
UNSUPERVISED VISUAL KNOWLEDGE DISCOVERY AND ACCUMULATION IN

DYNAMIC ENVIRONMENTS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Ziyin Wang

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2019

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Gavriil Tsechpenakis, Chair

School of Science

Dr. Voicu S. Popescu

School of Science

Dr. Murat Dundar

School of Science

Dr. Jean F. Honorio Carrillo

School of Science

Approved by:

Dr. Clifton W. Bingham

Head of the School Graduate Program

iii

ACKNOWLEDGMENTS

I would like to express my deepest appreciation to my advisor, Dr. Gavriil Tsech-

penakis, who has continuously supported my Ph.D. study and research, for his patience,

motivation, enthusiasm, and immense knowledge. His guidance helped me in all the time

of research and writing of this thesis. I could not have imagined having a better advisor and

mentor for my Ph.D. study.

I would like to thank the rest of my committee: Dr. Voicu S. Popescu, Dr. Murat

Dundar, and Dr. Jean F. Honorio Carrillo, for their encouragement, insightful comments,

and hard questions. I would also like to thank Dr. Dimitra Panagou from the University of

Michigan, for providing valuable aerial video data and the experimental environment.

My sincere thanks also go to Miss. Yicheng Cheng, who has inspired me countless

ideas in my research and philosophical thought beyond scientific research. I would like to

thank Mr. Sepehr Farhand, who has brought me constructive suggestions on my research

and writing.

Last but not least, I would like to thank my mother, Yuying Mao, for giving birth to me,

and for supporting me, financially and spiritually, throughout my Ph.D.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABSTRACT . xi

1 INTRODUCTION AND RELATED WORKS 1

1.1 Dynamic Environments: Definition and Motivation 1

1.2 Fully Stream Clustering for Unsupervised Feature Learning and Object
Discovery in Dynamic Environments . 3

1.2.1 Related Works . 7

1.2.2 Challenge . 12

1.2.3 Contribution . 12

1.3 Unsupervised Deep Encoding: a Bridge Between Visual Encoding and
Convolutional Neural Networks . 13

1.3.1 Related Works . 16

1.3.2 Contribution . 18

1.4 Unsupervised Aerial Objects Discovery and Detection on-the-fly 18

1.4.1 Related Works . 21

1.4.2 Challenge . 23

1.4.3 Contribution . 24

2 FULLY STREAM CLUSTERING FOR UNSUPERVISED FEATURE LEARN-
ING AND OBJECT DISCOVERY IN DYNAMIC ENVIRONMENTS 25

2.1 Mean Shift in Single Pass . 26

2.2 Dynamic Initialization: Density Estimation 28

2.3 The Single-Pass Algorithm . 31

2.3.1 Subset Size for Successful Clustering 34

2.3.2 Performance for Stream Data . 35

v

Page

2.4 The Memory Tree Clustering: Stochastic Mean Shift in Hierarchy 36

2.5 Experiments . 40

2.5.1 Basic Clustering on Real, Image-oriented Datasets 40

2.5.2 Building Visual Words on-the-fly 47

2.5.3 Matching SIFT Features on-the-fly 49

2.6 Summary . 53

3 UNSUPERVISED DEEP ENCODING: A BRIDGE BETWEEN CNN AND VI-
SUAL ENCODING . 55

3.0.1 Relationship between of Single-layer Neural Networks and Clustering55

3.1 Similarity Convolution . 57

3.2 Unsupervised Deep Encoding by Multi-level Unsupervised Feature Learning 61

3.3 Experiments and Analysis . 63

3.3.1 Effective of Pre-training . 63

3.3.2 Effect of Batch Normalization . 65

3.4 Summary . 68

4 APPLICATION ON STREAM DATA: UNSUPERVISED OBJECT DISCOV-
ERY ON-THE-FLY FROM AERIAL VIDEOS 70

4.1 Framework Overview . 72

4.2 Matching Proposals on-the-fly. 72

4.3 Object Proposal and Object-Part Relationship Realization 74

4.3.1 Correspondence Inferring by Tracking 81

4.4 Robustness Analysis . 85

4.5 Experiments . 87

4.5.1 Experiment Setting . 87

4.5.2 Parameters and Features . 88

4.5.3 Evaluation . 88

4.5.4 Major Results: Aerial Videos . 89

4.5.5 Non-Aerial Results: Indoor Videos 97

4.5.6 Non-Aerial Videos: Outdoor Videos 100

vi

Page

4.6 Summary . 100

5 APPLICATION ON STATIC DATA: PRE-TRAINING THE CNN BY UNSU-
PERVISED DEEP ENCODING . 103

5.1 Network Architectures and Implementation Details 103

5.2 Layer Efficiency . 106

5.3 Classifications on Benchmark Dataset 108

5.4 Summary . 111

6 Conclusion . 112

REFERENCES . 115

vii

LIST OF TABLES

Table Page

1.1 Summary of modern stream clustering. 6

2.1 All the clustering algorithms in comparison 40

2.2 Basic statistics of all datasets . 41

2.3 Results of Fisher’s Vecotor . 50

2.4 Results of VLAD . 51

2.5 Results of BoVW . 52

3.1 Error rate (single crop) in the subsets of ILSVRC2018. For Similarity Net, we
apply the model with pre-training and random initialization. For each model,
we also consider situations that Batch Normalization is applied and absent.
Suffix ”BN” stands for Batch Normalization. 67

4.1 Purity (%) of classes matched to ground truth 90

4.2 Purity (%) of classes matched to ground truth 91

4.3 Coverage (%) of classes matched to ground truth 92

4.4 Coverage (%) of classes matched to ground truth 93

4.5 Running Time (second per frame) . 97

5.1 Error rate (single crop) in the subsets of the ILSVRC 2018. For Similarity
Net, we apply the model with pre-training and random initialization. For each
model, we also consider situations that Batch Normalization is applied and
absent. Suffix ”BN” stands for Batch Normalization. 107

5.2 Single model top 1 and top 5 validation error rate of the ILSVRC dataset. All
the results are from a single crop. 109

5.3 The single model validation error rate of CIFAR 10 and CIFAR 100 dataset.
All the results are from a single crop. 110

viii

LIST OF FIGURES

Figure Page

1.1 If the stream clustering is not fully progressive, the cluster centers are stored
in random order in a list at each time of obtaining the latest clustering re-
sults. Such disorders disable matching previously encoded objects directly.
A quadratic order matching algorithm must be performed to reorder the new
center list (Codebook), which is unacceptable for dynamic scenarios. More-
over, this category of stream clustering algorithm requires pre-knowledge of
the number of clusters. Therefore, it is not able to discover emerging features
or objects along with the image stream. 9

1.2 The stream clustering algorithm is fully progressive. The cluster centers are
ordered chronologically and the feature space increments by adding emerging
cluster centers (features) at the end of the Codebook. Thus we can still match
encoded objects though the feature space is in different sizes. Note that this
is one of the properties that benefit the system. There are several other prop-
erties boost the entire system in different aspects and will be discussed in the
following chapters. 10

1.3 Illustration of fully progressive clustering. 11

1.4 Similarity Net. with pre-training. Given F (l)
i as the Feature Map of ith image in

layer l, we extract Feature Map patches and initialize the filter weights of layer
l+1 through feature clustering. Convolution Operation is a Similarity Measure
that computes a Similarity Score between the input Feature Map Patch with the
corresponding filter. This Pre-training process can be applied layer by layer to
initialize the weights of all layers. 14

2.1 Updating a center: two candidate cluster initializations, at Point A and Point B. The
paths shown in red and blue colored cross points indicate convergence towards the
density peak of the natural cluster during the ‘sampling, matching, and updating’ pro-
cess. The denser region (in yellow) inside the θ-defined kernel denotes where the next
matched sample is more likely to be. The blue shadow shows a ”sufficient area” where
any kernel inside this area is sufficiently dense. The entire process requires a single
pass through the dataset, with no iterative operation involved. 27

2.2 Illustration of the single-pass algorithm. Data fed into the algorithm is arbitrary
(small image patch from the video stream in this case.), as long as match and
update are well defined. 33

ix

Figure Page

2.3 Memory Tree Clustering . 37

2.4 F1 scores and mean Accuracy of compared algorithms (part 1). Each method
is denoted as the same color across all the datasets. 42

2.5 F1 scores and mean Accuracy of compared algorithms (part 2). Each method
is denoted as the same color across all the datasets. 43

2.6 Building visual vocabularies on the fly: application of our approach in streaming
videos. Colors and shapes indicate cluster assignments of the detected features, while
the arrows in frames indicate correct matches. 53

3.1 Architectures explored in this chapter. The left two architectures are tested for
subsets of ILSVRC2018 to study the parameter efficiency of Similarity Layers.
The third architecture is designed for ILSVRC 2018. 62

3.2 pre-train vs random initialization. 64

3.3 Significance of pre-training: validation accuracy when earlier layers are frozen.
Each row of this figure indicates that we keep some of the Similarity Layer
frozen and let SGD only apply on deeper layers. The architecture and frozen
layers are shown on the left. The grey layers are frozen and the blue layers are
trained. Each Similarity Layer is initialized either by pretraining (red curves)
or in random (blue curves). 66

3.4 Learning Curve (validation error rate) of models with and without Batch Nor-
malization. Each model is trained by Adam Optimizer for 100 epochs with a
fixed learning rate (0.01). 67

4.1 System Framework: unsupervised learning and accumulating multi-level vi-
sual knowledge on-the-fly . 71

4.2 Match object proposals on-the-fly while the feature space is increasing over time. 73

4.3 Real-time Object Proposal for Aerial Images 75

4.4 Removing known, unexpected green area to general more accurate object pro-
posals. Images in the first line are the object proposals (green box) and thresh-
olded Harris Map. Images in the second line are obtained after filter out tree-
like areas. 76

4.5 Adjusting scales automatically. The first row shows the situation that scale
increases when the UAV flies lower. The second row shows that the scale
decreases when the flying altitude becomes higher. 77

4.6 Object Realization Process . 79

4.7 Integrate object discovery and tracking for object correspondence inferring. . . 81

x

Figure Page

4.8 Examples of object realizations. Our method groups persistently adjacent parts
into a larger object. Patches are possibly incorrectly assigned (red box). How-
ever, these noise patches are cleaned up by the object realization process if
such patches are not adjacent to the main object. 95

4.9 5 most salient objects discovered from a video of each dataset. Each image
patch represents a discovered instanced. Patches of each object are randomly
selected from all the matched instances across the entire video. 96

4.10 Sample frames of the indoor video taken in an office 98

4.11 The top 15 salient object classes discovered on-the-fly in the indoor area. 99

4.12 Sample frames of the outdoor video taken in an grass field 99

4.13 The top 10 salient object classes discovered on-the-fly in the outdoor area. . . 101

5.1 Architectures explored in this chapter. The left two architectures are tested
for subsets of ILSVRC2018 to study the parameter efficiency of Similarity
Layers. The third architecture is designed for ILSVRC 2018. The rightmost
architecture is designed for CIFAR 10 and CIFAR 100 datasets. Its width is
controlled by n. ”Sim” stands for Similarity Layer proposed in this chapter and
”Conv” stands for general Convolutional Layer. Note that when the number
of stacked Resnet blocks is greater than one, we also add a shortcut for each
Similarity Layer from the previous maxpooling layer bypassing all the Resnet
Blocks. 104

5.2 Compared CNN (left) and Resnet (right) Models. 105

5.3 Learning Curve (error rate in the validation set) of the 4 models on the ILSVRC
subset with 10, 50 and 100 randomly selected classes. Batch Normalization is
applied to each layer of Resnet 16 and CNN 7, but not in Similarity Net. (”BN”
suffix is omitted to void occlusion) . 107

xi

ABSTRACT

Ziyin Wang Ph.D., Purdue University, December 2019. Unsupervised Visual Knowledge
Discovery and Accumulation in Dynamic Environments. Major Professor: John Q. Pro-
fessor.

Developing unsupervised vision systems in Dynamic Environments is one of the next

challenges in Computer Vision. In Dynamic Environments, we usually lack the complete

domain knowledge of the applied environments before deployment, and computation is

also limited due to the need for prompt reaction and on-board computational capacity. This

thesis studies a series of key Computer Vision problems in Dynamic Environments.

First, we propose a stream clustering algorithm and a number of variants for unsuper-

vised feature learning and object discovery, which possess several crucial characteristics

required by applications in Dynamic Environments, e.g. fully progressive, arbitrary simi-

larity measure, matching object while the feature space is increasing, etc. We give strong

provable guarantees of the clustering accuracy in statistic view. Based on the above the ap-

proaches, we tackle the problem of discovering aerial objects on-the-fly, where we assume

all of the objects are unknown at the beginning of the deployment. The vision system is

required to discover from the low-level features to salient objects on-the-fly without any

supervision. We propose a number of approaches with respect to object proposal, track-

ing, recognition, and localization to achieve real-time performance. Extensive experiments

on prevalent aerial video datasets showed that the approaches efficiently and accurately

discover salient ground objects.

To explore complex and deep architectures in Dynamic Environments, we propose Un-

supervised Deep Encoding which unifies traditional Visual Encoding and Convolutional

Neural Networks. We found strong relationships between single-layer Neural Networks

and Clustering and thus performed unsupervised feature learning at each layer from the

xii

feature maps of the previous layer. We replaced the dot product inside each neuron with

a similarity measure, which is also used in unsupervised feature learning. The weight

vectors of our network are initialized by cluster centers. Therefore, one feature map is

a visual encoding of its previous feature map. We applied this mechanism to pre-training

Convolutional Neural Networks for image classification. It has been found by extensive ex-

periments that pre-training benefits the network more reliable learning dynamics (e.g.fast

convergence without Batch Normalization) and better classification accuracy.

1

1. INTRODUCTION AND RELATED WORKS

1.1 Dynamic Environments: Definition and Motivation

Vision demands intensive computation and supervision due to its complexity, diversity,

and dimensionality of images and videos. Visual tasks also require images to be densely

labeled, e.g. tight bounding boxes with class labels for Object Detection [1] [2] [3] [4] [5]

[6], pixel-level class labels for Semantic Segmentation [4] [7] [8], which makes training

data usually expensive and sometimes limits the improvement of more advanced Computer

Vision models. Such circumstances also bound vision to heavy computational platforms

with a long period of training-deploying cycles. Recent advances in modern Computer

Vision powered by Deep Convolutional Neural Networks (CNN) have pushed the state-

of-the-art into a satisfactory level. However, apart from expensive labeling and training

processes, the drawbacks are as follows.

First of all, a well trained deep CNN is not able to discover new visual knowledge,

neither from feature level nor the scene level. All detection and recognition are limited

to classes of the training set. Since the architecture of a CNN model is fixed through

training to deploying, the prediction will always be encoded into one of the K classes in

the training set. At the same time, we can hardly extract information indicating unknown

classes or even similarities between different samples.

Secondly, most paradigms train a large model with 1000 or more classes to generalize

features of each level [9] [10] [11] [12], therefore most computation will be wasted and

sometimes it biases for a specific application. Many classes may never appear when the

model is deployed to a specific application. If we collected data of previously unseen

classes after training, because of Stochastic Gradient Descend, it is inevitable to go back

and retrain the entire model along with all the dataset collected before. Current transfer

learning assumes the low-level patterns are consistent between training data and transferred

2

application. Even if sometimes low-level features can be transferred to the updated models,

the last few levels still cannot avoid retraining.

Thirdly large models require heavy computation in the testing/deploying stage. Recent

advances in Image Classification, Object Detection, and Semantic Segmentation rely on the

growth of GPU power. Therefore, applications are bound to heavy computation platforms

or systems with a stable network connection. For those slim devices, especially small

mobile devices, with limited computational power, models are still limited to traditional

methods.

Regardless of the above drawbacks, deep architecture is still heavily studied in Com-

puter Vision and significant progress has been achieved in recent years. The general trend

of Convolutional Neural Networks is that models are becoming deeper and larger [13] [14].

The philosophy behind this trend is partially due to the complexity of visual information

where clear and closed-form theory is currently unavailable. Therefore, encoding more

information usually results in a model with a bigger capacity. Though larger models are

emerging along with fast-improving modern computational platforms, current state-of-the-

art has not met the applicational bar of many real-world tasks. We suggest this difficulty

roots in the attempt of building a vision for the general environments, where the vision

system is expected to recognize thousands or more categories of objects.

In this thesis, instead of considering the above heavyweight application scenarios, we

target at ”Dynamic Environments” which is featured by one or more of the following

situations:

• Computation power is limited to mobile-level CPUs or small GPUs, and network

connection is expensive. Learning is expected to be performed on-board within a

reasonably short period of time.

• We lack strong domain knowledge of the deployed environment, hence training data

is insufficient or unavailable. Thus we expect the system to discover, learn and accu-

mulate emerging visual knowledge.

3

• The application scenario is specific, and there is a moderate number of object cate-

gories. Only task-related visual knowledge is expected to be learned.

• Images or videos possess special characteristics such that fast computation is tractable,

e.g. aerial images or videos.

Many application environments are dynamic, e.g. Unmanned Aerial Vehicles (UAVs)

flying over a harsh, dangerous and hostile environment, AI Apps in mobile devices for se-

curity and education, embedded systems of intelligent devices, smart sensors in advance

manufacturing, a vision system for agents launched into alien planets, etc. In this the-

sis, we focus on two application environments: (1) unsupervised aerial object discovery

and detection on-the-fly; and (2) Light-weight Convolutional Neural Networks for image

recognition. It worth noting that our method is general to the Computer Vision and Ma-

chine Learning domain, and can be easily navigated to other above applications. We select

these two application environments as our key focus because (will be explained in detail in

following sections) (1) there are relatively sufficient public datasets available (compare to

other sub-domains); (2) public attention and previous works on this domain are insufficient;

and (3) valuable real-life applications can be directly implemented from methods that solve

these problems.

1.2 Fully Stream Clustering for Unsupervised Feature Learning and Object Discov-

ery in Dynamic Environments

Clustering is regarded as the core of unsupervised learning. The clustering problem

assumes data possesses grouping patterns that related to real-world semantics and the ideal

algorithm should be able to discover such patterns automatically without human interven-

tion. Vision tasks in Dynamic Environments require efficient Stream Clustering for unsu-

pervised learning. It is necessary for a brief review of Visual Encoding to illustrate the

reason why a new stream clustering is necessary.

The most common methodology for Visual Encoding (also considered in this thesis) is

known as Bag-of-Visual-Words (BoVW) [15] [16] [17]. In BoVW, we first extract small

4

image patches (usually follows some transformation, e.g. SIFT [18], HoG [19]) from the

entire dataset of images in a sliding-window fashion. The collected local image patches are

then fed into a clustering algorithm to build a bag of visual words. These cluster centers

are known as a dictionary, each of which (known as a feature or word) represents a low-

level visual pattern that appears frequently across the dataset. Given an image or a Region

of Interest (RoI), each local patch is assigned to its closest feature and thus we can use a

histogram to express the image or region. Such histograms are known as descriptors. We

can then consider the descriptors of all the images or regions as the standard input data

to standard machine learning models for supervised or unsupervised learning. The above

process may also be applied to the Gaussian Pyramid of each image to learn features from

different scales.

In an algorithm view of Visual Encoding, one underlying mechanism that affects online

learning is that the bins of the histogram are ordered. The cluster centers given by the

algorithm are usually stored in an array-like container whose order is usually random for

each run of the clustering algorithm. Therefore, encoding cannot start unless all the visual

words are learned and stored in an array. In the stream scenario, images arrive as a sequence

and the dictionary changes along with the stream. Therefore, the clustering algorithm has

to be able to organize the dictionary order such that the similarity between RoI descriptors

encoded from different dictionaries can be computed in linear time. The most natural way,

which is considered by this thesis and illustrated by Fig.1.1 and 1.3, is to maintain the

cluster centers chronologically according to the time of the feature appeared in the stream.

According to the above discussion, as well as those of previous subsections, the key

properties of the Stream Clustering strictly required by the above two Dynamic Environ-

ments are:

• Ordered: Clustering centers must be kept in chronological order.

• Adaptive: It has to be able to find the number of clusters automatically and accurately.

• Fast: The data set is very large and can only be passed once.

• Light: No data can be stored with size proportional to the entire dataset.

5

• Prompt: Clustering results must be updated immediately along the stream.

• Universal: The algorithm should be suitable for arbitrary similarity measure.

• Theoretical: Strong provable accuracy and top-tier performance.

• Denoising: The algorithm be able to eliminate noise along the stream.

• Sublinear: The clustering result has to provide an optional data structure such that an

image patch can be encoded efficiently without searching through all of the clustering

centers when the number of clusters is very large.

We note that though numerous clustering algorithms have been proposed in the last

few decades, to the best of our knowledge, there is no algorithm that satisfies all the above

properties. In most hash environments, the learning system requires all clustering proper-

ties above. Therefore, it is necessary to design a new clustering method to solve problems

in Dynamic Environments. Obviously, it is challenging and hence another key contribution

of this thesis. Table1.1 summarizes popular and recent state-of-the-art stream clustering

algorithms. In this table, we only include modern stream clustering proposed since 2010,

except BIRCH (which regarded as a speed benchmark), where earlier works have been

repeatedly reported to be outperformed by modern methods.

Building perfect clustering centers is still a challenging problem due to several reasons,

as detailed in [27] [29]. Many methods produce satisfactory results in terms of accuracy,

however, there are cases where efficiency is also crucial. For instance, in unsupervised

object detection [28], where deep learning [29] cannot be applied due to the inherent lack

of prior knowledge, clustering is usually employed to detect similar salient features across

images. In such problems, computational complexity may not be an obvious issue, since the

process can take place off-line. However, if the same application is used in robotics, e.g.,

on agents where images are continually captured, efficient clustering on-the-fly becomes a

bottleneck.

Affinity Propagation (AP) [30] and Density Peaks (DP) [31] are representative exam-

ples of the state-of-the-art and have been proven to be among the most accurate approaches

6

Table 1.1.
Summary of modern stream clustering.

Ord. Adap. Fast Light Prompt Univ. Theor. Denoi. Subl.

ours 2016 Y Y Y Y Y Y Y Y Y

StrKM 2011 [20] N N Y N N N Y Y N

BICO 2012 [21] N N Y Y Y N Y N Y

BIRCH 1998 [22] N Y Y Y Y N N N Y

Kobren 2017 [23] N N Y Y Y N Y N Y

Sculley 2010 [24] N N Y Y Y N Y N N

Liberty 2016 [25] N N Y Y N N Y N N

Bachem 2016 [26] N N Y Y N N Y N Y

7

for clustering real datasets, yet they require quadratic complexity in time and space. To

improve complexity, the K-means [32] principle has been a popular foundation, with some

variants, such as K-means++ [33], yielding better computational times. Similar algorithms,

especially EM clustering [34], have also been very popular due to their acceptable accuracy

and relatively low complexity. In many cases though, such as the unsupervised object de-

tection paradigm described above, the number of clusters is a priori unknown. AP and DP

are able to detect the number of clusters accurately, but they can only be applied to smaller

datasets. On the other hand, the Mean-shift clustering algorithm [35] provides a nice bal-

ance between accuracy and speed, it has been applied to computer vision problems, such

as image segmentation, yet it has some accuracy limitations primarily due to initialization

issues.

1.2.1 Related Works

The data stream clustering problem gave rise to a number of seminal works [22] [36]

[37] [38]. The recent state-of-the-art focuses more on approximating well-known algo-

rithms [39] [24] [20] [21] [40] [26]. [24] describes a heuristic method for online K-means

but without approximation boundary guarantees. [20] presents a sampling method along

with Map-Reduce to construct a weighted subset (coreset), such that running K-means++

on coreset can be a proven approximation of the original algorithm. The coreset idea was

also adopted in [21] and [40]. A recent work in [25] presents an online approximation of K-

means that instantiates a new cluster when an incoming data point is far away from existing

clusters. In [26], Markov Chain Monte Carlo sampling is used as a seeding approximation

of K-means++ algorithm. [23] describes a hierarchical clustering method along with tree

rotation to approximate K-means with a tractable solution when the number of clusters is

large.

A key attribute of data streams is that the data size can potentially be very large, which

calls for designing scalable methods, such as [41]. [42] describes a parallel method to scale

the K-means++ initialization process. In [43], a Map-Reduce model is used to minimize

8

dependency between iterations in K-means for efficient scaling. [44] shows a scalable so-

lution in generating coreset for K-means and K-median problems.

Some hierarchy-based clustering algorithms, like BIRCH (balanced iterative reducing

and clustering using hierarchies) [22], are reported to provide increased efficiency. BIRCH

builds a CF (clustering feature) tree and uses an agglomerative clustering algorithm to

merge leaves towards a specific number of clusters. Since agglomerative clustering is very

expensive with O(N2lgN) time complexity, the efficiency is guaranteed only if the user

chooses the correct parameters to generate a reasonable amount of leaves. Although it

can be fast with careful parameter selection, it does not provide natural clusters and its

performance is usually sensitive to the permutation of the data [22].

Most algorithms that approximate foundational non-stream methods usually provide

limited clustering quality, as explained above. Some other accurate solutions that have

been approximated in streaming problems have higher complexity, and their streaming

counterparts are more focused on maintaining clustering quality than achieving the best

possible speed. For instance, [45] that uses a Dirichlet Process mixture model is a popular

Bayesian nonparametric model for small, low-dimensional data, withO(iNd3) complexity,

where i is the number of Gibbs Sampling iterations, N is the data size and d is the data

dimension. [46] are faster approximations that reduce the cubic complexity and overcome

the bottleneck of Gibbs Sampling. [30] maintains threeN×N matrices to discover clusters

in small datasets, with time and space complexities O(iN2) and O(N2) respectively. [31]

maps the original data set into a 2-D density map with complexity O(N2) in time and

space, such that few density peaks can be manually selected. Nowadays, even moderate-

sized datasets are far beyond the capacity of most of these methods.

The greedily iterative paradigm is still very popular in Computer Vision, despite its

drawbacks, due to its simplicity and its acceptable efficiency for some applications. Specif-

ically, despite the advances of deep neural networks in image classification, building visual

vocabularies [30, 7, 16, 23] can still provide significant benefits for various tasks, including

unsupervised object detection in image collections [28] or in streaming data where new cat-

egories may emerge. Coates et al. [47] use simple K-means clustering and a triangle metric

9

Figure 1.1. If the stream clustering is not fully progressive, the cluster centers
are stored in random order in a list at each time of obtaining the latest clustering
results. Such disorders disable matching previously encoded objects directly.
A quadratic order matching algorithm must be performed to reorder the new
center list (Codebook), which is unacceptable for dynamic scenarios. More-
over, this category of stream clustering algorithm requires pre-knowledge of
the number of clusters. Therefore, it is not able to discover emerging features
or objects along with the image stream.

to learn small image blocks and use these learned features to encode an image. In [16]

and [22, 23], K-means and EM clustering are used to encode SIFT [18] features detected

from an image, known as VLAD (Vector of Locally Aggregated Descriptors) and Fisher

Vector Encoding, respectively. For object retrieval, [48] uses randomized k-d forest when

matching between centers and points to boost the speed of simple K-means, and reports

better results than the vocabulary tree method in [49].

10

Figure 1.2. The stream clustering algorithm is fully progressive. The cluster
centers are ordered chronologically and the feature space increments by adding
emerging cluster centers (features) at the end of the Codebook. Thus we can
still match encoded objects though the feature space is in different sizes. Note
that this is one of the properties that benefit the system. There are several other
properties boost the entire system in different aspects and will be discussed in
the following chapters.

11

Figure 1.3. Illustration of fully progressive clustering.

12

1.2.2 Challenge

The stream clustering algorithms studied in this thesis are more demanding than general

stream clustering algorithms. Unlike some recent state-of-the-art tackling ”pseudo stream”

setting where only part of the stream clustering properties is satisfied, our method satisfies

the full definition of clustering data streams. For example, though claimed to be stream,

[20] [21] [24] [26] do not discover the number of cluster along the stream, neither adapt

to content drift. To the best of our knowledge, the clustering algorithm follows the full

definition of Data Stream with provable accuracy is rarely proposed in previous works.

At the mean time, the algorithms have to carefully organize the clustering results to

benefit the efficiency of the higher level of learning. As a concrete example, in the task of

Unsupervised Object Discovery, we need the cluster center to be sorted chronologically.

In most coreset-based stream clustering algorithms, the cluster centers are obtained by

running the K-means algorithm on the coreset. As illustrated in Fig. 1.2 and 1.3, a cluster

center appeared in ith position of the center list in time t1 will appear in a random position

in time t2. Therefore, a quadratic algorithm has to be performed due to the randomness

of different executions of K-means over time. This will be unacceptable for our problem

setting. Also, because of the unstableness of K-means, a valid cluster center in time t1

may disappear in another execution of K-means, which makes even a quadratic complexity

algorithm impossible (Fig.1.1). Moreover, the clustering center cannot be simply organized

by a list where each query is in linear complexity. We need to embed the chronological

property into a tree-like data structure (we propose Memory Tree in this thesis) to reduce

query complexity to the logarithm.

1.2.3 Contribution

We propose a fully progressive stream clustering algorithm that satisfies the complete

definition of Data Stream. This algorithm can be applied to arbitrary data types with ar-

bitrary similarity measures. The algorithm provides several properties that are specifi-

cally designed for online unsupervised object discovery to eliminate inefficiency caused by

13

multi-level feature representation. The algorithm can be further developed into a hierarchi-

cal algorithm whose process is building a tree-like data structure called Memory Tree. This

data structure increases the feature query, which is the most time-consuming part of Visual

Encoding, from linear time to logarithmic time. We provide solid theoretical proof of ac-

curacy guarantees in a sufficiently general setting. Our algorithm generally outperformed

not only the known recent state-of-the-art stream algorithms but also some state-of-the-art

batch algorithms. The systematic experiments in Visual Encoding demonstrate that our

clustering framework is a very promising candidate for online unsupervised object discov-

ery. The clustering framework is repeatedly used (with multiple variants) in the challenging

vision tasks in this thesis.

1.3 Unsupervised Deep Encoding: a Bridge Between Visual Encoding and Convolu-

tional Neural Networks

Deep Convolutional Neural Networks (CNNs) fundamentally improved the Computer

Vision field since 2012 [9] and strongly diluted the attention on Visual Encoding [15–17,47]

as in the latter, visual features are not trainable through supervisory signals. Though out-

standing improvements have been achieved so far, CNN architectures are not fully ex-

plained in the Computer Vision domain and studying new architectures is still oriented by

massive computations with trial and error. In this paper, we propose a multi-level unsuper-

vised feature learning and encoding method (Fig.1.4), which is seamlessly embedded into

CNNs and pre-trains the learnable weights of the network.

The first argument we address is the relationship between a single-layer Neural Net-

work and Clustering. We found that when computation inside a node is a similarity mea-

sure between an input and its weight, the weight vector of that node can be regarded as a

clustering center. Thus, the output vector of a single-layer Neural Network can be thought

of as unnormalized soft assignments to a set of cluster centers. As shown in figure 1.4,

each convolution measures the similarity between the input patch and the corresponding

filter weight. Therefore the resulted output vector (blue shadowed volume in F
(l+1)
i in

14

Figure 1.4. Similarity Net. with pre-training. Given F (l)
i as the Feature Map

of ith image in layer l, we extract Feature Map patches and initialize the filter
weights of layer l + 1 through feature clustering. Convolution Operation is a
Similarity Measure that computes a Similarity Score between the input Fea-
ture Map Patch with the corresponding filter. This Pre-training process can be
applied layer by layer to initialize the weights of all layers.

15

fig.1.4) is an unnormalized soft assignment. In this paper, we consider Cosine similarity

instead of the dot product, similar to [50] but we provide a different interpretation. Since

each convolution computes the similarity between the input patch and the corresponding

filter, the output vector corresponding to an input patch convolved with multiple filters will

become a vector of similarities. Such encoding can be applied to feature maps at every

layer, and hence follow the general architecture of Convolutional Neural Networks.

The above mechanism inspires us to pre-train filter weights by feature clustering, where

each filter abstracts a group of patches, whose visual patterns frequently appear in the previ-

ous layer. [47] found Unsupervised Feature Learning by clustering with triangle assignment

outperformed single-layer Neural Networks, which indicates those unsupervisedly learned

features are already good representations of visual information. In this paper, we propose

to further apply the pre-training method layer by layer to learn deep features, similar to

Auto-Encoder [51, 52]. Unlike traditional Visual Encoding, all the unsupervisedly learned

features in our architecture can be fine-tuned by supervisory signals and trained end-to-

end. We demonstrate that, when filter weights are initialized by our proposed unsupervised

feature learning method, they are more related to the label information at the early stages

of gradient descend.

The second argument is that the representative ability of feature maps is obscure. It

has been found that well-trained convolutional filters respond to relevant visual patterns

[53,54], and such property has been regarded as ”features” learned from images. However,

since each filter is a linear classifier wrapped with some non-linearity, a high response

only indicates that the input is far away from the classification hyper-plane and this high

response value does not necessarily indicate similarity between the weight and the input

vectors. In Visual Encoding, on the contrary, each feature is a kernel clustered from image

patches and a high response to this feature indicates a strong similarity.

16

1.3.1 Related Works

Unsupervised representation learning for Neural Networks has been paid sustained ef-

fort. Most unsupervised training method aimed at forcing the network to learn a generative

representation level by level. Autoencoder [51] is a landmark of modern deep learning,

where the network is trained by reconstructing the input throught a hidden layer. It has

been argued and generally accepted that this training fashion will force the hidden layer to

learn a good representation of the original data [55] [56]. Its direct successor, Stacked De-

noising Autoencoder (SDE) [52], placing a series of the encoders in a bottleneck fashion to

force the bottleneck layer to learn a sufficiently compact map from the data space. Because

of the nature of autoencoders, SDE can be initialized by training each layer locally, which

is argued that it finds a better initial state for gradient descend [55] [56] [57]. Autoencoders

can also be used for unsupervisedly learning image representation and high-level features

from large image datasets [58]. Unfortunately, SDE fashion was not successfully applied

to CNN-based Computer Vision models because of the architecture inconsistency between

fully connected layer and convolutional layer, which limits SDE to images with low reso-

lution. For this reason, it was not been incorporated SDE into advanced Computer Vision

tasks such as object detection and semantic segmentation.

Another branch of effort in unsupervised deep learning is adversarial learning. [59]

introduced adversarial learning with a gaming system between discriminator and genera-

tor. Adversarial Autoencoder (AAE) [60] considers the bottleneck layer as the generat-

ing space. The discriminator of AAE classifies the real sample from a given distribution

and the mapped data. By adding ”style neurons” in the bottleneck layer, AAE can per-

form clustering along with representative learning, which achieved remarkably increased

accuracy in several benchmarks. Unlike early works in clustering using Self Organizing

Map (SOM) [61], AAE architecture learns non-linear representative features for cluster-

ing and is regarded as an advanced clustering framework. Some works take advantage of

adversarial learning into Convolutional Neural Networks [62] [63] and Claimed improved

performance.

17

The idea of Adversarial Learning also benefits unsupervised Computer Vision tasks.

[63] proposed a Bidirectional architecture that can be an auxiliary feature learning for clas-

sification. [64] proposed the Stacked Generative Adversarial Nets that are trained to learn

hierarchical features. [65] proposed a framework to learn high-level features unsupervis-

edly by enforcing a CNN solving the problem of predicting the relative position of two

given patches. Similarly, [66] conducted high-level feature learning by enforcing CNN

solving the problem of inpainting missed patch of images. And [67] follows a similar ap-

proach by training CNN to solve jigsaw puzzles. [68] used a large number of unlabeled

videos as a training resource where tracked patches are regarded as the same class.

Another aspect of Neural Networks which has been heavily studied is the choice of

pre-activation functions. Batch Normalization [69] is most commonly considered to re-

duce Internal Covariate Shift. Layer Normalization [70] considers normalizing the output

vector into zero mean and unit variance, instead of using batch statistics. Weight Nor-

malization [71] was introduced to take L2 normalized weight vector to improve learning

dynamics. Similarly, [50] normalizes both the weight vectors and the input vectors thus the

pre-activation becomes cosine similarity. [72] introduced ZCA whitening for each batch

and gave concise gradient computation.

From the optimization point of view, initialization is crucial to Stochastic Gradient

Descend (SGD) [73] since training a multi-layer Neural Networks is a non-convex problem.

In contrast to the attention to architecture designing, fewer works pushed the boundary of

this area. [52] [57] proposed initialize each layer by local training. For each layer, we can

fix all previous layers and unsupervisedly train it as an autoencoder. It has been argued that

this method will initialize the network close to better local optimum [74]. Unfortunately,

such unsupervised pre-training is not well accepted in major CNN models. [55] proposed

to initialize the weights in each layer with the same level of standard deviation, such that

information passes through the entire network healthily. Resnet [10] indeed initializes the

deeper net as an identity map since convolutional layers are usually initialized to a very

small value. Until now, most CNN systems use [55] to initialize all filters randomly. The

pre-training of CNN is rarely studied.

18

1.3.2 Contribution

In this paper, we establish a strong connection between a single-layer Neural Network

and clustering. Such finding results in a model that unifies Visual Encoding and CNN as

well as an unsupervised pre-training method that initializes the weights more related to

label information at the early stages of gradient descend. We explain Visual Encoding as

a special case of a single-layer CNN, and a CNN can be explained as deep Visual Encod-

ing that can be trained end-to-end. Such property enables our networks to be trained fast

without Batch Normalization, where a better final optimum with the same or less number of

parameters is achieved. We conduct extensive experiments to demonstrate the effectiveness

of our pre-training method.

1.4 Unsupervised Aerial Objects Discovery and Detection on-the-fly

Unmanned Aerial Vehicles (UAVs) equipped with high-resolution cameras provide a

very different way of acquiring visual information and many attractive tasks have been

studied and applied in recent years. UAVs are able to fly over a harsh, dangerous and

hostile environment, which ideally fits tasks of military scouting, security surveillance,

post-disaster rescue, and wildlife discovery. And because of the unfriendly environment,

real-time response is crucial to these applications. Existing works on object detection from

on-board aerial videos followed the supervised paradigms, where intensive training data

and expensive annotation is necessary. Such framework limits the detection reservoir into

well-known targets such as vehicles and pedestrian, and also make the problem itself triv-

ial. The more valuable and challenging task on aerial videos is to discover suspicious,

valuable and most likely unknown targets, e.g. arsenals of enemies, illegal drag factories,

strongholds of terrorists, wreckage or survivors of an air crash, endangered species on East

Africa Savanna, as well as evidence of life from low-orbit satellite images of alien plan-

ets etc. Meanwhile, we expect these targets can be discovered immediately only based on

on-board computational resources since their values drastically diminish along with time

passing. Collecting sufficient training data for these targets is extremely expensive, not

19

only for annotating cost but also due to the unfriendly environment and the rareness of the

targets themselves, which makes even unlabeled images precious. At the same time, those

targets are very likely to be intentionally camouflaged, making themselves quite different

from those in training data.

Motivated by the above real-world tasks and many other similar missions, we study

the problem of real-time, fully unsupervised visual knowledge building from aerial videos.

This problem requires conducting unsupervised learning from feature level to object-level

simultaneously when UAVs are flying over the targeted territory. We consider each object

as a distinct instance and do not attempt to infer categorical information, namely we do

not regard arsenals and factories as a category of ”building” (which naturally fit the real-

world applications mentioned at the beginning). Since the system is supposed to learn

visual knowledge within a dedicated area, object diversity is not as intensive as general

vision applications. The major challenges in this problem are (1) there is absolutely no

pre-training at all since we never know the environment before deploying and (2) learning

is on-the-fly since the immediate reaction is necessary, especially when capturing criminals

and rescuing survivors.

Unsupervised object discovery arises sustained effort on fully unsupervised approaches.

Some works directly discover distinct and meaningful patches from a static image or video

dataset. This category of approaches is not demanding in computational resources but

usually does not provide a deep and non-linear map tackling visual diversity. Namely,

matched patches are only similar to each other concerning appearance instead of semantic

meaning. Quite a few others learn a deep map to extract high-level features with semantic

meaning and perform weakly supervised or unsupervised object discovery based on the

trained model. However, all these two categories of approaches can not be borrowed to the

problem we study in this paper because (1) all of the existing works are iterative approaches

and require the entire dataset ready before learning starts; (2) all of the existing works are

computation expensive for real-time response in harsh deploying environment; and (3) no

existing work addresses on aerial images or videos.

20

As shown in fig.4.1, we proposed a fully unsupervised, stream and real-time visual dis-

covery system that discover knowledge from feature-level to object-level simultaneously.

The system keeps discovering and accumulating emerging features, parts and objects in the

video. Like [68], we treat tracked objects in the video as rich resources for visual diversity:

robustly tracked objects should have the same semantic label. However, we do not use

massive video for pre-training.

Among previous works on unsupervised object discovery, general object proposal meth-

ods provide increased efficiency. Many successful object proposal methods have been de-

veloped and evaluated on non-aerial images, such as the PASCAL VOC dataset. Objects

in aerial images are quite different from ordinary images (indoor or outdoor images). First,

objects in aerial images are sparse, i.e. most areas of an aerial image are background

(grass, trees or other textures), especially when UAVs are flying over the wilderness or

ocean. Also, objects are usually very small and in low resolution, which made the assump-

tion invalid of several unsupervised object proposal methods. Moreover, object proposal is

inefficient for real-time object discovery. Though extremely fast object proposals do exists,

it generates two much negative bounding boxes, which makes encoding and recognition

taking much longer time. Due to the above applications of aerial videos, objects usually

posses more corner-like features than the background. According to this intuition, we pro-

pose a simple, fast but surprisingly accurate object proposal method for aerial images, and

drastically benefits our on-line learning framework.

It worth noting that, previous approaches to unsupervised object discovery are in a

”passive paradigm”: the learning system takes the input images/videos and process them

in a static pre-engineered pipeline, which is not able to determine by itself whether the

discovery task is complete or not without external evaluation. Such capacity is crucial

for aerial applications such as autonomous scouting, where the UAVs have to use ”active

feedback” from the visual system to make decisions of the flying routes, e.g. how long

should an agent rover around to ensure a specific territory is completely discovered and

understood. In our approach proposed in this paper, with certain realistic and controllable

21

assumptions, we provide provable guarantees for learning quality that can be expressed by

the system itself, without any external evaluation.

Clustering is the fundamental theory of unsupervised learning. Recent works on cluster-

ing data streams provide strong theoretical guarantees approximating popular algorithms.

However, the majority of these works have not successfully addressed the fully progres-

sive problem, where emerging clusters are accumulatively discovered over time and listed

chronologically by the time of emerging. We propose a clustering algorithm for data

streams addressing the above problem and provide strong provable guarantees.

1.4.1 Related Works

The majority of existing works on object detection from aerial videos address the

problem of supervised ground targets detection, tracking and off-line action/event recog-

nition. [75] proposed an efficient method detecting moving targets by background stabi-

lization and classify detected targets into vehicle and person. Similar works also studied

the problem of moving vehicle detection from aerial videos in low frame rate [76] and

aerial videos in urban areas [77], as well as further development of detection and seg-

mentation [78] for moving targets. [79] proposed Track Before Detection (TBD) method

efficiently detects and tracks moving vehicles. For more complex surveillance tasks, [80]

proposed an approach to persistent tracking under a strongly occluded environment. [81]

addressed the problem of event recognition from aerial videos. All the above existing works

on aerial follow the supervised framework and the detected object classes are restricted to

known moving targets such as vehicles and people. Real-time detection for unknown multi-

class targets from on-board aerial images caught rare attention in the literature.

Fully unsupervised learning for visual knowledge building arises an effort recently due

to expensive annotation costs. One branch of works construct visual knowledge for un-

known object detection directly. [82] mines distinct mid-level patches from a collection

of ”discovery set” with help of ”natural set”. By switching the roles of discovery set and

natural set, the proposed approach successfully find patches are both representative and dis-

22

criminative. [83] fit the object detection and localization into Multiple Instances Learning

Problem to find salient patches across images. [28] uses Hough Matching to find frequently

matched image regions, where object proposals that are frequently matched to other patches

are voted for localizing as foreground. [84] combines Hough Matching and tracking to de-

tect and localize objects from videos. [85] proposed an appearance-based clustering method

for unsupervised object detection for autonomous driving. All the above works do not in-

volve massive training processes nor the large scale of training images or videos. Most of

the training resides inside the moderate size of the training set.

Another branch of effort on unsupervised visual knowledge learning arises in the Deep

Learning domain with a focus on learning high-level visual representation in an unsuper-

vised fashion. Generative Adversarial Nets [86] and its successors [63] [64] conduct a

paradigm for learning highly representative features that is able to generate artificial data to

”fool” a classifier. [63] propose a Bidirectional architecture that can be an auxiliary feature

learning for classification. [64] propose the Stacked Generative Adversarial Nets that are

trained to learn hierarchical features. [65] propose a framework to learn high-level features

unsupervisedly by enforcing a CNN solving the problem of predicting the relative position

of two given patches. Similarly, [66] conducted high-level feature learning by enforcing

CNN solving the problem of inpainting missed patch of images. And [67] follows a similar

approach by training CNN to solve jigsaw puzzles. [68] use a large number of unlabeled

videos as a training resource where tracked patches are regarded as the same class.

All the above approaches either involve massive training (taking days or weeks running

on most advanced GPU) or massive training samples, or both. However, neither the above

two situations satisfy the problem we solve, where on-board computation is very limited

and immediate learning is crucial. Further, all the works above study and are evaluated by

ordinary images or videos.

Recent object proposal methods provide a efficient tool for speeding up object local-

ization [87] [88] [89] [90] [91] [92] [93] [94] [95]. [87] proposed an unsupervised object

proposal method by investigating complete contours inside each sliding window. [95] uses

the gradient norm to localize object boundaries and results in a very fast object proposal

23

method. All the above existing methods have been designed for and tested by ground im-

ages such as PASCAL VOC [96]. Bounding boxes usually intensively overlap with each

other and a piece of the region may be proposed quite a few times. Thus, final localization

from proposed boxes must involve strong computational burden [83] [28] [84]. The general

object proposal for aerial images is rarely studied. [79] proposed a track-before-detection

method for fast localizing ground moving vehicles, but unable to propose static, interest-

ing objects such as buildings and factories. In this paper, we propose an efficient object

proposal method and object realization approach for aerial images to propose, recognize,

discover and localize objects simultaneously on-the-fly.

1.4.2 Challenge

There are two major challenges in this problem (1) Unsupervised Object Discovery

and (2) reliable real-time performance. Each of the above tasks itself is already a general

challenge in Computer Vision and Machine Learning. Concurrently tackling these two

challenges drastically increases the difficulty to a higher level of challenge, which is rarely

studied in the literature.

Unlike unsupervised learning in general Machine Learning that classifies collected sam-

ples without training labels, the problem studied in this thesis requires accurate localization

with a bounding box indicating the position and area of the discovered object. Moreover,

our problem is more challenging to general unsupervised object detection: there is no train-

ing data before deployment. Vision usually requires multi-level feature learning to repre-

sent the image such that objects can be classified or clustered in the feature space. Most

training computation works on learning feature representations. Our system requires not

only efficient online feature learning but also stably matching objects while feature repre-

sentation drifts along with emerging objects.

Since we need all the computation performed on-board to adapt to extreme situations,

we need sufficiently efficient algorithms and data structures to optimize the real-time per-

formance, in both time and space aspect. For instance, unsupervised feature learning can

24

not only be a stream clustering algorithm but should provide a series of desirable properties

including intermediate data structures to speed up object encoding. Object proposal has no

computational resources to reach high recalls but relies on object realization to patch up the

whole piece of objects. Namely, it has to be much more exquisite than a pipeline-fashion

solution, and each level of the system has to be woven together to eliminate the last bit of

inefficiency.

1.4.3 Contribution

We propose a fully unsupervised visual system that is able to learn different levels of

visual information accumulatively in real-time for aerial applications. We provide an effi-

cient object/part proposal method for aerial images and a bottom-up approach to discover

part-object relationships. We propose a fully progressive clustering framework for data

streams with strong provable guarantees to support our real-time learning. We conduct

experiments of our system on the UCF action dataset, UCLA Aerial Action Dataset and

Okutama Action Dataset with the most related works on unsupervised object discovery. As

a result, we obtained sufficient purity and outperformed other compared approaches in cov-

erage. To the best of our knowledge, this is the first study focus on real-time unsupervised

visual knowledge discovery on aerial videos.

25

2. FULLY STREAM CLUSTERING FOR UNSUPERVISED
FEATURE LEARNING AND OBJECT DISCOVERY IN DYNAMIC

ENVIRONMENTS

Clustering is usually regarded as a paradigm of unsupervised learning. As discussed pre-

viously, stream clustering is the major problem setting we encounter in Dynamic Environ-

ments. In this chapter, we present a series of fully incremental clustering algorithms for

Data Streams that will be repeatedly used for the rest of this thesis. The algorithm is able

to detect emerging clusters along the Data Stream by dynamically locating kernels on the

most promising area and perform a Stochastic Mean Shift to find clustering centers in a sin-

gle pass. We develop a density estimation method for dynamic initialization by regarding a

sub-stream following an ”emerging data” as a sample set and applying Hypothesis Testing

(p-value Approach) to estimate its local density. The sub-stream size and the p-value is

determined such that a strong accuracy guarantee can be proved. All the above theoretical

analysis is concisely and compactly designed into a single pass clustering algorithm for

Data Streams. We validate our performance by compare state-of-art clustering algorithms

on realistic and complex datasets. As a result, our method is not only able to drastically

outperformed state-of-art stream algorithms (major jump in most datasets) but also out-

performed more complex (non-stream) algorithms that many stream algorithms attempt to

approximate.

As we can see later, this stream clustering algorithm uniquely fits vision problems stud-

ied in this thesis and is crucial to solving vision problems in Dynamic Environments. This

method, and several of its variants will be repeatedly used by almost all the following

sections, include fast visual feature encoding, aerial object proposal, discovery, matching

and realizing objects on-the-fly, and unsupervised multi-stage feature learning for Convo-

lutional Neural Networks.

26

In this chapter, we tackle the Density Peak Clustering formulation: given a neighbor-

hood size θ and a minimum density ratio 0 < pf < 0.5, find all local density peaks

C = {c1, c2, ..., ck} such that, pθci = Ni
N
≥ pf for all i = 1, ..., k, where pθci is the den-

sity ratio of θ-neighbourhood around ci, where Ni is the number of data points covered by

θ-neighbourhood around ci and N is the data size. We consider the above problem formu-

lation for Data Streams because (a) the number of clusters is probably unknown for Data

Streams and new clusters are likely to emerge and (b) a density peak represents its neigh-

borhood naturally. In our method, neighborhood θ and density threshold pf are the only

two user-specified parameters, and no other prior information is required.

We further decomposite the above problem into two sub-problems:

• If we found a ”promising” location for each cluster, how can we detect the correct

clustering center (closest valid density peak) with provable guarantees.

• How can we detect at least one ”promising” location for every cluster with provable

guarantees.

Obviously, the above two sub-problems have to be solved within a single pass of the stream.

The detailed solution is presented in the following sections of this chapter.

2.1 Mean Shift in Single Pass

Following the Density Peaks [31] and Mean-shift [35] paradigms, we assume that each

clustering center is located at the density peak of a local neighborhood. In every step,

Mean-shift computes the mean of data inside a kernel and moves the kernel to the mean lo-

cation. If we take a random sample from data inside the kernel, its probabilistic expectation

happen to be the mean location, namely
∑

i p(i)xi = 1
N

∑
i xi, where p(i) is the probability

that xi is chosen. This property allows us to seek local density peaks within a single pass.

Consider a toy dataset, in Fig. 2.1, generated by a Gaussian distribution. Suppose we

initially place a kernel with bandwidth θ at Point A. We randomly sample a data point xi

from this dataset (without replacement), and compute its distance to the center. If it is

smaller than θ we call it a match, and we update the center as,

27

Figure 2.1. Updating a center: two candidate cluster initializations, at Point A and
Point B. The paths shown in red and blue colored cross points indicate convergence
towards the density peak of the natural cluster during the ‘sampling, matching, and
updating’ process. The denser region (in yellow) inside the θ-defined kernel denotes
where the next matched sample is more likely to be. The blue shadow shows a ”suffi-
cient area” where any kernel inside this area is sufficiently dense. The entire process
requires a single pass through the dataset, with no iterative operation involved.

28

ck
(new) =

nkck + xi
nk + 1

(2.1)

where ck is the center of the kernel and nk is the number of samples it has been matched

with so far. Note that inside the kernel, the matched sample is more likely to come from a

dense dataset region (yellow-highlighted in Fig. 2.1). Therefore, each update will problem-

atically move the center towards a denser location. If we apply this ”sampling, matching,

and updating” process throughout the entire dataset, the center will keep moving towards

the nearest density peak, as shown with the red cross path in Fig.2.1. The resulting path

is quite similar to the Mean-shift procedure, however, the entire process here is stochastic

and merely requires a single pass.

Note that nk is free to be reset into a small value if the kernel stopped moving since the

kernel is always moving towards the density peak. However, this case is unlikely to happen

given an appropriate similarity value θ or an initial point close to the density peak (point

B).

2.2 Dynamic Initialization: Density Estimation

To initialize the kernels, with respect to their number (how many?) and locations

(where?), our objective is, for any density peak, find at least one kernel that can be shifted

to it. We can achieve this objective if we manage to estimate the local density around an

emerging data point and initialize a new kernel there if it is dense, where an emerging data

point is a data point cannot fall into any existing kernel. Recall the Density Peak problem

setting, we define a kernel as sufficient if its density ratio is greater than pf , and insufficient

otherwise.

It is worth noting that, for any valid density peak, there exists a sufficient area such

that any kernel inside this area is sufficient (as illustrated by the blue circle in Fig.2.1).

Therefore, as long as we correctly estimated the density of at least one emerging data from

the sufficient area, it will be guaranteed to find the density peak via Stochastic Mean Shift.

And even if the kernel is outside the sufficient area (such as point A), we are still able to

29

robustly find the nearest density peak. Therefore, our dynamic kernel generation principle

is:

(i) every data point that cannot be matched to any current kernel is temporarily set as a

location of a new kernel;

(ii) for every new kernel, we perform an efficient density test (estimate its density by

p-value approach), and discard it as noise if it cannot pass the test; and

(iii) we use the kernels that pass the density test to seek local density peaks.

We regard each data point on the stream as a random sample from the entire dataset.

Given an emerging data, its subsequent r data points construct a sample set with size r,

which can be used for density estimation following p-value approach. Specifically, for a

statistical confidence α (in this thesis α = 1%) the following two conditions must be satis-

fied:

Condition A:

If a kernel is known to be sufficient, we have 1 − α confidence that it will not fail density

test.

Condition B:

If a kernel passes the density test, we have 1− α confidence that it is indeed sufficient.

Proposition 1 (Satisfying Condition A): For any r random samples from the dataset, with

r =
lnα

ln(1− pf)
, (2.2)

the probability that there are no data points covered by a sufficient kernel k is less than α.

Proof: The probability that a single sample is not covered by kernel k is 1− pk; there-

fore, the probability that none of the r samples are covered by the kernel will be,

(1− pk)r = (1− pk)
lnα

ln(1−pf) = (1− pk)
log1−pf

α

≤ (1− pf)
log1−pf

α
= α

(2.3)

�

30

Proposition 2 (Satisfying Condition B): Consider any r samples from the entire dataset

and a sufficient kernel k. Let the stochastic variable X denote the number of data points

that fall into kernel k among these r samples. Let

Xf = rpf + Φ−1(α)

√
rpf

(
1− pf

)
, (2.4)

we have

P{X > Xf} ≥ 1− α, (2.5)

where Φ−1(.) is the inverse Cumulative Density Function of Standard Normal distribution.

Namely, we have 1 − α confidence that if the kernel passes the density test, it is indeed

sufficient.

Proof: X follows Binomial Distribution X ∼ B(r, pk). According to the Central Limit

Theorem, when r is large and rpk(1−pk) ≥ 10, we can approximate binomial distribution

B(r, pk) with normal distribution N (rpk,
√
rpk(1− pk)). If we consider the statistical

variable, Y = X−rpk√
rpk(1−pk)

∼ N (0, 1),

P{X > Xf} ≥ P

{
X − rpk√
rpk(1− pk)

>
Xf − rpk√
rpk(1− pk)

}

≥ P

{
Y >

Xf − rpf√
rpf (1− pf)

}
= P{Y > Φ−1(α)} = 1− α,

(2.6)

given pk ≥ pf , and pf ≤ 0.5 (more than one density peak). �

As shown in Fig.2.1, the sufficient area covers a large number of data points and we are able

to detect the density peak of only at least one emerging data from this area passes density

test. Suppose we totally test L emerging data points from a sufficient area. According to

Proposition 1, the probability of a single failure is α = 1%. Then failure of all L tests will

be αL, which will be a extremely small probability of failure to detecting a density peak.

And according to Proposition 2, if it passes, we have 1−α confidence that it is indeed from

sufficient area.

Correctness Guarantees. Our algorithm takes two assumptions:

(1) Monotonic Density Assumption: probabilistic density function that generates the data

31

is monotonically increasing when approaching a valid nearest density peak inside the cor-

responding sufficient area.

(2) Separation Assumption: the nearest distance between any two valid density peaks are

larger than kernel size θ.

Satisfying the above two assumptions guarantees that a valid density peak will be dis-

covered as long as we initial a kernel inside its sufficient area. And Proposition 1 and

Proposition 2 provide guarantees discovering sufficient area for every density peak. There-

fore, our algorithm optimally solved the clustering objective in this paper for datasets that

satisfy Monotonic Density Assumption and Separation Assumption.

2.3 The Single-Pass Algorithm

Algorithm 1 describes our single-pass clustering algorithm. As shown in fig.2.2 We

introduce two data structures, Dictionary that stores permanently kernels, and Memory

where every newly emerged kernel is examined according to a density test and is transferred

to Dictionary if it passes, or is discarded as noise if it fails. Both Dictionary and Memory

are empty at the beginning and then enriched while parsing the data.

Proposition 1 and 2 can be concisely implemented by maintaining a variable activity of

every kernel in Memory. Activity is set to r when a new kernel is created and decrease by

1 after processing each data point on the stream. When a Memory kernel is matched, its

activity value is increased by r; when this value exceeds a threshold φ, the corresponding

kernel is transferred to the Dictionary as a permanent kernel. Therefore, a new Memory

kernel encounters at least r data point after initialized or matched, which forms a sample

set of size r. A Memory kernel is removed if the situation in Proposition 1 happens. To

follow Proposition 2, the upper threshold φ is

φ = rXf , (2.7)

The other aspect of the activity is that sufficient kernel must be matched frequently

along the Data Stream while insufficient kernel must be matched rarely because of their

32

Algorithm 1: Stochastic Mean Shift(D, θ, pf)

1 Dictionary,Memory ← ∅, r←eq.(2.2), φ← eq.(2.7)

2 for each x ∈ D do

3 k ← nearest kernel to x in Dictionary

4 if similarity (x, k) ≥ θ then

5 update Dictionary kernel k by eq.(2.1)

6 else

7 k ← nearest kernel to x in Memory

8 if similarity (x, k) ≥ θ then

9 update Memory kernel k by eq.(2.1)

10 k.activity = k.activity + r

11 if k.activity ≥ φ then

12 trasfer k to Dictionary

13 else

14 initial a kernel knew at x

15 knew.activity = r

16 Memory.add(knew)

17 Decrease activity of each kernel in Memory by 1

18 Remove kernels with negative activity

19 return Dictioanry

33

Figure 2.2. Illustration of the single-pass algorithm. Data fed into the algo-
rithm is arbitrary (small image patch from the video stream in this case.), as
long as match and update are well defined.

34

density. In the previous section, we assumed each data point is independent of each other.

Indecency assumption assumes each cluster is evenly distributed along the stream, which

makes the densest r sub-stream most sparse. It can be easily proved that, if the data is

distributed unevenly, there must exist a r sub-stream that is denser than average density.

Therefore, our assumption is indeed tackling the worst case, which makes Proposition 1

and 2 stand in general Data Streams.

2.3.1 Subset Size for Successful Clustering

Consider a sub-stream of sizeN∗ in the Data Stream formed by the firstN∗ data points.

We hope that by processing only N∗ samples, our algorithm will find a sufficient kernel for

every valid density peak so that the Dictionary will have enough subsequent data to update

itself to the density peaks.

Given a sufficient kernel k in a dense area covers Nk data points, with Nk
N

= pk > pf .

Let N∗k be the number of instances, among the first N∗ random samples, covered by kernel

k. ThenN∗k follows Binomial DistributionN∗k ∼ B(N∗, pk). Using again the Central Limit

Theorem, let M = (N∗k − N∗pk)/
√
N∗pkqk, where qk = 1 − pk and M follows Standard

Normal distribution, M ∼ N (0, 1). We hope that in the first N∗ random samples, the

instances covered by kernel k are more than 0.9 times of the expectation, N∗k > 0.9N∗pk;

the probability is,

P {N∗k > 0.9N∗pk}

= P

{
N∗k −N∗pk√
N∗pkqk

>
0.9N∗pk −N∗pk√

N∗pkqk

}
= P

{
M > − 0.1N∗pk√

N∗pkqk

}
= Φ

(
0.1N∗pk√
N∗pkqk

)
, (2.8)

We expect P {N∗k > 0.9N∗pk} > 1− α; if α = 0.01, then from eq. (4.15), we have1,

N∗ > 497.3
1− pk
pk

> 497.3
1− pf
pf

(2.9)

This equation indicates that our method does not prefer small datasets, especially when the
1If Φ(x) = .99 then x = 2.23

35

cluster population is very small. However, simple post-processing, such as data duplication

or interpolation, can resolve this issue.

2.3.2 Performance for Stream Data

Our method inherently carries the idea of sequential processing: it parses the dataset

once, and each data point requires constant computation. However, we shuffled the data se-

quence in order to distribute noise evenly among the considered subsets of size r and avoid

noise accumulation. However, in stream mode, we are not able to shuffle the data sequence

at the beginning or sample from the entire dataset along with parsing. In this case, we show

another conditions:

Condition C: For any real cluster, there exists a ”dense” subsequence so that we will miss

it with low probability.

Proposition 3 (Satisfying Condition C): For any permutation of a binary set {νi | νi = 0 or νi = 1}N
and any positive integer r ≤ N , there exists at least one consecutive subsequence ν of

length r, such that,
‖ {νi | νi = 1, νi ∈ ν} ‖

r
≥
∑N

n=1 νn
N

, (2.10)

where ν can include tail-head permutations, i.e., [νi, νi+1, . . . , νN , ν1, ν2, . . .]. (Note: This

condition means that there is at least one consecutive subsequence of length r where the

density of the cluster members is greater than or equal to the average density of the cluster

members in the entire dataset.)

Proof . We prove this lemma by contradiction. Assume for any r-length consecutive

subsequence of an arbitrary permutation [ν1, . . . , νN],
i+r−1∑
j=i

νmod(j,N)+1 < r

∑N
n=1 νn
N

, ∀i = 0, 1, . . . , N − 1 (2.11)

We consider the modulo index mod(j,N) + 1 to account for tail-head permutations (see

above). In total, there are N distinct consecutive subsequences. Then,
N−1∑
i=0

(
i+r−1∑
j=i

νmod(j,N)+1

)
= r

N∑
n=1

νn, (2.12)

36

i.e., each element in the dataset is added r times (consider an r-length window ‘sliding’ N

times along the dataset/sequence). However, according to the assumption in eq. (2.11), we

have,
N−1∑
i=0

(
i+r−1∑
j=i

νmod(j,N)+1

)
<

N−1∑
i=0

(
r

∑N
n=1 νn
N

)
= r

N∑
n=1

νn, (2.13)

which contradicts eq. (2.12). �

Proposition 3 shows that for a cluster who can support at least one sufficient kerel k, pk ≥

pf , no matter what the data order is, there exists at least one consecutive subsequence of

features x, ‖ x ‖= r, such that,

‖ {xi | xi ∈ πk,xi ∼ k,xi ∈ x} ‖
r

≥ pf (2.14)

where xi ∼ k means xi is covered by kernel k. According to Proposition 1 and 2, we

have a probability of α to miss it. And in realistic situation, we have several more of such

subsequence, the failure probability is exponentially lower.

A potential issue of this method is the order of data. If a few noises appeared adjacently

along the sequence, they might be treated as a real cluster by mistake (though sometimes

this is preferred). Therefore, in batch mode, we randomly shuffle the order to let every data

instance appears evenly. As a result, every data point on the shuffled list will be a random

sample from the entire dataset. In the stream mode, we put the earliest observations into

a data pool. For each of the following observation, we first insert it into the data pool,

and then randomly sample data from the data pool as the data instance in the current step.

Alternatively, we can leave those noise in Dictionary first, then simply discard the entries

with a small cluster population in the end.

2.4 The Memory Tree Clustering: Stochastic Mean Shift in Hierarchy

From eq.(2.2) it is obvious that r has high values when pf becomes very small. This

happens when we expect a large number of clusters (of smaller sizes), e.g., when building

a local feature dictionary for a large and diverse image collection.

To account for such scenarios, we use a hierarchy as follows. At the first level, we

choose a smaller distance threshold θ to generate a small number of large clusters. At the

37

Figure 2.3. Memory Tree Clustering

38

Algorithm 2: Memory Tree clustering(d, root)

1 if root.depth = maxDepth then

2 perform basic algorithm in root;

3 Return;

4 index = match(d, root.Dictionary, root.θ);

5 if index > 0 then

6 update root.Dictionary[index] according to eq. (2.1);

7 root.Dictionary[index].number + +;

8 Memory Tree clustering(d, root.children[index]);

9 else

10 index = match(d, root.Memory, root.θ);

11 if index > 0 then

12 update root.Memory[index] according to eq. (2.1);

13 root.Memory[index].number + +;

14 root.Memory[index].ActiveV alue+ = r;

15 root.Memory[index].bucket.add(d);

16 if Memory[index].ActiveV alue > φ then

17 root.Dictionary.add(Memory[index]);

18 root.Memory.remove(index);

19 root.children.append(Memory[index]);

20 for p ∈ root.Memory.bucket do

21 Memory Tree clustering(p, root.children[end]);

22 else

23 root.Memory.add(d);

24 root.Memory.ActiveV alue = r;

25 root.Memory.bucket = d;

26 for j = 1 to root.Memory.size do

27 root.Memory[j].ActiveV alue−−;

28 if root.Memory[j].ActiveV alue < then

29 root.Memory.remove(j);

39

next level, for each of these clusters, we increase the value of θ and generate smaller sub-

clusters. We repeat this procedure until we reach a pre-defined maximum of the recursion

depth. Our experiments show that practically three recursive steps are sufficient; we set

θ[depth = 1], θ[depth = 3] for the first and last depth, and calculate θ[depth = 2] as

geometric average
√
θ[depth = 1]θ[depth = 3].

However, the method presented above is a batch method, it passes the dataset 3 times,

though it is faster by pre-pruning unsuccessful matches. For stream scenario, we propose

a data structure, Memory Tree, to perform Data Stream clustering. Fig. 2.4 shows a 3-

layer Memory Tree. Every node of Memory Tree is a unit running the basic algorithm,

it maintains a Memory and a Dictionary. Each entry in Dictionary links to a child of the

current node. Namely, every non-root node is a kernel and the Memory Tree grows by

running the basic algorithm in appropriate node.

To feed a data point into the Memory Tree, we start from the root and first try to match

it to an existing kernel in Dictionary. If we found the match, we pass the data instance to

the corresponding child to perform the same recursive operation. If no such match can be

found, we will insert it into Memory in the current node as the basic algorithm. In Memory

Tree, each Memory entry as a bucket stores data assigned to the corresponding kernel. And

if a kernel in Memory passed Density Test and is transferred to Dictionary, all the data

stored in Memory entry will be passed down recursively by running the basic algorithm on

a deeper level. However, we do not store data in Memory entry in the leaf node, because

it is unnecessary. The recursion will terminate if the dataset goes to Memory or reach the

deepest layer.

One obvious concern is the bucket size. It is possible, though not likely, that many

buckets could grow to a large size such that the main memory cannot fit the entire tree. We

again play a simple but effective trick to solve this problem. We first set an acceptable max

bucket size. If a bucket grows to the max size, we discard the oldest data instance x0 and

update the kernel center by

cnew =
nkc− x0

nk − 1
(2.15)

40

Table 2.1.
All the clustering algorithms in comparison

Algorithm complexity clusters stream #para

Our Method O(Nd) variant yes 2

Density Peak [31] O(N2d) variant no 2

AP [30] O(iN2d) variant no 2

Infinite GMM [45] O(iNd3) variant no 5

K-means++ [33] O(iKNd) fixed no 1

GMM [34] O(iKNd) fixed no 1

Mean Shift [35] O(iKNd) variant no 2

StreamKM++ [20] O(Nd+ iKCd) fixed yes 2

BICO [21] O(Nd+ iKCd) fixed yes 3

Pirch [23] hierarchical variant yes 3

Birch [22] hierarchical variant yes 5

This trick works because recall fig.2.1, the kernel always goes to a denser place in the

probabilistic sense. The oldest data instance must be in a more sparse area. Therefore, the

update of eq.2.15 will move the kernel closer to the density peak. In other words, a limited

bucket size is even better than an unlimited bucket size.

2.5 Experiments

2.5.1 Basic Clustering on Real, Image-oriented Datasets

In this section, we compare our method against the state-of-the-art center-based clus-

tering algorithms on realistic datasets. As discussed previously, our goal is to achieve

top-level performance in both speed and accuracy. Therefore, we consider not only the

state-of-the-art stream method but also the accuracy dedicated algorithms. All the cluster-

ing algorithm considered in this chapter is listed in Table 2.1 with basic information, where

41

Table 2.2.
Basic statistics of all datasets

dataset clusters points dimension

Olivetti [97] 40 400 4096

Segmentation 8 2310 18

LaSat 6 6435 36

Letters 26 20K 16

MNIST [98] 10 70K 784

Covertype 7 581012 54

ALOI [99] 1000 108000 128

ILSVRC12 [100] 1000 1.3M 2048

42

Figure 2.4. F1 scores and mean Accuracy of compared algorithms (part 1).
Each method is denoted as the same color across all the datasets.

43

Figure 2.5. F1 scores and mean Accuracy of compared algorithms (part 2).
Each method is denoted as the same color across all the datasets.

44

N is data size, d is data dimension, i is number of iterations (usually 30 < i ≤ 100 except

IGMM, which usually takes hundreds of iteration of Gibbs Sampling), K is the number

of clusters, and C is the size of Coreset size of StreamKM++ and BICO. We also list the

ability to discover the number of clusters (indicated as ”variant” in the ”clusters” column)

and the number of user-specified parameters (”#para”). Among these algorithms, Density

Peak, Affinity Propagation and Infinite GMM are accuracy dedicated methods which only

suitable for small datasets. K-means++, GMM and Mean Shift are popular algorithms ap-

plied in divisive domains and also regarded as approximating targets of many state-of-art

clustering algorithms for Data Streams. StreamKM++ and BICO are two popular state-of-

art approximation algorithms of K-means++ which are able to cluster very large data set

with proven approximation accuracy. Pirch is a recent state-of-art carefully designed for

Extreme Clustering [23], where the number of clusters is very large. Birch is an early work

on clustering Data Streams providing a baseline comparison.

We evaluate the above algorithms on 8 datasets in different domains, dimensions, and

sizes. General statistics of these datasets are shown in Table 2.2. Landsat satellite data,

Letters, Segmentation and Covertype is provided as benchmark dataset by UCI Machine

Learning Repository [101]. ILSVRC dataset consists of 1.3 Million of web images from

1000 categories, and we use the next-to-last layer of Inception Network [102] as the image

description.

In this chapter, we consider two evaluation metrics for clustering accuracy: F1 score and

mean accuracy. F1 score balances the impact between precision and recall. Mean accuracy

only considered the number of points correctly assigned to the ground-truth cluster, which

punishes too many numbers of clusters. We also report the running time of all the compared

algorithms on a 2.7GHz Intel-i7 processor.

We run all the experiments 100 times except Affinity Propagation (AP) and Density

Peak which are two deterministic algorithms. To efficiently visualize accuracy, running

time and their standard deviations, we use a 2-D plot shown as Fig 2.4 and 2.5. The x-axis

is the log-scale running time (since a few methods are very complex), and the y-axis is the

clustering evaluation. We use two bars for each method. The horizontal bar represents its

45

running time and the vertical bar represents its clustering evaluation where the bar length

represents the corresponding standard deviation. The cross-point of the two bars of each

method represents the average evaluation value and running time. We always prefer a

method resides on the left-top part of the plot.

In general, our algorithm always achieves top-tier accuracy across all the compared

datasets with the fastest running time. Olivetti, Segmentation and Sat are small datasets,

therefore we are able to run complex algorithms (AP, DP, and IGMM). We find every com-

plex algorithm showed attractive performance (with respect to accuracy) in at least one

dataset, however, no complex algorithm is able to perform well on all three small datasets.

Our algorithm, though are not always the most accurate, shows a persistent clustering qual-

ity. More importantly, we achieved such clustering quality with the fastest running time.

Since our method, AP, DP, and IGMM are all able to detect the natural number of clusters

and require at least 2 user-specified parameters, our method can be a promising alternative

for high-quality clustering. We still emphasis that these complex algorithms still have their

preferred application areas where our method may not be able to always follow. And their

theoretical elegance also plays a key role that inspiring emerging work on data clustering.

The letter, MNIST, Covertype, and ALOI are three medium-size datasets, where the

superiority of our algorithm is clearly shown. Our method outperformed all other com-

pared algorithms in these datasets when evaluated in the F1 score with the fastest speed.

However, when evaluated by mean accuracy, K-means++ showed better results in the Let-

ter dataset. The most likely reason might be that incorrectly assigned data points are not

punished by mean accuracy, which is an indirect benefit from the known number of clusters

for K-means. A similar phenomenon, but more severe, happened to GMM in the Cover-

type dataset, because of the unbalanced distribution of this dataset. Unlike these strange

circumstances shown in K-means and GMM, our algorithm consistently generates top-tier

quality regardless of data distribution, size and evaluation metric.

Finally, we evaluate our algorithm on complex datasets (ALOI and ILSVRC), which are

in large size and contains a large number of clusters (1000 for each). Clustering on datasets

that consists of a very large number of clusters is a recent challenge for clustering a very

46

large dataset [23]. We found that our algorithm drastically outperformed StreamKM++ and

BICO. In the ALOI dataset, we have increased 61.43% of F1 score compared with BICO

in ALOI, and 72.78% compared with StreamKM++. Similar results also showed when

evaluated by mean accuracy. The reason for this drastic boost is each cluster in ALOI only

contains 100 data points. If we maintain a coreset with 10% of the original dataset, each

cluster in coreset contains merely 10 data points, which is too few to make K-means++

work. However, increasing the coreset size will sabotage its efficiency. As an extreme case

of these two approximating algorithms, the K-means++ itself shows no better accuracy than

our algorithm even costs 15.8 times longer running time. ILVRC is a very large dataset and

we are only able to run stream algorithms. Again, our method provides a major jump on

both F1 scores and mean accuracy for a similar reason. Specifically, we have increased

the F1 score by 86.79% and 79.59% compared with StreamKM++ and BICO respectively.

Evaluations by mean accuracy showed a similar pattern.

In general, we find StreamKM++ and BICO produce a well-balanced performance be-

tween speed and accuracy. Birch is always the fastest algorithm but with very limited

accuracy (left-bottom in the plots). Pirch does not outperform StreamKM++ and BICO

when the number of clusters is small but achieves major jump when the number of clusters

is large and per-cluster population is small.

It can be easily recognized from Fig.2.4 and 2.5 that our method always locates at the

upper-left corner of the plot (except in the very large dataset ILVRC), which indicates our

algorithm provides best clustering quality and running speed. However, compared stream

algorithms (StreamKM++, BICO, Birch and Pirch) usually locates at the right-bottom or

mid-bottom area, which indicates these algorithms only provide a trade-off between speed

and accuracy. We also notice that Our method maintains a small standard deviation across

all the datasets compared with other non-deterministic clustering algorithms.

47

2.5.2 Building Visual Words on-the-fly

Visual Vocabulary [15] is a purely unsupervised image encoding framework, which is

popular researched. Recent Deep Learning method [29] [103] successes in image classi-

fication and object recognition bring us a revolution in supervised learning in Computer

Vision Domain. However, since labels are still expensive, purely unsupervised image en-

coding method is still motivated. Features from natural images are usually very cluttered,

therefore there are no natural groups. Therefore, build a visual codebook is more of a data

quantization than a clustering problem. In the most practical environments, K-means/EM is

usually the best choice. This is because a more sophisticated method shows no significant

superiority.

However, in some harsh environments, we sometimes have very limited resources.

These situations could be a rover on Alain planets, drones discovering very dangerous

places, where (a) the telecommunication is expensive or impossible, so all the computation

must be on-the-fly; (b) the environment is totally strange so no existing visual codebook

can be pre-installed; or (c) the environment is too harsh for a wait. Then the motivation of

building visual worlds on-the-fly is raised. The task asks for an algorithm to

1. continuously discover emerging features

2. provide current visual codebook with absolutely no delay.

As a single-pass algorithm, we can provide the current visual vocabulary immediately

at any time as well as discovering recently emerged features. Unlike a few approximation

algorithms [20] [21], the current visual vocabulary can only be achieved by running K-

means/EM on the reduced dataset. Therefore, the problem is, is our algorithm running in

a harsh environment able to perform as satisfactorily as K-means/EM running in a gentle

environment?

We apply our algorithm to building visual words and compared with other clustering

methods. In this situation, AP and DP are not suitable for clustering a large collection

of features. For VLAD and BoVW encoding, we run experiments on our algorithm, K-

means, Stream KM++, BICO, Mean Shift and BIRCH. These algorithms typically provide

48

a hard assignment, which is suitable for VLAD and BoVW. We also compare our algorithm

with EM on Fisher’s Vector encoding, which usually prefers soft assignment. To get a soft

assignment from our algorithm, we use the resulted clustering centers as initialization and

perform 10 iterations of Naive EM algorithm.

We used three publicly available image collections: (a) Object Discovery 100 (Obj.

Disc) consists of 3 categories, each containing 100 images; (b) Caltech 101 (Caltech101)

consists of 102 categories, where each image contains a single object from the correspond-

ing category; and (c) PASCAL VOC 2007 contains 20 categories of objects in increased

clutter, occlusion, and varying viewpoints: we first used a subset of 6 chosen categories

(PASC(6)) and then the entire collection (PASC(all)).

General Expeiment Setting. In Bag-of-Visual-Words, we compute the square root of

each bin of histogram, and then L2 normalize it before feeding into SVM. In VLAD and

FV, we use signed square root for each bin of encoded image descriptor, and then L2 nor-

malize it before SVM.

We generate 8 by 8 patches in different scales with stride 4 and compute L2 normed SIFT

descriptors. These descriptors are whitened by PCA along with dimensionality reduc-

tion(reduced from 128 to 80 for FV and 100 for others). We also append the relative

x-y spatial coordinate of each feature. The value of coordinate ranges from -0.5 to 0.5. In

other words, the original coordinate of each image is at the center and the coordinate value

is divided by image size for each axis.

We use the hierarchical version of our algorithm since the vocabulary size is usually

larger than 100. We set the max number of layers to be 3, and choose the density ratio

pf = 0.05 for each layer. The distance threshold for the first layer, θ1, is 1.2 for VLAD

and BoVW and 1.0 for FV. We choose different distance thresholds in the third layer, θ3, to

generate a similar number of centers as its counterpart. We set the distance threshold in the

middle layer by θ2 =
√
θ1 · θ3.

Size of Clustering Data. From all the feature patches extracted, we sampled a subset to

perform clustering. In the experiments that using K-means and Mean Shift, we randomly

choose 0.5M for Object Discovery Dataset and 1M for others. Since our algorithm, as

49

well as other single-pass algorithms, are much efficient than the above iterative ones, it

allows us to mine a larger dataset and still be much faster than those two. In the experiment

applying the single-pass algorithm, for VLAD and BoVW, N = 1M for Object Discovery,

and N = 5M for others. In FV, we let both our algorithms and EM mine 1M of feature for

all datasets.

The experiment result is shown in table 2.3, 2.4 and 2.5. Parameters in compared

algorithms are tuned to optimize their performance. For Mean Shift and BIRCH, we also

tune the parameters to generate the number of clusters close to the value we set to K-means,

StreamKM++, and BICO. From these experiments, we found that

1. our algorithm out-performed Stream KM++ and BICO in both speed and accuracy.

2. our algorithm is slightly slower than BIRCH but provides much better results.

3. our algorithm provides equally good results but much faster than K-means and EM.

Therefore, in general, our algorithm provides the best trade-off between all these compared

clustering methods.

2.5.3 Matching SIFT Features on-the-fly

Finally, to test the performance of our approach in sequential data (clustering on the fly),

we used videos captured by an onboard camera of a quadrotor during flight. Fig. 2.6 illus-

trates an indicative example of clustering detected SIFT features in eight non-consecutive

752× 480 frames of a video (frame numbers are shown on the top left of each image).

For each frame, we show two emerging features and all the previously emerged features.

For example, in frame 375, we show two features that appeared in frame 251-375 but

not appeared in frame 1-250, marked as triangles. And the squares include two parts:

(1) emerging features in frame 126-250, and emerging features in frame 1-125. In other

words, we show all the emerging features we have shown previously. The color indicates

feature clusters: matched features are shown in the same color, no matter what shape it is.

For example, green triangles in frame 375 (indicating windows) are all matched to green

50

Table 2.3.
Results of Fisher’s Vecotor

Memory Tree Naive EM

data K mAP% time(s) K mAP% time(s)

O
bj

.D
is

c

103.0 95.41 80.46 100 95.06 63.37

206.5 96.50 151.74 200 95.82 334.31

385.5 97.03 282.61 400 96.05 819.12

629.0 5.46 527.34 600 95.80 2012.20

C
al

10
1

231.6 74.55 220.91 200 74.59 197.63

414.3 76.26 423.07 400 75.96 879.18

617.7 77.56 610.64 600 77.55 2146.14

795.5 77.62 677.01 800 77.08 3654.57

vo
c(

6)

224.0 72.65 233.46 200 72.46 197.36

390.0 74.49 410.76 400 74.17 806.97

627.0 75.85 521.74 600 75.43 1718.42

813.0 76.34 819.28 800 76.30 3636.91

vo
c(

al
l)

223.7 60.68 227.45 200 60.03 190.56

419.4 63.08 512.09 400 62.26 782.23

609.5 63.99 621.58 600 63.44 1551.14

784.1 64.68 801.59 800 63.82 3523.66

51

Table 2.4.
Results of VLAD

Memory Tree Kmeans StKM BICO MeanShift BIRCH

K mAP time K mAP time mAP time mAP time mAP time mAP time

O
b.

D
is

131.8 94.60 6.2 100 95.57 441.3 94.59 15.8 94.21 14.7 94.31 405.4 94.28 13.3

265.7 95.03 7.1 200 95.52 522.0 94.35 25.9 94.52 22.8 94.50 658.1 94.84 18.9

417.9 95.08 7.7 400 96.02 523.7 94.41 39.6 94.51 33.5 94.10 841.1 93.62 19.6

587.9 94.51 9.1 600 95.73 545.5 94.23 43.4 94.37 37.8 94.17 1028.0 94.01 20.3

C
al

10
1

252.6 79.18 56.2 200 80.47 138.2 79.51 109.7 79.74 107.3 70.54 572.6 78.08 95.7

420.0 80.85 90.4 400 80.57 331.6 80.02 143.8 80.08 132.9 71.32 1164.3 78.23 98.2

671.7 81.02 139.6 600 80.82 456.4 80.29 158.6 80.14 144.1 70.28 1599.2 77.21 103.7

839.6 81.27 165.4 800 81.22 847.3 80.59 222.1 80.27 173.2 73.93 2511.7 76.69 107.4

vo
c(

6)

254.4 66.48 70.1 200 66.11 867.5 65.72 102.4 66.02 102.7 62.32 682.7 65.49 101.3

393.5 68.36 77.1 400 69.37 897.2 68.65 147.2 68.48 127.1 62.57 1334.9 65.71 103.3

567.0 70.23 86.3 600 70.21 1012.4 69.67 161.5 69.74 132.3 63.04 1508.2 64.07 104.4

809.0 71.55 104.6 800 70.42 1102.9 69.92 218.7 69.89 181.5 63.21 1884.0 63.42 106.2

vo
c(

al
l)

204.2 56.87 64.5 200 53.38 888.4 52.78 107.9 52.28 104.3 48.44 634.2 52.21 97.7

394.4 55.82 77.1 400 56.26 908.2 56.18 143.5 56.46 133.2 50.43 1291.5 52.25 101.1

654.9 57.51 101.3 600 58.08 992.1 56.92 152.9 57.04 152.0 50.15 1574.2 51.12 102.4

782.9 58.77 101.4 800 58.10 1092.0 57.44 224.1 57.61 177.4 51.08 1717.2 51.04 104.5

52

Table 2.5.
Results of BoVW

Memory Tree Kmeans StKM++ BICO MeanShift BIRCH

K mAP time K mAP time mAP time mAP time mAP time mAP time

O
b.

D
is

c 2666.7 95.23 26.9 2000 94.57 690.2 93.94 30.7 94.01 26.7 93.37 1431.2 93.51 13.8

4227.8 95.21 38.5 4000 94.81 742.6 94.09 34.9 94.19 30.2 94.07 1724.9 94.02 16.8

5977.2 95.63 53.5 6000 94.76 814.4 93.91 41.4 94.20 33.4 94.10 2039.1 94.17 17.1

C
al

10
1

4188.8 75.50 152.5 4000 75.79 1798.5 74.80 665.9 75.07 477.6 66.64 3203.8 68.55 145.0

6548.7 76.81 228.1 6000 76.81 1991.3 75.15 719.3 75.92 597.3 68.21 4887.3 70.89 165.7

8207.4 77.03 286.6 8000 76.91 2068.9 75.62 1001.4 76.07 697.9 68.69 4056.2 71.46 169.2

9939.8 77.66 342.8 104 77.87 2132.7 75.91 1120.6 76.29 797.1 68.84 4793.0 71.92 170.3

vo
c(

6)

4154.2 62.49 128.3 4000 61.31 1804.5 60.67 572.9 61.02 475.3 56.87 3372.9 57.87 154.5

6481.7 63.41 188.7 6000 63.03 2001.3 61.94 707.3 62.35 607.9 58.17 3979.2 58.21 161.0

8016.5 63.88 233.6 8000 63.21 2054.9 62.37 873.1 62.47 724.4 58.61 4259.6 59.36 169.4

9946.0 64.95 290.3 104 63.45 2231.6 62.64 1102.3 62.71 817.3 58.89 4966.5 59.42 172.8

vo
c(

al
l)

4098.8 49.85 260.7 4000 48.43 1784.2 48.34 549.6 48.39 487.3 44.95 3237.6 45.67 159.2

7037.3 50.85 406.5 6000 49.95 1997.7 49.20 735.3 49.22 594.6 45.01 3969.0 45.52 163.3

8655.0 51.42 486.9 8000 50.20 2037.9 49.87 884.1 49.79 712.5 45.62 4101.5 46.09 167.4

10958 51.67 594.2 104 50.41 2257.4 49.43 1021.9 49.51 823.1 45.88 4574.8 46.34 177.6

squares in frame 500, which are again windows. All the emerged features we selected are

the most frequently matched features in previous frames.

The magenta-yellow arrows in frames #250 and #375 show indicative examples of

newly emerged clusters (orange and green square categories), while the long double arrow

indicates correspondence between features (features in the same cluster) across frames. In

this experiment we used the basic version of our method (Algorithm 1), with pf = 0.005

and distance threshold θ = 275.

StreamKM++ and BICO are not suitable for detecting emerging features. Stream

KM++ and BICO require the number of the cluster as a parameter and the clustering cen-

ters at a certain time are achieved by running K-means. Not only are they slow, but there

is also no way to discover a new feature neither keep track of old features. BIRCH keeps

splitting CF nodes, therefore, a cluster in time t1 may not exist in t2, which faces the same

problem with StreamKM++ and BICO.

53

Figure 2.6. Building visual vocabularies on the fly: application of our approach
in streaming videos. Colors and shapes indicate cluster assignments of the detected
features, while the arrows in frames indicate correct matches.

2.6 Summary

We show in this chapter that accuracy is not necessarily sacrificed for faster speed and

stream ability of a clustering algorithm. Samples of the original dataset express efficient

54

and enlightening information which can be used for saving computation. We regard a

window of the Data Stream as a sample set to estimate the density of emerging data points

such that the algorithm is able to detect promising regions to set up a kernel and then

seek density peaks in a single pass. It worth noting that each data point itself contributes

to all the existing kernels either explicitly serves to update or implicitly helps to estimate

the density, because of the nature of randomness. Our extensive and divisive experiments

demonstrated the clustering performance of our method.

We presented a center-based clustering algorithm that consists of three components:

stochastic Mean Shift, dynamic initialization, and density test. These three components

are compactly designed to carry the nature of randomness, such that high-quality single-

pass clustering can be achieved. Our algorithm improves the trade-off between accuracy

and efficiency when applied to Visual Encoding, and it can even outperform, in terms

of accuracy, more complex iterative methods. Its statistical properties and the presented

experiments show that it can be an excellent alternative for non-parametric clustering tasks

and data quantization.

The desired properties will benefit the vision methods and applications in Dynamic

Environments, as we will see in the following chapters.

55

3. UNSUPERVISED DEEP ENCODING: A BRIDGE BETWEEN
CNN AND VISUAL ENCODING

In this chapter, we propose a Similarity-based Convolutional Neural Networks (CNN) that

unifies Visual Encoding and CNNs. By finding equivalence between a single layer of Neu-

ral Network and Clustering, CNN can be interpreted as multi-level visual encoding that

all the filters can be pre-trained by unsupervised feature learning. In our model, the pre-

activation normalization is a similarity measure instead of the dot product. This mechanism

forces the network to learn an explicit expression of features at each level. Pre-training con-

siderably improves training speed and usually results in a better error rate because gradients

are applied only to input that is sufficiently similar to the corresponding filter. Convolu-

tion by Cosine Similarity along with pre-training makes Batch Normalization unnecessary

to our model since the pre-training method implicitly whitens the data at the early stage

of gradient descend. We conduct a series of experiments on each of the above aspects of

our model. Though Batch Normalization is not applied, Similarity CNN converges as fast

as models with Batch Normalization. Compared with the state-of-the-art models with a

similar number of parameters, our net shows improved parameter efficiency.

3.0.1 Relationship between of Single-layer Neural Networks and Clustering

Consider a single layer of neural networks with ReLU activation function, y = σ(W Tx+

b), whereW = [w1, ..., wk] ∈ Rd×k are the weight matrix, σ(.) is the ReLU activation func-

tion, x ∈ Rd and y ∈ Rk. Generally, each node can be regarded as a linear classifier defined

by the separating hyperplane z = wTi x + bi. If the input and the weights of each neuron

are L2 normalized, namely, ||x||2 = 1 and ||w||2 = 1, then each element of z becomes

the cosine similarity between xi and wi added by a bias. Therefore, if we regard (or let)

each weight vector wi as the clustering center, then the output y of this layer is the unnor-

56

malized soft assignment of x to k clustering centers. Such operation is equivalent to use k

clustering centers to encode x from Rd input space into Rk feature space. Then the ReLU

function becomes more meaningful than simply removing the saturation of other activation

functions. If the output is positive, it means that the input x is similar to the corresponding

feature wi and the cosine similarity value defines the unnormalized membership strength.

Namely, each node of a single layer of Neural Networks is a kernel and can be explicitly

represented by its weight. The bias can be thought of as a similarity threshold to activate

the correspondent kernel and also defines the ”size” of the kernel.

Given the above observation and similar to [50], we consider cosine similarity as op-

posed to dot product inside the activation function, namely,

y = σ(
wTx

|w| · |x|
− b) (3.1)

where σ(.) is the activation function (usually ReLU Family [104] [105] [106] [107]).

The bias b can be regarded as a similarity threshold. [50] considers cosine similarity as

a normalization method. In this paper, we focus on how unsupervised feature learning

benefits Convolutional Neural Nets. Cosine Similarity in our framework can be replaced by

any similarity measure. Though the above analysis considers general feed-forward Neural

networks, it can also be applied to Convolutional Neural Network. The only difference is

that the input is a patch from the previous Feature Map, which is detailed as follows.

Compared with traditional clustering, the advantage of softly assigning data to cluster

centers by a layer of a neural network is that we can fine-tune these centers end-to-end by

Stochastic Gradient Descend, using label information. Therefore, we propose to pre-train

the similarity-based Neural Network by clustering, where the cluster centers become the

initialized values of kernel weights (detailed in 3.2). Similar to Autoencoders [51] and

GAN [59], unsupervisedly pre-trained networks are representative. Unlike Autoencoders

and GAN, these pre-trained weights are explicitly representative, because clustering centers

directly express the pattern itself. For example, if the input data are images, then each filter

weight vector is also an image.

Prevalent Deep CNN models use dot product instead. This design dates back to the

paradigm of linear classifiers. In such a paradigm, neuron weights define the hyper-plane

57

that separates the input space. The positive output indicates that the input is above the

classification plane and the negative value indicates it is under the classification plane. A

single layer of neural networks with k neurons construct k hyper-planes and divide the

input space into at least k + 1 sections (up to 2k − 1 sections). Since each section can

be arbitrarily large, input data from the same hyper-section cannot be regarded as similar,

especially after random initialization. Stacking another layer of neural networks can be

considered as further dividing each hyper-sections into finer and more class-related areas.

The current philosophy of convolutional layer considers any two image patches carry the

same visual pattern if they both responded by the same filter, we argue that this is not the

most efficient and explainable way to represent image features, as discussed following.

3.1 Similarity Convolution

Recall the framework of a typical Convolutional Layer with K filters of receptive size

d× d. The resulted Feature Maps is a r × c×K volume, where r and c are the number of

rows and columns of previous Feature Maps (given the previous Feature Map is padded).

The computation of the convolution operation is

y = σ(wTx+ b) (3.2)

where x is flattened local patch, w is the filter weights and σ() is the ReLU function,

σ(z) =

 0 if z < 0

z if z ≥ 0
(3.3)

The general idea behind Feature Maps is that similar visual patterns trigger common

filter(s). Some works [53] [54] found that the output of the Feature Maps responses to

particular patterns that ”look” similar. However, ”feature” considered in General CNN is

different from that of traditional Visual Encoding. Prevalent CNN models use dot product

for convolution operation followed by ReLU. This design dates back to the paradigm of

linear classifiers. In such a paradigm, neuron weights define the hyper-plane that separates

the input space. The positive output indicates that the input is above the classification

58

plane and the negative value indicates it is under the classification plane. A single layer

of neural network with k neurons constructs k hyper-planes and divide the input space

into at least k + 1 sections (up to 2k − 1 sections). Since each section can be arbitrarily

large, input data from the same hyper-section cannot be regarded as similar, especially after

random initialization. We refer the above kind of features as Linear Feature. Features in

Visual Encoding, however, is a direct description of image patches whose pattern frequently

appears. Namely, a feature vector defines a kernel, i.e. a close neighborhood of the feature

vector with limited size. An input that has a similarity higher than the given threshold

means it falls inside the kernel. We refer to such kind of features as Kernel Feature.

We propose to consider Kernel Features in Convolutional Neural Networks, where each

convolution operation is a similarity measure, as shown in fig1.4. Specifically, given a

filter with weights w and a Feature Maps F l of layer l, we compute similarity s(w, x) for x

extracted at every location of F l by sliding window. Thus the weights themselves explicitly

express the corresponding Kernel Features.

To this end, we can regard such similarity-based CNN as special case of Visual Encod-

ing. Since every location of the F (l+1)
i is the similarity value (or regarded as membership),

then we indeed used this F (l+1)
i to encode features that are stored in filter weights of layer

l+1. Unlike previous shallow encoding measures [15] [17] [16] [47], encoding by convolu-

tional map can be performed layer by layer. And more crucially, unlike totally unsupervised

feature learning, we can use Back Propagation to fine-tune these pre-learned features ac-

cording to image labels. We also apply element-wise ReLU to each Feature Map. ReLu

can be considered as sparsity discussed later in this section. We refer the above encoding

method to Deep Kernel Feature Encoding.

In this chapter, we consider cosine similarity (eq.3.1) since it provides us elegant the-

oretical properties. When Cosine Similarity is considered, L2 normalized kernel weights

become a group of basis spans on an input subspace. Each element of the output vector

(blue bar in Feature Map F l+1), is an unnormalized soft assignment of the corresponding

Kernel Feature. At the same time, this output vector can be regarded as the projection on

each basis defined by the Kernel Features. Therefore, we naturally expect such a group of

59

basis (1) to be orthogonal, and (2) to be representative to input patches. Orthogonal prop-

erty indicates that given a group of Kernel Feature {f1...k}, we have fi·fj = 0, ∀fi, fj, i 6= j.

Specifically, {f1...k} can be jointly optimized according to the following objective:

argmin
∑
i

∑
j 6=i

fi · fj − λ
∑
n

f ∗n · xn

s.t.

f ∗n ∈ {f1...k},

f ∗n · xn ≥ fi · xn,∀fi ∈ {f1...k}

(3.4)

where {x1..N} is the set of all L2 normalized Feature Map patches of previous layer, {f1...k}

is the set of L2 normalized Kernel Features (thus each dot product become cosine similar-

ity), and f ∗n is the closest feature that xn is assigned to. Though we can pre-train a layer

according to the loss defined by eq.3.4, the above optimization problem actually is studied

by Data Clustering where cosine similarity is considered as the similarity measure. The first

term of the objective can be considered as inter-cluster dissimilarity and the second term

can be considered as inner-cluster similarity. When training with millions of images, it is

considerably more efficient to take advantage of recent advance of stream clustering [108],

where similarity measure can be arbitrarily selected.

We can find the above encoding is related to whitening. Both of them attempt to find a

group of basis that decorrelates the input dimension. We can expect that it benefits conver-

gence since [72] found that batch level decorrelation by ZCA whitening improves training

dynamics. The difference between Kernel Feature Encoding and PCA/ZCA is also clear. In

PCA/ZCA whitening, the objective is to transfer the original data such that the projection

on each axis has the same distribution (same mean and variance). The objective of Kernel

Feature Encoding attempts to transfer original data such that the projection on each axis is

”sparse”. The sparsity indicates given a pre-trained basis, the projections of the most orig-

inal data are small values except a group of data with similar patterns, whose projection is

considerably large (e.g. close to 1), which we argue as following that it improves learning

dynamics.

60

Consider two adjacent convolutional layer (say layer l − 1 and layer l) in a deep archi-

tecture, with loss function L. Let’s consider filter f (l)
i as the ith filter in layer l. We have

si = σ(a), and a = cos(f
(l)
i , x) + b, where si is the output of convolution, σ(.) is the ReLu

activation function and b is the bias. The gradient of f (l)
i with respect to L is

∂L

∂f
(l)
i

=
∂L

∂si

∂si
∂a

∂a

∂f
(l)
i

(3.5)

and
∂a

∂f
(l)
i

=
1

|w||x|
· x− cos(f

(l)
i , x)

|w|2
· w (3.6)

We can see that ∂L

∂f
(l)
i

= 0 if a ≤ 0 because of ReLU activation. It means that if the input

feature map patch is not assigned to Kernel Feature f (l)
i , it does not contribute to Gradient

Descend. In other words, learning only take place when the input patch strongly related to

the corresponding filter.

From eq.3.6, the gradient of f (l)
i is also proportional to the cosine similarity between

the input patch x and the corresponding Kernel Filter f (l)
i . Thus an input patch that is sim-

ilar to the Kernel Feature contributes more to learning than unrelated inputs. Since filter

responses are pre-trained to be sparse at the early stage of Gradient Descend, it helps to

learn better targeted to most crucial parameters. We argue that this is the major reason that

pre-training significantly benefits learning dynamics (see details in section 3.3.1).

Understand Pooling. Max Pooling and Average Pooling are the major two pooling meth-

ods used on CNN. Both will have a less obscure understanding under the framework of

Similarity Net. In Max Pooling, we remove the negative responses because it is not similar

to a certain Kernel Feature. Thus it is natural to select the location with the highest sim-

ilarity to indicate the existence of a certain feature inside the pooled area. Now the bias

of each filter becomes a similarity threshold for judging the existence of the corresponding

feature. This naturally reminds us of traditional visual encoding models, we assign each

local patch to a known feature and encode such information into a compact format (usually

a histogram). As illustrated in fig.1.4, Similarity Net uses a sparse K dimensional vector

to express the assignment of each local patch, those elements have 0 value (low similarity)

61

is screened out of the assignment, and thus removed from gradient descend. This encoding

is also similar to the triangle metric [47] frequently used in unsupervised feature learning.

Therefore, the entire map is a soft assignment to all local patches. Unlike the traditional

encoding method typically computed a histogram, this representation reserves the spatial

information of each local patch that can be further processed in deeper layers.

Average Pooling can be regarded as a weighted histogram of the pooled area. Namely,

we are interested in how frequent a pattern appears in the pooled area. Therefore Average

Pooling is more suitable for high-level, large area pooling works as a summary of a certain

large acceptive field. Max Pooling, however, is more suitable for low-level, small acceptive

field to remove the disturbance of patch unrelated to the corresponding Kernel Feature. As

we can observe that recent successful models [10] [109] [110] [12] all take Max Pooling

after the first Convolutional Layer and Average Pooling in higher level (usually right before

the final fully connected layer).

3.2 Unsupervised Deep Encoding by Multi-level Unsupervised Feature Learning

Since each filter weight is the feature used in encoding, we can cluster a large number

of sampled patches from previous Feature Maps, and cluster them to find K clustering cen-

ters. These centers will become the initial weights of the current layer. Since we use cosine

similarity in the convolutional operation, we should also use cosine similarity in cluster-

ing. Also, due to a large number of patches generated from each layer, a stream clustering

method is necessary. Note that the unsupervisedly pre-trained layer is already a good rep-

resentation for a classification [47], hence fine-tuning corresponding parameters through

Back Propagation could potentially achieve better performance and a faster convergence

rate.

The process of unsupervised pre-training is as follows. Initially, there is 0 layers in the

network. We extract patches from training images and cluster these patches using cosine

similarity as the similarity measure. Thanks to recent advances in stream clustering [108],

we are able to achieve high-quality cluster centers by a single pass through the image

62

Figure 3.1. Architectures explored in this chapter. The left two architectures
are tested for subsets of ILSVRC2018 to study the parameter efficiency of
Similarity Layers. The third architecture is designed for ILSVRC 2018.

patches with an arbitrary similarity measure. After acquiring the cluster centers of ex-

tracted image patches, we initialize the first convolutional layer by assigning each cluster

center to a convolutional filter. Next, we fix the parameters of the first convolutional layer

and use eq.3.1 as the convolutional operation to compute the Feature Maps of the first layer.

We then again extract patches from the computed Feature Maps and perform clustering to

initialize the next convolutional layer, and so forth. When all the layers are established,

we can start fine-tuning by Back Propagation. Since each convolutional operation com-

putes a similarity score, we refer to our proposed model Similarity Convolutional Neural

Networks.

63

3.3 Experiments and Analysis

Dataset. We consider 3 subsets of ILSVRC2018: randomly select 10, 50 and 100

classes from the entire dataset. ILSVRC dataset has 1000 class high-resolution images.

Each class contains up to 1300 training samples and 50 validation samples. We train our

models using all the images from the training set and report results in the validation set.

Architectures. In this section, we propose a hybrid architecture with our similarity-

based conv layers and Resnet blocks, as shown in fig.5.1. We test three architectures for

ILSVRC2018 [111], from shallow to deep. The first architecture stacks 4 similarity layers,

each of which followed by a maxpooling layer. We then add a Resnet Block onto the last

maxpooling layer. Standard average pooling and fully connected layer follow the Resnet

Block. We find the final Resnet Block increases training speed. The second architecture is

similar to the first with the difference that a Resnet block is inserted after each maxpooling

layer, which results in 13 layers in total. For systematic comparison, layers used in Simi-

larity Net must be a subset of its compared counterpart. For example, if a General CNN or

a ResNet uses n convolutional layers with 64 3×3 filters, the compared Similarity Net can

use at most n similarity layers with the same number of 3×3 filters.

Implementation.All the models are trained by Adam Optimizer [112] with learning

rate 0.001, β1 = 0.9, β2 = 0.999, ε = 0.001. We do not apply Batch Normalization either

in similarity conv layers nor in Resnet blocks of the Similarity Nets. We augment each

image and its horizontal reflections by randomly resizing the longer edge into [256, 480],

and take random 224 × 224 crop, following [10]. To guarantee information flows majorly

through pre-trained similarity layers in the early stages of training, we initialize the weights

of Resnet blocks from a small interval (−10−5, 10−5)). One advantage of this design is that

we do not need auxiliary projection shortcuts used in [10].

3.3.1 Effective of Pre-training

In this section, we evaluate how pre-training benefits the network. We first train Sim-

ilarity Networks of the same architectures with random initialization and apply the same

64

Figure 3.2. pre-train vs random initialization.

65

optimization method in the above 3 subsets. The learning curve is shown in Fig.3.2 and

the final top 1 validation error is also presented in Table.3.1. We found that validation error

decreases slower in the early stage of training. The whole learning process also takes more

iterations to converge. The final error rates of randomly initialized models are higher than

that of pre-trained models.

To explore deeper into the unsupervised feature learning, we conduct the following ex-

periments. Given a pre-trained Similarity Net, we freeze all the similarity layers and let

Gradient Descends applied only on the Fully Connected layer. We compare the result with

randomly initialized Similarity Net, applying the same training process. Good features in

Similarity Layer should result in better accuracy. We then perform a series of similar exper-

iments, but let one more Similarity Layer unfrozen (from last Similarity Layer backward

to the second). In this way, we can investigate the feature quality of each layer.

We consider 4 Similarity Layers architecture, similar to Sim-7, but remove the Resnet

Block. We train all the configurations by Adam Optimizer for 30 epochs, with learning

rate equals 0.001 for the first 20 epochs, and 0.0001 for the last 10 epochs. The experiment

results are summarized in Fig.3.3. As we can see, through all the subsets of ILSVRC

datasets, the pre-trained network achieves significantly better accuracy than its randomized

counterparts. It demonstrates that features pre-trained by deep encoding are more related

to semantic classes at each level.

3.3.2 Effect of Batch Normalization

It has been widely acknowledged that Batch Normalization plays a key role in modern

Neural Networks. It speeds up convergence and usually improves the final accuracy. In this

section, we further compare the effect of Batch Normalization on our model and traditional

models. We use the same architectures tested in the previous section, but consider both

situations that when BN is applied and not applied. All the datasets, augmentation and

training approaches are the same as previous experiments. We plot on Fig.3.4 the learning

curve of 2 situations for all 4 compared networks.

66

Figure 3.3. Significance of pre-training: validation accuracy when earlier lay-
ers are frozen. Each row of this figure indicates that we keep some of the
Similarity Layer frozen and let SGD only apply on deeper layers. The archi-
tecture and frozen layers are shown on the left. The grey layers are frozen
and the blue layers are trained. Each Similarity Layer is initialized either by
pretraining (red curves) or in random (blue curves).

67

Table 3.1.
Error rate (single crop) in the subsets of ILSVRC2018. For Similarity Net, we
apply the model with pre-training and random initialization. For each model,
we also consider situations that Batch Normalization is applied and absent.
Suffix ”BN” stands for Batch Normalization.

#para 10 classes 50 classes 100 classes

Sim 13 pre-train 2.37M 7.29 16.78 22.68

Sim 7 pre-train 1.71M 11.72 21.09 25.02

Sim 13 random 2.37M 12.16 19.85 24.08

Sim 7 random 1.71M 14.09 24.02 27.58

Sim 13 BN 2.37M 9.38 18.13 22.96

Sim 7 BN 1.71M 13.80 21.49 27.25

Figure 3.4. Learning Curve (validation error rate) of models with and with-
out Batch Normalization. Each model is trained by Adam Optimizer for 100
epochs with a fixed learning rate (0.01).

68

As we can see, Batch Normalization speeds up the learning process of Resnets and

CNNs and improves the final error rate as well. Moreover, Resnet without Batch Normal-

ization does not converge unless we apply Gradient Normal Clipping [113]. By contrast,

applying Batch Normalization has little on Similarity Net, neither on the learning speed nor

the final accuracy. Compared models without BN converge slower than their BN enabled

counterparts.

The above observation is consistent with the analysis in section 3.1. Batch Normal-

ization aims at Reducing Internal Covariate Shift. Ideally, pre-activation normalization is

expected to decorrelate the input from the previous layer at each step of Gradient Descend.

Batch Normalization trade explicit decorrelation for lighter computational burden. Our

approach is neither a complete decorrelation. We initialize the kernels to be possibly un-

correlated and representative, and then let Gradient Descend optimize the network without

restriction. Since the output of Cosine Similarity followed by ReLU is always in [0, 1], the

Covariate Shift is not as heavy as dot product, which is another reason for fast convergence

we suspect.

3.4 Summary

We proposed a framework that unifies Visual Encoding and Convolutional Neural Net-

works. The equivalence between a single layer of Neural Network and Clustering provides

a way of pre-train a Convolutional Neural Network by unsupervised feature learning. Our

experiments and analysis demonstrate that such a pre-training schema is crucial to Similar-

ity Net, which also makes the model not rely on Batch Normalization. As a result, all the

models showed advanced parameter efficiency compared to the models in similar parame-

ter space. We argue that unsupervised feature learning initiates the Network that closes to

a better local minimum, such that we are more likely to find better optimum by the same

training method. Finally, unlike general CNN that performs linear classification at each

filter, Similarity Net learns a number of kernels that represent the corresponding feature at

69

each level. For each input region, the convolution output is the similarity measure between

input and the filter. This may bring us richer potential to reuse well-learned feature maps.

70

4. APPLICATION ON STREAM DATA: UNSUPERVISED OBJECT
DISCOVERY ON-THE-FLY FROM AERIAL VIDEOS

Unmanned Aerial Vehicles (UAV) have been expected to fly autonomously and obtain

videos in hash, hostile and dangerous environments to eliminate risks of life and surveil-

lance workload. Therefore, equipping UAVs with the ability of unsupervised visual knowl-

edge learning became crucial for real-life applications. In this chapter, we propose a

real-time, unsupervised vision learning system that discovers interesting ground objects

(both moving and stationary) without any pre-training. The system compactly and simul-

taneously accumulates visual knowledge from the low-level features to several mid-level

patches and finally to the object-level detections. We provide an efficient unsupervised

on-line learning scheme with provable accuracy guarantees under the Random Rover As-

sumption. Tracking is considered as a rich resource to learn visual diversity where stably

tracked patches are regarded as the same class. For visual attentions, we propose an ef-

ficient object proposal method for aerial images, which works together with a bottom-up

object realization approach to enable the system to group a few persistently adjacent object

proposals into a semantically meaningful object. Unlike other ”passive” unsupervised ob-

ject discovery approaches, our system provides provable learning confidence guarantees in-

dicating whether a specific territory has been fully scouted and understood, giving valuable

feedback to the control system for route optimization. We apply our system to unknown

ground object discovery from public aerial video datasets and compare our approach to

most related state-of-the-art unsupervised object discovery competitors. Our experiments

found that the system proposed in this chapter is clearly more suitable for aerial videos than

others with drastically improved efficiency and stream learning ability.

71

Track
matched proposals

Features

kernel 1
Memory

kernel m

kernel 2
center 1
Dictionary

center n

center 2

center n+1

center 1
Dictionary

center n

center 2

center n+1

Transfer to
Dictionary

Feed for clustering

kernel 1
Memory

kernel m

kernel 2

Feed for clustering

Fe
at

ur
e

Le
ve

l
Pa

tc
h/

Pa
rt

Le
ve

l

Encode

Match
t 1

1
2

1
4

3
5

7

t 3

t 2

3

3

2

6
t 4

t 5

t 6

t 7t 8

t 8

t 9

t 10 5

3

2

4

7

Normalized Hash Tables

Center 1
Dictionary

Center n

Center 2

Center n+1

kernel 1
Memory

kernel m

kernel 2

Feed for clustering

Object
Realizations

O
bj

ec
t R

ea
liz

at
io

ns

Increment edge weights
according to adjacency

of trackers in current frame

Matched Object Proposal

Unknown Object Proposal

Major Pipe Line

on-board
image stream

… …

… …

… …

…
…

…

Expanding over time

Hash & Normalize

1

2

6

After f frames,
break & condense

t1 2 Vertex of tracker 1, with label index 2

Object Proposal

Transfer to
Dictionary

Match

Encoded
Proposals

Discovered
Parts/objects

Correspondence
 Map

f

p

g

Adjacency Graph

to build up a
robust feature

Dictionary

to build up a robust
part/object Dictionary

	!"∗	features	

!"#$∗ 	proposals	
	

to build up a robust
realization Dictionary

!"∗	hash	tables	Transfer to
Dictionary

Figure 4.1. System Framework: unsupervised learning and accumulating
multi-level visual knowledge on-the-fly

72

4.1 Framework Overview

As shown in fig.4.1, we perform 4 levels of unsupervised learning simultaneously in

real-time: features; parts; patch correspondence under different views; and part-object re-

lationship realization. For each frame, we extract features from (weak) object proposals and

feed these features into our streams clustering algorithm for unsupervised feature learning

to progressively learn a feature code-book on-the-fly. Patches are encoded into most recent

feature space and we manage to learn distinct patch representations while the feature space

is enlarging over time. We track each recognized patch and discover correspondence be-

tween different views of the same part or object. Finally, we propose a bottom-up approach

to group frequently adjacent patches into an object.

Except for patch correspondence learning, all 3 levels of unsupervised learning include

object proposal follows the stream clustering framework proposed in this thesis, which

enables all levels of learning can be conducted on-the-fly simultaneously. In our algorithm,

we provide a series of provable guarantees such that all levels of visual knowledge can be

learned robustly within a certain number of frames (how long) from a particular area. Such

guarantees provide informative feedback to the control system and ask UAVs to ”stop and

see” when necessary.

General Assumption. In this chapter, we assume the agent is randomly roving around

a targeted area and each object appears randomly (following uniform distribution). Namely,

if there are totally n objects in the area, the probability of an object appears in a frame is 1
n

.

4.2 Matching Proposals on-the-fly.

Recall that our stream clustering algorithm only performs two computational opera-

tions: match (check if a data point is inside a kernel) and update (eq.2.1 in our case). As

long as we define these two operations, our algorithm will work on an arbitrary type of

data, which enables us to match object proposals on-the-fly when the feature code-book is

enlarging.

73

Figure 4.2. Match object proposals on-the-fly while the feature space is in-
creasing over time.

74

As illustrated in Fig.4.2, let histogram hi be an encoded proposal with dimension di.

Since the feature space is enlarging over time, di is also enlarging along the data stream.

Benefited from the fully progressive property of our clustering algorithm for feature learn-

ing, the first d dimension of any two given encoded histograms is always regarding the

same features. Given a histogram kernel center ck with dimension dk, we update ck with hi

by:

(d)c
(new)
k =

(d)cknkd+(d)hi

nkd+1
if d ≤ dk

(d)hi if d > dk

(4.1)

where (d)ck and (d)x are the dth dimension of ck and x, respectively. nkd is the number of

matched data point on dth dimension of ck. We set nkd = 1 for d > dk.

We define similarity measure as:

S(ck, hi) = cos(ck, hidk) (4.2)

where cos(.) is the cosine similarity and hidk is the first dk dimension of hi. According to

eq.4.1, dk ≤ di always holds.

By replacing the similarity measure and update method in eq.4.1 and eq.4.2, we can

match and learn object proposals as the feature space is enlarging randomly. This is a

crucial benefit from fully progressive clustering on feature learning, where learned features

are accumulatively maintained and membership assignment is reserved over time. Note

that, eq.4.1 degrades to eq.2.1 if dk ≡ di.

4.3 Object Proposal and Object-Part Relationship Realization

Our object proposal approach for aerial images follows the observation that objects are

more corner-like than background and usually in small size. As shown in fig.4.3, for each

box filtered frame, we compute the Harris Map [114]. Those corner-like areas have much

higher responses than plain background and texture areas. After thresholding the Harris

Map, the highlighted pixels group in a pattern that naturally represents objectness. We

cluster these pixels by our stream clustering algorithm proposed in this chapter since it is

75

Figure 4.3. Real-time Object Proposal for Aerial Images

76

Figure 4.4. Removing known, unexpected green area to general more accurate
object proposals. Images in the first line are the object proposals (green box)
and thresholded Harris Map. Images in the second line are obtained after filter
out tree-like areas.

fast and able to detect the natural number of clusters automatically. In our experiment,

processing each image (1280 by 720) merely takes 0.05s on average. As discussed in

section 4.1, we then match these proposals on-the-fly and learn a part level representation.

In the clustering algorithm, the similarity threshold θ is assumed to be the expected

scale of interesting objects. The obvious issue of the above method is the expected object

scale changes along with flying altitude. When scale becomes larger, the object proposal

may break into pieces, as shown in the first row of Fig.4.3. And the proposal will be under-

fitted if the scale becomes smaller, as shown in the second row of Fig.4.3. To detect scale

increasing, we find closely located object proposals (distance smaller than θ) and merge

them into a larger proposal. Then we try to match it with discovered objects after re-sizing

it into the current scale. We accept the merge if a good match can be found. We keep

77

Figure 4.5. Adjusting scales automatically. The first row shows the situation
that scale increases when the UAV flies lower. The second row shows that the
scale decreases when the flying altitude becomes higher.

78

accumulating matched numbers until a sufficient number of merges is achieved so that we

have strong confidence to increase the value of θ.

To detect scale decreasing, we inspect the difference between the cluster size and θ. We

define the size of the cluster as the longer edge lmax of its bounding box. If such difference

is salient, say lmax ≤ 0.5θ, we consider lmax as its tentative scale and re-encode the area

of cluster bounding box. If we find a better match than the original object proposal, we

accumulate the number of shrinks and reduce scale if a sufficient shrink number is achieved.

In some scenarios, we have prior knowledge of the deployed environment and we know

that some objects or textures are unexpected. To remove those unwanted objects efficiently,

such as trees, grass, or brick textures, we can apply a mask on the thresholded Harris Map.

As shown in fig.4.4, we remove tree-like areas since trees and grass are not interested.

However, relying on the above intuition sometimes fails to detect the whole piece of

large objects such as cars and buildings. In the following of this section, we propose an

approach to mine part-object relationships on-the-fly, to enable the machine to ”realize”

several frequently adjacent patches are actually from the same object.

Parts from the same object usually persist certain adjacency patterns over frames, e.g.

car wheels are usually adjacent to doors or windows. As shown in fig.4.6 given f con-

secutive frames, we construct a graph such that each vertex indicates a tracked object,

i.e. a tracker. Initially, there is no edge in the graph. In each frame, if two trackers are

adjacent, we increment their edge weight by 1. Thus after parsing f frames, frequently

adjacent patches can be easily obtained by breaking edges with smaller weights (we set the

threshold as 0.5f), which returns l connected components {g}l. To have a compact and

well-generalized representation, we merge all the vertices with the same label index and

convert edges between the same label index into a self index. However, confirming a part-

object relationship as above is sensitive to f and accidentally neighboring parts. A robust

part-object relationship should frequently appear over the image stream, which naturally

formulates the clustering stream problem if we regard each g as a data point. We again

apply the clustering framework proposed in this chapter by defining similarity measure and

update method as follows.

79

tck 1
1

2

1
4

3
5

7

tck 3

tck 2

3
3

2

6

tck 4

tck 5
tck 6tck 7

tck 8

tck 8
tck 9

tck 10

5
3

2 4

7
1

2 6

1
2

1
6

3 5
3

3
2 4

7

mergemerge

Break

1,1 .5
1,2 .5

2,3 .3

3,3 .2
3,5 .2

2,5 .3
4,7 1

Hash and
Normalize

on-board
image stream

f frames

Samples feed into stream clustering

tck 1
1

2

1
4

3 5
7

tck 3

tck 2
3

3
2

2

tck 4

tck 5
tck 6tck 7

tck 8

tck 8
tck 9

tck 10

5
3

2 4

71
2

1
2

1

5

3 2 4

7

1,1 .4
1,2 .4

2,3 .4

3,5 .2
2,5 .4 4,7 1

f frames

3 3

2

3

2,2 .2

Figure 4.6. Object Realization Process

80

Since each vertex in g has a unique label index, every edge in g is uniquely defined by

the two label indices. Therefore, we can hash all the edges if regard the label pair 〈p, q〉 of

the two vertices as key, hence convert g into an edge hash table t. We normalize t such that∑
〈p,q〉∈K

t〈p, q〉 = 1 (4.3)

where K is the key set and t〈p, q〉 is the hash value returned by key 〈p, q〉, namely edge

weight between label p and label q. Note that the hash value in t is always positive. We

compute similarity between a normalized edge hash table t and an existing kernel center tc

by:

S(tc, t) =
∑

〈p,q〉∈Kc∩K

|tc〈p, q〉 − t〈p, q〉|+
∑

〈p,q〉∈K̄c∩K

t〈p, q〉+
∑

〈p,q〉∈Kc∩K̄

tc〈p, q〉 (4.4)

The update method is defined as

tc〈p, q〉(new) =

nktc〈p,q〉+t〈p,q〉

nk+1
if 〈p, q〉 ∈ Kc ∩K

1
nk+1

t〈p, q〉 if 〈p, q〉 ∈ K̄c ∩K

nk
nk+1

tc〈p, q〉 if 〈p, q〉 6∈ Kc ∩ K̄

(4.5)

where K and Kc are the set of keys in t and tc, respectively. nk is number of tables has

been matched to tc so far.

Note that 0 ≤ S(tc, t) ≤ 2. S(tc, t) = 0 when tc and t are identical, and S(tc, t) = 2

when Kc ∩K = ∅. Also, tc〈p, q〉(new) updated by eq.4.5 is also normalized, since∑
〈p,q〉∈Kc∪K

tc〈p, q〉new =
1

nk + 1

(∑
〈p,q〉∈Kc∩K

(
nktc〈p, q〉+ t〈p, q〉

)
+

∑
〈p,q〉∈K̄c∩K

t〈p, q〉+
∑

〈p,q〉∈Kc∩K̄

nktc〈p, q〉
)

=
1

nk + 1

(∑
〈p,q〉∈∩K

t〈p, q〉+ nk ·
∑

〈p,q〉∈∩Kc

tc〈p, q〉
)

= 1

(4.6)

The above mapping from graphs to normalized hash tables indeed map the graph into

a euclidean space with infinite dimension. The normalized hash table is a sparse represen-

tation such that similarity measure and update method of eq.4.4 and eq.4.5 are linear to

81

Figure 4.7. Integrate object discovery and tracking for object correspondence
inferring.

graph size. Note that, this map is re-convertible, namely given a normalized hash table,

there exists and only exists one corresponding graph, and vice versa. And both directions

of mapping are linear to graph size and table size.

4.3.1 Correspondence Inferring by Tracking

Tracking provides valuable information for visual diversity, where confidently tracked

patches can be regarded as the same class. In our framework, we avoid learning a complex

map from feature space to semantic labels, because such a map is too complex to learn in

real-time. Instead, we directly relate recognized objects or parts under the same track line

thus progressively build a probabilistic model to describe semantic correlations between

discovered object classes.

As shown in fig.4.3.1, given a tracker validly tracked for a number of frames. The

tracked area is recognized as either one of the K object classes discovered so far, or non-

object. A desired semantic correlation instance between class i and class j should be the

case that both classes are stably tracked. And we can confirm such a pattern if there are suf-

ficient instances of semantic correlation between class i and j. Therefore, we will consider

the following two problems:

82

• How can we extract a robust correspondence instance from each tracker?

• How can we identify a strong correspondence pattern from all the tracker information

collected so far?

Tracker Confidence Curve. To provide the solution to the first problem, we maintain

a Tracker Confidence Curve for each tracker. We perform object discovery and recogni-

tion once every m frames (as keyframe) and track the recognized patches through these m

frames without explicit encoding and recognition. The Tracker Confidence Curve has two

values for each keyframe: recognized object class lt and tracker confidence ct. The recog-

nized object class can be a null value if the tracked area is not recognized as a known class.

The tracker confidence is initialized to z0 and ranges from 0 to zmax. We stop tracking

when the tracker confidence decreases down to 0. Given the value of tracker, confidence is

initialized or updated at time t, its value is updated at time t+m according to the following

4 situations.

(1) the tracked object is recognized as the same object in frame t. In this case, we

increase the confidence value by 1 and re-initialize the tracker. If the confidence value

increase to zmax we keep the value unchanged.

(2) the tracked object is proposed but not recognized. This circumstance happens usu-

ally because view changed while the track is still valid but the current appearance has not

been learned yet. Therefore, potential object correspondence may exist along this track

line. In this case, we keep tracking and wait for the tracked object proposal to be learned

later.

(3) the tracked area is recognized as another object class. This case directly indicates a

class correlation. However, any uncertainty may also result in a class transition. Therefore,

we decrease the tracker confidence by 1. If the tracked area is recognized as this class again

in the next keyframe, the tracker confidence will increase.

(4) the tracked object is neither proposed nor recognized. The tracking may not be

valid in this case, but it is also possible that the object proposal method failed due to a

change of illumination or local contrast. Therefore, we try to recognize the tracked area.

83

If the recognition succeeded, we go to either case (1) or (2). Otherwise, we decrease the

confidence value of the tracker and keep tracking.

As shown in fig.4.3.1, we can use the area under the curve for each particular object

class to describe the stability of tracking. The first operation we take on the Tracker Con-

fidence Curve has translated the curve vertically by −γz0 for better robustness. Namely,

we only take confident tracking into account. The coefficient γ can be understood as a

sensitivity coefficient. Given a tracker initialized at time t0 and diminished at time T , we

define Object Confidence of class i as:

Ai =
T∑
t=t0

σ
(
lt, i
)
·max

(
ct − γz0, 0

)
(4.7)

where σ(lt, i) = 1 if lt = i, and σ(lt, i) = 0 otherwise, lt and ct is the recognized class

label and the tracker confidence of time t, respectively. Ai is basically the area under the

curve when tracked area is recognized as class i. Obviously, large value ofAi indicates that

object class i is stably tracked. Thus we can describe the semantic correspondence between

class i and k of tracker p as:

ξi,p(k) =
AiAk∑K
j=1Aj

(4.8)

where K is the total number of classes discovered so far. Eq.4.8 can be understand in

two aspects. First, ξi,p(k) will be a large value if Ai and Ak are both large. And second,

ξi,p(k) will be a large value if Ai and Ak both take large proportion of
∑K

j=1 Aj . Both

indicates class i and k are stably tracked.

Modeling the global semantic correspondence over all trackers. Information from

one single tracker is not reliable. Given an object class i, we model the semantic corre-

spondence of all other discovered object class by a multinomial distribution, Ci ∼M(αi),

where αi = [αi,1, ..., αi,j, ..., αi,K] is an K − 1 dimension vector (namely j 6= i). Each

element represents the correspondence likelihood with respect to each discovered object

class expect class i. We convert each tracker as a group of sample from the underlying dis-

tribution it follows. For example, ξi,p(k) = 3 is explained as 3 one-hot vectors that taking

spikes at kth element.

84

First we select an object class i as the dominant class such that Ai∑K
k=1 Ak

is maximized

(Namely the most stably tracked class). The value ξi,p(k) is regarded as the number of

instances that class i and class k is correlated. Note that ξi,p(k) is not necessarily an integer.

We then collect these instances to learn (maximize) a Dirichlet posterior distribution where

we consider a conjugate Dirchlet Prior p(αi|β) = Dir(β):

ln
(
p(αi|D,β)

)
= ln

(
C · p(D|αi)p(αi|β)

)
(4.9)

=
K∑

k=1,k 6=i

(β +mi,k − 1) ln(αi,k) + ln(C) (4.10)

and αi,k subject to
K∑

k=1,k 6=i

αi,k = 1 (4.11)

where C is the normalization coefficient, β = β[1, ..., 1] (explained later), p(D|αi) is the

likelihood, and mi,k =
∑

p ξi,p(k). The solution to eq.4.9 with restriction rq.4.11 is

αi,k =
β +mi,k − 1

(K − 1)(β − 1) +
∑K

k=1,k 6=imi,k

(4.12)

For each discovered object class i, the semantic correspondence vector αi is updated

along the stream. Each element αi,j indicates the learned correspondence strength between

i and j. Therefore we can use the entropy of αi to discover whether a correspondence

pattern emerges. Entropy is defined as

E(αi) = −
K∑

k=1,k 6=i

αi,k ln(αi,k) (4.13)

which is not normalized with respect to the value of K (number of object classes so far

except class i). Therefore, we normalize it by the maximized entropy given the value of K,

where each of the K − 1 elements of αi take 1
K−1

, namely

Enorm(αi) =
E(αi)

−
∑K

k=1,k 6=i
1

K−1
ln(1

K−1
)

=
E(αi)

ln(K − 1)
(4.14)

Enorm(αi) ranges from 0 to 1, where smaller value indicates that some elements are

significantly larger than others. We select 0.5 as the threshold for discovering a correspon-

dence pattern, which can be understood as a situation that there are
√
K − 1 elements take

85

value 1√
K−1

and the rest elements are infinitely small. Consider eq.4.12, mi,k is initially 0,

thus Enorm(αi) = 1. When Enorm(αi) satisfies the threshold (Enorm(αi) = 0.5), at least

one element is significantly larger than β, which indicates that correspondence pattern is

confidently discovered from previous trackers. We then perform non-maximum suppres-

sion over all the elements of αi and update the correspondence strength between class i

and the class (say j) that the max element of αi represents. We then update the correspon-

dence strength between class i and j on a undirected graph, where each vertex represents a

discovered object class and each edge represents the semantic correspondence. This graph

initially possesses no edge and grows along with the video stream. The final semantic

correspondence is discovered by finding connected components of the graph.

4.4 Robustness Analysis

In this section, we show how our stream clustering algorithm provides guarantees for

robust knowledge accumulation. Consider a series of on-board image streams when a UAV

flying randomly around a targeted area. Our problem is, how long does it take to build

robust visual knowledge to recognize all the objects in the current area and make sure that

this territory is fully scouted and discovered. We assume that the agent is flying randomly

and each object is evenly captured in the image stream.

We first consider, for a given minimum density ratio of ρ, how many data points it needs

for building a dictionary that every density peak has at least one kernel inside its sufficient

area. In such a situation, we can regard the clustering is ”almost done”. Consider a sub-

stream of size N∗ in the data stream formed by the first N∗ data points. We hope that by

processing only N∗ samples, our algorithm will find a sufficiently dense kernel for every

valid density peak.

Given a kernel k in a dense area covers Nk data points, with Nk
N

= ρk > ρ. Let N∗k

be the number of instances, among the first N∗ random samples, covered by kernel k.

Then N∗k follows Binomial Distribution N∗k ∼ B(N∗, ρk). Using again the Central Limit

Theorem, let M = (N∗k − N∗ρk)/
√
N∗ρkqk, where qk = 1 − ρk and M follows Standard

86

Normal distribution, M ∼ N (0, 1). We hope that in the first N∗ random samples, the

instances covered by kernel k are more than 0.9 times of the expectation, N∗k > 0.9N∗ρk;

the probability is,

P {N∗k > 0.9N∗ρk}

= P

{
N∗k −N∗ρk√
N∗ρkqk

>
0.9N∗ρk −N∗ρk√

N∗ρkqk

}
= P

{
M > − 0.1N∗ρk√

N∗ρkqk

}
= Φ

(
0.1N∗ρk√
N∗ρkqk

)
, (4.15)

We expect P {N∗k > 0.9N∗ρk} > 1− α; if α = 0.01, then from eq. (4.15), we have,

N∗ > Φ−1(1− α)
1− ρk
ρk

> C
1− ρ
ρ

(4.16)

Where C = 100Φ−1(1 − α)2 is a constant number. According to above analysis, given a

minimum density ratio of feature learning ρ1 and part level learning ρ2, we need at least

N∗f = C 1−ρ1
ρ1

features to build a stable feature code-book and at least N∗p = C 1−ρ2
ρ2

propos-

als of object proposals for learning a stable mid-level representation. In object realization,

we require Nobj normalized hash table to discovery robust part-object relationships. Let Rp

be the average number of object proposals per frame (indicating the image diversity and

richness) and Rf be the number of features extracted from an object proposal. We need

to process at least
N∗
f

RpRf
frames for a confident feature learning, and N∗

p

Rp
frames for learn-

ing a robust part-level representation. Let Ro be the average number of graphs of each f

consecutive frames, then the minimum number of frames for the robust discovery of exist-

ing part-object relationship is
N∗
objf

Ro
. Therefore, the minimum number of frames F to fully

discover a territory is

F =
N∗f
RpRf

+
N∗p
Rp

+
N∗objf

Ro

(4.17)

87

4.5 Experiments

4.5.1 Experiment Setting

In this section we evaluate our approach by applying unsupervised object discovery

on 3 aerial datasets: UCF Aerial Action Dataset 1, UCLA Aerial Event Dataset [81] and

Okutama Action Dataset [115]. All 61 videos from these 3 datasets are taken by flying

UAVs in urban areas with sufficiently background complexity and visual diversity. UCLA

Event Dataset contains 27 videos taken in two sites. The original research on this dataset

is to recognize action and events from these videos. Annotations are made in stabilized

videos where more than half of a frame is blank. We run our approach on the original

videos with strong turbulence and map the detected bounding box to stabilized frames.

UCF Aerial Action Dataset contains 3 videos and is developed to train and validate models

that recognize gestures and actions from aerial videos. Okutama Action Dataset is consists

of 31 videos taken by two UAVs with high-resolution cameras (3840 ×2160). Only people

are annotated in this dataset.

In our application on on-board videos, it is unnecessary to fully process every frame.

Therefore, we perform all 4 levels of learning once every 6 frames and track all recognized

bounding boxes across 5 frames between keyframes. In our experiments, the unsupervised

learning speed is 5-10 fps, thus the total learning time is the same as the video time.

Since there is no existing work on real-time unsupervised object discovery on aerial

videos, we select most related 4 recent state-of-the-art methods on fully unsupervised dis-

covery: [82], [83], [28] and [84]. [82] aims to discover representative mid-level patches and

does not rely on a general object proposal. [83] fit object discovery into multiple instances

learning thus propose a method for locating foreground objects from massive object pro-

posals. [28] and [84] use Hough Matching to heat up frequently matched regions. All these

methods are iterative and designed for non-aerial images/videos.

1publlically available on http://crcv.ucf.edu/data/UCF_Aerial_Action.php

 http://crcv.ucf.edu/data/UCF_Aerial_Action.php

88

4.5.2 Parameters and Features

We choose 1 keyframe from every 6 frames for all experiments. We re-size each frame

into 1280×720 for all the videos with higher resolution. The neighborhood size θ of clus-

tering for object proposal is 25, and the minimum density ratio ρ is 0.02. Features extracted

from each object proposal is in size of 6× 6 with stride 4. Features are 128 dimensions of

normalized SIFT feature [18] appended with 3 dimensions of normalized RGB colors. In

feature learning, we set θ = 0.5 and minimum density ratio ρ = 0.01. In part/object level

learning, we set the similarity threshold to 0.7, where the similarity between two encoded

patches is measured by cosine similarity. We use a naive optical flow tracker and use 20

key points in each tracker. In object realization, we use f = 20 and set neighbourhood size

θ = 1 and minimum density ratio ρ = 0.05.

4.5.3 Evaluation

Ground truth of dataset considered in this chapter provide annotations for objects, e.g.

people, cars, shelter, etc. Following [82], we consider two evaluation metrics: purity and

coverage. Purity measures if discovered and matched patches are sufficiently distinct from

each other and converge measures if interested objects are well discovered. In this chapter,

we consider Intersection over Union (IoU) of 50% as a pairing threshold. Specifically,

for each bounding box b∗ discovered by a given approach, we pair b∗ with a ground truth

bounding box b if IoU(b∗, b) ≥ 50%. Each discovered box has a discovered class label l∗

and a paired ground truth label l (l = −1 if it is not paired).

For a discovered object class l∗0, the purity is:

Purity =
||{b∗|l∗ = l∗0, l = k}||
||{b∗|l∗ = l∗0}||

(4.18)

and

k = argmaxi||{b∗|l∗ = l∗0, l = i}|| (4.19)

89

where ||.|| is the number of elements of a set. We define discovered object class l∗0 is

matched to ground truth class k if k ≥ 0 in eq.4.19. The overall Purity is the average Purity

of each discovered class.

Coverage is computed oppositely. For each ground truth bounding box b with label l,

we pair a discovered bounding box with class label ld to it if the previous IOU threshold is

satisfied.

Then the coverage of a ground truth class k is computed as:

Coverage =
||{b|l = k, ld ∈M}||
||{b|l = k}||

(4.20)

where M is the set of discovered class labels that are matched to ground-truth class k.

We also report the learning speed of all compared methods running on 3.6 GHz i-7

using a single core.

4.5.4 Major Results: Aerial Videos

Table 4.2 and 4.4 list purity and coverage in each video from all 3 datasets and average

value of each dataset. Videos in Okutama Action Dataset is taken by 2 drones at different

times (morning and noon). We group videos taken by the same drone at the same time.

Namely, 1.1, 1.2, 1.3 and 1.4 in table4.2 represents drone 1 morning, drone 1 noon, drone

2 morning and drone 2 noon, respectively. We report both the final results and on-line

results. On-line results are image patches matched and clustered on-the-fly and final results

are obtained by applying the learned model to the video. Since no object can be learned

immediately, the system can not recognize the emerging object during the first few frames.

As a result, on-line purity and coverage are lower than the final results.

We found [82] showed slightly lower purity and lower coverage on these video datasets.

The most probable reason is patches are extracted randomly from all frames, unlike other

methods that use object proposals to extract more robust and meaningful candidate patches.

Since the difference between neighboring frames is very small, a proposed bounding box

of a certain object or part is very likely to be proposed again in the following frames.

90

Table 4.1.
Purity (%) of classes matched to ground truth

Video [82] [83] [28] [84] Ours final Ours on-line

UCLA 10 82.78 83.51 87.34 81.05 88.76 78.56

UCLA 11 79.01 81.63 81.14 84.58 82.22 77.22

UCLA 12 77.79 80.68 83.59 87.41 86.68 79.30

UCLA 13 74.03 84.03 80.95 86.37 88.97 79.53

UCLA 14 83.02 77.67 87.30 83.60 89.10 79.78

UCLA 15 75.52 81.11 85.24 87.27 89.95 77.56

UCLA 16 76.68 86.38 87.25 85.96 87.35 79.21

UCLA 17 75.93 86.69 82.38 82.87 88.56 76.63

UCLA 18 75.53 84.81 85.71 87.66 83.14 78.50

UCLA 19 74.86 84.29 82.35 81.34 84.83 78.80

UCLA 20 81.91 77.08 79.52 86.12 89.84 76.34

UCLA 56 74.61 83.80 86.34 84.10 89.35 78.12

UCLA 57 80.31 82.68 80.29 86.79 83.55 79.55

UCLA 58 77.16 81.94 83.99 86.63 81.04 77.05

UCLA 59 83.59 84.66 83.05 89.44 88.09 76.94

UCLA 60 78.99 84.57 81.50 88.23 84.65 79.36

UCLA 62 81.39 83.52 88.43 82.46 89.95 77.98

UCLA 63 74.13 81.91 83.81 87.85 84.99 76.61

UCLA 64 80.05 85.43 87.81 82.14 81.54 76.92

UCLA 65 81.63 81.93 81.90 84.96 83.09 78.63

UCLA 68 77.90 80.98 81.81 87.56 87.36 78.25

UCLA 69 74.80 85.36 82.77 88.92 82.65 77.17

UCLA 70 79.76 83.21 80.14 85.27 89.81 78.49

UCLA 71 82.07 77.03 88.65 81.33 87.25 78.86

UCLA 72 75.29 84.70 84.99 87.29 83.35 77.12

UCLA 73 80.55 81.77 79.26 82.54 81.43 77.65

UCLA 74 77.00 86.79 80.55 81.25 83.45 77.45

91

Table 4.2.
Purity (%) of classes matched to ground truth

Video [82] [83] [28] [84] Ours final Ours on-line

Average 78.38 82.89 83.63 85.22 85.96 78.06

UCF 1 88.59 91.64 91.99 91.51 92.10 85.67

UCF 2 88.48 90.80 90.65 92.93 91.36 87.17

UCF 3 89.86 91.50 93.21 91.96 92.66 85.10

Average 88.98 91.32 91.95 92.13 92.04 85.98

Okutama1.1 83.97 89.14 90.77 91.67 91.28 80.47

Okutama1.2 82.95 88.33 90.61 92.18 90.47 78.07

Okutama2.1 84.99 87.62 88.50 91.51 91.81 79.54

Okutama2.2 88.55 89.93 89.08 89.19 90.59 78.49

Average 85.12 88.75 89.74 91.14 91.04 79.14

92

Table 4.3.
Coverage (%) of classes matched to ground truth

Video [82] [83] [28] [84] Ours final Ours on-line

UCLA 10 41.36 65.33 63.27 63.67 68.91 39.76

UCLA 11 47.55 59.23 66.39 62.40 61.09 44.11

UCLA 12 42.26 59.17 64.78 62.49 67.98 44.57

UCLA 13 44.80 64.30 62.35 65.92 74.17 41.74

UCLA 14 41.97 59.98 60.98 62.28 72.32 43.74

UCLA 15 45.41 58.23 63.70 66.64 72.21 41.81

UCLA 16 45.19 65.46 61.41 66.55 66.71 41.60

UCLA 17 46.61 63.85 58.33 63.46 69.71 46.91

UCLA 18 42.36 65.93 61.69 64.51 69.38 40.32

UCLA 19 47.39 66.10 61.39 62.50 71.28 46.00

UCLA 20 45.21 59.62 62.03 60.00 68.52 39.99

UCLA 56 38.41 58.07 62.48 66.99 67.69 43.86

UCLA 57 42.28 65.45 59.07 63.87 72.63 44.89

UCLA 58 44.47 61.37 63.22 64.21 66.56 40.83

UCLA 59 40.68 64.95 60.95 66.40 72.72 40.01

UCLA 60 44.80 63.84 62.82 65.12 65.21 41.02

UCLA 62 39.83 62.77 61.57 67.88 71.11 40.25

UCLA 63 44.58 62.87 61.47 62.70 70.98 40.35

UCLA 64 40.79 62.69 60.98 68.44 73.80 40.75

UCLA 65 47.17 65.35 62.21 67.40 72.98 42.48

UCLA 68 40.57 63.87 63.32 61.26 68.80 45.66

UCLA 69 46.86 65.72 64.51 60.06 68.24 45.29

UCLA 70 47.20 60.41 61.56 61.82 69.67 39.12

UCLA 71 41.00 61.96 59.36 60.85 71.69 42.24

UCLA 72 40.56 60.07 62.32 60.65 71.57 41.88

UCLA 73 39.32 58.87 62.22 60.85 72.08 48.51

UCLA 74 38.23 66.29 61.90 63.93 70.68 44.32

Average 43.22 62.66 62.09 63.81 69.95 42.67

93

Table 4.4.
Coverage (%) of classes matched to ground truth

Video [82] [83] [28] [84] Ours final Ours on-line

UCF 1 48.31 75.62 70.25 76.91 81.87 58.61

UCF 2 52.93 69.76 70.37 72.17 79.55 53.61

UCF 3 53.35 72.32 69.13 74.94 79.57 59.83

Average 51.53 72.57 69.92 74.68 80.33 57.35

Okutama 68.16 78.69 79.35 79.13 89.25 73.78

Okutama 68.39 77.64 79.27 78.89 88.34 75.17

Okutama 67.48 79.19 80.45 81.36 85.40 74.70

Okutama 69.47 78.99 80.70 82.38 89.58 81.22

Average 68.37 78.63 79.94 80.44 88.14 76.22

94

Therefore, for randomly generated patches, a whole piece of object in one frame may be

matched to a part of the same object in other frames, which makes the encoded image

patches much noisier.

[83], [28], [84] and our method all showed comparable purity even though the three

compared approaches involve more complex encoding method. This phenomenon happens

because aerial images process less visual diversity than general indoor or outdoor images.

However, our method clearly outperformed other compared approaches in coverage. The

major reason is the object proposal method used in these approaches are not suitable for

aerial images. Therefore, though proposed bounding boxes are accurately matched, many

interesting targets are not well localized (usually contained in a larger bounding box).

We find our approach achieved clearly the highest coverage compared with all other

systems. Our approach provides more accurate and cleaner object proposals for aerial

videos, where most objects in aerial images are efficiently localized. Our object realization

method avoids separating a large object into pieces. Since our objective is to discover

the existence and geometric location of interesting targets, it is unnecessary to cover each

object in every frame. If an object has been covered by 70%, we can be very confident to

confirm its existence and location. Illumination change and turbulence may make a few

frames blurry and detection will be very challenging in these frames. This can be partially

fixed by using tracking information but with a limited degree.

Running time (second per frame) of each approach is shown in table 4.5. Time reported

is used for processing keyframes only. Our approach is able to process at least 4 frames in

one second using a single core. The speed can be doubled if object proposal and learning

are implemented into two threads using 2 cores. However, we do not assume a drone is

equipped with a multi-core processor. Our method is the only one that performs learning

on-the-fly that passes the video only once.

Fig.4.8 shows two example of object realization: our method group persistently adja-

cent object class into a larger object. Since our bottom-up method does not rely on the

overlap between saliently matched object proposals, we can discover the part-object re-

lationships efficiently. Approaches based on overlapping and saliency has to encode and

95

Object Realizations

Persistently Adjacent Parts:
Randomly Picked

from Clusters

Persistently Adjacent Parts:
Randomly Picked

from Clusters

Object Realizations

Incorrectly Matched Proposal

Figure 4.8. Examples of object realizations. Our method groups persistently
adjacent parts into a larger object. Patches are possibly incorrectly assigned
(red box). However, these noise patches are cleaned up by the object realization
process if such patches are not adjacent to the main object.

96

U
C

LA
 A

er
ia

l E
ve

nt
s

U
C

F
Ac

tio
n

O
ku

ta
m

a
Ac

to
pm

Figure 4.9. 5 most salient objects discovered from a video of each dataset.
Each image patch represents a discovered instanced. Patches of each object
are randomly selected from all the matched instances across the entire video.

match the same region many times to extract it out from the background, therefore much of

the encoding and matching computation is wasted. Another interesting finding is that our

object realization method can be used to clean up incorrect matches. As shown in fig.4.8,

one noisy patch has been matched to a part of the transformer, however, this patch is not

adjacent to any part of the transformer. Therefore, even if incorrectly assigned patches exist

in some clusters, as long as such patches are not adjacent to any part of the main object,

they will not be merged into the final object realization.

Fig.4.9 shows most 5 salient objects we discovered from each datasets. We randomly

pick 20 patches of each object class and plot horizontally in the figure. As we can see from

97

Table 4.5.
Running Time (second per frame)

Approach [82] [83] [28] [84] Ours

UCLA Aerial 4.37 8.42 7.35 14.14 0.17

UCF Action 3.92 7.71 7.06 12.97 0.14

Okutama Action 5.34 9.80 8.84 17.34 0.22

fig.4.9, we generate clean and semantically meaningful object patches from all videos. We

found our method not only discovers objects annotated in the ground truth but also ground

objects may be interested in other applications.

4.5.5 Non-Aerial Results: Indoor Videos

It is attractive to enable a vision system to understand highly complex, diverse and oc-

cluded non-aerial video to lean a well-customized model for specific applications. Recent

light and personalized visual applications based on mobile devices give rise to unsuper-

vised object discovery on-the-fly. In this section, we conduct preliminary examinations on

indoor videos in a realist office scenario to explore the possibility of further development

into a general unsupervised vision system running on mobile devices.

The appearance of objects in ground videos changes more drastically than aerial videos

when viewing and distance changes. Unlike aerial videos, objects can be in arbitrary size

and not necessarily possess corner-like features. Therefore, we replace the object proposal

method with an off-the-shelf algorithm [87] developed for the general object proposal.

We still enforce the system to learn features, parts, and correspondence simultaneously.

However, the bottom-up object realization is not suitable as we abandon our aerial object

proposal method. Therefore, the objective of this research is to test if our method is able

to learn well distinct and semantically meaningful parts or objects on-the-fly with very

98

Figure 4.10. Sample frames of the indoor video taken in an office

limited computational resources (insufficient memory to save the entire video and single-

core computation).

Fig.4.10 shows a few frames of our application area. This is a typical office with a

realistically messy arrangement to simulate the scenario that related applications may en-

counter. We take the video with a smartphone and walking around the office for 3 minutes.

We visualize in fig.4.11 the top 15 salient object classes discovered by our system from

this office. As we can see in fig.4.11, these discovered object classes are all semantically

meaningful and represents the key objects in an office, e.g. chairs, desks, monitors, laptops,

people. As shown in the last image in fig.4.10, we take some frames outside the window

to simulate the environment changing. Our system successfully discovered these emerging

object classes such as buildings, windows, and roads. The experiments indicate that our

approach built a basic visual understanding of the office within only 3 minutes by simply

walking and looking around. The limitation of our system is the object is not well localized

which is beyond the focus of this chapter but it is a future work to accomplish.

99

Person

Printer

Cans

Kitchen

Chair

Cup and bag

Building windows

Laptop

Building outside

Desk by the window

Computer mornitor

Outside scene

Kitchen

Road

Sky and buildings

Figure 4.11. The top 15 salient object classes discovered on-the-fly in the
indoor area.

Figure 4.12. Sample frames of the outdoor video taken in an grass field

100

4.5.6 Non-Aerial Videos: Outdoor Videos

We also apply our method to outdoor videos. Unlike indoor videos, outdoor videos

are more difficult because of severe illumination change. For example, an object under

the sunlight may look different from the ones under the shadow. In this experiment, we

fly a quadrotor at a low altitude to capture non-aerial videos. The quadrotor was flying in

a random direction around the environment to reproduce the randomness assumptions in

this application. Fig.4.12 shows 6 representative frames of the area which includes all the

salient objects, e.g. buildings, boxes.

We present the discovered objects in Fig.4.13. As the experiments in indoor videos,

we use EdgeBox as our object proposal method. The results indicate that our approach

built a basic visual understanding of the field within only 6 minutes by simply walking

and looking around, processing more than 10000 frames. Though in such a short running

period, we still detect and accurately distinguish most salient objects in the environment

(boxes, desks, different buildings, and trees.). Similar to indoor experiments, the limitation

of our system is the objects are not well localized, which may be fixed by involving much

more computation and supervision by building complex models.

4.6 Summary

In this chapter, we proposed and evaluated a fully unsupervised vision system that

builds visual knowledge on-the-fly from aerial videos. The system is computationally ef-

ficient and requires no pre-training, which ideally fit hash applications such as military

scouting and post-disaster rescue, as well as light applications on mobile devices. It worth

noting that our approach is not modularized as a pipeline. Instead, each part of our method

is carefully designed to work seamlessly with each other. Our experiments show that the

approach proposed in this chapter is fully functioning on the application we focus on. With

reasonable coverage, an agent is able to discover the existence of a certain ground object

and locate geometrically. The learned object classes can be easily visualized by a few

sample patches so that people at the back end can efficiently recognize and take action.

101

Figure 4.13. The top 10 salient object classes discovered on-the-fly in the
outdoor area.

102

The comparison with most related unsupervised object discovery approaches shows that

our method is the most suitable for aerial imagery and the only solution to unsupervised

ground object discovery in real-time.

103

5. APPLICATION ON STATIC DATA: PRE-TRAINING THE CNN
BY UNSUPERVISED DEEP ENCODING

In this chapter, we apply Unsupervised Deep Encoding to pre-training Deep CNNs such

that we can achieve better learning dynamics, performance and memory efficiency when

training a Deep CNN. We test our model on Bench Mark Dataset and compare it with

state-of-the-art models in similar parameter space. Note that our model is free from Batch

Normalizations, which means at least 50% memory will be saved under the same archi-

tectures. Indeed, with a similar amount of parameters, we achieved a lower error rate in

general.

5.1 Network Architectures and Implementation Details

In this section, we propose a hybrid architecture with our similarity-based Convo-

lutional Layers and Resnet blocks, as shown in fig.5.1. We test three architectures for

ILSVRC2018 [111], from shallow to deep. The first architecture stacks 4 similarity layers,

each of which followed by a maxpooling layer. We then add a Resnet Block onto the last

maxpooling layer. Standard average pooling and fully connected layer follow the Resnet

Block. We find the final Resnet Block increases training speed. The second architecture is

similar to the first with the difference that a Resnet block is inserted after each maxpool-

ing layer, which results in 13 layers in total. At the same time, to guarantee information

flows majorly through pre-trained similarity layers in early stages of training, we initialize

the weights of Resnet blocks from a small interval (−10−5, 10−5)). One advantage of this

design is that we do not need an auxiliary projection shortcut used in [10].

We also explore a deep architecture consisting of 33 layers, with multiple Restnet

Blocks inserted after each maxpooling. In this architecture, we add additional shortcuts

between each similarity Convolutional Layers, bypassing all the Resnet layers in between,

104

7x7 Sim, 64, /2

2x2 Maxpool, /2

3x3 Sim, 128

2x2 Maxpool, /2

3x3 Sim, 128

2x2 Maxpool, /2

3x3 Sim, 256

2x2 Maxpool, /2

Conv 3x3, 256

Conv 3x3, 256

AvgPool, 2x2, s2

FC Layer

7x7 Sim, 64, /2

2x2 Maxpool, /2

3x3 Sim, 128

Conv 3x3, 64

Conv 3x3, 64

2x2 Maxpool, /2

3x3 Sim, 256

Conv 3x3, 128

Conv 3x3, 128

2x2 Maxpool, /2

3x3 Sim, 512

Conv 3x3, 256

Conv 3x3, 256

2x2 Maxpool, /2

AvgPool, 2x2, s2

Conv 3x3, 512

Conv 3x3, 512

FC Layer

x3

x3

x5

x3

7x7 Sim, 64, /2

2x2 Maxpool, /2

3x3 Sim, 128

Conv 3x3, 64

Conv 3x3, 64

2x2 Maxpool, /2

3x3 Sim, 128

Conv 3x3, 128

Conv 3x3, 128

2x2 Maxpool, /2

3x3 Sim, 256

Conv 3x3, 128

Conv 3x3, 128

2x2 Maxpool, /2

AvgPool, 2x2, s2

Conv 3x3, 256

Conv 3x3, 256

FC Layer

3x3 Sim, 16k

2x2 Maxpool, /2

3x3 Sim, 128

Conv 3x3, 16n

Conv 3x3, 16n

2x2 Maxpool, /2

3x3 Sim, 256

Conv 3x3, 32n

Conv 3x3, 32n

2x2 Maxpool, /2

Conv 3x3, 64n

Conv 3x3, 64n

AvgPool, 2x2, s2

FC Layer

x3

x3

x3

n = 1, 4

Figure 5.1. Architectures explored in this chapter. The left two architectures
are tested for subsets of ILSVRC2018 to study the parameter efficiency of
Similarity Layers. The third architecture is designed for ILSVRC 2018. The
rightmost architecture is designed for CIFAR 10 and CIFAR 100 datasets. Its
width is controlled by n. ”Sim” stands for Similarity Layer proposed in this
chapter and ”Conv” stands for general Convolutional Layer. Note that when
the number of stacked Resnet blocks is greater than one, we also add a shortcut
for each Similarity Layer from the previous maxpooling layer bypassing all the
Resnet Blocks.

105

7x7 Conv, 64, /2

2x2 Maxpool, /2

3x3 Conv, 128

2x2 Maxpool, /2

3x3 Conv, 128

2x2 Maxpool, /2

3x3 Conv, 256

2x2 Maxpool, /2

Conv 3x3, 256

Conv 3x3, 256

AvgPool, 2x2, s2

FC Layer

7x7 conv, 64, /2

2x2 Maxpool, /2

Conv 3x3, 64

Conv 3x3, 64

AvgPool, 2x2, s2

FC Layer

Conv 3x3, 128

Conv 3x3, 128

/2
x2

Conv 3x3, 128

Conv 3x3, 128

x2

Conv 3x3, 256

Conv 3x3, 256

x2

/2

/2

Figure 5.2. Compared CNN (left) and Resnet (right) Models.

to let information dominated by similarity Convolutional Layers in early stages of training.

We found such shortcut increases training speed. To show the benefits of proposed similar-

ity Convolutional Layers, we compare it with a number of CNN and Resnet models, which

have similar or larger parameter space (details in the experiment section).

We consider similar architectures designed for CIFAR 10 [116] and CIFAR 100 [117].

As shown in fig.5.1, we construct 3 similarity Convolutional Layers and stacked Resnet

blocks in between. We follow the idea of [10] and [109], consider 3 Resnet blocks after

each maxpooling. We test 2 architectures: first a narrow network with 16, 32, and 64 convo-

lutional filters in each level; and second a wide network with 64, 128 and 256 convolutional

filters at each level.

106

5.2 Layer Efficiency

In this section, we evaluate the layer efficiency of the Similarity Layer and general

Convolutional Layer, investigating whether a Similarity Layer can encode more informa-

tion than a general Convolutional Layer, namely achieving better accuracy with the same or

fewer layers. The motivation of considering layer efficiency is to use less GPU Memory as

possible, such that an application can be fitted into smaller platforms, e.g. mobile devices.

We consider 3 subsets of ILSVRC2018: randomly select 10, 50 and 100 classes from the

entire dataset. For systematic comparison, layers used in Similarity Net must be a subset of

its compared counterpart. For example, if a General CNN or a ResNet uses n convolutional

layers with 64 3×3 filters, the compared Similarity Net can use at most n similarity layers

with the same number of 3×3 filters.

For insufficiently large datasets, complex models may be outperformed by simpler ones

due to overfitting, which may bias our experiments. Therefore in this section, we consider

the first two shallower nets introduced in the previous section to remove bias caused by

possible overfitting of deep nets trained on small datasets. We compare our constructed

Similarity CNNs with two architectures (Fig.5.2). The first architecture is identical to our

7-layer Similarity Net except replacing all Similarity Layers with general Convolutional

Layers, keeping all hyper-parameters the same (receptive field, number of filters, etc.). To

compare models with more layers, we consider a 16-layer Resnet that replaces each Sim-

ilarity Layer as a Resnet Block. Thus each Similarity Layer becomes two Convolutional

Layers with the shortcut, as shown in fig.5.2. Batch Normalization is applied for every

Convolutional Layer for compared models. We use linear projection when Feature Maps

shrinks (option B in [10]).

All the models are trained by Adam Optimizer [112] with learning rate 0.001, β1 =

0.9, β2 = 0.999, ε = 0.001. We do not apply Batch Normalization neither in similarity

Convolutional Layers nor in Resnet blocks of the Similarity Nets. We augment each image

and its horizontal reflections by randomly resize the longer edge into [256, 480], and take

random 224× 224 crop, following [10].

107

Table 5.1.
Error rate (single crop) in the subsets of the ILSVRC 2018. For Similarity
Net, we apply the model with pre-training and random initialization. For each
model, we also consider situations that Batch Normalization is applied and
absent. Suffix ”BN” stands for Batch Normalization.

#para 10 classes 50 classes 100 classes

Sim 13 pre-train 2.37M 7.29 16.78 22.68

Sim 7 pre-train 1.71M 11.72 21.09 25.02

Sim 13 random 2.37M 12.16 19.85 24.08

Sim 7 random 1.71M 14.09 24.02 27.58

Sim 13 BN 2.37M 9.38 18.13 22.96

Sim 7 BN 1.71M 13.80 21.49 27.25

Res 16 BN 3.25M 10.49 20.31 24.38

CNN 7 BN 1.71 M 14.28 23.75 28.21

Res 16 3.25M 14.58 25.29 31.25

CNN 7 1.71 M 18.24 26.89 30.71

Figure 5.3. Learning Curve (error rate in the validation set) of the 4 models
on the ILSVRC subset with 10, 50 and 100 randomly selected classes. Batch
Normalization is applied to each layer of Resnet 16 and CNN 7, but not in
Similarity Net. (”BN” suffix is omitted to void occlusion)

108

The final validation accuracy (top 1) is summarized in Table.5.1. We found Simi-

larity Net outperformed compared architectures in general. First, the 7-layer Similarity

Net achieved better validation accuracy than 7-layer CNN. Indeed, 7-layer Similarity Net

reached the same error rate level of 16-layer Resnet. Following this, 13-layer Similarity

Net outperformed 16-layer Resnet. This observation stands for all three subsets, which

indicates that the advanced layer efficiency of Similarity Net is consistent in different data

sizes. experiments.

The learning curve is plotted in Fig.5.3. Even though Batch Normalization is not ap-

plied to any Similarity Layer nor Convolutional Layer in our model, Similarity Net still

converges as fast as models with Batch Normalization, where this fast convergence is ben-

efited from pre-training (next subsection).

5.3 Classifications on Benchmark Dataset

ILSVRC2018. In this section, we compare the overall performance of the 33-layer

Similarity Net with state-of-the-art models that have the same level of parameter space. We

train the network on ILSVRC 2018 and evaluate by the validation set, computing top 1 and

top 5 error rate of a single crop. The data augmentation method is the same as in previous

experiments. We train the network by Gradient Descend with Momentum of 0.9. We start

learning rate with 0.01 and divide by 10 when error rate plateaus. The entire training takes

100 epochs. The final evaluation and compared models are shown in Table.5.2.

As we can see, though the architecture is not carefully tuned, Similarity Net still presents

sufficient parameter efficiency. As the closest sibling, Resnet-50, we achieve higher accu-

racy with less number of parameters. SE-Resnet 50 considers feature dependency across

channels in a feature volume. Without such feature recalibration mechanism nor Batch

Normalization, Similarity Net still achieved the competitive results using 19% fewer pa-

rameters. DenseNet architecture showed advanced parameter efficiency. However, each

convolutional layer of DenseNet concatenates Feature Maps from all previous layers, thus

109

Table 5.2.
Single model top 1 and top 5 validation error rate of the ILSVRC dataset. All
the results are from a single crop.

Model #para top 1 err top 5 err

VGG 16 [11] 138.3M 27.02 8.81

Resnet 50 [10] 25.6M 24.70 7.48

WRN 18 [109] 11.7M 30.40 10.93

WRN 34 [109] 21.8M 26.77 8.67

DenseNet 121 [110] 6.9 M 25.02 7.71

DenseNet 200 [110] 17.9M 22.58 6.34

SE-Resnet 50 [12] 26.9M 23.29 6.62

SimNet 33 22.7M 23.52 6.91

110

Table 5.3.
The single model validation error rate of CIFAR 10 and CIFAR 100 dataset.
All the results are from a single crop.

Model #parameter C10 C100

Resnet 20 0.27M 8.75 -

Resnet 101 [10] 1.7M 6.41 27.22

WRN 40-1 [109] 0.6M 6.85 30.89

WRN 40-4 [109] 8.9M 4.97 22.89

DenseNet 40 [110] 1.0M 5.24 24.42

DenseNet 100 [110] 7.0M 4.10 20.20

SimNet (1) 0.25M 6.92 31.72

SimNet (4) 3.9M 5.08 24.94

it still needs intensive computational resources. Improving the architectures of Similarity

Net can be the focus of our future work.

CIFAR10 and CIFAR100. We further test Similarity Net in CIFAR 10 [116] and CI-

FAR 100 [117] dataset for the architectures on the right of Fig.5.1. We consider two net-

works with different width, where the larger net is 4 times wider than the smaller one. We

adopt a widely used data augmentation approach for CIFAR 10 and CIFAR 100. Each

32 × 32 image is padded with reflection by 8 pixels into 40 × 40 images. And then a

32 × 32 patch is randomly cropped from the padded image. We do not apply data aug-

mentation on the test set. We compare our model with the state-of-the-art architectures of

similar parameter space. The results are shown in Table.5.3.

Comparing to its direct predecessor, Resnet 20 and WRN040-1, Similarity Net shows a

better performance score under approximately the same number of parameters. Our narrow

Similarity Net Architecture (n = 1) outperformed Resnet 20. It also performs as well as

WRN-40-1, which is 2 more times larger and performs slightly lower accuracy than Resnet

101, which is 6 times larger. The wide architecture of Similarity Net (n = 4) performs as

111

well as WRN-4 (2 times larger). DenseNet [110] showed advanced parameter efficiency in

both ILSVRC and CIFAR datasets. However, such efficiency is sacrificed from Memory

efficiency. Since each Convolutional Layer of the Dense Net is concatenate to the next

layer, the Feature Maps can be very large for the last few layers in each Dense Block. Such

memory demand does not exist in the Similarity Net.

5.4 Summary

We apply the Unsupervised Deep Encoding to pre-training Deep Convolutional Neural

Networks, to achieve better performance, learning dynamics, and memory efficiency. We

conduct systematic experiments on benchmark datasets to validate the advances we make.

The equivalence between a single layer of Neural Network and Clustering provides a

way of pre-train a Convolutional Neural Network by unsupervised feature learning. Our

experiments and analysis demonstrate that the pre-training schema is crucial to Similarity

Net, which also makes the model not rely on Batch Normalization. As a result, all the

models showed advanced parameter efficiency compared to the models in similar parameter

space. We argue that unsupervised feature learning initiates the Network that closes to a

better local minimum, such that we are more likely to find better optimum by the same

training method. Finally, unlike general CNNs that perform linear classification at each

filter, Similarity Net learns a number of kernels that represent the corresponding feature at

each level. For each input region, the convolution output is the similarity measure between

input and the filter. This may bring us richer potential to reuse well-learned feature maps.

112

6. CONCLUSION

In this thesis, we tackled a series of Computer Vision problems in Dynamic Environments,

which is featured by unsupervised learning, fast processing, and light training-deploying

cycle. There are multiple ways to establish machine intelligence in Vision. The approaches

we proposed and studied in this thesis contribute to building a customized vision for harsh

applications.

We first developed a stream clustering algorithm that is repeatedly used by the solu-

tions to practical vision tasks applied in Dynamic Environments. The algorithm possesses

a number of characteristics that are irreplaceable by existing works. First, it is a fully incre-

mental stream algorithm, thus the cluster centers are promptly updated and well organized

such that the efficiency of higher-level learning is optimized. Second, the algorithm is uni-

versal, i.e. suitable for arbitrary types of data with arbitrary similarity measure. In the task

of online unsupervised object discovery, complex data fed into clustering are histogram

with randomly increasing dimension and harshed graphs, each with its own similarity mea-

sure. Different similarity measures are also used by general data, i.e. Euclidean Distance

and Cosine Similarity. Third, we provided complete theoretical guarantees in statistics. We

first show that a given kernel is always moved towards its nearest density peak. We then

give proof of a reliable way to initial kernels to the most promising location such that all

valid density peaks will be discovered. Our experiments strongly supported the above con-

clusion. Compared with known state-of-the-art, it is superior in general to both stream and

non-stream algorithms. It is not only a solution to vision problems, but also a promising

candidate for any data clustering problems.

We then developed a UAV-based vision system that discovers unknown objects on-the-

fly. This real-life task can be thought of as the most challenging problem in Dynamic

Environments. First, there is no data available before deploying the agents. Thus any sort

of pre-training is impossible. The system has to learn all the knowledge from the feature

113

level to object level on-the-fly with very limited computation. The system strongly benefits

from the clustering algorithm we proposed, not only because of its advanced speed, but also

the data structure and fully incremental property that optimized the learning at each level.

We further developed our stream clustering algorithm into a hierarchical algorithm while

still possess all the characteristics of the original one. The clustering result is stored in a

data structure, called Memory Tree, that can be used to match features in sub-linear time.

We then developed a fast and accurate object proposal method for aerial images, which

drastically improved the efficiency of the entire system. This method takes the heuristics

that group objects in aerial view possess more corners than the background. Along with the

object proposal method, we developed a bottom-up object realization method that groups

the pieces of a large object into one according to sustained adjacency. At the proposal(part)

level, we also built a Latent Dirichlet Model to discover the different appearance caused by

viewpoint. We applied our method to a large number of aerial videos, and compare them

with most related methods. Though compared methods are in a non-stream setting, we still

reach competitive accuracy. The major advances of our paper are that we achieved much

higher coverage, namely better detection and discovery rate.

To further explore the possibility of models in Dynamic Environments, we developed

Unsupervised Deep Encoding that bridges traditional Visual Encoding and Convolutional

Neural Networks. The motivation of this work is to explore complex models in Dynamic

Environments. We first discovered the relation between clustering and single-layer neural

networks. We found that by letting the pre-activation function to be a similarity measure

between the input and the weight vector, a single-layer neural network can be equivalent

to clustering. When cosine similarity is considered as the pre-activation function, cluster-

ing can be performed by Back Propagation. Once we replace the dot product by cosine

similarity in Convolutional Neural Networks, each convolution becomes an unnormalized

soft assignment of the feature in that layer. Naturally, we can learn these features un-

supervisedly by clustering. Though we can use Gradient Descend to perform clustering,

this process significantly benefits from the advanced efficiency and accuracy of the stream

clustering proposed in this thesis. By regarding each feature map as an image, we can

114

conduct unsupervised feature learning by clustering in every layer of the Similarity-based

Convolutional Neural Networks. One application of the Unsupervised Deep Encoding is to

pre-train the CNN for realist tasks such as image recognition. We demonstrate by system-

atic experiments that the features unsupervisedly learned by our approaches are strongly

related to semantic labels. When the pre-train is done, freezing early layers in Similar-

ity Layers reaches significantly better classification accuracy than the randomly initialized

counterparts. Also, because pre-training finds a better initial state for gradient descend, we

achieve the same or higher outcome by using fewer parameters, which makes the model

thinner for applications with limited computation.

The methods we developed are designed specifically for the above two applications,

however, the theories, ideas, and algorithms are also suitable for many other similar appli-

cations.

REFERENCES

115

REFERENCES

[1] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Region-based convolutional net-
works for accurate object detection and segmentation,” IEEE transactions on pattern
analysis and machine intelligence, vol. 38, no. 1, pp. 142–158, 2016.

[2] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international conference on
computer vision, 2015, pp. 1440–1448.

[3] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object
detection with region proposal networks,” in Advances in neural information pro-
cessing systems, 2015, pp. 91–99.

[4] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proceedings of the
IEEE international conference on computer vision. IEEE, 2017, pp. 2980–2988.

[5] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,
real-time object detection,” in Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, 2016, pp. 779–788.

[6] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg,
“Ssd: Single shot multibox detector,” in European conference on computer vision.
Springer, 2016, pp. 21–37.

[7] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accu-
rate object detection and semantic segmentation,” in Proceedings of the IEEE con-
ference on computer vision and pattern recognition, 2014, pp. 580–587.

[8] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for seman-
tic segmentation,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2015, pp. 3431–3440.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in neural information processing sys-
tems, 2012, pp. 1097–1105.

[10] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 770–778.

[11] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[12] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2018, pp. 7132–
7141.

116

[13] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, p.
436, 2015.

[14] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[15] J. Sivic, A. Zisserman et al., “Video google: A text retrieval approach to object
matching in videos.” in Proceedings of the IEEE international conference on com-
puter vision, vol. 2, no. 1470, 2003, pp. 1470–1477.

[16] H. Jégou, M. Douze, C. Schmid, and P. Pérez, “Aggregating local descriptors into a
compact image representation,” in Proceedings of the IEEE conference on computer
vision and pattern recognition. IEEE, 2010, pp. 3304–3311.

[17] F. Perronnin and C. Dance, “Fisher kernels on visual vocabularies for image cate-
gorization,” in Proceedings of the IEEE conference on computer vision and pattern
recognition. IEEE, 2007, pp. 1–8.

[18] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Interna-
tional Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

[19] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in
Proceedings of the IEEE conference on computer vision and pattern recognition,
2005.

[20] M. R. Ackermann, M. Märtens, C. Raupach, K. Swierkot, C. Lammersen, and
C. Sohler, “Streamkm++: A clustering algorithm for data streams,” Journal of ex-
perimental algorithmics (JEA), vol. 17, pp. 2–4, 2012.

[21] H. Fichtenberger, M. Gillé, M. Schmidt, C. Schwiegelshohn, and C. Sohler, “Bico:
Birch meets coresets for k-means clustering,” in European Symposium on Algo-
rithms. Springer, 2013, pp. 481–492.

[22] T. Zhang, R. Ramakrishnan, and M. Livny, “Birch: an efficient data clustering
method for very large databases,” in ACM Sigmod Record, vol. 25, no. 2. ACM,
1996, pp. 103–114.

[23] A. Kobren, N. Monath, A. Krishnamurthy, and A. McCallum, “A hierarchical al-
gorithm for extreme clustering,” in Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 2017, pp. 255–264.

[24] D. Sculley, “Web-scale k-means clustering,” in Proceedings of the International
Conference on World Wide Web. ACM, 2010, pp. 1177–1178.

[25] E. Liberty, R. Sriharsha, and M. Sviridenko, “An algorithm for online k-means clus-
tering,” in Proceedings of the Workshop on Algorithm Engineering and Experiments.
SIAM, 2016, pp. 81–89.

[26] O. Bachem, M. Lucic, S. H. Hassani, and A. Krause, “Approximate k-means++ in
sublinear time.” in AAAI, 2016, pp. 1459–1467.

[27] A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern Recognition Letters,
vol. 31, no. 8, pp. 651–666, 2010.

117

[28] M. Cho, S. Kwak, C. Schmid, and J. Ponce, “Unsupervised object discovery and
localization in the wild: Part-based matching with bottom-up region proposals,” in
Proceedings of the IEEE conference on computer vision and pattern recognition,
2015, pp. 1201–1210.

[29] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural networks,
vol. 61, pp. 85–117, 2015.

[30] B. J. Frey and D. Dueck, “Clustering by passing messages between data points,”
Science, vol. 315, no. 5814, pp. 972–976, 2007.

[31] A. Rodriguez and A. Laio, “Clustering by fast search and find of density peaks,”
Science, vol. 344, no. 6191, pp. 1492–1496, 2014.

[32] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means clustering algo-
rithm,” Journal of the Royal Statistical Society. Series C (Applied Statistics), vol. 28,
no. 1, pp. 100–108, 1979.

[33] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful seeding,” in
Proceedings of the annual ACM-SIAM symposium on discrete algorithms. Society
for Industrial and Applied Mathematics, 2007, pp. 1027–1035.

[34] T. K. Moon, “The expectation-maximization algorithm,” IEEE Signal Processing
Magazine, vol. 13, no. 6, pp. 47–60, 1996.

[35] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward feature space
analysis,” IEEE transactions on pattern analysis and machine intelligence, vol. 24,
no. 5, pp. 603–619, 2002.

[36] L. O’callaghan, N. Mishra, A. Meyerson, S. Guha, and R. Motwani, “Streaming-data
algorithms for high-quality clustering,” in Proceedings of the International Confer-
ence on Data Engineering. IEEE, 2002, pp. 685–694.

[37] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, “A framework for clustering evolving
data streams,” in Proceedings of the international conference on very large data
Bases-Volume 29. VLDB Endowment, 2003, pp. 81–92.

[38] F. Cao, M. Estert, W. Qian, and A. Zhou, “Density-based clustering over an evolving
data stream with noise,” in Proceedings of the SIAM international conference on
data mining. SIAM, 2006, pp. 328–339.

[39] J. A. Silva, E. R. Faria, R. C. Barros, E. R. Hruschka, A. C. de Carvalho, and
J. Gama, “Data stream clustering: A survey,” ACM Computing Surveys (CSUR),
vol. 46, no. 1, p. 13, 2013.

[40] L. M. L. Alvarez, “Data stream management systems,” Dec. 25 2014, uS Patent App.
14/375,845.

[41] A. Ene, S. Im, and B. Moseley, “Fast clustering using mapreduce,” in Proceedings
of the ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 2011, pp. 681–689.

[42] X. Cui, P. Zhu, X. Yang, K. Li, and C. Ji, “Optimized big data k-means clustering
using mapreduce,” The Journal of Supercomputing, vol. 70, no. 3, pp. 1249–1259,
2014.

118

[43] M.-F. F. Balcan, S. Ehrlich, and Y. Liang, “Distributed k-means and k-median clus-
tering on general topologies,” in Advances in neural information processing systems,
2013, pp. 1995–2003.

[44] B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and S. Vassilvitskii, “Scalable k-
means++,” Proceedings of the VLDB endowment, vol. 5, no. 7, pp. 622–633, 2012.

[45] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei, “Sharing clusters among re-
lated groups: Hierarchical dirichlet processes,” in Advances in neural information
processing systems, 2005, pp. 1385–1392.

[46] B. Kulis and M. I. Jordan, “Revisiting k-means: New algorithms via bayesian non-
parametrics,” arXiv preprint arXiv:1111.0352, 2011.

[47] A. Coates, A. Ng, and H. Lee, “An analysis of single-layer networks in unsuper-
vised feature learning,” in Proceedings of the fourteenth international conference on
artificial intelligence and statistics, 2011, pp. 215–223.

[48] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Object retrieval with large
vocabularies and fast spatial matching,” in Proceedings of the IEEE conference on
computer vision and pattern recognition. IEEE, 2007, pp. 1–8.

[49] D. Nister and H. Stewenius, “Scalable recognition with a vocabulary tree,” in Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, vol. 2.
Ieee, 2006, pp. 2161–2168.

[50] C. Luo, J. Zhan, X. Xue, L. Wang, R. Ren, and Q. Yang, “Cosine normalization:
Using cosine similarity instead of dot product in neural networks,” in International
conference on artificial neural networks. Springer, 2018, pp. 382–391.

[51] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with
neural networks,” science, vol. 313, no. 5786, pp. 504–507, 2006.

[52] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, “Stacked de-
noising autoencoders: Learning useful representations in a deep network with a lo-
cal denoising criterion,” Journal of machine learning research, vol. 11, no. Dec, pp.
3371–3408, 2010.

[53] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional net-
works,” in European conference on computer vision. Springer, 2014, pp. 818–833.

[54] M. D. Zeiler, G. W. Taylor, and R. Fergus, “Adaptive deconvolutional networks for
mid and high level feature learning,” in Proceedings of the IEEE international con-
ference on computer vision. IEEE, 2011, pp. 2018–2025.

[55] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward
neural networks,” in Proceedings of the international conference on artificial intel-
ligence and statistics, 2010, pp. 249–256.

[56] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-wise training
of deep networks,” in Advances in neural information processing systems, 2007, pp.
153–160.

[57] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief
nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554, 2006.

119

[58] Q. V. Le, “Building high-level features using large scale unsupervised learning,” in
IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE,
2013, pp. 8595–8598.

[59] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in neural
information processing systems, 2014, pp. 2672–2680.

[60] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey, “Adversarial autoen-
coders,” arXiv preprint arXiv:1511.05644, 2015.

[61] T. Kohonen, “The self-organizing map,” Proceedings of the IEEE, vol. 78, no. 9, pp.
1464–1480, 1990.

[62] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learn-
ing with deep convolutional generative adversarial networks,” arXiv preprint
arXiv:1511.06434, 2015.

[63] J. Donahue, P. Krähenbühl, and T. Darrell, “Adversarial feature learning,” arXiv
preprint arXiv:1605.09782, 2016.

[64] X. Huang, Y. Li, O. Poursaeed, J. Hopcroft, and S. Belongie, “Stacked generative
adversarial networks,” in Proceedings of the IEEE conference on computer vision
and pattern recognition. IEEE, 2017, pp. 1866–1875.

[65] C. Doersch, A. Gupta, and A. A. Efros, “Unsupervised visual representation learn-
ing by context prediction,” in Proceedings of the IEEE international conference on
computer vision, 2015, pp. 1422–1430.

[66] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros, “Context en-
coders: Feature learning by inpainting,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 2536–2544.

[67] M. Noroozi and P. Favaro, “Unsupervised learning of visual representations by solv-
ing jigsaw puzzles,” in European conference on computer vision. Springer, 2016,
pp. 69–84.

[68] X. Wang and A. Gupta, “Unsupervised learning of visual representations using
videos,” in Proceedings of the IEEE international conference on computer vision,
2015, pp. 2794–2802.

[69] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training
by reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

[70] J. Lei Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv preprint
arXiv:1607.06450, 2016.

[71] T. Salimans and D. P. Kingma, “Weight normalization: A simple reparameterization
to accelerate training of deep neural networks,” in Advances in neural information
processing systems, 2016, pp. 901–909.

[72] L. Huang, D. Yang, B. Lang, and J. Deng, “Decorrelated batch normalization,” in
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
2018.

120

[73] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of initialization
and momentum in deep learning,” in International conference on machine learning,
2013, pp. 1139–1147.

[74] D. Erhan, P.-A. Manzagol, Y. Bengio, S. Bengio, and P. Vincent, “The difficulty of
training deep architectures and the effect of unsupervised pre-training,” in Artificial
Intelligence and Statistics, 2009, pp. 153–160.

[75] J. Xiao, C. Yang, F. Han, and H. Cheng, “Vehicle and person tracking in aerial
videos,” in Multimodal technologies for perception of humans. Springer, 2007, pp.
203–214.

[76] J. Xiao, H. Cheng, H. Sawhney, and F. Han, “Vehicle detection and tracking in
wide field-of-view aerial video,” in 2010 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. IEEE, 2010, pp. 679–684.

[77] S. Tuermer, F. Kurz, P. Reinartz, and U. Stilla, “Airborne vehicle detection in dense
urban areas using hog features and disparity maps,” IEEE journal of selected topics
in applied earth observations and remote sensing, vol. 6, no. 6, pp. 2327–2337,
2013.

[78] M. Teutsch and W. Krüger, “Detection, segmentation, and tracking of moving ob-
jects in uav videos,” in IEEE International Conference on Advanced Video and
Signal-Based Surveillance. IEEE, 2012, pp. 313–318.

[79] M. Teutsch and W. Kruger, “Robust and fast detection of moving vehicles in aerial
videos using sliding windows,” in Proceedings of the IEEE conference on computer
vision and pattern recognition workshops, 2015, pp. 26–34.

[80] S. Ali, V. Reilly, and M. Shah, “Motion and appearance contexts for tracking and re-
acquiring targets in aerial videos,” in Proceedings of the IEEE conference on com-
puter vision and pattern recognition. IEEE, 2007, pp. 1–6.

[81] T. Shu, D. Xie, B. Rothrock, S. Todorovic, and S. Chun Zhu, “Joint inference of
groups, events and human roles in aerial videos,” in Proceedings of the IEEE con-
ference on computer vision and pattern recognition, 2015, pp. 4576–4584.

[82] S. Singh, A. Gupta, and A. A. Efros, “Unsupervised discovery of mid-level discrim-
inative patches,” in European conference on computer vision. Springer, 2012, pp.
73–86.

[83] J.-Y. Zhu, J. Wu, Y. Xu, E. Chang, and Z. Tu, “Unsupervised object class discovery
via saliency-guided multiple class learning,” IEEE transactions on pattern analysis
and machine intelligence, vol. 37, no. 4, pp. 862–875, 2014.

[84] S. Kwak, M. Cho, I. Laptev, J. Ponce, and C. Schmid, “Unsupervised object dis-
covery and tracking in video collections,” in Proceedings of the IEEE international
conference on computer vision, 2015, pp. 3173–3181.

[85] A. Ošep, P. Voigtlaender, J. Luiten, S. Breuers, and B. Leibe, “Large-scale
object discovery and detector adaptation from unlabeled video,” arXiv preprint
arXiv:1712.08832, 2017.

[86] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in neural
information processing systems, 2014, pp. 2672–2680.

121

[87] C. L. Zitnick and P. Dollár, “Edge boxes: Locating object proposals from edges,” in
European conference on computer vision. Springer, 2014, pp. 391–405.

[88] B. Alexe, T. Deselaers, and V. Ferrari, “Measuring the objectness of image win-
dows,” IEEE transactions on pattern analysis and machine intelligence, vol. 34,
no. 11, pp. 2189–2202, 2012.

[89] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W. Smeulders, “Selective
search for object recognition,” International journal of computer vision, vol. 104,
no. 2, pp. 154–171, 2013.

[90] J. Carreira and C. Sminchisescu, “Cpmc: Automatic object segmentation using con-
strained parametric min-cuts,” IEEE transactions on pattern analysis and machine
intelligence, vol. 34, no. 7, pp. 1312–1328, 2011.

[91] E. Rahtu, J. Kannala, and M. Blaschko, “Learning a category independent object
detection cascade,” in 2011 international conference on Computer Vision. IEEE,
2011, pp. 1052–1059.

[92] S. Manen, M. Guillaumin, and L. Van Gool, “Prime object proposals with random-
ized prim’s algorithm,” in Proceedings of the IEEE international conference on com-
puter vision, 2013, pp. 2536–2543.

[93] I. Endres and D. Hoiem, “Category-independent object proposals with diverse rank-
ing,” IEEE transactions on pattern analysis and machine intelligence, vol. 36, no. 2,
pp. 222–234, 2013.

[94] P. Rantalankila, J. Kannala, and E. Rahtu, “Generating object segmentation pro-
posals using global and local search,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2014, pp. 2417–2424.

[95] M.-M. Cheng, Z. Zhang, W.-Y. Lin, and P. Torr, “Bing: Binarized normed gradi-
ents for objectness estimation at 300fps,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2014, pp. 3286–3293.

[96] M. Everingham, S. A. Eslami, L. Van Gool, C. K. Williams, J. Winn, and A. Zis-
serman, “The pascal visual object classes challenge: A retrospective,” International
journal of computer vision, vol. 111, no. 1, pp. 98–136, 2015.

[97] F. S. Samaria and A. C. Harter, “Parameterisation of a stochastic model for human
face identification,” in Proceedings of the IEEE Workshop on Applications of Com-
puter Vision. IEEE, 1994, pp. 138–142.

[98] Y. LeCun, C. Cortes, and C. J. Burges, “The mnist database of handwritten digits,”
1998.

[99] J.-M. Geusebroek, G. J. Burghouts, and A. W. Smeulders, “The amsterdam library
of object images,” International Journal of Computer Vision, vol. 61, no. 1, pp. 103–
112, 2005.

[100] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein et al., “Imagenet large scale visual recognition chal-
lenge,” International Journal of Computer Vision, vol. 115, no. 3, pp. 211–252,
2015.

122

[101] A. Asuncion and D. Newman, “Uci machine learning repository,” 2007.

[102] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the in-
ception architecture for computer vision,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 2818–2826.

[103] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9.

[104] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann ma-
chines,” in Proceedings of the international conference on machine learning, 2010,
pp. 807–814.

[105] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification,” in Proceedings of the IEEE
international conference on computer vision, 2015, pp. 1026–1034.

[106] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in
Proceedings of the international conference on artificial intelligence and statistics,
2011, pp. 315–323.

[107] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified activations
in convolutional network,” arXiv preprint arXiv:1505.00853, 2015.

[108] Z. Wang and G. Tsechpenakis, “Stream clustering with dynamic estimation of
emerging local densities,” in International Conference on Pattern Recognition.
IEEE, 2018, pp. 2100–2105.

[109] S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv preprint
arXiv:1605.07146, 2016.

[110] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected
convolutional networks,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017, pp. 4700–4708.

[111] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A Large-
Scale Hierarchical Image Database,” in Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 2009.

[112] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[113] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent neural
networks,” in International conference on machine learning, 2013, pp. 1310–1318.

[114] C. G. Harris, M. Stephens et al., “A combined corner and edge detector.” in Alvey
vision conference, vol. 15, no. 50. Citeseer, 1988, pp. 10–5244.

[115] M. Barekatain, M. Martı́, H.-F. Shih, S. Murray, K. Nakayama, Y. Matsuo, and
H. Prendinger, “Okutama-action: An aerial view video dataset for concurrent human
action detection,” in Proceedings of the IEEE conference on computer vision and
pattern recognition Workshops, 2017, pp. 28–35.

[116] A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-10 (canadian institute for advanced
research).” [Online]. Available: http://www.cs.toronto.edu/∼kriz/cifar.html

http://www.cs.toronto.edu/~kriz/cifar.html

123

[117] ——, “Cifar-100 (canadian institute for advanced research).” [Online]. Available:
http://www.cs.toronto.edu/∼kriz/cifar.html

http://www.cs.toronto.edu/~kriz/cifar.html

	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION AND RELATED WORKS
	Dynamic Environments: Definition and Motivation
	Fully Stream Clustering for Unsupervised Feature Learning and Object Discovery in Dynamic Environments
	Related Works
	Challenge
	Contribution

	Unsupervised Deep Encoding: a Bridge Between Visual Encoding and Convolutional Neural Networks
	Related Works
	Contribution

	Unsupervised Aerial Objects Discovery and Detection on-the-fly
	Related Works
	Challenge
	Contribution

	FULLY STREAM CLUSTERING FOR UNSUPERVISED FEATURE LEARNING AND OBJECT DISCOVERY IN DYNAMIC ENVIRONMENTS
	Mean Shift in Single Pass
	Dynamic Initialization: Density Estimation
	The Single-Pass Algorithm
	Subset Size for Successful Clustering
	Performance for Stream Data

	The Memory Tree Clustering: Stochastic Mean Shift in Hierarchy
	Experiments
	Basic Clustering on Real, Image-oriented Datasets
	Building Visual Words on-the-fly
	Matching SIFT Features on-the-fly

	Summary

	UNSUPERVISED DEEP ENCODING: A BRIDGE BETWEEN CNN AND VISUAL ENCODING
	Relationship between of Single-layer Neural Networks and Clustering
	Similarity Convolution
	Unsupervised Deep Encoding by Multi-level Unsupervised Feature Learning
	Experiments and Analysis
	Effective of Pre-training
	Effect of Batch Normalization

	Summary

	APPLICATION ON STREAM DATA: UNSUPERVISED OBJECT DISCOVERY ON-THE-FLY FROM AERIAL VIDEOS
	Framework Overview
	Matching Proposals on-the-fly.
	Object Proposal and Object-Part Relationship Realization
	Correspondence Inferring by Tracking

	Robustness Analysis
	Experiments
	Experiment Setting
	Parameters and Features
	Evaluation
	Major Results: Aerial Videos
	Non-Aerial Results: Indoor Videos
	Non-Aerial Videos: Outdoor Videos

	Summary

	APPLICATION ON STATIC DATA: PRE-TRAINING THE CNN BY UNSUPERVISED DEEP ENCODING
	Network Architectures and Implementation Details
	Layer Efficiency
	Classifications on Benchmark Dataset
	Summary

	Conclusion
	REFERENCES

