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ABSTRACT

Rastegarnia, Adib Ph.D., Purdue University, December 2019. Assessment of Disag-
gregating the SDN Control Plane. Major Professor: Douglas Comer.

Current SDN controllers have been designed based on a monolithic approach that

integrates all of services and applications into one single, huge program. The mono-

lithic design of SDN controllers restricts programmers who build management appli-

cations to specific programming interfaces and services that a given SDN controller

provides, making application development dependent on the controller, and thereby

restricting portability of management applications across controllers. Furthermore,

the monolithic approach means an SDN controller must be recompiled whenever a

change is made, and does not provide an easy way to add new functionality or scale

to handle large networks. To overcome the weaknesses inherent in the monolithic ap-

proach, the next generation of SDN controllers must use a distributed, microservice

architecture that disaggregates the control plane by dividing the monolithic controller

into a set of cooperative microservices. Disaggregation allows a programmer to choose

a programming language that is appropriate for each microservice. In this disserta-

tion, we describe steps taken towards disaggregating the SDN control plane, consider

potential ways to achieve the goal, and discuss the advantages and disadvantages of

each. We propose a distributed architecture that disaggregates controller software

into a small controller core and a set of cooperative microservices. In addition, we

present a software defined network programming framework called Umbrella that

provides a set of abstractions that programmers can use for writing of SDN manage-

ment applications independent of NB APIs that SDN controllers provide. Finally, we

present an intent-based network programming framework called OSDF to provide a

high-level policy based API for programming of network devices using SDN.
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1 INTRODUCTION

1.1 Motivation and Problem Statement

The Internet project is one of the most successful projects in the history of com-

puter networks. The Internet has created a digital society that provides connectivity

between almost every pair of digital devices anywhere in the world. In the context

of computer networks, network management refers to processes, tools, applications

that a network administrator uses for planning, installation, operation, and monitor-

ing of a network. Traditional IP networks are complex and hard to manage despite

their widespread adoption [1]. Consequently, network management has changed sig-

nificantly since the beginning of the Internet. Early in networking history, network

administrators configured each network device manually, one at a time, using low-

level vendor-specific interfaces to implement the desired high-level network policies.

As the Internet grew, traditional Internet Protocol (IP) networks become more com-

plex and difficult to manage using conventional network element management tools.

In addition, enforcing high-level network policies without using automatic reconfigu-

ration mechanisms became very challenging across IP networks due to the dynamic

environment of the Internet.

Another aspect of traditional IP networks that makes their management more

challenging arises from vertically integrated network devices. Each network device

has two major sets of functions: control plane functions that specify how to handle

incoming data traffic and data plane functions that specify packet processing mech-

anisms and details, such as packet classification and forwarding rules that can be

derived from control plane functions policies and specification. Vertically integrated

traditional network devices means control plane and data plane functions are inte-

grated into a single box, such as a switch or router. The vertical integration does not
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provide flexibility to network managers nor does it allow them to translate high-level

network requirements into programs that update, modify, and add new control and

data plane functions.

The weaknesses of conventional IP networks led researchers and engineers to work

on a new paradigm, Software Defined Networking (SDN), that allows software to

control forwarding state in data plane from a remote location for the design and im-

plementation of next generation of computer networks. The first and most important

aspect of SDN network architectures arises from breaking the vertical integration of

network devices by decoupling the control and data plane functions from each other.

In the SDN paradigm, network devices become simple forwarding devices and the

control plane functions are implemented in a logically centralized piece of software

called an SDN controller. The SDN paradigm has advantages when compared with

conventional IP networks. Some of the most important advantages are:

• SDN allows network managers to implement required network functions by pro-

gramming network devices using software.

• SDN allows a move from proprietary management interfaces to open Application

Program Interfaces (APIs).

• SDN allows a move from network element management to network management

and automate network-wide configuration.

• SDN gives the flexibility to program network devices using a cross layer ap-

proach.

Although it helps solve many network management problems, SDN introduces

new problems. For example, the separation of control and data plane from each other

introduces new security threats, such as exploiting centralized SDN controllers that

are specific to SDN.

Since SDN emerged as a new paradigm for designing and implementing of next

generation of computer networks, multiple research groups and organizations have
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explored various aspects of SDN. One of the most important aspects of SDN that is

addressed by academia and industry lies in the design and implementation of SDN

controller software. Open source projects, such as Open Network Operating System

(ONOS) and OpenDayLight [2, 3], have focused on creating SDN controllers that

industry can adopt and deploy in production environments. Researchers also use the

controllers in research projects.

Current SDN controllers and associated components exhibit several weaknesses as

follows:

• Monolithic and Proprietary: The current architecture of SDN controllers

is based on a monolithic approach that aggregates all control plane subsystems

into a single, huge, monolithic program. In the aggregated control plane model,

each controller defines its own set of programming interfaces and services; a pro-

grammer can only use the controller’s set when creating management applica-

tions. The approach makes application development dependent on a particular

SDN controller and the specific programming language that has been used to

implement the controller, consequently restricting portability of management

applications across multiple controllers by making each application depend on

a specific controller. Using a monolithic approach for the design of an SDN

controller allows a vendor to create a controller and ensure the cohesion of

all pieces. However, the approach does not provide an easy way for users to

incorporate new services or adopt the controller quickly.

• Lack of a Uniform Set of Northbound (NB) Application Program

Interfaces (APIs): Through this dissertation, we will use the term Northbound

(NB) to refer to the mechanism an application uses when communicating with a

controller. Even if they use the same general form of interaction (e.g., RESTful

interface), SDN controllers, such as ONOS [4] and OpenDayLight [3], each offer

NB APIs that differs from the APIs offered by other controllers in terms of

syntax, naming conventions, and resources. The lack of uniformity among NB
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APIs makes each external management application dependent on the NB API

of a specific SDN controller.

• Lack of Reusability of Software Modules: In the current SDN architec-

ture, the dependency between a management application and a specific type of

controller limits reuse of SDN software. In many cases, when porting an appli-

cation from one controller to another, a programmer must completely recode

even the basic modules that collect topology information, generate and install

flow rules, monitor topology changes, and collect flow rule statistics.

• Lack of External Reactive SDN Applications: In the current SDN archi-

tecture, programmers can use NB APIs to program network devices proactively

by building applications that install flow rules to handle all possible cases be-

fore data traffic arrives. To exploit the advantages of SDN fully, a network

management system must also support a reactive approach in which external

management applications can be informed of changes in the network or data

traffic, and can then react to change forwarding rules. Unfortunately, current

SDN controllers do not provide any notification mechanisms that can inform

external applications about changes in network conditions.

• Lack of Scalability and Reliability: In current SDN controllers, there are

strong dependencies between the subsystems. If one of the subsystems fails, the

failure affects the operation of other susbsystems. In addition, a monolithic SDN

controller is a gigantic and complex software that is difficult to scale because a

given subsystem cannot be changed or scaled independently.

• Low level northbound APIs: Most of the SDN controllers provide a simpli-

fied northbound API such as Representational State Transfer (REST) API that

programmers use to program network devices by specifying the details of flow

rules using JavaScript Object Notation (JSON) or Extensible Markup Language

(XML) file formats. Therefore, a programmer needs to write code that parses
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JSON or XML formats to retrieve required information such as network topol-

ogy, statistics, network parameters and use them for programming of network

devices. Although some SDN controllers provide high-level services to make

network programming easier, a programmer still needs to deal with low-level

flow rule details.

To help overcome the above weaknesses, this dissertation focuses on redesigning

the current SDN control plane architecture, and provide mechanisms to achieve the

following design goals:

• Migrate from a monolithic control plane design to a microservice control plane

architecture that allows an SDN controller to be divided into a set of many,

small interconnected microservices instead of a single monolithic application.

• Add support for external reactive applications using facilities other than con-

ventional SDN controller APIs.

• Allow programmers to choose an arbitrary programming language when devel-

oping SDN applications without requiring to use the same programming lan-

guage that was used to implement the controller.

• Increase portability of SDN applications across SDN controllers, and make it

easy for a programmer to evaluate a specific application on multiple SDN con-

trollers.

• Provide a new set of abstractions for SDN applications, keeping the abstractions

independent of the NB APIs used by specific SDN controllers.

• Provide high-level APIs that allows managers to express network configuration

requirements using application based and domain specific network policies, and

allows them to write management applications without worrying about low-

level details such as flow rule details, network topology related information (e.g

end-to-end paths), etc.
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• Reduce programming complexity by allowing a programmer to write SDN ap-

plications without requiring the programmer to master specific low-level details

for each SDN controller, and avoid locking an application to a specific controller.

The following section explains the contributions this dissertation makes toward

achieving goals stated above:

1.2 Contributions

The contributions of this dissertation are summarized as follows:

• It proposes a new architecture for next generation of SDN controllers that dis-

aggregates control plane functions into a set cooperative microservices and mi-

grates away from a monolithic to a microservice architecture.

• It discusses the design and implementation of two software defined network

programming frameworks to overcome the weaknesses in current frameworks.

• It evaluates the proposed architecture and frameworks from multiple perspec-

tives including functionality and performance.

The contributions can each be explained briefly as follows:

1.2.1 An Architecture for Control Plane Disaggregation

In the first contribution of this dissertation, we introduce the control plane disag-

gregation concept and explain the advantages of migrating from a monolithic architec-

ture to a microservice architecture in designing and implementing of SDN controllers.

In addition, we propose a microservice architecture for the next generation of SDN

controllers and introduce its key components. We discuss one of the key compo-

nents of the proposed architecture, an event distribution system, that allows network

event processing to be externalized and allows the control plane to be disaggregated

into a set of cooperative microservices. We consider two event distribution systems
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based on the publish-subscribe and point-to-point messaging models. Furthermore,

we implemented the proposed event distribution systems using extant technologies

and compared them with each other using performance metrics, ease of use, and

functionality.

1.2.2 Umbrella: A Unified Software Defined Development Framework

In the second contribution of this dissertation, we propose Umbrella, a unified

software defined development framework that provides a set of high-level abstrac-

tions that we can use for writing SDN management applications independent of SDN

controllers. The Umbrella framework shows how we can build controller-independent

services and management applications on top of a set of minimum viable controller

components, including southbound protocols and an event distribution system. The

Umbrella architecture employs a driver-based approach to provide a set of high-level

and controller independent programming abstractions and a set of translation mod-

ules to map them into the heterogeneous NB APIs that SDN controllers provide. We

explain the architecture of Umbrella framework and the usage of Umbrella APIs by

implementing of a few example SDN management applications. Furthermore, we use

existing SDN controllers to evaluate Umbrella’s performance and functionality.

1.2.3 OSDF: An Intent Based Software Defined Network Programming Framework

In the third contribution of this dissertation, we propose an intent-based NB API

that provides abstractions that hide low level details of the network objects and

services, allowing managers to express policies and intents in a descriptive manner

instead of a prescriptive manner. The OSDF intent NB API allows network managers

to specify network configuration requirements and constraints by reffing to network

applications and domains. Furthermore, in this contribution we explore integration

of a policy conflict management system with OSDF to resolve network configuration

conflicts at the intent level.
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This dissertation is organized as follows: Chapter 2 surveys related work and ex-

plains the required background for this dissertation. Chapter 3 explains the proposed

SDN framework architectures. Chapter 4 presents the implementation details of the

proposed frameworks. Chapter 5 discusses the performance evaluation and experi-

mental results of the proposed SDN frameworks. Chapters 6 and 7 discusses open

research problems and concludes the dissertation, respectively.
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2 BACKGROUND AND LITERATURE SURVEY

2.1 An Introduction to SDN

SDN refers to a network architecture that allows software to control forwarding

state in the data plane from a remote location. In other words, SDN decouples the

control plane and data plane functionalities from each other and permits external

software to program the data plane hardware directly. An SDN controller is the

software that defines the control logic and provides the abstractions and facilities

that programmers can use to program network devices based on a set of network

policies. In the context of SDN, we define a set of forwarding rules for programming

of network devices. Forwarding rules can be based on flows instead of destination

addresses. That means each network device in a network performs a set of well-

defined instruction set (e.g. forward, drop, send to the controller, modify, etc) based

on a set of match fields in packets that arrive at a network device. To achieve the

goal of separating the SDN control plane and data plane functions from each other,

we need to define a set of programming interfaces between the controller and network

devices and between the controller and management applications.

This chapter presents a survey of the literature related to SDN, and gives back-

ground pertinent to the dissertation. The following sections explain the key compo-

nents of SDN architectures and survey the related work for each. Section 2.3 explains

network event processing in the context of SDN. Section 2.4 briefly explains mes-

saging patterns that applications can use to communicate and exchange information

with each other. Finally, Section 2.5 presents three well known software architectures

that programmers can use for implementing of software systems.
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Figure 2.1.: A general SDN architecture

2.2 Literature Survey

This section explains five key building blocks of SDN architectures as Figure 2.1

illustrates, including network infrastructure and Southbound (SB) interfaces, SDN

controllers, NB interfaces, programming languages, and management applications. In

addition, we briefly survey the related work for each of the above building blocks [1].

2.2.1 An Overview of Network Infrastructure and SB Interfaces

SDN networks are similar to the traditional networks in terms of infrastructure.

An SDN infrastructure consists of network devices such as routers, switches, and

middlebox appliances. The major difference between an SDN infrastructure and a

traditional network resides in the fact that network devices become simple forwarding

devices and a centralized SDN controller implements the network intelligence. To

achieve the goal of separating the control plane and data plane from each other,
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the SDN controllers need to communicate with the network devices via an API. In

this context, SB interfaces define the communication protocols between the controller

and network devices. OpenFlow [5] is one of the first SDN standards that enables

the implementation of SDN concepts in hardware and software and we explain it as

follows:

The OpenFlow is a flow-oriented protocol that defines a SB API that allows a

controller to update flow table rules and associated actions that a switch performs

for each of the flows that pass through it. The OpenFlow architecture includes three

main components as follows:

• OpenFlow switches: An SDN controller uses OpenFlow to monitor or update

flow table rules in a set of switches. Figure 2.2 illustrates the main components

of an OpenFlow switch:

Figure 2.2.: The main components of an OpenFlow switch [6]

– Flow table(s) and a group table: The tables store OpenFlow rules and

actions associated with each Openflow rule.
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– Communication channel: The controller and switch use a communica-

tion channel to transmit commands and messages between themselves.

– OpenFlow protocol: Defines the syntax and semantic of messages passed

between a controller and an OpenFlow switch.

There are two types of OpenFlow compliant switches: OpenFlow-only, and

OpenFlow-hybrid switches. OpenFlow-only switches should process packets us-

ing the OpenFlow pipeline that we explain it later.

• Controllers: A controller is responsible for updating (i.e. adding, deleting,

and revising) flow table rules and the associated actions that a switch performs

for each of the flows that pass through it.

• Flow entries: Each flow table consists of flow entries. Each flow entry consists

of a set of match fields, counters, a set of instructions, priority, timeouts, and

cookie.

As Figure 2.3 illustrates, OpenFlow pipeline [6] processes packets through a series

of tables, using three main steps for each table:

• Find the highest priority matching OpenFlow rule in the table.

• Apply the associated action to the packet. The actions include modifying a

packet, updating match fields, updating the action set, and updating metadata.

• Finally, the switch sends match data and action to the next table in the pipeline.

OpenFlow is not the only SB protocol that researchers propose. Some of the

proposed SB protocols are Open Vswitch Database Management Protocol (OVSDB)

[7], ForCES [8], Protocol Obvious Forwarding (POF) [9], OpenState [10], Revised

OpenFlow Library (ROFL) [11], Hardware Abstraction Layer (HAL) [12], and Pro-

grammable Abstraction of Datapath (PAD) [13].
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Figure 2.3.: The OpenFlow pipeline [6]

In OpenFlow switches, a manufacturer defines the data-plane functionality. That

means programmers cannot program data-plane directly to add or remove new func-

tionalities or upgrade OpenFlow protocol in an OpenFlow switch.

Next generation of SDN will be based on Programmable Data Planes (PDPs).

In the PDP architecture, the data plane functionality is not fixed in advance but a

programmer can define it using software. Programming Protocol-Independent Packet

Processors (P4) [14] is a high-level programming language for programming data

plane network devices. P4 provides flexibility to programmers that allows them to

specify how a switch handles packets. Unlike a conventional switch in which the ven-

dor chooses data plane functions that cannot be modified, P4 allows a programmer

to specify the data plane functionality. In addition, P4 is protocol independent that

does not tie a switch to a set of specific packet formats. P4 is also target independent

which means that we can compile and execute P4 programs on different platforms,

such as Field-Programmable Gate Array (FPGA) [15], general purpose Central Pro-

cessing Units (CPUs), software switches, etc. In PDP paradigm, the control plane

communicates with the data plane using the same channels as in a traditional SDN

switches, but the set of tables and other objects in the data plane are no longer fixed

and we can define them by a P4 program. The P4 compiler generates P4 Runtime

that is a silicon-independent and protocol-independent API from a P4 program. Pro-

grammers can use P4 Runtime API for local or remote control plane applications.
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Figure 2.4 illustrates the workflow when developers program a programmable switch

using a P4 program.

Figure 2.4.: Programming a target using a P4 program [16]

SB interfaces have not been limited to the APIs that programmers can use for

defining of control plane functionalities. Researchers and engineers proposed APIs

that programmers can use to install, modify, delete, and retrieve configuration from a

network device. For example, Internet Engineering Task Force (IETF), an open inter-

national community of network designers, operators, and vendors proposed Network

Configuration Protocol (NETCONF) [17] that is a network configuration protocol

that provides mechanisms to install, modify, retrieve, and delete the configuration of

network devices. NETCONF uses an XML-based data encoding for the configuration

data as well as the protocol messages. The NETCONF protocol operations can be

implemented on top of a simple Remote Procedure Call (RPC) layer. RPC is a tech-

nique that allows a program on a local computer to execute a program on a remote

computer. gRPC Network Management Interface (gNMI) [18, 19] is a new network

management interface protocol that is proposed by OpenConfig which is an informal

working group of network operators. gNMI is a gRPC based protocol for the modifi-

cation and retrieval of configuration from a network device. Developers and network

administrators can also use gNMI to control generation of telemetry streams from
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a network device to a data collection system. OpenConfig working group also de-

fines gRPC Network Operations Interface (gNOI) [18] that is a protocol for executing

operational commands such as reboot, ping, traceroute, etc on network devices.

2.2.2 An Overview of SDN Controllers

An SDN controller is one of the key components of SDN architectures. An SDN

controller provides programming abstractions and services such as topology discov-

ery, flow rule service, and event notification service that programmers and network

administrators can use to program SDN network devices based on a set of high-level

network policies [1]. We can categorize the SDN controllers into two major categories:

centralized controllers and distributed controllers [20]. A centralized SDN controller

is a single entity that manages all of the network devices in a network. A centralized

approach in designing of SDN controllers is good enough for small size networks but

that is not a salable solution for a network with a large number of network devices.

Furthermore, a centralized SDN controller potentially is a single point of failure and

can become a bottleneck while dealing with an increasing number of requests. Bea-

con [21], Ryu [22], NOX-MT [23], and Floodlight [24] are some of the centralized

SDN controllers. To address the problems of the centralized approach in designing of

SDN controllers, researchers and engineers proposed distributed control plane archi-

tectures. A distributed control plane can be a centralized cluster of nodes or can be

distributed physically across set of elements. We can categorize distributed control

plane architectures into two major categories:

• Distributed flat control plan: In the flat control plane architecture, we partition

a network into multiple regions and each instance of the controller manages the

switches in one region. Onix [25], ONOS [4], HyperFlow [26], DISCO [27] are

examples of flat control plane architecture.

• Distributed hierarchical control plane partitions the control plane into multiple

levels depending on the required services. Kandoo [28] is an example of dis-
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tributed hierarchical control plane that divides the control plane into two parts

to distinguish local control applications that process events locally from non-

local applications that require access to the network-wide state. Furthermore,

B4 [29], and Espresso [30] are two other examples of distributed hierarchical

control plane architecture.

2.2.3 An Overview of NB Interfaces and Programming Languages

The SDN controllers provide NB interfaces that define the communication between

SDN management applications and the controller. SDN management applications

use NB APIs to communicate with the controller, express network behaviors, define

configuration requirements, and program forwarding devices. We can categorize NB

APIs into two major categories [20] as follows:

• Low-level Internal APIs : These APIs refer to a set of low-level APIs that each

of the SDN controllers provide and programmers can use them for implement-

ing of SDN management applications within the controller. Using these APIs

to develop management applications tightly couple the applications with a spe-

cific SDN controller and the programming language that the controller uses to

implement the control plane services.

• High-Level External APIs : These APIs refer to the high-level APIs that SDN

controllers provide via web based interfaces such as REST API or high-level

programming languages that programmers can use to implement external man-

agement applications (i.e. outside of the SDN controller) using an arbitrary

programming language.

In [31], authors define seven major categories used to classify the paradigms that

SDN programming languages follow: imperative, declarative, logic, event-driven, func-

tional, Functional Reactive Programming (FRP), and reactive. The following provides

a brief explanation of each:
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• An imperative programming model refers to traditional computer programming

model using well known programming languages such as C++, JAVA, Python.

• In declarative approach, a programmer specifies what a program must do with-

out specifying the details of how it should be done.

• Logic programming requires a programmer to specify a set of logic rules that

the programming system transforms into complex symbolic structures.

• An event-driven programming approach allows programmers to write pieces of

code that each to react to an event.

• The functional programming model performs computation by evaluating a set

of mathematical functions. It avoids state and mutable data.

• FRP is a model that allows a program to manipulate streams of data values

without requiring a programmer to write event-driven programs.

• A reactive programming approach is a programming paradigm that program-

mers can use to write a program as set of reactions to external events and

conditions without worrying about the order of events.

In the last few years, researchers proposed various high-level programming lan-

guages for writing SDN management applications. The following reviews major SDN

programming systems:

• Frenetic: In [32], the authors present a high-level programming language; Fre-

netic; that programmers can use to program OpenFlow networks. It consists of

two sub-languages:

– Network query language: this language provides a collection of orthogonal,

high-level query operators that read the state of the network but do not

modify it.
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– Network policy management library : uses a combinator library for FRP

to govern the forwarding of packets through the network. In other words,

a program ”sees every packet” instead of processing traffic indirectly by

manipulating OpenFlow rules.

The Frenetic language is a set of Python libraries with a design and implemen-

tation based on FRP. One of the major components of the Frenetic is a runtime

system that sits between the high-level program and the SDN controller. The

runtime system is responsible for managing, installing, and uninstalling Open-

Flow rules on the network switches. In addition, the runtime system generates

the required communication patterns between the network switches and the

controller.

• Pyretic [33] is an open-source Python based platform that provides a set of high-

level abstractions that allow programmers to write SDN applications and specify

network policies using a high-level language instead of using low-level OpenFlow

mechanisms. One of the main features of Pyretic is that a programmer can

specify a policy for the entire network and does not need to worry about the

configuration of each switch separately. Furthermore, Pyretic uses composition

operators, such as parallel and sequential composition, to help programmers to

develop modular applications by combining multiple policy. In addition, Pyretic

can create dynamic policies whose behavior will change over time. Furthermore,

Pyretic provides a topology abstraction facility that helps programmers to take

an abstract view of the underlying network when writing an application, and

to compose new Pyretic programs from existing abstractions.

• Merlin: In [34], the authors present a policy based network programming lan-

guage, Merlin, a declarative language based on regular expressions. We can

use Merlin to express network requirements using high-level network policies.

Although Merlin simplifies network programming, a programmer still needs to
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use a predicate language to specify a set of header fields used to classify network

traffic.

• Procera: In [35], the authors present Procera, a controller architecture and a

high-level network language to support reactive network control policies. The

design of Procera is around FRP to express network policies that characterize

reactive and temporal network behaviors. Procera uses a set of signal func-

tions and abstract data types to express network policies using windowed event

histories.

• Kinetic: Kinetic [36] is a domain-specific language that programmers can use

to express network policies in terms of Finite State Machines (FSMs) that is a

mathematical model of computation to simulate sequential logic. In addition,

it provides the capability to write network applications that capture responses

to dynamic network conditions. Each of the states in a FSM denotes a dis-

tinct forwarding behavior and network events trigger the transition between

the states.

• Maple: Maple [37], is an SDN programming framework that provides a standard

programming language that programmers can use to express network behaviors

using a centralized algorithm. In the framework, a programmer defines a func-

tion f to route each packet, and the framework derives the corresponding flow

rules automatically. In addition, the paper introduces two new components,

including an SDN optimizer that is responsible for deriving reusable forwarding

decisions, and a runtime scheduler that acts as an optimizer by providing a

significant horizontal scalability across multiple cores.

• Nettle: Nettle [38] is a domain specific language based on FRP that allows

programmers to configure a network using a declarative style. One of the key

contributions of the paper is a discrete event-based abstraction that allows the

system to develop controllers that treat each message stream as a whole rather
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than as individual messages. Furthermore, the paper describes an abstraction

that captures continuous, time-varying quantities such as traffic volume on in-

dividual links. The abstraction gives programmers flexibility to write traffic

engineering applications.

• PonderFlow [39] defines a policy specification language for OpenFlow networks.

PonderFlow is an object-oriented declarative language that extends the Ponder

policy specification language [40]. One of the main goals of the project involves

providing a policy language to decouple it from conventional programming lan-

guages. In other words, an administrator can configure a network without any

knowledge of conventional programming languages such as Python and Java.

• ONOS Intent Framework [2] : The ONOS SDN controller provides a high-level

user interface that allows programmers to specify network configuration require-

ments in the form of a policy rather than a mechanism. An ONOS intent is an

immutable model object that specifies the following key items:

– Network Resource: A set of object models, such as links, that define part

of the networks that an intent can affect it.

– Constraints : Defines a set of weights that users can apply to network

resources, such as bandwidth, optical frequency, and link type.

– Criteria: Packet header fields or patterns that describe a type of traffic.

– Instructions : Actions to be applied to a type of traffic, such as packet

header field modifications or forwarding actions (e.g., forward to a specific

outgoing port.

2.2.4 An Overview of SDN Management Applications

By emergence of SDN, programmers can write management applications to im-

plement required network control logic and strategies such as routing, network mon-

itoring, firewall, Network Address Translation (NAT), load balancing, etc. In [1], the
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authors categorize SDN management applications into five major categories including

traffic engineering, wireless and mobility, measurement and monitoring, security and

dependability, and data center networking applications. We briefly explain each of

the above categories as follows:

• Traffic Engineering Applications : Traffic engineering is one of the well known

type of SDN applications that allows us to monitor network traffic, monitor

changes, and decide how to route network traffic to improve utilization of net-

work resources and performance [41]. ElasticTree [42], Hedra [43], MicroTe [44],

PolicyCop [45], QNOX [46], ALTO [47], FlowQoS [48] are examples of the traffic

engineering applications.

• Wireless and Mobility Applications : SDN provides the opportunity to imple-

ment required control plane features in different types of wireless networks (e.g.

Wireless Local Area Networks (WLANs), cellular networks) such as managing

the limited spectrum and interference, allocating radio resources, implement-

ing handover mechanisms, and performing load-balancing between cells in an

easier and more efficient manner. For example, the authors in [49], proposed

Odin, an SDN-based solution that provides programming abstractions to sup-

port features that enterprise and provider networks need to make Wi-Fi net-

works programmable. As another example, authors in [50] presents OpenRadio

a programmable wireless data plane that provides modular and declarative pro-

gramming interfaces that programmers can use to program the physical and

Media Access Control (MAC) layers.

• Measurement and Monitoring Applications : The authors in [1], categorize mea-

surement and monitoring applications into two major categories: 1) The first

category of measurement and monitoring applications provides services to other

networking services. For example, a programmer can implement a topology

monitoring application that informs other services and applications about the

topology changes. 2) The second category of applications uses sampling and
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estimation techniques to reduce the burden of the control plane due to the col-

lection of data plane statistics. OpenTM [51], PayLess [52], OpenSample [53]

are examples of measurement and monitoring applications in the context of

SDN.

• Security and Dependability Applications : Researchers address the security re-

search problems in SDN from two different perspectives: 1) using SDN to im-

prove security of computer networks and 2) improve the security of SDN itself.

Programmers use SDN to implement applications to improve security of current

networks such as firewalls, traffic anomaly detection, Denial of Service (DoS)

attack (a cyber attack which makes computers and network services inacces-

sible to end users) detection, etc. For example, the authors in [54] show how

programmers can use SDN and OpenFlow networks to detect anomalies in-

side home and home office networks. Furthermore, the authors in [55] presents

a lightweight method to detect Distributed Denial of Service (DDoS) attacks

based on traffic flow features using OpenFlow networks.

• Data Center Networking Applications : We can benefit from SDN to solve some

of the data center networking problems such as live network migration [56],

troubleshooting, network management, optimizing of data center resources, etc.

For example, FlowDiff [57] is a framework for detecting operational problems

in data centers such as host and network failures, and unauthorized access.

There are two major paradigms for implementing of SDN applications: Reactive

and Proactive. In proactive paradigm, a management application instructs a con-

troller to install flow rules in each network device before network traffic arrives. In

other words, in the proactive approach, we program network devices for all possible

traffic in advance and flow table does not change while the network is running. On the

other hand, the reactive paradigm allows a management application to program net-

work devices dynamically. In the reactive paradigm, a controller installs default flow

rules on network devices to send their traffic to the controller whenever there is no
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forwarding rule to handle the incoming traffic. When the controller receives a packet,

it installs an appropriate forwarding rule in a network device, and then returns the

packet to the device to forward it to the next hop. The reactive paradigm gives more

flexibility to the programmers to implement management applications that can react

to the network changes dynamically. However, it introduces an additional delay for

processing of the first packet before installing forwarding rules on the network devices

and returning back the packet to the pipeline. Furthermore, in the reactive paradigm,

the controller can become a bottleneck specially if we send a huge amount of traffic

between two end-points. On the other hand, proactive paradigm does not give pro-

grammers so much flexibility in designing and implementing of dynamic management

applications. Furthermore, proactive paradigm is a better approach for programming

of network devices if network administrators know about all of the incoming traf-

fic to a network in advance. In addition, proactive approach does not introduce an

additional setup time even for the first incoming packet.

2.3 An Overview of Event Processing in SDN

In this context, we define an event as a change in a network. We briefly explain

some of the most important events in a network as follows:

• Link event : This event refers to a change in one of the links in the network

topology. For example, when a new link appears (i.e. a LINK ADDED event),

a link disappears (i.e. a LINK REMOVED event), or there is a change in the

link characteristics (i.e. a LINK UPDATE event) in the network topology, then

a link event occurs.

• Device event : Device event refers to a change in one of the network devices in

the network topology. For example, when we add or remove a device from

the network topology (i.e. a DEVICE ADDED or a DEVICE REMOVED

event), or when there is change in one of the ports of a network device (i.e.a
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PORT ADDED, PORT REMOVED, or a PORT UPDATED) then a device

event occurs.

• Packet event : Packet event occurs when a switch sends an incoming packet

to the controller if there is no other forwarding rule for the packet (i.e. a

PACKET IN event). In addition, a packet event occurs when the controller

should return an incoming packet to the pipeline (i.e. a PACKET OUT event).

• Host Event : Host event refers to a change in one of the hosts in the network

topology. When we remove or add a host (i.e. a HOST ADDED event, a

a HOST REMOVED event), or when a host moves (i.e. a HOST MOVED

event),

• Flow Rule Event : Flow rule event occurs when there is a change in a flow

rule in the system. For example when we remove, add, or update a flow rule

(i.e. a FLOW RULE ADDED event, a FLOW RULE REMOVED event, or a

FLOW RULE UPDATED event) a flow rule event occurs.

Providing and processing of events are the key tasks that SDN controllers perform

to implement required core control plane services. As an example, we explain how

ONOS SDN controller provides network events to the core subsystems and application

in the following.

ONOS interacts with the underlying network devices with help of its providers as

Figure 2.5 illustrates to achieve the following design goals:

• Execute the requests that a provider receives from one of the core subsystems

such as add, remove, or update flow rules, collect network statistics (e.g. num-

ber of flow rules in the system), set or get Management Information Base (MIB)

parameters in Simple Network Management Protocol (SNMP), an Internet pro-

tocol that can be used to collect and organize information about managed net-

work devices, set or get port status in a NETCONF [17] device, etc.
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• Providers process and notify core subsystems about the events that they receive

from the underlying network devices such as packet, link, device, flow rule

related events.

As the Figure 2.5 illustrates, the core subsystems send their requests to the

providers and they communicate with SB protocols to receive and then provide the

requested information to the core subsystems. Furthermore, the core subsystems

provide APIs to the applications that they use to receive events such as packet, link,

device, and flow rule events. In addition, applications use NB core APIs to install,

remove, and update flow rules by sending their requests to the core subsystems.

SB Protocols 

Providers

ONOS Core

Applications

Device Operation Requests

Enviroment Events

SB Core API

NB Core API

Network Device

Wire Protocol

Events, Flow Rules,...

Figure 2.5.: ONOS architecture
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2.4 An Overview of Messaging Patterns

A messaging pattern is a network-oriented architecture that specifies how two end-

points (e.g. two applications or two subsystems of one application) of a messaging

system connect and communicate with each other [58]. As Figure 2.6 illustrates, an

application communicates with another application using a message channel where

one application (i.e. the sender application) writes information to the channel and

the other application (i.e. the receiver application) reads that information from the

channel [59].

Sender Application Receiver Application

Channel

Message Channel

Messaging System

Figure 2.6.: The architecture of a general messaging system

We can categorize message channels into nine categories including point-to-point,

publish-subscribe, data type, invalid message, dead letter, guaranteed delivery, chan-

nel adapter, messaging bridge, and message bus channels [59]. For the use of this

dissertation, we explain point-to-point and publish-subscribe channels as follows:

• Point-to-point channel : As Figure 2.7 illustrates, if a channel has multiple re-

ceivers, a point-to-point channel guarantees that only one receiver consumes a

particular message. An application can use a point-to-point channel to make

an RPC or transfer messages.
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Figure 2.7.: Point-to-point message channel

• Publish-subscribe channel : In this model as Figure 2.8 illustrates, a publisher

publishes its messages (e.g. system events) on a publish-subscribe channel and

a set of receivers subscribe to receive a specific type of message on separate

output channels (i.e. the messaging system assigns a separate channel for each

subscriber).

Publisher

Subscriber 1

Publish-subcribe 
channel

Subscriber 2

Subscriber 3

Message
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Message
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Figure 2.8.: Publish-subscribe message channel
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2.5 An Overview of Software Architectures

We explain three software architectures that programmers can use to implement

software systems including monolithic, microservice, and Service Oriented Architec-

ture (SOA) architectures in the following subsections.

2.5.1 Monolithic Architecture

Monolithic architecture is a traditional architectural style for building of software

systems that all of the software components combined and tightly coupled into one

single program (i.e. composed all in one piece). Easy to develop, test, and deploy are

the main advantages of monolithic architecture. Furthermore, developers can scale a

monolithic software horizontally by running multiple copies behind a load balancer.

However, it has some disadvantages as well. For example, whenever there is a change

in one of the components of the software, programmers need to build the whole

program again that makes updating of the software fast and correctly challenging.

In addition, a bug in of the components can potentially affect other components and

bring down the entire software. The last but not the least, If developers want to scale

certain components of software, they must scale the entire software.

2.5.2 Microservice Architecture

The evolution of technologies such as containers (e.g. Docker [60]), cloud services,

and container orchestrators such as Kubernetes (k8s) [61] enable the ability to develop

distributed, more scalable, and reliable software systems. Microservice architecture

is an application architecture that allows programmers to build an application as a

suite of cooperative services (i.e. loosely coupled components). Each microservice

supports a specific business goal and uses a simple, well-defined interface to com-

municate with other microservices. In the microservice architecture, developers can

run each microservice in a container and use container orchestrators to orchestrate
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microservices. Some of the main advantages of the microservice architecture are as

follows:

• It allows multiple working groups work in parallel and independent of each other

on development of microservices.

• It allows programmers to build and deploy each microservice without requiring

to build all of the components.

• Gives the ability to scale a given microservice horizontally, independent of other

microservices.

• In the microservice architecture, If one of the microservices fails, it will not af-

fect other microservices. Moreover, a microservice can be repaired and restarted

without recompiling the entire application and without restarting other mi-

croservices.

• In the monolithic architecture, a single, large code base includes all compo-

nents. Consequently, changes to even a small seldom-used component requires

changing the code base. In the microservice architecture, each component can

be in a separate codebase, isolating changes.

2.5.3 Service Oriented Architecture (SOA)

A SOA is a software architecture design style that application components provide

services to other components via a communications protocol over a network. SOA

and microservice architectures at some aspects are very similar that we explain them

briefly as follows:

• Both architectures are a collection of services that each focuses on a specific

set of business goals and are much smaller in scope than an entire monolithic

software system.
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• In both architectures, programmers are free to choose their programming lan-

guage and technologies to implement a service that brings technology diversity

into a development team.

• Both architectures are proposed to solve the issues associated with the mono-

lithic architecture.

However, SOA and microservice architectures are similar at some sense but they are

different in many aspects that we explain some of them briefly as follows:

• In microservice architecture each service focuses on implementing of a function

when compared with SOA that each service is composed of multiple functions

with many interdependencies. In other words, services in the microservice ar-

chitecture are much smaller in terms of size and scope when compared with

services in SOA.

• Microservice architecture and SOA are very different in terms of communication

mechanism between services. In the microservice architecture, microservices

communicate via language agnostic protocols over network. On the other hand,

in SOA services communicate via Enterprise Service Bus (ESB). ESB is an

architecture that defines a set of rules and principles to integrate a set of services

and applications together over a bus like infrastructure. Each of the mentioned

communication mechanisms has advantages and disadvantages. For example, in

SOA, ESB can be a single point of failure that potentially can impact the entire

system. Microservices are much better in providing fault resiliency, however

using language agnostic protocols over network increases the number of remote

function calls and communication overhead.

• Another major difference between the microservice architecture and SOA is the

way they use data storage. In SOA the services share data storage, while in the

microservice architecture, each microservice can have independent data storage.
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Figure 2.9 illustrates an example of the monolithic architecture vs. the microservice

architecture.

Database

Subsystem A

Subsystem B

Subsystem C
Microservice MicroserviceMicroservice

Microservice Microservice

Database Database Database

Micro-service Architecture
Monolithic Architecture

Figure 2.9.: Monolithic architecture vs. microservice architecture
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3 AN OVERVIEW OF THE SDN FRAMEWORK ARCHITECTURES

PROPOSED IN THIS DISSERTATION

3.1 SDN Control Plane Disaggeragtion

This section explains the concept of SDN control plane disaggregation and intro-

duce a distributed architecture for next generation of SDN controllers. In addition,

it explains the steps that we need to take towards disaggregating the SDN control

plane and potential ways that developers can use to achieve the goal.

3.1.1 An Introduction to the Control Plane Disaggeragtion

To migrate from a monolithic approach to a microservice architecture in designing

of the SDN controllers, we need to disaggregate the control plane services into a set

of cooperative microservices that can communicate with each other via standard

APIs. In the disaggregated model, a controller core provides the minimum required

functionality, and microservices that exist outside of the controller core provide all

other services as Figure 3.1 illustrates. In the disaggregated model, developers can run

each microservice in a container and orchestrate all of the microservices via container

orchestrator technologies. We explain some of the main advantages of control plane

disaggregtation as follows:

• Flexibility to scale: One of the main advantages of the control plane disaggregta-

tion arises from its ability to scale a given core service horizontally, independent

of other subsystems and services.

• Freedom in choosing the programming language: The control plane disaggreg-

tation allows programmers to choose an arbitrary programming language, pro-

gramming technology, and third-party libraries when building an SDN man-
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Figure 3.1.: A disaggregated SDN control plane architecture

agement application. The approach makes the application development process

more flexible, and allows programmers to choose a programming language that

is appropriate to a given application.

• Fault isolation: In current SDN controllers, if one of the subsystems fails it

can affect the entire controller. A disaggregated control plane means that the

failure of a given microservice will not affect other microservices. Moreover,

developers can repair or restart a microservice without requiring to recompile

the controller or restarting other microservices.

• A controller core with minimal components : In the monolithic approach, every

instance of a controller includes all services and applications, even if the instance

only needs a small subset. In the disaggregated model, the controller core

contains the minimum viable set of components and functions, and only the
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required applications and services need to be deployed outside of the controller

core.

• A Disaggregated Code Base: In the monolithic architecture, a single, large code

base includes all services and applications. Consequently, changes to even a

small seldom-used service requires changing the controller code base. In the

disaggregated model, each service and each application can be in a separate

code base that allows programmers to isolate changes.

The key components of a disaggregated control plane architecture consist of:

• Minimum Viable Controller Components: The first step towards SDN

control plane disaggregation involves identifying a minimal set of viable con-

troller core components. As we point out earlier in the previous chapter, con-

trol plane core services communicate with the underlying network devices with

help of providers that communicate with SB protocols to execute requests that

they receive from core subsystems and provide them the requested information.

When it receives a request from a management app or from a control plane

service, a control plane core service uses a SB protocol to communicate with

the underlying network devices, and then uses the information to respond to

the request. Consequently, a controller with minimum functionality needs the

following two major subsystems:

– An Event Distribution System: This subsystem notifies microservices

(i.e. control plane services and management applications) about events

that occur in the underlying network devices, such as flow rule, network

link, device, or packet exception events. The event distribution system pro-

vides a standard API used to stream events to the external processes (i.e.

microservices); to permit multilingual apps, the API must be independent

of the programming language used to implement each microservice.

– SB Protocols: SB protocols define the communication between underly-

ing network devices and the core of the controller. The event distribution
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system communicates uses SB protocols to receive events from underly-

ing devices, and then uses the event distribution mechanism to propagate

event notifications to external microservices.

• Disaggregated Control Plane Services: In the disaggregated model, each

of the core control plane services (e.g. topology service, flow service, etc) is a

microservice that can run in a container. The microservices (i.e. the containers

in which the service runs) can be orchestrated using a conventional container or-

chestrator technology, such as Kubernetes. Each control plane service provides

three sets of APIs: NB APIs that define the communication between control

plane services and applications, inter-service APIs that define the communica-

tion between each microservice, and SB APIs that define the communication

between each microservice and controller core components.

• Management Plane: Management plane comprises a set of management ap-

plications that use disaggregated control plane services to implement network

control functions, policies, and strategies such as routing, network monitoring,

firewall rules, NAT, and load balancing. To access microservices, management

applications use the NB APIs that the microservices offer. In fact, each man-

agement application forms a microservice that runs in a container exactly like

other microservices.

3.1.2 Externalization of Event Processing in SDN

As the previous section explains, disaggregating control plane requires external

event processing. This section provides some examples of using of externalization of

event processing for implementing of control plane services and management appli-

cations as microservices outside of the SDN controller as follows:

• Topology Discovery Service: a typical SDN controller provides several built-in

services, such as a topology discovery. Developers can implement some of the
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core services of an SDN controller as microservices outside of the controller, if

we can externalize packet processing. Link Layer Discovery Protocol (LLDP)

and Address Resolution Protocol (ARP) are two well known Internet protocol

that can be used for discovering of links and hosts in a network topology. For

example, to implement a topology discovery microservice, programmers need an

event distribution mechanism to capture LLDP and ARP packets and provide

them to an external microservice to derive a mapping of the links between

switches and end-hosts. We can also notify topology service about the topology

changes by capturing of topology related events such as link and device events.

Consequently, topology service can receive the changes via the event distribution

system to update the topology accordingly.

• External Reactive Management Applications : Externalization of event process-

ing and specifically packet processing, allows us to process incoming packets

in an external packet processor that underlying network devices send to the

controller whenever there is no forwarding rule to handle the incoming packets.

For example, suppose an external reactive forwarding application that receives

an incoming packet, extract required match fields, generate flow rules, install

the rules on appropriate network devices, and then return the incoming packet

to the network.

3.2 An Overview of the Proposed Event Distribution Mechanisms

This section reviews two approaches that can be used to implement an event

distribution system that will externalize event processing in an SDN controller core

[62].
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3.2.1 An Event Distribution Mechanism Using the Publish-Subscribe Model

The first event distribution approach employs a publish-subscribe model. As

Figure 3.2 illustrates, an event distribution system that runs inside the controller

listens for all events occurring in the controller core, and pushes the events into one

of the topics that an event broker offers. The broker forwards the event, and external

processes and management applications consume events by subscribing to a topic

and pulling all events published to the topic. In other words, the event distribution

system acts as a producer by pushing data to brokers, and external applications and

services act as consumers by pulling events from the broker. In this model, the broker

provides as set of topics used to separate events according to their type (i.e. each

topic corresponds to a specific type of event). For example, if an external application

or a service needs to receive packet events, it subscribes to the packet event topic by

sending a subscription request to the event distribution system. Once the subscription

has been registered, the event distribution system starts pushing the packet events

into the packet topic.

3.2.2 An Event Distribution Mechanism Using the Point-to-Point Model

The second event distribution system approach employs a point-to-point model.

As Figure 3.3 illustrates, the event distribution system uses a point-to-point channel

to send event notifications to each of the applications and services. In this model, each

application or service subscribes to a specific type of event and the event distribution

system streams events to each of the subscribers.

In the following sections, we propose two SDN programming framework to address

some of the weaknesses that Chapter 1 lists and explain how the event distribution

system can be used to implement each of them.
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Figure 3.2.: An illustration of an event distribution mechanism using the
publish-subscribe messaging model

3.3 Umbrella: A Unified Software Defined Network Programming Framework

As we mentioned in Chapter 1, the NB APIs that current SDN controllers offer

for programming external applications differ in terms of syntax, naming conventions,

data resources, and usage. Therefore, even porting basic external SDN management

applications from one controller to another requires recoding modules, such as those

that collect topology information, generate and install flow rules, and compiler flow

rule statistics.

We take a new approach to provide a standardized programming interface by first

creating new management abstractions and then providing a way to map the ab-

stractions onto heterogeneous NB APIs. We call our unified development framework
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Figure 3.3.: An illustration of an event distribution mechanism using the
point-to-point messaging model

Umbrella [63]. We use an architecture based on the approach that operating systems

follow when they define high-level I/O abstractions and install a set of device drivers

to map the abstractions into hardware commands suitable for a specific commercial

hardware device. Our architecture takes an analogous approach by dividing the de-

velopment framework into two conceptual parts: a module that provides a high-level,

controller-independent NB API abstractions, and a set of controller-specific transla-

tion modules that map the abstractions into NB API requests and commands that

are suitable for various SDN controllers. The main design goals are:
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• Design and implement a development framework that provides a new set of ab-

stractions for external SDN management applications that remain independent

of the NB APIs that specific SDN controllers provide.

• Design and implement a set of modules that use the proposed abstractions to

provide information needed by SDN applications, such as topology, network

statistics, and real time topology changes.

• Increase the portability of SDN applications across SDN controllers, and make

it easy for a programmer to evaluate a specific application on multiple SDN

controllers from various perspectives, including performance.

• Provide a SDN programming framework that reduces programming complexity,

allows a programmer to write SDN applications without requiring a program-

mer to master low-level details for each SDN controller, and avoids locking an

application to a specific controller.

• Provide a framework using a hybrid approach that allows a programmer to

choose between reactive and proactive paradigms, thereby offering better scal-

ability than a completely reactive or proactive network management system.

Figure 3.4 illustrates the architecture of the Umbrella framework, which includes

the following key components:

• Controller Independent Services : Umbrella provides a set of controller inde-

pendent services that programmers use to write external SDN management

applications. The services provide a set of high-level and generic APIs that

allow applications to install and remove flow rules, retrieve topology informa-

tion, monitor topology changes, retrieve network statistics and a list of installed

flow rules, compute end-to-end paths between network endpoints, and employ

custom path finding algorithms.

• Controller Specific Drivers : A set of drivers translate between Umbrella’s high-

level APIs and the NB API of specific controllers; when an application expresses
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a request or command, a driver translates into the controller-specific equivalent,

and sends the result to the controller to be executed.

• Applications : Programmers use Umbrella services and its APIs to write portable

and controller-independent SDN applications. If new controllers appear or if

the NB API used by a controller changes, a programmer can write a new driver

module for the controller or modify an existing driver.

Umbrella employs the event distribution system explained in Section 3.2 to allow a

programmer to use the framework for implementing both reactive and proactive SDN

applications. Programmers can also use the event distribution system to implement

new controller-independent services, such as a general event monitoring service.

3.4 OSDF: An Intent Based Software Defined Network Programming Framework

Although, there is no standard NB APIs for SDN controllers [64], adopting an

intent-based approach to the design of SDN interfaces seems promising. An intent

NB API is independent of a specific network technology, and allows managers to

express constraints in a vocabulary and information related to applications. An intent

NB API provides abstractions that hide low level details of the network objects and

services, and programmers can use them to express their intents in a descriptive

manner instead of a prescriptive manner. This section attempts to answer some of

the questions surrounding the intent-based approach, including:

• How can we integrate a policy conflict management module with an intent-based

SDN programming framework to resolve network configuration conflicts at the

intent level?

• How can we incorporate the flexibility of a reactive approach into an intent-

based SDN programming framework?



42

Event Distribution System

SB Protocols

SB APIs

Switch

Switch
Switch

Switch

NB APIs

Drivers

Umbrella Services (Topology, Flow, Event Notification...)

Controller Specefic Drivers

Umbrella APIs

Applications

Control 
Plane

Data 
Plane

Controller 
Independent Services

Managemet Plane

Umbrella

Figure 3.4.: The Umbrella architecture

• How can we design and implement an intent-based specification that allows

managers to to express network requirements for application and policies for

multiple domains?

To answer the above questions and address some of the weaknesses that Chapter

1 discusses, we propose a policy-based network programming framework called Open

Software Defined Framework (OSDF) [65, 66]. The OSDF framework achieves the

following design goals:
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• Provide a high-level API that allows managers to express network configuration

requirements using application based and domain-specific network policies, and

allows them to write management applications without worrying about low-level

details such as flow rule fields, network topology related information (e.g end

to end paths), etc.

• Define a set of high-level network services that programmers can invoke in their

management applications to configure network switches and provide QoS with-

out knowing the details of the SB API (e.g., OpenFlow or an alternative).

• Design and develop a framework that can run management applications similar

to the conventional operating systems which run processes (i.e., allow a network

management application to use services provided by the framework similar to

the way conventional applications use services provided by an operating system).

• Devise a hybrid approach that allows programmers to specify network configu-

ration requirements both proactively, by deriving configuration flow rules from

high-level network policies and reactively, by modifying flow rules as flows and

conditions change.

• Design and develop a policy conflict management system to detect well-known

types of policy conflicts and recommend potential conflict resolution solutions

to the managers.

Figure 3.5 illustrates OSDF architecture. The following highlights its key compo-

nents.

• Network operation services : OSDF provides a set of high-level network opera-

tion services that programmers use to configure and monitor a network based on

high-level network policies that a network administrator provides. Each service

takes the following steps to configure network switches based on current active

policies in the system:
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Figure 3.5.: OSDF architecture

1. First, each service reads the high-level network policies from a database of

currently active policies and filters them based on the type of service.

2. Second, each service uses the policy parser module to parse filtered policies

and generate network-wide forwarding rules for incoming flows.

3. Finally, each service uses flow rule, topology, region, and configuration

services to install generated rules in appropriate network switches.

Each service uses a hybrid approach to create basic rules proactively from the

high-level requirements that programmers specify in the network policies and

to extract low-level information reactively from incoming packets and use the

results to generate, install, and update flow rules. Each network operation

service uses the following controller core services:

– Packet Service: This component provides packet processors that program-

mers can use to accept and parse incoming packets to the controller reac-

tively to extract low-level match fields (e.g., IP addresses, MAC addresses,

ports, and protocol number) to use for configuration of network devices.

A network administrator can defer configuration and hide low-level de-
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tails that is required to configure and monitor a network by processing

of incoming packets to the controller reactively. Packet processors parse

the current active policies, which are stored in the policy database, and

use traffic selector builder service to generate a subset of match fields for

a flow based on the application type and high-level requirements for the

type that an administrator specifies in the network policies. A packet

processor function chooses an appropriate action for each flow rule, based

on the high-level operation. For example, in intra-site routing, the flow

rules associated with a given flow specify forwarding packets to appropri-

ate outgoing port in each switch. For inter-site routing, rules may specify

rewriting the MAC address, Virtual Local Area Network (VLAN) tagging,

encapsulation, or other actions.

– Flow Service: The flow service is responsible for generating and installing

flow rules in appropriate network devices. It uses the set of match-action

fields that traffic selector builder service generates.

– Topology Service: OSDF uses a topology service to find and determine

an appropriate path for incoming flows based on high-level network poli-

cies and the interconnections among network devices. The path selection

service uses the topology information that topology service provides to

determine an end to end path according to requirements that an adminis-

trator specifies in a network policy.

– Region Service: A region refers to a group of devices located in a common

physical (i.e., geographical) or logical region. The region service provides

information about devices inside a region. The network regions descrip-

tion parser uses the information that region service provides to distinguish

intra-region and inter-region domain traffic flows.

– Configuration Service: The configuration service provides an interface that

programmers can use to access the items that they define in a configuration
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file, including both details of individual devices, their IDs and locations,

the IP prefixes used, the mapping of IP prefixes to regions, and predefined

items, such as default gateways.

• Policy Store Module: The policy store module stores and retrieves application-

based network policies that an administrator enters to the system. The module

provides a policy store management service that high-level network operation

services use to read current active policies in the system. In addition, an ad-

ministrator can list, update, and delete current network policies dynamically at

runtime.

• Policy Parser Module: The policy parser module is responsible for analyzing

application-based policies, incoming flows, and deriving a set of match fields

that are then used to generate a set of flow table rules. The module includes of

the following three subcomponents that operation services invoke:

– Path Selection Service: This service is responsible for providing a set of

pre-defined algorithms for choosing among a set of existing paths between

two end points (e.g., shortest path). A network programmer can extend

this module by specifying additional path finding algorithms.

– Traffic Selector Service: This service generates a set of match fields based

on application based policies and incoming packets. A programmer can

extend this module by defining new types of applications and specifying

combinations of packet match fields for each application.

– Network Region Parser : The network region parser module uses infor-

mation that the region service provides, and parses incoming flows and

categorizes them based on the regions they span.

• Policy Conflicts Management Module: This module is responsible for detecting

well known conflicts between the current active policies and providing potential
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high-level solutions to the network administrator. The module includes the

following subcomponents:

– Policy Conflicts Detection Service: This service implements a conflict de-

tection algorithm, as explained in subsection 3.4.3 .

– Policy Conflicts Recommender Service: This service implements a policy

conflict resolution algorithm that suggests potential ways to resolve con-

flicts among existing policies. Subsection 3.4.4 explains the operation in

detail.

Figure 3.6 illustrates packet processing and flow rule installation procedure based

on given high-level policies.
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Figure 3.6.: OSDF packet processing and flow rule installation procedure

3.4.1 Application-Based Network Policies

An application-based network policy specifies high-level network requirements for

a given application (type of packet). Network administrators and programmers use

policies to configure and monitor network devices. We divide all policies into two

major categories: intra-domain policies (inside a region or a site) and inter-domain
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policies (among multiple regions or sites). An application policy includes the following

key items:

• Traffic Profile: A traffic profile that specifies high-level characteristics and re-

quirements for an application, such as an application name (e.g. WEB), the

transport protocol used (e.g. Transmission Control Protocol (TCP) or User

Datagram Protocol (UDP), and a traffic type (e.g. real time vs best effort).

The system provides a set of pre-defined traffic profiles that support typical

uses, such as web, video, and voice traffic. A network administrator can extend

traffic profiles by introducing new traffic types and applications.

• High-Level Network Function: Each policy is associated with a high-level net-

work function that defines configuration and monitoring of network devices,

such as intra-site-routing and inter-site-routing. Associating each policy with a

network operation allows a packet processor to accommodate policies that are

related to a specific function and ignore non-relevant functions.

• Partial Hosts And Devices Information (address space conditions): An admin-

istrator has the flexibility to provide high-level information about devices and

hosts (e.g specify a name for a host or a network device). Path selection ser-

vice uses these high-level information to determine an end-to-end path between

the source and destination for a specific traffic. For example, an administrator

can use device names when specifying that a given type of traffic should pass

through a specific set of network devices; the path selection service will choose

the best possible path that meets the given requirements. The system uses

partial host information when reporting network policy conflicts.

• Traffic Conditions : Traffic conditions specify high-level Quality of Service (QoS)

requirements such as the traffic rate limit for a traffic which specified in the

policy.



49

• Priority : An administrator can assign a priority to a policy or use a default.

Priorities become important when the systems tries to resolve conflicts among

policies.

• Source And Destination Regions : A network administrator can define a policy

for the interior of a region or can specify traffic routing among multiple regions.

To achieve the goal, the system allows a manager to specify both source and

destination regions for each policy.

Figure 3.7 defines the syntax of OSDF policy specification.

Policy ::= OP, APP, P|φ, SR, DR, ASC|φ, TC|φ
Operation (OP) ∈ High level network operation services
Application (APP) ∈ List of Applications
Priority (P) ∈ N
Source Region (SR) ∈ List of Regions
Destination Region (DR) ∈ List of Regions
Address Space Condition (ASC) ∈ List of hosts and network devices
Traffic Conditions (TC) ∈ List of traffic conditions

Figure 3.7.: The syntax of OSDF policy specification

3.4.2 High-Level Network Operation Services

We define a minimum set of high-level network operations to support typical

network configurations as follows:

• Intra-Site-Route: Network administrators can use this network operation ser-

vice to specify traffic routing within a specific region according to a network

policy for the region.

• Inter-Site-Route: Network administrators can use this network operation ser-

vice to specify traffic routing among multiple regions according to the global

policies.
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• Intra-Site-Alert: Network administrators can use this network operation service

to set an alert on specific data traffic and users. If a user attempts to send the

traffic inside a region, the system logs user unauthorized attempts and avoid a

specific traffic to be routed inside a region.

• Inter-Site-Alert: This abstract operation is the same as Intra-Site-Alert except

it applies the same operation between multiple regions.

• Intra-Site-Route-QoS-Provisioning : Network administrators can use this net-

work operation service for simultaneous traffic routing and rate limiting within

a specific region according to a network policy for the region.

• Inter-Site-Route-QoS-Provisioning : Network administrators can use this net-

work operation service for simultaneous traffic routing and rate limiting among

multiple regions according to the global policies.

3.4.3 Policy Conflict Detection Service

In [67], the authors classify flow rule conflicts based on flow rule details such as

layer 2-4 addresses, action, and priority. We use their work as a reference to define

types of network policy conflicts based on high-level application based network policies

instead of low level flow rule details. As we illustrate in Table 3.1 , we categorize some

of the well known network policy conflicts based on application based network policies

and explain them as follows:

Suppose two policies, Pi and Pj, specify the same traffic profile, source and destination

regions:

• Redundancy : Pi is redundant to Pj if both specify the same network operation

(Pi,OP = Pj,OP ), address space condition of Pi is a subset of address space

condition of Pj (Pi,SC ⊆ Pj,SC), and priority of Pi is less than or equal to

priority of Pj (Pi,p ≤ Pj,p). For example, suppose the following two policies:
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1. Route web traffic inside region A using priority 100 between hosts H1 and

H2.

2. Route web traffic inside region A using priority 100 between all hosts.

In the example, the first policy is redundant because second policy is broader

(assuming that H1 and H2 are in region A).

• Shadowing : Pi is shadowed Pj if each policy specifies a different network op-

eration (Pi,OP 6= Pj,OP ), the address space condition of Pi is a subset of the

address space condition of Pj (Pi,SC ⊆ Pj,SC), and the priority of Pi is less than

to priority of Pj (Pi,p < Pj,p). Shadowing is a critical error because it shows

a conflict in a security policy implementation [68]. For example, suppose the

following two policies:

1. Route VIDEO traffic between all hosts in region A and all hosts in region

B using priority 100.

2. Set alert on VIDEO traffic between any hosts in region A and region B

using priority 200.

The first policy is shadowed by the second policy and will never be invoked

because its priority is less than the priority of second policy.

• Generalization: Pi is a generalization of Pj if each policy specifies a different

network operation (Pi,OP 6= Pj,OP ), address space condition of Pi is a superset

of address space condition of Pj (Pi,SC ⊇ Pj,SC), and priority of Pi is less than

to priority of Pj (Pi,p < Pj,p). For example, suppose the following two policies:

1. Route VOICE traffic inside region A using priority 200 and all host pairs.

2. Set alert on VOICE traffic inside region A using priority 300 and host pair

(H3,H4).
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The first policy is a generalization of the second policy because its address space

is a superset of address space of the second policy (assuming that H3 and H4

are in region A).

• Correlation: Pi is a correlation of Pj if each policy specifies a different network

operation (Pi,OP 6= Pj,OP ), address space condition of Pi is not a subset or

superset of address space condition of Pj but they have some common items

(Pi,SC ∩Pj,SC 6= φ), and priority of Pi is less than to priority of Pj (Pi,p < Pj,p).

For example, suppose the following two policies:

1. Route WEB traffic inside regionA using priority 100 and host pairs (H1,H2),

(H1,H3).

2. Set alert on WEB traffic inside region A using priority of 200 and host

pairs (H1,H2), (H2,H4).

The address space of first policy is not a subset or superset of address space of

the second policy but their intersection is not empty. Consequently, there is a

correlation conflict between above policies (assuming that H1,H2,H3, and H4

are in region A).

• Overlap: Pi is an overlap of Pj if each policy specifies the same network op-

eration (Pi,OP = Pj,OP ), address space condition of Pi is not a subset or su-

perset of address space condition of Pj but they have some common items

(Pi,SC ∩ Pj,SC 6= φ). Note that priority is not important in this case. For

example, suppose the following two policies:

1. Route WEB traffic between regions A and region B using priority 100 and

host pairs (H1,H4), (H2,H3).

2. Route WEB traffic between region A and region B using priority 200 and

host pairs (H1,H4), (H2,H5).

Both of the policies specify the same network operation and the intersection

of the first policy address space and second policy address space is not empty.
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Consequently, there is an overlap conflict between above policies (assuming that

H1,H2 are in region A and H3,H4, and H5 are in region B).

Algorithm 1 illustrates the algorithm that programmers can use to detect policy

conflicts based on two given policies.

Table 3.1.: Types of Policy Conflicts

Traffic Profile (TP) Src Region (SR) Dst Region (DR) Operation (OP) Address Space Conditions (SC) Priority (P)
Redundancy Pi,TP = Pj,TP Pi,SR = Pj,SR Pi,DR = Pj,DR Pi,OP = Pj,OP Pi,SC ⊆ Pj,SC Pi,p ≤ Pj,p

Shadowing Pi,TP = Pj,TP Pi,SR = Pj,SR Pi,DR = Pj,DR Pi,OP 6= Pj,OP Pi,SC ⊆ Pj,SC Pi,p < Pj,p

Generalization Pi,TP = Pj,TP Pi,SR = Pj,SR Pi,DR = Pj,DR Pi,OP 6= Pj,OP Pi,SC ⊇ Pj,SC Pi,p < Pj,p

Correlation Pi,TP = Pj,TP Pi,SR = Pj,SR Pi,DR = Pj,DR Pi,OP 6= Pj,OP Pi,SC ∩ Pj,SC 6= φ Pi,p ≤ Pj,p

Overlap Pi,TP = Pj,TP Pi,SR = Pj,SR Pi,DR = Pj,DR Pi,OP = Pj,OP Pi,SC ∩ Pj,SC 6= φ Not Necessary

Algorithm 1: Conflict detection algorithm based on high-level policies

Conflict Detection (Pi, Pj);
Input : Two policies Pi and Pj

Output: Return the type of the conflict
if Pi,TP 6= Pj,TP OR Pi,SR 6= Pj,SR OR Pi,DR 6= Pj,DR then

return NO CONFLICT
end
if Pi,SC ⊆ Pj,SC AND Pi,p ≤ Pj,p AND Pi,OP = Pj,OP then

return Pi,Redundancy;
end
if Pi,SC ⊆ Pj,SC AND Pi,p ≤ Pj,p AND Pi,OP 6= Pj,OP then

return Pi,Shadowing;
end
if Pi,SC ⊇ Pj,SC AND Pi,p ≤ Pj,p AND Pi,OP 6= Pj,OP then

return Pi,Generalization;
end
if P1,SC ∩ P2,SC 6= φ AND Pi,p ≤ Pj,p AND Pi,OP 6= Pj,OP then

return Pi,Correlation;
end
if P1,SC ∩ P2,SC 6= φ AND Pi,OP = Pj,OP then

return Pi,Overlap;
end
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3.4.4 Policy Conflict Recommendation Service

This service implements a policy conflict recommendation algorithm as Algorithm

2 illustrates to provide a high level advice about how an administrator can resolve

the conflicts between current policies in the system. Each type of conflict is resolved

as follows:

• Redundancy : To resolve this type of conflict, a network administrator can re-

move a policy that has a lower or equal priority and its address space is a subset

of another policy.

• Shadowing : To resolve this type of conflict between two policies, a network

administrator can remove the policy that is shadowed (i.e. the policy which has

lower priority and its address space is a subset of another policy).

• Generalization: To resolve this type of conflict between two policies, a network

administrator can remove the policy that has a more generalized address space,

and then update its address space conditions by removing those conditions that

are specified in another policy address space. Finally, the network administrator

inserts the updated policy into the system.

• Correlation: To resolve this type of conflict between two policies, a network

administrator can update the address space of one of the policies (e.g the pol-

icy by lower priority) by removing the common items and then inserting the

updated policy into the system.

• Overlap: To resolve this type of conflict between two policies, a network ad-

ministrator should first remove both of the policies from the system and then

insert a new policy with an address space equal to the union of both of address

spaces.

The asymptotic time complexity of the policy conflict recommendation algorithm

is O(n2) where n is the number of policies being considered. Most practice, n is small

because a single policy covers a broad range of network configurations.
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Algorithm 2: Policy conflict recommender algorithm
Policy Conflict Recommender Algorithm (Pi, Pj);
Input : Two polices Pi and Pj

Output: A set of recommendations for resolving the conflict
Conflict Type = Conflict Detection(Pi, Pj);
if Conflict type == Pi,Redundancy then

Remove policy Pi;
end
if Conflict type == Pi,Shadowing then

Remove policy Pi;
end
if Conflict type == Pi,Generalization then

Remove policy i temporary;
Update address space condition of policy i as follows:
(Pi,SC = Pi,SC − Pj,SC);
Insert policy i;

end
if Conflict type == Pi,Correlation then

Remove policy Pi temporary;
Update address space condition of policy i as follows:
(Pi,SC = Pi,SC − Pj,SC);
Insert policy Pi;

end
if Conflict type == Pi,Overlap then

Remove policy i and j temporary;
Update address space condition of policy i as follows:
(Pi,SC = Pi,SC + Pj,SC);
Insert policy i;

end

3.4.5 Comparison with SDN Programming Frameworks and Languages

In this subsection, we compare OSDF with the SDN programming frameworks and

programming languages introduced in Chapter 2 including Merlin, Frenetic, Procera,

Kinetic, Nettle, PonderFlow, Pyretic, and the ONOS intent framework. We begin by

summarizing key characteristics of the SDN programming systems and languages to

capture the essence of each. We then use the characteristics as a base to classify and

analyze each of the systems, as in [31]:



56

• Programming Paradigm: A programming paradigm defines how key components

and building blocks of a software system interact. As Chapter 2 explains, SDN

programming languages and frameworks can be classified into one of seven major

categories: imperative, declarative, logic, event-driven, functional, FRP, and

reactive.

• Flow Installation Paradigm: The abstractions that are defined part of the SDN

programming languages and frameworks must be translated into a set of flow

rules that implement the required network configuration and management func-

tions. There are two approaches for generating and installing flow rules: proac-

tive and reactive. As Chapter 2 explains, the proactive paradigm requires man-

agement applications to install flow rules in each network device before network

traffic arrives. By contrast, the reactive paradigm allows a management appli-

cation to change the flow rules in network devices dynamically.

• Policy Definition: A policy can be categorized into two major categories: static

and dynamic [31]. A static policy defines a set of predefined outcomes based

on a set of predefined parameters. A dynamic policy specifies actions to be

triggered when conditions arise or events occur, such as packet loss, link or

node failures, congestion occurs, or packets arrive on new flows.

• Functionality : Programmers use the abstractions that SDN programming sys-

tems offer to implement management applications and network functions. We

use the term functionality to characterize the capabilities and richness of the

programming environment along with the expressive power. A system in which

the functionality suffices for all network functions and management needs is

desirable.

• Implementation Details : Although the four characteristics listed above are fun-

damental, we include implementation details as a fifth characteristic because

such details may limit the usefulness and generality of the system. For exam-
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ple, a system that only permits applications to be written in one particular

programming language is inherently less general than a multi-lingual system.

Table 3.2 summarizes how OSDF compares with the SDN programming languages

and frameworks discussed earlier. The table lists multiple perspectives, including

the programming paradigm, flow installation paradigm, and policy definition. As

we discussed earlier, network event processing is one of the key aspects of current

SDN controllers because management applications use events to implement control

plane functions and services. OSDF offers an event-driven framework that allows a

management application to react to network changes, such as topology events (e.g.

link or device failures), packet events, etc. PonderFlow and Kinetic also use an

event-driven programming approach, but both use low-level abstractions that require

a programmer to deal with flow rules and packet fields. OSDF raises the level of

abstraction thereby hiding the details from users. Most of the SDN programming

languages such as Merlin, Frenetic, Procera, Nettle, PonderFlow, and OSDF use a

reactive approach for generating and installing flow rules, which gives programmers

more flexibility in the design and implementation of management applications. In

addition, most of the SDN programming languages and frameworks, including OSDF,

support both static and dynamic policies. Combination of an event-driven approach

and reactive flow installation paradigm that is used in OSDF gives programmers and

network administrators flexibility to define policies that can be triggered whenever

there is a change in network conditions.

Table 3.2.: SDN Programming Languages and Frameworks Characteristics

OSDF Merlin Frenetic Procera Kinetic Nettle PonderFlow Pyretic ONOS Intent
Programming Paradigm DE/ED F FRP FRP ED FRP ED I DE
Flow Installation Paradigm RFI RFI RFI RFI RFI/PFI RFI RFI RFI/PFI PFI
Policy Definition S/D S/D S/D S/D S/D S/D S/D S/D S

I=Imperative,DE=Declarative, F=Functional, FRP, ED=Event-Driven, L=Logic, RP=Reactive Programming
RFI=Reactive Flow Installation, PFI=Proactive Flow Installation
S=Static, D=Dynamic
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Table 3.3 illustrates how OSDF compares to other SDN programming systems with

respect to functionality. For the purpose of this comparison, we divide functionality

into five broad categories:

• Basic Network Functions : This category refers to minimum required network

functions, such as packet classification and forwarding that a SDN program-

ming framework should support for implementing of basic SDN management

applications.

• Traffic Engineering : This category refers to SDN management applications that

allows us to monitor network traffic, monitor network changes, and decide how

to route network traffic to improve utilization of network resources and perfor-

mance (i.e. QoS, path selection, link failure detection, and dynamic rerouting).

• Network Virtualization: This category refers to the techniques such as slicing

and the use of virtual switches that allow one to define and run multiple virtual

networks overlaid on a shared network infrastructure. Some of the SDN pro-

gramming frameworks use software switches to create multiple virtual switches

in a physical switch. In addition, a network slice refers to a subset of switches,

ports, and, links that logically defines a network. [31].

• Monitoring and Telemetry : This category refers to functions that programmers

can use to gather network statistics, such as number of packets that matches to

a specific flow rule. In addition, to implement dynamic management applica-

tions, programmers must be able to monitor network changes such as topology

changes. Furthermore, SDN programming frameworks usually provide func-

tions that allow network administrators to monitor users’ activities and detect

anomalous behavior, such as a potential security attack.

• Security : This category cuts across some of the others, and most SDN pro-

gramming languages and frameworks support basic security functions that are
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needed in a network, such as access control. To implement access control func-

tionality using SDN, a set of abstractions are needed that allow programmers

to define access of a user to services or resources in a network. For example,

network administrators must be able to isolate tenants’ access to the servers

and services in a multi-tenant data center network.

Table 3.3.: Functionalities of SDN Programming Languages and Frameworks

Categories OSDF Merlin Frenetic Procera Kinetic Nettle PonderFlow Pyretic ONOS Intent

Basic Network Functions
Packet Classification 3 3 3 3 3 3 3 3 3

Forwarding 3 3 3 3 3 3 3 3 3

Traffic Engineering
QoS 3 3 3

Path Selection 3 3

Link Failure Detection 3

Network Virtualization
Slicing 3 3 3

Virtual Switches 3

Monitoring and Telemetry
Query Language 3

Alerting Mechanism 3

Windowed History 3 3 3 3 3

Security Access Control 3 3 3

As Table 3.3 illustrates, all of the SDN programming languages and frameworks

provide a minimum set of abstractions to support basic network functions. In addi-

tion, OSDF, Merlin, Pyretic, and Kinetic are examples of SDN programming systems

that go beyond supporting basic network functions and provide abstractions that

can be used to support traffic engineering, network virtualization, monitoring and

telemetry, and security management applications. OSDF provides capabilities such

as a path selection service that allows a system to reroute a specific network traffic

along an alternative path whenever a link or device fails. In addition, Frenetic pro-

vides a query language that can be used to retrieve network statistics and implement

dynamic SDN management applications. Although it can be extended to support

additional monitoring capabilities, OSDF uses native SDN controller capabilities to

retrieve the required network statistics and does not introduce redundant functions

for monitoring and telemetry. OSDF and Merlin both provide almost the same func-

tionality, and both try to simplify network programming. However, Merlin requires

the use of a predicate language to specify a set of match-action fields and to gener-
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ate and install flow rules. OSDF hides such details from programmers and network

administrators.

Finally, we compare the proposed SDN programming languages and frameworks

in terms of the programming language that is used to implement each of the systems

as Table 3.4 illustrates. Java and Python are the two popular programming languages

that are used for implementing SDN management applications and program support

systems. In addition, most of the systems discussed in this dissertation follow an

open-source approach, making their code available to the researchers and developers.

Table 3.4.: Implementation Details of SDN Programming Languages and
Frameworks

OSDF Merlin Frenetic Procera Kinetic Nettle PonderFlow Pyretic ONOS Intent
Programming Language Java OCaml Python Haskell Python Haskell Java Python Java
Open Source 3 3 3 3 3 3 3

3.4.6 Potential Use of an Event Distribution System

Packet processing based on a set of high-level policies is one of the key design

aspects of OSDF. Programmers have two potential options for processing of packets

to implement each network operation service:

• Internal Packet Processing : In this approach, programmers can use the built-

in packet processors that are available in most of the current SDN controllers

for processing of incoming packets to generate appropriate flow rules based on

high-level current active policies in the system.

• External Packet Processing : In this approach, programmers can use an event

distribution system to externalize packet processing to implement each of the

network operation services as a microservice outside of the controller. In other

words, programmers can implement OSDF and its modules as an external and

controller independent application as far as we equip an SDN controller core to

an event distribution mechanism that allows us to externalize packet processing.
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For example, programmers can use Umbrella services and its APIs to implement

an intent-based SDN programming framework like OSDF.
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4 IMPLEMENTATION DETAILS OF THE PROPOSED ARCHITECTURES

This section explains the implementation details of each of the frameworks proposed in

Chapter 3, including the details about the technologies, platforms, and programming

languages that we used to implement each framework.

4.1 An Overview of Apache Kafka

Apache Kafka is a streaming platform that provides the following capabilities [69]:

• Offers a publish and subscribe messaging system that programmers can use to

stream records, similar to a message queue or enterprise messaging system.

• Stores streams of records in a fault-tolerant manner.

• Processes streams of records as they occur in the system.

Kafka uses a topic that corresponds to a category (or feed) to publish the records.

Topics in Kafka are always multisubscriber, meaning that zero, one, or many con-

sumers can subscribe to the topic and receive its data. Figure 4.1 illustrates a

producer-consumer model that uses Kafka and includes the following key compo-

nents:

• Producers: Producers are processes that publish data to the topics of their

choice.

• Consumers: Consumers of topics pull messages off a Kafka topic.

• Kafka Cluster: A Kafka cluster consists of one or more servers (i.e. Kafka

brokers) that run Kafka software.
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Consumer Consumer Consumer

Producer Producer Producer

Broker 1 Broker 2 Broker 3Kafka Cluster

Figure 4.1.: A producer-consumer model using Apache Kafka

Kafka uses the TCP protocol to enable communication among Kafka clients and

servers. Furthermore, Kafka has four core APIs:

• Producer API : The producer API allows an application to publish a stream of

records to one or more Kafka topics.

• Consumer API : The consumer API allows an application to subscribe to one

or more topics and consume the stream of records.

• Streams API : The streams API allows an application to act as a stream proces-

sor to consume an input stream from one or more topics and produce an output

stream to one or more output topics.

• Connector API : The connector API provides the feature of building and run-

ning reusable producers or consumers that connect Kafka topics to existing

applications or data systems.
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4.2 An Overview of gRPC

gRPC [70] is an open source project initially designed by Google to provide an

RPC system. gRPC uses Hyper Text Transfer Protocol (HTTP) version 2 [71] as a

transport mechanism to make communication possible between two end-points of a

messaging system and uses protocol buffers [72] as the Interface Description Language

(IDL) for serializing structured data (i.e. it specifies underlying message interchange

format). As Figure 4.2 illustrates, the idea of gRPC is based on defining a service

and specifying the methods of a service that a client can call remotely with their

parameters and return types. In the client side, a gRPC stub can directly call methods

on a server application and a different machine by sending a protobuf request. On

the other hand, the server implements a service and runs a gRPC server to handle

client calls. A programmer can implement gRPC servers and clients in variety of

programming environments. For example, a programmer can implement a gRPC

server in Java and a set of clients in Go [73], Python [74], or C++. gRPC provides

four types of RPCs that are explained briefly as follows:

• Unary RPC : This is the simplest form of an RPC that gRPC provides, where

a client sends a single request and gets back a single response.

• Server Side Streaming RPC : In the server-side streaming RPC, a client sends a

request to the server and receives a stream that can be used to read a sequence

of messages until there are no more messages.

• Client Side Streaming RPC : In the client side streaming RPC, a client writes

a stream of messages on a gRPC channel to send them to the server. Once the

client has finished writing the messages on the channel, it waits for the server

to read the messages and return a response.

• Bidirectional Streaming RPC : In bidirectional streaming RPC, both the client

and server send a stream of messages using a read-write stream. The two stream
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Protobuf Request
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Figure 4.2.: The gRPC client-server architecture

channels operate independently, which means the clients and servers can read

and write their messages in whatever order they choose.

4.2.1 An Overview of Protocol Buffers

Protocol buffers are like XML [75] that can be used to serialize structured data in

an efficient, simpler, faster, and more flexible manner. A protobuf file is an ordinary

text file with a .proto extension. In a protobuf file, programmers can define the

following key components:
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• message: Protocol buffer uses a message to define protobuf data, where each

message is a small logical record of information containing a series of name-value

pairs called fields.

• service: A service defines the RPC methods that clients can call from a remote

server that implements the service.

After defining the protobuf messages and services for a specific purpose (e.g. an

event distribution system), a programmer uses a protobuf compiler to auto generate

data classes for multiple programming languages.

4.3 Implementation Details of an Event Distribution System

We use two technologies including Apache Kafka [69] and gRPC [70] to implement

an event distribution system using publish-subscribe and point-to-point messaging

paradigms. The following subsections explain each of the proposed event distribution

systems:

4.3.1 The Architecture of an Event Distribution System Using Kafka

Figure 4.3 illustrates an architecture that uses Apache Kafka to externalize event

processing which has the following key components:

• Kafka Event Distribution Application: The architecture follows the producer-

consumer model for the event distribution based on Apache Kafka. A Kafka

event distribution application listens for events that occur in the controller core,

publishes the events on a Kafka cluster, and external processes and applications

consume the events. In other words, the event distribution application acts as

a producer by pushing data to brokers on the Kafka cluster, and external ap-

plications and services act as consumers that receive the data.

• Applications and Services: As Figure 4.4 illustrates, whenever an applica-

tion needs to receive incoming events from the controller, the application sends
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an HTTP request to the event distribution application to subscribe to a specific

type of event (e.g a packet event, topology event, etc.). The Kafka event dis-

tribution application checks the request, subscribes the requesting app to the

specified type of event, and then replies to the requesting app. In our imple-

mentation, the Kafka event distribution application encodes each packet in a

protobuf message and publishes the message as an array of bytes to the Kafka

cluster. Whenever an application receives an event by consuming it from Kafka

cluster, the application must decode and parse the event.

• Kafka Cluster: Each Kafka broker runs a Kafka server form a cluster of

servers. The event distribution system in the controller core acts as a producer

that publishes events into Kafka topics within the broker. A consumer of a

given topic consumes all messages on that topic.

4.3.2 The Architecture of an Event Distribution System Using gRPC

The second type of event distribution mechanism uses gRPC server side streaming.

As Figure 4.5 illustrates, we equip an SDN controller with a gRPC event distribu-

tion mechanism and use server side streaming to propagate events. The application

implements a push-notification system that provides incoming events to external pro-

cesses. As Figure 4.6 shows, an external application or service sends a registration

request to the gRPC server to register as a receiver. Then the external application

subscribes to a topic (in this case a specific type of event) which causes the server to

start streaming occurrences of the specified type of event.

Appendix A defines the protobuf messages and the services used to implement the

above behavior. The event notification service consists of two methods: 1) a register

method that takes care of the incoming registration requests from the clients to reg-

ister them in the server and 2) onEvent method that streams notification messages

for each type of event. Our implementation extends the onEvent method to support

multiple types of events by adding listener interfaces for additional event types.
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Kafka Based Event Distribution System

SB Protocols

SB APIs

Switch

Switch
Switch
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AppServiceApp
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gRPC/REST APIs between 
microservices

gRPC/REST API

Figure 4.3.: Illustration of using Kafka for event distribution with an SDN controller

4.3.3 Using the Event Distribution Mechanisms with Current SDN Controllers

The point of injecting an event distribution mechanism into SDN controllers arises

from our goal of moving toward disaggregated control plane services (i.e., restructure

the controller as a set of cooperative microservices). As a first step, we equipped

current SDN controllers with an event distribution system to measure and assess

externalization of event processing by implementing of external reactive and proac-

tive based management applications. To make the result useful, we defined a set of

complimentary gRPC services, and then used existing NB APIs as the interface to

external applications. For example, an external application or service that processes

incoming packet events may need to return the packets that caused the event to the

pipeline. To permit such processing, we defined a gRPC service that an application

or service can invoke to return a packet to the pipeline. In addition, if an external ap-
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App/Service Kafka Cluster
Kafka Based Event 
Distribution System

Subcribe to a specefic type of event

Response

EventEvent

Figure 4.4.: The message passing protocol for the Kafka based event distribution
system

plication or service needs to install, remove, or update flow rules on network devices,

and retrieve topology information, the application has a choice of using a traditional

REST API or gRPC. Figures 4.7 and 4.8 show the use of Kafka and gRPC event

distribution mechanisms with current SDN controllers.

4.4 Implementation Details of Umbrella Framework

We used Java programming language to implement a prototype of the Umbrella

framework [76]. We wrote driver modules for the ONOS and OpenDayLight SDN

controllers. Umbrella provides a set of high-level and controller independent APIs

and services that programmers can use for implementing of SDN management appli-

cations. As we already pointed out, SDN controllers provide NB APIs such as REST

API that are different in terms of naming convention, syntax, data resources, and
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gRPC Based Event Distribution System
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Figure 4.5.: An illustration of using gRPC event distribution with an SDN controller

usage. However, since most of the SDN controllers follow the same paradigms for

defining control plane services, it is possible to define a set of high-level abstractions

to be independent of the SDN controllers. In the first version of the framework, we

define a set of minimum required unified and controller independent services includ-

ing a flow service, a topology service, an event notification service that we explain

the implementation details of each in the following subsections.

4.4.1 Flow Service

The flow service defines a set of high-level abstractions based on the match-action

paradigm that most of the current SDN controllers such as ONOS and OpenDayLight
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Figure 4.6.: The message passing protocol for the gRPC based event distribution
system

use for installing, removing, updating flow rules, and retrieving their statistics. Flow

service provides a flow abstraction which has the following key items:

• FlowMatch: This class defines a set of match fields such as layer 2 (e.g. MAC

address), layer 3 (e.g. IP addresses, protocol number), layer 4 fields (e.g. TCP

or UDP ports). Programmers can expand this class to support new protocols.
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Figure 4.7.: Usage of Kafka based event distribution system with current SDN
controllers

• FlowActions : This class defines a set of actions that each network device per-

forms on incoming packets. Some of the typical actions that Umbrella frame-

work supports are DROP that drops a packet, OUTPUT that forwards a packet

to an output port, CONTROLLER that sends packet to the controller for fur-

ther processing, and GOTO TABLE that sends a packet to a specific table for

further processing. Programmers can expand this class to support new actions.

• Priority : This integer field specifies the priority of a flow rule.

• TableId : This integer field specifies the id of the table that programmers use

for installing, removing, and updating a set of flow rules on a network device.

• DeviceId : Each SDN controller assigns a unique id to each of the network

devices in the network topology and Umbrella uses this id for finding devices

in a network topology and for installing, removing, and updating a set of flow

rules on a network device.
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Figure 4.8.: Usage of gRPC based event distribution system with current SDN
controllers

• isPermanent : This boolean field specifies if programmers should install a flow

rule permanently or they need to specify a time out.

• AppId : AppId associates each flow rule with the id of an application that installs

that flow rule.

• Cookie: This field specifies the flow rule cookie.

• TimeOut : Programmers can assign a time-out to each of the flow rules.

• FlowID : SDN controllers assign a unique ID to each of the flow rules that

programmers can use for retrieving flow rule statistics, updating, and deleting

flow rules.

Appendix B defines the Flow abstraction using the Java programming language.
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4.4.2 Topology Service

Most of the SDN controllers use a graph as an abstraction to represent the network

topology. Umbrella uses the same paradigm to define a set of unified abstractions on

top of the NB APIs that are used to retrieve topology information. The Topology

service defines the following abstractions for a network topology store:

• TopoVertex : This class represents a node in the network topology. Programmers

can extend the class to represent all types of network devices in a network

topology such as a TopoHost and a TopoSwitch.

• TopoEdge: This class represents a link in the network topology. Each TopoEdge

has the following fields to specify the two end points of each link in the network

topology:

– Src: This field specifies the source end point (i.e. source device) in a link

in the network topology.

– Dst : This field specifies the destination end point (i.e. destination device)

in a link in the network topology.

– SrcPort : This field specifies the source port (i.e. source port of a device)

in a link in the network topology.

– DstPort : This field specifies the destination port (i.e. destination port of

a device) in a link in the network topology.

– State: This field specifies the state of a link which can be active or inactive.

– Type: This field specifies the type of each edge in the network topology. We

categories the links into three major categories: SWITCH TO SWITCH,

SWITCH TO HOST, and HOST TO SWITCH.

– Weight : Programmers can use this field to assign a weight to each link in

the network topology.

– Label : Progrmmers can use this field to assign a label to each edge in the

network topology.
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Appendices C and D contain definitions of the TopoVertex and TopoEdge ab-

stractions using the Java programming language.

4.4.3 Event Notification Service

Umbrella provides an event notification service that management applications can

use to receive network events such as topology events, packet events, flow rule events,

etc. The Umberella event notification server has two major components:

• eventMonitor API : Umbrella defines an event monitor API class that can be

extended to monitor different types of events. An instance event monitor class

can add an event listener to listen to a specific type of event.

• eventListener API : Umbrella defines an event listener API class which has an

onEvent callback function that will be called whenever an event occurs.

4.5 Implementation Details of OSDF

We used the Java programming language to implement a prototype [77] of OSDF

as a reactive based application for ONOS [2] SDN controller. OSDF uses the Packet-

Service class in ONOS to implement packet processors for parsing of incoming packets

and filter them based on current active policies in the system for further processing.

OSDF also uses the ONOS TopologyService class to retrieve topology information and

compute end-to-end paths between two endpoints, FlowService to install, update, and

delete flow table rules based on current active high-level policies in the system, and

RegionService class to define a region of network devices to distinguish intra-site and

inter-site high-level network policies.
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5 PERFORMANCE EVALUATION AND EXPERIMENTAL RESULTS

This chapter compares the advantages and disadvantages of the proposed event dis-

tribution systems. In addition, it presents an evaluation of the Kafka and gRPC

based event distribution mechanisms using various performance metrics such as re-

sponse time and throughput. Furthermore, it explains the Umbrella programming

APIs and their usage. Finally, the chapter presents an evaluation of the performance

and functionality of the OSDF framework.

5.1 Emulation and Experimental Setup

For experimental results of this dissertation, we deployed an SDN testbed consists

of 10 Ethernet switches that logically define 5 sites (departments of an organization)

that are connected together as Figure 5.1 illustrates. To make our testbed emulate

an enterprise network, we divide each physical switch logically into 10 independent

smaller switches using virtualized mode. Each site is a Fat-tree [78] network topology

as Figure 5.2 illustrates. The connections between virtual switches are 1GB links

and we aggregate 1GB links to connect sites, thereby emulating high capacity links.

Overall, our network consists of 50 virtual switches and more than 130 links. In

addition to an SDN testbed, we used the Mininet [79] network emulator to evaluate

the proposed architectures at a larger scale.

5.2 A Comparison of Kafka and gRPC Based Event Distribution Systems

The advantages and disadvantages of the two event distribution mechanisms can

be summarized:
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Figure 5.1.: Inter-sites network topology

• Programming Language Agnosticism: Each of the two event distribution mech-

anisms provides a facility that can be used to implement services and appli-

cations in arbitrary programming languages. From the client side perspective,

however, gRPC makes it easier than Kafka to expand a distribution system to

include apps written in new programming languages. To use gRPC with a new

language, a programmer only needs to compile the set of protobuf messages

used for communication between the event distribution system and each mi-

croservice. The gRPC technology automatically generates the gRPC stubs that

external SDN applications and services need. In contrast, to use Kafka with a
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Figure 5.2.: A Fat-tree network topology

new programming language, a programmer must implement a set of high-level

abstractions that applications use to receive Kafka events.

• Performance optimization: In the Kafka implementation, a programmer must

tune parameters in Kafka brokers, producers, and consumers to optimize perfor-

mance. Using gRPC allows applications access a remote procedure call mech-

anism that has a high performance potential, but it is not always clear how to

optimize performance.

• Loose Coupling : Kafka and the publish-subscribe paradigm in general, provides

a more loosely coupled communication system than gRPC and point-to-point

messaging technologies. In Kafka’s publish-subscribe paradigm, producers and

consumers do not need to know the existence of other producers and consumers.

In gRPC, however, a client needs to know about the services that the event
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distribution system provides. Using a loosely coupled event distribution system

offers the advantages of scalability, resilience, and maintainability.

• Fault Isolation and Code Base Disaggregation: Disaggregating the control plane

services and using an event distribution mechanism increase fault isolation and

allow code base disaggregation regardless of the language used, by keeping com-

ponents independent of one another.

5.3 Performance Evaluation of Kafka and gRPC Based Event Distribution Systems

We implemented prototypes of the two event distribution systems for the ONOS [4]

SDN controller. To measure the two distribution mechanisms, we used the SDN

testbed explained above.

5.3.1 Response Time Measurements

This experiment measures response time to evaluate the overhead of external

event processing. Our goal is to compare the amount of time that an external app

or service needs to process a packet event with the time it takes to process the

same packet even inside the monolithic version of ONOS, and to understand the

effect on overall response time. In the internal ONOS packet processing, whenever

a host sends a ping request for which no forwarding rules have been established,

each switch along the path sends the incoming packet to the controller core, which

processes the packet internally and returns the packet to the switch to be forwarded.

In the disaggregated architecture, whenever a host sends a ping request for which no

forwarding rules have been established, each switch along the path sends the incoming

packet to the controller core, and the event distribution system in the core (using

either Kafka or gRPC) distributes the incoming packet to the set of external apps

and services that have subscribed to receive packet events. The external process then

uses gRPC to return the packet to the switch for forwarding. To focus measurements
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on the control plane overhead, we did not install flow rules. Thus, each packet causes

a packet event at each switch along the path. We ran the experiment 500 times

and measured the ping response time between two end hosts in our SDN testbed

that are 5 hops apart. As the graph in Figure 5.3 shows, externalization of packet

processing introduces overhead that increases the overall response time. As a baseline,

we measured the average response time for internal processing in traditional (i.e.,

completely aggregated) ONOS as 24 ms. The average response time for a gRPC

system is 29 ms, and the average time for a Kafka system is 35 ms. We conclude

that using gRPC introduces less overhead than using Kafka based event distribution

system.
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5.3.2 Throughput Measurements

To assess the impact of externalized packet processing and the use of a REST API

[80] for flow rule installation on throughput, we compare external reactive forwarding

applications that use gRPC and Kafka event distribution systems with an ONOS

reactive forwarding application. In all three cases, we use a hard time-out of 10

seconds to remove flow rules (i.e.,the flow rules installed in a switch disappear every

10 seconds, which causes packet events and re-installation of the rules). We use the

iperf3 tool to generate TCP [81] traffic, varying the the number of concurrent TCP

connections, and running each measurement for 150 seconds. As the results in Figure

5.4 show, the effect of externalized packet processing on throughput is negligible.

Furthermore, the overhead of using a REST API to install flow rules is larger than

overhead introduced by externalization.
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5.4 Functionality of the Umbrella Framework

As we mentioned earlier, programmers can use the Umbrella framework for writ-

ing of SDN management applications using its high-level programming abstractions.

To show the functionality of the Umbrella APIs, we implemented two sample applica-

tions, including a forwarding and a firewall applications that we explain them briefly

as follows:

5.4.1 An Example Forwarding Application

Suppose a programmers wants to write an application to route traffic between all

of the hosts that belong to the same subnet. To achieve this goal, the programmer

implements an application using Umbrella APIs to generate and install appropriate

forwarding rules on each switch between two end points. The Umbrella framework

requires three steps:

• First, create an instance of the controller that will be used to execute the ap-

plication on. The programmers assumes that the name of controller is stored

in a config file (e.g. config.properties) and the programmer uses it to initialize

the controller.

• Second, obtain a list of current hosts that have been detected by the controller.

• Third, compute the shortest path between each pair of hosts to determine which

network switches must be configured between the given hosts. The Umbrella

flow abstractions can then be used to generate flow rules based on source and

destination MAC addresses, source and destination IP addresses, and Ethernet

type (IPv4 in this example), and install the generated flow rules on the network

switches.

Appendix E presents a full implementation of the forwarding app using Umbrella

APIs.
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5.4.2 An Example Firewall Application

Consider the implementation of a basic firewall application that enforces the access

control policy given in Table 5.1. Assume a network topology of 4 hosts, with all hosts

on the same subnet.

Table 5.1.: Access Control Policy for Firewall Application

H1 (10.0.0.1) (H2) 10.0.0.2 (H3) 10.0.0.3 (H4) 10.0.0.4
H1(10.0.0.1) NONE DENY WEB DENY
H2(10.0.0.2) DENY NONE DENY ICMP
H3(10.0.0.3) WEB DENY NONE NONE
H4(10.0.0.4) DENY ICMP NONE NONE

To implement a firewall, programmers can create an application that uses the

Umbrella APIs to generate and install appropriate forwarding rules on the switches

between each pair of hosts: (h1,h3) and (h2, h4). Three steps are required:

• First, create an instance of the controller that will be used to execute our

application. Programmers assume that the name of controller is stored in a

config file (i.e. config.properties) and they use it to initialize the controller.

• Second, obtain the list of current hosts, and find a shortest path between each

pair of hosts, (h1, h3) and (h2,h4).

• Third, generate appropriate match-action fields for each pair of hosts based on

the type of traffic which is specified in the table 5.1. For the pair (h1, h3), the

source and destination TCP ports must specify web traffic (i.e., port 80), and

for the pair (h2, h4) the ICMP type and code fields must specify ICMP traffic

(i.e. type=8 (echo request), type=0 (echo reply) and code=0). Note that for

both types of traffic, the match fields also specify source and destination MAC

addresses, source and destination IP addresses, Ethernet type, and IP protocol

number as the match fields.
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Appendix F contains a full implementation of the firewall application using Um-

brella APIs.

5.5 Performance Evaluation of the Umbrella Framework

5.5.1 Experimental Setup and Results

Umbrella provides driver modules for the ONOS and ODL SDN controllers. We

then used the Umbrella high-level API to write a controller-independent application

that installs one-directional flow rules that forward traffic between a sender and a

receiver. We ran a script that performs a total of 10 experiments using Mininet with

linear topology of size 10, 20, 30... 100. Each experiment is performed 5 times and

includes the following steps: 1) Create a Mininet instance to setup the topology with

a specific size. 2) Have the sender transmit packets at the rate of 1 pkt/ms, and after

2 seconds, have our application install flow rules. 3) Arrange for the receiver (i.e.

the destination host in the topology) to receive packets throughout the experiment

and to report the number of packets received. Packet loss is then used to compute

the flow rule setup time. Figure 5.5 illustrates the average flow rule setup time vs.

total number of switches for both the OpenDayLight and ONOS controllers. As the

results show, the flow rule setup time increases as the network span (i.e., number

of switches between the two endpoints) increases. In addition, the simulation results

show that although OpenDayLight outperforms ONOS in smaller network topologies,

ONOS has a better performance for flow rule installation in larger network topolo-

gies. The Umbrella framework makes direct comparison of controller performance

straightforward.



85

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 10  20  30  40  50  60  70  80  90  100

F
lo

w
 R

u
le

 S
et

u
p

 T
im

e 
(m

s)

Number of Switches

ONOS
ODL

Figure 5.5.: Flow rule setup time

5.6 Assessment and Performance Evaluation of OSDF

5.6.1 Prototype and Experimental Setup

An early version of OSDF is implemented in the ONOS SDN controller, an open

source SDN controller that, like other SDN controllers, provides services and APIs

that programmers use to write applications and modules internal to ONOS. We use

the ONOS APIs, such as the topology and flow rule APIs, to implement each network

operation. Other modules, such as the policy parser, policy store, and policy conflict

detection modules, have been implemented from scratch. To provide a broader eval-

uation of OSDF functionality and performance, we use both simulation and testbed

measurements. That is, in addition to the SDN testbed described earlier, we used the

Mininet [79] network emulator to evaluate our framework at a larger scale. We ran
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Mininet on a Linux host with a Intel Core i7 processor and 8GB RAM. To generate

various traffic patterns for the simulation, we used iperf [82], a tool for measuring

the throughput of IP networks.

5.6.2 Simulation and Experimental Results

This section uses typical applications such as Network Traffic Isolation, an Inter

Domain Rate Limiter to provide QoS, Inbound Traffic Engineering, and Forwarding

Resiliency ; OSDF allows each to be implemented easily.

1. Traffic Isolation : Consider the leaf-spine topology that Figure 5.6 illustrates.

We will call the configuration site A.

Figure 5.6.: Site A: a leaf-pine network topology used for traffic isolation
experiments

Assume the network represents a multi-tenant network where hosts H1, H3,

and H5 belong to tenant 1, and H2,H4, and H6 belong to tenant 2. We will

configure the network using OSDF such that hosts owned by a given tenant are
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able to communicate with each other but are blocked from communicating with

hosts owned by other tenants. Suppose we want to route web traffic for tenant

1, and route video streaming traffic for tenant 2. In addition, suppose all of the

network switches in the given topology belong to the same region (site A). To

achieve the goal, we define the following OSDF network policies:

• Route web traffic in site A between (H1, H3), (H1, H5), and (H3,H5) using

the default priority.

• Route video traffic in site A between (H2, H4), (H2, H6), and (H4,H6)

using the default priority.

The network administrator enters above policies into the system using a com-

mand line interface or a script, and OSDF installs OpenFlow rules in appropri-

ate network switches to meet the requirements. As the example shows, instead

of requiring managers to install flow rules, OSDF allows a manager to specify

traffic isolation at the policy level.

2. Inter-site QoS Provisioning: The main goal of this scenario is to experi-

ment with using the abstractions defined above to provision QoS for inter-site

routing. OpenFlow 1.3 introduces meters which can be used to measure and

control the ingress rate of traffic. If the packet rate or byte rate passing through

the meter exceeds a predefined threshold, a meter band will be triggered. A

Rate Limiter is a meter which drops packets when a meter band is reached.

To achieve the goal, the underlying hardware must support metering. Because

Open vSwitch does not support metering directly, we decided to test our QoS

provisioning abstractions using our SDN testbed. Suppose we want to configure

the network illustrated in Figure 5.1 with the following QoS requirements:

• Route web traffic between IT and the sales department using the default

priority, and limit each flow to 200 Mbps.
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• Route video traffic between IT and the sales department using the default

priority, and limit each flow to 500 Mbps.

We ran an experiment between the IT and sales department computers to test

inter-site routing with rate limiting. In this scenario, we initiated four TCP

connections (an aggregate of 800 Mbps) to generate web traffic and two TCP

connections (an aggregate of 1000 Mbps) to generate video traffic. Figure 5.7

summarizes the results, and shows the throughput for each of the web traffic

and video traffic flows is limited to 200 Mbps and 500 Mbps, respectively.
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Figure 5.7.: Inter-site routing with rate limiting

To examine how well QoS provisioning works, we measured inter-site routing

without QoS. To do so, we entered the same basic network policies for web and

video traffic, omitting the rate limiting policies:
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• Route web traffic between IT and sales departments using the default

priority.

• Route video traffic between IT and sales departments using the default

priority.

As the results in Figure 5.8 show, without rate limiting, video and web traffic

are not guaranteed specific limits, and the throughput fluctuates more than

when QoS is applied (i.e., more than in Fig.5.7).

Another proposed programming language, Merlin, addresses QoS provisioning

by providing high level abstractions that can be used to express bandwidth

constraints such as minimum and maximum bandwidth limits. Compared to

our approach, Merlin shares the same weakness as other network programming

languages (e.g., NetKAT) because a programmer must specify low-level packet

match fields to define a policy.

3. Inbound Traffic Engineering : This service refers to splitting incoming traf-

fic over multiple peering links. Consider, for example, the internal representa-

tion of the IT and Sales departments in our SDN testbed, as illustrated in Figure

5.9. Suppose a network administrator wants to configure the two departments

such that the incoming traffic to switch Sales-S1 should be split among the out-

going links. That is, web traffic from the IT department should be forwarded

to port 2 of switch Sales-S1, and video streaming traffic should be forwarded to

port 3 of the same switch.

To achieve the goal, we can define high-level policies as follows:

• Route web traffic between IT and Sales departments via Sales-S1:2 using

the default priority.

• Route video traffic between IT and Sales departments via Sales-S1:3 using

the default priority.
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4. Forwarding Resiliency : Consider the network topology that Figure 5.10

illustrates; call it site C. We report an experiment that shows how OSDF can

use redundant policies with differing priorities to handle the case of rerouting

traffic (web traffic in the example) from a primary path to a backup path during

failures or for maintenance purposes. In the first step, we define high-level

policies for both a primary path and a backup path between two end-points:

• Route web traffic in site C using priority 100 via S3:2.

• Route web traffic in site C using priority 50 via S6:4.

Based on the above policies, if host H1 initiates web traffic to host H2, the

policy with higher priority will be triggered, and OpenFlow rules with priority
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Figure 5.9.: Inbound traffic engineering scenario

Figure 5.10.: A multipath network topology (site C)

100 will be added to network switches along the primary path (i.e. H1, S1, S2,

S3, S7, S10, H2).
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To show how OSDF reacts to adding and removing policies, we wrote a script

that forces a change from the primary to a backup path by removing and adding

the policies every N (Interval) seconds in simulation of 150 seconds. One aspect

of any networking system arises from the need to re-establish valid routes after a

failure with minimal interference. To demonstrate that our framework supports

rerouting without negative impact on traffic, we conducted an experiment to

compare the throughput of a flow in the presence of rerouting to the throughput

of the same flow with no rerouting. To conduct the experiment, we ran iperf

as a server using port 80 on H2, and ran iperf as a client on H1 with the

default Linux configuration. We repeated the experiment for various numbers

of parallel connections. As the results in Figure 5.11 show, when switching

between primary path and backup path is not frequent (e.g the interval is 40

seconds) the throughput remains close to the maximum possible throughput,

which is around 940 Mbps (achieved when just the primary path is used). When

we change between the primary and backup paths frequently (e.g., every 2

seconds) the throughput drops significantly, specially when multiple, parallel

TCP connections (e.g., 50). Multiple factors explain the decrease. First, as the

number of connections increases from 1 to 50, the setup time (i.e., time required

to install OpenFlow rules) will increase because the time is linearly proportional

to number of rules. Second, switching paths introduces delay, which drives TCP

into congestion avoidance. Frequent changes means lower throughput because

TCP will spend more time recovering, and less time in a stable state.

5.6.3 Simulation Scenarios

To test our framework from functional and performance points of view and to

examine the effects of scale, we ran simulation scenarios.

• Response time : The simulation uses a worst-case linear network topol-

ogy with 40 switches that we call site D. Figure 5.12 illustrates the topol-
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Figure 5.11.: Experimental results for forwarding resiliency scenarios

Figure 5.12.: Site D: A worst-case linear network topology

ogy. To configure the network to route web traffic between H1 and H40,

we use a high-level policy:

– Route web traffic in site D using the default priority.

To evaluate setup time, we initiate various numbers of TCP connections

on port 80 between H1 and H40, and measure the response time for each.
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We define the response time as the amount of time needed to establish the

entire set of the connections between the two end-points. The time includes

the amount of time needed to read and parse a network policy, generate

flow rules, and install generated rules on the network devices for all of the

connections between the two end-points. By increasing the number of TCP

connections established between two end-points, we increase the number of

OpenFlow rules that must be installed in network switches along the path.

Consequently, we measured the response time as a function of number of

flows and compared the response time of OSDF with reactive forwarding

approach implemented by ONOS, as the results in Figure 5.13 illustrate.

As the results show, the response time increases linearly as number of

connections increase between the two end-points. The reason that our

system substantially outperforms the ONOS reactive approach arises from

an optimization in which our system pre-installs OpenFlow rules in all

switches across the entire end-to-end path when the first PACKET IN

message arrives at a controller. The ONOS reactive forwarding approach

waits until a PACKET IN message arrives from a switch before installing

a forwarding rule in the switch.

To validate the simulation results, we ran the same experiment on our

testbed; Figure 5.14 shows the results. The experimental measurement

confirms that the simulation results are valid. Note that the TCAM table

on network switches in our testbed can only hold 2K entries when more

than 2 match fields are used by flow rules. Therefore, the number of

connections measured across the testbed is limited by the hardware.
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6 FUTURE WORK

Migrating SDN controllers from a monolithic architecture to a microservice based

architecture can potentially open new areas of research. The following provides a

brief list:

• This dissertation proposes a new architecture for the next generation of SDN

controllers based on a microservice architecture. However, designing and imple-

menting SDN controller subsystems for the new architecture will require further

investigation. Specifically, topology, control, and configuration subsystems must

be studied. The following explains some of the research questions:

– As we discussed earlier, each subsystem provides a set of interservice and

NB APIs to communicate with other subsystems and applications. One

of the critical question that researchers should answer is how such APIs

should be designed? Should we design these APIs using a single design

pattern to allow easy porting from one subsystem to another subsystem?

For example, does employing gRPC for communication between all apps

and services allow the use of a single set of generic methods that can then

be customized to define the new protobuf messages that are required for

each subsystem? What are the tradeoffs of using generic methods instead

of using more specific methods that tailor the functionality to each specific

subsystem?

– The design and implementation of SDN management applications must be

evaluated for both functionality and performance in a microservice archi-

tecture. For example, if a controller adopts gRPC for the communication

between microservices, what is the impact of the communication overhead

on network performance (e.g., on latency)?
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– In a microservice architecture, the codebase for each subsystem is organized

in a separate repository which makes the development of each subsystem

independent of other subsystems but it does not mean the subsystems are

not dependent to each other in terms of functionality. Thus, to have a

fully functional SDN controller, all of the required subsystems and appli-

cations need to be deployed in a cluster that can communicate with each

other to provide the required functionalities. One of the potential solution

that programmers can use to collectively facilitate reliable, secure commu-

nications between microservices is service mesh. A service mesh acts as a

proxy that provides critical services like load balancing, service discovery,

authentication, operational monitoring, etc. Despite the fact that a service

mesh has advantages but it also has some drawbacks. For example, using

a service mesh increases the latency of service to service communication

as each call out to another service must go through the proxy and load

balancer. Studying the use of a service mesh for a microservice based SDN

controller is an open research problem that should be addressed to answer

the following questions: How does a service mesh affect on performance of

a disaggregated SDN controller? Does a service mesh increase the com-

plexity of a disaggregated SDN controller? What are the alternatives that

developers can use in the context of SDN to achieve the goals and avoid

increasing delay for performing network operations?

– As discussed earlier, the implementation of OSDF reported in this disser-

tation consists of an internal application for the ONOS SDN controller,

and it uses the Java programming language. However, migrating to a

disaggregated control plane will allow OSDF or similar intent-based SDN

programming frameworks to be implemented outside of the controller core

using an arbitrary programming language. The question is how should an

intent-based SDN framework be designed to be agnostic of the program-

ming language?
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• Externalization of event processing, especially packet events, has the potential

to overwhelm clients that consume the events. In many cases, a given client only

needs to consume a subset of the events. For example, a topology subsystem

that is responsible for building a network topology only needs to process LLDP

and ARP packet events. The question arises: how and where should event

filtering be done to limit the events that a client receives? Some potential

options include:

– Client Side Filtering : In the client side filtering, all of the events will be

sent to the external apps and services and application and services are

responsible to filter events according to their requirements.

– Server Side Filtering : In the server side filtering, the event distribution

system filters events based on type before publishing them on a broker or

sending them directly to the application and services using a point-to-point

channel. In addition, in publish-subscribe model, programmers can equip

a broker to filter events based on type.

• External apps use NB interfaces, such as the REST API that current SDN

controllers provide to the programmers for installing, removing, and updating

flow rules. A REST API does not provide an efficient approach for installing of

flow rules in external reactive-based applications because it introduces a notable

delay. Replacing the REST APIs with a new NB interface, such as a gRPC-

based NB interface, can be considered as a potential solution to speed up flow

rule installation in external applications. The proposed architecture opens new

areas of research in designing of new NB interfaces for SDN controllers to meet

new requirements.
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7 SUMMARY AND CONCLUSION

A monolithic architecture for an SDN controller aggregates all control plane subsys-

tems into a single, gigantic program. An SDN controller that adopts the monolithic

approach restricts programmers who write management applications to the program-

ming interfaces and services that the controller provides. In this dissertation, we

propose a distributed architecture that disaggregates controller software into a small

controller core and a set of cooperative microservices to overcome the limitations in-

herent in the monolithic architecture. Disaggregation allows a programmer to choose

a programming language that is appropriate for each microservice. We explain the

steps that are required to migrate from a monolithic architecture to a microservice

architecture. One of the key steps in migrating from a monolithic architecture to a mi-

croservice based SDN controller requires devising a mechanism to distribute network

events to external processes. To address the problem, we consider two event dis-

tribution mechanisms based on two generic messaging paradigms: publish-subscribe

and point-to-point models. We discuss the advantages and disadvantages of the two

event distribution systems. In addition, we use two popular technologies, gRPC and

Apache Kafka, to devise prototypes of the event distribution systems and evaluate

their functionality and performance. Our experimental results show that externalizing

event processing introduces some overhead, and the overhead resulting from gRPC is

lower than the overhead resulting from Kafka. Externalizing event processing has a

negligible effect on throughput, and the cost is considered small when compared with

the advantages of portability, flexibility, and support for multilanguage management

applications.

In addition, the dissertation presents a unified software defined network program-

ming framework called Umbrella that can be used to implement SDN applications

independent of NB APIs that different SDN controllers provide. Umbrella employs
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the event distribution systems that we proposed as part of the disaggreagated control

plane architecture, and includes support for both reactive and proactive applications.

Umbrella increases the portability of SDN applications across SDN controllers and

makes it easy for the developers to evaluate a single applications on multiple SDN

controllers. In addition, Umbrella reduces the programming complexity by providing

high-level programming abstractions that allows a programmer to write SDN appli-

cations without requiring the programmer to master low level details of each SDN

controller. The dissertation explains the Umbrella APIs and illustrates their use with

two SDN applications: a firewall and forwarding. Furthermore, the dissertation re-

ports an evaluation of the performance of SDN applications in terms of flow rule setup

time on two SDN controllers; ONOS and OpenDayLight.

Finally, the dissertation presents an SDN-based network programming framework,

OSDF. OSDF provides a high-level API that can be used by managers and network

administrators to express network requirements for applications and policies for mul-

tiple domains. OSDF also provides a set of high-level network operation services that

handle common network configuration, monitoring, and QoS provisioning. OSDF is

equipped with a policy conflict management module to help a network administra-

tor detect and resolve policy conflicts. The dissertation explains the OSDF policy

specification, and implements its use to implement typical SDN management appli-

cations, such as network traffic isolation, inbound traffic engineering, intra and inter

domain QoS provisioning, and forwarding resiliency. The dissertation also evaluates

the OSDF framework in terms of functionality and performance using simulation and

experimental results.
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A PROTOBUF MESSAGES AND SERVICES FOR THE GRPC BASED

EVENT DISTRIBUTION SYSTEM

1 syntax = ”proto 3” ;

3 // Corresponds to Reg i s t r a t i on Request protobuf message

message Reg i s t ra t ionRequest {

5 s t r i n g c l i e n t I d = 1 ;

}

7 // Corresponds to Reg i s t r a t i on Response protobuf message

message Reg i s t rat ionResponse {

9 s t r i n g c l i e n t I d = 1 ;

s t r i n g s e rv e r I d = 2 ;

11 }

// An enumeration f o r d i f f e r e n t types o f events

13 enum topicType {

PACKET EVENT = 0 ;

15 LINK EVENT = 1 ;

}

17 // Corresponds to Topic protobuf message

message Topic {

19 s t r i n g c l i e n t I d = 1 ;

topicType type = 2 ;

21 }

// Corresponds to No t i f i c a t i o n protobuf message

23 message No t i f i c a t i o n {

s t r i n g c l i e n t I d = 1 ;

25 s t r i n g s e r v e r I d = 2 ;

topicType type = 3 ;

27 oneof event {

net . packet . PacketContextProto packetContext = 4 ;

29 net . l i n k . L inkNot i f i c a t i onPro to l inkEvent = 5 ;

31 }

}

33

// Corresponds to EventNot i f i c a t i on s e r v i c e

35 s e r v i c e EventNot i f i c a t i on {

rpc r e g i s t e r ( Reg i s t rat ionRequest ) r e tu rns ( Reg i s t rat ionResponse ) ;

37 rpc onEvent ( Topic ) r e tu rns ( stream No t i f i c a t i o n ) ;

39 }
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B UMBRELLA FLOW SERVICE API USING JAVA PROGRAMMING

LANGUAGE

1 /∗

∗ Copyright ${2018} [ Adib Rastegarnia , Douglas Comer ]

3 ∗

∗ Licensed under the Apache License , Vers ion 2 .0 ( the ” License ” ) ;

5 ∗ you may not use t h i s f i l e except in compliance with the L icense .

∗ You may obta in a copy o f the L icense at

7 ∗

∗ http ://www. apache . org / l i c e n s e s /LICENSE−2.0

9 ∗

∗ Unless r equ i r ed by app l i c ab l e law or agreed to in wr i t ing , so f tware

11 ∗ d i s t r i bu t ed under the L icense i s d i s t r i bu t ed on an ”AS IS” BASIS ,

∗ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r expre s s or impl ied .

13 ∗ See the L icense f o r the s p e c i f i c language governing permi s s i ons and

∗ l im i t a t i o n s under the L icense .

15 ∗/

17 package api . f l ow s e r v i c e ;

19 import java . u t i l . L i s t ;

21 /∗∗

∗ Represents a f low inc lud ing a l i s t o f match f i e l d s and ac t i on s .

23 ∗/

public c lass Flow implements FlowInte r face {

25

27 /∗∗

∗ An ob j e c t o f match f i e l d s .

29 ∗/

protected FlowMatch flowMatch ;

31 /∗∗

∗ A Li s t o f f low ac t i on s .

33 ∗/

protected List<FlowAction> f l owAct ions ;

35

/∗∗

37 ∗ Pr i o r i t y o f a f low .

∗/

39 protected I n t eg e r p r i o r i t y ;

41 /∗∗

∗ Flow ru l e t ab l e ID .

43 ∗/

protected I n t eg e r tableID ;

45 /∗∗

∗ Flow ru l e dev i ce ID .

47 ∗/

protected St r ing deviceID ;

49



110

/∗∗

51 ∗ Flow ru l e time out .

∗/

53 protected I n t eg e r timeOut ;

/∗∗

55 ∗

∗/

57 protected boolean isPermanent ;

/∗∗

59 ∗ Flow ru l e cook i e .

∗/

61 protected I n t eg e r cook i e ;

/∗∗

63 ∗ An app l i c a t i on ID f o r a f low ru l e .

∗/

65 protected St r ing appId ;

/∗∗

67 ∗ f low ru l e ID .

∗/

69 protected St r ing flowID ;

71 /∗∗

∗ Defaul t cons t ruc to r

73 ∗/

protected Flow ( ) {

75 }

77 /∗∗

∗ Constructor based on a bu i l d e r

79 ∗

∗ @param bu i l d e r : Bui lder ob j e c t to i n i t i a l i z e the f low

81 ∗/

protected Flow ( Bui lder bu i l d e r ) {

83 this . deviceID = bu i l d e r . deviceID ;

this . flowMatch = bu i l d e r . flowMatch ;

85 this . f l owAct ions = bu i l d e r . f l owAct ions ;

this . p r i o r i t y = bu i l d e r . p r i o r i t y ;

87 this . tableID = bu i l d e r . tableID ;

this . timeOut = bu i l d e r . timeOut ;

89 this . isPermanent = bu i l d e r . isPermanent ;

this . cook i e = bu i l d e r . cook i e ;

91 this . appId = bu i l d e r . appId ;

}

93

95 /∗∗

∗ Returns a bu i l d e r ob j e c t .

97 ∗ @return Bui lder ob j e c t .

∗/

99 public stat ic Bui lder bu i l d e r ( ) {

return new Bui lder ( ) ;

101 }

103 /∗∗

∗ Determine a f low i s permenant or not .

105 ∗

∗ @return a boolean

107 ∗/

public boolean isPermanent ( ) {

109 return this . isPermanent ;
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}

111

/∗∗

113 ∗ Returns the p r i o r i t y .

∗

115 ∗ @return p r i o r i t y .

∗/

117 public I n t eg e r g e tP r i o r i t y ( ) {

return this . p r i o r i t y ;

119 }

121 /∗∗

∗ Returns the tab l e ID .

123 ∗ @return tab l e ID .

∗/

125 public I n t eg e r getTableID ( ) {

return this . tableID ;

127 }

129

/∗∗

131 ∗ Sets t ab l e ID .

∗ @param tableID f low ru l e t ab l e ID .

133 ∗/

public void setTableID ( int tableID ) {

135 this . tableID = tableID ;

}

137

/∗∗

139 ∗ Returns the f low time out .

∗

141 ∗ @return time out

∗/

143 public I n t eg e r getTimeOut ( ) {

return this . timeOut ;

145 }

147 /∗∗

∗ Returns the app l i c a t i on ID .

149 ∗

∗ @return app ID .

151 ∗/

public St r ing getAppId ( ) {

153 return this . appId ;

}

155

/∗∗

157 ∗ Returns the dev i ce ID .

∗

159 ∗ @return dev i ce ID .

∗/

161 public St r ing getDeviceID ( ) {

return this . deviceID ;

163 }

165 /∗∗

∗ Returns the cook i e .

167 ∗

∗ @return cook i e .

169 ∗/
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171 /∗∗

∗ Returns f low ru l e ID .

173 ∗ @return f low ru l e ID .

∗/

175 public St r ing getFlowID ( ) {

return this . f lowID ;

177 }

179 /∗∗

∗ Sets f low ru l e ID .

181 ∗ @param flowID f low ru l e ID .

∗/

183 public void setFlowID ( St r ing flowID ) {

this . f lowID = flowID ;

185 }

187 /∗∗

∗ Returns f low ru l e cook i e .

189 ∗ @return f low ru l e cook i e .

∗/

191 public I n t eg e r getCookie ( ) {

return this . cook i e ;

193 }

195 /∗∗

∗ Returns the f low match f i e l d s ob j e c t .

197 ∗ @return f low match ob j e c t .

∗/

199 public FlowMatch getFlowMatch ( ) {

return this . flowMatch ;

201 }

203 /∗∗

∗ Returns the l i s t o f f low act i on ob j e c t s .

205 ∗

∗ @return f low act i on ob j e c t s .

207 ∗/

public List<FlowAction> getFlowActions ( ) {

209 return this . f l owAct ions ;

}

211

/∗∗

213 ∗ Adds a f low match ob j e c t to a f low ru l e .

∗

215 ∗ @param match match ob j e c t .

∗/

217 public void addFlowMatch (FlowMatch match ) {

this . flowMatch = match ;

219 }

221 /∗∗

∗ Adds a f low act i on ob j e c t to a f low ru l e .

223 ∗ @param act i on f low act i on ob j e c t .

∗/

225 public void addFlowAction ( FlowAction ac t i on ) {

this . f l owAct ions . add ( ac t i on ) ;

227 }

229 /∗∗
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∗ Adds a l i s t o f f low ac t i on s ob j e c t to a f low ru l e .

231 ∗ @param ac t i on s a l i s t o f f low act i on ob j e c t s .

∗/

233 public void addFlowActions ( List<FlowAction> ac t i on s ) {

this . f l owAct ions . addAll ( a c t i on s ) ;

235 }

237 /∗∗

∗ Bui lder c l a s s to generate a Flow ob j e c t .

239 ∗/

public stat ic class Bui lder {

241

private FlowMatch flowMatch ;

243 private List<FlowAction> f l owAct ions ;

private I n t eg e r p r i o r i t y ;

245 private I n t eg e r tableID ;

private St r ing deviceID ;

247 private I n t eg e r timeOut ;

private boolean isPermanent ;

249 private I n t eg e r cook i e ;

private St r ing appId ;

251

public Bui lder ( ) {

253 }

255 public Bui lder flowMatch (FlowMatch match ) {

this . flowMatch = match ;

257 return this ;

259 }

261 public Bui lder p r i o r i t y ( int p r i o r i t y ) {

this . p r i o r i t y = new I n t eg e r ( p r i o r i t y ) ;

263 return this ;

}

265

public Bui lder tableID ( int tableID ) {

267 this . tableID = new I n t eg e r ( tableID ) ;

return this ;

269 }

271 public Bui lder deviceID ( St r ing deviceID ) {

this . deviceID = deviceID ;

273 return this ;

}

275

public Bui lder timeOut ( int timeOut ) {

277 this . timeOut = new I n t eg e r ( timeOut ) ;

return this ;

279 }

281 public Bui lder isPermanent (boolean isPermanent ) {

this . isPermanent = isPermanent ;

283 return this ;

}

285

public Bui lder f lowAct ions ( List<FlowAction> ac t i on s ) {

287 this . f l owAct ions = ac t i on s ;

return this ;

289 }
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291 public Bui lder cook i e ( int cook i e ) {

this . cook i e = new I n t eg e r ( cook i e ) ;

293 return this ;

}

295

public Bui lder appId ( St r ing appId ) {

297 this . appId = appId ;

return this ;

299 }

301 /∗∗

∗ I n s t a n t i a t e s an ob j e c t o f type Flow .

303 ∗

∗ @return : Flow ob j e c t .

305 ∗/

public Flow bui ld ( ) {

307 return new Flow ( this ) ;

}

309 }

}
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C UMBRELLA TOPO VERTEX ABSTRACTION USING JAVA

PROGRAMMING LANGUAGE

/∗

2 ∗ Copyright ${2018} [ Adib Rastegarnia , Douglas Comer ]

∗

4 ∗ Licensed under the Apache License , Vers ion 2 .0 ( the ” License ” ) ;

∗ you may not use t h i s f i l e except in compliance with the L icense .

6 ∗ You may obta in a copy o f the L icense at

∗

8 ∗ http ://www. apache . org / l i c e n s e s /LICENSE−2.0

∗

10 ∗ Unless r equ i r ed by app l i c ab l e law or agreed to in wr i t ing , so f tware

∗ d i s t r i bu t ed under the L icense i s d i s t r i bu t ed on an ”AS IS” BASIS ,

12 ∗ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r expre s s or impl ied .

∗ See the L icense f o r the s p e c i f i c language governing permi s s i ons and

14 ∗ l im i t a t i o n s under the L icense .

∗/

16

package api . t opos to r e ;

18

import java . u t i l . Objects ;

20

/∗∗

22 ∗ Representat ion o f nodes in a topology graph .

∗/

24 public c lass TopoVertex {

26 protected St r ing ID ;

protected TopoVertexType type ;

28

public TopoVertex (TopoVertexType type ) {

30 this . type = type ;

}

32

public TopoVertex (TopoVertexType type , S t r ing ID) {

34 this . type = type ;

this . ID = ID ;

36 }

38 /∗∗

∗ Return topo vertex ID .

40 ∗

∗ @return topo vertex ID .

42 ∗/

public St r ing getID ( ) {

44 return this . ID ;

}

46

/∗∗

48 ∗ Set topo vertex ID .

∗
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50 ∗ @param ID topo vertex ID .

∗/

52

public void setID ( St r ing ID) {

54 this . ID = ID ;

}

56

/∗∗

58 ∗ Return topo vertex type .

∗

60 ∗ @return topo vertex type .

∗/

62 public TopoVertexType getType ( ) {

return this . type ;

64 }

66 /∗∗

∗ Set topo vertex type .

68 ∗

∗ @param type topo vertex type .

70 ∗/

public void setType (TopoVertexType type ) {

72 this . type = type ;

}

74

@Override

76 public boolean equa l s ( Object obj ) {

i f ( obj == this ) {

78 return true ;

}

80

//System . out . p r i n t l n (”TopoVertex : equa l s ” ) ;

82 TopoVertex topoVertex = (TopoVertex ) obj ;

84 i f ( topoVertex . getID ( ) . equa l s ( this . ID ) ) {

return true ;

86 }

88 return fa l se ;

}

90

@Override

92 public int hashCode ( ) {

return Objects . hash ( this . ID ) ;

94 }

}
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D UMBRELLA TOPO EDGE ABSTRACTION USING JAVA PROGRAMMING

LANGUAGE

1 /∗

∗ Copyright ${2018} [ Adib Rastegarnia , Douglas Comer ]

3 ∗

∗ Licensed under the Apache License , Vers ion 2 .0 ( the ” License ” ) ;

5 ∗ you may not use t h i s f i l e except in compliance with the L icense .

∗ You may obta in a copy o f the L icense at

7 ∗

∗ http ://www. apache . org / l i c e n s e s /LICENSE−2.0

9 ∗

∗ Unless r equ i r ed by app l i c ab l e law or agreed to in wr i t ing , so f tware

11 ∗ d i s t r i bu t ed under the L icense i s d i s t r i bu t ed on an ”AS IS” BASIS ,

∗ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r expre s s or impl ied .

13 ∗ See the L icense f o r the s p e c i f i c language governing permi s s i ons and

∗ l im i t a t i o n s under the L icense .

15 ∗/

17 package api . t opos to r e ;

19 import org . jg rapht . graph . DefaultEdge ;

21 import java . u t i l . Objects ;

23 /∗∗

∗ Representat ion o f network l i n k s in a network topology .

25 ∗/

public c lass TopoEdge extends DefaultEdge implements TopoEdgeInterface {

27

/∗∗

29 ∗ Source network dev i ce .

∗/

31 private St r ing s r c ;

/∗∗

33 ∗ Dest inat ion network dev i ce .

∗/

35 private St r ing dst ;

/∗∗

37 ∗ Source dev i ce port .

∗/

39 private St r ing s rcPort ;

/∗∗

41 ∗ Dest inat ion dev i ce port .

∗/

43 private St r ing dstPort ;

/∗∗

45 ∗ Topology l i n k s t a t e .

∗/

47 private St r ing s t a t e ;

/∗∗

49 ∗ Topology l i n k type .
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∗/

51 private TopoEdgeType type ;

/∗∗

53 ∗ Topology l i n k weight .

∗/

55 private int weight ;

/∗∗

57 ∗ Topology l i n k l a b e l .

∗/

59 private St r ing label ;

61 public TopoEdge ( ) {

s r c = null ;

63 dst = null ;

s r cPort = null ;

65 dstPort = null ;

s t a t e = null ;

67 type = null ;

weight = 0 ;

69 label = null ;

}

71

/∗∗

73 ∗ Returns type o f a l i n k .

∗

75 ∗ @return type o f a l i n k .

∗/

77 public TopoEdgeType getType ( ) {

return this . type ;

79 }

81 /∗∗

∗ Sets type o f a l i n k .

83 ∗

∗ @param type TopoEdgeType

85 ∗/

public void setType (TopoEdgeType type ) {

87 this . type = type ;

}

89

/∗∗

91 ∗ Returns d e s t i n a t i on attachment point in a topology l i n k .

∗

93 ∗ @return de s t i n a t i on attachment point .

∗/

95 public St r ing getDst ( ) {

return this . dst ;

97 }

99 /∗∗

∗ Sets d e s t i n a t i on attachment po int in a topology l i n k .

101 ∗

∗ @param dst d e s t i n a t i on attachment point .

103 ∗/

public void setDst ( St r ing dst ) {

105 this . dst = dst ;

}

107

109 /∗∗
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∗ Returns l i n k de s t i n a t i on port .

111 ∗ @return de s t i n a t i on port .

∗/

113 public St r ing getDstPort ( ) {

return this . dstPort ;

115 }

117 /∗∗

∗ Sets l i n k de s t i n a t i on port .

119 ∗ @param dstPort d e s t i n a t i on port .

∗/

121 public void setDstPort ( St r ing dstPort ) {

this . dstPort = dstPort ;

123 }

125 /∗∗

∗ Returns source network dev i ce o f a l i n k .

127 ∗ @return source network dev i ce ID .

∗/

129 public St r ing getSrc ( ) {

return this . s r c ;

131 }

133 /∗∗

∗ Sets source network dev i ce o f a l i n k .

135 ∗ @param s r c source network dev i ce ID .

∗/

137 public void s e tS r c ( St r ing s r c ) {

this . s r c = s r c ;

139 }

141 /∗∗

∗ Returns l i n k source port .

143 ∗ @return source port .

∗/

145 public St r ing getSrcPort ( ) {

return this . s r cPort ;

147 }

149 /∗∗

∗ Sets l i n k source port .

151 ∗ @param srcPort source port .

∗/

153 public void s e tSrcPort ( St r ing s rcPort ) {

this . s r cPort = srcPort ;

155 }

157 /∗∗

∗ Returns s t a t e o f a l i n k in the topology .

159 ∗ @return s t a t e o f a l i n k .

∗/

161 public St r ing ge tSta te ( ) {

return this . s t a t e ;

163 }

165 /∗∗

∗ Sets s t a t e o f a l i n k in the topology .

167 ∗ @param s ta t e

∗/

169 public void s e tS t a t e ( St r ing s t a t e ) {
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this . s t a t e = s t a t e ;

171 }

173 /∗∗

∗ Returns weight o f a l i n k .

175 ∗ @return weight o f a l i n k .

∗/

177 public int getWeight ( ) {

return this . weight ;

179 }

181 public void setWeight ( int weight ) {

this . weight = weight ;

183 }

185 public St r ing getLabe l ( ) {

return this . label ;

187 }

189

public void s e tLabe l ( S t r ing label ) {

191 this . label = label ;

}

193

@Override

195 public boolean equa l s ( Object o ) {

i f ( o == this ) {

197 return true ;

}

199 i f ( ! ( o instanceof TopoEdge ) ) {

return fa l se ;

201 }

TopoEdge topoEdge = (TopoEdge ) o ;

203 return Objects . equa l s ( src , topoEdge . s r c ) && Objects . equa l s ( dst , topoEdge . dst )

&& Objects . equa l s ( srcPort , topoEdge . s rcPort ) && Objects . equa l s ( dstPort , topoEdge . dstPort ) ;

205 }

207 @Override

public int hashCode ( ) {

209 return Objects . hash ( src , srcPort , dst , dstPort ) ;

}

211 }
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E IMPLEMENTATION OF FORWARDING APPLICATION USING

UMBRELLA

1 package apps ;

3 import api . f l ow s e r v i c e . Flow ;

import api . f l ow s e r v i c e . FlowAction ;

5 import api . f l ow s e r v i c e . FlowActionType ;

import api . f l ow s e r v i c e . FlowMatch ;

7 import api . t opos to r e . TopoEdge ;

import api . t opos to r e . TopoEdgeType ;

9 import api . t opos to r e . TopoHost ;

import c on f i g . Con f i gSe rv i c e ;

11 import d r i v e r s . c o n t r o l l e r . Con t ro l l e r ;

13 import java . u t i l . ArrayList ;

import java . u t i l . L i s t ;

15 import java . u t i l . Set ;

17 public c lass Forwarding {

public stat ic void main ( St r ing [ ] a rgs ) {

19

21 St r ing contro l lerName ;

23 Cont ro l l e r c o n t r o l l e r = null ;

Con f i gSe rv i c e c on f i g S e r v i c e = new Conf i gSe rv i c e ( ) ;

25 contro l lerName = con f i g S e r v i c e . getControl lerName ( ) ;

27 c o n t r o l l e r = con f i g S e r v i c e . i n i t ( contro l lerName ) ;

29 Set<TopoHost> s r cho s t s = c o n t r o l l e r . topoStore . getHosts ( ) ;

Set<TopoHost> ds thos t s = c o n t r o l l e r . topoStore . getHosts ( ) ;

31

List<TopoEdge> path = null ;

33

35 for (TopoHost srcHost : s r c ho s t s ) {

for (TopoHost dstHost : d s tho s t s ) {

37 i f ( ! s rcHost . equa l s ( dstHost ) ) {

St r ing srcMac = srcHost . getHostMac ( ) ;

39 St r ing dstMac = dstHost . getHostMac ( ) ;

41

path = c o n t r o l l e r . topoStore . getShortestPath ( srcHost . getHostID ( ) , dstHost . getHostID ( ) ) ;

43 c o n t r o l l e r . pr intPath ( path ) ;

45 for (TopoEdge edge : path ) {

47 i f ( edge . getType ( ) == TopoEdgeType .HOST SWITCH) {

continue ;

49 }



122

51 FlowMatch flowMatch = FlowMatch . bu i l d e r ( )

. ethSrc ( srcMac )

53 . ethDst ( dstMac )

. ipv4Src ( srcHost . getHostIPAddresses ( ) . get (0 ) + ”/32” )

55 . ipv4Dst ( dstHost . getHostIPAddresses ( ) . get (0 ) + ”/32” )

. ethType (2048)

57 . bu i ld ( ) ;

59 FlowAction f lowAct ion = new FlowAction ( FlowActionType .OUTPUT,

In t eg e r . pa r s e In t ( edge . getSrcPort ( ) ) ) ;

61

ArrayList<FlowAction> f l owAct ions = new ArrayList<FlowAction >() ;

63 f lowAct ions . add ( f lowAct ion ) ;

65 Flow f low = Flow . bu i l d e r ( )

. deviceID ( edge . getSrc ( ) )

67 . tableID (0)

. flowMatch ( flowMatch )

69 . f lowAct ions ( f lowAct ions )

. p r i o r i t y (1000)

71 . appId ( ”TestForwarding” )

. timeOut (50)

73 . bu i ld ( ) ;

75 c o n t r o l l e r . f l owSe rv i c e . addFlow ( f low ) ;

}

77

79 }

}

81 }

}

83 }
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F IMPLEMENTATION OF FIREWALL APPLICATION USING UMBRELLA

1 package apps ;

3 import api . f l ow s e r v i c e . Flow ;

import api . f l ow s e r v i c e . FlowAction ;

5 import api . f l ow s e r v i c e . FlowActionType ;

import api . f l ow s e r v i c e . FlowMatch ;

7 import api . t opos to r e . TopoEdge ;

import api . t opos to r e . TopoEdgeType ;

9 import api . t opos to r e . TopoHost ;

import c on f i g . Con f i gSe rv i c e ;

11 import d r i v e r s . c o n t r o l l e r . Con t ro l l e r ;

13 import java . u t i l . ArrayList ;

import java . u t i l . L i s t ;

15 import java . u t i l . Set ;

17 public c lass Fi r ewa l l {

19 public stat ic void main ( St r ing [ ] a rgs ) {

21 St r ing contro l lerName ;

23 Cont ro l l e r c o n t r o l l e r = null ;

Con f i gSe rv i c e c on f i g S e r v i c e = new Conf i gSe rv i c e ( ) ;

25 contro l lerName = con f i g S e r v i c e . getControl lerName ( ) ;

27 c o n t r o l l e r= con f i g S e r v i c e . i n i t ( contro l lerName ) ;

29

Set<TopoHost> s r cho s t s = c o n t r o l l e r . topoStore . getHosts ( ) ;

31

ArrayList<TopoHost> host s = new ArrayList<>(s r cho s t s ) ;

33

List<TopoEdge> fwPath = null ;

35 List<TopoEdge> rvPath = null ;

37

for (TopoHost srcHost : hos t s ) {

39 for (TopoHost dstHost : hos t s ) {

i f ( ! s rcHost . equa l s ( dstHost ) ){

41

St r ing srcMac = srcHost . getHostMac ( ) ;

43 St r ing dstMac = dstHost . getHostMac ( ) ;

45 St r ing src IP = srcHost . getHostIPAddresses ( ) . get ( 0 ) ;

S t r ing dstIP = dstHost . getHostIPAddresses ( ) . get ( 0 ) ;

47

fwPath = c o n t r o l l e r . topoStore . getShortestPath ( srcHost . getHostID ( ) , dstHost . getHostID ( ) ) ;

49 rvPath = c o n t r o l l e r . topoStore . getShortestPath ( dstHost . getHostID ( ) , s rcHost . getHostID ( ) ) ;

51 i f ( ( s rc IP . equa l s ( ” 1 0 . 0 . 0 . 1 ” ) && dstIP . equa l s ( ” 1 0 . 0 . 0 . 3 ” ) )
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| | ( s rc IP . equa l s ( ” 1 0 . 0 . 0 . 3 ” ) && dstIP . equa l s ( ” 1 0 . 0 . 0 . 1 ” ) ) ) {

53

55 FlowMatch flowMatch = null ;

57 for (TopoEdge edge : fwPath ) {

59 i f ( edge . getType ( ) == TopoEdgeType .HOST SWITCH) {

continue ;

61 }

63 flowMatch = FlowMatch . bu i l d e r ( )

. ethSrc ( srcMac )

65 . ethDst ( dstMac )

. ipv4Src ( srcHost . getHostIPAddresses ( ) . get (0 ) + ”/32” )

67 . ipv4Dst ( dstHost . getHostIPAddresses ( ) . get (0 ) + ”/32” )

. ethType (2048)

69 . ipProto (6)

. tcpDst (80)

71 . bu i ld ( ) ;

73

FlowAction f lowAct ion = new FlowAction ( FlowActionType .OUTPUT,

75 In t ege r . pa r s e In t ( edge . getSrcPort ( ) ) ) ;

77 ArrayList<FlowAction> f l owAct ions = new ArrayList<FlowAction >() ;

f l owAct ions . add ( f lowAct ion ) ;

79

Flow f low = Flow . bu i l d e r ( )

81 . deviceID ( edge . getSrc ( ) )

. tableID (0)

83 . flowMatch ( flowMatch )

. f l owAct ions ( f lowAct ions )

85 . p r i o r i t y (100)

. appId ( ” F i r ewa l l ” )

87 . timeOut (100)

. bu i ld ( ) ;

89

c o n t r o l l e r . f l owSe rv i c e . addFlow ( f low ) ;

91

}

93

// Reverse Path

95

for (TopoEdge edge : rvPath ) {

97

i f ( edge . getType ( ) == TopoEdgeType .HOST SWITCH) {

99 continue ;

}

101

flowMatch = FlowMatch . bu i l d e r ( )

103 . ethSrc ( dstMac )

. ethDst ( srcMac )

105 . ipv4Src ( dstHost . getHostIPAddresses ( ) . get (0 ) + ”/32” )

. ipv4Dst ( srcHost . getHostIPAddresses ( ) . get (0 ) + ”/32” )

107 . ethType (2048)

. ipProto (6)

109 . tcpSrc (80)

. bu i ld ( ) ;

111
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113 FlowAction f lowAct ion = new FlowAction ( FlowActionType .OUTPUT,

In t eg e r . pa r s e In t ( edge . getSrcPort ( ) ) ) ;

115

ArrayList<FlowAction> f l owAct ions = new ArrayList<FlowAction >() ;

117 f lowAct ions . add ( f lowAct ion ) ;

119 Flow f low = Flow . bu i l d e r ( )

. deviceID ( edge . getSrc ( ) )

121 . tableID (0)

. flowMatch ( flowMatch )

123 . f lowAct ions ( f lowAct ions )

. p r i o r i t y (100)

125 . appId ( ” F i r ewa l l ” )

. timeOut (100)

127 . bu i ld ( ) ;

129 c o n t r o l l e r . f l owSe rv i c e . addFlow ( f low ) ;

131

}

133

135 }

137 i f ( ( s rc IP . equa l s ( ” 1 0 . 0 . 0 . 2 ” ) && dstIP . equa l s ( ” 1 0 . 0 . 0 . 4 ” ) )

| | ( s rc IP . equa l s ( ” 1 0 . 0 . 0 . 4 ” ) && dstIP . equa l s ( ” 1 0 . 0 . 0 . 2 ” ) ) ) {

139

141 FlowMatch flowMatch = null ;

143 for (TopoEdge edge : fwPath ) {

145 i f ( edge . getType ( ) == TopoEdgeType .HOST SWITCH) {

continue ;

147 }

149

flowMatch = FlowMatch . bu i l d e r ( )

151 . ethSrc ( srcMac )

. ethDst ( dstMac )

153 . ipv4Src ( srcHost . getHostIPAddresses ( ) . get (0 ) + ”/32” )

. ipv4Dst ( dstHost . getHostIPAddresses ( ) . get (0 ) + ”/32” )

155 . ipProto (0 x01 )

. ethType (2048)

157 . icmpv4 code (0 x0 )

. icmpv4 type (0 x08 )

159 . bu i ld ( ) ;

161

FlowAction f lowAct ion = new FlowAction ( FlowActionType .OUTPUT,

163 In t ege r . pa r s e In t ( edge . getSrcPort ( ) ) ) ;

165 ArrayList<FlowAction> f l owAct ions = new ArrayList<FlowAction >() ;

f l owAct ions . add ( f lowAct ion ) ;

167

Flow f low = Flow . bu i l d e r ( )

169 . deviceID ( edge . getSrc ( ) )

. tableID (0)

171 . flowMatch ( flowMatch )
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. f l owAct ions ( f lowAct ions )

173 . p r i o r i t y (100)

. appId ( ” F i r ewa l l ” )

175 . timeOut (100)

. bu i ld ( ) ;

177

c o n t r o l l e r . f l owSe rv i c e . addFlow ( f low ) ;

179

181 }

// Reverse Path

183

for (TopoEdge edge : rvPath ) {

185

i f ( edge . getType ( ) == TopoEdgeType .HOST SWITCH) {

187 continue ;

}

189

191 flowMatch = FlowMatch . bu i l d e r ( )

. ethSrc ( dstMac )

193 . ethDst ( srcMac )

. ipv4Src ( dstHost . getHostIPAddresses ( ) . get (0 ) + ”/32” )

195 . ipv4Dst ( srcHost . getHostIPAddresses ( ) . get (0 ) + ”/32” )

. ipProto (0 x01 )

197 . ethType (2048)

. icmpv4 code (0 x0 )

199 . icmpv4 type (0 x0 )

. bu i ld ( ) ;

201

203 FlowAction f lowAct ion = new FlowAction ( FlowActionType .OUTPUT,

In t eg e r . pa r s e In t ( edge . getSrcPort ( ) ) ) ;

205

ArrayList<FlowAction> f l owAct ions = new ArrayList<FlowAction >() ;

207 f lowAct ions . add ( f lowAct ion ) ;

209 Flow f low = Flow . bu i l d e r ( )

. deviceID ( edge . getSrc ( ) )

211 . tableID (0)

. flowMatch ( flowMatch )

213 . f lowAct ions ( f lowAct ions )

. p r i o r i t y (100)

215 . appId ( ” F i r ewa l l ” )

. timeOut (100)

217 . bu i ld ( ) ;

219 c o n t r o l l e r . f l owSe rv i c e . addFlow ( f low ) ;

221

}

223

225 }

}

227 }

}

229 }

}
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