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ABSTRACT

Nair, Siddharth MS in AAE, Purdue University, December 2019. Nonlocal Acoustic
Black Hole Metastructures: Achieving Ultralow Frequency and Broadband Vibration
Attenuation. Major Professor: Dr. Fabio Semperlotti.

The development of novel passive techniques for vibration attenuation and con-

trol of broadband energy propagation through structural systems have been a major

challenge in various complex engineering applications. These passive attenuation

and control methodologies are necessary for the efficient performance of advanced

lightweight aerospace and mechanical systems operating under extreme working con-

ditions.

Acoustic Black Holes (ABH) have rapidly emerged as an effective approach to either

dissipate or harvest mechanical energy in vibrating thin-walled structures. The char-

acteristic dimension of an ABH, typically its diameter, is strictly connected to the

occurrence of a cut-on frequency value below which the ABH is ineffective in absorb-

ing the incoming wave. From a general perspective, lower the cut-on frequency, larger

the ABH diameter needed to absorb the incoming wave. Design and manufacturing

constraints of the host structure impose stringent limitations on the maximum ABH

diameter and hence, limiting the lowest achievable cut-on frequency. The combina-

tion of these factors typically result in the poor energy extraction performance at low

frequencies.

This thesis proposes the concept and explores the performance of an intentional non-

local design for periodic grids of ABHs embedded in thin plates (referred to as ABH

metastructures). The nonlocal design is conceived with the twofold objective of low-

ering the cut-on frequency of the ABH grids and extending the operating frequency

range so as to achieve broadband performance. Different nonlocal designs are pre-



xvi

sented and their dynamic performances are investigated using numerical models. As

opposed to the traditional material nonlocality, this thesis introduces nonlocal effects

using an intentionally tailored geometric approach. A secondary layer is connected

to the load-bearing ABH metastructure base, whose dynamic properties are sought

to be controlled.

A semi-analytical model is also presented in order to characterize the role of nonlo-

cality on the dispersion behavior and its effect on the broadband dynamic response.

In linear elasticity, material nonlocality is mathematically represented by a spatially

varying attenuation function. As the nonlocal model developed in this thesis follows

geometric nonlocality approach, the required nonlocal attenuation factor is found to

have a spatial as well as a temporal dependence. The analytical nonlocal constitutive

relations in conjunction with the numerically obtained stress-strain parameters are

used to identify the dynamic attenuation factor for the nonlocal ABH metastructure.

The results provide substantial theoretical and numerical evidence of the potential of

engineered nonlocal ABH design as an efficient ultra-low frequency passive attenua-

tion technique for lightweight structures.



1

1. INTRODUCTION

1.1 A Short Overview of Vibration Attenuation and Control Methodolo-

gies

Low frequency noise and vibration is a common problem encountered in flexible

lightweight designs across all engineering applications including, but not limited to,

the aerospace and the automotive sectors. Industrial equipment working at low fre-

quencies also encounter complications created by structural noise radiation [1]. The

major issues associated with the vibratory response of engineering systems include

stability, structure radiated noise and even structural damage of the models under

consideration. More specifically:

• Structural Instability: Stability issues in the structural elements such as

aircraft propellers, turbines and jet engines, to name a few, have been a long

standing challenge for the engineering community [2]. The rotor blade vibration

in propellers and turbines generating an unstable rotating equilibrium is one of

the most common stability problem on which engineers are still working for a

solution [2, 3]. Vibration stability is an area of research even in the aerospace

industry, were the rocket engine noise reflected from the ground excites and

destabilizes the spacecraft structure and payloads during lift off [4]. This in

turn effects the stable flight of the launch vehicle. Efficient and smooth running

of all the equipment, including the rocket engines, the propeller of aircraft or

the turbines of a power plant, depend on the stability achieved by eliminating

the unwanted vibrations disturbing the structure [3–6].

The stability issues due to undesirable vibrations can be devastating at times

as in the case of North American P-51D airplane crash in 2011 [7]. The deteri-

oration of a lock nut insert in this race flight resulted in the stiffness reduction
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of an elevator trim system which led to an aerodynamic flutter at high speed,

ending in loss of control of the flight and its eventual crash (Fig. 1.1). The

aeroelastic instability or flutter is a state in which the natural frequencies of the

structure are excited due to the unstable aerodynamics. Although the aircraft

are usually designed within the aeroelastic stability envelope, flutters can occur

when operated in configurations beyond the normal working conditions. This

incident strengthened the need to study vibrations disturbing the stability of

the structures.

Fig. 1.1.: Aircraft P-51D Mustang right before the crash in Reno air races in 2011.
Zoomed in image shows the aircraft’s tail missing a key structural component.

(Source: http : //www.nbcnews.com/id/44556695 and news services)

• Noise Generation: The surface contact between different moving parts in an

assembly acts as the vibration noise sources. The structure-borne noise is the

most frequently encountered vibration radiated noise issue in the aircraft sector

due to the excitation of the airframes. Low frequency structural excitations are

encountered in vibration of rotors and gearbox of helicopters. Mechanical struts

connecting the gearbox to thin walled fuselage pave way for the transmission

of the above mentioned excitations to cabin, creating immense amount of cabin

noise [8]. Jet noise is another common issue in these thin walled fuselage struc-



3

tures. The noise generated by the mixing of the turbulent flow of gases exiting

jet engine with the free flowing air predominantly excites the parts of the cabin

behind the engines [8].

The aircraft noise in two commercial flights were measured and compared by

Ozean et al. [9] to understand the significance of existing cabin noise. The av-

erage noise range for parking and taxing were measured to be 58.4-65 dB(A)

and 62.3-65 dB(A) respectively in both the flights. Integrating the noises of

the mechanical components in takeoff, cruise and landing with the noises gen-

erated by the warning signals and announcements, the total in-cabin noise was

measured to have an amplitude around 81-88 dB(A). It was found that the pro-

peller engine based aircrafts have larger number of low frequency cabin noise

sources. Most of the in flight cabin noise amplitudes were identified as values

close to or well above the threshold hazardous audible range (65 dB(A)) of

human health [9]. Hence, it is necessary to control thess undesirable noises.

• Structural Damage: Damage in the form of cracks or delamination of struc-

ture and its deterioration as a result of that damage is a very common failure

phenomenon due to vibration [10,11]. The pressure variation generated by the

turbulent boundary flow over aircraft wings and the excitations produced by

rotating aircraft engines are a major source of vibration in the aircraft struc-

tures [11]. These excitations, over a period of repeated loading cycles, initiate

fatigue crack propagation. A considerable portion of the thin walled aircraft

wing and fuselage life is occupied by the propagating cracks as these long cracks

are sustained due to the geometry of the aircraft skin [11,12].

Another noteworthy incident was the crash of Braniff Airways Lockheed Elec-

tra prop engine flight in September 1959 [13]. It was learned that the rotating

frequency of the flight propeller started vibrating in the resonance frequency

range of the wing, opening up a crack. In time, with repeated loading, the wing

tore off the fuselage making the flight plummet to the ground. Devastating

incidents take place due to the lack of knowledge and poor implementation of
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the vibration control and attenuation techniques. These incidents emphasize

the need to dampen vibration in structures. From 1960’s all the commercial

flights were tested for vibration control (Fig. 1.2).

Fig. 1.2.: NASA employees testing a scaled model of Braniff Electra (1960).
(Source: http://www.hq.nasa.gov/office/pao/History/SP-440/ch6-5.htm)

The lightweight engineering structures are designed for efficient performances with

structural vibration stability and control. But even after scrutinized design phase, it

is difficult to reduce the mechanical vibrations below a limit of frequency of excitation.

The development of novel techniques to attenuate application specific vibrations for

enhanced human comfort and extended structural health of a system is a growing

field of engineering research. This can play a significant role in the cost effectiveness

of the system maintenance and in providing a healthy working environment. Low

and ultra-low frequency vibration attenuation has been a long standing challenge for

the unimpaired working of thin walled structural mechanisms in race-cars, aircraft,

helicopters and space launch vehicles [14–18]. Apart from the hindrance to the work-

ing of a given system, it also deteriorates the health of the structure in time. Hence,

it is important to understand and develop an ultra-low frequency vibration attenu-

ation technique for thin-walled structures. The available vibration control methods
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can be classified into three main categories based on the fundamental principle being

exploited:

1. Passive attenuation techniques:

A vibration attenuation approach in which the interaction of the propagating

structural waves with the physical structure dampens the wave energy without

the use of any external energy source is termed as the passive vibration atten-

uation. Passive methods are generally the simplest and the cheapest damping

techniques. These are easy to implement and require minimum maintenance.

Various passive damping methods like the friction damping and the mass-spring

damping have been implemented over the years for attenuating the high fre-

quency excitations.

2. Active attenuation techniques:

Active vibration control works on the principle of destructive interference of

the vibration response of the parent structure using a controllable secondary

source of excitation [8, 19]. An externally powered feedback system acts as the

secondary source controlling the vibration response of the parent structure. An

antinoise of equal amplitude with the opposite phase generated by an electrome-

chanical or electroacoustic feedback system, in superposition with the primary

(parent) noise, completely cancels the total output noise in the structure. The

output response amplitude passes through the sensors in the system and is fed

to the controller, which keeps constant feedback to manipulate the correct sup-

ply of the secondary damping force. Active tuned mass-damper with control

algorithm [20,21], gas pulse generators with pulse control algorithm for flexible

structures [22, 23], active aerodynamic appendages to reduce the wind induced

motion [24,25] are some of the most common active attenuation methods.

Although active attenuation methods can work at the lower frequency band-

widths with its sensitive feedback system, the implementation of these tech-

niques are complex and costly. Bulky external power sources and feedback
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systems, the necessary components of the active attenuation methods, limit

the use of these techniques in the lightweight applications due to space and

weight constraints. These techniques also require periodic maintenance and are

susceptible to failure.

3. Semi-active attenuation techniques:

Unlike the active attenuation techniques, semi-active methods do not directly

supply an external damping force on the structure, instead they maintain a

control system loop to dynamically alter the damping or stiffness properties

of the structure [26]. Magnetorheological dampers and piezoelectric material

dampers are two common semi-active attenuation techniques [27,28].

Although the semi-active systems do not add energy to the structure, they use

small power sources to control the stiffness and damping of the system. Thus,

the control loop and the sensor requirements are still the same as in the active

methods, but with lower power need. Moreover, developing a controller for

the semi-active damping technique and modeling the fluid behavior for it is

extremely complex for the real life cases [29].

Various active and passive attenuation techniques have been developed over the

years to cater the ever growing demands for reduction of unwanted excitations. The

active control techniques involve external components as mentioned above and is not

implicit structure generated attenuation and therefore is considered complex. Due

to the operational difficulties and needs of the active methods, passive attenuation

techniques are in high demand. The passive techniques do not make use of any

external source to control vibration, the tailored design of the parent structure provide

the implicit characteristics to attenuate the wave energy in this technique. Hence, the

passive control methods are easier to implement, compared to the active attenuation

methods. As it is found that most of the existing passive attenuation techniques are

generally more effective for high frequency damping due to their inability to adapt

to the low frequency structural characteristics, there is an evident need to develop
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a novel passive vibration attenuation technique that can control the structural wave

propagation at lower frequencies. Next section will elaborate on some of the commonly

used passive damping techniques.

1.2 Passive Vibration Attenuation Techniques

The phenomenon of damping vibrations using the interactions of the structural

waves with mechanical linkages of the physical geometry or with its material is a

peculiar feature of the passive vibration attenuation technique. The knowledge of the

passive attenuation methods, materials and concept implementation through novel

design changes are necessary for improving the attenuation performance. Hence, it

is important to understand the existing passive attenuation models. This section

will focus on the principle concepts and the working characteristics of some of the

existing passive damping techniques ranging from the use of viscoelastic material to

the impedance interface damping models.

1.2.1 Viscoelastic material (unconstrained or free) damping

Use of a dissipating layer on the vibrating surface is a common passive damping

method. Materials with high loss factors are typically preferred as added viscoelas-

tic layer due to their high energy damping ability [30, 31]. A viscoelastic layer, an

elastomer with long chain molecule, on an excited elastic structure has the ability to

absorb its kinetic energy and dissipate it as heat [32]. Using the damping material

provides an easy and conventional approach to attenuate the unwanted vibrations.

However, making a complete structure from these materials is not feasible due to the

weight constraint and varying strength requirements for specific applications. The

viscoelastic materials are traditionally used for low temperature or high frequency

applications as they dissipate more energy under these conditions [33, 34].

It is known that stiffness of the parent structure dominates the vibration amplitude

of the system and addition of damping layer reduces the vibration by less than 10%
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percentage of it, hence, in most cases there is a limit on the absorption capability of

these layers [35]. Thus, vibrating structure with absorption layer efficiently attenuates

at high frequencies but has its limitations in lower frequency bandwidths.

1.2.2 Tuned mass dampers

Tuning mass-spring with viscous damping or mass attached to a viscoelastic spring

to negate excitation frequency response of the primary structure is another common

passive damping method [36–38]. In cases like attenuating thin beam resonances, in

electricity transmission lines and in case of resonance of bridges, tuned mass-spring

with viscous damper system is designed to attenuate the vibrations [39]. This mass-

damper system generates a region of very low amplitude vibration (anti-resonance)

over several structural modes in the frequency ranges corresponding to the attenua-

tion bandwidths of the structure [40]. Although the kinetic energy of the system at

resonance will be completely absorbed by the tailored mass, stiffness, and damper,

this technique adds mass to the system and is of advantage only to attenuate high

resonant frequency vibrations of stationary structures [41].

1.2.3 Friction based damping

Vibrating system attached with friction dampers form another passive attenua-

tion technique for the lightweight structures in which the auxiliary mass attached

in the form of the damper mitigates the vibrations of the parent structure [42–45].

The composite sandwich panels used in the space launch vehicles are laminated with

dampers in te form of friction ledges of carbon fiber reinforced plastic. The relative

movement of these friction ledges and the composite structure casing (in Fig. 1.3)

during the vibration caused delamination results in the dissipation of the excitation

energy in the form of heat [46].

Particle damping technique uses a number of granular masses of tungsten carbide

or ceramic material enclosed in a cavity to form a damper. A combined effect of the
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Fig. 1.3.: The relative displacements of the ledges and the composite casing produces
friction based damping. Adapted from [46]. (Copyright Romberg, O. et al. [46])

momentum transfer phenomenon and the frictional loss due to the collision between

the particles at the cavity boundaries are responsible for the vibration attenuation in

this damper [47–50]. The particle damping method has been traditionally used in the

high frequency vibration control of the beam structures [51], tennis rackets [52] and

turbine blades [45]. Although the level of impact is lower in particle damping, it adds

mass to the system and storage the granular masses occupies space. These friction

based methods have different dampers to attenuate vibrations at high frequencies,

but they remain ineffective in the low frequency regimes.

1.2.4 Constrained layer damping

The attenuation efficiency of free surface damping layer on structures is amplified

by constraining it by a stiff third layer as shown in Fig. 1.9b. Here, as the damping

material is sandwiched between the primary structure and the constraint layer, the

shear strain generated by the constrained layer controls the wave attenuation and

hence, the damping film is characterized by its complex shear modulus [53–55]. This
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technique is traditionally used to attenuate flexural modes [32]. The damping layers

on joints of constrained structures will enhance the wave attenuation with low weight

penalty, but, similar to the above mentioned passive methods, the constrained surface

damped structures attenuate only at high frequencies.

Fig. 1.4.: Schematic illustrating the surface damping techniques: (a) free damping
layer (b) constrained damping layer. Adapted from [34]. (Copyright Vivien Denis)

1.2.5 Graded impedance interface damping

Different passive damping methods discussed till now use extra mass, added vis-

coelastic layer or friction for energy attenuation. In order to dissipate more energy

in all of the above mentioned methods, the added damping material has to be bulky

and efficient. On one hand there is a limit on the extra mass that can be added to the

structure, while on the other hand the cost of complex, intricate and efficient designs

are pretty high. Compared to the other passive damping techniques discussed in the

literature till date, about 60-80% of the wave energy was attenuated (highest among

all methods specified till now) without any addition of mass by employing a simple

graded impedance interface at the boundaries of bars and plates [56]. The energy

attenuation by this method is superior to viscoleastic damping and is obtained over

wider bandwidths. Layers of different impedance stacked together create a composite

structure with low reflectivity and improved damping efficiency [57]. The change in

the impedance prevents the reflection of the waves from the edges of the structure

and attenuates the wave energy effectively in the high frequency regime.
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1.2.5.1 Geometrically tapered structures

Based on the above mentioned varied impedance interface concept and the low

wave reflection characteristics, use of wedges or tapers as geometric inhomogeneities

in an otherwise homogeneous structure to enhance damping is another passive at-

tenuation technique. More recently, researchers have been focusing on the taper

based structures to get better vibration damping properties without significant weight

penalty. Wedges can control the wave propagation as the wave speed reduces with the

varying thickness of the wedge [58]. Wedged and tapered structures have the ability

to focus on the vibration attenuation in the low frequency range due to the distinctive

theoretical property of zero wave reflection at the center of tapers [59, 60]. Further,

it is found that enhanced low frequency attenuation characteristics are observed for

tapers with larger diameter [60].

Although compared with the techniques discussed above, the tapered structures

have better low frequency attenuation capability, there are some important limitations

to this approach. Theoretically, ideal tapers have zero taper center thickness and

can completely attenuate energy, but in practice, the residual thickness of the taper

profile center will never be zero due to manufacturing and strength constraints. Hence,

tapered structures cannot attenuate vibrations below a certain frequency limit. Owing

to the relatively better attenuation performance of the tapered structures in the low

frequencies, this thesis will try to understand the working principles of the existing

tapered structures and make use of it in developing a novel passive damping technique

effective in the ultra-low frequency range. Next section aims at developing a better

understanding of the working of taper embedded structures.

1.3 Background on Acoustic Black Hole (ABH)

The flexural wave propagation in the tapered elastic plates have been a topic of re-

search since the late 20th century. The wave velocity of the elastic waves propagating

through varying tapered thickness decreases as they approach the center of the taper.
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Internal reflection of the waves is responsible for this reduction in the wave speed.

Although Pekeris [61] introduced this concept for the wave propagation in stratified

fluids, Mironov [58] was among the first to explain the effect of tapers on the elas-

tic wave propagation in structures. The study on stratified inhomogeneous medium

based structure showed a linear decay in the wave velocity as the structure thickness

reduces to zero [61]. It was also noted that the flexural waves traveling through the

smoothly varying taper thickness propagates without any edge reflection. Mironov

mathematically formulated this observation [58], he showed that a wave originating

from the thicker section of the structure will take infinite time to reach the end of

taper and hence, will not undergo reflection. Thus, Mironov’s study theoretically ex-

plained that a plate with parabolic taper profile with residual thickness at the taper

center will prevent the reflection of flexural waves completely. Special cases of this

tapered plates were studied in detail by Kyrlov et al. [62].

h(x) = εxm (1.1)

where m≥ 2.

When the taper thickness (h(x)) varies according to a power law relation as in

Eq. (1.1), where m is the taper parameter and ε represents the smoothness crite-

rion (explained in detail in the next chapter) [62], the flexural wave get confined in

the taper edge and never escapes. This phenomenon is called the ‘Acoustic Black

Hole (ABH)’ effect in structures which bears certain analogy with the better known

optical black hole phenomenon in cosmology. As mentioned before, manufacturing

tapers with zero residual thickness is not feasible and hence, the complete wave at-

tenuation using ABH can never be achieved. Therefore, Eq. (1.1) is added with a

term involving the residual thickness (hmin), representing the taper profile in real-life

case [63] as shown in Fig. 1.5. Kyrlov’s study provided a preliminary theoretical base

on an effective flexural vibration attenuation technique using ABHs [62, 64]. In this

investigation, Kyrlov demonstrated the vibration attenuation potential of the power

law tapered plates coated with a thin damping layer on the surface. Thus, vibration
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damping of ABH is further enhanced due to a reduction in its reflection coefficient

by coating layers of viscoelastic damping material on the ABH tapers.

Feurtado et al. [65] explored the effect of the high taper power, m, on the reflection

coefficient and wavenumber. This work introduced the normalized wavenumber vari-

ation as a design parameter. It was observed that with an increase in the taper power

(m), there was also a hike in the number of normalized wavenumbers deviating from

the smoothness criterion. It was found that the violation of this smoothness criterion

was an issue in the small ABHs with dimensions of the order of few centimeters in a

working range up to 10kHz frequencies [65]. Independent of the working frequency,

the ABH tapers with taper parameter m = 2 satisfies the smoothness criterion. For

tapers with m > 2, the normalized wavenumber variation is difficult to characterize

as it becomes both frequency and position dependent.

Fig. 1.5.: Two dimensional ABHs embedded plate (top) and enlarged image of a
single taper with maximum thickness hmax and residual thickness hmin (bottom).

Lately, studies have shown the dependence of ABH performance on the develop-

ment of local modes. Conlon et al. [59] studied the characterization of structural

vibration and radiated sound for low frequency responses of the ABH plates and

found the dependence of the low frequency behavior on the fundamental vibration

modes of the unit cells. Although at the higher frequencies the dimensions of ABH
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play very less role in the wave attenuation, the ABH tapers with larger diameter holes

or smaller residual thickness can control the wave attenuation properties in the low

frequency ranges. Thus, the residual taper center thickness has to reduce to lower

the ABH attenuation bandwidth for a taper of the given length, but manufactur-

ing constraints limit the reduction in residual thickness. Denis et al. [66] studied

the reflection coefficients of beams with smooth and uneven ABH terminations. The

magnitude of the reflection coefficient of tapered end decreases with increase in the

frequency, while the phase of the reflection coefficient indicates the wave travel time in

the structure. This study defined a frequency dependent length correction for smooth

taper termination. Due to the complexity in fabrication, the low residual thickness

tapers end up forming ABH with some surface unevenness, Denis [67] investigated

the effect of these imperfections by imitating an intentional rough taper termination.

It was found that the reflection coefficient of rough tapers have higher amplitudes in

comparison to the coefficient of smooth tapers. This effect is localized in a case when

the damping is low and can broaden when the damping is increased. Lowering the

residual thickness of tapers result, in the local modes due to the surface irregularities

on it, generating traveling waves at low frequencies. The work here clearly indicates

the limitation of ABH as the residual thickness of the ABH taper center cannot be

lowered below a limit due to the fabrication constraint and to avoid the localized

modes generated by irregular taper surface.

1.3.1 Application of acoustic black holes

The properties of ABH has been exploited for noise and vibration damping across

automotive, aeronautical, and civil engineering applications. The ABH embedded

structures are observed to have low wave reflection from the center of the tapers,

making it a region of high energy density. Energy harvesting applications rightly

exploits this property of ABHs by attaching piezo-transducers to the ABH surfaces

to extract energy from these high energy density zones as shown in Fig. 1.6. In this
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technique, the ABH is tailored to fit the frequency range of the energy sources [68].

Localized vibrations, low reflection coefficients, trapped modes, and low cut-off fre-

quencies are some of the characteristic features of the ABH as shown by Pelat et

al. [69]. The procedure for identifying the high energy density taper centers of the

ABHs and incorporating an optimized position for the electromechanical circuitry

needed for energy harvesting was investigated by Zhao et al. [70]. This study sup-

ported the claim that the center of the taper acts as a focal point of the energy

focusing lens in ABH and helped design an optimal transducer network for energy

harvesting. The ability of an ABH to focus the flexural energy is independent of

the spectral and spatial characteristics of the extreme load applied. This knowledge

helped reduce the transducer position dependent sensitivity of the harvesting system.

Fig. 1.6.: Schematic of piezo-transducers mounted on ABHs embedded 2D plate for
energy harvesting. Adapted from [68, 71]. (Copyright IOP publishing, 2014 )

Later, Krylov [72] proposed the use of 2D ABH for vibration attenuation of plates.

The 2D ABHs were characterized as the symmetric cylindrical indentations following

a power law taper profile with a coating of damping material on a plane plate sur-

face. The theoretical and experimental validation for wave attenuation at the center

of cylindrical tapers were provided by this investigation. The study elaborates the

practical applications of ABH in turbine blades and badminton rackets. It was found

that the addition of absorbing material at the center of the ABH taper center enhances
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the attenuation properties effectively. The early comparisons of the attenuation per-

formance of the ABH embedded structures with the traditional vibration attenuation

methods were performed by Krylov and Bowyer [73,74]. The study introduced ABHs

as the viable passive attenuation technique for the low frequency vibration damping.

The self sufficient damping characteristics of the ABH introduces minimum weight

penalty on the structure and thus, making it a suitable vibration damping technique

for aeronautical, and automobile based engineering applications.

The application of damping structural vibrations in rotating turbines find ABH ex-

tremely apt and useful. Subsequent studies showed that covering the whole surface

of blade with absorbing layer is not recommended as in traditional cases, but rather

changing one of the edges of blade into an ABH with added damping layer will effec-

tively reduce the vibration. Tapered wedges on turbine blades are shown in Fig. 1.7.

Tapered bars of power law profiles are also used in tennis rackets and golf clubs. The

2D acoustic black holes can also be effectively embedded on stiffening ribs of struc-

tures without compromising its rigidity. Further, with the addition of the damping

layer, these tapered structures enhance their vibration attenuation capability.

Fig. 1.7.: Flow visualization after wind tunnel testing of: (a) turbine blade, (b)
turbine blade with power law wedge, (c) turbine blade with single damping layer on

the power law wedge, (d) turbine blade with shaped damping layer on the power
law wedge. Reconstructed from [71, 74]. (Copyright E.P. Bowyer and V.V. Krylov)

Several works have studied the effect of ABH embedded elliptical plates, where a

reduction in the mobility was observed when the plate was excited at its focal point

[75–77]. The elliptical plates with ABH showed higher attenuation range compared
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to the traditional rectangular plates due to the presence of the focal points. This

investigation showed that with its ability to focus wave energy, the ABH acts as

an effective damper even in complex structures. Further, Cuenca [76] in his work,

also showed the effectiveness of the velocity profiles in 1D structure with its ability to

control material density and Young’s modulus. The same study was also conducted on

the rectangular plates. All the ABH applications discussed so far effectively attenuates

vibrations in the high frequency bandwidths.

As mentioned before, due to the fabrication and structural strength constraints,

taper thickness cannot be reduced below certain limit. Hence, there is a lower limit

for the frequencies that can be attenuated using the ABH. Besides, as reduction in the

taper thickness is accompanied by taper irregularities, the lower residual thickness at

the taper center of ABHs generate local resonance based responses. From the work

explained in this section, it is evident that the full potential of the ABH has been

extracted. In order to enhance its working range researchers developed the periodic

ABH embedded structures, introduced in the next section.

1.4 Structural Periodicity and ABH Metastructures

Periodic structures have been an active field of research for sometime now. Rayleigh

and Brillouin [78] were among the first to study the theoretical concepts of wave

propagation in periodic structures with wavelengths comparable to the length of the

structural unit cell. Investigations were also carried out on periodic beams [79,80] as

well as on the flat and stiffened plates [35]. In more recent years, the use of ABHs in

periodic configurations have also been explored.

It is established that the periodic structures have the characteristic ability to

attenuate certain frequency ranges due to the formation of a gap in their band struc-

ture. Mead et al. [35, 80] was among the first to investigate the dispersion behavior

of the periodic plates stiffened with beams. The study illustrated the formation of

propagating bands corresponding to the propagating wave frequencies, and bandgaps
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associated with the wave attenuation frequencies on the band structure. Further,

with the knowledge of the band structure, Mead performed the dynamic analysis

on lightweight structures to predict and prevent the vibration induced fatigue and

structure radiated noise. This study was among the first investigations on band gap

formation in periodic lightweight structures. With the growing need for enhanced

wave attenuation in the lightweight systems, researchers worked on the development

of an artificial medium with the ability to control the propagating wave speed by

introducing layers of homogeneous materials to form a composite structure called

phononic metamaterial. In this section of thesis, we focus on the development of a

phononic metastructure in the form of periodic ABH embedded structure and describe

its characteristics. Unlike the above mentioned phononic metamaterials with stacked

layers of varying material properties, the ABH metastructures alter the traditional

wave propagation characteristics by introducing geometric inclusions in the form of

ABH tapers with varying thickness.

1.4.1 Developement of phononic metamaterials and metastructures

The work of Rytov [81] on laminated isotropic structure was one of the very first

on 1D periodic metamaterials. The investigations performed by Rytov concentrated

on characterizing the electromagnetic properties of a stratified medium with alternate

layers of isotropic materials embedded together to behave as an effective anisotropic

medium. It was found that the use of these metamaterial in transmission lines reduced

the losses in wave propagation. The inspiration from layered periodic dielectrics form-

ing the photonic metamaterials was the basis for an extensive study on the elastic

composite materials called the phononic metamaterials. These are composite struc-

tures with impedance differences between the layers due to density or elastic modulus

dissimilarity between them [82].

An extensive literature is available on the topic of phononic crystals, acoustic

metamaterials and metastructures. Interested readers can find seminal works and
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reviews in [83–91]. Below, we review only the aspects that more closely relate to the

topic of this research. Specifically, the studies that focused on the development of

the mechanical metamaterials and metastructures for the lightweight structures. The

elastic wave propagation in a composite medium of two infinite cylinders in periodic

array generate frequency bandgaps as the differences in impedance control the wave

propagation speed [92]. Kushwaha et al. [93] presented a complete calculation of

the band formation of phononic metamaterials. The work describes the existence of

the phononic band gaps and localization of the phonons in these acoustic gaps. In

his work titled Theory of acoustic band structure of periodic elastic composites [94],

the author provided a detailed theory of the band structure of the periodic elastic

structures with material inclusions.

At the start of this decade, Liu et al. [95] developed a low frequency application

of acoustic metamaterial, the work focused on providing an analytic model for wave

propagation in a special class of three-layered composite material. The work used

spheres with 3 component composite model coated with a low stiffness material in a

matrix. It basically constituted of a matrix core with a soft cover as second layer and

a soft shell as third layer as shown in Fig. 1.8. When excited with a waveform, this

structure produced band gaps due to the local resonance of the specific layers. In this

study, the author highlighted the material dependence of the structure in generating

the band gaps. The study showed that the replacement of the soft layer coating

by a stiffer material shifted the bandgap to a lower frequency range. It signified

the importance of the properties of inclusions in generating the low frequency local

resonant band gaps in a structure. This is the basis for the development of the

Acoustic Black Hole (ABH) metastructures, where periodic embedded ABHs acts as

the geometric inclusions with varying impedance.
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Fig. 1.8.: Schematic represents the unit cell of composite material. Mediums 1 and
3 are hard material while medium 2 is made of soft material. Arrows indicate the
excitation direction for mediums 1 and 3 with respective excitation amplitudes (u

and U). Adapted from [95].

1.4.2 ABH metastructures

This section will review the attenuation performance characteristics and effective-

ness of ABH metastructures in the low frequency range. Initially, the section will

focus on the characteristics of periodic metastructures in general and then further,

extend it to review the performance of ABH metastructures. The bandgaps in the pe-

riodic structures are generally generated by Bragg scattering, a phenomenon caused

by the destructive interference of the scattered waves. However, in some cases with

inclusions [96], the local resonance of a unit cell makes way for a hybridized bandgap.

Yong et al. [79] in their work on flexural wave propagation in beams, had shown both

the resonant type and the Bragg type bandgaps can co-exist. This work introduced

the bandgap coupling phenomenon in which the large gap is formed due to a combi-

nation of the spatial periodicity and the local resonance. In the low frequency range,

this bandgap is controlled by the variable local unit cell properties and is less sensitive

to the structural periodicity.

The work by Zhu et al. [63] showed the existence of the above mentioned hybridized

band gaps in ABH metastructures. This work used acoustic black hole embedded thin
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plate in the lattice structure. Apart from the band gaps created by the periodicity in

the structure, the unit cell of the ABH metastructure generated band gaps due to the

local resonance of the ABH tapers. Further, Liu et al. [95] observed the local reso-

nant frequencies of the unit cell to be two order of magnitudes smaller than the Bragg

scattered bandgap frequencies. Thus, the ABH taper characteristics will control the

low frequency attenuation properties of the metastructure. Later, Zhu et al. [63] also

described a procedure to control the local bandgaps by tailoring the ABH taper diam-

eter. Compared to the complex laminated elastic composite structures with varying

impedance layers, the ABH metastructures are simple but effective designs [95].

The bandgaps of ABH metastructures with zero wave (group) velocity in the funda-

mental frequency range [97], exhibit some common properties of the bandgaps cre-

ated by local resonance like negative group refraction index [98], wave filtering [99],

acoustic cloaking [100] and mode anisotropy. Hence, the ABH metastructures have

remarkable vibration and noise attenuation capabilities over range of frequencies.

Although the ABH metastructures generate low frequency bandgaps due to the local

resonance of the ABH tapers, the dependence of these local resonant frequencies on

the residual taper center thickness as mentioned in the previous section limits the

low frequency attenuation range. The thesis proposes the integration of nonlocal

elasticity concepts and the ABH metastructures to overcome this limitation. The

upcoming sections will review some basic concepts of the nonlocal elasticity theory

as a guide-way to conceive a combined effect of nonlocality and ABH metastructures.

1.5 A Short Introduction to Nonlocal Elasticity

The principle goal of this section is to briefly explore the motivation behind the

development of the nonlocal elasticity theory and review the basic concepts of the

theory. Nonlocal responses are prominent in several structures ranging from porous

media like soil [101,102], to biomedical materials like bones [103]. Further, the nonlo-

cal behavior of fatigue based cracks are common in most mechanical systems [104,105].
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In the classical elasticity theory, it is approximated that stress at a point is only

dependent on the strain at the same point. This holds true for most of the macro

sized isotropic homogeneous structures in the real world, but as materials of varied

length scales coexist in several applications as in atomic devices, sensors, and nano-

electromechanical devices, the response diverges from the classical theory and exhibits

the existence of long range cohesive forces within an area of influence. Hence, in order

to encapsulate the elasticity concepts at all length scales, the nonlocal elasticity theory

was introduced.

Eringen was among the first to develop a complete mathematical formulation

of nonlocal elasticity [106]. Interested readers can refer to other seminal works on

nonlocal elasticity formulations for further details [107–109]. Recently, numerous

integral methods [110, 111], gradient methods [112, 113], and peridynamic approach

[114, 115] based theories have been developed to capture the long range interactions

in nonlocal structures. The integral model formulates the nonlocal effect by defining

the nonlocal material properties as a distance dependent function using a convolution

integral in the stress-strain relations [111]. Added strain gradient based terms in the

constitutive relations define the nonlocal behavior in a gradient based method [113].

In the integral formulation developed by Eringen, constitutive relations were derived

based on a localization residual which accounts for the interactions of all the points in

the area of influence and its effect on a local material point on the structure. Later,

Nowinski [116] extended this theory and formulation to nonlocal homogeneous plate

structures. For an isotropic homogeneous structure the nonlocal strains are negligible

and matches with the classical elasticity theory in the limit case. This work aims to

use the features of nonlocality on ABH metastructures through a tailored geometry.
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1.6 Limitations of Existing Vibration Attenuation Techniques

The discussions presented in the sections above highlighted several limitations

of the existing passive vibration techniques. The major drawbacks are summarized

below:

• Most of the passive attenuation techniques, including but not limited to the use

of friction based dampers or constrained surface treatments, deteriorates the

structure as they follow the principle of energy transfer by the relative motion

between two surfaces in physical contact. Development of fatigue cracks results

in the degradation of the performance of the structure due to the repeated

rubbing motion of the surfaces in contact. Besides, these techniques add weight

to the system and attenuates efficiently only in the high frequency regime.

• Other passive methods (e.g. tuned vibration absorber) tend to be effective only

at a single target frequency and for stationary inputs, while their performance

deteriorates rapidly in the presence of transient loads.

• Application of damping layer on the vibrating surface has been a reliable passive

attenuation method. But this technique, depending on the extent of the damp-

ing required, adds weight to the structure due to the thick material coating and

hence, have restricted application in the lightweight structures.

• As the active or semi-active attenuation techniques involve the use of costly

feedback systems with bulky external power sources, the use of these damping

methods are restricted by the space and weight constraints in the lightweight

structures.

• Among the existing passive attenuation methods, the ABH metastructure was

developed as an effective low frequency vibration damping technique for the

lightweight systems. These metastructures have the added advantage of damp-

ing excitations by the local resonance of the tapers apart from the vibration
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damping caused by the spatial periodicity of the structure. The local resonant

frequencies, controlled by the diameter of the ABH tapers, developed this at-

tenuation technique as a suitable method for low frequency damping, but the

design limitation in reducing the taper diameter due to the fabrication and

structural strength constraints restrict the application of this technique for vi-

bration damping in the ultra-low frequency range.

1.7 Thesis Objectives

After studying the available literature on ABH metastructures and existing vi-

bration damping techniques, the author could reflect upon the absence of in depth

work for extending the application of ABH metastructures to ultra-low frequency

vibration attenuation. Among the existing techniques, some active and semi-active

attenuation techniques are capable of attenuating in the ultra-low frequency ranges,

but these methods are difficult to implement in the applications involving lightweight

structures due to the limitations specified in the previous section.

The broad objective of this dissertation is to design, numerically simulate and analyt-

ically study a novel ABH metastructure based nonlocal model for vibration control

and attenuation of lightweight structures in the ultra-low frequency range. Further,

specific objectives of the proposed approach can be listed as following:

(A) Enhanced broadband vibration attenuation:

The engineered nonlocal behavior of the ABH metastructure is expected to

amplify the vibration attenuation frequency bandwidths of the system in com-

parison to the attenuation bandwidths produced by the traditional ABH metas-

tructures.

(B) Ultra-low frequency vibration damping:

The nonlocal ABH metastructure design is also expected to extend the low fre-

quency attenuation performance characteristics of the traditional ABH metas-
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tructures to the ultra-low frequency regime. The existing passive attenuation

techniques have limited applicability in the extremely low frequency range.

(C) Reduced cut-on frequency:

The introduction of intentional long range connections on the ABH metastruc-

ture design is also believed to lower the cut-on frequency of the system.

The specific objectives hypothesized above will be verified by implementing a technical

methodology to design and analyze the performance of the proposed idea. This

methodology is further classified into two sub-objectives as follows:

1. Development of the nonlocal geometry:

The work focuses on introducing a novel design of nonlocal ABH metastructures

as a means to overcome the above mentioned limitations of the existing passive

attenuation techniques. The design methodology exploits the characteristics of

the traditional ABH metastructures and creates artificial long range connections

via added hierarchical layers.

A simple example of this design approach is shown in Fig. 1.9. The unit cell

of an ABH metastructure shown in Fig. 1.9 (top) is assumed as the baseline

design. The addition of a tailored top layer connected with rigid links on this

baseline structure is expected to produce a system as shown in Fig. 1.9 (bottom).

The baseline geometry is the load-bearing member of this system, while the

non load-bearing top layer with the rigid connectors link distant points on the

baseline structure. Thus, these long range connections are expected to introduce

a geometric nonlcality on the baseline ABH metastructure. The nonlocal designs

developed in this thesis will be similar to the sample design shown in Fig. 1.9.

2. Performance analysis of the nonlocal ABH metastructure:

The static and dynamic behavior of the nonlocal ABH metastructure will be

studied numerically and analytically. The numerical simulation results are ex-

pected to segregate the characteristic behavior of the nonlocal ABH metas-

tructure from the baseline ABH metastructure design based on the damping
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Fig. 1.9.: Schematic showing the developement of a nonlocal ABH metastruture
(bottom) design based on a baseline ABH metastructure design (top).

frequencies, attenuation bandgaps and cut-on frequencies. Further, a nonlocal

elasticity theory based semi-analytical approach will be proposed to capture

the dynamic behavior of the nonlocal geometries and is expected to verify the

numerically obtained nonlocal characteristics.

1.8 Thesis Outline

The thesis focuses on demonstrating the effectiveness of a nonlocal ABH metas-

tructure design for vibration attenuation in the ultra-low frequency regime. The

initial part of Chapter 1 studies the existing attenuation methodologies and moti-

vates the need for a novel passive attenuation technique for ultra-low frequencies.

The chapter continues presenting a review of the background concepts of the ABH

metastructures and the nonlocal elasticity.

As the thesis exploits the properties of the ABH metastructures by introducing

geometric inhomogeneities in it, Chapter 2 focuses on the fundamental principles and
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on the characterization of ABH and ABH metastructures. The final part of Chapter

2 briefly introduces the theoretical background of the numerical simulation setups

required for analyzing the performance of the new designs.

Chapter 3 develops a semi-analytical approach to extract the dynamic nonlocal

properties of the system. As the traditional nonlocal elasticity equations for thin

plates were developed for structures with nonlocal materials, this chapter of the thesis

focuses on modifying the analytical formulations to capture the dynamic behavior of

the tailored nonlocal geometry. Based on the modified analytical formulations, a

semi-analytical procedure for calculating the dynamic nonlocal factors is developed.

The initial part of Chapter 4 introduces all the designs and elaborates the proce-

dure for designing these nonlocal ABH metastructures. Later, the chapter continues

to discuss the results of numerical simulations and analyze, and compare the dy-

namic performances of the individual designs. A comparison is drawn between the

attenuation performances of the nonlocal ABH metastructures based on the damp-

ing frequencies, attenuation bandgaps and cut-on frequencies obtained. Lastly, the

semi-analytical nonlocal factors obtained in Chapter 3 is matched with the numerical

simulation based results in this chapter.

Chapter 5 summarizes all the numerical and analytical work. This conclusive

chapter focuses on elaborating the major contributions of this dissertation. It also

provides a road-map of the future work that could be implemented for enhanced

efficiency of the novel ultra-low frequency passive vibration attenuation methodology.
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2. FUNDAMENTALS OF ACOUSTIC BLACK HOLE AND

ABH METASTRUCTURES

Acoustic black holes are an integral part of the work presented in this thesis. Lit-

erature presents ABH metastructures as an effective passive vibration attenuation

approach for lightweight composite structures [73, 74]. Understanding the working

principles of the ABH is decisive in extending the potential of ABH tapers to lower

frequencies. Hence, this chapter explores the theoretical and experimental behavior

of the ABH along with a review of its performance. The initial part of the chapter

explores the concept of an ABH in 1 dimension. Then, the description is extended

to two dimensional ABHs. The section continues with a summary of the reviews

from the literature illustrating the experimental implementation and the performance

characteristics of ABH embedded in thin 2D structures. The final part of the chapter

briefly explores the theoretical background of the methodologies followed to simulate

the performance of ABH metastructures.

2.1 One Dimensional Acoustic Black Hole

The basic working principle of ABH can be presented by understanding the wave

propagation in a wedge, as shown in Fig. 2.1. The physical principle exploited in the

ABH was extended to acoustics by Mironov [58], the study observed that flexural

waves in a thin plate with exponentially tapered thickness will theoretically never

reflect back, forming a zero reflection wedge. Thus, researchers discovered the exis-

tence of a peculiar taper profile in which the waves propagate with asymptotically

decaying wave speed as it nears the taper extremity. Theoretically, the flexural waves

are not reflected as thickness tend to zero at the center of this taper. This taper

profile is often termed as an ABH in 1D. The mathematical proof for the existence of
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parabolic taper profile with asymptotically reducing wave speed was first presented

by Mironov [58] and it will be reported in this chapter for completeness. Later, this

section also helps in visualizing the wave propagation in 2D ABHs with the assistance

of geometric acoustics principle explored in the work done by Krylov [72]. The last

part of this section also explores the effect of added viscoelastic damping layers on

1D tapers [72].

Fig. 2.1.: A 1D acoustic black hole with a damping layer near the center of taper for
bending wave attenuation along the taper length. Adapted from [72]. (Copyright

Victor V. Krylov)

2.1.1 Governing equation of a 1D zero reflection wedge

Based on the earlier work from Mironov [58], the mathematical formulation for

wave propagation through tapers in non-reflecting wedges and 1D ABHs will be ex-

plored below.

The following theoretical relations were derived by Mironov for a wave of amplitude

A, traveling through a thin plate structure of maximum thickness h:

k =
3ρω2

Eh2(x)
(2.1)

A = A0

[ h0

h(x)

] 3
4

(2.2)
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where ω is the angular frequency, ρ is the material density, E is the Young’s modulus

and A0 is the wave amplitude at minimum thickness of taper h0. Here, x represents the

wave prorogation direction in 1D ABH. The Eq. (2.1) represents the local wavenumber

(k) variation of the propagating wave in the structure. Further, on applying the law of

conservation of energy to the elastic wave traveling through varying taper thickness,

the amplitude A of propagating wave can be derived as a function of varying taper

thickness h(x) as in Eq. (2.2).

Based on the argument that the change in the wavenumber must be smaller than the

propagating wavelength for a steady traveling wave without backscattering, Mironov

[58] developed a smoothness criterion for the ABH taper profiles as formulated below:

1

k2

dk

dx
� 1 (2.3)

Further, substituting the Eq. (2.1) in Eq. (2.3), we get:

1

2

( El

3ρω2

)1

4 1

h1/2

dh

dx
� 1 (2.4)

The mathematical constraint formulated in Eq. (2.4) must be satisfied for an

efficient taper design. It was found that the smoothness criterion was satisfied by a

power law profile of the form h(x) = εxm, that vanishes over a finite interval x for

the taper parameters m ≥ 2. This power law equation is the varying thickness profile

(h(x)) of ideal taper designs used in the ABH, but a modified taper profile equation

is used for the real life applications of ABH.

2.1.1.1 Effect of the residual taper thickness

The taper thickness profile formulation for an ideal ABH was revisited in the

previous section. Since manufacturing a smooth taper with zero taper center thickness

is impossible, complete wave attenuation using ideal ABH can never be achieved. It

was found that for practical purposes the thickness at the center of taper will never
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be zero and will always have a minimum residual thickness. Hence, the taper profile

Fig. 2.2.: Schematic illustrating the taper profile of a 1D acoustic black hole with
residual taper thickness h0.

equation suggested by Mironov was modified in literature [62,117] with an extra term

incorporating the residual taper thickness (h0) as shown in Fig. 2.2, the mathematical

representation of the taper profile in all the real-life cases is as follows [63,118]:

h(x) = εxm + h0 (2.5)

Similar to the ideal ABH profile, the taper profile with residual thickness in Eq. (2.5)

must also satisfy the smoothness criterion ε=(3ρω2/E)
1
2 for m≥2 to maintain a steady

reduction in phase and group velocities as wave propagates to the center of taper [63].

Considering the wave propagation through the updated taper profile (Eq. (2.5)), the

variation in the local wavenumber (k(x)) can be defined as [70]:

k(x) = 121/4k
1/2
l (εxm + h0)−2 (2.6)

kl =
ρ(1− ν2)ω2

E
(2.7)

where kl = ω/cp and cp = 2ct

[
1− ct

2

cl2

] 1
2

. Here, kl is the longitudinal wavenumber

of the propagating wave in ABH taper, cp is its phase velocity, cl and ct are the
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longitudinal and the shear wave velocities respectively. The angular frequency of the

wave is defined as ω = 2πf , where f is the linear wave propagation frequency, and ν

is the Poisson’s ratio.

From Eq. (2.6), it is known that the wavenumbers vary as a function of the spatial

coordinate x and is independent of the frequency characteristics of the incoming

wave [68]. As x increases, the value of the local wavenumber k(x) propagating through

the varied thickness reduces. In the limiting case of the taper profile (i.e h0 = 0), the

local wavenumber in Eq. (2.6) nears infinity and the wave phase matches with the

characteristics of the ideal ABH tapers.

Mironov [58] studied another interesting feature of the ABH taper, describing the

spatial variation of the wave speeds. In this work, he defines the local bending stiffness

(D) of a 1D ABH embedded thin plate of thickness h as D = Eh3/(12(1− ν2)) [58].

Further, Krylov [62] used this stiffness relation to derive the following phase (cp) and

group (cg) velocity equations:

cp = 4

√
E

12ρ(1− ν2)

√
ω(εxm + h0) (2.8)

cg = 4

√
4E

3ρ(1− ν2)

√
ω(εxm + h0) (2.9)

Both the phase (cp) and group (cg) velocities tend to zero as the spatial coordinate

x approaches zero (ideal case) in Eq. (2.8-2.9) and thus, verifying the characteristic

property of zero reflection from taper center of an ideal ABH. In ideal conditions the

taper center will act as a point of high energy density, but in the case of ABH tapers

with residual thickness, the energy propagating wave is reflected from the taper center

and has lower energy density.
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2.1.1.2 Calculation of the reflection coefficient (R0)

The reflection coefficient has proved to be an exact measure of the efficiency of an

ABH, lower the reflection better the attenuation performance of the design [119]. For

an ABH taper with a quadratic shape profile h(x) = εx2 +h0, the reflection coefficient

amplitude is given as [62]:

R0 = e
−2

∫ x1
x0

Im(k(x))dx
(2.10)

where R0 is the reflection coefficient, x0 is the x-coordinate of the taper center, x1 is

the x-coordinate at the thick edge of the taper and Im(k(x)) represents the imaginary

component of the local wavenumber k(x).

An infinitely small damping, defined by Im(k(x)), results in the zero reflection co-

efficient in an ideal ABH (i.e x0 = 0). Whereas, reflection coefficient R0 of higher

amplitude is calculated for tapers with residual thickness due to the larger imaginary

component of the wavenumber. A small change in x0 enhances R0 by as much as 10%.

Krylov [62, 72] investigated the effects of residual thickness on the wave attenuation

properties of the ABH and found that the reflection coefficient values were as high as

50-70% due to the presence of residual taper thickness. This introduced the need for

an extra damping material on the ABH tapers to attenuate the reflected waves.

2.1.1.3 Integration of viscoelastic damping layers

The vibration attenuation performance in ABHs with residual taper thickness is

enhanced by coating layers of viscoelastic damping materials on the tapers for reduc-

ing the reflection coefficient of the geometry [64]. The material loss factor (ν), defined

as the ratio of the energy dissipated to the maximum strain energy stored, represents

the effectiveness of a viscolelastic damping layer for a given material. Higher damping

is associated with the higher material loss factor. As the absorption of the incident

flexural waves predominantly occur at the taper extremities, it is sufficient to attach

a thin viscoelastic damping layer at the center of the taper profile to maximize the
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wave attenuation performance of the ABH embedded structures. Using the damping

material for attenuation is a traditional technique and it is known that the in-plane

deformations of the added layer is responsible for this film induced absorption. The

in-plane deformations of the absorption layer under the impact of flexural waves on

the taper surface is as follows:

ux = −z
(∂2uz
∂2x

)
(2.11)

where ux is the deformation in the x-direction, z is the length in the z-direction and(∂2uz
∂2x

)
is the curvature of the shear deformation in the x-z plane.

The reflection coefficient for flexural wave propagation in ABH coated with thin layer

of viscoelastic material is calculated by using the geometrical acoustic approximations

[62]. For a thin plate of thickness h with an added absorption layer of thickness δ,

the corrected loss factor (ξ) is given as [62] [120]:

ξ =
ν

1 + (α2β2(α2
2 + 12α2

21))−1
(2.12)

where ν is the material loss factor of the viscoelastic layer, α2 = δ/h, β2 = E2/E1,

α21 = (1 + α2)/2 and E1, and E2 are the Young’s modulus of the plate and the

viscoelastic layer respectively.

The expression in Eq. (2.12) is further simplified by assuming a viscoelastic material

coating on both the surfaces of the ABH taper. Taking α2β2 << 1 as α2 = δ/h << 1

due to the use of thin damping layer, the corrected loss factor in the reduced form is:

ξ = 6α2β2ν = 6
δ

h

E2

E1

ν (2.13)

Using Eq. (2.13), the local wavenumber (k(x)) is obtained. For further reference,

the complete derivation is provided in [117]. The imaginary part of the k(x) is of the

form:

Im(k(x)) =

(
121/4k

1/2
p

h(x)1/2

)(
η

4
+

3

2

δ

h(x)

E2

E1

ν

)
(2.14)
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In order to calculate the reflection coefficient, the integral in Eq. (2.10) is evaluated

after substituting Eq. (2.14). For simplicity, we assume the ideal quadratic taper

profile h(x) = εx2 with the damping layers attached on either sides of the taper. The

obtained reflection coefficient is given as follows:

R0 = e(−2µ1−2µ2) (2.15)

where;

µ1 =
121/4k

1/2
p η

4ε1/2
ln
x1

x0

µ2 =
3.121/4k

1/2
p νδ

8ε3/2
E2

E1

1

x2
0

(
1− x2

0

x2
1

) (2.16)

It is observed that the additional absorption layers further reduce the reflection

coefficient based on the loss factor of the added film. The equations of µ1 and µ2

(Eq. (2.15-2.16)) were evaluated for thin (δ) viscoelastic layers. Thus, these equa-

tions have the limitation of failing under the use of thick absorption film or when the

residual taper thickness is insignificant. Further, a general mathematical approach

overpowering this limitation was developed for calculating the flexural wave reflec-

tion coefficient of ABH tapers attached with arbitrary thickness of the damping layer.

This approach generates a reflection coefficient for general cases with rather complex

numerical integration.

It is proved that the values of the reflection coefficients of tapers with thin absorp-

tion layers are significantly lower than the reflection coefficients of the ABH tapers

without a damping layer. The relations in Eq. (2.15)- Eq. (2.16) with general taper

parameters of the damped ABH, calculated reflection coefficients R0 values as low as

1-3 %. Krylov et al. [121] verified the theoretical formulations of the damped ABHs

by experimentally studying the mobilities on a damped wedge with quadratic taper

profile.
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2.2 Two Dimensional Acoustic Black Hole

Two dimensional acoustic black holes can be adjudged as cylindrical pits carved

on a flat plate as shown in Fig. 2.3. These forms of cylindrical indentations on a flat

plate were studied by Kyrlov [119].

It is convenient to use the geometrical acoustics in Hamiltonian formulation to study

the bending wave propagation in thin plates with 2D tapers. As the 2D structure with

cylindrical indentations has no geometrical anisotropy, application of Hamiltonian

approach is simple to analyze the wave propagation velocity in these structures. It

Fig. 2.3.: A 2D acoustic black hole in the form of circular indentation for flexural
wave attenuation. Adapted from [72]. (Copyright Victor V. Krylov)

can be shown that the incident ray trajectories (as per geometrical acoustics) of the

waves propagating through the cylindrical indentations is as follows:

dr

dθ
= r

1

tanα
dα

dθ
= −1− r

n

∂n

∂r

nr sinα = constant

(2.17)

These equations are in the polar reference frame with r and θ coordinates measured

along the middle plane of the plate as shown in Fig. 2.4. Assuming a bending wave

vector k, α is angle between r and k. Further, the bending wave refraction index

in the taper area is defined as n(r) = c0/c(r) = h
1/2
0 /h(r)1/2 where c0 and c = c(r)
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are wave phase velocities in a constant plate thickness h0 and tapered local thickness

h(r) respectively as in the one dimensional case. The final expression in Eq. (2.17) is

the Snell’s law formulated for the axisymmetric case.

An excitation point outside the taper is marked as the starting point of the ray

trajectory with properties r0, α0 and n0 = 1 and a point inside the taper (near to the

center) marking the end of the ray trajectory with properties r,α and n (Fig. 2.4) will

follow Snell’s law as formulated below:

nrsinα = r0sinα0 = ρ (2.18)

Fig. 2.4.: Three ray trajectories illustrating the propagation of flexural waves over a
taper profile indentation. Bottom most ray is trapped at the center of taper and has

zero reflection coefficient theoretically. Adapted from [119].

In Eq. (2.18), a constant impact parameter ρ = n0r0sinα0 is introduced for a given

α0. The combination of r0 and α0 specifies the distance between the straight line ray

trajectory and the center of the polar coordinate reference in the absence of the taper.

In the presence of the taper profile on the 2D plate structure (shown by a circle in

Fig. 2.4), these ray trajectories would no longer remain on a straight path. Analyzing

the above equation for wave propagation in symmetric cylindrical indentations with a
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power exponential m >= 2, all rays with |ρ| less than a critical value (even with direct

ray i.e ρ = 0) will deflect towards the center of the taper in a direction normal to it

as shown in Fig. 2.4. As the major contribution to reduce the reflection coefficient

is from the center of the taper, towards which rays get deflected, all the 2D ABH

reflection coefficient calculations follow the 1D ABH reflection coefficient calculation

procedure and hence, is not presented here [119].

These 2D ABHs in the form of cylindrical pits will not reflect any wave deflected

towards its center and hence, engraving these indentations on a plate or shell will

enhance its structural damping performance substantially. An array of ABHs can

be manufactured on thin plates to amplify this effect and the number and taper

dimensions are only be limited by the constraints of the specific application.

2.3 Practical Implementation and Characteristics of ABH

The sections on 1D and 2D ABHs detailed above helped in understanding the the-

ory behind the working of ABH profile with and without additional damping layer.

This section focuses on reviewing some major results of numerical simulations, and

experimental studies conducted on ABHs and thus, validating the analytical work for

its practical implementation.

A 1D rectangular plate with a wedge at one end and a similar rectangular plate cov-

ered completely in damping material were experimentally and numerically compared

to understand the attenuation performance of each of the damping techniques [122].

It was found that the incorporation of a power law based taper profile produces en-

hanced damping in frequency ranges where the effect of viscoeleastic layers alone were

insignificant. Thus, ABH embedded on a flat plate has higher attenuation capacity

than a damping layer on the same flat plate. It was also learned that the application

of damping material on the ABH enhances the vibration attenuation capacity of the

ABH further.

Later, experiments were conducted to locate the optimal position of damping mate-
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rial on tapers for efficient attenuation. The addition of a damping layer at the thicker

taper edge has minimal effect, while the wave attenuation performance enhances as

the damping layer is moved towards the taper center. Application of damping film

away from the taper center does not enhance wave attenuation but rather increases

the total mass of the structure. It was also found that the lower the value of the ratio

between absorbtion film and the taper thickness, lesser is the damping efficiency in

the higher frequency bandwidth. This study also showed that the application of the

damping layer on the taper center of the ABHs reduces the wave speed in the mid

and high frequency ranges, while the addition of the damping layer on ABH does not

significantly improve the ultra-low frequency (fundamental modes) damping [123].

Experiments were further carried out to analyze the attenuation performance of rods

embedded with quadratic power profile 2D tapers [124]. It was observed that the rods

completely covered by damping layers alone had minimal attenuation characteristics,

while the taper ended rods coated with damping layer attenuated wave propagation

significantly. This also supports the theoretical observation of low reflection coeffi-

cient for damped ABHs. This technique was later implemented on badminton rackets

where the handles of rackets were incorporated with damping film on taper ended

rods [125]. The results showed 10 dB reduction in the racket handle vibrations at

high frequencies.

The attenuation performance of beams and elliptical plates embedded with 2D tapers

were also experimentally investigated [77]. Similar to the 1D tapered structures, it

was observed that the addition of damping layer on 2D ABH embedded beams and

plates help in enhancing their vibration attenuation capability. It was found that the

larger the material loss factor of the added absorption layer, lower the coefficient of

reflection and better the attenuation performance of ABH embedded structures.
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2.4 Mathematical Models Analyzing the Response of ABH Metastruc-

ture

The previous chapter reviewed the literature on periodic ABH embedded struc-

tures known as ABH metastructures. It was noted that the introduction of periodic

ABHs enhanced the vibration attenuation performance of the system. Therefore, with

the background of ABH from the above sections, the author would like to review the

dispersion and steady state frequency mathematical models as tools analyzing the

performance of the ABH metastructures in this section.

Consider an isotropic 2D thin plate embedded with periodic distribution of 1D

ABH tapers under plane strain condition as shown in Fig. 2.5. The plate has a

thickness h1 with a taper profile h(x) = εxm + h0, where h0 is the residual taper

thickness. The 2D thin plate with ABH in Fig. 2.5(a) is the unit cell which repeats

itself to form the periodic ensemble of ABH metastructure (Fig. 2.5(b)).

Fig. 2.5.: The schematic represents the sample models of: (a) a unit cell of ABH
embedded thin plate with left periodic boundary (LBP) and right periodic boundary

(RPB), and (b) an ABH metastructure obtained after assembling six unit cells.
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The elastodynamic response of this ABH metastructure is governed by the Navier’s

equation as given below [63]:

ρ
∂2u

∂t2
= ∇ · (C : ε) (2.19)

where ρ is the density, u is the displacement vector, C is the stiffness tensor and

ε =
1

2

[
(∇u)T+∇u

]
is the strain tensor. Traction-free boundary conditions T = σ(r)·

n(r) = 0 are applied on the upper and lower surfaces of the structure (Fig. 2.5(b))

in Eq. (2.19), where n(r) is the normal vector to the surface, σ(r) is the local stress

tensor and r is the position vector from the center of the ABH taper.

2.4.1 Dispersion analysis

The dispersion relations of the 2D ABH metastructure is derived from Eq. (2.19)

after application of traction free boundary conditions and fourier series expansion of

the material stiffness tensor (C). Interested readers can refer to the works of Zhu

et al. [63] and Hou et al. [126] for complete derivation. The application of fourier

expansion and fourier transform (in time) on Eq. (2.19) yields the following dispersion

relation:

−ρω2u = ∇.(C : ε) , − iω = λ (2.20)

where ω is the circular frequency and λ represents the eigen frequency values.

Further, using the Bloch theorem, the wave function (φ) at the periodic boundary

of the structure (Fig. 2.5(a)) is given by [127]:

φ(x+Na) = φ(x) (2.21)

where N is a positive integer and a is the length of the periodic unit cell. For

an uniform periodic chain with constant length of the periodic unit cell, the wave

function (φ) can be generalized in terms of the structural displacement u [127]. The
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generalized displacement relation for a periodic unit cell of the structure is given by

the Floquet boundary condition as follows:

u(x+ a) = u(x)e−ika (2.22)

where u(x + a) is the displacement at the right periodic boundary, u(x) is the dis-

placement at the left periodic boundary, k is the wavenumber vector of the traveling

wave and a is the periodic unit cell length.

Substitute the Floquet boundary condition (Eq. (2.22)) in the dispersion relation

(Eq. (2.20)) and solve for λ to obtain the eigenfrequencies of the ABH metatsructure.

The corresponding eigenvectors represent the mode shapes of the structure. A de-

tailed description of the dispersion analysis along with the characteristics of dispersion

curves are presented in the appendix.

2.4.2 Steady state forced frequency analysis

Similar to the dispersion relation obtained from the Navier’s equation (Eq. (2.19)),

a forced frequency response formulation of the ABH metastructure can also be derived

from Eq. (2.19) with an additional forcing term integrated to account for the external

harmonic excitation. On substituting the Fourier expansions and applying Fourier

transform in time on Eq. (2.19), we obtain the following relation:

−ρω2u = ∇.(C : ε) + Feiψ (2.23)

where F is the amplitude of the external force vector and ψ represents the phase of

the harmonic excitation. Here, F can be a point load or a distributed load. The rela-

tion in Eq. (2.23) is solved for different frequencies (ω) to obtain the forced response

u of the ABH metastructure.

In specific cases when enforced displacements are supplied in place of external forces

(i.e F= 0) in the frequency domain, Eq. (2.23) reduces to the characteristic dis-
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persion relation Eq. (2.20). The reduced equation is then solved with the supplied

displacement as the initial condition.

In this thesis, we use low reflecting boundary condition to evaluate the forced

frequency dynamic response of the ABH metastructure as the low reflecting boundary

condition limits the variation in the structural response due to the spurious boundary

reflected flexural waves.

The differential formulations of dispersion and forced frequency analysis are diffi-

cult to solve analytically for varied range of frequencies and hence, the performance

of all the structures developed in this work are numerically simulated in a FE based

software called COMSOL.

2.5 Summary

Theoretically, the complete elimination of wave reflection using ABH is viable, but

in practice none of the techniques developed so far has the capability to enhance the

wave attenuation beyond the limitations governed by the manufacturing constraints

of minimum residual taper thickness and smoothness of the taper profile. Lot of

engineering applications require the use of rigid structures to maintain the stiffness

and strength of the system, but ABH has its limitations in such applications. Al-

though the use of ABH metastructure is an efficient passive damping technique in

the high and mid frequency regimes, there is an ever mounting need for enhancing

its attenuation in the ultra-low frequency range. From the knowledge gathered in the

previous sections of this chapter, it is learned that the 1D ABH metastructure has a

distinctive wave propagation pattern in which the wave passes through the individual

ABH and makes the periodic system an effective broadband absorber. Hence, 1D

ABH metastructure is chosen as a baseline design in this thesis. Later chapters in

this thesis work on enhancing the potential of ABH metastructures with the help of

a modern elasticity theory known as nonlocal elasticity. The mathematical models

developed in the final section of this chapter can be numerically extended to evalu-
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ate the performance of the new nonlocal 1D ABH metatstructure designs in further

chapters.
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3. EFFECTIVE PROPERTIES IN GEOMETRICALLY

NONLOCAL STRUCTURES

The discussions in previous chapter illustrated the effectiveness of the ABH absorbers

above the cut-on frequency along with their rapidly degrading performance at ultra-

low frequencies. In the following chapter, we will present a novel design of an ABH

metastructure that leverages intentionally designed nonlocality to improve the vibra-

tion absorption performance. In order to perform numerical analysis of this novel

structure and to characterize its dynamic performance, we also develop appropriate

technical procedures in this chapter.

The mechanical behavior of solids are illustrated by the atomic lattice theory and

the continuum based classical elasticity theory [107]. It is well known that the clas-

sical elasticity theory considers internal forces in a structure as contact forces having

zero long range interactions. As real materials tend to have cohesive forces over finite

or infinite ranges, the classical elasticity theory fails to accurately capture their dy-

namic effects [107]. In order to overcome this drawback, a theory of nonlocal elasticity

was formulated to incorporate the cohesive forces within a finite range. Similar to

the lattice theory, the nonlocal elasticity theory introduces distance dependent kernel

based effective material properties of the continuum [128,129].

This thesis explores the use of nonlocal elasticity in conjunction with ABH metas-

tructures. Section 3.1 introduces the concepts of nonlocal elasticity according to

the works of Eringen [106] and Nowinsky [116]. Section 3.2 focuses on developing a

semi-analytical formulation to capture the dynamic behavior of nolocal ABH metas-

tructures, while another part of the section focuses on applying these formulations to

solve the dispersion relations.
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3.1 Fundamentals of Nonlocal Elasticity Theory

We start reviewing the nonlocal elasticity formulation introduced by Eringen [106]

for a 1D solid. Then, we discuss the extension of this theory for 2D structures based

on the work carried out by Nowinski [116]. A complete overview of the constitutive

relations for 2D solids and related material parameters are also presented in this

section.

3.1.1 Linearized nonlocal formulation for 1D wave propagation

Consider a homogeneous and isotropic thin infinite plate structure. According to

the theory of classical elasticity, the constitutive equations relating stress and strain

at a given point is expressed as follows:

τxx = exx(2µx + λx) (3.1)

where τxx is the normal stress in x-direction, µx and λx are the Lame’s material

constants at a given point x, and exx = δu
δx

is the strain in the x-direction where u is

the displacement in x-direction. Eq. (3.1) is further simplified as:

τxx
2µx + λx

=
∂u

∂x
(3.2)

Analyzing Eq. (3.2), it is evident that τxx at a given point is dependent only on the

strain
δu

δx
at the same point. As mentioned before, this is not the case for all the

physical systems. Unlike classical mechanics, nonlocal continuum mechanics postu-

lates that the stress at a point in a structure is influenced not only by the strain at

the point but also by the strain distribution throughout the volume of the structure.

Eringen formulated stress-strain constitutive relations for nonlocal elastic media, us-

ing a nonlocal residual function called the nonlocal attenuation factor (α) that relates

the local stress with the nonlocal strain distribution [106]. The nonlocal attenuation
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factor is a function of displacement and deformation gradient of all the points on the

structure.

τxx
2µx + λx

=
∂u

∂x
+

∫ ∞
−∞

α(|x− ξ|)∂u
∂ξ
dξ (3.3)

Eq. (3.3) is one of the common representations of the nonlocal elasticity theory for a

1D design. The integral term in Eq. (3.3) captures the total nonlocal strain acting

at the point x. Note that the integral is the weighted summation of the strains at all

points on the structure (Fig. 3.1). The weight (α(|x− ξ|)) assigned to every point ξ,

based on the distance from point of stress measurement x, is the nonlocal attenuation

factor. The functional form of the nonlocal kernel was obtained by Eringen [106] by

enforcing functional invariance on the homogeneous and isotropic continuous formu-

lation given in Eq. (3.3). The nonlocal attenuation factor can be a nonlinear function

for inhomogeneous, anisotropic, and nonlocal elastic solids. Here, we assume a homo-

geneous and isotropic material for the reference structure for which the constitutive

equations are invariant under transformations. Therefore, these constitutive relations

(Eq. (3.3)) have only a linear dependence on the local (x ) and nonlocal (ξ) coordi-

nates via the relative distance between them, δξ′ = |x− ξ|. This concept can also be

extended to higher dimensional structures [116].

Fig. 3.1.: Schematic representing the local and nonlocal coordinates in a 1D
structure with 2h thickness. Local point x is at the center of the structure and all

the nonlocal points ξi are at a distance δξ′ = |x− ξ1| from the adjacent point.
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3.1.2 Nonlocal formulation and disperion relation for wave propagation

in plates

Eringen [106] developed the nonlocal formulation using a distance dependent at-

tenuation function that controls the contribution of nonlocal strains at a location ξi

on the stress of a given point x. For a homogeneous plate, the stress at x only depends

on the strain at the point x and it is independent of the strains at ξi (as in classical

elasticity). In such case, the attenuation factor reduces to a delta function which is

unity at the point x and zero everywhere else. This property is indeed consistent with

the main assumptions of Eringen’s theory. It can be assured that for a homogeneous

plate with local properties, the attenuation function tends to zero and therefore the

integral in Eq. (3.3) will be insignificant. Thus, in the limit case, the nonlocal rela-

tion converges to the classical stress-strain relation. Whereas, a plate with nonlocal

material properties will generate a significant attenuation factor value with non-zero

integral term.

Nowinski [116] used the nonlocal model developed by Eringen (Eq. (3.3)) to derive

the dispersion curves for an infinite plate having nonlocal material properties. Ac-

cording to this model, we assume a rectangular plate of thickness 2h (Fig. 3.1) with

the mid-plane of the structure coinciding with the xz plane of the coordinate system

and the wave front propagating in the x-direction. Time dependent displacements

of the plate structure due to flexural vibrations are set as ux = ux(x, y, t) in the

x-direction, uy = uy(x, y, t) in the y-direction, and uz = 0 in the z-direction, while

the corresponding strains are given as follows:

exx =
∂ux
∂x

eyy =
∂uy
∂y

exy =
1

2

(
∂ux
∂y

+
∂uy
∂x

) (3.4)
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where exx and eyy are the normal strains in the x and y-directions, and exy is the

shear strain in the xy plane. The generalized constitutive relations for 2D nonlocal

plate, as defined by Nowinski [116], is given in tensor notation as:

τij = 2µeij + λekkδij +

∫
S

(2µ′e′ij + λ′e′kkδij)dS
′ (3.5)

where i, j, k ∈ [x, y], τij is the total stress tensor at the local point, eij and e′ij are

the local strain tensor and the nonlocal strain tensor respectively, µ and λ are the

Lame’s constants, and µ′ and λ′ are the nonlocal elastic moduli that depend on

the distance between the arbitrary point and the measurement point according to

µ′ = µ′(|x− ξx|, |y − ξy|) and λ′ = λ′(|x− ξx|, |y − ξy|).

For dynamic problems, the stress-strain relations (Eq. (3.5)) are a function of both

space and time. The double Fourier transform of the relations in Eq. (3.5) (taken in

both time (t) and space (x)) generates nonlocal constitutive relations in the frequency

(ω) and wavenumber (k) domain. The transformed constitutive relations are defined

in the frequency-wavenumber domain as follows [116]:

τxx = − ik( 2µ+ λ ) ux + λ
∂uy
∂y

+

∫ h

−h

[
− ik( 2µ′∗ + λ′∗ ) u′x + λ′∗

∂u′y
∂y

]
dξy

τ yy = ( 2µ+ λ )
∂uy
∂y
− ikλ ux +

∫ h

−h

[
( 2µ′∗ + λ′∗ )

∂u′y
∂y
− ikλ′∗ u′x

]
dξy

τxy = µ

(
∂ux
∂y
− ikuy

)
+

∫ h

−h
µ′∗

[
∂u′x
∂y
− iku′y

]
dξy

(3.6)

where the barred quantities represent values in the frequency-wavenumber domain, ω

is the circular frequency, k is the wavenumber, µ′∗=µ
′
∗(k, |y−ξy|) and λ′∗=λ

′
∗(k, |y−ξy|)

are transformed nonlocal Lame’s constants.
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The equilibrium equations for the nonlocal elastic material defined by the constitutive

relations in Eq. (3.5) can be described as:

∂τxx
∂x

+
∂τxy
∂y
− ρ∂

2ux
∂t2

= 0

∂τxy
∂yx

+
∂τyy
∂y
− ρ∂

2uy
∂t2

= 0

(3.7)

Applying the double Fourier transform on Eq. (3.7), we obtain the equilibrium equa-

tions in the frequency-wavenumber domain (Eq. (3.8)).

−ik τxx +
∂τxy
∂y

+ ρω2 ux = 0

−ik τxy +
∂τ yy
∂y

+ ρω2 uy = 0

(3.8)

The barred quantities in Eq. (3.7-3.8) are defined in the transformed domain.

The exact solution for ux, uy in the frequency-wavenumber domain is obtained by

substituting Eq. (3.6) in Eq. (3.8) and then, solving the developed coupled integro-

differential equations. The exact solution present serious mathematical challenges,

hence approximate methods are typically used. According to the classical contin-

uum theory, a Dirac delta function is used as a mathematical representation of the

particle interactions due to their zero effective range. In nonlocal elasticity, various

mathematical functions can represent the effect of the inter-molecular forces. Here,

a δ-sequence is employed, δn(y − ξy) with n=1,2..., which at n near infinity becomes

a Dirac delta function, δ(y − ξy). Following Nowinski’s work [116], we make two

assumptions:

(a) for significantly large values of the unit cell length (l) (larger than the inter-

particles interaction distance), it is acceptable to make the following substitution:

∫ l

0

f(ξy)δn(y − ξy)dξy ≈
∫ ∞
−∞

f(ξy)δ(y − ξy)dξy (3.9)
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(b) for n�1, δn(y− ξy) acquires the shifting property, characteristic of the δ-function

∫ l

0

f(ξy)δn(y − ξy)dξy ≈ f(y) (3.10)

Based on these assumptions, the nonlocal material properties for a given frequency

are set in Eq. (3.6) as a function of the wavenumber alone as µ′∗=µ
′(k)·δn(|y−ξy|) and

λ′∗=λ
′(k) · δn(|y − ξy|). Thus, the updated Lame’s constants for the whole structure

are:

µtotal = µ+ µ′(k) (3.11)

λtotal = λ+ λ′(k) (3.12)

3.1.2.1 Rayleigh-Lamb dispersion relations for nonlocal waveguides

Knowledge of the updated nonlocal parameters is critical to implement the ap-

proach presented in the previous section. Here, assumed approximate solutions of

the form ux = Ux(k)e−αy and uy = Uy(k)e−αy are used. The displacements in the

frequency-wavenumber domain are obtained by substituting the approximate solu-

tions in Eq. (3.6) and then in Eq. (3.8). Thereafter, setting the determinant of the

system of equations to zero yields the nontrivial solutions of the form:

ux = A sinh(ν1y) +B cosh(ν1y) + C sinh(ν2y) +D cosh(ν2y)

uy = Bκ1 sinh(ν1y) + Aκ1 cosh(ν1y) +Dκ2 sinh(ν2y) + Cκ2 cosh(ν2y)
(3.13)

where ν1 =
(
k2 − ρω

2

Γ3

) 1
2
, ν2 =

(
k2 − ρω

2

Γ1

) 1
2

and κn = iαn(Γ1−Γ3)
α2Γ1−k2Γ3+ρω2 with Γ1 =

2µtotal + λtotal, Γ2 = λtotal and Γ3 = µtotal.

τ yy

∣∣∣
z=±h

= 0, τxy

∣∣∣
z=±h

= 0 (3.14)
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Further, substituting the solutions (Eq. (3.13)) in the transformed constitutive rela-

tions (Eq. (3.6)) and by applying the traction free boundary conditions (Eq. (3.14)),

we obtain the classical Rayleigh-Lamb equations for symmetric and antisymmetric

modes:

Symmetric mode:
tanh(ν1h)

tanh(ν2h)
=

4ν1ν2k
2

(ν2
1 + k2)2

(3.15)

Antisymmetric mode:
tanh(ν1h)

tanh(ν2h)
=

(ν2
1 + k2)2

4ν1ν2k2
(3.16)

These are transcendental equations whose solution provide the so-called dispersion

relations linking the frequency and the wavenumber. By using the nonlocal consti-

tutive relations presented above, the Rayleigh-Lamb equations provide the dispersion

relations for the nonlocal structure. In the following sections, we focus will on the

antisymmetric modes given that the flexural modes are more easily excited in the

practical applications of thin plate structures.

3.2 Geometry Induced Nonlocality and Nonlocal Attenuation Factor

The previous section presented a summary of the nonlocal theory for thin plates

as presented by Eringen [106] and Nowinski [116]. From the above summary, it is

evident that the determination of the nonlocal attenuation factor is a key element to

implement this theory. In this section, we develop a semi-analytical approach that

builds upon the nonlocal elasticity theory and is capable to determine the attenuation

factor for the nonlocal ABH metastructures. Once this factor is obtained, the modified

nonlocal Lame’s constants are determined according to Eq. (3.11)-(3.12). All the

nonlocal elasticity relations reviewed in the previous section are calculated using

these nonlocal material properties.

In this work, we introduce nonlocality via a specific geometric design. The first part of

this section will focus on presenting the concept of geometry-induced nonlocal effect
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in ABH metastructures. The second part of the section will present the procedure to

extract the nonlocal attenuation factors of all nonlocal ABH metastructures.

3.2.1 Introducing the geometric nonlocal effect

We first use a simple example based on a discrete spring-mass model to illustrate

the general idea behind the nonlocal geometric design. The continuous designs used

for the practical implementation of this concept will be described in detail in the next

chapter.

Following the work of Di Paola et al. [130], a local discrete medium can be character-

ized as a series of linear elastic springs with constant stiffness, while the long range

interactions for a nonlocal discrete model can be captured by linear elastic springs

with distance-decaying stiffness. The nonlocal effect is introduced by connecting ev-

ery point mass n to the adjacent (n−1, n+1) masses and also to non-adjacent masses

(n − 2, n + 2) using the distance decaying elastic springs as shown in Fig. 3.2. The

springs connecting adjacent masses have stiffness K l, while the non-adjacent masses

are connected by springs with distance decaying stiffness, Knl = K lf(|x− ξ|). Here,

K l is the local spring stiffness between adjacent masses, Knl is the nonlocal spring

stiffness between non-adjacent masses and f(|x − ξ|) is a decaying function of the

distance between the mass at x and the point mass at ξ. The authors theoretically

showed that this discrete model can accurately replicate the constitutive relations

and the equilibrium equations formulated by Eringen’s nonlocal theory. This discrete

system is valid for infinitesimal values of ∆x (distance between two point masses) and

hence can be implemented for finite element analysis of continuous systems like beams

and plates. This general concept proposed by Di Paola for a discrete system is taken

as the basis to develop physical designs of nonlocal ABH metastructures. A possible

implementation of this idea in the form of a continuous system is schematically shown

in Fig. 3.3 [130].
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Fig. 3.2.: Discrete spring mass system with nonlocal linearly elastic spring of
distance decaying stiffness, representing the framework of nonlocal geometry design.

Adapted from [130]. (Copyright M. Di Paola, G. Failla and M. Zingales)

Fig. 3.3.: ABH metastructure at the bottom with nonlocal connections on top. A
continuous model based on the discrete spring-mass nonlocal system.

The continuous model (Fig. 3.3) is intended to produce nonlocality by means

of a tailored geometric design. More specifically, we introduce artificial connections

between different ABH units to achieve this result. These connections implemented

via a set of rigid links are conceptually analogous to the long-range interactions in the

traditional nonlocal materials and the second layer can potentially host a secondary

ABH embedded thin plate. Note that this second layer does not serve a structural

(i.e. load bearing) role and it is mainly used to control the degree of nonlocality.

The connections play a dual role: 1) they allow to create complex energy propagation

paths through the structure, and 2) they enable every ABH indentation to contribute

to the global dynamics, independent of their spatial location. In some regard, the
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connecting layer tends to spatially delocalize the effect of individual ABH.

This basic design concept serves as the foundation for the geometric nonlocal plate

designs that will be explored in the following chapters.

3.2.1.1 Nonlocal attenuation factors

The model presented in section 3.1.2, based on the theory of Eringen [106] and

Nowinski [116], needs nonlocal material properties to be provided as input. Hence,

in order to leverage this formulation in conjunction with the proposed geometrically

nonlocal design, we must obtain the equivalent nonlocal properties of the design. The

central role of the nonlocal attenuation factor in determining the nonlocal properties

was mentioned in the previous section. Earlier, Eq. (3.3) highlighted that in the

classical nonlocal material theory the nonlocal attenuation factor (α(|x−ξx|, |y−ξy|))

is only a function of the geometric distance. On the contrary, in the present work, the

material properties of the nonlocal ABH metastructures do not have explicit nonlocal

characteristics. In fact, the nonlocal behavior is introduced by a purely geometry

based design. Also, in this case it is realistic to envision that the attenuation factor

will involve the geometric parameters as well as the dynamic behavior of the ABH

metastructure. In other terms, we expect the attenuation factor to be a function of

both space and time (α(|x − ξx|, |y − ξy|, t)). It follows that the general form of the

constitutive equation used for the nonlocal ABH metastructure design can be written

as:

τij = (2µ+ λ)(eij + ekkδij +

∫
S

α(|x− ξx|, |y − ξy|, t) (e′ij + e′kkδij)dS
′) (3.17)

where α(|x − ξx|, |y − ξy|, t) is the nonlocal attenuation factor for the 2D plate, and

all the other parameters were previously defined in Eq. (3.5). Comparing Eq. (3.5)

and Eq. (3.17), we get the nonlocal material properties µ′ = α(|x − x′|, |y − y′|, t) µ

and λ′ = α(|x − ξx|, |y − ξy, t|) λ as a function of the nonlocal attenuation factor,

α(|x− ξx|, |y − ξy|, t), of the developed design.
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All the models used in this work are based on plane strain assumptions, and it is

learned that bending stress is the dominant component in the low frequency regime.

Considering Kirchhoff’s thin plate theory for pure bending [131,132], we assume that

the stress in the y-direction (i.e through the thickness) in low frequency regime is

negligible compared to stress in x-direction. Thus, assuming plane wave propagation

in 1D, the constitutive relation of thin plates can be simplified as:

τxx = (2µ+ λ)
[
exx +

∫
x

α(|x− ξ|, t) e′xx dξ
]

(3.18)

This modified constitutive equation (Eq. (3.18)) forms the basis to extract the non-

local attenuation factor, α(|x− ξx|, |y− ξy|, t). For simplicity and ease of calculation,

we separate the nonlocal attenuation factor in two main components:

1. Static nonlocal attenuation factor

The static stress τ sxx at a point x of the nonlocal ABH metastructure is related to

the time independent local (esxx) and nonlocal (e′xx
s) strains at points x and ξi.

The characteristic distance dependent kernel, here named as the static nonlocal

attenuation factor (αs) is given by:

τ sxx(x) = (2µ+ λ)

[
esxx(x) +

∫
x

αs e
′
xx
s
(ξ) dξ

]
(3.19)

On comparing Eq. (3.19) with Eringen’s nonlocal formulation (Eq. (3.3)) for

static stress analysis, we have αs = α(|x− ξ|).

2. Dynamic nonlocal attenuation factor

The constitutive relation accounting for the dynamic behavior of the nonlocal

ABH metastructures can be formulated as:

τxx(x, t) = (2µ+ λ)

[
exx(x, t) +

∫
x

αd e
′
xx(ξ, t) dξ

]
(3.20)

where αd is defined as the dynamic nonlocal attenuation factor. On comparing

Eq. (3.20) and Eq. (3.18), we know that αd = α(|x− ξ|, t). Observing that the
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static and dynamic nonlocal attenuation factors vary only by the time period

dependent behavior of the metastructure, αd can be represented as a function

of αs as:

αd(|x− ξ|, t) = αs(|x− ξ|) · u(t) (3.21)

where u(t) is the time dependent displacement profile of the nonlocal ABH

metastructure.

Following Nowinski’s work [116], the constitutive relation in Eq. (3.20) is double

Fourier transformed with respect to space-time (x−t) into the wavenumber-frequency

(k − ω) domain to understand the dynamic effect of nonlocal geometry through a

frequency based study as given below:

τxx = −ik(2µ+ λ)
[
ux + αd(k, ω) u′x

]
(3.22)

where all barred parameters are assumed in the transformed domain.

Comparing Eq. (3.22) with Eq. (3.6), the nonlocal Lame’s constants of the new ge-

ometry are µ′(k) = αd(k, ω)µ and λ′(k) = αd(k, ω)λ. Given the updated nonlocal

Lame’s constants, we can rewrite the overall material properties in Eq. (3.11)-(3.12)

as:

µtotal = µ+ µ′(k, ω) = µ (1 + αd(k, ω)) (3.23)

λtotal = λ+ λ′(k, ω) = λ (1 + αd(k, ω)) (3.24)

Here, αd(k, ω) is the dynamic nonlocal attenuation factor in the transformed domain,

hence as a function of wavenumber and frequency. Using the inverse Fourier transform

in the wavenumber domain, the dynamic nonlocal attenuation factor can be presented

in the spatial-frequency domain as αd(|x− ξ|, ω).

The following section, will focus on the development of a semi-analytical procedure

to determine αs and αd. A detailed procedure to capture the static attenuation
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factor is described on the basis of Eq. (3.19). The procedure to extract the dynamic

attenuation factor is presented afterwards.

3.2.2 Static nonlocal attenuation factor (αs)

From Eq. (3.19), it can be seen that the nonlocal attenuation factor could be

obtained by inverting the formulation for αs. Here, we propose a semi-analytical

approach to evaluate the parameters necessary to calculate αs.

3.2.2.1 Enforced Gaussian displacement

Eq. (3.19) can be simplified by enforcing localized strains at points ξi and by not

applying strain at the point x. In terms of the static stress distribution, we obtain:

τ sxx(x) = (2µ+ λ)

∫
x

αs e
′
xx
s
(ξ) dξ (3.25)

The application of a localized strain at a single point will reduce the integral in

Eq. (3.25) to a single term, and thus simplify the αs calculation by using a numeri-

cally evaluated stress distribution.

A static analysis is setup by applying a prescribed localized displacement of the form

of a Gaussian function in the y-direction at a single point ξ as shown in Fig. 3.4. Ide-

ally, a displacement following a Dirac-delta distribution in space would be required.

However, for practical simulations, the abrupt change in the Dirac-delta distribution

based displacement generates residual strains in addition to the local strain. The

gradually varying tailed displacement profile of the Gaussian distribution (Fig. 3.4)

in space generates minimal residual strains. This procedure is repeated for coordi-

nates ξi which are dx′ distance apart and spanning the entire length of the plate, i.e

ξi ∈
[
− a

2
,
a

2

]
.

Localization of the displacement is necessary to calculate the αs from Eq. (3.25) as

it is difficult to numerically separate the local (esxx(x)) and nonlocal (e′xx
s(ξ)) strain
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Fig. 3.4.: Schematic illustrating the enforced Gaussian displacement profile applied
on a flat plate at a point ξ which is dx′ distance away from the local point x. The

total stress is measured at x (center of the unit cell).

components for the calculation. In the nonlocal stress-strain relation (Eq. (3.25)), the

enforced Gaussian displacement at ξ contributes only to the nonlocal strain compo-

nent (e′xx
s(ξ)) at the point of measurement of stress, x. For a given study, as localized

displacement is enforced only at ξ, the local strain at the measurement point x is zero

and hence, only the nonlocal strain contributes to the total stress at the center of the

unit cell (x).

3.2.2.2 Semi-analytical procedure for the calculation of αs

The static nonlocal attenuation factor (αs) is calculated from the constitutive

relation in Eq. (3.25). In order to calculate αs, it is necessary to evaluate the values

of all other variable parameters defined in Eq. (3.25). Hence, this section focuses on

developing a numerical procedure to evaluate all these parameters and to calculate

the αs from the analytical formulation (Eq. (3.25)) as follows:

1. A finite element (FE) model of the metastructure is used to simulate the static

response of the structure.

2. The Gaussian displacement, elaborated in the previous section, is enforced at

point ξ of the numerical model (Fig. 3.4). The Gaussian displacement profile

(shown in Fig. 3.4) has a maximum amplitude at x, while the tails reduce the

value to zero (approximately) on either sides of point ξ.
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3. Once the enforced displacement is setup, the metastructure geometry is meshed.

The regions close to ξ are meshed with quadrilateral (quad) mesh elements

for accurate results, while the regions near the tails of the enforced Gaussian

displacement are meshed with triangular (tri) mesh elements as depicted in

Fig. 3.5. The rest of the geometry is mapped with the distribution functions

available in the numerical software and is meshed with rectangular elements.

Fig. 3.5.: Schematic showing the meshing pattern in the proximity of enforced
Gaussian displacement. Region 1 is meshed with quadrilateral elements, while

regions 2a, and 2b are meshed with triangular elements.

4. The numerical design with the enforced displacement is subjected to a static

analysis in a FE based software COMSOL.

5. The total static stress (τ sxx) at x and the time independent nonlocal strain (e′xx
s)

value at ξ are measured from the data gathered by post processing the com-

pleted numerical simulation. Further, Lame’s constants (µ and λ) are calculated

from the material properties (E and ν) used for simulating the design. After

enumerating all the parameters from the FE simulation for a single Gaussian



61

displacement enforced at ξ, the αs is calculated by reorganizing the analytical

relation in Eq. (3.25) as shown below:

αs =
τ sxx(x)

(2µ+ λ) e′xx
s(ξ)

(3.26)

6. The procedure from 1-5 extracts single αs value for a specific Gaussian displace-

ment profile enforced at ξ which is at dx′ distance from x. Similarly, the static

numerical simulations are carried out for the enforced Gaussian displacements

which are at i · dx′, where i=0,1,2..., distances from x. A parametric sweep in i

is setup in the FE software to obtain the αs values for all the Gaussian displace-

ments enforced along the length of the metastructure. On post processing, we

gather i values of αs corresponding to the i Gaussian displacements enforced.

An αs plot for the i points will generate a geometric distance dependent nonlocal

attenuation function.

7. The static nolocal attenuation function of individual geometries are calculated

and plotted by repeating the procedure from 1 to 6 for all the numerical designs

developed in this work. Next chapter discusses the results and observations

obtained by implementing this procedure.

3.2.3 Dynamic nonlocal attenuation factor (αd)

In this section, we focus on the development of a procedure to obtain the dynamic

nonlocal attenuation factor (αd). Further, the later part of the section develops a

procedure to solve the Rayleigh-Lamb dispersion equation in order to evaluate the

dynamic behavior of the metastructure using αd. The procedure is subdivided into

two main sections:
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3.2.3.1 Numerical procedure for the calculation of αd

As per Eq. (3.21), we know that αd is explicitly expressed as a function of dis-

tance dependent αs and time dependent displacement u of the structure. As the

detailed procedure to extract αs was elaborated in section 3.2.2, this section focuses

only on the development of a numerical procedure to obtain the structural displace-

ment. Nowinski [116] discussed the use of the frequency dependent αd based material

properties (Eq. (3.23)-(3.24)) to evaluate the dispersion behavior of the structure,

hence a numerical procedure is established to directly evaluate the displacement in

the frequency domain and to calculate αd(x, ω) as follows:

1. A FE model of the metastructure is used to simulate the dynamic response of

the structure.

2. The numerical design consists of 20 unit cells of the metastructure concatenated

on either sides of the parent unit cell as shown in Fig. 3.6. The periodic ensemble

is designed to capture the complete wave attenuation near band gap frequencies

of the structure. As an added advantage, long wavelengths will be accurately

captured by this periodic design.

Fig. 3.6.: Schematic illustrates the ensemble designed for forced frequency analysis
to understand the dynamic behavior of a given structure. Design in figure depicts a

generalized framework for all the structures.

3. The ensemble is subjected to an external harmonic force of 1N magnitude

(Fig. 3.6) at the center of the design. Low reflective layers are appended on

the boundaries of the structure as shown in Fig. 3.6 to prevent any anomaly in
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the resultant frequency based displacement amplitudes of the structure due to

the flexural wave reflection from the boundaries.

4. Further, the periodic structure is meshed with free quad elements. After mesh-

ing, the structure enforced with the above prescribed force and the boundary

conditions is subjected to a steady state forced frequency analysis in a FE soft-

ware COMSOL. A specific metastructure design is simulated over a range of

frequencies.

5. The procedure from 1 to 4 is repeated for all the geometries developed in this

thesis.

6. After post-processing, the frequency dependent displacement profile of a specific

design is physically subtracted from the displacement profile of its correspond-

ing load-bearing baseline structure (flat and tapered plate) to separate-out the

effective structural response due to the presence of the geometric nonlocality. As

the local baseline structures lack nonlocal geometric connections, their effective

displacement profiles equate to zero.

7. For each structure, the effective displacement profile is normalized by the peak

displacement amplitude at the specific frequency. Further, the distance de-

pendent αs is physically multiplied to the above mentioned frequency based

effective displacement profile to produce a spatial and frequency dependent αd

(Eq. (3.21)).

3.2.3.2 Semi-analytical procedure for solving the dispersion equation

From section 3.1.2, we know that the complete dynamic behavior of the metastruc-

ture is obtained by solving the Rayleigh-Lamb dispersion relation (Eq. (3.15)-(3.16))

using the effective nonlocal material properties [116]. As the effective material prop-

erties of the geometrically nonlocal metastructure depends on the αd of the specific
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structure calculated from the above section, the following procedure is developed to

solve the dispersion relation:

1. From Eq. (3.24), we know that the material properties of the geometric nonlocal

designs will vary as a function of k−ω dependent αd. Hence, the x−ω dependent

αd calculated in the previous section is numerically fast Fourier transformed into

the k − ω domain.

2. The numerical simulation procedure elaborated in the above section to calcu-

late αd measures the structural displacement u in the x − ω domain. As per

Nowinski [116], the displacement in the k − ω domain is used to solve the

Rayleigh-Lamb equations and, thus the u(x, ω) obtained in the above section

is fast Fourier transformed into U(k, ω), where U is the displacement in the

transformed domain.

Fig. 3.7.: Plot shows the wavenumber (kpeak) corresponding to the peak value of
U(k)=FFT[u(x)] at a specific frequency ω0 for a sample structure.
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For a given structural response at a specific frequency (ω0), we obtain a U(k)−k

plot as shown for a sample structure in Fig. 3.7. For each ω0, the U(k) plot

(Fig. 3.7) peaks at a specific wavenumber kpeak, and the αd corresponding to

this kpeak and ω0 combination is evaluated as the αd(k, ω0). This procedure

is repeated for range of frequencies to obtain all the αd(k, ω) values for the

numerical design.

3. Once the effective nonlocal material properties of the structure are calculated

using the αd(k, ω) values, the work further focuses on solving the Rayleigh-

Lamb’s antisymmetric mode equation (Eq. (3.16)). An unconstrained mini-

mization technique with user defined gradient is numerically implemented to

solve this nonlinear Rayleigh Lamb equation. Detailed explanation about the

minimization technique used and the results obtained are in the next chapter.

4. The procedure described above is repeated for all the geometries developed in

the thesis.

The next chapter evaluates the dynamic performance of all the designs based on the

results obtained by implementing the above mentioned semi-analytical approach, and

numerical simulation procedures.
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4. DESIGN AND NUMERICAL VALIDATION OF

NONLOCAL ABH METASTRUCTURES

The previous chapters presented the necessary theoretical tools to study the per-

formance of nonlocal ABH metastructures. This chapter focuses on the design of

nonlocal ABH metastructures and on understanding their characteristics. The first

part of this chapter introduces the general idea of a 2D nonlocal ABH metastructure

and its design principles. The reminder of the chapter is dedicated to presenting the

numerical results obtained and analyzing the performance. Particular attention will

be given to the characterization of the dynamic performance in the ultra-low frequency

regime and to the evaluation of the cut-on frequency of the ABH metastructures.

4.1 Nonlocal ABH Metastructure: Basic Concepts And Designs

This section explores the possible designs of ABH metastructures, intentionally

conceived to provide a highly nonlocal dynamic response of the entire assembly. In

the following section, we identify a few possible design configurations that will be

used as the benchmark to characterize the performance of the nonlocal metastruc-

ture. Specifically, we intend to analyze the effect of the intentional nonlocal design

on the cut-on frequency of the ABH metastructure and on its broadband vibration

attenuation behavior.

4.1.1 Engineering the nonlocality in ABH metastructures

Although different design strategies can be conceived in order to achieve nonlocal

properties, in this study we chose to use an artificial add-on structure consisting of a

set of highly rigid beam connectors and a flexible thin plate. The artificial structure
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is connected to the supporting load bearing ABH structure whose dynamic properties

are sought to be controlled. The role of the different components is explained in the

following sections.

4.1.1.1 Rigid beam connectors

Among the various combinations of rigid beam connector design parameters in-

cluding the quantity and the locations that can be conceived, we selected a configu-

ration with five connectors as shown in Fig. 4.1 and Fig. 4.4 (middle, bottom). This

configuration is the result of a parametric study conducted to achieve long range force

interactions without significant increase in the stiffness of the system. The chosen

number of rigid connections maintain the flexibility without compromising the nonlo-

cal effect (a higher number of connectors will increase the stiffness, hence diminishing

the effect of the strain at a distance), while their position at the center of the tapers

create energy paths through structural locations characterized by high energy density

(i.e the ABH centers).

4.1.1.2 Non-load bearing (NLB) layer

The artificial layer connected to the ABH metastructure is not load bearing and

can be either a flat plate or an ABH plate. Although both the designs will produce a

nonlocal effect, it is expected that the NLB layers integrating ABH embedded layers

could offer better energy control in the low frequency regime.
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Fig. 4.1.: Schematic classifying the three components of the nonlocal system design
with flat base plate: (i) rigid beam connectors; 5 thin beams provide the long range

connections, (ii) NLB layer; flexible and non-load bearing plate for vibration
control, and (iii) LB layer; stiff and load bearing component.

4.1.1.3 Load bearing layer

In order to have a reference configuration for a clear assessment of the performance,

we developed two baseline structures without using the nonlocal geometric design.

These baseline structures simply consist of the load bearing layer as shown in Fig 4.2-

4.3. We will refer to these configurations as the baseline structures. The two baseline

designs are:

1. Flat plate:

A thin rectangular flat plate with
l

t
� 1 is chosen as the first type of local

baseline structure, as shown in Fig 4.2.

Fig. 4.2.: Schematic of a thin flat plate baseline structure.

2. Tapered plate:

An embedded lattice of periodic tapers with a maximum thickness t, length l
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and the same material properties of flat plate (refer Table 4.1) is the second

baseline design (Fig 4.2).

Fig. 4.3.: Schematic of a tapered plate baseline structure (embedded with 10
ABHs).

The static and dynamic response of both the baseline structures will be the reference

for comparing the performances of the nonlocal designs.

4.1.2 Nonlocal ABH metastructure design

Fig. 4.4.: Schematics of the different types of designs employing a flat plate
baseline structure. Flat plate (top) is the local baseline design while TFBF (middle)

and TTBF (bottom) are its nonlocal models.
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Fig. 4.5.: Schematics of the different types of designs employing a tapered plate
baseline structure. Tapered plate (top) is local baseline design while TFBT (middle)

and TTBT (bottom) are its nonlocal models.

From the previous section, we know that a nonlocal design is modeled by integrat-

ing a NLB layer (i.e flat or ABH plate) on to a LB layer (i.e flat or tapered plate). In

total, we will analyze four nonlocal and two baseline structures as shown in Fig. 4.4

and Fig. 4.5. We classify these structures into two different groups based on their

baseline geometry:

1. Flat plate

A flat plate baseline design is shown in Fig. 4.4 (top). This reference configu-

ration does not exhibit nonlocal effects. The flat plate based nonlocal designs

are:

(a) Top Flat Bottom Flat (TFBF): The flat plate baseline structure is con-

nected to a thin flat plate on top using a series of rigid beam connectors

as shown in Fig. 4.4 (middle).
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(b) Top Tapered Bottom Flat (TTBF): The flat plate baseline structure is con-

nected to a thin ABH plate on top using a series of rigid beam connectors

as shown in Fig. 4.4 (bottom).

2. Tapered plate

The flat plate with ten embedded ABHs as shown in Fig. 4.5 (top) is referred to

as the tapered plate baseline structure. This reference configuration does not

exhibit nonlocal effects. The nonlocal designs based on the tapered plate are:

(a) Top Flat Bottom Tapered (TFBT): The tapered plate baseline structure is

connected to a thin flat plate on top using a series of rigid beam connectors

as shown in Fig. 4.5 (middle).

(b) Top Tapered Bottom Flat (TTBT): The tapered plate baseline structure

is connected to a thin ABH plate on top using a series of rigid beam

connectors as shown in Fig. 4.5 (bottom).

The properties and the dimensions of the baseline structures and their corresponding

nonlocal designs used in the thesis are described in the next section.

4.1.3 Geometric details of the nonlocal designs

The baseline structures have a periodic unit cell length l of 1.4m. The tapered

plate baseline design has an embedded lattice of periodic ABHs repeated every 0.14m

with minimum thickness of 1.5mm and maximum thickness of 8mm. To maintain

structural integrity, the tapered plate baseline structure is embedded with ten small

sized tapers in place of a single big taper. A single taper along the plate length with

high
l

t
will produce regions of small stiffness and low strength on the structure, while

more than ten ABHs along the unit cell length will be difficult to manufacture and

will generate a flexible layer with reduced load bearing property.
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Table 4.1.: Material properties of LB layer, NLB layer and rigid beam connectors
used for all the geometries.

Geometry Density (kg/m3) Young’s Modulus (GPa) Poisson’s ratio

LB layer 2700 79 0.33

NLB layer 1000 2 0.35

Connectors 10 1000 0.27

Table 4.2.: Dimensions of LB layer, NLB layer and rigid beam connectors used for
modeling the baseline structures and their nonlocal designs.

Plate Properties Flat TFBF TTBF Tapered TFBT TTBT

plate plate

LB layer Width (m) 1.4 1.4 1.4 1.4 1.4 1.4

Max Height (m) 0.008 0.008 0.008 0.008 0.008 0.008

Min Height (m) 0.008 0.008 0.008 0.0015 0.0015 0.0015

No. of Tapers 0 0 0 10 10 10

Taper power-m - - - 2.2 2.2 2.2

NLB layer Width (m) - 1.39 1.39 - 1.39 1.39

Max Height (m) - 0.0033 0.008 - 0.0033 0.008

Min Height (m) - 0.0033 0.0012 - 0.0033 0.0012

No. of Tapers - 0 0 - 1 1

Connectors Width (m) - 0.002 0.002 - 0.002 0.002

Height (m) - 0.012 0.012 - 0.0189 0.0189

These baseline structures are connected with a thin NLB flat or ABH plate of

length moderately shorter than the baseline layer (refer Table 4.2 for exact dimen-

sions). Both types of NLB layers have the same total surface areas to accurately
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compare the introduced nonlocal effect. A large single taper is used for the NLB

ABH plate in the nonlocal assembly as major part of the strength and support is

provided by the baseline structure. It also reduces the complexity of the design.

The properties and the exact dimensions of the local and nonlocal geometries intro-

duced in the previous section are enumerated in Table 4.1 and Table 4.2 respectively.

The dimensions and the properties listed in Table 4.1 and Table. 4.2 are not opti-

mized. All models are 2D plane strain thin structures with dominant bending stress at

low frequencies. The performance of all the models are numerically investigated with

a FEM based software in the next section. Models are built and solved in COMSOL

Multiphysics, while the data post processing is carried out in MATLAB.

4.2 Evaluation of the Nonlocal Dynamic Response

Series of numerical simulations are performed to understand the effect of nonlo-

cality on the dynamic response of the above defined structures. Numerical evaluation

of dispersion curves and transfer functions are used to explore the performance of the

proposed nonlocal designs. The dispersion results obtained using an eigenfrequency

based analysis are discussed in the first part of this section. The semi-analytical ap-

proach developed in the previous chapter to extract the nonlocal attenuation factors

is implemented in this section to capture the fundamental dispersion modes. The last

part of this section discusses the steady state response of the nonlocal structures.

4.2.1 Dispersion analysis

The analysis of the dispersion band structure is performed by solving an eigenvalue

problem for both the local and the nonlocal designs. From a numerical standpoint,

the dispersion equations are evaluated by solving an eigenvalue problem based on the

homogeneous form of Navier’s equation (covered extensively in section 2.4.1). Here,

the frequency and the wavenumber based dispersion relation characterize the modal

behavior of the structure.
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The structural unit cells are designed as per the properties and dimensions mentioned

in Table 4.1-4.2. Floquet boundary conditions are enforced on either edges of a unit

cell of length l to simulate an infinite periodic structure. Using Brillouin’s theory [78],

wavenumber kx is parametrically swept in the [0, pi/l ] range. Once setup, the unit cell

is meshed with quad elements and solved numerically. Converged numerical eigen-

frequency study provides the frequency and the corresponding wavenumber based

dispersion curve for the structure. This procedure is repeated to capture dispersion

curves for all local and nonlocal structures.

As mentioned in the previous section, the effective dynamic properties obtained from

the dispersion of the nonlocal designs are compared to their baseline configurations.

Before exploring the dynamic performance of the nonlocal designs, we analyze and

compare the baseline configurations based on their dispersion characteristics in the

next section.

4.2.1.1 Comparison of the baseline structures

Fig. 4.6.: Dispersion curves of flat and tapered plates.
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The dispersion bands of both the flat and the tapered baseline plates are shown

in Fig. 4.6. From the direct comparison of the dispersion bands in the low frequency

range, we observe steeper slopes for the flat plate dispersion bands compared to the

same bands of the tapered plate. This result indicates that the flexural waves travel

faster in the flat plate in comparison to its tapered counterpart. The lower elastic

wave velocity in tapered plates can be attributed to the lower bending stiffness of

the ABH metastructure. The low thickness regions generated by the taper profiles

reduce the local stiffness of the tapered plate in comparison to the flat plate of the

same length, and constant thickness and as a consequence the dispersion bands of the

tapered plate have a visible downward frequency shift (Fig. 4.6) with respect to the

flat plate.

4.2.1.2 Comparison of flat plate, TFBF, and TTBF

The following observations can be made about the dynamic behavior of the non-

local designs TFBF, and TTBF when compared to their corresponding flat plate

baseline structure:

1. As illustrated by Nowinski [116] in a general study of the dynamic behavior of

thin plates with and without nonlocal material properties, the dispersion bands

of plates with nonlocal properties tend to shift to lower frequencies. On the

contrary, in the nonlocal designs developed in this thesis we do not observe

a significant downward shift in the frequency bands of TFBF and TTBF with

respect to flat plate, as shown in Fig. 4.7. This is attributed to the characteristic

feature of the proposed nonlocal geometries in which the addition of a NLB layer

enhances the stiffness of the nonlocal structure. On one hand, the introduction

of the nonlocal behavior lowers the band structure as illustrated by Nowinski

[116], while on the other, the higher stiffness of the structure due the introduced

NLB layer pushes the bands to higher frequency range. Thus, as the stiffening

effect of TFBF and TTBF superimposes the nonlocal effect, the band structure
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Fig. 4.7.: Plot comparing the dispersion curves of flat plate, TFBF, and TTBF.

seems to have a slight upward shift compared to the flat plate. This up-shift

with respect to the bands of the flat plate is not prominent in Fig. 4.7 as the

majority of the stiffness contribution is from the flat LB layers of TFBF and

TTBF.

2. Fig. 4.7 only shows the real wavenumbers that represent the propagating waves

(Fig. 4.8a-b), while the frequencies with purely imaginary wavenumber solutions

are associated with the evanescent waves (Fig. 4.9b) and correspond to the

bandgaps (Fig. 4.9a). The first two band gaps in the long wavelength (low

frequency) regime, bandgap 1 and bandgap 2, in Fig. 4.7 are characterized by

the destructive interference of the scattered waves caused by the introduction

of flexible NLB layer in conjunction with the periodicity of the structure. All

structures, irrespective of the type of NLB layer connections involved, have

similar dynamic behavior in the long wavelength regime. Hence, the bandgap

1 (Fig. 4.7 and Fig. 4.9a) generated around a central frequency of 10 Hz by

both TFBF and TTBF is due to the periodicity of the nonlocal structures and
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Fig. 4.8.: (a) The dispersion of the fundamental mode for different configurations
with flat LB layer, and (b) the eigen displacement on a periodic TTBF structure at

a frequency f=9 Hz which is within the propagating range.

Fig. 4.9.: (a) Bandgap between first and second modes in dispersion of different
configurations with flat LB layer (b) eigen displacement of an evanescent wave

pattern on a periodic TTBF structure at a frequency f=10.55 Hz which is within
the first band gap.

it is independent of the nonlocal geometry. This is also evident in the mode

shape obtained from a frequency in bandgap 1 (Fig. 4.10a). Starting from the

second band this behavior begins to diverge. The NLB layer has a significant
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contribution to the dynamic behavior of the structure in bandgap 2 (Fig. 4.7),

as observed in the mode shape in Fig. 4.10b

Fig. 4.10.: Mode shapes obtained by the eigenvalue analysis of TTBF: (a) at
frequency f= 10.546 Hz in bandgap 1, and (b) at frequency f= 54.162 Hz in

bandgap 2.

3. The local resonance of the NLB layer, in the nonlocal design, results in the

formation of standing waves as shown in Fig. 4.11a. Fig. 4.11b shows the eigen-

state corresponding to a frequency in the flat band which confirms the standing

wave pattern.

Fig. 4.11.: (a) Flat band corresponding to a standing wave localized on the NLB
layer, and (b) the corresponding eigenstate for the TTBF structure at resonant

frequency f =29.623 Hz.
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4. Fig. 4.12 highlights that the TTBF configuration, which uses ABH plate as

the NLB layer, visibly enhances the bandwidth in bandgap 2 compared to the

TFBF (refer to Fig. 4.7). As previously indicated, this effect can be attributed

to the higher energy attenuation property of ABHs due to their taper profiles.

Fig. 4.12.: Zoomed in view from Fig. 4.7, showing the details of bandgap 2 for both
the TFBF and the TTBF configurations.

Similar observations can be made on comparing the nonlocal structures with a com-

mon tapered baseline plate. This will be elaborated in the section below.

4.2.1.3 Comparison of tapered plate, TFBT, and TTBT

The direct comparison of the dispersion curves of the nonlocal designs with the

corresponding baseline designs exhibit some similarities regardless of the type of the

LB layer and the NLB layer involved. Hence, this section will only focus on the

characteristic differences generated in the dispersion by using a LB layer of the form
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of a tapered plate. The following remarks can be made about the dynamic behavior

of the nonlocal designs with tapered LB layer from Fig. 4.13:

Fig. 4.13.: Plot comparing the dispersion curves of tapered plate, TFBT, and
TTBT.

1. Similar to the observation made about the nonlocal structures with flat LB layer,

dispersion bands of the nonlocal structures with tapered LB layer (TFBT and

TTBT) shows an upward shift in Fig. 4.13 due to their higher stiffness compared

to the tapered plate baseline structure. Further, on comparing Fig. 4.7 and

Fig. 4.13, it is noted that the upward shift in the dispersion bands of the nonlocal

structures with the tapered LB layer is higher than the dispersion shift of the

nonlocal flat LB layer structures. This is attributed to the lower stiffness of

the tapered LB layer. Nonlocal structures with low stiffness tapered LB layer

have higher stiffness contribution from the added NLB layer, but the stiffness

contribution from the NLB layer of the nonlocal designs with stiff flat LB layer

is meager.
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2. As elaborated before, regardless of the type of the NLB layer connected, period-

icity in the nonlocal structures (TFBT and TTBT) is responsible for bandgap 1

(Fig. 4.13) in the low frequency regime. The NLB layer tends to have an effect

on the dynamic behavior of the nonlocal structure starting from second band

and, thus contributes significantly to the formation of bandgap 2 (Fig. 4.13).

3. Due to the inability of the taper in the NLB ABH layer to capture at least a

complete wavelength at the low frequency range (2.3-6.4 Hz) of the bandgap

1 in Fig. 4.13, we observe a rather smaller bandgap in the TTBT (even with

NLB ABH layer) compared to the TFBT (with NLB flat layer). Further, as the

wavelength reduces (higher frequencies) and at least one complete wavelength

is captured by the taper in the NLB ABH layer of the TTBT at frequencies

corresponding to the bandgap 2 (Fig. 4.13), the ABH effect attenuates the wave

energy and enhances the bandgap width.

4.2.2 Effective nonlocal material properties: semi-analytical approach

The procedure for extracting the dynamic material properties of the nonlocal

structure was described in chapter 3. The nonlocal elasticity formulation was modified

to capture the nonlocal material properties as a function of the geometric attenuation

factor. Here, we evaluate the attenuation factor for all the models proposed above.

The attenuation factor for each design can be calculated in two parts, namely, the

static and the dynamic attenuation factor. Finally, the attenuation factor based

nonlocal material properties will be used to asses the the dispersion behavior of the

nonlocal designs.

4.2.2.1 Static nonlocal attenuation factor (αs)

The procedure introduced in section 3.2.2 to evaluate the effective nonlocal proper-

ties is implemented here to specifically find the static nonlocal attenuation factor (αs).
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A Gaussian displacement (refer to section 3.2.2.1) is enforced at every dx′=12.6mm,

starting from the total stress measurement point (originally at the center of the unit

cell) as shown in Fig. 4.14. For each dx′=12.6mm, the total static stress (τ sxx) mea-

sured at the center of the unit cell, and the time independent nonlocal strain (e′xx
s)

measured at the displacement enforced position are used to calculate the αs as in

Eq. (3.26). All the parameters necessary to evaluate αs are measured from the static

numerical simulation results, as elaborated in section 3.2.2.

The αs evaluated for all the proposed designs are plotted as a function of the spatial

Fig. 4.14.: Stress plot on a flat plate due to the enforced Gaussian displacement
(obtained from static FE simulation). The enforced Gaussian displacement

generated strain (e′xx
s) at dx′ distance is the only strain contribution to the total

stress (τ sxx) measurement point.

position of the enforced displacement in Fig. 4.15 and 4.16. Further, the following

observations can be deduced from the results obtained:

1. General observations on the static nonlocal attenuation factor (αs):

The plots shown in Fig. 4.15-4.16 represent the trend of the static nonlocal

attenuation factor obtained from Eq. (3.26). The vertical axis corresponds to

a normalized αs, while the horizontal axis represents the spatial position of

the enforced Gaussian displacement (extending on either sides from the center

of the individual structure). When the point of application of the enforced
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displacement is very close to the total stress measurement point (which is the

center of the structure), αs has the maximum value (shown by the peaks in

Fig. 4.15 and 4.16) as the enforced displacement in close proximity generates

near local strain profile on the stress measurement location on a continuum scale.

This behavior is consistent with the response of the baseline structures, which

are local in nature. As the point of application of the enforced displacement

moves away from the center of the structure, there is a sharp drop in the αs

value of the baseline structures, while the factor drops gradually for the nonlocal

designs. The αs amplitudes of the nonlocal designs and the baseline structures

are similar only at the boundaries of the unit cell of the structures, at positions

where the nonlocality controlling NLB layers end.

2. Effect of the NLB layer:

Analyzing the αs plots of the nonlocal structures with the flat plate (Fig. 4.15)

and the ABH plate NLB layers (Fig. 4.16), it is established that the introduc-

tion of a low density and flexible NLB layer increases the magnitude of the

attenuation factor at distant points of the structure in both the cases. In the

nonlocal structures with flat plate LB layer (TFBF and TTBF), a gradual re-

duction in αs is observed between any two consecutive rigid beam connectors

while a small but sudden dip in αs is noticed at the end of every rigid beam

connector. Observe the variation of αs with the unit cell distance of the TFBF

and the TTBF structures in Fig. 4.15 to visualize the above mentioned effect.

Similar pattern is also observed in the TFBT and the TTBT (Fig. 4.16) struc-

tures. The rigid beam connectors act as a pathway to propagate flexural waves

through the NLB layer to distant points on the baseline structure and, thus

establishing the nonlocal effect.
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Fig. 4.15.: The static attenuation factors of flat plate, tapered plate, TFBF, and
TTBF. The stress reading is always taken at the center of each structure while the

enforced displacement is moved along the unit cell length on either side of the
measurement point.
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Fig. 4.16.: The static attenuation factors of flat plate, tapered plate, TFBT, and
TTBT. The stress measurement is always taken at the center of each structure

while the enforced displacement is moved along the length of the unit cell on either
side of the measurement point.
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3. Effect of the ABH:

Due to the periodic nature of the ten tapers on the LB layer within the single

unit cell, nonlocal structures with tapered plate LB layer has an oscillating

attenuation factor decaying at a higher rate after the end of each rigid beam

connector as shown in Fig. 4.16. Observe αs of TTBT and TFBT varying with

the position of the enforced displacement in Fig. 4.16.

Further, as the ABH plate NLB layer is more flexible than the flat plate NLB

layer, the amplitude of the normalized αs for the TTBF and the TTBT nonlocal

structures with tapered plate NLB layer is slightly lower in magnitude compared

to the TFBF and the TFBT nonlocal structures with flat plate NLB layer as

shown in Fig. 4.15 and Fig. 4.16.

4.2.2.2 Dynamic nonlocal attenuation factor (αd)

The procedure elaborated in section 3.2.4 is implemented here to evaluate the

dynamic nonlocal attenuation factor (αd). From section 3.2.3, it is known that the

nonlocal material properties are a function of the frequency-wavenumber dependent

dynamic nonlocal attenuation factor (αd(k, ω)). Unlike the frequency independent

αs, a frequency dependent αd has to be calculated for the individual structure. In

this section, a steady state frequency response analysis is numerically simulated to

evaluate the frequency dependent displacement profile of each structure, which in

conjunction with the αs produces the αd. Later, the nonlocal properties calculated

with αd using Eq. (3.23-3.24) are used to plot the fundamental modes of the dispersion

curves by solving the Rayleigh-Lamb equation (Eq. (3.16)). Further, the numerically

obtained dispersion curves of the structures evaluated in section 4.2.1 are matched

with dispersion produced by solving the Rayleigh-Lamb equation for the antisymmet-

ric modes. This will verify the dynamic performance characteristics evaluated from

the semi-analytically calculated nonlocal attenuation factors.
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1. Calculating the dynamic nonlocal attenuation factor (αd):

A steady state frequency response analysis (refer to section 2.4.2) is numeri-

cally simulated to calculate the displacement profile of each structure for range

of frequencies in the fundamental dispersion bands. The simulated periodic en-

semble has sufficient length to capture small wavenumbers (kx≥0.05*π/l), as

elaborated in section 3.2.3.1.

Further, the displacement profile of the baseline structure is subtracted from the

displacement profile of the nonlocal structure with the corresponding LB layer to

generate an effective displacement profile (ueff ) for each nonlocal system. These

effective displacement profiles are normalized by the maximum amplitude of the

displacement at that specific frequency for the given structure. Finally, a prod-

uct of the normalized static nonlocal attenuation factor (αs) and the normalized

displacement profile (ueff ) from the frequency response calculates a spatial and

frequency dependent dynamic nonlocal attenuation factor (αd), as formulated

below:

αd(xi, ω
j) = (ujeff )i αsi (4.1)

where (ujeff )i =
(ujeff )i

max(ujeff )
, and αsi =

αsi
max(αsi)

are normalized effective dis-

placement, and normalized static attenuation factor respectively for the jth

frequency at the i · dx′ position coordinate along the length of the structure.

Further, the fast Fourier transform (FFT) of αd(xi, ω
j) produces a wavenumber

dependent dynamic function for the jth frequency of the given structure. The

dominant wavenumber is chosen from the peak magnitude of the FFT of the

nonlocal structure’s displacement (uj) profile, the obtained position is used to

find a single αd(k, ωj) for each frequency (refer to section 3.2.3.1).

2. Numerical solution of the Rayleigh-Lamb equation:

The nonlocal material properties are evaluated with the αd(k, ωj) calculated

above. The theoretical Rayleigh-Lamb formulation (Eq. (3.16)) is solved with

the αd to plot the dispersion curves. The non-linearity of the transcendental



88

equation (Eq. (3.16)), and the existence of infinite number of solutions create

serious challenges in calculating the numerical solution. In his work, Nowin-

ski [116] used mathematical approximations of the transcendental equations to

plot the dispersion curves. In this work, an accurate solution is obtained by

using an optimizer. An unconstrained minimization technique for non-linear

problems is used to solve the transcendental equation. A gradient based solver

(fminunc) from MATLAB’s optimization toolbox is used with the trust-region

algorithm and a user-defined gradient of the objective function. To avoid ill-

conditioning due to extremely small function values and exit conditions obtained

during minimization, logarithmic value of the transcendental equation is taken

as the objective function to be minimized.

The initial guess of the wavenumber is supplied by calculating the transverse

wave speed and the frequency [133]. The transverse wave speed is calculated

using the shear modulus (µtotal) and the effective material density (ρeff ). The ef-

fective density (ρeff ) of the baseline structures are equal to the material density

(ρ=2700 kg/m3), but for the nonlocal designs, the effective density is calculated

by the rule of mixtures using the volume fractions of the LB layer (l), the rigid

beam connectors (c), and the NLB layer (n) as presented below:

ρeff =
Vl ρl + Vc ρc + Vn ρn

Vl + Vc + Vn
(4.2)

where V is the volume and ρ is the material density of the specific part of the

structure.

The transcendental equation for the antisymmetric mode is solved for wavenum-

ber k0 at the given frequency ω0 with the corresponding dynamic nonlocal at-

tenuation factor αd(k, ω0). The optimized wavenumber solutions obtained for

range of frequencies are then used to plot the dispersion bands.

3. Validation of the semi-analytical dispersion:

The semi-analytical solution is matched with the numerical eigenvalue analysis
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based dispersion curves obtained in section 4.2.1. Comparing the dispersion

of the structures with common flat LB layer in Fig. 4.17a-b, it is observed

that the semi-analytical dispersion curve has a good match with the numerical

dispersion curve of TFBF and TTBF for the fundamental bands. It can also be

observed that the transcendental equation with dynamic properties obtained

using the proposed semi-analytical approach is not an exact match for part

of the numerical dispersion bands with zero group velocities, as the Rayleigh-

Lamb relations, traditionally derived for the propagating waves, cannot solve

for complex wavenumber solutions (decaying waves). Moreover, the numerically

obtained displacement profiles (u(x)) for nonlocal structures do not capture the

dynamic behavior due to the ABH and the nonlocal effects efficiently. Thus,

propagating bands of the dispersion curves are matched with good accuracy by

using this technique. Following quantitative observations can be summarized

about the nonlocal structures with flat LB layer:

(a) It is found that the semi-analytically obtained TFBF dispersion has a

maximum deviation of 6.5% from the numerical results (Fig. 4.17a). As

the sensitivity of the transcendental equation to αd increases with increase

in the frequency, the deviation in the semi-analytical solutions broadens

at higher frequencies.

(b) From the dispersion plot in Fig. 4.17b, it is observed that the maximum

deviation in the propagation bands of the semi-analytically obtained dis-

persion of the TTBF structure is just under 10%. However, the reader can

also observe around 18% deviation at the ends of the second band due to

the inability of the structural response (u(x)) to capture the effect of local

resonance of the ABH plate NLB layer in TTBF.

From Fig. 4.18a-b, for structures with common tapered LB layer (TFBT and

TTBT), it is observed that the propagating part of the first band is captured

with high accuracy. There is a downward shift in the semi-analytically obtained
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second dispersion bands due to the inability to capture the complete dynamic

response (u(x)) of the tapered LB layer of the structures in the higher fre-

quency range. Similar to the flat LB layer designs, the following quantitative

observations can be summarized about the nonlocal structures with tapered LB

layer:

(a) The semi-analytical dispersion of TFBT has a maximum deviation of 9.6%

from the numerical results (Fig. 4.18a) in the first mode, while an error of

around 25% is observed at a wavenumber k=1.4, on the inter-junction of

the propagating and the standing waves in the second band.

(b) The semi-analytically obtained first dispersion band of TTBT presented

in Fig. 4.18b has a maximum deviation of 11% from the numerical results,

and a maximum of 20% deviation is observed in the second dispersion

band.

(c) A combined effect of the higher sensitivity of the transcendental equa-

tion to αd at high frequencies, the inability of the structure displacements

(u(x)) to capture taper dynamics of the ABH embedded plates, and the

approximated total density (Eq. (4.2)) of the nonlocal designs with tapered

LB layer are responsible for the larger deviation in the semi-analytical so-

lutions of the nolocal ABH metastructures (Fig. 4.18).
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Fig. 4.17.: Dispersion curves obtained semi-analytically and numerically for the
nonlocal structure: (a) TFBF, and (b) TTBF.
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Fig. 4.18.: Dispersion curves obtained semi-analytically and numerically for the
nonlocal structure: (a) TFBT, and (b) TTBT.
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4.2.3 Steady state forced frequency response

This section investigates the steady state frequency response (refer section 2.4.2)

of the proposed designs to a harmonic load. Based on the dynamic behavior ob-

tained, methodologies are developed to evaluate and compare the performance of the

individual designs qualitatively. The unit cells of all the designs are subjected to

a symmetric boundary condition to replicate structural periodicity on either bound-

aries. Numerical designs in this work are developed with the aim of enhancing flexural

wave damping. Depending on the type of application, either a transfer function based

single point response or a spatially averaged damped response over the length of the

structure to capture the effect of the energy localization on the baseline structure is

evaluated.

When 1 N point load is applied at a position P near the left boundary, the enforced

excitation passes through the nonlocal connections throughout the unit cell and a

cumulative effect is measured as an output acceleration at a point Q near the right

boundary (Fig. 4.19). This method represents a transfer function based numerical

technique with force as input and acceleration as output.

Fig. 4.19.: Transfer function configuration: A vertical force (F=1 N) at P as input
near the left boundary generates point acceleration (ao) as the output at point Q

near the right boundary.
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Fig. 4.20.: Spatial average configuration: A vertical force (F=1 N) at point P as
input near the left boundary generates an average acceleration (ao) output over the

length of the unit cell [−L,L].

The transfer function based output acceleration only illustrates the dynamic re-

sponse at the boundary point Q of the numerical design, and is efficient to measure

only the point based transmission outcomes, but certain applications, as mentioned

before, make use of the complete structural response for energy attenuation and there-

fore, we need a methodology to capture the behavior of the whole design. Hence, a

spatially averaged output acceleration is measured along the lower edge of each design

as shown in Fig. 4.20 to capture the energy attenuation ability of the complete struc-

ture. Further, from the previous chapters it is known that the ABH metastructures

are most effective with a viscoelastic damping layer on the ABH tapers. Hence, in

this section, the spatially averaged output acceleration of all numerical designs with

and without damping layers are also compared with the objective of maximizing the

attenuation potential of the ABH metastructures. The dimensions of the viscoelastic

layers as shown in Fig. 4.21 were chosen from different configurations by trial and

error. The results might improve with optimized damping layer dimensions.

Acceleration is chosen as the frequency response output in both the transfer func-

tion based and the spatially averaged numerical techniques, as it is a measure of the

response energy in the structure and, hence an indicator of the effective structural

damping and cut-on frequency of the system. Lower the frequency at which the en-

ergy in the structure starts attenuating, lower is its cut-on frequency.

Differences in the impedance of the structures generate irregular responses for the
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Fig. 4.21.: Schematic illustrates the position of the viscoelastic damping layers on
the tapered NLB layer of the TTBF structure. The position of the damping layers

along the length of the unit cell remains same for all the proposed designs.

same input force, and in order to compare the output accelerations for various struc-

tures in the thesis, a normalization technique is implemented.

Pin = F · V (4.3)

The input power (Pin) is defined as the dot product of the input force (F ) and the

velocity (V ) as in Eq. (4.3), and as the response velocity of each structure differs,

the input power of the individual design will vary. Hence, the numerically obtained

output acceleration is formulated as a function of a factor which scales the supplied

input power (Pin) to unity in all the structures, as shown below:

aso = ao

√
P e
in

Pin
(4.4)

where Pin is the supplied input power, P e
in = 1 W is the expected unit input power,

F is input force at point P , V is input velocity at point P , ao is the obtained output

acceleration, and aso is the scaled output acceleration at the point Q.

Similarly, the spatially averaged scaled acceleration (aso) over the entire length of the

unit cell with same input force (F ) at point P is given by:

aso =
1

2L

∫ L

−L
asodL (4.5)
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Based on Eqs. (4.4)-(4.5), the transfer function and the spatially averaged scaled

output accelerations are separately plotted with the corresponding frequencies for a

given structure.

At first, the numerically obtained frequency dependent scaled acceleration (aso and

aso) plots of the baseline structures (flat and tapered plates) are compared below.

4.2.3.1 Baseline Structures

The scaled acceleration plots in Fig. 4.22 and Fig. 4.23 compare the dynamic re-

sponse of the flat and the tapered baseline plates. The energy attenuation of a propa-

gating wave through a given structure is observed as sudden drops in the amplitudes

of these acceleration plots. Both aso (Fig. 4.22) and aso (Fig. 4.23) plots depict a

gradual and significant deviation between the acceleration responses of tapered and

flat baseline plates at a frequency around 65 Hz. The flexural wave propagation

wavelength is about 3.5 times the ABH diameter of the tapered baseline plate at 65

Hz and, thus the effectiveness of the ABH taper increases beyond 65 Hz as observed

by the dips in aso and aso . The threshold frequency at which the energy of the ta-

pered plate response starts attenuating is defined as the cut-on frequency. From the

aso plot (Fig. 4.23), it is observed that the cut-on frequency of the tapered baseline

design is at a frequency of 65 Hz. Further, as discussed before, the first bandgap

of the tapered plate design satisfies the Bragg’s criterion (Eq. (A.4)). According to

the Bragg’s criterion, the first band gap is formed around the frequency at which the

propagating wavelength is approximately twice the ABH diameter. Analyzing the

dispersion curve and aso plot of the tapered baseline design, it is observed that the

first band gap is developed at a frequency around 170.3 Hz. Further, it can also be

noted that the flat baseline plate has high cut-on frequency (no cut-on observed until

300 Hz).

Based on the characteristics of the aso and the aso plots of the baseline structures

described above, the scaled output acceleration plots of all the nonlocal designs can
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be compared and analyzed separately in the following frequency ranges for better

understanding (Fig. 4.22):

1. Low frequency range (fl) is defined between 0-65 Hz.

2. Mid frequency range (fm) is defined between 65-170.3 Hz.

3. High frequency range (fh) is defined between 170.3-300 Hz.

Fig. 4.22.: aso − f plot for the flat and tapered baseline plates. The plot is divided
into low (fl), medium (fm), and high (fh) frequency ranges. The dotted blue line at

f= 65Hz represents the cut-on frequency of the tapered baseline plate.

From Fig. 4.22 and Fig. 4.23, it can be noted that the scaled acceleration plots alone

are insufficient to understand the effectiveness of a given structure due to the compli-

cated dynamic behavior over this extended range of frequencies. Due to this complex

dynamics, a single methodology might not be efficient in vibration attenuation of the
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Fig. 4.23.: aso − f plot for the flat and tapered baseline plates. Similar to aso − f
plot, it is divided into low (fl), medium (fm), and high (fh) frequency ranges. The
dotted blue line at f= 65Hz represents the cut-on frequency of the tapered baseline

plate and the line at f= 170.3 Hz corresponds to the start of the bandgap of the
tapered baseline plate.

extended frequency range (0-300 Hz) and, hence the following techniques are pro-

posed as tools to illustrate the overall dynamic behavior of each design in fl, fm, and

fh frequency ranges separately:

1. Normalized acceleration ratio (Ar): The cumulative dynamic response of

the structures, illustrated by the transfer function based scaled acceleration

plots in fl, fm, and fh, will be represented by a normalized acceleration ratio

(Ar). The ratio Ar =
Ao
Ai

, where Ao =
∑n

j=1 a
j
so is the cumulative scaled output

acceleration and Ai =
∑n

j=1 a
j
si

is the cumulative scaled input acceleration over

n frequencies, is defined as a metric to measure the effectiveness of the dynam-

ically tailored designs in elastic wave attenuation.
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As observed in Fig. 4.24, the tapered baseline plate is effective in vibration

attenuation (lower Ar value) compared to the flat baseline plate in fl and fm.

The effectiveness of the tapered plate in fh is evident from Fig. 4.22 and, hence

is not reiterated in Fig. 4.24.

Fig. 4.24.: Comparison of the cumulative normalized acceleration ratio index of the
flat and the tapered baseline plates in fl and fm ranges.

2. Normalized mean of the spatial average acceleration (Am): The cumu-

lative dynamic response of the structures, illustrated by the spatially averaged

scaled acceleration plots, will be represented by a normalized mean of the spatial

average acceleration (Am) over the different range of frequencies (fl, fm, and fh).

We define Am =
Aso

n (Aso
i

n
)max

, where Aso =
∑n

j=1 a
j
so is the cumulative spatially

averaged scaled output acceleration over n frequencies, and
(Aso i
n

)
max

repre-

sents the maximum value of
Aso
n

among the i undamped and damped designs

under comparison.
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Fig. 4.25.: Comparison of the cumulative normalized mean of the spatial average
scaled acceleration index in the fl, fm, and fh ranges of: (a) flat and tapered

baseline plates, (b) flat and tapered baseline plates with viscoelastic damping layers.

In Fig. 4.25a, we can observe that although the undamped tapered baseline

structure has a better performance in fm and fh ranges due to the taper de-

sign, the undamped flat baseline plate has better attenuation capability in the

fl range as, in this range, the propagation wavelengths are much larger than

the ABH diameter. The addition of viscoelastic damping layer on the ABH

significantly enhances the attenuation bandwidth of the tapered baseline plate

(lower Am) in all the frequency ranges as shown in Fig. 4.25b.

All the techniques (aso , aso , Ar and Am) introduced in this section will be used to

effectively evaluate and compare the dynamic behavior of all the structures proposed

in this thesis in each of the frequency ranges as follows:
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4.2.3.2 Low frequency (fl) performance of the nonlocal designs

In this section, we compare the numerically obtained low frequency dynamic re-

sponses of all the nolocal structures and their baseline designs in two parts:

(a) Transfer function scaled acceleration:

The normalized acceleration ratio (Ar) in Fig. 4.26 illustrates the wave atten-

uation potential of all the structures in fl. The lower Ar amplitudes of the

different designs are attributed to their enhanced energy attenuation capability.

It is observed that the introduction of the nonlocal NLB layer enhances the

wave attenuation capability of the baseline designs as evident from the lower

Ar amplitudes of TFBF, TTBF, TFBT, and TTBT designs compared to their

respective baseline models. Owing to the zero reflection property of the ABHs,

the introduction of the ABH plate NLB layer (as in TTBF or TTBT) further

increases the energy attenuation bandwidth in comparison to the use of flat

plate NLB layer (as in TFBF and TFBT) on the same baseline structure. The

transfer function based Ar plot (Fig. 4.26) only illustrates the cumulative dy-

namic behavior of the nonlocal designs in the fl range. In depth analysis of

the aso plots (Fig. 4.27) of flat, TTBF, tapered and TTBT designs are carried

out to explore the complete dynamic behavior of these structures for individual

frequencies in the fl range. The following major characteristics are observed in

Fig. 4.27:

(i) Although the performance of the baseline and the nonlocal designs have

similar effects in the ultra-low frequency range from 0-25 Hz, it is observed

that the nonlocal designs (TTBF and TTBT) attenuate more flexural en-

ergy within certain short frequency bandwidths marked by the drop in the

output acceleration, as at positions 1 and 2 in Fig. 4.27.

(ii) Comparison of the displacement profiles (Fig. 4.28) of the flate plate,

TTBF, tapered plate, and TTBT about the position 3 in Fig. 4.27 il-

lustrates the role of the introduced nonlocal ABH plate NLB layer in
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Fig. 4.26.: Comparison of the cumulative normalized acceleration ratio (Ar) of flat,
TFBF, TTBF, tapered, TFBT, and TTBT in the fl range.

controlling the energy attenuation capability of the structure. Compar-

ing the aso magnitudes of the local and the nonlocal designs at f=30 Hz

in Fig. 4.28, it is observed that the flexural wave energy is significantly

attenuated by the introduction of the nonlocal ABH plate NLB layers in

TTBF and TTBT.

(iii) The significant drop in the output acceleration at position 4 (Fig. 4.27)

corresponds to a wide bandgap (no wave propagation) as observed in the

displacement profile of TTBT at a frequency around f=47.5 Hz (position

4) in Fig. 4.29a. The absence of similar low acceleration bandwidth in

TTBF signifies the importance of the synergistic effect of the ABH plate

NLB layer and the tapered LB layer in enhancing the flexural energy at-

tenuation bandwidth.
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Fig. 4.27.: Scaled output acceleration plot of flat plate, TTBF, tapered plate, and
TTBT in the low frequency (fl) range.

Fig. 4.28.: Displacement profiles of the different configurations at 30 Hz (position
3): (a) flat baseline plate (top) and its nonlocal design TTBF (bottom), (b) tapered

baseline plate (top) and its nonlocal design TTBT (bottom).
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Fig. 4.29.: Displacement profiles of TTBT with zoomed in location of the localized
energy on the NLB layer: (a) at 47.5 Hz (position 4) and (b) at 57 Hz (position 5).

(iv) Continuing from position 4 in Fig. 4.27, the sharp rise observed in the

output acceleration around position 5 is due to the localized vibration of

the flanges of the nonlocal NLB layer, as shown in Fig. 4.29b. As it is hard

to control the dynamic behavior of the individual parts of a heterogeneous

structure in the design phase, the author proposes to dampen these local

resonances using a viscoelastic layer.

(v) In general, the scaled output acceleration plots are observed to have sud-

den drop in the acceleration amplitudes as depicted by the regions around

the positions 1,2,3, and 4, marked in Fig. 4.27. The displacement profiles

at frequencies close to these positions indicate the complete attenuation of

the flexural energy (Fig. 4.28-4.29a). As it is known that the bandgaps

correspond to the frequencies at which the input wave fails to propa-

gate through the structure (forming evanescent waves), the bandwidths

around the above mentioned positions in Fig. 4.27 can be interpreted as
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bandgaps. Complementing the above statement, it is noted that the fre-

quency bandwidth of the rectangular patches depicted in Fig. 4.30 over-

laps the bandgaps observed in the dispersion curve of the TTBT structure.

Similar comparisons can be produced for all other nonlocal structures.

Fig. 4.30.: Scaled acceleration plot of TTBT with its band gaps in the low
frequency range

(b) Spatial average scaled acceleration:

As mentioned in the last section, the transfer function based Ar and aso plots

help evaluating the dynamic response of the structure at a boundary point,

hence they do not capture the complete dynamic behavior. In this section, we

will compare the spatially averaged scaled acceleration based Am and aso plots

of undamped and damped structures focusing on the response over the complete

length of the structure. Comparison of the Ar plots of the baseline structures

were presented in the previous section, here we will focus on the Am plot based

comparisons of the nonlocal designs. The Am plot in Fig. 4.31 illustrates the
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wave attenuation potential of all the structures with and without viscoleastic

damping layers in the fl range. From Fig. 4.31, it can be observed that all the

undamped and damped nonlocal designs have enhanced attenuation capabilities

(lower Am magnitudes) compared to the baseline structures. Conceptually, the

increase in the stiffness and the mass of a structure reduces the damping ratio

of the structure. Although the nonlocal designs have higher mass and stiffness

compared to their baseline designs, a higher damping is observed in these nonlo-

cal designs. Therefore, the geometric nonlocal connections introduced in these

structures are responsible for the increase in the damping. It can also be noted

that all the designs with tapered LB layer have higher Am value compared to

their flat LB layered counterparts due to the higher flexibility of the tapered

design.

Further, the aso plots of the damped nonlocal designs in fl are compared to

analyze the detailed dynamic behavior of the nonlocal designs. The aso and

aso plots of undamped structures match at their peak and drop positions. The

difference is observed only on the magnitudes of the spatially averaged scaled

acceleration. Due to this similarity between aso and aso plots of the undamped

structures, this section will present only the aso plots for damped structures.

The following observations are made from the aso plot in Fig. 4.32:

(i) Similar to the observation made in the aso plot (Fig. 4.27) in fl range, we

observe that in the ultra-low frequency range from 0-25 Hz of Fig. 4.32, the

performance of the baseline and the nonlocal designs remain same except

for certain narrow frequency ranges, marked by positions 1-4 in Fig. 4.32.

The TTBT and TTBF designs have better performance in the specific

frequency ranges as observed at positions 1,4 and 2,3 respectively.

(ii) The second chapter illustrated that the damped ABH metastructures are

effective passive vibration attenuation methods in the low frequency ranges.

On the contrary, in Fig. 4.32, we observe that the stiffer and heavier

damped nonlocal TTBT design has better energy attenuation behavior
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Fig. 4.31.: Comparison of the mean of the spatial average scaled acceleration of all
(undamped and damped) structures in the fl range.

(lower Am) at positions 1-4 compared to the damped tapered baseline

plate. Hence, the nonlocal NLB layer has enhanced the attenuation capa-

bility of the tapered baseline plate in fl.

(iii) The position 5 in the aso plot of the undamped TTBT design (Fig. 4.27)

is marked by a peak due to the local resonance of the flanges and ABH

plate NLB layer, but a drop in this peak at position 5 as shown in the

aso plot in Fig. 4.32 for damped TTBT structure is due to the addition

of the viscoelastic damping layer. Hence, the addition of damping layers

improves the energy attenuation capability of the proposed nonlocal ABH

metastructures.
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Fig. 4.32.: Comparison of the spatial average scaled acceleration of flat plate,
TTBF, tapered plate, and TTBT with viscoelastic damping layers in the fl range.

(iv) The displacement profile comparison of the undamped and the damped

TTBT structure in Fig. 4.33 indicates the energy localization on the NLB

layer of the nonlocal designs in fl. From Fig. 4.33a, we know that the

flexural energy is localized on the NLB layer, and this localized response

is attenuated (Fig. 4.33b) when a viscoelastic damping layer is introduced

on the NLB layer.

(v) From the descriptions above, it can be noted that a single structure cannot

be deemed as the best design within fl as different designs with damping

layers have enhanced attenuation capabilities in different narrow frequency

ranges. Hence, we split the fl range further and plot Am for each design in

smaller frequency bins as shown in Fig. 4.34. Based on the application, a
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Fig. 4.33.: Displacement profiles at 57 Hz (position 5) with zoomed in location of
the localized energy on the NLB layer of: (a) undamped TTBT and (b) damped

TTBT.

particular nonlocal design can be chosen to work for the required ultra-low

frequency attenuation range from Fig. 4.34.

Following important characteristics can be summarized about the dynamic

behavior of all the damped and the undamped structures from Fig. 4.34:

• Although it is difficult to shortlist a single effective design for use

in fl, from the Am plots of both damped (Fig. 4.34a) and undamped

(Fig. 4.34b) designs, it can be concluded that nonlocal designs (TFBF,

TTBF, TFBT, and TTBT) can more effectively attenuate flexural en-

ergy compared to their corresponding baseline designs (flat and ta-

pered plates).
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Fig. 4.34.: Schematic comparing the Am amplitudes in ultra-low frequency bins
within fl for: (a) all the undamped structures, (b) all the damped structures.
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• The damped TTBF design effectively attenuates flexural energy in fl1,

fl2, and fl4 bins, while the damped TFBF design is effective in fl3, fl6,

and fl7 bins. The fl5 bandwidth is most efficiently attenuated by the

damped TFBT structure. Similar comparisons can be drawn for the

undamped structures also.

4.2.3.3 Mid frequency (fm) performance of the nonlocal designs

This section will compare the numerically obtained dynamic characteristics of the

nonlocal structures in the mid frequency (fm) range from 65-170.3 Hz in two parts:

(a) Transfer function scaled acceleration:

The normalized acceleration ratio (Ar) plotted in Fig. 4.35 illustrates the effec-

tiveness of the individual design in flexural wave attenuation in the fm range. It

can be observed that beyond the cut-on frequency of the tapered plate (65 Hz),

nonlocal models proposed with the tapered LB layer are more effective in vi-

bration attenuation than the nonlocal models with the flat LB layer. Although

TTBT showcases better wave attenuation characteristics than the tapered base-

line plate in fm, the tapered baseline plate is observed to have a better perfor-

mance (lower Ar) than TFBT in the same frequency range (Fig. 4.35). Further,

the aso plots of the nonlocal designs with tapered LB layer will be analyzed for

better understanding of their dynamic behavior in fm. The following observa-

tions can be made about the dynamic behavior of the nonlocal designs with a

tapered LB layer in the fm range from Fig. 4.36:

(i) The nonlocal designs of TFBT and TTBT with common tapered LB layers

(Fig. 4.36) have scaled acceleration peaks at approximate positions 6 and

7 due to the local resonance of the low thickness regions on the ABH plate

NLB layer. The energy is localized on the NLB layer at these frequencies.

It is noted that the tapered baseline plate attenuates more energy than

the nonlocal designs at these positions.
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Fig. 4.35.: Comparison of the cumulative normalized acceleration ratios (Ar) of
flat, TFBF, TTBF, tapered, TFBT, and TTBT in the fm range.

(ii) In the frequency range from positions 7-8, the energy is significantly at-

tenuated by the structures with the tapered LB layer as compared to the

flat LB layer designs due to the ability of the ABHs to attenuate shorter

wavelengths beyond its cut-on frequency.

(iii) The presence of the ABH plate NLB layer in addition to the tapered LB

layer, as in TTBT design, effectively enhances the small wavelength (rel-

ative to the ABH dimension) attenuation capability in fm as marked by

the low aso value at position 8.

(b) Spatial average scaled acceleration:

We compare the spatially averaged scaled acceleration of both the undamped

and the damped structures in fm. The Am plot (Fig. 4.37) clearly indicates

the effectiveness of the structures with the tapered LB layer over the flat LB

layer based designs. As the ABH effect is significant after the cut-on frequency
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Fig. 4.36.: Scaled output acceleration plot of flat plate, tapered plate, TFBT, and
TTBT in the medium frequency (fm) range.

and as the TTBT design with the nonlocal ABH plate NLB layer has lower

damping ratio, the damped tapered baseline plate is visibly the most effective

design in the fm range. It should be noted that a hierarchical structure with

an optimized NLB layer might improve the performance of TFBT and TTBT

designs in fm.

Further, the complex dynamics of all the damped structures in fm are compared

using the aso plot in Fig. 4.36. The major conclusions from this comparison are

summarized as follows:

(i) Comparing the peaks at positions 6 and 7 in Fig. 4.36 with the same

positions on the aso plot in Fig. 4.38, it is observed that the peaks of

TTBT structure are attenuated by the addition of damping layer, while

the effect of viscoleastic damping on TFBT is insignificant. The addition

of damping layer on the ABH attenuates the localized energy on the ABH
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Fig. 4.37.: Comparison of the mean of the spatial average scaled acceleration of all
the undamped and the damped structures in the fm range.

plate NLB layer of the TTBT structure, while the application of the same

amount of damping material has negligible effect on the flat plate NLB

layer of TFBT design.

(ii) In the higher frequency range beyond position 7 in the aso plot (Fig. 4.38),

the predominant short wavelength (about 2 times the ABH diameter) ab-

sorption property of the ABH overshadows the nonlocal effect created by

the damped TFBT and the damped TTBT designs, hence these stiffer

structures have lower damping compared to the tapered baseline plate in

fm. Peaks of the damped TFBT and the damped TTBT at position 8 can

be attributed to the local resonance of the added viscoelastic material.



115

Fig. 4.38.: Comparison of the spatial average scaled acceleration plots of flat plate,
tapered plate, TFBT, and TTBT with viscoelastic damping layers in the fm range.

As all the structures in fm are observed to have uniform dynamic behavior after

100 Hz (Fig. 4.36 and Fig. 4.38), the Am plots with subdivided frequency bins

are not evaluated for this mid frequency range.

4.2.3.4 High frequency (fh) performance of the nonlocal designs

This section will compare the dynamic characteristics of the nonlocal structures

in the high frequency (fh) range from 170.3-300 Hz in two parts:

(a) Transfer function scaled acceleration:

All the designs with the tapered LB layer (tapered baseline plate, TFBT, and

TTBT) are observed to have enhanced flexural wave attenuation property in fh

as indicated by the extremely low Ar amplitudes in Fig. 4.39. The frequency
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bandgap (170.3-450 Hz) generated by the combined effect of the periodicity

of the metastructure and the effective energy absorption property of the ABH

tapers is responsible for the extremely low output acceleration of the tapered

baseline plate. Therefore, this section will focus on comparing the dynamic

behavior of all the designs with tapered LB layer.

Further, lower Ar amplitude of the tapered baseline plate in comparison to

TFBT and TTBT (nonlocal designs) in fh indicates the superposition of the

nonlocal effect by the energy absorption characteristics of the ABH taper beyond

the first bandgap. The reduction in the flexural energy attenuation capability of

the nonlocal designs in fh is due to the high frequency response of the additional

mass and stiffness introduced by the nonlocal NLB layer. At low frequencies,

the nonlocal effect overshadows the reduction in attenuation due to the added

mass and stiffness.

The introduction of a nonlocal NLB layer with optimized dimensions and ma-

terial properties might improve the effectiveness of the nonlocal designs in the

fh range. The frequency dependent dynamic behavior of the structures in the

fh range is nearly uniform throughout as shown in the aso plot in Fig. 4.40.

Therefore, the cumulative scaled acceleration based Ar plot in Fig. 4.39 can

also represent the individual frequency dependent dynamic behavior of all the

structures in the fh range accurately, unlike the varied dynamic response in the

smaller bins (Fig. 4.34) of fl. The peaks observed in Fig. 4.40 around f=180 Hz

for TTBT and around f=270 Hz for TFBT are due to the localized response of

the added nonlocal ABH plate NLB layer and flat plate NLB layer respectively.
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Fig. 4.39.: Comparison of cumulative normalized acceleration ratio (Ar) of flat,
TFBF, TTBF, tapered, TFBT, and TTBT in the fh range (top). Zoomed in image

of the Ar plot for tapered plate, TFBT, and TTBT is also presented (bottom).
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Fig. 4.40.: Scaled output acceleration plot of tapered plate, TFBT and TTBT in
the high frequency (fh) range

(b) Spatial average scaled acceleration:

We compare the spatial average scaled output acceleration of all the undamped

and the damped structures in fh range. Similar to Ar plot (Fig. 4.39) in fh, low

Am amplitudes (Fig. 4.41) of the designs with the tapered LB layer is attributed

to the energy attenuation effectiveness of the structure in fh. Comparing the

Am amplitudes of the damped tapered LB layer designs (damped tapered base-

line plate, damped TFBT, and damped TTBT), enhanced energy attenuation

is observed in the damped tapered baseline plate due to the effective wave ab-

sorption property of the embedded ABHs in fh. The damped TFBT and TTBT

designs in comparison to the tapered baseline plate design are observed to have

lower energy attenuation in fh as the nonlocal effect is overshadowed by the

damping reduction due to the added mass and stiffness.
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Fig. 4.41.: Comparison of mean of the spatial average scaled acceleration of all the
undamped and the damped structures in the fh range.

Fig. 4.42.: Comparison of spatial average scaled acceleration plots of flat plate,
tapered plate, TFBT, and TTBT with viscoelastic damping layers in the fh range.
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Similar to the aso plot in Fig. 4.40, the aso plot in Fig. 4.42 describes the uniform

dynamic behavior of the structures with tapered LB layer in fh. The aso peaks

of TFBT and TTBT (Fig. 4.42) around f=235 Hz can be associated with the

localized responses of the added nonlocal NLB layers.

4.2.3.5 Summarizing the results of the forced frequency response study

The previous sections compared the dynamic behavior of all the structural con-

figurations proposed in this work. The analysis was performed in three separate

frequency ranges, namely fl, fm, and fh. As the response of the baseline and the non-

local configurations vary significantly over the range of frequencies, this section will

focus on summarizing the major observations and conclusions based on the forced

frequency response dynamic study. The major results in each frequency range are

listed below:

1. Low frequency range (fl):

(i) The introduction of the nonlocal NLB layer enhances the energy attenua-

tion capability of the baseline models in fl by localizing the flexural energy

on the added NLB layer.

(ii) The nonlocal effect is significant in fl, whereas the wave absorption prop-

erty of the ABH has minimal effect in this long wavelength regime. This

nonlocal effect is controlled by the added NLB layer.

(iii) The addition of viscoelastic damping layer has minimal effect on enhancing

the energy attenuation in the ultra-low frequency regimes from fl1 − fl3.

(iv) In the fl4 − fl7 frequency range, the damped nonlocal designs have better

performance in comparison to their undamped versions as the localized

response of the extended flanges of the NLB layer and of the ABH center

are attenuated by the viscoelastic damping layers.
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(v) The cut-on frequency of the ABH metastructures are controlled by the

properties of the tapers. A single taper of large radius is used for a nonlocal

ABH plate NLB layer, while the tapered LB layer consists of ten tapers

with small radii. As a significant structural strength is provided by the

LB layer, the taper profile in the LB layer controls the cut-on frequency of

the tapered baseline plate, the TFBT, and the TTBT designs. Hence, no

significant change in the cut-on frequency is observed by introducing the

nonlocal effect.

2. Mid frequency range (fm):

(i) Once above the cut-on frequency of the tapers (f=65 Hz), the ABH metas-

tructures start localizing and eventually absorbing flexural waves when

damping is used. Hence, in the fm range, all the structures with the ta-

pered LB layer will effectively attenuate the flexural energy.

(ii) Although the flexural energy absorption by the ABH enhances significantly

above the cut-on frequency, the nonlocal effect is superimposed with the

reduction in the damping ratio due to the added mass and stiffness of the

nonlocal NLB layer at the higher frequencies in fm.

(iii) Among the different configurations presented above, the TTBT is the most

effective design based on transfer function considerations in fm, while the

tapered baseline plate has better attenuation behavior for applications

involving the spatially averaged responses. An optimized nonlocal top

layer can enhance the energy attenuation of TTBT in fm.

3. High frequency range (fh):

(i) The tapered baseline plate effectively attenuates energy in fh as this fre-

quency range corresponds to the first bandgap of the ABH taper (where

the Bragg’s criterion is satisfied).
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(ii) Similar to fm, among the designs proposed, the tapered baseline plate has

better attenuation performance than its stiffer nonlocal models at high

frequencies. An optimized nonlocal top layer can enhance the energy at-

tenuation bandwidth of TFBT and TTBT in fh.
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5. CONCLUSIONS AND RECOMMENDATIONS

5.1 Research Summary

This thesis explored a novel design approach for ABH metastructures that lever-

ages the use of intentionally engineered nonlocality. The main objective was to design

load bearing thin walled structures capable of enhanced vibration attenuation perfor-

mance in the ultra-low frequency range.

In traditional local elastic structures, the stress at a point depends only on the

local strain field at that point. In nonlocal structures, the stress at a given point

depends on the strain field in a finite area around the point, the so-called horizon

of nonlocality. In this work, the nonlocal effects were intentionally introduced using

a geometric approach. The approach relies on the use of artificial non-load bearing

(NLB) layers attached to the load bearing (LB) layers with rigid beam connectors.

The working principle of the ABH metastructures was studied in Chapter 2. The

chapter discussed a variety of transmission mechanisms and dispersion characteristics

(like wide bandgap formation and low cut-on frequency) of the ABH metastructures

that can be successfully leveraged for vibration attenuation in lightweight applica-

tions.

Chapter 3 presented the fundamentals of nonlocal elasticity theory, and intro-

duced the concept of geometric nonlocality. Here, the conceptual analogy with a

discrete nonlocal geometric model was exploited to build a continuous nonlocal plate

model. This work also presented a semi-analytical approach to simulate the geometric

nonlocal effect using a dynamic functional, known as the nonlocal attenuation factor.

Unlike the traditional models with wavenumber dependent nonlocal material proper-

ties, the response of the geometrically nonlocal models vary also as a function of the

excitation frequency, thus requiring a semi-analytical approach capable of extracting
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a wavenumber and frequency dependent nonlocal attenuation factor. A procedure to

solve the Rayleigh-Lamb dispersion equations was also developed in this chapter.

Chapter 4 presented numerical simulations of the dynamic response of the non-

local ABH metastructures. The dispersion curves and the steady state frequency re-

sponses of the nonlocal structures were evaluated and compared using finite element

simulations. The dispersion results revealed the existence of enlarged low frequency

bandgaps in the nonlocal designs, while the ultra-low frequency flexural energy atten-

uation was illustrated via the steady state dynamic responses. Thus, these numerical

results effectively characterized the attenuation behavior introduced by the engineered

geometric nonlocality. Semi-analytical dispersion curves were also plotted by numer-

ically solving the Rayleigh-Lamb equation using the frequency and the wavenumber

dependent dynamic nonlocal attenuation factors. Both the semi-analytical and the

numerical dispersion curves were in good agreement for the propagating dispersion

bands at low frequencies. At high frequencies, the semi-analytical dispersion curves

deviate from the results of the numerical simulation due to their inability to capture

the complex dynamic response of the nonlocal ABH metastructure.

Overall, the theoretical and numerical results provided clear evidence of the po-

tential of engineered nonlocal ABH metastructures as an efficient ultra-low frequency

passive attenuation technique for lightweight systems.

5.2 Thesis Contributions

The major contributions of this thesis can be summarized as follows:

5.2.1 Engineered geometric nonlocality

The novel design concept of intentionally nonlocal metastructure was presented.

The new design combines the ABH metastructures with geometrically tailored flexi-

ble layers to produce a nonlocal dynamic behavior. The new structural design creates

multiple energy paths by connecting distant structural locations. This results in an
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action at a distance equivalent to the concept of long range interactions.

Although the introduction of the nonlocal layer resulted in an additional weight

penalty of 15% and 26% on both the flat and the tapered baseline plates respec-

tively, the nonlocal designs with the tapered LB layer had 25% weight reduction in

comparison to the flat baseline plate. Hence, the concept of vibration attenuation us-

ing the nonlocal ABH metastructure design is still a viable approach for lightweight

structural applications.

5.2.2 Enhanced ultra-low frequency attenuation

The geometric nonlocal design was capable of attenuating structural vibrations in

the ultra-low frequency range. The traditional ABH metastructure (tapered baseline

plate) generates the first bandgap at a frequency around 170 Hz, while the proposed

nonlocal ABH metastructure introduced bandgaps at frequencies as low as 2 Hz.

The introduction of the nonlocal NLB layers enable bandgaps formation at ultra-low

frequencies, and it allows controlling the bandwidth of these gaps by properly choosing

the type of the NLB layer used in the nonlocal design. The ultra-low frequency

bandgaps generated by a nonlocal structure with the ABH plate as the NLB layer

is around four times the bandwidth of the gap produced by the same structure with

the flat plate as the NLB layer. The application of viscoelastic damping layers on the

tapers further enhanced the energy attenuation capabilities of these nonlocal ABH

metastructures.

5.2.3 Semi-analytical model of the nonlocal ABH metastructures

In linear elasticity, the traditional material nonlocality is mathematically defined

as a function of the location-dependent nonlocal attenuation factor. However, given

that, in this thesis, the nonlocal behavior was obtained by the use of geometrically

tailored physical connections, the nonlocal attenuation factor required a dependence

from both temporal and the spatial variables. Hence, a semi-analytical methodology
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was developed to extract these dynamic nonlocal attenuation factors.

The nonlocal constitutive relations formulated by Eringen and updated by Nowinski

were modified to obtain new analytical relations governing the geometric nonlocal

behavior. The parameters necessary to solve the analytical relations were calculated

numerically. These parameters were substituted into the modified constitutive rela-

tions to evaluate the dynamic nonlocal attenuation factor. These factors were then

used to plot the dispersion curves by numerically solving the Rayleigh-Lamb relations.

The qualitative agreement between the semi-analytical and the numerical dispersion

bands validated the effectiveness of this technique.

5.3 Recommendations For Future Work

While this work presented the idea of intentionally nonlocal metastructure and

performed a feasibility study to asses its functioning, much work is still left in order

to optimize both design and performance towards practical engineering applications.

Some recommendations for future work are presented here below:

5.3.1 Optimization of the nonlocal design

This work mainly explored the novel idea and the potential of intentionally non-

local ABH metastructures. Although the numerical simulations demonstrated the

potential of the proposed approach, the design was not optimized for performance.

The future work should focus on the identification of key design parameters and op-

timization strategies to maximize the attenuation performance. More specifically,

one should explore the low frequency attenuation range, and optimize the dimensions

and material preferences of the NLB and LB layers based on the general behavior

described in this thesis. A strategy should be developed to optimize the position and

thickness of the viscoelastic damping layer for enhanced flexural energy attenuation

of the nonlocal ABH metastructures.
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5.3.2 Development of multilayered hierarchical nonlocal model

In order to reduce the complexity of the design, the thesis focused on developing

a single NLB layered nonlocal ABH metastructures. In the proposed designs, the

structure directly transitioned from ten small tapers in the LB layer to one large ta-

per on the NLB layer. It is believed that a multilayered (more than one NLB layers)

hierarchical nonlocal ABH metastructure with gradual variation in the number, size,

and position of the tapers would provide much benefit and fine tuning of the perfor-

mance. A parametric study should be conducted to optimize the position of the rigid

beam connectors between the multiple layers for efficient nonlocal damping.

5.3.3 Experimental investigation of the dynamic behavior of the nonlocal

ABH metastructure

The main conclusions put forward in this thesis were based on a combination

of theoretical and numerical analyses. An extensive experimental study should be

conducted in order to study the physical response of the proposed thin walled non-

local structures in the ultra-low frequency range to validate the models, asses the

performance, and highlight any possible fabrication constraint.
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A. APPENDIX

A.1 Characteristics of Dispersion Curves

This section focuses on illustrating the characteristic features of a dispersion curve.

Disperion curves are obtained by relating wavenumbers (k) of propagating wave to its

frequencies (ω) in periodic structures. Periodic arrangement of scatterers and their

material properties define flexural wave propagation pattern in these structures.

As described in the literature in previous chapters, dynamic behavior of periodic

ABH metastructures have been the domain of study for sometime now. This section

will only introduce the major characteristics of dispersion with simple 1D periodic

systems, readers can go through [63,134–141] for detailed review on dispersion curves

of complex ABH metastructures.

Initially, the wave propagation in discrete 1D chain of atoms is studied in order to

understand the band formation concepts in dispersion curves. As dispersion relation

for the atomic scale systems involve quantum effects, the first section will use 1D

chain of atoms only to describe the basic dispersion band characteristics applicable

for systems of all size scales. Further, the dispersion relation for wave propagation

in strings is introduced in order to analyze flexural wave characteristics through a

simple continuous medium.

A.1.1 Bloch theorem, Brillouin zone and Bragg’s criterion: 1D array of

atoms

Let us assume a 1D chain of N atoms separated by a distance a each, a periodic

boundary condition is enforced such that the N th atom of the N − 1th chain is linked
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to the 1st atom of the N th chain. This periodic connection can be mathematically

represented by a wave function, φ, as:

φ(x) = φ(x+Na) (A.1)

For a uniform periodic chain with constant interatomic distance, the electron density

(ρ) for individual atom on the chain will remain same, i.e ρ(x + a) = ρ(x). As per

band structure theory presented by Lamontagne [127], we know ρ(x) = φ∗(x)φ(x)

(here * represents conjugate) is real. A complex entity µ with µ∗µ = 1 will satisfy the

φ(x + a) = µφ(x) relation [127]. Further, this relation can be extended for N atoms

as φ(x+Na) = µNφ(x). Comparing Eq. (A.1) with φ(x+Na) = µNφ(x), we get:

µ = ei2πp/N = cos
(2πp

N

)
+ isin

(2πp

N

)
(A.2)

where p is a number varying in [-N , N ] and wavenumber is defined as k = 2πp/(Na),

varying as a function of number of atoms (N) involved. With the solution to wave

function, φ(x) = eikx, and with the perioidic relation, φ(x + a) = eikaφ(x), we can

generalize the wave function interms of a periodic displacement relation u(x) = u(x+

a) as follows:

φ(x) = eikxu(x) (A.3)

The above relation for φ (Eq. (A.3)) is termed as Bloch function. The function

depends on the wavenumber (k) as well as on the periodic displacement function

(u(x)). Based on Bloch function, it is known that at k = 0 the structure is swamped

by an infinite wavelength and each unit cell would be in phase with the other, while

at k = ±π/a, the propagating waves will pass through nodes and therefore the unit

cells would be out of phase with one another.

The Bloch or Floquet condition (Eq. (A.3)) governs the propagation of acoustic waves

in the periodic structures. The Bloch theorem develops the band structure for the

phononic crystals or array of atoms within a phase space known as Brillouin zone.
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The Brillouin zone can be defined as a primitive unit cell in a reciprocal phase space

of the periodic structure. From the definition of the periodic lattice, it is known that

the wavenumbers in the Brillouin zone must satisfy eika = 1 [127]. Thus, in the k-

space, the first Brillouin zone is defined from (−π/a, π/a). The first Brillouin zone,

also known as the Wigner-Seitz primitive cell of lattice structure, passes through the

entire range of k-space from the origin without crossing a single Brillouin boundary

or also known as Bragg plane. Second Brillouin zone encounters waves propagating

through one Bragg plane. Similarly, the N th Brillouin zone will constitute of all the

points from the origin in k-space with the wave passing through N − 1 Bragg planes.

On generalizing this band trends and plotting dispersion curves for the array of atoms,

it is found that the Bragg planes correspond to the position of band gap initiation

for the chain. The wavelength (λ) at the band gap is related to the unit cell distance

(a) by Bragg’s crietrion as shown below:

a = n
λ

2
where n = 1, 2, 3 (A.4)

The Bloch’s (Floquet) theorem, the Brillouin zone and the Bragg’s criterion govern the

formation of the basic band structure and the dispersion curve for an array of atoms.

Analogous to the propagation of electron wave in the chain of atoms, the elastic wave

propagation in solid structures also have the same basic dispersion characteristics.

A unit cell in a periodic ABH metastructure can be analogized to a single atom in

the atomic chain. Hence, the Floquent boundary conditions, the Brillouin boundaries

and the Bragg’s criteria will also govern the characteristic features for band formation

in dispersion of periodic ABH metastructures.
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A.1.2 Dispersion bands in a continuous system: mass embedded infinite

string

This section will introduce the elastic wave propagation characteristics through a

simple continuous medium of infinite string and will elaborate its dispersion behavior.

Wave propagation in a continuous string is mathematically represented as:

∂2φ

∂t2
= c2∂

2φ

∂x2
(A.5)

where φ is the wave function and c is the wave velocity.

Substituting an assumed exponential approximation, φ = A ei(kx−ωt), and solving the

wave equation (Eq. (A.5)), generates the dispersion relation for wave propagation

in infinite string as ω = ck. The linear relationship between ω and k of the form

c = ω/k represents the trivial continuous system with no dispersion. In such systems,

the phase and group velocities (cp and cg respectively) of the propagating wave,

indicated by slope of the dispersion curves, are always equal i.e cp = cg. Unlike a

dispersionless continuous string, most real periodic structures have dispersive wave

propagation properties and varying phase and group velocities.

Consider a continuous string with beads of mass m embedded periodically over a

distance a as shown in Fig. (A.1). Let us assume a flexural wave propagation along

the length of the string with tension T . The dispersion relation for this periodic

structure is given by [142]:

ω(k) = 2ω0sin(
ka

2
) (A.6)

where ω0 =
( T

ma

) 1
2
. Reader can refer [142] for complete derivation.

Eq. (A.8) is a non linear relation between angular frequency and wavenumber and

hence is dispersive in nature. Wave propagation in the dispersive structures consti-

tute flexural waves traveling at varied velocities. The phase velocity (cp) is defined as

the velocity of a single propagating wave in the structure. Whereas, in places were

complete wave is a superposition of numerous propagation waves, we have two veloc-



142

Fig. A.1.: Infinite string with beads of mass m embedded at a distance from each
other. Adapted from [142].

ities in dispersion medium: a phase velocity for individual wave and a group velocity

(cg) for superpositioned flexural wave propagating through the structure. Although

different waves travel at different speeds, it is found that the sum of all the fourier

components of waves in superposition move with a single velocity known as the group

velocity, cg =
dω

dk
(instantaneous slope). The group velocities reduce in amplitude

and flattens out with time near Brillouin boundaries. Thus, dispersing out and hence

the name dispersion.

In deriving the real wavenumber (kRe) solution of the wave equation for continuous

string with beads, we assume the angular frequency ω ≤ 2ω0. Real solutions as

in Eq. (A.7) correspond to the propagating bands of dispersion curves as shown in

Fig. (A.2). Further, it is also possible to excite the structures at a frequency higher

than 2ω0. If ω > 2ω0, the string wave equation (Eq. (A.5)) will generate an exponen-

tially decaying solution (Eq. (A.8)) with imaginary wavenumbers (kIm). These waves

are called evanescent waves.

Propagating wave:

φ(x, t) = A cos(kx− ωt) (A.7)

Evanescent wave:

φ(x, t) = B e(kx−ωt) (A.8)

Standing wave:

φ(x, t) = Ae−κx(−1)x/acos(ωt) (A.9)

In Eq. (A.9), time and space variables independent of each other. As time passes,

as per Eq. (A.9), waves will expand and contract with applied frequency as the wave
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traveling distance (x) is an integral multiple of unit cell length (a), i.e x=na, and

there exists a phase difference among the waves incident at the adjacent masses as

represented by (−1)x/a. As these waves have time independent spatial motion they do

not travel and hence are called standing waves in dispersion curves. Pure evanescent

waves and standing waves developed in periodic structures can be portrayed as band

gaps on the dispersion curves (Fig. (A.2)) .

Fig. A.2.: Schematic illustrates a sample dispersion curve with angular frequency,
ω, on y-axis and real and imaginary wavenumbers, kRe and kIm respectively, on the
x-axis. The sample dispersion bands correspond to the propagating, standing and
pure evanescent waves developed on an assumed structure (not necessarily on a

string).

Formulating dispersion relations, understanding its theoretical working and learn-

ing the concepts for comprehending dispersion bands would essentially help to solve

the dispersion relations and plot the dispersion curves of the ABH metastructures

developed in the next chapter of this dissertation.
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