agencies. These agencies, with their specific agendas, can 

discuss and share their (sometimes contrasting) ideas about different layers of decision with 

clear variables. Furthermore, communication can be supported and validated by real-time 

simulation, including unexpected bottlenecks during post-disaster debris management 

operations.  
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6.3 Limitations of this research and recommendations for future research 

The proposed adaptive decision support system for effective disaster debris management has 

several limitations in terms of debris estimation, debris removal performance prediction, and 

system interdependency. The following describes the existing limitations of this research:  

 

i. Debris estimation methods: Hazus-MH is broadly used as a risk assessment simulation 

tool, including for disaster debris estimation under multiple types of disaster scenarios. 

Existing state- and local-level disaster mitigation strategies and post-disaster debris 

management operations significantly depend on simulation results by Hazus-MH. Thus, 

the validation and verification of disaster debris estimation by Hazus-MH are critical to 

maximizing system efficiency of post-disaster debris removal operations. A typical term 

of validation refers to the comparison of model outputs with observed or collected data. 

While the majority of emergency agencies are aware of the importance of effective disaster 

debris removal, there are few after-action reports or data that reveal details of disaster 

debris removal operations during disasters. Thus, small-scale data collection through 

interviews and questionnaires is required to validate existing debris removal estimation 

systems and calibrate existing debris management systems. Further, rapid debris estimation 

methods using images and videos as well as crowd-sourced data are needed to estimate 

precisely the amount of debris after a disaster. Finally, national-, state-, and local-level 

databases should be developed to share detailed data for further system analysis.  

  

ii. Strategies for diverse types of disaster debris: The types of debris estimated by Hazus-

MH are limited to building debris (steel, masonry, wood, and concrete) and tree debris. It 

is difficult to estimate recyclable or hazardous waste from residential and industrial areas. 

For example, tremendous recyclable waste was generated during the Flint, Michigan water 

crisis (Wang et al. 2019). However, the city and waste-related companies did not have 

sufficient facilities or equipment to handle it. Most were unable to track or transport the 

waste to landfills using an appropriate process. Further, most of the after-action reports 

after disasters focused on sharing the overall amount of debris generated and the cost to 

handle it. They did not include information on sustainable approaches to handling 

recyclable or hazardous waste during the recovery period. Thus, further research is 
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necessary to review historical recyclable/hazardous debris treatment and develop 

appropriate regulations and policies. A field study will be beneficial to examine specific 

types of debris generated from residential and industrial areas.  

 

iii. System interdependency and uncertainty: This study was limited to integrated sub-

systems for disaster debris management, such as waste-related facilities, TDMSs, the road 

network, and the built environment to improve the performance and prediction of debris 

removal operations. While debris management is a critical component for effective disaster 

management, it is also a sub-system of any disaster management system. That is, the 

success of debris removal may improve disaster management system performance but 

cannot guarantee post-disaster recovery success. For example, operating a certain number 

of hauling trucks can trigger heavy traffic in a disaster-affected community, which could 

hamper other emergency medical and supply systems. Thus, integration of debris 

management into the disaster management system is necessary to improve overall 

management quality as well as develop better post-disaster recovery strategies.  

 

iv. System uncertainty and methods: The adaptive decision support system (DSS) can be 

employed in either pre- and post-disaster situations. In a pre-disaster situation, the adaptive 

DSS can retrieve data and information from Hazus-MH (e.g. disaster-impact prediction 

and debris estimation), historical infrastructure damages, and pre-determined TDMSs from 

state- and local disaster mitigation planning books. However, multiple input data used in 

the adaptive DSS would have certain level of uncertainty and variability with respect to the 

actual situations. Thus, there is a need for accounting for risks (coming from the 

uncertainties in system components) in the quantitative analysis and decision-making in 

the adaptive decision support system. Stochastic modeling and Monte Carlo simulation 

(method) will be a future research direction to provide all the possible outcomes from 

coming decision-making and the impacts of risk. It allows better decision-making under 

uncertainty of disaster impacts as well as debris management systems for disaster 

mitigation planning. In a post-disaster situation, GIS database in Module#1 enables the 

adaptive DSS to store/retrieve up-to-date data and information as available (e.g., road 

network status, amount of debris on a curbside). By employing lower level of uncertainty 
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in data and information, the overall performance and prediction from the adaptive DSS will 

be enhanced.  

 

v. Spatial and temporal scale of a simulation model: The proposed simulation model was 

developed using agent-based modeling. As described in Section 2.3, agent-based modeling 

is an increasingly popular method for analyzing, visualizing, and understanding system 

behaviors and dynamics in complex systems. In a city-level case study, simulating the 

proposed models, including single- and multi-objective optimizations and a sensitivity 

analysis, took 60 ~ 500 minutes. However, there are several limitations to large-scale 

simulation in terms of the huge computational power requirement compared to analytical 

methods as well as the possible lack of GIS-related data required for such a simulation. 

Thus, further research is required to identify specific needs of national-, state-, and local-

level agencies. This will provide guidelines to develop tailored simulation models and data 

pipelines to deliver well-systematized information and results for higher- and lower-level 

systems.  

 

vi. Database: Numerous emergency agencies recognize the crucial role of disaster-related 

data and information to develop disaster mitigation strategies as well as post-disaster debris 

removal operations. For example, many scholars use data from EMDAT, the International 

disaster database, to examine patterns and characteristics of disaster impacts. However, 

there is no agreed-upon database platform to store and share historical information and data 

on debris removal operations and strategies. Developing a database related to debris 

removal is essential for sharing critical information, technologies, and know-how between 

researchers, agencies, and organizations. This will allow emergency agencies, 

policymakers, and researchers to develop better disaster planning for preparedness, 

responses, and recovery.  
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APPENDIX A. DESCRIPTION OF INPUT DATA ON GEOPROCESSING 
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APPENDIX B. STATISTICAL ANALYSIS FOR THE SCENARIOS 

Scenario#1 – 1 Landfill 

Descriptive 

 
Name Statistic Std. Error 

Total_Length Ronaldso Mean 18353.99 54.090 

95% Confidence Interval 

for Mean 

Lower Bound 18247.97  

Upper Bound 18460.01  

5% Trimmed Mean 18397.65  

Median 18847.43  

Variance 65212452.09

0 
 

Std. Deviation 8075.423  

Minimum 27  

Maximum 43312  

Range 43285  

Interquartile Range 11891  

Skewness -.175 .016 

Kurtosis -.358 .033 

 



 

220 

 

 
 

 



 

221 

Scenario#2 – 1 TDMS and 1 Landfill 

Descriptive 

 
FacilityID Statistic Std. Error 

Total_Length Landfill Mean 14891.80 74.112 

95% Confidence Interval 

for Mean 

Lower Bound 14746.53  

Upper Bound 15037.07  

5% Trimmed Mean 14706.26  

Median 13608.17  

Variance 
69239689.180  

Std. Deviation 8321.039  

Minimum 27  

Maximum 42901  

Range 42874  

Interquartile Range 14319  

Skewness .302 .022 

Kurtosis -.844 .044 

TDMS1 Mean 7020.76 65.106 

95% Confidence Interval 

for Mean 

Lower Bound 6893.14  

Upper Bound 7148.38  

5% Trimmed Mean 6372.55  

Median 5232.25  

Variance 
41044271.250  

Std. Deviation 6406.580  

Minimum 13  

Maximum 31330  

Range 31317  

Interquartile Range 3999  

Skewness 1.783 .025 

Kurtosis 2.502 .050 
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Scenario#3 – 2 TDMS and 1 Landfill 

Descriptive 

 
FacilityID Statistic Std. Error 

Total_Length TDMS1 Mean 4644.44 27.395 

95% Confidence Interval 

for Mean 

Lower Bound 4590.74  

Upper Bound 4698.14  

5% Trimmed Mean 4548.71  

Median 4683.97  

Variance 
6215370.819  

Std. Deviation 2493.065  

Minimum 13  

Maximum 20164  

Range 20151  

Interquartile Range 3273  

Skewness .808 .027 

Kurtosis 2.786 .054 

TDMS2 Mean 13982.27 106.488 

95% Confidence Interval 

for Mean 

Lower Bound 13773.51  

Upper Bound 14191.03  

5% Trimmed Mean 13614.59  

Median 11322.28  

Variance 
60894002.160  

Std. Deviation 7803.461  

Minimum 2007  

Maximum 39007  

Range 37000  

Interquartile Range 11490  

Skewness .757 .033 

Kurtosis -.590 .067 

20 Mean 10919.14 67.210 

95% Confidence Interval 

for Mean 

Lower Bound 10787.39  

Upper Bound 11050.89  

5% Trimmed Mean 10530.01  

Median 10881.85  

Variance 39014894.430  
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Std. Deviation 6246.190  

Minimum 27  

Maximum 31310  

Range 31283  

Interquartile Range 8743  

Skewness .728 .026 

Kurtosis .390 .053 
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APPENDIX C. ANYLOGIC PROCESS MOMDELING LIBRARY BLOCKS 

 

Source Generates agents. 

 

Sink Disposes incoming agents. 

 

Delay Delays agents by the specified delay time.  

 

Queue Stores agents in the specified order. 

 

SelectOutput Forwards the agent to one of the output ports depending on the condition. 

 

SelectOutput5 

Routes the incoming agents to one of the five output ports depending on (probabilistic 

or deterministic) conditions. 

 

Hold Blocks/unblocks the agent flow. 

 

Match Finds a match between two agents from different inputs, then outputs them. 

 

Split For each incoming agent ("original") creates one or several other agents-copies. 

 

Combine Waits for two agents, then produces a new agent from them. 

 

Assembler Assembles a certain number of agents from several sources (5 or less) into a single agent. 

 

MoveTo Moves an agent from its current location to new location. 

 

Conveyor Moves agents at a certain speed, preserving order and space between them. 

 

ResourcePool Provides resource units that are seized and released by agents. 

 

Seize Seizes the number of units of the specified resource required by the agent. 

 

Release Releases resource units previously seized by the agent. 

 

Service Seizes resource units for the agent, delays it, and releases the seized units. 

http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Source.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Sink.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Delay.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Queue.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/SelectOutput.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/SelectOutput5.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Hold.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Match.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Split.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Combine.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Assembler.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/MoveTo.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Conveyor.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/ResourcePool.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Seize.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Release.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Service.html
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ResourceSendTo Sends a set of portable and/or moving resources to specified location. 

 

ResourceTaskStart 

Defines the start of the flowchart branch modeling the task process for resource units 

(usually it is a resource preparation process). 

 

ResourceTaskEnd 

Defines the end of the flowchart branch modeling the task process for resource unit(s) 

(usually it is a wrap-up process). 

 

ResourceTask 

Defines some custom task for resources that cannot be defined using the provided 

standard patterns for failures, maintenance, breaks. 

 

Enter Inserts agents created elsewhere into the flowchart. 

 

Exit Accepts incoming agents. 

 

Batch Accumulates agents, then outputs them contained in a new agent. 

 

Unbatch Extracts all agents contained in the incoming agent and outputs them. 

 

Dropoff Extracts the selected agents from the contents of the incoming agent. 

 

Pickup Adds the selected agents to the contents of the incoming agent. 

 

RestrictedAreaStart 

Limits number of agents in a part of flowchart between corresponding area start and area 

end blocks. 

 

RestrictedAreaEnd Ends an area started with RestrictedAreaStart block. 

 

TimeMeasureStart 

TimeMeasureStart as well as TimeMeasureEnd compose a pair of objects measuring 

the time the agents spend between them, such as "time in system", "length of stay", etc.  

This object remembers the time when an agent goes through.  

 

TimeMeasureEnd 

TimeMeasureEnd as well as TimeMeasureStart compose a pair of objects measuring 

the time the agents spend between them.  

http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/ResourceSendTo.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/ResourceTaskStart.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/ResourceTaskEnd.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/ResourceTask.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Enter.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Exit.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Batch.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Unbatch.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Dropoff.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Pickup.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/RestrictedAreaStart.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/RestrictedAreaEnd.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/TimeMeasureStart.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/TimeMeasureEnd.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/TimeMeasureEnd.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/TimeMeasureStart.html


 

229 

For each incoming agent this object measures the time it spent since it has been through 

one of the corresponding TimeMeasureStart objects. 

 

ResourceAttach Attaches a set of portable and/or moving resources to the agent. 

 

ResourceDetach Detaches previously attached resources from the agent. 

 

  

http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/TimeMeasureStart.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/ResourceAttach.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/ResourceDetach.html
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APPENDIX D. DESCRIPTION OF THE SIMULATION MODEL IN THE 

STUDY 
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