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ABSTRACT

Chen, Yuhao Ph.D., Purdue University, December 2019. Estimating Plant Pheno-
typic Traits From RGB Imagery. Major Professor: Edward J. Delp.

Plant Phenotyping is a set of methodologies for measuring and analyzing charac-

teristic traits of a plant. While traditional plant phenotyping techniques are labor-

intensive and destructive, modern imaging technologies have provided faster, non-

invasive, and more cost-effective capabilities for plant phenotyping. Among different

image-based phenotyping platforms, I focus on phenotyping with image data cap-

tured by Unmanned Aerial Vehicle (UAV) and ground vehicles. The crop plant used

in my study is sorghum [Sorghum bicolor (L.) Moench]. In this thesis, I present mul-

tiple methods to estimate plot-level and plant-level plant traits from data collected

by various platforms, including UAV and ground vehicles. I propose an image plant

phenotyping system that provides end-to-end RGB data analysis for plant scientists.

I describe a plant segmentation method using HSV color information. I introduce two

methods to locate the center of the plants using Multiple Instance Learning (MIL)

and Convolutional Neural Networks (CNN). I present three methods to segment in-

dividual leaves by shape-based approaches in both Cartesian coordinates and Polar

coordinates. I propose a method to estimate leaf length and width for overhead leaf

images. I describe a method to estimate leaf angle from data collected by a modified

wheel-based sprayer with a sensor boom vehicle, Phenorover. Methods are tested and

verified on image data collected by UAV and ground vehicle platforms in sorghum

fields in West Lafayette, Indiana, USA. Estimated phenotypic traits include plant

locations, the number of plants per plot, leaf area, canopy cover, Leaf Area Index

(LAI), leaf count, leaf angle, leaf length, and leaf width.
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1. INTRODUCTION

1.1 Plant Phenotyping

The process used by crop scientists to measure the physical and chemical proper-

ties of a plant is known as phenotyping [1–4]. It is a set of methodologies for recording,

measuring, and analyzing characteristic traits of a plant resulting from genetic and

environmental factors.

Phenotyping provides a key solution to the challenge of agricultural production

posed by the increasing human population. According to [5], crop production needs

to double to meet the demand by 2050. To meet demand for future food and fuel

needs, agricultural crops need to be improved to produce higher crop yield and to

tolerate abiotic stresses [3]. The rapidly developing genome sequencing technologies

have provided genetic information across the various types of agricultural crops, en-

abling plant scientists to link genes to phenotypes of interests [6–11]. The linkages of

genotype to phenotype help plant breeders and researchers to select high yielding and

stress-tolerant plants efficiently [12]. Low cost, high-throughput phenotyping becomes

the key in finding these linkages with precision, accuracy, and rapidness [4, 13].

Traditional field phenotyping requires a great deal of human labor to routinely

obtain traits measurement on a plant by plant basis, making data acquisition labor-

intensive and time-consuming. For example, workers first need to identify an indi-

vidual plant from neighbors as plants in the field are typically planted densely to

maximize yield. Then, several traits are recorded with various devices. Many data

collection methods are destructive where plants are damaged or removed from the

field. Figure 1.1 shows some examples of traditional phenotyping. Plants are cut and

laid out on the tables, where researchers take measurements, including plant height,

leaf counts, leaf angle, leaf area, and the number of tillers. Since measurements are
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(a) (b)

Fig. 1.1. Traditional phenotyping: a) researchers are taking measurements
of a sorghum plant. b) Leaves and panicle are cut and laid out on the
table for measuring area.

made plant by plant, field size directly relates to the time need for collecting data.

Thus, labor required for collecting and analyzing data becomes the bottleneck of

high-throughput plant phenotyping.

1.2 Sorghum

I focus my analysis on the crop sorghum [Sorghum bicolor (L.) Moench] [1, 14].

Sorghum is the fifth most important cereal crop in the world [1]. It can be grown in

both temperate and tropical zones and is one of the most photosynthetically efficient

plants [14]. Sorghum is mostly used as food and can also be used as feed, fodder,

fiber [1], and energy [15–17]. Figure 1.2 shows the anatomy of sorghum plants. In one

growing circle, sorghum has nine growth stages [19]. In the first 4 stages, sorghum

develops its leaves and tillers. A tiller is an extra branch that grows out of the stem.
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Fig. 1.2. Sorghum anatomy [18]
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At stage 4, sorghum develops all its leaves. At stage 5, sorghum fully expands its

leaves and starts developing the seed panicle. In stages 6-9, sorghum begins to flower

and fill its grain.

1.3 Plant Phenotyping With Outdoor RGB Imagery

While traditional phenotyping techniques are labor intensive and destructive,

modern imaging technologies have provided faster, non-invasive and more cost-effective

plant phenotyping [3, 12, 20–22].

Previous work in image-based phenotyping can be categorized into two approaches.

In one approach, individual plants are phenotyped in environments where the imaging

conditions and the distribution of plants are controlled. Plants are under consistent

treatments, so experiments conducted in a controlled environment can be easily repro-

duced. Figure 1.3 shows an example of indoor high-throughput phenotyping platform

layout. Plants in the platform can be freely moved around to be watered, weighed,

and taken image measurements. Controlled environment studies have successfully

provided high precision traits estimation and predicted plant growth. In [24, 25],

leaves are destructively collected to obtain the leaf area measurement by scaling the

number of pixels in the segmentation mask. In [26], plants in an automated indoor

facility are detected using color thresholding, then located using k-means, and finally

segmented using active contours. In [27], 3D individual plants are constructed from

depth images acquired from multiple viewpoints. In [28], Gibbs et al. reconstruct a

3D plant shoot surface from 2D RGB images. In [29], a light-field camera is used

under near-infrared lighting to monitor spatiotemporal plant growth of plants with

rosette leaf forms. Phenotyping in a controlled environment shows promising capa-

bilities, but cannot be employed in large scale field studies [12]. In addition, this

approach is limited in reflecting real growing conditions in the field, such as extreme

weather, intense plant-plant competition, high solar radiation, fast evaporation rate,

soil conditions for proper root development, and drainage conditions.
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Fig. 1.3. Example of high-throughput indoor phenotyping platform [23]

Fig. 1.4. Example of a ground data collection platform
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The other approach to plant phenotyping estimates plant traits from image data

collected in an outdoor environment (field-based). Figure 1.4 shows an example of

a ground data collection vehicle. In [12], a vehicle carrying multiple sets of sensors

is used as a field-based phenotyping platform. With the platform, the study aims to

use commercial software to estimate plant traits, including plant height, Leaf Area

Index, extinction coefficient, transpiration, leaf number, and area of individual leaves.

Similarly, in [30] and [31], sensor mounted small tractors are used to collect image

data for traits estimation. In [32], an orthomosaic of the field is created from UAV

images, and pixels are classified into crop, soil, and shadow using maximum likelihood

estimates. The mask of the crop is used to estimate the Normalized Difference Vege-

tation Index (NDVI). In [33], field images from a hand-held device are acquired and

segmented using histogram-based thresholding. The segmentation masks are then

used to estimate LAI, where LAI is defined as the total leaf surface per unit area

of land [34]. In [35], Hu et al. estimate plant height from RGB images taken from

UAV. In [36], the canopy temperature of sugarcane is predicted pixel-wise. In [37],

plants are segmented using a decision tree based method, and the canopy cover is

computed. Field-based approaches can significantly increase the efficiency of large

scale phenotyping studies with relatively lower cost [12, 13, 32, 36, 38, 39].

Among the different types of modern phenotyping systems, the use of Unmanned

Aerial Vehicles (UAVs) carrying various sensors is attractive because they are portable,

cost-effective, non-invasive, and relatively easy to use [36]. Figure 1.5 shows an exam-

ple UAV carrying multiple sensors. Large scale data collection using UAVs is often

finished within a short period time compared to traditional data collection. Figure

1.6 and 1.7 show some data collected by the UAV. In [40], Hu et al. study how the

image capture altitude and the spatial resolution of image pixels relate to the canopy

cover computation error. They suggest the UAV flying altitude to be 20m-30m to

minimize this error.

Most current studies using UAV imagery [32,32,36,38,39,41–43] focus on average

traits for small regions of the crop field or plots, such as height, NDVI, LAI, canopy
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(a)

(b)

Fig. 1.5. Example of a UAV data collection platform carrying multiple
sensors
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coverage without estimating traits of each plant. Estimation of plot averages often

balance factors that may affect plant growth, such as the uneven distribution of

natural resources and plant competition. For example, plants near borders have more

space and sunlight coverage, which results in larger plants. In our plant experiments,

border plants are excluded. Crop fields for research mostly contain multiple plant

varieties in neighboring plots [44]. Within each plot, competition for natural resources

can also increase plant variability. When the plant variability within each plot is high,

average values may not be sufficient in estimating and analyzing phenotypic traits.

One solution is to only consider plants in the middle of a row segment, but accurately

setting the boundary within a row segment is difficult due to the unknown location

of the border plants in the row segment. Therefore, it is useful to introduce methods

that detect the center of plants, which can increase the precision of phenotypic trait

estimation with UAV imagery and account for individual plant traits.

One issue with collecting images using UAVs is that to be able to measure prop-

erties of the plants on the ground one must geometrically rectify the images and

mosaic them [45]. Another issue is that due to the camera’s field of view, the higher

the UAV flies, the more ground area is covered per image, and hence, the images

have a low spatial resolution. Lower altitude flights provide higher resolution images.

Flying at a higher altitude reduces the number of flights needed because more of

the crop field can be “seen” by the UAV and reduces problems with matching for

orthorectification. This strategy limits the possible changes in illumination, weather

conditions, and perspective distortions within the dataset, and thus, it improves the

data consistency.
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Fig. 1.6. Image of a subrow of a sorghum field acquired from a UAV at
an altitude of 40m.

Fig. 1.7. Image of a section of a sorghum field (field 54 calibration panel)
in West Lafayette, Indiana acquired from a UAV on 06/20/2018 at an
altitude of 20m.
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(a)

(b)

Fig. 1.8. a) Field definition. b) An example of a field containing multiple
experiment panels. The image is taken in 2018 at Field 54 in Purdue
ACRE.

1.4 Field Description and Terminologies

A field contains multiple experiment panels (as shown in Figure 1.8). A calibration

panel contains plants that are used as a reference for observing the changes in plants

in other experiments. Inbred calibration contains plants that are bred from pure gene

lines, while hybrid calibration contains plants that are bred from two pure genetic

lines. A diversity panel contains hundreds of inbred plants. Hybrid plants are bred

from two inbred plants.
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Fig. 1.9. Panel definition
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Fig. 1.10. Plot definition

Each panel contains different plots and border rows (as shown in Figure 1.9).

Border rows are to separate panels and reduce border effects on the experiment. All

plants in a plot share the same genetic line. Different plots typically have plants with

different genes.

Each plot contains multiple row segments (as shown in Figure 1.10). A typical

plot has 1 row, 4 rows, or 12 rows. Due to the border effect, the left and right most

rows are not used in data analysis. Some of the rows are destructively sampled for

data collection. Once the plants are removed, they can no longer provide data in the

later growing stage. To solve the issue, the plot size is increased. A plot with 12 rows

can have multiple destructive data collections on multiple dates. Rows that are not

destructively sampled are harvested, and biomass and yield data are recorded.

A row segment is a basic unit within the plot (as shown in Figure 1.11). Row

segment is often reduced at both ends to reduce the inter-plot border effect.
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Fig. 1.11. Row segment definition
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1.5 List of Phenotypic Traits

Example plot level traits:

• Flowering time

• Normalized Difference Vegetation Index (NDVI)

NDV I =
NIR− RED

NIR +RED
, (1.1)

where NIR stands for near-infrared regions of the spectrum.

• Canopy cover Canopy cover is defined by the percentage of green area over the

plant’s occupying space.

Example row segment level traits:

• NDVI and other spectra indices

• Canopy cover

• Plant locations

• Plant count

• Leaf count

• Panicle count

Example plant level traits:

• Leaf angle

• Leaf area

• Leaf area index (LAI)

LAI is defined as the one-sided green leaf area per unit ground surface area

(LAI = leaf area / ground area, m2 / m2) in broadleaf canopies.

• Leaf length

• Leaf width

• Leaf count

• Leaf angle

• Collar leaf height

• Leaf appearance rate

• Ear height
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1.6 Plant Phenotyping with Machine Learning

With the rapid development of modern machine learning, scientists are able to

apply it in the field of plant phenotyping. In [46], Zhou et al. proposed using a

Random Forest [47] over color and texture features to segment plants and compute

the canopy coverage. In [48, 49], Singh et al. give reviews on existing Deep Learning

and machine learning methods studying plant stresses such as water stress, brown spot

on leaf, mold, and disease. In [50], Ubbens et al. used Deep Learning for leaf counting,

mutant classification, age regression. In [51], Alkhudaydi et al.segments wheat spike

regions using Fully Convolutional Network. In [52], Pound et al. uses a U-Net [53]

shapedd Deep Learning architecture for wheat spikes and spikelets detection. In [54],

Toda et al. study how learned CNN features relate to plant diseases. In [55], Pound et

al. use CNN to localize and classify plant shoots. In [56], Masjedi et al. use Support

Vector Regression and Multi-layer Perception for biomass from Light Detection And

Ranging (LiDAR) point clouds and hyperspectral data.

In addition, many open-sourced tools and libraries are developed for plant scien-

tists to use. PlantCV [57] is a computer vision based image phenotyping library that

is implemented in python. The website https://plant-image-analysis.org, described

in [58], is an online database for plant phenotyping tools.

1.7 Contributions of This Thesis

In this thesis, I propose multiple methods to estimate high precision phenotypic

traits from UAV, Phenorover, and ground reference images including plant locations,

the number of plants per plot, leaf area, leaf count, canopy cover, LAI, leaf length,

leaf width, and leaf angle. Methods are tested and verified on image data collected

by various platforms in fields of West Lafayette, Indiana, USA.

The main contributions of this work are:

• I describe an image phenotyping system that takes data collected from UAV and

estimates phenotypic traits per-field, per-plot, per-row-segment, and per-plant.
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• I create several tools, including orthophoto rotation estimator and inverse-

mapping to facilitate data flows in the system.

• I develop a distributed computing system with a web interface for plant scien-

tists to use our tools and visualize the results

• I propose a pixel-wise plant segmentation method using thresholds in HSV

space.

• I propose a leaf location method using MIL.

• I propose a leaf location method using CNN.

• I present a leaf segmentation method by a shape-based approach.

• I propose a leaf segmentation method by segmenting and modeling individual

leaves in polar coordinates.

• I propose a leaf segmentation method by modeling leaf shapes with polynomial

functions.

• I propose a method to estimate the length and width of leaves that are laying

on the table.

• I describe a method to detect the leaf angle for images taken from a ground

vehicle.

• I experiment training a DNN by the relationship between input samples.

• I explore the use of logical “AND” operation in DNN.

1.8 Publications Resulting From This Work

1. Y. Chen, J. Ribera, C. Boomsma, and E. J. Delp, “Plant leaf segmentation

for estimating phenotypic traits“, Proceedings of the IEEE International Con-

ference on Image Processing, September 2017, Beijing, China.

2. Y. Chen, J. Ribera, C. Boomsma, and E. J. Delp, “Locating Crop Plant Cen-

ters From UAV-Based RGB Imagery“, Proceedings of the IEEE International

Conference on Computer Vision, Workshop on Computer Vision Problems in

Plant Phenotyping, October 2017, Venice, Italy.
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3. Y. Chen, J. Ribera, C. Boomsma, and E. J. Delp, “Estimating Plant Centers

Using A Deep Binary Classifier“, Proceedings of the IEEE Southwest Symposium

on Image Analysis and Interpretation, April 2018, Las Vegas, Nevada

4. Y. Chen, S. Baireddy, E. Cai, C. Yang, and E. J. Delp, “Leaf Segmentation

by Functional Modeling“, Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition Workshops, June 2019, Long Beach, CA

5. J. Ribera, D. Guera, Y. Chen, and E. J. Delp, “Locating Objects Without

Bounding Boxes“, Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, June 2019, Long Beach, CA

6. J. Ribera, Y. Chen, C. Boomsma, and E. J. Delp, “Counting Plants Using

Deep Learning“, Proceedings of the IEEE Global Conference on Signal and

Information Processing (GlobalSIP), November 2017, Montreal, Canada

7. J. Ribera, F. He, Y. Chen, A. F. Habib, and E. J. Delp, “Estimating Pheno-

typic Traits From UAV Based RGB Imagery”, ACM SIGKDD Conference on

Knowledge Discovery and Data Mining, Workshop on Data Science for Food,

Energy, and Water, August 2016, San Francisco, CA.
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2. PLANT PHENOTYPING SYSTEM

2.1 Image Phenotyping System

Collecting plant-level data produces accurate data correspondence, but the pro-

cess is time-consuming, labor-intensive, and sometimes difficult to carry out. In an

outdoor environment, crops are grown densely. Accessing plants can be problem-

atic and destructive. Therefore, collecting data per plant is less favorable for high

throughput plant phenotyping. Modern imaging platforms such as UAVs have en-

abled collective data acquisition. These platforms can capture image data of a field in

less than an hour, but establishing accurate data correspondence is not as straightfor-

ward. Manually sorting the captured images and labeling them are time-consuming

and labor-intensive tasks. Orthorectification techniques described in [45] projects

the spectral information captured from UAV imageries to a flat surface with geoco-

ordinates. With the geocoordinates for each plot, we can assign the plot with its

pixel-level sensor data, which is used for traits estimation.

We describe an image-based plant phenotyping system for RGB images that com-

putes the data correspondences and estimates traits at per plot or per plant basis. In

addition, this system includes a distributed computing platform with a web interface

that makes our tools easy to access and use for the plant scientists.

We show a simple block diagram of the system in Figure 2.1, and a detail version

of the system flowchart in Figure 2.2.

The system takes the RGB, Global Positioning System (GPS), and Inertial Mea-

surement Unit (IMU) data generated by the UAV platform as input, and outputs

the estimated traits for selected plots. The components of the system are described

below.
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Fig. 2.1. Phenotyping system blockdiagram
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Fig. 2.2. Phenotyping system detail flowchart
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Fig. 2.3. An example of plot extraction, each row segment is marked in a
colored rectangle.
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• Orthophoto generation. With images and GPS/IMU data captured from UAV,

system level, and camera parameters, orthophoto is created. This is accom-

plished by other members of the team, and this process is described in [45].

• Plot extraction (as shown in Figure 2.3). Plant experiments are planted with

precision planters which use Global Navigation Satellite System (GNSS), result-

ing in well characterized row/plots. Plot extraction, described in [59], is a tool

that automatically estimates a grid to divide the field into row segments. Each

grid cell is represented by a bounding box, and the corners of the bounding box

are represented in geocoordinates. The grid allows us to map RGB images to

corresponding experimental plots in the field. This grid is essential for precise

image-based plant phenotyping, since any estimated phenotypic traits from the

cropped row segment image can be registered with its plot number and used

by plant scientists. In a commercial setting, row segments in a field may not

align due to planting conditions, weather, and ground conditions. For this kind

of field, plot extraction can be applied multiple times on different parts of the

field to obtain a plot grid.

• Inverse-mapping. Inverse-mapping crops row segments in their original resolu-

tion using the bounding boxes generated by the plot extraction.

• Trait analyses. The cropped row segments are then used for traits analysis.

Row-segment-level traits analysis includes canopy cover, leaf count, plant count,

and plant spacing. Once plant centers are detected in the row segment, traits

can be estimated at the plant-level.

• Visualization. Estimated traits are visualized for better understanding. This is

accomplished by other members of the team.

In addition, a storage unit Data Depot is shared between the teams. We propose

a protocol for storing data and naming convention for the files. Figure 2.4 shows the

proposed file structure. Figure 2.5 shows an example of the file structure. We propose

the following rules for file and directory names:

• All lowercase
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• No spaces

• Use underscore instead of dash

• Dates as year month and day, such as 20180418

• If there is a number in the name, pad the numbers with many zeros, such as

0041

Example: image 0041 f41 calibration panel 20180714.png

Fig. 2.4. File structure for storage
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Fig. 2.5. File structure example
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2.2 Tools

2.2.1 Orthophoto Rotation Estimation

The plot extraction tool we developed is based on the assumption that row seg-

ments are aligned with a North-South axis. A rotation of a field results in an inac-

curate grid generation, which is crucial for image-based phenotypic trait estimation.

In commercial settings, fields often are not aligned with the North-South axis due

to various reasons such as maximizing space usage, managing erosion, and avoiding

wet spots. Having the field data aligned with orthogonal rows and columns simplifies

image processing, since there is no need to consider the rotation angle. The offset

rotation angle that offsets the field is not available during the orthophoto generation.

To find the rotation angle, we propose the following method.

First, we transpose the image if the row segments are horizontal. Let I(x, y) to

be the pixel intensity of an orthophoto at coordinate (x, y). Let h to be the height of

the image and w to be the width of the image. We define M to be the plant mask,

and

M(x, y) =











1 if I(x, y) contains plant material

0 otherwise.

(2.1)

Let Mθ to be the plant mask with a rotation of θ degree, where

Mθ(x, y) =











M(xcosθ, ysinθ) 0 ≤ x < w, 0 ≤ y < h

0 otherwise

(2.2)

We find the vertical projection profile Px,θ by

Px,θ =

H
∑

y=1

Mθ(x, y) (2.3)

Figure 2.6 shows an example of a vertical projection profile.

Let τ to be the maximum rotation angle of the orthophoto. Then the optimal

rotation angle θ̂ is estimated by

θ̂ = argmax
θ

(V ar(Px,θ)), (2.4)
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where V ar(·) is the variance function.

Once the rotation angle is estimated, the rotated orthophoto is computed by

Irot(x, y) =











I(xcosθ, ysinθ) 0 ≤ x < w, 0 ≤ y < h

0 otherwise

(2.5)

The image coordinates (x, y) associated with the original orthophoto I is now

(xcosθ, ysinθ).

Fig. 2.6. A vertical projection profile example
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(a)

(b)

Fig. 2.7. a) an example input image. b) The rotated input image.
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2.2.2 Inverse Mapping

Images captured from a UAV may have different spatial resolutions due to physical

conditions such as flying altitude, and pitch or roll angle. These raw images are

used to generate orthophotos with uniform spatial resolutions. The resolutions are

selected based on the application. For example, some application requires maximizing

the processing speed so the orthophotos can be visualized within hours. Estimating

traits directly on the orthophoto can be challenging due to the low resolution and

artifacts during the generation process. In addition, orthophoto generated pixels do

not guarantee the spatial continuity of the image values, which means the image

contains pixels from different source images. This causes problems in image analysis

that requires spatial continuity such as leaf shapes. We developed an inverse mapping

tool that retrieves image crops in original resolution with the given plot coordinates.

This tool projects the four points of each row segment back into the geo-coordinates,

and find their closest points. Each point belongs to one source image. We find a list

of source images that satisfy the condition where all 4 corner points are in the same

image. We then find the center of the row segment by averaging all 4 coordinates. We

select the image with a center closest to the row segment center, since the center of

each image has less perspective distortion. Figure 2.8 shows the image selection based

on row segment corner coordinates. Figure 2.9(a) shows an example of a row segment

with orthophoto resolution. Figure 2.9(b) shows an example of the inverse-mapped

row segment in original image resolution.



29

Fig. 2.8. Image selection for inverse mapping based on the corners of the
row segment.

(a)

(b)

Fig. 2.9. An example of inverse-mapping: a) a row segment cropped from
orthophoto with resolution 4cm/pixel. b) an inverse-mapped row segment
with resolution 0.63cm/pixel.
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Fig. 2.10. Login page

2.3 Distributed Image-Based Phenotyping System

A distributed RGB image-based phenotyping system is developed to facilitate

plant scientists for traits predictions. Among all the web frameworks, we choose

Django [60] because its framework is python based and easy to use. The system

runs on Linux and can be deployed to Amazon Web Service [61]. Anyone with an

account can login and use the provided image analysis tools without the need to have

computing resources.

Our web interface has few components.

• Login page (as shown in Figure 2.10). User needs to enter their login credentials

before using our tools.

• Home page (as shown in Figure 2.11). Once login is successful, user will be

brought to this page. Clicking on ”Tools” will direct the user to the image

phenotyping tools menu.

• Data upload page (as shown in Figure 2.12). This page is used for uploading

input data for processing. Multiple data samples can be uploaded. Clicking on

”Basic Upload” in ”Menu” will direct you to this page.

• Image Phenotyping Tools page (as shown in Figure 2.13). Image Phenotyp-

ing Tools page contains all the provided image analysis tools, including plot

extraction, plant location, and leaf segmentation. In addition, plot viz is a vi-
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Fig. 2.11. Home page

Fig. 2.12. Data upload page
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Fig. 2.13. Image phenotyping tools page

sualization tool to view the results of plot extraction. The user needs to input

the required parameters, select the tool to run, and click the ”Process” button.

Once the processing is finished, the user will be redirected to the results page

where outputs can be downloaded.

Most of the tools take input from the upload page and produce outputs on the

results page without any parameters. Figure 2.14 shows the tool selection box.

Plot extraction requires several input parameters, including the coordinates of

the region of interest, and the number of ranges and rows. To obtain those

parameters is not straightforward. Therefore, we implement a map feature to

display the orthophoto. Users can select the ROI by clicking on the rectangle

box in the map interface. The coordinates of the ROI will be automatically

filled into the parameter box. Figure 2.15 shows this map interface.
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Fig. 2.14. Available image phenotyping tools
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Fig. 2.15. Region of interest selection on the map view of an orthophoto
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Fig. 2.16. Results page

• The results page (as shown in Figure 2.16). Results page shows the list of

outputs corresponding to the input data. The inputs and outputs share the

same prefix. Some tools may generate multiple output files for one input sample.

All outputs can be downloaded by right click and clicking ”save link as”.

• Documentation page (as shown in Figure 2.17). Documentation page contains

instructions, requirements, and output descriptions for each image phenotyping

tool.
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Fig. 2.17. Documentation page
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3. PLANT MATERIAL SEGMENTATION

3.1 HSV Color Segmentation

3.1.1 Motivation

Canopy coverage is an important phenotypic trait that indicates the growth of

plants. To compute canopy cover, a plant material mask is required. I propose a

pixel level segmentation method to estimate plant material mask since it has low

computation cost and requires no training data.

3.1.2 Proposed Method

First, the input image is converted from RGB to HSV color space [62], because

HSV color model aligns with how human sees color. From the image in the HSV color

space, a segmentation mask Y is generated. Each pixel Ym in this mask is obtained

as:

Ym =







1 if τ1 ≤ Hm ≤ τ2 and (τ3 ≤ Sm or τ4 ≤ Vm)

0 otherwise
(3.1)

where Hm, Sm, and Vm are the hue, saturation, and value of the pixel m. The

thresholds τ1, τ2, τ3, and τ4 are determined experimentally. τ1 and τ2 are the upper

boundary and lower boundary in hue for selecting the green color of the leaves. Soil

pixels within plant’s shadows have similar hue as the plants, but they are low in both

saturation and value. τ3 prevents misclassifying soil pixels in shadows as leaves. τ4

accounts for leaf’s highlight color region where pixel’s value is high and saturation is

low.

This pixelwise segmentation makes use of the strong color difference between the

sorghum leaves, which are generally green or yellow, and the soil, which is usually



38

brown. The segmentation also addresses problems from shiny leaves and soil shadow

regions where hue is not a reliable information to be used for classifying plant, soil,

and panicles.

3.1.3 Experimental Results

An example of the segmentation result is shown in Figure 3.1 and Figure 3.2.
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(a)

(b)

Fig. 3.1. a) Original image. b) Segmentation results.
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(a) (b)

Fig. 3.2. Details of segmentation results
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4. PLANT LOCATION AND COUNTING

4.1 Introduction

Identifying individual plants is a crucial step in analyzing UAV image data in

field-based plant-level phenotyping. Since leaves spread out from a plant’s center,

the location of the center is important to study the plant structure and distinguish

leaves from leaves of neighboring plants. Distinguishing individual plants from their

neighbors is essential to track the growth of each plant, and obtain precise estimates

of plant traits.

Collecting UAV image data is very weather and time-sensitive. Plant centers are

easier to detect and count when the plants are young. However, the time window for

capturing young plant data is small. Farmers may miss the window for young plant

data collection due to weather or various other reasons. Being able to locate plant

centers and count them later in the season can be important. In this thesis, I focus

on detecting plant centers for mature plants.

4.2 Overview of Deep Learning Methods

Since 2012, Convolutional Neural Networks (CNN) have been widely used in many

image classification problems. CNN is a network that contains multiple layers of

weights and convolutional filters. It takes an input image and computes convolutional

filter responses. The resulting filter responses are input into a neural network, and

the classification result is estimated. With the latest development of DenseNet [63],

a top-5 error rates of 6.12% has been achieved on the ImageNet validation set [64].

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [64] is a standard

benchmark for large-scale object recognition. It contains 1.2 million training images,
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Fig. 4.1. AlexNet architecture [66]

50,000 validation images and 100,000 test images of 1000 object classes [64]. I review

some popular CNNs.

AlexNet: In 1998, the CNN LeNet [65] was introduced and was successfully

used to classify zip code. In 2012, expanded from LeNet [65], AlexNet [66] was

proposed to have a larger and deeper architecture for object classification and won

the ILSVRC with a top 5 error rate of 15.3%. AlexNet is designed to have larger

capacities for learning complex object features. Figure 4.1 shows the architecture of

AlexNet. Instead of using TANH as the activation function as in LeNet, AlexNet

uses ReLU,

f(x) = max(0, x). (4.1)

ReLU’s non-saturating nonlinearity provides a much faster training time with gra-

dient descent than TANH [66]. To fight overfitting, AlexNet uses dropout and data

augmentation techniques including patch extraction, horizontal reflections, and color

alternation. Dropout is a technique which the network randomly sets the output

of hidden neurons to zero, making the neuron not contribute to forward pass and

backward propagation [66].

Deconvnet: In 2013, Zeiler and Fergus presented Deconvnet to visualize the

activations of CNNs [67]. The network maps each activation back to the input pixel

space, so researchers can see the relationship between input patterns and feature
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Fig. 4.2. Visualization of a layer in a CNN [67]

activations. Their work shows the process and contents that a CNN learns. Figure

4.2 shows visualizations of features learned by their CNN.

VGG: In 2014, VGGNet [68] was introduced to be a simpler and deeper CNN. One

of the main contributions of the paper is its strict usage of a small size convolutional

window. The paper argued that instead of using a large size convolutional layer,

stacking multiple 3x3 convolutional layers has the same effective receptive field. With

the additional activation layers between multiple small convolutional layers, features

learned by multiple layers will be more discriminative than the features learned by

just one layer. Moreover, the use of multiple small convolutional layers reduces the

size significantly. The paper also investigates the effect of adding depth to CNN

architectures and concluded that deeper networks achieve better accuracy.

GoogleNet: In 2015, rather than making network simpler, GoogleNet [69] in-

troduced inception modules to make the network wider. An inception module shown

in Figure 4.3, consists of pooling and different size convolutional layers in parallel.

Figure 4.4 shows its architecture. While networks like AlexNet and VGGNet uses

uniform structure across each layer, the inception module is invented to make use of

filter-level sparsity to break the symmetry. GoogleNet achieved a top-5 error rate of

6.67% on the ILSVRC 2012 [64] dataset. The inception module is further developed
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Fig. 4.3. The Inception Module of GoogleNet [69]

in [70] to avoid representational bottlenecks and balance the width and depth of the

network. The top-5 error rate is improved to 3.58% on ILSVRC 2012 [64] dataset.

ResNet: Vanishing gradient [72, 73] is a major problem preventing CNN from

going deeper. In 2015, Microsoft introduced ResNet, a 152 layer network architecture

(Figure 4.5), using a residual learning block [71]. Let the mapping of stacked non-

linear layers to be F (x) for input x. The residual learning block (Figure 4.6) adds an

identity connection from x to F (x), and I denote the overall mapping H(x) to be

H(x) = F (x) + x. (4.2)

The paper argued that it is easier to optimize input referenced mapping, and this

identity connection allows the gradient to skip intermediate layers.

Densenet: While ResNet add shortcuts to the network, DenseNet, introduced by

G. Huang et al. in 2017, connects all layers directly with each other (shown in Figure

4.7, 4.8). ResNet combines features through summation where information could be

potentially lost in the process. DenseNet combines features through concatenation,

allowing the gradient to flow through the network freely.
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Fig. 4.4. GoogleNet architecture [69]

Fig. 4.5. An
example 34 layer
ResNet architec-
ture [71]
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Fig. 4.6. The Residual Learning Block of ResNet [71]

Fig. 4.7. The 5 layer Dense Block of DenseNet [63]

Fig. 4.8. DenseNet architecture [63]



47

Fig. 4.9. Faster R-CNN architecture [74]

While object classification-based CNNs are excellent for classifying fixed-size im-

ages, object detection networks detect the location of the object and predict the

label.

In R-CNN [77], candidate regions containing objects are searched using selective

search [78]. CNN is used to generate feature vectors for selected regions. A Support

Vector Machine classifier is used to classify these feature vectors. Fast R-CNN [79] is

proposed to improve R-CNN for faster computation time. In Fast R-CNN, a feature

map is computed first. Each proposed region pools a fixed-length feature vector from

the feature map. The feature vector is input into a CNN to predict object label and

refine bounding box coordinates. Faster R-CNN [74] improves the method further by

replacing generic region proposal methods with a Region Proposal Network. Faster
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(a)

(b)

Fig. 4.10. Mask R-CNN architecture

R-CNN has been successfully used in [80] to locate fruits in images of trees. Figure

4.9 shows the architecture used by Faster R-CNN. Mask R-CNN [81] adds a branch

to the Faster R-CNN to predict the segmentation mask for the detected bounding

box. Figure 4.10 shows the architecture of Mask R-CNN. You Only Look Once

(YOLO) [75, 82, 83] divides the input image into grids. Each grid predicts a number

of bounding boxes it belongs to and their confidence scores. Objects are detected

by thresholding the confidence scores. Figure 4.11 shows the detection blockdiagram

of YOLO. In Single Shot Detection [76], Liu et al. added extra feature layers to a

bounding box prediction network to detect objects at multiple scales. Figure 4.12

shows the architecture comparison between SSD and YOLO. In [84], Liu et al. im-

prove the Non-Maximum Suppression in object detection networks by using Multiple
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Fig. 4.11. YOLO object detection [75]

Instance Learning on the similar bounding boxes. Object detection methods can also

be applied in tracking problems. In [85], a CNN is used to detect the location of

objects in consecutive video frames. All pixels are classified as either being the object

center or not. The input to the CNN is a bounding box around each pixel location.

The classification score for each location forms a probability map, and the location

of the object is estimated as by the pixel with the highest probability. Instead of

detecting bounding boxes, some studies detect the keypoints of an object and recon-

struct the bounding box or boundaries of the object. In CenterNet [86], the center

point of an object is detected, and the bounding box is created based on the detec-

tion. In CornerNet [87], Law et al. detect the two corners of object bounding box.

In ExtremeNet [88], Zhou et al. detect the extreme points of an object, and group
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Fig. 4.12. SSD [76] and YOLO [75] architecture comparison

them to create a bounding polygon. Another study recreates bounding boxes from

the detected center point [89].

Aside from deep learning architectures, several loss functions has been proposed

to improve the learning in different applications. In [90], Barron proposed a loss func-

tion that generalizes regression losses including Cauchy/Lorentzian, Geman-McClure,

Welsch/Leclerc, generalized Charbonnier, Charbonnier/pseudo-Huber/L1-L2, and L2

loss functions. In Focal Loss [91], Lin et al. proposed a new loss for dense object de-

tection. The loss function increases the weight of difficult samples while reduces the

weight of easy samples.



51

4.3 Plant Location Related Works

In previous studies, plant locations have been estimated using two different types

of datasets. The first type of dataset contains high resolution images collected in

greenhouse environments. Prior information about the morphology of a particular

plant is used to locate plant centers. In [92], a mixture of Gaussian color model of

plants is estimated by using expectation maximization. The model is used to segment

the image into plants and background. A connected component analysis is used, and

each plant is identified by their component mask. In [93], the skeleton of the plant is

computed by using the segmentation mask of the plant. The plant center is estimated

as the center of the most frequently used path segment when connecting all endpoint

pairs. In [94], lines are drawn along the orientation of the leaves. The plant center

is estimated as the closest point to all orientation lines. The second type of data

contains images obtained from UAVs flying over a crop field. In [95], given the total

number of plants, the plant centers are searched iteratively by minimizing a cost

function. The cost function takes into account the alignment of the plants in the

field. In [96], traditional connected component [97] is used for detecting corn plants.

In [98], Ghosal et al. uses Resnet with Feature Prymid Network [99] for sorghum head

detection and counting. In [100], Vit et al.detect keypoints for each leaf using Mask

R-CNN. The detected keypoints are used to compute the leaf length and width.

Related works can also be found in crowd counting where objects cluster and

overlap. In [101], Liu et al. propose Recurrent Attentive Zooming Network for crowd

density estimation. The network detects ambiguous density areas and reprocesses

them with higher image resolution. In [102], Shi et al. incorporate the correlation

between training samples into training by adding more samples from the training

set as support images. In [103], Zhao et al. fuse the density map L2 loss with crowd

semantic segmentation loss, depth prediction loss, and crowd counting regression loss.

In [104], Wang et al. generate synthetic crowd counting dataset from computer games.
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4.4 Finding Plant Location Using Multiple Instance Learning

4.4.1 Motivation

A stem represents the center of a plant, but in overhead images, stems are not

visible. Therefore, the center of plants can not be detected directly. To indirectly

detect the plant center, I use clues from plant leaves. Sorghum leaves grow around

the stem. I define a plant center to be the intersection of sorghum leaves. By utilizing

features that capture the orientation of leaves, a plant center can be detected. I use

Gabor features, because Gabor features have been widely used in many recognition

applications due to its spatial locality and orientation selectivity [105–108].

Since a center is defined indirectly through leaves, the labels for the plant center

may not be precise. Leaves are wider than lines, which make the intersection of leaves

to be a region instead of a single point. A labeled plant center can be anywhere inside

this region. Multiple Instance Learning (MIL) [109,110] is a training framework that

can be trained by classifying regions rather than individual locations. I use MIL to

train a classifier that labels each pixel as “plant center” or “non-plant center”.

In this section, I describe some initial work in estimating plant centers from UAV

images for mature sorghum images. This work makes use of MIL with Gabor features

to detect plant centers.

4.4.2 Multiple Instance Learning

In this section, I describe how I train a classifier using MIL to determine if a

location is a plant center. Many studies have successfully used MIL with a boosting

framework [111] to solve object detection problems [109, 112–115]. I implement the

MILBoosting presented in [109].

In MIL, each sample is considered an instance. All the instances are put into bags.

A bag must contain at least one instance and an instance may exists in multiple bags. I

define the label of each bag based on the following criteria. A bag is considered positive
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if at least one of the instance in the bag is positive. A bag is considered negative if all

of the instances in the bag are negative. Unlike in a common classification problem,

the label for each instance can tolerate some error. As long as the label of the bag

is correct, the classifier can be properly trained. Therefore, I can train the classifier

with an approximate label of the plant location.

For a candidate plant location P = (Px, Py) in image, I train classifier C to

determine if location P is the center of the plant. The pixel value at location P

may not be sufficient to discriminate between “plant center” or “non-plant center”.

I design the classifier C to consider the surrounding leaf structures of the plant for

classification. Let W (P ) be the gray scale image that corresponds to a square window

of size w centered at P (Figure 4.13(a)). The classifier is defined as:

C(W (P )) =











1 P is plant’s center

0 P not plant’s center.

(4.3)

Let W (P ) be an instance. I denote the i-th bag as xi, and the j-th instance of

the i-th bag as xij . Each bag xi has Ni instances. I assign yi to be the label of i-th

bag, and assign yij to be the label of j-th instance in i-th bag.

I train a strong classifier from K weak classifiers. Let ck(xij) be the classification

result of the k-th weak classifier on instance xij . Then, I define the strong classifier

as a linear combination of K weak classifiers:

C(xij) =

K
∑

k=1

λkck(xij). (4.4)

The label yij for instance xij is obtained as

yij =











1 if C(xij) > 0

0 otherwise.

(4.5)

Based on the definition of a bag, the label yi for bag xi is:

yi = max
j

yij (4.6)
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To train the classifier, I model the probabilities that the instances are positive and

use them to compute the probability for each bag being positive. Then I compute

the likelihood function for all bags. Finally, I construct the strong classifier finding

the best K weak classifier that maximize the likelihood function iteratively. Sigmoid

function is often used for logistic regression in binary classification problems. I model

the probability pij of the j-th instance in the i-th bag as a sigmoid function of its

classification result C(xij).

pij = σ(C(xij)) =
1

1 + e−C(xij)
(4.7)

Once I estimate the instance probabilities, I use the noisy-or (NOR) boosting

frameworks presented in [109, 113] to compute the bag probability. The probability

of a bag being positive is

pi = 1−
∏

j

(1− pij). (4.8)

After the probabilities of all I bags are computed, I compute the likelihood L of all

bags being correctly classified by classifier C as

L(C) =

I
∏

i=1

p
yi
i (1− pi)

1−yi, (4.9)

and

log(L(C)) =
∑

i

(yi log pi + (1− yi) log(1− pi)). (4.10)

As in the Milboost presented in [109], the weight wij of each sample is computed

using the derivative of the log likelihood function:

wij =
∂log(L)

∂C(xij)
=

yi − pi

pi
pij (4.11)

k-th weak classifier is selected to maximize the sum score of all instances
∑

i,j ck(xij)wij .

Then, I use exhaustive search to determine the weight λk of each classifier over the

range [0,1] that maximizes the updated log likelihood with classifier C + λkck. Algo-

rithm 1 shows the pseudocode to train the classifier.
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Procedure 1: Training Classifier

Input : Data set: {X1, X2..XN}, where Xi = {xi1, xi2, ...xiNi
},

Label set: {y1, y2..yN}
1 Initialize wij ← 1 for all positive instances

2 Initialize wij ← −1 for all negative instances

3 for k = 1 to K do

4 ck ← argmax
c

∑

i,j c(xij)wij

5 λk ← argmax
λ

logL
(

∑k−1
l=1 λlcl + λck

)

6 for all i do

7 for all j do

8 pij ← σ
(

∑k

l=1 λlcl(xij)
)

9 end

10 pi ← 1−∏j (1− pij)

11 end

12 Update wij ← yi−pi
pi

pij for all i, j

13 end

14 C ←∑K

k=1 λkck
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(a)

(b) (c)

Fig. 4.13. a) A row of plants with positive sample (red dot) and negative
sample (yellow dot). The window for classification is marked as a square
for each sample. b) A bag (white circle) contains 2 instance (red dot).
c) A positive bag (red circle) contains a positive instance (red dot) and
a negative instance (yellow dot), and a negative bag contains 3 negative
instances. Ground truth location is marked as a red ”X”.

4.4.3 Features

I use Gabor features [116]. Gabor features have been widely used in many recog-

nition applications because of its spatial locality and orientation selectivity [105–108].

Leaves exhibit thin triangle-like shapes with different orientations that Gabor features

will be able to capture while accounting for the illumination changes [105].

I denote the value of the n-th feature computed on instance xij as vn,ij. Gabor

wavelets are defined as

f(x, y) =
1√
2πσ

e−
x2+y2

2σ2 e−jω(x cos θ+y sin θ), (4.12)

where (x, y) are the 2D image coordinates, σ is the variance of the Gaussian, ω is the

oscillation frequency, and θ is the orientation angle. Gabor wavelets with orientations
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θ =
{

0, π
8
, π
4
, 3
8
π, π

2
, 5
8
π, 3

4
π, 7

8
π
}

are generated. The wavelets are also generated with

frequencies ω =
{

π√
2
, π
2
, π

2
√
2
, π
4
, π

4
√
2

}

.

In order to account for how leaves relate to the plant center, I divide the classifi-

cation window into 9 equally spaced sections as shown in Figure 4.14(a) and Figure

4.14(b). In a top-view sorghum image, leaves spread out from the center. I assume

leaves in each section follow a specific orientation as shown in Figure 4.14(c). Section

1, 3, 7, and 9 have diagonal leaves. Section 2 and 8 have vertical leaves. Section 4

and 6 have horizontal leaves. Section 5 may have horizontal, vertical and diagonal

leaves. Any leaf that does not follow this assumption is from a neighboring plant.

With this design, cases where the classifier incorrectly classifies a neighbor plant can

be avoided. Table 4.1 shows the orientations of Gabor wavelets I used and were as-

signed to each window within the image. Gabor features are computed by convolving

the window section image with a Gabor wavelet. The result of the convolution at

each pixel represents a Gabor feature. I choose these wavelets based on the work

in [106,107]. The variance σ of the Gabor wavelets is selected to be pi

2
to account for

small window section size.

4.4.4 Weak Classifier

I use a naive Bayes classifier to replace the Sign classifier used in [109]. The Sign

classifier maps the feature values to two discrete values, 1 for a positive result and

value 0 for a negative result. I am unable to determine if a classifier with one feature is

better than the classifier with another feature when the classification results are both

positive. A Sign classifier is selected based on the number of instances it correctly

classified. In my application, the data labels can be wrong. Thus, the quantity of

correct classification is not a reliable measurement for the performance of a classifier.

I need a classifier that can estimate how strong an instance is classified to be positive
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Table 4.1.
Orientations of the Gabor wavelets

Section Orientations Features / pixel

1, 9 5
8
π, 3

4
π, 7

8
π 15

2, 8 7
8
π, 0, π

8
15

3, 7 π
8
, π
4
, 3
8
π 15

4, 6 3
8
π, π

2
, 5
8
π 15

5 0, π
8
, π
4
, 3
8
π, π

2
, 5
8
π, 3

4
π, 7

8
π 40
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(a) (b)

(c)

Fig. 4.14. a) The lines that divide the classification window. b) Section
numbers of the classification window. c) Orientations of the Gabor feature
in each section.

or negative. Naive Bayes classifier is a better choice. A Naive Bayes classifier that

uses the n-th feature is given by:

c(n)(xij) = log
p(yij = 1|vn,ij)
p(yij = 0|vn,ij)

. (4.13)

By using Bayes rule, the above equation becomes

c(n)(xij) = log
p(vn,ij|yij = 1)p(yij = 1)

p(vn,ij|yij = 0)p(yij = 0)
. (4.14)

I let p(yij = 1) = p(yij = 0), which means I have equal amount of positive instances

and negative instances. I model p(vn,ij|yij = 1) to be Gaussian with mean µ1 and
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variance σ1, and p(vn,ij|yij = 0) to be Gaussian with mean µ0 and variance σ0. The

means µ0, µ1, and the variances σ0, σ1 can be computed as

µ1 =
1

Nt

∑

i,j

vn,ijyij, (4.15)

µ0 =
1

Nt

∑

i,j

vn,ij(1− yij), (4.16)

σ1 =

√

1

Nt

∑

i,j

yij(vn,ij − µ1)2, (4.17)

σ0 =

√

1

Nt

∑

i,j

(1− yij)(vn,ij − µ0)2, (4.18)

where Nt is the total number of instances.

4.4.5 Post-Processing

After the locations in an image are classified, I obtain a map M with classification

labels as shown in Figure 4.15(c) and Figure 4.15(d), where M(Px, Py) ∈ {0, 1}.
Because my classifier is trained to classify areas and specific location is not given, the

classification label map M shows the clusters of possible plant center location.

I further process the label map M to estimate the plant center. I assume small

clusters in M are noise. The connected component analysis [97] is used to the label

map M to obtain individual clusters. Small components are removed by thresholding

the number of pixels in the components with threshold τa. Let the horizontal direction

be denoted as X , and let the vertical direction be denoted as Y , as shown in 4.15(a).

I assume all the plants in a subrow are somewhat aligned in the X direction, so

I only consider results that are within a distance τb to the Y mid line (see Figure

4.15(b)). Some candidate centers may come from the same plant but may be in

different components. I merge components whose centroids are within a distance of

τc of each other in X direction. After the merging, the centroid of each component is

considered as the center of plants for my results.
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(a)

(b)

(c)

(d)

Fig. 4.15. a) Original subrow with coordinates system. b) Plant location
region (yellow region) and the Y direction mid line (red dash line). c)
Classification label map M (positive: white, negative: black). d) Classi-
fication label marked in red in original image.
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Fig. 4.16. Image of a section of a sorghum field acquired from a UAV at
an altitude of 40m. The pixel resolution is 0.59 cm/pixel.
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4.4.6 Experiment and Results

My dataset was collected from a UAV on July 19th, 2016 in field 54 middle

calibration panel. The images were taken at an altitude of 40 meters at UAV velocity

of 8m/s. Figure 4.16 shows an example image in my dataset. I cropped 26 subrows

from an original image, and converted them into grayscale images. I used 6 subrows

for training, and 20 subrows for testing. The cropped subrows were selected to have

low lens and perspective distortion.

I ground truthed the center locations for each plant. Each ground truthed location

corresponds to one positive bag. I labeled the locations around each ground truth

as positive if the location is within 5 pixels of the ground truth. Those positive

instances are put into the same bag as the ground truthed location. The locations

that are at least 30 pixels away from any of the ground truth are considered as

negative instances, and each negative instance is put into one bag. Positive instances

and negative instances are randomly selected to reduce the computation cost. I used

800 positive instances and 800 negative instances in the 6 subrows for training. I

tested my method with 10 high leaf density subrows and 10 low leaf density subrows.

I set the classification window width w to be the average plant diameter, 99 pixels.

The number of weak classifiers K is set to be 10. The threshold τa to remove small

components is set to be 100 pixels empirically. The threshold τb is set to be 1
3
w = 33.

The merge distance τc is set to be 30 pixels. To reduce the computational cost, I used

locations in the plants segmentation mask as candidate locations for classification,

and the mask is obtained by applying the color threshold method described in [95].

Precision and recall was used to evaluate my method [117,118]. Precision is defined

as

Precision =
TP

TP + FP
, (4.19)

and recall is defined as

Recall =
TP

TP + FN
(4.20)
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(a)

(b)

(c)

(d)

Fig. 4.17. a) A subrow with low leaf density. b) The center of the red dots
are the detected plant centers, the center of the green dots are the ground
truth. If a detected plant falls inside the green circumference, I consider
it a true positive. c) A subrow with high leaf density. d) Detected centers
(red dots) of high leaf density plants.

If a center is detected within 30 pixels of the ground truth, the center will be consid-

ered as a true positive (TP). If more than one center is detected within 30 pixels of

any ground truth, the extra detection will be counted as false positive (FP). Note that

this distance is the same as the distance I use to generate negative samples during
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Table 4.2.
Results for plants with different leaf density after training and evaluating
10 times. My dataset contains 121 high density plants and 110 low density
plants.

Type TP FP FN Precision Recall

High Density 779 506 431 61% 64%

Low Density 701 242 399 74% 64%

Overall 1480 748 830 66% 64%

training. False negatives (FN) occur when no center is detected for a ground truth

location. As the instances are randomly selected during training, the precision and

recall may vary when evaluated. I report the results after training and evaluating

10 times. Table 5.1 shows the results for high leaf density data and low leaf density

data. My result obtained an average overall precision of 66%, and a recall of 64%.

Figure 5.16 shows an example output for a low leaf density subrow, and an example

output for a high leaf density subrow.

The results show that the the method produces more false positive with high

leaf density data. This is due to the fact that the classifier is trained to look for

the structures of surrounding leaves. When plants have small amount of leaves, the

structures around the plant centers are clear. Leaves from the same plant point toward

the plant center. If a pixel location is not a plant center, then the leaves around it will

converge to different location. When plants have high leaf density, there is more leaf

overlapping. The overlapping makes the leaf structures more complex, and confuses

the classifier. As a result, there are more false positives.

The performance of my method can be interpreted as follows. In my application,

a plant consists of an indefinite number of leaves. Each leaf has a unique shape

including length, width, and leaf curvature. Plants have different number of leaves

in various orientations. A combination of simple features may not be enough for
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describing heterogeneous sorghum plants. In addition, my negative training data

may have false labels due to human error during labeling. Plant centers can easily be

missed during labeling, and may accidentally be used as negative training data.
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4.5 Finding Plant Location Using Deep Binary Classifier

4.5.1 Motivation

In my previous study, I describe a method that uses MIL to address the ambiguity

in plant location labels. The method uses Gabor wavelets to capture the orientation

of leaves. However, the overlapping between leaves makes the leaf structures more

complex. Gabor wavelets are not designed to capture overlapping leaf structures.

Deep learning is a powerful tool for image classification. It has a large capacity to

capture various class features including overlapping leaf structures. In this section, I

describe a method that uses CNN to detect plant centers.

4.5.2 Proposed Method

I adopt the detection strategy presented in [77, 85, 119]. Each pixel location in

the image is classified as plant center or not plant center by considering a rectangular

window around the pixel. Figure 4.18 shows the block diagram of the overall method.

Plants in the same dataset have similar size because they were planted on the same

day under similar environmental conditions. Therefore, I fix the size of the rectangular

windows. I generate image patches by extracting rectangular windows centered at all

possible pixel locations (x, y) in the image. I then classify each window in the patch

with a CNN, and obtain a classification mask, as shown in Figure 4.19. I denote the

classification mask as for the coordinate (x, y) as

M(x, y) =











1 pixel (x, y) is a plant center

0 otherwise.

(4.21)

Ideally, M(x, y) would be 1 only when there is a true plant center at (x, y). How-

ever, I experimentally observed in the classification mask that there is usually more

than one positive response for each plant center. The center of a plant is defined as

the location where all its leaves intersect. Unfortunately, in my dataset the leaves of

a plant may be partially or completely occluded by the leaves of neighboring plants.
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Fig. 4.18. Block diagram.

Fig. 4.19. Example of a classification output mask. Red locations are
classified as plant centers.

In addition, the edges of the leaves may be blurred, making leaves hard to recognize.

This can be observed in Figure 4.19. This makes the groundtruthing of plant centers

inaccurate and inconsistent because plant centers can be labeled anywhere in a region

where leaves intersect. I observed that these regions have a shape similar to an ellipse.
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Fig. 4.20. Connected components E1 and E2 merge together. Red dot is
the center of each component. W1 and W2 are the minor axes of ellipse
for E1 and E2 respectively. l is the maximum length of the intersection
between two components.

Once the classification maskM(x, y) has been generated, I post-process it to locate

the center of the plants. I apply connected components [97] to the mask M(x, y) and

obtain a list of components. For illustration purposes, assume that the generated

connected components have an ellipse shape, and that the center of the plant is

at the center of the ellipse. When neighboring plants are close, the ellipses merge

together as shown in Figure 4.20. I consider two different cases. In the first case, the

two components with an ellipse shape, E1, E2, have a small overlapping area. Let the

minor axes of E1 and E2 be W1 and W2, respectively. In this case, the longest length

of the overlapping area, l, satisfies

l < W1 and l < W2. (4.22)

Figure 4.20 illustrates this first case. I can apply morphological erosion [120] until

the intersection between the two ellipses disappears and none of the two components

will disappear. Therefore, in this case this component can be split into two different

components. In the second case, the two ellipses have a large overlapping area because

they are very close. In this case, successive applications of erosion will not be able to

split the merged component into two, so I consider them as the same component.

I use erosion to reduce the size of the components and find the center of each plant,

as follows. I initialize a list with all the connected components in M(x, y). Then, I

apply morphological erosion to each component until it splits in two or until further
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Fig. 4.21. Block diagram of post-processing the plant center clusters.

erosion would completely eliminate the component. When a component splits, I add

the new components to the list. I terminate when all components in the list are small

enough that applying an additional erosion would remove at least one component.

I finally estimate the plant centers by computing the centroid coordinate of each

component. Figure 4.21 shows the block-diagram of the post-processing.

4.5.3 Experimental Results

I evaluated my method using two datasets with plants at two different growth

stages. Both datasets were acquired by a UAV platform at an altitude of 40m in

a sorghum field in West Lafayette, Indiana, USA. The first dataset was collected

on June 13, 2016 in field 54 middle calibration panel, and the second dataset was

collected on June 28, 2017 in field 41 calibration panel. The plants in the first

dataset are young and the level of overlapping of leaves between neighboring plants

is low. The plants in the second dataset are more mature, and the overlap of leaves
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(a) (b)

Fig. 4.22. a) An image sample from the young plant dataset. b) Estimated
plant centers and ground-truth. The ground-truthed plant centers are at
the center of the green regions of radius r = 5. Red dots indicate predicted
plant centers. Red dots inside a green region are counted as true positives
(TP).

between neighboring plants is high. I manually label the center of each plants in

both datasets. The first dataset contains 50 images with a total of 2938 plants, and

the second dataset contains 90 images with a total of 2001 plants. Each plant center

represents a positive sample, and all pixel locations that are not a plant center are

negative samples. This results in the datasets containing more negative samples than

positive samples. During training, I also consider as positive samples the pixels that

are at a distance of 1 or less pixels to the true plant center. This increases the number

of positive samples by 5. To balance the number of positive and negative samples, I

randomly select as many negative samples as positive samples.

The size of each classification window is set to be approximately the average plant

size in each dataset. In the dataset with young plants, the window size is set to be

40×40 pixels. In the dataset with mature plants, the window size is set to be 60×60
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(a)

(b)

Fig. 4.23. a) An image sample from the mature plant dataset. b) Results
of the image in Figure 4.23(a).

pixels. I divide the datasets so that 50% of the images are used for training, and 50%

of the images are used for testing. The CNN I use for classification is VGG [68] since

it is the basic deep learning architecture. I also tried Resnet [71] architecture, but

there is no improvement. The input images are resized to 224× 224 before being fed

to the CNN.

An estimated plant center is considered as true positive (TP) if it is within r pixels

of a ground-truth location. An estimated plant center is considered as false positive

(FP) if it is not within r pixels of a ground-truth location. A ground-truthed plant

center is considered as false negative (FN) if it is not within r pixels of an estimated

plant center. I use precision and recall to evaluate my method [117,118]. Precision is

defined as

Precision =
TP

TP + FP
, (4.23)

and recall is defined as

Recall =
TP

TP + FN
(4.24)
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Fig. 4.24. Precision and recall for different r values on the two datasets.

Figure 4.22 and 4.23 show examples of estimated and ground-truthed plant cen-

ters in one image of each dataset. In the dataset with young plants, I achieve 84%

precision and 90% recall with r = 5. In the dataset with mature plants, I achieve

62% precision and 77% recall with r = 10. Figure 4.24 shows precision and recall as a

function of r for both datasets. In the plot I can see that recall is always higher than

precision. This means that I have more false positives than false negatives. This may

be because the human selecting ground truth misses some true plant centers due to

very high occlusion, creating a bias in the labels. I can also observe in Figure 4.24

that both precision and recall are lower in the second dataset. The CNN does not use

the location of neighboring plants to estimate one plant location, while the human
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Table 4.3.
Results compared to Multiple Instance Learning

Metric Multiple Instance Learning
Proposed

Method

Precision (higher is better) 99% 62%

Recall (higher is better) 31% 77%

(a)

(b)

Fig. 4.25. a) Results of the proposed method. b) Results of the Multiple
Instance Learning method.

performing the labeling often uses this information. This is particularly true for the

second dataset, where plants have much more overlap.

In addition, I compare this method with Multiple Instance Learning method de-

scribed in Section 4.4 on the mature dataset. Table 4.3 gives a detailed comparison

of the proposed method and Multiple Instance Learning method. Figure 4.25 shows

an example result from both methods. From the results, I can see that MIL method

produces less false positive but miss-detects a lot of plants. The proposed method is

able to capture more plants but produces a lot of false positives.
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5. LEAF SEGMENTATION

5.1 Leaf Segmentation Introduction

Leaves serve as the main site for photosynthesis within a plant. They contribute

to many phenotypic traits, such as leaf area, leaf length, maximum leaf width, and

leaf area index. We extract plant leaves throughout the season to study the growth

of plants. In the early season, plants have less overlap, but the leaves are pointing

towards the sky, which makes them difficult to observe in overhead images. We do not

study these images due to the limitation of overhead images. In late season, plants are

grown densely, which causes frequent overlapping of leaves as the canopy develops. As

a result, the profile or edge of each leaf may not be completely visible. Being able to

segment each leaf instance is essential to the estimation of leaf traits. In addition to

the leaf overlapping issue, UAV images often have low spatial resolution as described

in Section 1.3. Therefore, the problem I am addressing is instance segmentation for

densely overlapped leaves in low resolution UAV images.

5.2 Related Works

In previous studies, leaf segmentation has been primarily applied mostly applied to

rosette plants grown in an indoor environment. In [121], the input image of a rosette

plant is thresholded to obtain the foreground mask. The contour of the foreground

object is computed. Stems of the leaves are found by comparing the distance between

pixels. Since each stem connects a leaf to the plant center, by selecting the contour

that attaches to the leaf end of the stem, the leaf contour is obtained. The leaf

contour is then used for leaf segmentation. In [122], an open-sourced software is

used to classify pixels of a rosette plant image into leaf border pixels and inner leaf



76

(a) (b) (c)

Fig. 5.1. Semantic segmentation example: a) input image. b) ground
truth. c) results.

pixels. A distance transform is applied to the inner leaf pixels, and the peaks in

the distance transform map are searched. Leaf is labeled by applying flood-filling

on the detected peaks. In [29], the input image of a rosette plant image is first

segmented into foreground and background using watershed-based segmentation. A

distance transform is applied to the foreground object. Local maxima points in the

distance transform map are used as a seed for another iteration of watershed-based

segmentation, and the results are the individually segmented leaves.

Recent work using Deep Neural Networks (DNN) has produced very promising

results for image segmentation [81,123,124]. Deep learning based image segmentation

can be categorized into two: semantic segmentation and instance segmentation.

Semantic Segmentation: In semantic segmentation, every pixel of a given im-

age is assigned to a class, and thus it creates a segmentation mask for each class object.

Figure 5.1 shows an example of semantic segmentation. In [124], Chen et al. change

the standard convolution to Atrous Convolution which is convolution with upsam-
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pled filters. An Atrous Spatial Pyramid Pooling is proposed to capture objects with

multiple scales. Finally, they refine the segmentation results with a fully-connected

Conditional Random Field (CRF). In [125], Takikawa et al. fuse Resnet and a shape

module with Atrous Spatial Pyramid Pooling [124], and produce accurate bound-

aries for semantic object segmentation. In [126], Wei et al. proposed to replace max

pooling and average pooling with Polynomial Pooling layers which provide both non-

linearity and detail sensitivity. The resulting networks are able to enhance the details

of semantic segmentation. Embedding approach for segmentation has also become a

recent trend. Typical class labels for deep learning do not consider the similarities

between classes. For example, a classification task often has cross entropy as a loss

function. The class labels are encoded into one-hot representation. Let the dataset

contain only three classes: cat, dog, and car. Then the cat’s label is (1,0,0). Dog’s

label is (0,1,0). Car’s label is (0,0,1). Although the cat looks more similar to the dog,

the network is trained without considering their similarities. Embedding approaches

try to solve this problem by projecting the classes into an embedding space where

the similarity between classes is represented by a metric system. In [127], Kulikov

et al. color an object instance with one color, and its adjacent objects with different

colors. Therefore, the learned metric space produces similar color values for the same

instance and different color values for different object instances. In [128], Kulikov et

al. proposed a embedding space consisting of harmonic guide functions. In late plant

growing seasons, plants are grown densely, which causes frequent leaf overlaps. As

a result, the profile or edge of each leaf may not be completely visible. This creates

a problem for applying semantic segmentation, where segmentation masks do not

consider overlapping regions. Furthermore, semantic segmentation does not separate

instances of the same class, where in my application application, being able to seg-

ment each leaf instance is essential to the estimation of leaf traits. Therefore, my

work focuses on the approach taken by instance segmentation.

Instance Segmentation: In instance segmentation, a mask is produced for each

object instance. Figure 5.2 shows an example of instance segmentation. In [129],
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Fig. 5.2. Instance segmentation example [81]

Ahn et al. generate an attention map for each class and use the generated maps to

divide pixels into sets based on their class labels. They use the divided sets to derive

a loss function that considers the instance’s centroid and boundaries. In [130], Zhu

et al. propose a module that fills the instance extent based on the feature layers of a

classification network. The extent filling output is combined with a noisy proposed

region map to produce an Instance Activation Map which is further processed by a

CRF to generate the instance mask. In Faster R-CNN [74], Ren et al. use a Region

Proposal Network (RPN) to propose Regions of Interest (RoI) on DNN generated

feature maps. They then use Fully Connected (FC) layers to generate object bounding

boxes and corresponding classes. In Mask R-CNN [81], He et al. introduce additional

convolution layers parallel to the FC layers of Faster R-CNN. These additional layers

generate object masks based on the feature maps and RoIs from the Faster R-CNN.

In [123], Chen et al. modify Faster R-CNN to use semantic and direction features for

instance segmentation, where direction features are the orientation of a pixel towards

the center of its object. In [131], Ward et al. generate synthetic leaves of rosette

plants with different shapes, sizes, and textures. The authors train a Mask R-CNN

on both the real and synthetic data and use the trained model to segment real leaves.

In [132], Morris uses a Fully-Convolutional Pyramid Network to estimate tree leaf



79

Fig. 5.3. Panoptic segmentation example [134]

boundaries. Connected Components [97] and Watershed [133] are then applied to the

output edge map to group leaf boundaries and obtain leaf segments.

Panoptic Segmentation: Recently, in order to close the gap between seman-

tic segmentation and instance segmentation, Kirillov et al. [135] proposed a new

task called Panoptic Segmentation which unifies semantic and instance segmentation.

While semantic segmentation assigns each pixel a class label and instance segmen-

tation assigns each object an instance id, Panoptic Segmentation assigns each pixel

a class label and an instance id. Figure 5.3 shows an example of Panoptic Segmen-

tation. In [134], Kirillov et al. propose Panoptic Feature Pyramid Networks for this

task. The network added a semantic segmentation branch to Mask R-CNN [81] net-

works. A Feature Pyramid Network (FPN) [99] backbone is shared with both the

instance segmentation branch and the semantic segmentation branch. In [136], Xiong

et al. take the similar approach of adding a semantic segmentation branch to Mask R-

CNN. They propose a Panoptic head that merges the results from both segmentation

branches to resolve conflicts. In [137], Liu et al. propose Spatial Ranking Module

to resolve the conflicts between foreground instance segmentation and background

semantic segmentation. In [138], Li et al. propose Proposal Attention Module and

Mask Attention Module to help the network segmenting background objects.
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From the overview of segmentation methods, it is clear that CNNs play an im-

portant role in image segmentation. All CNN segmentation approaches are based

on convolutional filters which extract features from images. Feature responses are

propagated through the network to produce the final results. This design allows the

spatial relation between features to be captured by the filters in a discrete manner.

It requires a significant amount of labeled data as well as a large network to examine

all the combinations of leaf size, shape, orientation, and curvatures. Synthetic data

generation such as in [131, 139] overcomes the lack of labeled data, but well-defined

object models are necessary to create realistic images. In my case, the interaction

between leaves causes them to bend, shift, and deform. Such interactions are difficult

to model, especially with the growing patterns of plants. In addition, popular CNN

loss functions for segmentation including binary loss [81], cross entropy loss [53], and

dice loss [140] do not consider the spatial accuracy of the segmented object’s edges. In

my application, where leaf shapes are crucial for measuring phenotypic traits (such

as maximum width), popular segmentation CNNs are likely to produce segmented

leaves with inaccurate and noisy edges because they do not have a spatial objective.

To overcome this issue, some studies borrow ideas from non-DNN approaches,

including Active Contour [141] and Domain Transform [142]. Active Contour ap-

proaches find objects’ boundaries according to the shape of the boundary and the

gradient of the image. Extended from Active Contour, Geodesic Active Contour [143]

finds objects boundary by minimizing geodesic distances on a Level Set [144]. In [145],

Acuna et al. combine learned features of a DNN with Geodesic Active Contour to

refine the edges of ground truth, and use the refined ground truth to train a seg-

mentation network. In [146], Chen et al. detect edges by adding an edge prediction

network and Domain Transform Filter to Deeplab segmentation network [124].

Recently, the development of the Graph Neural Network (GNN) [147, 148] has

delivered promising results for many applications. Figure 5.4 shows an example ap-

plication of GNN. In [149], Wang et al. initialize a graph ellipsoid representation for

an object and use Graph Convolutional Network (GCN) to propagate image features
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(a)

(b)

Fig. 5.4. An application for Graph Convolutional Network (GCN). a) the
architecture for estimating object’s boundary using GCN. b) top: results
of the network, bottom: ground truth.

into vertices. The graph gradually deforms into the shape of ground truth as the net-

work gets deeper. In [150], Ling et al. use a graph to represent the control points of a

spline curve that describe the object boundary. They iteratively update the control

points with GCN for propagating feature information. The final graph represents

the boundary of the object. Unlike CNNs, GNNs give the network capabilities to

capture the relationships between the features such as object boundaries. Therefore,

a boundary can be reconstructed from the relationship even with partial occlusions.

This is very useful for leaf segmentation where leaves are commonly occluded.

Lack of labeled data can cause model overfitting or unable to converge. Obtain-

ing labeled data is expensive and time-consuming. On the contrary, synthetic data is

inexpensive to generate but sometimes does not provide enough details. With the re-

cent development of generative networks, data can be generated with realistic details.

With additional training data, many studies have achieved promising results in seg-
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Fig. 5.5. Synthetic data generation for leaf segmentation [131]

mentation. Figure 5.5 shows an example for generating synthetic leaf segmentation

data. These data augmentation techniques include the Generative Adversarial Net-

work (GAN) [151], Variational Autoencoder (VAE) [152–154], and data simulation.

GAN can be trained with paired inputs using Conditional GAN [155], or without

paired inputs using CycleGAN [156]. For example, in [139], synthetic microscopy im-

ages are generated using CycleGAN. In plant phenotyping, data simulation is more

commonly used to increase the quality of data for training. In [157], individual leaves

are cropped and recombined into synthetic data. In [131], Synthetic leaves of rosette

plants are generated with different shapes, sizes, and textures.

For simplicity and accessibility, I use labelme [158] to label segmentation masks.

Figure 5.6 shows an example of the tool. Figure 5.7 shows an ground truth example.
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Fig. 5.6. Our ground truth tool (labelme [158])

Fig. 5.7. A ground truth example
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5.3 Slice Based Leaf Segmentation

5.3.1 Motivation

Plant leaves have similar morphology but different traits such as leaf length and

width. Each leaf has a curved shape due to its weight and its interaction with neigh-

boring leaves. The leaves of a sorghum plant are thin and long. As a result, the

two edges of a sorghum leaf are semi-parallel to each other even though the edges

are curved. I exploit this feature to segment leaves. From the segmentation of each

individual leaf, I estimate leaf traits. In this section, I present a shape-based approach

to leaf segmentation.

5.3.2 Proposed Method

(a) (b) (c) (d)

Fig. 5.8. a) A synthetic leaf. b) A leaf slice connecting two pixels, A and
B, at opposite edges of the leaf. c) GA and GB are the gradient angles of
pixels A and B. d) θAB and θCD are the angles the of slices SAB and SCD.

A and B are two pixels located at two opposite edges of a leaf. A pixel-wide

line connecting A and B is defined as the leaf slice SAB. Figure 5.8 depicts these

definitions with a synthetic leaf. The gradient angles at A and B are GA and GB,

respectively. The angle 0◦ is defined in the direction of the x axis. GA and GB are

expected to be opposite to each other with some bias Ta, i.e,
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|GA −GB + π| mod 2π < Ta (5.1)

Leaf slices are obtained by using the Stroke Width Transform [159]. The slice

angle θAB of SAB is defined as the normal of the slice (in radians) as

θAB =
GA +GB

2
mod π (5.2)

In order to reconstruct leaves from leaf slices, adjacent leaf slices, SAB and SCD,

are compared. If their angles θAB and θCD differ less than a constant Tb, i.e,

|θAB − θCD| < Tb (5.3)

then slices SAB and SCD are merged.

Plants with high leaf density can cause leaves to overlap with each other. In the

case of leaf overlap, there may be a discontinuity between leaf slices as shown in

Figure 5.9.

(a) (b) (c)

Fig. 5.9. a) A single leaf with a discontinuity that may be due to a
leaf crossing. b) Two leaf segments L1 and L2 with almost parallel facing
slices SAB and SEF . c) From leaf slice SAB, I search in the direction of
θAB until I find the slice SEF of the opposite leaf segment L2.

In this case, the two leaf segments will be merged by the following search method.

Let a leaf be split into two leaf segments L1 and L2, separated by a discontinuity,

as shown in Figure 5.9. Let SAB be the leaf slice with angle θAB at the end of L1.
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Let SEF be the leaf slice with angle θEF at the end of L2. Let XAB to be a vector

contains all the pixels in SAB. From pixel xi in XAB, I search in the direction of θAB.

If a leaf slice SEF from another leaf L2 is found and the difference between the two

angles is less than a constant Tc, i.e,

|θAB − θEF | < Tc, (5.4)

then leaves segments L1 and L2 are considered the same leaf.

Note that the thresholds Ta, Tb, Tc are determined experimentally. This method

addresses leaf discontinuity due to leaf crossing, but requires that leaf edges are clearly

distinguishable. Overlap of parallel leaves may lead to undersegmentation.

5.3.3 Experimental Results

A total of 52 Sorghum rows such as the one shown in Figure 5.10 were analyzed.

From the segmentation of each leaf, the leaf count was obtained. The thresholds I

used for these images were empirically chosen as Ta = π
5
, Tb = π

8
, and Tc = π

6
. Ta

controls the number of slices to be detected. A lower value reduces the number of

detected slices. A higher value increases false positives. Tb controls the curvature

allowed in a segment. A higher value allows more curved segments. Tb controls the

curvature allowed in a leaf. A higher value allows more curved leaves.
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(a)

(b)

Fig. 5.10. a) A single row sorghum plot. b) Leaf segmentation. Individual
leaves are shown in different colors.
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5.4 Leaf Segmentation In Polar Coordinates

5.4.1 Motivation

My slice-based leaf segmentation method makes use of the semi-parallel edge fea-

ture from sorghum leaves. The detection of leaf segments are noisy and contain holes.

In order to have complete leaf masks, I propose the following method to fit triangular

shape models to leaves so the leaves can be reconstructed from the shape models.

5.4.2 Leaf Segmentation

As plants grow, their leaves grow around the centers. Analyzing leaves requires

considering them at different orientations. To simplify the analysis, I transform the

image into polar coordinates and make all the leaves point in the same direction.

I denote I(x, y) as the RGB values of image at pixel coordinates (x, y). I denote

(Cx, Cy) as the pixel coordinates of the plant center. I convert the circular region

with radius R around the plant center into a polar coordinate image P (r, θ):

P (r, θ) = I
(⌊

Cx + rcos
( π

180
θ
)⌉

,
⌊

Cy + rsin
( π

180
θ
)⌉)

, (5.5)

where ⌊·⌉ denotes rounding to the closest integer, and 0 ≤ r < R and 0 ≤ θ < 360 are

integers. Figure 5.11(a) and Figure 5.11(b) show an example of the polar coordinate

transformation. In polar coordinates, all leaves point along the positive r axis.

I assume there are only two classes in my dataset: plant material (foreground) and

soil (background). I apply the plant segmentation described in chapter 3 to obtain a

foreground mask F (r, θ) such that

F (r, θ) =











1 if P (r, θ) contains plant material

0 otherwise.

(5.6)

I obtain the background mask B(r, θ) by computing the complement of the foreground

mask,

B(r, θ) = 1− F (r, θ). (5.7)
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(a)

(b) (c)

Fig. 5.11. a) A plant with its center labeled in red. b) Polar representation
of a circular neighborhood around the plant. c) Segmented plant in polar
coordinates.

An example of the segmented foreground is shown in Figure 5.11(c).

Pixel-wise plant segmentation generates noise presented as holes in the foreground

mask F (r, θ). In order to remove holes without distorting the leaf morphology in

the segmentation mask, I use connected components [97]. By applying connected

components on the background mask B(r, θ), I obtain the number of components C
and a labeled image ΩB(r, θ) with range [1, C] indicating the component label of the

coordinate (r, θ). Let H indicates the set of all labels whose component has less than

TA pixels:

H = {c ∈ [1, C] :
R−1
∑

r=0

359
∑

θ=0

δ (ΩB(r, θ)− c) < TA}, (5.8)
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where δ(·) is the Kronecker delta function. I fill the holes in the foreground mask

F (r, θ), by moving all components in H into F (r, θ) as

F (r, θ)← F (r, θ) +
∑

c∈H

δ(ΩB(r, θ)− c). (5.9)

I assume independent components appear in the foreground mask are leaves from

neighboring plants. Connected components is applied on the foreground mask F (r, θ)

to retrieve all foreground objects with a labeled image ΩF (r, θ). The component that

contains the plant center is the plant I am interested in. The plant center is a single

pixel in Cartesian Coordinates. When transforming into polar coordinates, the plant

center becomes a line spanning r = 0. Therefore, ΩF (0, 0) is the label of the connected

component that corresponds to the plant. I update the foreground mask to contain

only the plant component, and

F (r, θ)← δ(ΩF (r, θ)− ΩF (0, 0)). (5.10)

I present a basic element, a slice, for analyzing the leaf morphology. A slice is

a connected set of coordinates in the foreground mask F (r, θ) with a constant r.

Figure 5.12(b) shows an example of a slice marked in red.

I stack leaf slices vertically, and obtain a leaf shape. The parent-child relationship

of two vertically connected slices is defined as the following. The slice at a smaller r

value is the parent of the slice at a larger r value. Figure 5.12(c) shows the parent

slice in blue and the child slice in green. With this relation, I construct a hierarchical

representation of the slices (see Figure 5.12(a) and Figure 5.12(d)). I denote a node

as a slice in the hierarchical representation. The root node is the slice at r = 0

and corresponds to the plant center. There are three possible hierarchical relations

between nodes. The simplest case occurs when a parent node has only one child node

and the child also has only one parent. This one-to-one relation usually indicates

that both the parent and child node are from a portion of a leaf. A different case

occurs when a parent node has multiple child nodes and each child node has only

one parent. In the last case, multiple parent nodes share the same child node. This
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(a) (b) (c) (d)

Fig. 5.12. a) Synthetic image with two leaves. b) A slice marked in
red. c) Parent slice (blue) and child slice (green). d) Hierarchical slice
representation.

(a) (b) (c)

Fig. 5.13. a) Tip slices (orange and blue) in a hierarchical slice represen-
tation. b) Leaf segmented with an orange tip slice. c) Leaf segmented
with a blue tip slice.

relation is caused by holes in the foreground mask that remained after the noise

removal step. When this occurs, I compute the distance between the slice centers of

the parent nodes and the slice center of the child node. I assign the child node to its
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(a) (b) (c) (d)

Fig. 5.14. a) Two syntethic leaves and a hole in the foreground mask.
b) Hierarchical slice representation. The slice in yellow is where the two
slices merge. The orange and blue slices are the two tip slices. c) The
yellow slice is assigned to the closest slice (green). d) Hierarchical slice
representation after the assignment. The three tip slices found are marked
in orange, blue, and red slice.

closest parent node according to these distances. I mark the other parent nodes as

end-nodes of the hierarchy (see Figure 5.14).

I define the tip of a leaf as a node with no child. I reconstruct a leaf shape

by combining the tip with all its ancestors (see Figure 5.13(a), Figure 5.13(b), and

Figure 5.13(c)). I define set

A = {X1, X2, . . . , XN}. (5.11)

containing all N reconstructed leaf shapes Xi, i = 1, . . . , N . I define an observed leaf

shape X ∈ A as

X = {x1, x2, . . . , xLX
}. (5.12)

where LX is the number of slices in the leaf shape X . As each slice is one pixel thick,

LX is the length of the leaf shape X . Each slice xm, m = 1, . . . , LX , is Θ(xm) degrees

wide.
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5.4.3 Leaf modeling

I use a shape modeling technique to remove noise and inter-plant occlusion. Fig-

ure 5.15 shows an example of the shape modeling of a leaf. Inter-plant occlusion is

defined as leaves from neighboring plants occluding the peaks I want to seek as shown

in Figure 5.15(a). In addition, I define self-leaf as a leaf that belongs to the plant

being analyzed and neighbor-leaf as a leaf belonging to neighboring plants. These

two type of leaves vary in the distribution of their leaf widths. The width of the slices

in self-leaves tends to decrease as r increases. On the contrary, the width of the slices

in neighbor-leaves tends to increase as r increases. Inter-plant occlusion may create

hourglass-like shapes (see Figure 5.15(a)). In order to estimate the true shape of each

leaf in these scenarios, I define a finite set of K possible shape models:

D = {S1, S2, . . . , SK}. (5.13)

Each shape model S ∈ D, consists of a set of slices:

S = {y1, y2, . . . , yLS
}, (5.14)

where LS is the number of slices in the shape model S.

The width Wm, m = 1, . . . , LS of the m-th slice ym in shape model S is modeled

as random variable with normal distribution

pWm
(w) = N (µm, σ

2
m), (5.15)

where µm and σ2
m are the mean and variance, respectively. I call pWm

(·) the slice

matching probability. I set the value of σ2
m as

σ2
m = max{1, τµm}, (5.16)

where τ is the tolerance rate. The higher the τ , the more disperse the width of a slice

can be. I constrain σ2
m to be higher than 1 degree to tolerate a minimum amount of

noise.
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For an observed leaf shape X ∈ A and any possible shape model S ∈ D, I define a
shape model matching score that takes all slice matching probabilities into account:

f(X,S) =

LS
∑

m=1

ωm,S pWm
(Θ(xm)), (5.17)

where ωm,S is the weight for the m-th slice of the shape model S. I assume that all

the slices are equally weighted in the model, and

LS
∑

m=1

ωm,S = 1 . (5.18)

I use the matching score to find the best shape model Ŝ to describe the observed

leaf shape X as

Ŝ = argmax
S∈D

f(X,S) . (5.19)

For each of all the observed leaf shapes Xn, n = 1, . . . , N , I obtain Ŝn. Some Xn

may be matched to a shape model even if it is purely noise. To avoid this, I set a

threshold TB below which the match will be rejected, and the observation will not be

considered. I use Otsu’s method [160] to find the threshold TB that separates strong

and weak matching scores. I remove any observed leaf shape that has a matching

score smaller than TB. I denote the new leaf shape set as A′ and the number of

matched shapes as N ′.

Finally, I transform the matched shape model back to Cartesian coordinates to es-

timate phenotypic traits. A horizontal line in polar coordinates is an arc in Cartesian

coordinates. The width of the arc is called cord length. For a model shape S ∈ D, I
obtain the cord length cm of the m-th slice ym in S as

cm = 2rm sin
(µm,r

2

)

, (5.20)

where rm is the r coordinate of slice ym, and µm,r is the mean µm in radian. I estimate

the total area of S as

A(S) =

(

LS
∑

m=1

cm

)

+
r2m
2
(µLS ,r − sin(µLS ,r))

=

(

LS
∑

m=1

2rm sin(
µm,r

2
)

)

+
r2m
2
(µLS ,r − sin(µLS ,r)), (5.21)
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(a) (b)

Fig. 5.15. a) Two synthetic leaves from different overlapping plants. b) A
shape model (marked in red) to describe the observed leaf shape.

where the second term corresponds to the tip of the leaf, a small circular segment

area. LAI is obtained as

LAI =

∑N ′

n=1A(Ŝn)

Au

, (5.22)

where Au is the unit area the plant occupies.

5.4.4 Experimental Results

I evaluated my method with the image shown in Figure 4.16. This image was

acquired from a UAV flying at an altitude of 40 meters with a speed of 8m/s on

June 30, 2016 in West Lafayette, Indiana. The centers of 10 plants were manually

selected. R, the radius of the circular neighborhood around each plant center, was

set to 70 pixels. I set the area threshold TA for rejecting background holes to 150.

Shape models were generated as triangles in polar coordinates. The widths µ of the

triangles spanned between 12 degrees and 100 degrees, and the length was between

20 and 70 pixels. A total of 4,539 shape models were constructed. The tolerance rate

τ was set to 0.3 empirically. Au, the unit plant area was set to 19,600 pixels.



96

(a) (b)

(c) (d)

(e) (f)

Fig. 5.16. a) The original image. b) Image segmented by color threshold-
ing in polar coordinates. c) Segmentation of a leaf marked in red. d) The
best shape model that describes the leaf is marked in red. e) Segmentation
of the leaf transformed back into Cartesian coordinates. f) Shape model
transformed back into Cartesian coordinates.
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The leaf segmentation was evaluated by visually comparing the original images

(such as Figure 5.16(a)) with the segmented images (such as Figure 5.17(a)). The

method was evaluated using the 10 selected plants. The number of leaves in the

selected plants was 82. Out of these 82 leaves, a total of TP = 57 true positive leaves

were correctly detected. A total of FP = 18 false positive leaves were detected,

meaning that I incorrectly detected 18 noisy segments of the image as leaves. Out

of these 82 leaves, the method produced a total of FN = 25 false negative samples,

meaning that 25 leaves could not be detected. Precision and recall was used to

evaluated the performance of my method [117,118]. I obtained a precision and recall of

69.5% and 76.0%, respectively. Since the number of false positives and the number of

false negatives is similar, the precision and recall are similar. There is no bias towards

missing leaves or overdetecting leaves. Hence, the average number of detected leaves

is very close to the true value. Based on the shape models, phenotypic traits were

estimated. Traits included the area (Equation (5.21)) and length (LS) of each leaf,

and the leaf count (N ′) and LAI (Equation (5.22)) of individual plants . Figure 5.16

shows the segmentation result of a leaf for one plant. The length and area of the

leaf shown was estimated to be 98 pixels and 1,000 square pixels, respectively. The

final segmentation result of an entire plant is shown in Figure 5.17(a) and 5.17(b).

I correctly detected and segmented 8 out of 14 leaves and the LAI of the plant was

estimated to be 0.21.
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(a) (b)

Fig. 5.17. a) Different leaves are segmented in different colors. b) The
models describing each leaf are marked in different colors.
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(a)

(b)

Fig. 5.18. a) An image of a single row plot of crops acquired from an alti-
tude of 50 meters. b) Leaf segmentation result generated by my method,
where leaves are colored randomly.

5.5 Leaf Segmentation by Functional Modeling

5.5.1 Motivation

In my previous “Leaf Segmentation In Polar Coordinates” method, leaf shapes

are modeled as triangles, but the triangle models may fit erroneously when a leaf

bends and has a curved shape. In addition, the method requires an accurate plant

center as input, which can be difficult to obtain. In my application, where leaf

shapes are crucial for measuring phenotypic traits (such as maximum width), popular

segmentation method CNNs are likely to produce segmented leaves with inaccurate

and noisy edges because they do not have a spatial objective. Unlike convolutional

filtering, modeling the leaf edges using a continuous function and then estimating

parameters of the function from a set of leaf feature points may provide a better

spatial representation of the leaf. The estimated functions can be used to search for

pixels with weak feature responses and to predict missing feature points. In addition,
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these functions provide easy computation for traits estimation such as leaf width and

leaf length.

I present a new approach to instance leaf segmentation by modeling leaf edges

with continuous functions. This method combines the advantage of my previous

leaf segmentation methods. The method detects leaf segments by using semi-parallel

features of leaf edges. It generates a leaf shape for each segment and uses the shape

model to search for edges with weak responses and predict missing leaf parts. Each

shape model is described by two continuous polynomial functions representing the

edges. My method is compared to a popular segmentation method Mask R-CNN

and achieves better results. Figure 5.18 shows an example result of my method. The

plant used in this study is sorghum [Sorghum bicolor (L.) Moench] [1, 14].

5.5.2 Processing Structure and Assumptions

My proposed method uses edge features and the semi-parallel relationship between

the two leaf edges to detect, model, and predict leaf parts. Figure 5.19 shows the

block diagrams of my proposed approach.

The following definitions and assumptions are used in this method.

Each leaf has a tip and a tail. The tail is where the leaf meets the stem. The

tip is where the two leaf edges/boundaries converge. A leaf can be represented by

two piece-wise functions that describe the two leaf edges. The edge functions are

estimated from edge pixels and are used for detecting leaf segments and extending

leaf segment edges.

In computer graphics, a curve in 2D space can be represented by many functions

and forms [161]. Among the representations, a polynomial is easy to estimate and

model. In this paper, I use second-order polynomials for the leaf edge functions.

Second-order polynomials in 2D are either convex or concave, but leaf edges have

different orientations. Hence, I rotate the edge pixels before estimating the function.
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(a)

(b)

(c)

Fig. 5.19. a) Block diagram of proposed approach. b) Graphical block
diagram. c) Piece-wise edge function fe1 and fe2. Each color represents
an estimated polynomial.
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Fig. 5.20. Block diagram for edge processing

The rotation can be done in various ways. I use Principal Component Analysis

(PCA) [162] due to ease of implementation.

A leaf edge can have different local curvatures along the edge. Describing an edge

with only one polynomial function is sub-optimal. Therefore, each edge function is

modeled as a piece-wise function (as shown in Figure 5.19(c)). The estimated function

is the fundamental structure I use to represent a leaf edge. I shall define a “2D discrete

function” as a set of pixels that describes (or estimates) a 2D function with errors

caused only by spatial quantization of the pixels where the pixels in the set belong

to the same leaf edge. I assume any location in an image is quantized to the center

of a pixel. Thus, the maximum quantization error for each pixel is the distance from

the pixel center to a pixel corner which is
√
2
2
.

5.5.3 Leaf Edge Processing

The goal of this subsection is to process an image to extract edges. Figure 5.20

shows a block diagram of edge processing.

Given an RGB image, I first use the Canny Edge operator [163] to obtain an edge

mask Me. This edge mask can be refined by removing unwanted features from the

background. I create a plant material mask Mp by thresholding the plant image in
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(a) (b)

(c)

Fig. 5.21. a) An example skeleton with branching structure. b) An exam-
ple skeleton with edges from different leaves forming a single line. W is
a sliding window for function estimation. The red dot is the ideal break
point between the two piecewise functions. c) Function estimation cost
vs. window position.
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the Hue channel of the HSV color space. This exploits the ”greenness” of the plant.

This mask is used with the edge mask to form a refined edge mask Mr, where

Mr = Me ∧Mp . (5.23)

I use Connected Components [164] on the refined edge mask Mr to group the

connected edge pixels into sets, and I call each set an edge component. An edge com-

ponent can be viewed as a graph and each pixel can be viewed as a node. Ideally, each

detected edge pixel represents a leaf edge, but detected edge pixels may come from

different leaf edges. There are two cases I consider. First, detected edge pixels from

different leaves forming a branching structure, as shown in Figure 5.21(a). Second,

detected edge pixels from different leaves forming a single line (as shown in Figure

5.21(b)).

My approach to these issues is to use Depth First Search (DFS) [165] on the edge

components and to separate the branches during the search. Edges from different

leaves in each branch are disjoined. This approach requires each edge component

to be a one pixel wide skeleton. Skeletons wider than one pixel create cycles and

ambiguous paths. I propose a skeletonization method in Subsection 5.5.3 to thin the

edge components into one pixel wide.
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(a) (b)

Fig. 5.22. a) End point cases. b) Shortest path (red: end points, green:
shortest paths, black: unvisited pixels).

Skeletonization

The edge components created by Connected Components are usually not one

pixel wide. I need to thin the edge components to form skeleton structures. I use a

shortest path [165] approach between end points of a skeleton to produce a map of

node visiting frequency. I prioritize selecting a path through frequently visited nodes.

I first define the end points of a skeleton. An end point is a pixel that has one,

two, or three adjacent pixels, where the adjacent pixels form a clique [165]. Figure

5.22(a) shows an example of an end point’s neighborhood. I use Minimum Cost Path

(MCP) [166] on all the end point pairs. The cost map Cs for MCP is updated after

computing the path for each pair. This step prioritizes selecting an already explored

route.

Let E = {e1, e2...eNs
} be the set of all end points in a skeleton, and Ns be the

number of end points in the skeleton. Let Ms be the skeleton mask. The cost map

Cs is initialized to:

Cs =











N2
s + 1 if Ms > 0

inf otherwise.

(5.24)
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The detailed implementation of the steps is shown in Procedure 2. Figure 5.22(b)

shows an example of the skeletonization. Unvisited pixels are removed from the

skeleton after all end point pairs have been examined.

Procedure 2: Skeletonization
Input : End point set: E = {e1, e2...eNs

} ,
Number of end points: Ns ,

Skeleton mask: Ms

1 Initialize Cs with Ms and Ns

2 Snew ← {}
3 for i = 1 to Ns do

4 for j = i+ 1 to Ns do

5 P ←MCP (ei, ej , Cs) # compute shortest path P

6 for all location x in P do

7 Cs(x)← Cs(x)− 1

8 Snew ← Snew ∪ {x}
9 end

10 end

11 end

12 Return Snew

Skeleton Separation

First, I address the case of edges forming a branching structure, as shown in Figure

5.21(a). I define an intersection to be a pixel in the skeleton with more than two

neighbors. A two-neighbor pixel is a pixel that has two neighboring pixels. A branch

is a set of connected pixels whose head and tail are either end points or intersections

and the rest of its pixels are two-neighbor pixels. Branches are extracted by using a

modified DFS on each skeleton (as shown in Procedure 3). As a result, I obtain a set
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of connected pixels organized in the pixel visit order of DFS. Each pixel set can also

be viewed as a set of 2D discrete functions connected together.

I next address the case of edges from different leaves forming a single line, as

shown in Figure 5.21(b). I slide a window of size Ww across a branch and estimate

a polynomial for the pixels in the window using a Least Square (LS) approach [167].

The cost for LS estimation is recorded for each valid window position along the

branch. The polynomial’s leading coefficient (which controls the curvature) is set to

be bounded by τc above and −τc below. Positions where two 2D discrete functions

connect will have a higher cost. Branches with sizes smaller than the window size are

discarded. Figure 5.21(b) shows an example of a break point between two piecewise

functions. Figure 5.21(c) shows the function estimation cost vs. window position

graph associated with a skeleton. The position with the maximum cost is a candidate

for the break point. The maximum spatial quantizaton error for a window is
√
2
2

multiplied by the window size. If the square root of the LS cost of a candidate

exceeds τ1 percent of this error value, I break the branch into two at the window

center. Procedure 4 shows the detailed steps. At this point, I obtain sets of connected

2D discrete functions that are ready to be combined into leaf segments.

5.5.4 Leaf Segment Detection

Leaf edges have gradient angles pointing towards the leaf surface. Leaves are thin

and long, and their edges are semi-parallel. As a result, the two leaf edges have

opposite gradient angles. This characteristic allows us to detect segments of a leaf.

In UAV images, leaves appear symmetric with respect to their midribs. However,

midribs are difficult to detect in low resolution images. I estimate a midrib function

for each leaf, where the shortest distances from any point on the midrib to the two

edges are equal. The midrib function is essentially a medial axis. An orthogonal

line to the midrib function intersects the two leaf edges. The gradient angles at the

two intersection points are opposite to each other within a margin of τ2. The average
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Procedure 3: Depth First Search

Input : Skeleton pixel set: S,

End points: E = {e1, e2...eNs
}, where Ns

is the number of end points,

Intersections: I = {i1, i2...iNi
}, where Ni

is the number of intersections

1 Initialize visited map V

2 Initialize completed branches B ← {}
3 Initialize stack S

4 V (e1)← visited

5 Initialize current branch b← {e1}
6 Push the neighbor of e1 to S

7 while S is not empty do

8 p← pop(S)

9 b← b ∪ {p}
10 V (p)← visited

11 if p is in E or in I then

12 B ← B ∪ {b}
13 b← {}
14 end

15 Push unvisited neighbors of p to S

16 end

17 Return B
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Procedure 4: Divide
Input : Branch: b = {a1, a2, ...},

Window size: W

Threshold: τ

1 Initialize stack S ← {b}
2 Initialize output list O ← {}
3 while S is not empty do

4 X ← pop(S)

5 Initialize cost map C

6 for i = 1 to sizeof(b)−W + 1 do

7 C(i)← cost(bi, bi+1, ..., bi+W−1)

8 end

9 m← max(C)

10 j ← argmax(C)

11 if m >
√
2
2
∗W ∗ τ

100
then

12 b1 ← {x1, ...xj+W
2

}
13 b2 ← {xj+W

2
+1, ...xsizeof(X)}

14 Push b1 and b2 to S

15 else

16 O ← O ∪ {X}
17 end

18 end

19 Return O
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(a) (b)

Fig. 5.23. a) Smearing an edge in the direction of its average gradient
angle to create EIZ. b) Detecting candidate edges to form a leaf segment.
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(a) (b) (c)

Fig. 5.24. Example segmentation of a leaf, a) Original image. b) Detected
leaf segment. c) Full segmentation of the leaf.

gradient angle is computed for each edge. I assume if two edges have opposite average

gradient angles, they form some parts of a leaf and are considered an edge pair.

To find edge pairs, I smear each leaf edge in the direction of its average gradient

angle with a maximum leaf width Wl. I call the area generated by the smearing an

Edge Influence Zone (EIZ), as shown in Figure 5.23(a). Any edge inside an EIZ is

a candidate for an opposite leaf edge. Candidate edges are further checked for the

opposite gradient angles. Successfully paired edges create a leaf segment which is

constructed by the overlapping area of two edges’ EIZ. Non-overlapped regions and

edges are discarded. I call the edges in the segment base edges. This procedure is

shown in Figure 5.23(b). Figure 5.24(b) shows an example of a detected leaf segment.

5.5.5 Leaf Segment Completion

At this stage, a leaf edge can be categorized into three types: a base edge in a

leaf segment, an edge discovered by Canny edge detection, and an undetected edge

due to its weak response to the edge operator. I use the edges from leaf segments to

extend and predict leaf edges. Figure 5.25(a) shows the three types of edges.
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(a)

(b)

(c)

Fig. 5.25. a) Leaf parts that are detected at each stage. b) A slice for
a point on the edge. c) Example detected or predicted edge points (red:
detected leaf segment edges, blue: paired extended edges, yellow: unpaired
extended edges, gray: predicted edges).

Edge Walking

I introduce a method I call Edge Walking as a technique to extend edges by

iteratively adding points to the base edge using a statistical model. This technique

is inspired by the Kalman filter [168].
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Let fc(x) be an edge function and x0 be the end of the edge I am considering. I

define a slice Sx to be a line that is orthogonal to the function at a position x. A

slice profile gx(y) is generated by sampling the pixel intensities at a set of locations

along the slice (as shown in Figure 5.25(b)). I take two samples per pixel along the

slice. The slice width is set to be 3 which is the maximum width in an 8-connectivity

neighborhood. Bi-linear interpolation [169] is used to obtain the sample value at each

location. The derivative g′x(y) of the slice profile gx(y) is estimated by the difference

between the pixel values and smoothed by a 1D Gaussian filter with variance 1.

The function fc(x) is used to predict the location next to x0 as (x0+1, fc(x0+1))

and I obtain the slice Sx0+1. The slice profile associated is gx0+1(y), and its derivative

is g′x0+1(y). My goal is to find the true edge location y in Sx0+1. I model the probability

distribution Pp(y) for the prediction y as a zero mean Gaussian with variance 1.

There are two types of observations for the true edge location in slice Sx0+1. The

first observation is edges obtained by Canny edge detection. Let Le,i be the observed

edge location in the slice Sx0+1, where i = 1, 2...Ne and Ne is the number of observed

edges. I model the probability distribution Pe(y) for the Canny edge point y as a

Gaussian Mixture Model (GMM) [170]:

Pe(y) =

Ne
∑

i=1

we,iN (Le,i, σ), (5.25)

where weight we,i =
1
Ne
, and N (Le,i, σ) is a Gaussian with mean Le,i and variance σ.

The second observation is the slice profile derivatives. In the slice profile, an

edge can be anywhere along a slope. For a Canny edge, only the peak of absolute

derivatives is selected to be an edge. I consider all derivative locations where the

absolute value is above a threshold τ3 as my observations. Let Ld,i be the observed

derivative location in a slice profile gx0+1(y), where i = 1, 2...Nd and Nd is the number

of observed derivatives. I denote Pd(y) as the probability distribution for a derivative

observation y. Pd(y) is also modeled as a GMM:

Pd(y) =

Nd
∑

i=1

wd,iN (Ld,i, σ) , (5.26)
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where N (Ld,i, σ) is a Gaussian with mean Ld,i and variance σ, and wd,i is weight,

defined as the following:

wd,i =
|g′x0+1(Ld,i)|

∑Nd

i=1wd,i|g′x0+1(Ld,i)|
. (5.27)

Canny edges are obtained from image derivatives, which makes them superior to

the derivatives. I use derivative observations only if no Canny edges are available. In

the case that no Canny edge or derivative is available, I assume the edge has ended.

Now, I define the observation probability Po(y):

Po(y) =



























Pe(y) if Ne > 0

Pd(y) if Ne = 0 and Nd > 0

0 otherwise.

(5.28)

The probability distribution P (y) for edge location y is the joint probability dis-

tribution of observation and prediction (assuming independence):

P (y) = Pp(y)Po(y) . (5.29)

The Maximum Likelihood Estimate of y is:

ŷ = argmax
y

P (y) . (5.30)

The new edge location ŷ is added to the edge I am considering and the edge

function is re-evaluated. I keep iterating the process until there are no more Canny

edges or derivatives.

Leaf Modeling

After Edge Walking, I have an extended leaf edge structure that may still contain

missing points. Missing edge points are predicted using a leaf shape model. The shape

of each leaf is modeled as two functions, a midrib function fm and a width function

fw. In Subsection 5.5.4, I obtain a matching base edge pair. Let b1 and b2 denote
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Fig. 5.26. Leaf width function fw.
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the two base edges. In Subsection 5.5.5, I obtain a left (l) and right (r) extension for

each base edge. I denote l1, r1 and l2, r2 as the extensions for b1 and b2, respectively.

These definitions are shown in Figure 5.25(c). Consider the left extensions of the two

base edges. The points in l1 and l2 are paired based on their order moving away from

their respective base edge. The paired extensions are combined with the base edges to

form new segment edges b′1 and b′2, and fb′
1
and fb′

2
are their estimated edge functions,

respectively. Let b′1 be the longer edge with N1 edge points in total. I denote the set

of unpaired points on the left as ul and the set of unpaired points on the right as ur.

To estimate the midrib function fm, I project b′2 onto the PCA space of b′1. N1

points are sampled from each edge function. Sampled points from the two functions

are paired according to their orientation and order. For each pair, I compute its middle

point. Since a leaf may twist, modeling its midrib function with one polynomial is sub-

optimal. I model the midrib function as a piece-wise function with three polynomials.

The left and right polynomials are estimated by Ww amount of points, where Ww is

the sliding window size used in Subsection 12. The middle polynomial is estimated by

the rest of the points. Combining the three polynomials, I obtain the midrib function

fm.

To estimate the width function fw, I take one sample per pixel on the midrib

function fm. At each pixel, I construct an orthogonal line to the midrib function.

The line intersects the two edges at i1 and i2. The distance between i1 and i2 is the

width at the pixel. The process is repeated for all pixels to obtain a width profile. I

model the width function fw as a concave piece-wise function consisting of two lines

(as shown in Figure 5.26). The function has only one peak. Let p be the location of

the peak. As shown in Figure 5.26, let the leaf front represent widths from p to the

leaf tip, and let the leaf back represent widths from p to the leaf tail. I estimate one

function for the leaf front and one for the leaf back. Combining the two functions, I

obtain the width function fw.

Finally, I predict matching edge points for the unpaired point sets ul and ur.

For each point z in an unpaired point set, I predict the local leaf width wz using
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fw and obtain its orthogonal line to the edge ej , where j is the edge index. If the

width is zero or less, the point is discarded. A matching edge point is estimated to

be wz distance away from the location of z along its orthogonal line. Figure 5.25(c)

shows an example of detected edge points, extended edge points, and predicted edge

points. Figure 5.24(c) shows an example of leaf segmentation after edge extension

and prediction.

A missing leaf tip can be predicted using the midrib function fm and width func-

tion fw. However, the appearance of a leaf tip in a UAV image varies across plant

breeds. For example, a plant breed with thin long leaves often has visible tips, while

a plant breed with wide leaves may have its tips pointing away from the image sensor

plane. This means leaf tips from wider leaves may not be visible. In this study, leaf

tips are not predicted if no edge is detected at the tip, because I do not consider prior

knowledge of plant breeds.

Post-processing

I may detect multiple edge pairs from the same leaf. My proposed method gen-

erates a leaf segmentation mask for the entire leaf using only one of its detected

edge pairs. Thus, there can be redundant leaf segmentation as similar masks can

be developed from different edge pairs of the same leaf. As a solution, I reject an

individual leaf mask if it has more than 50% overlap with the leaf foreground mask

generated by collating all previous leaf masks. A leaf segmentation mask may also be

constructed erroneously using parallel edges from different leaves. I remove contours

from a segmentation mask using morphological erosion [171] and a surface mask is

obtained. If the surface mask contains K pixels, the leaf segmentation is discarded.

K is designed to be half the length of the shortest edge in the leaf segmentation.
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(a)

(b)

(c)

(d)

(e)

Fig. 5.27. a) A downsampled sorghum image taken from 20 meters altitude
on June 27th, 2018. b) Manual ground truth, where leaves are colored
randomly. c) Result image generated by my method, where leaves are
colored randomly. d) Result image generated by Mask R-CNN, where
leaves are colored randomly. e) Result image generated by slice-based leaf
segmentation, where leaves are colored randomly.
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Table 5.1.
Segmentation results of the proposed method and Mask R-CNN reported
in Symmetric Best Dice (SBD), Foreground-Background Dice (FBD) and
absolute Difference in Count (|DiC|)

Metric
Mask

R-CNN

Proposed

Method

SBD (higher is better) 34% 37%

FBD (higher is better) 73% 67%

|DiC| (lower is better) 120 81

5.5.6 Experimental Results

UAV images often have low spatial resolution as described in Section 1.3. I set my

problem scope to instance segmentation for densely overlapped leaves in low resolution

UAV images as stated in 5.1. In my team, we typically estimate phenotypic traits

using images acquired by a UAV flying at an altitude of 50 meters. The result of my

method on an image from 50 meters altitude is shown in Figure 5.18. However, to

examine the performance of my proposed method, I need manual ground truth. UAV

images acquired at 50 meters are difficult to ground truth for leaf segmentation due

to the low spatial resolution. In my experiments for this paper, I use images taken

from 20 meters altitude to generate ground truth manually. Figure 5.27(b) shows

an example of the ground truth. The images are then downsampled to the same

resolution as images from 50 meters altitude. A 2D Gaussian filter with 0.5 variance

is used to emulate the expected blur in images taken from a higher altitude. I use

this downsampled data to quantitatively evaluate my proposed method. My data

were obtained from a sorghum field on June 20, 2018 and June 27, 2018. The dataset

consists of 88 sorghum images with each image containing about 200 leaves. After
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downsampling, the image dimensions become roughly 120x580 pixels with a spatial

resolution of 0.63 cm per pixel.

The thresholds for the Canny edge detection are set differently for each date due to

the change in illumination. The images from June 27, 2018 appear much darker than

the images from June 20, 2018. For June 20, 2018 data, the strong edge threshold is

set to 1500 and the weak edge threshold is set to 500. For June 27, 2018 data, the

strong edge threshold is set to 750 and the weak edge threshold is set to 500. The

maximum percentage τ1 allowed for the function estimation error is set to be 25%.

The gradient angle bias τ2 is set to be π
4
. The minimum threshold τ3 for derivative

observation is set to be 5 to prevent noise. The curvature coefficient bound τc is set

to be 0.05 empirically. The sliding window size Ww is set to be 10 empirically. The

maximum leaf width Wl is measured to be 15 pixels. The variance σ for all assumed

Gaussian distributions is set to be 1.

I compared my method to Mask-RCNN. The training and testing procedure are

similar to the work in [81]. My dataset is split into three, 72 for training, 8 for valida-

tion, and 8 for testing. I used Resnet-50 Feature Pyramid Network as the backbone

instead of Resnet-101 because of my small dataset. The Region Proposal Network

aspect ratios were set to {1:5, 1:2, 1:1, 2:1, 5:1} to better fit the elongated shapes of

the sorghum leaves. Leaf bounding boxes may significantly intersect because of the

densely overlapping leaves. During testing, I raised the Non-Maximum Suppression

(NMS) threshold to 0.8 to account for this. A higher NMS threshold keeps highly

overlapped bounding boxes.

Mask R-CNN and my proposed method are evaluated on the 8 test images. I

report the results using Symmetric Best Dice (SBD), Foreground-Background Dice

(FBD) and absolute Difference in Count (|DiC|) [172]. These metrics are used in the

CVPPP segmentation dataset [173].

Both methods under-counted the leaves. Table 5.1 gives a detailed comparison

of the proposed method and Mask R-CNN. Figure 5.27 shows example results from

both methods.
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Table 5.2.
Segmentation results of the proposed method and the slice-based method
reported in Symmetric Best Dice (SBD), Foreground-Background Dice
(FBD) and absolute Difference in Count (|DiC|)

Metric Slice-based leaf segmentation
Proposed

Method

SBD (higher is better) 24% 38%

FBD (higher is better) 38% 65%

|DiC| (lower is better) 85 73
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In addition, I compared this method with the slice-based leaf segmentation method

described in Section 5.3. Both methods are evaluated on all 88 images in the dataset.

Table 5.2 gives a detailed comparison of the proposed method and Slice-based leaf seg-

mentation method. Figure 5.27(e) shows an result of the slice-based leaf segmentation

method. The results show that compared to the slice-based segmentation method,

the proposed method is able to detect more leaves and provide a more complete leaf

segmentation.

5.5.7 Discussions

Compared to Mask R-CNN, my method delivers better results with respect to

SBD, which is a primary metric for leaf segmentation. I also out-perform Mask R-

CNN for DiC. By visual comparison of the results, my method provides better leaf

contours. The leaf edges in my results are well defined, whereas Mask R-CNN easily

includes adjacent leaves and ground structures in its segmentation. Therefore, the

larger segmentation contours unintentionally generate a better foreground mask. This

explains the better results for FBD for Mask R-CNN.

When segmenting shape and orientation variant leaves, shape modeling produces

better results without the requirement for large amount of training samples. Accurate

segmentation ground truth is challenging to produce. The ground truth generated

by my team is inconsistent in terms of precision and how the details are handled.

Often, objects having blurry or ambiguous boundaries cause problems. The ground

truthing of those objects relies on the person’s prior knowledge of the shape of an

object, as well as their understanding of its interaction with neighbors and the scene.

For example, if a leaf tip is small, blurry and has washed-out color, one may not label

it. This is a very common problem in segmentation ground truth such as Microsoft

COCO dataset [174], where sometimes smaller objects are not labeled and are consid-

ered background. This problem can be solve by labeling high resolution images and

downsample them for processing. At each resolution, multiple pixel location can be
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referred to the same edge, which creates uncertainty in labeling. Image with higher

resolution provides higher precision for labeling the location of an edge. By downsam-

pling the image, high precision labels become more accurate in low resolution images,

which eliminates the ambiguity in data labels. Shape models described with continu-

ous functions can be reused in different image resolutions, whereas DNN approaches

need a large dataset to cover all the resolutions. Such dataset is very expensive to

produce. The time to label each image in my dataset ranges from 45 minutes to 6

hours, and the average time is 1.5 hours. Some people put more polygon points than

others. Thus, my method is more favorable for the plant scientists because it does

not require labeled data.
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Fig. 5.28. An example taken at ground reference data collection shed

5.6 Midrib Detection for Leaf Length and Width Estimation

During ground reference data collection, plants are manually removed, and leaves

are cut from the main stem for taking measurements. Measuring leaf’s width and

length can be physically challenging as the leaf bends and twists. This process requires

a lot of labor work. To speed up this process, imaging tools are used to capture the

conditions of plant leaves and analyze them later. Figure 5.28 shows an example of

the RGB images taken at the ground reference data collection shed. I present some

early work to measure the length and width of a leaf. Figure 5.29 shows the overall

blockdiagram for estimating leaf length and width. This tool has been used by plant

scientists for trait predictions.
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Fig. 5.29. Blockdiagram for estimation leaf length and width
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5.6.1 Preprocessing

I preprocess the given image to extract individual leaves so they can be further

analyzed for width and length measurements. The leaves are placed on a white table

horizontally.

I detect and segment the white table as the region of interest. Figure 5.30 shows

the blockdiagram for segmenting the white table in an image. The method includes

the following steps:

1. Input image is converted to HSV color space. I apply a threshold of 25 out

of the maximum 100 in V channel and creates a table mask. Any pixel loca-

tion with a V value larger than the threshold is set to value 1 in the mask.

Otherwise, the pixel value is set to 0.

2. Connected component [97] is applied to the mask to find sets of connected

pixels.

3. The largest component is assumed to be the white table. All other components

are discarded.

4. Contours are approximated by using [175].

5. The 4 extreme corner points are retrieved from the contours to be the bounding

polygon corners.

6. The white table is segmented using the four polygon coordinates.

Once I have the white table as my region of interest, I segment individual leaves

by the following steps. Figure 5.31 shows the blockdiagram for segmenting individual

leaves from the table.

1. HSV color segmentation described in Chapter 3 is applied to obtain a mask of

leaves.

2. Connected component [97] is applied to the mask to find sets of connected

pixels.

3. Small components that have less than 10,000 pixels are removed. These com-

ponents are noises or false detection in the image.
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Fig. 5.30. Blockdiagram for segmenting the white table in image

4. Holes in a component that has less than 2,000 pixels are removed.

5. The remaining components are the segmentation of leaves.
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Fig. 5.31. Blockdiagram for segmenting each leaf on the table



129

5.6.2 Midrib Curve Estimation

I estimate a midrib curve for the segmented leaf. Figure 5.32 shows the blockdia-

gram for midrib curve estimation. The procedure contains the following steps.

1. I find contours for the leaf mask by [175].

2. I find the leaf’s two end points by finding the extreme horizontal points in the

contour.

3. I split the contour point set into two. Each set starts and ends with an end-

point. The two sets correspond to the top edge and bottom edge. The set

with a higher mean vertical coordinate is the upper edge, and the other set is

the lower edge.

4. I estimate the midrib points by averaging upper edge point and lower edge

point for each horizontal coordinate x.

5. I apply least square polynomial [167] fit to find a curve representing the midrib

points. The polynomial degree is set to be 10. The weights for the midrib

points are set to be 1, and the two end points have weights of 10.

5.6.3 Leaf Length and Width Estimation

Let the estimated curve be y = f(x), where (x, y) is the horizontal and vertical

coordinate, respectively.

The leaf length L is computed by the following,

L =

∫

√

1 + (
dy

dx
)2dx (5.31)

To find the width profile of the leaf, I first compute the orthogonal lines of the

curve at each midrib point. For each midrib point, I compute the intersections of its

orthogonal line with the upper and lower edge. The width of this midrib point is the

difference between the intersections. The maximum leaf width is estimated to be the

maximum of all the computed leaf width.

Figure 5.33 shows examples of estimated leaf midribs and maximum leaf widths.
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Fig. 5.32. Blockdiagram for estimating the midrib of a leaf
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(a)

(b)

(c)

Fig. 5.33. Examples of leaf width and length estimation. Horizontally ori-
ented line indicates the length of the leaf. Vertically oriented line indicates
the maximum width of the leaf.
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5.7 Midrib Detection for Leaf Angle Estimation

In this work, I describe some initial work to detect the leaf angle for images taken

from a vehicle, Phenorover (as shown in Figure 1.4 in Section 1.3. Phenorover is

a modified wheel-based sprayer with a sensor boom vehicle. Our data set is col-

lected from one of the high resolution RGB cameras on top of the sensor boom facing

forward-down to capture plant height and structures. Figure 5.34(a) shows an exam-

ple image taken from Phenorover.

Leaf midrib is the backbone of a leaf, and it controls the angle, curvature, and

length of the leaf. Each leaf has only one midrib, so counting midribs is effectively

the same as counting leaves. In high resolution images, leaf midrib can be described

by two parallel curves. This fact satisfies the leaf shape assumption in my ”Leaf

Segmentation by Functional Modeling”, described in Section 5.5. I reuse this method

to detect leaf midribs instead of leaves. Figure 5.34(b) shows an example of detect

leaf midribs in different color.

The method also outputs two polynomial functions for each midrib. Since midrib

is very thin and has constant width, the two polynomial functions are almost identical.

I use one of the functions to estimate the leaf angle. I assume plant stems in one

row segment in an image aligns with a line. Then the intersection between the line

and the midrib polynomial function can be solved analytically. I then compute the

gradient angle at the intersection for midrib and the line. The difference in angle is

the leaf angle. Figure 5.35 demonstrates the leaf angle estimation. Figure 5.36 shows

examples of estimated leaf angle.
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(a)

(b)

Fig. 5.34. Examples of Midrib Detection: a) Original image taken from
Phenorover on 06/18/2018 for Field 57 East in ARCE. b) The detected
midribs in different color.
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Fig. 5.35. Estimating leaf angle from a detected midrib
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(a)

(b)

Fig. 5.36. Examples of estimated leaf angles. Blue: row segment center
line. Cyan: detected midrib. Red: extrapolated curve. Yellow: intersec-
tion.
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6. DEEP LEARNING EXPERIMENTS

6.1 Introduction

Deep learning is a recent trend in object classification, object detection, and seg-

mentation. It out performs traditional computer vision approaches in many areas. In

this chapter, I explore and experiment with some modifications to the deep learning

framework to address problems in label ambiguity and lack of “AND” operations in

deep learning. Experiments failed and potential causes are discussed.

6.2 Training by Comparing

Deep learning is powerful at classifications, but the network does not consider the

relationships between samples. Embedding approaches discussed in 5.2 train networks

to learn a metric space. In my application, plant centers are difficult to label, and

the labeled center may not be precise. Instead of training from the exact location of

a plant center, I want to train a network by using the relationship between the plant

center and nearby image locations, and train the network to learn a metric space

describing the distance to plant centers.

In this work, I explore a framework to learn relationships between samples. The

network shares the same architecture concept of Siamese Network [176]. Siamese

Network is introduced by Koch for learning with only one sample data per class. The

network is used to determine the similarity between samples. I pair-wise train the

network on the relationships experimentally, and the results show that the network

does not learn the metric space. I discuss the potential reasons for failed results.
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(a)

(b)

Fig. 6.1. a) Comparison network setup. b) My simple CNN architecture.
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6.2.1 Experimental Results

My experiment uses the MNIST dataset [177] which is simple for demonstration.

I use a simple CNN architecture that takes an image as input and outputs a number

indicating the digit of the image. I simultaneously input two images into two CNN

instances. The two CNN share the same weights. My goal is to train only one

CNN for classifying digits. The result of the second CNN is subtracted from the first

CNN. Finally, the subtracted value is classified into three classes: positive, equal, and

negative, with value -1, 0, and 1, respectively. The network is trained with a Mean

Square Error loss to capture the relative distance to its class.

I start my experiment with two classes. Figure 6.2 shows the histogram of CNN

classification results. Then, I increase the class number to 6 and 10. Figure 6.3 and

Figure 6.4 show the histograms of CNN classification results.

Next, I run my method on 2-dimensional relationship. I define the first dimension

to have positive classes for positive subtraction value, and define the second dimension

to have negative classes for positive subtraction value. Figure 6.5 shows the scatter

plot of results on two digits trained with 2-dimensional relationship.

From the MNIST experiment, I have the following observations:

• More training makes the digits evenly distributed, and the distribution of the

digits maintains relative distance from each other.

• More training makes the distribution of each digit thinner.

• Experiments with more training classes have difficulties in disentangling the

digits.

• The same network is able to produce similar results while I add a dimension to

the relationship between samples.

• The distribution for classes with no neighbor on one side is more spread out,

since there is no “force” from the neighbor to push the distribution.

Finally, I want to test this idea and observe if the network can find a metric space

for plant centers. I assign a smaller class number to locations that are closer to the
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plant center. Figure 6.6 shows the class assignments. The classification accuracy

for class 0 only achieved 65%. I compared the classification result with the network

described in Section 4.5 where the network only has two classes, plant center and

not plant center. The two-class network is simpler and achieved 80% classification

accuracy, and thus is better than my comparison network.



140

(a)

(b)

Fig. 6.2. Results for 2 Classes: a) Value distribution at 1st epoch. b)
Value distribution at 10th epoch.
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(a)

(b)

Fig. 6.3. Results for 7 Classes: a) Value distribution at 1st epoch. b)
Value distribution at 10th epoch.
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Fig. 6.4. Value distribution at 10th epoch for 10 classes.

Fig. 6.5. Scatter plot of the two dimension values for 2 classes.
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(a)

(b)

Fig. 6.6. a) Class assignment for training samples. b) An example rela-
tionship between samples A, B, and C: A < B < C.

6.2.2 Conclusion, and Discussion

From the experiments, we can see that my training framework performs well in

two-class case. The more class I add to the network, the more difficult the network

can separate them. This is due to my pair-wise training design. More classes mean

the training for setting boundaries with classes that are closer in numerical values is

diluted, as the network spend more training time on comparing classes that are far

away.

When I apply the idea to the plant location dataset, the comparison framework

performs much worse than the CNN training with two classes (plant center and not
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plant center). This is due to the fact that training with more classes dilutes the train-

ing for finding centers, and therefore it is less powerful than the network trained with

2 classes. In addition, CNN architecture does not consider the spatial relationship or

spatial shifts between samples, since the network only propagates the filter response

while spatial information for these filter responses is discarded during pooling and

fully connected layers.

Future work includes learning the boundaries between classes that are closer in

numerical values.

6.3 Logical AND Operations with Deep Learning

A typical deep neural network layer has a form of

a = f(WX + b), (6.1)

where X = {x1, x2...xN} is the input containing N samples, W is the network weights,

b is the bias, f is the activation function, and a is the activation value. From the

equation, we can see that the output depends on the summation of the inputs. This

can be interpreted as a logical ”OR” gate. Therefore, a neural network can be seen

as a giant logical ”OR” gate with knobs on each sample to turn the sample on and

off. It is natural to think of logical “AND” gate in neural networks. A logical “AND”

gate can be computed using ”OR” by De Morgan’s Laws.

Y1 and Y2 = not ((not Y1) or (not Y2)) (6.2)

Each “NOT” operation can be viewed as the weights of a layer in the network. Then,

the simulated “AND” gate requires 2 layers of weights where regular “AND” gate

only requires 1 layer of weights. The regular “AND” operation allows the two inputs

to be combined without training, while the two-layer ”OR” approach requires an

additional layer and additional training. Therefore, having “AND” operation is the

key to modularization. Moreover, “AND” operation is ideal for reconstruction. For

example, if a result is 1, then all inputs must be 1.
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In Boolean algebra, summation represents ”OR”, and multiplication represents

“AND”. I change all the summation to multiplications and all the multiplication to

summations in a DNN. The layer activation now becomes:

a = f(b

N
∏

i=1

(xi + wi)) (6.3)

a = f(e
∑N

i=1
log(xi+wi)+log(b)) (6.4)

Since the term xi+wi can be negative and the log of a negative number is undefined, I

add an activation function to the term. I also add a constant 1 to offset the minimum

value for this term to 0 in log.

a = f(e
∑N

i=1
log(Relu(xi+wi)+1)+log(b)) (6.5)

I tested the method on MNIST dataset with a simple CNN. The result did not

converge. The output values of the network go to either infinity or zero.

6.3.1 Conclusion and Discussion

From the experiment above, I discovered that it is challenging to train a network

with logical “AND” for object recognition.

I have the following observations from the experiment.

• If one input is 0, then the output is 0.

• In the case of 10 inputs, if all of the inputs have a probability of 0.9, the output

is 0.910 = 0.35. The result is less than a probability of 0.5 and will be classified

as false.

The training of the weights in “AND” operation on one input depends on other inputs.

Therefore, training is very unstable, and the results can be easily affected by noises.

For “AND” operations, an output of true value means every input is true. Partial

detection indicates the presence of the whole. Therefore, an “AND” operation can be

viewed as a model, a template, a framework, or a decoder. It defines structures and

boundaries to data representation instead of the flexibility provided “OR” operations.
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Finding the model/template/framework/decoder requires considering the texture and

spatial accuracy as well as spatial continuity.

As deep learning approaches focus on texture information, I will investigate loss

functions that consider spatial accuracy such as active contour approaches. Com-

puters contain millions of connecting “AND” and “OR” operations. In the future,

I will also investigate the use of multiple detections (“OR” operations) and recon-

struction (“AND” operations) sub-networks in deep learning. Besides deep learning

approaches, I will investigate traditional approaches on model fitting that require try

and error instead of backpropagation, similar to finding kernels for Support Vector

Machine (SVM) [178].
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7. SUMMARY AND FUTURE WORKS

7.1 Summary

In this thesis, I developed multiple methods to estimate high precision phenotypic

traits from UAV, Phenorover, and ground reference images including plant locations,

the number of plants per plot, leaf area, canopy cover, LAI, leaf length, leaf width,

leaf count, and leaf angle. The main contributions of this work are:

• I described an image phenotyping system that takes data collected from UAV

and estimate phenotypic traits per-field, per-plot, per-row-segment, and per-

plant. The estimated traits are used by plant scientists for plant biomass pre-

diction. In addition, several tools are created to facilitate data flows in the

system. These tools include orthophoto rotation estimation, plot extraction,

and inverse-mapping. A distributed computing system with a web interface is

developed. The system contains image phenotyping tools for plant scientists to

use and visualize the results. The tools include plot extraction, plant location,

and leaf segmentation. The web interface makes my tools accessible and easy

to use.

• I presented a method to find the centers of sorghum plants from UAV imagery.

Pixel locations are classified as plant center or not plant center. Areas of pos-

sible plant centers are estimated by MIL. Then, the areas are merged based on

their centroid distance. Finally, I estimate the center of the plants to be the

centroids of each merged area.

• I described a method to locate the center of plants from UAV images. Each

pixel is classified into a plant center or non-plant-center using a Convolutional

Neural Network. The plant centers are finally estimated from the classification

mask by using connected components and morphological operations.
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• I proposed a method to segment image leaves by a shape-based approach. Leaf

slices are detected by Stroke Width Transform [159]. Slices are connected and

combined into individually segmented leaves.

• I presented a method to segment leaves of sorghum plants from UAV imagery.

Images of plants were converted into polar coordinates, with the origin of coor-

dinates being the center of the plants. Then, a mask indicating plant material

was obtained. All segmented leaves were reconstructed and modeled with a set

of predefined shape models. By analyzing the shape model matched with each

observed leaf, I estimated the phenotypic traits of individual leaves.

• I combined and improved the slice-based approach and the shape model based

approach to segment leaf instances in UAV images by modeling leaf shapes with

polynomial functions. The method detects leaf segments by using semi-parallel

features of leaf edges. It generates shape models for the segments and uses

those shapes to extend and predict leaf edges. The method is compared to

Mask R-CNN, with my approach achieving better results. The estimated leaf

shape functions can be used to predict phenotypic traits such as leaf area, leaf

length, and maximum leaf width. In addition, the semi-parallel edge features

are very common in plant structures, such as leaves, stems, and branches. This

method has the potential to segment these plant materials.

• I proposed a method to estimate leaf length and width for images that contain

leaves lying on the table. The method estimates the leaf midrib and represents

it with a polynomial curve. Leaf length and width are measured based on

the curve. The results from this method are used by plant scientist for traits

estimation.

• I described a method to detect the leaf angle for images taken from a ground

vehicle. The method makes use of my ”Leaf Segmentation by Functional Mod-

eling” method to segment leaf midrib instead of leaves. The estimated polyno-

mials for midribs are used to find their intersections with the stems. The angle

between the midrib and the stem at the intersection is the leaf angle.
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• I experimented with training a DNN by comparing samples. The training frame-

work works for MNIST data but failed on classifying plant centers. Results are

discussed, and potential causes of failure are analyzed.

• I explored the use of logical “AND” operation in DNN, and I discovered that it

is very difficult to train a network with logical “AND” for object recognition.

Results are discussed, and potential causes of failure are analyzed.

7.2 Future Works

The experiments done in this work have given us understandings and insights

on image-based plant phenotyping, including leaf segmentation and plant location

problems. I can improve and extend my work further by the following:

• Plant Phenotyping System

– I proposed an inverse-mapping tool that maps plot bounding boxes to orig-

inal images that are used for orthophoto generation. I will improve the tool

to map the plot bounding boxes to any images with geo-coordinates and

rotation information, so that the tool can be used for precise data analytic

on different data resolution and different data types such as hyperspectral

data and thermal data.

– My current plant-level analysis are computed from the plot-level traits.

For example, leaves per plant are computed by the total number of leaves

in the plot divided by the number of plants. Plants in a plot compete

and interact with each other. There are no clear boundaries between

plants that can be used to separate them. Therefore, data points such as

pixel intensities can be assigned to the wrong plant for analysis. Future

work for plant-level studies will focus on data assignments using clustering

algorithms.

– My current methods focus on traits estimation for each date indepen-

dently. Future work includes analyzing traits using temporal information.
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– Future work for our distributed system with web interface includes making

the system simpler to use. The user will be able to select plots in the map

view. Once the plot is selected, the user will be able to select data types

(RGB, hyperspectral, thermal, or LIDAR) and resolution to process. I

will also add more image analysis tools to the system.

• Plant material segmentation

I proposed a thresholding method for plant material segmentation. In the

future, I will look into learning-based methods such as decision trees [179] and

deep learning.

• Leaf segmentation

I described three leaf segmentation methods based on the shape of the leaves.

The third method, ”Leaf Segmentation by Functional Modeling” combines and

advances ideas from the two other methods, and it segments leaves by represent-

ing leaf shapes with piece-wise polynomials. However, piece-wise polynomials

are limited when representing smooth curves. The joints of polynomials can

be non-differentiable, since the continuity in differentiation is not considered

at joints when estimating each polynomial piece of the function. To solve this

problem, I can use spline curves [161]. Spline curve is a polynomial repre-

sentation defined by control points and degree of continuity. A high degree

spline curve considers both local and global curvatures. Therefore, it is an

ideal representation of leaves. To find the splines for leaf shapes, I can use

a learning-based method with the ground truth polygon. However, the spline

representation of a set of points is not unique. For example, a point set forming

a single line can be represented by splines with any amount of control points on

the line. This will make learning methods difficult to converge. To solve this

issue, I need to abstract the ground truth polygons into splines with a fixed

amount of control points and the degree of continuity. Ideally, I want to design

a training procedure that can abstract both ground truth polygons (contains

no noise) and input image features (contains noise). Once the abstract repre-
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sentation of a leaf is generated from the input, I need to recover or reconstruct

textures that are lost from the abstraction. A GAN [151] approach can be

used in this process. In addition to the spline representation, future work also

includes adapting the method to account for different leaf shapes that do not

have semi-parallel features, such as the leaves in the CVPPP leaf segmentation

dataset [173]. Furthermore, surface features that are not used in my current

methods will be combined with the shape feature in my leaf model.

• Plant location

I explored two learning base methods (MIL and CNN) that classify pixel lo-

cations into plant center or not plant center. The estimated probability maps

for the plant centers are post-processed by merging centroids or morphologi-

cal operations. To improve the post-processing step, I can use borrow ideas

from deep learning literature, such as [84, 91], that studies this Non-Maximum

Suppression problem. Another issue with my current methods is the imbalance

of training data. There is only one positive sample for plant center ground

truth, while all other image locations are the negative samples. My current

methods randomly sampled the non-center locations as negative samples dur-

ing training. Therefore, the full potential of the training dataset is not utilized

because of the class imbalance. I will address this issue in the future by adding

distance-dependent weights to the training samples.

Plant centers can be defined as the intersection of plant leaves. In mature plant

datasets where my leaf segmentation can be applied, I can use the estimated leaf

shape functions and orientation from my leaf segmentation methods to estimate

the intersection of the leaves. The additional information on intersections can

improve my existing plant location method.
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7.3 Publications Resulting From This Work

1. Y. Chen, J. Ribera, C. Boomsma, and E. J. Delp, “Plant leaf segmentation

for estimating phenotypic traits“, Proceedings of the IEEE International Con-

ference on Image Processing, September 2017, Beijing, China.

2. Y. Chen, J. Ribera, C. Boomsma, and E. J. Delp, “Locating Crop Plant Cen-

ters From UAV-Based RGB Imagery“, Proceedings of the IEEE International

Conference on Computer Vision, Workshop on Computer Vision Problems in

Plant Phenotyping, October 2017, Venice, Italy.

3. Y. Chen, J. Ribera, C. Boomsma, and E. J. Delp, “Estimating Plant Centers

Using A Deep Binary Classifier“, Proceedings of the IEEE Southwest Symposium

on Image Analysis and Interpretation, April 2018, Las Vegas, Nevada

4. Y. Chen, S. Baireddy, E. Cai, C. Yang, and E. J. Delp, “Leaf Segmentation

by Functional Modeling“, Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition Workshops, June 2019, Long Beach, CA

5. J. Ribera, D. Guera, Y. Chen, and E. J. Delp, “Locating Objects Without

Bounding Boxes“, Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, June 2019, Long Beach, CA

6. J. Ribera, Y. Chen, C. Boomsma, and E. J. Delp, “Counting Plants Using

Deep Learning“, Proceedings of the IEEE Global Conference on Signal and

Information Processing (GlobalSIP), November 2017, Montreal, Canada

7. J. Ribera, F. He, Y. Chen, A. F. Habib, and E. J. Delp, “Estimating Pheno-

typic Traits From UAV Based RGB Imagery”, ACM SIGKDD Conference on

Knowledge Discovery and Data Mining, Workshop on Data Science for Food,

Energy, and Water, August 2016, San Francisco, CA.
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“An opinion on imaging challenges in phenotyping field crops,” Machine
Vision and Applications, pp. 1–14, December 2015. [Online]. Available: http://
dx.doi.org/10.1007/s00138-015-0728-4

[45] A. Habib, W. Xiong, F. He, H. L. Yang, and M. Crawford, “Improving orthorec-
tification of UAV-Based push-broom scanner imagery using derived orthophotos
from frame cameras,” IEEE Journal of Selected Topics in Applied Earth Ob-
servations and Remote Sensing, pp. 262–276, January 2017.

[46] C. Zhou, H. Ye, Z. Xu, J. Hu, X. Shi, S. Hua, J. Yue, and G. Yang, “Estimating
maize-leaf coverage in field conditions by applying a machine learning algorithm
to UAV remote sensing images,” applied sciences, vol. 9, no. 11, p. 2389, June
2019.

[47] T. K. Ho, “Random decision forest,” Proceedings of the International Confer-
ence on Document Analysis and Recognition, pp. 278–282, August 1995, Mon-
treal, Canada.

[48] A. K. Singh, B. Ganapathysubramanian, S. Sarkar, and A. Singh, “Deep learn-
ing for plant stress phenotyping: Trends and future perspectives,” Trends in
Plant Science, vol. 23, no. 10, pp. 883–898, October 2018.

[49] A. Singh, B. Ganapathysubramanian, A. Singh, and S. Sarkar, “Machine
learning for high-throughput stress phenotyping in plants,” Trends in Plant
Science, vol. 21, no. 2, pp. 110–124, February 2016. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1360138515002630

[50] J. R. Ubbens and I. Stavness, “Deep plant phenomics: A deep learning platform
for complex plant phenotyping tasks,” Frontiers in Plant Science, vol. 8, p. 1190,
2017.

[51] T. Alkhudaydi, D. Reynolds, S. Griffiths, J. Zhou, and B. d. l. Iglesia, “An
exploration of deep-learning based phenotypic analysis to detect spike regions
in field conditions for uk bread wheat,” Plant Phenomics, vol. 2019, pp. 883–
898, May 2019.

[52] M. P. Pound, J. A. Atkinson, D. M. Wells, T. P. Pridmore, and A. P.
French, “Deep learning for multi-task plant phenotyping,” Proceedings of the
International Conference on Computer Vision Workshops (ICCVW), October
2017, Venice, Italy. [Online]. Available: 10.1109/ICCVW.2017.241

[53] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” arXiv preprint arXiv:1505.04597, May 2015.
[Online]. Available: http://arxiv.org/abs/1505.04597

[54] Y. Toda and F. Okura, “How convolutional neural networks diagnose plant
disease,” Plant Phenomics, vol. 2019, March 2019.

[55] M. P. Pound, J. A. Atkinson, A. J. Townsend, M. H. Wilson, M. Griffiths,
A. S. Jackson, A. Bulat, G. Tzimiropoulos, D. M. Wells, E. H. Murchie, T. P.
Pridmore, and A. P. French, “Deep machine learning provides state-of-the-art
performance in image-based plant phenotyping,” Gigascience, vol. 6, no. 10,
pp. 1–10, October 2017.

http://dx.doi.org/10.1007/s00138-015-0728-4
http://dx.doi.org/10.1007/s00138-015-0728-4
https://www.sciencedirect.com/science/article/pii/S1360138515002630
10.1109/ICCVW.2017.241
http://arxiv.org/abs/1505.04597


159

[56] A. Masjedi, J. Zhao, A. M. Thompson, K. Yang, J. E. Flatt, M. M. Craw-
ford, D. S. Ebert, M. R. Tuinstra, G. Hammer, and S. Chapman, “Sorghum
biomass prediction using uav-based remote sensing data and crop model simu-
lation,” Proceedings of the IEEE International Geoscience and Remote Sensing
Symposium, pp. 7719–7722, July 2018.

[57] M. A. Gehan, N. Fahlgren, A. Abbasi, J. C. Berry, S. T. Callen, L. Chavez,
A. N. Doust, M. J. Feldman, K. B. Gilbert, J. G. Hodge, J. S. Hoyer, A. Lin,
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