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ABSTRACT

Deshmukh, Rahul M.S., Purdue University, December 2019. Influence of Geome-
try and Placement Configuration on Side Forces in Compression Springs. Major
Professor: Arun Prakash, School of Civil Engineering.

A leading cause of premature failure and excessive wear and tear in mechanical

components that rely on compression springs for their operation is the development

of unwanted side forces when the spring is compressed. These side forces are usually

around 10% - 20% of the magnitude of the axial load and point in different directions

in the plane perpendicular to the axis of the spring. The magnitude and direction

of the resultant of side forces varies very non-linearly and unpredictably even though

the axial force behavior of the spring is very consistent and predictable. Since these

side forces have to be resisted by the housing components that hold the spring in

place, it is difficult to design these components for optimal operation.

The hypothesis of this study is that side forces are highly sensitive to small changes

in spring geometry and its placement configuration in the housing. Several experi-

ments are conducted to measure the axial and side forces in barrel springs and two

different types of finite element models are developed and calibrated to model the

spring behavior. Spring geometry and placement are parameterized using several

control variables and an approach based on design of experiments is used to identify

the critical parameters that control the behavior of side-forces. The models resulted

in deeper insight into the development of side forces as the spring is progressively

loaded and how its contact interactions with the housing lead to changes in the side

force. It was found that side-forces are indeed sensitive to variations in spring ge-

ometry and placement. These sensitivities are quantified to enable designers to and

manufacturers of such springs to gain more control of side force variations between

different spring specimens.
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1. INTRODUCTION

Helical compression springs are one of the most widely used mechanical parts in

industry with widespread applications. While the most prevalent form of compression

springs is a straight cylindrical spring made from a round wire, many other forms are

produced. Helical compression spring come in different shapes such as cylindrical,

conical, barrel, hourglass as shown in Fig 1.1 with or without variable pitch. These

different shapes lend different characteristics to the helical springs such as reduction of

solid height (height of spring at maximum possible compression such that coils come

into contact - no additional elastic deflection is possible), higher buckling strength

and to produce linear or non-linear load deflection characteristics. This work would

mainly be focusing on barrel springs which are coiled from a round wire.

Figure 1.1. Different types of helical spring (source [1]).

Barrel springs belong to the family of helical springs and are used in applications

requiring small solid height and increased lateral stability. These springs are composed

of two conical springs such that the spring is widest in the middle section and the

ends are have smaller diameters. They can be designed in such a way that when

loaded the coils can nest partially or completely into the adjacent coil resulting in a
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solid height sometimes as small as the coil diameter itself. This phenomena is also

termed as the telescopic property of conical springs.

1.1 Application

The barrel spring that is investigated in this work is used in pneumatic brakes for

emergency braking of heavy commercial vehicles such as trucks, buses and trailers.

These brakes rely on spring force for application of brakes. A cut-out section of

typical air-brake chamber is shown in Fig 1.2. While the vehicle is moving the air

pressure in the pneumatic chamber keeps the spring in a compressed position with

the help of a flexible diaphragm such that the spring is compressed to nearly its solid

height. When brakes are applied the air in the pneumatic chamber is bled and the

spring is allowed to expand which transmits the force to braking pads with the help

of a push-rod. A typical requirement of air brakes is that the chamber needs to be

small enough to fit in tight spaces within the vehicles, therefore they require springs

which have nesting coils and have small solid heights. Thus barrel springs are used

for this application.

Figure 1.2. Air brakes (source [2]). Annotations indicating the location of
spring, diaphragm and pushrod. Pressurized air (on right) enters through
a nozzle and loads the spring using diaphragm.



3

1.2 Manufacturing Process

A typical coiled spring is manufactured in four steps namely, coiling, heat treat-

ment, pre-setting and powder coating. The first step of the process is the coiling, in

this process a ’green’ spring is produced from the raw material. The raw material in

our case is a round wire of diameter 13.5 mm and made up of ASTM A1000 Grade

A-Chrome Silicon which has a modulus of elasticity of 207 GPa, minimum tensile

strength in the range 1590-2100 MPa. This wire is fed into a coiler where it takes its

initial spiral shape with the help of a forming tool as shown in Fig 1.3(a). The ‘green

spring’ is then sent for a two-stage heat treatment process to increase its strength

and ductility. During the first stage of heat treatment, the spring is heated to high

temperature and is then immediately quenched in oil to increase its strength, after

quenching the spring becomes brittle and is therefore sent for tempering in stage

two to increase its ductility. After the heat-treatment spring is sent for the process

of pre-setting where it is compressed to the design height. The difference in spring

heights before and after the pre-setting process can be seen in Fig 1.3(b). The spring

is then sent for powder coating process to increase its hardness. Finally the spring is

sent for a paint job and the final product is shown in Fig 1.3(c).

(a) Coiling (b) Before & after pre-setting (c) Final product

Figure 1.3. Snapshots of actual spring during different phases of manu-
facturing process.
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It should be noted that during the entire process of manufacturing the spring wire

undergoes cold-work and heat treatment which would change the material crystalline

structure and would change the material properties of the final product. Therefore

the material properties of the raw material are not a reliable estimate of the finished

product and we would estimate them with the help of experimental measurements

and computer simulations.

1.3 Mechanical Response

During loading of the spring, as the spring is compressed axially it develops

lateral/side-forces along with axial forces. These side-forces are generated due to

inherent asymmetry of the spring geometry, eccentricity of loading and frictional &

normal contact between the spring and loading plates. The side-force for barrel spring

is observed to exhibit non-linear response with respect to the loading of the spring.

Furthermore, the side-force is sensitive to minor changes in geometry and placement

configurations of the spring. Presence of such a non-linear side-force decreases the

longevity of the spring and the housing components because of unanticipated wear

and tear. Therefore it becomes necessary to characterize the side-forces so as to in-

crease the life of the spring. However, methods available for conventional designing

of helical springs do not estimate the side-forces.

1.4 Objective

The objective of this study is to evaluate side forces developed in barrel springs

when subjected to axial loads , identify the cause of these forces and characterize &

quantify the sensitivity of side forces to geometric and placement-configuration pa-

rameters of barrel spring. In this process we will be building several high fidelity finite

element models of the spring by calibrating them using experimental measurements.
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Such a study will be useful for spring manufacturers in controlling variations

in side-forces by distinguishing the sensitivity of different types of variations and

therefore design a process of having tighter bounds for critical parameters.

1.5 Existing Literature

Design of helical compression springs has been a topic of interest for researchers

since the past century and is still popular now due to its wide-spread application.

The existing literature is abundant in works related to helical springs of different

shapes, cross-sections, orientations with respect to different applications such as static

loading, dynamic loading, free and forced vibrations and buckling. Works such as [3–9]

have contributed in analytical/numerical estimation of the load-deflection behavior

of the spring under static loading using concepts of Castigliano’s theorem, classical

spring design and beam theory, verifying their findings with the help of experimental

measurements or through finite elements.

However, when a spring is axially loaded there are lateral/side-forces due to fric-

tion which is not modeled in the works discussed above. In existing literature there

are several works [10–18] that have investigated into the mechanism of side-forces in

Mac Pherson strut suspension. As side forces are a consequence of frictional forces,

which are hard to model analytically, majority of the work has utilized finite element

modeling and/or experimental testing to study the side forces. In [14, 17, 19], major

effort has been in finding the force-centerline for the spring and then minimizing the

side-forces by either tilting the spring with respect to the strut axis [11, 17] or by

changing the shape of the centerline of the spring [10, 13, 14, 16, 17]. In the context

of finite element modeling of springs the work by Shimoseki et al. [20] presents well

compiled approaches to model different types of springs using beam, gap and solid

elements. However, the discussion is limited to calculation of axial forces.

Several works such as [4, 8, 9, 21–31] have contributed in analytical/numerical es-

timation of free vibrations and/or critical buckling loads for different types of springs



6

using concepts of beam theory, wave equation, energy equation and solving using

transfer matrix approach or customized finite elements.

Works such as [32, 33] have focused on modeling of fatigue using finite elements

and [34–37] have investigated in finding the cause of failure of spring using X-ray

diffraction (XRD), scanning electron microscopy (SEM), chemical analysis etc.

Several works have investigated the behavior of helical springs composed of non-

conventional materials, Mirzaeifar et al. in [38] used shape memory alloy, Aribas et

al. in [8] used composite materials, Michalczyk et al. in [29] used metallic springs

covered in elastomeric coatings. These works required material modeling in addition

to the geometric modeling.

Apart from the common cylindrical helical springs, several works have modeled

different geometric shapes and different cross-sections. Conical springs have been

a popular shape of investigation in [3–5, 7, 8, 30, 39] as they exhibit non-linear load-

deflection response. Chaudhury et al. in [9] have investigated several prismatic springs

of non-circular coil shape and non-prismatic springs of circular coil shape. Kaoua et

al. in [40] investigated twin helical spring, which can be hard to model, under tensile

loading. Gzal et al. in [41] investigated the effect of elliptical cross-sectional spring

wires on the stress distribution of the spring when subjected to axial loads.

Further, several works have focused on carrying out sensitivity analysis and finding

the optimal design of helical springs. Paredes et al. in [42] designed an optimization

tool for straight cylindrical springs with the help of analytical formulas subject to

user defined specifications and then using generalized reduced gradients method for

solving the optimization problem. Liu et al. in [16] built a multi-body dynamics finite

element model and optimized the side-forces for cylindrical springs by estimating an

optimal curvature of the centerline. Ryu et al. in [17] presented an analytical process

for designing an optimal S-shaped coil spring which minimizes side-forces using finite

element analysis. Taktak et al. in [43] compared four different optimization schemes

to minimize the mass/natural frequency along with several constraints using numer-

ical formulation developed in [44]. Choi et al. in [45] carried out sensitivity analysis
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for cylindrical springs to minimize side-forces using design of experiments (DOE)

based approach for meta-model generation and then using genetic algorithm for op-

timization. Apart from deterministic formulation of problem, papers such as [18, 46]

discuss probabilistic problem formulation for sensitivity analysis & optimization which

accounts for uncertainty in material properties and geometric dimension due to man-

ufacturing tolerances. Choi et al. in [18] presents such an example by minimizing

side-forces for a pig-tail spring.

From the above discussion pertaining to existing literature on helical compression

springs it can be observed that majority of studies on estimation of side-forces have

focused on cylindrical helical springs whereas this work is focused on barrel springs.

Moreover, the existing literature has focused mainly on variations in ceterline of the

spring whereas the current study focuses on more-generic form of geometric varia-

tions which is variations in diameter and height of the spring along its length due to

permissible manufacturing tolerances.

1.6 Approach Followed

In this study, in order to study the side-forces for barrel springs two different

finite element models will be discussed in Chapter 3. The first model, in Section

3.1 , is a continuum model with contacts which is constructed to capture the exact

physical behavior of the spring. The second model, in Section 3.2 , is a reduced-order

model which uses beam elements and non-linear springs to simulate contacts which

reduces the computational cost of simulations and thus used for parametric variations.

Thereafter in Chapter 4, the effect of placement and geometric variations on side-force

of barrel springs is studied in Section 4.1 and Section 4.2 respectively. To carry out

the variations a design of experiments approach for sampling and sensitivity analysis

was carried out to identify the critical parameters. Finally, the findings of this study

are summarized in Chapter 5.
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2. MECHANICAL RESPONSE OF BARREL SPRINGS UNDER COMPRESSION

In this chapter we introduce the reader to the notation used, geometry of the model,

experimental measurements and tests carried out for the springs. This discussion will

serve as foundation for detailed explanation of the problem and will familiarize the

reader with certain keywords which will be used throughout the text.

2.1 Notation

This section is dedicated to introduce explicitly the notation that will be used

throughout the text. The discussion that follows this section requires usage of global

coordinate system and mathematical symbols. Thus a brief discussion about the

notation will be helpful.

A global coordinate system is chosen for the description of the problem such that

the origin is located at the center of the bottom face of the bottom plate as shown in

Fig 2.1. The global Y axis is chosen in the normal direction pointing from the bottom

plate to the top plate as shown in Fig 2.1. The global X axis is chosen such that the

starting face of the spring is on the XY plane and its outward normal vector is in the

direction of Z axis.

Throughout the text any vector quantity will be denoted by a italicized small script

letter in boldface, all tensor quantities will be denoted with a italicized & capitalized

script letter in boldface and finally all scalars will be denoted by italicized symbols

in regular font. With this notation the standard basis vectors can be defined by the

symbols eee1, eee2 & eee3 as the unit vectors such that the sub scripts 1,2 & 3 correspond

to the directions along the positive X,Y & Z axes respectively. The standard basis

vectors helps in defining the position vector, xxx , of any point in the space. Thus
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Figure 2.1. Global coordinate system defined with respect to the spring.

position vector for any arbitrary point in space with the coordinate triple (x1, x2, x3)

in Cartesian coordinates will be denoted as:

xxx = x1eee1 + x2eee2 + x3eee3 (2.1)

An example of a tensor quantity with the above notation can be the identity tensor

which will be given by:

III =
3∑
i=1

3∑
j=1

δijeeei ⊗ eeej (2.2)

Where δij is the Kronecker delta given by:

δij =

1, if i = j,

0, if i 6= j.

(2.3)
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Another example of a tensor can be the projection tensor, PPP, which projects a

point,xxx, onto the XZ plane to give the projection, yyy defined as follows:

PPP = III − eee2 ⊗ eee2 (2.4)

yyy = PPPxxx

In the discussion, the spring is constructed with the help of a center line. The

center line of the spring is defined as a collection of N number of points denoted as

{xxxi}Ni=1. These definitions and notation will now be useful in proceeding with the

discussion.

2.2 Spring Geometry and Measurements

This work focuses on the investigation of side forces in barrel spring with variable

diameter and variable pitch. The spring is coiled using a wire of cross-sectional

diameter of d = 13.5 mm. The coordinates of center line, {xxxi}Ni=1, of the spring follow

a particular profile as shown in Fig 2.2, we may refer to the center line of the spring

as wire in the following text. The spring has nearly 4.75 number of coils and a solid

height less than 1.5”. One such spring is depicted in Fig 2.3.

Manual modeling of springs which follows profile shown in Fig 2.2 can be quite

challenging in any computer aided designing(CAD) software. Therefore, the option of

python scripting in ABAQUS [47] to generate these models was used. When generating

these models using a script a wire feature is first created in ABAQUS [47] by connecting

multiple points along the center line, {xxxi}Ni=1, of the spring and then a volume is swept

using this path.
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(b) Height profile

Figure 2.2. Spring Profiles for five different specimens measured using
profiler. (a) Diameter profile of point on the center line of spring wrt
angle (b) Height profile of point on the center line of spring wrt angle.

In order to model the springs as shown in Fig 2.3 we need exact measurements

of angle, diameter & height of each point, xxxi, on the center line of the spring. The

angle, diameter and height of any point, xxxi, is defined as follows:

height: hi = xxxi · eee2 −
d

2
− t (2.5)

diameter: di = 2 ∗ ‖PPPxxxi‖2 (2.6)

angle: θi = arctan
(xxxi · eee3
xxxi · eee1

)
(2.7)
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(a) Isometric View (b) Front View (c) Top View

Figure 2.3. Spring Model with general dimensions (a) Isometric view of
spring with annotations indicating height, diameter and angle value for
arbitrary point on center line of spring (b) Front view of spring with anno-
tations depicting general dimensions (c) Top view of the spring showing
variable diameter of the spring.

Where t is the thickness of the bottom plate as shown in Fig 2.1 andPPP is the projection

tensor from Equation (2.4)

The profiles shown in Fig 2.2 are measured profiles for five different samples.

These profiles were measured using a profiler equipment as shown in Fig 2.4. The

profiler works by taking measurements of a moving probe with the help of three rotary

encoders which measure the linear (along the height), radial and angular displacement

of the probe. While taking measurement of a spring, the spring is first manually

fitted between two cones as shown in Fig 2.2. The spring is fitted in such a way

that the bottom part of the spring is always at the starting end of the probe. Then

with the help of a motor the spring is rotated about the central axis of the cones.

As the spring rotates the probe also moves along the outer surface of the spring

always maintaining contact and simultaneously the values of the encoders are logged

using a data acquisition system. Finally the profile of the spring gets written out a
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spreadsheet. The measurements are logged at fine angular resolution such that for

our spring of 4.75 turns we have up-to 3000 recordings on average, i.e. a resolution

of 0.6 degrees. It should be noted that the profile obtained by the profiler will not

be able to capture the very ends of the spring simply because the probe does gets

obstructed by the spring coils, therefore our measurements will start from a shifted

position than the true start of the spring and will end earlier than the true end of the

spring. We assume that such an artifact will not affect the spring response.

Cone

Spring

Motor

Probe

Cone

Figure 2.4. Profiler with annotations indicating the location of the cones,
spring, motor and probe. Arrows indicating the motion of probe along
the spring as the motor rotates the spring.

Another method of obtaining the spring profile that was investigated was using

structure from motion technique and using optical scanners. The idea here was to

generate a point cloud for the spring and then extract the center line using skeleton

extraction techniques available in computer vision literature. When using structure

from motion technique with uncalibrated projective cameras the point cloud obtained

can be only correct up-to a projective homography which means the point cloud will

never have the exact scale as that of the real object and the point cloud might

also be suffering from projective distortion. Also, the quality of point cloud highly
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depends on the number of images, coverage of view angles of images, amount of

change in view angle across different images and illumination of the object, even with

perfect conditions it is difficult to get a water tight model of the object. Furthermore,

standard computer vision techniques require feature rich objects for extraction of key

points. However, the manufactured spring as shown in Fig 1.3(c) is a powder coated

and painted spring which is devoid of any feature/pattern. To add features to the

spring, it was masked with masking tape and random patterns were scribbled onto

the tape as shown in Fig 2.5(a) which helped in obtaining in a comparatively dense

3D reconstruction as shown in Fig 2.5(b) using structure from motion implementation

by Wu Changchang et al. [48, 49]. It can be observed that the bottom part of the

point cloud shown in Fig 2.5(b) is sparse which would also affect the quality of center

line extraction.

(a) Masked spring (b) 3D reconstruction

Figure 2.5. 3D reconstruction of spring using structure from motion with
120 images.

When using optical scanners one can expect better results than standard structure

from motion technique because the optical scanners do not require estimation of
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homography and triangulation of points rather it computes the position of a point in

space using time of flight of the ray and sensor geometry of the equipment. The 3D

reconstruction using optical scanners is correct up-to euclidean homography which

means that the point cloud and the object has the same scale and the point cloud

will suffer from only rigid body motions, i.e. translations and rotation. The accuracy

of 3D reconstruction can be up-to 0.1 mm depending on the sensor accuracy. The

quality of point cloud obtained from the scanners depends on the reflectance of the

surface, features/patterns available on the surface and size of smallest feature on the

object. Two different optical scanners, Sense 3D and Go! Scan 3D, were used to

generate the point cloud for spring. It was observed that the quality of point cloud

was poor. Also, in some cases the scanner was not able to generate a complete point

cloud due to small wire diameter of the spring.

Therefore, due to poor quality of point cloud using structure from motion and

using optical scanners, the geometry measured using the profiler was retained for the

work presented in the following chapters.

2.3 Loading & Testing Procedure

When the spring is manufactured, it is tested for its force response using a uni-

versal testing machine (UTM). The spring is placed between two loading plates as

shown in Fig 2.1, The bottom plate is a fixed plate and the top plate applies the force,

this setup of loading is also known as fixed-ends condition for the spring. There is

a circular disc of fixed size screwed onto the center of both the loading plates which

helps the user to place the spring properly. This circular disc is also called as retainer

and has a diameter of D = 2.5” and is d thick disc made up of steel. The UTM is

equipped with both axial and lateral load cells which measure the axial and lateral

force response of the spring. The application of the spring dictates that the spring

needs to be tested up-to a minimum displaced height of 1.5”. The force response gets

stored in an excel file such that we have the information of height of the top plate,
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axial force and lateral forces throughout the loading process of the spring with a fine

resolution of nearly 1500 recordings throughout loading of the spring.

When carrying out load-testing of the specimens we have carried out the tests by

changing orientation of the spring the details of tests carried out for each specimen

will be discussed shortly. First set of tests comprise of tests for each specimen such

that the spring is placed in a default placement such that the starting face of the

bottom coil of the spring is in the XY plane as shown in Fig 2.1. The second set

of tests comprise of tests for each specimen such that the springs rotated about its

body center in X direction and is placed upside down in the default placement. The

third set of tests comprise of only the specimen 5 such that it is rotated about the Y

axis and tested at angles of 0, 45, 135, 225 & 315 degrees. The results for each test

for each specimen with legends are shown in Fig 2.6, Fig 2.7, Fig 2.8,Fig 2.9 and Fig

2.10.
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Figure 2.6. Measured load response for specimen 1.
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Figure 2.7. Measured load response for specimen 2.
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Figure 2.8. Measured load response for specimen 3.
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Figure 2.9. Measured load response for specimen 4.
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Figure 2.10. Measured load response for specimen 5.
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Figure 2.11. Measured load response for all specimens.

As we can observe from the plots in Fig 2.6, Fig 2.7, Fig 2.8,Fig 2.9 and Fig

2.10, the axial force response for the five specimens is the same and remains a linear

response for the entire loading however, the side-force response varies a lot across

the five specimens and is a non-linear response. We can also observe that the plots

for the default placement and upside down placement do not vary as significantly as

the plots shown for variation in rotation angle. Further, we observe such a spread of

side-force even when the differences in profiles of the five specimens as shown in Fig
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2.2 is very subtle. Therefore, we are interested in identifying the cause of side forces,

explain why they are non-linear and identify what parameter affects the side force

the most.

2.4 Mechanical Response of Barrel Springs

The mechanical response of the barrel springs can be affected by several factors

such as spring geometry, configuration of the spring, material properties of spring

and changing contact during the deformation of the spring. Several geometric char-

acteristics of the spring can affect the side-force, for instance if the wire diameter of

the spring is larger then the axial forces will increase as more volume of material will

be compressed and as the axial forces increase the side forces should also increase as

they would be directly proportional. Another geometric effect can be when the spring

cross-section is of a slightly different shape then the way how the spring contacts the

loading plates can change and thus the side-forces. Similarly, local geometric varia-

tions due to manufacturing tolerances can result in change of contact behavior which

can affect the side-forces. Further, springs with a inclined/curved central axis can

also affect the side-forces as it can allow/prevent buckling of spring. Furthermore,

when the spring is loaded there can be self-contact between the coils which can affect

the axial and side force response.

Also, several configuration parameters which dictate how the spring in placed in

while loading can affect the side-force response. For instance, if the clearance between

the spring and retainer is tight then the spring may contact the retainer leading to

normal forces on the retainer which will contribute to the side forces. Another case

can be when the clearance is loose, then the spring has more room to move and rotate

during loading which can affect the side-forces as the contact status would change.

Furthermore, material properties of the spring can also affect the side-force re-

sponse. As the spring goes under a combination of cold-work and heat treatment

as discussed in Section 1.2, material crystalline structure of would change across the
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cross-section of the spring and can also be different for different batch of manufac-

tured springs. This can result in variation in Young’s Modulus (E) and Poisson ratio

(ν) of the spring which can affect the axial force and correspondingly side force re-

sponse. Also, compression springs undergo the process of presetting which induces

useful residual stresses which are opposite in direction to those induced in service,

thus increasing the axial strength of the spring which would also reflect in side-force

response. Furthermore, during deformation as the spring is loaded only localized

parts of the spring come into contact with the plate, the stresses at these locations

can be higher than the bulk which can cause localized plasticity effects which would

affect the axial and side force response.

To understand the force mechanism of the spring during its loading it will be

now useful to discuss about the free body diagram of a section of of spring. The

free body diagram for the barrel spring is shown in Fig 2.12. When the spring is

compressed, it will develop axial (along Y axis) forces (F ) to resist the compression.

These axial forces will be distributed throughout the length of the spring coils which

are in contact with either of the plates. Also, due to friction between the plate &

spring and normal force due to contact of spring with the retainer there will be side

forces (S) coming into the picture. Furthermore, due to the distribution of axial and

side forces there will be moments (mx,my,mz) in all principal directions over a single

element of spring which will cause bending and torsional effect on the element. The

magnitude of moments will depend on the distribution of the axial and side forces

which inherently depends on how the spring contacts the plates. Now, as the spring

deforms during its loading, more and more portion of spring will be coming into

contact with plates which will change the distribution of axial and side forces.

The free body diagram shown in Fig 2.12 is more general than what is discussed

in conventional spring design textbooks such as Shigley’s [50]. In conventional spring

design the axial loading is assumed to be a point load centered at the plate center

and side-forces are not even taken into consideration whereas in our case we are

assuming a distribution of axial and side force on the spring coil based on contact.



25

X
Z

Y

F

F

F

F

Sx
Sx

Sz

Sz

mx

my

mz

my

mx

mz

S

S

Figure 2.12. Free body diagram of an element (in inset) of spring.

Furthermore, conventional design gives us analytical solutions for simple geometry

of spring and will not be applicable for complex geometry as discussed in Section

2.2. Finally, conventional design is only valid for small deformations which will have

a linear response whereas in this problem we want to calculate the spring response

from free length to nearly solid height i.e. large deformations.

The side force have been previously studied with the help of a zero-moment force

line in several works such as [10–18], where the distribution of forces was simplified

by assuming a point load with fixed ends providing reaction moments. Whereas, in

this study no loading simplification is made and the distribution of forces is taken in

to consideration.

As this problem involves several challenges such as geometric variations, several

possible placement configurations, large deformations, evolving status of contact of

the spring with the plate and/or retainer which results in unpredictable non-linear

side-force response. Therefore, we will analyze the problem with the help of finite

element analysis with geometric non-linearity and contacts. The details the models

built for this problem will be discussed in the next chapter.



26

3. MODELING BARREL SPRINGS

In this chapter, details of two types of Finite Element Models generated to simulate

the problem are discussed. When generating any finite element model attention

should be given to the choice of material definitions, Boundary conditions and choice

of elements, these details should be accurately chosen such that they mimic the actual

process which in this case is the load testing procedure of the spring. Further, as we

have uncertainty over material property values the model needs to be calibrated to

the experimental results. We will discuss these details in context to the two models

and then will be presenting results obtained from these models for the five specimens.

3.1 High-fidelity Model using Continuum Elements and Contact

The key idea here is to model the exact physical problem without any approx-

imations. In this model we will be using continuum elements to model both the

plate & retainer and the spring, with contact formulations which makes the model

computationally expensive. With this model we will be able to visualize the contact

behavior and answer as to why the side-forces have a non-linear behavior but we

pay the price by having more number of elements and then contact formulations can

require very small time-steps and sometimes are difficult to converge, which increases

our computation and memory cost.

3.1.1 Model Assumptions

It should be noted that while defining the model, certain modeling assumptions

were made. The cross-section of the spring was assumed to be circular, however,

the spring is cold-formed using a circular wire whose cross-section can change during

the forming process. Also, the material properties of the spring were assumed to
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be constant, however, when the spring goes through the heat treatment process the

material crystalline structure can vary across the cross-section of the spring due to

different temperatures of the core and crux of the spring cross-sections, thus the they

can have different material properties. Further, the spring is pre-setted which will

result in residual stresses in the spring, these stresses are not modelled in our model.

3.1.2 Geometry & Type of Elements

In the discussion to follow we will be using the global coordinate system and

notation defined in Section 2.1. As discussed earlier, the geometry of the spring is

generated using the center-line coordinates of the spring. These points, {xxxi}Ni=1, are

used to create a wire feature in ABAQUS [47] to define the spring. After creation of

the wire, we sweep a circular cross-section along the wire to generate our solid spring.

Further, in this model we will create solid parts for the plate and retainer, these

features are created using extrusion in ABAQUS [47] . The model can be seen in Fig

3.1.

As discussed earlier, during the loading of the spring, it will experience bending

loads and therefore we need to choose an element which has good response in bending.

In this model we are using 8-Node Continuum 3D element with incompatible modes

(C3D8I) as they are better suited for bending applications. These elements are also

called as non-conforming elements and differ from a regular linear element as they

have additional quadratic modes of deformation corresponding to the exact pure

bending solution. For more information the reader can refer to the textbook by

Thomas Hughes [51] .These elements offer us quadratic behavior for bending without

increasing the the number of nodes, thus less expensive than a full quadratic element.

For the plate and retainer we are using 8-Node Continuum 3D linear element (C3D8).
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Figure 3.1. Continuum model with annotations indicating regions for
boundary conditions with fixed displacement for bottom plate and speci-
fied displacement for top plate. Boundary conditions for plate centers and
plate periphery points are colored in red.

3.1.3 Material Properties

In this model we have two different materials for loading plates and spring re-

spectively. As both the components do not experience any permanent deformation,

therefore it is safe to assume a linear material model. The loading plate is made of

Steel with Young’s Modulus of 207 GPa and a Poisson ratio of 0.3. As discussed

earlier, since we don’t have reliable estimate of the material properties for the spring

therefore we need to tune them with the help of experimental results.
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3.1.4 Boundary Conditions

The boundary conditions defined for this model will be with respect to the coor-

dinate system defined earlier in Section 2.1. We would also use the sequence of points

{xxxi}Ni=1 which defines the center line of the spring. The boundary conditions for the

model are defined as follows:

1. To simulate the testing procedure all dofs of the bottom center (shown in Fig

3.1) are fixed to zero.

uuu(xxxb) = 000 (3.1)

where, xxxb = (t+
d

2
)eee2 (3.2)

2. To simulate loading the top center (shown in Fig 3.1) point is given a fixed

displacement.

uuu(xxxt) = −αeee2 (3.3)

where, xxxt = (t+ d+H)eee2 (3.4)

The magnitude of the displacement is such that the spring height at max dis-

placement shall be 1.5 inches.

α = (H + d− 1.5 ∗ 25.4) (3.5)

3. To simulate fixed position of bottom plate, zero displacement is given for bottom

plate nodes (shown in Fig 3.1) in the Y direction and the points are free to move

in X and Z directions.

uuu(xxx) · eee2 = 0 ∀ xxx ∈ Sb (3.6)

where, Sb = {xxx|xxx = PPPxxxi + (t+
d

2
)eee2 ∀ i = {1, 2, .., N}} (3.7)
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4. To simulate movement of top plate, fixed displacement is given for top plate

nodes (shown in Fig 3.1) in the Y direction and the points are free to move in

the X and Z directions.

uuu(xxx) · eee2 = −α ∀ xxx ∈ St (3.8)

where, St = {xxx|xxx = PPPxxxi + (t+ d+H)eee2 ∀ i = {1, 2, .., N}} (3.9)

5. To resist rigid body rotation of the bottom plate about its center, xxxb, we restrict

the tangential dof of a node on the periphery, xxxl , of the bottom plate on its

bottom surface in the direction of Z axis.

uuu(xxxl) · eee3 = 0 (3.10)

where, xxxl = xxxb + (
dp
2

)eee3 (3.11)

Where xxxb is from Equation (3.2) and dp is the plate diameter

6. To resist rigid body rotation of the top plate about its center, xxxt, we restrict

the tangential dof of a node on the periphery, xxxu, of the top plate on its top

surface in the direction of Z axis.

uuu(xxxu) · eee3 = 0 (3.12)

where, xxxu = xxxt + (
dp
2

)eee3 (3.13)

Where xxxt is from Equation (3.4) and dp is the plate diameter

It should be noted that, in the above discussion for boundary conditions, whenever

any component of displacement, uuu, is not assigned any value then it is assumed to

have a free dof.

With such a setup the axial reaction on the bottom plate can be obtained by

summing up the reactions on all the nodes in Sb ∪xxxb ∪xxxl. For the side force we need

to sum up the reactions at the bottom center node, xxxb , and the periphery node, xxxl.

In addition to the above boundary conditions contact interaction using general

contact in ABAQUS [47] was defined for the model. The normal and tangential contact
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were defined using penalty formulation with strain free adjustments for initialization

of contact. As the spring is always in contact with the plate and can also have self-

contact during loading therefore the choice of general contact is appropriate here. For

the tangential contact, a fixed coefficient of friction of µ = 0.7 was selected.

An alternate choice of boundary conditions for the bottom & top plate can be

such that all the points are fixed for in-plane movement, defined as follows:

1. For bottom plate:

uuu(xxx) = 000 ∀ xxx ∈ Sb (3.14)

where,Sb = {xxx|xxx = PPPxxxi + (t+
d

2
)eee2 ∀ i = {1, 2, .., N}} (3.15)

2. For top plate:

uuu(xxx) = −α ∗ eee2 ∀ xxx ∈ St (3.16)

where, St = {xxx|xxx = PPPxxxi + (t+ d+H)eee2 ∀ i = {1, 2, .., N}} (3.17)

even with this choice of boundary conditions it was observed that the model behavior

for the force-response and contact behavior remained un-changed.

3.1.5 Analysis & Post-Processing

We are carrying out static simulation with geometric non-linearity. As there are

contacts involved in this model they make model convergence hard, in order to aid

the convergence we have chosen penalty formulations instead of Lagrange multiplier

formulation because penalty formulation induces numerical softness. Also, we are

using automatic stabilizing with volume proportional damping to aid in solving of

unstable problems . The description of automatic stabilization in ABAQUS [47] states

that viscous forces (FFF v) of the form:

FFF v = cMMM∗vvv (3.18)
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are added to the global equilibrium equations

PPP − III −FFF v = 000 (3.19)

Where MMM∗ is an artificial mass matrix calculated with unit density, c is damping

factor, vvv = ∆uuu/∆t is the vector of nodal velocities, ∆t is the increment of time, PPP is

the external load and III is the internal forces developed due to loading.

From the above definition of viscous forces, we can expect that the internal forces

(III) can be insignificant even when we have significant external forces (PPP ). This

can happen when the viscous forces are equal and opposite to external forces. This

means that we can expect to see insignificant reaction forces even when the spring

has already started compressing. Such an artifact will be evident during the initial

phase of loading of the spring, when the contacts are not fully established.

After the simulation is completed, we extract the values of displacement and reac-

tion forces at specific nodes for post-processing. The node locations of the quantities

extracted is detailed as follows:

• Side-force: Vector sum of reaction force at the bottom center node (xxxb) and

bottom plate periphery node (xxxl).

• Displacement: Value of the displacement at the top center node of the top plate

(xxxt).

• Axial-force: Sum of axial force (along Y direction) for all the nodes, xxx ∈ Sb ∪

xxxb ∪ xxxl , on the bottom face of the bottom plate.

3.1.6 Model Results

Prior to the discussion of the results of the model we need to prove the convergence

of our model, the model parameters chosen for proving the convergence are:

• Young’s Modulus of spring: E = 250 GPa

• friction coefficient: µ = 0.7
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After fixing the values of the above parameters, to prove convergence we need to

check if a particular metric converges with respect to the number of elements. As we

want our model to first correctly predict the axial response and then the sideforce

response, therefore we have chosen the maximum value of axial force to compute

relative error which then acts as the metric for convergence. As we don’t know the

true solution of the problem, we assume that the true solution will be at half the mesh

size of our finest mesh sizes. Then we extrapolate the maximum forces to this assumed

true solution mesh size and use the extrapolated value to compute the relative errors.

The results for the convergence study are shown in Fig 3.2.

From Fig 3.2(c) we can see that the relative error of maximum axial force converges

with a quadratic rate (Slope is 2). Furthermore, for mesh sizes smaller than and

equal to 6.886 have relative errors less than 10%. Therefore, in order to reduce

computational time for the simulation for the continuum model choosing mesh size

of 6.886 mm will be adequate as it has a relative error of 4% and is computationally

cheaper than mesh sizes 6.0778 and 5.327. Also, for the mesh size of 6.886 mm we

have a total number of 61, 315 nodes.

After estimating the mesh size for converged model, the next step is to calibrate

the converged model such that its response matches the experimental data. For

the continuum model there are only two parameters,Young’s Modulus of spring and

coefficient of friction, that can be tuned in order to calibrate the model. In order to

judge the quality of calibration, squared difference of axial force response of model

and experimental data was taken as the metric. To estimate the parameters, an

array of values were tried for each parameter separately and the value which had

the smallest squared difference was chosen as the tuned value of the parameter. The

array of values chosen for Young’s Modulus (E) were 200, 225, 250, 275, 300, 325,

350 GPa. It was observed that the Young’s Modulus was a sensitive parameter and a

change in its value would change the slope of the axial force response. The minimum

squared difference was observed for Young’s Modulus of 250 Gpa. The array of values

chosen for coefficient of friction (µ) were 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.5. It was observed
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Figure 3.2. Convergence of Solid Model (a) Axial response of the model
converging to the same sloped line as the mesh size decreases (b) Mea-
sured value of maximum axial force for different mesh sizes along with
the extrapolated point which is computed at half the edge length of finest
mesh (c) Relative error (using extrapolated point as the assumed true
solution) can be observed from the log-log plot to converge at a quadratic
rate with respect to the mesh size.

that the model response remained un-affected to change in µ, which implies that the

frictional force experienced by the spring is always less than the static friction i.e.

there is no slipping.
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The simulation results for the five test specimens along with their experimental

results for converging model with calibrated parameters are shown in Fig 3.3 and Fig

3.4.

From Fig 3.3 and Fig 3.4 we can see that the model is able to produce axial force

response which match the experimental results for all the specimens. This indicates

that the parameter value that we obtained is a reliable estimate. On the other hand,

the side-force response is stiffer than the experimental results but it still follows the

trend. Also, it should be noted that there is an initial nearly-zero force response state

for all of the specimens, this artifact is because we are using automatic stabilization

with volume proportional damping to aid in solving of initial contact detection by

adding viscous forces to the global equilibrium equations as discussed in Section 3.1.5.

This causes an initial nearly-zero response state as the viscous forces dominate over

the internal forces.

We can notice that the side force response for specimen 1 and specimen 5 are

significantly different as evident from Fig 3.4. A closer look at the results for specimen

1 and 5 in Fig 3.6-Fig 3.11 and Fig 3.13-Fig 3.18 respectively gives us insights into

the behavior of side forces. These plots are generated at specific locations along the

displacement history of the specimens as shown in Fig 3.5 and Fig 3.12 for specimen

1 and 5 respectively. Starting with specimen 1, from Fig 3.6(a) and Fig 3.6(b) we

can see the contact region on the bottom and top plate which are in contact with the

spring. It can be noticed from these plots that even though there is a wide range of

contact region the reaction forces on the plates remain concentrated at certain specific

regions only as shown in Fig 3.6(c) and Fig 3.6(d). The friction forces contributing

to the side forces will therefore can be safely assumed to higher at the regions where

we have higher reaction forces. Now, as the spring gets compressed the regions of

contact and regions of reaction forces also change which is shown in Fig 3.6-Fig 3.11.

This means that the frictional forces on the plate will change and hence the side-force

will also change.
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Figure 3.3. Axial force for Continuum Model.
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Figure 3.4. Side force for Continuum Model.
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Another thing to note is that the concentrated regions of reaction forces are at-

most 2 or 3 for the majority of the loading and only towards the end more regions

emerge. This means that throughout the majority of the loading of the spring, it is

supported by 2 or 3 points which corroborates with findings of Shimoseki et al. [20].

Also the 2 or 3 regions of concentrated forces mainly correspond to the first and

last full turn of the spring, we will use this finding to our advantage in defining a

computationally cheaper model in Section 3.2. Further, a similar behavior is evident

for specimen 5 as evident in Fig 3.13-Fig 3.18.

On comparing the behavior of specimen 1 and specimen 5, we can observe from

Fig 3.6(c) and Fig 3.13(c) that the regions of concentrated forces for specimen 1 are

located diametrically apart whereas for specimen 5 they are angled at approximately

150 degrees (< 180 degrees). The regions of contact also vary for the two specimens

as shown in Fig 3.6(a) and Fig 3.13(a). This can be explained from minor differences

in the profile of the two springs. Any point on the spring which is normally (i.e. along

Y axis) closer to the plate will come into contact earlier and thus dictate the regions

of contact and regions of concentrated forces. When we zoom into the height profile

for the specimens as shown in Fig 2.2 we can get two plots for the two ends of the

spring as shown in Fig 3.19. It can be seen from Fig 3.19(a) that the lowest point for

all springs is at the starting of the spring, and the next lowest point for specimen 1

and specimen 5 is at approximately 2.5 and 3 radians. This means that the regions

of contact for these two specimens should show initial concentrated regions at these

particular angular locations which is in-fact true as shown in Fig 3.6 and Fig 3.13.

This indicates that the side forces are sensitive to minor changes in profile of the

spring.
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Figure 3.5. Specimen 1: Displacement locations selected for solid model
plots.
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(a) Contact region on bottom plate (b) Contact region on top plate

(c) Reaction force for bottom plate (d) Reaction force for top plate

(e) Deformation shape of spring

Figure 3.6. Specimen 1: Solid model at 32 mm displacement.
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(a) Contact region on bottom plate (b) Contact region on top plate

(c) Reaction force for bottom plate (d) Reaction force for top plate

(e) Deformation shape of spring

Figure 3.7. Specimen 1: Solid model at 58 mm displacement.
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(a) Contact region on bottom plate (b) Contact region on top plate

(c) Reaction force for bottom plate (d) Reaction force for top plate

(e) Deformation shape of spring

Figure 3.8. Specimen 1: Solid model at 84 mm displacement.
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(a) Contact region on bottom plate (b) Contact region on top plate

(c) Reaction force for bottom plate (d) Reaction force for top plate

(e) Deformation shape of spring

Figure 3.9. Specimen 1: Solid model at 124 mm displacement.
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(a) Contact region on bottom plate (b) Contact region on top plate

(c) Reaction force for bottom plate (d) Reaction force for top plate

(e) Deformation shape of spring

Figure 3.10. Specimen 1: Solid model at 145 mm displacement.
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(a) Contact region on bottom plate (b) Contact region on top plate

(c) Reaction force for bottom plate (d) Reaction force for top plate

(e) Deformation shape of spring

Figure 3.11. Specimen 1: Solid model at 173 mm displacement.
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Figure 3.12. Specimen 5: Displacement locations selected for solid model
plots.
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(a) Contact region on bottom plate (b) Contact region on top plate

(c) Reaction force for bottom plate (d) Reaction force for top plate

(e) Deformation shape of spring

Figure 3.13. Specimen 5: Solid model at 24 mm displacement.
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(a) Contact region on bottom plate (b) Contact region on top plate

(c) Reaction force for bottom plate (d) Reaction force for top plate

(e) Deformation shape of spring

Figure 3.14. Specimen 5: Solid model at 60 mm displacement.
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(a) Contact region on bottom plate (b) Contact region on top plate

(c) Reaction force for bottom plate (d) Reaction force for top plate

(e) Deformation shape of spring

Figure 3.15. Specimen 5: Solid model at 118 mm displacement.
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(a) Contact region on bottom plate (b) Contact region on top plate

(c) Reaction force for bottom plate (d) Reaction force for top plate

(e) Deformation shape of spring

Figure 3.16. Specimen 5: Solid model at 142 mm displacement.
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(a) Contact region on bottom plate (b) Contact region on top plate

(c) Reaction force for bottom plate (d) Reaction force for top plate

(e) Deformation shape of spring

Figure 3.17. Specimen 5: Solid model at 152 mm displacement.
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(a) Contact region on bottom plate (b) Contact region on top plate

(c) Reaction force for bottom plate (d) Reaction force for top plate

(e) Deformation shape of spring

Figure 3.18. Specimen 5: Solid model at 172 mm displacement.
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Figure 3.19. Zoomed-in plots for height profiles of all specimens at the
two ends of the springs.
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3.2 Reduced-order Model using Beam Elements and Connectors

The key idea here is to obtain a simplified model which will have smaller degree of

freedom compared to a continuum model and thus would be computationally cheaper.

In this model we have taken hints from the work presented by Shimoseki et al. in [20]

by using beam elements with springs with the two exceptions. The first difference

in this approach is that both axial & side forces are being simulated using springs

whereas in [20] only axial force was simulated. The Second difference is that non-

linear springs which are designed to mimic the contacts are used in this model.

Figure 3.20. Beam connector model with rendered beam profile (0.2x)
and annotations labeling the connectors, spring-dashpot elements & the
barrel spring. Vector diagram (inset) depicting method for estimating
orientation vector (ppp) for beam element along ttt between nodes i and j (in
red). ppp is estimated using vvv (along global Y) as ppp = ttt× vvv.
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3.2.1 Model Assumptions

It should be noted that while defining the model, certain modeling assumptions

were made. The assumptions made for the continuum model as discussed in Section

3.1.1 are equally applicable for this model. Additionally, self-contact between the

beams was not modeled. Furthermore, as brought out by the results of continuum

model in Section 3.1.6, only the first and last full turn of the spring is assumed to

contribute to the side-forces.

3.2.2 Geometry & Type of Elements

In the discussion to follow we will be using the global coordinates system and

notations defined in Section 2.1. As discussed earlier, the geometry of the spring is

generated using the center-line coordinates of the spring. These points, {xxxi}Ni=1, are

used to create a wire feature in ABAQUS [47] to define the spring. As for the plate

and the retainer, we don’t create any parts for them separately and rather try to

define the geometric constraints offered by them, i.e. normal and tangential contact,

by using connector elements in ABAQUS [47] .

In this model we are using 3D quadratic Timoshenko beam elements (B32) to

model the spring with up-to 500 elements to represent the whole length of the spring.

As these are 3D beam elements so we need to specify their orientation vector to fully

define them. It is important to note that since geometry of the spring is defined by the

profile curves which cannot be expressed analytically, we do not have an analytical

expression for the orientation vector for the beam element.

To find the orientation vector for the beam element connecting the ith and jth

nodes, we make use of the prior information that none of the beam elements will

have a tangential direction parallel to the spring’s central axis (global Y axis for our

model). With this prior we can set the global Y direction as our reference vector vvv,

we can then find the tangential vector,ttt, by using the two coordinates of the nodes

of a beam element, thus ttt = (xxxj − xxxi). Then by taking a cross product of these two
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vectors ppp = ttt × vvv, the vector ppp will be perpendicular to the tangential vector ttt and

can be chosen as a candidate for the orientation of the beam element.This is also

explained pictorially in Fig 3.20.

The beam elements are connected to non-linear spring elements as shown in Fig

3.20 with the help of connectors from ABAQUS [47] . The connector chosen for our

model was a slot connector as defined in abaqus user manual [47] with non-linear

behavior. In this model two types of connectors namely radial and axial connectors

are defined. As the name suggests, these connectors are used to simulate the radial

and axial force transfer from the spring to the plate. These elements are required to

have a property such that they can mimic the contact of the spring with the plates

and retainer. This is done by defining a non-linear elastic property for the connector

as shown in figure 3.21(b)&(d).

In order to define the connectors we need to specify its end points. For the

axial connector the end points will be point on the wire, xxxi , and its corresponding

projection on XZ plane, at both Y coordinates corresponding to the top surface of

the bottom plate (Y = t) and at bottom surface of the top plate (Y = H + d + t)

as shown in Fig 3.21(a). Therefore the top and bottom endpoints of axial spring is

given by:

bottom end points: xxx = PPPxxxi + (t+
d

2
)eee2 ∀i = {1, 2, .., N} (3.20)

top end points: xxx = PPPxxxi + (t+ d+H)eee2 ∀i = {1, 2, .., N} (3.21)

Similarly for defining the radial connector we have to specify two points which

are the center of the bottom (xxxb) or top (xxxt) retainer and the spring point ( xxxi ) as

shown in Fig 3.21(c). The bottom and top retainer centers are given as follows:

bottom center: xxxb = (t+
d

2
)eee2 (3.22)

top center: xxxt = (t+ d+H)eee2 (3.23)

It is important to add that we have chosen to place the connectors such that all

the beam nodes will have two axial connectors for the bottom and top plates and
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depending on the angular position, θi , of the point it will either have or will not have

a radial connector. As it was observed from the model results discussed in Section

3.1.6 that the reaction forces on the plates were predominantly present only at certain

zones which were mainly in the first and last full turn of the spring, therefore we have

placed the radial connectors only for the points (xxxi) which are on the first and last

full turn of the spring. Also, please note that ABAQUS [47] calls the end points as

reference points we will use this nomenclature interchangeably.

For axial connectors we want them to offer stiffness to the point, xxxi, only when the

deflection of the point is more than hi, this would mean that when the displacement

of the point crosses this threshold then the point shall come into contact with the

plate and thereafter should experience very high stiffness (Ka) so as to not penetrate

into the plate. Also, the spring should have zero resistance before crossing such a

threshold as it is allowed to move freely in that space. The combination of such a

property can be seen in the plot shown for axial connector in Fig 3.21(b). The next

obvious question would be that such a constraint should only be placed on the Y

component of the displacement, this is achieved by setting boundary conditions for

the other end of the connector which is on the plate such that it is free to move in X

and Z directions.

For the radial connectors we want them to simulate both the normal contact

offered when a spring touches the retainer and also the tangential friction offered by

the plate to the spring. This is achieved by specifying very high stiffness (Kc) for the

connector in the compressive direction, when it would touch the retainer, and some

stiffness (Kt) in the tensile direction as shown in Fig 3.21(d). Therefore, it becomes

important to pick the correct stiffness values for these parameters.

In addition to the above elements, we have defined two spring-dashpot elements,

hereon called as end springs, in ABAQUS [47] to eliminate rigid body rotation of barrel

spring along the Y axis. We have used two springs (as shown in Fig 3.20) attached

to the end points (xxx1 & xxxN) of the barrel spring such that the spring-dashpot

element gets connected tangentially. To define the geometry of this element we need
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(a) axial connector
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(c) radial connector
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Figure 3.21. Stiffness definition for connectors. (a) Axial connector
(spring in red) connecting a node on spring at height h from plate to a
its projection on top surface of bottom plate and similarly we will have
another connection to the bottom surface to top plate (b) Stiffness for axial
connectors becomes non-zero only when the node displaces more than its
un-deformed height (h) (c) Radial connector (spring in red) connecting a
node on spring to center of bottom plate (d) Stiffness (slope) for radial
connector is higher in compression to simulate contact with retainer and
is lower in tension to simulate friction.

to specify the end points of the element, which would be the end point of the spring
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and a translated point in the tangential direction at the same height as that of the

end point. The translated points for the two ends are given by:

translated point at starting face: xxxs = xxx1 + a
(xxx1 − xxx2)
‖xxx1 − xxx2‖2

(3.24)

translated point at end face: xxxe = xxxN + a
(xxxN − xxxN−1)
‖xxxN − xxxN−1‖2

(3.25)

Where a can be a user defined constant. We have chosen a = 20 mm for our model.

It should be noted that the value of a does not affect the model response in any way.

Furthermore, we would want that the end springs should have very low stiffness so

that they do not affect our solution and just restrict the rigid body motion. We have

chosen to define its stiffness as K = 1 N/mm, with such a choice the magnitude of

spring force encountered by the end spring was on average 1% of the magnitude of

side-force and therefore the end springs will not affect the solution significantly.

3.2.3 Material Properties

We need to define the sectional properties for the beam elements which will need

the radius of the spring cross-section to calculate the moment of inertia, also the

model needs the information of the Young’s Modulus of the spring material and

its Poisson ratio. As discussed earlier, we don’t have a reliable information for the

material properties especially the Young’s modulus. As for now we will assume it

to be 270 GPa. We will need to tune this parameter with the help of experimental

results.

3.2.4 Boundary Conditions

The boundary conditions defined for the model will be with respect to the coordi-

nate system defined earlier in Section 2.1. We would also use the sequence of points

{xxxi}Ni=1 which define the center line of the spring. The boundary conditions for the

model are defined as follows:
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X

Y

Z

Figure 3.22. Reference points annotations indicating the location of top
& bottom center and top & bottom plate reference points.

1. To simulate the testing procedure all dofs of the bottom center (shown in Fig

3.22) are fixed to zero.

uuu(xxxb) = 000 (3.26)

Where xxxb is from Equation (3.22)

2. To simulate loading the top center (shown in Fig 3.22) point is given a fixed

displacement.

uuu(xxxt) = −αeee2 (3.27)

Where xxxt is from Equation (3.23). The magnitude of the displacement is such

that the spring height at max displacement shall be 1.5 inches.

α = (H + d− 1.5 ∗ 25.4) (3.28)
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3. To simulate fixed position of bottom plate, zero displacement is given for bottom

plate reference points (shown in Fig 3.22) in the Y direction and the points are

free to move in X and Z directions.

uuu(xxx) · eee2 = 0 ∀ xxx ∈ Sb (3.29)

where, Sb = {xxx|xxx = PPPxxxi + (t+
d

2
)eee2 ∀ i = {1, 2, .., N}} (3.30)

4. To simulate movement of top plate, fixed displacement is given for top plate

reference points (shown in Fig 3.22) in the Y direction and the points are free

to move in the X and Z directions.

uuu(xxx) · eee2 = −α ∀ xxx ∈ St (3.31)

where, St = {xxx|xxx = PPPxxxi + (t+ d+H)eee2 ∀ i = {1, 2, .., N}} (3.32)

5. To resist rigid body rotation of the spring about the Y axis, the starting point

of the spring-dashpot element (shown in Fig 3.20) is given zero displacement in

the Z direction and the point is free to move in X and Y directions.

uuu(xxxs) · eee1 = 0 (3.33)

Where xxxs is defined in Equation (3.24)

6. To resist rigid body rotation of the spring about the Y axis, the ending point

of the spring-dashpot element (shown in Fig 3.20) is given a fixed displacement

of α in negative Y direction with zero displacement in X and Z directions.

uuu(xxxe) = −αeee2 (3.34)

Where xxxe is defined in Equation (3.25) and α is from Equation (3.28).

It should be noted that, in the above discussion for boundary conditions, whenever

any component of displacement, uuu, is not assigned any value then it is assumed to

have a free dof.
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3.2.5 Analysis & Post-Processing

We are carrying out static simulations with geometric non-linearity. As there

are non-linear connectors involved in this model and we have large deformations

which makes convergence of the model hard. In order to aid the convergence we

are using automatic stabilization with volume proportional damping in ABAQUS [47]

which is described in detail in Section 3.1.5. Due to damping we would again expect

to experience the artifact of insignificant reaction force response even when the spring

is being compressed for the initial phase of loading.

After the simulation is finished we extract the value of displacement and reaction

forces at all of the reference points. It is important to discuss at what node locations/

reference point locations these quantities are extracted, the details are as follows:

• Sideforce: Reaction force coming at the bottom center reference point (xxxb).

• Displacement: Value of displacement at the top center reference point (xxxt).

• Axialforce: Sum of axialforce (along Y direction) for all the bottom reference

points (x ∈ Sb)

3.2.6 Model Results

Prior to discussion of results of the model, we need to prove the convergence of

our model, for this task we have fixed the value of parameters as:

• Young’s Modulus of spring material: E = 225 GPa

• Stiffness of axial connectors: Ka = 106 N/mm

• Stiffness of radial connectors in compression: Kc = 104 N/mm

• Stiffness of radial connectors in tension: Kt = 100 N/mm

After fixing the values for the above parameters, to prove convergence we need to check

if a particular metric converges with respect to mesh size. As, we want our model to
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first correctly predict the axial response and then the side-force response, therefore

we have chosen the maximum value of axial force as our metric for convergence. We

have carried out simulations for decreasing mesh sizes, the results are shown in Fig

3.23.
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Figure 3.23. Convergence of Beam Model (a) Axial response of the
model converging to the same sloped line as the mesh size decreases (b)
Measured value of maximum axial force for different mesh sizes along with
the extrapolated point which is computed at half the edge length of finest
mesh (c) Relative error (using extrapolated point as the assumed true
solution) can be observed from the log-log plot to converge at a quadratic
rate with respect to the mesh size.
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From Fig 3.23(c), we can see that the relative error of maximum axial force con-

verges with a quadratic rate. Furthermore, for mesh sizes smaller than 14.97 mm the

relative errors are less than 1%. Therefore, in order to reduce the computational time

for the simulation for the beam model choosing mesh size of 9.48mm will be adequate

as it has a relative error of 0.5% and is not computationally expensive as it has only

200 nodes.

As discussed earlier, we need to estimate a value for several parameters for this

model. The parameters being E, Ka,Kc and Kt. We have made use of the exper-

imental data to estimate these values in such a way so that our simulations are as

close to the experimental data as possible. We have tuned these parameters for one

spring specimen (specimen 3) and then evaluate the performance of the parameters

with respect to other specimens. When carrying out analysis for different parame-

ter value it was observed that E was the most influential parameter for axial-force

and side-force response. To find the best E we did a discrete sweep over a range of

candidate values and picked the one which had the highest correspondence with the

experimental data.

After estimating the mesh size for converged model, the next step is to calibrate

the converged model such that its response matches the experimental data. For the

beam connector model there are four parameters, E, Ka,Kc and Kt, that can be

tuned in order to calibrate the model. In order to judge the quality of calibration,

squared difference of axial force response of the model and experimental data was

taken as the metric. To estimate the parameters an array of values were tried for

each parameter and the value which had the smallest squared difference was chosen

as the tuned value of the parameter. The array of values chosen for E were 200, 225,

250, 275, 300, 325 GPa. It was observed that E was the most sensitive parameter and

a change in its value would change the slope of axial force response. The minimum

squared difference was observed for a value of E = 225 Gpa. The array of values

chosen for Ka were 104, 105, 106 N/mm. It was observed that the model response

remained un-affected to changes in Ka, however, for smaller values of Ka there was
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larger penetration of spring into the plates which is in-feasible. Therefore Ka = 106

N/mm was chosen as the tuned value of Ka. The rest of the parameters, Kc & Kt

were chosen heuristically as Kc = 104N/mm & Kt = 102 N/mm so as to match the

side-force response of the model with the experimental data.

The simulation results for the five test specimens along with their experimental

results for converging model with calibrated parameters are shown in Fig 3.24 and

Fig 3.25.

From Fig 3.24 and Fig 3.25 we can see that the model is able to produce both

axial and side forces which match closely with the experimental results for all the

specimens. This result also indicates that the parameter values that we obtained

from one particular specimen is able to produce good result for other specimens and

thus we can be fairly confident about them. Also, it should be noted that there is an

initial nearly-zero force response state for some of the specimens, this artifact is again

because we are using automatic stabilization with volume proportional damping to

aid in solving of initial simulated contact detection by adding viscous forces to the

global equilibrium equations as discussed in Section 3.2.5. This causes an initial

nearly-zero response state as the viscous forces dominate over the internal forces.

Although the model performs well as shown in figures 3.24 and 3.25, it does

not give a complete interpretation of the actual contact mechanism. Since we are

simulating the contact with the help of connectors, we can only extract reaction forces

at nodes and deformation shape of the barrel spring and do not have any information

about the actual contact. A closer look at the results for the specimen 1 and 5 in Fig

3.27-Fig 3.32 and Fig 3.34-Fig 3.39 respectively gives us insights into the behavior of

the beam connector model. These plots are generated at specific location along the

displacement history of the specimens as shown in Fig 3.26 and Fig 3.33.

Similar to the results of the continuum model, as discussed in Section 3.1.6, the

reaction forces for the beam connector model are also concentrated at certain regions

as evident from reaction forces plots in Fig 3.27-Fig 3.32 for specimen 1 and Fig

3.34-Fig 3.39 for specimen 5. Also, throughout the majority of loading there are
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Figure 3.24. Axial force for Beam-Connector Model.
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Figure 3.25. Side force for Beam-Connector Model.
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at-most 2-3 regions of maximum reaction forces at the two ends of the barrel spring

and only towards the end of the loading more regions emerge. Further, the 2 or 3

regions of concentrated forces mainly correspond to the first and last full turn of the

spring which indicates that our choice of placing the radial connectors over the first

and last full turn will be able to capture the side-force behavior of the barrel spring

adequately.

The location of these concentrated reaction forces for specimen 1 and 5 are similar

to as discussed in Section 3.1.6. As evident from Fig 3.27(a),Fig 3.28(a) the reaction

forces for specimen 1 are concentrated diametrically apart at the first turn of the

spring, whereas for specimen 5 they are at an angular position of nearly 150 degrees

(< 180 degrees) as shown in Fig 3.34(a), Fig 3.35(a). This can be explained using the

height profiles of the two specimens using Fig 3.19 in a similar manner as was done

in Section 3.1.6.
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Figure 3.26. Specimen 1: Displacement locations selected for beam con-
nector model plots.
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(a) Reaction forces (b) Von-Mises stress

Figure 3.27. Specimen 1: Beam model at 16 mm displacement.

(a) Reaction forces (b) Von-Mises stress

Figure 3.28. Specimen 1: Beam model at 21 mm displacement.
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(a) Reaction forces (b) Von-Mises stress

Figure 3.29. Specimen 1: Beam model at 74 mm displacement.

(a) Reaction forces (b) Von-Mises stress

Figure 3.30. Specimen 1: Beam model at 108 mm displacement.
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(a) Reaction forces (b) Von-Mises stress

Figure 3.31. Specimen 1: Beam model at 144 mm displacement.

(a) Reaction forces (b) Von-Mises stress

Figure 3.32. Specimen 1: Beam model at 172 mm displacement.
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Figure 3.33. Specimen 5: Displacement locations selected for beam con-
nector model plots.
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(a) Reaction forces (b) Von-Mises stress

Figure 3.34. Specimen 5: Beam model at 7 mm displacement.

(a) Reaction forces (b) Von-Mises stress

Figure 3.35. Specimen 5: Beam model at 57 mm displacement.
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(a) Reaction forces (b) Von-Mises stress

Figure 3.36. Specimen 5: Beam model at 120 mm displacement.

(a) Reaction forces (b) Von-Mises stress

Figure 3.37. Specimen 5: Beam model at 132 mm displacement.
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(a) Reaction forces (b) Von-Mises stress

Figure 3.38. Specimen 5: Beam model at 150 mm displacement.

(a) Reaction forces (b) Von-Mises stress

Figure 3.39. Specimen 5: Beam model at 172 mm displacement.
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4. INFLUENCE OF MODEL PARAMETERS ON SIDE-FORCES

Now that we have built two finite element models for simulating our problem and

have tested the performance of the models against the experimental results, the next

step is to analyze the behavior of the side-forces with respect to changes in certain

parameters. As we observed from previous sections that the side-forces were different

for different specimens, these specimens only differ in their profiles which points us to

investigate the effect of variations in profile on the side-forces. Furthermore, we also

observed that for a single spring the side-force response also differed when the spring

was placed in a slightly different orientation/placement which points us to investigate

the effect of rigid body placement variations on the side-forces.

In this chapter we will formulate the two types of variations and carry out several

simulations to analyze the effect of these variations on the side-forces. As we will be

carrying out large number of simulations we have chosen to use the beam-connector

model due to its lower computational cost.

4.1 Effect of Variations in Spring Configuration

As discussed earlier, during experimental testing of springs we noticed that the

side-force response of springs changes when the spring in placed in a different orienta-

tion (slightly moved or rotated manner) whereas the axial response remains identical.

These changes in orientation are rigid body motions (translations or rotations) which

we call as placement variation. Our aim here is to model the spring with these varia-

tions and study the effects of the variations on the side-force response of springs. We

will be identifying those variations which affect the response and compare sensitivity

of each variation.
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Placement variations can be of only six types corresponding to the six rigid body

motions, i.e. translations along X ,Y & Z and rotations along X, Y & Z. As we

suspect that the side-force response depends is a consequence of contact of spring

and its changing status, with a change in rotational placement of the spring it can

form new contact pairs which can affect the side-force response.

While modeling the placement variations, we need to keep in mind the setting

of our testing setup. We do not want our variations to be an in-feasible amount of

translation/rotation which will result in an impossible testing setup. Further, these

variations will be only possible because of the clearances present in our setup for

example the spring can only translate up-to a maximum distance of the minimum

clearance present between the spring and retainer. Therefore, for every type of varia-

tion we need to find the available room of movement or the feasible bounds. Also, we

need to generalize this framework so as to be applicable for all specimens possible.

In this discussion we will use the coordinate system and notation as discussed in

Section 2.1. The only physical constant that we have for our setup is the diameter

of the retainer and the wire diameter, them being D = 2.5” and d = 13.5mm. For

our problem we have modeled four different kinds of variations, lateral translation

along X & Z and rotations along X & Z with center of rotation as the center point of

the vertical axis. We have left out translation along Z as the barrel spring is always

constrained to touch the bottom plate. Also, rotation along Y will not produce

new contact configuration and was verified to have no affect at all on the model

response. Further, note that the barrel spring center line is formed using a cubic

spline which is defined by a sequence of N 3D points {xxxi}Ni=1 such that the sequence

of points is arranged with increasing angular position values (θi). We will be using

this information in our framework.
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4.1.1 Feasible Bounds

When trying to figure the feasible bounds we need to find the maximum amount

of variation such that the barrel spring volume does not intersect with the retainer

volume. Also, note that if the spring volume intersects with the plate volume then

we can always translate the barrel spring and top plate in a manner such that they

are just touching each other. This problem can be formulated as an optimization

problem as follows:

p∗ = argmax
p

p (4.1)

subject to: zzzi(p) = A(p)xxxi 6∈ C ∀ i = {1, 2, ...., N} (4.2)

Where p is the parameter that we want to vary (amount of translation of rotation)

and A(p) is an operator which operates on xxxi to gives us the transformed points zzzi(p).

For placement variations the operator A(p) is a linear operator, in case of translations

its just an additive operation and for rotation its the rotation matrix. Also C is

the cylindrical volume (refer Fig 4.1) spanned by a unbounded cylinder centered at

retainer center with a radius of (D+d)/2 and infinite height. If any transformed point

zzzi(p) resides in the volume C then we will have an in-feasible setup as the volumes of

the spring and retainer will be intersecting.

Figure 4.1. Cylindrical volume constraint.
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Further, if we closely examine the constraint we have only a single constraint

defining the volume C which is the radius of the cylinder. Therefore we can simplify

our original constraint, which makes the new optimization problem as:

p∗ = argmax
p

p (4.3)

subject to: ri(p) = ‖PPPzzzi(p)‖2 ≥
(D + d)

2
∀ i = {1, 2, ...., N} (4.4)

or

rmin(p) = min
i=1,2,..,N

(ri(p)) ≥
(D + d)

2
(4.5)

Where PPP is the projection tensor defined in Equation (2.4). Now that we have for-

mulated our optimization problem, the next step is to formulate our operator A(p).

4.1.2 Variation Operator

As discussed earlier our variation operator will be a linear operator for rigid body

motions. In this section we will explicitly write out those operators for our four types

of variations.

Translation Operator

For translation, the operator will be an additive operator and will shift the corre-

sponding coordinate of the spring. The two operators for the two types of translations

are:

1. Translation along X:

zzzi(δ1) = A(δ1)xxxi = xxxi ± δ1 ∗ eee1 (4.6)

2. Translation along Z:

zzzi(δ3) = A(δ3)xxxi = xxxi ± δ3 ∗ eee3 (4.7)

For translation operator, in the optimization problem we will be solving for a

single scalar quantity δ ≥ 0 as our parameter.
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Rotation Operator

For rotation, the operator will be a multiplicative (i.e linear) operator for rigid

body rotation. The operator will be nothing but rotation matrices. Let’s write them

explicitly:

1. Rotation along X:

zzzi(φ1) = A(φ1)xxxi =


1 0 0

0 cos(±φ1) −sin(±φ1)

0 sin(±φ1) cos(±φ1)

xxxi (4.8)

2. Rotation along Z:

zzzi(φ3) = A(φ3)xxxi =


cos(±φ3) −sin(±φ3) 0

sin(±φ3) cos(±φ3) 0

0 0 1

xxxi (4.9)

For rotation operator, in the optimization problem we will be solving for a single

scalar quantity φ ≥ 0 as our parameter.

4.1.3 Solving Procedure

Now that we have completely formulated our optimization problem, we need to

identify a solving procedure. In the optimization problem we have a linear objective

function and a non-linear constraint, one possible way to solve is to find the roots of

the constraint functions and find the maximum parameter from those roots. However,

we cannot find a gradient for our constraint as the min(..) function is not differen-

tiable. We can use numerical gradients or use gradient-less methods but they will

be more expensive. Also, we are not interested in finding the exact optimum value

up-to full precision, we are just interested in finding the closest possible value so that

we can see the effect of variation on the side-force. Therefore, we solve the problem

using enumeration by iterating over a sequence of parameter values starting from 0
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with a user specified step length (∆) as our choice of update and for each iterate we

evaluate the constraint and check if we satisfy the constraint. Algorithm 1 concisely

describes this process.

Algorithm 1: Feasible bound.

Result: p∗

p∗ = 0;

Constraint=1;

∆=0.1 ; // user parameter

while Constraint==1 do

zzzi(p) = A(p)xxxi;

ri(p) = ‖PPPzzzi(p)‖2 ; // ∀ i = {1, 2, ...., N}

rmin = min(ri(p));

Constraint = (rmin(p) ≥ (D+d)
2

) ; // logical 1 or 0

p∗ = p∗ + ∆

end

We can use the above algorithm to find the lower and upper bounds for trans-

lational and rotational variations by just changing the signs in our operators. A

negative sign will give us the lower bound and a positive sign will give us the upper

bound. Furthermore, it is to be noted that the bounds obtained by such a procedure

will be dependent on the geometry of spring and the initial position of points xxxi.

Therefore based on the sequence of rigid body motions that we choose to carry out,

we will have different bounds for parameters.

4.1.4 Design of Experiments

After evaluating the variation bounds we can now design a set of experiments (i.e.

computer simulations) for placement variation. When we say experiments, it means

that we will be carrying out a sequence of simulations for different combination of
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variations by jumping between lower and upper bounds for each parameter. These

experiments can be chosen randomly or in an ordered fashion, for instance using Full

Factorial Design or Box-Behnken Design or Central Composite Design. To study the

effect of different placement variations we have carried out two sets of experiments.

In the first set of experiments we will be identifying those parameters which affect

the side-force the most and in the second set we will be honing onto the critical

parameters and observe their effects for a wider range. The details of each set of

experiments is as follows:

Experiment 1

In this experiment we are allowing variation in four parameters, i.e. two for

translation (δ1 & δ3) and two for rotation (φ1 & φ3). We are solving for upper and

lower bounds for translational variations however for rotational variations we are

fixing the lower bound as zero and only finding the upper bounds. The sequence of

rigid body motions chosen for this experiment is first a rotation along X axis then

rotation along Z axis then translation along X axis and finally translation along Z

axis. The number of combination and the amount of variation to be carried out is

chosen using a full factorial design with three factors (-1,0,1) i.e. we will be choosing

amongst three possible values, lower & upper bounds and mid point of the bound,

for each parameter. This means that we will carry out a total of 34 = 81 number

of simulations. The results of the experiments are discussed in Section 4.1.5. Also,

note that we have carried out this experiment for spring specimen 5 only as we have

experimental data for different placements available for this specimen to compare

with.

Experiment 2

After analyzing the results from experiment 1, we observed two of the parameters

corresponding to translational variations (δ1 & δ3) did not affect the side forces and
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therefore were discarded for this experiment. Now we have honed to only two critical

parameters (φ1 & φ3) and would observe their effect on a wider range of values. In

this experiment we are now solving for both the lower and upper bounds for rotational

parameters. The number of combination and the amount of variation to be carried

out is again chosen using a full factorial design with three levels (-1,0,1) i.e. we will

be choosing amongst three possible values, lower & upper bounds and mid point of

the bound, for each parameter. This means that we will carry out a total of 32 = 9

simulations. The results of the experiments are discussed in Section 4.1.5. We have

carried out this experiment for all spring specimens.

4.1.5 Results

In this section we will be presenting the results for placement variation for the

two sets of experiments and will draw inferences from the results. Also,the order of

magnitude of bounds for the results presented here are within ±5(mm) for translation

and ±2 (degrees) for rotation.

Experiment 1

For this experiment we have both translational and rotational variations.

Translation Variation The plots for spread of axial-force and side-force response

for translation variation are placed in Fig 4.2, Fig 4.3 & Fig 4.4.

From Fig 4.2, Fig 4.3 & Fig 4.4 for translation variation we can observe that both

the axial force and side force are unaffected by the translation variations. This was

expected as a pure translation variation will only translate the contact regions and

therefore will not affect either of the forces. Thus, for the next experiment we can

discard these parameters.
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Figure 4.2. spread for only translation in X with zero rotations for spec-
imen 5.



86

0 20 40 60 80 100 120 140 160 180 200

displacement(mm)

0

1200

2400

3600

4800

6000

7200

8400

9600

10800

12000

A
x
ia

l 
F

o
rc

e
 (

N
)

simulation

experiment

(a) axial force

0 20 40 60 80 100 120 140 160 180 200

displacement(mm)

0

80

160

240

320

400

480

560

640

720

800

M
a
g
n
it
u
d
e
 o

f 
S

id
e
 F

o
rc

e
 (

N
)

simulation

experiment

(b) side force

Figure 4.3. spread for only translation in Z with zero rotations for spec-
imen 5.
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Figure 4.4. spread for both translation in X & Z with zero rotations for
specimen 5.
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Rotation Variation The plots for spread of axial-force and side-force response for

translation variation are placed in Fig 4.5, Fig 4.6 & Fig 4.7.

From Fig 4.5, Fig 4.6 & Fig 4.7 for rotation variation we can observe that the axial

force is unaffected by these variations, however, the side-forces do get affected due to

variations in rotation. This was expected as a rotation variation will alter the contact

regions and therefore will affect the side-forces. Thus, for the next experiment we can

focus on these parameters. Also, as our bounds for rotation depends on the geometry

of the spring thus we can expect different type of spread for different specimens.

We can also observe that the spread of side-forces from our simulations matches

closely with the spread of experimental data. Therefore with these results we can

also comment on the possible rotation value of the experimental data.
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Figure 4.5. spread for only rotation in X with zero translations for spec-
imen 5 with annotation indicating X-angle in centi-radians.
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Figure 4.6. spread for only rotation in Z with zero translations for spec-
imen 5 with annotation indicating Z-angle in centi-radians.
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Figure 4.7. spread for both rotation in X & Z with zero translations
for specimen 5 with annotation indicating angle pair X,Z respectively in
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Experiment 2

For this experiment we have only rotational variations. From plots in Fig 4.8,

Fig 4.9, Fig 4.10, Fig 4.11 & Fig 4.12 for the five specimens we can observe that the

side-forces are quite sensitive to rotational variations. Also, we can observe that the

spread of side- forces changes for different specimens, this is because the spread of

variation depends on the amount of rotation which is dictated by geometry of the

spring.

When we have a closer look at the results for specimen we can identify certain

patterns, for specimen 5 we can observe from Fig 4.5,Fig 4.6,Fig 4.7 and Fig 4.8

that as the rotational angle increases for both the directions X and Z, the side forces

decrease. Also, a rotation in negative direction increases the side forces. Whereas,

for specimen 1 the trend is different as shown in Fig 4.9 which indicates that as the

rotation along X increases the side forces increase and as rotation along Z increases the

side forces decrease. This inconsistent pattern indicates that side-forces are not purely

dependent on the placement variation but rather are also affected by the geometry of

the barrel spring. Therefore in the next section we will investigate the effect of profile

variation on the side-forces.
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Figure 4.9. spread for both rotation in X & Z with zero translations
for specimen 1 with annotation indicating angle pair X, Z respectively in
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Figure 4.10. spread for both rotation in X & Z with zero translations
for specimen 2 with annotation indicating angle pair X,Z respectively in
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for specimen 4 with annotation indicating angle pair X,Z respectively in
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4.2 Effect of Variations in Spring Geometry

As discussed earlier the springs are produced with a manufacturing tolerance

which results in subtle changes in profiles which is also evident for our specimens

as shown in Fig 2.2. Up until now we have observed that the side-force response

of springs can change with respect to placement variation as discussed in Section

4.1.5. Further, these results vary across different springs as the bounds for placement

variation were geometry dependent. Also we have noticed that the spring response

varies even when all specimens are placed in a similar placement setting as shown in

Section 3.2.6. These observations lead us to investigate effects of variation in profiles

on the side-force response.

While modeling the profile variations, we need to keep in mind that our variations

are within the space of profiles observed for the five specimens. As we don’t have

the exact manufacturing tolerances for the whole profile we will be choosing the

magnitude of variations based on profiles of the five specimens. The idea here is to

first identify an ‘average spring’ with the help of the five specimens and then carry

out variations on this average spring with the magnitude of variation calculated from

difference of ‘average spring‘ and rest of the five springs.

Also, as our profile is a continuous function there can be infinite number of vari-

ations that we can carry out, to make the problem manageable we would need to

define the profile with the help of countable number of points and carry out vari-

ations for small number of groups/regions of these points. We also need to ensure

that the variations across these groups/regions of points have smooth transition at

the boundary of the two groups/regions because while manufacturing of the spring it

is highly unlikely that we would observe a sudden kink of variation in profile, rather

variations across the length of the spring will be smoother.

Then once we have a manageable framework for generating any spring from dif-

ferent types of variations, we need to check that the final profile generated for all

variations is a valid profile, i.e. is not a self-intersecting volume.
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4.2.1 Average Spring Profile

When we say average spring it means that the profile of such a spring will be

computed by taking average of the profiles of five specimens. As discussed earlier, we

have about 3000 points for each specimen which define its profile. Also, these profile

measurements might have different maximum angle values across all specimens as the

starting position of the measurement probe might be different for different specimens

due to human error. Therefore to calculate the average profile, we first find out

the minimum out of the maximum angle (min(θmax)) for the five springs. Then we

generate a list of equally spaced 3000 points for the average spring ranging from zero

to min(θmax). Then for each point we find the value of diameter and height for the

five specimens using linear interpolation and the take their average. Thus with this

process we obtain an ‘average spring’ profile.

4.2.2 Approximating the Profile

After calculating an ‘average spring’ profile we down-sample the 3000 3D points to

200 3D points. As we saw in Section 3.2.6 we need only a minimum of 200 3D points

to have a converging beam connector model. We obtain these 200 points for equally

spaced angles using linear interpolation. We can then use these a total of 400 points,

ie 200 data points for diameter and 200 data points for height values respectively, to

define our approximate profile.

We also investigated the option of down-sampling the points to a mere 13 number

of data points for each diameter, height and angle by using cubic spline to define

the profile from these points. When we have a closer look at the profiles for the five

specimens in Fig 2.2(a) we can observe that only the peaks and valleys in the plots are

moving for different profiles. Therefore, we used these points as our control points to

define a spring profile. Also, choosing these points as our control points lent us a direct

control over the possible shape of profile when carrying out the profile variations. We

chose two default control points at the two ends of the spring and then eleven control
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points corresponding to the peaks and valleys. These control points would dictate the

angular position for corresponding points in Fig 2.2(b). Therefore, we have all three

coordinates defined for our thirteen control points. We can easily obtain control points

for each specimen using the experimental measurements of profiles. One example of

computed control points (in red circles) for specimen 5 is shown in Fig A.11.

When we compared the loading results of the the two methods of approximating

the profile, we observed that the force response for the spline approximation as shown

in Fig A.14 was nowhere closer to the response of the five specimens. Whereas, the

first method with 200 3-D points had a response which was within the space of

response of the five specimens. This was because the profile generated using the

cubic splines was not closer to the actual profile than the first method and thus

the response was significantly different. Therefore, going forward we chose the first

method for approximating the profile.

4.2.3 Self-Intersection Checks

After approximating the profile we can generate any number of 3D points along

the central axis of the spring. When generating the points, {xxxi}Ni=1, we will ensure that

the points are in increasing order of equally spaced angles, we will use this information

to our advantage when checking for self-intersection. If there is a self-intersection in

the spring then that means that the euclidean distance between any two points is less

than the wire diameter, d. Also, we need to ensure that these two points are not in

fact adjacent/neighboring center-line points and rather are on different turns. We can

check this just by finding pair-wise distance of any ith point with every other point

and store only those indices which have a distance smaller than d. We can then find

the indices of “allowable points” which are neighbors of this ith point such they are

within a ball of radius d around the ith point. After finding the indices of allowable

points we then find the difference of two sets of indices and check whether it is empty

or not. If it is empty then we don’t have any self intersections.
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To find the indices of the “allowable points” we first start with finding the angle

(θi) of the ith point and also calculate the projected radius in XZ plane of the point.

We can then find the δ angle, which is the change in azimuth angle for the two

diametric ends of the ball. Therefore we get two values of angles (θi ± δ) which

correspond to the two ends of the ball. Now, as the points are ordered in such a way

that they are at equal angles, we can find the indices of the points which are closest

to the calculated angles and then the set indices of allowable points is just an ordered

list of numbers starting from the index corresponding to θi − δ and ending at θi + δ.

Algorithm 2 concisely describes this process.

4.2.4 Realistic Bounds

Now that we have devised a way of approximating the profile, the next step is to

formulate the bounds of variation for the points. There are two ways to approach it,

one way is to simply pose a constant value for the bound throughout the length of the

spring another way is to calculate the bounds of variation at each point using the data

of profiles for the five specimens this way we stay within the space of manufactured

springs. Since we are interested in estimating the behavior of manufactured springs

with respect to feasible variations in profile, we will be taking the second route.

To calculate the bounds for each of the 400 points, ie 200 diameter and 200 height

points, we take the absolute difference of the average spring profile with the five

specimen profiles and then take the maximum difference as our value for the bound.

This ways we will have a bound envelope which varies across the length of the spring

and can be considered as a bound which is a consequence of manufacturing process.

It should be noted that the bounds obtained from this method can have kinks in it

and may not be always be smooth. To make these bounds smooth, we have used a

convolution filter of width 7 and with weights as per a Gaussian distribution with a

variance of σ = 2, with these parameters we were able to smooth out the local kinks

in the bounds without over-smoothing the whole curve. Also, since we are estimating
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Algorithm 2: Self Intersection check

Result: notinterfering

Function Check 4 self intersection(X,Y,Z,max angle,d):

notinterfering = 1;

Num pts = length(X);

for i=1:Num pts do

i dist = [X;Y;Z]-[X(i);Y(i);Z(i)];

i 3D distance =
√

i dist(1,:).2 + i dist(2, :).2 + i dist(3, :).2;

all idx = find(i 3D distance < d);

allowed idx = allowable idx(i,X(i),Z(i),max angle,Num pts,d);

actual idx = setdiff(all idx,allowed idx);

if actual idx is not empty then

notinterfering=0;

break;

end

end

return notinterfering;

Function allowable idx(i,x,z,max angle,Num pts,d):

p = (max angle/Num pts) ; // precision

r =
√
x2 + z2 ; // projected radius

theta = (i-1)*max angle/(Num pts-1) ; // angle for the ith point

delta = arcsin(d/r);

theta min = theta -detla;

theta max = theta +detla;

i min = max(floor(theta min/p),1);

i max = min(ceil(theta max/p),Num pts);

allowed idx = i min:1:i max;

return allowed idx;
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these bounds only from a population size of five springs, we can multiply the bounds

by a factor of 2 or 4 to observe the effect of variations and still possibly remain in

the space of manufactured springs. The final bounds after smoothing along with the

average profile can been seen in Fig 4.13.

When carrying out variations for the 200 3-D points we can have a total of 400

number of random variables corresponding to the diameter and height points. How-

ever, when we look at the profiles of the five specimens in Fig 2.2 we can spot certain

trends which have manufacturing reasoning associated to them. We will use these

trends to limit our number of random variables. We can easily reduce the number

of random variables by identifying localized regions of variations when we plot the

absolute difference of the average spring profile with the calculated bound. The plots

are included in Fig A.8, we can define regions by simply placing a threshold to be

acceptable as a region. For our problem we have identified the regions as shown in

Fig 4.14.
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Figure 4.13. Bounds for diameter and Height profiles for a factor of 2.



105

0 5 10 15 20 25 30

angle (radian)

90

100

110

120

130

140

150

d
ia

m
e
te

r 
(m

m
)

(a) Diameter regions

0 5 10 15 20 25 30

angle (radian)

-50

0

50

100

150

200

250

d
ia

m
e
te

r 
(m

m
)

(b) Height regions

Figure 4.14. Regions for random variables (separated by black lines).
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4.2.5 Smooth Transition of Random Variables

Now that we have defined the bounds and regions of variation for carrying out

a design of experiments study, we need to ensure that the values of the random

variables across the regions transition in a smooth way. This is because without

smoothing each random variable acts essentially as a step response on its region and

the transition of the random variable value across the regions can lead to abrupt

jumps which is unrealistic for an actual spring being manufactured. When a spring

is being manufactured, it is highly unlikely that the variation at one point jumps

suddenly, this is because the springs are manufactured using coiler and forming tools

which are operated using controllers which have a continuous response. Therefore we

need to smooth out the random variable values for all the 400 points which define the

spring profile.

When choosing a scheme for smoothing we should also ensure that the random

variable value for a region also get contributions from adjacent regions which would

mean that the variations are essentially dependent variations. We can introduce

these ideas by weighing the random variable value of all regions using weight func-

tions which span across several regions and have a higher value for the region of

interest than the adjacent regions. Also, the weighing functions need to be at-least

C0 continuous, however a higher degree of continuity would correspond accurately

with the manufacturing process. Thus we have chosen a piece-wise cubic polynomial

weighting function spanning 2 or 3 regions.

Piece-wise Cubic Weighing Functions

We have leveraged the idea of mesh-less shape functions to construct our weight

functions which helps us achieves C1 continuity. We have defined three different types

of weight functions, two for ends and one for the middle regions. The weight functions

are constructed in such a way that they peak over the central region and contribute

some small amount to adjacent regions. The weight functions are shown in Fig 4.15.
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The end weighing functions, W1 and W3, are defined over two regions,[ξ0, ξ2] and

[ξ1, ξ3] respectively, whereas the middle weight function, W2 , is defined over three

regions, [ξ0, ξ3]. As the weight functions are composed of piece-wise cubic functions,

to explicitly find the functions we have defined the function value and its derivative

at the nodes for each type of weighting function. These definitions are as follows:

Figure 4.15. Weight functions.

• For W1:

ξmid =
(ξ0 + ξ1)

2
β =

h1
(ξmid − ξ2)

(4.10)

W1(ξ0) = 0 W1(ξmid) = h1 (4.11)

W1(ξ1) = h2 W1(ξ2) = 0 (4.12)

dW1

dξ
(ξ0) = 0

dW1

dξ
(ξmid) = 0 (4.13)

dW1

dξ
(ξ1) = β

dW1

dξ
(ξ2) = 0 (4.14)
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• For W2:

ξmid =
(ξ1 + ξ2)

2
β =

h1
(ξmid − ξ0)

γ =
h1

(ξmid − ξ3)
(4.15)

W2(ξ0) = 0 W2(ξ1) = h2 W2(ξmid) = h1 (4.16)

W2(ξ2) = h2 W2(ξ3) = 0 (4.17)

dW2

dξ
(ξ0) = 0

dW2

dξ
(ξ1) = β

dW2

dξ
(ξmid) = 0 (4.18)

dW2

dξ
(ξ2) = γ

dW2

dξ
(ξ3) = 0 (4.19)

• For W3:

ξmid =
(ξ2 + ξ3)

2
β =

h1
(ξmid − ξ1)

(4.20)

W3(ξ1) = 0 W3(ξ2) = h2 (4.21)

W3(ξmid) = h1 W3(ξ3) = 0 (4.22)

dW3

dξ
(ξ1) = 0

dW3

dξ
(ξ2) = β (4.23)

dW3

dξ
(ξmid) = 0

dW3

dξ
(ξ3) = 0 (4.24)

Using the above information we can construct all weighing functions over any

arbitrary domain , [ξ0, ξ1, ..., ξn], such that W1 and Wn are defined over the starting

and ending regions, [ξ0, ξ2] and [ξn−2, ξn] respectively, and all other weight functions,

Wm, will be defined over three regions, [ξm−2, ξm+1] for all m = (2, 3, ..., n− 1).

The plots for computed weight function defined for diameter and height regions

are shown in Fig 4.16 with h2 = 0.25 and h1 = 1− h2 = 0.75.
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Figure 4.16. Weight functions over the computed regions.
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4.2.6 Design of Experiments

We will be following a two-step strategy for our experiments similar to how we

approached design of experiments for placement variation. In the first experiment we

aim to identify the critical profile parameters which affect the side-force the most.

After identifying the critical parameters we hone onto them and carry out more

number of experiments to draw more informed inferences. The details of each set of

experiments are as follows:

Experiment 1

In this experiment we would consider variations over all regions as defined in

Section 4.2.4. Moreover, it should be noted that the variation on certain region is

very small in comparison to other regions therefore to reduce the number of random

variables we can assume no variations on the region which have tight bounds. Using

this simplification we can reduce our number of random variables to a total of 7 vari-

ables (q1, q2, ..., q7), 5 for diameter variations (q1, q2, ..., q5) and 2 for height variations

(q6, q7). The choice of random variables for regions is shown in Fig A.9

Further, with 7 random variables, our aim for this experiment is to categorically

identify which type of variation affects the side force the most. Therefore we are

changing just one parameter to its lower and upper bound and see its effect on the

side-force response. Thus we have a total of 7 ∗ 2 + 1 = 15 simulations. The results

of the experiment are discussed in Section 4.2.7.

Experiment 2

After analyzing the results from experiment 1, we observed that side-forces were

most sensitive to variations in made in the height vs angle plots. Therefore for the

second experiment we focus only on the height variations by drawing more samples

to draw more informed inferences. Further, we now increase the number of random
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variables for height variations by assigning separate random variable (q1, q2, ..., q5) for

each of the five regions as shown in Fig A.10. For this experiment we are carrying out

a full factorial design for 5 parameters with two levels (1:on,0:off) such that the levels

indicate whether the parameter is contributing or not and then for each combination

we draw 5 random samples each. Therefore, we have a total of 31 ∗ 5 + 1 = 156

simulations. The results of the experiment are discussed in section 4.2.7

Note: For both the experiments carried out above, none of the parameter com-

bination ever produce a non-valid spring i.e. none of them had self-intersections.

4.2.7 Results

In this section we will be presenting the results for profile variation of the two

sets of experiments and will draw qualitative inferences from the results . The results

presented here are for a profile variation with the bounds of variation as twice the

bounds computed from the five specimens. Further, we have also carried experiments

for four times the computed bounds and the figures are placed in Section A.

Experiment 1

In this experiment we are mainly concerned in identifying the critical parameter

out of diameter and height variations. The results of the simulations carried out using

a one factor at a time for for the seven random variables can be seen in Fig 4.18 and

Fig 4.20. We can observe from these plots that the side-forces are more responsive

towards changes in height variations that diameter variations. It should also be noted

that the profiles for diameter variations in Fig 4.17 are visibly more different than

the height variations in Fig 4.19 but it does not affect the side-force response. Thus,

we have identified that height variations are the critical parameters.

We observed a similar finding when we carried out design of experiments based

variation for spline-based approximations of the profiles the spread of forces is shown



112

in Fig A.14. The results there indicated that height variations were indeed the one

which are the critical parameters.

Experiment 2

After identifying that the height variations were the most critical parameter in the

previous section, we will now hone onto the height variations only and draw a larger

set of samples for this experiment. We have carried out a total of 156 simulations

for different profiles as shown in Fig 4.21 for this experiment. The plots for axial

and side-forces for this experiment can be seen at Fig 4.22. These results are for a

twice the maximum variations, we have also carried out simulations for four times

the maximum variations which can be seen at Fig A.2 and Fig A.3.

From the plots in Fig 4.22 and Fig A.3 we can draw statistics for the side-force

response. We can calculate the mean and variance of the side-forces and plot them

to observe the average behavior of side-forces. These plots are placed in Fig 4.23

and Fig A.4. We can observe that as the bounds of variations are increased we get

a wider spread of side-forces, however, we cannot draw any additional inferences on

the data with only visual inspection. We would like to investigate that out of the

five parameters for the height variations is the most sensitive to the side-force. We

will be using regularized linear regression for this process which will be discussed in

Section 4.2.8.
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(b) Height profiles

Figure 4.17. Plots of profiles for diameter variations only for experiment
1.
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Figure 4.18. Plots of forces for diameter variations only for experiment
1.
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Figure 4.19. Plots of profiles for height variations only for experiment 1.
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Figure 4.20. Plots of forces for height variations only for experiment 1.
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(b) Height profiles

Figure 4.21. Profiles generated for height variations only for experiment
2 for 2x the max variations.
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Figure 4.22. Plot of forces for height variations only for experiment 2 for
2x the max variations.
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Figure 4.23. Plot of averaged side force for height variations only for
experiment 2 for 2x the max variations.
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4.2.8 Analyzing Results

In order to study the data as shown in Fig 4.22 and Fig A.3, we will use the idea of

L1-regularized linear regression as discussed in Tibshirani et al. [52]. We propose to

pose the problem as a linear regression problem. The data generated for experiment

2 of profile variations which has variations for five parameters (height regions), we

assume the side-force response, at any given displacement, linearly depends on the

parameters. The first step would be to verify this assumption, with the help of lin-

ear regression we can calculate the averaged residual for the best-fit hyper-plane and

compare this value with the variance in the side-force if it is smaller than the variance

then our assumption will hold. After verifying this assumption, using standard linear

regression we can find the best fitting hyper-plane and the coefficients of the param-

eters would represent how sensitive the side-force is to that particular parameter.

Furthermore, we want to carry out a sensitivity analysis over the parameters there-

fore we can assume that the response of the parameters to be sparse by introducing

L1-norm regularizing term in our loss function for linear regression we will develop

this idea in detail over the next sections. We can carry out this process for different

values of displacement throughout the loading history and identify repeating pattern

of most critical parameter. Thus with this analysis we will be able to comment on

the sensitivity of each parameter.

Linear Regression

As we have carried out a total of M = 156 number of simulations, at any given

displacement value, α, we can get the value of side-force response for all the simula-

tions. These force values will be our response for the linear regression problem. We

can stack them together to make a vector yyy out of them. Furthermore, assuming that

the response yyy is a linear function of the parameters qqq = [q1, q2, q3, q4, q5] (which are
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the random variables in the original problem) , where the numbering convention is

same as shown in Fig A.10. The linear relation between yyy and qqq will be:

yj = wwwTQQQj ∀ j = {1, 2, ...,M} (4.25)

Where QQQj = [1, q1, q2, q3, q4, q5]
T
j and www = [w0, w1, w2, w3, w4, w5]

T . We can then write

this relation for all the M samples as:

yyy = Awww (4.26)

A =



QQQT
1

QQQT
2

..

..

QQQT
M


(4.27)

To find the best-fitting hyper-plane using linear regression we define the residual

function(J(www)) as:

J(www) =
1

M
‖Awww − yyy‖22 (4.28)

We then solve the following optimization problem to find the best-fitting hyper plane.

www∗ = argmin
www

J(www) (4.29)

We can solve the above problem by taking the gradient of the objective function. The

solution is as follows:

∇wwwJ(www) = 000

⇒ ∇www∗
1

M
(Awww − yyy)T (Awww − yyy) = 000

∇www(wwwTATAwww −wwwTATyyy − yyyTAwww + yyyTyyy) = 000

2(ATA)www − 2(AT )yyy = 000

www∗ = (ATA)−1(AT )yyy (4.30)
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Therefore, using the above expression for www∗ we can find the best-fitting hyper plane.

The optimum value of the residual will be:

J(www∗) =
1

M
‖Awww∗ − yyy‖22 (4.31)

This residual is essentially the average of the sum of normal distance of each sample

from the hyper plane. We can assume this as the average prediction error per sample

for the linear regression. If this error is smaller than the variance of yyy then our linear

model will hold. We verify this assumption for our data and the comparison is shown

in Fig 4.24 and Fig A.5 for twice and four times the max variations respectively. It

is evident from the plot that the average error is always below the variance of the

samples and therefore our assumption of a linear model will hold.
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Figure 4.24. average error vs variance for 2x max variations.

We can now carry out a sensitivity analysis using L1-regularization of linear re-

gression problem. We will discuss this in the next section
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L1-Regularized Linear Regression

As discussed earlier, to introduce sparsity of factors in the response we need to

add a L1-norm regularization term to our residual function. The L1 norm is added as

geometrically it promotes sparsity in solution. This method is also called as LASSO

(Least Absolute Shrinkage and Selection Operator). The new optimization problem

with the regularization term then becomes:

www∗ = argmin
www

1

M
‖Awww − yyy‖22 + λ‖www‖1 (4.32)

where λ is a user specified scalar. The above objective function is still convex but is

non-differentiable. The L1-regularized linear regression problem can be solved using

ISTA algorithm [53], FISTA algorithm [54], ADMM algorithm [55] or other solvers.

We have used CVX, a package for specifying and solving convex programs [56], [57],

to solve this problem.

We can solve the above problem for several values of λ ranging from very high to

zero. When we use a very high value for λ we essentially would be just minimizing

the regularization term only and thus would get a solution as www∗λ=∞ = 000 and when

λ = 0 then the L1-regularized problem becomes a standard linear regression problem.

We can think of λ as a ‘control knob’ and as we move from a very high value to

zero we would see that the weights (w∗k) corresponding to the factors (qk) would start

becoming non-zero. Further, due to sparsity introduced by the L1 norm we would see

that some factors would start earlier than others. The factor which starts the first

would be the one which is most sensitive to the side-force. Thus we would be able to

distinguish between the sensitivity of all the factors.

The results for the L1-regularized linear regression for twice and four times the

maximum variations are placed at Fig 4.25 and Fig A.6 respectively.
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Figure 4.25. Regression results for 2x max variations.

The figures Fig 4.25 and Fig A.6 show the plots for the computed weights vs λ

using the above process at different values of displacements. We can count the top and

second factor which becomes non-zero to identify the two most critical parameters.

The histograms in Fig 4.26 and Fig A.7 show the counts of the five parameters for

the top, second and top 2 factors over all the computed displacements. We can see

that w1 is always the top factor, w5 is the second factor and both w1 & w5 are always

the top two factors which means that the side-forces are sensitive to the random
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variables q1 and q5. These random variables correspond to the two ends of the spring.

Therefore, side-forces are most sensitive to the height variation in the two ends of the

spring and more strongly to the bottom end.

(a) Top factor (b) Second factor (c) Top two factors

Figure 4.26. Histogram for Top, second and top two factors for 2x max
variations.

Further, from Fig 4.25 and Fig A.6 we can observe that during the initial phase

of displacement primarily w1 and w5 are the top factors however towards the later

phase of displacement, w4 also becomes important. This indicates that at larger dis-

placement values even the height variations corresponding to the q4 random variable

region become important. We observed a similar behavior when using spline-based

approximation for profiles.

Therefore, with the help of the sensitivity analysis we can now conclude that for

barrel springs the side forces are very sensitive to variations in height of the coils of

the spring specially for the first and last full turn. This is because the side-forces

are generated as a consequence of frictional forces between the plate and the barrel

springs, and these forces are concentrated at specific regions as brought out by discus-

sion in Section 3.1.6 and Section 3.2.6. The location of the regions of concentration

are primarily dictated by the height profile of the barrel spring as any point which is

closer to the plate will come into contact earlier and therefore will dictate the loca-

tion of the region of concentration. Further, as the height of any point on the barrel

spring with respect the loading plates can be altered due to rigid body rotations of
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the spring, therefore they cause changes in side-forces. Moreover, the non-linearity

of side-forces in barrel spring which is evident in the later part of the loading is a

consequence of changing status of the regions of concentration such a behavior will

not be evident in cylindrical spring as evident from previous studies carried out for

side-forces in the existing literature. This is because for cylindrical springs only the

first and last coil will be in contact and none of the other coils will ever come into

contact and thus the regions of concentration will not change and correspondingly

the side-forces will show a linear behavior.
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5. SUMMARY AND CONCLUSIONS

In this study the cause of side-forces along with its behavior with respect to changes

in geometry and placement of barrel springs was investigated. In order to study the

behavior of side-forces, two different finite element models, continuum model and

beam & connector model , were built as discussed in Chapter 3. These models were

calibrated using experimental data for geometry of the spring and load-testing data

as discussed in Section 2.2 and Section 2.3 respectively. Results from the continuum

model as discussed in Section 3.1.6 revealed that the side-forces manifest as frictional

forces acting over localized regions where the ends of the spring make contact with

the loading plates. These contact regions evolve as the spring is progressively loaded

leading to the highly nonlinear and unpredictable behavior. The beam & connector

model which was built as a computationally economical alternative to the high-fidelity

continuum model also exhibited similar behavior as discussed in Section 3.2.6. To gain

more insight into the behavior of side forces, their sensitivity to variations in geometric

profile and placement of the spring were studied using the beam & connector model

because of its lower computational cost.

Placement variations were generated by imparting small rigid body motions onto

the spring within the clearances of the housing. To estimate the amount of permissible

variation, an optimization problem was formulated in Section 4.1.1 and its solving

procedure was discussed in Section 4.1.3. A DOE-based framework was developed

to investigate the effect of all six types of rigid body motions on the side-forces.

Results of placement variations revealed that only the rotational rigid body motions

affected side-forces appreciably. However, the trend of how side-forces were affected

as a function of the rigid body rotation was different for different specimens leading

to the conclusion that placement parameters are not independent of the parameters

describing the geometric profile of the spring.
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To ascertain the effect of geometric variations of spring profile on the side-forces,

a reference spring profile was first generated by computing the mean of the diameter

and height profiles of the five specimens. Then the DOE-based framework was uti-

lized again to carry out variations in the diameter and height about the profile of this

reference spring. The spring geometry was partitioned into several different regions

along the length of the spring coil where the five specimens were observed to have

maximum variations from the reference spring. Diameter and height variations were

introduced about the reference spring geometry by specifying a different magnitude

of geometric variation for each of the profile regions. Piece-wise cubic spline weight-

ing function were used to smoothen the transition of profile variations across two

adjacent regions with different magnitudes of variation as discussed in Section 4.2.4.

From the first set of experiments on profile variation, it was found that variations

in the diameter profile had very little effect on the side-forces. However, even small

variations in the height profile of the spring affected side-force response significantly.

Further, to identify the regions of the spring where variations in the height pro-

file affected side-forces the most, sensitivity analysis was carried out using an L1-

regularized linear regression as discussed in Section 4.2.8. The regularized linear

regression problem was solved for several displacements along the loading history of

the spring with changing regularization parameter as discussed in Section 4.2.8. Re-

sults from this analysis indicated that side-forces are most sensitive to variations in

height profile of the first and last turns at the two ends of the barrel spring.

The parametric study confirmed that side-forces are highly sensitive to rigid body

rotations in the placement of the spring and to variations in the height profile of

the spring. It is worth noting that the turns at the ends of the spring make first

contact with the loading plates and even small variations in height profile of the

spring can change the way this contact evolves upon further loading. Similarly, rigid

body rotations also affect the height of different points along the length of the coils of

the spring and consequently have a strong bearing on the contact mechanism which

is responsible for side-forces.
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Therefore, when a barrel spring is designed, the side-forces can be reduced by

altering the height profile of the spring or by placing the spring in a rotated orientation

but finding the optimal height profile and placement of the spring for minimum side-

forces will require additional work which can be carried out in a future study. Further,

to reduce the variations in side forces of different specimens, tighter design tolerances

on the geometry of the barrel springs may be chosen for the height profile of the

springs especially at the two ends of the spring coils while relatively loose tolerances

may be allowed on the diameter profile. Manufacturing processes of springs may also

be adapted to ensure these tight tolerances on the height profile of the spring.

5.1 Future Directions

Results of this study may be further refined by expanding the beam-connector

model to account for self-contact within the coils of the spring. Modeling of self-

contact can be achieved with the help of non-linear springs which provide large re-

sistance when the deformed distance between adjacent coils of the spring is less than

the wire diameter (d).

The model may also be refined to address the assumptions underlying the current

model. Throughout the modeling process, the cross-section of spring is assumed to be

circular. However, due to the forming process, the cross-section is bound to become

slightly elliptical or irregular. The effect of shape of the cross-section on the side-

forces can be investigated. As exhibited by previous studies by Chaudhury et al. [9]

and Gzal et al. [41], the shape of the cross-section affects the axial force response

which will also change the side-forces.

Also, when calibrating the models with the experiments it was observed that the

Young’s modulus was the most critical parameter which needed calibration. However,

the models built here assumed a constant Young’s modulus which may be a weak

assumption as the material properties across cross-section of the spring will change

due to different temperatures of the core versus the crux of the spring during the heat
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treatment process. Therefore, the continuum model may be modified to model varying

Young’s modulus across the cross-section and then the experimental measurements

can be used to calibrate such a model. As this model will have changing stiffness

across the cross-section of the spring, the deformation shape of the spring can be

different from that of a perfectly homogeneous model. The change in deformation

shape can alter the contact regions and thus change the side forces.

Furthermore, this study has been primarily focused on identifying critical pa-

rameters that affect the side-forces. However, after identifying and controlling these

parameters to have minimum variation in side-forces, one can identify ways to reduce

the side-forces by writing out an optimization problem to minimize the side-forces by

changing the geometry & placement of the spring taking into account the permissible

variations in these parameters.



131

REFERENCES

[1] Spring Manufacturers Institute. Handbook of Spring Design. Spring Manufac-
turers Institute, 2002.

[2] Air brakes-what you need to know. Accessed: 2019-07-08.

[3] Han-Chung Wang and Will J Worley. Load-deflection behavior of conical spiral
compression springs. Journal of Engineering for Industry, 84(3):329–337, 1962.

[4] MH Wu and WY Hsu. Modelling the static and dynamic behavior of a conical
spring by considering the coil close and damping effects. Journal of Sound and
Vibration, 214(1):17–28, 1998.

[5] Emmanuel Rodriguez, Manuel Paredes, and Marc Sartor. Analytical behavior
law for a constant pitch conical compression spring. Journal of Mechanical De-
sign, 128(6):1352–1356, 2006.

[6] Vebil Yıldırım. Exact determination of the global tip deflection of both close-
coiled and open-coiled cylindrical helical compression springs having arbitrary
doubly-symmetric cross-sections. International Journal of Mechanical Sciences,
115:280–298, 2016.

[7] Sanjukta Chakraborty, Koushik Roy, and Samit Ray-Chaudhuri. Design of re-
centering spring for flat sliding base isolation system: Theory and a numerical
study. Engineering Structures, 126:66–77, 2016.

[8] Umit N Aribas, Merve Ermis, Nihal Eratli, and Mehmet H Omurtag. The static
and dynamic analyses of warping included composite exact conical helix by mixed
fem. Composites Part B: Engineering, 160:285–297, 2019.

[9] Arkadeep Narayan Chaudhury and Debasis Datta. Analysis of prismatic springs
of non-circular coil shape and non-prismatic springs of circular coil shape by
analytical and finite element methods. Journal of Computational Design and
Engineering, 4(3):178–191, 2017.

[10] Thomas Wünsche, Karl-Heinz Muhr, Karl Biecker, and Leo Schnaubelt. Side
load springs as a solution to minimize adverse side loads acting on the mcpherson
strut. Technical report, SAE Technical Paper, 1994.

[11] Satoshi Suzuki, Syuji Kamiya, Toshiyuki Imaizumi, and Yukitomo Sanada. Ap-
proaches to minimizing side force of helical coil springs for riding comfort. Tech-
nical report, SAE Technical Paper, 1996.

[12] JP Hastey, Jacques Baudelet, Eric Gerard, Colin Jones, and Christelle Viel.
Optimization on mac pherson suspensions with a spring. Technical report, SAE
Technical Paper, 1997.



132

[13] Takashi Gotoh and Toshiyuki Imaizumi. Optimization of force action line with
new spring design on the macpherson strut suspension for riding comfort. Tech-
nical report, SAE Technical Paper, 2000.

[14] Toshio Hamano, Takahiro Nakamura, Hideto Enomoto, Naoshi Sato, Shinichi
Nishizawa, and Maiko Ikeda. Development of l-shape coil spring to reduce a fric-
tion on the mcpherson strut suspension system. Technical report, SAE Technical
Paper, 2001.

[15] Shinichi Nishizawa, Tadashi Sakai, Maiko Ikeda, and Winda Ruiz. Spring force
line based damper friction control for coil-over-shock applications. Technical
report, SAE Technical Paper, 2006.

[16] Jiang Liu, DJ Zhuang, Fan Yu, and LM Lou. Optimized design for a macpherson
strut suspension with side load springs. International Journal of Automotive
Technology, 9(1):29–35, 2008.

[17] YI Ryu, DO Kang, SJ Heo, HJ Yim, and JI Jeon. Development of analytical
process to reduce side load in strut-type suspension. Journal of mechanical
science and technology, 24(1):351–356, 2010.

[18] Jooho Choi, Dawn An, and Junho Won. Bayesian approach for structural relia-
bility analysis and optimization using the kriging dimension reduction method.
Journal of Mechanical Design, 132(5):051003, 2010.

[19] Shinichi Nishizawa, Winda Ruiz, Tadashi Sakai, and Maiko Ikeda. Parametric
study of the spring force line effect on vehicle self steer for macpherson strut
suspension system. Technical report, SAE Technical Paper, 2006.

[20] Masayoshi Shimoseki, Toshio Kuwabara, Toshio Hamano, and Toshiyuki
Imaizumi. FEM for Springs. Springer Science & Business Media, 2003.

[21] William Henry Wittrick. On elastic wave propagation in helical springs. Inter-
national Journal of Mechanical Sciences, 8(1):25–47, 1966.

[22] Leif Eric Becker and WL Cleghorn. On the buckling of helical compression
springs. International journal of mechanical sciences, 34(4):275–282, 1992.

[23] LE Becker, GG Chassie, and WL Cleghorn. On the natural frequencies of helical
compression springs. International Journal of Mechanical Sciences, 44(4):825–
841, 2002.

[24] V Yildirim. Expressions for predicting fundamental natural frequencies of non-
cylindrical helical springs. Journal of Sound and Vibration, 252(3):479–491, 2002.

[25] V Yıldırım. Numerical buckling analysis of cylindrical helical coil springs in
a dynamic manner. International Journal Of Engineering & Applied Sciences,
1(1):20–32, 2009.

[26] Aimin Yu and Changjin Yang. Formulation and evaluation of an analytical study
for cylindrical helical springs. Acta Mechanica Solida Sinica, 23(1):85–94, 2010.

[27] AM Yu and Y Hao. Free vibration analysis of cylindrical helical springs with
noncircular cross-sections. Journal of Sound and Vibration, 330(11):2628–2639,
2011.



133

[28] Jamil M Renno and Brian R Mace. Vibration modelling of helical springs with
non-uniform ends. Journal of Sound and Vibration, 331(12):2809–2823, 2012.

[29] Krzysztof Michalczyk. Dynamic stresses in helical springs locally coated with
highly-damping material in resonant longitudinal vibration conditions. Interna-
tional Journal of Mechanical Sciences, 90:53–60, 2015.

[30] Merve Ermis and Mehmet H Omurtag. Static and dynamic analysis of coni-
cal helices based on exact geometry via mixed fem. International Journal of
Mechanical Sciences, 131:296–304, 2017.

[31] R Champion and WL Champion. Departure from linear mechanical behaviour of
a helical spring. Mathematical and Computer Modelling, 53(5-6):915–926, 2011.
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A. ADDITIONAL FIGURES

Additional Plots for Profile Variations
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Figure A.1. Bounds for height variations only for experiment 2 for 4x the
max variations.
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Figure A.2. Profiles generated for height variations only for experiment 2
for 4x the max variations.
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Figure A.3. Plot of forces for height variations only for experiment 2 for
4x the max variations.
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Figure A.4. Plot of averaged side force for height variations only for ex-
periment 2 for 4x the max variations.
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Figure A.6. Regression results for 4x max variations.
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(a) Top factor (b) Second factor (c) Top two factors

Figure A.7. Histogram for Top, second and top two factors for 4x max
variations.



142

Figures for Region-based Profile Approximation
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(b) Height regions

Figure A.8. Plot of absolute difference of average profile with bounds
where the vertical black lines mark the boundaries of regions selected for
variation.
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Figure A.9. Choice of random variables experiment 1.
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Figure A.10. Choice of random variables for experiment 2.



145

Spline-based Profile Approximation

(a) Diameter profile

(b) Height profile

Figure A.11. Control points for specimen 5 in red circles for spline based
approximation.
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(a) Diameter and angle groups

(b) Height groups

Figure A.12. Groups of random variables for spline based approximation
(highlighted in yellow).
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(a) Bounds on diameter and angle

(b) Bounds on height and angles

Figure A.13. Bounds on control points for spline based approximation.
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(a) Axial Force

(b) Side Force

Figure A.14. Plot of forces for height variations only for experiment 2.
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B. MODEL SCRIPTS

In this section we are attaching scripts for the two models discussed in section 3.

In order to run the scripts one needs to have access to ABAQUS [47] where you can

execute the python scripts. The scripts written out here were made for ABAQUS CAE

2017 with python 2.7. In order to execute the scripts follow these instructions:

1. Create a ‘New folder’ where you want to execute the program and copy its

path

2. Copy the text written out in section B to a text file and save the file in the ‘New

folder’ with the specific name of coordinatefile.txt.

3. Copy the contents of the script in section B or B into another file and save it in

the ‘New folder’ with *.py extension.

4. Edit the *.py file by pasting the path of the ‘New folder’ inside the quotes in

line 8 of the code.

5. Open ABAQUS CAE 2017, go to File -> Run Script and select the script to

execute it.
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Coordinate File

1 2 1 39.784908 0.100000 0.000000

2 2 2 39.544808 5.902103 0.472336

3 2 3 38.408358 11.618066 0.937341

4 2 4 36.409094 17.107197 1.286106

5 2 5 33.631749 22.259785 1.539973

6 2 6 30.116271 26.952339 1.697142

7 2 7 25.982204 31.127997 1.760289

8 2 8 21.235102 34.605921 1.804744

9 2 9 16.025562 37.349729 1.728804

10 2 10 10.468131 39.297962 1.663882

11 2 11 4.687208 40.421188 1.601790

12 2 12 −1.195275 40.694184 1.433389

13 2 13 −7.053892 40.107094 1.215151

14 2 14 −12.762370 38.672036 0.985273

15 2 15 −18.178405 36.381834 0.757424

16 2 16 −23.202682 33.344372 0.557278

17 2 17 −27.709739 29.597843 0.413107

18 2 18 −31.601675 25.234100 0.329422

19 2 19 −34.808057 20.363593 0.270015

20 2 20 −37.275997 15.098157 0.233439

21 2 21 −38.955778 9.546777 0.238133

22 2 22 −39.871827 3.830967 0.265867

23 2 23 −39.948810 −1.950949 0.241097

24 2 24 −39.262037 −7.691166 0.430703

25 2 25 −37.791207 −13.289981 0.645801

26 2 26 −35.598171 −18.667049 0.911792

27 2 27 −32.712616 −23.744146 1.232024

28 2 28 −29.157549 −28.435069 1.624506

29 2 29 −24.941194 −32.615067 2.068109

30 2 30 −20.232858 −36.372324 2.624158

31 2 31 −14.964939 −39.476518 3.194548

32 2 32 −9.233632 −41.889322 3.839107

33 2 33 −3.119238 −43.556598 4.533399
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34 2 34 3.293813 −44.402337 5.301997

35 2 35 9.909144 −44.387755 6.099754

36 2 36 16.611008 −43.434793 6.949193

37 2 37 23.261693 −41.495315 7.848821

38 2 38 29.706268 −38.545312 8.801488

39 2 39 35.771564 −34.583523 9.800194

40 2 40 41.360380 −29.705749 10.764008

41 2 41 46.123518 −23.848648 11.812902

42 2 42 50.109139 −17.252434 12.890833

43 2 43 53.018931 −9.976939 14.018307

44 2 44 54.780142 −2.217515 15.128207

45 3 45 55.343396 5.834704 16.244581

46 3 46 54.613903 13.973599 17.383049

47 3 47 52.584477 21.977676 18.531093

48 3 48 49.277842 29.620765 19.706598

49 3 49 44.769054 36.687668 20.918628

50 3 50 39.185058 42.995962 22.052649

51 3 51 32.628880 48.324468 23.290893

52 3 52 25.319623 52.579160 24.489722

53 3 53 17.460796 55.708168 25.667602

54 3 54 9.226721 57.632224 26.825839

55 3 55 0.805249 58.265267 27.963758

56 3 56 −7.596984 57.634944 29.124541

57 3 57 −15.792363 55.783297 30.289727

58 3 58 −23.604930 52.763705 31.492948

59 3 59 −30.881033 48.668973 32.672870

60 3 60 −37.480046 43.594279 33.866632

61 3 61 −43.269343 37.643135 35.130545

62 3 62 −48.189945 30.976057 36.279320

63 3 63 −52.098334 23.679688 37.575586

64 3 64 −54.983921 15.924612 38.704112

65 3 65 −56.673269 7.824423 40.256841

66 3 66 −57.242629 −0.432242 41.523965

67 3 67 −56.685065 −8.702646 42.961504

68 3 68 −54.973810 −16.835097 44.559890
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69 3 69 −52.133418 −24.674607 46.133340

70 3 70 −48.237588 −32.089110 47.695164

71 3 71 −43.311131 −38.917781 49.346016

72 3 72 −37.441217 −45.024747 51.027467

73 3 73 −30.722061 −50.272251 52.779760

74 3 74 −23.271581 −54.533730 54.622008

75 3 75 −15.231936 −57.706571 56.487119

76 3 76 −6.759497 −59.703152 58.404316

77 3 77 1.974056 −60.448511 60.373088

78 3 78 10.777490 −59.881101 62.322380

79 3 79 19.466877 −58.052868 64.468779

80 3 80 27.833003 −54.922127 66.544159

81 3 81 35.681379 −50.557515 68.674104

82 3 82 42.838425 −45.060167 70.766235

83 3 83 49.128261 −38.532728 72.881757

84 3 84 54.397026 −31.113473 75.005924

85 3 85 58.509082 −22.963387 77.054714

86 3 86 61.400348 −14.277229 79.126494

87 3 87 62.964459 −5.235124 81.149232

88 3 88 63.168966 3.955151 83.145953

89 3 89 62.016746 13.087356 85.101372

90 3 90 59.509264 21.951024 87.058504

91 3 91 55.737826 30.358609 88.901789

92 3 92 50.780122 38.128237 90.715556

93 3 93 44.750692 45.100608 92.486608

94 3 94 37.770415 51.121897 94.215273

95 3 95 29.992595 56.070337 95.874349

96 3 96 21.581458 59.843697 97.489189

97 3 97 12.712187 62.358618 99.116847

98 3 98 3.572456 63.564788 100.679137

99 3 99 −5.645989 63.439719 102.236966

100 3 100 −14.759121 62.021384 103.746600

101 3 101 −23.583884 59.314545 105.269233

102 3 102 −31.942336 55.373242 106.811231

103 3 103 −39.659989 50.267196 108.365522



153

104 3 104 −46.576458 44.097529 109.928189

105 3 105 −52.526689 36.973000 111.513450

106 3 106 −57.385418 29.048685 113.160075

107 3 107 −61.037266 20.488652 114.866974

108 3 108 −63.379660 11.474167 116.613884

109 3 109 −64.387440 2.210513 118.398790

110 3 110 −64.026995 −7.103497 120.268343

111 3 111 −62.300428 −16.262901 122.191136

112 3 112 −59.227110 −25.057049 124.161319

113 3 113 −54.862388 −33.272825 126.223602

114 3 114 −49.326667 −40.724035 128.332718

115 3 115 −42.747848 −47.232439 130.484828

116 3 116 −35.279730 −52.633803 132.709414

117 3 117 −27.130868 −56.838247 134.888615

118 3 118 −18.484675 −59.725900 137.127136

119 3 119 −9.563130 −61.252690 139.353083

120 3 120 −0.586876 −61.436305 141.521185

121 3 121 8.238692 −60.283243 143.629609

122 3 122 16.714682 −57.854009 145.689390

123 3 123 24.655180 −54.227032 147.733026

124 3 124 31.905003 −49.531363 149.689201

125 3 125 38.338811 −43.907576 151.543242

126 3 126 43.820529 −37.469389 153.397056

127 3 127 48.326821 −30.422045 155.048864

128 3 128 51.752566 −22.877824 156.711311

129 3 129 54.090796 −15.007141 158.311404

130 3 130 55.325886 −6.955130 159.834388

131 3 131 55.477157 1.137251 161.279655

132 3 132 54.537028 9.137837 162.678278

133 3 133 52.564717 16.923473 163.980020

134 3 134 49.572389 24.368388 165.245198

135 3 135 45.566882 31.323230 166.465739

136 3 136 40.673785 37.702285 167.658799

137 3 137 34.935265 43.370610 168.816476

138 3 138 28.441829 48.215111 169.923657
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139 3 139 21.298477 52.126354 170.960740

140 3 140 13.632009 55.014828 172.022643

141 3 141 5.580204 56.781781 173.046148

142 3 142 −2.693812 57.370890 173.995420

143 3 143 −11.011454 56.720075 175.093367

144 3 144 −19.190798 54.854437 175.975448

145 3 145 −27.036602 51.768551 176.873306

146 3 146 −34.353948 47.512935 177.765894

147 3 147 −40.951529 42.170409 178.680661

148 3 148 −46.634588 35.847955 179.604715

149 3 149 −51.408198 28.800549 180.327675

150 3 150 −54.876788 21.030396 181.273535

151 3 151 −57.063860 12.835906 182.205896

152 3 152 −57.982386 4.446062 183.071618

153 3 153 −57.565020 −3.933228 183.934296

154 3 154 −55.850414 −12.079447 184.781407

155 3 155 −52.895407 −19.778319 185.661384

156 3 156 −48.804019 −26.831610 186.524413

157 4 157 −43.701214 −33.055385 187.322762

158 4 158 −37.810523 −38.354705 188.164415

159 4 159 −31.271396 −42.599543 188.980642

160 4 160 −24.278512 −45.721193 189.793702

161 4 161 −17.027920 −47.682406 190.609379

162 4 162 −9.722281 −48.517096 191.394286

163 4 163 −2.535611 −48.285275 192.084500

164 4 164 4.380446 −47.008598 192.760051

165 4 165 10.898126 −44.848869 193.458364

166 4 166 16.903130 −41.844125 194.047174

167 4 167 22.315236 −38.128388 194.587869

168 4 168 27.072212 −33.809814 195.077379

169 4 169 31.127988 −28.992979 195.508225

170 4 170 34.445297 −23.775756 195.885240

171 4 171 36.993684 −18.253823 196.139398

172 4 172 38.786262 −12.535734 196.340519

173 4 173 39.796467 −6.702028 196.594926



155

174 4 174 40.037720 −0.845426 196.816674

175 4 175 39.514322 4.947865 197.010743

176 4 176 38.246874 10.592795 197.129117

177 4 177 36.249204 16.002482 197.202288

178 4 178 33.552479 21.090997 197.249655

179 4 179 30.188527 25.767010 197.298943

180 4 180 26.223466 29.959949 197.327778

181 4 181 21.712520 33.590661 197.337388

182 4 182 16.719874 36.575686 197.325382

183 4 183 11.327746 38.837141 197.302211

184 4 184 5.632083 40.281744 197.264770

185 4 185 −0.240609 40.863429 197.208945

186 4 186 −6.156027 40.561289 197.096525

187 4 187 −11.968486 39.345752 196.965607

188 4 188 −17.530228 37.244853 196.828388

189 4 189 −22.714432 34.332464 196.678277

190 4 190 −27.390399 30.666537 196.538808

191 4 191 −31.436934 26.331633 196.469494

192 4 192 −34.781581 21.456580 196.428120

193 4 193 −37.370121 16.164465 196.411970

194 4 194 −39.178090 10.579054 196.387705

195 4 195 −40.125466 4.805621 196.477168

196 4 196 −40.243294 −1.021561 196.602311

197 4 197 −39.531955 −6.786193 196.769553

198 4 198 −37.961809 −12.356891 197.063770

199 4 199 −35.615426 −17.621139 197.355275

200 4 200 −32.456762 −22.409020 197.602627
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Continuum Model

1 #−−Inputs −−#

2 ”””

3 Var iab l e s and inputs

4 ”””

5 #s e t working d i r e c t o r y

6 import os , time

7 t ime in= time . time ( )

8 main f i l epa th =’ ’# to be g iven by user

9 os . chd i r ( ma in f i l epa th )

10 n o t i n t e r f e r i n g f i l e = open ( ma in f i l epa th+’ / n o t i n t e r f e r i n g . txt ’ , ’w ’ )

11 n o t i n t e r f e r i n g f i l e . wr i t e ( ”1” )

12 n o t i n t e r f e r i n g f i l e . c l o s e ( )

13 #−−−−sp r ing parameters−−−−−#

14 #note dimensions are in mm we are us ing SI ’mm’ un i t s so f o r s t r e s s we

have MPa, Mass−tonne , dens i ty−tonne /mm∗∗3

15 w i r e d i a =13.5#wire diameter (mm)

16 s p r i n g i n i t i a l r a d i u s =38.5 #i n i t i a l r ad iu s o f the spr ing (mm)

17 spr ing max rad ius =64.2819#maximum rad iu s o f the spr ing (mm)

18 s p r i n g h e i g h t =197.6026 #he ight o f the spr ing (mm)

19 spring Np=200#number o f po in t s in the spr ing

20 #−−−−−−−−parameters o f the p la te s−−−−−−−−#

21 p l a t e t h i c k n e s s =10 #p l a t e t h i c k n e s s

22 bottom center= ( 0 . 0 , 0 . 0 , 0 . 0 ) #bottom p l a t e c ente r coord inate ( tup l e )#xyz

to be in accordance with abaqus ( l oad ing in Y d i r e c t i o n )

23 t o p c e n t e r= ( 0 . 0 , s p r i n g h e i g h t +2∗p l a t e t h i c k n e s s+wire d ia , 0 . 0 ) #top

p l a t e c ente r coo rd ina t e s ( tup l e )#xyz to be in accordance with abaqus

( l oad ing in Y d i r e c t i o n )

24 p l a t e r a d i u s=spr ing max rad ius ∗2

25 #−−−−−−−−−−−−−−−−−#

26 #Mater ia l p r o p e r t i e s v a r i a b l e s ( independent d e f i n i t i o n )

27 springyoungmodulus =250000#Mpa

28 p o i s s o n r a t i o =0.3

29 spr ingDisp lacement =−173.0026#mm
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30 plateyoungmodulus =207.0E3#MPa

31 bottomplatemeshSize=3

32 topplatemeshSize=3

33 spr ingmeshSize=3

34 eps=10∗∗−6

35 f r i c t i o n c o e f f =0.7

36 #−−−−Read Coordinate Text F i l e−−−−#

37 ”””

38 Read xyz coo rd ina t e s o f the spr ing from the f i l e

39 ( This f i l e i s assumed to be pre sent in ma in f i l epa th )

40 ”””

41 ##NOTE: c o o r d i n a t e f i l e . txt to g ive xyz coo rd ina t e s such that the Z

coo rd ina t e s are in a x i a l d i r e c t i o n ,

42 #we are doing a manipulat ion by in t e r chang in Y and Z coo rd ina t e s here

43 f i l ename=’ c o o r d i n a t e f i l e ’

44 f i l e p a t h= main f i l epa th + ’ / ’ + f i l ename + ’ . txt ’

45 f i d=open ( f i l e p a t h , ’ r ’ )

46 sp r i ng coo rd = [ ] ; s p r i n g i d e n t i f i e r =[ ]

47 f o r i in range ( spring Np ) :

48 temp= f i d . r e a d l i n e ( ) . s p l i t ( )

49 temp=[ f l o a t ( j ) f o r j in temp ]#convert the coord inate s t r i n g s to f l o a t

and r o t a t e us ing matrix [ 1 0 0 , 0 0 1 , 0 −1 0 ]

50 s p r i n g i d e n t i f i e r . append ( temp [ 0 ] )

51 a=temp[−2]

52 temp[−2]=temp[−1]+ p l a t e t h i c k n e s s +( w i r e d i a / 2 . 0 )#d i s p l a c i n g to c o r r e c t

the he ight

53 temp[−1]=−a

54 sp r i ng coo rd . append ( temp [ 2 : ] )

55 f i d . c l o s e

56 #−−−−−−−−#

57

58 #−−−−−−−−−−−−−−−−−−−−−−−−#

59 #−−−ABAQUS Main Fi l e−−−−−#

60 #−−−−−−−−−−−−−−−−−−−−−−−−#

61 ”””
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62 Abaqus s c r i p t i n g beg ins

63 ”””

64 from abaqus import ∗

65 from abaqusConstants import ∗

66 #c r e a t i n g a model

67 springModel=mdb. Model (name=’ Spring ’ )

68 #−−Parts−−−−−−#

69 ”””

70 Create a l l geometr ic par t s and prepare them f o r adequate meshing by

p a r t i t i o n i n g the s u r f a c e s

71 ”””

72 import part

73 #−−−−part f o r bottom plate−−−−−#

74 #sketch o f bottom p l a t e

75 bottomplateSketch= springModel . Constra inedSketch (name = ’ Bottom Plate ’ ,

s h e e t S i z e =2∗p l a t e r a d i u s )

76 temp = ( bottom center [ 0 : 2 ] , ( bottom center [ 0 ] , bottom center [1 ]+

p l a t e t h i c k n e s s+w i r e d i a ) , ( bottom center [0 ]+ s p r i n g i n i t i a l r a d i u s −

w i r e d i a /2 . 0 , bottom center [1 ]+ p l a t e t h i c k n e s s+w i r e d i a ) ,

77 ( bottom center [0 ]+ s p r i n g i n i t i a l r a d i u s −w i r e d i a /2 . 0 , bottom center

[1 ]+ p l a t e t h i c k n e s s ) , ( bottom center [0 ]+ p l a t e r a d i u s ,

bottom center [1 ]+ p l a t e t h i c k n e s s ) ,

78 ( bottom center [0 ]+ p l a t e r a d i u s , bottom center [ 1 ] ) , bottom center [ 0 : 2 ] )

79 f o r i in range ( l en ( temp )−1) :

80 bottomplateSketch . Line ( temp [ i ] , temp [ i +1])

81 bottomplateSketch . Construct ionLine ( bottom center [ 0 : 2 ] , ( bottom center [ 0 ] ,

bottom center [1 ]+ p l a t e t h i c k n e s s+w i r e d i a ) )

82 #c r e a t e part f o r bottomplate

83 bottomplatePart = springModel . Part (name=’ Bottom p l a t e ’ , d imens i ona l i t y=

THREE D, type=DEFORMABLE BODY)

84 #revo lv e extrude bottom p l a t e

85 bottomplatePart . BaseSol idRevolve ( sketch=bottomplateSketch , ang le =360)

86 #−−−−−−−−#

87 ##code f o r p a r t i t i o n i n g the Bottom Plate to get d e s i r e d e lements and

node l o c a t i o n s
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88 bottomplatePart . DatumPointByCoordinate ( ( bottom center [ 0 ] , bottom center

[1 ]+ p l a t e t h i c k n e s s , bottom center [ 2 ] ) )#cente r+p l a t e t h i c k n e s s in y

d i r e c t i o n

89 bottomplatePart . DatumPointByCoordinate ( ( bottom center [ 0 ] , bottom center

[1 ]+ p l a t e t h i c k n e s s+wire d ia , bottom center [ 2 ] ) )#y cente r o f top f a c e

o f bottom pug

90 bottomplatePart . DatumPointByCoordinate ( ( bottom center [0 ]+ p l a t e r a d i u s ,

bottom center [1 ]+ p l a t e t h i c k n e s s , bottom center [ 2 ] ) )#x+p l a t e

t h i c k n e s s in y d i r e c t i o n

91 ptz=bottomplatePart . DatumPointByCoordinate ( ( bottom center [ 0 ] ,

bottom center [1 ]+ p l a t e t h i c k n e s s , bottom center [2 ]+ p l a t e r a d i u s ) )#z+

p l a t e t h i c k n e s s in y d i r e c t i o n

92 ptc=bottomplatePart . datums [ 2 ]## index 1 i s r e s e rved f o r the datum a x i s

93 pty=bottomplatePart . datums [ 3 ]

94 ptx=bottomplatePart . datums [ 4 ]

95 ptz=bottomplatePart . datums [ 5 ]

96 bottomplatePart . Part i t ionCe l lByPlaneThreePoints ( c e l l s=bottomplatePart .

c e l l s , po int1=ptc , po int2=ptx , po int3=pty )

97 bottomplatePart . Part i t ionCe l lByPlaneThreePoints ( c e l l s=bottomplatePart .

c e l l s , po int1=ptc , po int2=ptz , po int3=pty )

98 bottomplatePart . Part i t ionCe l lByPlaneThreePoints ( c e l l s=bottomplatePart .

c e l l s , po int1=ptc , po int2=ptz , po int3=ptx )

99 #−−−−part f o r top plate−−−−−−#

100 #sketch o f Top p l a t e

101 topp lateSketch= springModel . Constra inedSketch (name = ’Top Plate ’ ,

s h e e t S i z e =2∗p l a t e r a d i u s )

102 temp = ( t o p c e n t e r [ 0 : 2 ] , ( t o p c e n t e r [ 0 ] , t op c e n t e r [1]− p l a t e t h i c k n e s s−

w i r e d i a ) , ( t o p c e n t e r [0 ]+ s p r i n g i n i t i a l r a d i u s −w i r e d i a /2 . 0 ,

t op c e n t e r [1]− p l a t e t h i c k n e s s−w i r e d i a ) ,\

103 ( t o p c e n t e r [0 ]+ s p r i n g i n i t i a l r a d i u s −w i r e d i a /2 . 0 , t o p c e n t e r [1]−

p l a t e t h i c k n e s s ) , ( t op c e n t e r [0 ]+ p l a t e r a d i u s , t o p c e n t e r [1]−

p l a t e t h i c k n e s s ) ,\

104 ( t o p c e n t e r [0 ]+ p l a t e r a d i u s , t o p c e n t e r [ 1 ] ) , t op c e n t e r [ 0 : 2 ] )

105 f o r i in range ( l en ( temp )−1) :

106 topp lateSketch . Line ( temp [ i ] , temp [ i +1])
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107 topp lateSketch . Construct ionLine ( t o p c e n t e r [ 0 : 2 ] , ( t o p c e n t e r [ 0 ] ,

t op c e n t e r [1]− p l a t e t h i c k n e s s−w i r e d i a ) )

108 #c r e a t e part f o r topp la t e

109 topp latePart = springModel . Part (name=’ top p l a t e ’ , d imens i ona l i t y= THREE D

, type=DEFORMABLE BODY)

110 #revo lv e extrude top p l a t e

111 topp latePart . BaseSol idRevolve ( sketch =topplateSketch , ang le =360)

112 #−−−−−−−−−−−−−−−−#

113 ##code f o r p a r t i t i o n i n g top Plate

114 topp latePart . DatumPointByCoordinate ( ( t op c e n t e r [ 0 ] , t op c e n t e r [1]−

p l a t e t h i c k n e s s , t o p c e n t e r [ 2 ] ) )#center−p l a t e t h i c k n e s s in y

d i r e c t i o n

115 topp latePart . DatumPointByCoordinate ( ( t op c e n t e r [ 0 ] , t op c e n t e r [1]−

p l a t e t h i c k n e s s−wire d ia , t o p c e n t e r [ 2 ] ) )#pty cente r o f top f a c e o f

bottom pug

116 topp latePart . DatumPointByCoordinate ( ( t op c e n t e r [0 ]+ p l a t e r a d i u s ,

t op c e n t e r [1]− p l a t e t h i c k n e s s , t o p c e n t e r [ 2 ] ) )#ptx−p l a t e t h i c k n e s s in

y d i r e c t i o n

117 ptz=topp latePart . DatumPointByCoordinate ( ( t o p c e n t e r [ 0 ] , t op c e n t e r [1]−

p l a t e t h i c k n e s s , t o p c e n t e r [2 ]+ p l a t e r a d i u s ) )#ptz−p l a t e t h i c k n e s s in

y d i r e c t i o n

118 ptc=topp latePart . datums [ 2 ]## index 1 i s r e s e rved f o r the datum a x i s

119 pty=topp latePart . datums [ 3 ]

120 ptx=topp latePart . datums [ 4 ]

121 ptz=topp latePart . datums [ 5 ]

122 topp latePart . Part i t ionCe l lByPlaneThreePoints ( c e l l s=topp latePart . c e l l s ,

po int1=ptc , po int2=ptx , po int3=pty )

123 topp latePart . Part i t ionCe l lByPlaneThreePoints ( c e l l s=topp latePart . c e l l s ,

po int1=ptc , po int2=ptz , po int3=pty )

124 topp latePart . Part i t ionCe l lByPlaneThreePoints ( c e l l s=topp latePart . c e l l s ,

po int1=ptc , po int2=ptz , po int3=ptx )

125 #−−−part f o r spr ing−−−−−−#

126 #c r e a t e a part f o r the spr ing

127 spr ingPart = springModel . Part (name=’ Spring ’ , d imens i ona l i t y= THREE D,

type=DEFORMABLE BODY)
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128 #−−S o l i d Spring−−−−#

129 spr ingPart . WireSpl ine ( po in t s=spr ing coord , mergeType=SEPARATE, meshable=

ON, smoothClosedSpl ine=OFF)

130 spr ingPart . DatumPointByCoordinate ( ( bottom center [ 0 ] , bottom center [ 1 ] ,

bottom center [ 2 ] ) )#cente r

131 spr ingPart . DatumPointByCoordinate ( ( bottom center [ 0 ] , bottom center [1 ]+

p l a t e t h i c k n e s s+wire d ia , bottom center [ 2 ] ) )#y cente r o f top f a c e o f

bottom pug

132 p1=spr ingPart . datums [ 2 ]

133 p2=spr ingPart . datums [ 3 ]

134 spr ingPart . DatumAxisByTwoPoint ( po int1=p1 , po int2=p2 )

135 spr ingSketch= springModel . Constra inedSketch (name = ’ Spring ’ , s h e e t S i z e

=2∗w i r e d i a )

136 spr ingSketch . Circ leByCenterPer imeter ( c en t e r =(0 . 0 , 0 . 0 ) , po int1=( w i r e d i a

/ 2 . 0 , 0 . 0 ) )# in l o c a l sketch coord inate system the cente r i s at such

a p o s i t i o n got t h i s from macro r e co rd ing

137 wi r e r eg i on = spr ingPart . edges

138 temp=wi r e r eg i on . getMask ( )#to convert edge array ob j e c t to a sequence got

t h i s from the macro r e co rd ing

139 wi r e r eg i on=wi r e r eg i on . getSequenceFromMask (mask=temp )

140

141 n o t i n t e r f e r i n g = 1

142 t ry :

143 spr ingPart . Sol idSweep ( path=wire reg ion , p r o f i l e=spr ingSketch ,

sketchUpEdge=spr ingPart . datums [ 4 ] , s ke t chOr i en ta t i on=RIGHT)

144 except AbaqusException :

145 n o t i n t e r f e r i n g = 0

146 #−−−−−−−−−−−−−−−−−−−−−−−−−−−#

147 #−−Parts and mesh creadted−−#

148 i f n o t i n t e r f e r i n g :

149 #−−−−−−Mater ia l−−−#

150 ”””

151 Create Mate r i a l s with mate r i a l p r o p e r t i e s f o r p l a t e and spr ing

152 ”””

153 import mate r i a l
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154 #c r e a t e mate r i a l

155 sp r ingMate r i a l = springModel . Mater ia l (name=’ Spring Mater ia l ’ ,

d e s c r i p t i o n=’ sp r ing s t e e l ’ )

156 p l a t eM ate r i a l = springModel . Mater ia l (name=’ Plate Mater ia l ’ ,

d e s c r i p t i o n=’ mild s t e e l ’ )

157 #a s s i g n youngs modulus and po i s s on s r a t i o to both the m a t e r i a l s

158 s p r i n g e l a s t i c P r o p e r t i e s= ( springyoungmodulus , p o i s s o n r a t i o )

159 p l a t e e l a s t i c P r o p e r t i e s= ( plateyoungmodulus , p o i s s o n r a t i o )

160 sp r ingMate r i a l . E l a s t i c ( t a b l e =( s p r i n g e l a s t i c P r o p e r t i e s , ) )

161 p l a t eM ate r i a l . E l a s t i c ( t a b l e =( p l a t e e l a s t i c P r o p e r t i e s , ) )

162 #−−−−−Mater i a l s Created−−−−−−−#

163

164 #−−−−−Sec t i on −−−−−−#

165 ”””

166 Create Sec t i on s f o r the d i f f e r e n t P r o p e r t i e s and a s s i g n them to the

r e s p e c t i v e par t s

167 ”””

168 import s e c t i o n

169 #c r e a t i n g s o l i d s e c t i o n f o r p l a t e s

170 p l a t e S e c t i o n = springModel . HomogeneousSol idSection (name=’ Plate Sec t i on

’ , mate r i a l=p l a t e Mat e r i a l . name)

171 #s e c t i o n ass ignment to p l a t e s

172 topp latePart . Sect ionAssignment ( r eg i on =( topp latePart . c e l l s , ) ,

sectionName=p l a t e S e c t i o n . name)

173 bottomplatePart . Sect ionAssignment ( r eg i on =(bottomplatePart . c e l l s , ) ,

sectionName=p l a t e S e c t i o n . name)

174 #c r e a t i n g s o l i d s e c t i o n f o r sp r ing

175 s p r i n g S e c t i o n = springModel . HomogeneousSol idSection (name=’ Spring

Sec t i on ’ , mate r i a l=spr ingMate r i a l . name)

176 #s e c t i o n ass ignements to spr ing

177 w i r e c e l l = spr ingPart . c e l l s

178 w i r e c e l l = w i r e c e l l . getSequenceFromMask ( ( ’ [#1] ’ , ) , )#got t h i s from

macro read ing

179 import r eg i onToo l s e t

180 wi r e r eg i on = reg i onToo l s e t . Region ( c e l l s = w i r e c e l l )
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181 spr ingPart . Sect ionAssignment ( r eg i on=wire reg ion , sectionName =

s p r i n g S e c t i o n . name)

182 #−−−− Sec t i on s c reated −−−−−−#

183

184 #−−− Assembly −−−#

185 ”””

186 Assemble i n s t a n c e s o f the par t s i n to a g l o b a l coo rd inate system

187 ”””

188 import assembly

189 #c r e a t e part i n s t a n c e s

190 springAssembly =springModel . rootAssembly

191 s p r i ng I n s t a nc e=springAssembly . In s tance (name=’ Spring Ins tance ’ , part=

spr ingPart , dependent=OFF)

192 bottomplate Instance=springAssembly . Ins tance (name=’ Bottom Plate

Ins tance ’ , part=bottomplatePart , dependent=OFF)

193 t opp l a t e In s t anc e=springAssembly . In s tance (name=’Top Plate Ins tance ’ ,

part=topplatePart , dependent=OFF)

194 #−−− Rotate and Trans late sp r ing −−−#

195 springAssembly . r o t a t e ( i n s t a n c e L i s t =( ’ Spring Ins tance ’ , ) , ax i sPo in t

=(0 . 0 , 115 . 5526 , 0 . 0 ) , a x i s D i r e c t i o n =(1 . 0 , 115 . 5526 , 0 . 0 ) , ang le =0)

196 springAssembly . r o t a t e ( i n s t a n c e L i s t =( ’ Spring Ins tance ’ , ) , ax i sPo in t

=(0 . 0 , 115 . 5526 , 0 . 0 ) , a x i s D i r e c t i o n =(0.0 ,115 .5526 ,−1.0) , ang le =0)

197 springAssembly . t r a n s l a t e ( i n s t a n c e L i s t =( ’ Spring Ins tance ’ , ) , vec to r =(0.0

,−0.0024892 , 0 . 0 ) )

198 springAssembly . t r a n s l a t e ( i n s t a n c e L i s t =( ’ Spring Ins tance ’ , ) , vec to r

=(−0.15 , 0 . 0 , 0 . 0 ) )

199 springAssembly . t r a n s l a t e ( i n s t a n c e L i s t =( ’ Spring Ins tance ’ , ) , vec to r =(

0 .0 , 0 . 0 , −0.1) )

200 #−−−−−−−−−−−−#

201 #−− Assembly Created −−#

202

203 #−− Mesh −−#

204 ”””

205 Create Mesh f o r the i n s t a n c e s in the assembly and c r e a t e s e t s o f nodes

f o r a p p l i c a t i o n o f BC
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206 ”””

207 ##code f o r gene ra t ing mesh on the bottom p l a t e

208 import mesh

209 #s e l e c t type o f element and a s s i g n to the in s t ance

210 elemType1 = mesh . ElemType ( elemCode=C3D8 , e lemLibrary=STANDARD,

secondOrderAccuracy=OFF, d i s t o r t i o n C o n t r o l=DEFAULT)

211 elemType2 = mesh . ElemType ( elemCode=C3D6 , e lemLibrary=STANDARD)

212 elemType3 = mesh . ElemType ( elemCode=C3D4 , e lemLibrary=STANDARD)

213 springAssembly . setElementType ( r e g i o n s =(bottomplate Instance . c e l l s , ) ,

elemTypes=(elemType1 , elemType2 , elemType3 ) )

214 #seed the in s t anc e

215 springAssembly . s eedPart Ins tance ( r e g i o n s =(bottomplateInstance , ) , s i z e=

bottomplatemeshSize )

216 ###mesh the in s t anc e

217 springAssembly . generateMesh ( r e g i o n s =(bottomplateInstance , ) )

218 ##c r e a t e s e t s f o r boundary c o n d i t i o n s

219 bottomplatecenterSet=bottomplate Instance . nodes . getByBoundingSphere ( (

bottom center [ 0 ] , bottom center [ 1 ] , bottom center [ 2 ] ) , eps )

220 bottomplateSet=bottomplate Instance . nodes . getByBoundingBox (xMin=

bottom center [0 ] −1 .1∗ p l a t e r a d i u s , yMin=bottom center [1]− eps , zMin=

bottom center [2 ] −1 .1∗ p l a t e r a d i u s ,\

221 xMax=bottom center [ 0 ]+1 .1∗ p l a t e r a d i u s , yMax=

bottom center [1 ]+ eps , zMax=bottom center

[ 2 ]+1 .1∗ p l a t e r a d i u s )

222 bottomplateZSet=bottomplate Instance . nodes . getByBoundingSphere ( (

bottom center [ 0 ] , bottom center [ 1 ] , bottom center [2 ]+ p l a t e r a d i u s ) ,

eps )

223 #c r e a t i n g s e t s

224 bottomplatecenterSet=springAssembly . Set (name=’ Bottom Plate Center Set ’

, nodes = bottomplatecenterSet )

225 springAssembly . Set (name=’ Bottom Plate a l l Set ’ , nodes = bottomplateSet )

226 bottomplateZSet=springAssembly . Set (name=’ Bottom Plate Z−Node Set ’ ,

nodes=bottomplateZSet )
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227 springAssembly . SetByBoolean (name=’ Bottom Plate Set−Z ’ , opera t i on=

DIFFERENCE, s e t s =(springAssembly . s e t s [ ’ Bottom Plate a l l Set ’ ] ,

springAssembly . s e t s [ ’ Bottom Plate Z−Node Set ’ ] , ) )

228 bottomplateSet=springAssembly . SetByBoolean (name=’ Bottom Plate Set ’ ,

ope ra t i on=DIFFERENCE, s e t s =(springAssembly . s e t s [ ’ Bottom Plate Set−

Z ’ ] , springAssembly . s e t s [ ’ Bottom Plate Center Set ’ ] , ) )

229 de l springAssembly . s e t s [ ’ Bottom Plate a l l Set ’ ]

230 de l springAssembly . s e t s [ ’ Bottom Plate Set−Z ’ ]

231 ##code f o r gene ra t ing mesh on the top p l a t e

232 #s e l e c t type o f element and a s s i g n to the in s t ance

233 elemType1 = mesh . ElemType ( elemCode=C3D8 , e lemLibrary=STANDARD,

secondOrderAccuracy=OFF, d i s t o r t i o n C o n t r o l=DEFAULT)

234 elemType2 = mesh . ElemType ( elemCode=C3D6 , e lemLibrary=STANDARD)

235 elemType3 = mesh . ElemType ( elemCode=C3D4 , e lemLibrary=STANDARD)

236 springAssembly . setElementType ( r e g i o n s =( topp l a t e In s t anc e . c e l l s , ) ,

elemTypes=(elemType1 , elemType2 , elemType3 ) )

237 #seed the in s t anc e

238 springAssembly . s eedPart Ins tance ( r e g i o n s =( topp la t e Ins tance , ) , s i z e=

topplatemeshSize )

239 #mesh the in s t anc e

240 springAssembly . generateMesh ( r e g i o n s =( topp la t e Ins tance , ) )

241 ##c r e a t e s e t s f o r boundary c o n d i t i o n s

242 t o p p l a t e c e n t e r S e t=topp l a t e In s t anc e . nodes . getByBoundingSphere ( (

t op c e n t e r [ 0 ] , t op c e n t e r [ 1 ] , t op c e n t e r [ 2 ] ) , eps )

243 topp la t eSe t=topp l a t e In s t anc e . nodes . getByBoundingBox (xMin=t o p c e n t e r

[0 ] −1 .1∗ p l a t e r a d i u s , yMin=t o p c e n t e r [1]−10∗ eps , zMin=t o p c e n t e r

[2 ] −1 .1∗ p l a t e r a d i u s ,\

244 xMax=t o p c e n t e r [ 0 ]+1 .1∗ p l a t e r a d i u s , yMax=

t op c e n t e r [1 ]+10∗ eps , zMax=t op c e n t e r

[ 2 ]+1 .1∗ p l a t e r a d i u s )

245 topp lateZSet=topp l a t e In s t anc e . nodes . getByBoundingSphere ( ( t op c e n t e r

[ 0 ] , t o p c e n t e r [ 1 ] , t op c e n t e r [2 ]+ p l a t e r a d i u s ) , eps )

246 #c r e a t i n g s e t s

247 t o p p l a t e c e n t e r S e t=springAssembly . Set (name=’Top Plate Center Set ’ , nodes

= t o p p l a t e c e n t e r S e t )
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248 springAssembly . Set (name=’Top Plate a l l Set ’ , nodes = topp la t eSe t )

249 topp lateZSet=springAssembly . Set (name=’Top Plate Z−Node Set ’ , nodes=

topplateZSet )

250 springAssembly . SetByBoolean (name=’Top Plate Set−Z ’ , opera t i on=

DIFFERENCE, s e t s =(springAssembly . s e t s [ ’Top Plate a l l Set ’ ] ,

springAssembly . s e t s [ ’Top Plate Z−Node Set ’ ] , ) )

251 topp la t eSe t=springAssembly . SetByBoolean (name=’Top Plate Set ’ ,

ope ra t i on=DIFFERENCE, s e t s =(springAssembly . s e t s [ ’Top Plate Set−Z ’

] , springAssembly . s e t s [ ’Top Plate Center Set ’ ] , ) )

252 de l springAssembly . s e t s [ ’Top Plate a l l Set ’ ]

253 de l springAssembly . s e t s [ ’Top Plate Set−Z ’ ]

254 ##code f o r meshing the spr ing

255 #s e l e c t type o f element and a s s i g n to the in s t ance

256 elemType1 = mesh . ElemType ( elemCode=C3D8I , e lemLibrary=STANDARD,

secondOrderAccuracy=OFF, d i s t o r t i o n C o n t r o l=DEFAULT)

257 elemType2 = mesh . ElemType ( elemCode=C3D6 , e lemLibrary=STANDARD)

258 elemType3 = mesh . ElemType ( elemCode=C3D4 , e lemLibrary=STANDARD)

259 springAssembly . setElementType ( r e g i o n s =( s p r i n g I n s t a nc e . c e l l s , ) ,

elemTypes=(elemType1 , elemType2 , elemType3 ) )

260 #seed the in s t anc e

261 springAssembly . s eedPart Ins tance ( r e g i o n s =( spr ing Ins tance , ) , s i z e=

spr ingmeshSize )

262 #mesh the in s t anc e

263 springAssembly . generateMesh ( r e g i o n s =( spr ing Ins tance , ) )

264 #c r e a t e s e t s f o r boundary c o n d i t i o n s

265 spr ingbottomSet=s pr i ng I n s t an c e . nodes . getByBoundingSphere ( sp r ing coo rd

[ 0 ] , eps )

266 spr ingtopSet=s p r i n g In s t a n c e . nodes . getByBoundingSphere ( sp r i ng coo rd

[−1] , eps )

267 #c r e a t e s e t s

268 spr ingbottomSet=springAssembly . Set (name=’ Spring Bottom Node Set ’ , nodes

= springbottomSet )

269 spr ingtopSet=springAssembly . Set (name=’ Spring Top Node Set ’ , nodes =

spr ingtopSet )

270 #−− Mesh created −−#
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271

272 #−− Step −−#

273 ”””

274 Create Load Step i e type o f a n a l y s i s= S t a t i c + Non−Linear Geometry

e f f e c t s

275 ”””

276 import s tep

277 #c r e a t i n g step f o r s t a t i c a n a l y s i s with NonLinear Geometry opt ion as

ON

278 spr ingStep=springModel . S ta t i cS t ep (name=’ S t a t i c ’ , p rev ious=’ I n i t i a l ’ ,

nlgeom=ON, maxNumInc=1000 , i n i t i a l I n c =0.002 , maxInc =0.05 , minInc=1E

−10, s t ab i l i z a t i onMagn i tude =0.0002 ,

279 s t ab i l i z a t i onMethod=DAMPING FACTOR, continueDampingFactors=False ,

adaptiveDampingRatio =0.05)

280 #−− Steps c rea ted −−#

281

282 #−− I n t e r a c t i o n −−#

283 ”””

284 Create Contacts between the p l a t e s and spr ing

285 ”””

286 import i n t e r a c t i o n

287 springModel . ContactProperty ( ’ contact property ’ )

288 springModel . i n t e r a c t i o n P r o p e r t i e s [ ’ contact property ’ ] . NormalBehavior (

p r e s su r eOverc l o su r e=HARD, a l l owSeparat i on=ON,

289 constraintEnforcementMethod=PENALTY,

290 c o n t a c t S t i f f n e s s=DEFAULT, c o n t a c t S t i f f n e s s S c a l e F a c t o r =1.0 ,

c l earanceAtZeroContactPressure =0.0 , s t i f f n e s s B e h a v i o r=LINEAR)

291 springModel . i n t e r a c t i o n P r o p e r t i e s [ ’ contact property ’ ] .

Tangent ia lBehavior ( fo rmulat ion=PENALTY, d i r e c t i o n a l i t y=ISOTROPIC,

sl ipRateDependency=OFF,

292 pressureDependency=OFF, temperatureDependency=OFF, dependenc ies =0,

293 t a b l e =(( f r i c t i o n c o e f f , ) , ) , s h ea rS t r e s sL im i t=None ,

maximumElasticSlip=FRACTION,

294 f r a c t i o n =0.005 , e l a s t i c S l i p S t i f f n e s s=None )

295 springModel . S t d I n i t i a l i z a t i o n (name=’ contact i n i t i a l i s a t i o n ’ )
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296 springModel . ContactStd (name=’ gene ra l contact i n t e r a c t i o n ’ ,

297 createStepName=’ I n i t i a l ’ )

298 springModel . i n t e r a c t i o n s [ ’ g ene ra l contact i n t e r a c t i o n ’ ] . i n c ludedPa i r s .

s e tVa lues InStep ( stepName=’ I n i t i a l ’ , u s e A l l s t a r=ON)

299 springModel . i n t e r a c t i o n s [ ’ g ene ra l contact i n t e r a c t i o n ’ ] .

contactPropertyAss ignments . appendInStep ( stepName=’ I n i t i a l ’ ,

300 ass ignments =((GLOBAL, SELF, ’ contact property ’ ) , ) )

301 springModel . i n t e r a c t i o n s [ ’ g ene ra l contact i n t e r a c t i o n ’ ] .

i n i t i a l i z a t i o n A s s i g n m e n t s . appendInStep ( stepName=’ I n i t i a l ’ ,

302 ass ignments =((GLOBAL, SELF, ’ contact i n i t i a l i s a t i o n ’ ) , ) )

303 #−− I n t e r a c t i o n c rea ted −−#

304

305 #−− Load and BC −−#

306 ”””

307 Create Boundary c o n d i t i o n s

308 ”””

309 import load

310 #c r e a t e BC at the bottom p la t e

311 # bottom cente r node r e s t r i c t e d in xyz

312 #other nodes are f r e e to move in x and z d i r e c t i o n s and given a f i x e d

disp lacement o f 0 . 0 in Y d i r e c t i o n

313 #node on the Z a x i s i s not a l lowed to move in x d i r e c t i o n to avoid

roa ta i on o f the p l a t e

314 springModel . DisplacementBC (name=’ Bottom Plate Center BC’ ,

createStepName=spr ingStep . name , r eg i on=bottomplatecenterSet , u1 =0.0 ,

u2 =0.0 , u3 =0.0)

315 springModel . DisplacementBC (name=’ Bottom Plate BC’ , createStepName=

spr ingStep . name , r eg i on=bottomplateSet , u2 =0.0)#load ing i s in Y

d i r e c t i o n

316 springModel . DisplacementBC (name=’ Bottom Plate Z−Node BC’ ,

createStepName=spr ingStep . name , r eg i on=bottomplateZSet , u1 =0.0 , u2

=0.0)#to avoid r o t a t i o n

317 #c r e a t e BC at the Top p l a t e

318 # Top cente r node g iven a f o r c ed disp lacement o f va lue ’

spr ingDisp lacement ’
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319 #other nodes are f r e e to move in x and z d i r e c t i o n s and given a f i x e d

disp lacement o f ’ spr ingDisp lacement ’ in Y d i r e c t i o n

320 #node on the Z a x i s i s not a l lowed to move in x d i r e c t i o n to avoid

roa ta i on o f the p l a t e

321 springModel . DisplacementBC (name=’Top Plate Center BC’ , createStepName=

spr ingStep . name , r eg i on=topp la t e c ente rSe t , u1 =0.0 , u2=

spr ingDisplacement , u3 =0.0)

322 springModel . DisplacementBC (name=’Top Plate BC’ , createStepName=

spr ingStep . name , r eg i on=topplateSet , u2=spr ingDisp lacement )#load ing

i s in Y d i r e c t i o n

323 springModel . DisplacementBC (name=’Top Plate Z−Node BC’ , createStepName=

spr ingStep . name , r eg i on=topplateZSet , u1 =0.0 , u2=spr ingDisp lacement )#

to avoid r o t a t i o n

324 #−− Load and BC created −−#

325

326 #−− Job −−#

327 ”””

328 Create Job

329 ”””

330 import job

331 #c r e a t e job

332 spr ingJob=mdb. Job (name=’ spr ingJob ’ , model= springModel . name ,

d e s c r i p t i o n=’ ’ , type=ANALYSIS,

333 atTime=None , waitMinutes =0, waitHours =0, queue=None , memory=90,

334 memoryUnits=PERCENTAGE, getMemoryFromAnalysis=True ,

335 e x p l i c i t P r e c i s i o n=SINGLE, nodalOutputPrec i s ion=SINGLE, echoPr int=OFF

,

336 modelPrint=OFF, contac tPr in t=OFF, h i s t o r y P r i n t=OFF, userSubrout ine=’

’ ,

337 s c ra t ch=’ ’ , re su l t sFormat=ODB, mult iprocess ingMode=DEFAULT, numCpus

=32,numDomains=32,

338 numGPUs=0)

339 springModel . f i e ldOutputRequests [ ’F−Output−1 ’ ] . s e tVa lues ( t i m e I n t e r v a l

=0.1 , timeMarks =OFF)

340 reg ionDef = springAssembly . s e t s [ ’ Bottom Plate Center Set ’ ]
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341 springModel . FieldOutputRequest (name=’ React ionForces1 ’ , createStepName=

spr ingStep . name , v a r i a b l e s =( ’RT’ , ’U ’ , ) , r eg i on=reg ionDef )

342 reg ionDef = springAssembly . s e t s [ ’ Bottom Plate Set ’ ]

343 springModel . FieldOutputRequest (name=’ React ionForces2 ’ , createStepName=

spr ingStep . name , v a r i a b l e s =( ’RT’ , ’U ’ , ) , r eg i on=reg ionDef )

344 reg ionDef = springAssembly . s e t s [ ’ Bottom Plate Z−Node Set ’ ]

345 springModel . FieldOutputRequest (name=’ React ionForces3 ’ , createStepName=

spr ingStep . name , v a r i a b l e s =( ’RT’ , ’U ’ , ) , r eg i on=reg ionDef )

346 reg ionDef = springAssembly . s e t s [ ’Top Plate Center Set ’ ]

347 springModel . FieldOutputRequest (name=’ React ionForces4 ’ , createStepName=

spr ingStep . name , v a r i a b l e s =( ’RT’ , ’U ’ , ) , r eg i on=reg ionDef )

348 reg ionDef = springAssembly . s e t s [ ’Top Plate Set ’ ]

349 springModel . FieldOutputRequest (name=’ React ionForces5 ’ , createStepName=

spr ingStep . name , v a r i a b l e s =( ’RT’ , ’U ’ , ) , r eg i on=reg ionDef )

350 reg ionDef = springAssembly . s e t s [ ’Top Plate Z−Node Set ’ ]

351 springModel . FieldOutputRequest (name=’ React ionForces6 ’ , createStepName=

spr ingStep . name , v a r i a b l e s =( ’RT’ , ’U ’ , ) , r eg i on=reg ionDef )

352 #submit job

353 spr ingJob . submit ( cons i s tencyCheck ing=OFF)

354 spr ingJob . waitForCompletion ( )

355 #−− Job crea ted −−#

356 #save f i l e

357 mdb. saveAs (pathName= main f i l epa th+’ / My Model sol id ’+’ . cae ’ )

358 #−− odb −−#

359 ”””

360 Access the output database generated from the job and pr i n t out

q u a n t i t i e s o f i n t e r e s t to txt f i l e s at cur rent d i r e c t o r y

361 ”””

362 import odb

363 from odbAccess import ∗

364 odb = openOdb( path = main f i l epa th+’ / ’+spr ingJob . name+’ . odb ’ )

365 #d e f i n e r e g i o n s f o r bottom cente r and bottom p l a t e pts

366 springOdb=odb . rootAssembly

367 odb bottomcenter reg ion= springOdb . nodeSets [ ’ Bottom Plate Center Set ’ ]

368 odb bottomznode region= springOdb . nodeSets [ ’ Bottom Plate Z−Node Set ’ ]
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369 odb bottomplate reg ion= springOdb . nodeSets [ ’ Bottom Plate Set ’ ]

370 odb topcen t e r r eg i on= springOdb . nodeSets [ ’Top Plate Center Set ’ ]

371 #loop over frames to populate the va lue s o f r e a c t i o n f o r c e and

disp lacement

372 s i d e f o r c e = [ ]

373 a x i a l f o r c e = [ ]

374 disp lacement =[ ]

375 odbStep=odb . s t ep s [ spr ingStep . name ]

376 f o r i in range ( l en ( odbStep . frames ) ) :

377 disp lacement . append ( abs ( odbStep . frames [ i ] . f i e l dOutput s [ ’U ’ ] .

getSubset ( r eg i on =odb topcen t e r r eg i on ) . va lue s [ 0 ] . data [ 1 ] ) )#

appending abs value o f Uy o f the top node ## note v laues [ 0 ] says

that we have only one node in t h i s subset

378 s i d e f o r c e . append ( tup l e ( [ sum( l i s t s ) f o r l i s t s in z ip ( odbStep . frames [ i

] . f i e l dOutput s [ ’RT’ ] . getSubset ( r eg i on =odb bottomcenter reg ion ) .

va lue s [ 0 ] . data , odbStep . frames [ i ] . f i e l dOutput s [ ’RT’ ] . getSubset (

r eg i on =odb bottomznode region ) . va lue s [ 0 ] . data ) ] ) )# appending

tup l e as r e a c t i o n value to s i d e f o r c e

379 bot tomp la t e r eac t i on s= odbStep . frames [ i ] . f i e l dOutput s [ ’RT’ ] .

getSubset ( r eg i on =odb bottomplate reg ion )

380 tempbp=0

381 f o r ibp in range ( l en ( bo t tomp la t e r eac t i on s . va lue s ) ) :

382 tempbp=tempbp+bot tomp la t e r eac t i on s . va lue s [ ibp ] . data [ 1 ]# index 1

f o r Fy

383 a x i a l f o r c e . append ( tempbp )

384 #pr in t va lue o f the above v a r i a b l e s to a text f i l e

385 f s i d e f o r c e = open ( ” s i d e f o r c e . txt ” , ”w” )

386 f s i d e f o r c e . wr i t e ( ” Side f o r c e s [ Fx Fy Fz ] at bottom cente r node\n” )

387 f o r i in s i d e f o r c e :

388 f s i d e f o r c e . wr i t e ( s t r ( i [ 0 ] )+’ ’+s t r ( i [ 1 ] )+’ ’+s t r ( i [ 2 ] )+’ \n ’ )

389 f s i d e f o r c e . c l o s e ( )

390

391 f d i sp lacement = open ( ” disp lacement . txt ” , ”w” )

392 f d i sp lacement . wr i t e ( ” d isp lacement abs (Uy) o f Top cente r node\n” )

393 f o r i in d isp lacement :
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394 f d i sp lacement . wr i t e ( s t r ( i )+’ \n ’ )

395 f d i sp lacement . c l o s e ( )

396

397 f a x i a l f o r c e = open ( ” a x i a l f o r c e . txt ” , ”w” )

398 f a x i a l f o r c e . wr i t e ( ”sum of a x i a l f o r c e Fy due to bottomplate \n” )

399 f o r i in a x i a l f o r c e :

400 f a x i a l f o r c e . wr i t e ( s t r ( i )+’ \n ’ )

401 f a x i a l f o r c e . c l o s e ( )

402

403 t ime out= time . time ( )

404 t o t a l t i m e= ( time out−t ime in ) /60 .0

405 f t ime= open ( ” t o t a l t i m e . txt ” , ”w” )

406 f t ime . wr i t e ( ” Total time taken f o r computation in mins\n” )

407 f t ime . wr i t e ( s t r ( t o t a l t i m e ) )

408 f t ime . c l o s e ( )

409 #−− odb created −−#

410 e l s e :

411 #pr in t the f i l e s with a l l z e r o s and only one row o f data

412 n o t i n t e r f e r i n g f i l e = open ( ma in f i l epa th+’ / n o t i n t e r f e r i n g . txt ’ , ’w ’ )

413 n o t i n t e r f e r i n g f i l e . wr i t e ( ”0” )

414 n o t i n t e r f e r i n g f i l e . c l o s e ( )

415 #save f i l e

416 mdb. saveAs (pathName= main f i l epa th+’ / My Model sol id ’+’ . cae ’ )

417 #c r e a t e the o/p f i l e s

418 f s i d e f o r c e = open ( ” s i d e f o r c e . txt ” , ”w” )

419 f s i d e f o r c e . wr i t e ( ” Side f o r c e s [ Fx Fy Fz ] at bottom cente r node\n” )

420 f s i d e f o r c e . wr i t e ( ’ 0 ’+’ ’+’ 0 ’+’ ’+’ 0 ’+’ \n ’ )

421 f s i d e f o r c e . c l o s e ( )

422

423 f d i sp lacement = open ( ” disp lacement . txt ” , ”w” )

424 f d i sp lacement . wr i t e ( ” d isp lacement abs (Uy) o f Top cente r node\n” )

425 f d i sp lacement . wr i t e ( ’ 0 ’+’ \n ’ )

426 f d i sp lacement . c l o s e ( )

427

428 f a x i a l f o r c e = open ( ” a x i a l f o r c e . txt ” , ”w” )
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429 f a x i a l f o r c e . wr i t e ( ”sum of a x i a l f o r c e Fy due to bottomplate \n” )

430 f a x i a l f o r c e . wr i t e ( ’ 0 ’+’ \n ’ )

431 f a x i a l f o r c e . c l o s e ( )

432

433 t ime out= time . time ( )

434 t o t a l t i m e= ( time out−t ime in ) /60 .0

435 f t ime= open ( ” t o t a l t i m e . txt ” , ”w” )

436 f t ime . wr i t e ( ” Total time taken f o r computation in mins\n” )

437 f t ime . wr i t e ( s t r ( t o t a l t i m e ) )

438 f t ime . c l o s e ( )

439 import sys

440 sys . e x i t ( )
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Beam Connector Model

1 #−−−−−−−Inputs−−−−−−−−−−−−−−#

2 ”””

3 Var iab l e s and inputs

4 ”””

5 #s e t working d i r e c t o r y

6 import os

7 import numpy as np

8 main f i l epa th =’ ’# to be g iven by user

9 os . chd i r ( ma in f i l epa th )

10 s t a t u s f i l e = open ( ma in f i l epa th+’ / s t a t u s . txt ’ , ’w ’ )

11 s t a t u s f i l e . wr i t e ( ”1” )

12 s t a t u s f i l e . c l o s e ( )

13

14 #−−−−−−−−sp r ing parameters−−−−−−−#

15 #note dimensions are in mm we are us ing SI ’mm’ un i t s so f o r s t r e s s we

have MPa, Mass−tonne , dens i ty−tonne /mm∗∗3

16 w i r e d i a =13.5#wire diameter (mm)

17 s p r i n g i n i t i a l r a d i u s =38.5 #i n i t i a l r ad iu s o f the spr ing (mm)

18 spr ing max rad ius =64.2819#maximum rad iu s o f the spr ing (mm)

19 s p r i n g h e i g h t =197.6001 #he ight o f the spr ing (mm)

20 spring Np=200#number o f po in t s in the spr ing

21 #−−−−−−−−parameters o f the p la te s−−−−−−−−−−−#

22 p l a t e t h i c k n e s s =10 #p l a t e t h i c k n e s s

23 bottom center= ( 0 . 0 , 0 . 0 , 0 . 0 ) #bottom p l a t e c ente r coord inate ( tup l e )#xyz

to be in accordance with abaqus ( l oad ing in Y d i r e c t i o n )

24 t o p c e n t e r= ( 0 . 0 , s p r i n g h e i g h t +2∗p l a t e t h i c k n e s s+wire d ia , 0 . 0 ) #top

p l a t e c ente r coo rd ina t e s ( tup l e )#xyz to be in accordance with abaqus

( l oad ing in Y d i r e c t i o n )

25 p l a t e r a d i u s=spr ing max rad ius ∗2

26 #−−−−−−−−−−−−−−−−−−−−−−−−−#

27

28 #Mater ia l p r o p e r t i e s v a r i a b l e s ( independent d e f i n i t i o n )

29 springyoungmodulus =225000#Mpa
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30 p o i s s o n r a t i o =0.3

31 spr ingDisp lacement =−173.0001#mm

32 spr ingmeshSize =10.0

33

34 eps=10∗∗−6

35 a x i a l s p r i n g s t i f f n e s s =1000000#N/mm

36 r a d i a l s p r i n g s t i f f n e s s =10000#N/mm

37 r a d i a l s p r i n g t e n s i o n =100#N/mm

38 p o s r e f p t s p r i n g t o p t u r n =20#mm

39 f r i c t i o n s p r i n g s t i f f t o p =1#N/mm

40 f r i c t i o n s p r i n g s t i f f b o t t o m =1#N/mm

41 #−−−−−−Read Coordinate Text F i l e−−−−−−#

42 ”””

43 Read xyz coo rd ina t e s o f the spr ing from the f i l e

44 ( This f i l e i s assumed to be pre sent in ma in f i l epa th )

45 ”””

46 ##NOTE: c o o r d i n a t e f i l e . txt to g ive xyz coo rd ina t e s such that the Z

coo rd ina t e s are in a x i a l d i r e c t i o n ,

47 #we are doing a manipulat ion by in t e r chang in Y and Z coo rd ina t e s here

48

49 f i l ename=’ c o o r d i n a t e f i l e ’

50 f i l e p a t h= main f i l epa th + ’ / ’ + f i l ename + ’ . txt ’

51 f i d=open ( f i l e p a t h , ’ r ’ )

52 sp r i ng coo rd = [ ] ; s p r i n g i d e n t i f i e r =[ ]

53 f o r i in range ( spring Np ) :

54 temp= f i d . r e a d l i n e ( ) . s p l i t ( )

55 temp=[ f l o a t ( j ) f o r j in temp ]#convert the coord inate s t r i n g s to f l o a t

and r o t a t e us ing matrix [ 1 0 0 , 0 0 1 , 0 −1 0 ]

56 s p r i n g i d e n t i f i e r . append ( temp [ 0 ] )

57 a=temp[−2]

58 temp[−2]=temp[−1]+ p l a t e t h i c k n e s s +( w i r e d i a /2)#d i s p l a c i n g to c o r r e c t

the he ight

59 temp[−1]=−a

60 sp r i ng coo rd . append ( temp [ 2 : ] )

61
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62 f i d . c l o s e

63 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−#

64

65 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#

66 #−−−−−−ABAQUS Main Fi l e−−−−−−−#

67 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#

68 ”””

69 Abaqus s c r i p t i n g beg ins

70 ”””

71 from abaqus import ∗

72 from abaqusConstants import ∗

73 #c r e a t i n g a model

74 springModel=mdb. Model (name=’ Spring ’ )

75 #−−−−−−−Parts−−−−−−−−−−−−−−#

76 ”””

77 Create a l l geometr ic par t s and prepare them f o r adequate meshing by

p a r t i t i o n i n g them

78 ”””

79 import part

80

81 #−−−−−−part f o r spr ing−−−−−−−#

82 #c r e a t e a part f o r the spr ing

83 spr ingPart = springModel . Part (name=’ Spring ’ , d imens i ona l i t y= THREE D,

type=DEFORMABLE BODY)

84 #c r e a t i n g wire s p l i n e f o r the spr ing us ing spr i gn coo rd ina t e s

85 spr ingWire=spr ingPart . WirePolyLine ( po in t s=spr ing coord , mergeType=

SEPARATE, meshable=ON, smoothClosedSpl ine=ON)

86 #−−−−−−Parts creadted−−−−−−−−−#

87

88 #−−−−−−Mater ia l−−−−−−−−−−−#

89 ”””

90 Create Mate r i a l s with mate r i a l p r o p e r t i e s f o r p l a t e and spr ing

91 ”””

92 import mate r i a l

93 #c r e a t e mate r i a l
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94 sp r ingMate r i a l = springModel . Mater ia l (name=’ Spring Mater ia l ’ , d e s c r i p t i o n

=’ spr ing s t e e l ’ )

95 #a s s i g n youngs modulus and po i s s on s r a t i o to both the m a t e r i a l s

96 s p r i n g e l a s t i c P r o p e r t i e s= ( springyoungmodulus , p o i s s o n r a t i o )

97 sp r ingMate r i a l . E l a s t i c ( t a b l e =( s p r i n g e l a s t i c P r o p e r t i e s , ) )

98 #−−−Mater i a l s Created−−−−−#

99

100 #−−−Beam p r o f i l e −−−−−−#

101 ”””

102 Create c r o s s s e c t i o n a l p r o f i l e f o r the Beam elements

103 ”””

104 #c r e a t i n g the beam c r o s s s e c t i o n f o r sp r ing

105 s p r i n g P r o f i l e = springModel . C i r c u l a r P r o f i l e (name=’ C i r cu l a r ’ , r=w i r e d i a

/2)

106 #−−−−−−Beam p r o f i l e −−−−#

107

108 #−−−−−Sec t i on and Orientat ion−−−−#

109 ”””

110 Create Sec t i on s f o r the d i f f e r e n t P r o p e r t i e s and a s s i g n them to the

r e s p e c t i v e par t s

111 ”””

112 import s e c t i o n

113

114 #c r e a t i n g beam s e c t i o n f o r sp r ing

115 s p r i n g S e c t i o n = springModel . BeamSection (name=’ Spring Sec t i on ’ ,

i n t e g r a t i o n=DURING ANALYSIS, p r o f i l e=s p r i n g P r o f i l e . name , mate r i a l=

spr ingMate r i a l . name)

116 #s e c t i o n ass ignements to spr ing

117 wi r e r eg i on = spr ingPart . edges

118 spr ingPart . Sect ionAssignment ( r eg i on =(wire reg ion , ) , sectionName =

s p r i n g S e c t i o n . name)

119

120 #beam o r i e n t a t i o n ass ignment here

121 ”””
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122 For d e f i n i n g we are tak ing a r e f e r e n c e vector , the g l o b a l Y vec to r . We

f i n d the Tangent ia l vec to r

123 us ing coo rd ina t e s o f the i t h edge and f i n d the c r o s s product with the

r e f e r e n c e vec to r . This new vecto r , n1 ,

124 i s e s s e n t i a l l y orthogona l to the t a n g e n t i a l vec to r we j u s t need to

a s s i g n t h i s as the o r i e n t a t i o n o f the beam

125 ”””

126 #y = ( 0 . 0 , 1 . 0 , 0 . 0 ) #g l o b a l y vec to r

127 #The c r o s s product t x y comes out to be (−t3 , 0 , t1 )

128 f o r i in range ( l en ( spr ingPart . edges )−1) :

129 xt=spr ing coo rd [ i +1][0]− sp r i ng coo rd [ i ] [ 0 ]#x component

130 yt=spr ing coo rd [ i +1][1]− sp r i ng coo rd [ i ] [ 1 ]#y component

131 zt=spr ing coo rd [ i +1][2]− sp r i ng coo rd [ i ] [ 2 ]#z component

132 l e n t =(xt∗∗2+yt∗∗2+ zt ∗∗2) ∗∗ ( 0 . 5 )#length o f edge t a n g e n t i a l vec to r

133 t=(xt / lent , yt / l ent , z t / l e n t )# edge t a n g e n t i a l vec to r

134 n1=(−1∗t [ 2 ] , 0 . 0 , t [ 0 ] )#c r o s s product o f t x y #hard coded here

135 r eg i on=spr ingPart . edges . f indAt ( ( ( sp r ing coo rd [ i +1][0]+ sp r ing coo rd [ i

] [ 0 ] ) /2 ,

136 ( sp r i ng coo rd [ i +1][1]+ sp r ing coo rd [ i ] [ 1 ] ) /2 , ( sp r i ng coo rd [ i +1][2]+

sp r ing coo rd [ i ] [ 2 ] ) /2) ) #f i n d i n g cooresponding edge us ing mid

po int o f edge

137 spr ingPart . ass ignBeamSect ionOr ientat ion ( method=N1 COSINES , r eg i on =(

reg ion , ) , n1=n1 )

138 #−−−−Sec t i on s and o r i e n t a t i o n created−−−−−−−#

139

140 #−−−−−Assembly−−−−−−−#

141 ”””

142 Assemble i n s t a n c e s o f the par t s i n to a g l o b a l coo rd inate system

143 ”””

144 import assembly

145 import r eg i onToo l s e t

146 #c r e a t e part i n s t a n c e s

147 springAssembly =springModel . rootAssembly

148 s p r i ng I n s t a nc e=springAssembly . In s tance (name=’ Spring Ins tance ’ , part=

spr ingPart , dependent=OFF)
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149 #−−−−Mesh−−−−−−−−#

150 ”””

151 Create Mesh f o r the i n s t a n c e s in the assembly and c r e a t e s e t s o f nodes

f o r a p p l i c a t i o n o f BC

152 ”””

153 import mesh

154

155 ##code f o r meshing the spr ing

156 #s e l e c t type o f element and a s s i g n to the in s t ance

157 elemType = mesh . ElemType ( elemCode=B32 , e lemLibrary=STANDARD)

158 springAssembly . setElementType ( r e g i o n s =( s p r i n g I n s t a nc e . edges , ) , elemTypes

=(elemType , ) )

159 #seed the in s t anc e

160 springAssembly . s eedPart Ins tance ( r e g i o n s =( spr ing Ins tance , ) , s i z e=

spr ingmeshSize )

161 #mesh the in s t anc e

162 springAssembly . generateMesh ( r e g i o n s =( spr ing Ins tance , ) )

163 #−−−−−−−−Mesh created−−−−−−−−−#

164

165 #a s s i g n v a r i a b l e s to coo rd ina t e s o f r e f e r e n c e po in t s

166 r e f p t b o t t o m c e n t e r =(bottom center [ 0 ] , bottom center [1 ]+ p l a t e t h i c k n e s s+

w i r e d i a /2 , bottom center [ 2 ] )

167 r e f p t t o p c e n t e r =( t o p c e n t e r [ 0 ] , t op c e n t e r [1]− p l a t e t h i c k n e s s−w i r e d i a

/2 , t o p c e n t e r [ 2 ] )

168 r e f b o t t o m l o a d i n g p t =(bottom center [ 0 ] , bottom center [1 ]+ p l a t e t h i c k n e s s

+w i r e d i a /2− s p r i n g h e i g h t /4 , bottom center [ 2 ] ) #tak ing a d i s t anc e o f

s p r i n g h e i g h t /4 o f the load ing pt

169 r e f t o p l o a d i n g p t =( t o p c e n t e r [ 0 ] , t op c e n t e r [1]− p l a t e t h i c k n e s s−w i r e d i a

/2+ s p r i n g h e i g h t /4 , t o p c e n t e r [ 2 ] ) #tak ing a d i s t anc e o f

s p r i n g h e i g h t /4 o f the load ing pt

170 #c r e a t e r e f e r e n c e po in t s us ing above coo rd ina t e s

171 springAssembly . ReferencePoint ( r e f p t b o t t o m c e n t e r )

172 springAssembly . ReferencePoint ( r e f p t t o p c e n t e r )

173 springAssembly . ReferencePoint ( r e f b o t t o m l o a d i n g p t )

174 springAssembly . ReferencePoint ( r e f t o p l o a d i n g p t )



180

175 #springAssembly . ReferencePoint ( r e f r o t a t i o n p t )

176

177 rp1=springAssembly . r e f e r e n c e P o i n t s . f indAt ( r e f p t b o t t o m c e n t e r )

178 bottomcenterSet=springAssembly . Set (name=’ Bottom Center Ref pt ’ ,

r e f e r e n c e P o i n t s = ( rp1 , ) )

179

180 rp2=springAssembly . r e f e r e n c e P o i n t s . f indAt ( r e f p t t o p c e n t e r )

181 topcente rSe t=springAssembly . Set (name=’Top Center Ref pt ’ , r e f e r e n c e P o i n t s

= ( rp2 , ) )

182

183 #This loop c r e a t e s s p r i n g s on the lower and upper ha lve s o f the spr ing

us ing s p r i n g i d e n t i f i e r [ i ] to de t e c t whether to make or not

184 #a l s o the loop i s making connector s with non−l i n e a r behavior to s imulate

the contac t s . These connector s are connected to a r e f e r e n c e po int

on e i t h e r o f the p l a t e s and corre spond ing spr ing po int

185

186 import connectorBehavior # requ i r ed f o r connector s

187 #datum Csys r equ i r ed f o r connector o r i e n t a t i o n

188 connector datum1=springAssembly . DatumCsysByThreePoints (name=’ Connector

Datum1 ’ , coordSysType= CARTESIAN, o r i g i n=bottom center , po int1=(

bottom center [ 0 ] , bottom center [1 ]+ p l a t e t h i c k n e s s , bottom center [ 2 ] ) ,

189 point2=(bottom center [ 0 ] , bottom center [ 1 ] , bottom center [2 ]+ p l a t e r a d i u s

) ) ;

190 connector datum2=springAssembly . DatumCsysByThreePoints (name=’ Connector

Datum2 ’ , coordSysType= CARTESIAN, o r i g i n=bottom center , po int1=(

bottom center [ 0 ] , bottom center [1]− p l a t e t h i c k n e s s , bottom center [ 2 ] ) ,

191 point2=(bottom center [ 0 ] , bottom center [ 1 ] , bottom center [2 ]+ p l a t e r a d i u s

) ) ;

192 connector datum1=springAssembly . datums [ connector datum1 . id ]#datum ob j e c t

193 connector datum2=springAssembly . datums [ connector datum2 . id ]

194

195 bottomplateSet =[ ]

196 topp la t eSe t =[ ]

197 bottomturnSet =[ ]

198 topturnSet =[ ]
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199 bot tomco l l e c to r =[ ]

200

201 f o r i in range ( l en ( s p r i n g i d e n t i f i e r ) ) :

202

203 i f s p r i n g i d e n t i f i e r [ i ]==1:

204 r p i=s p r i n g I n s t a nc e . v e r t i c e s . f indAt ( sp r ing coo rd [ i ] )

205 temp=s p r i n g I n s t a n c e . v e r t i c e s . getByBoundingSphere ( c en te r=spr ing coo rd

[ i ] , r ad iu s=eps )

206 bottomturnSet . append ( temp )

207 #c r e a t i n g r a d i a l connector connect ing the cente r pt with the dead

turn spr ing pts ( r a d i a l connector )

208 #c r e a t e datum csys f o r connector

209 temp datum=springAssembly . DatumCsysByThreePoints (name=’ Connector

Datum#’+s t r ( i ) , coordSysType= CARTESIAN, o r i g i n=

re f p t bo t tom cent e r , po int1=spr ing coo rd [ i ] ,

210 point2=bottom center ) ;

211 temp datum=springAssembly . datums [ temp datum . id ]

212 co nne c t o r l e n =(( sp r ing coo rd [ i ] [ 0 ] − r e f p t b o t t o m c e n t e r [ 0 ] ) ∗∗2+(

sp r ing coo rd [ i ] [ 1 ] − r e f p t b o t t o m c e n t e r [ 1 ] ) ∗∗2+( sp r ing coo rd [ i

] [ 2 ] − r e f p t b o t t o m c e n t e r [ 2 ] ) ∗∗2) ∗∗0 .5

213 #c r e a t e e l a s t i c i t y f o r connector

214 temp behavior=connectorBehavior . Connec to rE la s t i c i t y ( behavior=

NONLINEAR, ta b l e =((− r a d i a l s p r i n g s t i f f n e s s ∗(10∗

s p r i n g i n i t i a l r a d i u s ) ,

215 −(10∗ s p r i n g i n i t i a l r a d i u s ) ) ,(0 ,−( connec to r l en−eps−

s p r i n g i n i t i a l r a d i u s ) ) , ( 0 , 0 ) , ( r a d i a l s p r i n g t e n s i o n ∗(10∗

s p r i n g i n i t i a l r a d i u s ) , (10∗ s p r i n g i n i t i a l r a d i u s ) ) ) , components

=(1 , ) )

216 #connector s e c t i o n d e f i n i t i o n

217 temp sec1=springModel . ConnectorSect ion (name=’ non−l i n e a r−r a d i a l ’+s t r

( i ) , t r an s l a t i ona lType=AXIAL, behaviorOptions=(temp behavior , ) )

218 #c r e a t e wire f o r connector

219 tempwire=springAssembly . WirePolyLine ( po in t s =(( rp1 ) , ( r p i ) ) , mergeType=

IMPRINT, meshable=OFF)
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220 edge=springAssembly . edges . f indAt ( ( ( sp r i ng coo rd [ i ] [ 0 ] +

r e f p t b o t t o m c e n t e r [ 0 ] ) /2 , ( sp r ing coo rd [ i ] [ 1 ] +

r e f p t b o t t o m c e n t e r [ 1 ] ) /2 , ( sp r ing coo rd [ i ] [ 2 ] +

r e f p t b o t t o m c e n t e r [ 2 ] ) /2) )

221 csa =springAssembly . Sect ionAssignment ( r eg i on =(edge , ) , sectionName=

temp sec1 . name)

222 springAssembly . ConnectorOrientat ion ( r eg i on=csa . ge tSet ( ) , l o ca lCsys1=

temp datum )

223 e l i f s p r i n g i d e n t i f i e r [ i ]==2:

224 r p i=s p r i n g I n s t a nc e . v e r t i c e s . f indAt ( sp r ing coo rd [ i ] )

225 temp=s p r i n g I n s t a n c e . v e r t i c e s . getByBoundingSphere ( c en te r=spr ing coo rd

[ i ] , r ad iu s=eps )

226 #bottomturnSet . append ( temp )

227 #c r e a t i n g r a d i a l connector connect ing the cente r pt with the dead

turn spr ing pts ( r a d i a l connector )

228 #c r e a t e datum csys f o r connector

229 temp datum=springAssembly . DatumCsysByThreePoints (name=’ Connector

Datum#’+s t r ( i ) , coordSysType= CARTESIAN, o r i g i n=

re f p t bo t tom cent e r , po int1=spr ing coo rd [ i ] ,

230 point2=bottom center ) ;

231 temp datum=springAssembly . datums [ temp datum . id ]

232 co nne c t o r l e n =(( sp r ing coo rd [ i ] [ 0 ] − r e f p t b o t t o m c e n t e r [ 0 ] ) ∗∗2+(

sp r ing coo rd [ i ] [ 1 ] − r e f p t b o t t o m c e n t e r [ 1 ] ) ∗∗2+( sp r ing coo rd [ i

] [ 2 ] − r e f p t b o t t o m c e n t e r [ 2 ] ) ∗∗2) ∗∗0 .5

233 #c r e a t e e l a s t i c i t y f o r connector

234 temp behavior=connectorBehavior . Connec to rE la s t i c i t y ( behavior=

NONLINEAR, ta b l e =((− r a d i a l s p r i n g s t i f f n e s s ∗(10∗

s p r i n g i n i t i a l r a d i u s ) ,

235 −(10∗ s p r i n g i n i t i a l r a d i u s ) ) ,(0 ,−( connec to r l en−eps−

s p r i n g i n i t i a l r a d i u s ) ) , ( 0 , 0 ) , ( r a d i a l s p r i n g t e n s i o n ∗(10∗

s p r i n g i n i t i a l r a d i u s ) , (10∗ s p r i n g i n i t i a l r a d i u s ) ) ) , components

=(1 , ) )

236 #connector s e c t i o n d e f i n i t i o n

237 temp sec1=springModel . ConnectorSect ion (name=’ non−l i n e a r−r a d i a l ’+s t r

( i ) , t r an s l a t i ona lType=AXIAL, behaviorOptions=(temp behavior , ) )
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238 #c r e a t e wire f o r connector

239 tempwire=springAssembly . WirePolyLine ( po in t s =(( rp1 ) , ( r p i ) ) , mergeType=

IMPRINT, meshable=OFF)

240 edge=springAssembly . edges . f indAt ( ( ( sp r i ng coo rd [ i ] [ 0 ] +

r e f p t b o t t o m c e n t e r [ 0 ] ) /2 , ( sp r ing coo rd [ i ] [ 1 ] +

r e f p t b o t t o m c e n t e r [ 1 ] ) /2 , ( sp r ing coo rd [ i ] [ 2 ] +

r e f p t b o t t o m c e n t e r [ 2 ] ) /2) )

241 csa =springAssembly . Sect ionAssignment ( r eg i on =(edge , ) , sectionName=

temp sec1 . name)

242 springAssembly . ConnectorOrientat ion ( r eg i on=csa . ge tSet ( ) , l o ca lCsys1=

temp datum )

243 h=spr ing coo rd [ 0 ] [ 1 ] − w i r e d i a /2

244 springAssembly . ReferencePoint ( ( sp r i ng coo rd [ i ] [ 0 ] , h , sp r ing coo rd [ i

] [ 2 ] ) ) ;#r e f po int on bottom p l a t e w i l l be same as spr ing coord

only that Y=p l a t e y

245 temp re fpt=springAssembly . r e f e r e n c e P o i n t s . f indAt ( ( sp r ing coo rd [ i

] [ 0 ] , h , sp r ing coo rd [ i ] [ 2 ] ) )

246 temp spr ing pt=s pr i ng I n s t a nc e . v e r t i c e s . f indAt ( sp r ing coo rd [ i ] )

247 springAssembly . WirePolyLine ( po in t s =(( temp re fpt ) , ( temp spr ing pt ) ) ,

mergeType=IMPRINT, meshable=OFF)

248

249 temp=connectorBehavior . Connec to rE la s t i c i t y ( behavior=NONLINEAR, t a b l e

=((− a x i a l s p r i n g s t i f f n e s s ∗( s p r i n g h e i g h t+spr ing coo rd [ i ] [ 1 ] −

sp r i ng coo rd [ 0 ] [ 1 ] ) ,

250 −( s p r i n g h e i g h t+spr ing coo rd [ i ] [ 1 ] − sp r i ng coo rd [ 0 ] [ 1 ] ) ) ,(− eps ∗(

sp r i ng coo rd [ i ] [ 1 ] − sp r i ng coo rd [ 0 ] [ 1 ] ) ,−( sp r ing coo rd [ i ] [ 1 ] −

sp r i ng coo rd [ 0 ] [ 1 ] + eps ) ) , ( 0 , 0 ) ,

251 ( eps ∗(10∗ s p r i n g i n i t i a l r a d i u s ) , (10∗ s p r i n g i n i t i a l r a d i u s ) ) ) ,

components =(1 ,) )

252 temp sec=springModel . ConnectorSect ion (name=’ non−l i n e a r−ax ia l−bottom

’+s t r ( i ) , t r an s l a t i ona lType=SLOT, behaviorOptions=(temp , ) )

253 #connector ass ignment

254 edge=springAssembly . edges . f indAt ( ( sp r i ng coo rd [ i ] [ 0 ] , h , sp r ing coo rd [

i ] [ 2 ] ) )
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255 csa =springAssembly . Sect ionAssignment ( r eg i on =(edge , ) , sectionName=

temp sec . name)

256 springAssembly . ConnectorOrientat ion ( r eg i on=csa . ge tSet ( ) , l o ca lCsys1=

connector datum1 )

257 bottomplateSet . append ( temp re fpt )

258 h=spr ing coo rd [−1] [1 ]+ w i r e d i a /2

259 springAssembly . ReferencePoint ( ( sp r i ng coo rd [ i ] [ 0 ] , h , sp r ing coo rd [ i

] [ 2 ] ) ) ;#r e f pointon bottom p l a t e w i l be same as spr ing coord

only that Y=0

260 temp re fpt=springAssembly . r e f e r e n c e P o i n t s . f indAt ( ( sp r ing coo rd [ i

] [ 0 ] , h , sp r ing coo rd [ i ] [ 2 ] ) )

261 temp spr ing pt=s pr i ng I n s t a nc e . v e r t i c e s . f indAt ( sp r ing coo rd [ i ] )

262 springAssembly . WirePolyLine ( po in t s =(( temp re fpt ) , ( temp spr ing pt ) ) ,

mergeType=IMPRINT, meshable=OFF)

263 temp=connectorBehavior . Connec to rE la s t i c i t y ( behavior=NONLINEAR, t a b l e

=((− a x i a l s p r i n g s t i f f n e s s ∗( s p r i n g h e i g h t +( sp r ing coo rd [−1] [1]−

sp r i ng coo rd [ i ] [ 1 ] ) ) ,

264 −( s p r i n g h e i g h t +( sp r ing coo rd [−1] [1]− sp r i ng coo rd [ i ] [ 1 ] ) ) ) ,(− eps ∗(

sp r i ng coo rd [−1] [1]− sp r i ng coo rd [ i ] [ 1 ] ) ,−( sp r ing coo rd [−1] [1]−

sp r i ng coo rd [ i ] [ 1 ] + eps ) ) , ( 0 , 0 ) ,

265 ( eps ∗(10∗ s p r i n g i n i t i a l r a d i u s ) , (10∗ s p r i n g i n i t i a l r a d i u s ) ) ) ,

components =(1 ,) )

266 temp sec=springModel . ConnectorSect ion (name=’ non−l i n e a r−ax ia l−top ’+

s t r ( i ) , t r an s l a t i ona lType=SLOT, behaviorOptions=(temp , ) )

267 edge=springAssembly . edges . f indAt ( ( sp r i ng coo rd [ i ] [ 0 ] , h , sp r ing coo rd [

i ] [ 2 ] ) )

268 csa =springAssembly . Sect ionAssignment ( r eg i on =(edge , ) , sectionName=

temp sec . name)

269 springAssembly . ConnectorOrientat ion ( r eg i on=csa . ge tSet ( ) , l o ca lCsys1=

connector datum2 )

270 topp la t eSe t . append ( temp re fpt )

271 e l i f s p r i n g i d e n t i f i e r [ i ]==3:

272 h=spr ing coo rd [ 0 ] [ 1 ] − w i r e d i a /2
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273 springAssembly . ReferencePoint ( ( sp r i ng coo rd [ i ] [ 0 ] , h , sp r ing coo rd [ i

] [ 2 ] ) ) ;#r e f po int on bottom p l a t e w i l l be same as spr ing coord

only that Y=p l a t e y

274 temp re fpt=springAssembly . r e f e r e n c e P o i n t s . f indAt ( ( sp r ing coo rd [ i

] [ 0 ] , h , sp r ing coo rd [ i ] [ 2 ] ) )

275 temp spr ing pt=s pr i ng I n s t a nc e . v e r t i c e s . f indAt ( sp r ing coo rd [ i ] )

276 springAssembly . WirePolyLine ( po in t s =(( temp re fpt ) , ( temp spr ing pt ) ) ,

mergeType=IMPRINT, meshable=OFF)

277 temp=connectorBehavior . Connec to rE la s t i c i t y ( behavior=NONLINEAR, t a b l e

=((− a x i a l s p r i n g s t i f f n e s s ∗( s p r i n g h e i g h t+spr ing coo rd [ i ] [ 1 ] −

sp r i ng coo rd [ 0 ] [ 1 ] ) ,

278 −( s p r i n g h e i g h t+spr ing coo rd [ i ] [ 1 ] − sp r i ng coo rd [ 0 ] [ 1 ] ) ) ,(− eps ∗(

sp r i ng coo rd [ i ] [ 1 ] − sp r i ng coo rd [ 0 ] [ 1 ] ) ,−( sp r ing coo rd [ i ] [ 1 ] −

sp r i ng coo rd [ 0 ] [ 1 ] + eps ) ) , ( 0 , 0 ) ,

279 ( eps ∗(10∗ s p r i n g i n i t i a l r a d i u s ) , (10∗ s p r i n g i n i t i a l r a d i u s ) ) ) ,

components =(1 ,) )

280 temp sec=springModel . ConnectorSect ion (name=’ non−l i n e a r−ax ia l−bottom

’+s t r ( i ) , t r an s l a t i ona lType=SLOT, behaviorOptions=(temp , ) )

281 #connector ass ignment

282 edge=springAssembly . edges . f indAt ( ( sp r i ng coo rd [ i ] [ 0 ] , h , sp r ing coo rd [

i ] [ 2 ] ) )

283 csa =springAssembly . Sect ionAssignment ( r eg i on =(edge , ) , sectionName=

temp sec . name)

284 springAssembly . ConnectorOrientat ion ( r eg i on=csa . ge tSet ( ) , l o ca lCsys1=

connector datum1 )

285 bottomplateSet . append ( temp re fpt )

286 h=spr ing coo rd [−1] [1 ]+ w i r e d i a /2

287 springAssembly . ReferencePoint ( ( sp r i ng coo rd [ i ] [ 0 ] , h , sp r ing coo rd [ i

] [ 2 ] ) ) ;#r e f pointon bottom p l a t e w i l be same as spr ing coord

only that Y=0

288 temp re fpt=springAssembly . r e f e r e n c e P o i n t s . f indAt ( ( sp r ing coo rd [ i

] [ 0 ] , h , sp r ing coo rd [ i ] [ 2 ] ) )

289 temp spr ing pt=s pr i ng I n s t a nc e . v e r t i c e s . f indAt ( sp r ing coo rd [ i ] )

290 springAssembly . WirePolyLine ( po in t s =(( temp re fpt ) , ( temp spr ing pt ) ) ,

mergeType=IMPRINT, meshable=OFF)
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291 temp=connectorBehavior . Connec to rE la s t i c i t y ( behavior=NONLINEAR, t a b l e

=((− a x i a l s p r i n g s t i f f n e s s ∗( s p r i n g h e i g h t +( sp r ing coo rd [−1] [1]−

sp r i ng coo rd [ i ] [ 1 ] ) ) ,

292 −( s p r i n g h e i g h t +( sp r ing coo rd [−1] [1]− sp r i ng coo rd [ i ] [ 1 ] ) ) ) ,(− eps ∗(

sp r i ng coo rd [−1] [1]− sp r i ng coo rd [ i ] [ 1 ] ) ,−( sp r ing coo rd [−1] [1]−

sp r i ng coo rd [ i ] [ 1 ] + eps ) ) , ( 0 , 0 ) ,

293 ( eps ∗(10∗ s p r i n g i n i t i a l r a d i u s ) , (10∗ s p r i n g i n i t i a l r a d i u s ) ) ) ,

components =(1 ,) )

294 temp sec=springModel . ConnectorSect ion (name=’ non−l i n e a r−ax ia l−top ’+

s t r ( i ) , t r an s l a t i ona lType=SLOT, behaviorOptions=(temp , ) )

295 edge=springAssembly . edges . f indAt ( ( sp r i ng coo rd [ i ] [ 0 ] , h , sp r ing coo rd [

i ] [ 2 ] ) )

296 csa =springAssembly . Sect ionAssignment ( r eg i on =(edge , ) , sectionName=

temp sec . name)

297 springAssembly . ConnectorOrientat ion ( r eg i on=csa . ge tSet ( ) , l o ca lCsys1=

connector datum2 )

298 topp la t eSe t . append ( temp re fpt )

299 e l i f s p r i n g i d e n t i f i e r [ i ]==4:

300 r p i=s p r i n g I n s t a nc e . v e r t i c e s . f indAt ( sp r ing coo rd [ i ] )

301 temp=s p r i n g I n s t a n c e . v e r t i c e s . getByBoundingSphere ( c en te r=spr ing coo rd

[ i ] , r ad iu s=eps )

302 temp datum=springAssembly . DatumCsysByThreePoints (name=’ Connector

Datum#’+s t r ( i ) , coordSysType= CARTESIAN, o r i g i n=r e f p t t o p c e n t e r

, po int1=spr ing coo rd [ i ] ,

303 point2=to p c e n t e r ) ;

304 temp datum=springAssembly . datums [ temp datum . id ]

305 co nne c t o r l e n =(( sp r ing coo rd [ i ] [ 0 ] − r e f p t t o p c e n t e r [ 0 ] ) ∗∗2+(

sp r ing coo rd [ i ] [ 1 ] − r e f p t t o p c e n t e r [ 1 ] ) ∗∗2+( sp r ing coo rd [ i ] [ 2 ] −

r e f p t t o p c e n t e r [ 2 ] ) ∗∗2) ∗∗0 .5

306 #c r e a t e e l a s t i c i t y f o r connector

307 temp behavior=connectorBehavior . Connec to rE la s t i c i t y ( behavior=

NONLINEAR, ta b l e =((− r a d i a l s p r i n g s t i f f n e s s ∗(10∗

s p r i n g i n i t i a l r a d i u s ) ,

308 −(10∗ s p r i n g i n i t i a l r a d i u s ) ) ,(0 ,−( connec to r l en−eps−

s p r i n g i n i t i a l r a d i u s ) ) , ( 0 , 0 ) , ( r a d i a l s p r i n g t e n s i o n ∗(10∗
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s p r i n g i n i t i a l r a d i u s ) , (10∗ s p r i n g i n i t i a l r a d i u s ) ) ) , components

=(1 , ) )

309 #connector s e c t i o n d e f i n i t i o n

310 temp sec=springModel . ConnectorSect ion (name=’ non−l i n e a r−r a d i a l ’+s t r (

i ) , t r an s l a t i ona lType=AXIAL, behaviorOptions=(temp behavior , ) )

311 #c r e a t e wire f o r connector

312 springAssembly . WirePolyLine ( po in t s =(( rp2 ) , ( r p i ) ) , mergeType=IMPRINT,

meshable=OFF)

313 edge=springAssembly . edges . f indAt ( ( ( sp r i ng coo rd [ i ] [ 0 ] +

r e f p t t o p c e n t e r [ 0 ] ) /2 , ( sp r ing coo rd [ i ] [ 1 ] + r e f p t t o p c e n t e r

[ 1 ] ) /2 , ( sp r i ng coo rd [ i ] [ 2 ] + r e f p t t o p c e n t e r [ 2 ] ) /2) )

314 csa =springAssembly . Sect ionAssignment ( r eg i on =(edge , ) , sectionName=

temp sec . name)

315 springAssembly . ConnectorOrientat ion ( r eg i on=csa . ge tSet ( ) , l o ca lCsys1=

temp datum )

316 h=spr ing coo rd [ 0 ] [ 1 ] − w i r e d i a /2

317 springAssembly . ReferencePoint ( ( sp r i ng coo rd [ i ] [ 0 ] , h , sp r ing coo rd [ i

] [ 2 ] ) ) ;#r e f po int on bottom p l a t e w i l l be same as spr ing coord

only that Y=p l a t e y

318 temp re fpt=springAssembly . r e f e r e n c e P o i n t s . f indAt ( ( sp r ing coo rd [ i

] [ 0 ] , h , sp r ing coo rd [ i ] [ 2 ] ) )

319 temp spr ing pt=s pr i ng I n s t a nc e . v e r t i c e s . f indAt ( sp r ing coo rd [ i ] )

320 springAssembly . WirePolyLine ( po in t s =(( temp re fpt ) , ( temp spr ing pt ) ) ,

mergeType=IMPRINT, meshable=OFF)

321 temp=connectorBehavior . Connec to rE la s t i c i t y ( behavior=NONLINEAR, t a b l e

=((− a x i a l s p r i n g s t i f f n e s s ∗( s p r i n g h e i g h t+spr ing coo rd [ i ] [ 1 ] −

sp r i ng coo rd [ 0 ] [ 1 ] ) ,

322 −( s p r i n g h e i g h t+spr ing coo rd [ i ] [ 1 ] − sp r i ng coo rd [ 0 ] [ 1 ] ) ) ,(− eps ∗(

sp r i ng coo rd [ i ] [ 1 ] − sp r i ng coo rd [ 0 ] [ 1 ] ) ,−( sp r ing coo rd [ i ] [ 1 ] −

sp r i ng coo rd [ 0 ] [ 1 ] + eps ) ) , ( 0 , 0 ) ,

323 ( eps ∗(10∗ s p r i n g i n i t i a l r a d i u s ) , (10∗ s p r i n g i n i t i a l r a d i u s ) ) ) ,

components =(1 ,) )

324 temp sec=springModel . ConnectorSect ion (name=’ non−l i n e a r−ax ia l−bottom

’+s t r ( i ) , t r an s l a t i ona lType=SLOT, behaviorOptions=(temp , ) )

325 #connector ass ignment
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326 edge=springAssembly . edges . f indAt ( ( sp r i ng coo rd [ i ] [ 0 ] , h , sp r ing coo rd [

i ] [ 2 ] ) )

327 csa =springAssembly . Sect ionAssignment ( r eg i on =(edge , ) , sectionName=

temp sec . name)

328 springAssembly . ConnectorOrientat ion ( r eg i on=csa . ge tSet ( ) , l o ca lCsys1=

connector datum1 )

329 bottomplateSet . append ( temp re fpt )

330 h=spr ing coo rd [−1] [1 ]+ w i r e d i a /2

331 springAssembly . ReferencePoint ( ( sp r i ng coo rd [ i ] [ 0 ] , h , sp r ing coo rd [ i

] [ 2 ] ) ) ;#r e f pointon bottom p l a t e w i l be same as spr ing coord

only that Y=0

332 temp re fpt=springAssembly . r e f e r e n c e P o i n t s . f indAt ( ( sp r ing coo rd [ i

] [ 0 ] , h , sp r ing coo rd [ i ] [ 2 ] ) )

333 temp spr ing pt=s pr i ng I n s t a nc e . v e r t i c e s . f indAt ( sp r ing coo rd [ i ] )

334 springAssembly . WirePolyLine ( po in t s =(( temp re fpt ) , ( temp spr ing pt ) ) ,

mergeType=IMPRINT, meshable=OFF)

335 temp=connectorBehavior . Connec to rE la s t i c i t y ( behavior=NONLINEAR, t a b l e

=((− a x i a l s p r i n g s t i f f n e s s ∗( s p r i n g h e i g h t +( sp r ing coo rd [−1] [1]−

sp r i ng coo rd [ i ] [ 1 ] ) ) ,

336 −( s p r i n g h e i g h t +( sp r ing coo rd [−1] [1]− sp r i ng coo rd [ i ] [ 1 ] ) ) ) ,(− eps ∗(

sp r i ng coo rd [−1] [1]− sp r i ng coo rd [ i ] [ 1 ] ) ,−( sp r ing coo rd [−1] [1]−

sp r i ng coo rd [ i ] [ 1 ] + eps ) ) , ( 0 , 0 ) ,

337 ( eps ∗(10∗ s p r i n g i n i t i a l r a d i u s ) , (10∗ s p r i n g i n i t i a l r a d i u s ) ) ) ,

components =(1 ,) )

338 temp sec=springModel . ConnectorSect ion (name=’ non−l i n e a r−ax ia l−top ’+

s t r ( i ) , t r an s l a t i ona lType=SLOT, behaviorOptions=(temp , ) )

339 edge=springAssembly . edges . f indAt ( ( sp r i ng coo rd [ i ] [ 0 ] , h , sp r ing coo rd [

i ] [ 2 ] ) )

340 csa =springAssembly . Sect ionAssignment ( r eg i on =(edge , ) , sectionName=

temp sec . name)

341 springAssembly . ConnectorOrientat ion ( r eg i on=csa . ge tSet ( ) , l o ca lCsys1=

connector datum2 )

342 topp la t eSe t . append ( temp re fpt )

343 e l i f s p r i n g i d e n t i f i e r [ i ]==5:

344 r p i=s p r i n g I n s t a nc e . v e r t i c e s . f indAt ( sp r ing coo rd [ i ] )
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345 temp=s p r i n g I n s t a n c e . v e r t i c e s . getByBoundingSphere ( c en te r=spr ing coo rd

[ i ] , r ad iu s=eps )

346 topturnSet . append ( temp )

347 temp datum=springAssembly . DatumCsysByThreePoints (name=’ Connector

Datum#’+s t r ( i ) , coordSysType= CARTESIAN, o r i g i n=r e f p t t o p c e n t e r

, po int1=spr ing coo rd [ i ] ,

348 point2=to p c e n t e r ) ;

349 temp datum=springAssembly . datums [ temp datum . id ]

350 co nne c t o r l e n =(( sp r ing coo rd [ i ] [ 0 ] − r e f p t t o p c e n t e r [ 0 ] ) ∗∗2+(

sp r ing coo rd [ i ] [ 1 ] − r e f p t t o p c e n t e r [ 1 ] ) ∗∗2+( sp r ing coo rd [ i ] [ 2 ] −

r e f p t t o p c e n t e r [ 2 ] ) ∗∗2) ∗∗0 .5

351 #c r e a t e e l a s t i c i t y f o r connector

352 temp behavior=connectorBehavior . Connec to rE la s t i c i t y ( behavior=

NONLINEAR, ta b l e =((− r a d i a l s p r i n g s t i f f n e s s ∗(10∗

s p r i n g i n i t i a l r a d i u s ) ,

353 −(10∗ s p r i n g i n i t i a l r a d i u s ) ) ,(0 ,−( connec to r l en−eps−

s p r i n g i n i t i a l r a d i u s ) ) , ( 0 , 0 ) , ( r a d i a l s p r i n g t e n s i o n ∗(10∗

s p r i n g i n i t i a l r a d i u s ) , (10∗ s p r i n g i n i t i a l r a d i u s ) ) ) , components

=(1 , ) )

354 #connector s e c t i o n d e f i n i t i o n

355 temp sec=springModel . ConnectorSect ion (name=’ non−l i n e a r−r a d i a l ’+s t r (

i ) , t r an s l a t i ona lType=AXIAL, behaviorOptions=(temp behavior , ) )

356 #c r e a t e wire f o r connector

357 springAssembly . WirePolyLine ( po in t s =(( rp2 ) , ( r p i ) ) , mergeType=IMPRINT,

meshable=OFF)

358 edge=springAssembly . edges . f indAt ( ( ( sp r i ng coo rd [ i ] [ 0 ] +

r e f p t t o p c e n t e r [ 0 ] ) /2 , ( sp r ing coo rd [ i ] [ 1 ] + r e f p t t o p c e n t e r

[ 1 ] ) /2 , ( sp r i ng coo rd [ i ] [ 2 ] + r e f p t t o p c e n t e r [ 2 ] ) /2) )

359 csa =springAssembly . Sect ionAssignment ( r eg i on =(edge , ) , sectionName=

temp sec . name)

360 springAssembly . ConnectorOrientat ion ( r eg i on=csa . ge tSet ( ) , l o ca lCsys1=

temp datum )

361

362 r p i = s p r i n g I n s t a n c e . v e r t i c e s . getByBoundingSphere ( c en te r=spr ing coo rd

[ 0 ] , r ad iu s=eps )



190

363 rp f = s p r i n g I n s t a n c e . v e r t i c e s . getByBoundingSphere ( c en te r=spr ing coo rd

[−1] , r ad iu s=eps )

364

365 #now we need to c r e a t e s e t s o f bottomplate r e f e r e n c e po in t s and Top

p l a t e r e f e r e n c e po in t s

366 bottomplateSet=springAssembly . Set (name=’ Bottom Plate Ref pts ’ ,

r e f e r e n c e P o i n t s = tup l e ( bottomplateSet ) )

367 topp la t eSe t=springAssembly . Set (name=’Top Plate Ref pts ’ , r e f e r e n c e P o i n t s

=tup l e ( topp la t eSe t ) )

368 bot tomturn f i r s tSe t=springAssembly . Set (name=’ Bottom Turn 1 s t pt ’ , v e r t i c e s

= r p i )

369 t o p t u r n l a s t S e t=springAssembly . Set (name=’Top Turn l a s t pt ’ , v e r t i c e s = rp f

)

370

371 i f not ( not ( bottomturnSet ) ) :

372 springAssembly . Set (name=’ Al l Bottom Turn pts ’ , v e r t i c e s = tup l e (

bottomturnSet ) )

373 bottomturnSet=springAssembly . SetByBoolean (name=’ Bottom Turn pts ’ ,

ope ra t i on=DIFFERENCE, s e t s =(springAssembly . s e t s [ ’ A l l Bottom Turn

pts ’ ] , springAssembly . s e t s [ ’ Bottom Turn 1 s t pt ’ ] , ) )

374 de l springAssembly . s e t s [ ’ A l l Bottom Turn pts ’ ]

375 e l s e : no bottomturnSet = 1# i e True

376

377 i f not ( not ( topturnSet ) ) :

378 springAssembly . Set (name=’ Al l Top Turn pts ’ , v e r t i c e s = tup l e ( topturnSet

) )

379 topturnSet=springAssembly . SetByBoolean (name=’Top Turn pts ’ , ope ra t i on=

DIFFERENCE, s e t s =(springAssembly . s e t s [ ’ A l l Top Turn pts ’ ] ,

springAssembly . s e t s [ ’Top Turn l a s t pt ’ ] , ) )

380 de l springAssembly . s e t s [ ’ A l l Top Turn pts ’ ]

381 e l s e : no topturnSet = 1# i e True

382

383 connectorSet=springAssembly . Set ( edges=springAssembly . edges , name=’

Conectors ’ )

384 rp f = reg i onToo l s e t . Region ( v e r t i c e s=rp f )
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385 #c r e a t e a spr ing Dashpot connect ing top turn l a s t pt to a r e f e r e n c e pt

to s imulate f r i c t i o n on p l a t e

386 #c r e a t e r e f e r e n c e pt f o r sp r ing

387 l a s t p t=np . array ( sp r ing coo rd [−1])

388 s e c o n d l a s t p t=np . array ( sp r ing coo rd [−2])

389 v hat= ( l a s t p t−s e c o n d l a s t p t )

390 v hat= v hat /np . l i n a l g . norm( v hat )

391 r e f p t t o p t u r n s p r i n g=l a s t p t+p o s r e f p t s p r i n g t o p t u r n ∗ v hat

392 r e f p t t o p t u r n s p r i n g=tup l e ( r e f p t t o p t u r n s p r i n g )

393 springAssembly . ReferencePoint ( r e f p t t o p t u r n s p r i n g )

394 rp5=springAssembly . r e f e r e n c e P o i n t s . f indAt ( r e f p t t o p t u r n s p r i n g )

395 t o p f r i c t i o n s p r i n g S e t=springAssembly . Set (name=’ top turn f r i c t i o n spr ing

pt ’ , r e f e r e n c e P o i n t s = ( rp5 , ) )

396 rp5=reg i onToo l s e t . Region ( r e f e r e n c e P o i n t s =(rp5 , ) )

397 #c r e a t e connect ing spr ing

398 springAssembly . eng inee r ingFea tu r e s . TwoPointSpringDashpot ( r e g i o n P a i r s =((

rpf , rp5 ) , ) ,name=’ f r i c t i o n spr ing top turn ’ , a x i s=NODAL LINE,

399 spr ingBehav ior=ON, s p r i n g S t i f f n e s s=

f r i c t i o n s p r i n g s t i f f t o p )

400 r p i = reg i onToo l s e t . Region ( v e r t i c e s=r p i )

401 #c r e a t e a spr ing Dashpot connect ing top turn l a s t pt to a r e f e r e n c e pt

to s imulate f r i c t i o n on p l a t e

402 #c r e a t e r e f e r e n c e pt f o r sp r ing

403 r e f p t b o t t o m t u r n s p r i n g =(( sp r ing coo rd [ 0 ] [ 0 ] ) , ( sp r ing coo rd [ 0 ] [ 1 ] ) , (

sp r i ng coo rd [ 0 ] [ 2 ] + p o s r e f p t s p r i n g t o p t u r n ) )

404 springAssembly . ReferencePoint ( r e f p t b o t t o m t u r n s p r i n g )

405 rp6=springAssembly . r e f e r e n c e P o i n t s . f indAt ( r e f p t b o t t o m t u r n s p r i n g )

406 b o t t o m f r i c t i o n s p r i n g S e t=springAssembly . Set (name=’ bottom turn f r i c t i o n

spr ing pt ’ , r e f e r e n c e P o i n t s = ( rp6 , ) )

407 rp6=reg i onToo l s e t . Region ( r e f e r e n c e P o i n t s =(rp6 , ) )

408 #c r e a t e connect ing spr ing

409 springAssembly . eng inee r ingFea tu r e s . TwoPointSpringDashpot ( r e g i o n P a i r s =((

rp i , rp6 ) , ) ,name=’ f r i c t i o n spr ing bottom turn ’ , a x i s=NODAL LINE,

410 spr ingBehav ior=ON, s p r i n g S t i f f n e s s=

f r i c t i o n s p r i n g s t i f f b o t t o m )
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411 #−−−−Assembly Created−−−−−#

412

413 #−−−−−−Step−−−−#

414 ”””

415 Create Load Step i e type o f a n a l y s i s= S t a t i c + Non−Linear Geometry

e f f e c t s

416 ”””

417 import s tep

418 #c r e a t i n g step f o r s t a t i c a n a l y s i s with NonLinear Geometry opt ion as ON

419 spr ingStep=springModel . S ta t i cS t ep (name=’ S t a t i c ’ , p rev ious=’ I n i t i a l ’ ,

nlgeom=ON, maxNumInc=1000 , i n i t i a l I n c =0.001 , maxInc =0.05 , minInc=1E−10,

s t ab i l i z a t i onMagn i tude =0.0002 ,

420 s t ab i l i z a t i onMethod=DAMPING FACTOR, continueDampingFactors=False ,

adaptiveDampingRatio =0.05)

421 #−−−Steps created−−−−#

422

423 #−−−−−Load and BC−−−−−−#

424 ”””

425 Create Boundary c o n d i t i o n s

426 ”””

427 import load

428 springModel . DisplacementBC (name=’ bottom p la t e BC’ , createStepName=

spr ingStep . name , r eg i on=bottomplateSet , u2 =0.0 , ur1 =0.0 , ur2 =0.0 , ur3

=0.0)

429 springModel . DisplacementBC (name=’ top p l a t e BC’ , createStepName=spr ingStep

. name , r eg i on=topplateSet , u2=spr ingDisplacement , ur1 =0.0 , ur2 =0.0 , ur3

=0.0)

430 springModel . DisplacementBC (name=’ bottom cente r BC’ , createStepName=

spr ingStep . name , r eg i on=bottomcenterSet , u1 =0.0 , u2 =0.0 , u3 =0.0)

431 springModel . DisplacementBC (name=’ top cente r BC’ , createStepName=

spr ingStep . name , r eg i on=topcenterSet , u1 =0.0 , u2=spr ingDisplacement , u3

=0.0)

432 springModel . DisplacementBC (name=’ bottom turn 1 s t pt BC’ , createStepName=

spr ingStep . name , r eg i on=bot tomturn f i r s tSe t , u2 =0.0)
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433 springModel . DisplacementBC (name=’ top turn l a s t pt BC’ , createStepName=

spr ingStep . name , r eg i on=topturn la s tSe t , u2=spr ingDisp lacement )

434 i f not ( no bottomturnSet ) :

435 springModel . DisplacementBC (name=’ bottom turn BC’ , createStepName=

spr ingStep . name , r eg i on=bottomturnSet , u2 =0.0)

436 i f not ( no topturnSet ) :

437 springModel . DisplacementBC (name=’ top turn BC’ , createStepName=

spr ingStep . name , r eg i on=topturnSet , u2=spr ingDisp lacement )

438 springModel . DisplacementBC (name=’ top f r i c t i o n spr ing r e f pt BC’ ,

createStepName=spr ingStep . name , r eg i on=t o p f r i c t i o n s p r i n g S e t , u1 =0.0 , u2

=spr ingDisplacement , u3 =0.0)

439 springModel . DisplacementBC (name=’ bottom f r i c t i o n spr ing r e f pt BC’ ,

createStepName=spr ingStep . name , r eg i on=bot tomf r i c t i on sp r ingSe t , u3

=0.0)

440 #−−−−Load and BC created−−−#

441

442 #−−−−−−Job−−−−−−−#

443 ”””

444 Create Job

445 ”””

446 import job

447

448 spr ingJob=mdb. Job (name=’ spr ingJob ’ , model= springModel . name , d e s c r i p t i o n

=’ ’ , type=ANALYSIS,

449 atTime=None , waitMinutes =0, waitHours =0, queue=None , memory=90,

450 memoryUnits=PERCENTAGE, getMemoryFromAnalysis=True ,

451 e x p l i c i t P r e c i s i o n=SINGLE, nodalOutputPrec i s ion=SINGLE, echoPr int=OFF

,

452 modelPrint=OFF, contac tPr in t=OFF, h i s t o r y P r i n t=OFF, userSubrout ine=’

’ ,

453 s c ra t ch=’ ’ , re su l t sFormat=ODB, mult iprocess ingMode=DEFAULT, numCpus

=32,numDomains=32,

454 numGPUs=0)

455 springModel . FieldOutputRequest (name=’ React ionForces ’ , createStepName=

spr ingStep . name , v a r i a b l e s =( ’RT’ , ’U ’ , ) )
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456 springModel . FieldOutputRequest (name=’ Connector f o r c e s ’ ,

457 createStepName=spr ingStep . name , v a r i a b l e s =( ’CTF ’ , ’CEF ’ , ’CU’ , ’CUE’

, ’CUP’ ) ,

458 r eg i on=connectorSet , s e c t i o n P o i n t s=DEFAULT, rebar=EXCLUDE)

459 #submit job

460 spr ingJob . submit ( cons i s tencyCheck ing=OFF)

461 spr ingJob . waitForCompletion ( )

462 #−−−Job created−−−−−#

463 #save f i l e

464 mdb. saveAs (pathName= main f i l epa th+’ /My Model ’+’ . cae ’ )

465 #−−−−−odb−−−−−−−−−#

466 ”””

467 Access the output database generated from the job and pr i n t out

q u a n t i t i e s o f i n t e r e s t to txt f i l e s at cur rent d i r e c t o r y

468 ”””

469 import odb

470 from odbAccess import ∗

471 odb = openOdb( path = main f i l epa th+’ / ’+spr ingJob . name+’ . odb ’ )

472 #d e f i n e r e g i o n s f o r bottom cente r and bottom p l a t e pts

473 springOdb=odb . rootAssembly

474 odb bottomcenter reg ion= springOdb . nodeSets [ ’ Bottom Center Ref pt ’ ]

475 odb bottomplate reg ion= springOdb . nodeSets [ ’ Bottom Plate Ref pts ’ ]

476 o d b b o t t o m t u r n f i r s t r e g i o n= springOdb . nodeSets [ ’ Bottom Turn 1 s t pt ’ ]

477 i f not ( no bottomturnSet ) :

478 odb bottomturn reg ion= springOdb . nodeSets [ ’ Bottom Turn pts ’ ]

479 odb topcen t e r r eg i on= springOdb . nodeSets [ ’Top Center Ref pt ’ ]

480 #loop over frames to populate the va lue s o f r e a c t i o n f o r c e and

disp lacement

481 s i d e f o r c e = [ ]

482 a x i a l f o r c e = [ ]

483 disp lacement =[ ]

484 odbStep=odb . s t ep s [ spr ingStep . name ]

485 f o r i in range ( l en ( odbStep . frames ) ) :

486 disp lacement . append ( abs ( odbStep . frames [ i ] . f i e l dOutput s [ ’U ’ ] . getSubset (

r eg i on =odb topcen t e r r eg i on ) . va lue s [ 0 ] . data [ 1 ] ) )#appending abs
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value o f Uy o f the top node ## note v laues [ 0 ] says that we have

only one node in t h i s subset

487 s i d e f o r c e . append ( tup l e ( odbStep . frames [ i ] . f i e l dOutput s [ ’RT’ ] . getSubset (

r eg i on =odb bottomcenter reg ion ) . va lue s [ 0 ] . data ) )# appending tup l e

as r e a c t i o n value to s i d e f o r c e

488 bot tomp la t e r eac t i on s= odbStep . frames [ i ] . f i e l dOutput s [ ’RT’ ] . getSubset (

r eg i on =odb bottomplate reg ion )

489 tempbp=0

490 f o r ibp in range ( l en ( bo t tomp la t e r eac t i on s . va lue s ) ) :

491 tempbp=tempbp+bot tomp la t e r eac t i on s . va lue s [ ibp ] . data [ 1 ]# index 1 f o r

Fy

492 b o t t o m t u r n f i r s t r e a c t i o n s= odbStep . frames [ i ] . f i e l dOutput s [ ’RT’ ] .

getSubset ( r eg i on =o d b b o t t o m t u r n f i r s t r e g i o n ) . va lue s [ 0 ] . data [ 1 ]#

again only one node in the subset

493 i f not ( no bottomturnSet ) :

494 bottomturn reac t i ons= odbStep . frames [ i ] . f i e l dOutput s [ ’RT’ ] . getSubset

( r eg i on =odb bottomturn reg ion )

495 tempbt=0

496 f o r i b t in range ( l en ( bot tomturn react i ons . va lue s ) ) :

497 tempbp=tempbp+bottomturn react i ons . va lue s [ i b t ] . data [ 1 ]# index 1

f o r Fy

498 e l s e : tempbt=0

499 a x i a l f o r c e . append ( tempbp+tempbt+b o t t o m t u r n f i r s t r e a c t i o n s )

500 #pr in t va lue o f the above v a r i a b l e s to a text f i l e

501 f s i d e f o r c e = open ( ” s i d e f o r c e . txt ” , ”w” )

502 f s i d e f o r c e . wr i t e ( ” Side f o r c e s [ Fx Fy Fz ] at bottom cente r node\n” )

503 f o r i in s i d e f o r c e :

504 f s i d e f o r c e . wr i t e ( s t r ( i [ 0 ] )+’ ’+s t r ( i [ 1 ] )+’ ’+s t r ( i [ 2 ] )+’ \n ’ )

505 f s i d e f o r c e . c l o s e ( )

506

507 f d i sp lacement = open ( ” disp lacement . txt ” , ”w” )

508 f d i sp lacement . wr i t e ( ” di sp lacement abs (Uy) o f Top cente r node\n” )

509 f o r i in d isp lacement :

510 f d i sp lacement . wr i t e ( s t r ( i )+’ \n ’ )

511 f d i sp lacement . c l o s e ( )
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512

513 f a x i a l f o r c e = open ( ” a x i a l f o r c e . txt ” , ”w” )

514 f a x i a l f o r c e . wr i t e ( ”sum of a x i a l f o r c e Fy due to bottomplate+ bottomturn+

bot tomturn f i r s t nodes\n” )

515 f o r i in a x i a l f o r c e :

516 f a x i a l f o r c e . wr i t e ( s t r ( i )+’ \n ’ )

517 f a x i a l f o r c e . c l o s e ( )

518 #−−−−−odb created−−−−−−−−#

519 s t a t u s f i l e = open ( ma in f i l epa th+’ / s t a t u s . txt ’ , ’w ’ )

520 s t a t u s f i l e . wr i t e ( ”0” )

521 s t a t u s f i l e . c l o s e ( )

522 import sys

523 sys . e x i t ( )
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