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ABSTRACT

Disaster debris management is critical to the success of disaster recovery systems. While there are
multiple disaster mitigation strategies and post-disaster debris management plans, it is hard to
implement because of: (i) the uniqueness of disaster incidents and randomness of its impacts; (ii)
complexity of disaster debris removal operations, policy and regulations and (iii) interdependency
of multiple infrastructure networks. Also, delayed debris removal operation affects following
emergency response activities. Furthermore, uncontrolled debris removal activities can result in
significant environmental and public health consequences. Therefore, there is a need for a

systematic approach to optimizing post-disaster debris management systems.

This research is aimed to understand the complexity of debris management and associated
emergent dynamics through the lens of an adaptive system-of-systems (SoS). To develop the
adaptive decision support system, this research (a) identifies the interdependent infrastructure
network within a community and its relative importance; (b) develops real-time GIS database to
integrate the data associated with critical infrastructure and geographical characteristics in the
community map; (c) designs and selects a TDMS network to analyze the required number, capacity
and resources, based on engineering-technical, managerial, and social-political dynamics; (d)
simulate the productivity of debris-management SoS based on the real-time GIS database to gain
insight into the impact of the dynamical nature of a disaster-affected area; and (e) develop a
visualized interactive GIS-based platform for debris management to communicate real-time debris

clearance strategies and operations among different agencies and organizations.

To evaluate the proposed framework and decision support system, this research conducted a case
study, debris removal operation in the city of Baton Rouge, after the 2016 Louisiana flood. The
results demonstrated the influence of sub-systems such as TDMS locations and capacity, road
network condition, available resources, existing regulations and policies, characteristics of

community on the behavior of the entire disaster debris removal management as a whole.

The proposed decision support system for effective disaster debris management will be beneficial

for emergency agencies and disaster-prone communities to evaluate and optimize their disaster

15



debris management system. Also, the system can be systematically integrated with other
emergency response systems to maximize the efficiency of the entire disaster responses during
post-disaster situations.
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CHAPTER 1. INTRODUCTION

1.1 Introduction

Over the last twenty years, the majority (90%) of natural disasters have been caused by weather-
related events such as floods, storms, earthquakes, and heatwaves (UNISDR and CRED 2015).
EM-DAT (CRED’s emergency events database) recorded 6,557 weather-related disasters
worldwide: natural disasters claimed 606,000 lives (i.e., average of some 30,000 annually) with
around 4.1 billion people injured, left homeless, or in need of emergency aid. According to
UNISDR’s report, China has the highest number of natural disasters, 286, from 2005 to 2014
(UNISDR 2017) (see Figure 1-1). Interestingly, the U.S. has incurred the most economic damage
(%443 billion). Similarly, there were less number of natural disasters in Japan, but their economic
looses from the disasters are as significant as that of China, $ 239 vs. $ 265 billion.

Number of disasters Total damage ($ billion)

300
250

200

150
100
62 59
i I I l . l
0

China Philippines India Indonesia Vietnam Afghanistan Mexico Japan Pakistan

Figure 1-1 Top 10 countries with most disasters, 2005 — 2014

Note: China has the highest number of disasters from 2005-2014, but the US has incurred the most
economic damages, and while Japan is far behind in the number of disasters, its economic loss is
as significant as that of China (image from UNISDR 2017).
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Economic losses from disasters are increasing every year. The estimated economic losses ($ 153.9
billion) in 2016 were the fourth-highest since 2006 (i.e., almost 12% above the annual 2006-2015
damages average, $ 137.6 billion) (Guha-sapir et al. 2011): This increase in total costs is partially
related to the $ 59 billion damages coming from hydrological disasters. Another part of this
increase is attributable to the $ 16 billion damages caused by weather-related disasters, which
corresponds to 1.69 times the annual average. For example, the wildfire in Canada made US$ 4
billion damages while one drought in China cost $ 3 billion. The 2016 economic losses from
meteorological disasters ($ 46.6 billion) remained close to the 2006-2015 annual average ($ 48.4
billion). However, damages from geophysical disasters ($ 32.8 billion - this is mainly influenced
by 2011 tsunami in Japan) appeared below their annual average ($ 46.1 billion). When removed
from the average, the 2016 costs from geophysical disasters are, then ,30.6% above the revalued
average ($ 25.1 billion).

Disasters in the U.S.

In 2017, there were 16 weather-related disasters across the U.S., including Hurricane Harvey, Irma,
and Maria: the economic losses exceeded $1 billion each. Disaster recovery costs exceeded $300
billion in 2017 (NOAA 2018).

18



CPl-Adjusted | Unadjusted

Drought Freezs «| | Tropical Cyclone Winter Storm | Cost with 95% C
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Figure 1-2 Type and number of disasters in the U.S.

Note: 95% confidence interval (CI) probability is a representation of the uncertainty associated
with the disaster cost estimates. Monte Carlo simulations were conducted to generate the upper
and lower bounds under the given uncertainty. The number of events in 2018 was updated on April
6, 2018 (NOAA 2018).

Debris includes wasted soils and sediments, vegetation (e.g., trees, limbs, shrubs), construction
and demolition debris (e.g., entire residential structures and their contents), vehicles, food waste,
white goods (e.g., refrigerators, freezers, air conditioners), household hazardous waste (e.g.,
cleaning agents, pesticides, pool chemicals), and municipal solid waste (e.g., standard household
garbage, personal belongings) (FEMA 2007; Oregon Department of Environmental Quality 2011;
U.S. EPA 2008). Sometimes, disasters results in the generation of mixed debris that increases the
complexity of seperation, tranportation and disposal processes (Roper 2008). The objectives of
debris management are slight different in short- and long-term period. In the short term, rapid

debris clearance on road network is critical for emergency responses including medical, shelter
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and food services. For a long-term perspective, appropriate debris management methods are
required to prevent any environmental issues or contamination from piles of debris or debris in

temporary sites (Luther 2010).

Debris in the residential area Debris accumulated on the curbside
Photo by J.T. Blatty/FEMA Photo by Laura Guzman/FEMA

Piles of mixed debris on the curbside Piles of debris line near the shopping centers after a week
Photo by J.T. Blatty/FEMA  of flood
Photo by J.T. Blatty/FEMA

Reference: (Blatty 2016; FEMA 2016a)

Figure 1-3 Debris generated after the 2016 Louisiana flood

Debris management is the first process during disaster recovery

While debris management is one of many competing priorities for emergency agencies, it has been
often overlooked (US EPA 2017a). Disaster debris should be systematically managed to 1) protect
human health from any environmental contaminations from a pile of debris, and 2) save existing
capacity of landfills or other waste-related facilities by minimizing direct debris input from an

disaster-affected community for future generations. Thus, it involves advanced planning and
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operation management  to  systematically  coordinate collaborations among
individuals/groups/parties at different levels of state- and local municipals as well as private sector

with experience and expertise in debris and solid waste management.

A huge amount of debris generated a disaster easily hampers emergency responses, recovery and
reconstruction phases. The amount of debris is sometimes similar to 5 ~ 10 times of the annual
solid waste generation (see in Table 1-1). For example, the 2015 Nepal earthquake generated
around 4 million tons of debris in Kathmandu valley, and it was almost 11 times higher than the

annual solid waste (Bogaty 2015).

Table 1-1 Amount of debris generated by disasters

Year Event Volume/Weight Data
2017 Hurricane Harvey, Texas, USA 8 million CY (CBS 2017)
2016 Louisiana Flood 1.3 million CY (Gallo 2016)
(East Baton Rouge)

2015 Earthquake, Nepal 10 million tons* (Singh 2015)
2012 Hurricane Sandy, USA 5.25 million CY (FEMA 2013)
2010 Earthquake, Haiti 23~60 million CY (Booth 2010)
2005 Hurricane Katrina, USA 76 million CY (Luther 2006)

* This study used the reported units rather than converting it to CY to tons, or, tons to CY, as the
exact types of debris were not included in the reports.

After the 2016 Louisiana flood, 1.4 million CY of debris was generated in the city of Baton Rouge.
According to the Louisiana annual solid waste report, estimated annual solid waste in East Baton
Rouge was about 502,994 CY/year (see Table 1-2). Thus, the 1.4 million CY of debris was about

three times higher than the amount of the annual solid waste generation.
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Table 1-2 Municipal solid waste landfill in East Baton Rouge

N Remaining capacity Remaining capacity
ame

(cubic yards) (months)
East Baton Rouge Parish

18,317,400 CY 437 months

North Landfill

Reference: (LEDQ 2015)

Debris management should be carefully calibrated for each debris removal operation because of
1) the uniqueness of incidents and 2) randomness of impacts associated with low-probability and
high-consequence events (Altay and Green 2006; Cutter et al. 2010; Kunreuther et al. 2013). In
the 2010 Haiti earthquake, the debris generated from the partial destruction of the port blocked
certain road segments and it hampered emergency supplies and responses for a couple of months
(DesRoches et al. 2011; UNDP 2013).

The Robert T. Stafford Disaster Relief and Emergency Assistance Act (i.e., Public Law 93-288),
stated that state and local governments should develop a disaster mitigation plan for receving
certain types of non-emergency disaster assistances (e.g., funding for disaster mitigation project) .
It provides the legal basis to state- and local governments for developing their own disaster
mitigatin planning (FEMA 2013b). It is also advised that plans for debris management should
include detailed strategies for each stage of debris management: debris collection, instaliment of
temporary debris management sites, recycling, disposal, hazardous waste identification/handling,
emergency information dissemination to the public, and administrations (U.S. Department of
Homeland Security 2011; U.S. EPA 2008).
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Disaster Debris Management

Community What is the paradigm shift in understanding
the complexity of the debris management?

Infrastructure

Resources

Disaster |I»

Debris
generated

Solid waste
management system

Randomness of impac}s a_nd problems Dynamic, real-time, effective and cost efficient solutions
Uniqueness of incidents demand at the nexus of infrastructure, communities and the environment

Figure 1-4 Difficulties to understand the complex debris management system

Hills (1998) suggested that disaster management implies a degree of control, which rarely exists
in real situations. Altay and Green (2006) agreed that disaster mitigation plans is required before
a disaster, but it should have some rooms to adapt unusual challenges created from a catastrophic
event. Thus, debris management models should, by their very nature, provide a systematic and
flexible approach that is adaptable to a disaster situation and able to expedite debris removal
operations (Celik et al. 2015).

1.2 Problem statement

There is a lack of an integrated debris management system to handle the debris generated.
Depending on the nature and severity of human-made or natural disasters, and built environments
in a community, a disaster can create substantial volumes/types of debris. It can overwhelm the
capacity and resources of the existing solid waste management systems and affect multiple
following disaster recovery phases. Besides, poorly managed debris can directly affect the entire
disaster recovery processes as well as environmental and public health impacts. While the extent
and criticality of the impact of debris removal on economic, environmental, and social dimensions
of recovery plans, current studies underestimate emergent dynamics of debris management

prioritizing its collection or disposal locations, as well as real-time management of resources such
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as equipment fleets. Thus, it is critical to developing a decision support system integrating the

entire debris removal stages such as collection, processing, recycling, and disposal stages.

Also, the effectiveness of disaster debris management depends on not only efficient debris
management planning and operation, but also existing capacities and serviceability of critical
infrastructure and facilities related to the debris removal after a catastrophic event. Classical
reliability theories are widely used to model large complicated systems (Eusgeld et al. 2011). For
example, stochastic models such as the Markov and Poisson processes were applied to predict
system behaviors under multiple uncertainties. However, these methods/approaches are limited to
capture 1) the underlying structure of the system as well as 2) the ability to adapt to failures of
subsystems when strong system interdependencies exist. Existing literature and studies in the field
of disaster debris management are limited to investigate system efficiency of a debris management
component such as type and amount of debris, temporary debris management site, debris
transportation, and processing. There is a lack of models to capture the complex interactions in
disaster debris removal operations as a complex adaptive system (i.e., a high degree of coupling
between the systems). This research clarifies this problem on the specific example, debris
management, and then presents the advantages of the system of systems approach with a case study,

the 2016 Louisiana flood, and the debris management.

Finally, different agencies lack established channels to communicate debris removal strategies and
operation plans as platforms for collaboration to expedite the entire disaster recovery process as
well as disaster debris management. The extent and criticality of disaster debris management
necessitate an adaptive decision support system, which reflects 1) the unexpected impacts of a
disaster, 2) characteristics of the community, its interdependent infrastructure network, and 3)

efficient utilization of available resources and infrastructure in real-time.

1.3 Thesis statement

Effective disaster debris management is a crucial component for community resilience from a

catastrophic event. Therefore, the thesis of this research is the following:
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A new paradigm is required that optimizes the debris management system by analyzing the system
behaviors under different planning and operational strategies that effectively adapt both the
uncertainty of a catastrophic event and the interdependencies within the components of the debris

management system.

Thus, this research proposes a decision support system (DSS) applying an adaptive system of
systems approach for effective debris management that considers the uncertainty of a catastrophic
event and the interdependency in sub-systems of debris management systems. The DSS can be
used to develop, analyze, and communicate mitigation strategies for effective debris management

at the interface of community needs, infrastructure performance, and environmental impacts.

1.4 Research objectives

The research objective is to develop an adaptive decision support system (DSS) that can navigate
the complexity of post-disaster debris management as well as support optimal decision making
after a catastrophic event. The adaptive DSS uncovers emergent characteristics of disaster debris
management at the relationship of communities, infrastructure, and the environment. The output
would be generalizable: the GIS-based modules in the adaptive DSS can be used to support state-
and local decision-makers to identify promising TDMS locations that are robust to uncertainty in
disaster characteristics and impacts. This model is calibrated and validated using a case study,
debris management in the city of Baton Rouge after the 2016 Louisiana flood, and through agent-

based simulation of various adaptive debris management strategies. Specific objectives include:

i.  Develop a framework for post-disaster debris management based on the concept of SoS,
ii.  Identify a network of interdependent infrastructure systems that influence debris removal
within a community and their relative importance,
iii.  Develop real-time GIS database to integrate the data associated with 1 and 2 above, and
make it available for analysis for the remaining objectives,
iv.  Model the selection/design of a TDMS network including (1) geographical characteristics
(GIS data) and interdependent infrastructure as identified in 1 and 2 above, (2) availability

of resources for debris removal,
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v.  Simulate the productivity of debris-management on the real-time GIS data to gain insight
into the impact of the dynamical nature of a disaster-affected area,

vi. Develop a visual, interactive GIS-based simulation platform for effective coordination
among agencies and monitoring on-going debris removal operations under dynamic
conditions, and

vii.  Establish a feedback loop to incorporate real-time data on debris removal operations in the

simulation model for updating corresponding disaster management activities.

1.5 Scope of the research

This research focuses on the development of the adaptive decision support system (through the
lens of a complex coupled system) that assists a decision-maker by 1) analyzing complex post-
debris management systems, 2) simulating multiple scenarios to understand system behaviors
under multiple uncertainties, and 3) identifying optimal solutions given the
circumstances/environments after a catastrophic event. The scope of the research includes
debris/waste-related management facilities (TDMSs, landfills and recycling facilities), critical
infrastructure (physical infrastructure supporting debris (civil, civic, environmental and social),
TDMS design and selection model under the consideration of technical, environmental and social
performance, the optimal number of resources and the allocations in terms of loaders, hauling
trucks and chippers.

To predict the volume and location of debris generated by a disaster, this research used FEMA’s
Hazus-MH (ver. 4.0.). The types of debris in this study are limited to wood, steel, concrete, and
masonry. Other data including road network, built and natural environments, infrastructure was
acquired from USGS, city of Baton Rouge, FEMA Hazus-MH, and ArcGIS. The developed
research framework and adaptive decision support system are fully scalable to include multi-
dimensional system interdependency (temporal and spatial). It can be applied to both natural and

man-made disasters in any given circumstance.
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1.6 Outline of the dissertation

The main body of this study consists of six chapters. Chapter 1 provides a general overview of this
research, including research background and needs, thesis, objectives, and scopes. Chapter 2
reviews extensive literature in the field of disaster debris management, critical infrastructure as
well as complex system and simulations. It includes systematic reviews on historical disaster
debris management strategies and operations in the U.S., existing debris management plans from
FEMA, state- and local-level emergency agencies, numerous subjects related to debris removal
including economic, social, and environmental issues. Finally, it illustrates the gap of knowledge
and needs for developing an adaptive decision support system for effective post-disaster debris
management from a catastrophic event. Chapter 3 illustrates the research approach, framework,
methodologies, and expected results. Chapter 4 discusses the development of the adaptive decision
support system, including four modules and the detail methodologies applied in each module.
Chapter 5 demonstrates an application of the proposed decision support system into a real-world
problem using a case study, debris management in the city of Baton Rouge after the 2016 Louisiana
flood. Chapter 6 summarizes research conclusions, theoretical and practical contributions,

limitations on this research, and future research directions.
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CHAPTER 2. LITERATURE REVIEW

The main objective of the literature review is to review and summarize a body of knowledge related
to disaster debris management, critical infrastructure and complex system modeling. This chapter
establishes existing the gap of knowledge in effective disaster debris management, and support the

needs of this research and point of departure.

2.1 Disaster debris management
2.1.1 Phases in disaster debris management

Debris management generally has three phases (Baycan 2004): emergency response, recovery,
and rebuild. Sometimes, each phase is not separate with the other phases. Also the duration of each
phase can vary depending on disaster severity and community resiliency.

In an emergency response phase, the main priorities of debris removal focus on enhancing
emergency responses by cleaning up certain debris on road as well as resulting in public
health/safety issues. This phase can go up to between a few days and two weeks (Haas et al. 1977).
Recycling efforts on curbside are very limited in this phase (Solid Waste Association of North
America 2005).

In the recovery phase, the main objectives are to restore critical infrastructure and demolish
damaged buildings and houses: The most of debris comes from this phase. The duration of the
recovery phase can be affected by numerous decision factors as well as certain circumstances that
is out of control from debris management teams. In case of debris removal in Louisiana after 2005
Hurricane Katrina, it took up to five years because of the huge amount of debris (Luther 2006).
Sometimes, police investigations at certain areas hamper the access to disaster-affected areas of
equipment. Finally, a slow return of residents results in slow debris collection on curbside (Cook,
BA 2009).

In the rebuild phase, debris is mostly generated from the reconstruction. The duration can be up
to 10 years (Haas et al. 1977).
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Table 2-1 Three phases and durations in debris management

Emergency Recovery Rebuild
Few days ~
two weeks Up to 5 years Up to 10 years

US EPA (2017a) suggested that a community should prepare their own debris management plan
ahead of any catastrophic event: It will 2) minimize debris removal costs, 3) protect residents from
possible public health issues from a pile of mixed debris around a community, and 3) increase the
performance of the entire disaster recovery activities including debris cleanup. Thus, a decision-
maker must identify the characteristics of community affecting a type of or the amount of debris
generated, and develop immediate-, short- and long-term goals to enhance debris removal
performance based on the community’s needs and existing capacity and resources. However, most
of the existing state- and local-level debris management plans are limited to repeat the general
debris management plans and guidelines provided from FEMA and US EPA. State- and local
municipals should examine their communities including available resources, capacity, and
serviceability of waste-related facilities, as well as communication platforms between agencies,

contractors and residents.

2.1.2 Characteristic of debris
2.1.2.1 Types of debris

Multiple types of debris are generated based on the characteristics of built environment (e.g.,
geographic location, population density, and socioeconomic setting) and a type of disasters (U.S.

EPA 2008). The variations sometimes require a different debris management approach.

Baycan (2004) classified debris components into three categories:

e Recyclable

e Non-recyclable

e Hazardous
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US EPA (2008) categorized debris into five types:
e Damaged buildings
e Sediments
e Green waste
e Personal property

e Ash and charred wood

FEMA (2007) listed types of debris by a type of disasters (See Table 2-2).

Table 2-2 Typical types of debris by a different type of disaster
Types of disasters

e = o % @ £
8 < -c?s _8 =) = ]
£ = - 3 g = @
2 2 2 - 5 2 3
Vegetative @) @) @) @) @) @)
Construction and demolition (0] 0] 0] 0] (0]
Personal property/ 0 0 0 0 0 0
Household
Hazardous waste (0] (0] (0] 0]
Household hazardous waste (0] (0] (0] 0] (0] 0] (0]
White goods @) O O ) @ @)
Soil and sand (0] 0] 0] (0] 0]
Vehicles, vessels (0] 0] 0] 0

Note: Hazardous materials can enter the debris stream from various sources, including
households, commercial activities, and institutional sources, as well as industrial sources.
Reference : (FEMA 2007)
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Types of debris in urban areas: A composition of debris generated in urban areas is very similar

to that of construction and demolition (C&D). In general, C&D materials consist of the followings:

e Concrete, asphalt, brick and blocks
e Woods in various forms

e Metals such as steel and pipes

e Frames such as doors, windows

e Plumbing components

e Insulation materials

e Soil and earthen materials

e Vegetation

Types of debris in rural areas: In rural areas, most of debris include natural or organic materials
and it may contain a low amount of C&D materials (e.g., synthetic, composite, and metallurgical

components).

2.1.2.2 Debris quantities

Debris quantities have been reported in terms of either mass (tons) or volume (cubic yards or
meters). However, most of the reports did not include their measurement approaches or methods
(e.g., it is hard to identify where and how the volume of debris is measured such as truckloads or
landfill volumes) (FEMA 2007).
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Table 2-3. Historical disasters and debris quantities

Year Event Debris quantity* Reference

Hurricane Harvey,

2017 Texas, USA

8 million CY (CBS 2017)

Louisiana Flood -
2016 (East Baton Rouge) 1.3 million CY (Gallo 2016)

2015  Earthquake, Nepal 10 million tons Singh (2015)
2012  Hurricane Sandy, USA 5.25 million CY FEMA (2013)
2011  Japan tsunami 70 - 180 million tons Yesiller (2012)
2010  Haiti earthquake 23 - 60 million tons Booth (2010)
2009 g;ﬁﬁgj{:‘légtaly 1.5 -3 million tons Di.Coma.C. (2010)
2008 S;fthh‘gi”a’kcehi”a 20 million tons Taylor (2008)
2005 lumicane Katina 99.4 million CY Luther (2008)
2004 EIL(j)I;‘:iJ:nSSSA 3.9 million cubic meters Solid W(azségguthority
2004 ?Sciis;n:)icean 13 million cubic meters Bjerregaard (2010)
2004  Hurricane Charley, USA 2.6 million cubic meters MSW (2006)

* Unit for the debris quality is either volume or weight. This study did not convert a unit (e.g., CY
to tons, or tons to CY) as the detail types of debris were not reported in the references.
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Estimating debris quantity in a pre- or post-disaster situation is highly recommended to prepare
disaster mitigation plans and develop action plans for debris removal operations (EPA 2008).
There have been numerous studies/reports that have retrospectively quantified disaster debris.
These studies were mainly conducted to improve debris estimation methods and techniques, and
support the development of debris management planning and preparedness. This study introduces

several debris estimation methods from the literature.
Inoue et al. (2007) studied the specific gravities of the debris generated by the 1995 Great Hanshin-

Awaji earthquake. They identified that debris weight in the middle of transportation was generally

increased compared to the average weight (see Table 2-4).

Table 2-4 Gravity of debris

Increased gravity

Average gravity (In the middle of transportation)

0.59 ton/m3 0.73 ton/m3

Hirayama et al. (2010) estimated the volume and weight of debris per house and unit floor area.
They identified that 30 ~ 113 tons/household of debris were generated based on building types and

the level of damaged by a disaster.

Chen et al. (2007) studied the correlation between the volume of debris and flood using the case
study of the flood in Taiwan. Three parameters were applied to estimate the volume of debris in a
flood scenario: population density (x1), total rainfall (x2), and flooded area (xs). They identified
that the high non-linear correlation with the three variables, but, which could be used to predict

the volume of debris ().
logy = —4.137 + 0.718logx; + 0.600log x, + 1.422 log x5
While many scholars developed debris estimation models, there are still high uncertainties and

complexities involved in debris generation. In the following sections, this study discusses multiple

debris estimation methods.
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2.1.2.3 Three methods to estimate debris quantity

FEMA (2010) provided several methods available to estimate the volume of debris. The debris
task force leader in FEMA recommended that appropriate method should be selected based on the
accuracy level, operation schedule requirements, and resource availability such as personnel and
equipment. Three methods are outlined here, and these methods could be combined if needed:

Ground measurement, aerial/satellite images, and computational modeling.

2.1.2.3.1 Ground measurement

Ground measurement methods use visual observations and field data collections with measuring
tapes and GPS units. FEMA developed an equation to estimate debris quantity associated with
demolished single-family residence based on their empirical data studies coming from data

collection after Hurricane Floyd in 1999:

Debris quantity = 0.20 X Length X Width xS X VCM

S = Number of stories in the building

0.20 = Constant based on the study data

VCM = Vegetative cover multiplier

Note: Unit for length and width should be ‘“‘feet”

For a multiple-story residence, the debris quantity should be calculated using the total number of

stories. A list of vegetative cover multiplier is decribed in Table 2-5.

34



Table 2-5 Table for single-family and single-story home

Typical house Vegetative Cover Multiplier
(S.F) (VCM)

e
1000 SF 200 CY 220 CY 260 CY 300 CY
1200 SF 240 CY 264 CY 312 CY 360 CY
1400 SF 280 CY 308 CY 364 CY 420 CY
1600 SF 320 CY 352 CY 416 CY 480 CY
1800 SF 360 CY 396 CY 468 CY 540 CY
2000 SF 400 CY 440 CY 520 CY 600 CY

2.1.2.3.2 Aerial and satellite images

Aerial and satellite images taken before and after a catastrophic event have been used to estimate
1) disaster impact areas and 2) debris quantities and types. Lanorte et al. (2017) estimated
agricultural plastic wastes using Landsat 8 satellite images (Landsat 8 satellite orbits the Earth ,and
circles the Earth every 99 minutes (USGS 2017)). They applied support vector machines (SVMs)
to classify satellite images and estimate the quantities of plastic wastes: SVM is a linear model
designed for classification or regression problems. The accuracy and coefficient of the estimation
were 94.54% and 0.934, respectively.

However, using satellite and aerial images has several limitations, including limited accessibility
to the public, data acquisition frequency, and weather condition (e.g., cloud can block a certain
part of satellite images). To overcome the constraints, unmanned aerial vehicles (UAVS) are
frequently used to collect aerial images. Adams et al. (2016) applied UAVs to map the
consequence of debris flow in Austria (the accuracy and precision was 0.05 — 0.5m and of 0.05m
RMSE, respectively). They highlighted the several advantages of UAV application including
higher flexibility, easier repeatability, less operational constraints comparing to satellite data, and

high spatial resolutions.
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While these image-based methods have very high accuracy and operational flexibility in
identifying debris around a disaster-affected community, it is limited to identify the amount of
debris inside buildings and houses (e.g., debris inside buildings and facilities is taken out when
residents come back after evacuation. It might take a week or more depending on the severity of
disasters). It might be tough to estimate debris generation after a flood because of water-damaged

properties are mainly in buildings and houses.

2.1.2.3.3 Computational model

In the U.S., Hazus-MH is a standard method to estimate potential losses from multiple types of
disasters including earthquakes, floods, and hurricanes (FEMA 2018). It is designed to be
integrated into Geographic Information Systems (GIS), particularly ArcGIS, to estimate the
physical, economic, and social impacts. In a GIS platform, users can project the spatial
relationships between populations and other geographic assets/resources. Hazus-MH’s results can
be used in an assessment step or the mitigation planning process, which is the foundation for a
community's long-term strategy to decrease disaster losses (see Figure 2-1). There are several
advantages and benefits on computational modeling and simulation such as Hazus-MH. Remo et
al. (2016) applied Hazus-MH’s flood loss assessment to support their flood vulnerability index in
Illinois. However, they pointed out that national-level infrastructure data in Hazus-MH contains
approximations of structure, contents, and inventory replacement values for a specific census block;
it could increase the uncertainty of simulation results. They suggested that the results of Hazus-
MH might be beneficial for comparative purposes. Shultz (2017) analyzed the accuracy of Hazus-
MH general building stock data. They illustrated the two issues in the study: (1) underestimate
building square footage (15-20%) and (2) overestimate replacement costs (31-56%). The
overestimate could reach between 51 and 81%. As discussed, while Hazus-MH has several
limitations on predicting multiple losses by a catastrophic event, it is the only available multi-level

disaster-impact assessment tool.
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2.1.2.3.4 Debris conversion factors

The weight and volume of debris are generally represented using tons and CY. Thus, unit
conversion factors (between weight and volume) are sometimes necessary. USACE developed

several conversion factors for converting between weight and volume of debris (see Table 2-6).

Table 2-6 Debris conversion factors

Type Ton Cubic Yard
Construction and demolition debris 1 ton 2CY
Mixed debris 1 ton 4CY
Vegetative debris (hardwoods) 1ton 4CY
Vegetative debris (softwoods) 1 ton 6CY

Note: In debris removal practices and reports in the U.S., the unit, CY, is mainly used.

2.1.3 Debris collection and treatment options
2.1.3.1 On-site debris/waste segregation and collection

U.S EPA and FEMA recommend disaster-affected residents to place debris on the curbside (Figure
2-2): Debris should be placed outside of the sidewalk because debris removal contractors are
limited to access private property (e.g., inside of the sidewalk). Also, debris on the curbside should
be segregated into six categories; house garbage, construction debris, vegetation debris,
household hazardous waste, white goods, and electronics. These efforts can increase debris

collection performance as well as the recycling rate of mixed debris.
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Figure 2-2 U.S. EPA’s guideline for debris separation by homeowners
Image from (U.S. EPA 2017a)

Equipment for solid waste collection equipment is limited to be used during the initial stages of
debris clean-up because of the size and weight of debris on curbside (Solid Waste Association of
North America 2005). In general, a single debris removal contractor is assigned to collect debris
on the curbside. They utilize end-dump trucks and tracked excavators with grapples and/or
wheeled bucket loaders to haul large-size debris (see Figure 2-3). After a couple of truck passes,
traditional collection equipment (e.g., roll-off containers, and rear- and front-end loading packer

trucks) starts solid waste collection service.
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(a) Self-loader trck | ' (b) Loader + Trck
Figure 2-3 Types of debris collection equipment

2.1.3.2 Temporary debris management site

A temporary debris management site (TDMS) is recognized as one of the critical facilities for
effective debris management (FEMA 2007, EPA 2008, UNEP and OCHA 2011). It is mainly
designed as a buffer to appropriately sort, recycle, and dispose of debris (FEMA 2007; Lipton and
Semple 2012)(see Figure 2-4). To handle 1 million CY of debris, a recommended size of TDMS
is 100 acres.

ENTIRE SITE = 100 ACRES

Construction & Demolition (C&D)
Debris

Ash Pit

A.Lr Curtain Incinerators
s 20

TDMS during the NYC debris management
after the 2012 Hurricane Sandy

TDMS layout

Photo by Doug Kuntz, The New York Times
Figure 2-4 Temporary debris management site

There is a trade-off between 1) speed of clean-up, 2) degree of diversion, 3) recycling debris, 4)

treatment options, and 5) disposal options (Brown and Milke 2009). The overall period of debris
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removal depends on 1) selected debris treatment options and 2) resource availability, 3) supporting
infrastructure capacity and serviceability. FEMA (2007) released a new pilot program providing
incentives for debris recycling efforts. Fetter et al. (2010) developed a decision model with

recycling incentives for locating TDMSs.

Breezy Point, NY after 2012 Hurricane Sandy East Baton Rouge, LA after the 2016 Louisiana flood
Photo by Tim Burkitt/FEMA Photo by J.T. Blatty/FEMA

Figure 2-5 Operations in TDMS
Note: The images were reprinted from FEMA (2014a; b, 2016b)

However, an inappropriate location of TDMSs can bring unexpected or negative effects. For
instance, TDMS operation can bring extra expenses for double-handling debris and acquiring lands
(FEMA 2007). Also, locating TDMSs in unsuitable areas such as playgrounds, swamps, and rice
paddies can potentially affect the environments and the livelihood of residents nearby (Kim et al.
2018a).

A TDMS may 1) attract rodents and other pests, 2) make noise, 3)produce odors that can be easily
above the acceptable level of residents nearby, and 4) increase traffic nearby. Thus, US EPA (2008)

provided several guidelines:

e Sufficient size of TDMS
e Appropriate topography and soil type.
e Certain distance from rivers, lakes, and water streams.

¢ Distance from floodplains and wetlands.
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e Avoid any obstructions, including power lines and pipelines.

e Close to a disaster-affected area, but far enough away from residential and commercial
areas and infrastructure facilities that could be easily affected during TDMS operations.

e Locate in public land because the approval process is easier. However private lands can

be used if necessary: consider potential agreements on the land uses with private

landowners in advance.

While identification of TDMS in a pre-disaster scenario has been studied as a way to avoid
potential adverse effects (Kobayashi 1995, Skinner 1995, FEMA 2007, USEPA 2008, Johnston et
al. 2009), most of the existing guidelines focus on environmental regulations. Further research is

required to explore technical and social impacts of TDMS location in a short- and long-term period.

Recently, emergency agencies take an effort to share TDMS operation information during debris
removal. For example, the Texas Commission of Environmental Quality opened multiple TDMSs
to handle debris generated by the 2017 Hurricane Harvey. The TDMS information was shared by
their GIS platform (Texas Commission on Environmental Quality 2017). It included site contact

information and accepted type of debris in each facility (see Figure 2-6).
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2.1.3.3 Recycling

U.S. EPA (2009) recommended that a debris management plan should include specific resue,
recycle, compost strategies for multiple types of debris. These efforts can reduce 1) capacity
burdens in TDMS and landfills, 2) decrease potential costs, and 3) provide a valuable material
resource from recycled debris. It is also reported that most of debris components are recyclable.
These materials can be reused for several post-disaster applications, including soil for covering
landfills; aggregate for concrete; and plant material (Channell et al. 2009). The benefits from debris
reuse/recycling have been discussed in multiple debris management practices: Marmara
earthquake (Baycan and Petersen 2002, Baycan 2004); Northridge Earthquake (Gulledge 1995,
USEPA 2008); Indian Ocean Tsunami, Thailand, and Sri Lanka (UNDP 2006). The benefits of

recycling debris are the followings:
e Reduction of landfill capacity required

e Revenue generation

e Cost reduction from transporting raw materials and debris
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e Job creation (for developing countries in particular)

The main component of disaster debris is construction and demolition (C&D) waste. While
Reinhart and McCreanor (1999a) and Skinner (1995) provided recommendations for recycling
C&D debris and practices, other studies identified existing barriers on C&D recycling (see Table
2-7).

Table 2-7 Main issues on C&D recycling during debris removal

Issues References

Time consuming to collect/sort/process recyclable debris Baycan and Petersen 2002

Baycan and Petersen 2002

Require special equipment and facilities Baycan 2004

Lack of market for recycled materials L auritzen 1998

Facility capacity to handle the large amount of recyclable debris

Whereas the literature above provides the advantages and existing obstacles to debris recycling,
there have been no quantitative assessments or feasibility analysis for post-disaster recycling
options. For instance, the recycling capacity in California is estimated to be approximately 60
million tons per year (Yesiller 2012): The available recycling capacity is considerably less than
the available disposal capacity.

2.1.3.4 Open burning and air curtain incineration

Two burning methods are recommended: open pit and incinerator. These burning methods had
been used in multiple debris removal operations such as the Indian Ocean Tsunami (Basnayake et
al. 2006), and the Great Hanshin-Awaji earthquake (Irie 1995). Lauritzen (1998) and Petersen
(2004) highlighted that open burning is appropriate in certain situations, but a few guidance exists
U.S. EPA (2008) reported that a portable air curtain incinerator is am efficient debris burning

method. During disaster recovery after Hurricane Irma and Maria, multiple air curtain incinerators
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were operated under the supervisions from USACE and US EPA: This method was applied as 60%
of debris generated (850,000 CY)) were identified as trees, fronds, brush, and grass. (FEMA 2017a).

Figure 2-7 Air curtain incinerator (left) and open burning system (right)
Photo credit: Clay Church and Billy Birdwell / USACE

2.1.3.5 Debris disposal

Direct disposal of debris generated is the fastest way to clean up debris on a community, but there
are significant concerns on debris disposal options. FEMA recommends that municipal officials
should determine debris collection and disposal options suited for their own circumstance/situation.
However, in the aftermath of large-scale disasters, the volume of debris significantly exceeds the
existing capacity and serviceability of permanent disposal sites (EPA 2008). Also, mixed debris
on sites hampered the general debris separation/transportation process. While a TDMS plays a
critical role as a buffer to reduce the volume of debris transferred to landfills as well as sort out
mixed debris, mixed debris with hazardous materials can be transported to landfills without any

appropriate sorting or treatment process.

For asbestos and other hazardous materials, there are several regulations and policies from FEMA,
U.S. EPA and the state’s department of environmental protection. However, several studies
identified that these hazardous materials were transported to landfills without appropriate sorting
or treatments (Brown et al. 2011; Channell et al. 2009; Dubey et al. 2007). There are still few
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studies investigating environmental effects from hazardous substances in disaster waste and
landfills.

2.1.4 Disaster debris management facility database

There are ten US EPA regional offices and each office is responsible for several states (U.S. EPA
2017b).

|N|:|rtham IlElrImn|

Figure 2-8 US EPA regions
(Image from U.S. EPA)

Recently, EPA Region 5 developed a database of 12 types of landfills and recyclers managing
disaster debris in the region. The GIS-based interactive map provides information and location of
over 6,000 facilities capable of managing different types of (US EPA 2017b).
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Figure 2-9 Information and locations of disaster debris related facilities in EPA region 5

Note: Green, orange and purple points on the map represent recyclers, landfills and landfill &
recyclers, respectively. In the search bar on the left side, a user can identify facilities handling a
specific type of disaster debris.

2.1.5 Issues on disaster debris management

This study classified multiple issues reported during debris management into three categories

(economic, environmental, and social issues) and discussed it with case studies.

2.1.5.1 Economic impacts

A disaster creates a huge financial burden on the state- and local municipals to clean up a
tremendous amount of debris generated. Costs for debris removal consist of direct and indirect
costs. Direct costs refer to costs used for debris cleanup, and indirect costs refer to any costs made

from debris treatment/removal options.
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Direct costs include debris collection, treatment and disposal costs. FEMA (2007) analyzed debris
removal costs during disaster recovery between 2007 and 2007. They reported that 27% of the
total disaster recovery costs spent for debris removal. Similarly, Califonia Emergency
Management Agency (2011) informed that direct debris removal costs could be up to 40% of the

total disaster recovery cost.

Indirect costs are defined as all costs associated with any follow-up activities from delayed debris
removal or losses from different debris treatment options. Thus, it is relatively difficult to
estimate/report than direct costs. For example, delay in debris removal may result in 1) public
health issues (e.g., noises and odors from TDMSs, and heavy traffic nearby), 2) environmental
contaminations and 3) illegal dumping of hazardous or mixed debris. Also, inappropriate debris
treatment options may delay in debris removal speed as well as result in ground contaminations
from mixed or hazardous debris. Cost-benefit analysis for multiple debris treatment and removal
options has been done (Bolyard and Reinhart 2016; Petersen 2004; Reinhart and McCreanor 1999a;
UN 2011) such as (1) cost minimization under the parameters including disposal, transportation
and equipment type, (2) revenue generation through recycling, and (3) job creation. While
recycling materials during debris management are highly recommended, cost-benefit analysis
should be conducted to compare benefits and losses generated from recycling options. Methods
including life cycle assessment (LCA) or life cycle cost (LCC) are recommended to be employed
in recycling options. Wakabayashi et al. (2017) applied LCA and LCC frameworks to evaluate

environmental and economic costs for multiple debris removal strategies.
So far, a few information or reports regarding debris removal costs are accessible. In the U.S.,

FEMA shared historical debris removal funds (i.e. public assistant grant program). This study

summarized the published debris removal cost data in Table 2-8.
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Table 2-8. Historical debris removal cost

Event Location Debris quantity* Cost ($) Reference
Hurricane Katrina LA, USA 118 million cubic yards 4.1 billion Luther (2010)
Indian chan Sri Lanka 0.5 million tons 5-6 million Basnayake et al. (2006)
Tsunami(2004) '
Indian Ocean 1 ijand 0.8 million tons 2.8 million Basnayake et l. (2006)
Tsunami(2004) ' '
Typhoon Tokage, 44,780 tons 15-20 million ~ UNEP (2005)

Tokage(2004) Japan

E'ﬁ;',g‘;”e FL, USA 19 million CY 286 million FEMA (2009
Central Florida Osceola - Reinhart and McCreanor
Tornado County, US 250,000 CY 8 million (19992)

Note: Unit for debris quantity is either CY or tons. This study used the original unit used in the
references.

Reinhart and McCreanor (1999) and the Solid Waste Authority (2004) pointed out the reported
debris removal costs were sometimes inconstant, or it only included small parts such as unit cost
for cubic yard, disposal costs, or costs in small part of disaster- affected areas. Most of them did
not include costs from individual clean-up efforts. Thus, it is required to investigate the entire

debris removal mechanisms to understand the fundamental characteristics of debris removal costs.

2.1.5.2 Public health and environmental impacts

In a phase of post-disaster debris management, the debris removal speed is critical. Consequently,
the majority of debris-related studies and reports have focused on maximizing debris removal
performance. Few studies attempted to measure the environmental impacts (Brown et al. 2011).
For example, Dubey et al. (2007) investigated the quantity of arsenic disposed in demolition debris
(e.g., treated wood) after the Hurricane Katrina,. They emphasized the potential for leaching of

arsenic from pressure-treated wood should be examined and studied. Chandrappa and Das (2012)
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discussed possible public health problems from (1) human contact (2) vectors and rodents, (3)
collapse of disaster-damaged structures, and (4) environmental system disturbance (e.g., change
in the population of certain species, and loss of agricultural crops areas).

2.1.5.3 Human/social behaviors in a disaster

Before collecting debris on the curbside, residents need to segregate on-site debris based on
guidelines from local emergency agencies. However, Returning to their houses or properties might
take several days or weeks depending on disaster impacts and their property damages (Groen and
Polivka 2010). For example, most of residents in Louisiana were not able to return to their houses
because of severe disaster impacts and damaged their properties (Luther 2008): the population in
Orleans and St. Bernard parishes reached around 70% and 41% of pre-Katrina levels for more than
two years. This slow return of residents resulted in the higher number of debris removal truck
passes on each road segment. According to the USCE, debris collectors generally pass two or three
times to collect debris. More than 20 truck passes, however, were made in the certain areas in
Louisiana (Luther 2008). Thus, this relationship between resident return rates should be integrated
into debris management systems to enhance the overall debris removal performance (truck routing
and allocation) as well as identify the optimal number of equipment (trucks) over time. Brown et
al. (2011) proposed further research on psycho-social implications in the speed of debris removal

process, and emotional attachment on certain items in mixed debris.

2.1.6 Factors on debris management performance

To maximize debris removal performance, a debris management team should recognize existing
waste management systems and debris management plans. In general, debris management systems
are operated based on existing solid waste management systems. For example, temporary debris
management sites and additional resources such as mobile incinerators, hauling trucks, and power

generators are integrated into the existing solid waste management systems (see Figure 2-10).
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Figure 2-10 Process to build an effective debris management system

Guerrero et al. (2013) examined various factors related to waste management performance (see
Table 2-9). They identified critical infrastructure including transportation, technologies, and
facilities for treatment, recycle and disposal. Critical resources are identified as hauling trucks and
other equipment including incinerators, chippers and grinders (Karunasena et al. 2009). Finally,
they highlighted that knowledge in debris treatment and disposal options are beneficial to

maximize debris removal systems (Guerrero et al. 2013).
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Table 2-9 Waste management factor analysis

Stage

Affecting factors

Collection,
transfer and

transport

Treatment

Disposal

Recycle

Truck routing and allocation

Infrastructure capacity and serviceability
Type of resources for collection
Waste management organization structure

Transportation
Knowledge and information for treatment options

Knowledge of existing waste management issues

Containers and hauling distances
Disposal price ($/cy or $/ton)

Recycling markets

Capacity of Recycling facility

State- and local government’s financial support
Collection efficiency (sorting process)

Technologies for low-cost recycling process

Reference: (Guerrero et al. 2012)

2.2 Critical infrastructure related to disaster debris removal

Critical infrastructure’s capacity and serviceability significantly affect the performance of post-
disaster debris management systems. Thus, infrastructure capacity and serviceability are
considered as one of critical components in disaster debris management systems. ASCE (2006)
defines critical infrastructure as “any systems and assets that is so critical that any destructions on

systems would have tremendous impacts on national economy, public health and safety. It includes

built environments, natural and virtual systems”.

Bruneau et al. (2003) examined infrastructure resiliency by four determinants: robustness,

redundancy, resourcefulness, and rapidity. In addition, Deshmukh and Hastak (2009) mentioned
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that the impact of disasters is further escalated by failures of any component of critical
infrastructure systems. To prevent cascading failures, capacity building of critical infrastructure is
essential for community resiliency (Deshmukh and Hastak 2012): They defined capacity as
available resources after a disaster and capacity building as the ability to acquire additional
capacity on existing infrastructure capacity. While several types of critical infrastructure are

defined, this study focuses on three types of infrastructure: civil, civic, and social infrastructure.

2.2.1 Civil infrastructure

Civil infrastructure such as transportation, power systems and waste management systems is
considered as a critical component in disaster debris management systems. The capacity and
serviceability of infrastructure systems during or after a disaster directly affect the entire debris
removal performance. According to the ASCE, the average GPA of US infrastructure was D+ in
2017: Most of the critical infrastructure related to debris management received low grades such as
bridges, dams, energy, hazardous waste, levees, ports, rail and solid waste (see Figure 2-11).

2017 Infrastructure Grades ——

Cumulative
2 Infrastructure
i)- AVIATION PARKS AND RECREATION & D+ Grade

44 BRIDGES PORTS 10+
DAMS RAIL 1B

DRINKING WATER ROADS D

EXCEPTIONAL
ENERGY SCHOOLS

GOOD

HAZARDOUS WASTE SOLID WASTE MEDIOCRE

INLAND WATERWAYS £ [) TRANSIT POOR

FAILING
=& LEVEES 10 WASTEWATER

Figure 2-11 2017 U.S. Infrastructure grades
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American Planning Association (2014) emphasized that continuous resilient planning by
communities advanced a more resilient infrastructure system from a catastrophic event. They

highlighted four points below:

e Understand the risks to infrastructure.

o ldentify risk mitigation actions and the implementation feasibilities in terms of functional
benefits, costs, and impacts

e Identify federal, state and local-level funds for mitigation planning as well as a partnership

with utility companies of critical infrastructure

Here is an example of how Infrastructure failures in terms of capacity and serviceability affect
debris removal. The Haitian government highlighted debris removal (13 million CY of debris) is
one of their top priorities after the 2010 Haiti earthquake. However, the tremendous amount of
debris in the city hampered emergency response and recovery projects (UN Development
Programme 2010). Damaged infrastructure and insufficient resources also delayed in transporting
debris to designated locations. After several months, cholera outbreaks began in October 2010 and
killed at least 7,000 Haitians (It was recorded as the worst epidemic (WHO 2017)). Even after an
year of the earthquake, only 3~10% of the total debris was removed (UN 2011).

2.2.2 Civic infrastructure

Civic infrastructure entails debris-related regulations and policies from governmental agencies. In
the U.S., state- and local-agencies have responsibilities to manage their own debris generated.
Federal agencies, including FEMA, USACE, and U.S. EPA often provide grants for debris
removal or are directly involved in certain activities such as monitoring debris treatment options
or providing equipment (Luther 2017). During the 2019 Nebraska flood, USACE supported right-
of-way clearance, debris pickup on curbside and private property, and demolition (FEMA 2019a).
U.S. EPA awarded $100 million to the city of Flint, Michigan, for replacing or upgrading water
infrastructure, including pipelines (US EPA 2017c).
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The DHS (2011) highlighted that municipal officials should monitor debris collection activities on
site because most of the debris removal costs are coming from over-estimated volumes of collected
debris. For example, FEMA identified that they might have overpaid $20 million for debris
removal and disposal because 1) qualified monitors did not exist, and 2) the overestimated debris
load volumes occurred after Hurricanes Gustav and Ike (FEMA revealed that an overestimated
volume would be 20% or more). Currently, guidelines for debris pickup monitoring are limited to
use existing guidelines from FEMA or U.S. EPA. For a better debris monitoring system, local-
level municipals should include step-by-step debris monitoring guidelines based on their unique
debris management circumstances as well as monitoring techniques/methods. While it is not
realistic to manually monitor all of hauling trucks coming to a TDMS, laser scanning methods and
equipment (e.g., LoadScanner) could be an alternative to measure the volume of debris in a hauling
truck. Finally, most of the debris removal contacting is unit-price contract (that is very common

contract type in particular public works such as road construction and maintenance).

Further research is required to examine the benefits of laser scanning systems as well as different
contract types for debris removal. These regulations and policies should be examined and

developed by collaborations with federal, state- and local emergency agencies.

2.2.3 Social Infrastructure

Studies on critical infrastructure have been focusing on securing and protecting hard capital
resources such as facilities and technologies for a while. While studies and recognition of soft
capital (e.g., people and knowledge) has been slower than other infrastructure, many scholars start
investigating social infrastructure as a critical component for community resiliency (O’Sullivan et
al. 2013). Nakagawa and Shaw (2004) identified that both leadership and social capital are critical
attributes for rapid disaster recovery. They also investigated the relationships between three
aspects of social capital: bonding, bridging and linking (see Figure 2-12). Aldrich (2011)
highlighted that the power of people is the most robust predictor of disaster recovery performance.
Aldrich and Meyer (2014) highlighted that emergency agencies and local municipals should

strengthen social infrastructure at the community level.
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Note: the image is re-created based on the original image by (Nakagawa and Shaw 2004)

Many scholars also investigated social media, as one of social infrastructure as a communication
channel, during a disaster. Liu et al. (2014) studied emergency information channels and sources
in terms of their ability to generate desired public outcomes. Kim and Hastak (2018) demonstrated
how disaster-affected communities and external organizations were linked through social media,
and bonded together to improve information diffusion during the 2016 Louisiana flood. It is well-
recognized that governments alone cannot achieve significant, sustainable emergency information
systems.

2.3 Complex system and system modeling

Systems are defined as a sum of entities with well-defined components. In general, simple systems
are characterized by few components with their static or dynamic behaviors. It can be
understandable and predictable. For example, hauling truck systems (considered as a part of debris
management systems) can be represented by trucks (entities) and truck behaviors (components).
If hauling truck systems consist of a single hauling truck and one route (with a single point of
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origin and destination), the systems can be considered as simple systems: It can be easily
understandable and predictable. Several methods are applicable to develop a prediction model such
as mathematical modeling and simulation (Fortunato 2010; Grabowski and Strzalka 2008a).

Comparing to simple systems, complex systems have many components that collaborate to create

a functioning whole. Here are several definitions of a complex system.

"A system comprised of a (usually large) number of (usually strongly) interacting entities,
processes, or agents, the understanding of which requires the development, or the use of, new
scientific tools, nonlinear models, out of equilibrium descriptions and computer simulations."

[Advances in Complex Systems Journal]

"A system that can be analyzed into many components having relatively many relations among

them, so that the behavior of each component depends on the behavior of others. *[Herbert Simon]
"A system that involves numerous interacting agents whose aggregate behaviors are to be

understood. Such aggregate activity is nonlinear; hence, it cannot simply be derived from the

summation of individual components behavior.” [Jerome Singer]
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The comparison between simple and complex systems is described in Table 2-10.

Table 2-10 Basic properties of simple and complex systems

Simple systems

Complex systems

Specialized structures (dedicated)
deterministic, circuit switching
Algorithmic processing

Executing structure and connections
topology fitted to tasks unchanged in time
Linear scalability, unbounded system
resources

Lack of congestions and collapse
Static planning of performance, Mean
Value analysis

Process control independent of system re-
sources management

Exploitation / Physical parameters

Static or dynamic workload equalization,
but short-range dependent (post-fact)
guaranteed quality of service

Structures for general use, non-
deterministic, packet switching interactive
processing

Volatility of tasks lead to mismatch between
executing structure and connections

Non-linearity of characteristics (e.g.,
performance and response time)

Sensitivity to congestions and infections,
constant collapse

Dynamic planning of performance at the
edge of chaos

Process control and resources management
connected together

Dynamic workload equalization with long-
term control prediction

Reference: (Grabowski and Strzalka 2008b)

Borshchev and Filippov (2004) mentioned “Modeling is a way of solving real-world problems

when prototyping or experimenting within the real systems is expensive or almost impossible”.

Complex systems can be approached by analytical and simulation modeling (see Figure 2-13).
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Figure 2-13 Analytical (static) and simulation (dynamic) modeling
image from Borshchev and Filippov (2004)

Analytical (static) model: An analytical model is quantitative and computational. It represents a
system with a set of mathematical equations: it specifies parametric relationships and their
associated parameter values as a function of system parameters (e.g., time and space) (Friedenthal
et al. 2015). This process can be accomplished by modeling the underlying phenomena to predict

or assess how well the system performs or other system characteristics.

An analytical model characterizes parameter values that do not change over time. An analytical
model may be solved via a closed form solution (e.g., an equation is called as a closed-form
solution if it solves a given problem in terms of functions and mathematical operations from a
given generally-accepted set). For example, it includes the position of a point mass given an initial
position, velocity, and acceleration. Other solutions require numerical analysis methods to
determine the change in state of the system as a function of time, space, and other parameters.
Finally, parameter values can be deterministic or probabilistic. In the latter case, parameters may

be defined with an associated probability distribution.
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Simulation (dynamic): In the simulation, a modeler considers a set of rules such as equations,
flowcharts, state machines, cellular automata. It defines how the designed system will change in
the future (given its present state). That is, simulation is the process of model “execution” that
takes the model through (discrete or continuous) state changes over time. In general, simulation

modeling is better suitable for understanding complex systems where time dynamics are essential.

In a simulation, three system modeling methods are generally applied to analyze system
interdependence and performance under different scenarios; discrete event, system dynamics and

agent-based model.

Discrete Event (DE): Connelly and Bair (2004) applied discrete event simulation (DES) to
advance system-level investigation of emergency department operations. They developed the
Emergency Department SIMulation (EDSIM) to simulate ED activity at a Level 1 trauma center.
Duguay and Chetouane (2007) applied DES to reduce patient waiting times and improve overall
service delivery and system throughput. They compared multiple scenario results to identify
feasible operation planning. Siddiqui et al. (2017) illustrated that high variability in patient flow
and changing patient acuity in perianesthesia care units is a challenge to the efficient management
of nurse staffing. They applied DES to evaluate nurse staffing levels in perianesthesia care units.
They verified the application of DES at estimating staffing levels in multiple scenarios.

System Dynamics (SD): Lane et al. (2000) studied complex hospital systems including the
interaction of demand patterns, accident and emergency resource deployment, other hospital
processes, and bed numbers using system dynamics.

Peng et al. (2014) proposed a system dynamics model to analyze the dynamic behaviors of the
disaster relief supply chain by experimenting the uncertainties associated with predicting the post-
seismic road network and delayed information. Langroodi and Amiri (2016) studied multi-level,
multi-product and multi-region supply chain systems under demand uncertainty. They simulated
the supply system under normal conditions, oscillating demands, variations in price, changes in
costs, and a combination of these variations. Kim et al. (2018b) investigated the system
interdependency related to disaster debris removal including the amount of debris generation,

serviceability of transportation, facility capacity and available resources using SD.
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Agent-Based Model (ABM): Agent-base model has been used in disaster-related evacuation
models. Wagner and Agrawal (2014) investigated crowd evacuation modeling using agent-based
modeling. It allowed for multiple scenario testing and decision support for the planning and
preparedness s phase of emergency management with regards to fire disaster at concert venues.
Tan et al. (2015) also developed an agent-based simulation model by combining human behavior
with predictable spatial accessibility in a fire emergency. Wang et al. (2016) studied a multimodal
evacuation simulation for a near-field tsunami through ABM in Netlogo to identify impacts of
varying decision time on the mortality rate, different means of transportation and impacts of

vertical evacuation gates on the estimation of casualties.

A comparison of three system modeling methods is described in Table 2-11
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Table 2-11 Summary of three simulation methods including SD, DE and ABM

System dynamics
(SD)

Discrete Event
(DE)

Agent-Based Model
(ABM)

- Applied to understand complex
system behaviors for a long-term
and emergent behaviors from
feedback loop

- Applied systems having a queue
network (e.g., pedestrians or bank
service line)

- Applied to identify
interactions of agents in the
environment

g - Focus queue system ina process - Bottom-up approach
% - Understand system flows under
$  certain scenarios - Widely applied for equipment
operation
- Widely applied in policy
research at a strategic level
- Identify the relevant - Flexible to design agent - Identify emergent agent
factors that exist in complex behaviors in a system behaviors in a designed
g systems system
g - Straightforward modeling
S - Scenario testing can be approach once problem set is
& modified based in order to get clearly defined
< (gifferent results
- Not easy to represent too - Not applicable for human - Require higher
complex system with many behaviors computational skills to
components develop a large complex
o system
2 - When not easy to identify clear
% problem set from the real-world, it - Require
& ishard to implement in SD tremendous
3 efforts to design
(m)

each agent based
on observations or
dataset

Borshchev and Filippov (2004) suggested that a simulation is an appropriate tool for solving
complex problems with emergent dynamics. Fiedrich and Burghardt (2007) emphasized that
agent-based modeling can be used to support multiple phases of the disaster management from

mitigation to emergency response/recovery. Many studies have focused on generic research on

Reference: (Borshchev and Filippov 2004; Sumari and Ibrahim 2013)
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agents and possible applications in the domain of disaster management such as robocup rescue
(Kitano and Tadokoro 2001), combined systems (Veelen et al. 2006), Aladdin (Jennings et al.
2006), EQ-Rescue (Fiedrich 2006), or FireGrid/I-Rescue (Tate 2006).

2.4 Point of departure

In this chapter, this study systematically summarized cutting edge knowledge and debris
management process, related policies and regulations to handle debris generated. While many
studies explore the multifaceted and complex post-disaster management, there are few studies
developing a model adapting system-of-systems approaches to capture the complexity and
dynamics during disaster debris operation. Also, the research body still lacks a set of theories and
organized framework that will be critical for researchers, agencies and practitioners in the area of
post-disaster management. Finally, there is a need to increase the transparency of the decision
making especially with respect to compromise between engineering/technical efficiency for
social/political reality of the context: traditional methods of risk assessment to analyze dynamics
of the context and do not facilitate the integration of behavior of different actors within the decision

context.

To sum up, an effective disaster debris management system is required to cover the entire disaster
debris management operation, including the collection, processing, recycling, and disposal stages.
Disaster debris management is still understudied (Mendonca et al. 2014), despite the extent and
criticality of its impact on economic, environmental, and social dimensions of recovery plans.
Current studies underestimate emergent dynamics of debris management, social and political
dynamics associated with prioritizing its collection or disposal locations, as well as real-time
management of resources such as equipment fleets. In addition, different agencies lack established
channels to communicate debris removal strategies and operation plans as platforms for
collaboration to expedite the entire recovery process. The extent and criticality of disaster debris
management necessitate an adaptive decision support system, which reflects 1) the unexpected
impacts of a disaster, 2) characteristics of the community, its interdependent infrastructure network
and its social and political dynamics, and 3) efficient utilization of available resources and

infrastructure in real-time.
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CHAPTER 3. RESEARCH METHODOLOGY AND FRAMEWORK

3.1 Introduction

To navigate the complexity of post-disaster debris management systems, a new paradigm is
required that optimizes the debris management system by analyzing the system behaviors under
different planning and operational strategies that effectively adapt both the uncertainty of a
catastrophic event and the interdependencies within the components of the debris management
system. In this chapter, this study introduces a research framework and methodologies used for
developing an adaptive decision support system (DSS) applying an adaptive system of systems
approach for effective debris management under the considerations of the uncertainty of a

catastrophic event and the interdependency in the sub-systems of the debris management systems.

Figure 3-1 describes the proposed research methodology framework. The research methodology
framework consists of four phases: a literature review, a methodological framework for the
adaptive decision support system, the development of an adaptive decision support system, and
the application of the decision support system within debris management in the city of Baton
Rouge after the 2016 Louisiana flood.
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Phase#l |— Literature review

Debris management system Critical infrastructure System interdependency

L4 \——//_

Phase#2 Framework of adaptive Decision Support System

———————————

Phasetf3 Development of adaptive Decision Support System

Data collection Model #1 GIS Database

FEMA/USACE Model #2 Community network

State and local emergency agency Model #3 TDMS design & selection

Reports/interviews Model #4 Agent-Based Modeling

e ——————

Phase#4d |— Application of adaptive Decision Support System

Case study System evaluation Optimal debris removal strategies

Figure 3-1 Research methodology framework

3.2 Research methodology framework
3.2.1 Phase 1: Literature review

A systematic and comprehensive literature review is critical to gain a good understanding of the
complexity of disaster debris management systems, including debris cleanup processes, required
facilities and resources to transport debris, impacts of infrastructure capacity and serviceability on
the debris removal performance. This requires data/surveys/interviews to conceptualize and
construct an effective debris management system and model the system. The literature review
phase of this study addressed three main areas: disaster debris management systems, the inter-
relationship between critical infrastructure and debris management systems, and system modeling

for debris management (see Table 3-1).
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Table 3-1 Three main areas and specific topics in the literature

Area Topics

Debris removal process; type of debris; debris collection and treatment
Disaster debris options; temporary debris management sites; general issues during debris

management ) ] )
removal; factor analysis for debris/waste collection performance.

Critical Type of critical infrastructure affecting debris removal such as civil,

infrastructure civic, and social infrastructure; inter-relationship between infrastructure.

Complex systems; complex system modeling and methodologies;
System modeling ~ Simulations, including discrete events, system dynamics, and agent-based

modeling.

As further discussed in Chapter 2, there are few research articles and relevant data in the area of
disaster debris management. Thus, efforts of this study were mostly focused on collecting and
summarizing post-disaster after-action reports published by U.S. state and local agencies,
documents on FEMA’s debris removal planning and practices, news articles about debris
management during and after disasters, and interviews with officers in emergency agencies. To
examine the inter-relationship between the serviceability/capacity of critical infrastructure and
debris removal performance, this study examined past debris removal practices and articles in the
field of solid waste management. The comprehensive literature review clearly identified state of
the art within the field and gaps in knowledge in the domain of disaster debris management. The
findings strongly support the point of departure of this study, the research methodologies used,

and the framework developed.

3.2.2 Phase 2: Framework for the adaptive decision support system

Based on the comprehensive literature review on 1) disaster debris management systems, 2) the
roles of critical infrastructure and 3) system modeling methods, this study developed a framework

for an adaptive decision support system for effective disaster debris management. The framework
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consists of four modules: (i) GIS database, (ii) community structure analysis, (iii) temporary debris

management site (TDMS) network design and selection, and (iv) resource allocation and routing.
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Figure 3-2 Framework of the adaptive decision support system

Note: Adaptive DSS consists of four core modules: Modules#1-4.




Module#1 was designed to provide the required information/data for Modules#2-4, such as the
amount/location of debris generated, serviceability of road networks, community zoning systems,
and waste-related facilities. Module#2 analyzed community centrality based on the layout of the
road network, census blocks, and debris generated. These analyses supported the identification of
optimal locations for TDMSs in Module#3 and allowed prioritization of debris cleanup zones in
Module#4. In Module#3, TDMS design and selection model was designed to identify feasible
locations for installing TDMSs based on three types of decision parameters, namely technical,
environmental, and social perspectives. Agent-based modeling (ABM) was applied in Module#4
to understand the complex behaviors of debris management systems and optimize such systems
for multiple scenarios. The simulation results can be reported to decision makers for better
understanding and to support decision making. Any uncertainties during/after disasters will be
effortlessly reflected in modules in the framework. This will improve the prediction of debris
removal performance and support optimal solutions within the existing serviceability of critical

infrastructure and the locations/amount of debris generated.

3.2.3 Phase 3: Development of the adaptive decision support system
3.2.3.1 Module 1: GIS database

A database is a critical component for disaster debris management systems, and it is mainly used
to store and retrieve data/information required for debris removal planning and operations. In
debris management, most of the required data are spatial data such as the location of debris
generated, location of debris treatment facilities, and road networks. These heterogeneous spatial
data include points, lines, and polygons and can thus be managed in a GIS spatial database. Further,
multiple agencies, including USGS, FEMA, and state- and local-level emergency agencies,
provide GIS data during and after disasters that provide information about debris generated, road
network serviceability, and the status of debris cleanup. Thus, a GIS database is a feasible data
management method to store and retrieve debris-related data as well as update critical data in real-
time after disasters such as that pertaining to road traffic and blockages and other emergent
dynamics during debris removal operations. Table 3-2 outlines the data applied to the adaptive

decision support system developed in this study.
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Table 3-2 Spatial data type and sources

Data type Sources
Debris Amount; density (locations); existing debris removal plan  FEMA’s Hazus-
and operation system MH;
City of Baton
Rouge;

Local news articles
GIS Data Drainage and flood zones; road network; EBRGIS; interview
city zoning (e.g., commercial and residential);
location of facilities, including schools, hospitals,
governmental agencies, landfills, TDMSs, temporary
medical services, and evacuation centers
Resources Trucks; loaders; chippers City of Baton Rouge
LDEQ

Note:All data used in the study is open to the public.

Two types of data are stored in a GIS database: static and dynamic data (see Figure 3-3). Static
data is defined as data that does not change over time and/or after being recorded. Dynamic data
is defined as data that may change over time and is continually updated. In the context of disaster
debris management, static data includes the road network, locations of waste-related facilities, and
community zoning (e.g., residential, commercial, and industrial zoned properties). These data can
be obtained from the USGS, EPA, or GIS databases operated by the state- and city-level
governmental agencies. Dynamic data includes data generated or updated during and after a
catastrophic event, such as the amount of debris generated, debris locations, road network
blockages, and capacity and serviceability of waste-related facilities. These data can be obtained
from Google Crisis Response, city emergency agencies, and non-governmental organizations
(NGOs). The GIS database establishes a channel to provide this spatial data/information for
Modules#2-4.
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3.2.3.2 Module 2: Community structure analysis

During debris removal, it is critical to prioritize debris cleanup zones to enhance the overall debris
removal process and disaster recovery performance in general. For example, debris removal on a
highway significantly improves road network serviceability, in contrast to debris removal on local
roads that are used by few drivers on a daily basis. To quantify urban network centrality, this study
examined multiple prior studies that have established methods to measure spatial network
characteristics and urban phenomena in terms of the importance of particular junctions, the
connectedness of rooms in buildings, pedestrian traffic in a city, and the distribution of retail and

service establishments (see Table 3-3).

Table 3-3 Summary of urban network studies

Topics References

(Garrison, 1960;

Garrison and Marble, 1962;
Kansky, 1963; Haggett and
Chorley, 1969)

Importance of particular junctions in transportation networks

Flow of pedestrian traffic on street (Hillier et al., 1987)
Distributions of retail and service establishments in urban (Porta et al., 2005; Sevtsuk,
environments 2010)

The network centrality in Table 3-3 was calculated using two types of network elements: nodes
and edges. Several toolboxes are available for spatial network analysis, such as Axwoman, SANET,
MoSC, and Urban network analysis. In this study, we utilized Urban Network Analysis developed
by MIT City Form Lab (http://cityform.mit.edu) as it can be used in the GIS platform and ArcGIS

toolbox and can measure five types of centralities, namely reach, gravity, betweenness, closeness,
and straightness (Sevtsuk and Mekonnen 2012). Using Urban Network Analysis, this study
identified community zones with higher centrality and betweenness. These measurements were
applied to Modules#3 and #4 to identify optimal TDMS locations and to Module#4 to prioritize

debris removal zones.
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3.2.3.3 Module 3: TDMS selection and network design modeling

TDMSs play a critical role in debris management. Most of the debris generated is transported to a
TDMS, where it is chipped, ground or burned before being transported to final destinations such
as landfills or recycling facilities. While the installation of TDMSs has multiple positive impacts
on debris removal performance, multiple issues have been reported during their operation in the
United States, such as noise, odors, and heavy traffic near such facilities. However, most studies
have focused on either land suitability analysis based on existing policies and regulations or
technical performance. There is a lack of research integrating the multiple factors required before
and during TDMS operation to identify the optimal location of TDMSs. Based on the broad
literature review on policies, regulations, and after-action reports related to TDMSs in Chapter 2,
this study defines three performance parameters for quantification: technical, environmental, and

social performance.

Technical performance (Pr): Engineering design is defined as a systematic approach to generate,

evaluate, and specify system elements for designed or requested objectives under the consideration
of certain constraints and requirements (Dym et al. 2005). Technical performance is defined as the
measured engineering performance due to the spatial characteristics of a TDMS location. To
quantify technical performance, Kim (2014) developed a mathematical model to identify the
optimal location for a TDMS and minimize the total distance from debris generated to assigned
TDMS locations; I and ] is a set of debris pickup locations and TDMS candidate locations

respectively. Constraints are not described in the simplified model below.

Optimal TDMS location = Min Y727 ._, D; T; VielL,Vj€E]

D;T;: Distance from D; to T;
D;: Collection point of debris generated at location i
T;: TDMS candidate at location j
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Figure 3-4 Results of the TDMS design and selection model

Note: small boxes on the left refer to TDMS candidate locations. The box with the blue star (in the red circle) is identified as an optimal

TDMS location to minimize the total debris transporting distances (basic assumption: debris must be hauled from debris pickup
locations to an assigned TDMS).



As shown in Figure 3-4, the model was able to identify the optimal location of a TDMS among
multiple TDMS candidate locations. Based on the debris pickup sites and selected TDMS location,
decision makers can perform statistical analysis to determine TDMS input and output capacity.

Environmental performance (Pg): Certain debris streams may pose a risk when it is cumulated,

staged, and stored in larger quantities to human health. Thus, it is critical to locate TDMSs to
prevent any possible environmental contamination or pollution during and after TDMS operation.
For example, piles of scrap tires are a potential fire hazard and can attract disease vectors (U.S.
EPA 2019). After a disaster, scrap tires may provide a breeding habitat for insects like mosquitoes.
Most state- and local-level debris management planning is based on the EPA’s Planning for
Natural Disaster Debris (U.S. EPA 2019). In this study, the environmental performance is
designed to measure the existing and emergent regulatory performance of different areas zone
based on the EPA’s guidelines. The following list summarizes the EPA’s guidelines (U.S. EPA
2019).

I.  Sufficient size on appropriate topography and soil type
ii.  Certain distances from potable water wells, rivers, lakes, and streams
iii.  Not be established in/near the areas of 100 year floodplain and wetland
iv.  Control systems to mitigate stormwater runoff, fires, and dust.
v.  Free from any obstructions (e.g., power lines and underground pipelines)

vi.  Accessible to heavy and large equipment during operation

Social performance (Ps): Radius distance (i.e., Euclidian distance) from a TDMS location to

residential areas was measured. While a TDMS operation has multiple positive impacts on debris
management, several social issues regarding TDMS operation have been reported. For example, a
TDMS can 1) attract vectors such as rodents and other pests, 2) generate noise and odors at certain

levels considered unacceptable by residents nearby, and 3) increase traffic around TDMSs.
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3.2.3.4 Module 4: System simulation by agent-based modeling

Module#4 was designed to simulate debris cleanup operations based on the results of the previous
modules (#1-3). This included routing and resource allocation (e.g., loaders and trucks) to assess
debris removal operations. In simulation experiments, a decision maker can evaluate the efficiency
of existing or newly adjusted debris cleanup operation strategies based on the dynamic, emergent
environment after a disaster. For example, the collapse of a bridge may require the relocation of a
TDMS, which can significantly affect the overall performance of existing debris removal.
Module#4 enables decision makers to adapt easily to a dynamic environment after a disaster by

evaluating the performance of multiple debris management scenarios over time.

Module#4 employed agent-based modeling. ABM is a class of computational models for
simulating the actions and interactions of autonomous agents, including both individual and
collective entities, with a view to assessing their effects on a system as a whole (see Figure 3-5).
The purpose of ABM is to search for explanatory insights into the collective behavior of agents

obeying simple rules in natural systems and engineering problems (Borshchev and Filippov 2004).

76



Agent

® Individual or collective entities such as
w organizations or groups

Its behavior is determined by a set of rules

Environment @__' @“H‘D

Where agents interact Rules
Spaces may be discrete, continuous, or
characterized by networks

Rules are the central drivers of model
dynamics, defining how agents choose
an action, update properties, and
interact with each other and their
environment

Figure 3-5 Three critical elements of ABM

Note: The elements of the ABM model are defined based on Epstein and Axtell (1996) and Macal
and North (2010), as: (i) a set of agents: resources such as equipment, their attributes and
behaviors, (ii) a set of agent relationships and methods of interaction: an underlying topology of
connectedness defines how and with whom agents interact, and (iii) the agents’ environment:
agents interact with their environment in addition to other agents.

Simulations including discrete events, system dynamics, and ABM have been widely used in the
field of disaster management as part of decision support systems. Fiedrich and Burghardt (2007)
applied ABM to support numerous processes throughout different phases of the disaster
management cycle, from mitigation and preparation to actual response and recovery. Several
studies have focused on crossing the boundary between generic research on agents and possible
applications in the domain of disaster management such as Robocup Rescue (Kitano and Tadokoro
2001), Combined Systems (Veelen et al. 2006), Aladdin (Jennings et al. 2006), EQ-Rescue
(Fiedrich 2006), and FireGrid/I-Rescue (Tate 2006). Wagner and Agrawal (2014) investigated
crowd evacuation modeling using ABM. This allowed for multiple scenario testing and decision
support for the planning and preparedness phase of emergency management regarding fire
disasters at concert venues. Tan et al. (2015) also developed an agent-based simulation by
combining human behavior with predictable spatial accessibility in a fire emergency. Wang et al.

(2016) used Netlogo for multimodal evacuation simulation of a near-field tsunami to identify
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impacts of varying decision time on the mortality rate, different means of transportation, and
vertical evacuation gates on the estimation of casualties. Kim et al. (2018) applied system
dynamics to analyze the patterns of disaster debris removal based on multiple scenarios.Table 3-4

compares discrete event, system dynamics, and agent-based models.
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Table 3-4 Comparison of three simulation methods: SD, DE and ABM

Feature

Advantages

Disadvantages

System dynamics
(SD)

Discrete Event
(DE)

Agent-Based Model
(ABM)

- Used to gain greater
understanding of long-term
system behavior and dynamic
feedback behavior

- Focus on flow of systems in
different scenarios

- Mostly used in policy making

- Used at the strategy level

- Helps understand complex
systems

- Identifies the relevant
factors that exist in complex
systems

- Scenario testing can be
modified to get different results

-Big systems may be too
complex for the modeler to
understand

-Failure to identify problems may

- Used to enact a system that with
a queue network and to compare
and predict scenarios

- Focus on processes that involve
the use of queues

- Mostly used in decision and
prediction making

- Used at the operational/tactical
level

- Top-down approach

-Easy for users to understand
with the help of animations and
graphics built into the software
package

-Has unlimited flexibility to
determine the behavior of
entities

- Straightforward modeling once
the problem has been clearly
defined

-Less effective in showing the
impacts of variability

-Not suitable for use in
modeling related to human

cause failure when implementing a behavior

system dynamics approach

-Used to identify the
interactions and operations
among entities in realistic and
flexible ways

-Focus on the interactions that
occur in systems

-Mostly used in business areas

- Bottom-up approach

-Can capture emerging
phenomena

-Flexible to use

-Can describe a system in terms
of actual scenarios

-Involves highly skilled
computation for use in large
systems

-Involves
significant costs
for
communication

Reference: (Borshchev and Filippov 2004; Sumari and Ibrahim 2013)
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3.2.4 Phase 4: Applications of the adaptive decision support system

The adaptive decision support system developed using G1S-based ABM can be applied in many
ways. Major parameters of analysis are operation time and cost. As debris management is a part
of disaster management, it is critical for predicting the time and cost to clean up debris generated
by a disaster. This information is critical not only for emergency management teams but also for
other disaster-related agencies and affected residents. Further, the rate of debris removal in areas
over time is important to prepare for disaster recovery processes after debris removal. Finally,
debris removal monitoring based on simulation facilitates the communication of emergent results

to assist the development of alternatives and gauging the efficiency of the debris removal process.

Figure 3-6 describes the structure of the adaptive decision support system. The environment was
developed by information and data retrieved from Modules#1-3. The decision space enables users
to apply multiple rules and scenarios using agents such as regulations and policies. Based on
environment and rules settings, agents continually interact with each other until a designed time

or rule. All agents’ movements and interactions are stored, analyzed, and visualized in real time.

Agent * Agents = Resources such as loaders and trucks

Agent Space

* Disaster affected areas i
* Agents interacting in Agent Space

Decision space - <_,_,__S°dal'P°”t_ic.a|- > - T
A P < _E_rrlgineeringréa'feahnigé[___7_-_7 Managerial D >
— < 8 > Disaster recovery activity
; — . — —— (From other agencies)
E —
= o
Environment <‘ B % > TDMS locations
(Data platform) - T g T
< [=ha > Critical Infrastructure
e - T-B — - Solid Waste Management System
. [ o
< B > Community Structure Detection

Figure 3-6 Structure of the adaptive decision support system
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3.2.4.1 Debris removal zone hierarchy

Using the community network analysis in Module#2, the adaptive decision support system can
analyze debris removal start/finish time (date) for different zones (see Figure 3-7). This supports
decision makers in focusing their efforts and resources on critical zones in an emergency. It also
enables other emergency agencies to coordinate their operation plans based on debris removal
schedules.

100 %

% completed

Debris removal Time

Figure 3-7 Debris removal time for different zones

3.2.4.2 Infrastructure and resource utilization assessment

The adaptive decision support system assesses the capacity of resources and infrastructure needed
to clean up debris generated within a designated time and budget. It further analyzes daily and
weekly performance dynamics of debris removal, TDMSs, and final destinations over time. These
analyses support the development of effective debris removal operation strategies over time.

Figure 3-8 describes the types of assessments and associated variables.
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Figure 3-8 Types of assessments in the adaptive decision support system.

3.2.4.3 Debris removal cost-benefit analysis and visualization

There is a trade-off between debris removal time and cost. Adaptive SoS identifies optimal
solutions based on a given time and cost. Time and cost metrics, as controllers in the ABM, allow
the selection of priorities and the comparison of optimal solutions, considering different social and
political scenarios. A decision maker then selects an optimal solution based on various alternative

scenarios (see Figure 3-9).

Cost

Optimal
Controller

[ Time
Cost j

& ° Scenario

Analysis

Andnae
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Figure 3-9 Time-cost analysis for alternative debris removal scenarios
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Further, the proposed decision support system combines geospatial mapping of potential TDMS
locations with summaries and charts exploring tradeoffs between output metrics such as cost,
recovery time, and social acceptability. Statistical clustering analysis techniques were used in
accordance with robust decision-making principles to identify strong TDMS locations and debris
removal strategies (Groves and Lempert 2007; Lempert et al. 2006). Here, robust solutions are
those that are high performing not only across a wide range of uncertain disaster scenarios but also
across preferences in terms of cost and time tradeoffs and differences in the degree to which

technical, managerial, and socio-political considerations are prioritized.

3.2.4.4 Monitoring debris removal operations using a visualized GIS platform

Monitoring debris removal performance is critical to bridging the gap between a plan and its
implementation and operation. This enables decision makers to compare the expected amount of
debris at a certain time with the actual amount of debris (green line) in a community (see Figure
3-10). This supports emergency agencies in identifying current bottlenecks of the system and
determine the need for alternative resource allocation and additional infrastructure and resources

to expedite debris removal.
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Previous research has highlighted the importance of sharing and coordinating information between
disaster relief agencies (Bharosa et al. 2010; Kim et al. 2013, 2018b; Simon et al. 2015). The
adaptive decision support system developed with a GIS platform interactively provides multi-level

information/data to users.

3.3 Expected results

This chapter discussed the research methodology, framework, and an adaptive decision support

system for effective decision making and transformed it into a more engaged process that covers

mitigation and preparedness of response and recovery activities. The expected outcomes of this

study are:

Develop a framework for post-disaster debris management based on the concept of system
of systems,

Identify a network of interdependent infrastructure systems that influence debris removal
within a community and their relative importance,

Develop a real-time GIS database to integrate the data associated with 1 and 2 above and
make it available for analysis of the remaining objectives,

Model the selection/design of a TDMS network, including: (1) geographical characteristics
(GIS data) and interdependent infrastructure as identified in 1 and 2 above and (2)
availability of resources for debris removal,

Simulate the productivity of debris management using real-time GIS data to gain insights
on the impacts of the dynamic nature of a disaster-affected area,

Develop a visual, interactive GIS-based simulation platform for effective coordination
among agencies and monitoring of on-going debris removal operations under dynamic
conditions, and

Establish a feedback loop to incorporate real-time data on debris removal operations in the

simulation model for updating corresponding disaster management activities.

3.4 Conclusion

This chapter discussed the research methodology, framework, and applications of an adaptive

decision support system for effective decision making and monitoring of a debris management
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system over time. When developing the adaptive decision support system for effective decision
making in the uncertainty of a disaster and its impacts, it is critical to understand the characteristics
of debris management and its inter-relationship with critical infrastructure. Thus, this study
conducts a systemic review of disaster debris management systems, including the entire debris
management process, related critical infrastructure for debris removal, and complex system

modeling.

Increasing the understanding of emergency operations at the nexus of the community,
infrastructure, and the environment: Interactional elements cover broad concepts that can be added
to policy making, such as economic, environmental, social-political-institutional, as well as
engineering-technical aspects. Integrating all factors within one framework along with a real-time
simulation of the process will help emergency agencies to develop strategies at the nexus of the
communities, infrastructure, and the environment while they uncover emergent dynamics. The
proposed model aims to reflect the complexity of this nexus within the model and its simulation.
The methodology consists of four phases: a literature review, the framework of the adaptive
decision support system, development of the system, and its application. To manage city- or state-
level spatial data, a GIS database was utilized to store, retrieve, and update data before and after a
disaster. To analyze community centrality and optimal TDMS locations, GIS-based spatial
analysis methods were applied and developed. Beyond an engineering approach to identify TDMS
locations, this study defined three performance measures—technical, environmental, and social
measures—to meet the needs of entities that include emergency agencies, environmental agencies,
and residents in an affected community. Finally, to develop a simulation model for debris
management, three simulation methods were discussed in this chapter, namely discrete events,
system dynamics, and ABM. The three elements of ABM were discussed in terms of how they

were used to develop a simulation model.

The following chapters discuss the methodology for each module in detail. Chapter 4 discusses
data visualization for decision making, and Chapter 5 applies the proposed adaptive decision
support system in a case study—debris management in the city of Baton Rouge after the 2016

Louisiana flood.
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CHAPTER 4. DEVELOPMNET OF ADAPTIVE DECISION SUPPORT
SYSTEM

4.1 Introduction

Complex post-disaster debris management problems require a research methodology that
integrates multiple models and methods. As further discussed in Chapter 3, this study applied
multiple models and methods to integrate numerous community characteristics and environments
regarding civil, civic, environmental and social infrastructure and to develop an adaptive decision

support system.

This study defined the proposed decision support system for an effective debris management
system as an adaptive decision support system. In the previous studies, an adaptive decision
support system was defined as a system that is able to adapt dynamic circumstances to support (1)
decision maker’s needs, (2) the problem, and (3) the decision context (Druzdzel and Flynn 2002;
Fazlollahi et al. 1997). The effectiveness of decision support system (DSS) for debris management
can be enhanced through dynamic adaptation of circumstances affected by a catastrophic event. In
a pre-disaster scenario, the adaptive DSS runs a simulation experiment based on the given
conditions and data (e.g., debris estimation from FEMA’s Hazus-MH, road network status from
the previous flood inundated areas, available equipment). Thus, a result of simulation includes a
certain level of uncertainty. Comparing to simulation experiemnts in a pre-disaster scenario, the
performance of the adaptive DSS in a post-disaster scenario can be enhanced by up-to-date
geospatial data and information from Module#1. For example, it can reflect the exact amount of
debris on curbside from field surveys as well as the real-time road network serviceability to
transport debris on a curbside to TDMSs. As the proposed DSS can adapt these post-disaster
circumstances into a simulation experiment, this study defined the proposed DSS as an adaptive

decision support system.

This chapter discusses the four core modules of the adaptive decision support system, namely the
GIS database, community network structure analysis, spatial data analytics and optimization for
TDMS design and selection, and agent-based modeling for system simulation and optimization

(see Figure 4-1).
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4 Modules in Adaptive SoS
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GIS Database
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= Disaster debris management plan
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= . . .
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-

Spatial analysis

Decision process

Resource routing and allocation
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[%ﬂ;\ %’j&%'j& ] oW oo—lg-@
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Figure 4-1 The four core modules of the adaptive decision support system

The main functions of the adaptive decision support system are to (1) provide critical

information/data related to disaster debris management in a visualized GIS platform, (2) identify

feasible locations of TDMS, (3) perform system performance analytics and optimization, and (4)

visualize data analytics and simulation. The system strongly supports decision makers by helping

them to understand the complexity of debris removal operations and open effective lines of

communications between the involved parties. Figure 4-2 desribes the detail input and output data

processing in the adaptive decision support system.
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Figure 4-2 Input and output process in the adaptive decision support system
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Figure 4-3 describes the detail data flow and process in the adaptive decision support system. To
support multiple analysis and decision-making for an effective debris management, it consists of
four modules. As the majority of methods/analysis is based on data and information acquired in
Module#1, it is critical to acquire a reliable quality of data/information (i.e. data with lower
uncertainty). The proposed adaptive DSS is capable of experimenting debris removal operation in
a pre-disaster situation with expected disaster impacts and debris estimation from Hazus-MH. A
result may contain high uncertainty because of uncertainty in multiple components such as debris
locations/quantities, road network conditions, as well as the availability of pre-selected TDMSs.
Thus, the adaptive DSS is able to retrieve up-to-date data and information via Module#1 (GIS
database). It reflects post-disaster circumstances and impacts on a community into Modules#2-4
so that the results of simulation experiments and optimization are less uncertainty compared with

results from pre-disaster scenarios.

GIS data source Module#1 GIS database Module#2 community Module#4 Agent-based
structure analysis modeling
U.S. EPA 4 Waste-related facilities Network centrality t envi R
/ analysis . f Agent environmen
State-and local ¢ sl v
— Civil infra -
; ] Betweenness centrality
emergency agencies ﬂ analysis System experiment
FEMA Hazus-MH "‘ ’I Civicinfra y v
X Debris removal priority System optimization
Data/information after |/ Social infra | : 7
a catastrophic event .
’ Environmental infra Modulei3 TDMS design Sensitivity analysis
\ & and selectiongnodel 7
- - | _1#] GISdata
Debris estimate | . System Visualization
Land suitability analysis
v
optimal TDMS locations

Figure 4-3 Description of data flow and process in the adaptive decision support system
Note: After a catastrophic event, up-to-date information and date are stored in Module#1 (see the

red-colored box and arrows)
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4.2 Core modules of the adaptive decision support system
4.2.1 Module#l: GIS database

A GIS database is a database that is optimized for storing and querying data that represents objects
defined in a geometric space. Module#1 is designed to store all required and critical data related
to debris management so that a channel can be established to provide the data required for
Modules#2-4. There are two types of data: static and dynamic data (see Figure 4-4). Static data
refers to any data published before a disaster, and dynamic data refers to emergent data published
after a disaster. Most static data can be obtained from U.S. state and local agencies (e.g., USGS,
U.S. EPA, and DOTS5s). In the case of dynamic data, there are multiple data providers (e.g., Google
Crisis Response, ESRI, NASA).

Static Data Dynamic Data
o : * customers Emergency ; e
Vector 2 i A PESEL
<: \ - Shelter/medical . 3
streets
—
= g *
Emergency - ‘ 43
Centers T e

Raster

GIS DATABASE

Power outage

Figure 4-4 Data types in a GIS database

Static and dynamic data include vector, raster, and tables. The vector data structure is used to store
spatial data that has discrete boundaries such as county borders, land parcels, and streets. These
data comprise lines or arcs, defined by beginning and end points, that meet at nodes (QGIS 2009).
A raster consists of a matrix of cells (pixels or grid) systematized into rows and columns such as
arial and satelliate images. Each grid/cell/pixel includes a certain geospatial-related information
(It can be numeric or character features):. A table in a geodatabase is also employed to store

attributes, feature classes, and raster datasets.
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Table 4-1 Comparison of raster and vector data

Raster Vector
Raster data is generally bigger than vector Easily overlapped with other vector data if
data as to contain a value for each cell. necessary

As a raster data has its own resolution, issues  Easier to scale and project

may be encountered when overlaying

different images. much smaller file sizes comparing to raster
image files

Format includes ADRG, RPF, DRG, Esri

grid, and GeoTIFF Format includes Autocad DXF, GML,
GeoJSON, KML
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Figure 4-5 Comparison of vector and raster data

To manage data related to debris from a disaster, this study classified GIS data into four layers:
civil, civic, social, and environmental infrastructure (see Figure 4-6). Civil infrastructure includes
all types of physical infrastructure supporting human activities, such as roads, bridges, and waste-
related facilities. Civic infrastructure is associated with spatially related regulations and policies
during debris removal, such as designated areas for emergency medical and food services,
governance, police and fire department. Social infrastructure refers to any facilities providing

social services, such as schools, universities, churches, community center and hospitals.
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Environmental infrastructure includes wetlands, rivers, lakes, soil types, and other unique

environmental characteristics that should be examined before installing TDMSs.

& 2
Environmental
Community L
Other infrastructure
(a) Data structure in a GIS database
P, T l
. et : ﬂb.ﬁ Data name Data type
Ve N O < ,; — > debris Static/dynamic
- = Environmental \1"52-“‘) o - e
Community ¢ | — A oy
: \ QS Road network  Static/dynamic
Other infrastructure Pria ,‘
parcels Static
elevation Static/dynamic
Land usage Static

! Real-world

(b) Data type — static and dynamic data in a GIS database
Figure 4-6 Data structure and type in the GIS database
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For this study, the following data were stored in a GIS database (see Table 4-2).

Table 4-2 Spatial data type and sources

Data Data type Sources

structure

Civil Road network; TDMSs; landfills; recycling EBRGIS; USGS;
facilities LDEQ*

Civic EPA policies and regulations for a TDMS; city U.S. EPA,; City of
zoning (e.g., commercial and residential); Baton Rouge

Social Schools; universities

Environmental

Dynamic data

Riverline; lakes; soil type; 100- and 500-year flood
plains; slope
Debris generated; inundated areas; emergency

services

USGS; City of Baton
Rouge; LDEQ
City of Baton Rouge

*LDEQ: Louisiana Department of Environmental Quality

4.2.2 Module#2: Community structure analysis

Module#2 is designed to identify debris removal zone hierarchies in a disaster-affected community

considering multiple layers of critical infrastructure (i.e., civil, civic, social and environmental)

and the locations of the debris generated. To identify debris removal zone hierarchies, this study

employed network theory, which is the application of graph-theoretic principles to the study of

complex, dynamic interacting systems, to measure centrality (see Figure 4-7).
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nodes (or vertices)

't

edges
(or links)
e

Image from mathinsight.org
(Nykamp 2019)

Figure 4-7 Small network created by vertices and edges

Note: A network can be defined as a graph (nodes and edges have certain attributes). Network
theory is also a part of graph theory.

Network theory has been applied in multiple disciplines, including computer science, physics,,
operation and communication research. Network analysis methods are applied in urban and
regional studies only occurred in the past decade (Sevtsuk and Mekonnen 2012). In the case of the
urban street network, edges represent street segments, and nodes represent the junctions where two
or more edges interest. Sevtsuk and Mekonnen (2012) mentioned several shortcomings from
previous studies: network analysis focused on road segments, a lack of building-level analysis, and
unweighted urban network analysis. The authors developed Urban Network Analysis to measure
the importance of each node in an urban network setting: reach, gravity index, betweenness,
closeness, and straightness. As suggested by Sevtsuk and Mekonnen (2012), this study applied
betweenness centrality to identify edges (nodes) with higher centrality in a disaster-affected

community.
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Betweenness centrality measure node centrality in a graph based on the shortest paths. The

betweenness centrality of node v, Cp,, (v), is measured by the following equation:

Coew (V) = Zst O-St—(v)

Ot

where
o5t = number of shortest paths between nodes s and t

os¢(v) = number of shortest paths between nodes s and t that pass through node v

For each pair of nodes in a connected network, there exists at least one shortest path between the
nodes such that either the number of edges that the path passes through or the sum of the weights
of the edges is minimized. For example, Figure 4-8 illustrates the calculation process of

betweenness centrality (node B).

_9ap(B)  0gac(B)  ocp(B) 1 1 0
\IJ/ L oAb K oAC b ocp 1 g g 2

Figure 4-8 Betweenness centrality of Node B

With the help of computation power, betweenness centrality can be measured in a complex and
large network (see Figure 4-9). The color represents the betweenness centrality of each node (red

= min value, and blue = max value).
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Complex system Betweenness centrality

Figure 4-9 Measurement of betweenness centrality in a complex system
Note: Color (from red = min value to blue = max value) represents betweenness centrality of nodes

In an urban network, the generic betweeness centrality is slightly modified to consider building
blocks (Sevtsuk and Mekonnen 2012). Betweenness centrality in an urban network,
Betweeness " [i], of a building i in graph G estimates the number of times i lies on the shortest
path between pairs of other reachable buildings in G that lie within the network raduis r (Freeman
1977).

ng.li
Betweeness " [i] = z selt], 41]
steG—{ikd[stlsr Ms¢

where

ng; = Number of shortest paths from building block s to building block tin G

nge[i]

= the subset of these paths that pass though i,with s and t lying within the network raduis r
fromi

W[j] = the weight of a particular destination j

This study applied a weight, W[j], into particular building blocks and locations that represented

critical infrastructure (see Figure 4-10).
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sTransportation
*Power facility
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— 1 A

*Emergency medical services

Betweenness centrality

Figure 4-10 Schematic diagram of community structure analysis using network theory and
analysis - betweenness centrality

Figure 4-11 demonstrates an example of betweenness centrality results. In this example, each unit
(building) has equal weight (1). The color represents the degree of betweenness centrality, with

green signifying lower and red signifying higher betweenness centrality.
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Figure 4-11 Example of betweenness centrality measure

Note: This study used the dataset (Cambridge — Somerville) provided from the Urban Network
Analysis toolbox to test betweenness centrality analysis (with equal weight on each building block).

4.2.3 Module#3: TDMS design and selection model

Module#3 is designed to identify an optimal location for TDMSs based on data/information from
Modules#1-2. The TDMS design and selection model consists of two steps: land suitability
analysis (LSA) and facility location optimization. LSA is a GIS-based process applied to determine
the suitability of a specific area for a considered use (i.e., it determines the suitability of an area
regarding its intrinsic characteristics) (Cheng and Thompson 2016; Grzeda et al. 2014; Jafari and
Zaredar 2010; Leao et al. 2001). After determining suitable locations for installing TDMSs, the

optimal location for a TDMS among all suitable locations must be determined. For this
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determination, facility location problems, location analysis results regarding the optimal placement
of facilities (i.e., TDMS in this study) to minimize transportation costs, and multiple other

constraints in a given problem set are considered.

Step#1: Land suitability analysis

Land suitability for a TDMS is measured by three performance quantifiable parameters: technical,
environmental, and social performance. This study employed a hybrid mathematical method
integrating fuzzy and Boolean logic. Figure 4-12 describes the overall LSA process and the three

performance score systems using fuzzy and Boolean logic.

Module#3
Py : Technical F; : Social Pr : Environmental
H i ' ......
e N D
Module#1 | N N N /)
GIS Database
: Euclidean distance
v
Module#2 Reclassify R i
................. > eclassify
Community structure \ / k /
e
Weighted and combined dataset
v
Spatial analysis Sensitivity analysis
y
TDMS candidate

Figure 4-12 Model structure in Module#3

Performance score measurement

As further discussed in Chapter 3, this study defines three quantifiable performance parameters:

technical, environmental, and social performance. Technical performance (P;) measures
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engineering performance due to spatial characteristics; environmental performance (Pg) measures
the existing and emergent regulatory performance of different zones based on EPA guidelines; and
social performance (Pg) measures the social impact (e.g., noise, odor, and traffic) on residential
areas from certain TDMS locations. Figure 4-13 is a schematic diagram of three performance
measurements in spatial dimensions.

ST BeR e d, = Distance (DtoT) d, = Distance (T to F)

&~
P

| ®)

d Residential areas d

Locations of debris generatec TDV Final destination

Environmental performance P

Technical performance Pr
—

Py i

Environment

I

Figure 4-13 Measuring performance for siting TDMSs

Note: Social performance increases when a TDMS is located far from residential areas, and
technical performance varies by the locations of debris and final destinations. Environmental
performance is determined by nature and built environment in a community.

To determine the three performance scores, this study employed Fuzzy and Boolean logic: Fuzzy
logic is an approach to compute based on “degrees of truth” compared to “true or false approach”
(i.e., Boolean logic) (Duch 2005). Fuzzy logic can be represented by a sigmoid function (see
Figure 4-14).
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Figure 4-14 Sigmoid function graph

Note: Sigmoid function is a mathematical function with the characteristic of an “‘S”-shaped curve
or sigmoid curve.

In spatial analysis, there are seven types of fuzzy membership functions: gaussian, large, linear,
MS large, MS small, near, and small. In this study, Fuzzy small and MS large functions were used.
The Fuzzy small function is used when smaller input values are more likely to be a member of the
set and the Fuzzy large function is applied when larger input values are more likely to be a member
of the set (see Figure 4-15).
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Figure 4-15 Fuzzy small and MS large transformation functions for reclassifying/transforming
the input data to a 0 to 1 scale

Boolean logic is a form of algebra centered on three simple words, called Boolean operators: OR,
AND, and NOT. Thus, all values are either true or false. Figure 4-16describes how Boolean logic

is processed with the operator AND.

1| 1 B e 1|1 BN B 1 B

1 B 3|1 B8 y ide B A (B
4lo|0]|2 o|lo|2 00| 1
. RER 3l2(1]0 1 [0 1[0
Input rater data#l “AND” input raster data#2 = output raster

Figure 4-16 Illustration of Boolean logic

Note: When a cell in raster data does not have a value, the output will be NULL.: Input raster value
on raster data#1 and 2 is 4 and null. So, the output value becomes 0.

This study applied Fuzzy and Boolean logics to calculate performance scores (see Table 4-3), for

example, for road accessibility and residential areas.
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Table 4-3 Logic criteria

) o Value*
Logic Criteria* 0 L References
C1 100-year floodplain EPA (1995)
Buffer 3280
C2 Surface water/water stream LDEQ (2017)
feet (1km)
C3 Wetlands/swamp <=100 feet LDEQ (2017)
Distance from
C4 o <=1640 feet Chen and
protected/historical area Thompson (2016)
Slope
& C5 Land slope Slope > 10% Chen and
2 <=10% Thompson (2016)
3
m - -
Distance from businesses,
C6 schools, hospitals, clinics <= 300 feet LDEQ (2017)
(for chipping and grinding)
Distance from businesses,
C7 schools, hospitals, clinics <=1000 feet LDEQ (2017)
(for burning debris)
) <=10,000
C8 Airport feet LDEQ (2017)
ee
C9 Road accessibility <=1640 feet (500m) Chen and
- Thompson (2016)
N
5 Residential area (noise and 328 — 3280 feet (0.1km — Christensen,
L C10 Manfredi and
odor) 1km) Kjeldsen (2011)

* Criteria were designed based on guidelines from the U.S. EPA and LDEQ. When certain values
for a criterion were not provided (e.g., they were left up to the preference of decision makers),
values were retrieved from the other studies on the reference column on the right side.
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For example, Boolean logic is applied to C1, which is the 100-year floodplain. This means for any
cell in raster data within a 100-year floodplain, O is given to that cell. The Fuzzy small
transformation function is applied (midpoint = 500m, spread = 5) in C9.

To integrate the performance scores of each cell, the following performance scoring equation was

developed: Table 4-4 describes the detail parameter inputs for each performance score.

P=[aP; + (1— a)P;]*Pg

Table 4-4 Parameters in the performance scoring method

Parameter Description

P Total performance score

Pr =Pr (Tg , Trpms, Tr » ) Technical performance score

Ty Resource capacity (e.g., number/type of resources)
Trpums TDMS capacity (e.g., number/location of TDMS)
T, Capacity of final destinations (e.g., location, distance, capacity)
Ps =Ps (Sy,Sp,-) Social performance score
Sp Perception of need (affected or non-affected)
Sp Distance from residential areas to a TDMS
S, Social influence

Environmental regulation indicator
P; =0 :restricted, Py = 1:unrestricted

Decision makers’ preference depending on disaster severity and
a :
community needs (0 < a < 1)

Note: Decision makers’ parameter, o, is applied to give more or less weight to either technical or
social performance based on decision makers’ preference or circumstances after a catastrophic
event.

For instance, calculated performance scores are stored in a raster format (see Figure 4-17 ). Then,

the values of Py , P ,and Py are integrated into P
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Figure 4-17 Schematic diagram of the performance scoring method

Note: The cell size (spatial resolution) used in this study was 625 m? (25 x 25 m) as this is small
enough to capture TDMS locations but large enough to perform computational analysis efficiently
(Esri 2008).

Finally, this study developed a python toolbox using ArcGIS ModelBuilder (version. 10.5) to
automate the entire process of Step#1 (land suitability analysis). In general, a model in
ModelBuilder consists of at least three elements: input data (blue square), geoprocessing tools
(yellow circle), and output data (green square). Figure 4-18 demonstrates a small part of the entire

geoprocessing model in Figure 4-22.

Figure 4-18 Model developed by ArcGIS ModelBuilder for land suitability analysis
Note: the entire LSA model is described in Figure 4-22.

Based on the school dataset (blue circle - EF:hz School), Euclidean distance is calculated using

the equation in Figure 4-19.

107



True Euclidean
1 L1 Distance q

d(p, q)

Py
g1 — P

Source cells
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Figure 4-19 How to measure Euclidean distance in a raster data format

Image from By Kmhkmbh, https://commons.wikimedia.org/w/index.php?curid=67617313
Note: Euclidean distance is calculated from the center of the source cell (where schools are
located) to the center of each of the surrounding cells.

Figure 4-20 demonstrates how Euclidean distance is measured based on the source raster. The
Euclidean distance is calculated to the closest source. For instance, the values on the blue circles

on the right side are calculated based on the distance from the red-colored raster source data:

= 12 + 12

Source_raster Euc_Distance

Figure 4-20 Measuring Euclidean distance from certain raster

Note: Syntax in python: EucDistance (in_source data, {maximum_distance}, {cell size},
{out_direction_raster}). The image was downloaded from Esri ArcGIS

Output data (EucDist_School) is used as input data for the Extract by Mask function. This function

extracts the cells of a raster that corresponds to the area defined by a mask (EucDist_School).
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InRas InMas OutRas

Figure 4-21 lllustration of Extract by Mask function

Note: OutRas contains only the values in InRas under the raster with certain values in InMas. The
image was downloaded from Esri ArcGIS

The output data (Extract_School) is processed by the Reclassify function to reclassify the values
in a raster from 0 to 1.
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07T

Figure 4-22 Python toolbox to automate the entire process of land suitability analysis

Note: The detail codes in the python toolbox are described in Appendix#A.




Step#2: Optimal location of TDMS
Most of funding for debris removal are spent for transporting debris (U.S. Department of

Homeland Security 2011). Thus, it is critical to locate TDMSs to minimize the cycle time of debris-
hauling trucks: Peurifoy et al. (2010) defined the cycle time required by a truck for transport of
materials in divided into the following four elements: load, haul, dump and return time. Searching
for the optimal location of a TDMS is considered a p-median problem (Daskin and Maass 2015;
Kim et al. 2018b). A p-median problem is a specific type of a discrete location model designed to
place p facilities to minimize the (demand-weighted) average distance between a demand node
and the location in which a facility was placed. This serves as an approximation of total delivery

cost. In this model, there are no capacity constraints of the facility.

Mathematical model: This study formulates the problem set using an undirected (bi-directional)
graph G = (1,], E), where the demand nodes (i.e., locations of debris) are represented by a set of
vertices i € I, the available locations of TDMSs (determined by land suitability analysis) are
represented by another set of vertices j € J, and edges (road network) e; ; € E only exist between
vertices from i € I to those in j € J (note: the road network set, E, could be updated/revised based
on the condition of the road network before/after a disaster). Further, positive weights are given to
the edges, d;; = 0, which represents the distance (measured by the road network dataset in
Module#1) between vertices i and j (note: it is possible to have zero distance between a demand
node i and a possible facility location j). Finally, positive weights are given to the demand nodes
(i.e., the amount of debris in a pickup location) h; for i € I. In this problem set, the objective of
this mathematical model is to place p number of TDMSs to minimize the total distances between

a demand node i (debris pickup location) and its assigned TDMS ;.

Integer linear programming (ILP) was applied to solve the problem set above. This study defined

a decision variable, Y;;, which signifies which demand node, i, are serviced by which facility

location, j.

p = Number of TDMS to locate
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v = {1 if debris pickup locationi € I assigned to facility located at j € |
L 0, otherwise

Another decision variable is defined below

{1, if TDMS facilty located atj € ]
X; = :
J 0, otherwise

Given the two decision variables, this study can formulate the p-median problem as the following
ILP:

h; = amount of debris at location at i

d;; = distance from debris pickup location at i to TDMS location at j

minzz}li d;;Y;;

i€l jeJ
s.t.

ZYU =1, Vi€l

i€l

Y, —X;, <OVi€lje]

¥ -

i€l

X;; €10, 1) vjEJ

Yl] E{O: 1};;VL EI'j E]

The objective function, min Y;¢; Y je; h; d;;Y;; , minimizes the demand-weighted (i.e., weighted

j 1
by h; ) distance d;;Y;; summed over all facilities and demand notes. The first constraint,

2je; Y;j = 1, implies that a demand node i can be serviced by one facility. The second constraint,
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Y;; —X; <0, indicates that demand node i can be serviced by a facility at j, only if there is a
facility at j, because if X; =0 then it must be that Y;; =0 . The third constraint,
YjeX; =p , indicates that p  facilities should be located.  Lastly,

X;; €{0, 1},Y;; € {0, 1} forces the decision variables to be binary.

The mathematical model is, then, solved by a heuristic algorithm plugged in ArcGIS’s ArcMap
(version 10.5). The process is described below (Esri 2019):

1. Location-allocation solver generates an origin-destination matrix of shortest-path costs
between all the facilities and demand point locations along with the network.

2. It then constructs an edited version of the cost matrix by a process known as Hillsman
editing (Hillsman 1980). It enables the same overall solver heuristic to solve numerous
problem types.

3. Location-allocation solver produces a set of semi-randomized solutions and applies a
vertex substitution heuristic (Teitz and Bart 1968) to refine these solutions, creating a group
of good solutions.

4. Meta-heuristic combines this group of good solutions to create better solutions. When
additional improvement is impossible, the metaheuristic returns the best solution. The
combination of an edited matrix, semi-randomized initial solutions, a vertex substitution

heuristic, and a refining metaheuristic quickly yields near-optimal results.

This study applied the model above into a small-scale network below to illustrate the general

process.
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Figure 4-23 Description of a network example

Note: Number in a box refers to the amount of debris unit at a specific node, and a number on line
refers to distance.

The formulation for the given network dataset is below.
Minimize 10(0)Y,4 + 20(10)Yg, + 25(14) Yo, + ... + 15(0) Vi
Subject to;

Yaa <X

Ypa < X4

Yee < Xg
X4+ Xg+Xc+ Xp + Xg=p (p=1inthis example)
YAA + YAB + -+ YAE = 1

YEA + YEB + -+ YEE = 1

Xy, Xp, ., X5 € {0, 1}

Yan Ypay -, Yeg € {0, 1}

Then, facility C (14*10 + 23*20 + 17*12 + 13*15 = 999) is selected as the optimal location under

the network dataset above. .

This study involved a hypothetical scenario in which there are 10 available facilities where TDMSs

can be installed for debris removal operation and 26,513 debris pickup locations in a disaster-
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affected community. The proposed optimization model was applied to determine an optimal
TDMS location.

1,250 625 0 1,250 Metrs

Neded

e S
25 f’ﬁ"?’i‘“"
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i ?{#&0" A",
LR

%.q,

wé-,, * Debris pickup points """ e
—— cam_som_streetsd 75>

Figure 4-24 Debris pickup locations and road network

Note: Black dots represent 26,513 debris pickup locations, and red lines represent the road
network in a city. There were no road blockages in this scenario.
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The location-allocation solver generated an origin-destination matrix of shortest-path costs (i.e.,
total length in this scenario) between all the facilities (DestinationID) and demand point (OriginID)
locations along with the network. The total number of generated records in the OD matrix was
265,130 (equal to 26,513 (debris pickup points) * 10(TDMS facility locations)).

OriginlD DestinationlD DestinationRank Total_Length
268.899503
1858.031715
2799.768235
3043.921993
3884.068545
4489533028
4689.671347
4761.985769
5158.313279
6021.319463
225.344403
1814476615
2756.213135
3000.366893
3840513445
4445977928
4646.116247
4718.430669
5114758178
5977.764362
173.66878
1818.802643
2760.539163
3004.692921

NO=oOo|~ND W el ON O =N O|~NM W MNW|—=wt
W N =0l ~NM &N =000~ | =

WWWWIRIRNIMRNIRIRDIRN NN = =] ] | -

Figure 4-25 Snapshot of OD matrix created

Note: OriginelD refers to debris pickup locations, DestinationIlD refers to possible TDMS
locations, and DestinationRank refers to a rank (based on Total_Length) within a set of OriginiD.

Figure 4-26 to 4-27 describes the selected facilities (marked with a red-colored star) for each

scenario.
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Figure 4-26 Selected facility when only one TDMS is required
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Figure 4-27 Selected facilities when two TDMSs are required
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Figure 4-28 Selected facilities when three TDMSs are required
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4.2.4 Module#4 Agent-based modeling

To simulate complex post-disaster debris management systems under multiple post-disaster
scenarios, this study employed agent-based modeling. Compared to system dynamics and discrete
events, ABM has several advantages when simulating complex systems (i.e., debris management
system). These advantages include: (i) ABM captures emergent phenomena generated by either a
disaster or interactions between agents; (ii) ABM provides a natural description of a system
(bottom-up approach); and (iii) ABM is flexible to deal with emergent dynamics in complex
systems (see Figure 4-29) (Cimellaro et al. 2017; Macal and North 2008; Sumari and Ibrahim 2013;
Turrell 2016; Zheng et al. 2013).
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Figure 4-29 Comparison of simulation methods: DE, SD and ABM
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ABM consists of three basic elements: agent, environment, and rules (see Figure 4-30). The
following outlines the detailed design process of the three elements to simulate debris management

systems.

Agent
® Individual or collective entities such as
w organizations or groups
—

Its behavior is determined by a set of rules

Where agents interact Rules
Spaces may be discrete, continuous, or
characterized by networks

Rules are the central drivers of model
dynamics, defining how agents choose
an action, update properties, and
interact with each other and their
environment

Figure 4-30 Three basic elements of ABM

Four types of agents were created: debris, TDMS, truck, and landfill (see Figure 4-31). The debris
agent is created immediately after a disaster event, and locations and amounts of debris are the
main parameters. This agent is estimated based on the Federal Emergency Management Agency
(FEMA)’s Hazus-MH debris estimation tool (ver. 4.2. Service Pack 3.0). The truck agent
represents any vehicles transporting debris generated from the disaster to a designated location.
The truck agent contains two parameters: vehicle speed and capacity. The average speed of truck
is 45 miles/hour, and there are two truck capacities, namely 25 and 50 cubic yards. The TDMS
agent includes multiple debris processes (represented as discrete events) such as chipping, burning,
sorting, and storing debris. The landfill agent represents the destination of debris transported from
TDMS (e.g., landfills and recycling companies). Hourly processing time is a parameter is created

in the agent.
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Figure 4-31 Types of agents created in adaptive DSS

Figure 4-32 describes the fundamental structure of ABM. As outlined above, ABM consists of
agents, environments, and rules. In this study, the environment is designed using the GIS platform
that is created by Modules#1-2. It includes the transportation network, facility locations, and debris
locations. The decision space includes rules of agent behavior as well as multiple parameters of

agents. Finally, agents represent debris, trucks, TDMS, and landfill.

Agent * Agents = Resources such as loaders and trucks

Agent Space

* Disaster affected areas i
* Agents interacting in Agent Space
A

v S S
Decision space ( <.,__,_Sf’_cfa"P“"'l‘-a'-i_7_;) - >
A ~—_ ‘Engineering &TeEhnigjl,__ ) Managerial ) .

_ < % L > gisaste: ;ecovery yct)ivity
- -1 ) rom other agencies
v < 5 —
Environment — E- > TDMS locations
(Data platform) < B ——— -

(=l > Critical Infrastructure
e _E ; e - Solid Waste Management System

S = >

Community Structure Detection

Figure 4-32 Elements of ABM in the adaptive decision support system
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In recent years, the ABM community has developed multiple ABM toolKkits that enable individuals
to develop ABM applications, such as Netlogo, RePast, AnyLogic, and Mesa. This study
developed a tool to simulate, analyze, and visualize an ABM model with the help of AnyLogic

simulation software. Table 4-5 describes the basic icons and functions applied in the ABM model.

Table 4-5 AnyLogic icon descriptions

Icon Type Descriptions
&) Source Generates agents
()  Sink Disposes of incoming agents
@ Dela Delays agents by the specified delay time
0 Queue Stores agents in the specified order
Hold Blocks/unblocks the agent flow
=B  MoveTo Moves an agent from its current location to a new location
™  ResourcePool Provides resources seized and released by agents
Ta  Seize Seizes the certain number of units/agents
Release Releases resources previously seized by agent
@  Service Seizes resource units for the agent, delays them, and releases seized units
® ResourceTaskStart rDeZgB(EcS;etEﬁ itsstart of the flowchart branch modeling the task process for
] Resource TaskEnd  End point of flowchart
Z ResourceTask Tasks for c_ertain resources that can not be designed by functions provided
— such as failures, maintenance, and breaks
5% Enter Inserts agents created elsewhere into the flowchart
= Exit Accepts agents coming to
"%  Batch Accumulates agents, then outputs them into a new agent
A7 Unbatch Extracts all agents

Note: Detailed descriptions are in Appendix#C

A event of disaster creates an agent, debris (see Figure 4-33). There is a delay function to consider
the debris handling time from home to curbside. This study assumed that residents evacuated

before/during a disaster and returned to the community within 40 days of the disaster event (this
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http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Source.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Sink.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Delay.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Queue.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Hold.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/MoveTo.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/ResourcePool.html
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http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Service.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/ResourceTaskStart.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/ResourceTaskEnd.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/ResourceTask.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Enter.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Exit.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Batch.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Unbatch.html

part was modeled by system dynamics). A ratio of evaluated and backtocommunity was applied in

the delay function.

source queue delay sink

o B o
g event

Evaculated flow1
| e >
0 ReturnRate g ReturnRateEvent

Figure 4-33 Debris generation process in a pickup location

The TDMS agent model includes multiple debris treatment processes (see Figure 4-34). The TDMS
processing modeling represents debris pickup by truck and transportation to a TDMS. Debris
separation (at the bottom left) describes the types of debris treatments available at TDMSs:
chipping, no processing, and sorting for recycling. Two-time measurements (at the bottom right)
are designed to identify and control the idle time of equipment during a simulation. Appendix#4

describes the details of model design and codes.
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Processing modeling at TDMS
trucks [=] TruckSchedule
o Pis. #1
it timeMeasureStart1 seize LoadingDebris release timeMeasureEnd1 sink
4 <>
.. I | * 9
\_/ maveToTDMS WaitingATDMS UnloadingAtTDMS
resourceTaskEnd
! - -
| resourceTaskStart ReadyToGo  toDebris I\ /m .0
- o—I%—£&& T e
P \¢/
Debris separation 2% 15%
source selectOutputs  WaitingChipping Processing sink1 15%
i 10°%
o—e—EiF > -
.. = 5%
- MoProcessing sink2 il
0% 0%
i o @ a 0.5 1 a 0.5
v DebrisWaitingTime OnSite & TruckWaitingTimeAtTOMS
| # 2 RecycableMaterials  PickByRecycling sink3 # 3 i
i (@ WaitingTrucksATTDMS
i ﬂ g | Idle Time analytics during the operation

Figure 4-34 Processing model for TDMS agent

Note: #1 is a part of truck agent behavior (move -> load -> move -> unload -> move). #2
represents debris separation processes (e.g., sorting materials into chipping/grinding, no

processing and transporting to recycling facilities).

In the case of a large hauling truck with 50 CY hauling capacity, it is designed to transport debris
from TDMS to landfills: no type of post-processing in the landfills was considered in this study.
Batch converts multiple debris agents into one agent (see Figure 4-35). A single debris agent
represents 25CY of debris. Thus, a large truck agent hauls two debris agents (50CY debris) each

time.
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[=] LTruckSchedule
LtruckPool
© Itrucks [.] @ NumLtruck

source batch ReadyToPick seize release unbatch sink

L L0

O L)
a ]

Debris agent are processed to being picked up by a truck

moveTo > Loading \ Hauling trucks are moving back to the landfill
resourceTaskStart11 \
o0 | | \\moveTo1 WaitToUnload  Unload resourceTaskEnd11
| 31—
Hauling trucks are moving to TDMS source1 sink1

-

D

Figure 4-35 Agent behavior design of Large hauling truck

Note: LTruckSchedule refers to the operation time of trucks. For example, a user can define the
operation time as being from 8 am to 5 pm. The agents are not in operation from 5 pm to 8 am the
next day. Batch contains a certain number of debris agents.

4.3 Optimization

In ABM, an optimization experiment is vital when a decision maker needs to observe the complex
debris management system behaviors under certain conditions and scenarios, and improve system
performance. AnyLogic optimization is built on the top of OptQuest optimization engine (Laguna
2011). Thus, five steps are required to run an optimization experiment: 1) define parameters, 2)
define objective functions (e.g. minimize or maximize objective functions), 3) define requirements
and constraints, 4) specify a simulation stop condition, and 5) specify an optimization stop

condition.

Parameters: Designated parameters in the optimization model are the number of small and large
hauling trucks, loaders, and chippers for a TDMS and the amount of debris at a pickup site (see
Figure 4-36). Users can define the minimum and maximum value for each parameter. Step refers

to the parameter step in an experiment. Suggested refers to the initial value of the parameter.
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Parameters:

Value
Parameter Type Min Max Step Suggested
NumTrucks int 150 250 5 220
NumLtruck int 3 6 1 4
TdmsNu...aders int 2 7 1 5
DebrisAtUnit*  fixed 800
NumChipper int 2 8 1 4

parameter fixed

Figure 4-36 Parameter settings in an optimization experiment

Obijective function: The goal of optimization is to find the optimal parameters within available

resources under given disaster scenarios to meet the objective function. An objective function is a
mathematical expression to demonstrate the relationships of optimization parameters or the result

of an operation (such as simulation) that uses the optimization parameters as inputs. x{?“c" denotes

the utilization rate of truck, i (25 and 50 CY) the truck type, and j the truck ID. The objective

function formulated in this study is described below.

Maximize z = Z Z x{Mk viel,Vje]
jej i€l

Note: This was coded as root.tDMS.trucks.utilization() + root.LtruckPool.utilization().

The resource utilization rate is measured by ResourcePool (the icon and short description are in
Figure 4-37).

e Double getUtilization(): returns the unit utilization, which is the fraction of time the unit

was busy. The returned unit utilization value lies in the range [0, 1]. If the availability of

the resource unit is defined in the ResourcePool block by a schedule, utilization will be

calculated during the only designed operating hours of resource unit.
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|=| LTruckSchedule
LtruckPool On, next in 0.114
o ltrucks NumLtruck
0% Y %Ltrucks [4] 64

4/4 LtruckPool

root.LtruckPool: ResourcePool

source A1l units: 4 seizt
Active: 4 0
| = .
Idle _ur_'nts.. 4
0 Utilization: 0 0
Requests: 0 O\

Requests queue:

s AT ARRAR e | nac

Figure 4-37 Resource utilization (e.g., large capacity truck)

Note: The total number of trucks in the resource pool (All units: 4). Currently, all units are in idle
(idle unit: 4), and the utilization rate is 0.

Constraints and requirements: A constraint is a defined condition upon optimization parameters

- each time the optimization engine generates a new set of values from a set of parameters for the
optimization parameters, it checks whether these values satisfy the defined constraints. This
reduces a searching dimension (i.e., space or a set of solutions). A requirement is defined as an
additional restriction required for the solutions obtained from the optimization engine. Designged
requirements are checked at the end of each simulation, and if they are not satisfied with constraints
and requirements, then a set of parameters used in the specific simulation are rejected. This study
assumed certain constraints and requirements for conducting simulation studies, including truck

utilization rate, limit on the number of trucks inside a TDMS, and TDMS capacity (see Table 4-6).

Table 4-6 Constraints and requirements in the optimization model/simulation

Constraints

TDMS capacity <=500,000 CY

Number of waiting trucks in TDMS <=50

Requirements

Small and large truck utilization rate >=0.6

% of debris removal within 90 days >=0.7
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The idle time of resources (i.e., small and large hauling trucks) is measured by the time trucks wait

in line to unload/load debris at debris pickup sites, TDMSs, and landfills (see Figure 4-38).

moveToTDMS Waiting AtTDMS UnloadingAtTDMS

re
‘B B
tirNea%d t'r%sur/éd L
& &

Figure 4-38 Time measurement function in TDMS
Note: timeMeasureStart and timeMeasureEnd measure time of resources in WaitingAtTMDS.

Simulation/optimization stop condition: By default, a simulation experiment in AnyLogic never
ends. Thus, a user must define a stop condition for simulation and optimization experiments. The
most common and simple simulation stop condition is “Stopping a simulation or optimization
experiment at the specific model time”. In the field of debris management, state and local
emergency agencies have developed debris management strategies aimed at cleaning up generated

debris within 90 days because FEMA’s cost share for debris removal decreases over time.

Table 4-7 Alternative procedure for federal cost share

Debris removal work Federal cost share
1-30 days 85%
31-90 days 80 %
91-180 days 75%

Note: Federal cost share is flexible based on the severity of a disaster. For example, 100%
retroactive federal funding was approved to cover all debris removal costs, emergency protective
measures, and direct federal assistance from Oct. 10 to Nov. 24, 2018 for disaster recovery efforts
by Florida relating to Hurricane Michael (FEMA 2019b).

Thus, this study designed a simulation stop condition that ends the simulation after 90 days of

debris removal operations (see Figure 4-39): Stop in Model time is set to Stop at specified date so
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that a simulation and optimization experiment is terminated at the designated date. In this study,

the start and end dates are Aug. 10 and Nov. 8, 2016, respectively.

Model time

Execution mode: O Virtual time (as fast as possible)

(® Real time with scale 1 v

Stop: Stop at specified date v

Start time: D 2160

Start date: 8/10/2016 [~ Stop date: |11/ 8/2016 B
12:00:00 AM —~ 12:00:00 AM —~

Figure 4-39 Simulation stop condition

Note: Real time with scale refers to setting the scale value (number of model time units executed
per one second).

4.4  Graphical user interface in the adaptive DSS

Graphic user interface (GUI) is one of the critical components of ABM to visually examine the
complex system behaviors under certain parameter setting and environments. The GUI in the
adaptive decision support system consists of two parts: GIS map and system analytics (see Figure
4-40).

131



rucklUtil: 0,402 s Equip.Utilization

1 08
08 08
08 / 04
04 02
Walker
02 a+
[ 20 80 0

Port Vincs

Figure 4-40 GUI in the adaptive DSS

Note: Red marks on the map refer to debris pickup locations, TDMSs, and landfills. On the right
side, the bar graph on the top left represents small and large hauling truck utilization rates, and
the line graph on the right represents utilization rates over time (x-axis = small truck, y-axis =
large truck). The two-line graphs in the middle represent the amount of debris at TDMSs and
landfills. The graph on the bottom represents current debris on the curb and at TDMSs and
landfills.

To demonstrate the GUI, this study run a small-scale simulation and captured a screenshot on
days#1,5,10 and 15. Table 4-8 describes the parameters and values applied in the experiment.
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Table 4-8 Parameters in the simulation experiment

Parameter Value Notes
Amount of debris curbside 3 A single debris agent represents 25 CY. Value 3 refers to
75 CY of debris on each curbside
Small capacity truck (25CY) 5 -
Large capacity truck (50CY) 2 -
Loaders at TDMS 3 -
Chippers at TDMS 3 -

The following snapshots demonstrate how GUI is represented for a simulation experiment (see

Figure 4-41 (a)-(d)). The blue squares on the map represent debris pickup locations.

TOMS operation

aker 8 Xi/STONE LA 8

Watson . 04

@ STruckUtil 0
LTruckUtil 0 @ Equip.Utilization

Denham Springs 0 500 000 1500 2,000 0 500 1,000 1,500

@ Debris at TOMS @ Debis at Landfill

ao 50 60 70 0 %0

@ Debris at Landfill Debris at TOMS @ Debris on Curbside

(a) Snapshot of simulation experiment at day 1

Note: Small trucks are located at TDMSs — red circle on the GIS map. The amount of debris on
the curb increases over time as people move generated debris from their properties to the curb.
No values on the plots in the red-colored box because debris removal operation is not started yet.

133




L] PLANTATION WAY [} Aqrmmmm e 1
08
u ] . HIDDEN CABEK O] L
aker SKI'STONE i oc |
— . TWIN 0AKS ' 08
o PARKRIDGE: f
04 —
FELICIANA | . Watson 04
I BRIDLEWOOD = 02 '
PUCKETT e
L 02 e
0 L g
= VORKDALE [} JACKSON PARK: = 0 oz il
|/ CENTRAL
[DAY ACRES _ ELLENPLACE 1 i . 0 02 04 06 08 1
vy BOGANVILLA BON DICKEY_ joRTHWO0DS | i @ STruckutil 0.83
v o, L] @ LTruckutil 0.35 @ Equip. Utilization
ONHECA ] BILTMORE —
MAGNOLIA
| L ] [/ ‘ L )
| CEDAR GLEN L] 100 1,500
WINCHESTER 1] - -
| B o Howewr 3 . oA (]
looo FORTUNE <
[ogodize! . Wo0DS EDCE X cusTer N 1 1900 }
N COMITE L] S f. 50
= UDON . ] I
e VA N o S 500
L PHEBUS' “fﬂﬂlgﬂ‘(
A ) LI . o 5
— ILOARE ) % |
lokvron oPshoena | MONTICELLO Denham Springs | o 500 1,000 1,500 2,000 0 500 1,000 1,500 2,000
1M =
| L] e [ LA é( ; @ Debris at TOMS @ Debris at Landfil
fmuum OAKCREST ‘ STEVENSOALE i
B = \
s 8 8% — SHAgP. ausProre } i
i REDOAK | el s \ 9 1,500
e 5 DAK PARK. {' DONWOOD RIVERVIEW |
3 L] 2P
‘  MILLERVILLE 1,000,
A ACADIANA | = AVALON .‘ f -
| ‘ \ s 500
I warweoe e ) FAIRMONTEA PREDGEW00D
g £ASTLAND HARELSON g AEMON] ., |
= S AP == |
BOCAGE N ! S CAMELOT SP"LON\ 0
/ AV ‘Mml AFTON 0AKS e 30 40 50 60 7 80 90 100 10 120
SBORATRE T HiLL L} v . 2 ” 5
5 T soumipan =% @ Debris at Landfil  Debris at TOMS @ Debris on Curbside
WY S wnnnl awn £ =
[] PLANTATION }‘VAY ] I 1
PAK(N ESTATES
'} | L] Ll 08
] HIDDEN CREK
aker SKI/STONE J » NSl
~ L] TWIN OAKS > 06 -
o PARKRIDGE I | .
Berwoon Wats o 4 i L
— FELICIANA 1 e /atson. [
| ! BRIDLEWOOD = 02 Jr"
> | PUCKETT
02 e g
y v JACKSON PARK < 9 Cdsot
SEECHWOOD ~ — 1 YORKDALE L] et 3 R it
IDAY ACRES _ ELLEN PLACE 2 | 8 0 02 04 08 08 1
o L] % BOGANVILLA BON DICKEY_  NoRTHWOODS | @ vy
Eo o L} @ LTruckUtil 0.58 @ Equip.Utilization
ONkES L] BILTMORE —
. MAGNOLIA
] ¥ .
CEDAR GLEN L]
2 WINCHESTER ol= i 000,
HOWELL » L]
FORTUNE <
= WO0DS EOBE . gusren - ‘ | 100 2,000
- T .
T 4 COMITE, e
L} ) a 50 1,000
| » PHEBUS “ENBEOIIK L]
L] ~9
o o
qﬂlﬂ‘ﬂf — L D h Spri 4 1 1
PRSADENA | MONTICELLO enham Springs 0 500 1.000 500 2000 ] 500 000 500 2000
' ” ‘ LA ({K ) @ Debris at TDMS @ Debris at Landfill
| STEVENSDALE :
8| vl (i
LI - SHARP- susPhore L
— . L} - = 3,000
RED 0AK ASHLEY | f
= £ ok PaRK g DONWOOD. ‘ RIVERVIEW j
— L] I =
MILLERVILLE ‘ = 200
== ACADIANA = 7 AVALON = | -
: J s P 1,000
M RWEpES TaRA FAIRMONTS PWEDGEWDOD ;
EASTUAND HARELSON g SO s /
L] 2 ek — A -
BOCAGE <= = cameLor SHILOH: I 0
/ X A‘“ml AFTON DAKS 150 160 170 180 180 200 210 220 230 240
CTHE HiLL L] - Y
) TR ~9. @ Debris at Landfil ~ Debris at TOMS @ Debris on Curbside
| [ e
4 NS wanni 4

(c) Snapshot of simulation experiment at day 10

Note: Large capacity truck moves to TDMS to load debris — red circle on the GIS map.
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(d) Snapshot of simulation experiment at day 20

Figure 4-41. Snapshots of simulation at days 1, 5, 10, and 20
Note: Small capacity truck picking up debris curbside — red circle on the GIS map.

Figure 4-42 shows the GUI for an optimization experiment. On the left side, a user can see the
parameter inputs for each iteration. Objective refers to an output value of the objective function
(objective function is described in Section 4.3). The Best column shows the best outcome and
associated parameters from the iterations. On the right side, there are lines of three colors: gray,
blue, and red lines. The gray line represents the value of the objective function’s outcome. The red
line represents the best value that does not meet the constraints and requirements before/after a

simulation. The blue line represents the best outcome that meets all requirements and constraints.
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Figure 4-42 GUI for an optimization experiment

This computational experiment was conducted using a laptop with Intel Core i7-9750H @2.6 GHz,
6 core, 16GB ram. It took 5,362 seconds to complete 500 iterations to search optimal parameters
and maximize the objective function (see Figure 4-43). Optimal parameters were determined to

maximize the objective function value to 1.979 at the 269" iteration.
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Figure 4-43 Result of an optimization experiment
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4.5 Conclusion

This chapter discussed multiple methods and applications for Modules#1-4. To develop the
proposed adaptive decision support system, it was critical to use a multi-method approach. This
chapter discussed a GIS database for spatial data management, GIS-based spatial analysis for
community structure analysis, TDMS design and selection, and ABM to simulate, understand, and
optimize a complex post-disaster debris management system.

Further, this chapter discussed in detail the ABM development process, including critical elements
of ABM, simulation, optimization, and the GUI. The ABM includes four types of agents: debris,
trucks, TDMSs, and landfills. The agent rules were created based on the general debris
management process (i.e., debris pickup, transportation, and treatment at TDMSs and
transportation of debris to final destinations that include landfills, recycling, or other treatment
facilities). An environment for the agents was created based on the information and data from
Modules#2-3, including the road network and waste-related facilities. ABM simulations were
performed using AnyLogic. The simulations were designed to simulate the behavior of debris
management systems under certain scenarios. Multiple input parameters were designed, such as
the number of small and large capacity trucks, the number of loaders and chippers at TDMSs, and
the amount of debris generated in a scenario. This allows decision makers to run multiple scenarios
before or after a disaster to examine existing debris removal strategies. This enables decision
makers to examine total debris removal time, equipment utilization rates over time, and the amount
of debris on curbs and at TDMSs and landfills over time. The optimization model was developed
based on the objective function (to maximize the equipment utilization rates during debris removal
operations). Several constraints and requirements were designed to make solutions more feasible
in the real world, such as TDMS capacity, maximum equipment utilization rate (e.g., the rate
cannot be 100%), the maximum number of trucks waiting in line at a TDMS (e.g., more than 50
trucks cannot wait in line). Finally, a GUI for simulation was developed to operate the adaptive
decision support system in an effective manner. Users can observe the behaviors of the entire
debris management system through the GI1S-based GUI and track the behavior of a single agent
(e.q., debris or truck agent) over time. This allows multiple agencies and parties to communicate

and discuss disaster management planning and operations in detail.
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As discussed here, the adaptive decision support system serves all levels of post-disaster debris
management, including management, operations, and planning. It supports emergency agencies to
make effective decisions about issues that may change rapidly and cannot be easily specified in
advance (i.e., due to the uncertainty of disasters). For example, an emergency agency may be
unable to use pre-identified TDMSs after a disaster because of road blockages or disconnected
bridges. In this case, Modules#2-3 of the adaptive decision support system can identify optimal
TDMS locations based on the circumstances existing after a disaster. Further, Module#4 can assist
with optimal planning and operations with very limited availability of resources in a disaster-
affected community. This multi-level support from the adaptive decision support system has

numerous benefits for complex post-disaster debris management.
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CHAPTERS. APPLICATION OF ADAPTIVE DECISION SUPPORT
SYSTEM

5.1 Introduction

This research applied a proposed adaptive decision support system, using a case study, to
investigate the effectiveness of debris removal in the City of Baton Rouge after the 2016 Louisiana
flood. The city’s debris management strategies and practices were systematically reviewed in
terms of debris estimation and classification, temporary debris management sites (TDMSs), and
bottlenecks and other issues.

The 2016 Louisiana flood was one of the worst recorded disasters in the U.S., after Hurricane
Sandy in 2012 (Yan & Flores 2016): The slow-moving storm generated extreme rainfall and
historic flooding in multiple South Louisiana parishes. Within two days, more than two feet of rain
was measured in certain areas: The highest rainfall recorded was 31.39 inches in Watson parish
(see Figure 5-1) (The Weather Channel 2016; U.S. Department of Housing and Urban
Development 2017).
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Figure 5-1 Cumulative rainfall during August 11 to 14, 2016

Note: USGS streamflow-gaging stations (gray triangles in the figure) were used to estimate annual
exceedance probabilities.

Image from Watson et al. (2017)

Table 5-1 Total rainfalls during August 11-14, 2016 in Louisiana

Rainfall amount

# Location (inches)
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New Roads 5 NE, Pointe Coupee Parish
Opelousas, St. Landry Parish, Louisiana

Baton Rouge Metro Airport, East Baton Rouge,
Livingston, Livingston Parish, Louisiana

LSU Ben-Hur Farm, Baton Rouge, East Baton Rouge Parish
Norwood, East Feliciana Parish

Pine Grove Fire Tower, St. Helena Parish
Ponchatoula, Tangipahoa Parish

St. Francisville, West Feliciana Parish
Abbeville, Vermilion Parish

Crowley 2 NE, Acadia Parish

Jennings, Jefferson Davis Parish

Kaplan, Vermilion Parish

Lake Arthur 7 SW, Jefferson Davis Parish
Donaldsonville 4 SW, Ascension Parish
Lafayette FCWOS, Lafayette Parish

New lIberia AP-Acadiana Regional, Iberia Parish
St. Martinsville, St. Martin Parish

Jeanerette 5 NW, Iberia Parish

Dutchtown #2, Ascension Parish

Gonzales, Ascension Parish

16.07
15.83
18.07
26.33
13.07
23.02
17.55
8.61
19.38
19.05
16.96
16.94
15.23
15.59
15.59
21.35
23.03
25.10
17.88
16.90
14.54

Note: The information was reported from the National Oceanic and Atmospheric Administration
meteorological stations (https://www.ncdc.noaa.gov/data-access/land-based-station-data).

States and local agencies use information about flood zones to prepare disaster mitigation
strategies and management practices. FEMA explains a special flood hazard area as an area having
a chance of flood, equal to (or exceeding) 1% in an any given year: One percent flood chance is
referred to as a base flood or 100-year floodplain. Figure 5-2 compares the 100-year flood zone
with the estimated flood inundation area during the Louisiana flood: Multiple areas that were not

in the 100-year flood plain were inundated, which are indicated by the blue-colored areas in Figure

5-2 (b).
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Figure 5-2 100-year flood plain vs. estimated flood inundation area during the 2016 Louisiana
flood

Note: 100-year flood areas are represented in red. Inundated areas are represented in blue.
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Flooding of numerous streams and rivers resulted in at least 13 fatalities and damage to more than
60,000 homes (Yan & Flores 2016). Monetary losses were estimated to be $10 billion across
southern Louisiana and Mississippi (NCEI 2018; NOAA 2018). A couple of parishes in Louisiana
used social media to share emergency information with people affected by the disaster. For
example, the City of Baton Rouge actively used social media such as Facebook and Twitter to
deliver real-time emergency information to affected people in a timely manner. The city operated
real-time GIS maps to inform the community of estimated flood inundation areas.

The following section summarizes the overall debris management strategies and practices used in
the City of Baton Rouge. In addition, multiple issues and bottlenecks that occurred during debris
collection are discussed. This information is used as input data for a TDMS selection model as

well as agent-based modeling for analyzing and optimizing the debris removal system.

5.2 Case study: Debris management in the city of Baton Rouge
5.2.1 Debris removal strategies and practices

To reduce the financial burden of debris removal on local governments, it is critical to have
financial assistance and reimbursement from FEMA. During the flood, most of the parishes
declared a state of major disaster. In Figure 5-3, parishes eligible to receive individual and public

assistance are indicated in red, and parishes eligible for public assistance are indicated in orange.

143



FEMA-4277-DR, Louisiana Disaster Declaration as of 09/02/2016
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Figure 5-3 Louisiana areas declaring a major disaster on August 14, 2016

Note: The designated counties are Acadia (Parish), Ascension (Parish), Avoyelles (Parish), East
Baton Rouge (Parish), East Feliciana (Parish), Evangeline (Parish), Iberia (Parish), Iberville
(Parish), Jefferson Davis (Parish), Lafayette (Parish), Livingston (Parish), Pointe Coupee
(Parish), St. Helena (Parish), St. James (Parish), St. Landry (Parish), St. Martin (Parish), St.
Tammany (Parish), Tangipahoa (Parish), Vermilion (Parish), Washington (Parish), West Baton
Rouge (Parish), and West Feliciana (Parish).

Reference: (FEMA 2016c¢)

FEMA approved around $535 million for public assistance (see Table 5-2). In general, public
assistance grants can be used for emergency and permanent works. Emergency works include
debris removal and emergency protective measures, and permanent works include the restoration

of infrastructure and public facilities.

Table 5-2 FEMA assistance program statistics for Louisiana

Individual Assistance Applications Approved 83,104
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Total Individual & Households Program $776,923,661

Total Public Assistance Grants $535,835,048
Reference: (FEMA 2016c¢)

For debris clean up, more than $88 million was approved for all eligible parishes (FEMA 2017b).
FEMA planned to reimburse cities and parishes 75% of debris collection costs, with the remainder
coming from local landfill funds or reserves. The volume of debris was estimated about 4.4 million
cubic yards (CY). Three parishes, namely Ascension, East Baton Rouge, and Livingston, received

the majority of funding for debris removal (see Table 5-3).

Table 5-3 Funding for debris removal from FEMA

Parish Total amount

Ascension $7 million

East Baton Rouge $46 million ($6 million for Central)
Livingston $25 million

Note: East Baton Rouge was the most flood-affected parish in LA.

The City of Baton Rouge contracted with DRC Emergency Services, LLC to handle the debris
generated. In the early stage of debris cleanup, DRC Emergency Services, LLC operated 20 trucks
and estimated 90 working days would be required to make three passes through every
neighborhood (Rosengren 2016). The estimated cost of debris removal was $5.6 million to
transport 325,000 ~ 400,000 CY. The estimated amount of debris from one flooded house is up to
50 CY (Lau 2016a). For every cubic yard hauled, DRC made $13.98, plus $3.10 a cubic yard for
processing at a temporary staging site, according to its contract. DRC hired five to six
subcontractors who were paid $5/CY for debris pickup (Gallo et al. 2016). Each truck can haul
between 100 ~150 CY of debris, and DRC estimated 6,000 CY as the amount of debris collected
daily.

Residents in the City of Baton Rouge were asked to separate the debris generated from the flood

and place it on curbside without blocking the roadway or storm drains. They were asked to avoid

145



placing typical household trash with general debris on the day of debris pickup. Residents were

asked to separate the debris generated into five categories.

e Vegetative yard waste (tree limb, leaves, etc.)

e Household chemicals, paint, herbicides, pesticides, caustic and flammable liquids
e White goods (refrigerators, washers, dryers, stoves, and similar appliances)

e Electronic appliances (computers, laptops, televisions, stereos, etc.)

e All other solid, nonhazardous waste/debris (building materials, furniture, etc.)

Social media was used as a communication channel. Residents were also encouraged to continue
monitoring the City of Baton Rouge’s social media channels such as Facebook or Twitter to
receive updates on any progress made with debris collection along with announcements regarding
subsequent zip codes to be serviced. In particular, the city uploaded their daily debris removal
status on Facebook so that residents could easily access important information. The city also

updated a GIS map with debris removal progress and the number of truck-passes (see Figure 5-4).
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(a) GIS map for real-time debris removal status
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Images downloaded from CBR Facebook page
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While the map was supportive to check the completion of debris removal in the city, it was not
able to share upcoming debris collection efforts. Thus, residents were not able to know that when
their debris/waste on curbside will be picked up.

5.2.2 Issues during debris cleanup efforts

While the existing debris management system in Louisiana was significantly enhanced due to
experiences and practices after disaster recovery for the 2005 Hurricane Katrina, several issues
were identified during debris management for the 2016 flood in terms of debris estimation,

classification, waste-related facilities, and lack of equipment.

a. Debris estimation

Compared to other disasters, a flood results in a wide range of debris, including furniture,
construction materials, and random water-logged waste. It can be somewhat difficult to determine
the expected or current amount of debris because most of debris from floods is initailly inside of
houses and facilities. Thus, errors in debris estimates after a flood can be higher than the other
types of disasters. For example, in the city of Baton Rouge, the initial estimated amount of debris
was 325,000 to 400,000 CY, and the expected total cost was about $5.6 million (Gallo et al. 2016;
Rosengren 2016). The estimates continued to grow as people returned home and moved the
contents of their houses to the curb. A week after the initial estimate, the City of Baton Rouge
reported that the total amount of debris could be more than 800,000 CY (Lau 2016a). After a month,
DRC reported that the amount of debris in the city was about 1.3 million CY. DRC operated 134
trucks, with an additional 30 added to increase the speed of debris removal in September 2016
(Gallo 2016).

Table 5-4 Changes in debris estimates in the city of Baton Rouge

Timeline Volume Reference
Immediately after the
_ 325,000 - 400,000 CY (Rosengren 2016)
disaster
A week later 800,000 CY (Lau 2016a)
A month later 1.3 million CY (Gallo 2016)
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b. Debris classification/separation
According to debris separation guidelines by the Department of Environmental Quality (LDEQ),
construction and demolition debris does not include carpet, furniture, mattresses, and regulated

asbestos-containing materials (see Figure 5-5).

DEBRIS SEPARATION

Separate debris into the six categories shown below.

DO NOT STACK OR LEAN
Placing debris near or on trees, poles, or other structures makes
removal difficult. This includes fire hydrants and meters.

(1]
NO PI::; UNSURE WHERE TO PLACE DEBRIS?
Z0 . If you don't have a sidewalk, ditch, or utility line in front of your
1) debris house, place debris at the edge of your property before the curb.
Placed from

Separating Your Debris

Debris should be placed curbside, without blocking the roadway or storm drains.

HOUSEHOLD
HAZARDOUS WASTE
Cleaning Supplies
Batteries

ELECTRONICS

WHITE GOODS s: iComputers
......... e Radios Lawn Chemicals
1. CONSTRUCTION & Air Conditioners e Televisions Oil} .
. DEMOLITION DEBRIS Dishwashers e Devices with a cord Paint & Stain
VEGETATIVE DEBRIS Materials that are an Freezers Pesticides

integral part of the Vehicle Fluids
structure such as:

e Sheetrock/Drywall

Refrigerators
Stoves
Washers & Dryers

Branches
Limbs
Logs

HOUSEHOLD TRASH
Normal household trash

e  Plaster
and bagged debris of any Plants o  Liifiber Water Heaters
kind will not be picked up Leaves (unbagged) e Plumbing
as part of debris e Insulation
collection. This will be o Brick
collected on your normal *C&D debris does not indlude WASTE PERMITS DIVISION
e removal chedule carpet, fumiture, mattresses, FOR MORE INFORMATION CALL
and regulated asbestos

containing material. 225.364.7901

Figure 5-5 Guidelines for debris separation by LDEQ

Note: The orange-colored box outlines the construction and demolition debris category.
Image from Louisiana Department of Environmental Quality (deg.louisiana.gov)

As LDEQ did not update the definition of construction and demolition waste (C&D waste) to
include mattresses and furniture, residents were required to separate those items and pace them in
a household trash pile on the curb, as these items are sent to different landfills. This hampered
overall debris removal performance (Rosengren 2016). LDEQ later issued an emergency order to
include this debris with C&D waste (CBS 2016).

149



c. Capacity of waste-related facility

The capacity of waste-related facilities is designed based on the expected/reported amount of solid
waste in normal conditions. After a disaster, the amount of debris is generally five to ten times
greater than the annual average solid waste. Thus, multiple bottlenecks can occur during debris
cleanup efforts, such as lack of capacity and equipment or reduced serviceability due to the road
network.

For example, one landfill, Ronaldson Field, was not capable of handling the massive amount of
debris, with some trucks waiting up to two hours to unload debris. Also, illegal debris dumping
was reported by LDEQ, such as tires, carboard, mattresses, and appliances in a location other than
a landfill (LDEQ 2017).

d. Concerns from residents
Most concerns surrounding debris management come from residents living near TDMSs and
landfills and included the high volume of traffic and noise from trucks and special equipment such
as chippers, grinders, and air incinerators. During debris removal in the City of Baton Rouge,
similar complaints were reported. For example, residents near Ronaldson Field landfill complained
that trucks caused heavy traffic and difficulty when travelling to receive medical services. They
were also concerned that uncontrolled harmful materials might be buried in the landfill and cause
future health issues (Lau 2016b). Residents near Ronaldson Field landfill and TDMSs were also
concerned about the air quality during debris removal. Dermansky (2016) reported that LDEQ
monitored air quality near the North and Ronaldson Field landfills but did not provide clear

answers about air quality monitoring for the temporary debris management site.

5.2.3 TDMS operations in practice

As Ronaldson Field landfill was unable to handle the huge amount of debris input, the City of

Baton Rouge decided to open two additional TDMSs (see Figure 5-6).
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Figure 5-6 TDMS locations in the city of Baton Rouge

Note: The blue point represents Ronaldson Field landfill; the two red points represent the
locations of TDMSs (TDMS #1: 2876 N. Sherwood Forest Drive, Baton Rouge, LA. 70814; TDMS
#2: 6180 Joor Rd, Baton Rouge, LA, 70811).

These TDMSs were used to expedite debris removal. Debris in the TDMSs was then transferred
to Ronaldson Field landfill or recycling facilities. The city expected to increase the speed of daily

debris removal up to three times faster.

5.3 Method

This research conducts a case study of debris management in the City of Baton Rouge after the
2016 Louisiana flood to examine the performance of the proposed adaptive decision support

system in terms of identification of TDMS locations, system behavior analytics, and system
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optimization. The required data and information were collected from the city’s website and social

media, USGS, the US Census Bureau, and the EBR GIS database. The basic assumptions are

described in the followings:

The amount of debris generated after the flood was 1.3 million CY, and the density and
location were estimated based on the Hazus-MH debris estimation results.

There were no disconnected/damaged transportation networks in the city, and there were
no reported physical damages on the transportation network after the flood.

It is assumed that a truck agent speed (vehicle speed) was reduced to random [25,40]
mile/hr and recovered up to random [35,50] miles/hr over time (e.g., random [25,40]
generates a random number between 25 and 40 to define a truck agent speed for each trip).
There were a sufficient number of loaders to load curbside debris into hauling trucks, so
the number of loaders is not considered in this study.

The TDMS was designed with a maximum capacity of 1 million CY of debris. In addition,
the maximum required number of TDMSs in the city is limited to two because the estimated

debris generated in the city was 1.3 million CY.

Input parameters and constraints in the system optimization process are described in Table 5-5

Input parameters. Those parameter values and ranges were assumed based on the debris removal

practices discussed in Section 5.2. Under the parameters, the optimization module in AnyLogic

along with a scatter search by OptQuest, identifies optimal parameters to maximize the utilization

rate of trucks to 85%.
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Table 5-5 Input parameters

Value*
Type Step**

Min Max
Number of small trucks (Cap: 25CY) 150 250 1
Number of large trucks (Cap. 50CY) 3 50 1
Number of loaders at TDMS 2 7 1
Number of chippers/grinders at TDMS 1 10 1
Amount of debris on curbside 600 600

Note: Min, Max and Step are designed for parameter variation during simulation experiments.
*Value refers to an input parameter for each simulation experiment. For example, the min and
max value of the number of small trucks (cap:25 CY) is 150 and 250 respectively. It refers to the
number of small trucks is between 150 and 250 during simulation experiments.

**Step is a parameter step. For example, the number of loaders at TDMS will be 2,3,4,5,6, and 7
(step = 1) during simulation experiments.

5.4 Results
5.4.1 Optimal TDMS locations

Based on the information and data related to the City of Baton Rouge, land suitability analysis was
conducted to identify feasible locations of TDMSs for debris removal. To represent a score for
each grid (performance score ranges from 5 — 12), this study applied multiple color hues (blue —
white - red) for the performance scores (see Figure 5-7). The blue color hue was applied to
represent grids with lower performance scores ranging from 5 to 9. The red color hue represents
grids with higher performance scores ranging from 11-12. Areas (grids) with higher scores
represent locations where satisfy existing TDMS regulations and policies such as avoidance of

flooding areas, wetlands, and public facilities.
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Figure 5-7 Visualization of performance scores by land suitability analysis in the city of Baton
Rouge

Note: The performance score for each grid (ranging from 5 to 12) was represented by color hue
(blue —white — red). The score of blue-colored grid ranges from 5 to 9 and the score of red-colored

grid ranges from 11 to 12.

The areas with the highest scores are indicated with green-colored points (see Figure 5-8). To
verify and validate the results, all criteria related to TDMS were manually examined for the
selected areas. In addition, the selected locations were compared with satellite images from MS

Bing Maps.
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GGT

Satellite images of feasible locations

Figure 5-8 Identified feasible TDMS locations with satellite images
Note: Satellite images from MS Bing Maps (https://www.bing.com/maps).

Satellite images of feasible locations


https://www.bing.com/maps

Three different scenarios were developed based on debris removal strategies in the City of Baton
Rouge in 2016. In the beginning of debris cleanup, the city operated the landfill to collect the
debris generated and then opened two additional TDMSs to enhance debris removal performance.
As the estimated amount of debris was 1.3 million CY in the City of Baton Rouge, this research

assumed that a maximum of two TDMSs were required in addition to the existing landfill.

(a) Scenario #1: Operating a landfill only, without a TDMS
(b) Scenario #2: Operating a landfill with one TDMS
(c) Scenario #3: Operating a landfill with two TDMSs

A result of Module#3 is represented on a GIS map, and spatial data were analyzed by statistical
tools including a histogram and box plot. A histogram represents a distribution of debris from a
selected TDMS (see Figure 5-9). The x-axis represents a total distance (i.e.,Total Length)
measured by the existing road network (from TDMS to the debris pickup location). The y-axis
represents the number of debris pickup locations are in each bracket. The line on the histogram is
called a trend line describing the approximate shape of the debris’ distribution in a community. A
box plot is also a graphical method of displaying variation in a set of debris distribution data. While
a histogram analysis provides enough information on the characteristics of debris distribution, a
box plot can provide additional details such as minimum, first quartile, median, third quartile, and

maximum.
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(b) Box plot (image from towardsdatascience.com)

Note: Interquartile range (IQR) is the width of the box measured by IQR = Q5 — Q,. Outlier is
any value that lies more than 1.5 times of the length from either Q1 and Q3. Min and max are
determined by Q; — 1.5 * IQR or Q3 + 1.5 * IQR respectively.

Figure 5-9 Histogram and box plot to understand the characteristics of debris distributions

The following figures demonstrate the average distance and standard deviation (SD) to the TDMSs.
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In Scenario #1, the average distance and SD are 18.3 km and 8 km, respectively. In Scenario #2,
the average distance and SD to are 14 km and 8 km, and to TDMS #1, they are 7 km and 6 km,

respectively.
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In Scenario #3, the average distance and SD for the landfill, TDMS ,#1 and TDMS #2 are 4 km
and 2 km, 13 km and 7.8 km, and 10 km and 6 km, respectively.
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Figure 5-12 Results of Scenario #3: one landfill and two TDMSs
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The results of the three scenarios are shown in Figure 5-13. The average distances and SDs for the
results illustrate the positive impacts of siting additional TDMSs for debris removal. In Scenario
#1, the distance from the landfill to debris sites is too great, with an average distance of 18.3 km
and SD of 8 km. According to the Advocate™ (Louisiana's newspaper), it takes around two hours
for a truck to load, transport, and dump debris at a landfill. This translates into no more than four
loads/day/truck (Lau 2016c¢). By locating two TDMSs, the average hauling distances from
TDMM s to the landfill were reduced to 14 km and 10 km, respectively. In addition, the lower SD
provided more stable debris input into the TDMS by reducing the variance in the travel time of

trucks.
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Figure 5-13 Comparison of average distance and SD for the three scenarios.



This research compares the TDMS locations in the City of Baton Rouge with the results of
Scenario #3, in which one landfill and two TDMSs are in operation. The City of Baton Rouge
opened two TDMS locations (see Figure 5-14):

e TDMS #1: 2876 N. Sherwood Forest Driver, Baton Rouge, LA 70814

e TDMS #2: 6180 Joor Rd, Baton Rouge, LA 70811

Figure 5-14 TDMS locations in the City of Baton Rouge during the 2016 Louisiana flood
Note: TDMS #1 (yellow marker); TDMS #2 (red marker)

TDMS #2 indicated by the yellow marker was also selected in Scenario #3. TDMS #1, indicated
by the red marker, was not selected by Module#3 (TDMS selection and design model) because of
its low performance score; the distance from TDMS#1 to water stream

(Comite River) of only 0.5km was the reason for the low performance score.
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Next, the amount of debris assigned to each TDMSs was considered under the assumption that

debris is hauled to the closest facility based on the existing road network (see Table 5-6). In the

case of CBR’s debris removal practices, more debris was assigned to TDMSs than in Scenario #3.

Table 5-6 Comparison of debris assigned to each facility

Facility Scenario #3 CBR* Note
Ronaldson Field
8,637 6,387
landfill**
TDMS #1 - 7,250 Red marker in Figure 5-14
TDMS #2 8,282 8,652 Yellow marker in Figure 5-14
TDMS #3 5,370 -

*CBR = City of Baton Rouge
** The amount of debris assigned to the Ronaldson Field landfill includes only the debris directly
hauled to the landfill.

The average distances and SDs are outlined in Figure 5-15. In the case of the City of Baton Rouge,

there are multiple outliers for TDMS #2. This could cause unstable debris input to TDMS #2 due

to the variance of the distances from on-site debris to the TDMS (Kim et al. 2018b).
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5.4.2 Debris management system behavior and optimization

The user interface (UI) for simulation and analysis is described in Figure 5-16. The Ul enables a
user to examine agents’ behaviors, including hauling trucks, TDMSs, and landfills over time. For
example, the number of trucks waiting to unload/load debris at curbside, TDMSs, and landfills.
On the right side, the truck utilization rate and the amount of debris in TDMSs and landfills over
time are visualized. In Figure 5-16, #1 shows the utilization rate of small and large capacity trucks;
#2 describes the amount of debris on curbside (pickup locations), TDMSs, and landfills; #3 and
#4 indicate the total amount of debris in TDMSs and landfills over time; and #5 and #6 indicate

the average waiting time at curbside and TDMSs.
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Figure 5-16 User interface of the agent-based model for simulation and analysis




Based on the input parameters in Table 5-5, a simulation experiment (the number of iterations:
500) was conducted to find optimal parameters to maximize truck utilization rates. For the

objective function of the optimization, this study denoted, xfj“c", as truck utilization rate - truck

typei (25 and 50 CY) and truck ID j . The objective function used in this study is described
below (details of optimization functions, parameters and constrains were discussed in depth in
Chapter 4).

Maximize z = Z z xl-tjuc" VielLVj€E]

j€J i€l
The objective function was coded using Java below:
root.tDMS.trucks.utilization() + root.LtruckPool.utilization()

A graphical user interface (GUI) for the optimization process and results is shown in Figure 5-17.
The two columns on the left side show the current and best parameters. The current column shows
input parameters used for a current simulation experiment (i.e., values for each iteration), and the
best column shows the optimal parameters to maximize the truck utilization rate, which is the
objective of the study: It found out the optimal parameters (250, 5,4,2) at the 435" iteration (that
is the parameters resulting in the maximum utilization rates of small and large trucks out of 500

simulation experiments).
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Figure 5-17 Results of system optimization

Note: On the right side, there are three types of lines: grey, blue and red lines. The grey line
represents the value of objective function’s outcome. The red line represents the best value, but it
does not meet the constraints and requirements before/after a simulation. The blue line represents
the best outcome that meets all requirement and constraints.

Table 5-7 summarizes the optimal parameters to maximize the objective function (maximum truck
utilization rates during debris removal). The required number of large trucks were very smaller
than small trucks, 5 vs. 250. There were several reasons behind it. Firstly, the volume of debris
was reduced up to 50-75% by chippers or grinders in TDMSs. Secondly, the capacity of large
trucks is twice as large as that of small trucks (50 vs. 25 CY). Lastly, travel distance from the
TDMSs to the landfill is a fixed distance (11 miles, or 17.7 km), compared to varying distances
from debris pickup locations to TDMSs (this caused longer waiting time for unloading at certain
moments in TDMS).
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Table 5-7 Optimal parameters to maximize truck utilization rates

Parameters Value
Number of Small Trucks (Cap: 25CY) 250
Number of Large Trucks (Cap. 50CY) 5
Number of Loaders at TDMS 4
Number of Chippers/Grinders at TDMS 2
Amount of debris on at each curbside 600

A sensitivity analysis was conducted to examine impacts of the uncertainty of parameters and
environment on the behaviors of debris management system. The input parameters in the

sensitivity analysis determined based on the literature in Section 5-2 are described in Table 5-8.

Table 5-8 Input parameters for the sensitivity analysis

Parameter Type Min \ﬁgie Step*
Number of small trucks (25CY) Range 160 200 10
Number of large trucks (50CY) Range 2 4 2
Loaders at TDMS Range 2 4 1
Number of chippers at TDMS Range 1 6 1
Debris at each location Range 100 300 100

*Step value refers to an added value on exiting parameter values for a next simulation experiment.
For example, if the number of small trucks is 160 at the first simulation experiment, the number of
small trucks at the next round is 170 (=160+10). While a small value of step provides very detail
results of sensitivity analysis, it requires a tremendous amount of computational time. The
computational time will be exponentially increased by the number of parameters and step sizes.

The results are described in Figure 5-18. The amount of debris in a TDMS can range from 150,000
to 450,000 CY. The completion rate for debris removal within 90 days is 80 ~ 100%. A continuous
line on (a)~(c) represents the amount of debris in TDMS over time and the line color represents
the number of small trucks at each simulation experiment. The blue line shows the experiment
results when the number of small trucks is 160 and the red line shows experiment results when the

number of small trucks is 200. X-axis on (a)~(c) refers to simulation experiment timestep (1
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timestep represents 1 hour). Y-axis on (a)~(b) refers to the amount of debris, and the percentage
of debris clean up on (c) respectively. Figures on (d)~(f) refer to the total amount of debris at
operation day# 30, 60 and 90 in a landfill. The sensitivity analysis supports to identify the expected
amount of debris in a landfill by different operational strategies. x-axis on (d)-(f) refers to the
number of small trucks for each simulation experiment and y-axis refers to the amount of debris

in a landfill.
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Figure 5-18 Results of sensitivity analysis
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5.5 Discussion

In this research, the effectiveness of an adaptive decision support system for debris management
was demonstrated in terms of siting TDMSs and simulating debris removal operations in multiple
scenarios and optimization. The TDMS design and selection model identified two optimal TDMS
candidates; one location is the same as the actual TDMS location, and the other location is close
to the actual location of a TDMS in operation after the 2016 Louisiana flood.

In the simulation, this study considered critical parameters, including the number of trucks, loaders,
and chippers and amount of debris at each location for effective disaster debris management. The
objective function was designed to maximize truck utilization rates during debris removal. The
sensitivity analysis identified the importance of a balance between parameters. For example, for
the same number of small trucks (190), the amount of collected debris in a TDMS varied from
115,000 to 210,000 CY. Thus, emergency agencies should use a database to examine available
resources, so that they can find the optimal combination to maximize performance during an

emergency.

Despite these findings, there are several limitations on this study. The following describes the

limitations of this study and areas for future research:

Uncertainty of debris estimation: Debris estimation is the basic foundation of the process of
optimizing a debris management system as it determines the required capacity of facilities as well
as the required resources. While there are several models to estimate the amount of debris by
USACE and FEMA, the error of margin is almost always 10% or more (Escobedo et al. 2009). In
multiple after-action reports, many agencies indicated that the unexpected amount of debris
generated hampered the entire debris removal process. Thus, it is necessary to develop new
methodologies to estimate the amount of debris generated, such as real-time data collection using
UAVs and image processing for estimating the volume and type of debris located curbside, as well
as smartphone-based user input. These methods will help decision makers obtain up-to-date
information and data related to the amount of debris in a community and examine the effectiveness

of existing debris removal operation systems over time.
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Near real-time information and data related to the road network: The travel time of hauling
trucks significantly affects the overall debris removal time. This research is limited because it
applies only the average speed of trucks (between 40 and 55 miles per hour) for each truck agent.
However, travel times may differ during rush hour. Thus, there is a need to develop a method for
strategic real-time resource routing and allocation based on road condition or traffic status during
disaster recovery. It enables to reduce the overall idle time of trucks and maximize utilization rates

during debris removal operation.

TDMS design and layout: Another limitation of this study is its limited focus on TDMS location
and the optimal number of resources for a TDMS. In addition, the type of debris was limited to
recyclable and non-recyclable materials. In the real world, the debris would be more complex and
include numerous types such as hazardous materials, mixed debris, and other materials requiring
chemical or biological treatment by special equipment and trained staff. Thus, further studies are
required to design a TDMS layout that maximizes the utilization of space based on the type of
debris and need for specialized equipment. By integrating these considerations into the adaptive
decision support system, emergency agencies will have a better decision tool for effective debris

management.

5.6 Conclusion

This study applied the adaptive decision support system to a case study, namely debris removal in
the City of Baton Rouge after the 2016 Louisiana flood, to examine system performance in terms
of TDMS locations and system optimization. A sensitivity analysis was also conducted. The
comprehensive literature related to debris removal practices in the City of Baton Rouge identified
the main issues and problems during debris removal, including a lack of capacity and resources,
the installation of TDMSs to increase debris handling capacity, and unclear regulation for certain
types of debris. Based on the information and data collected, this study included the following: 1)
identification of TDMSs, 2) system optimization to maximize resource utilization rates (trucks),
and 3) sensitivity analysis to examine the uncertainty of input parameters such as the number of

available trucks, chippers, and loaders and the amount of debris generated.
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The adaptive decision support system developed by the GIS- and agent-based model would enable
decision makers to: 1) examine existing debris management system performance under multiple
uncertainties after a catastrophic event and 2) include the impacts of a disaster on a community
into the adaptive decision support system to re-examine debris removal system performance under
certain scenarios. In addition, the developed GUI of the system reflected the information and data
required by decision makers in terms of the amount of debris in TDMSs and landfills over time,
resource utilization rates (trucks), completion of debris removal in 30, 60, and 80 days, and trucks’
waiting time to unload debris. Lastly, each component in the system is designed as a single module
(agent). Other modules can be easily integrated into the system, such as material recycling systems,

layout and design of TDMS systems, and real-time traffic information.

174



CHAPTER 6. SUMMARY AND CONCLUSION

6.1 Research summary

Debris management is a critical component of successful disaster management. While there are
numerous disaster mitigation strategies and post-disaster debris management plans, they are often
difficult to implement because of the complexity of debris management during a disaster, including
(1) the uniqueness of disaster incidents and randomness of its impacts; (ii) the complexity of
disaster debris removal operations, policy, and regulations; and (iii) system interdependency of

multiple infrastructure networks.

This study systematically summarized cutting-edge knowledge about debris management
processes and related policies and regulations to handle debris generated by flooding. While many
studies have explored multi-faceted post-disaster management and its complexities, there are few
that have developed a model that adopts a system-of-systems approach to capture the complexity
and dynamics of debris removal operations after a disaster. Further, the existing body of literature
lacks a set of theories and an organized framework, which will be critical for researchers, agencies,
and practitioners in the field of post-disaster management. This study also reviewed three
simulation methods for modeling complex systems, namely discrete events, system dynamics, and
agent-based modeling. Finally, there is a need to increase the transparency of decision making,
especially with respect to compromises between engineering and technical efficiency and social
and political realities of a particular context. Traditional methods of risk assessment that analyze
the dynamics of a context do not facilitate the integration of the behavior of different actors within

the decision context.

Based on the broad literature review, this research proposed a framework for effective disaster
debris management. Within the framework, four modules were designed to systemize each process
as well integrate sub-systems into the framework. Module #1 is a geo-database to store critical
GIS data such as that on road networks and waste-related facilities as well as community-related
data. Module #2 is designed to understand the community structure using network analysis. It

enables gaining knowledge of the community structure and prioritizing debris removal works. In

175



Module #3, TDMS selection and design model are determined to identify TDMS candidates and
optimal locations using information and data from Modules #1 and 2. Module #4 involves agent-
based modeling to analyze system behavior and dynamics under multiple disaster impact and
debris removal scenarios. Hauling trucks and waste-related facilities are represented as agents, and

data and information from Modules #1 to 3 are used to build an environment for the agents.

This research conducted a case study to test and validate the outcome of the adaptive decision
support system. Data related to debris removal in the City of Baton Rouge after the 2016 Louisiana
flood was collected from news, reports, and the City of Baton Rouge. The TDMS candidates
identified during this research were used in the City of Baton Rouge for handling debris generated.
With the same amount of equipment (trucks), the estimated debris removal time was very close to
the actual time. A sensitivity analysis was also conducted to enhance model validity; this was based
on the impact of the number of trucks to haul debris to the TDMS and/or landfill over time. The
research provided optimal solutions to maximize debris removal performance under certain

constraints in terms of equipment utilization levels and TDMS and landfill capacities.

To sum up, this study applied a system-of-systems approach to develop an adaptive decision
support system to understand the behaviors and dynamics of a complex disaster debris
management system as well as optimize the system’s efficiency under certain constraints during
disaster recovery. The proposed adaptive decision support system will be beneficial for emergency
agencies and disaster-prone communities to evaluate existing disaster debris management plans as
well as maximize system performance under certain disaster scenarios. Further, the transparency
of the decision-making process for TDMSs under technical, environmental, and social perspectives
will help communities minimize opposition to building TDMSs near their areas, such as a NIMBY

approach.

6.2 Research contributions to the body of knowledge and practices

In the presence of the identified gap in the existing literature related to debris management, this
research aimed to develop an adaptive system-of-systems model for the analysis of complex debris
management systems to understand the inherent and emergent dynamics and associated
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complexities. Further, the decision support system was aimed at navigating debris removal

efficiency through modeling, simulation, and visualization of the process. The decision is modeled

at the interface of the infrastructure network and community preferences. Research contributions

to the study include:

Complex systems modeling using spatial agent-based modeling: This research developed
spatial agent-based modeling to understand a complex disaster debris management system.
This will enable decision makers to simulate the complex systems based on designed
parameters and constraints. The simulation results, optimization, and sensitivity analysis
will support their understanding of system behaviors over time and enable effective

decision making on critical components of debris management.

Integrating analysis of technical, environmental, and social dynamics into the engineering
assessment of post-disaster management: This holistic approach will add to the depth of
the solution and contribute to a systemic understanding of the emergent dynamics. The
debris removal process is modeled at the interface of community and the infrastructure
network, while the TDMS network, as the core of the process, is designed as a multi-layer
model to facilitate the integration of institutional arrangements into strategy development
and policy making. These arrangements can be integrated through institutional resources
and mechanisms in the form of penalties, rewards, or a change of utility for each actor.
Institutional elements can be regarded as a significant resource for any actor as part of the
interplay of the actors. The proposed method provides a quantified-descriptive approach
for communities to choose alternative resources or mechanisms as a modification for
strategies and policies to promote socially sustainable alternatives or prevent socially

unacceptable alternatives.

Increasing the transparency of decision making, specifically with respect to compromise
between engineering and technical efficiency for the social and environmental reality of
the context: Traditional methods of risk assessment in post-disaster management 1) lack a
combined quantitative and descriptive approach to include and analyze the dynamics of a

context and 2) do not facilitate integrations of the behaviors of different actors/parties
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within the decision context. This study attempted to reduce this gap through a multi-layer
decision model for selecting a TDMS network that considers both technical, environmental
and social aspects. Planners can apply the proposed framework to explore compromises
between different layers and increase the transparency of decisions in diverse settings, for
example, the general case of social embeddedness of infrastructure or public displacement.

This is further enhanced through the visualization of the platform.

A systemic approach to the context that involve multiple decision makers: A potential
misconception for decision makers in the public policy domain is to suppose that
consequences are solely determined by their decisions. This misconception often results in
optimism bias and negligence of the costs accompanying the emergent risks associated
with interactional dynamics. The proposed framework can facilitate a causal explanation
of lock-ins within the network and provide a foundation for the development of innovative

policies and strategies.

Increasing the understanding of emergency operations at the nexus of the community,
infrastructure, and the environment: Interactional elements cover broad concepts that can
be added to policy making, such as economic, environmental, social-political-institutional,
as well as engineering-technical aspects. Integrating all factors within one framework along
with a real-time simulation of the process will help planners to develop strategies at the
nexus of the communities, infrastructure, and the environment while they uncover
emergent dynamics. The proposed model aims to reflect the complexity of this nexus

within the model and its simulation.

Facilitating communication of different agencies to increase the chance of collaborative
behavior: Visualization is an alternative communication channel for plans, policies, and
strategies among different agencies. These agencies, with their specific agendas, can
discuss and share their (sometimes contrasting) ideas about different layers of decision with
clear variables. Furthermore, communication can be supported and validated by real-time
simulation, including unexpected bottlenecks during post-disaster debris management

operations.
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6.3 Limitations of this research and recommendations for future research

The proposed adaptive decision support system for effective disaster debris management has
several limitations in terms of debris estimation, debris removal performance prediction, and

system interdependency. The following describes the existing limitations of this research:

i.  Debris estimation methods: Hazus-MH is broadly used as a risk assessment simulation
tool, including for disaster debris estimation under multiple types of disaster scenarios.
Existing state- and local-level disaster mitigation strategies and post-disaster debris
management operations significantly depend on simulation results by Hazus-MH. Thus,
the validation and verification of disaster debris estimation by Hazus-MH are critical to
maximizing system efficiency of post-disaster debris removal operations. A typical term
of validation refers to the comparison of model outputs with observed or collected data.
While the majority of emergency agencies are aware of the importance of effective disaster
debris removal, there are few after-action reports or data that reveal details of disaster
debris removal operations during disasters. Thus, small-scale data collection through
interviews and questionnaires is required to validate existing debris removal estimation
systems and calibrate existing debris management systems. Further, rapid debris estimation
methods using images and videos as well as crowd-sourced data are needed to estimate
precisely the amount of debris after a disaster. Finally, national-, state-, and local-level

databases should be developed to share detailed data for further system analysis.

ii.  Strategies for diverse types of disaster debris: The types of debris estimated by Hazus-
MH are limited to building debris (steel, masonry, wood, and concrete) and tree debris. It
is difficult to estimate recyclable or hazardous waste from residential and industrial areas.
For example, tremendous recyclable waste was generated during the Flint, Michigan water
crisis (Wang et al. 2019). However, the city and waste-related companies did not have
sufficient facilities or equipment to handle it. Most were unable to track or transport the
waste to landfills using an appropriate process. Further, most of the after-action reports
after disasters focused on sharing the overall amount of debris generated and the cost to
handle it. They did not include information on sustainable approaches to handling

recyclable or hazardous waste during the recovery period. Thus, further research is
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necessary to review historical recyclable/hazardous debris treatment and develop
appropriate regulations and policies. A field study will be beneficial to examine specific
types of debris generated from residential and industrial areas.

System interdependency and uncertainty: This study was limited to integrated sub-
systems for disaster debris management, such as waste-related facilities, TDMSs, the road
network, and the built environment to improve the performance and prediction of debris
removal operations. While debris management is a critical component for effective disaster
management, it is also a sub-system of any disaster management system. That is, the
success of debris removal may improve disaster management system performance but
cannot guarantee post-disaster recovery success. For example, operating a certain number
of hauling trucks can trigger heavy traffic in a disaster-affected community, which could
hamper other emergency medical and supply systems. Thus, integration of debris
management into the disaster management system is necessary to improve overall

management quality as well as develop better post-disaster recovery strategies.

System uncertainty and methods: The adaptive decision support system (DSS) can be
employed in either pre- and post-disaster situations. In a pre-disaster situation, the adaptive
DSS can retrieve data and information from Hazus-MH (e.g. disaster-impact prediction
and debris estimation), historical infrastructure damages, and pre-determined TDMSs from
state- and local disaster mitigation planning books. However, multiple input data used in
the adaptive DSS would have certain level of uncertainty and variability with respect to the
actual situations. Thus, there is a need for accounting for risks (coming from the
uncertainties in system components) in the quantitative analysis and decision-making in
the adaptive decision support system. Stochastic modeling and Monte Carlo simulation
(method) will be a future research direction to provide all the possible outcomes from
coming decision-making and the impacts of risk. It allows better decision-making under
uncertainty of disaster impacts as well as debris management systems for disaster
mitigation planning. In a post-disaster situation, GIS database in Module#1 enables the
adaptive DSS to store/retrieve up-to-date data and information as available (e.g., road

network status, amount of debris on a curbside). By employing lower level of uncertainty
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in data and information, the overall performance and prediction from the adaptive DSS will

be enhanced.

Spatial and temporal scale of a simulation model: The proposed simulation model was
developed using agent-based modeling. As described in Section 2.3, agent-based modeling
is an increasingly popular method for analyzing, visualizing, and understanding system
behaviors and dynamics in complex systems. In a city-level case study, simulating the
proposed models, including single- and multi-objective optimizations and a sensitivity
analysis, took 60 ~ 500 minutes. However, there are several limitations to large-scale
simulation in terms of the huge computational power requirement compared to analytical
methods as well as the possible lack of GIS-related data required for such a simulation.
Thus, further research is required to identify specific needs of national-, state-, and local-
level agencies. This will provide guidelines to develop tailored simulation models and data
pipelines to deliver well-systematized information and results for higher- and lower-level
systems.

Database: Numerous emergency agencies recognize the crucial role of disaster-related
data and information to develop disaster mitigation strategies as well as post-disaster debris
removal operations. For example, many scholars use data from EMDAT, the International
disaster database, to examine patterns and characteristics of disaster impacts. However,
there is no agreed-upon database platform to store and share historical information and data
on debris removal operations and strategies. Developing a database related to debris
removal is essential for sharing critical information, technologies, and know-how between
researchers, agencies, and organizations. This will allow emergency agencies,
policymakers, and researchers to develop better disaster planning for preparedness,

responses, and recovery.
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APPENDIX A. DESCRIPTION OF INPUT DATA ON GEOPROCESSING

Generated on: Wed Apr 04 20:33:34 2018

‘|

Data Type:Feature Layer
Value:Environment\WETLAND

‘

Data Type Raster Layer
Value:RegionDEM_area

I

Data Type:Raster Dataset
Value:

‘

Data Type Feature Layer
Value:Utilities\EF:hzSchool

‘

Data Type:Raster Dataset
Value:

‘

Data Type Feature Layer
Value:Utilities\EF:hzEmergencyCtr

‘

Data Type Raster Dataset
Value:

‘

Data Type Feature Layer
Value:Utilities\EF:hzCareFlty

‘

Data Type: Raster Dataset
Value:

‘

Data Type Feature Layer
Value:Infrastructure\airport

‘

Data Type Raster Dataset
Value:

‘
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Model Report

Data Type:Feature Layer
Value:historiclocations

‘

Data Type Raster Dataset
Value:

‘

Data Type:Feature Layer
Value:Reaches

i

Data Type Raster Dataset
Value:

l

Data Type:Feature Layer
Value:Infrastructure\mainroads

‘

Data Type:Raster Dataset
Value:

Data Type:Feature Layer
Value:selectedresidential

‘

Data Type:Raster Dataset
Value:

‘

Data Type Feature Layer
Value:UNDareas

‘

Data Type:Raster Dataset
Value:

‘

Data Type:Feature Layer
Value:Floodlayers\100 year floodplan

‘

Data Type:Raster Dataset
Value:

‘

Data Type Raster Layer
Value:Extract_Slop1

{

Data Type: Raster Dataset
Value:C:\Users\jooho\Google Drive\GISdata\BR.gdb\Reclass_slope

i

file:///C|/Users/jocho/Desktop/report.xml#[4/4/2018 8:34:06 PM]
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Model Report

Data Type:Raster Dataset

Value:C:\Users\jooho\Google Drive\GISdata\BR.gdb\EucDist_wetland
H Extract_wetland

Data Type:Raster Dataset

Value:C:\Users\jooho\Google Drive\GISdata\BR.gdb\Extract_wetland
7] Reclass_wetland

Data Type:Raster Dataset

Value:C:\Users\jooho\Google Drive\GISdata\BR.gdb\Reclass_wetland
(2] EucDist_School

Data Type:Raster Dataset

Value:C:\Users\jooho\Google Drive\GISdata\BR.gdb\EucDist_School
(2] Extract_school

Data Type:Raster Dataset

Value:C:\Users\jooho\Google Drive\GISdata\BR.gdb\Extract_school
(2] Reclass_school

Data Type:Raster Dataset

Value:C:\Users\jooho\Google Drive\GISdata\BR.gdb\Reclass_school
E EucDist_EmergencyCtr

Data Type:Raster Dataset

Value:C:\Users\jooho\Google Drive\GISdata\BR.gdb\EucDist_EmergencyCtr
L] Extract_emergencycare

Data Type:Raster Dataset

Value:C:\Users\jooho\Google Drive\GISdata\BR.gdb\Extract_emergencycare
2] Reclass_emergencycare

Data Type:Raster Dataset

Value:C:\Users\jooho\Google Drive\GISdata\BR.gdb\Reclass_emergencycare
H EucDist_hzCareFlty

Data Type:Raster Dataset

Value:C:\Users\jooho\Google Drive\GISdata\BR.gdb\EucDist_hzCareFlty
E Extract_hzCareFlty

Data Type:Raster Dataset

Value:C:\Users\jooho\Google Drive\GISdata\BR.gdb\Extract_hzCareFlty
H Reclass_hzCareFlty

Data Type:Raster Dataset

Value:C:\Users\jooho\Google Drive\GISdata\BR.gdb\Reclass_hzCareFlty
H EucDist_airport

Data Type:Raster Dataset

Value:C:\Users\jooho\Google Drive\GISdata\BR.gdb\EucDist_airport
H Extract_airport

Data Type:Raster Dataset

Value:C:\Users\jooho\Google Drive\GISdata\BR.gdb\Extract_airport

E Reclass_airport

file:///C|/Users/jooho/Desktop/report. xml#[{4/4/2018 8:34:06 PM]
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Model Report

Data Type:Raster Dataset

Value:C:\Users\jooho\Google Drive\GISdata\BR.gdb\Reclass_airport
H EucDist_historicplaces

Data Type:Raster Dataset

Value:C:\Users\jooho\Google Drive\GISdata\BR.gdb\EucDist_historicplaces
E Extract_historicplaces

Data Type:Raster Dataset

Value:C:\Users\jooho\Google Drive\GISdata\BR.gdb\Extract_historicplaces
E Reclass_historicplaces

Data Type:Raster Dataset

Value:C:\Users\jooho\Google Drive\GISdata\BR.gdb\Reclass_historicplaces
.glEucDist_UNDareas

Data Type:Raster Dataset

Value:C:\Users\jooho\Google Drive\GISdata\BR.gdb\EucDist_UNDareas
(2] Extract_UNDareas

Data Type:Raster Dataset

Value:C:\Users\jooho\Google Drive\GISdata\BR.gdb\Extract_UNDareas
ERecIass_UNDareas

Data Type:Raster Dataset

Value:C:\Users\jooho\Google Drive\GISdata\BR.gdb\Reclass_UNDareas
L] EucDist_floodplan

Data Type:Raster Dataset

Value:C:\Users\jooho\Google Drive\GISdata\BR.gdb\EucDist_floodplan
7] Extract_floodplan

Data Type:Raster Dataset

Value:C:\Users\jooho\Google Drive\GISdata\BR.gdb\Extract_floodplan
E Reclass_floodplan

Data Type:Raster Dataset

Value:C:\Users\jooho\Google Drive\GISdata\BR.gdb\Reclass_floodplan
H EucDist_reaches

Data Type:Raster Dataset

Value:C:\Users\jooho\Google Drive\GISdata\BR.gdb\EucDist_reaches
H Extract_reaches

Data Type:Raster Dataset

Value:C:\Users\jooho\Google Drive\GISdata\BR.gdb\Extract_reaches
H Reclass_reaches

Data Type:Raster Dataset

Value:C:\Users\jooho\Google Drive\GISdata\BR.gdb\Reclass_reaches
Hweighte_Recl1

Data Type:Raster Dataset

Value:C:\Users\jooho\Google Drive\GISdata\BR.gdb\Weighte_Recl1

H EucDist_residential

file:///C|/Users/jooho/Desktop/report. xml#[{4/4/2018 8:34:06 PM]
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Model Report

Data Type:Raster Dataset

Value:C:\Users\jooho\Google Drive\GISdata\BR.gdb\EucDist_residential
xExtract_residentiaI

Data Type:Raster Dataset

Value:C:\Users\jooho\Google Drive\GISdata\BR.gdb\Extract_residential
E FuzzyMe_residential

Data Type:Raster Dataset

Value:C:\Users\jooho\Google Drive\GISdata\BR.gdb\FuzzyMe_residential
EEucDist_mainroads

Data Type:Raster Dataset

Value:C:\Users\jooho\Google Drive\GISdata\BR.gdb\EucDist_mainroads
LEExtract_roads

Data Type:Raster Dataset

Value:C:\Users\jooho\Google Drive\GISdata\BR.gdb\Extract_roads
H FuzzyMe_mainroad

Data Type:Raster Dataset

Value:C:\Users\jooho\Google Drive\GISdata\BR.gdb\FuzzyMe_mainroad
E TDMSlocations

Data Type:Raster Dataset
Value:C:\Users\jooho\Google Drive\GISdata\BR.gdb\TDMSlocations

Processes

H Euclidean Distance

Tool Name:Euclidean Distance
Tool Source:c:\program files (x86)\arcgis\desktop10.5\ArcToolbox\Toolboxes\Spatial Analyst
Tools.tbx\Distance\EucDistance

E parameters:
Name Direction|| Type | Data Type Value

Input raster or feature |[Input Required||Composite  |[Environment\WETLAND

source data Geodataset

Output distance raster ||Output |Required||Raster C:\Users\jooho\Google
Dataset Drive\GISdata\BR.gdb\EucDist_wetland

Maximum distance Input  |[Optional [Double

Output cell size Input ”Optional Analysis Cell [183.446565810442
Size

Output direction raster |Output |Optional ||Raster
Dataset

Messages:

[#| Executing (Euclidean Distance): EucDistance Environment\WETLAND
"C:\Users\jooho\Google Drive\GISdata\BR.gdb\EucDist_wetland" #
183.446565810442 #

file:///C|/Users/jooho/Desktop/report. xml#[{4/4/2018 8:34:06 PM]
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Model Report

Start Time: Tue Jul 11 17:22:28 2017
Succeeded at Tue Jul 11 17:22:29 2017 (Elapsed Time: 1.23 seconds)

H Euclidean Distance (2)

Tool Name:Euclidean Distance
Tool Source:c:\program files (x86)\arcgis\desktop10.5\ArcToolbox\Toolboxes\Spatial Analyst
Tools.tbx\Distance\EucDistance

E parameters:
Name Direction|| Type || Data Type Value

Input raster or feature |[Input Required|[Composite Utilities\EF:hzSchool

source data Geodataset

Output distance raster |Output |Required||Raster C:\Users\jooho\Google
Dataset Drive\GISdata\BR.gdb\EucDist_School

Maximum distance Input |[Optional [[Double

Output cell size Input “Optional Analysis Cell |[183.446565810442
Size

Output direction raster ([Output “Optional Raster
Dataset

]

Messages:

Executing (Euclidean Distance (2)): EucDistance Utilities\EF:hzSchool
"C:\Users\jooho\Google Drive\GISdata\BR.gdb\EucDist_School" # 183.446565810442
#

Start Time: Tue Jul 11 17:22:29 2017
[E@ Succeeded at Tue Jul 11 17:22:30 2017 (Elapsed Time: 0.88 seconds)

H Euclidean Distance (3)

Tool Name:Euclidean Distance
Tool Source:c:\program files (x86)\arcgis\desktop10.5\ArcToolbox\Toolboxes\Spatial Analyst
Tools.tbx\Distance\EucDistance

H parameters:

Name Direction|| Type || Data Type Value
Input raster or Input Required||Composite ||Utilities\EF:hzEmergencyCtr
feature source Geodataset
data
Output distance Output |Required||Raster C:\Users\jooho\Google
raster Dataset Drive\GISdata\BR.gdb\EucDist_EmergencyCtr
Maximum distance|[Input  |[Optional [Double
Output cell size  |[[Input ”Optional Analysis Cell|[183.446565810442

Size

Output direction |Output |Optional ||Raster
raster Dataset
@Messages:

file:///C|/Users/jooho/Desktop/report. xml#[{4/4/2018 8:34:06 PM]
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Executing (Euclidean Distance (3)): EucDistance Utilities\EF:hzEmergencyCtr

"C:\Users\jooho\Google Drive\GISdata\BR.gdb\EucDist_EmergencyCtr" #

183.446565810442 #

E =

HE Euclidean Distance (4)

Start Time: Tue Jul 11 17:22:30 2017
Succeeded at Tue Jul 11 17:22:31 2017 (Elapsed Time: 0.63 seconds)

Tool Name:Euclidean Distance
Tool Source:c:\program files (x86)\arcgis\desktop10.5\ArcToolbox\Toolboxes\Spatial Analyst
Tools.tbx\Distance\EucDistance

H parameters:

Name Direction|| Type || Data Type Value
Input raster or Input Required|[Composite  |[Utilities\EF:hzCareFlty
feature source data Geodataset

Output distance

Output uRequired”Raster

C:\Users\jooho\Google

raster Dataset Drive\GISdata\BR.gdb\EucDist_hzCareFlty
Maximum distance |[Input  |[Optional [Double
Output cell size Input qutionaI Analysis Cell |[183.446565810442
Size
Output direction Output ||Optional ||Raster
raster Dataset
E Messages:

Executing (Euclidean Distance (4)): EucDistance Utilities\EF:hzCareFlty
"C:\Users\jooho\Google Drive\GISdata\BR.gdb\EucDist_hzCareFlty" #

183.446565810442 #

Start Time: Tue Jul 11 17:22:31 2017
Succeeded at Tue Jul 11 17:22:32 2017 (Elapsed Time: 0.61 seconds)

E Euclidean Distance (5)

Tool Name:Euclidean Distance
Tool Source:c:\program files (x86)\arcgis\desktop10.5\ArcToolbox\Toolboxes\Spatial Analyst
Tools.tbx\Distance\EucDistance

H parameters:
Name |Direction|| Type || Data Type | Value

Input raster or feature |[Input Required|[Composite Infrastructure\airport

source data Geodataset

Output distance raster |[Output |[Required||Raster C:\Users\jooho\Google
Dataset Drive\GISdata\BR.gdb\EucDist_airport

Maximum distance Input  |[Optional [Double

Output cell size Input ”Optional Analysis Cell |[183.446565810442
Size

Output direction raster ||Output |Optional |Raster
Dataset

file:///C|/Users/jooho/Desktop/report. xml#[{4/4/2018 8:34:06 PM]
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H Messages:

Executing (Euclidean Distance (5)): EucDistance Infrastructure\airport
"C:\Users\jooho\Google Drive\GISdata\BR.gdb\EucDist_airport" # 183.446565810442
#

Start Time: Tue Jul 11 17:22:32 2017
[B| Succeeded at Tue Jul 11 17:22:32 2017 (Elapsed Time: 0.61 seconds)

H Euclidean Distance (6)

Tool Name:Euclidean Distance
Tool Source:c:\program files (x86)\arcgis\desktop10.5\ArcToolbox\Toolboxes\Spatial Analyst
Tools.tbx\Distance\EucDistance

H parameters:
Name Direction| Type || Data Type || Value
Input raster or Input Required|[Composite |historiclocations
feature source Geodataset
data
Output distance Output ||Required|[Raster C:\Users\jooho\Google
raster Dataset Drive\GISdata\BR.gdb\EucDist_historicplaces

Maximum distance |Input Optional |[Double
Output cell size Input Optional ||Analysis Cell ||183.446565810442

Size
Output direction Output ||Optional |[Raster
raster Dataset

.
Messages:

B Executing (Euclidean Distance (6)): EucDistance historiclocations
"C:\Users\jooho\Google Drive\GISdata\BR.gdb\EucDist_historicplaces" #
183.446565810442 #

@ Start Time: Tue Jul 11 17:22:33 2017
Succeeded at Tue Jul 11 17:22:33 2017 (Elapsed Time: 0.66 seconds)

E Euclidean Distance (7)

Tool Name:Euclidean Distance
Tool Source:c:\program files (x86)\arcgis\desktop10.5\ArcToolbox\Toolboxes\Spatial Analyst
Tools.tbx\Distance\EucDistance

H parameters:

Name Direction| Type || Data Type || Value
Input raster or feature |Input Required|Composite  [|Reaches
source data Geodataset
Output distance raster [Output [Required|[Raster C:\Users\jooho\Google

Dataset Drive\GISdata\BR.gdb\EucDist_reaches

Maximum distance Input  [Optional ||[Double
Output cell size Input  |[Optional ||Analysis Cell [[183.446565810442
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[ Size
Output direction raster |[Output |[[Optional |[Raster
Dataset
Messages:

[E Executing (Euclidean Distance (7)): EucDistance Reaches "C:\Users\jooho\Google
Drive\GISdata\BR.gdb\EucDist_reaches" # 183.446565810442 #

[E Start Time: Tue Jul 11 17:22:33 2017
[E@ Succeeded at Tue Jul 11 17:22:34 2017 (Elapsed Time: 0.63 seconds)

E Euclidean Distance (8)

Tool Name:Euclidean Distance

Tool Source:c:\program files (x86)\arcgis\desktop10.5\ArcToolbox\Toolboxes\Spatial Analyst
Tools.tbx\Distance\EucDistance

H parameters:

Name Direction|| Type || Data Type Value
Input raster or Input Required|[Composite  |[Infrastructure\mainroads
feature source data Geodataset
Output distance Output |Required||Raster C:\Users\jooho\Google
raster Dataset Drive\GISdata\BR.gdb\EucDist_mainroads
Maximum distance |[Input |[Optional [Double
Output cell size Input qutionaI Analysis Cell |[183.446565810442

Size

Output direction Output ||Optional ||Raster
raster Dataset
H Messages:

Executing (Euclidean Distance (8)): EucDistance Infrastructure\mainroads
"C:\Users\jooho\Google Drive\GISdata\BR.gdb\EucDist_mainroads" #
183.446565810442 #

@ Start Time: Tue Jul 11 17:22:34 2017
[E| Succeeded at Tue Jul 11 17:22:35 2017 (Elapsed Time: 0.66 seconds)

H Euclidean Distance (9)

Tool Name:Euclidean Distance

Tool Source:c:\program files (x86)\arcgis\desktop10.5\ArcToolbox\Toolboxes\Spatial Analyst
Tools.tbx\Distance\EucDistance

H parameters:
Name Direction| Type || Data Type Value
Input raster or Input Required|[Composite  |[selectedresidential
feature source data Geodataset
Output distance Output |Required||Raster C:\Users\jooho\Google
raster Dataset Drive\GISdata\BR.gdb\EucDist_residential
I I
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Maximum distance |[Input |[Optional [Double

Output cell size Input ’Optional Analysis Cell ||183.446565810442
Size

Output direction Output ||Optional ||Raster

raster Dataset

tMessages:

B Executing (Euclidean Distance (9)): EucDistance selectedresidential
"C:\Users\jooho\Google Drive\GISdata\BR.gdb\EucDist_residential" #
183.446565810442 #

Start Time: Tue Jul 11 17:22:35 2017
[B Succeeded at Tue Jul 11 17:22:42 2017 (Elapsed Time: 6.96 seconds)

H Euclidean Distance (10)

Tool Name:Euclidean Distance
Tool Source:c:\program files (x86)\arcgis\desktop10.5\ArcToolbox\Toolboxes\Spatial Analyst
Tools.tbx\Distance\EucDistance

E parameters:
Name Direction|| Type || Data Type || Value
Input raster or Input Required|[Composite  [[UNDareas
feature source data Geodataset
Output distance Output |Required|[Raster C:\Users\jooho\Google
raster Dataset Drive\GISdata\BR.gdb\EucDist_UNDareas
[Maximum distance |[[Input |[Optional |[Double I
Output cell size Input ”Optional Analysis Cell |[183.446565810442
Size
Output direction Output |Optional ||Raster
raster Dataset
@Messages:

Executing (Euclidean Distance (10)): EucDistance UNDareas "C:\Users\jooho\Google
Drive\GISdata\BR.gdb\EucDist_UNDareas" # 183.446565810442 #

(2]
(@ Start Time: Tue Jul 11 17:22:42 2017
Succeeded at Tue Jul 11 17:22:44 2017 (Elapsed Time: 2.40 seconds)

H Euclidean Distance (11)

Tool Name:Euclidean Distance
Tool Source:c:\program files (x86)\arcgis\desktop10.5\ArcToolbox\Toolboxes\Spatial Analyst
Tools.tbx\Distance\EucDistance

H parameters:
Name Direction|| Type || Data Type Value

Input raster or Input Required|[Composite  [[Floodlayers\100 year floodplan
feature source data Geodataset
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Output distance raster|[Output “Required”Raster C:\Users\jooho\Google
Dataset Drive\GISdata\BR.gdb\EucDist_floodplan
Maximum distance Input  [[Optional |[Double
Output cell size Input “Optional Analysis Cell |[183.446565810442
Size
Output direction Output ||Optional ||Raster
raster Dataset
Messages:

[B Executing (Euclidean Distance (11)): EucDistance "Floodlayers\100 year floodplan"
"C:\Users\jooho\Google Drive\GISdata\BR.gdb\EucDist_floodplan" #
183.446565810442 #

[@ Start Time: Tue Jul 11 17:22:45 2017
[E| Succeeded at Tue Jul 11 17:22:55 2017 (Elapsed Time: 10.45 seconds)

H Reclassify (7)

Tool Name:Reclassify

Tool Source:c:\program files (x86)\arcgis\desktop10.5\ArcToolbox\Toolboxes\Spatial Analyst
Tools.tbx\Reclass\Reclassify

H parameters:
Name Direction| Type || Data Type || Value
Input raster Input Required|[Composite Extract_Slop1
Geodataset
[Reclass field [tnput  [Required|[Field VALUE |
Reclassification [Input  |[Required|[Remap lo 10 1;10 100 0
Output raster Output |Required|Raster C:\Users\jooho\Google
Dataset Drive\GISdata\BR.gdb\Reclass_slope
Change missing values |Input |Optional ||Boolean false
to NoData
@Messages:

Executing (Reclassify (7)): Reclassify Extract_Slop1l VALUE "0 10 1;10 100 0"
"C:\Users\jooho\Google Drive\GISdata\BR.gdb\Reclass_slope" DATA

(2]
(| Start Time: Tue Jul 11 17:22:55 2017
Succeeded at Tue Jul 11 17:22:56 2017 (Elapsed Time: 0.68 seconds)

H Extract by Mask

Tool Name:Extract by Mask

Tool Source:c:\program files (x86)\arcgis\desktop10.5\ArcToolbox\Toolboxes\Spatial Analyst
Tools.tbx\Extraction\ExtractByMask

E parameters:
Name Direction|| Type | Data Type Value
Input raster Input Required“Composite C:\Users\jooho\Google
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||Geodataset Drive\GISdata\BR.gdb\EucDist_wetland
Input raster or feature ||Input Required|[Composite RegionDEM_area
mask data Geodataset
Output raster Output |Required||Raster C:\Users\jooho\Google

Dataset Drive\GISdata\BR.gdb\Extract_wetland

.
2] Messages:

B Executing (Extract by Mask): ExtractByMask "C:\Users\jooho\Google
Drive\GISdata\BR.gdb\EucDist_wetland" RegionDEM_area "C:\Users\jooho\Google
Drive\GISdata\BR.gdb\Extract_wetland"

Start Time: Tue Jul 11 17:22:56 2017
Succeeded at Tue Jul 11 17:22:57 2017 (Elapsed Time: 0.55 seconds)

H Reclassify
Tool Name:Reclassify

Tool Source:c:\program files (x86)\arcgis\desktop10.5\ArcToolbox\Toolboxes\Spatial Analyst

Tools.tbx\Reclass\Reclassify

E parameters:
Name Direction|| Type || Data Type Value
Input raster Input C:\Users\jooho\Google

Required|[Composite
Geodataset

Drive\GISdata\BR.gdb\Extract_wetland

Reclass field Input |[Required|[Field VALUE
Reclassification Input |[Required|[Remap 0 100 0;100 500000 1
Output raster Output |Required||Raster C:\Users\jooho\Google
Dataset Drive\GISdata\BR.gdb\Reclass_wetland
Change missing values |[Input Optional ||Boolean false
to NoData
H Messages:
[B Executing (Reclassify): Reclassify "C:\Users\jooho\Google

Drive\GISdata\BR.gdb\Extract_wetland" VALUE "0 100 0;100 500000 1"
"C:\Users\jooho\Google Drive\GISdata\BR.gdb\Reclass_wetland" DATA

Start Time: Tue Jul 11 17:22:57 2017
Succeeded at Tue Jul 11 17:22:57 2017 (Elapsed Time: 0.53 seconds)

= =

H Extract by Mask (2)

Tool Name:Extract by Mask
Tool Source:c:\program files (x86)\arcgis\desktop10.5\ArcToolbox\Toolboxes\Spatial Analyst
Tools.tbx\Extraction\ExtractByMask

H parameters:
Name Direction|| Type | Data Type Value
Input raster Input Required||Composite C:\Users\jooho\Google
Geodataset ||Drive\GISdata\BR.gdb\EucDist_School
l I
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Input raster or feature

Input ”Required”Composite

RegionDEM_area

mask data Geodataset
Output raster Output |Required||Raster C:\Users\jooho\Google
Dataset Drive\GISdata\BR.gdb\Extract_school

®

“/Messages:

[B Executing (Extract by Mask (2)): ExtractByMask "C:\Users\jooho\Google
Drive\GISdata\BR.gdb\EucDist_School" RegionDEM_area "C:\Users\jooho\Google
Drive\GISdata\BR.gdb\Extract_school"

Start Time: Tue Jul 11 17:22:59 2017
[B Succeeded at Tue Jul 11 17:23:00 2017 (Elapsed Time: 0.55 seconds)

HReclassify (2)
Tool Name:Reclassify

Tool Source:c:\program files (x86)\arcgis\desktop10.5\ArcToolbox\Toolboxes\Spatial Analyst

Tools.tbx\Reclass\Reclassify

E parameters:
Name Direction|| Type || Data Type Value
Input raster Input ”Required Composite  (|C:\Users\jooho\Google
Geodataset ||Drive\GISdata\BR.gdb\Extract_school
Reclass field Input |[Required|[Field VALUE
Reclassification Input |[Required|[Remap 0 304.800000 0;304.800000 500000 1

Output raster

Output |Required||Raster
Dataset

C:\Users\jooho\Google
Drive\GISdata\BR.gdb\Reclass_school

Change missing values
to NoData

Input ”Optional uBooIean

false

Messages:

Executing (Reclassify (2)): Reclassify "C:\Users\jooho\Google
Drive\GISdata\BR.gdb\Extract_school" VALUE "0 304.800000 0;304.800000 500000
1" "C:\Users\jooho\Google Drive\GISdata\BR.gdb\Reclass_school" DATA

B

H Extract by Mask (3)

Tool Name:Extract by Mask

Start Time: Tue Jul 11 17:23:00 2017
@ Succeeded at Tue Jul 11 17:23:01 2017 (Elapsed Time: 0.54 seconds)

Tool Source:c:\program files (x86)\arcgis\desktop10.5\ArcToolbox\Toolboxes\Spatial Analyst
Tools.tbx\Extraction\ExtractByMask

E parameters:
Name Direction|| Type || Data Type Value
Input raster Input Required|[Composite |[C:\Users\jooho\Google
Geodataset ||Drive\GISdata\BR.gdb\EucDist_EmergencyCtr
Input raster or Input Required|[Composite |[RegionDEM_area
feature mask data Geodataset
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Output raster ”Output

Required

Dataset

Raster C:\Users\jooho\Google
Drive\GISdata\BR.gdb\Extract_emergencycare

Messages:

(-]

Executing (Extract by Mask (3)): ExtractByMask "C:\Users\jooho\Google

Drive\GISdata\BR.gdb\EucDist_EmergencyCtr" RegionDEM_area
"C:\Users\jooho\Google Drive\GISdata\BR.gdb\Extract_emergencycare"

CHC

H Reclassify (3)
Tool Name:Reclassify

Start Time: Tue Jul 11 17:23:01 2017
Succeeded at Tue Jul 11 17:23:01 2017 (Elapsed Time: 0.54 seconds)

Tool Source:c:\program files (x86)\arcgis\desktop10.5\ArcToolbox\Toolboxes\Spatial Analyst
Tools.tbx\Reclass\Reclassify

H parameters:
Name Direction|| Type || Data Type Value
Input raster Input Required|[Composite ||C:\Users\jooho\Google
Geodataset |[Drive\GISdata\BR.gdb\Extract_emergencycare

Output HRequiredH

Dataset

Reclass field Input |[Required|[Field VALUE
Reclassification |[Input  |Required|[Remap 0 304.800000 0;304.800000 1600000 1
Output raster

Raster C:\Users\jooho\Google
Drive\GISdata\BR.gdb\Reclass_emergencycare

Change missing

values to NoData

Input HOptionaI HBooIean "false

o

“ Messages:

=

=

Executing (Reclassify (3)): Reclassify "C:\Users\jooho\Google

Drive\GISdata\BR.gdb\Extract_emergencycare" VALUE "0 304.800000 0;304.800000
1600000 1" "C:\Users\jooho\Google Drive\GISdata\BR.gdb\Reclass_emergencycare"

DATA

= E

H Extract by Mask (4)

Tool Name:Extract by Mask
Tool Source:c:\program files (x86)\arcgis\desktop10.5\ArcToolbox\Toolboxes\Spatial Analyst
Tools.tbx\Extraction\ExtractByMask

Start Time: Tue Jul 11 17:23:01 2017
Succeeded at Tue Jul 11 17:23:02 2017 (Elapsed Time: 0.52 seconds)

H parameters:
Name Direction|| Type Data Type Value
Input raster Input Required|[Composite  ||C:\Users\jooho\Google
Geodataset ||Drive\GISdata\BR.gdb\EucDist_hzCareFlty
Input raster or Input Required|[Composite  |RegionDEM_area
feature mask data Geodataset
Output raster Output ||Required||Raster C:\Users\jooho\Google
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I I [ |Dataset |[Drive\GISdata\BR.gdb\Extract_hzCareFlty ||

Messages:

Executing (Extract by Mask (4)): ExtractByMask "C:\Users\jooho\Google
Drive\GISdata\BR.gdb\EucDist_hzCareFlty" RegionDEM_area "C:\Users\jooho\Google
Drive\GISdata\BR.gdb\Extract_hzCareFty"

[@ Start Time: Tue Jul 11 17:23:02 2017
Succeeded at Tue Jul 11 17:23:03 2017 (Elapsed Time: 0.54 seconds)

H Rreclassify (4)

Tool Name:Reclassify
Tool Source:c:\program files (x86)\arcgis\desktop10.5\ArcToolbox\Toolboxes\Spatial Analyst
Tools.tbx\Reclass\Reclassify

E parameters:
Name Direction|| Type || Data Type Value

Input raster Input Required|[Composite  |[C:\Users\jooho\Google

Geodataset ||Drive\GISdata\BR.gdb\Extract_hzCareFlty
[Reclass field [[nput  |[Required||Field |VALUE |
Reclassification [[nput  |[Required||Remap 0 304.800000 0;304.800000 1600000 1
Output raster Output |Required||Raster C:\Users\jooho\Google

Dataset Drive\GISdata\BR.gdb\Reclass_hzCareFlty
Change missing Input Optional ||Boolean false
values to NoData

=

Messages:

Executing (Reclassify (4)): Reclassify "C:\Users\jooho\Google
Drive\GISdata\BR.gdb\Extract_hzCareFlty" VALUE "0 304.800000 0;304.800000
1600000 1" "C:\Users\jooho\Google Drive\GISdata\BR.gdb\Reclass_hzCareFlty" DATA

(@ Start Time: Tue Jul 11 17:23:03 2017
Succeeded at Tue Jul 11 17:23:03 2017 (Elapsed Time: 0.52 seconds)

H Extract by Mask (5)

Tool Name:Extract by Mask
Tool Source:c:\program files (x86)\arcgis\desktop10.5\ArcToolbox\Toolboxes\Spatial Analyst

Tools.tbx\Extraction\ExtractByMask

E parameters:
Name Direction|| Type | Data Type Value

Input raster Input Required||Composite C:\Users\jooho\Google
Geodataset ||Drive\GISdata\BR.gdb\EucDist_airport

Input raster or feature |Input ”RequireduComposite RegionDEM_area

mask data Geodataset
Output raster Output |Required||Raster C:\Users\jooho\Google
Dataset Drive\GISdata\BR.gdb\Extract_airport
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=

'Messages:

Executing (Extract by Mask (5)): ExtractByMask "C:\Users\jooho\Google
Drive\GISdata\BR.gdb\EucDist_airport" RegionDEM_area "C:\Users\jooho\Google
Drive\GISdata\BR.gdb\Extract_airport"

Start Time: Tue Jul 11 17:23:03 2017
Succeeded at Tue Jul 11 17:23:04 2017 (Elapsed Time: 0.54 seconds)

9

H Reclassify (5)

Tool Name:Reclassify
Tool Source:c:\program files (x86)\arcgis\desktop10.5\ArcToolbox\Toolboxes\Spatial Analyst
Tools.tbx\Reclass\Reclassify

H parameters:
Name Direction| Type || Data Type Value
Input raster Input Required||Composite C:\Users\jooho\Google
Geodataset ||Drive\GISdata\BR.gdb\Extract_airport
Reclass field Input |[Required|[Field VALUE
Reclassification Input |Required|[Remap 0 3048 0;3048 3600000 1
Output raster Output |Required||Raster C:\Users\jooho\Google
Dataset Drive\GISdata\BR.gdb\Reclass_airport
Change missing values |Input  |Optional [Boolean false
to NoData
@Messages:

[}

Executing (Reclassify (5)): Reclassify "C:\Users\jooho\Google
Drive\GISdata\BR.gdb\Extract_airport" VALUE "0 3048 0;3048 3600000 1"
"C:\Users\jooho\Google Drive\GISdata\BR.gdb\Reclass_airport" DATA

Start Time: Tue Jul 11 17:23:04 2017
Succeeded at Tue Jul 11 17:23:05 2017 (Elapsed Time: 0.53 seconds)

E =

H extract by Mask (6)

Tool Name:Extract by Mask
Tool Source:c:\program files (x86)\arcgis\desktop10.5\ArcToolbox\Toolboxes\Spatial Analyst
Tools.tbx\Extraction\ExtractByMask

E parameters:
Name Direction| Type || Data Type Value
Input raster Input Required|[Composite  |[C:\Users\jooho\Google
Geodataset |[Drive\GISdata\BR.gdb\EucDist_historicplaces
Input raster or Input Required|/Composite  |RegionDEM_area
feature mask data Geodataset
Output raster Output |Required||Raster C:\Users\jooho\Google
Dataset Drive\GISdata\BR.gdb\Extract_historicplaces
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Messages:

[}

Executing (Extract by Mask (6)): ExtractByMask "C:\Users\jooho\Google

Drive\GISdata\BR.gdb\EucDist_historicplaces" RegionDEM_area
"C:\Users\jooho\Google Drive\GISdata\BR.gdb\Extract_historicplaces"

CH

H Rreclassify (6)
Tool Name:Reclassify

Start Time: Tue Jul 11 17:23:05 2017
Succeeded at Tue Jul 11 17:23:05 2017 (Elapsed Time: 0.53 seconds)

Tool Source:c:\program files (x86)\arcgis\desktop10.5\ArcToolbox\Toolboxes\Spatial Analyst
Tools.tbx\Reclass\Reclassify

H parameters:
Name Direction|| Type || Data Type Value
Input raster Input Required|[Composite |IC:\Users\jooho\Google
Geodataset |[Drive\GISdata\BR.gdb\Extract_historicplaces

values to NoData

Reclass field Input |[Required|[Field VALUE
Reclassification Input [[Required/[Remap 0 328.084000 0;328.084000 3600000 1
Output raster Output “Required“Raster ‘C:\Users\jooho\Google

Dataset Drive\GISdata\BR.gdb\Reclass_historicplaces
Change missing

Input HOptionaI “Boolean “false

Messages:

[}

Executing (Reclassify (6)): Reclassify "C:\Users\jooho\Google

Drive\GISdata\BR.gdb\Extract_historicplaces" VALUE "0 328.084000 0;328.084000
3600000 1" "C:\Users\jooho\Google Drive\GISdata\BR.gdb\Reclass_historicplaces"

DATA

E =

H Extract by Mask (10)

Tool Name:Extract by Mask
Tool Source:c:\program files (x86)\arcgis\desktop10.5\ArcToolbox\Toolboxes\Spatial Analyst
Tools.tbx\Extraction\ExtractByMask

Start Time: Tue Jul 11 17:23:05 2017
Succeeded at Tue Jul 11 17:23:06 2017 (Elapsed Time: 0.52 seconds)

H parameters:
Name Direction|| Type Data Type Value
Input raster Input Required|[Composite  [|C:\Users\jooho\Google
Geodataset ||Drive\GISdata\BR.gdb\EucDist_UNDareas
Input raster or Input Required|[Composite  |[RegionDEM_area
feature mask data Geodataset
Output raster Output |Required||Raster C:\Users\jooho\Google
Dataset Drive\GISdata\BR.gdb\Extract_UNDareas

2]
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Messages:

Executing (Extract by Mask (10)): ExtractByMask "C:\Users\jooho\Google
Drive\GISdata\BR.gdb\EucDist_UNDareas" RegionDEM_area "C:\Users\jooho\Google
Drive\GISdata\BR.gdb\Extract_UNDareas"

Start Time: Tue Jul 11 17:23:06 2017

Succeeded at Tue Jul 11 17:23:07 2017 (Elapsed Time: 0.53 seconds)

H Reclassify (9)
Tool Name:Reclassify

Tool Source:c:\program files (x86)\arcgis\desktop10.5\ArcToolbox\Toolboxes\Spatial Analyst

Tools.tbx\Reclass\Reclassify

[ parameters:
Name Direction|| Type Data Type Value
Input raster Input Required|[Composite  ||C:\Users\jooho\Google
Geodataset |[Drive\GISdata\BR.gdb\Extract_UNDareas

[Reclass field

[Input  |[Required|Field

VALUE

Reclassification [Tnput  [[Required|Remap 0 10 1;10 3600000 0
Output raster Output |Required||Raster C:\Users\jooho\Google
Dataset Drive\GISdata\BR.gdb\Reclass_UNDareas
Change missing Input Optional ||Boolean false
values to NoData

2] Messages:

[B Executing (Reclassify (9)): Reclassify "C:\Users\jooho\Google
Drive\GISdata\BR.gdb\Extract_UNDareas" VALUE "0 10 1;10 3600000 0"
"C:\Users\jooho\Google Drive\GISdata\BR.gdb\Reclass_UNDareas" DATA

[@ Start Time: Tue Jul 11 17:23:07 2017

Succeeded at Tue Jul 11 17:23:07 2017 (Elapsed Time: 0.54 seconds)

H Extract by Mask (11)
Tool Name:Extract by Mask

Tool Source:c:\program files (x86)\arcgis\desktop10.5\ArcToolbox\Toolboxes\Spatial Analyst

Tools.tbx\Extraction\ExtractByMask

E parameters:
Name Direction| Type Data Type Value
Input raster Input Required|[Composite  ||C:\Users\jooho\Google
Geodataset ||Drive\GISdata\BR.gdb\EucDist_floodplan
Input raster or Input Required||Composite RegionDEM_area
feature mask data Geodataset
Output raster Output |Required|Raster C:\Users\jooho\Google
Dataset Drive\GISdata\BR.gdb\Extract_floodplan

Messages:
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-

Executing (Extract by Mask (11)): ExtractByMask "C:\Users\jooho\Google

Drive\GISdata\BR.gdb\EucDist_floodplan" RegionDEM_area "C:\Users\jooho\Google
Drive\GISdata\BR.gdb\Extract_floodplan"

|

[@ Start Time: Tue Jul 11 17:23:07

H Rreclassify (10)
Tool Name:Reclassify

2017

@ Succeeded at Tue Jul 11 17:23:08 2017 (Elapsed Time: 0.57 seconds)

Tool Source:c:\program files (x86)\arcgis\desktop10.5\ArcToolbox\Toolboxes\Spatial Analyst

Tools.tbx\Reclass\Reclassify

Hparameters:
Name Direction| Type || Data Type Value
Input raster Input Required|[Composite  |[C:\Users\jooho\Google
Geodataset ||Drive\GISdata\BR.gdb\Extract_floodplan
Reclass field Input  [Required|[Field \VALUE
Reclassification Input  [Required|Remap l0 500 0;500 3600000 1
Output raster Output “Required"Raster C:\Users\jooho\Google
Dataset Drive\GISdata\BR.gdb\Reclass_floodplan
Change missing Input Optional ||Boolean false
values to NoData

=

“/Messages:

Executing (Reclassify (10)): Reclassify "C:\Users\jooho\Google
Drive\GISdata\BR.gdb\Extract_floodplan" VALUE "0 500 0;500 3600000 1"
"C:\Users\jooho\Google Drive\GISdata\BR.gdb\Reclass_floodplan" DATA

Start Time: Tue Jul 11 17:23:08 2017
Succeeded at Tue Jul 11 17:23:09 2017 (Elapsed Time: 0.53 seconds)

H Extract by Mask (7)
Tool Name:Extract by Mask

Tool Source:c:\program files (x86)\arcgis\desktop10.5\ArcToolbox\Toolboxes\Spatial Analyst

Tools.tbx\Extraction\ExtractByMask

H parameters:
Name Direction|| Type || Data Type Value
Input raster Input C:\Users\jooho\Google

RequiredHComposite

Geodataset ||Drive\GISdata\BR.gdb\EucDist_reaches
Input raster or feature |Input Required|[Composite RegionDEM_area
mask data Geodataset
Output raster Output |Required||Raster C:\Users\jooho\Google

Dataset Drive\GISdata\BR.gdb\Extract_reaches
Messages:

[B Executing (Extract by Mask (7)): ExtractByMask "C:\Users\jooho\Google
Drive\GISdata\BR.gdb\EucDist_reaches" RegionDEM_area "C:\Users\jooho\Google
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Drive\GISdata\BR.gdb\Extract_reaches"
Start Time: Tue Jul 11 17:23:09 2017

(2]
L= ]
[E Succeeded at Tue Jul 11 17:23:09 2017 (Elapsed Time: 0.54 seconds)

HRreclassify (8)

Tool Name:Reclassify
Tool Source:c:\program files (x86)\arcgis\desktop10.5\ArcToolbox\Toolboxes\Spatial Analyst

Tools.tbx\Reclass\Reclassify

E parameters:
Name Direction|| Type | Data Type Value
Input raster Input Required”Composite C:\Users\jooho\Google
Geodataset ||Drive\GISdata\BR.gdb\Extract_reaches
Reclass field Input  |Required|[Field VALUE
Reclassification [Input  |Required|[Remap [l0 500 0;500 3600000 1
Output raster Output |Required||Raster C:\Users\jooho\Google
Dataset Drive\GISdata\BR.gdb\Reclass_reaches
Change missing values |[Input Optional ||Boolean false
to NoData
@Messages:

[E Executing (Reclassify (8)): Reclassify "C:\Users\jooho\Google
Drive\GISdata\BR.gdb\Extract_reaches" VALUE "0 500 0;500 3600000 1"
"C:\Users\jooho\Google Drive\GISdata\BR.gdb\Reclass_reaches" DATA

[E Start Time: Tue Jul 11 17:23:09 2017
[E| Succeeded at Tue Jul 11 17:23:10 2017 (Elapsed Time: 0.53 seconds)

Hweighted Sum

Tool Name:Weighted Sum
Tool Source:c:\program files (x86)\arcgis\desktop10.5\ArcToolbox\Toolboxes\Spatial Analyst

Tools.tbx\Overlay\WeightedSum

H parameters:
o Data
Name ||Direction|| Type Type Value
Input |Input Required|[Weighted||'C:\Users\jooho\Google Drive\GISdata\BR.gdb\Reclass_slope'
rasters Sum VALUE 1;'C:\Users\jooho\Google

Drive\GISdata\BR.gdb\Reclass_wetland' VALUE
1;'C:\Users\jooho\Google
Drive\GISdata\BR.gdb\Reclass_school' VALUE
1;'C:\Users\jooho\Google
Drive\GISdata\BR.gdb\Reclass_emergencycare' VALUE
1;'C:\Users\jooho\Google
Drive\GISdata\BR.gdb\Reclass_hzCareFlty' VALUE
1;'C:\Users\jooho\Google
Drive\GISdata\BR.gdb\Reclass_airport' VALUE
1;'C:\Users\jooho\Google
Drive\GISdata\BR.gdb\Reclass_historicplaces' VALUE
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Drive\GISdata\BR.gdb\Reclass_UNDareas' VALUE
1;'C:\Users\jooho\Google
Drive\GISdata\BR.gdb\Reclass_floodplan' VALUE
1;'C:\Users\jooho\Google
Drive\GISdata\BR.gdb\Reclass_reaches' VALUE 1

Output||Output ||Required||Raster

Dataset

‘1 ;'C:\Users\jooho\Google
’C:\Users\jooho\GoogIe Drive\GISdata\BR.gdb\Weighte_Recl1

Messages:

[B Executing (Weighted Sum): WeightedSum "'C:\Users\jooho\Google
Drive\GISdata\BR.gdb\Reclass_slope' VALUE 1;'C:\Users\jooho\Google
Drive\GISdata\BR.gdb\Reclass_wetland' VALUE 1;'C:\Users\jooho\Google
Drive\GISdata\BR.gdb\Reclass_school' VALUE 1;'C:\Users\jooho\Google
Drive\GISdata\BR.gdb\Reclass_emergencycare' VALUE 1;'C:\Users\jooho\Google
Drive\GISdata\BR.gdb\Reclass_hzCareFlty' VALUE 1;'C:\Users\jooho\Google
Drive\GISdata\BR.gdb\Reclass_airport' VALUE 1;'C:\Users\jooho\Google
Drive\GISdata\BR.gdb\Reclass_historicplaces' VALUE 1;'C:\Users\jooho\Google
Drive\GISdata\BR.gdb\Reclass_UNDareas' VALUE 1;'C:\Users\jooho\Google
Drive\GISdata\BR.gdb\Reclass_floodplan' VALUE 1;'C:\Users\jooho\Google
Drive\GISdata\BR.gdb\Reclass_reaches' VALUE 1" "C:\Users\jooho\Google
Drive\GISdata\BR.gdb\Weighte_Recl1"

(@ Start Time: Tue Jul 11 17:23:10 2017
Succeeded at Tue Jul 11 17:23:11 2017 (Elapsed Time: 1.00 seconds)

H Extract by Mask (9)

Tool Name:Extract by Mask
Tool Source:c:\program files (x86)\arcgis\desktop10.5\ArcToolbox\Toolboxes\Spatial Analyst
Tools.tbx\Extraction\ExtractByMask

H parameters:

Name

Direction| Type | Data Type

Value

Input raster

Input uRequired“Composite

C:\Users\jooho\Google

Geodataset |Drive\GISdata\BR.gdb\EucDist_residential
Input raster or Input Required|[Composite  ||RegionDEM_area
feature mask data Geodataset
Output raster Output |Required||Raster C:\Users\jooho\Google

Dataset Drive\GISdata\BR.gdb\Extract_residential

H Messages:

[B Executing (Extract by Mask (9)): ExtractByMask "C:\Users\jooho\Google
Drive\GISdata\BR.gdb\EucDist_residential" RegionDEM_area "C:\Users\jooho\Google
Drive\GISdata\BR.gdb\Extract_residential"

Start Time: Tue Jul 11 17:23:11 2017
Succeeded at Tue Jul 11 17:23:12 2017 (Elapsed Time: 0.57 seconds)

[ Fuzzy Membership (2)
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Tool Name:Fuzzy Membership
Tool Source:c:\program files (x86)\arcgis\desktop10.5\ArcToolbox\Toolboxes\Spatial Analyst
Tools.tbx\Overlay\FuzzyMembership

E parameters:
Name Direction|| Type Data Type Value
Input raster ([Input “Required Composite C:\Users\jooho\Google
Geodataset Drive\GISdata\BR.gdb\Extract_residential
Output Output "Required“Raster Dataset ||C:\Users\jooho\Google
raster Drive\GISdata\BR.gdb\FuzzyMe_residential
Membership [[Input “Optional Fuzzy function |LARGE 100 5
type
Hedge Input |[Optional |[String NONE
Messages:

[E Executing (Fuzzy Membership (2)): FuzzyMembership "C:\Users\jooho\Google
Drive\GISdata\BR.gdb\Extract_residential" "C:\Users\jooho\Google
Drive\GISdata\BR.gdb\FuzzyMe_residential" "LARGE 100 5" NONE

Start Time: Tue Jul 11 17:23:12 2017
[E Succeeded at Tue Jul 11 17:23:13 2017 (Elapsed Time: 0.71 seconds)

H extract by Mask (8)

Tool Name:Extract by Mask
Tool Source:c:\program files (x86)\arcgis\desktop10.5\ArcToolbox\Toolboxes\Spatial Analyst

Tools.tbx\Extraction\ExtractByMask

H parameters:
Name Direction|| Type Data Type Value
Input raster Input Required|[Composite  ||C:\Users\jooho\Google
Geodataset ||Drive\GISdata\BR.gdb\EucDist_mainroads
Input raster or Input Required|[Composite  |RegionDEM_area
feature mask data Geodataset
Output raster Output |Required||Raster C:\Users\jooho\Google
Dataset Drive\GISdata\BR.gdb\Extract_roads

Messages:

Executing (Extract by Mask (8)): ExtractByMask "C:\Users\jooho\Google
Drive\GISdata\BR.gdb\EucDist_mainroads" RegionDEM_area "C:\Users\jooho\Google
Drive\GISdata\BR.gdb\Extract_roads"

Start Time: Tue Jul 11 17:23:14 2017
[E Succeeded at Tue Jul 11 17:23:15 2017 (Elapsed Time: 0.56 seconds)

H Fuzzy Membership

Tool Name:Fuzzy Membership
Tool Source:c:\program files (x86)\arcgis\desktop10.5\ArcToolbox\Toolboxes\Spatial Analyst
Tools.tbx\Overlay\FuzzyMembership
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H parameters:
Name Direction|| Type Data Type Value
Input raster |Input Required|[Composite C:\Users\jooho\Google

Geodataset Drive\GISdata\BR.gdb\Extract_roads

Output Output |Required||Raster Dataset ‘C:\Users\jooho\Google

raster Drive\GISdata\BR.gdb\FuzzyMe_mainroad
Membership [[Input HOptionaI Fuzzy function |[SMALL 500 5

type

Hedge Input |[Optional |[String NONE

H Messages:

Executing (Fuzzy Membership): FuzzyMembership "C:\Users\jooho\Google
Drive\GISdata\BR.gdb\Extract_roads" "C:\Users\jooho\Google
Drive\GISdata\BR.gdb\FuzzyMe_mainroad" "SMALL 500 5" NONE

Start Time: Tue Jul 11 17:23:15 2017
Succeeded at Tue Jul 11 17:23:16 2017 (Elapsed Time: 0.61 seconds)

H Raster Calculator

Tool Name:Raster Calculator

Tool Source:c:\program files (x86)\arcgis\desktop10.5\ArcToolbox\Toolboxes\Spatial Analyst
Tools.tbx\Map Algebra\RasterCalculator

H parameters:
| Name Direction|| Type Data Type Value
Map Algebra |[Input Required|[Raster "%Weighte_Recl1%" +
expression Calculator "%FuzzyMe_residential%" +
Expression "%FuzzyMe_mainroad%"
Output raster |[Output |[Required||Raster Dataset ||C:\Users\jooho\Google
Drive\GISdata\BR.gdb\TDMSlocations

2] Messages:

|[E| Executing (Raster Calculator): RasterCalculator ""C:\Users\jooho\Google
Drive\GISdata\BR.gdb\Weighte_Recl1" + "C:\Users\jooho\Google
Drive\GISdata\BR.gdb\FuzzyMe_residential" + "C:\Users\jooho\Google
Drive\GISdata\BR.gdb\FuzzyMe_mainroad"" "C:\Users\jooho\Google
Drive\GISdata\BR.gdb\TDMSlocations"

[@ Start Time: Tue Jul 11 17:23:16 2017

==

Raster(r"C:\Users\jooho\Google Drive\GISdata\BR.gdb\Weighte_Recl1") +
Raster(r"C:\Users\jooho\Google Drive\GISdata\BR.gdb\FuzzyMe_residential") +
Raster(r"C:\Users\jooho\Google Drive\GISdata\BR.gdb\FuzzyMe_mainroad")

Succeeded at Tue Jul 11 17:23:17 2017 (Elapsed Time: 1.59 seconds)
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APPENDIX B. STATISTICAL ANALYSIS FOR THE SCENARIOS

Scenario#l — 1 Landfill

Descriptive
Name Statistic Std. Error
Total_Length Ronaldso Mean 18353.99 54.090
95% Confidence Interval Lower Bound 18247.97
for Mean Upper Bound 18460.01
5% Trimmed Mean 18397.65
Median 18847.43
Variance 65212452.09
0
Std. Deviation 8075.423
Minimum 27
Maximum 43312
Range 43285
Interquartile Range 11891
Skewness -.175 .016
Kurtosis -.358 .033
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Scenario#2 — 1 TDMS and 1 Landfill

Descriptive
FacilitylD Statistic Std. Error
Total_Length Landfill Mean 14891.80 74.112
95% Confidence Interval  Lower Bound 14746.53
for Mean Upper Bound 15037.07
5% Trimmed Mean 14706.26
Median 13608.17
Variance 69239689.180
Std. Deviation 8321.039
Minimum 27
Maximum 42901
Range 42874
Interquartile Range 14319
Skewness .302 .022
Kurtosis -.844 .044
TDMS1 Mean 7020.76 65.106
95% Confidence Interval  Lower Bound 6893.14
for Mean Upper Bound 7148.38
5% Trimmed Mean 6372.55
Median 5232.25
Variance 41044271.250
Std. Deviation 6406.580
Minimum 13
Maximum 31330
Range 31317
Interquartile Range 3999
Skewness 1.783 .025
Kurtosis 2.502 .050
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Scenario#3 — 2 TDMS and 1 Landfill

Descriptive
FacilitylD Statistic Std. Error
Total_Length TDMS1 Mean 4644.44 27.395
95% Confidence Interval  Lower Bound 4590.74
for Mean Upper Bound 4698.14
5% Trimmed Mean 4548.71
Median 4683.97
Variance 6215370.819
Std. Deviation 2493.065
Minimum 13
Maximum 20164
Range 20151
Interquartile Range 3273
Skewness .808 .027
Kurtosis 2.786 .054
TDMS2 Mean 13982.27 106.488
95% Confidence Interval  Lower Bound 13773.51
for Mean Upper Bound 14191.03
5% Trimmed Mean 13614.59
Median 11322.28
Variance 60894002.160
Std. Deviation 7803.461
Minimum 2007
Maximum 39007
Range 37000
Interquartile Range 11490
Skewness 757 .033
Kurtosis -.590 .067
20 Mean 10919.14 67.210
95% Confidence Interval  Lower Bound 10787.39
for Mean Upper Bound 11050.89
5% Trimmed Mean 10530.01
Median 10881.85
Variance 39014894.430

224




Total_Length

225

Std. Deviation 6246.190
Minimum 27
Maximum 31310
Range 31283
Interquartile Range 8743
Skewness 728 .026
Kurtosis .390 .053
Histogram — Mormal
for FacilitylD= TDMS1
- Mean = 4644 44
Std. Dev. = 2493 065
M N=8282
600
7

oy

S 400 | X_

=3 H

= r _

& - |

2007
[} T ITL'H_"-' T
5000 10000 15000 20000



Histogram — Nermal

for FacilitylD= TDMS2

600

500

400

Frequency
(")
o
[=]
1

200+

100

Mean = 13982 27
Std. Dev. = 75803 461
N=%5370

10000

I I |
20000 30000 40000

Total_Length

Histogram — Mormal

for FacilitylD= 20

5007

4007

(2]
=
=]

1

Frequency

2004

1009

Mean =109159.14
Std. Dev. = 624619

B N =8537

10000

20000 30000
Total_Length

226



APPENDIX C. ANYLOGIC PROCESS MOMDELING LIBRARY BLOCKS

H

<

@

N4 ¥

HHH
e

i

T

SelectOutput

SelectOutputb

Hold

Match

Split

Combine

Assembler

MoveTo

Conveyor

ResourcePool

Seize

Release

Service

Generates agents.

Disposes incoming agents.

Delays agents by the specified delay time.

Stores agents in the specified order.

Forwards the agent to one of the output ports depending on the condition.

Routes the incoming agents to one of the five output ports depending on (probabilistic
or deterministic) conditions.

Blocks/unblocks the agent flow.

Finds a match between two agents from different inputs, then outputs them.

For each incoming agent (“original") creates one or several other agents-copies.

Waits for two agents, then produces a new agent from them.

Assembles a certain number of agents from several sources (5 or less) into a single agent.

Moves an agent from its current location to new location.

Moves agents at a certain speed, preserving order and space between them.

Provides resource units that are seized and released by agents.

Seizes the number of units of the specified resource required by the agent.

Releases resource units previously seized by the agent.

Seizes resource units for the agent, delays it, and releases the seized units.

227


http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Source.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Sink.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Delay.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Queue.html
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http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Combine.html
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http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Conveyor.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/ResourcePool.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Seize.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Release.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/Service.html

[

|

L@

@

ResourceSendTo

ResourceTaskStart

ResourceTaskEnd

ResourceTask

Batch

Unbatch

Dropoff

Pickup

RestrictedAreaStart

RestrictedAreaEnd

TimeMeasureStart

TimeMeasureEnd

Sends a set of portable and/or moving resources to specified location.

Defines the start of the flowchart branch modeling the task process for resource units

(usually it is a resource preparation process).

Defines the end of the flowchart branch modeling the task process for resource unit(s)

(usually it is a wrap-up process).

Defines some custom task for resources that cannot be defined using the provided

standard patterns for failures, maintenance, breaks.

Inserts agents created elsewhere into the flowchart.

Accepts incoming agents.

Accumulates agents, then outputs them contained in a new agent.

Extracts all agents contained in the incoming agent and outputs them.

Extracts the selected agents from the contents of the incoming agent.

Adds the selected agents to the contents of the incoming agent.

Limits number of agents in a part of flowchart between corresponding area start and area
end blocks.

Ends an area started with RestrictedAreaStart block.

TimeMeasureStart as well as TimeMeasureEnd compose a pair of objects measuring

the time the agents spend between them, such as "time in system", "length of stay", etc.

This object remembers the time when an agent goes through.

TimeMeasureEnd as well as TimeMeasureStart compose a pair of objects measuring

the time the agents spend between them.
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http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/TimeMeasureStart.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/TimeMeasureEnd.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/TimeMeasureEnd.html
http://127.0.0.1:61006/help/topic/com.anylogic.help/html/_ProcessModeling/TimeMeasureStart.html

For each incoming agent this object measures the time it spent since it has been through

one of the corresponding TimeMeasureStart objects.

[T ResourceAttach Attaches a set of portable and/or moving resources to the agent.
;" ResourceDetach Detaches previously attached resources from the agent.
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APPENDIX D. DESCRIPTION OF THE SIMULATION MODEL IN THE
STUDY

Model: Simulation

General

Model time units hours

Numerical methods

Differention Equations Method Euler

Algebraic Equations Method Modified Newton

Mixed Equations Method RK45+Newton

Absolute accuracy 1.0E-5

Time accuracy 1.0E-5

Relative accuracy 1.0E-5

Fixed time step 0.001

Advanced

Java package name cbr2019

File Name C:\Users\jooho\Google Drive\7. Ph.D
research\Simulation\Simulation1\Simulation1.alp

Agent Type: main

Agent in flowcharts

Use in flowcharts as Agent
Movement

Speed (10 : MPS)
Rotate animation towards movement true
Rotate vertically as well (along Z-axis) false

Space and network

Enable steps false

Advanced Java

Import import com.bbn.openmap.gui.NavigatePanel;
Generic false

Advanced

Logging true

Auto-create datasets true

AOC_DATASETS_UPDATE_TIME_PR - Recurring Event Properties

OPERTIES

Limit the number of data samples false
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Simulation1
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Scale: scale

General

Unit meter
Scale 10.0
Type Defined graphically
Length, pixels 100.0
Show at runtime false
Lock false
Public false
Position and size

b ¢ 0.0

y -150.0
Rotation 0.0

Parameter: NumTrucks

null null

nuli2null 114
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Simulationt

Array

false
Type int
Show at runtime true
Show name true
Editor control
System dynamics units false
Save in snapshot true

Parameter: NumLtruck

Show name

Editor control

System dynamics units

Array false

Type int

Show at runtime true
true

false

Save in shapshot

true

Parameter: TdmsTruckCap

Show name

Editor control

I System dynamics units

I Array false
Type int
Show at runtime true

true

false

Save in snapshot

true

Parameter: TdmsNumLoaders

Array

false
Type int
Show at runtime true

null3null 114
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Show name true

Value editor

Editor control ’ Text
Advanced

System dynamics units false
Save in shapshot true

Parameter: DebrisAtUnit

General

Array false
Type int
Show at runtime true
Show name true
Value editor

Editor control Text
Advanced

System dynamics units false
Save in shapshot true

Parameter: NumChipper

General

Array false
Type int
Show at runtime true
Show name true
Value editor

Editor control Text
Advanced

System dynamics units false
Save in snapshot true

Schedule: LTruckSchedule

General

Show at runtime true

Show name true

Data

Value type on/off

The schedule defines Intervals (Start, End)
Representation type Week

null4null 114
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Default value false

Preview

SCHEDULE_PREVIEW_START_DATE ‘ 1523624943422

Advanced

System dynamics units ‘ false

Sun | Mon | Tue | We | Thu | Fri Sat | null null null
¥ F # + * + + 6:00 AM 6:00 PM true

Collection: DebrisLocations

General

Initial contents { gisPoint74, gisPoint17, gisPoint35, gisPoint43, gisPoint77,
gisPoint69, gisPoint1, gisPoint34, gisPoint42, gisPoint37, gisPoint23,
gisPoint45, gisPoint81, gisPoint28, gisPoint36, gisPoint39,
gisPoint80, gisPoint18, gisPoint68, gisPoint72, gisPoint78,
gisPoint75, gisPoint20, gisPoint, gisPoint22, gisPoint25, gisPoint24,
gisPoint56, gisPoint9, gisPoint2, gisPoint61, gisPoint7, gisPoint31,
gisPoint53, gisPoint5, gisPoint48, gisPoint86, gisPoint41, gisPoint57,
gisPoint16, gisPoint4, gisPoint73, gisPoint13, gisPoint30, gisPoint26,
gisPoint15, gisPoint71, gisPoint79, gisPoint64, gisPoint11, gisPoint3,
gisPoint82, gisPoint65, gisPoint63, gisPoint52, gisPoint85,
gisPoint84, gisPoint46, gisPoint38, gisPoint21, gisPoint66,
gisPoint44, gisPoint59, gisPoint51, gisPoint62, gisPoint27,
gisPoint29, gisPoint58, gisPoint60, gisPoint47, gisPoint6, gisPoint54,
gisPoint8, gisPoint40, gisPoint67, gisPoint33, gisPoint12, gisPoint83,
gisPoint55, gisPoint76, gisPoint70, gisPoint10, gisPoint14,
gisPoint49, gisPoint32, gisPoint50, gisPoint19, gisPoint87,
gisPoint88, gisPoint89 }

Initial contents { gisPoint74, gisPoint17, gisPoint35, gisPoint43, gisPoint77,
gisPoint69, gisPoint1, gisPoint34, gisPoint42, gisPoint37, gisPoint23,
gisPoint45, gisPoint81, gisPoint28, gisPoint36, gisPoint39,
gisPoint80, gisPoint18, gisPoint68, gisPoint72, gisPoint78,
gisPoint75, gisPoint20, gisPoint, gisPoint22, gisPoint25, gisPoint24,
gisPoint56, gisPoint9, gisPoint2, gisPoint61, gisPoint7, gisPoint31,
gisPoint53, gisPoint5, gisPoint48, gisPoint86, gisPoint41, gisPoint57,
gisPoint16, gisPoint4, gisPoint73, gisPoint13, gisPoint30, gisPoint26,
gisPoint15, gisPoint71, gisPoint79, gisPoint64, gisPoint11, gisPoint3,
gisPoint82, gisPoint65, gisPoint63, gisPoint52, gisPoint85,
gisPoint84, gisPoint46, gisPoint38, gisPoint21, gisPoint66,
gisPoint44, gisPoint59, gisPoint51, gisPoint62, gisPoint27,
gisPoint29, gisPoint58, gisPoint60, gisPoint47, gisPoint6, gisPoint54,
gisPoint8, gisPoint40, gisPoint67, gisPoint33, gisPoint12, gisPoint83,
gisPoint55, gisPoint76, gisPoint70, gisPoint10, gisPoint14,
gisPoint49, gisPoint32, gisPoint50, gisPoint19, gisPoint87,
gisPoint88, gisPoint89 }

Element class GISPoint
Collection class ArrayList
Show at runtime true
Show name true
Advanced

Access type public
Save in snapshot true
Static false
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Debris: debris

null null

Replication

DebrisLocations.size()

Initialization Type

Contains a given number of agents

Population of agents

true

Show name

‘ Place agent(s)

Replication DebrisLocations.size()
Initialization Type Contains a given number of agents
Population of agents true

true

Initial Speed Code (10: MPS)

in the node

Node

DebrisLocations.get(index)

Node

Show at runtime

DebrisLocations.get(index)

true

Public

false

Embedded object collection type

Access by index (ArrayList)

Logging

true

Constant

0.01

TotalPopulation

TDMS: tDMS

Initial Speed Code

Place agent(s)

Population of agents false
Population of agents false
Show name true

Show at runtime

in the node
Node TDMS
Node TDMS

true

Public

false
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Logging true

Truck: trucks

General

Replication

NumTrucks

Initialization Type

Contains a given number of agents

Population of agents

true

Replication

NumTrucks

Initialization Type

Contains a given number of agents

Population of agents true

Show name true
Movement

Initial Speed Code (25 : MPH)
Initial location

Place agent(s) in the node
Node TDMS
Node TDMS
Statistics

Statistics i
Advanced

Show at runtime true

Public false

Embedded object collection type

Access by index (ArrayList)

Logging true
Source: source

General

Population of agents false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Show name true
Movement

Initial Speed Code ‘ (10 : MPS)
Initial location

Place agent(s)

‘ at the agent animation location

Advanced

Show at runtime true
Public false
Logging true
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Arrivals defined by self. MANUAL

New agent new Agent()

Location of arrival self. LOCATION_NODE

Node TDMS

Speed 10

Add agents to: false

Forced pushing true
Ltrucks: Iltrucks

General

Replication NumLtruck

Initialization Type

Contains a given number of agents

Population of agents

true

Replication

NumLtruck

Initialization Type

Contains a given number of agents

Population of agents true

Show name true
Movement

Initial Speed Code l (40 : MPH)
Initial location

Place agent(s)

’ at the agent animation location

Statistics

Statistics I
Advanced

Show at runtime true
Public false

Embedded object collection type

Access by index (ArrayList)

Logging

true

ResourcePool: LtruckPool

General

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: |

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Show name true
Movement
Initial Speed Code \ (10: MPS)

Initial location

Place agent(s)

‘ at the agent animation location
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Advanced
Show at runtime true
Public false
Logging true
null null
Resource type self RESOURCE_MOVING
Capacity defined self CAPACITY_SCHEDULE_ON_OFF
On/off schedule LTruckSchedule
Capacity when "On" NumLtruck
When capacity decreases false
New resource unit new cbr2019.Ltrucks()
Speed 10
Home location is self. HOME_SINGLE_NODE
Home location (nodes) { landfill }
'End of shift' priority 100
'End of shift' preemption policy self.PP_NO_PREEMPTION
'End of shift' may preempt true
Breaks false
Failures / repairs false
Maintenance false
Custom tasks false
Add units to: false
Force statistics collection false
MoveTo: moveTo
General
Population of agents false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: |

Show name true
Movement

Initial Speed Code ‘ (10 : MPS)
Initial location

Place agent(s)

‘ at the agent animation location

Advanced

Show at runtime true
Public false
Logging true
null null
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Agent self. MODE_MOVE_TO

Destination: self. DEST_NODE

Node TDMS

... with offset false

Straight movement false

Movement is defined by: self. MOVE_SPEED

Set agent's speed false
MoveTo: moveTo1

General

Population of agents false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: |

Show name true
Movement

Initial Speed Code ‘ (10: MPS)
Initial location

Place agent(s)

l at the agent animation location

Advanced
Show at runtime true
Public false
Logging true
null null
Agent self. MODE_MOVE_TO
Destination: self. DEST_NODE
Node landfill
... with offset false
Straight movement false
Movement is defined by: self. MOVE_SPEED
Set agent's speed false
Delay: Unload
General
Population of agents false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: |
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Show name true

Movement

Initial Speed Code

\ (10: MPS)

Initial location

Place agent(s)

at the agent animation location

Advanced
Show at runtime true
Public false
Logging true
null null
Type self TIMEOUT
Delay time triangular( 10, 15, 20 )
Maximum capacity true
Forced pushing false
Restore agent location on exit true
Force statistics collection false
Sink: sink
General
Population of agents false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: |

Show name true
Movement

Initial Speed Code ‘ (10 : MPS)
Initial location

Place agent(s)

‘ at the agent animation location

Advanced

Show at runtime true

Public false

Logging true

null null

Destroy policy: com.anylogic.libraries.processmodeling.Sink. DESTRO
Y_ONLY_CREATED_IN_SOURCE

ResourceTaskEnd: resourceTaskEnd11

General

null11null 114

240

Simulationt



null null

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: |

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Show name true
Movement

Initial Speed Code ‘ (10 : MPS)
Initial location

Place agent(s)

at the agent animation location

Advanced

Show at runtime true
Public false
Logging true
null null
Move resource to its home location true
Release resources seized by this unit true

ResourceTaskStart: resourceTaskStart11

General

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: Ltrucks]

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: Ltrucks]

Show name true
Movement
Initial Speed Code ‘ (10 : MPS)

Initial location

Place agent(s)

‘ at the agent animation location

Advanced

Show at runtime true

Public false

Logging true

null null

Start here: true
Seize: seize

General

Population of agents false

null12null 114

241

Simulationt



Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Show name true
Movement

Initial Speed Code ‘ (10: MPS)
Initial location

Place agent(s)

at the agent animation location

Advanced

Show at runtime true

Public false

Logging true

null null

Seize true

Resource pool LtruckPool
Number of units 1

Seize policy self SEIZE_WHOLE_SET
Maximum queue capacity true

Send seized resources true

Destination is self. DEST_NODE
Node landfill

Attach seized resources true

Task priority 0

Task may preempt true

Task preemption policy

self. PP_NO_PREEMPTION

Customize resource choice false
Define preparation tasks by true

Enable exit on timeout false
Enable preemption false

Canceled units:

self. CANCELED_UNITS_STAY_WHERE_THEY_ARE

Forced pushing

false

Restore agent location on exit true

Force statistics collection false

"agent1 is preferred to agent2" false
Release: release

General

Population of agents false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: |
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null

Sowmame we

Initial Speed Code (10: MPS)

Place agent(s) at the agent animation location

| Show at runtime true
Public false
Logging true

Release self ALL

Moving resources true

Wrap-up (e.g. move home) self WRAP_UP_ALWAYS
‘Wrap-up' usage statistics are: self. USAGE_BUSY

Order: order

Population of agents false
Population of agents false
Show name true

Initial Speed Code (10 : MPS)

Place agent(s) at the agent animation location

‘ Show at runtime true
Public false
Logging true

Queue: WaitToUnload

Population of agents | false

Generic Parameters Substitutes [Generic Parameter Substitute: |
Population of agents false

Generic Parameters Substitutes [Generic Parameter Substitute: ]
Show name true

Initial Speed Code

Place agent(s) at the agent animation location
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Advanced

Show at runtime true
Public false
Logging true
null null
Capacity 100
Maximum capacity false
Queuing self. QUEUING_FIFO
Enable exit on timeout false
Enable preemption false
Restore agent location on exit true
Force statistics collection false
Batch: batch
General
Population of agents false

Generic Parameters Substitutes

[Generic Parameter Substitute: , Generic Parameter Substitute: |

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: , Generic Parameter Substitute: |

Show name true
Movement

Initial Speed Code ‘ (10 : MPS)
Initial location

Place agent(s)

at the agent animation location

Advanced

Show at runtime true

Public false
Logging true

null null

Batch size 2
Permanent batch false

New batch new Agent()
Agent location TDMS
Location of batch self LOCATION_NOT_SPECIFIED
Add batches to: false
Forced pushing false
Restore agent location on exit true

Force statistics collection false
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Unbatch: unbatch

General

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: , Generic Parameter Substitute: |

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: , Generic Parameter Substitute: |

Show name true
Movement

Initial Speed Code ’ (10 : MPS)
Initial location

Place agent(s)

at the agent animation location

Advanced

Show at runtime true

Public false

Logging true

null null

Forced pushing false
Delay: Loading

General

Population of agents false

Generic Parameters Substitutes

[Generic Parameter Substitute: |

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Show name true
Movement

Initial Speed Code | (10: MPS)
Initial location

Place agent(s)

at the agent animation location

Advanced

Show at runtime true

Public false

Logging true

null null

Type self. TIMEOUT
Delay time triangular( 3,5, 10)
Maximum capacity true

Forced pushing false

Restore agent location on exit true

Force statistics collection false
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Queue: ReadyToPick

General

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Show name true
Movement

Initial Speed Code ‘ (10 : MPS)
Initial location

Place agent(s)

at the agent animation location

Advanced

Show at runtime true
Public false
Logging true
null null
Maximum capacity true
Queuing self QUEUING_FIFO
Enable exit on timeout false
Enable preemption false
Restore agent location on exit true
Force statistics collection false

Bar Chart: EquipUtilization

General

Chart Scale: To

1

Chart Scale: From 0

Scale type Fixed
Public true

Data update

Analysis auto update true
{-\ENSALYSIS_UPDATE_TIME_PROPERT - Recurring Event Properties
Appearance

Bars relative width 0.8
Labels vertical position DEFAULT
Labels Text Color darkGray
Chart Area Grid Color darkGray
Position and size

b 780.0
Width 190.0
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null

null

y 20.0
Height 230.0
Show legend true
Legend size 40.0
Legend text color black
Chart Area: X Offset 50.0
Chart Area: Width 100.0
Chart Area: Y Offset 30.0
Chart Area: Height 130.0
Chart Area: Background Color white
Chart area border color black
Show name false

STruck Util new Color(247, 68, 8)

tDMS trucks.utilization()

L TruckUtil yellowGreen

LtruckPool.utilization()

Bar Chart: chart1

Scale type

Auto

Public

Analysis auto update

true

true

ANALYSIS_UPDATE_TIME_PROPERT
IES

- Recurring Event Properties

Bars relative width 0.8
Labels vertical position DEFAULT
Labels Text Color darkGray
Chart Area Grid Color darkGray

X 1690.0

Width 320.0

y 970.0

Height 220.0

(legend

Show legend true

Legend size 30.0

Legend text color black
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Chart Area: X Offset 50.0

Chart Area: Width 240.0

Chart Area: Y Offset 30.0

Chart Area: Height 130.0

Chart Area: Background Color white

Chart area border color black

Advanced

Show name false

null null null

Current the amount | limeGreen (ReadyToPick.in.count()-ReadyToPick.out.count())*50

of Debris in TDMS Ilseize size()//+seizel .size()
Time Plot: chart2
null//seize.size()*50//+seize1.size()

General

Public true

Data update

Analysis auto update true

ANALYSIS_UPDATE_TIME_PROPERT
IES

- Recurring Event Properties

Dataset Samples To Keep 1000
Scale

Time window 90

Time days
Vertical scale Auto
Appearance

Labels horizontal position DEFAULT
Labels vertical position DEFAULT
Label format Model time units
Labels Text Color darkGray
Chart Area Grid Color darkGray
Draw line true

Fill area under line false
Interpolation Linear
Position and size

X 1060.0
Width 320.0

y 280.0
Height 210.0
Legend

Show legend true
Legend size 30.0
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Legend text color black

Simulationt

Chart area

Chart Area: X Offset 50.0

Chart Area: Width 240.0

Chart Area: Y Offset 30.0

Chart Area: Height 120.0

Chart Area: Background Color white

Chart area border color black

Advanced

Time window moves Continuously

Show name false

Logging true

Description

Description Hlseize size()*50//+seizel.size()

null null null null null null null null

Debris at Landfill value sink.count()*25 NONE dmediumOrchi true 1.0 LINEAR
Time Plot: chart3
null//seize.size()*50//+seize.size()

General

Public true

Data update

Analysis auto update true

ANALYSIS_UPDATE_TIME_PROPERT
IES

- Recurring Event Properties

Dataset Samples To Keep 1000
Scale

Time window 90

Time days
Vertical scale Auto
Appearance

Labels horizontal position DEFAULT
Labels vertical position DEFAULT
Label format Model time units
Labels Text Color darkGray
Chart Area Grid Color darkGray
Draw line true

Fill area under line false
Interpolation Linear
Position and size

X 740.0
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//(ReadyToPick.in.count()-
ReadyToPick.out.count())*50
/H(source.count()-
seize.out.count()*2)*25

seize.out.count())*50+tDMS.Re d
cycableMaterials.size()*25

Width 320.0

y 280.0

Height 210.0

Legend

Show legend true

Legend size 30.0

Legend text color black

Chart area

Chart Area: X Offset 50.0

Chart Area: Width 240.0

Chart Area: Y Offset 30.0

Chart Area: Height 120.0

Chart Area: Background Color white

Chart area border color black

Advanced

Time window moves Continuously

Show name false

Logging true

Description

Description liseize size()*50/+seize.size()
null null null null null null null null
Debris at TDMS value (seize.in.count()- NONE mediumOrchi | true 1.0 LINEAR

Time Stack Chart; chart

General

Public ‘ true

Data update

Analysis auto update true
ﬁENSALYSIS_UPDATE_TIME_PROPERT - Recurring Event Properties
Dataset Samples To Keep 100

Scale

Time window 100

Time model time units
Vertical scale Auto
Appearance

Labels horizontal position DEFAULT
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Labels vertical position DEFAULT

Label format Model time units

Labels Text Color darkGray

Chart Area Grid Color darkGray

Position and size

X 970.0

Width 400.0

y 20.0

Height 240.0

Legend

Show legend true

Legend size 40.0

Legend text color black

Chart area

Chart Area: X Offset 50.0

Chart Area: Width 320.0

Chart Area: Y Offset 30.0

Chart Area: Height 140.0

Chart Area: Background Color white

Chart area border color black

Advanced

Time window moves Continuously

Show name false

Logging true

null null null null
Debris at Landfill value sink.count()*25 lime
Debris at TDMS value (seize.in.count()- yellow

seize.out.count())*50+tDMS.Re
cycableMaterials.size()*25

Debris on Curbside | value

tDMS.enter.count()- red
tDMS.sink.count()

Histogram: chart4

General

Show mean false
Show CDF false
Show PDF true
Public true

Data update

Analysis auto update false
Appearance

Bars relative width 0.8
Labels vertical position DEFAULT
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Labels Text Color darkGray

Chart Area Grid Color darkGray

Position and size

X 1720.0

Width 260.0

y 780.0

Height 210.0

Legend

Show legend true

Legend size 30.0

Legend text color black

Chart area

Chart Area: X Offset 50.0

Chart Area: Width 180.0

Chart Area: Y Offset 30.0

Chart Area: Height 120.0

Chart Area: Background Color white

Chart area border color black

Advanced

Show name false

null null null null null null null null

?litsltogram Data TDMSHD lightSlateBlue | limeGreen darkMagenta 1 orange goldenRod
itle

Data Set: DebrisAtTDMSdata

General

Dataset Samples To Keep

10000

Axis Data Vertical Y Axis

(seize.in.count()-
seize.out.count())*50+tDMS.RecycableMaterials. size()*25

Axis Data Freeze X Axis

true

Show at runtime true
Show name true
Data update

Analysis auto update true

ANALYSIS_UPDATE_TIME_PROPERT
IES

- Recurring Event Properties

Logging true
Data Set: DebrisatLandfill
General

Dataset Samples To Keep ‘ 10000
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Axis Data Vertical Y Axis

sink.count()*25

Axis Data Freeze X Axis true
Show at runtime true
Show name true
Data update

Analysis auto update true

ANALYSIS_UPDATE_TIME_PROPERT
IES

- Recurring Event Properties

Logging

true

Histogram Data: TDMSHD

General

Logging true
Calculate percentilies false
Calculate CDF true

Number of intervals

1

Value

/f(seize.in.count()-
seize.out.count())*50+tDMS. RecycableMaterials. size()*25

/ADMS trucks.utilization()

Show at runtime true
Show name true
Values range

Data range true
Initial interval size 0.1
Data update

Analysis auto update true

ANALYSIS_UPDATE_TIME_PROPERT
IES

- Recurring Event Properties

Histogram2D Data: NumTrucksCompleted

General

Envelopes 0.25,05,0.75
Axis Data Freeze X Axis false
Show at runtime true
Show name true
X-axis values range

Horizontal intervals 20
Horizontal Range: From 0
Horizontal Range: To q
Y-axis values range

Vertical intervals 20
Vertical Range: From 0
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Vertical Range: To 1

Data update

Analysis auto update

true

ANALYSIS_UPDATE_TIME_PROPERT
IES

- Recurring Event Properties

Data Set: CompletedDS

General

Dataset Samples To Keep

10000

Axis Data Vertical Y Axis

tDMS.sink.count()*100ADMS.enter.count()

Axis Data Freeze X Axis

true

Show at runtime true
Show name true
Data update

Analysis auto update true

ANALYSIS_UPDATE_TIME_PROPERT
IES

- Recurring Event Properties

Logging

true

Agent Presentation: debris_presentation

General

Show at runtime true

Public true

Position and size

Latitude 30.656219248897532
Longitude -90.81615417998928
Rotation 0.0

Scale Automatically calculated
Real size when map scale is under 1000

Fixed size when map scale is under 1000000000
Advanced

Show in 2D and 3D

Draw agent with offset to this position false

Show name false

Agent Presentation: tDMS_presentation

General
Show at runtime true
Public true

Position and size
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Latitude 30.42259590914518
Longitude -90.59843901485883
Rotation 0.0

Scale Automatically calculated

Real size when map scale is under

1000

Fixed size when map scale is under 1000000000
Advanced

Show in 2D and 3D
Draw agent with offset to this position false

Show name false

Agent Presentation: trucks_presentation

General

Show at runtime true

Public true

Position and size

Latitude 30.657636295953136
Longitude -90.85486519926218
Rotation 0.0

Scale Automatically calculated

Real size when map scale is under

1000

Fixed size when map scale is under 1000000000
Advanced

Show in 2D and 3D
Draw agent with offset to this position false

Show name false

Agent Presentation: Itrucks_presentation

General

Show at runtime true

Public true

Position and size

Latitude 30.655038360482653
Longitude -90.78595409403184
Rotation 0.0

Scale Automatically calculated

Real size when map scale is under

1000

Fixed size when map scale is under 1000000000
Advanced

Show in 2D and 3D
Draw agent with offset to this position false
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Show name false

Text: text

Show at runtime true
Lock false
Embedded icon false
Public true

Text TDMS operation
Color black

Alignment LEFT

X 0.0

y 0.0

z 0.0

Rotation 0.0

Show in 2D only

Show name false

GIS Map: BRmap

Show at runtime true

Lock false
Public true

Show tiles true
Tile provider AnyLogic
Rwng
Routes are Requested from OSM server
Routing server AnyLogic
Routing method Fastest
Road type Car
If route not found Create straight route

Latitude 30.510459089941513
Longitude -91.04243564892109
Scale 200000
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null null
Border color silver
Fill color white

Current map scale

X 0.0

Width 750.0

Yy 0.0

Height 750.0

Adnced

Use custom tile URL false

Use custom route provider false

Routes and regions generalization uses | true

Link to agents: connections

Show at runtime

Show name

Draw line

Message type

false

Agent Type: Debris

null

Startup code /fsource.inject(400);

Speed (10 : MPS)
Rotate animation towards movement true
Rotate vertically as well (along Z-axis) false

Logging

true

Auto-create datasets

true

AOC_DATASETS_UPDATE_TIME_PR
OPERTIES

- Recurring Event Properties

Limit the number of data samples

false
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Simuiation?

t,main

p connections

statechart
source

queue delay sink

(normalWork | Q
; event

( waitingDetails )

Scale: scale

I o

General
Unit meter
Scale 100
Type Defined graphically
Length, pixels 100.0
Show at runtime false
Lock false
Public false
Posi size
X 0o
¥ -150.0
Rotation 0o
Event: event
General
Logging true

EVENT_TIMEOUT_PROPERTIES

- Recurring Event Properties

Mode

Occurs once

Trigger type Timeout
Show at runtime true
Show name true
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Action

Action

source.inject(main.DebrisAtUnit);

Source: source

General

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: |

Show name true
Movement

Initial Speed Code ‘ (10: MPS)
Initial location

Place agent(s)

at the agent animation location

Advanced

Show at runtime true

Public false

Logging true

null null

Arrivals defined by self. MANUAL
New agent new Agent()

Location of arrival

self LOCATION_NOT_SPECIFIED

Add agents to:

false

Forced pushing true
Queue: queue

General

Population of agents false

Generic Parameters Substitutes

[Generic Parameter Substitute: |

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Show name true
Movement

Initial Speed Code l (10 : MPS)
Initial location

Place agent(s)

|

at the agent animation location

Advanced
Show at runtime true
Public false
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Logging true

null null
Maximum capacity true
Queuing self. QUEUING_FIFO
Enable exit on timeout false
Enable preemption false
Restore agent location on exit true
Force statistics collection false
Delay: delay
General
Population of agents false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Show name true
Movement

Initial Speed Code l (10 : MPS)
Initial location

Place agent(s)

’ at the agent animation location

Advanced
Show at runtime true
Public false
Logging true
null null
Type self. TIMEOUT
Delay time triangular(3, 10, 6)
Capacity 5
Maximum capacity false
Forced pushing false
Restore agent location on exit true
Force statistics collection false
Sink: sink
General
Population of agents false

Generic Parameters Substitutes

[Generic Parameter Substitute: |

Population of agents

false
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Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Show name true
Movement

Initial Speed Code ‘ (10 : MPS)
Initial location

Place agent(s)

‘ at the agent animation location

Advanced

Show at runtime true

Public false

Logging true

null null

On enter Order order = new Order(this);

/fcreate an order above

send(order, main.tDMS);
/fsend the order to tDMS

/fmain.source.inject(1);
/fsend ("OrderRequest", agent );

Destroy policy:

com.anylogic.libraries.processmodeling.Sink. DESTRO
Y_ONLY_CREATED_IN_SOURCE

3D Object: box_opened

General

Scale 2.0

Auto scale true

File Name x3d/box_opened.x3d
Show at runtime true

Lock false
Public true
Position and size

¥ 0.0

Yy 0.0

z 0.0
Rotation 0.0
Advanced

Show in 2D and 3D
Enable AnyLogic light shaders true

Show name false

Link to agents: connections

null null
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Show at runtime

Show name

Draw line

false

Agent Type: TDMS

Speed

Rotate vertically as well (along Z-axis)

Logging

(10 : MPS)
Rotate animation towards movement true
false

true

Auto-create datasets

true

AOC_DATASETS_UPDATE_TIME_PR
OPERTIES

- Recurring Event Properties

Limit the number of data samples

false
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oo comnections
h ] ek TruckSchedule
Roman [ |
enter;  DMeMeasureStart] seize LoadingDebris o timeMeasureEnd1 =
2 B
> & & Py
oveToTDMS WaitinghTOMs  UnloadingAtTDMS

resourceTaskEnd

ReadyToGo  toDebris

resourceTaskStart

timeleasurejtart timeMgasureEyld
® ®

15% B 15%

source  selectOutputS  WaitingChipping  Processing sink1

NoProcessing

0 0.5 1 0 0.5 1

+s DebristiaitingTimeOnSite 8 TruckWaitingTimeAtTOMS.
RecycableMaterial: PickByRecycli ink3
ycableMaterials  PickByRecycling sinl G Waiting TrucksATOMS

s o

Scale: scale

General

Unit mile
Scale 5.0
Type Specified explicitly
Length, pixels 100.0
Show at runtime false
Lock false
Public false
Position and size

X 30.0

y -100.0
Rotation 0.0

Schedule: TruckSchedule

General
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Show at runtime true

Show name true

Data

Value type on/off

The schedule defines Intervals (Start, End)
Representation type Week

Default value false

Preview

SCHEDULE_PREVIEW_START_DATE ‘ 1523624943657

Advanced

System dynamics units l false

Sun | Mon | Tue | We | Thu | Fri Sat | null null null

+ + + + + + + 6:00 AM 6:00 PM true
Enter: enter

General

Population of agents false

Generic Parameters Substitutes

[Generic Parameter Substitute: Order]

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: Order]

Show name true
Movement
Initial Speed Code ‘ (10: MPS)
Initial location
Place agent(s) l at the agent animation location
Advanced
Show at runtime true
Public false
Logging true
null null
New location self. LOCATION_NOT_SPECIFIED
Add newborns to: false
Forced pushing true
Seize: seize
General
Population of agents false
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Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Show name true
Movement

Initial Speed Code ‘ (10: MPS)
Initial location

Place agent(s)

at the agent animation location

Advanced
Show at runtime true
Public false
Logging true
null null
Seize false
Resource sets {
{trucks }

}
Seize policy self. SEIZE_WHOLE_SET
Maximum gueue capacity true
Send seized resources false
Attach seized resources false
Task priority 0
Task may preempt true
Task preemption policy self.PP_NO_PREEMPTION
Customize resource choice false
Define preparation tasks by true
Enable exit on timeout false
Enable preemption false
Canceled units: self. CANCELED_UNITS_STAY_WHERE_THEY_ARE
Forced pushing false
Restore agent location on exit true
Force statistics collection false
On seize unit ((Truck) unit).client = agent.customer;
"agent1 is preferred to agent2" false

ResourcePool: trucks

General
Population of agents false

Generic Parameters Substitutes

[Generic Parameter Substitute: |

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Show name

true
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Movement

Initial Speed Code

| (10: MPS)

Initial location

Place agent(s)

at the agent animation location

Advanced

Show at runtime true
Public false
Logging true
null null

Resource type

self. RESOURCE_MOVING

Capacity defined self. CAPACITY_SCHEDULE_ON_OFF
On/off schedule TruckSchedule

Capacity when "On" main.NumTrucks

When capacity decreases false

New resource unit new cbr2019.Truck()

Speed 30

Home location is self HOME_SINGLE_NODE
Home location (nodes) {}

'End of shift' priority 100

'End of shift' preemption policy self.PP_NO_PREEMPTION
'End of shift' may preempt true

Breaks false

Failures / repairs false

Maintenance false

Custom tasks false

Add units to: true

Population main.trucks

Force statistics collection true

ResourceTaskStart: resourceTaskStart

null null

General

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: Truck]

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: Truck]

Show name true
Movement

Initial Speed Code ’ (10 : MPS)
Initial location

Place agent(s)

‘ at the agent animation location

Advanced
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Show at runtime true
Public false
Logging true
null null

Start here: true

Delay: ReadyToGo
General
Population of agents false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: |

Show name true
Movement

Initial Speed Code ‘ (10 : MPS)
Initial location

Place agent(s)

at the agent animation location

Advanced
Show at runtime true
Public false
Logging true
null null
Type self TIMEOUT
Delay time uniform(3, 5)
Maximum capacity true
Forced pushing false
Restore agent location on exit true
Force statistics collection false
MoveTo: toDebris
nullagent.client
General
Population of agents false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Show name

true

Movement
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Initial Speed Code (10 : MPS)

Initial location
Place agent(s) ‘ at the agent animation location
Advanced
Show at runtime true
Public false
Logging true
Description
Description agent.client
null null
Agent self. MODE_MOVE_TO
Destination: self. DEST_AGENT
Agent agent.client
... with offset false
Straight movement false
Movement is defined by: self. MOVE_SPEED
Set agent's speed false
Delay: LoadingDebris
General
Population of agents false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Show name true
Movement

Initial Speed Code | (10: MPS)
Initial location

Place agent(s)

l at the agent animation location

Advanced

Show at runtime true

Public false

Logging true

null null

Type self. TIMEOUT
Delay time triangular( 0.2, 0.5, 0.6 )
Maximum capacity true

Forced pushing false

Restore agent location on exit true

Force statistics collection false
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null

On at exit

/fsend("Delivered!",agent.customer);
//send ("PickedUp", agent.customer );

MoveTo: moveToTDMS

nullDestination : Agent/unit
Agent : main tDMS

General

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: Truck]

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: Truck]

Show name true
Movement

Initial Speed Code l (10 : MPS)
Initial location

Place agent(s)

{

at the agent animation location

Advanced

Show at runtime true

Public false

Logging true

Description

Description Destination : Agent/unit
Agent : main tDMS

null null

Agent self. MODE_MOVE_TO

Destination: self. DEST_AGENT

Agent main tDMS

... with offset false

Straight movement false

Movement is defined by: self. MOVE_SPEED

Set agent's speed false

ResourceTaskEnd: resourceTaskEnd

General

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: Truck]

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: Truck]

Show name

true
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Movement
Initial Speed Code ‘ (10: MPS)
Initial location

Place agent(s) at the agent animation location

Advanced

Show at runtime true
Public false
Logging true
null null
Move resource to its home location true
Release resources seized by this unit true

Source: source

General

Population of agents false

Generic Parameters Substitutes [Generic Parameter Substitute: |
Population of agents false

Generic Parameters Substitutes [Generic Parameter Substitute: ]
Show name true

Movement

Initial Speed Code ‘ (10 : MPS)

Initial location

Place agent(s) ‘ at the agent animation location
Advanced

Show at runtime true

Public false

Logging true

null null

Arrivals defined by self. MANUAL

New agent new Agent()

Location of arrival self LOCATION_NOT_SPECIFIED
Add agents to: false

Forced pushing true

Queue: WaitingChipping

General
Population of agents false
Generic Parameters Substitutes [Generic Parameter Substitute: ]
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Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: |

Show name true
Movement

Initial Speed Code ‘ (10: MPS)
Initial location

Place agent(s)

at the agent animation location

Advanced

Show at runtime true
Public false
Logging true
null null
Maximum capacity true
Queuing self. QUEUING_FIFO
Enable exit on timeout false
Enable preemption false
Restore agent location on exit true
Force statistics collection false

Delay: UnloadingAtTDMS

General

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: |

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Show name true
Movement

Initial Speed Code ‘ (10 : MPS)
Initial location

Place agent(s)

at the agent animation location

Advanced

Show at runtime true

Public false

Logging true

null null

Type self. TIMEOUT

Delay time triangular( 5, 10, 15 )
Capacity main. TdmsNumLoaders
Maximum capacity false

Forced pushing false
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Restore agent location on exit true
Force statistics collection false

On exit

source.inject(1);

Queue: NoProcessing

General

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: |

Show name true
Movement

Initial Speed Code ‘ (10 : MPS)
Initial location

Place agent(s)

at the agent animation location

Advanced

Show at runtime true
Public false
Logging true
null null
Maximum capacity true
Queuing self. QUEUING_FIFO
Enable exit on timeout false
Enable preemption false
Restore agent location on exit true
Force statistics collection false

SelectOutputd: selectOutputd

General

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: |

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Show name true
Movement

Initial Speed Code ‘ (10 : MPS)
Initial location

Place agent(s)

‘ at the agent animation location
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Advanced
Show at runtime true
Public false
Logging true
null null
Use: self. TYPE_PROBABILITIES
Probability 1 2
Probability 2 7
Probability 3 1
Probability 4 0
Probability 5 0
Sink: sink1
General
Population of agents false

Generic Parameters Substitutes

[Generic Parameter Substitute: |

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Show name true
Movement

Initial Speed Code ‘ (10 : MPS)
Initial location

Place agent(s)

at the agent animation location

Advanced

Show at runtime true

Public false

Logging true

null null

On enter main.source.inject(1);

Destroy policy:

com.anylogic.libraries.processmodeling.Sink. DESTRO
Y_ONLY_CREATED_IN_SOURCE

Sink: sink2

General

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: |
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Show name true

Movement

Initial Speed Code

\ (10: MPS)

Initial location

Place agent(s)

at the agent animation location

Advanced

Show at runtime true

Public false

Logging true

null null

On enter main.source.inject(1);

//main.source .inject(1);

Destroy policy:

com.anylogic.libraries.processmodeling.Sink. DESTRO
Y_ONLY_CREATED_IN_SOURCE

Sink: sink

General

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Show name true
Movement

Initial Speed Code ’ (10: MPS)
Initial location

Place agent(s)

at the agent animation location

Advanced

Show at runtime true

Public false

Logging true

null null

Destroy policy: com.anylogic.libraries.processmodeling.Sink. DESTRO
Y_ONLY_CREATED_IN_SOURCE

Release: release

General

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Population of agents

false
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Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Show name true
Movement

Initial Speed Code ‘ (10 : MPS)
Initial location

Place agent(s)

‘ at the agent animation location

Advanced

Show at runtime true

Public false

Logging true

null null

Release self ALL

Moving resources true

Wrap-up (e.g. move home) self WRAP_UP_ALWAYS
"Wrap-up' usage statistics are: self. USAGE_BUSY

Queue: WaitingAtTDMS

General

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Show name true
Movement

Initial Speed Code l (10 : MPS)
Initial location

Place agent(s)

’ at the agent animation location

Advanced

Show at runtime true

Public false

Logging true

null null

Capacity main.TdmsTruckCap
Maximum capacity false

Queuing self QUEUING_FIFO
Enable exit on timeout false

Enable preemption false

Restore agent location on exit true

Force statistics collection false
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Delay: Processing

General

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Show name true
Movement

Initial Speed Code ‘ (10 : MPS)
Initial location

Place agent(s)

at the agent animation location

Advanced

Show at runtime true

Public false

Logging true

null null

Type self TIMEOUT
Delay time triangular( 4,5, 6)
Capacity main.NumChipper
Maximum capacity false

Forced pushing false

Restore agent location on exit true

Force statistics collection false

TimeMeasureStart: timeMeasureStart

General

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: |

Show name true
Movement

Initial Speed Code ‘ (10 : MPS)
Initial location

Place agent(s)

‘ at the agent animation location

Advanced

Show at runtime true
Public false
Logging true
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TimeMeasureEnd: timeMeasureEnd

General

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: |

Show name true
Movement

Initial Speed Code ‘ (10 : MPS)
Initial location

Place agent(s)

l at the agent animation location

Advanced

Show at runtime true

Public false

Logging true

null null
TimeMeasureStart blocks { timeMeasureStart }
Dataset capacity 100

TimeMeasureStart: timeMeasureStart1

General

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: |

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Show name true
Movement

Initial Speed Code ‘ (10 : MPS)
Initial location

Place agent(s)

‘ at the agent animation location

Advanced

Show at runtime true
Public false
Logging true

TimeMeasureEnd: timeMeasureEnd1

General

Population of agents

‘ false
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Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Show name true
Movement

Initial Speed Code ‘ (10: MPS)
Initial location

Place agent(s)

‘ at the agent animation location

Advanced

Show at runtime true

Public false

Logging true

null null
TimeMeasureStart blocks { timeMeasureStart1 }
Dataset capacity 500

Queue: RecycableMaterials

General

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Show name true
Movement

Initial Speed Code l (10 : MPS)
Initial location

Place agent(s)

’ at the agent animation location

Advanced

Show at runtime true
Public false
Logging true
null null
Maximum capacity true
Queuing self. QUEUING_FIFO
Enable exit on timeout false
Enable preemption false
Restore agent location on exit true
Force statistics collection false

null49null 114

278

Simulationt



Sink: sink3

General

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Show name true
Movement

Initial Speed Code ’ (10 : MPS)
Initial location

Place agent(s)

l at the agent animation location

Advanced

Show at runtime true
Public false
Logging true
null null

Destroy policy:

com.anylogic.libraries.processmodeling.Sink. DESTRO
Y_ONLY_CREATED_IN_SOURCE

Delay: PickByRecycling
s ____________ow______|

General

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: ]

Population of agents

false

Generic Parameters Substitutes

[Generic Parameter Substitute: |

Show name true
Movement

Initial Speed Code ‘ (10: MPS)
Initial location

Place agent(s)

at the agent animation location

Advanced

Show at runtime true

Public false

Logging true

null null

Type self. TIMEOUT

Delay time triangular( 0.5,1,1.5)
Capacity 1

Maximum capacity false

Forced pushing false
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Restore agent location on exit

true

Force statistics collection

false

Time Plot: chart

null

Analysis auto update

null

e e

true

ANALYSIS_UPDATE_TIME_PROPERT
IES

- Recurring Event Properties

Dataset Samples To Keep

100

Labels horizontal position

Time window 100
Time model time units
Vertical scale Auto

DEFAULT

Labels vertical position

DEFAULT

Label format Model time units
Labels Text Color darkGray

Chart Area Grid Color darkGray

Draw line true

Fill area under line false
Interpolation Linear

X 90.0

Width 260.0

y 610.0

Height 210.0
I

Show legend true

Legend size 30.0

Legend text color black
T

Chart Area: X Offset 50.0

Chart Area: Width 180.0

Chart Area: Y Offset 30.0

Chart Area: Height 120.0

Chart Area: Background Color white

Chart area border color black

Time window moves Continuously
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null null

Show name

false

Logging

true

v Dataset Title value

WaitingChipping.size()

NONE darkOrange true

Histogram: chart1

Show mean

Analysis auto update

Bars relative width

true
Show CDF false
Show PDF true
Public true

false

0.8
Labels vertical position DEFAULT
Labels Text Color darkGray
Chart Area Grid Color darkGray

X 830.0
Width 260.0
y 260.0
Height 210.0
e

Show legend true

Legend size 30.0

Legend text color black

Chart Area: X Offset 50.0

Chart Area: Width 180.0
Chart Area: Y Offset 30.0

Chart Area: Height 120.0
Chart Area: Background Color white
Chart area border color black
Show name false

TDMS

TruckWaiting TimeAt

timeMeasureEnd.di
stribution
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Histogram: chart2

Simulationt

General

Show mean true
Show CDF false
Show PDF true
Public true

Data update

Analysis auto update false
Appearance

Bars relative width 0.8
Labels vertical position DEFAULT
Labels Text Color darkGray
Chart Area Grid Color darkGray
Position and size

X 580.0
Width 260.0

Yy 260.0
Height 210.0
Legend

Show legend true
Legend size 30.0
Legend text color black
Chart area

Chart Area: X Offset 50.0
Chart Area: Width 180.0
Chart Area: Y Offset 30.0
Chart Area: Height 120.0
Chart Area: Background Color white
Chart area border color black
Advanced

Show name false

null null null null null null null null
DebrisWaitingTime | timeMeasureEnd1.d | gold goldenRod yellowGreen 1 goldenRod crimson
OnSite istribution

Statistics: WaitingTrucksAtTTDMS

General

Statistics value WaitingAtTDMS.size()
/MWaitingAtTDMS.in.count()-WaitingAt TDMS.out.count()

Discrete true

Show at runtime true

null53null 114

282



Data update

Analysis auto update

true

ANALYSIS_UPDATE_TIME_PROPERT
IES

- Recurring Event Properties

Logging true
3D Object: warehouse_3
General
Scale 1.25
Auto scale true
File Name x3dAvarehouse_3.x3d
Show at runtime true
Lock false
Public true
Position and size
X 0.0
y 0.0
z 0.0
Rotation 0.0
Advanced
Show in 2D and 3D
Enable AnyLogic light shaders true
Show name false
View Area: viewTDMS
General
Title viewTDMS
Show name false
Position and size
X 0.0
Width 1380.0
Yy 0.0
Height 800.0

Link to agents: connections

General

Show at runtime true
Show name true
Communication
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Message type Order

On receive

Draw line

/f place a received order massage into the enter block

entertake(msg),

false

Agent Type: Truck

null

use niovenans 2

Speed

T(10: MPS)

Rotate animation towards movement

true

Rotate vertically as well (along Z-axis)

false

<

Generic

Logging

true

Auto-create datasets

true

AOC_DATASETS_UPDATE_TIME_PR
OPERTIES

- Recurring Event Properties

false

Limit the number of data samples
. main
p connections
]
@ client

Scale: scale

null

full

Unit meter

Scale 100

Type Defined graphically
Length, pixels 100.0

Show at runtime false

Lock false

Public false
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Position and size

% 0.0

Y -150.0

Rotation 0.0
Parameter: client

General

Array false

Type Debris

Show at runtime false

Show name true

Value editor

Editor control Text

Advanced

System dynamics units false

Save in snapshot true
3D Object: tip_truck

General

Scale 0.5

Auto scale true

File Name x3dAtip_truck x3d

Show at runtime

true

Lock false
Public true
Position and size

X 0.0
y 0.0
z 0.0
Rotation 0.0
Advanced

Show in 2D and 3D
Enable AnyLogic light shaders true
Show name false

Link to agents: connections

General
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Show at runtime true

Show name

Draw line

true

Agent Type: Order

null

Useinflowcharts as

Speed

null

(10: MPS)

Rotate animation tow ards movement

true

Rotate vertically as well (along Z-axis)

Space Type

Generic

. Logging

false

Continuous
false

true

Auto-create datasets

true

AOC_DATASETS_UPDATE_TIME_PR
OPERTIES

- Recurring Event Properties

Limit the number of data samples

false

tmiﬂ

.acome:dons

@ customer

Scale: scale

meter

Unit

Scale 10.0

Type Defined graphically
Length, pixels 100.0

Show at runtime false

Lock false
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-150.0

Rotation

0.0

Parameter: customer

Label

Array false
Type Debris
Show at runtime true
Show name true

customer

Editor control

System dynamics units

Text

false

Save in snapshot

true

Link to agents: connections

Show at runtime

Show name

Draw line

false

Message type Object

Agent Type: Ltrucks

null

rts

Speed

null

Rotate vertically as well (along Z-axis)

(10 : MPS)
Rotate animation towards movement true
false

Generic
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null null

Logging

true

Auto-create datasets

true

AQOC_DATASETS_UPDATE_TIME_PR
OPERTIES

- Recurring Event Properties

Limit the number of data samples false
R main
&. connections
Scale: scale
General
Unit meter
Scale 10.0
Type Defined graphically
Length, pixels 100.0
Show at runtime false
Lock false
Public false
‘Position and size _
X 0o
y -1580.0
Rotation 0o
3D Object: truck
General
Scale 03
Alto scale true
File Name X3ditruckx3d
Show at runtime true
Lock false
Public true
Position and size
X oo
Y 0o
z 0o
Rotation oo
Atvanced
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Show in 2D and 3D
Enable AnyLogic light shaders true
Show name false

Link to agents: connections

General

Show at runtime true
Show name true
Communication

Message type l Object
Animation

Draw line ‘ false

Simulation Experiment. Simulation

General

Maximum available memory 8192
Agent type main
Model time

Execution mode

Real time with scale

Real time scale 1.0

Stop option Stop at specified date

Initial time 0.0

Initial date Wed Aug 10 00:00:00 GMT 2016
Final date Tue Nov 08 00:00:00 GMT 2016
Randomness

Random Number Generation Type

Fixed seed (reproducible simulation runs)

Seed value

1

Selection mode for simultaneous events

LIFO (in the reverse order of scheduling)

Window

Title 20170513 _louisiana : Simulation
Enable zoom and panning true
Maximized size false
Close confirmation false
Advanced

Enable Antialiasing true
Enable Enhanced Model Elements true
Animation

Adaptive frame management true
CPU time balance 1 52
Load root from snapshot false
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Disaster Debris Management - System behaviors

=
Run

Text: text

Show at runtime

true

Lock

false

Alignment

Disaster Debris Management - System hehaviors
Colar royalBlue
LEFT

400

y 30.0
z 0.0

Rotation

Show name

0o

false

Button: button

Label text

Enahbled true

Dynamic: Label getState() == IDLE ?
"Run" :
"Top level agent"
Run

it ( getstate() == IDLE )

Ta0a

run();
getPresentation() setPresentable( getEngine() getRoot() %

Show name

X

Width 100.0
y 80.0
Height

30.0

false

Optimization Experiment: Optimization
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Maximum available memory 16384
Automatic stop false
Iteration count 500
Stop After Iteration Count true

Objective function code

root.Completed
/oot tDMS trucks.utilization() + root.LtruckPool.utilization()

Objective maximize

Agent type main

Model time

Stop option Stop at specified date

Initial time 0.0

Initial date Wed Aug 10 00:00:00 GMT 2016
Final date Tue Nov 08 00:00:00 GMT 2016
Randomness

Random Number Generation Type

Fixed seed (reproducible simulation runs)

Seed value

1

Selection mode for simultaneous events

LIFO (in the reverse order of scheduling)

Replications

Use replications false

Window

Title Equipment Utilization opt.
Enable zoom and panning true

Maximized size false

Close confirmation false

Java actions

Before each experiment run

datasetCurrentObjective.reset();
datasetBestInfeasibleObjective.reset();
datasetBestFeasibleObjective.reset();

After iteration code

if (isBestSolutionFeasible()) {
datasetBestFeasibleObjective. update();

}

if (lisCurrentSolutionFeasible()) {
bestInfeasibleObjective = max( bestinfeasibleObjective,
getCurrentObjectiveValue() );

}
if (bestInfeasibleObjective |= Double.NEGATIVE_INFINITY) {
datasetBestInfeasibleObjective.update();

}
Advanced
Allow parallel evaluations true
Load root from snapshot false

null
null null null null null null
NumTrucks INTEGER 100 200 1 150
NumLtruck INTEGER 3 6 1 4
TdmsTruckCap FIXED 100
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null
null null null null null null
TdmsNumlLoaders | FIXED
DebrisAtUnit FIXED
NumChipper FIXED
(Fdatssetcumentobjective Disaster Debris Management System - Optimization

&datasetBesﬁnfeasibleObjecﬁve
(D bestinfeasibleObjective

datasetBestFeasibleObjecﬁve

(S ]

Current Best
Iteration: 5 LI o
Objective: T ? ?
Parameters
NumTrucks ?
NumLtruck ?

Copy the best solution
to the clipboard

Variable: bestlnfeasibleObjective

Simulationt

(11672 S S

0.6

0.4+

0.2

1]

0

“+ Current

0.2

0.4 0.6
~ Best infeasible = Best feasible

General

Initial value Double NEGATIVE_INFINITY

Type double

Show at runtime true

Show name true

Advanced

Accesstype puhblic

Static false

Canstant false

Save in snapshot true

Systermn dynamics units false
Plot: plotObjective

[jéta:update\

Analysis auto update false

Dataset Samples To Keep 100

Scale

Horizontal scale Auto
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Vertical scale Auto

Simulationt

Appearance
Labels horizontal position DEFAULT
Labels vertical position DEFAULT
Labels Text Color darkGray
Chart Area Grid Color darkGray
Draw line true
Interpolation Linear
Position and size
% 330.0
Width 480.0
y 100.0
Height 300.0
Legend
Show legend true
Legend size 40.0
Legend text color black
Chart area
Chart Area: X Offset 80.0
Chart Area: Width 380.0
Chart Area: Y Offset 20.0
Chart Area: Height 220.0
Chart Area: Background Color white
Chart area border color black
Advanced
Show name false
Logging true
null
null null null null null null null null null
Current dataset datasetCurrentObjective SQUARE silver true 1.0 LINEAR
Best infeasible dataset datasetBestInfeasibleObjective | NONE new Color(192, 0, 0) true 2.0 LINEAR
Best feasible dataset datasetBestFeasibleObjective NONE navy true 2.0 LINEAR
Data Set: datasetCurrentObjective
General
Dataset Samples To Keep 500
Axis Data Vertical Y Axis getCurrentObjectiveValue()
Axis Data Freeze X Axis true
Show at runtime false
Show name true
Data update
nullé4null 114
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Analysis auto update

true

Logging

true

Data Set: datasetBestInfeasibleObjective

General

Dataset Samples To Keep

500

Axis Data Vertical Y Axis

bestinfeasibleObjective

Axis Data Freeze X Axis true
Show at runtime false
Show name true
Data update

Analysis auto update false
Logging true

Data Set: datasetBestFeasibleObjective

General

Dataset Samples To Keep

500

Axis Data Vertical Y Axis

getBestObjectiveValue()

Axis Data Freeze X Axis true

Show at runtime false

Show name true

Data update

Analysis auto update false

Logging true
Text: text

General

Show at runtime true

Lock false

Text

Text Disaster Debris Management System - Optimization

Appearance

Color royalBlue

Alignment LEFT

Position and size

X 40.0

y 30.0

z 0.0

Rotation 0.0

Advanced
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Show name false

Text: text1

Show at runtime

Lock
Text

Color

black
Alignment
X 200.0
y 130.0
z 0.0
Rotation 0.0

Show name

false

Text: text2

null

Show at runtime

null

true

Lock

Color

false

black

Alignment

RIGHT

b 270.0
y 130.0
z 0.0
Rotation 0.0

Show name

false

Line: line
null

Show at runtime

null

true

Lock

false

nulléénull 114
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null null
Line color black
Line width 1.0
Line style SOLID
X 40.0
dX 240.0
y 150.0
dY 0.0
z 0.0
dz 0.0
Z-Height 10.0
Show name false
Text: text3

Show at runtime

true

Lock

Color

false

Iteration:

Alignment

X 50.0
y 160.0
2 0.0
Rotation 0.0

Show name false

Text: text4

null

Dynamic: Visible

null

Text

getCurrentlteration() > 0
Show at runtime true
Lock false

?

Dynamic: Text

format(getCurrentlteration())
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null null
Color darkSlateBlue
Alignment RIGHT

Show name

X 200.0
y 160.0
z 0.0
Rotation 0.0

false

Text: textd

null

Dynamic: Visible

null

Color

getCurrentlteration() > 0 &8& lisCurrentSolutionFeasible()
Show at runtime true
Lock false

red

Alignment

RIGHT

X 200.0
y 169.0
z 0.0

Rotation

0
Show name false

0.

Text: text6

null

Dynamic: Visible

getBestlteration() > 0
Show at runtime true
Lock false

Text ?

Dynamic: Text format(getBestlteration())
Color blue

Alignment RIGHT

X 270.0
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y 160.0
z 0.0
Rotation 0.0

Show name false

Text: text7

null null

Dynamic: Visible getBestlteration() > 0 && lisBestSolution Feasible()

Show at runtime true

Lock false

Text infeasible

Color red

Alignment RIGHT
X 270.0
y 169.0
z 0.0
Rotation 0.0

Show name false

Line: line1

null null

Show at runtime true

Lock false

Line color black
Line width 1.0
Line style SOLID
CPestonandsee
X 40.0
dX 240.0
y 180.0
dy 0.0
z 0.0
dz 0.0
Z-Height 10.0
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Show name false

Text: text8

Show at runtime
Lock

Objective:

Color black
Alignment LEFT

X 50.0

y 190.0

z 0.0

Rotation 0.0

Show name false
Text: text9

null

Dynamic: Visible

getCurrentlteration() > 0
Show at runtime true
Lock false

Text ?

Dynamic: Text format(getCurrentObjectiveValue())
Color darkSlateBlue
Alignment RIGHT
X 200.0
y 190.0
z 0.0
Rotation 0.0
Show name false
Text: text10
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null

null

Lock

Dynamic: Visible getBestlteration() > 0
Show at runtime true
false

Text ?

Dynamic: Text format(getBestObjectiveValue())
Color blue

Alignment RIGHT

X 270.0

y 190.0

z 0.0

Rotation 0.0

Show name false

Line: line2

Show at runtime true
Lock false
Line color black
Line width 1.0
Line style SOLID
X 40.0
dX 240.0
y 210.0
dy 0.0

z 0.0
dz 0.0
Z-Height 10.0
Show name false

Polyline: polyline

Polyline closed

true
Show at runtime true
Lock false
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null

null

Fill color darkBlue
Line width 1.0
Line style SOLID
(Postonandsze
X 133.0
y 202.0
z 0.0

Z-Height

Show name

10.0

false

Text: text11

null

Show at runtime

null

true

Lock

Text

Color

false

Parameters

Show name

black
Alignment LEFT
[Postionsndsze
X 50.0
y 220.0
z 0.0
Rotation 0.0

false

Rounded Rectangle: roundRect

null

Show at runtime

null

true

Lock

false

Fill color lightYellow
Line color black
Line width 1.0
Line style SOLID
(Postenendsze
X 210.0
Width 80.0
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null null

y 230.0
Height 110.0
Rotation 0.0
Radius 10.0

Show name false

Text: text12

null null

Show at runtime true

Lock false

Text NumTrucks

Color black

Alignment LEFT
X 50.0
y 250.0
z 0.0
Rotation 0.0

Show name false

Text: text13

null null

Dynamic: Visible getCurrentlteration() > 0

Show at runtime true
Lock false

Text ?
Dynamic: Text format( NumTrucks )

Color darkSlateBlue
Alignment RIGHT
(Postenandsze
X 200.0
y 250.0
z 0.0
Rotation 0.0
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Show name false

Text: text14

Dynamic: Visible

getBestlteration() > 0
Show at runtime true
Lock false

Text ?

Dynamic: Text format( getBestParamValue( _ogvar_NumTrucks ) )
Color blue
Alignment RIGHT
X 270.0
y 250.0
z 0.0
Rotation 0.0
Show name false
Text: text15

Show at runtime

true

Lock

Text

Color

NumLtruck

false

black
Alignment LEFT
X 50.0
y 270.0
z 0.0
Rotation 0.0
Show name false

Text: text16
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null

null

Dynamic: Visible getCurrentlteration() > 0
Show at runtime true
Lock false

Show name

Text ?

Dynamic: Text format( NumLtruck )
Color darkSlateBlue
Alignment RIGHT

X 200.0

y 270.0

z 0.0

Rotation 0.0

false

Text: text17

null

Dynamic: Visible

null

getBestlteration() > 0
Show at runtime true
Lock false

Text ?

Dynamic: Text format( getBestParamValue( _ogvar_NumLtruck ) )
Color blue

Alignment RIGHT

X 270.0

y 270.0

z 0.0

Rotation 0.0

Show name false

—
[0
A
—
(0]
x
—
HEY
[0¢]

Show at runtime

true

Lock

false

null75null 114

304



Simulationt

Color

black

null

Copy the best solution
to the clipboard

Alignment LEFT
X 50.0
y 310.0
z 0.0
Rotation 0.

0
Show name false

Polyline: polyline1

Polyline closed

true
Show at runtime true
Lock false
Fill color gold
Line width 1.0
Line style SOLID
X 190.0
y 310.0
z 0.0
Z-Height 10.0
Show name false

Button: button

Dynamic: Enable

getState() == IDLE

Enabled

true

Label text

Run

X 40.0
Width 100.0
y 80.0
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Height 30.0
Advanced
Show name ‘ false

Button: button1

General

Dynamic: Enable

getBestlteration() > 0

Enabled true

Label text copy

Action

Action Strings="";

s +="NumTrucks\t" + format( getBestParamValue(
_oqgvar_NumTrucks ) ) + "\n";

s +="NumLtruck\t" + format( getBestParamValue( _ogvar_NumLtruck
))+ "t

copyToClipboard( s );

Position and size

¥ 220.0
Width 60.0

y 310.0
Height 20.0

Advanced

Show name ‘ false

Parameter Variation Experiment. SensitivityAnalysis

General

Maximum available memory 4096

Agent type main

Model time

Stop option Stop at specified date

Initial time 0.0

Initial date Wed Aug 10 00:00:00 GMT 2016
Final date Tue Nov 08 00:00:00 GMT 2016
Randomness

Random Number Generation Type

Fixed seed (reproducible simulation runs)

Seed value

1

Selection mode for simultaneous events

LIFO (in the reverse order of scheduling)

Replications

Use replications false

Window

Title LT1verFinal3 : SensitivityAnalysis
Enable zoom and panning true

Maximized size false
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Close corfirmation false

Java actions

Before each experiment run

chartd rem oveAll();

After simulation run

Color color = lerpColar{ (getCumentiteration()- 1) / (double)
(getMaximumiterations() - 1), blue, red );

chart0.addDataSet{ root.DebrisAtTOM Sdata, format( rootNum Trucks
), color, true, Chart.INTERPOLATION_LINEAR, 1,

Chart POINT_NONE };

Advanced
Allow parallel evaluations true
Load roct fram snapshot false

null
il il null null null
NumnTrucks RANGE 50 100 1
NumLiruck FIXED 3
TdmsTruckCap FIXED 100
TdmsNumLoaders FIXED 2
DebrisAtUnit FIXED 50
NumChipper FIXED 1

LT1verFinal3 : SensitivityAnalysis

I

Varied Parameter
NumTrucks Number of runs: ?
Charts
1
T PO VR ORI OR VORI | O SO O ST S SV SR OR
-1
% o
NumTrucks:

Plot: chartO

null null
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null null

Analysis auto update false
Dataset Samples To Keep 100

Horizontal scale Auto
Vertical scale Auto

Labels horizontal position DEFAULT
Labels vertical position DEFAULT
Labels Text Color darkGray
Chart Area Grid Color darkGray
Draw line false

b4 40.0
Width 760.0
y 180.0
Height 300.0
Lewnd
Show legend true
Legend size 40.0
Legend text color black
(Chamerea
Chart Area: X Offset 80.0
Chart Area: Width 660.0
Chart Area: Y Offset 20.0
Chart Area: Height 220.0
Chart Area: Background Color white
Chart area border color black

Show name false
Logging true
Text: text

Show at runtime true

Lock false

Text LT1verFinal3 : SensitivityAnalysis

Color royalBlue

Alignment LEFT
¥ 40.0

null79null 114
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null null
y 30.0
z 0.0
Rotation 0.0

Show name

false

Text: text

null null

Show at runtime

true

Lock

Text

Color

false

Alignment

X 40.0
y 120.0
z 0.0
Rotation 0.0

Show at runtime

Lock

Line color black
Line width 1.0
Line style SOLID
(Postenendsze
X 150.0
dX 650.0
y 130.0
dy 0.0
z 0.0
dzZ 0.0
Z-Height 10.0
Show name false
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Text: text2

Show at runtime

Lock

Color black

Alignment LEFT
X 40.0
y 140.0
z 0.0
Rotation 0.0

Show name false

Text: text3

null null

Show at runtime true

Lock false

Text ?

Dynamic: Text format( NumTrucks )
Color darkSlateBlue
Alignment RIGHT

X 260.0

y 140.0

z 0.0

Rotation 0.0

Show name false

Text: text4

Show at runtime

Lock false
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Text

Color black

Alignment LEFT
X 420.0
y 140.0
z 0.0
Rotation 0.0

Show name false

Text: text5

null null

Show at runtime true

Lock false

Text ?

Dynamic: Text format( getEngine().getRunCount() )
Color darkSlateBlue

Alignment RIGHT

X 640.0

y 140.0

z 0.0

Rotation 0.0

Show name false

Text: text6

null null

Show at runtime true

Lock false

Color black
Alignment LEFT
X 40.0
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y 160.0
z 0.0
Rotation 0.0

Show name false

Line: line1

null null

Show at runtime

Lock

Line color black
Line width 1.0
Line style SOLID
X 90.0
dX 710.0
y 170.0
dy 0.0
z 0.0
dz 0.0
Z-Height 10.0
Show name false
Text: text7

Show at runtime

true

Lock

Text

Color

false

darkBlue
Alignment RIGHT
b 120.0
y 440.0
z 0.0
Rotation 0.0
Show name false
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Button: button

null null
Dynamic: Enable getState() == IDLE
Enabled true
Label text Run

X 40.0
Width 100.0
y 80.0
Height 30.0

Show name false

Parameter Variation Experiment. MonteCarlo

Maximum available memory 4096

Agent type main

Stop option Stop at specified date

Initial time 0.0

Initial date Wed Aug 10 00:00:00 GMT 2016

Final date Tue Nov 08 00:00:00 GMT 2016
Random Number Generation Type Random seed (unique simulation runs)
Selection mode for simultaneous events | LIFO (in the reverse order of scheduling)

Title LT1verFinal3 : MonteCarlo

Enable zoom and panning true
Maximized size false
Close confirmation false

After simulation run histogram0_data.add( root.Completed );

Allow parallel evaluations true

Load root from snapshot false
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nul null nul | il [ nu
Num Trucks RANGE 60 \ 100 1
NumLiruck FIXED 2
TdmsTruckCap FIXED 150
TdmsNumLoaders | RANGE 1 | 5 1
' DehrisAtUnit | FixED 50 ' '
NumChipper | FIXED 2

d_l histogram0_data

LT1verFinal3 : MonteCarlo

Run

Varied Parameters
NumTrucks
NumLtruck
TdmsTruckCap
TdmsNumLoaders
DehrisAtUnit
NumChipper
Charts

Number of runs:

Simulation?

100%
90%
80% A
70%
60%
50%
40%
30%
20%

10% +

0% -
0

Histogram: histogramO

0.1

0.2 0.3 0.4

0.6

0.7

General
Show mean false
Show CDF false
Show PDF | true
Data update
ﬂalysis auto update | false
Appearance
Bars relative width |08
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null null

X

Chart Area

Grid Color

Labels vertical position DEFAULT
Labels Text Color darkGray
darkGray

40.0

Height

Chart Area

Width 760.0
y 280.0
300.0

80.0

: X Offset
Chart Area: Width 660.0
Chart Area: Y Offset 20.0
Chart Area: Height 260.0
Chart Area: Background Color white
Chart area border color black

Show name false

histogram0_data blue black saddleBrown | navy cyan

Histogram Data: histogramQ_data

Logging true

Calculate percentilies false
Calculate CDF true
Number of intervals 4
Show at runtime false
Show name true
Data range true
Initial interval size 1
Analysis auto update false
Text: text

Show at runtime true
Lock false
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null null

Text LT1verFinal3 : MonteCarlo

Color royalBlue
Alignment LEFT

X 40.0

y 30.0

z 0.0

Rotation 0.0

Show name false
Text: text1

Show at runtime true
Lock false

Color black

Alignment LEFT

X 400.0

y 90.0

z 0.0

Rotation 0.0

Show name false
Text: text2

null null

Show at runtime true

Lock false

Text ?

Dynamic: Text format( getEngine().getRunCount() )
Color darkSlateBlue

Alignment RIGHT
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null null

X 620.0
Yy 90.0
2 0.0
Rotation 0.0

Show name

false

Text: text3

null

Show at runtime

null

true

Lock

Text

Color

false

Varied Parameters

black

Alignment

LEFT

X 40.0
y 120.0
z 0.0
Rotation 0.0

Show name

false

Line: line
null

Show at runtime

null

true

Lock

false

Line color black
Line width 1.0
Line style SOLID
CPostonandsee
X 150.0
dX 650.0
y 130.0
dy 0.0
z 0.0
dz 0.0
Z-Height 10.0
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Show name false

Text: text4

Show at runtime
Lock

Color black

Alignment

X 40.0
y 140.0
z 0.0
Rotation 0.0

Show name false

Text: textd

null null

Show at runtime true
Lock false
Text ?
Dynamic: Text format( NumTrucks )
Color darkSlateBlue
Alignment RIGHT
X 260.0
y 140.0
z 0.0
Rotation 0.0
Show name false
Text: text6

Show at runtime true
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null

Lo e

Text NumLtruck

Color black

Alignment LEFT
¥ 40.0
y 160.0
z 0.0
Rotation 0.0

Show name false

Text: text7

null null

Show at runtime true

Lock false

Text ?

Dynamic: Text format( NumLtruck )
Color darkSlateBlue
Alignment RIGHT

X 260.0

y 160.0

2 0.0

Rotation 0.0

Show name false

Text: text8

null

Show at runtime true

Lock false

Text TdmsTruckCap
Color black
Alignment LEFT
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null null

X 40.0
y 180.0
z 0.0
Rotation 0.0

Show name false

Text: text9

null null

Show at runtime true

Lock false

Text ?

Dynamic: Text format( TdmsTruckCap )
Color darkSlateBlue
Alignment RIGHT

X 260.0

y 180.0

z 0.0

Rotation 0.0

Show name false
Text: text10

Show at runtime

Lock

Text TdmsNumLoaders

Color black

Alignment LEFT
X 40.0
y 200.0
z 0.0
Rotation 0.0
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Show name false

Text: text11

null

Show at runtime true
Lock false
Text ?
Dynamic: Text format( TdmsNumLoaders )
Color darkSlateBlue
Alignment RIGHT
X 260.0
y 200.0
z 0.0
Rotation 0.0
Show name false
Text: text12

Show at runtime true

Lock false
Text DebrisAtUnit

Color black

Alignment LEFT

¥ 40.0

y 220.0

z 0.0

Rotation 0.0

Show name false
Text: text13

Show at runtime true
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Text ?
Dynamic: Text format( DebrisAtUnit )
Color darkSlateBlue
Alignment RIGHT
X 260.0
y 220.0
z 0.0
Rotation 0.0
Show name false
Text: text14
null null
Show at runtime true
false

Lock

Text

Color

NumChipper

Alignment

X 40.0
y 240.0
2 0.0
Rotation 0.0
Show name false
Text: text15

null null
Show at runtime true
Lock false

Text ?

Dynamic: Text

Color

format( NumChipper )

darkSlateBlue
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Rotation 0.0
Show name false
Text: text16

Show at runtime true

Lock false

Text

Color black

Alignment LEFT
X 40.0
y 260.0
z 0.0
Rotation 0.0

Show at runtime true
Lock false
CAepearence
Line color black
Line width 1.0
Line style SOLID
[Postonandsze
b 90.0
dX 710.0
y 270.0
dy 0.0
z 0.0
dz 0.0
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Z-Height 10.0
Advanced
Show name ‘ false

Button: button

General

Dynamic: Enable

getState() == IDLE

Enabled true
Label text Run
Action

Action run();
Position and size

X 40.0
Width 100.0
y 80.0
Height 30.0
Advanced

Show name ‘ false

Parameter Variation Experiment. SensitivityAnalysis1

General

Maximum available memory 16384

Agent type main

Model time

Stop option Stop at specified date

Initial time 0.0

Initial date Wed Aug 10 00:00:00 GMT 2016

Final date Tue Nov 08 00:00:00 GMT 2016
Randomness

Random Number Generation Type Random seed (unique simulation runs)
Selection mode for simultaneous events | LIFO (in the reverse order of scheduling)

Replications

Use replications false

Window

Title Sensitivity Analysis
Enable zoom and panning true

Maximized size false

Close confirmation false

Java actions

Before each experiment run

chart0.removeAll();
chart1.removeAll();
chart2_dataSet.reset();
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After simulation run

chart3_dataSet.reset();
chart4_dataSet.reset();
chart5_dataSet.reset();
/fchart6_dataSet.reset();

Color color = lerpColor( (getCurrentlteration() - 1) / (double)
(getMaximumlterations() - 1), blue, red );

chart0.addDataSet( root.DebrisAtTDMSdata, format( root.NumTrucks
), color, true, Chart.INTERPOLATION_LINEAR, 1,
Chart.POINT_NONE );

chart1.addDataSet( root.DebrisatLandfill, format( root. NumTrucks ),
color, true, Chart.INTERPOLATION_LINEAR, 1, Chart. POINT_NONE

)
chart6.addDataSet( root. CompletedDS, format( root. NumTrucks ),
color, true, Chart.INTERPOLATION_LINEAR, 1, Chart. POINT_NONE

chart2_dataSet.add( root.NumTrucks, root.DebrisAtLandfill30days );
chart3_dataSet.add( root.NumTrucks, root.DebrisAtLandfill60days );
chart4_dataSet.add( root. NumTrucks, root.DebrisAtLandfill90days );
chart5_dataSet.add( root. NumTrucks, root.Completed );
/ichart6_dataSet.add( root. NumTrucks, root.CompletedDS );

Advanced
Allow parallel evaluations true
Load root from snapshot false

null
null null null null null
NumTrucks RANGE 160 240 10
NumLtruck FIXED 6
TdmsTruckCap FIXED 200
TdmsNumLoaders FIXED 4
DebrisAtUnit FIXED 800
NumChipper FIXED 2
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System Sensitivity Analysis

Run

Varied

NumTrucks ? Number of runs: ?

Charts

DebrisAITDMS
1

at3o
(1 chart2 dataSet

4 02

-1
NumTrucks 0.1 .

0.8
NumTrucks

DebrisAtLandfill
i at6o

() chart3_dataSet

-1

-1
NumTrucks:

L
NumTrucks
1 atan
chart4_dataSet 3

NumTrucks 0.15

0.8 1
NumTrucks

chart5_dataSet

Completedse 7 z

NumTrucks
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Plot: chartO

Analysis auto update

false

Dataset Samples To Keep

Horizontal scale

Vertical scale

Labels horizontal position DEFAULT
Labels vertical position DEFAULT
Labels Text Color darkGray
Chart Area Grid Color darkGray
Draw line false

40.0
Width 582.624
y 180.0
Height 300.0
begend
Show legend true
Legend size 40.0
Legend text color black

Chart Area: X Offset 80.0
Chart Area: Width 482.624
Chart Area: Y Offset 20.0
Chart Area: Height 220.0
Chart Area: Background Color white
Chart area border color black
Show name false
Logging true
Plot: chart1

Analysis auto update

false

Dataset Samples To Keep

Horizontal scale

Vertical scale

Labels horizontal position

DEFAULT
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null null

Draw line

Labels vertical position DEFAULT

Labels Text Color darkGray

Chart Area Grid Color darkGray
false

X 40.0

Width 582.624

y 500.0

Height 300.0
I

Show legend true

Legend size 40.0

Legend text color black
L

Chart Area: X Offset 80.0

Chart Area: Width 482624

Chart Area: Y Offset 20.0

Chart Area: Height 220.0

Chart Area: Background Color white

Chart area border color black

Show name false
Logging true
Plot: chart2

Analysis auto update

Dataset Samples To Keep

Horizontal scale

Vertical scale

Labels horizontal position DEFAULT
Labels vertical position DEFAULT
Labels Text Color darkGray
Chart Area Grid Color darkGray
Draw line false

X 780.0
Width 410.0
Y 190.0
Height 300.0
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null

Show legend

Chart Area: X Offset

Show name

80.0
Chart Area: Width 310.0
Chart Area: Y Offset 20.0
Chart Area: Height 260.0
Chart Area: Background Color white
Chart area border color black

false

Logging

true

at30 dataset

chart2_dataSet

CIRCLE blue

LINEAR

Plot: chart3

Analysis auto update

Dataset Samples To Keep

Horizontal scale Auto
Vertical scale Auto
Labels horizontal position DEFAULT
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ARTICLEINTO ABSTRACT

Keywords:
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Disaster debris management plays a critical role in expediting the disaster recovery process. This study aims to
present a framework for effective disaster debris management for a resilient community. The framework consists

GIS of a Geographical Information System (GIS) and system dynamics to assess debris removal performance.

Critical infrastructure
Capacity building
Resilience

GIS was used to conduct a land suitability analysis for a temporary debris management site and system
dynamics were applied to evaluate the debris removal performance in different scenarios.

‘T'his systemic approach and quantitative analysis enable a decision maker to gain insights into the inter-relationship
between critical infrastructure and resources, the effectiveness of temporary debris management sites, and the debris
removal performance. Also, a debris management team would have benefits from the framework by being able to (1)
understand dynamic behaviors of debris removal operation, (2) evaluate the existing debris management plan, and (3)
set up multiple strategics for optimal debris removal operations under different disaster-impact scenarios.

1. Introduction

Recent research shows that the world is experiencing more extreme
natural hazards such as hurricanes, floods, earthquakes, and tsunamis
[1]. The experiences with recent disaster recovery efforts have high-
lighted the need for additional guidance, structure, and support to
improve the response to disaster recovery challenges.

Disasters generate an exceptionally large amount of debris, causing
considerable processing and disposal challenges [2]. In the past, a primary
objective was to transport the debris generated by disasters from an original
site to its final destination as soon as possible. Consequently, the debris
generated was simply buried or burned [3]. Historically, the volume of
debris has been about five to ten times the annual solid waste generation in
a community [4.5]. This huge amount of debris causes delays in the debris
removal operation and other emergency responses. It results in the delay of
the entire disaster recovery process.

For example, the 13 million cubic yards (CY) of debris generated in
the 2010 Haiti carthquake hampered emergency response and recovery
projects [6]. Debris cleanup was also delayed by damaged infra-
structure and insufficient resources. After several months, the destruc-
tion continued to disrupt the lives of many Haitians. Cholera outbreaks
began in October 2010 and killed at least 7000 IHaitians. It was re-
corded as the worst epidemic among the epidemics in recent history
[7]. While the Haitian government identified debris removal as one of

* Corresponding author.

the top priorities, only 3-10% of the total debris generated had been
removed after 12 months [8]. Lack of infrastructure and insufficient
resources also hampered the disaster recovery in Haiti.

A framework for effective debris management is crucial to building
community resilience.

There is a need for a framework to assess debris removal system and
performance under the interrelationship of critical infrastructure and
resources. Therefore, this study presents a framework for developing an
effective disaster debris management for local governments and emer-
gency agencies. The specific objectives are to:

e Establish the interrelationship between critical infrastructure (CIs)
and the waste management system.

e Develop a temporary debris management site selection model.

® Develop a system dynamic model to understand the complex behavior
of the debris removal system and identify unexpected bottlenecks from a
system viewpoint (i.e., TDMS impacts, shortages of required resources,
and infrastructure capacity during debris removal operations).

e Support disaster debris managers with multiple debris removal op-
erational strategies.

The remainder of this study is organized as follows. Section 2 discusses
disaster debris management and the results of the literature review. Section
3 describes the suggested framework and methodology applied in this
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study. Section 4 discusses results from tested scenarios. Finally, Sections 5
and 6 conclude the study and present future research directions.

2. Literature review
2.1. Debris removal

A debris removal operation has two phases: response and recovery
[9]. In the response phase, the main objective is cleaning up the debris
on emergency access routes immediately after a disaster. In the re-
covery phase, debris on the public right-of-way is removed. According
to the national disaster recovery framework by FEMA, debris removal
activities are in phases 2 and 3 [2].

— Phase 1: Pre-Disaster Preparedness.
— Phase 2: Post-Disaster Short Term (days to weeks)
o Debris: clear primary transportation routes.

— Phase 3: Post-Disaster Intermediate Term (weeks to months)
o Debris: Initiate debris removal on curbside.

— Phase 4: Post-Disaster Long Term {(months to years).

It was identified that much of the literature categorized debris re-
moval in the recovery phase and there were a few studies considering
the debris removal as a prerequisite for emergency responses such as
emergency rescue, medical care and evacuation [10]. They investigated
debris removal operations in the emergency phase and suggested a
resource routing model to clean up debris on roadsides in order to in-
crease access of emergency relief suppliers to disaster-affected regions.

Several studies investigated debris removal in the recovery phase,
e.g., resource (vehicle) routing and management to improve debris
removal performance. Brooks et al. [11-13] presented a model for
dynamic allocation of debris removal trucks in closed queueing net-
works using queueing theory to improve debris removal performance.
Brooks and Mendonca [12] studied the optimal hauling trucks mix from
two perspectives (efficiency and equity). A spreadsheet-based decision
support tool was developed and illustrated the applicability and effec-
tiveness of the tool with a disaster scenario based on Hurricane Andrew
[14-16]. While the literature suggested multiple methods to optimize
either a component of the debris management system or the entire
debris management system, it is limited in its understanding of the
dynamic behaviors of a debris management system under the inter-
relationship with CIs. System dynamics is a well-established method for
studying and managing complex systems and many solid waste man-
agement systems have been examined by this method [17-22].

2.2, Temporary debris management site

A temporary debris management site (TDMS) is sometimes called a
temporary staging site, temporary debris management area, temporary
debris storage and processing facility, temporary debris storage and redu-
tion site, or a temporary disaster waste management site [23-27]. A TDMS
is a designed buffer to sort, recycle, and dispose of the debris generated. To
process one million cubic yards of debris (754,555 m®) 100 acres of land
(0.4km?) is required [9]. Several agencies have emphasized the importance
of TDMS for effective debris management [28-30]. However, unsuitable
TDMS locations in areas near playgrounds, swamps, and rice paddies have
been cited as potentially damaging to the environment and affecting the
livelihood of people in a community [31,32]. It also can attract vermin such
as rodents and other pests, produce noise and odors at levels deemed un-
acceptable by residents, or place a large burden on normal traffic patterns
[9,33]. To prevent these negative effects, US EPA (U.S. Environmental
Protection Agency)and UNEP (United Nation Environment Programme)
provided the following suggestions for a TDMS [29,30]:

International Journal of Disaster Risk Reduction xxx (3060¢) XXx-XxX

® Sufficient in size with appropriate topography and soil type.
e Appropriate distances from potable water wells, rivers, lakes, and
streams.

* Not in a floodplain or wetland.

® Controls in the TDMS to mitigate stormwater runoff, erosion, fires,
and dust.

® Free from power lines and pipelines.

® Limited access to only specific areas open to the public such as areas
to drop off debris.

e Located close to the impacted area but far enough away from re-
sidences, infrastructure, and businesses that could be affected by site
operations.

® Preferably located on public land because approval for this use is

easier to obtain, but it could also be located on private lands.

Identifying potential TDMS locations is considered as land use suitability
assessment. Kim et al. [34] conducted spatial analysis to determine a TDMS
location within certain environmental constraints. Grzeda et al. [26] iden-
tified potential TDMSs by using binomial cluster analysis and GIS. Cheng
and Thompson [27] reviewed 50 recently published articles and summar-
ized the criteria of land suitability assessment in three areas (using en-
vironmental, social-cultural, and economic-engineering criteria). They used
Boolean logic and GIS to determine suitable locations for TDMSs. These
studies are limited to considering environmental regulations to install a
TDMS excluding the technical perspective to expedite debris removal per-
formance. Many studies in the literature have referred to the fact that either
double handling of debris generated or acquiting lands for TDMSs could
result in higher debris removal operation costs [9,23,35,36]. Thus, it is
critical to evaluate the impacts of TDMS location and capacity on debris
removal performance.

2.3. Critical infrastructure

Tierney and Bruneau [37] emphasized that critical infrastructures,
including transportation and utility lifeline systems, are essential to
enhance resilience in a community in terms of four determinants: ro-
bustness, redundancy, resourcefulness, and rapidity. Guerrero et al. [38]
studied various factors which impact the solid waste management
system for each activity (see Table 1). They identified the essential
infrastructure needed, such as transportation systems, technologies, and
facilities for treatment, recycling, and disposal. Required resources
were identified as hauling vehicles, incinerators, and chipping and
grinding equipment [35] as well as proper knowledge of treatment,
disposal, and recycling of waste [38].

Deshmukh and Hastak [46,47] suggested a framework for expediting
community post-disaster recovery through capacity building resulting from

Table 1
Factors influencing waste management systems.

Activity Factors

Collection, Transfer, and
Transport

Poor route/improper bin collection [39]
Infrastructure/vehicle for waste collection
[40]

Organization of the informal sector [41]
Quality of roads [42]

Transportation facility available [42]
Knowledge of treatment systems by
authorities [43]

Suitable infrastructure [42]

Local knowledge of waste management issues
[42]

Supply of containers and distances [44]
Priced disposal [44]

Organization of informal sector [41]
Collection of recyclables supported by
companies [45]

Efficiency collection system [42]

Treatment

Disposal

Recycling
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Fig. 1. Framework for a debris management system.

enhanced infrastructure performance. The framework integrated the results
available from loss assessment tools and locally available data while ex-
ploring the interrelationship between communities, industries, and related
critical infrastructure. Ch et al. [48,49] concluded that the impact of dis-
asters is further escalated by the failure of critical infrastructure in a com-
munity and that such failures are significantly related to the conditions of
critical infrastructure. To enhance resilience in the face of a disaster, the
debris management team should identify both the current solid waste

management system and required debris management system to build a
sufficient capacity to handle the debris generated [50].

There are several studies aimed at coordinating debris removal from
road networks to increase performance of the road network after a disaster.
Chang and Nojima [51] developed post-disaster transportation performance
measures using network coverage and transport accessibility. Ozdamar
et al. [52] applied the measure of network accessibility and proposed a
mathematical model that maximizes cumulative network accessibility by
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Table 2
Test scenarios.

The number of TDMS The number of trucks

1 180 (“T1R180) 210 (T1R210} 240 (T1R240)
2 180 (T2R180) 210 (T2R210} 240 (T2R240}
3 180 (T3R180) 210 (T3R210) 240 (T3R240}

# T#R# indicates a case number. e.g., TIR180 represents 1 TDMS and 180 trucks being
operated in the scenario.

Table 3
List of attributes.

List Attributes Description
Population 2,500,000
Community size 6060 km? 1 mile? = 2.59km?
( = 2430 mile?)
Disaster type Hurricane Category 4, 10 year
event
Debris generated 419,234t 1t = 4CY* [63]

(1,676,936 CY*) Mixed debris
{concrete, steel and

vegetative)

Recycling facility 1 Recycling rate
RANDOM NORMAL
(0.05, 0.015, 0.08)
Min Max Mean
Landfill 1
Civic monitoring Good
Schaufelberger (1999}

Fair to Good
Schaufelberger (1999)
Collection points to TDMS = 30 EA

Job condition

Initial numbers of

trucks TDMS to Recycling facility = 60 EA
TDMS to Landfill = 90 EA
Truck capacity 13.7 m® (18 CY™) [64]
Truck speed In a community: 40km/h
(25mph)
In highway: 72 km/h
(45mph)

Transportation damage 65% Repair rate
RANDOM NORMAL
(0.007, 0.015, 0.012)
Min Max Mean
Repair rate

RANDOM NORMAL
(0.009, 0.012, 0.010}
Min Max Mean

Electric facility damage 50%

2 CY = cubic yard.

the debris removal operation and minimizes the total length of travel time
(makespan). Ertugay et al. [53] studied road accessibility modeling in an
earthquake by road closer probabilities. Zanini et al. [54] explored road
network functionality in relation to building damage. These can be applied
to select TDMS locations as well as prioritize debris cleanup on the roadside
to increase the performance of the entire debris removal operation.

3. Methodology

A framework is crucial for debris management teams to evaluate
and enhance their debris management systems. The proposed frame-
work will help in preparing a debris management plan as well as en-
hance system performance for post-disaster debris management. It
would enable emergency agencies to identify TDMS locations and
evaluate the complex debris removal system behaviors under the dif-
ferent debris removal scenarios {see Fig. 1).

3.1. GIS data collection and debris estimation

GIS data are required to effectively develop a disaster debris

International Journal of Disaster Risk Reduction xxx (3060¢) XXx-XxX

management plan and to operate debris removal in a post-disaster phase.
Required data are (1) details of the existing waste management system
(recycling facilities, transfer stations, and landfills), (2) serviceability of the
infrastructure (transportation and electric power facility) and equipment
(hauling trucks, loaders, grinders, and incinerators). For this study, GIS data
were collected from Florida Department of Transportation (FDOT) and the
GeoPlan Center at the University of Florida [55,56].

To estimate the debris generated by a disaster, this study used
Hazus-MH, the risk assessment tool developed by FEMA [57]. It uses
demographic and geographic data with structural analysis methods to
estimate physical damage including the debris composition and
amounts {(www.fema.gov/hazus). Ding and Spinks [58] validated the
debris estimation tool for Hurricane Ike and determined a resulting
error of only 4.6%. This tool has been used in numerous studies related
to disaster management [14,15,50,53,59-61].

3.2. Module 1 TDMS selection model

This is designed to identify optimal TDMS locations and may be used to
minimize unexpected environmental issues around TDMSs. The TDMS se-
lection model consists of two sub-modules; (1) A geographical analysis is to
identify feasible areas for TDMSs and (2) location-allocation analysis sear-
ches for optimal TDMS locations in the feasible areas.

3.3. Module 2 system dynamics

A system dynamic model is constructed to understand and examine
dynamic behaviors of a complex debris management system in different
scenarios. Simulation results will be used to evaluate the debris man-
agement system and estimate the total cost and time for debris removal.
This study used Vensim (version 6.4) to develop the system dynamic
model [62].

4. Test scenarios

This study performs tests of the proposed framework in a post-
hurricane scenario. The community population considered is 2.5 mil-
lion and the corresponding area is 2430 mile® in a very high-risk of
hurricane damage zone (Florida, USA). As of 2017, there were 79 tro-
pical or subtropical cyclones in the community. The Hazus-MH creates
a hurricane event (hurricane category 4, 10-year event) and generates
1676,936 Cubic Yards (CY) of mixed debris in the community.

There are nine scenarios in terms of the number of hauling trucks
and TDMSs {see Table 2). The case number describes the number of
TDMSs and trucks operated for each. For example, TIR180 represents
the operation of one TDMS and 180 hauling trucks.

In the scenarios, we assume the following.

® Mixed debris in a community are hauled to designated TDMSs and
then segregated.

® Truck speed is 25 mph (40 km/h) on local and 45 mph (72 km/h) on
highway
o There are sufficient loaders and manpower.

® There is no weather constraint during debris removal operations.

® The list of attributes is given in Table 3.

4.1. TDMS selection model

4.1.1. Geographical analysis

As mentioned in Section 2.2, a TDMS plays an important role in
post-disaster debris management to increase the performance of debris
removal operations. Most state-level agencies in the United States have
provided guidelines to site a TDMS to minimize environmental impacts
and help identify potential TDMS locations [65-67].

However, the existing guidelines and potential TDMS location would
not be able to maximize debris removal performance by disaster type and
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impact, community needs, and other emergency planning factors such as
shelter location and emergency medical service location. A decision process
for a TDMS location involves numerous variables, constraints, and jur-
isdictions during pre- and post-disaster management. This study considers
the following criteria {site regulations) to identify feasible TDMS locations
based on the guidelines by US EPA and FEMA.

— Water sources (groundwater, fresh water, dams, and lakes).
— Public facilities (hospitals, schools).

— Hazardous material management facilities.

— 100-year floodplain.

To identify feasible locations for TDMSs, ModelBuilder in ArcGIS is
used. It is a visual programming language for building geoprocessing
workflows. It also automates and documents spatial analysis and data
management processes [68]. The model created for identifying TDMS
locations is described in Fig. 2. Buffer polygons (500m, 0.31 miles)

around input features are created and then merged to create prohibited
areas. Then, the clip and erase tools are used to identify feasible areas.

The overall process of geographical analysis and the result are de-
scribed in Fig. 3. Collected GIS data and information are geo-processed
by the ModelBuilder. Feasible areas for TDMS are represented by
gridded polygons.

4.1.2. Location-allocation analysis

Most of the debris removal operation costs are incurred from
transporting debris [69]. The hauling performance depends on the
number of trucks, truck capacity, and the cycle time. The cycle time is
determined by defining haul boundary, dump locations and loading
locations [70]. Since the location of a TDMS directly affects truck cycle
time, it should be located in an area designed to minimize the truck
cycling time. TDMSs location is considered with the P-Median problem
[71]. Location-allocation analysis for the P-Median problem is applied
to identify a TDMS location that minimizes the total hauling distance
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from the collection points (debris locations) to the TDMS among the
TDMS candidates.

Input

h; = Debris i demand

dy = distance between debris i and candidate facility j
P = number of facilities to locate

Decision variables
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Table 4
Efficiency factor [75].

Job Condition Management condition

Excellent Good Poor Fair
Excellent 0.84 0.81 0.76 0.70
Good 0.78 0.75 0.71 0.65
Poor 0.72 0.69 0.65 0.60
Fair 0.63 0.61 0.57 0.52

if we locate at candiate site j
0 if not

{1
X =

1
Yy =

if customer i is served by facility j

0 if not
Mininize
2 2, dyYy (@
Subject to

Zj Y;=1 Vi (b) required that each debris is assigned to exactly

one facility
Y %=P

Yj—X; <P V ij (d)link the location variables and the allocation

() requires that exactly P facilities are located

variables
Y% =0, 1 Vj (e)allocation variables (Y) are binary
X, =0, 1 Vi (f)location variables (X) are binary

This study applied the vertex substitution heuristic algorithm to find
a TDMS location [72,73]. An example of the result is described in Fig. 4.

4.1.3. Results

Figs. 5-7 describe selected TDMSs among the TDMS candidates. A map
on the left describes the location of the TDMS represented with a blue star
in a box. The blue lines refer to the debris assigned to a connected TDMS.
Descriptive statistics for the distance between debris location and selected
TDMSs are described on the right. By increasing the number of TDMSs, the
average distance and standard deviation are significantly decreased.

4.2. System dynamic model

As discussed in Section 2, debris removal performance depends on the
existing solid waste management system, available resources, and service-
ability of critical infrastructure including transportation, electric power fa-
cilities and civic monitoring systems. As discussed in Section 4.1.3., the
number and location of TDMSs is one of many critical factors determining
the overall debris removal performance. To analyze the complex system and
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w
]
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W
~
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o
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Working days

8
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the dynamic behavior of debris management system during disaster re-
sponses, this study developed a system dynamic model. The basic system
dynamic model structure is described in Fig. 8.

The system dynamics consists of box variables and rate arrows below.

Box variables (unit: CY/day)

o Debris in a community

o TDMS

o Incinerator (type: air curtain incinerator installed in the TDMSs)
m Average throughput: 6-10t/h [74]

o Recycling facility

o Final destination (Landfill)

Rate arrows: Productivity 1,2, 3, and 4 (unit: CY/day)

o Productivity 1: debris hauled to the TDMS.

o Productivity 2: debris taken from TDMS to the final destination.

o Productivity 3: debris incinerated in the TDMS.

o Productivity 4: debris taken from TDMS to the recycling facility.

o M&R: infrastructure maintenance and repair.

o Damage: damage to the serviceability of the infrastructure by a disaster.

Serviceability of infrastructure (transportation, electric power facilities,

civic monitoring system).

*

Schaufelberger [75] studied equipment productivity estimation (see
Eq. (1))

Efficiency x Capacity

Productivity = Cycle 6
cle time

(€8]
Capacity is determined by the type of hauling methods. Cycle time is
the sum of the loading, hauling, dumping, and returning times of the
hauling methods. Efficiency is determined by job and management
condition [75] (see Table 4).
To determine the efficiency of debris removal operation, this study
assumes the following:

® Job condition is determined by the serviceability of transportation
and electric power facilities [38,40].
o Fair is selected when the serviceability of transportation and
electric facilities reach 40%.
o Excellent is selected when the serviceability of transportation and
electric power facilities reach 100% (fully functioning system).
o Serviceability of transportation more significantly affects the debris
removal operation than the electric power facilities [76]
m Serviceability of transportation is given a weight of 2.
= Serviceability of electric power facilities is given a weight of 1.
* Management condition is determined by a civic monitoring system [77].
o Civic monitoring system is “good.”

With the assumptions above, Eq. (2) is used to determine efficiency
over time in the system dynamics.

0.35(2 x ST + SE)

Efficiency = =

+ 047 @

ST : Serviceabilityof transportationSE : Serviceabilityof electric power facility

Fig. 9. Amount of debris in the community and final destination
over time.
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4.3. Results increasing the number of Equipment#1. In the case that the number of

The simulation result of scenario TIR180 is described in Fig. 9. The total
working days for debris removal from the community is 145 days; it takes
two more days to haul debris from the TDMS to the final destinations. The
estimated cost is determined as $54,937,106 to clean up the 1.67M CY
debris generated (the detail of the operation cost is described in Table A.3).

The daily productivity is described in Fig. 10. Productivity 1 {from
collection points to TDMS) fluctuates widely compared to Productivities 2
and 4 because the dispersed debris locations affect the travel distances of
trucks; the average distance from the debris locations to the TDMS sites is
12.5 miles and the standard deviation is 7.26 miles (see Fig. 5). The overall
performance of Productivity 1 is increasing because the serviceability of the
infrastructure (transportation and electric facilities) is recovered over time.

The fluctuating debris throughput (Productivity 1) significantly affects
the daily amount of debris in the TDMS (see Fig. 11). However, the amount
of debris does not exceed the designed capacity, 1 M CY, during working
days. The maximum amount of debris is 38,538.5 CY at day 114.

For sensitivity analysis, OFAT (one-factor-at-a-time-method) is
conducted. An input variable, Equipment#1, is increased from 30 to
140. The increased number of Equipment#1 reduces the debris removal
time in a community (see Fig. 12). The rate of change of Equipment #1
is decreasing since the capacity in other system areas could not support
further increase to the system input. Also, the number of Equipment#1
could not be over 140 because this reaches the maximum TDMS ca-
pacity, 1 M CY at day 35.

The overall system behaviors are described in Fig. 13. Productivities 2,
3, and the recycled materials output systems are significantly stabilized by

10

Equipmen#1 is lower than 60, some components of the system need to be
idle or be operated at under 60% of the capacity (Productivities 2, 3, and
recycled materials) until further debris enters the system.

5. Conclusions

This study tested nine scenarios to understand the dynamic behaviors of
debris removal performance. The operation cost and time are described in
Fig. 14. The range of total costs is from $34,999,241 (T3R240) to
$56,525,977 (T1R180). The range of total working days for debris removal
is from 70 (T2R240) to 147 (T1R180) days. While the total working days
are decreased by increasing the number of TDMSs and resources, the ef-
fectiveness in debris removal performance was examined by system dy-
namics to maximize operational efficiency and to identify any bottlenecks
in the text scenarios. According to FEMA's pilot program related to debris
management, reimbursement provided to sub-recipients is based on the
federal cost share percentages; when debris removal finishes within 90
days, 80% of the cost will be reimbursed by the federal government [78].
Most state-level agencies in the United States have designed their debris
removal plans to finish debris removal operations within 90 days.

In this study, the case T3R240 is selected as an optimal solution for
debris removal ($34,999,241, 70 days) among the nine test scenarios.
Comparison of TIR180 and T1R210 demonstrates that increasing the
number of resources reduces the total cost as well as the working days.
The debris collection time from collection point to a TDMS is decreased
by 46% (147 to 80 days). The debris hauling time from a TDMS to a
final destination is decreased by 39% (144 to 88 days).
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While increasing resources from 210 to 240 (T1R210 to T1R240)
slightly affects the total working days and cost, debris collection time
from the collection points was decreased by 30% (80 to 56 days).

The results also demonstrate that balancing between infrastructure ca-
pacity and resources is critical to optimize the debris removal operation. For
example, comparison of T2R240 and T3R210 identifies that additional
TDMSs did not have a positive effect of the total cost: (1) total working days
is 73 in T2R240 and 76 in T3R210 and (2) the total cost of T2R240
($36,337,017) is less than T3R210 ($37,464,923). Comparing to T2R240,
T3R180 has another TDMS. However, it reslts in extra expenses to acquire
the land and the shortage of resources hampered the debris removal process.

6. Discussions

This study suggested a framework for effective debris management
for a resilient community. It provided a guideline to support debris
management teams in developing effective debris removal strategies.
The systemic approach and quantitative analysis enable decision ma-
kers to gain insights into the inter-relationship between critical infra-
structure and resources, the effectiveness of operating TDMSs, and
debris removal performance according to different strategies. The nine

11

«s+@-+++ Debris hauled from collection points to TDMS

test scenarios evaluated the effectiveness of the debris removal strate-
gies in terms of the number of TDMS and resources.

The proposed framework will allow decision makers to comprehend
the required budgets and time for debris removal in a timely manner.
For example, local municipalities/agencies would be able to in-
corporate their past disaster debris removal data into the proposed
framework to compare the differences between actual and estimated
cost obtained from the system.

Also, the proposed framework can evaluate an existing debris man-
agement system to enhance its resiliency under different disaster scenarios.
A debris management team would be able to simulate the existing debris
management system using the proposed framework to identify any bottle-
necks or points of insufficient capacity of facilities. As discussed in Section
4.3., the input variables, such as the number of trucks at each stage or the
capacity of the debris-handling facilities, significantly affect the system ef-
ficiency. In the given condition, more than 140 trucks could not be utilized
because this would exceed the designed TDMS capacity, 1 M CY. Thus,
other strategies would be vital to process increased debris throughput in the
TDMSs: (1) increasing initial TDMS capacity by selecting other locations in
a design phase, (2) increasing the number of trucks hauling the debris to
recycling facilities or landfills in an operational phase, or (3) operating
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additional equipment to reduce the volume of debris in the TDMSs such as
incinerators and chippers. These options would be evaluated by the pro-
posed framework to increase the robustness of debris removal operations.

This study can be expanded in several ways. Real-time or dynamic
resource allocation needs to be explored to stabilize debris throughput
in the TDMSs. Further, the design of a TDMS needs to be considered to
handle debris effectively in terms of capacity, routing system, and
equipment operations (loaders, incinerators, and chippers). In addition,
different types of disasters affect the serviceability of infrastructure in
different ways; sometimes, it can entirely lose its function during dis-

Appendix A

{See Tables A1-A3).

Table A.1
Equations in the box variables and rates.

International Journal of Disaster Risk Reduction xxx (3060¢) XXx-XxX

aster recovery. These infrastructure interdependencies of debris man-
agement would be a topic of future research.

The frequency of natural disasters is increasing every year around the
world. Numerous emergency agencies have recognized the crucial role of
disaster-related data and information to mitigate the impacts of disasters.
Thus, local government and emergency agencies need to develop a database
for the past disaster debris management strategies and operations. It will
allow emergency agencies, policymakers and researchers to develop better
disaster planning for preparedness, responses and recovery.

Type Equations

Debris = IF THEN ELSE(Debris > 0,-Productivity1,0}
Collection = - Productivity2 + Productivity1

Processing = +Productivity2-Productivity3

Recycling area in TDMS
Disposal
Productivityl

= Recycle materials 1-Productivity4
= INTEG{Productivity3)
=STEP(IF THEN ELSE{(Collection < 30000,IF THEN ELSE

(Debris > 18*(Equipment1)/(Distance/Average speed/
2)*Efficiency,18*(Equipment1)/(Distance/Average speed/
2)*Efficiency,Debris),0),1}

Productivity2

= IF THEN ELSE (Collection > (18*(Equipment2)/

(Distance2/Average speed2/2)*efficiency):

OR:

Collection > (4500-Processing),min(4500-
Processing,18*(Equipment2}/(Distance2/Average speed2/2)*
Efficiency),Collection)

Productivity3

= STEP(IF THEN ELSE(Processing > 0,IF THEN ELSE

(Processing > Equipment3*18/(Distance 3/Average speed 3/
2)*Efficiency,Equipment3*18/(Distance 3/Average speed 3/2)*
Efficiency,Processing),0},1}

Recycling materials

= RANDOM NORMAL(0.05,0.15,0.08,0.02,9)*Productivityl

Table A.2
Serviceability of infrastructure.

Type Equation

Transpottation

"M&R"-Damage

Initial value: 1

Electric "M&R 0"-Damage 0
Facility Initial value: 1
Civic Civic-Damagel
Monitoring Initial value: 1
M&R = IF THEN ELSE(Transportation < =1,RANDOM NORMAL
(0.007, 0.015, 0.012, 0.008, 2}, 0}
Damage = STEP(.65,0)-STEP(.65,1)
M&R 0 = IF THEN ELSE(Electric facility < =1,RANDOM NORMAL
(0.009, 0.012, 0.01, 0.008, 2), 0}
Damage 0 = STEP(.25,0)-STEP(.25,1)
Civie = 0 (No additional monitoring resources}
Table A.3
Operation cost.
List. Numbers (or size) Operation cost/unit References
TDMS 100 Acre $2000/acre/mo. [79]
Loaders in TDMS (Cat 950H) 10 $18076/daily (Rent+ Fuel + Operator) 801
Air incinerator in TDMS 4 $114000({Purchase} + $606.2/day (Fuel + Operator) [81]
Tub grinder in TDMS 3 $3000(rent} + $6162.6/day (Fuel + Operator) [82:
Dump truck (CT660) $1856.68/day (Rent + Fuel + Operator) [83,84]
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ARTICLE INFO ABSTRACT

Social media, such as Twitter and Facebook, plays a critical role in disaster management by propagating
emergency information to a disaster-affected community. It ranks as the fourth most popular source for accessing
emergency information. Many studies have explored social media data to understand the networks and extract
critical information to develop a pre- and post-disaster mitigation plan.

The 2016 flood in Louisiana damaged more than 60,000 homes and was the worst U.S. disaster after
Hurricane Sandy in 2012. Parishes in Louisiana actively used their social media to share information with the
disaster-affected community — e.g., flood inundation map, locations of emergency shelters, medical services,
and debris removal operation. This study applies social network analysis to convert emergency social network
data into knowledge. We explore patterns created by the aggregated interactions of online users on Facebook
during disaster responses. It provides insights to understand the critical role of social media use for emergency
information propagation. The study results show social networks consist of three entities: individuals, emergency
agencies, and organizations. The core of a social network consists of numerous individuals. They are actively
engaged to share information, communicate with the city of Baton Rouge, and update information. Emergency
agencies and organizations are on the periphery of the social network, connecting a community with other
communities. The results of this study will help emergency agencies develop their social media operation
strategies for a disaster mitigation plan.
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Disaster communication
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Disaster response

Social network analysis (SNA)

1. Introduction

Social media, such as Twitter and Facebook, plays a critical role in
disaster management. It is ranked as the fourth most popular source for
accessing emergency information (Lindsay, 2011). Mickoleit (2014)
identified that government institutions are using platforms such as
Twitter, Facebook, and blogs to communicate with their communities.
‘Twitter accounts have been created in 24 out of 34 OECD member
countries, which can be compared to 21 out of 34 for Facebook. Many
studies have explored the systematic use of social media during emer-
gency responses by extracting social media data to identify needs of a
disaster-affected community (Imran, Elbassuoni, Castillo, Diaz, & Meier,
2013; Yin et al., 2015). For example, social media data was used to
develop a GIS-based real-time map during 2012 Hurricane Sandy in
NYC. It shared emergency information and community needs with
emergency agencies and NGOs (Middleton, Middleton, & Modafferi,
2014). Furthermore, real-time data from social media has been used to
develop an carly warning system for a tornado (Knox et al., 2013;
Tyshchuk, Hui, Grabowski, & Wallace, 2011). Social media is used to

* Corresponding author.
E mail addresses: joohoya@gmail.com (J. Kim), hastak@purdue.edu (M. Hastak).

http://dx.doi.org/10.1016/j.ijinfomgt.2017.08.003

Available online 22 September 2017
0268-4012/ € 2017 Elsevier Ltd. All rights reserved.

ed 30 June 2017; Received in revised form 15 August 2017; Accepted 25 August 2017

communicate emergency information and urgent requests between
emergency agencies and disaster-affected people (Feldman et al., 2016;
Lindsay, 2011). These approaches support emergency agencies in un-
derstanding emerging situations rapidly after a disaster.

More than 60,000 homes were damaged in the 2016 flood in
Louisiana (Han, 2016). It was the worst disaster after Hurricane Sandy
in 2012 (Yan & Flores, 2016). A couple of parishes in Louisiana used
their social media to share emergency information with people affected
by the disaster. The city of Baton Rouge in Louisiana actively used its
social media, such as Facebook and Twitter, to deliver real-time
emergency information to the affected people in a timely manner. Few
studies have analyzed social network structures and roles during dis-
aster responses. This study applied social network analysis (SNA) to
understand the characteristics of social media networks in Louisiana
during emergency responses.
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Fig. 1. Conceptual diagram of social capital
(Nakagawa & Shaw, 2004).
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2. Literature review Table 1
Social media demographics and frequency (Duggan, 2015).
2.1. Social capital for disaster recove;
P f 24 Facebook Twitter
Social capital can be defined as “the resources accumulated through 18-29 82% 32%
the relationships among people” {Coleman, 1988). Positive social out- 30-49 79% 29%
. h . : . o o
comes from social capital have been identified through public health, :gf" i;;“ ;g/’
" 5 b b
lower crime rates, and financial markets (Adler & Kwon, 2002). In Daily 70% 28%
general, social capital brings a positive effect of interaction among Weekly 21% 21%
participants in a social network (Helliwell & Putnam, 2004). Ellison, Less often 9% 40%

Steinfield, and Lampe (2007) identified that greater social capital
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Table 2
Overall Metrics.
Graph Metric Value
Graph Type Directed
Vertices 1171
Unique Edges 21,115
Edges with Duplicates 6400
Total Edges 27,515
Self-Loops 671
Reciprocated Vertex Pair Ratio 0.024
Reciprocated Edge Ratio 0.047
Connected Components 18
Single-Vertex Connected Components 16
Maximum Vertices in a Connected Component 1153
Maximum Edges in a Ci d Comp 1t 27,510
Maximum Geodesic Distance (Diameter} 5
Average Geodesic Distance 2.41
Graph Density 0.02

increased commitment to a community and the ability to mobilize
collective actions.

Many scholars have emphasized that social capital plays a critical
role in responses to disasters. Nakagawa and Shaw (2004) examined the
post-earthquake rehabilitation and reconstruction programs in two
cases: Kobe in Japan and Gujarat in India. They identified that social
capital and leadership in the community are the basic attributes for
rapid disaster recovery. They described three aspects of social capital:
bonding, bridging and linking (see Fig. 1). By investigating disaster re-
covery after the 1995 Kobe earthquake in Japan, Aldrich (2011) em-
phasized that the power of people (social capital) is the strongest and
most robust predictor of population recovery after a catastrophe.
Aldrich and Meyer (2014) examined recent literature and evidence to
investigate the critical role of social capital and networks in disaster
recovery. They highlighted that disaster agencies, governmental deci-
sion makers, and NGOs need to strengthen social infrastructures at the
community level to increase disaster resilience. Joshi and Acki (2014)
investigated two districts affected by the tsunami in India. They con-
cluded that the strength of social networks, the commitment of re-
sidents to the community, popularity of leaders, and various social
factors influenced the disaster recovery. Grube and Storr (2014) studied
how pre-disaster systems of self-governance support post-disaster re-
covery. They concluded that local knowledge and knowledge transfer
are important in the recovery of disaster-affected communities. To
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increase community resilience after a catastrophe, the role of social
media is substantial.

2.2. The role of social media in a disaster

The importance of social media engagements after a disaster has
been identified by many scholars (Kim & Hastak, 2017; Middleton et al.,
2014; Poorazizi, Hunter, & Steiniger, 2015; Reuter, Heger, & Pipek,
2013; Yin et al., 2015; Yoo, Rand, Eftekhar, & Rabinovich, 2016). Social
media has a range of roles, from preparing and receiving disaster pre-
paredness information and warnings, and signaling and detecting dis-
asters prior to an event, to linking community members following a
disaster (Houston et al., 2015).

After the 2010 Haiti earthquake, people shared numerous texts and
photos via social media. Within 48 h, the Red Cross had received US$8
million in donations, and this exemplified one benefit of the powerful
information propagation capability of social media sites (Gao,
Barbier, & Goolsby, 2011; Keim & Noji, 2011; Yates & Paquette,2011).
Graham, Avery, and Park (2015) surveyed more than 300 local gov-
ernment officials from municipalities across the U.S. Their study
identified that the extent of social media use is related with assess-
ments of the local city’s ability to control a crisis. It is also related to
their overall evaluations of the strength of their responses. The Federal
Emergency Management Agency (FEMA) utilizes various social media,
including Facebook, Twitter, Instagram, LinkedIn and YouTube, to
provide the public with emergency information related to a cata-
strophe (FEMA, 2016).

Yoo et al. (2016) collected Twitter data during Hurricane Sandy and
applied information diffusion theory to characterize diffusion rates. The
variables are (1) information cascade’s diffusion speed, (2) cascade
originator’s influence and cascade content’s contribution to situational
awareness, (3) lateness in the launch of the cascade during the disaster,
(4) incidence of cascade boosts by the originator, and (5) misleading
cascade. They identified that internal diffusion through social media
networks advances at a higher speed than information in these net-
works coming from external sources.

Furthermore, uses of social media as an information diffuser should
be calibrated to expedite the effectiveness in an emergency. Keim and
Noji (2011) emphasized that P2P communications could spread mis-
information and rumor as well as privacy rights violations. An ex-
tremely high volume of messages via social media makes it hard for
disaster-affected communities and professional emergency responders/
agencies to process and analyze the information. Imran et al. (2013)
proposed a system integrated with machine learning techniques to
provide actionable information from social media. Liu et al. (2014)
studied disaster information forms {social media vs. traditional media)
and sources {national agencies and media vs. local agencies and media)
to generate desired public outcomes such as intentions to seek and
share emergency information.

2.3. Social network analysis and tools
Software and tools have been developed to fulfill the increasing

need for social network data mining and visualization technology.
Researchers created toolkits from sets of network analysis components

Fig. 5. Numbers of reactions on the Facebook page of the city
of Baton Rouge.
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Fig. 6. Most shared and commented information on
Facebook after the flood (eBRGIS, 2016).

(150 likes, 791 shares and 61 comments retrieved
from the Facebook page of the city of Baton Rouge).
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not limited to R and the SNA library, JUNG, Guess, and Prefuse in- provide a local (actor level) and global (network level) description of
cluding NodeXL and Gephi (Adar, 2006; Heer, Card, & Landay, 2005; the network, (2) graphical visualization of the network, and (3) com-
Smith et al., 2009; White, 2005). These tools have different char- munity detection {(Combe, Largeron, Egyed-Zsigmond, & Géry, 2010;
acteristics, but most of them allow (1) computation of metrics that Oliveira & Gama, 2012).
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Table 3
Top 10 out-degree centrality and degree distribution.
Red-colored lines are all edges linked with top 10 out-degree vertices excluding CBR.
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(minimum 0, maximum 228, average 19, median 5).
3. Research objectives for the lack of coverage of the 2016 Louisiana flood, especially com-
pared to the other major natural disasters in the U.S. (Berman, 2016;
Many studies have explored social media data to understand social May & Bowerman, 2016; Pallotta, 2016; Scott, 2016). During the
networks and extract critical information to develop a pre- and post- period, the media mainly covered the 2016 U.S. presidential election
disaster mitigation plan. This study explored disaster responses in social and the 2016 Rio Summer Olympics. Craig Fugate, the administrator for
media after the 2016 Louisiana flood. The prolonged rainfall in the FEMA, stated: “You have Olympics, you got the election. If you look
southern parts of Louisiana resulted in catastrophic flooding that sub- at the national news, you’re probably on the third or fourth page. ... We
merged thousands of houses and businesses. It was recorded as the think it is a national headline disaster” (O’Donoghue, 2016). For in-
worst disaster in the U.S. after Hurricane Sandy in 2012, and it da- stance, the New York Times published its first story on the evening of
maged more than 60,000 homes (Ball, 2016; Brown et al., 2016; August 14 (Hersher, 2016).
May & Bowerman, 2016; Yan & Flores,2016). This study applies SNA to Thus, we explored Google Trends to identify 2012 and 2016
convert social media data into knowledge. It provides insights to un- trending stories in the U.S. near two disasters: Hurricane Sandy and the
derstand the critical role of social media for emergency information Louisiana flood. The trend data, interest over time, are scaled on a range
propagation. Objectives of this study are as follows: of 0-100 based on a topic’s proportion to searches for all topics (Google,
2017).
1) Collect social media data from the Facebook page of the city of
Baton Rouge during the period of the 2016 Louisiana flood, August 4.1.1. Trends at a nationdl level
12-December 1"2016' . It was hard to observe the search-term trend {or interest over time)
2) EXPl"r"- “eonnections and patterns creafed by the aggregated inter- for Louisiana flood 2016 compared to 2016 presidential election and 2016
actions;n, the Facebook page during disaster responses; Rio Summer Olympics at a national level. However, search-term trends in
3) Identify and analyze social roles and key players in the social net- 2012 were different in similar circumstances when Hurricane Sandy
work. . ) . . struck. Despite the 2012 London Summer Olympics and the 2012 pre-
4) Analyze the posts during the disaster, such as discussions, top words sidential election occurting in the year of Hurricane Sandy, media in-
and word pairs. . ) . ) . terest in Hurricane Sandy was significantly higher than in these other
5) Suggest further actions to improve the effectiveness of information events. Hurricane Sandy hit New York City on Oct 29, 2012. Interest
diffusion via social media. peaked during the week of October 28-November 3 (Fig. 2).
4. Louisiana flood and social media 4.1.2. Trends at a local level
Google search-term trends in Louisiana are shown in Fig. 3.
4.1. Search-term trends: 2012 Hurricane Sandy vs. 2016 Louisiana flood Louisiana flood 2016 reached a peak during the week of Aug 17-21,
2016. Compared to Hurricane Sandy in 2012, the peak of interest on the
The major media has been criticized by many leaders in Louisiana topic, 2016 Louisiana flood, was not higher than 2016 Rio Olympics and
90
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Table 4
Top 10 Eigenvector centrality and degree distribution.
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Red-colored lines are all edges linked with top 10 in-degree vertices excluding CBR. User#5 is in both the top 10 out-degree and eigenvector centralities.
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(minimum 0, maximum 0.00663, average 0.00085, median 0.00005)
2016 presidential election in Louisiana. Also, it reached the peak after the 5. Data collection and pre-processing

flood occurred in Aug 12, 2016.

4.2. Comparison of social media platforms: Facebook and Twitter

According to Social Times, Facebook has 1.59 billion monthly active
users {as of Dec 2015), while Twitter has 320 million {(as of March
2016) (Social Times, 2016). Duggan {2015) examined Facebook and
Twitter users among internet users in the survey and identified Face-
book as having a broader range of generation than Twitter. In addition,
70% of Facebook users are on the platform on a daily basis, compared
with 38% of Twitter users {see Table 1). The Pew Research Center
(2017) reported Facebook as the most widely used of the major social
media platforms, and its user base is broadly representative of the po-
pulation as a whole. In January 2016, 68% of U.S. adults were Face-
book users.

The city of Baton Rouge has been using two social media platforms,
Facebook and Twitter, since 2011. As of December 1, 2016, the number
of Twitter followers was higher than Facebook followers, at 13,500 and
9936, respectively. However, Facebook user engagement was appar-
ently higher than Twitter during the 2016 Louisiana flood. For example,
a single post on the Facebook page was, on average, shared by 792 users
and liked by 150 users, compared to posts on Twitter receiving 4-5
retweets and 1-2 likes.
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We collected data from the Facebook page of the city of Baton
Rouge (www.facebook.com/cityofbatonrouge) that were created
during August 12-December 1, 2016. There were 1171 users and
21,115 activities or responses on the page. To represent the collected
data on a network graph, a vertex is defined as an engaged user and an
edge is defined as a connection between users created by their inter-
actions (see Fig. 4). We assumed any link between two vertices, re-
gardless of direction, to be an indication of their similarity (Clauset,
Newman, & Moore, 2004).

We filtered the collected data to ensure they were strictly related to
the 2016 Louisiana flood before analyzing and visualizing the network.
There were repeated vertex pairs on the edges, and 6400 edges with
duplicates out of 27,515 edges (see Table 2) These duplicate vertex
pairs may occur when user A replies to user B on multiple occasions.
These duplicates can cause some metrics, such as degree, to be in-
accurate {Smith et al., 2009). Thus, the 6400 edges were combined into
a single weighted edge. Finally, edges that connect a vertex with itself
— self-loops, of which there were 671-were deleted.

6. Results

The number of user engagements (e.g., comments, commented
comments and user tagged) on the Facebook posts is described in Fig. 5.
The number of user engagements exponentially increased and then
declined after August 20. From August 24, the numbers were less than
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Table 5
Top 10 in-degree centrality and degree distribution.
Red-colored lines are all edges linked with top 10 in-degree vertices excluding CBR.
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(minimum 0, maximum 829, average 19.99, median 4.00).

20 (the trend is similar to that observed in the local search-term trend in
Fig. 3).

The most shared and commented post was the estimated flood in-
undation map developed by the GIS division of the Department of
Information Services in the city of Baton Rouge (see Fig. 6). The esti-
mated flood inundation map was powered by a compilation of various
data inputs including 911 call-outs, Baton Rouge Fire Department
search-and-rescue data, City-Parish staff and other public officials,
NOAA imagery, Civil Air Patrol imagery and FEMA DRIRM flood hazard
areas {eBRGIS, 2016). The post consisted of text information with a link
to the GIS map. Facebook users commented on the post to inform of
incorrect information on the flood inundation map. Compared to the
post on the city’s Facebook page, there were 39 retweets and 18 likes on
the Twitter post.

6.1. Network graph and structure

In social network analysis, graph-theoretic concepts are used to
understand and analyze social phenomena (Ackland, 2010; Borgatti,
Everett, & Johnson, 2013; Brandes, 2001; Wasseman & Faust, 1994). In
Fig. 7, the graph is directed and laid out using the Harel-Koren fast
multiscale layout algorithm (Harel & Koren, 2000). There are 1171
vertices, 21,115 edges, and 18 connected components. The vertex color
is betweenness centrality and the size is scaled out-degree centrality.
Maximum geodesic distance (diameter) is 5.00 and the average is 2.40
(see Table 2) The city of Baton Rouge is in the center of the network.
The center of the network in the black-dashed circle is very dense with
numerous vertices and edges. There are several vertices near the black-
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dashed circle that connect with other vertices at the outside of the
network.

6.2. Degree centrality

Degree centrality refers to the number of edges a vertex has to other
vertices. As shown in Fig. 8, in-degree is the number of incoming edges
incident to the vertex and out-degree is the number of outgoing edges
incident to the vertex. Betweenness quantifies the number of times a
vertex acts as a bridge along the shortest path between two other ver-
tices (Freeman, 1977).

We analyze four types of degree centrality. The city of Baton Rouge
has the highest out-degree, in-degree, eigenvector and betweenness
centrality in the network. Most vertices at the core of the network are
identified as individuals. There are no organizations or agencies in the
top 10 centralities. The results below describe individual users actively
involved in this emergency information propagation.

Out-degree, in-degree, and betweenness degree distribution are
highly right-skewed. It represents a significant majority of vertices
having a low degree, but a few vertices having a high degree as a hub in
the network {Tables 3-5).

The six organizations/agencies including the city of Baton Rouge
are ranked in the top 10 of betweenness centrality. The verticies with
high betweenness play critical roles in the network structure. From the
social network perspective, Wasseman and Faust (1994) described the
importance of high betweenness: “interactions between two non-
adjacent actors might depend on other actors in the set of actors,
especially the actors who lie on the paths between the two.” These are
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Table 6
Top 10 betweenness centrality and degree distribution.

International Journal of Information Management 38 (2018) 86-96

Red-colored lines are all edges linked with top 10 betweenness centrality vertices excluding CBR.
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Table 7 of edges distribution (Oliveira & Gama, 2012). We identified a com-

Top 10 largest communities in the social network.

Rank  Size Description

Gl 144 Flood inundation map, information of debris separation, shelter
locations

G2 63 Commenters on the flood inundation map — e.g., map update
requests and sharing map information

G3 43 Donations and supports

G4 40 Road conditions (road closed/open)

G5 34 Locations of debris removal, debris collection status map

G6 33 Ordinances to help Baton Rouge residents; housing, noise ordinance
waivers, waiving permit fees for structures damaged, policy
changes

G7 30 Debris separation, Louisiana Department of Environmental Quality

G8 28 Reactors to hiring workers to help with debris removal efforts

G9 16 Commenters on the debris removal hiring event

G10 15 City events after final debris collection

also called gatekeepers, since they tend to control the information flow
between communities (Oliveira & Gama, 2012). For example, a Face-
book user in Texas shared a message to inform of the 2016 Louisiana
flood via his Facebook page, encouraging people to help disaster re-
covery in the city of Baton Rouge. A network graph clearly describes a
role of the vertices with highest betweenness centrality (see Table 6). Of
the vertices in the network, 87% have betweenness centrality below
100. Thus, these high betweenness vertices played a role of gatekeepers
in handling emergency information flow between the city of Baton
Rouge and other communities.

6.3. Community structure

Most social networks tend to show community structure. This feature
generally arises as a consequence of both global and local heterogeneity
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munity structure of the social network by the Girvan—Newman algorithm
(Girvan & Newman, 2002; Newman & Girvan,2004). In Table 7, we
provide an informal description of the 10 largest groups, which account
for about 38% of the entire network. The remainder is generally divided
into small, densely connected groups that represent highly specific co-
interests of disaster-related information — e.g., flood inundation map,
debris removal, road condition, donation and support. Interactions
between groups are straightforwardly visualized in the graph (see
Fig. 9). The interactions between groups have two types: (1) direct
interactions and (2) indirect interactions. For example, G1 and G4 are
directly connected, and the small groups (vertices in the red box) have a
role as a bridge connecting G1 with G2.

6.4. Top words and word pairs

Text analysis identified 77% of the posts during emergency re-
sponses as having positive words. The top five words during disaster
responses are map, water, thanks, GIS and flooded (Table 8).

Top word pairs are listed in Table 9. The city of Baton Rouge op-
erated a GIS flood map and shared the map with people. Most word
pairs are related to flood, disaster recovery team and disaster debris
removal in the city. There was a particular word pair, private — message,
because people shared their home addresses via private messages to
request rapid debris removal near their houses.

7. Conclusion

We investigated the Facebook social network in the city of Baton
Rouge after the 2016 Louisiana flood. The data were collected from the
city’s Facebook page and analyzed for the emergent network after the
flood. The city of Baton Rouge used both Twitter and Facebook to share
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Community structure

The primary divisions of community structure detecied by the Girvan
Vertices in the red box played arole as a b connecting Gl and G2.

Interactions hetween communities

Newman algorithm indicated by different vertex shapes and colors.

Fig. 9. Community structure on the Facebook page of the city of Baton Rouge.

Table 8
Top Words in Tweets in Entire Graph.

Top Words in Tweets in Entire Graph Count
Words in Sentiment List#1: Positive 4039
Words in Sentiment List#2: Negative 1206
Non-categorized Words 236,268
Total Words 241,513
Map 3395
Water 3265
Thanks 3090
GIS 2386
Flooded 2371
Table 9

Top word pairs.

‘Word Pairs Count
GIS team 1698
private, message 462
water, house 456

emergency information. Facebook user engagement was higher than
Twitter during the emergency responses. The trend of Facebook en-
gagement significantly increased in the first two weeks, reached its
peak on August 20, and then declined over time. We found that 47% of
the engagements were generated within the first two weeks.
Statistical measures in the SNA provided insights about the struc-
ture of the network. We measured out-degree, in-degree, eigenvector
and betweenness centrality in the emergent social network to identify
the prominence or importance of vertices in the network. The degree
distributions are very heterogeneous and highly right skewed (a large
majority of vertices have a low degree but a small number of vertices
have a high degree). Thus, we identified that there are certain vertices
as a hub in the social network. We ranked top 10 out-degree, in-degree,
eigenvector and betweenness centralities. The results suggested that
individuals and agencies/organizations have different roles in social
networks during emergency responses. The top 10 out-degree, in-
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degree and eigenvector centralities were individuals rather than
emergency agencies/organizations, excluding the city of Baton Rouge.
They actively shared emergency information with their online friends
by either tagging their friends, posting a comment, or sharing in-
formation with their online community. Some vertices did not belong to
either of the top 10 out-degree or in-degree centralities. Types of in-
dividual engagement in the social network are: (1) like a post (76.56%),
{2) write a comment (15.55%) and (3) share a post (7.99%).

However, the top three betweenness centralities, with the exception
of the city of Baton Rouge, were organizations/agencies, and six or-
ganizations were ranked in top 10 of betweenness centrality. We
identified that organizations/agencies played a critical role in con-
necting a network of the city of Baton Rouge with external social groups
or online communities.

The network graphs visualized the statistical analysis by the
Harel-Koren fast multiscale algorithm in Section 6. The network graphs
represented metrics to convey the result of the analysis. As shown in
Fig. 7, the city of Baton Rouge was at the center of network as a hub and
it is strongly linked with other vertices, i.e., individuals. It was the core
of the entire network, as described in the graph. Organizations and
agencies are at the periphery of the core network, but played a critical
role in connecting external vertices with the core network. The social
network graph has a similar structure to the conceptual diagram of
social capital shown in Fig. 1; the core of a community consists of nu-
merous individuals, while agencies and organizations link commu-
nities.

Text analysis from the Facebook posts identified that two-thirds of
users left positive comments and feedback on the Facebook posts, with
one-third leaving negative posts. Top word pairs were GIS-team,
flood—water and private—message.

8. Discussion

‘We compared search-term trends about the 2016 Louisiana flood
and Hurricane Sandy of 2012. There were summer Olympic Games and
presidential elections around the time of both disasters, but the trends
were significantly different. People’s interest in the 2016 Louisiana
flood was not significant and was lower than that shown for the summer
Olympic Games and the presidential election, even though it was
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recorded as the worst disaster after Hurricane Sandy. As discussed in
Section 4, there were articles criticizing the major media for a lack of
coverage of the 2016 Louisiana flood. Further investigations are needed
to answer how these events (Olympics and elections) affect information
diffusion during disaster responses. Comparing the effectiveness of so-
cial media as early warning systems would be beneficial.

Contrary to previous studies, this case study showed that disaster-
related information was diffused actively via Facebook rather than
Twitter. There might be several reasons behind this. Firstly, Facebook
has more functions for sharing numerous types of message via its in-
terface, such as images, videos, and hyperlinks. This flexibility might
help users understand information faster and trigger them to share
multiple types of information with others. In addition, Facebook has
1.59 billion users (as of Dec 2015), which is about four times higher
than Twitter {320 millions, as of March 2016) {Social Times, 2016).
Duggan (2015) identified that of Facebook’s total number of users, 70%
visit the platform daily, while for Twitter this is 38%. Thus, more
people might have a chance of being engaged in emergency information
via Facebook rather than Twitter. Further investigations, using survey
and interview, would identify their motivations and reasons for their
engagements.

There was a limitation on data collection. Since we collected data
from a Facebook fanpage of the city of Baton Rouge, we were not able
to explore how the shared information on a user’s Facebook page will
be re-shared with other social networks, compared to a retweet on
Twitter. This would enable us to precisely measure information diffu-
sion across the community structure of social media. Also, the network
is limited to Facebook, so it does not include other online and offline
networks created during disaster responses.

It is critical for the public to receive accurate, reliable and timely
information from emergency agencies during disasters. Many litera-
tures identified that social media 1) influences social consciousness, 2)
leads rapid information delivery, and 3) reach a broader and more
targeted population than any conventional methods(Mohammadi et al.,
2016). Thus, social media such as Twitter and Facebook is expected as a
powerful tool for rapid information diffusion in emergency.

As our findings reveal, SNA could be applied to understand char-
acteristics of online social network and structure in depth including
critical central and intermediate vertices in the network. The results can
be used to understand heterogeneity in social networks and applied to
accelerate information diffusion in emergency. Thus, emergency
agencies need to equip a network analysis tool and database to analyze
local-, state- and national level social network in emergency. Also, a
collaboration with social media such as Facebook and Twitter will be
beneficial to improve reliability of data collection, monitor real-time
data, and expedite the overall SNA process in emergency.

As discussed in Section 7, organizations with high betweenness
centrality play a critical role to connect online communities in a social
network. Thus, emergency agencies have an online partnership with
public and private sector including NGOs and NPOs to create stronger
bonds in their social network.

A future study is needed for understanding characteristics and ef-
fectiveness of different social media platform including Twitter,
Facebook, Google +, YouTube and Instagram in disaster responses such
as their feasibility and reliability as an information diffuser in emer-
gency. Most questions could be answered by a multi-case study ap-
proach that would compare the use and effectiveness of social media
across a broad range of disasters. Another future study is also needed
for isolated vertices where information might not be reached via an
existing online network. Therefore, application of search and location-
based advertising services for emergency information is a crucial re-
search topic to improve online information diffusion performance.
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ARTICLE INFO ABSTRACT

Social media, such as Twitter and Facebook, plays a critical role in disaster management by propagating
emergency information to a disaster-affected community. It ranks as the fourth most popular source for accessing
emergency information. Many studies have explored social media data to understand the networks and extract
critical information to develop a pre- and post-disaster mitigation plan.

The 2016 flood in Louisiana damaged more than 60,000 homes and was the worst U.S. disaster after
Hurricane Sandy in 2012. Parishes in Louisiana actively used their social media to share information with the
disaster-affected community — e.g., flood inundation map, locations of emergency shelters, medical services,
and debris removal operation. This study applies social network analysis to convert emergency social network
data into knowledge. We explore patterns created by the aggregated interactions of online users on Facebook
during disaster responses. It provides insights to understand the critical role of social media use for emergency
information propagation. The study results show social networks consist of three entities: individuals, emergency
agencies, and organizations. The core of a social network consists of numerous individuals. They are actively
engaged to share information, communicate with the city of Baton Rouge, and update information. Emergency
agencies and organizations are on the periphery of the social network, connecting a community with other
communities. The results of this study will help emergency agencies develop their social media operation
strategies for a disaster mitigation plan.
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Social media

Disaster response

Social network analysis (SNA)

1. Introduction

Social media, such as Twitter and Facebook, plays a critical role in
disaster management. It is ranked as the fourth most popular source for
accessing emergency information (Lindsay, 2011). Mickoleit (2014)
identified that government institutions are using platforms such as
Twitter, Facebook, and blogs to communicate with their communities.
‘Twitter accounts have been created in 24 out of 34 OECD member
countries, which can be compared to 21 out of 34 for Facebook. Many
studies have explored the systematic use of social media during emer-
gency responses by extracting social media data to identify needs of a
disaster-affected community (Imran, Elbassuoni, Castillo, Diaz, & Meier,
2013; Yin et al., 2015). For example, social media data was used to
develop a GIS-based real-time map during 2012 Hurricane Sandy in
NYC. It shared emergency information and community needs with
emergency agencies and NGOs (Middleton, Middleton, & Modafferi,
2014). Furthermore, real-time data from social media has been used to
develop an carly warning system for a tornado (Knox et al., 2013;
Tyshchuk, Hui, Grabowski, & Wallace, 2011). Social media is used to
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communicate emergency information and urgent requests between
emergency agencies and disaster-affected people (Feldman et al., 2016;
Lindsay, 2011). These approaches support emergency agencies in un-
derstanding emerging situations rapidly after a disaster.

More than 60,000 homes were damaged in the 2016 flood in
Louisiana (Han, 2016). It was the worst disaster after Hurricane Sandy
in 2012 (Yan & Flores, 2016). A couple of parishes in Louisiana used
their social media to share emergency information with people affected
by the disaster. The city of Baton Rouge in Louisiana actively used its
social media, such as Facebook and Twitter, to deliver real-time
emergency information to the affected people in a timely manner. Few
studies have analyzed social network structures and roles during dis-
aster responses. This study applied social network analysis (SNA) to
understand the characteristics of social media networks in Louisiana
during emergency responses.
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Fig. 1. Conceptual diagram of social capital
(Nakagawa & Shaw, 2004).
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2. Literature review Table 1
Social media demographics and frequency (Duggan, 2015).
2.1. Social capital for disaster recove;
P f 24 Facebook Twitter
Social capital can be defined as “the resources accumulated through 18-29 82% 32%
the relationships among people” {Coleman, 1988). Positive social out- 30-49 79% 29%
. h . : . o o
comes from social capital have been identified through public health, :gf" i;;“ ;g/’
" 5 b b
lower crime rates, and financial markets (Adler & Kwon, 2002). In Daily 70% 28%
general, social capital brings a positive effect of interaction among Weekly 21% 21%
participants in a social network (Helliwell & Putnam, 2004). Ellison, Less often 9% 40%

Steinfield, and Lampe (2007) identified that greater social capital
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Table 2
Overall Metrics.
Graph Metric Value
Graph Type Directed
Vertices 1171
Unique Edges 21,115
Edges with Duplicates 6400
Total Edges 27,515
Self-Loops 671
Reciprocated Vertex Pair Ratio 0.024
Reciprocated Edge Ratio 0.047
Connected Components 18
Single-Vertex Connected Components 16
Maximum Vertices in a Connected Component 1153
Maximum Edges in a Ci d Comp 1t 27,510
Maximum Geodesic Distance (Diameter} 5
Average Geodesic Distance 2.41
Graph Density 0.02

increased commitment to a community and the ability to mobilize
collective actions.

Many scholars have emphasized that social capital plays a critical
role in responses to disasters. Nakagawa and Shaw (2004) examined the
post-earthquake rehabilitation and reconstruction programs in two
cases: Kobe in Japan and Gujarat in India. They identified that social
capital and leadership in the community are the basic attributes for
rapid disaster recovery. They described three aspects of social capital:
bonding, bridging and linking (see Fig. 1). By investigating disaster re-
covery after the 1995 Kobe earthquake in Japan, Aldrich (2011) em-
phasized that the power of people (social capital) is the strongest and
most robust predictor of population recovery after a catastrophe.
Aldrich and Meyer (2014) examined recent literature and evidence to
investigate the critical role of social capital and networks in disaster
recovery. They highlighted that disaster agencies, governmental deci-
sion makers, and NGOs need to strengthen social infrastructures at the
community level to increase disaster resilience. Joshi and Acki (2014)
investigated two districts affected by the tsunami in India. They con-
cluded that the strength of social networks, the commitment of re-
sidents to the community, popularity of leaders, and various social
factors influenced the disaster recovery. Grube and Storr (2014) studied
how pre-disaster systems of self-governance support post-disaster re-
covery. They concluded that local knowledge and knowledge transfer
are important in the recovery of disaster-affected communities. To
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increase community resilience after a catastrophe, the role of social
media is substantial.

2.2. The role of social media in a disaster

The importance of social media engagements after a disaster has
been identified by many scholars (Kim & Hastak, 2017; Middleton et al.,
2014; Poorazizi, Hunter, & Steiniger, 2015; Reuter, Heger, & Pipek,
2013; Yin et al., 2015; Yoo, Rand, Eftekhar, & Rabinovich, 2016). Social
media has a range of roles, from preparing and receiving disaster pre-
paredness information and warnings, and signaling and detecting dis-
asters prior to an event, to linking community members following a
disaster (Houston et al., 2015).

After the 2010 Haiti earthquake, people shared numerous texts and
photos via social media. Within 48 h, the Red Cross had received US$8
million in donations, and this exemplified one benefit of the powerful
information propagation capability of social media sites (Gao,
Barbier, & Goolsby, 2011; Keim & Noji, 2011; Yates & Paquette,2011).
Graham, Avery, and Park (2015) surveyed more than 300 local gov-
ernment officials from municipalities across the U.S. Their study
identified that the extent of social media use is related with assess-
ments of the local city’s ability to control a crisis. It is also related to
their overall evaluations of the strength of their responses. The Federal
Emergency Management Agency (FEMA) utilizes various social media,
including Facebook, Twitter, Instagram, LinkedIn and YouTube, to
provide the public with emergency information related to a cata-
strophe (FEMA, 2016).

Yoo et al. (2016) collected Twitter data during Hurricane Sandy and
applied information diffusion theory to characterize diffusion rates. The
variables are (1) information cascade’s diffusion speed, (2) cascade
originator’s influence and cascade content’s contribution to situational
awareness, (3) lateness in the launch of the cascade during the disaster,
(4) incidence of cascade boosts by the originator, and (5) misleading
cascade. They identified that internal diffusion through social media
networks advances at a higher speed than information in these net-
works coming from external sources.

Furthermore, uses of social media as an information diffuser should
be calibrated to expedite the effectiveness in an emergency. Keim and
Noji (2011) emphasized that P2P communications could spread mis-
information and rumor as well as privacy rights violations. An ex-
tremely high volume of messages via social media makes it hard for
disaster-affected communities and professional emergency responders/
agencies to process and analyze the information. Imran et al. (2013)
proposed a system integrated with machine learning techniques to
provide actionable information from social media. Liu et al. (2014)
studied disaster information forms {social media vs. traditional media)
and sources {national agencies and media vs. local agencies and media)
to generate desired public outcomes such as intentions to seek and
share emergency information.

2.3. Social network analysis and tools
Software and tools have been developed to fulfill the increasing

need for social network data mining and visualization technology.
Researchers created toolkits from sets of network analysis components

Fig. 5. Numbers of reactions on the Facebook page of the city
of Baton Rouge.
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Fig. 6. Most shared and commented information on
Facebook after the flood (eBRGIS, 2016).

(150 likes, 791 shares and 61 comments retrieved
from the Facebook page of the city of Baton Rouge).
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not limited to R and the SNA library, JUNG, Guess, and Prefuse in- provide a local (actor level) and global (network level) description of
cluding NodeXL and Gephi (Adar, 2006; Heer, Card, & Landay, 2005; the network, (2) graphical visualization of the network, and (3) com-
Smith et al., 2009; White, 2005). These tools have different char- munity detection {(Combe, Largeron, Egyed-Zsigmond, & Géry, 2010;
acteristics, but most of them allow (1) computation of metrics that Oliveira & Gama, 2012).
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Table 3
Top 10 out-degree centrality and degree distribution.
Red-colored lines are all edges linked with top 10 out-degree vertices excluding CBR.
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(minimum 0, maximum 228, average 19, median 5).
3. Research objectives for the lack of coverage of the 2016 Louisiana flood, especially com-
pared to the other major natural disasters in the U.S. (Berman, 2016;
Many studies have explored social media data to understand social May & Bowerman, 2016; Pallotta, 2016; Scott, 2016). During the
networks and extract critical information to develop a pre- and post- period, the media mainly covered the 2016 U.S. presidential election
disaster mitigation plan. This study explored disaster responses in social and the 2016 Rio Summer Olympics. Craig Fugate, the administrator for
media after the 2016 Louisiana flood. The prolonged rainfall in the FEMA, stated: “You have Olympics, you got the election. If you look
southern parts of Louisiana resulted in catastrophic flooding that sub- at the national news, you’re probably on the third or fourth page. ... We
merged thousands of houses and businesses. It was recorded as the think it is a national headline disaster” (O’Donoghue, 2016). For in-
worst disaster in the U.S. after Hurricane Sandy in 2012, and it da- stance, the New York Times published its first story on the evening of
maged more than 60,000 homes (Ball, 2016; Brown et al., 2016; August 14 (Hersher, 2016).
May & Bowerman, 2016; Yan & Flores,2016). This study applies SNA to Thus, we explored Google Trends to identify 2012 and 2016
convert social media data into knowledge. It provides insights to un- trending stories in the U.S. near two disasters: Hurricane Sandy and the
derstand the critical role of social media for emergency information Louisiana flood. The trend data, interest over time, are scaled on a range
propagation. Objectives of this study are as follows: of 0-100 based on a topic’s proportion to searches for all topics (Google,
2017).
1) Collect social media data from the Facebook page of the city of
Baton Rouge during the period of the 2016 Louisiana flood, August 4.1.1. Trends at a nationdl level
12-December 1"2016' . It was hard to observe the search-term trend {or interest over time)
2) EXPl"r"- “eonnections and patterns creafed by the aggregated inter- for Louisiana flood 2016 compared to 2016 presidential election and 2016
actions;n, the Facebook page during disaster responses; Rio Summer Olympics at a national level. However, search-term trends in
3) Identify and analyze social roles and key players in the social net- 2012 were different in similar circumstances when Hurricane Sandy
work. . ) . . struck. Despite the 2012 London Summer Olympics and the 2012 pre-
4) Analyze the posts during the disaster, such as discussions, top words sidential election occurting in the year of Hurricane Sandy, media in-
and word pairs. . ) . ) . terest in Hurricane Sandy was significantly higher than in these other
5) Suggest further actions to improve the effectiveness of information events. Hurricane Sandy hit New York City on Oct 29, 2012. Interest
diffusion via social media. peaked during the week of October 28-November 3 (Fig. 2).
4. Louisiana flood and social media 4.1.2. Trends at a local level
Google search-term trends in Louisiana are shown in Fig. 3.
4.1. Search-term trends: 2012 Hurricane Sandy vs. 2016 Louisiana flood Louisiana flood 2016 reached a peak during the week of Aug 17-21,
2016. Compared to Hurricane Sandy in 2012, the peak of interest on the
The major media has been criticized by many leaders in Louisiana topic, 2016 Louisiana flood, was not higher than 2016 Rio Olympics and
90
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Table 4
Top 10 Eigenvector centrality and degree distribution.
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Red-colored lines are all edges linked with top 10 in-degree vertices excluding CBR. User#5 is in both the top 10 out-degree and eigenvector centralities.
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(minimum 0, maximum 0.00663, average 0.00085, median 0.00005)
2016 presidential election in Louisiana. Also, it reached the peak after the 5. Data collection and pre-processing

flood occurred in Aug 12, 2016.

4.2. Comparison of social media platforms: Facebook and Twitter

According to Social Times, Facebook has 1.59 billion monthly active
users {as of Dec 2015), while Twitter has 320 million {(as of March
2016) (Social Times, 2016). Duggan {2015) examined Facebook and
Twitter users among internet users in the survey and identified Face-
book as having a broader range of generation than Twitter. In addition,
70% of Facebook users are on the platform on a daily basis, compared
with 38% of Twitter users {see Table 1). The Pew Research Center
(2017) reported Facebook as the most widely used of the major social
media platforms, and its user base is broadly representative of the po-
pulation as a whole. In January 2016, 68% of U.S. adults were Face-
book users.

The city of Baton Rouge has been using two social media platforms,
Facebook and Twitter, since 2011. As of December 1, 2016, the number
of Twitter followers was higher than Facebook followers, at 13,500 and
9936, respectively. However, Facebook user engagement was appar-
ently higher than Twitter during the 2016 Louisiana flood. For example,
a single post on the Facebook page was, on average, shared by 792 users
and liked by 150 users, compared to posts on Twitter receiving 4-5
retweets and 1-2 likes.

91

We collected data from the Facebook page of the city of Baton
Rouge (www.facebook.com/cityofbatonrouge) that were created
during August 12-December 1, 2016. There were 1171 users and
21,115 activities or responses on the page. To represent the collected
data on a network graph, a vertex is defined as an engaged user and an
edge is defined as a connection between users created by their inter-
actions (see Fig. 4). We assumed any link between two vertices, re-
gardless of direction, to be an indication of their similarity (Clauset,
Newman, & Moore, 2004).

We filtered the collected data to ensure they were strictly related to
the 2016 Louisiana flood before analyzing and visualizing the network.
There were repeated vertex pairs on the edges, and 6400 edges with
duplicates out of 27,515 edges (see Table 2) These duplicate vertex
pairs may occur when user A replies to user B on multiple occasions.
These duplicates can cause some metrics, such as degree, to be in-
accurate {Smith et al., 2009). Thus, the 6400 edges were combined into
a single weighted edge. Finally, edges that connect a vertex with itself
— self-loops, of which there were 671-were deleted.

6. Results

The number of user engagements (e.g., comments, commented
comments and user tagged) on the Facebook posts is described in Fig. 5.
The number of user engagements exponentially increased and then
declined after August 20. From August 24, the numbers were less than
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Table 5
Top 10 in-degree centrality and degree distribution.
Red-colored lines are all edges linked with top 10 in-degree vertices excluding CBR.
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(minimum 0, maximum 829, average 19.99, median 4.00).

20 (the trend is similar to that observed in the local search-term trend in
Fig. 3).

The most shared and commented post was the estimated flood in-
undation map developed by the GIS division of the Department of
Information Services in the city of Baton Rouge (see Fig. 6). The esti-
mated flood inundation map was powered by a compilation of various
data inputs including 911 call-outs, Baton Rouge Fire Department
search-and-rescue data, City-Parish staff and other public officials,
NOAA imagery, Civil Air Patrol imagery and FEMA DRIRM flood hazard
areas {eBRGIS, 2016). The post consisted of text information with a link
to the GIS map. Facebook users commented on the post to inform of
incorrect information on the flood inundation map. Compared to the
post on the city’s Facebook page, there were 39 retweets and 18 likes on
the Twitter post.

6.1. Network graph and structure

In social network analysis, graph-theoretic concepts are used to
understand and analyze social phenomena (Ackland, 2010; Borgatti,
Everett, & Johnson, 2013; Brandes, 2001; Wasseman & Faust, 1994). In
Fig. 7, the graph is directed and laid out using the Harel-Koren fast
multiscale layout algorithm (Harel & Koren, 2000). There are 1171
vertices, 21,115 edges, and 18 connected components. The vertex color
is betweenness centrality and the size is scaled out-degree centrality.
Maximum geodesic distance (diameter) is 5.00 and the average is 2.40
(see Table 2) The city of Baton Rouge is in the center of the network.
The center of the network in the black-dashed circle is very dense with
numerous vertices and edges. There are several vertices near the black-
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dashed circle that connect with other vertices at the outside of the
network.

6.2. Degree centrality

Degree centrality refers to the number of edges a vertex has to other
vertices. As shown in Fig. 8, in-degree is the number of incoming edges
incident to the vertex and out-degree is the number of outgoing edges
incident to the vertex. Betweenness quantifies the number of times a
vertex acts as a bridge along the shortest path between two other ver-
tices (Freeman, 1977).

We analyze four types of degree centrality. The city of Baton Rouge
has the highest out-degree, in-degree, eigenvector and betweenness
centrality in the network. Most vertices at the core of the network are
identified as individuals. There are no organizations or agencies in the
top 10 centralities. The results below describe individual users actively
involved in this emergency information propagation.

Out-degree, in-degree, and betweenness degree distribution are
highly right-skewed. It represents a significant majority of vertices
having a low degree, but a few vertices having a high degree as a hub in
the network {Tables 3-5).

The six organizations/agencies including the city of Baton Rouge
are ranked in the top 10 of betweenness centrality. The verticies with
high betweenness play critical roles in the network structure. From the
social network perspective, Wasseman and Faust (1994) described the
importance of high betweenness: “interactions between two non-
adjacent actors might depend on other actors in the set of actors,
especially the actors who lie on the paths between the two.” These are
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Table 6
Top 10 betweenness centrality and degree distribution.
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Red-colored lines are all edges linked with top 10 betweenness centrality vertices excluding CBR.

Users Betweenness
CBR 1,082,218
Organization#1 166,500
Organization#2 81,549
S Organization#3 49,982
User#19 31,711
User#20 29,937
User#21 26,838
Organizationfi4 22,838
Organization#35 20,572
User#22 13,791
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Table 7 of edges distribution (Oliveira & Gama, 2012). We identified a com-

Top 10 largest communities in the social network.

Rank  Size Description

Gl 144 Flood inundation map, information of debris separation, shelter
locations

G2 63 Commenters on the flood inundation map — e.g., map update
requests and sharing map information

G3 43 Donations and supports

G4 40 Road conditions (road closed/open)

G5 34 Locations of debris removal, debris collection status map

G6 33 Ordinances to help Baton Rouge residents; housing, noise ordinance
waivers, waiving permit fees for structures damaged, policy
changes

G7 30 Debris separation, Louisiana Department of Environmental Quality

G8 28 Reactors to hiring workers to help with debris removal efforts

G9 16 Commenters on the debris removal hiring event

G10 15 City events after final debris collection

also called gatekeepers, since they tend to control the information flow
between communities (Oliveira & Gama, 2012). For example, a Face-
book user in Texas shared a message to inform of the 2016 Louisiana
flood via his Facebook page, encouraging people to help disaster re-
covery in the city of Baton Rouge. A network graph clearly describes a
role of the vertices with highest betweenness centrality (see Table 6). Of
the vertices in the network, 87% have betweenness centrality below
100. Thus, these high betweenness vertices played a role of gatekeepers
in handling emergency information flow between the city of Baton
Rouge and other communities.

6.3. Community structure

Most social networks tend to show community structure. This feature
generally arises as a consequence of both global and local heterogeneity
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munity structure of the social network by the Girvan—Newman algorithm
(Girvan & Newman, 2002; Newman & Girvan,2004). In Table 7, we
provide an informal description of the 10 largest groups, which account
for about 38% of the entire network. The remainder is generally divided
into small, densely connected groups that represent highly specific co-
interests of disaster-related information — e.g., flood inundation map,
debris removal, road condition, donation and support. Interactions
between groups are straightforwardly visualized in the graph (see
Fig. 9). The interactions between groups have two types: (1) direct
interactions and (2) indirect interactions. For example, G1 and G4 are
directly connected, and the small groups (vertices in the red box) have a
role as a bridge connecting G1 with G2.

6.4. Top words and word pairs

Text analysis identified 77% of the posts during emergency re-
sponses as having positive words. The top five words during disaster
responses are map, water, thanks, GIS and flooded (Table 8).

Top word pairs are listed in Table 9. The city of Baton Rouge op-
erated a GIS flood map and shared the map with people. Most word
pairs are related to flood, disaster recovery team and disaster debris
removal in the city. There was a particular word pair, private — message,
because people shared their home addresses via private messages to
request rapid debris removal near their houses.

7. Conclusion

We investigated the Facebook social network in the city of Baton
Rouge after the 2016 Louisiana flood. The data were collected from the
city’s Facebook page and analyzed for the emergent network after the
flood. The city of Baton Rouge used both Twitter and Facebook to share
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Community structure

The primary divisions of community structure detecied by the Girvan
Vertices in the red box played arole as a b connecting Gl and G2.

Interactions hetween communities

Newman algorithm indicated by different vertex shapes and colors.

Fig. 9. Community structure on the Facebook page of the city of Baton Rouge.

Table 8
Top Words in Tweets in Entire Graph.

Top Words in Tweets in Entire Graph Count
Words in Sentiment List#1: Positive 4039
Words in Sentiment List#2: Negative 1206
Non-categorized Words 236,268
Total Words 241,513
Map 3395
Water 3265
Thanks 3090
GIS 2386
Flooded 2371
Table 9

Top word pairs.

‘Word Pairs Count
GIS team 1698
private, message 462
water, house 456

emergency information. Facebook user engagement was higher than
Twitter during the emergency responses. The trend of Facebook en-
gagement significantly increased in the first two weeks, reached its
peak on August 20, and then declined over time. We found that 47% of
the engagements were generated within the first two weeks.
Statistical measures in the SNA provided insights about the struc-
ture of the network. We measured out-degree, in-degree, eigenvector
and betweenness centrality in the emergent social network to identify
the prominence or importance of vertices in the network. The degree
distributions are very heterogeneous and highly right skewed (a large
majority of vertices have a low degree but a small number of vertices
have a high degree). Thus, we identified that there are certain vertices
as a hub in the social network. We ranked top 10 out-degree, in-degree,
eigenvector and betweenness centralities. The results suggested that
individuals and agencies/organizations have different roles in social
networks during emergency responses. The top 10 out-degree, in-
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degree and eigenvector centralities were individuals rather than
emergency agencies/organizations, excluding the city of Baton Rouge.
They actively shared emergency information with their online friends
by either tagging their friends, posting a comment, or sharing in-
formation with their online community. Some vertices did not belong to
either of the top 10 out-degree or in-degree centralities. Types of in-
dividual engagement in the social network are: (1) like a post (76.56%),
{2) write a comment (15.55%) and (3) share a post (7.99%).

However, the top three betweenness centralities, with the exception
of the city of Baton Rouge, were organizations/agencies, and six or-
ganizations were ranked in top 10 of betweenness centrality. We
identified that organizations/agencies played a critical role in con-
necting a network of the city of Baton Rouge with external social groups
or online communities.

The network graphs visualized the statistical analysis by the
Harel-Koren fast multiscale algorithm in Section 6. The network graphs
represented metrics to convey the result of the analysis. As shown in
Fig. 7, the city of Baton Rouge was at the center of network as a hub and
it is strongly linked with other vertices, i.e., individuals. It was the core
of the entire network, as described in the graph. Organizations and
agencies are at the periphery of the core network, but played a critical
role in connecting external vertices with the core network. The social
network graph has a similar structure to the conceptual diagram of
social capital shown in Fig. 1; the core of a community consists of nu-
merous individuals, while agencies and organizations link commu-
nities.

Text analysis from the Facebook posts identified that two-thirds of
users left positive comments and feedback on the Facebook posts, with
one-third leaving negative posts. Top word pairs were GIS-team,
flood—water and private—message.

8. Discussion

‘We compared search-term trends about the 2016 Louisiana flood
and Hurricane Sandy of 2012. There were summer Olympic Games and
presidential elections around the time of both disasters, but the trends
were significantly different. People’s interest in the 2016 Louisiana
flood was not significant and was lower than that shown for the summer
Olympic Games and the presidential election, even though it was

379



J. Kim, M. Hastak

recorded as the worst disaster after Hurricane Sandy. As discussed in
Section 4, there were articles criticizing the major media for a lack of
coverage of the 2016 Louisiana flood. Further investigations are needed
to answer how these events (Olympics and elections) affect information
diffusion during disaster responses. Comparing the effectiveness of so-
cial media as early warning systems would be beneficial.

Contrary to previous studies, this case study showed that disaster-
related information was diffused actively via Facebook rather than
Twitter. There might be several reasons behind this. Firstly, Facebook
has more functions for sharing numerous types of message via its in-
terface, such as images, videos, and hyperlinks. This flexibility might
help users understand information faster and trigger them to share
multiple types of information with others. In addition, Facebook has
1.59 billion users (as of Dec 2015), which is about four times higher
than Twitter {320 millions, as of March 2016) {Social Times, 2016).
Duggan (2015) identified that of Facebook’s total number of users, 70%
visit the platform daily, while for Twitter this is 38%. Thus, more
people might have a chance of being engaged in emergency information
via Facebook rather than Twitter. Further investigations, using survey
and interview, would identify their motivations and reasons for their
engagements.

There was a limitation on data collection. Since we collected data
from a Facebook fanpage of the city of Baton Rouge, we were not able
to explore how the shared information on a user’s Facebook page will
be re-shared with other social networks, compared to a retweet on
Twitter. This would enable us to precisely measure information diffu-
sion across the community structure of social media. Also, the network
is limited to Facebook, so it does not include other online and offline
networks created during disaster responses.

It is critical for the public to receive accurate, reliable and timely
information from emergency agencies during disasters. Many litera-
tures identified that social media 1) influences social consciousness, 2)
leads rapid information delivery, and 3) reach a broader and more
targeted population than any conventional methods(Mohammadi et al.,
2016). Thus, social media such as Twitter and Facebook is expected as a
powerful tool for rapid information diffusion in emergency.

As our findings reveal, SNA could be applied to understand char-
acteristics of online social network and structure in depth including
critical central and intermediate vertices in the network. The results can
be used to understand heterogeneity in social networks and applied to
accelerate information diffusion in emergency. Thus, emergency
agencies need to equip a network analysis tool and database to analyze
local-, state- and national level social network in emergency. Also, a
collaboration with social media such as Facebook and Twitter will be
beneficial to improve reliability of data collection, monitor real-time
data, and expedite the overall SNA process in emergency.

As discussed in Section 7, organizations with high betweenness
centrality play a critical role to connect online communities in a social
network. Thus, emergency agencies have an online partnership with
public and private sector including NGOs and NPOs to create stronger
bonds in their social network.

A future study is needed for understanding characteristics and ef-
fectiveness of different social media platform including Twitter,
Facebook, Google +, YouTube and Instagram in disaster responses such
as their feasibility and reliability as an information diffuser in emer-
gency. Most questions could be answered by a multi-case study ap-
proach that would compare the use and effectiveness of social media
across a broad range of disasters. Another future study is also needed
for isolated vertices where information might not be reached via an
existing online network. Therefore, application of search and location-
based advertising services for emergency information is a crucial re-
search topic to improve online information diffusion performance.
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