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ABSTRACT

Ray, Abhishek Ph.D., Purdue University, December 2019. Scalability & Business Out-
comes: Essays on Managing Trade-Offs when Fringe Technologies go Mainstream.
Major Professors: Karthik Kannan, Hossein Ghasemkhani.

This dissertation consists of three essays that study problems that decision-makers

face when hitherto niche technologies scale up. Typically, scaling up involves market

expansion with participation from a variety of agents with complex preferences, using

the technology to maximize their utility. A major problem for the decision maker then

is either one or a combination of the following: deciding policy for optimal business or

social outcomes, implementing efficient demand allocation mechanisms or improving

market design.

The first essay studies policy implications in the context of burgeoning ad-blocking

technology. This research problem is important since increased usage of ad-blockers

has caused an estimated loss of $21.8 billion in global ad revenues since 2015 and is

projected cause $35 billion loss by 2020. The objective of this research is to inform in-

dustry and policy-makers on the following questions: (1) what should be the dominant

business model of ad-blocking? (2) what are the implications when no such dominant

model exists and ad-blockers compete? We consider answering these questions from

perspective of three agents: users, a content provider and an ad-blocker. For the first

question, we model a monopoly with one ad-blocker and a content provider serving

a mass 1 of users. Our model shows under appropriate assumptions, users have a

clear preference ordering wherein freemium is the most and paid is the least preferred

business model. However content providers and ad-blockers have conflicting prefer-

ences on business models, largely dependent on trade-off between advertising revenue

and charging users for blocking ads. Further, competition among ad-blockers with

same or different business models makes users worse-off and ad-blockers better off, in



xi

every case. More generally, from an outcome perspective, our analysis shows that it

is impossible to have a dominant ad-blocking business model that satisfies both users,

content providers and ad-blockers.

The second essay studies optimizing allocations in the context of the growing

application of iterative combinatorial auctions in industry. Combinatorial auctions

(CA) are increasingly being used to allocate bundles of items among interested bid-

ders. However, with CA being conducted iteratively to ease preference elicitation

problems, the volume, variety and velocity of bundles and bids has become com-

plex. It therefore takes exponentially longer to solve for winners in such auctions.

As expected, regular solvers such as IBM CPLEX or AMPL have been demonstra-

bly ineffective. We propose an Ant Colony-based algorithm (TrACA) that produces

optimal or near-optimal results within specified time. Experiments are performed on

94 instances to show and compare the performance of TrACA to the current state-of-

the-art memetic algorithm (MA) & ant colony based heuristic (ACLS) and a recent

exact algorithm. Results indicate that in a given run-time of maximum 10 minutes,

the median of results from TrACA statistically significantly outperforms MA results

in 87% & ACLS 47% of the cases. Further, in the same time, the best value from

TrACA is at least as good as MA & ACLS values in 100% of the cases. Further,

TrACA achieves the optimal in 74 out of 94 cases in 1
6

th
of the time taken by an

exact algorithm. Additionally, empirical hardness of tested instances is analyzed us-

ing a standard supervised learning method to better understand variable run-times

and to build a predictive model of TrACA run-times. Using the predictive model,

we highlight factors that make winner determination in combinatorial auctions com-

putationally hard to estimate and show why TrACA is better suited to handle such

hard instances when resolving trade-off between speed and accuracy.

The third essay, which is in early stages, explores the problem market design

that tackles centralization of mining power in cryptocurrencies. Our analysis looks

at designing a mechanism that tackles the core issue of mining power centralization:

selfish mining problem in cryptocurrencies. Specifically, we address the problem of
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designing incentive compatible consensus mechanism for cryptocurrencies. Taking

Bitcoin as the context for our methodology We use automated mechanism design

(AMD) and a supervised learning algorithm to discover the relationship between

optimal payoffs and miner actions that incentivize honest behavior. Using notions

from the discovered relationship, we further generalize the approach and establish

three new incentive schemes make honest mining dominant and incentive compatible.
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1. INTRODUCTION

Technology is constantly evolving to allow businesses to discover markets, prices and

deliver value. Delivering value typically requires technologies to function at scale.

Although functioning at scale implies improvements in value delivered, demand vol-

ume & variety with participation of strategic end-users has given rise to inevitable

problems. Majority of these problems can be broadly classified into three categories:

determining optimal economic policies, computing efficient allocations and designing

better market mechanisms. In this dissertation, I tackle a problem from each such

category, in the context of a recent technology that is dealing with either increased

market size or increased strategic end-user participation or both.

In the first essay, we study the case of the ad-blocking technology. The rise of ad-

blockers as platforms delivering free, paid or freemium blocking services has prompted

discussions on whether ad-blockers are good for the online ecosystem (Digiday, 2016;

Foster, 2016; Vallade, 2008). With increasing competition for market share between

ad-blockers (Mansfield-Devine, 2015; Vastel et al., 2018a), we answer two important

questions: what should be the dominant business model of ad-blocking and what

happens if there are no dominant models and ad-blockers compete. Specifically,

using a game-theoretic model with notions from club theory we formulate monopoly

and duopoly models to analyze welfare implications of different ad-blocker models.

In doing so, we address concerns from policy-makers such as FTC, CEPR (Niemand

et al., 2015), regarding the burgeoning ad-blocking industry and its impact on users

and content providers. The main insights we derive from the model are related

to impact on users and content providers due to ad-blocker business models (e.g.,

Freemium vs. Paid) and due to competition among ad-blockers for providing ad-

blocking services to users. Our analysis shows impossibility in reconciling preferences
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in ad-blocking models among content providers and users and evidence of increasing

price competition among ad-blockers that implies reduction in user surplus.

In the second essay, we study the problem of fast approximation of winner determi-

nation in iterative combinatorial auctions (CA) conducted on e-commerce exchanges.

Winner Determination Problem (WDP) in CA is an NP-Complete problem (Sand-

holm and Suri, 2000; Sandholm et al., 2002)1. In the age of big data – increased

velocity, volume and variety of bundles and bids – WDP is increasingly becoming

intractable within limited time (Karaenke et al., 2015). In scenarios such as spec-

trum auction, the computational issues are not as problematic because they often

involve only a few bidders. However, in cloud computing, transportation & logis-

tics auctions conducted on e-commerce exchanges, there is a trend towards iterative

combinatorial auctions to accommodate increase in market size, items and complex

preferences of participants (Bichler, 2010; Bichler et al., 2006; Lau and Goh, 2002).

Traditional solvers such as IBM CPLEX or AMPL have been ”demonstrably ineffec-

tive” (Adomavicius and Gupta, 2005) in producing the optimal solution when faced

with big data scenarios in auctions (Boughaci et al., 2009; Lau and Goh, 2002). In-

stead, heuristic solutions are used (Bichler, 2010; Guo et al., 2006). We tackle this

challenge by proposing a graphical formulation amenable to heuristic search. We use

this formulation to design an ant-colony based heuristic capable of finding optimal

or near optimal solutions in maximum 10 minutes and better than the best-in-class

heuristic and as good in 78% of cases as the best exact algorithm. We show the

effectiveness of our approach and establish reasons why large instances of CAs are

becoming intractable using empirical hardness techniques.

In the third essay, we focus on designing better market mechanisms for preventing

centralization of power in mining in cryptocurrencies. Selfish mining is the evidence

of incentive incompatibility in cryptocurrency mining (Böhme et al., 2015; Eyal and

Sirer, 2018; Ray et al., 2018b). Designing incentives is important because a preva-

lence in selfish mining can threaten the very nature of decentralized cryptocurrency

1It means that the difficulty in identifying the winner increases as the number of market participants
and/or the set of items to bid on increases.
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(Kroll et al., 2013; Ray et al., 2018b). Evidenced in recent developments, it has been

observed that once a mining pool reaches a threshold of hash power, rational min-

ers will preferentially join the mining pool to reap the higher revenues compared to

mining alone (Eyal and Sirer, 2018; Sapirshtein et al., 2016). Such a mining pool can

rapidly increase to majority hash power and threaten attacks such as DoS, DDoS or

Goldfinger attacks (Babaioff et al., 2012; Böhme et al., 2015; Narayanan et al., 2016).

Through mechanism design, we design better incentives for mining in cryptocurren-

cies. Specifically, we propose a new incentive system that rewards honest behavior

and punishes dishonest behavior. From a policy perspective, mechanisms with re-

wards and punishments have been proven to be more effective in incentivizing desired

behavior (Andreoni et al., 2003). Specifically, one might expect less cooperation in

scenarios where good behavior is rewarded than in those where poor behavior is pun-

ished (Sutter et al., 2010). Designing a mechanism around rewards only and omitting

an option for punishments may be a mistake, even if punishments are rarely used

(Sefton et al., 2007). Better mechanisms for cryptocurrencies therefore rely on a bal-

ance of rewarding honest while punishing dishonest behavior(Casey and Vigna, 2018;

Eyal and Sirer, 2018), all the while incentivizing participation in contributing to the

system. Our designed mechanisms aims at maintaining this balance by introducing

equity improving reward schemes.

The objective of this dissertation is to produce significant contribution to both

academic research and industry practice. Our papers contribute to existing work in

economics of information systems, club theory for digital goods, online advertising,

meta-heuristics, combinatorial auction design, cryptocurrency economics and mech-

anism design. We also provide insights into the effectiveness of freemium models in

the context of ad-blocker platforms, the economic value of ad-exchange models in

ad-blocking and empirical hardness of time consuming combinatorial auctions. More-

over, we offer a formal analysis of the role of the incentive policies in cryptocurrencies

– a recent but important industry initiative (Babaioff et al., 2012; Narayanan et al.,
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2016). These insights could help decision-makers in policy-making, business process

improvements and market design.
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2. THE ECONOMIC IMPLICATIONS OF AD-BLOCKERS

2.1 Introduction

Advertising is a primary source of revenue for digital media and, in some cases,

it is in fact the only source. On the other hand, ad avoidance and, consequently, its

revenue implications have become more significant in the digital realm. In the tradi-

tional media, access/content providers generally controlled the extent of ads visible

to the consumers. On the Internet, however, the control primarily rests with the con-

sumers – who have the option of using intrusion prevention tools such as ad-blockers

and privacy-focused browsers. With increase in intrusive advertising practices, adop-

tion and usage of intrusion prevention tools such as AdBlock-Plus, AdBlock, Brave

etc. has increased dramatically. For instance, the number of people in US using

ad-blockers grew by 45% between 2015 and 2018 (Shankland, 2018). Demographic

findings show all generations, but especially millennials - 67% of them - have installed

ad-blockers to combat loss of privacy and/or malware attacks (Karsenty, 2016; Wielki

and Grabara, 2018). Desktops & laptops, with smartphones coming a close second,

are the main venue for ad blocking. The proportion of desktop/laptop users who

deploy ad-blockers is higher than smartphone users but the gap is closing steadily

(Katona and Sarvary, 2018). These trends have important implications for digital

media. It is estimated that, even with only 6% of the global Internet population

using ad-blocking software in 2015, revenue loss for content providers was $21B or

approximately 14% of the global ad spend (Walls et al., 2015). Further, with 11% of

the global internet population using ad-blockers software by 2018 end (Brinkmann,

2017), projected annual loss in ad-revenues is approximately $35 billion by 2020.

In order to alleviate increasing revenue concerns of content providers (Digiday,

2016; Katona and Sarvary, 2018) and to keep pace with the increasing demand for
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ad-blocking (Karsenty, 2016), market for ad-blockers has evolved rapidly. While 2015

saw free ad-blockers such as AdBlock Plus hold the dominant market share (Shiller

et al., 2017), introduction of whitelisted ads through ‘Acceptable Ads’ and ‘Coalition

for Better Ads’ initiatives gave firms offering to block all ads for a price, a rapid rise in

user base (Katona and Sarvary, 2018). Consequently, paid ad-blocking services such

as AdGuard, AdBlock Pro1 had a rapid rise in market share (Fedorko, 2018; Zam-

brano and Pickard, 2018). Currently, three major business models for ad-blockers

exist. First, free ad-blockers that are mainly browser plugins and expose users to

some form of whitelisted ads (e.g., Acceptable Ads, Better Ads Coalition etc.) to

generate revenue e.g., AdBlock Plus, Google Chrome Ad Filter, Brave. Second, paid

ad-blockers that exist across devices – smartphone to laptops – and have a subscrip-

tion or licence based payment model and block all ads for a price e.g., AdGuard,

Cleanweb, CyberSec, CyberGhost. Third, freemium ad-blockers that have a free and

a paid version offering similar benefits, e.g., AdBlock (Free & Premium), Robert by

Windscribe, Google Contributor (paid version of Google adblocker), AdLock (free

version as plugin, paid version as software install). The free versions typically use

‘Acceptable Ads’ in some cases (AdBlock) or Better Ads listed domains (AdLock).

Rise in market shares of each type of ad-blocker has raised concerns from different

stakeholders (Barbacovi, 2016; Miller, 2018; Saluke, 2008). First, consumer rights

groups (including Electronic Frontier Foundation) argue that free ad-blockers do not

solve the ad-intrusion problem but introduce another avenue for advertisers to target

users (Fedorko, 2018). Moreover, Walls et al. (2015) has shown that ad-whitelists

have grown rapidly with limited transparency on its governance and with addition of

dubious set of advertisers (e.g. 2.6 Parked Domains2). Besides, since Do-Not-Track

service is not supported, privacy isn’t guaranteed in any ad-blocking model and some

amount of tracking by whitelisted companies is inevitable (Katona and Sarvary, 2018;

Walls et al., 2015). Second, content provider advocates (e.g., Interactive Advertis-

1See https://www.vpnmentor.com/blog/the-best-and-worst-ad-blockers/
2Recent research has shown that malicious domains once discovered often end up being parked, i.e.
temporarily hosted by some domain parking services(Alrwais et al., 2014)
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ing Bureau) argue that since advertising revenue pays for content creation, blocking

all ads hurts business viability. Moreover, constructing paywalls or introducing sub-

scription fee for consuming content has not proved popular with users of all types,

further endangering availability of free online content (Barbacovi, 2016). Besides, in

some cases, content providers have accused free ad-blockers of extortion by taking up

a fraction of advertising revenue through whitelisted ads (Commission et al., 2015;

Fedorko, 2018; Katona and Sarvary, 2018). Consequently, industry regulators and

policy-makers acknowledge that web advertising has become an unwieldy problem,

exacerbated by the conflict between users, content providers and ad-blockers (Evans,

2009; Johnson, 2013). Policy-makers such as FTC, International Chamber of Com-

merce etc., are unsure of the right way forward to resolve these concerns (Malandrino

et al., 2013; Miller, 2018). Our work aims to inform policy-making in this context.

Specifically, through a game-theoretic model studying a monopoly and duopoly of

ad-blockers, we analyze economic and welfare implications of different forms of ad-

blocker business models. Our analysis shows which business model is ideal from

the perspective of different stakeholders: users, content providers and ad-blockers

and characterizes the conditions under which the models are preferred. Further, we

show how competition in the ad-blocking industry implies users are always worse off.

Insights from our analysis can be used to answer two important questions: which

ad-blocker model should be dominant in the industry and what happens when no

such model is dominant and ad-blockers compete for market share.

2.2 Literature Review

Our work is related to three streams of literature - ad avoidance technologies,

online advertising and two-sided platforms.
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2.2.1 Ad Avoidance Technologies

Ad avoidance technologies were initially studied in context of the print and broad-

cast media (e.g., Drèze and Hussherr, 2003; Elliott and Speck, 1998; Speck and El-

liott, 1997). The methodology in these papers is empirical, using data collected

from various leading newspapers and broadcasting companies. The scope of research

was further broadened with analysis using theoretical models of advertiser - content

provider interactions (e.g., Anderson and Gans, 2011; Johnson, 2013; T̊ag, 2009). The

main objective of these models was to investigate content provider responses to ad

avoidance. The main insights were related to - (1) how increasing user subscriptions

for content with reduced ads could disproportionately increase ad clutter on non-

subscribers(Johnson, 2013), (2) increasing targeting intensity on subscribers would

benefit content provider but reduce overall welfare of users (Anderson and Gans,

2011) and (3) how paying to reduce advertisements model itself incentivizes content

providers to increase ad intensity thereby hurting user welfare (Johnson, 2013; T̊ag,

2009). However, ad-blockers and the model of acceptable ads has introduced a dif-

ferent set of problems in the context of online media consumption. Ad-blockers have

evolved into a unique multi-sided platform. This presents a two-fold opportunity for

research. Firstly, ad-avoidance using memberships on a two sided platform presents

an opportunity to further add to the burgeoning literature on online two sided plat-

forms. Second, it becomes interesting to analyze how using ad-avoidance online can

have different implications for welfare of users, advertisers and content providers. As

explained in Cho (2004), avoiding ads on the Internet differs from traditional media

in several ways. First, many people consider the Internet a tool rather than an enter-

tainment medium, which may make users take measures to avoid Internet ads more

actively, especially when time constraints exist to perform specific tasks. Second,

in general Internet users prefer a faster connection for transacting online, which is

less applicable to traditional media. This implies that Internet users react negatively

towards Internet ads when they perceive slowing down of speed of data access due
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to ads. Till now, the main advances in academic research into ad-blocking and ad-

blockers has come from the engineering and technology academia with papers such

as Krammer (2008), Hemmer (2005), Pujol et al. (2015). What has been missing

is research into the economic implications of rise in behavior such as adoption and

usage of ad-blocking from users. Recent research in this space points to works that

look at content provider responses to ad-blocking (Aseri et al., 2018) and impact of

ad-blocking on content provision overall (Shiller et al., 2017). We aim to fill this gap

and contribute in a situation where - (1) ad-avoidance has evolved into a quality-

certifying platform with membership notions for users and advertisers, (2) content

providers suffering reduction to payoff due to different business models. Further, we

aim to contribute by analyzing participation patterns of users and advertisers given

that both reap benefits due to membership on the ad-blocker platform.

2.2.2 Online Advertising Ecosystem

In the early 90s, online advertising was mainly in the form of static banner ads

on static web-pages (Lee, 2001). With the arrival of search intermediaries, firms

found a new medium for targeting users. The idea that search results could be the

new ‘real-estate’ that has potential for better responses from the target audience

became more relevant as time went by. Seminal papers that contributed to the

understanding of newer methods of auctions in online search advertising are primarily

due to Varian (2007), Varian et al. (2006), Varian (2009) and Edelman et al. (2007).

The primary mechanism behind success in this enhanced online ecosystem became

use of keywords to target users, bidding for better positions on search results and

minimizing costs of displaying ads by strategizing on which schemes to bid under - cost

per click/impression or action. Many papers such as Balachander et al. (2009) and

Aggarwal et al. (2006) have studied various aspects of these decisions and strategies.

However, with the arrival of ad-exchanges, which became a critical cog in the chain of

flow between users and advertisers, things have become more involved. As analyzed
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in Stone-Gross et al. (2011) and Muthukrishnan (2009), ad-exchanges present an

opportunity to the advertisers (supply-side) to game the system in order to optimize

their payoffs. This translates to the probability of fraudulent activities increasing

which decreases surplus not only for the users but for the ad exchange intermediary.

One fallout of this situation has been an increase in insidious advertising that although

has better user targeting but is, in expectation, more intrusive than before. One can

argue that the natural progression in response to this situation has been the rise of

ad-blocking technology, which to some extent, has helped in mitigating the effects of

such intrusive advertising.

2.2.3 Club Theory

Club theory deals with goods that are excludable but non-rival. Essentially, club

goods are derived from excludable public goods where consumers of the good form

a voluntary group to enjoy mutual benefits from consumption (Sandler, 2013). In

forming such groups, consumers share production costs or consumption characteris-

tics. Interest in analyzing how club goods impact economy at large and markets in

particular is not new. In fact, the earliest paper on club theory was by Buchanan

(1965). Since then, more refinements have been made to studying variations in club

structures and the applications of such structures to society. To cite a few examples,

clubs have been refined to include sharing of goods among a group of clubs (Sterbenz

and Sandler, 1992). In other works, when groups of users take advantage of using

club resources by reputation of their membership, club goods and overall welfare are

impacted (Scotchmer, 1997). In order to remedy effects from such reputation driven

herding, costs to joining clubs that enable excluding certain members have been stud-

ied too (Helsley and Strange, 1994). Further, to enable a variety of members joining

clubs and improving overall revenue for clubs, models have considered analyzing club

models offering multiple club goods under the same membership form (Brueckner and

Lee, 1991; Sandler and Tschirhart, 1997). Finally, in order to improve joining decision
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under availability of imperfect information, models have included asymmetric infor-

mation to motivate how clubs can take advantage of membership sizes (Lee, 1991;

Silva and Kahn, 1993). Club theory has been developed using two important premises.

First, it is assumed that membership in clubs requires restrictions to group size, to

an extent where membership size is an endogenous variable in many formulations. In

some models, toll or congestion price acts as controlling variable to membership size.

In other models, the utilization of club facilities fixes membership size. Second, it is

assumed that both membership size and club good provision are related allocation

decisions faced by any profit-maximizing club. Club theory is therefore considered

as an important development in Economic Theory wherein, public and private goods

provision is considered complete with the addition of an intermediate class of goods

– club goods.

2.3 Model

Consider a game consisting of three types of agents - a website or content provider

(CP), an ad-blocker (AB) and users. CP offers content bundled with ads to users.

AB exists as an option for users to join to avoid ads. Further, AB uses one of

the following business models to deliver services: (1) ad-exchange, (2) paid or (3)

freemium. Users – non-members and AB members – value content sufficiently high

(v > 2) such that even on suffering marginal disutility t ∈ (0, 1) from being exposed to

ads, earn a positive marginal utility from consumption. A non-member is exposed to

mass 1 advertisers, an ad-exchange/free AB member is exposed to mw ∈ (0, 1) mass

of whitelisted ads and a paid/premium AB member is exposed to no ads by paying

pa. All AB members enjoy non-rival but excludable benefits z ∈ (1, v) at a marginal

congestion cost c ∈ (0, 1). Excludable benefits are assumed to be valuable enough

to offset the highest possible disutility from exposure to whitelisted ads (tmw = 1)

but still valued lower than content v. These benefits are primarily related to secure

browsing (e.g., HTTPS everywhere), anti-tracking (e.g., browser fingerprinting) or
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monetary incentives for being exposed to select ads (e.g., Brave Attention Token

or BAT) (Eyeo, 2013; Li et al., 2017b; Palant, 2011). Congestion costs exist due

to disutility from performance issues of ad-blockers due to multiple user-generated

domain filter-lists3 (Newman and Bustamante, 2019; Vastel et al., 2018a,b; Wills

and Uzunoglu, 2016) or due to frequent user-feedback driven changes in ad-blocking

standards (Huang and Cheng, 2017; Lashkari et al., 2017; Palant, 2011; Pujol et al.,

2015). Essentially, congestion costs help capture the disutility that ad-block members

face when consuming content, due to increased member participation in updating ad-

filtering rules and standards. Typical examples of disutility include increased time to

first paint (TTFP)4 (Newman and Bustamante, 2019) and increased vulnerability to

spyware (Tucker, 2019).

We assume a two-stage game structure. In the first stage AB either sets a price

for premium membership and price of whitelisting (paid/freemium models) or enjoys

revenue from free AB users (ad-exchange). Given the optimal premium membership

price (paid/freemium models) or mass of whitelisted advertisers (ad-exchange), in the

second stage, users decide to join or not join the AB based on respective payoffs. As-

sume all users and advertisers interact with each other, either through the AB or out-

side of it. Specifically, all advertisers interact with non AB users whereas whitelisted

advertisers interact with everyone except premium members. Club theoretic notions

are used to model AB and AB member payoffs. Classical club theory models consider

user heterogeneity along various member characteristics such as rate of club usage

or price sensitivity (Ellickson et al., 2001; Sandler and Tschirhart, 1997; Scotchmer,

1997). In our case, we consider usage heterogeneity in content consumption/internet

usage hours. Recent survey by PageFair suggests that time spent consuming content

coupled with content valuation drive users to keep using ad-block or disabling it,

given CP reactions such as consumption blocking (Foster, 2016).

3See AdBlock Plus: https://adblockplus.org/en/getting˙started
4First paint (FP) and first contentful paint (FCP) are metrics that mark points on a website im-
mediately after navigation. Specificslly, when the browser renders pixels to the screen these metrics
measure user experience perspective.
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2.3.1 User Problem

Users are differentiated by α ∈ (0, 1) – internet usage hours. Assume that irre-

spective of user type, each user in this model earns a positive marginal utility from

content consumption. That is, assume a user α ∈ (0, 1) in this model receives utility

v > 2 from consumption and disutility t ∈ (0, 1) from exposure to mass 1 intrusive

ads, such that

u1 = α(v − t), Non ad-block user (2.1)

In order to improve consumption experience, users resort to using AB to enjoy brows-

ing benefits z ∈ (1, v). By joining AB, users may consider free or paid usage. In free

usage, users are exposed to select mass mw ∈ (0, 1) of ads whereas in paid usage,

users are not exposed to any ads. So, utilities for free and paid usage are:

u2 = α(v + z − tmw)︸ ︷︷ ︸
Benefit from CP + AB

− c(n2 + n3)︸ ︷︷ ︸
AB Congestion Costs

, Free AB usage (2.2)

u3 = α(v + z)︸ ︷︷ ︸
Benefit from CP + AB

− c(n2 + n3)︸ ︷︷ ︸
AB Congestion Costs

− pa︸︷︷︸
Membership Price

, Paid AB usage (2.3)

where c ∈ (0, 1) is the congestion cost, n1 is mass of non-members, n2 is mass of free

ad-block users and n3 is mass of paid users such that n1 + n2 + n3 = 1. The user’s

problem can then be formulated as:

Vα =


max {u1, u2} ∀ α ∈ (0, 1), Ad-Exchange AB

max {u1, u3} ∀ α ∈ (0, 1), Paid AB

max {u1, u2, u3} ∀ α ∈ (0, 1), Freemium AB

(2.4)

Risk-neutral (linear) assumption of user utility, when consuming ad-supported

content online has been used in past works dealing with advertising & privacy (An-

derson and Gans, 2011; De Corniere and De Nijs, 2016; Iyer et al., 2005; Johnson,

2013). Specifically, consumption’s linear relation to ad-disutility has been used to
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model users in analyzing online ad-targeting strategies (Athey and Gans, 2010; Iyer

et al., 2005; Johnson, 2013; Vratonjic et al., 2013). We use same notions to formulate

the user model.

2.3.2 Ad-Blocker Problem

Assume a single ad-blocker AB that provides basic service of blocking intrusive

ads and providing additional benefits z ∈ (1, v) such as malware protection5. The

basic problem of for AB is as follows:

Maximize
pa,pw

kmw

∫
ad-ex

αdα + pwmw + pa

∫
paid

dα (2.5)

where to kmw

∫
ad-ex

αdα is the revenue from free members under Ad-Exchange model,

pa
∫

paid
dα is the revenue from paying members under Paid model and pwmw is the

revenue from whitelisting. When choosing a business model, AB maximizes revenue

by deciding: both price of premium membership pa and price of whitelisting pw

(freemium), or either price of membership pa (paid) or price of whitelisting pw (ad-

exchange). When deciding on pw, for simplicity we assume AB essentially sets an

entry barrier for advertisers, by comparing free member sizes to non-member (Ad-

Exchange) or paid member sizes (Freemium). Therefore, for the ad-exchange model,

following is the decision problem for AB:

Maximize
pw

kmw

∫ 1

α1

αdα + pwmw︸ ︷︷ ︸
Ad-Exchange Revenue

subject to pw =

γLw, n2 ≥ n1

γHw , n2 < n1

.

(2.6)

5z as AB benefit is assumed to always be valued lesser than content v, by users
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For the freemium model, following is the decision problem for AB:

Maximize
pa,pw

pwmw + pa

∫ 1

α2

dα︸ ︷︷ ︸
Freemium Revenue

subject to 0 ≤ pa ≤ tmw

pw =

γLw, n2 ≥ n3

γHw , n2 < n3

.

(2.7)

Finally, for the paid model, following is the decision problem:

Maximize
pa

pa

∫ 1

α2

dα︸ ︷︷ ︸
Paid Revenue

subject to 0 ≤ pa ≤ tmw

(2.8)

where α1, α2 are indifference points for free and paying members of AB respectively,

n2, n3 are membership sizes of free and paying members, pw is price of whitelisting such

that γHw > γLw; γHw , γ
L
w ∈ (0, 1) and k is revenue shared with CP. Further, kmw

∫ α2

α1
αdα

is revenue from whitelisted ads and free member interactions (ad-exchange model),

pa
∫ 1

α2
dα is revenue from paid membership (freemium/paid model) and pwmw is the

revenue from charging for whitelisting (ad-exchange/freemium). Similar to ‘Accept-

able Ads’ or ‘Better Ads Coalition’ type programs6, we assume ad-exchange AB is

able to monetize free members using whitelisted advertiser interactions. Relatedly,

it is assumed that a mass mw ∈ (0, 1) of whitelisted advertisers exist and is exoge-

nous to the model. In line with whitelisting trends across major platforms (e.g.,

AdBlock Plus, Brave) price of whitelisting pw is either zero or is fixed by AB given

membership size (Iqbal et al., 2017). Therefore, decision to whitelist by advertisers

is a combination of a variety of parameters e.g., ad-blocker platform revenue share

parameters, content environment of ad, design features, ad-campaign historic trends

etc (Iqbal et al., 2017; Shankland, 2018). We simplify our analysis by assuming such a

6See Acceptable Ads: https://acceptableads.com/
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mass of advertisers mw is exogenous. Additionally, ad-exchange AB retains a fraction

k ∈ (0, 1) of free user monetization revenue – a model in line with existing revenue

sharing arrangements for AdBlock Plus, Brave etc. (Eyeo, 2013; Palant, 2011; Vastel

et al., 2018a). Note that the revenue structure of freemium AB is also in line with

profit maximizing club models (Ellickson et al., 2001; Sandler and Tschirhart, 1997),

where clubs are able to earn revenue from all its members – free or premium.

2.3.3 Content Provider Problem

Assume a single content provider CP. The CP provides users access to content

valued at v > 2 and sustains content through ad revenue. Without ad-blockers, the

content provider earns from interaction of mass 1 users and advertisers. Presence of

ad-blocker restructures the revenue for CP. As per different models of AB, the revenue

for CP is as follows:

πad-ex
CP = (1− k)mw

∫ α2

α1

αdα +

∫ α1

0

αdα (2.9)

πfrm
CP = mw

∫ α2

α1

αdα +

∫ α1

0

αdα (2.10)

πpaid
CP =

∫ α1

0

αdα (2.11)

where α1, α2 are indifference points for free and paying members of AB respectively

and 1− k is revenue retained from free AB users (ad-exchange). Note that marginal

ad revenue from users is assumed to be a function of their internet usage α and mass

of ads mw, and is assumed to be independent of AB membership.

2.4 Equilibrium Analysis

Analysis is done for each type of ad-blocker revenue model, beginning with the

ad-exchange type AB. Recall the two stage game where second stage users decide
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between joining and not joining and first stage, AB maximizes revenue and either

shares with CP (k) or allows CP to enjoy payoff from free members.

Consider the Ad-Exchange model and the user stage 2 problem. Given a mass of

whitelisted advertisers mw, users decide whether to join AB. Mass of free AB members

is therefore n2 = 1−
(

c
c+z+t(1−mw)

)
while non-members is n1 =

(
c

c+z+t(1−mw)

)
. Given

these masses, in the first stage, AB & CP enjoy revenues from advertising. Following

is a characterization of the equilibrium under Ad-Exchange AB.

Lemma 1 For c, t,mw ∈ (0, 1), z ∈ (1, v), following characterizes the equilibrium

under the Ad-Exchange AB model:

• Mass of users joining AB ∈ (1
2
, 1].

• Price of whitelisting p∗w = γLw

Intuitively, equilibrium under ad-exchange is determined by AB benefits z and mass

of whitelisted ads mw. The higher the benefits offered, the more incentive for users

to join AB. Conversely, an increase in mass of whitelisting increases disutility while

using AB, causing a decrease in membership size. In the limiting case where mw ≈ 1,

the indifferent user is still below 1
2
. Hence, under a monopoly ad-exchange model,

more users tend to join the AB than not, implying revenues for CP and AB are now

a function of revenue sharing fraction k. Interestingly, since mass of free users is

higher than non-members, AB chooses a lower price of whitelisting γLw. In practice,

whitelisting prices by AdBlock Plus, Brave etc. reflect similarities with derived in-

sights. Specifically, AdBlock Plus whitelists 94% of the entities in Acceptable Ads for

free while larger entities such as Google, Yahoo etc. pay to be whitelisted (Palant,

2011).

Now consider the Paid AB model and the second stage user problem. Given a

price of membership pa, mass of paid members is n3 = 1 −
(
c+pa
c+t+z

)
. In the first

stage, AB solves for premium price for optimizing revenue as per Equation 2.8. The

following characterizes equilibrium under Paid AB model.
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Lemma 2 For c, t,mw ∈ (0, 1), z ∈ (1, v), following characterizes the equilibrium

under the Paid AB model:

• Mass of users joining AB ∈ (0, 1
2
].

• Price of membership p∗a = t+z
2

.

Under the Paid model, it is clear that price of membership determines the indifferent

user location in α ∈ (0, 1). Further, the absence of whitelisting ads implies greater

utility from membership, the higher the usage intensity α of users. Hence, given AB

benefits z delivered and marginal ad-disutility t, AB sets price of membership p∗a = t+z
2

so that it captures a portion of surplus created from improvement in consumption and

removal of disutility from exposure to mass 1 ads. Since it is assumed that users enjoy

positive marginal utility from consumption, users at higher consumption intensities

would enjoy non-negative utility, given the price. Hence membership size is at most

1
2

and could be as low as zero.

Finally, consider the Freemium AB model and the second stage user problem.

Recall, n2 denotes mass of free members, n3 mass of premium members while n1

is mass of non-members. Given the price of premium membership pa, mass of free

members in stage 2 is n2 = pa
tmw
− c

c+z+t(1−mw)
and mass of premium members is

n3 = 1 − pa
tmw

. In the first stage, AB solves for optimal pa, pw as per Equation 2.7.

The following characterizes equilibrium under the Freemium AB model.

Lemma 3 For c, t,mw ∈ (0, 1), z ∈ (1, v), following characterizes the equilibrium

under the Freemium AB model:

• Mass of premium users is n∗3 = 1
2

while mass of free users is n∗2 = 1
2
− c
c+z+t(1−mw)

.

• Price of premium membership p∗a = tmw
2

.

• Price of whitelisting p∗w = γHw .

Under freemium, AB has to consider maximizing revenue given that the price it sets

for premium membership impacts both free and premium membership sizes. Hence,
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in the first stage AB has a trade-off: choose pa that increases free membership size but

decreases whitelisting revenue or that decreases free membership size but increases

whitelisting revenue. From Lemma 1 and stage 2 n2, it is clear that since mass of

free members is bounded below by 1
2
, AB is guaranteed some positive mass of free

members even on selecting a high price of premium membership. Hence, AB goes for

higher price of whitelisting and pa that decreases free membership size. In practice,

freemium models are popular in the smartphone space with popular ad-blockers such

as Disconnect, 1Blocker enjoying wide popularity based on its freemium pricing and

limited whitelisting practices (Greenberg, 2016). Interestingly, note that freemium

pricing of AB is a function of negative externality tmw. Similar to insights from Nan

et al. (2018) and Geng and Chen (2019) that consider freemium under threats of

piracy, optimal pricing in context of ABs is susceptible to price increases the greater

the negative externality from ads.

2.5 Welfare Analysis

We now conduct comparisons of user welfare, CP & AB payoffs at equilibrium

under different AB models. We begin with user welfare analysis under different models

and conclude with comparisons of payoff for CP & AB.

Proposition 1 Considering user welfare, for c, t,mw ∈ (0, 1), z ∈ (1, v) welfare

under Freemium is highest when compared to Ad-Exchange and Paid models. Further,

under Paid, user welfare is the lowest.

Proof is in Appendix A. This interesting result follows from the combined effects

of price discrimination and the freemium benefit of higher quality offerings at higher

usage levels. First, note that when comparing Freemium to Ad-Exchange, the absence

of premium membership option in Ad-Exchange, for users at the upper end of usage

levels, leaves the opportunity to capture user surplus. In fact, for the same mass

of whitelisted ads mw, although market coverage is same in both Ad-Exchange and

Freemium, the overall increase in welfare from upgrade to premium membership in
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Freemium offsets welfare under Ad-Exchange. In addition, since price of premium

membership in Freemium is less than that in pure paid, welfare from blocking all

ads under Freemium exceeds that under Paid. Second, similar to the increasing

percentage differences condition (Anderson and Dana Jr, 2009), we show than an

increase in negative externality t,mw impacts only one segment under Freemium

whereas under Ad-Exchange or Paid, impacts entire user base. Therefore, even though

prices increase with increase in ad-intrusiveness or whitelisting activities, users are

better off under Freemium than under other models.

Implications from Proposition 1 are also extendable to freemium pricing models.

Runge et al. (2017); Wagner et al. (2014) establish that freemium pricing charges users

for value-add features which are typically absent in the free version of the product.

While value in the premium product and intensity of free product usage drive free to

premium conversion (Wagner et al., 2014), price paid for premium version is offset

by additional product features, additional content, or an otherwise improved product

experience (Hamari et al., 2017). Considering AB, free users convert to premium

driven by higher intensity of content consumption (α) and to escape ‘price’ of free

services – (tmw) – exposure to mw advertisers at marginal disutility t. Given benefits

z in free and premium versions are essentially the same, premium pricing extracts

part of the cost of providing ‘additional’ benefit of removing whitelisted ads that is

lower than cost of free membership. Effectively, the user improves consumption on

conversion to premium.

We now consider comparing payoffs for CP under the three AB models.

Lemma 4 For k ∈ (0, 1−
(

2c+t+mw
2(c+t+mw)

)2

) & mw ∈ (m̂w, 1) where m̂w satisfies:

• mw + (1−mw)
(

c
c+z+t(1−mw)

)2

≥
(

2c+t+z
2(c+t+z)

)2

• mw((c+ z+ t(1−mw))2− c2)(k− 1) +
(

2c+t+z
2(c+t+z)

)2

(c+ z+ t(1−mw))2− c2 ≤ 0

CP is better off under Ad-Exchange than under Paid model.

First, note that when comparing revenues under Ad-Exchange and Paid, CP earns

from advertising to non-members and free members under Ad-Exchange, as opposed
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to earning only from non-members under Paid. Further, recall from Lemmas 1, 2 that

market coverage for AB under Ad-Exchange exceeds that under Paid. Indirectly, CP

has a larger user segment to earn from under Paid than under Ad-exchange. Hence, for

CP to earn higher under Ad-Exchange model, the revenue sharing k has to bounded

from above and the mass of whitelisted ads has to be higher than a minimum value.

Our result essentially characterizes this condition.

Lemma 5 For k ∈ (0, 3
4
), & mw ∈ (0, m̂w1) ∪ (m̂w1, 1), where m̂w1, m̂w2 satisfy:

(c+ z + t(1−mw))2 − 4c2

4 ((c+ z + t(1−mw))2 − c2)
≤ 1− k

CP is better off under Ad-Exchange than under Freemium model.

In comparing Ad-Exchange with Freemium, note that under both models, CP has

the option of earning advertising revenues from free and non-members. However,

for a given mass of whitelisted ads, the amount of revenue would differ under these

two models. Further, changes in mass of whitelisted ads would determine the free

and non-member populations and so, an increase in mw doesn’t necessarily imply

improvement in revenues from these user segments. Our result basically shows that

although revenue sharing has an upper bound, mass of whitelisted ads has a range

within which CP is worse off but above and below which CP is better off under Ad-

Exchange. Interestingly, our insight can help explain how the well-known strategy

of limiting memberships and maintaining a separate ad-network of advertisers on

whitelisting platforms such as Acceptable Ads or Coalition of Better Ads firms such

as AdBlock Plus & Brave has been touted to improve revenues for participating

content providers and websites (Katona and Sarvary, 2018; Manjoo, 2015). However,

with increased competition from Freemium firms, content providers have an option

to earn higher revenues if mass of whitelisted ads are lower than a threshold or if

revenue sharing agreements are amenable (Vastel et al., 2018b).

Proposition 2 For c, t,mw ∈ (0, 1), z ∈ (1, v), CP is always better off under Paid

than under Freemium model.
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Proof is in Appendix A. Intuitively, under Freemium, AB covers a larger market than

under Paid model. Hence, for CP potential advertising revenues from non-members

under paid exceeds ad-revenues under ad-exchange, for the same mass of whitelisted

advertisers. Further, revenue from free member mass under Freemium is lower than

revenue from non-members. This is because free members under Freemium are char-

acterized by internet usage intensity α < 1
2

such that under Paid, CP earns more

from such users as non-members, by exposure to mass 1 advertisers. From an indus-

try standpoint, it is known that paid ad-blocking enjoys low popularity among users,

in comparison to free or freemium ad-blockers such as AdBlock Plus and AdBlock

Pro (Ikram and Kaafar, 2017). This doesn’t bode well for content providers since

price sensitivity of users can help in generating more revenue from ad exposure to

non ad-block users than ad-block users. Hence, from CP’s perspective, paid blocking

of all ads would actually work out better than Freemium, something that contradicts

what users prefer.

Finally, we consider AB payoffs under different models.

Lemma 6 For k ∈ ((1− 2c+t+z
2(c+t+z)

)(z+t)−2γLw, 1) and mw ∈
(
mw,min

{
1,

(t+z)(1− 2c+t+z
2(c+t+z))

2γLw

})
where mw satisfies:

(t+ z)(1− 2c+t+z
2(c+t+z)

)

mw

(
1− c2

(c+z+t(1−mw))2

) ≤ 1 +
2γLw(

1− c2

(c+z+t(1−mw))2

)
AB is better off with Ad-Exchange than Paid as its business model.

Under Ad-Exchange, AB is earning both from whitelisted advertisers and free mem-

bers while under paid, AB only earns from paying users. Further, since the mass of

users in Paid is bounded from above by 1
2
, it would seem intuitive that Ad-Exchange

should have more revenue than Paid for AB. However, AB has to resolve a trade-off

– increasing mass of whitelisted advertisers while earning higher revenue from free

members. This is because an increase in mw impacts free membership size negatively,

leading to a decrease from free member ad revenues while whitelisting revenues in-
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crease. Under paid, this trade-off is non-existent due to no whitelisting. Therefore,

there exists a range of mw ∈ (0, 1) within which AB earns higher from Ad-Exchange

than from Paid. Further, note that AB revenue sharing has a lower bound for AB,

as opposed to an upper bound for CP under the same comparison (Lemma 4). This

suggests presence of conflicting objectives and that use of bargaining power could

impact either AB or CP adversely (Karsenty, 2016; Mansfield-Devine, 2015).

Proposition 3 Comparing Freemium to Ad-Exchange and Paid business models:

• For mw ∈
((

t+z
( t
2

+2γHw )

)(
1−

(
2c+t+z

2(c+t+z)

))
, 1
)

AB is better off with Freemium than

Paid as its business model.

• For k ∈ ( t
2
, 1) and mw ∈ (mw,mw) where mw,mw satisfy:

2k − 2kc2

(c+ z + t(1−mw))2
− t ≥ 0

AB is better off with Ad-Exchange than with Freemium as its business model.

This proposition characterizes conditions under which the Freemium business model

is preferred by AB, compared to the other two – Paid and Ad-Exchange. First note

that for Freemium to be better than Paid, AB benefits from an increase in whitelisting

above a threshold. This is because from an increase in mw, AB earns higher from

premium members and advertisers, who pay γHw . Further, an increase in club benefits

z only serves to decrease the lower bound of mass of whitelisting, above which AB

prefers Freemium to Paid. Taken together with insights from users and CP, it is clear

that for AB to prefer Freemium to Paid, users will have to suffer higher whitelisted

ad exposure while CP will always have lower revenues compared to Paid. Comparing

Freemium with Ad-Exchange, note that although market coverage for Freemium and

Ad-Exchange are the same, AB earns higher from Freemium only when mass of

whitelisters is either too high or too low ⇒ mw ∈ (0,mw) ∪ (mw, 1). For the same

reasons as explained in Lemma 5, an increase in mw does not have a monotonic impact

on revenues from Ad-Exchange when compared to Freemium. Hence, when mw is
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lower or higher than a threshold, free membership sizes decrease and Freemium model

outperforms Ad-Exchange with revenue from whitelisted advertisers and premium

members exceeding free member revenues from Ad-Exchange.

Considering the welfare implications in totality, for any AB business model to be

a dominant model in the industry, preferences of any one or two agents might not be

enough to ensure an improvement in overall welfare. For instance, if user preferences

are considered paramount, then for Freemium to be the dominant model in the in-

dustry, CP will always be worse off while AB would be better off only when mass of

whitelisting is either too low or too high. From a practical recommendation perspec-

tive, this implies that it is impossible to reconcile preferences of all three stakeholders

in a way that improves overall welfare (Barbacovi, 2016). On one hand, it is well

know that users care more about transactions and value from content consumption

than being exposed to ads. In fact, it is now known from various marketing stud-

ies that adoption of ad-blockers has been primarily driven by this user frustration.

Even so, usage of ad-blockers has led to users primarily being responsible for the loss

of revenue of content providers. Our revenue model analysis takes this tension into

account and sheds light on attempts at finding workable solution to this ‘stand-off’

between AB, CP and users. As we show, this problem of blocking ads while ensur-

ing minimum revenue loss for content providers may have irreconcilable differences

between stakeholders.

2.6 Competition in Ad-Blocker Market

We now shift to the scenario where the market for ad-blocking has competing ad-

blockers. Using competition among ad-blockers, we analyze how the market for such

disutility removing tools can result in consumers getting lower benefits at higher costs.

Consider a duopoly with complete market coverage by competing ABs. Incomplete

market coverage is considered as an extension to this model, in a later section. Using

the same game structure as in monopoly model, in first stage, the ABs (AB1, AB2)
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provide club good z1, z2 ∈ (1, v) to members using either an ad-exchange, freemium

or paid model with prices p1, p2 respectively. Additionally, ABs provides access to

content v > 2, whitelisted advertiser masses mi ∈ (0, 1), ∀ i ∈ {1, 2} (assume m1 >

m2) at marginal disutility t ∈ (0, 1) and consumption with congestion costs c1n1, c2n2

(marginal congestion ci ∈ (0, 1) ∀ i ∈ {1, 2}), where n1, n2 ∈ (0, 1) are membership

sizes in the respective clubs. In second stage, a user i faces choice of utilities between

membership in clubs i, j ∀ i, j ∈ {1, 2}, i 6= j which is expressed as,

ui =


v + zi︸ ︷︷ ︸

CP + AB 1 Benefit

− cini︸︷︷︸
AB 1 Congestion Costs

− pi︸︷︷︸
Membership Price 1

− kpx︸︷︷︸
Adoption Costs Paid

, Paid AB

v + zi − tmi︸ ︷︷ ︸
CP + AB 1 Benefit

− cini︸︷︷︸
AB 1 Congestion Costs

− kfx︸︷︷︸
Adoption Costs Free

, Free AB

(2.12)

uj =


v + zj︸ ︷︷ ︸

CP + AB 1 Benefit

− cjnj︸︷︷︸
AB 1 Congestion Costs

− pj︸︷︷︸
Membership Price 1

− kp(1− x)︸ ︷︷ ︸
Adoption Costs Paid

, Paid AB

v + zj − tmj︸ ︷︷ ︸
CP + AB 2 Benefit

− cjnj︸︷︷︸
AB 2 Congestion Costs

− kf (1− x)︸ ︷︷ ︸
Adoption Costs Free

, Free AB

(2.13)

Note that the given formulation allows modeling Freemium as a choice for a user

between paid or free usage, when analyzing competition between ABs. Similar to

Hotelling Model, assume that the two AB firms at opposite end of line x ∈ [0, 1].

Users are homogeneous except for their marginal adoption costs/preferences, for each

AB. In contrast to monopoly case, in duopoly we consider adoption cost or preferences

as a heterogeneity parameter for users. Adoption costs can be understood to be brand

loyalty for an ad-blocker, interoperability with user devices, backward compatibility

issues etc.,(Garimella et al., 2017; Malloy et al., 2016; Post and Sekharan, 2015; Walls

et al., 2015). Assume marginal adoption costs are sufficiently high such that complete

market coverage by any one AB is impossible, kp, kf > 2, kp−kf > 1. Further, suppose
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that ABs have minimally differentiated offerings such that |z1 − z2|∈ (0, 1) which is

practically the case (Karsenty, 2016; Mansfield-Devine, 2015; Nithyanand et al., 2016;

Vallade, 2008). That is, we consider cases the offerings are similar in benefits with

the major differences being in congestion costs and mass of whitelisted advertisers.

To analyze competition, we consider 6 cases – each case being a duopoly with each

club having the same or different business model. The simplified revenue model for

AB in each model is as follows:

πAB =


pini, Paid

mini, Ad-Exchange

pini + γimi, Freemium

(2.14)

where γi is price of whitelisting at each AB for advertisers. The game remains the

same where in stage 1, each AB sets price of premium membership. To analyze

impact of competition on user welfare, we conduct comparative statics on parameters

impacting price and/or membership sizes. The cases considered are listed as follows.

Table 2.1.: Competition Cases for Analysis

Case AB1 AB2 Example Scenario

1 Ad-Exchange Ad-Exchange AdBlock Plus vs. Brave

2 Ad-Exchange Paid AdBlock Plus vs. AdGuard

3 Ad-Exchange Freemium AdBlock Plus vs. 1Blocker

4 Paid Paid AdGuard vs. CleanWeb

5 Paid Freemium AdGuard vs. 1Blocker

6 Freemium Freemium 1Blocker vs. Disconnect

Lemma 6 For cases 1,2,3,5 & 6, at equilibrium, following is the effect of an increase

in c1, c2, z1, z2 on profits:

• ∂πi∗AB
∂zi
≥ 0,

∂πi∗AB
∂zj
≤ 0 ∀ i, j ∈ {1, 2}, i 6= j
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• ∂πi∗AB
∂ci
≤ 0,

∂πi∗AB
∂cj
≥ 0 ∀ i, j ∈ {1, 2}, i 6= j.

This is intuitive from the fact that user demands in all cases are a function of con-

gestion costs and AB benefits. Any increase in AB i benefits stimulates demand for

that AB while decreasing demand for the other AB, thereby increasing revenue. For

congestion costs, since the costs contribute to user disutility, an increase in member-

ship sizes or marginal congestion costs implies decrease in utility. Hence, an increase

in AB i’s marginal congestion costs increases demand for AB j and vice versa. This

leads to increase in profits for AB i when AB j’s congestion costs increase. More

generally, competition among ad-blockers (ABs) is impacted by value of benefits and

congestion costs. While the former is a function of ad environment, the latter is de-

pendent on the technology used by the AB to block all or some ads. In that relation,

Lemma 6 essentially argues for improving ad-blocking technology (better z at lower

c) to improve user welfare, as opposed to increasing mass of whitelisted advertisers

compared to competition – which seems to be the current strategy of both these com-

panies (Nithyanand et al., 2016; Walbesser, 2011). Anecdotal evidence suggests that

ad-blocking companies with improved ad-blocking technology that reduces congestion

costs for users, have performed better in competition (Brinkmann, 2017; Shankland,

2018). For instance, Brave’s AdGraph, that improves ad-blocking performance from

user generated filter lists (using machine learning) better than Adblock Plus and other

free ad-blockers, has been key in increasing Brave user base on an average 45% from

2017 to 2018 (Shankland, 2018).

Proposition 4 For all cases except case 4, an increase in mass of whitelisted adver-

tisers at any one ad-blocker never harms but benefits both ad-blockers.

Our result essentially shows how ad-blockers can benefit from competition in the mar-

ket, at the expense of users. For a given AB i, an increase in mass of whitelisted ads

mi increases disutility for users and impacts demand negatively. However, demand

for the other AB j is increased at the margin and so, AB j earns from an increase in

membership size while AB i earns from an increase in mass of whitelisted ads. Over-
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all, users at both ABs suffer a decrease in utility – from an increase in whitelisted

ads or from an increase in congestion costs due to membership size increase. Hence,

although ABs reap higher revenues, users suffer. Evidence from industry shows how

competition in whitelisting platforms has adversely impacted membership numbers.

For instance, in the past 5 years, both Brave and AdBlock Plus have established plat-

forms for enabling whitelisting from advertisers (Palant, 2011; Vastel et al., 2018a).

With increase in membership and release of ad-blocking services for mobile, both

companies have sought to increase whitelisted advertising revenues (Cohen, 2012).

However, usage numbers reveal a different story. Specifically, it has been established

using data analysis on software downloads average daily user numbers and average

daily downloads of ABP are decreasing quite steadily (Brinkmann, 2017). As an

example, daily usage of ABP decreased from an average 21.4 million users7 in 2016

to 15.4 million in 2017. Additionally, ABP had an average daily download count

of 181,000 on September 26, 2016 which reduced to 89,000 on year later (Foster,

2016; Katona and Sarvary, 2018). Different analysis studies conducted by industry

stalwarts such as PageFair suggests that this decrease in ABP download and usage

was primarily due to the Acceptable Ads program. Users found Acceptabel Ads as a

violation of the ad-blocking promise and hence, migrated to other blockers that had

either no whitelisted ads (uBlock Origin) or seemingly lower whitelisted ads (Brave)

(Brinkmann, 2017; Vastel et al., 2018b).

Proposition 5 Consider Case 4, where ad-blockers compete based on prices. At

equilibrium, an increase in marginal congestion cost ci, cj increases price and profit

for ABi ∀ i, j ∈ {1, 2}, i 6= j.

Case 4 looks at competition between paid ad-blockers such as AdLock, AdGuard or

Google Contributor. Our analysis shows similarity between this case and competition

with increasing prices (Chen and Riordan, 2008; Cowan and Yin, 2008; Zhou, 2006).

Specifically, when firms are faced with consumers of different elasticities of demand,

7See: https://www.ghacks.net/2017/09/29/firefox-adblock-plus-lost-millions-of-users-in-the-past-
year/
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price discrimination becomes easier and in competition, charging higher prices be-

comes best response (Zhou, 2006). In the case 4 scenario, each user’s demand for AB

services is characterized by congestion costs ci ∀ i ∈ {1, 2}. Since c1 6= c2, each user

i’s net cost of enjoying either AB1 or AB2 services is zi − (pi + cini) ∀ i ∈ {1, 2}.

Further, each AB sets price that is a function of both c1, c2. Hence, any change in c1

is met with price adjustments from AB1 and AB2 such that: (1) user surplus across

members of both AB’s decreases and (2) none of the AB’s are worse off. For instance,

an increase in c1 is met with an increase in price of membership p1 while AB2 responds

with increase in p2. In other words, impact of increased congestion cost of one AB is

tackled by both ABs using pricing as tools that discourage switching from one AB to

another. However, the net effect of increase in congestion costs is a decrease in user

surplus. Similar to Chen and Riordan (2008); Zhou (2006), the context of ad-blockers

shows that competition in increasing prices makes users worse off when firms price

discriminate.

We now extend the model to the case with incomplete market coverage by AB1

& 2. That is, in addition to utilities in Equations 2.12, 2.13, we assume users have

the option of not joining either AB and enjoying

uk = v − t, k 6= i, j, Non-member

Essentially, incomplete market coverage introduces an additional segment similar to

the monopoly case. Analyzing all 6 cases using three possible user segments produces

the same insights for all cases except case 4. Specifically, for those cases where AB has

an option of earning from whitelisting, an increase in whitelisted advertisers benefits

either one or both ABs. Further, increase in benefits and congestion costs have the

same effects on equilibrium profits. However, for case 4, following is the insight.

Proposition 6 Consider Case 4, where ad-blockers compete based on prices only. At

equilibrium, with incomplete market coverage, prices are independent of marginal con-

gestion costs ci, cj ∀ i, j ∈ {1, 2}, i 6= j but are increasing in benefits zi and marginal
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disutility t. Further, increase in marginal congestion cost ci has negative impact while

increase in zi, t has positive impact on profits for ABi.

This result counters the insight from Proposition 5. More precisely, presence of an

option to leave either AB has the following effect on users and ABs: first, since

paid model removes all ads, users demand for paid blocking depends on benefits

received zi and disutility removed t. Further, an outside option allows users to improve

utility by leaving the AB, when congestion costs increase. Hence, for competing ABs,

presence of an outside option for users combined with demand elasticity for blocking

all ads results in equilibrium prices that are increasing zi, t without depending on ci, cj.

Interestingly, an increase in prices due to increase in either zi, t increases demand

for ad-blocking services. Further, unlike complete market coverage case, prices in

this case are lower, independent of the difference in AB benefits but rather depend

directly on benefit zi from ABi. Therefore user welfare and overall welfare (user

+ AB) is higher under the condition that an outside option is present at all times.

More generally, it is clear that user welfare in an ad-blocker market changes with

complete or incomplete market coverage. In an ad-blocker market with complete

coverage, changes in congestion costs lead to competing ABs displaying increasing

price competition, where prices are increased to benefit from more ‘loyal’ users (x→ 0

or x → 1) at the expense of more indifferent users (x → 1
2
), even when member size

increases (McChesney et al., 2015; Zhou, 2006). However, incomplete market coverage

presents a situation where users have an option to leave AB. Hence improvement in

benefits through zi or removal of ad disutility t provides incentive to ABs to improve

profits by improving market coverage, thereby improving user welfare.

2.7 Conclusion

Ad-blockers are the ad avoidance tool for content consumption online. However,

evolution of ad-blockers to platforms that provide users choice of blocking all ads has

implications for memberships of users and advertisers. Specifically, when ad-blockers
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started sustaining their business using ads, users found this to be a violation of the

ad-blocking promise and hence, started preferring other models of ad-blocking. This

gave rise to intense competition in the ad-blocking industry and an swift escalation

of conflict between content providers and ad-blockers (Digiday, 2016). Our model

intends to analyze this conflict from the point of view of users, content providers and

ad-blockers. Using a game theoretic model for a monopoly and a duopoly model, we

show that when considering users, the dominant business model in ad-blocker industry

should be Freemium. Further, when considering all stakeholders in the conflict there

is no single revenue model that makes everyone better off. Further, when analyzing

competition with all major business models of ad-blocking, we find that competition

in the ad-blocker market heating up, ad-blockers could benefit at the expense of

users. With incentives to increase whitelisted advertisers and existence of increasing

price competition, competition among ad-blockers will only serve to introduce other

avenues to target users rather than improve user welfare online.
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3. A GRAPH BASED ANT ALGORITHM FOR THE

WINNER DETERMINATION PROBLEM IN

COMBINATORIAL AUCTIONS

3.1 Introduction

Technology explosion has resulted in sophisticated mechanisms being increasingly

adopted internal to organizations to improve efficiency. An example of such a mech-

anism is combinatorial auctions. They were originally employed to award cellphone

spectrum, and also for transportation logistics. However, of late, many companies

have used combinatorial auctions to improve procurement efficiencies. For instance,

consulting companies such as AT Kearney provide this mechanism to their clients.

An example from Kearney’s “collaborative optimization”1 claims 10% savings by a

telecommunication company using this mechanism to manage its handset portfolio.

Similarly, companies in retail logistics spending $300M on procurement (Elmaghraby

and Keskinocak, 2004; Karaenke et al., 2015) used this mechanism to improve costs

by 15-20 %.

While both industry and academia recognize that combinatorial auctions improve

efficiency, computational limitations are quite severe for this mechanism. For in-

stance, between the rounds of the auction and before the bidders can resubmit their

bids, identifying the tentative winners based on bids submitted thus far is known as

Winner Determination Problem (WDP) and it is NP-complete (Sandholm, 2002a).

In the age of big data – increased velocity, volume and variety of bundles and bids

– WDP is increasingly becoming intractable within limited time (Karaenke et al.,

2015). In scenarios such as spectrum auction, the computational issues are not as

problematic because they often involve only a few bidders. However, in cloud comput-

1Collaborative optimization in the academia refers to an entirely different domain on aircraft design.
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ing, transportation & logistics auctions conducted on e-commerce exchanges, there is

a trend towards iterative combinatorial auctions along with increase in market size

of participants and items (Bichler, 2010; Bichler et al., 2006; Lau and Goh, 2002).

Typical transportation auctions involve 250 bidders bidding on 1000 routes and it

takes a day or so to solve WDP between the rounds of the auction. Even then, often,

WDP is not solved to optimality because of time constraints (Karaenke et al., 2018;

Leyton-Brown et al., 2000; Zaman and Grosu, 2013). Additionally, IBM CPLEX or

AMPL have been ”demonstrably ineffective” (Adomavicius and Gupta, 2005) in pro-

ducing the optimal solution when faced with big data scenarios in auctions (Boughaci

et al., 2009; Lau and Goh, 2002). Instead, heuristic solutions are used (Guo et al.,

2006).

In this context, our paper makes the following three contributions:

• We convert the Integer Programming formulation of WDP into a directed cyclic

graphical formulation. Unlike previous work (Sandholm and Suri, 2003; Sand-

holm et al., 2005), we use a directed cyclic graph to represent WDP. Our for-

mulation is especially useful since: a) it is suitable for formulating WDP when

items per bid and bids per item are large (typical for intractable WDP prob-

lems (Boughaci et al., 2009; Fujishima et al., 1999; Lau and Goh, 2002)), b) it

is suitable for optimal search using other graph search algorithms or heuristics

and, c) it can be extended to the multi-unit multi-item auctions (e.g., virtual

machine instances auction in cloud computing, (Bichler et al., 2009)).

• We develop a swarm intelligence based algorithm (TrACA-Traveling Ants for

Combinatorial Auctions) and prove the convergence property of our algorithm.

This property simply states that, if the auctioneer has more computational ca-

pacity, they are able to converge to the optimal over the same predetermined

time by increasing the intensity of the search – intensity meaning larger number

of artificial ants in this case. In line with previous applications of ant-colony

heuristics in path finding problems (Dorigo and Birattari, 2011; Gan et al., 2007;
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Gutjahr, 2000), our theoretical result establishes the benefits of using swarm in-

telligence search on a graphical search space. Further, time-bound convergence

helps in tackling problem of auction data velocity, given such auctions are being

conducted iteratively (Adomavicius and Gupta, 2005; Parkes and Ungar, 2000).

• We use standard large test beds (Lau and Goh, 2002) and show that our al-

gorithm generates significantly better outcomes than the best-in-class memetic

algorithm (Boughaci et al., 2009). We also compare our results to time-bound

results from CPLEX and a recent exact algorithm (Wu and Hao, 2016) and

show usefulness of our approach for such large problem instances. Prior work

has primarily attempted to solve WDP using either: a) exact but more ef-

ficient methods for small problems (Sandholm, 2002a) or b) heuristics such

as memetic algorithms for fast and approximate estimation of large problems

(Boughaci et al., 2009, 2010; Guo et al., 2006). Exact methods (e.g., CPLEX

based solvers) do not solve WDP efficiently when the size of the market in-

creases. At the same time, heuristics are fast but never guarantee the optimal

for such large problems. We aim to bridge this gap between heuristics and exact

approaches, using our algorithm that has a theoretical convergence property as

well as superior practical performance.

In light of recent work in designing computational mechanisms to simplify con-

ducting of combinatorial auctions (e.g., Adomavicius and Gupta, 2005; Bichler et al.,

2009) our work aims to fundamentally add to efficient methods of solving winner

determination when dealing with big data scenarios. The remainder of the paper is

organized as follows. In Section 3.2 we give a brief overview of the past work in solv-

ing WDP. In Sections 3.3 we explain our approach by going through a basic overview

of the winner determination problem, our formulation using ant colony heuristics

principles and involved mathematical basis for faster convergence implementation. In

Section 3.4 we explain the nature of the testbeds used for testing the metaheuristic

and the experimental results. In Section 3.6, we build a predictive model for predict-



35

ing TrACA runtimes and determining aspects of combinatorial auctions that generally

make estimation of winner determination difficult. In Section 3.7, we demonstrate

the utility of our approach by extending it from single-unit multi-item to multi-unit

multi-item WDP. In conclusion, in Section 3.8 we demonstrate the relevance of our

approach in the context of recent applications of heuristics for solving combinatorial

auctions in the industry.

3.2 Literature Review

Winner determination approaches have been an active area of research in the

recent past. Essentially, WDP approaches are classified as either exact or inexact

algorithms. Exact algorithms use deterministic search techniques to solve mathemat-

ical programming formulations of WDP. Inexact algorithms use heuristics to search

for optimal or near-optimal solutions.

3.2.1 Previous Approaches for WDP

Exact methods always find an optimal solution, given enough time. Exact algo-

rithms for the WDP initially were proposed as Branch-and-Bound(B-o-B) (Sandholm,

2002a; Sandholm et al., 2002) approach. Other work has involved approaches such

as Branch-on-Items (BoI) (Sandholm and Suri, 2000), Branch on Bids (BoB) (Sand-

holm and Suri, 2003), and Combinatorial Auctions BoB (CABoB) (Sandholm et al.,

2005). Exact methods are able to compute optimal allocation for instances containing

hundreds of items. Alternatively, Fujishima et al. (1999) proposed CASS (Combinato-

rial Auction Structural Search) as a Branch-and-Bound algorithm. Further, Leyton-

Brown et al. (2000) improved CASS and proposed CAMUS (Combinatorial Auctions

Multi-Unit Search) to solve general multi-unit combinatorial auctions. Additional at-

tempts at solving the WDP used more traditional robust approaches. Rothkopf et al.

(1998) used a dynamic programming approach and Andersson et al. (2000) proposed

an integer programming approach. Holland and O’Sullivan (2005) used constraint
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programming to formulate and solve a Vickrey combinatorial auction problem. Gen-

erally, it has been observed that exact algorithms find the optimal within reasonable

time when number of items is between 45 and 250. Nevertheless, when the size of

the search tree is high, solving those instances can become time-consuming due to an

exponentially large number of search bids.

In contrast, inexact methods do not guarantee finding optimal solutions. More

generally, inexact methods (e.g., heuristics) are helpful in solving instances of WDP

with large number of bids and bundles. For example, auctions where the number

of bids are between 1200 to 1450 bids or higher. In shipping routes and asset plan-

ning auctions these cases occur regularly in industry (Cramton et al., 2007). Many

inaccurate algorithms for the WDP have been developed: Hybrid Simulated Anneal-

ing SAGII Guo et al. (2006), Casanova (Hoos and Boutilier, 2000), stochastic local

search (Boughaci et al., 2010) and memetic algorithms (Boughaci et al., 2009). Over-

all, the memetic algorithm approach outperforms SAGII, Casanova and stochastic

local search and uses lesser CPU time for given set of instances (Boughaci et al.,

2009). However, MA approach relies on solution representation that may increase

space complexity, which Identifies the need for stronger WDP heuristics.

3.2.2 Ant Colony Optimization

Ant Colony Optimization or ACO is a nature inspired population based stochas-

tic search heuristic. Artificial ants are swarm-intelligent agents that build a solution

using a probabilistic decision rule, by adding solution components iteratively to par-

tial solutions. It does so by accounting for two parameters - (1) information about

the problem instance, and (2) pheromone values in the search space, that change at

run-time to reflect the solution search experience in past iterations (Maniezzo and

Carbonaro, 2002). Since ACO is a population based metahueristic, pheromones and

heuristic information about problem allows these search agents to build a wider va-

riety of solutions and thereby, explore a larger set of feasible solutions than other
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greedy heuristics. Use of heuristic information for given problems can guide the ants

towards the most promising solutions. More importantly, the ants’ search history can

be utilized to influence, similar to reinforcement learning, solution constructions in

future iterations of the algorithm. The first algorithm that can be classified within

this framework was presented in 1991 (Dorigo et al., 1991) and then 1999 (Dorigo and

Di Caro, 1999). Since then, many diverse variants of the basic heuristic have been

reported in past works. Stützle and Hoos (1997) first introduced the idea of bound-

ing pheromone levels on edges in a given ant system. Specifically, Stutzle and Dorigo

(2002); Stützle and Hoos (1997) proposed MMAS (Max-Min Ant System) method-

ology. This methodology basically ensures that ants better explore the search space,

by enforcing only those solutions update pheromone values that have delivered more

promising results in the past. Further, by bounding the level of pheromones on each

edge, reinforcement of best ant solutions in the past iterations that promotes bias

in search is prevented. In effect, when only one ant serves the purpose of updating

pheromones search exploitation in MMAS is more effective. This is because when

one ant is used for pheromone update, the solution components (edges in the case of

graphs) that frequently occur in the best solutions in past iterations are promoted

while newer components from other ants are found and added, as case may be. How-

ever, the challenge in MMAS is basically balancing the choice for update between

the iteration-best and global-best ants. More precisely, exploration vs exploitation

is controlled using update iteration-best vs global-best. We extend this fundamen-

tal concept of pheromone update to a randomized pheromone update between global

best, iteration best and a mathematically derived fixed maximum and minimum level.

For earlier versions of the derived minimum and maximum level of pheromones please

refer Stützle and Hoos (1997).
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3.3 WDP Formulation

3.3.1 Preliminaries

Consider the simplest version of WDP as described in Lehmann et al. (2006). Let

there be k items represented by the set S = {1, 2, 3, 4..., k} that are set for auction.

Interested bidders are invited to bid on bundles (combinations/subsets) of items from

S. The auctioneer conducts this auction in multiple rounds, wherein at the end of

each round, winning bids are provisionally allocated before bidders are re-invited

to bid again (Adomavicius and Gupta, 2005; Parkes and Ungar, 2000). Two key

constraints are maintained throughout all the auction rounds: 1) an item can be at

most allocated to one bidder, 2) all items need not be sold to bidders in each round.

Suppose for the given round, a set of l bids, B = {b1, b2, ..., bl} is received. A bid

bj ∈ B ∀ j ∈ l is a tuple defined as (Sj, qj), where Sj ⊆ S is a unique subset of

items (or bundles) and qj > 0 is the maximum bid price associated with Sj. Further,

consider a matrix Ak×l, such that Aij = 1 ∀ i ∈ k, j ∈ l if item i ∈ Sj. Finally, the

decision variables are xj = 1 if bid bj is accepted as winning and xj = 0 otherwise.

The formulation for maximizing auctioneer’s revenue is equivalent to the weighted

set packing problem and is as follows.

WDP-IP: max
xj

l∑
j=1

qjxj (3.1)

subject to
l∑

j=1

Aijxj ≤ 1 ∀ i ∈ {1, 2, 3, 4...., k} (3.2)

xj ∈ {0, 1} ∀ j ∈ {1, 2, 3, 4..., l} (3.3)

Equation (2) ensures that each item can be allocated at most once. This formulation

also relaxes the assumption of selling all items every round. This formulation is NP-

complete (Andersson et al., 2000; Sandholm et al., 2005). As described in Section

3.2, previous attempts at solving WDP using this formulation used exact approaches

(e.g., CPLEX solver). However, an increase in volume and variety of bundles, exact
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approaches either fail completely (Boughaci et al., 2009) or take too long to solve for

winners (Guo et al., 2006).

3.3.2 Graphical formulation of WDP

In this section, we transform the IP formulation into a graphical one where the set

of bundles and associated bids are represented on a directed cyclic graph. For a pre-

vious version of this procedure, refer Ray and Ventresca (2018). The transformation

consists of two steps: preprocessing & construction. For preprocessing, the auction

data-set is analyzed to extract unique bundles and their associated maximum prices.

This follows Sandholm (2002a) where it is shown that when maximizing revenue, an

auctioneer is better off accepting the highest bid for a bundle. Using preprocessed

data, a directed cyclic graph is constructed in 4 steps, described as follows:

1. Consider G(V,E) with vertices as exclusive auction bundles. Specifically, if m

is the number of unique auction bundles, for which an associated maximum bid

price exists, then, V = {vj | vj = Sj ⊆ S ∀ j = 1, 2, 3, 4...m}.

2. Construct a directional edge between two vertices (vi, vj) ∈ V if and only if the

subsets represented by the vertices are disjoint. Specifically,

E = {(vi, vj) | vi ∩ vj = ∅ ∀ vi, vj ∈ V } . (3.4)

3. Introduce a source s and target t vertex to existing set of vertices. Such artificial

vertices represent a point of departure and end for a path crossed by each ant.

Additionally, a directed edge is added from s to every vertex in V \{t}. Similarly,

a directed edge is added from every vertex in V \{s} to t. No direct edge exists

between s and t.
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4. Each edge has an edge weight. The weight of an edge (vi, vj) is the bundle vj

total bid price. Similarly for (vi, vj) edge weight is total bid price for vi. Weight

for any edge incoming to vertex t is zero.

w : E 7→ R+
j s.t. w(vi, vj) = qj ∀ i, j = 1, 2, 3...m and i 6= j but qj = 0 for vj = t

(3.5)

Example Construction: Consider the set of bundles (b1 = {A}, b2 = {B}, b3 =

{A,B}). Let the total bid amounts associated with these bundles be {3, 4, 9}, respec-

tively. In the graphical formulation, let vertices as indexed as V = (s, {A}, {B}, {A,B}, t).

Then let edges be added following the procedure outlined above. For instance, a valid

path on the graph is s→ b1 → b2 → t. The revenue the auctioneer enjoys is 7. How-

ever as obvious, the optimal revenue is on the path s − b3 − t which is 9. Note also

that s− b1 − b2 − t and s− b2 − b1 − t are equivalent as expected.

b1

s b3

b2

t

3 0

9

4

0

0

4

3

Figure 3.1.: G(V,E) constructed from bundles {A,B,AB}

Definition 3.3.1 A path on G(V,E) is a sequence of vertices starting at s and ending

at t.

Definition 3.3.2 A feasible path of the graph G(V,E) is a path such that for bid

bundles bj associated with each vertex vj, bi ∩ bj = ∅ ∀ i, j = 1, 2, .., n and i 6= j.
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Definition 3.3.3 An optimal path is a maximum weight feasible path starting at s,

ending at t and containing each node of V = {v1, v2, v3, ....., vm} at most once.

Note that by construction, edges exist between nodes only when bundles (represented

by nodes) are disjoint (refer Equation 3.4). Infeasible paths would therefore be those

that exist between nodes without any connecting edges and those paths on the graph

that have more than one visits on any node. Hence, any search algorithm using this

directed cyclic representation will need to maintain feasibility separately (e.g., using

a tabu list) such that each node is visited at most once. In the following proposition,

we show, given feasibility, how our graphical formulation is equivalent to WDP-IP

problem in Section 3.3.1.

Proposition 2 Directed cyclic graphs G(V,E) constructed using the preprocessing

step have the following properties:

1. A feasible path from s to t represents a feasible solution to the WDP-IP problem.

2. A feasible path of maximum weight on the graph represents an optimal solution

to the WDP-IP problem.

Proofs are in Appendix B. Proposition 1 basically allows use of the graphical formula-

tion of WDP in Section 3.3.4 to search for solutions to the WDP-IP in Section 3.3.1.

Having established equivalence, Algorithm 1 in Section 3.3.4 gives a basic overview of

the graph based ant algorithm that uses the graph for searching for optimal solutions.

3.3.3 Nature-inspired Metaheuristics for solving WDP

Nature-inspired metaheuristics are a form of search heuristics that use nature-

inspired ways of searching for for global optimal in complex optimization problems

(Yang, 2010). These heuristics essentially mimic activities of organisms such as ants,

fishes, bees etc. to inspire more sophisticated search methodologies. These method-

ologies basically use a population agents that interact with each other, to conduct
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search. In practice, such heuristics are classified under the swarm Intelligence based

algorithms (Blum and Li, 2008).

A number of swarm intelligence based algorithms can be used to search for the

optimal in our graphical formulation (Blum and Roli, 2003) of WDP. 2 The choice

of ant colony metaheuristic is motivated by three salient features. First, ant colony

heuristics fundamentally rely on iterative construction of solutions, wherein the best

solution can be built from the strongest segments identified across various search

iterations. Cordón Garćıa et al. (2002) note that as a major distinguishing feature

of the ant colony algorithm. For example, when applied to solving the traveling

salesman problem, it is irrelevant that an ant actually travels the shortest route. The

shortest route can be constructed from the strongest segments of the best solutions

found.

Second, ant colony heuristics that use a graphical search space demonstrate con-

vergence to global optimal under certain values of the heuristic parameters (Gutjahr,

2000). Essentially, these parameters can be set to values that minimize the proba-

bility of not finding the optimal solution within a specified time. From data velocity

perspective, this is valuable. As noted in Sheffi (2004), higher likelihood of bet-

ter quality results within specified time is desirable for decision-makers, when using

search heuristics.

Third, solution construction agents (ants) use exchange of information about

search space (stigmergy) to search through the solution space. This exchange is

facilitated by the use of artificial pheromones on graph edges (Dorigo et al., 2000).

Stigmergy makes search of solution space more efficient (Stützle and Hoos, 1997).

Specifically, stigmergy provides a mechanism using which ants can better explore the

solution space rather than exploit a local optimal. This property has contributed to

wide applicability of ACO algorithms to NP-Hard problems.

2E.g., See other Swarm Intelligent algorithms such as Artificial Bee Colony, Fish Swarm Algorithms.
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3.3.4 Graph Based Ant System - TrACA

This section highlights the main aspects of the algorithm. Our algorithm con-

tributes to ant colony metaheuristic literature in two ways: 1) improved exploration

of search space using modified pheromone updates and, 2) increased speed of search

using graph pruning (search space reduction).

Input & Initialization: The input to Algorithm 1 is the directed cyclic graph

G(V,E) from Section 3.3.2 (Line 1). We initialize the following parameters: number

of ants N ; Traversed list TL that maintains a list of vertices visited by each ant

during one iteration; iteration counter MaxIter; pheromone parameters such as initial

pheromone level τ0 > 0 on all graph edges, and ant system parameters α, β (Line 2).

τ0 ensures that each edge has a non-zero and equal probability of being selected during

the first iteration for the first ant (Line 4). Parameters α and β are relevant when

dealing with the search mechanism, mentioned in the following paragraph.

Search Mechanism: At the start of an iteration, each ant is positioned at vertex

s and chooses the next vertex vh /∈ TL using a probabilistic choice rule pjh ∀ (vj, vh) ∈

E that is standard (Dorigo and Di Caro, 1999) (Line 8). The pjh is a function of α, β,

pheromone levels τjh and weight wjh of the edge (vj, vh) ∈ E. The influence of either

pheromones or edge weight is modified by the exponents α, β respectively. Once a

vertex is chosen, the Traversed List TL is updated with the chosen vertex (Line 9).

By choosing vertices till t is reached, ants construct feasible paths (Lines 8-11).

Pheromone Evaporation & Update: Once a feasible path is searched by

each of the N ants, pheromone levels are updated on each edge of G(V,E). First,

pheromone levels are reduced by some pre-decided fraction (1 − ρ) from every edge

an ant has traversed. This is called pheromone evaporation and is a useful form of

decaying unused solution paths (Dorigo and Di Caro, 1999).

Second, post evaporation, pheromone levels are increased on ant-traversed edges.

Typically, these increments are a function of the solution quality discovered thus far

(i.e., for t ≤ MaxIter) that helps in resolving exploration vs. exploitation trade-off
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Algorithm 1 GBAS for WDP

1: Input - Directed cyclic graph G(V,E) constructed as per Section 3.3.2
2: Initialization Step - No. of ants (N), Initial pheromone values τ0, maximum iterations

MaxIter, Ant system parameters α, β, Traversed List TL.
3: Output - SBesta - Best solution constructed by Ants
4: while t ≤ MaxIter do
5: Ants begin at ai ∀ i = 1, 2, 3...N at vertex s
6: Initial value TLi = ∅
7: for Each ant ai until vertex t is reached do

8: Choose vertex vh from vj using pjh =
ταjh[wjh]β∑

h∈N(j)\TLi
ταjh[wjh]β

.

9: TLi := TLi ∪ vh . Update Traversed list with chosen vertex vh.
10: Sai := Sai + w(ejh) . Update solution with bid value of chosen vertex vh.
11: vj = vh . Resetting choice node.

12: TLBest = {TLi | i s.t. Sai > max{SBest
a }}; SBesta = max

{
SBesta , Sai

}
. Global Best Solution Path till iteration t

13: TLmaxt = {TLi | i s.t. Sai = max{Sai}}
. Iteration Best Solution Path in iteration t

14: Pheromone evaporation on G(V,E): τjh(t) = (1− ρ)τjh(t) ∀ (vj , vh) ∈ E
15: With 1

3 probability, Pheromone Update Parameters {∆(τ), τmax, τmin} :=

16: Option 1:
{
δ(SBesta ), δ(S

Best
a )
ρ , τmax

|TLBest|

}
. Global Best Pheromone update parameters

17: Option 2:
{
δ(max({Sai})),

δ(max({Sai}))
ρ , τmax

|TLmaxt |

}
. Iteration Best Pheromone update parameters

18: Option 3:
{
δ(SBesta )+δ(max({Sai}))

2 , kτ0,
τ0
k

}
where k > 1

. Fixed upper and lower pheromone limit
19: for each edge (vj , vh) ∈ {TLi} do
20: τjh(t+ 1) = τjh(t) + ∆(τ) . Pheromone Update
21: if τjh(t+ 1) > τmax then τjh(t+ 1) = τmax
22: else if τjh(t+ 1) < τmin then τjh(t+ 1) = τmin

23: Return SBesta

24: End Procedure
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(Dorigo and Di Caro, 1999). Our approach to pheromone increment is an extension

of Dorigo et al. (2000); Stutzle and Dorigo (2002); Stützle and Hoos (1997). We

find that our approach significantly improves performance of Algorithm 1. Specif-

ically, the pheromone levels are increased by ∆(τ) > 0, which may take one of

the three following values randomly: ∆(τ) = δ(SBesta ); ∆(τ) = δ(max{Sa}); or

∆(τ) =
δ(SBesta )+δ(max{Sai})

2
, where δ(.) is a non-decreasing function of ant solution

values. Note that max{Sai} is the best solution discovered in iteration t; and SBesta

is the best solution among all previous iterations. After both evaporation and incre-

ment, the pheromone levels are retained to be within the range [τmax, τmin].

Pheromone lower bounds τmin can either be fixed values (Hoos and Boutilier,

2000) or can be changed to vary with search quality. We use both forms for τmin. For

options 1 and 2, we assume τmin varies with search and is a function of the maximum

threshold:

τmin =
τmax
|L|

, (3.6)

where |L| is the number of edges created by ants on the best path. For option 1,

|L| = |TLBest|; option 2, |L| = |TLmaxt |. For option 3, we assume a fixed value of

τmin = τ0
k

.

We next discuss the rationale behind setting τmax = ∆(τ)
ρ

(based on a previ-

ously derived proposition in Ray and Ventresca (2018)). Refer Algorithm 1 Line 20.

Pheromone updates starting from t = 1, 2, 3... on any edge are τjh(1) = (1−ρ)τjh(0)+

∆(τ) for t = 1, τjh(2) = (1−ρ)2τjh(0)+(1−ρ)∆(τ)+∆(τ) for t = 2 and so on. Since

0 < ρ < 1, as t → ∞, τjh(t) converges to ∆(τ)
ρ

. For each update option (Algorithm

1, Lines 16-18), the value of ∆(τ) determines the upper bound τmax. For option 1,

τmax = δ(SBesta )
ρ

; τmax =
δ(max({Sai}))

ρ
for option 2; τmax = kτ0 where k > 1 is user

defined, for option 3.
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Randomized Graph Pruning

Randomized Graph Pruning is used to approximate solutions effectively and easily

for very large instances of problems. Our approach differs in two ways from determin-

istic graph pruning that is used to remove infeasible edges (Codenotti et al., 1996;

Martens et al., 2007). First, we do not enforce feasibility using pruning; we use a

Traversed List TL for that (Algorithm 1, Line 9). Second, using randomized pruning

we remove a subset of those edges that are likely part of local optima. Randomly

removing such edges reduces the likelihood of convergence to different local optima

and speeds up search.

Algorithm 2 Randomized Graph Pruning for GBAS

1: Input - G(V,E), Iteration instances tc ⊂ t when pruning should be done, count

matrix C of size (|V | − 2)× (|V | − 2).

2: Output - G(V,E \ Ec) where pruned edge set is Ec

3: for Each tc ∈ t do

4: Construct candidates for pruning edge set F ={
(vj, vh) : Cjh(tc) =

⌈
f
(

(tc)×(tc+1)
2

)⌉}
5: Remove edges connected to nodes on best path from pruning consideration

F \ (vj, vh) ∈ mBest(t) . Recall mBest(t) is best path constructed by ants in

iteration t

6: E = E \ Ec where Ec ⊆ F is randomly selected and |Ec| = n

The following is an intuitive explanation of Algorithm 2. Pruning edges is ac-

complished using a count matrix C. Essentially, in each iteration, the count matrix

preserves count number of times an edge is visited by ants. Those edges on the global

optimal path would have the highest count. Those edges on local optima would have

less than global optimal but greater than one. We identify such edges using the count

matrix and randomly prune a subset of those edges.
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For measurement, the count matrix C has size (|V | − 2)× (|V | − 2) (Line 1) and

is initialized as

Cjh =

1 ∀ (vj, vh) ∈ G(V \ {s, t}, E)

0 otherwise
(3.7)

at t = 1. Remember that any non-negative number can be initialized with the default

value of each edge on the map. We’re using 1 as the initial value. Each time an ant

traverses an edge (vj, vh) ∈ E during iteration t > 1, Cjh(t) = Cjh(t) + 1. Since

edge visits are probabilistic, we use an approximation for identifying edges to prune.

Specifically, edges with count Cjh(tc) =
⌈
f
(

(tc)×(tc+1)
2

)⌉
are considered for pruning.

Here, tc ⊂ t are iterations when pruning is done and f(.) is the log function. From

this set of edges F , we randomly remove a subset of edges Ec (Line 6).

Theoretical Convergence to Optimal

Theoretically, graph-based ant model formulations converge to the optimal global

under certain parameter values (Gutjahr, 2000). Proof of such convergence has been

previously shown for TSP formulations (Gutjahr, 2000; Stutzle and Dorigo, 2002).

In this section we show convergence for WDP formulation. First, recall the following

equations: pjh from Algorithm 1 (Line 8); Equation 3.5 for edge weights. Additionally,

recall that only a vertex vh /∈ TL can be selected to construct a feasible path. Lastly,

in line with our approach to pheromone updates and graph pruning we assume the

following. First, we assume that in any given iteration pheromone levels on edges are

bounded, τjh(t) ∈ [τmin, τmax]. Second, an ant at any node vh 6= {s, t} during any

iteration will have at least one edge to choose from.

Let iteration on the set of paths created by the ants t be M(t) and the path

representing the global optimal be Mopt. Further, let L denote the set of edges on

the global optimal path Mopt and let |L| be the cardinality of L, i.e. the number of

edges in the path Mopt. Let there be N ants (a1, a2, a3..., aN) traversing the graph in
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each iteration t = {1, 2, 3...}. The following proposition characterizes the convergence

property of our algorithm.

Proposition 3 The probability Popt during iteration t, at least one ant crosses the

optimal path can be made arbitrarily close to one for values of τmin, α, β,N > 0.

Proof is provided in Appendix A. This proposition highlights usefulness of TrACA

as a search algorithm for WDP. In light of big data and increasing computational

capabilities in business, this indicates that using our approach, convergence can be

achieved within a specified amount of time, rather than increasing length of time.

This is because pheromone values on edges can be used to adaptively learn and

improvise the construction of optimal solution. With higher intensity of search there

is improved learning of search space which helps to converge onto the optimal solution.

Convergence proofs for other heuristics, such as Genetic or Memetic Algorithms rely

on finding better solutions as number of iterations are increased. However, we show

our graph-based system as having convergence close to optimal for specified iterations,

but driven by number of ants.

3.4 Setup

We are interested in testing our algorithm by conducting experiments on open test

instances. We considered CATS (Leyton-Brown et al., 2002) and the ones developed

by Lau and Goh (2002). The instances in Lau and Goh (2002) are believed to be more

realistic than CATS, and have been used, for example, in Guo et al. (2006), Boughaci

et al. (2009), and Boughaci et al. (2010). Specifically, these instances have been

artificially constructed by modeling bidder related attributes such as price sensitivity

and preference. Price sensitivity models a bidder’s acceptable price range for each

bid and preference takes into account bidder’s preferences among bids (Lau and Goh,

2002). Further, these instances are large (more than 500 bids) and unsolvable using

CPLEX (CPLEX solvers usually run out of memory due to the large search tree).

Testing with such realistic instances would be useful in demonstrating real value of
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our approach, in light of recent work in improving combinatorial auction applications

in industry overall (Bichler, 2010; Bichler et al., 2006, 2009).

In our analysis, we focus only on 94 of these instances – the same ones used in

Boughaci et al. (2009). We chose those specific instances so that we can execute a

fair comparison with memetic algorithm results. This is because memetic algorithm

is currently considered as the best-in-class heuristic for solving WDP on such hard

instances and outperforms genetic algorithm implementation, Casanova and SAGII

(Guo et al., 2006; Hoos and Boutilier, 2000). Table 3.1 gives a summary of these

instances. Each row of Table 3.1 corresponds to one set of test instances characterized

Table 3.1.: Overview of Test Instances

Test Instance # Items # Bids # Items/Bid # Bids/Items Time (1500 iterations)

Lau and Goh (2002) (Avg.) (Avg.) (Max in sec)

in101-in120 500 1000 46 57 665

in201-in220 1000 1000 76 56 402

in401-in430 1000 500 40 28 162

in501-in504 1000 1500 79 119 410

in601-in620 1500 1500 66 84 450

by number of items and bids (column 2 & 3). Columns 4 & 5 provide further insight

into the structure of bids in each set of instances. Structure corresponds to average

size of each bid (number of items per bid, column 4) and average number of bids that

request each item (column 5). Structure of bids gives information regarding problem

complexity (De Vries and Vohra, 2003). Problem complexity critically affects the

choice of the heuristics for WDP (Leyton-Brown et al., 2000; Sandholm et al., 2005)

which is why we investigate empirical hardness (Leyton-Brown et al., 2009) of TrACA

in Section 3.6.

We set the parameters of TrACA following anytime performance measures for ant

colony heuristics (Dorigo and Birattari, 2011; Dorigo and Di Caro, 1999; Dorigo and

Stutzle, 2003). The standard procedure is to tune the parameters so that they achieve

the known optimal. In our case, we used information theoretic method to update dy-
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namically values of α, β. Specifically, each iteration TrACA computes an information

theoretic measure (e.g., entropy) of the pheromone graph. If pheromone deposition

shows increased entropy, it implies a developing bias in search and so, β (exploration)

is encouraged. Conversely, decreased entropy implies increasing exploitative behavior

(α). The starting parameters we obtained from benchmarking with CATS testbeds

Leyton-Brown et al. (2002): α = 2, β = 1.5; the number of iterations per trial run

for the ant system is 1500; pheromone value on the graph at t = 0 is τ0 = 1 and

pheromone evaporation factor is ρ = 0.05. Each experiment is repeated for 30 trials,

with 400 for each trial and problem ant population size instance. Table 3.1 Column

6 gives the maximum runtime for TrACA for 1500 iterations, in each set of instances.

We compare solutions generated by TrACA with memetic algorithm (MA) which,

to the best of our knowledge, is currently the best-in-class heuristic solving WDP

for these instances. We do not have access to the code for MA and so we take the

best results generated by MA, corresponding to each test instance, as mentioned

in Boughaci et al. (2009), to compare. We also conduct comparison with CPLEX,

although most heuristics do not compare their performance to CPLEX. For com-

parison with CPLEX, to keep the comparisons consistent, we solve the test instances

using CPLEX solver with a specified time-limit. This time-limit is the maximum time

TrACA takes to solve each set of instances. We use the solution generated by CPLEX

at the end of the time-limit for comparison with TrACA. Results of comparison to

CPLEX are shown in Appendix B.9.
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3.5 Results & Analysis

Table 3.2.: Summary: TrACA vs Memetic Algorithm (MA). For Median Test we use
Wilcoxon Rank Sum test.

Test Instance Median Test ISP Z Score Solution Quality

Lau and Goh (2002)

in101-in120 15 0.81 -3.13 6.72%

in201-in220 17 0.89 -2.82 5.75%

in401-in430 28 0.93 -6.57 3%

in501-in504 4 0.99 -4.53 3.67%

in601-in620 18 0.95 -4.25 8.9%

Table 3.3.: Summary: TrACA vs ACO-Local Search (ACLS). For Median Test we
use Wilcoxon Rank Sum test.

Test Instance Median Test ISP Z Score Solution Quality

Lau and Goh (2002)

in101-in110 1 0.25 -0.09 3.42%

in201-in210 3 0.57 -0.47 2.54%

in401-in410 8 0.76 -0.79 0.86%

in501-in504 4 0.83 -1.53 3.65%

in601-in610 5 0.65 -0.85 4.5%

We compare TrACA performance to the benchmark algorithm MA along four spe-

cific measures. Our first measure counts the median solution – out of the 30 iterations

that TrACA is run – is statistically significantly better than benchmark algorithm

results. We refer to it as the Median Test. This test essentially measures the num-

ber of instances where median from TrACA results is at least as good as benchmark
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algorithm result. Second, we compute the probability that TrACA produces better

solutions than benchmark algorithm (which we call Improved Solution Probability or

ISP). We compute this by measuring the total number of times, across all iterations

over a set of instances (for example, there are 20 test instances in the set in101-in120

times the 30 iterations of TrACA generates 600 solutions), TrACA produces a better

result than benchmark algorithm. Third, we compute the average Z score of bench-

mark algorithm result. Using the standard definition of Z Score, we measure how

many standard deviations the benchmark result is from the mean of TrACA results.

Finally, we measure average percentage by which TrACA best solution exceeds bench-

mark algorithm result (which we call Solution Quality). All these measures together

provide insights that help comparing TrACA against each of those benchmarks.

These measures are shown in Table 3.2 when comparing TrACA to MA. At the

aggregate level, for total 77 out of 94 instances, median results from TrACA are bet-

ter than best MA result.3 Further, ISP values imply that when TrACA and MA are

run for the same set of instances, likelihood of TrACA producing a better result is

higher across all instances. In addition, repeated runs of TrACA produces a better

distribution of results compared to the best MA result, across all instances. This

result is significant from the perspective of online combinatorial auctions (Prasad

et al., 2016). In the online context, fast heuristics that generate better solutions

is crucial for conducting combinatorial auctions (Teich et al., 2004). Further, Hoos

and Boutilier (2000) note that resource allocations in large e-commerce combinatorial

auctions expect real-time responses for which heuristics that product fast and quality

solutions are needed. Appendix B.4 lists the detailed comparisons between best solu-

tions generated by TrACA against results from MA, for each of the 94 instances. For

reference, we also provide box plots to show the performance comparisons for some

of the instances in Appendix B.7.

3When analyzing the heuristic algorithms, prior works (Auger and Doerr, 2011) generally compare
median results of the heuristic against a threshold – in our case, the best result from the MA as
reported.
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In order to establish robustness of TrACA, we analyze quality and range of so-

lutions generated by TrACA for different numbers of ants N . We consider N =

{100, 200, 300} for analysis. Table 3.4 provides a summary of the results for these

robustness checks. From a practitioner’s standpoint, these results provide further

evidence of TrACA’s effectiveness in finding better solutions than MA in comparable

timeframes. Note that Column 4 is for 400 ants, same as what is used for the analysis

as shown in Table 3.2. Further note that average runtimes for 100 ants is similar to

the runtimes reported for MA in Boughaci et al. (2009). This is significant considering

MA is considered the best-in-class heuristic in literature currently for solving WDP

using the Lau and Goh (2002) instances (Boughaci et al., 2009, 2010; Guo et al.,

2006).

Table 3.4.: Summary: Performance of TrACA vs. MA, with No. of Ants =
{100, 200, 300} across all 94 instances

No. of Ants 100 200 300 400

Median Test 69 77 80 82

ISP 0.72 0.81 0.85 0.86

Z Score -1.68 -2.4 -3.61 -3.63

Solution Quality 4.6% 5.2% 5.3% 5.67%

Avg. Time TrACA 101.8 177.6 251.6 355.8

3.6 Empirical Hardness Model for TrACA

We use the empirical hardness approach (Leyton-Brown et al., 2009) to build a

predictive model of TrACA runtimes. Using this model, we investigate what features

of problem instance causes the TrACA solution run-times to vary so substantially

across the 94 instances solved. This analysis is useful for the following reasons. First,

prediction of time needed to allocate winning bids is required to conduct more rounds

in such auctions in a given time-frame (Sheffi, 2004). Run-time variability is therefore
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critical to practical deployment of WDP algorithms such as TrACA (Leyton-Brown

et al., 2009). Second, recall from Table 3.1 that TrACA run-times vary from as low

as 162 (in401-430 instances) to 665 seconds (in101-120 instances) for a pre-specified

1500 iterations. What causes the TrACA solution run-times to vary so substantially?

Does the run-time variability have anything to do with number of items per bid or is

it simply a function of number of items? Further, what does run-time variability say

about the difficulty of WDP in such instances?

We use the standard procedure of empirical hardness approach for analyzing

TrACA run-times (Leyton-Brown et al., 2002). We estimate a simple linear pre-

dictive model of TrACA run-times and characterize what features of the auctions

make solving for WDP difficult. Our analysis not only helps in run-time investigation

but also helps in demonstrating how TrACA is inherently well suited to solving hard

instances of WDP.

3.6.1 Predictive model for TrACA run-times

Recall from Section 3.3.2 that TrACA uses a graphical formulation (directed cyclic

graph) of the WDP to search for optimal solutions. Hence, any variability in run-times

is a function of the complexity the graphical formulation. We use standard graph

centrality measures as predictors to build a linear regression model for predicting the

run-times of TrACA, as per the following equation.

Run-times = H1(directed cyclic graph centrality measures) + c (3.8)

In Equation 3.8, H1(.) are linear hypotheses of the centrality measures of directed

cyclic graphs generated and c is an assumed constant. The linearity in relationship

between run-times and graph centrality measures is standard practice in empirical

hardness analysis (Leyton-Brown et al., 2002, 2009). Non-linear models may be ex-

plored but for simplicity we assume a linear form. For predictor variables we consider

network centrality measures, as described in Table 3.5.
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Table 3.5.: Predictor Variables for Run-time Prediction

Predictor Variable Centrality Measure Variable Symbol

Avg. In-degree Degree Centrality AIni

Avg. In-degree Closeness Closeness Centrality AInCi

Avg. Out-degree Closeness Closeness Centrality AOutCi

Avg. Betweenness Betweenness Centrality ABeti

Clustering Coefficient (Transitivity) Transitivity CCi

Eigenvalue Eigenvector Centrality EVi

Avg. Eigenvector Centrality Score Eigenvector Centrality AEVCi

Avg. Alpha Centrality Katz Centrality AKCi

Avg. Cluster Size Community detection in graphs ACSi

Standard. Deviation - Cluster Size Community detection in graphs SCSi

Avg. Node Strength Node Strength Weighted Graphs ANSi

Following Leyton-Brown et al. (2009), we divide the dataset into training (45 ob-

servations), validation (25 observations) and test set (20 observations). Each set is

constructed such that it is a representative sample of the original dataset (Borovicka

et al., 2012). The normality assumption on residuals is relaxed and so, estimation of

predictor variable coefficients is done using iterated re-weighted least squares (IRLS)

regression. The coefficients obtained from IRLS are shown in Table B.7 in Appendix

B.6. Since sample size is small, coefficients generated from IRLS step are boot-

strapped. Confidence intervals are constructed for each bootstrapped predictor vari-

able coefficient. Finally, we measure the sensitivity of coefficients estimated using

bootstrap. Essentially, we measure how each coefficient is affected by the change in

the number of observations. This gives an insight about how the impact of a predictor

variable may change, if more observations are added to the dataset.

Using the estimated coefficients, we use the validation and test data set to demon-

strate the accuracy of the model and discuss implications of what these results mean

in terms of empirical hardness of WDP problems, when solved by TrACA.
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3.6.2 Bootstrapping Linear Model Coefficients

We bootstrap the IRLS estimated coefficients and obtain the following results

for coefficients related to the predictor variables (Table B.8 & Figure 3.2, Appendix

B.6). Number of bootstrap replicates is R = 2000. From analysis, it is clear that the

coefficients of interest are for CCi and AEV Ci. For CCi, AEV Ci, the fitted normal

& kernel density estimates are similar. Specifically, the two density estimates overlap

over the support (x-axis). In addition, for these two predictors, the confidence interval

(Table B.8 Columns 6 & 7) is asymmetric around the observed value suggesting that

the inference from the bootstrap is different from the asymptotic theory, and that

the estimated coefficients are likely to be more accurate in this small sample. Except

CCi, AEV Ci, all other predictor variables have coefficient values (within 95% CI) that

vary in nature of impact. Specifically, the upper and lower limits of the confidence

intervals have a positive or negative impact on runtime. This variability suggests that

the effect of changes in any of these variable values (e.g., increase in AIni) can be

instrumental in increase or decrease or even no change in TrACA runtime. Prediction

of runtime using these variables can be problematic at the very least.

From Figure 3.2 it is clear that for CCi, defined as Transitivity in directed cyclic

graph centrality terms, the CI is on a negative scale. This suggests that run-times

can be significantly decreased if more bids tend to cluster together. In other words,

if the bid-bundle distribution is such that sets of bundles have few items in common

(hence form clusters) then run-times are impacted negatively. Specifically, with an

increase in variety and volume of bids submitted for bundles, likelihood of clustering

of bundles cannot be ruled out. Such clustering or transitivity leads to shortened

runtimes that improves TrACA performance. Specifically, with an increase in velocity

of data, clustering helps solve problem of larger variety and volume of auction data.

For AEV Ci, defined as Average Eigenvector Centrality, the CI is on a positive

scale. This suggests that run-times can increase if there are more ‘important’ bundles

(vertices) connected to each other in a network. In other words, if variety of bundles
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Figure 3.2.: Histogram for observed value vs. bootstrapped coefficient distribution
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received is such that there are a few bundles that have less items in common with other

bundles then run-times are increased. In contrast to the clustering effect, here indi-

vidual bundles (vertices) gain prominence (more edges) in the directed cyclic graph.

In sum, when CCi&AEV Ci are considered together, our approach demonstrates that

increase in variety of bundles shouldn’t necessarily imply increased runtimes for com-

puting winners.

We now explore the sensitivity of the bootstrapped coefficients and of the per-

centiles of its bootstrapped distribution to deletion of individual observations4. We

present test results for specifically the coefficients mentioned previously e.g., AIni,

SCSi, CCi, AEV Ci in Figure B.1, Appendix B.6. The graph’s horizontal axis, re-

garded as the ”standardized value of the jackknife,” is a reflection of each observation’s

impact on the coefficient. For each observation the vertical axis is positioned jackknife

quantiles, calculated from those samples in bootstrap where there was no particular

observation. The standard formula for the estimate is given as θ̂Jack = nθ̂− (n−1)θ(.)

where θ̂(.) is is the average of these “leave-one-out” estimates.

The observation indices corresponding to the points in the graph are shown near

the bottom of the plot. The key inference here is that a majority of observations have

little to no effect (sensitivity) on Clustering Coefficient (CCi). However, for AEV Ci,

most of the observations tend to either have no effect or decrease the coefficient

rather than increase it. In the Clustering Coefficient plot for example, observation

14 (Run-time 397.6 seconds) seeks to decrease value of coefficient whereas the same

observation can be seen to increase coefficients for AIni, AEV Ci and has no effect on

coefficient of SCSi. At the same time, observation 17 (Run-time 584.72 seconds) tends

to increase coefficient of AIni, AEV Ci, SCSi and has almost no impact on CCi. The

observations that are outliers in all four plots are those that clearly impact coefficients

of all these predictor variables significantly such as observations 7 (Run-time 570.78)

, 19 (Run-time 626.16).

4using the Jack-Knife test
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3.6.3 Run-time Prediction & Problem Analysis

Using the bootstrapped coefficients, we predict run-times in the validation set.

Appendix B.8 gives details of predicted vs. actual run-times using Table B.9 & B.10.

As evident, the predictions in validation set are approximately accurate with the

minimum standard error being 1.264 and maximum being 3.285 seconds. In the final

test set, standard errors on predictions marginally increase. This is to be expected

since the training set had only 45 observations to use. With more data, the learning

of the algorithm can be improved for better predictions.

The overarching conclusion from this analysis points to the structure of bundles

and the items they have in common as an important determinant of TrACA runtime.

In general, approximation of winner is computationally complex in those cases where

more number of items are common among different bundles up for auction. This has

been evidenced in exact approaches of solving WDP (Sandholm, 2002a; Sandholm and

Suri, 2003; Sandholm et al., 2005). Specifically, exact algorithms (e.g., CPLEX) use

a branch-and-bound approach that incorporates a conflict graph (has edges between

bundles of items as nodes, if those bundles have items in common) for searching for

optimal. Consequently, more the items in common, the denser the graph and denser

the graph, more time-consuming the search (Sandholm et al., 2005). However, we

show that TrACA run-times improve in such situations, given our graphical formu-

lation. Additionally, there is a higher likelihood of better quality results for auctions

that exhibit such property of bundles and items.

3.7 Extension for Multi-Unit Multi-Item CA

In this section, we extend the TrACA approach from the traditional single-unit CA

to multi-unit CA. Multi-unit CAs are increasingly becoming the mechanism of choice

in two major domains: cloud computing auctions and electricity markets (Bichler

et al., 2010; Kwasnica et al., 2005; Sandholm, 2002b). With dynamic pricing of

resources getting more common in these domains (Brena et al., 2015; Prasad et al.,
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2016), winner determination under time constraints and increased participation from

interested bidders is poised to become an important problem to solve.

The setting for a multi-unit multi-item auction is as follows. LetN = {g1, g2, g3, ..., gm}

be a set of items. Each item gi ∀ i ∈ N has q(gi) units of it available for auction. Con-

sider a set of bids B = {b1, b2, b3, ..., bn}. Each bid bj ∀ j ∈ B is a pair (p(bj), e(bj))

where p(bj) is the price offer for bundle e(bj) = (e(bj)1, e(bj)2, ..., e(bj)m) that consists

of e(bj)i ≤ q(gi) units of of item gi ∀ i ∈ N . An allocation is defined as a subset S ⊆ B

where
∑

bj∈S e(bj)i ≤ q(gi) ∀ i ∈ N . If Ŝ denotes the set of all such allocations then

the multi-unit WDP is defined as computing an allocation S ∈ Ŝ that maximizes auc-

tioneer’s revenue
∑

b∈S p(b). Using this formulation, TrACA is extended to search for

optimal winner determination in multi-unit CA as described in the following sections.

3.7.1 Graph Construction

The graph construction is similar to single-unit CA formulation. It follows all

the steps as outlined in Section 3.3.2 and additionally, has the following component

that takes care of multi-unit nature of auction data. A directed edge exists between

any two vertices V \ {s, t} such that resource constraints are satisfied. Specifically,

E = {(vi, vj)|e(bi), e(bj) ∈ V \(s, t),
∑

bi,bj
e(bk)r ≤ q(gr) ∀ k ∈ bi, bj, r ∈ N}. Consider

an auction for 3 items N = {A,B,C} with 3 units of each item. The available units

of each item are q(A) = 3, q(B) = 4, q(C) = 2. Suppose there are 5 bids submitted

as follows: b1 = (4.2, (1, 2, 1)), b2 = (5, (0, 2, 1)), b3 = (4.5, (2, 3, 2)), b4 = (4, (1, 2, 1)),

b5 = (2, (0, 2, 1)). Using preprocessing, clearly, b4, b5 is inferior to b1, b2 respectively.

Hence, the matrix from preprocessing step consists of price and bundles of three bids

b1 = {1A, 2B, 1C}, b2 = {2B, 1C}, b3 = {2A, 3B, 2C}. The graph constructed from

this shown in Figure 3.3.

Considering availability constraints, the auctioneer is better off selling b1, b2 with

a total revenue of 4.2 + 5 = 9.2. The path in the graph denoting this is s → b1 →

b2 → t⇔ s→ b2 → b1 → t.



61

b1

s b2

b3

t

4.2 0

5

4.5

0

0

54.2

Figure 3.3.: DCG – Edges (bi, bj) s.t. bi + bj ≤ Capacity Constraints

3.7.2 TrACA for Multi-Unit WDP Search

The overall approach is similar to single-unit mutli-item TrACA as described in

Algorithm 1 with the only difference being the additional use of capacity constraints

in determining node choice. Specifically, when choosing vertex vj from vi (where

vi, vj ∈ V \(s, t)), if sum of units of each item requested by vj and those in all vertices

chosen in the constructed path up to vi overshoot the capacity limit for any item,

then vj is not chosen.

Since real datasets pertaining to multi-unit CA are unavailable, we test out ap-

proach on 20 artificially prepared datasets that follow Leyton-Brown et al. (2000).

Each testbed consists of 50 bids on a set of 50 items. Each bid can request anywhere

between 0 to 6 copies of each item. Each item capacity varies between 100 (minimum)

to 300 (maximum) units. Results from the simulation are in Table B.12 and Figure

B.6, Appendix B.10. There are two key takeaways from the results. First, as indicated

in Sandholm (2002b), our results show that capacity constraints on units of each item

tend to limit the number of winning bids to less than half of total bids submitted.

For instance, the average no. of winning bids to total bids ratio across 20 instances

tested is 17.6%. Second, convergence pattern for our approach shows the inherent

difficulty of solving such problems. Typically, hard multi-unit multi-item auctions

have bids that tend to request a small number of units per item, independent of the
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total number of items (Gonen and Lehmann, 2000; Leyton-Brown et al., 2000). In

our example instances, since units per item requested are 0 to 6 (compared to overall

capacity of minimum 100 units/item to maximum 300 units/item), the search for op-

timal is harder as now more bid combinations are explored. The convergence pattern

therefore shows spurts in search values that are more frequent than the single-unit

multi-item cases (shown in Figure B.5, Appendix B.9). As future work, we plan to

develop more realistic instances of larger sizes and add to the increasing body of work

in this regard (Leyton-Brown et al., 2000).

3.8 Conclusion, Applications & Future Directions

We develop an ant colony optimization based algorithm to resolve the trade-off

of speed vs accuracy for solving challenging instances of the issue of winner determi-

nation. Randomized pheromone updating and randomized graph pruning are intro-

duced to increase the speed and quality of the search over existing ACO methods. We

check our approach to the problem and compare the results with CPLEX and best-in-

class search heuristic for WDP - memetic algorithm and ACLS. Although results are

encouraging, we analyze TrACA for empirical hardness results and attempt at under-

standing the aspects of WDP that make it difficult. We find evidence of ‘tightness’

as demonstrated in multidimensional knapsack problem to be an important factor in

determining complexity of WDP. Further, we establish how our graphical formulation

can help in demonstrating how the problem of variety and volume can be solve in

auction data. Lastly, we use a simple supervised learning model to build a predictive

model of TrACA run-times and establish the accuracy of the model by predicting

run-times for test set having 20 observations.

Three factors contribute to the rise in use of heuristics for WDP - (1) the increase in

size of market participants, (2) in number of items (e.g., shipping route, procurement

units) up for auction and (3) in usage of iterative combinatorial auctions for deciding

on allocations. All three factors have become more prominent in the age of big data.
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Additionally, solving the WDP involves trade-off between optimality and speed. This

is where cleverly designed heuristics can provide optimal or close-to optimal solutions

within pre-specified time limits (Karaenke et al., 2018). Fundamentally, heuristics

facilitate opening up the market for more number of bidders, items and holding more

rounds iteratively to rule out inefficient allocations – thereby increasing efficiency.

For future, we would like to direct our research in two primary directions. First, we

would like to extend TrACA to solve multi-unit multi-item auctions. We are in process

of building a test instances for such auctions, since these are unavailable currently for

researchers (Leyton-Brown et al., 2000). Second, we would like to extend TrACA for

other NP-complete problem estimations such as multi-unit multi-item CA, Vehicle

Routing Problem (VRP) and modern variants of the capacity planning problem that

have important applications in industry. In extending our work, our aim would be

to not only improve TrACA estimations but also help improve the trade-off between

efficiency and speed as much as possible.
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4. INCENTIVIZING HONEST MINING IN

CRYPTOCURRENCIES: AN AUTOMATED

MECHANISM DESIGN APPROACH

4.1 Introduction.

Bitcoin has enjoyed tremendous popularity since 2008, as one of the first fully

decentralized cryptocurrencies (Böhme et al., 2015; Nakamoto, 2008; Swan, 2015).

This rise in popularity is because Bitcoin uses blockchain (a global and public data

structure) to record all historical transactions between Bitcoin clients (Nakamoto,

2008). Blockchain is a way of establishing trust-less1 transactions (Böhme et al., 2015;

Nakamoto, 2008; Narayanan et al., 2016). Security of such trust-less transactions in

blockchain is established using cryptographic hash puzzles, solved by a network of

agents called miners (Nakamoto, 2008). For miners, solving a tough computational

challenge such as a hash puzzle is a way to generate Proof-of-Work (PoW) for reaching

global consensus on history of transactions in blockchain(Nakamoto, 2008; Narayanan

et al., 2016). PoW demands intensive computations and hence, consumes a lot of

energy (Antonopoulos, 2014; Dinh et al., 2018). Each miner incurs a computation

cost and competes in a “game” to be the first miner to solve the puzzle and mine a

block. Winning the game results in the miner getting a block fee & a transaction fee if

the mined block is acknowledged by other miners as a valid block (Antonopoulos, 2014;

Nakamoto, 2008; Swan, 2015). Adding a valid block to the public chain is therefore

incentive-driven and helps maintain historical consensus on transactions and generate

trust in the system (Böhme et al., 2015; Lewenberg et al., 2015a; Nakamoto, 2008).

1Trust-less is actually a misnomer. Blockchains don’t eliminate trust but incentivize actions from
agents to maintain trust in the system.
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The conventional wisdom at the heart of mining has been that with a large pop-

ulation of miners and sufficiently high aggregate hash power, successful attacks on

blockchain integrity (e.g., Sybil, 51 %, etc.) are next to impossible (Antonopoulos,

2014; Nakamoto, 2008). This is because honesty of miner majority is assumed (Eyal

and Sirer, 2018; Kroll et al., 2013). However, recent work has shown that this assump-

tion is erroneous. Specifically, Eyal and Sirer (2018); Kiayias et al. (2016); Sapirshtein

et al. (2016) have shown that a miner can choose to be selfish while mining instead of

conforming to the expected honest mining strategy and reap higher rewards. Further,

selfish mining is profitable if the hash power of a miner is larger than approximately

25% of network hash rate (Eyal and Sirer, 2018; Kiayias et al., 2016). Sapirshtein

et al. (2016) further show that a more intelligent selfish miner can lower this thresh-

old to ≈ 23.21% using optimal mining strategies. Hence, even if 51% attacks may be

less likely in the short run, incentives in PoW do not rule out selfish behavior from

miners.

In this paper, we build on Eyal and Sirer (2018); Kwon et al. (2017); Sapir-

shtein et al. (2016) and provide insight towards resolving a fundamental question:

how can selfish mining tendencies be reduced in a system intended to reward hon-

est behavior? Given that miners are agents with private information (e.g., private

chains) our approach using mechanism design seeks to prevent miners from withhold-

ing blocks and/or forking the public chain in the short run. Attempts at designing

such mechanisms have been predominantly focused on improving protocols involving

different proofs-of-activity (stake, space, etc.), with Eyal and Sirer (2018); Kroll et al.

(2013); Sapirshtein et al. (2016) pointing out that designing consensus mechanisms

that prevent selfish mining is critical to the survival of Bitcoin as a decentralized

cryptocurrency. The importance of designing incentives that govern such mecha-

nisms, however, is shown in recent studies, (Babaioff et al., 2012; Eyal, 2017; Ray

et al., 2018a; Sompolinsky and Zohar, 2018). Further, Chen et al. (2019); Guer-

raoui and Wang (2018) show how incentives in mining can be unfair when message

propagation in a distributed system is not instantaneous. Experimental evidence in
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Eyal et al. (2016); Lewenberg et al. (2015b) confirm problem with existing incentives

through evidence of disproportionate rewards to dishonest miners. Finally, Dong et al.

(2019); Huberman et al. (2019); Jiang and Wu (2019); Kwon et al. (2017); Saad et al.

(2019) show how block & transaction free structure in mining rewards in cryptocur-

rencies can exacerbate selfish mining attacks by introducing possibility of combining

forking & block-withholding attacks. Our approach using mechanism design adds to

this growing body of work to design better incentive structures for blockchain-based

cryptocurrencies. Following are the main contributions of the paper:

1. A method of designing incentives that incentivize honest mining, using non-

cooperative game theoretic notions, is developed. Specifically, automated mech-

anism design (AMD) (Sandholm, 2003) is used to formulate the problem of

designing incentives that minimize price of anarchy of the blockchain system.

The minimization searches for optimal payoffs that minimizes price of anarchy

of mining, subject to individual rationality and incentive compatibility con-

straints.

2. A supervised learning model is used to study impact of miner actions on dis-

covered optimal payoffs. Specifically, a linear regression model is used to learn

the relationship between payoffs and miner actions – structure of reward and

punishment – when faced with selfish mining problem.

3. Using notions from the estimated linear model, three generalized incentive

schemes are designed that, under appropriate conditions show mining on a pub-

lic blockchain can be dominant strategy incentive compatible. Essentially, the

generalized mechanism measures the amount of inequality or ‘disorder’ a miner

introduces to the system by either mining honestly, forking or withholding of

blocks. Measuring the disorder informs the design of reward and punishment

for incentivizing honest mining. The mechanism achieves equity in mining re-

wards by minimizing price of anarchy (Leme and Tardos, 2010). From a social

choice theory perspective, our mechanism aims to maximize Hammond Equity
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(Hammond, 1976) of a set of miners, with conflicting preferences – honest and

selfish mining behavior.

The rest of the paper is structured as follows: first, in Section 4.3 we introduce

the basic 2-miner model that is used to perform an AMD estimation of payoffs;

Section 4.4 provides rationale for incentive structure with rewards & punishment

that incentivize/disincentive honest/selfish mining actions and finally, in Section 4.5

we generalize the notions of reward and punishment from a 2-miner model to an

N-miner model.

4.2 Literature Review

Decentralized digital currencies are not a new development (Chaum, 1983). In

fact, such currencies have been proposed before Bitcoin, starting with Chaum (1983)

and subsequently, peer-to-peer currencies have found popularity, e.g. Vishnumurthy

et al. (2003); Yang and Garcia-Molina (2003). However, the earlier designs of such de-

centralized currencies did not have globally maintained ledger (Yang, 2010). Further,

numerous cryptocurrencies followed Bitcoin’s success (Mukhopadhyay et al., 2016).

These cryptocurrencies are maintain a global log of transactions, which relate to the

blockchain architecture. Hence, our insights apply to all such systems. To begin

with, incentive driven design of currency systems have been addressed in Babaioff

et al. (2012). Specifically, miners in such systems prefer to collect the transaction fee

themselves to maintain the global ledger/log for transactions. However, the mining

incentive mechanism in cryptocurrencies enforces a way in which provision of such

incentives are driven by proof of valid miner activity such as proof-of-work, proof-

of-stake etc. More formally, disseminating transactions between miners considers the

problem of communication between miners and incentivizing better sharing of infor-

mation. Given our focus, we consider such approaches out-of-scope for us. A recent

survey (Barber et al., 2012) has identified incentive-compatibility issues as an impor-

tant aspect of cryptocurrency mining. Further, Barber et al. (2012) describes possible
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scenarios where a single entity could control a majority of the mining power. Further,

Eyal and Sirer (2018); Sapirshtein et al. (2016) analytically show a vulnerability in

the incentive structure of Bitcoin. A widely cited study (Ron and Shamir, 2013)

analyzed the Bitcoin transaction graph to show such vulnerabilities. As evidenced,

Bitcoin had a fork in March 2013 due to a software bug (Andresen, 2013). This

fork got resolved when the two of the largest pools at the time manually abandoned

one branch. However, such forks are bug-induced and more generally, the resolution

mechanism is fundamentally different from the intentional forks by selfish miners.

Our work is closely related to analyzing current reward mechanisms such as block

& transaction fee and questioning its robustness (Babaioff et al., 2012; Chen et al.,

2019; Ray et al., 2018a; Sompolinsky and Zohar, 2018). It has been noted in recent

studeis that (Eyal, 2017; Tapscott and Tapscott, 2016) that mining rewards need

further analysis in order to ensure incentives are aligned with the objective of a

decentralized currency system. Using our mechanism, we aim at solving this problem

by designing mechanisms that incorporate rewards and punishments (Andreoni et al.,

2003; Masclet et al., 2003; Sefton et al., 2007; Walker and Halloran, 2004) for eliciting

desired behavior. In particular, our approach relates to using a system of rewards

and punishments with incomplete information from participating agents (Dellarocas,

2005; Green and Laffont, 1986; Li et al., 2017a; Liu et al., 2018). Such incomplete

information may present moral hazard situations (Dellarocas, 2005) or opportunities

for arbitrage (Levy et al., 2017; Liu et al., 2018). In blockchain however, private

information in the form of private chains present opportunities to earn more in the

short term and have long term consequences on the history of transactions. Our work

therefore contributes to this gap in the literature when it comes to analyzing and

designing mechanisms for blockchain based mining activities.
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4.3 Model

Consider a mining game Gm with two selfish miners M1,M2 (with computational

power m1,m2 respectively, m1 6= m2) mining at the head of a public blockchain

of length Lp. Following the competing selfish miners model (Eyal and Sirer, 2018;

Kiayias et al., 2016; Sapirshtein et al., 2016) assume both miners decide to either

follow an immediate or a strategic release strategy for newly mined blocks. Specif-

ically, each round each miner competes to mine a block and decides to either im-

mediately release the newly mined block to augment the public blockchain (Sl) or

strategically release the block – augments private chain with newly mined block to

either immediately fork the public chain (Sp) or wait to fork in the future (Sw).

Assume that miners private chain lengths of n1, n2 respectively is private informa-

tion and the distribution of private chain lengths is common knowledge. Since there

are 4 states of the world corresponding to private chain lengths of each miner –

ξ = {(n1, n1), (n1, n2), (n2, n1), (n2, n2)} assume the following joint prior: P (n1, n1) =

µ1, P (n1, n2) = P (n2, n1) = µ2, P (n2, n2) = µ3 such that µ1 + µ3 + 2µ2 = 1.

Definition 4.3.1 For mining game Gm, the Bayes Nash Equilibria (BNE) are ((Sp, Sp),

(Sp, Sp)) and ((Sw, Sw), (Sw, Sw)) – Strategic Release Strategy.

Definition 4.3.2 For mining game Gm, the optimal outcome is when both miners

follow ((Sl, Sl), (Sl, Sl)) – Immediate Release Strategy.

Definitions 4.3.1, 4.3.2 are derived from established work on selfish mining games

(Eyal and Sirer, 2018; Kiayias et al., 2016; Sapirshtein et al., 2016) and from the

protocols such PoW (Proof-of-Work) or PoS (Proof-of-Stake)(Bentov et al., 2014).

Specifically, given private information (private chain lengths), miners decide on im-

mediate or strategic release of mined blocks in order to maximize payoff. For instance,

forking the public chain gives higher short-term payoff than adding a block to the

public chain (Eyal and Sirer, 2018; Kiayias et al., 2016). Miners can withhold blocks

and either fork immediately or in the future to reap higher payoffs (Sapirshtein et al.,

2016).
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4.3.1 Mining Incentive Structure Formulation

For designing payoffs that incentivize immediate and discourage strategic release

decisions, assume payoff structure as in Equation 4.1. Expected payoff En1,n2

S1,S2
is a

function of computational powers m1,m2 and function V s(∆n,∆L) ∀ s ∈ {Win,Loss}

that takes two inputs: absolute difference in lengths of private chains (∆n = |n1−n2|)

and number of blocks (∆L1 or ∆L2) by which the public blockchain is extended by

the winning miner (miner 1 or 2), by beginning next round. Let δ12 ≡ |n1 − n2|

represent the absolute difference in lengths of private chains when considering payoff

for miner 1. Expected payoff for miner 1 is therefore:

En1,n2

S1,S2
=

m1

m1 +m2

V win(δ12,∆L1) +

(
1− m1

m1 +m2

)
V loss(δ21,∆L2) (4.1)

where S1, S2 ∈ {Sp, Sw, Sl}.

Equation 4.1 has the following key interpretations. First, it is assumed that miners

are rational agents and use expected payoffs for choosing to act honestly or selfishly.

In practice, this assumption is due to mining being a highly stochastic endeavor where

mining difficulty is adjusted periodically as a function of amount of hashing power

deployed by the network of miners (Antonopoulos, 2014; Böhme et al., 2015; Swan,

2015). Moreover, surveys have shown that large mining pools run mining using large

scale computational resources and decide course of action based on probability of

winning, since each round is not a guaranteed win (Bag and Sakurai, 2016; Böhme

et al., 2015; Taylor, 2013). Uncertainty of winning coupled with rationality allows

use of expected payoff for choosing actions, in our formulation.

Second, the structure of Equation 4.1 assumes a payoffs for winning and losing. In

practice, losing miners get nothing but bear the cost of mining (Böhme et al., 2015;

Nakamoto, 2008). However, our formulation accounts for the negative externality of

selfish mining on losing miners using the V loss function. In doing so, as demonstrated

in following sections, Equation 4.1 allows for introducing incentive structures that
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reward desired and punish undesired behaviors for actions taken by miners (Andreoni

et al., 2003; Masclet et al., 2003; Sefton et al., 2007; Walker and Halloran, 2004).

4.3.2 Automated Mechanism Design Formulation

Using the standard AMD approach (Sandholm, 2003), the following aspects of the

problem are defined:

• Set of miners M1,M2.

• Set of types of miner Θ ∈ {n1, n2}.

• Joint Prior: P (n1, n1) = µ1, P (n1, n2) = P (n2, n1) = µ2, P (n2, n2) = µ3 such

that µ1 + µ3 + 2µ2 = 1.

• A finite set of outcomes O ⇒ change in public blockchain length:

O ∈ {0, 1, n1 + 1, n2 + 1} .

Here, 0 corresponds to block-withholding BNE ((Sw, Sw), (Sw, Sw)), 1 corre-

sponds to honest mining and {n1 + 1, n2 + 1} corresponds to forking BNE

((Sp, Sp), (Sp, Sp)).

• Ex-post IR constraints.

• Bayesian Nash IC constraints.

For ex-post IR constraints it is assumed that payoffs for either miner 1 or 2 is such

that V k(∆n,∆L) ≥ 0 ∀ k ∈ {win, loss}. The BN-IC constraints are derived for each

BNE and are shown as follows: The Bayes Nash-Incentive Compatibility constraints

are shown as follows:

(4.2)µ1

(
En1,n1

Sp,Sp

)
+ µ2

(
En1,n2

Sp,Sp

)
≥ µ1

(
En2,n1

Sp,Sp

)
+ µ2

(
En2,n2

Sp,Sp

)

(4.3)µ2

(
En2,n1

Sp,Sp

)
+ µ3

(
En2,n2

Sp,Sp

)
≥ µ2

(
En1,n1

Sp,Sp

)
+ µ3

(
En1,n2

Sp,Sp

)
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(4.4)µ1

(
En1,n1

Sw,Sw

)
+ µ2

(
En1,n2

Sw,Sw

)
≥ µ1

(
En2,n1

Sw,Sw

)
+ µ2

(
En2,n2

Sw,Sw

)
(4.5)µ2

(
En2,n1

Sw,Sw

)
+ µ3

(
En2,n2

Sw,Sw

)
≥ µ2

(
En1,n1

Sw,Sw

)
+ µ3

(
En1,n2

Sw,Sw

)
The BNE Constraints are:

(4.6)µ1

(
En1,n1

Sp,Sp

)
+ µ2

(
En1,n2

Sp,Sp

)
≥ µ1

(
En1,n1

Sw,Sp

)
+ µ2

(
En1,n2

Sw,Sp

)

(4.7)µ1

(
En1,n1

Sp,Sp

)
+ µ2

(
En1,n2

Sp,Sp

)
≥ µ1

(
En1,n1

Sl,Sp

)
+ µ2

(
En1,n2

Sl,Sp

)

(4.8)µ1

(
En1,n1

Sw,Sw

)
+ µ2

(
En1,n2

Sw,Sw

)
≥ µ1

(
En1,n1

Sp,Sw

)
+ µ2

(
En1,n2

Sp,Sw

)
(4.9)µ1

(
En1,n1

Sw,Sw

)
+ µ2

(
En1,n2

Sw,Sw

)
≥ µ1

(
En1,n1

Sl,Sw

)
+ µ2

(
En1,n2

Sl,Sw

)
Further, Equations 4.6-4.9 show BNE constraints that should for each equilibrium

as defined in Definitions 4.3.1 & 4.3.2. Since it is desired that miners have lower

tendency to mine on private chains and greater tendency to mine on the public chain,

the objective function should essentially compare and incentivize the honest outcome

over others. That is, instead of benevolence or self-interested objectives (Dash et al.,

2003; Sandholm, 2003), the designer’s objective is to promote one outcome over all

others. By construction, the desired equilibria occurs when both miners play Sl.

However, the welfare of this equilibria is degraded by selfish mining that occurs when

either Sp or Sw is played. Hence, the objective of the mechanism is to minimize the

Bayes Nash Price of Anarchy (BN-PoA)2. BN-PoA is considered for two cases: when

either forking ((Sp, Sp), (Sp, Sp)) or block-withholding ((Sw, Sw), (Sw, Sw)) is the worst

equilibrium.

(4.10)Φ
Sp
1 =

U1
n1,Sp

+ U1
n2,Sp

+ U2
n1,Sp

+ U2
n2,Sp

U1
n1,Sl

+ U1
n2,Sl

+ U2
n1,Sl

+ U2
n2,Sl

(4.11)ΦSw
1 =

U1
n1,Sw

+ U1
n2,Sw

+ U2
n1,Sw

+ U2
n2,Sw

U1
n1,Sl

+ U1
n2,Sl

+ U2
n1,Sl

+ U2
n2,Sl

2Bayes Nash Price of Anarchy is applicable to designing games where agents have imperfect infor-
mation(Roughgarden, 2012).
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Equations 4.10, 4.11 are BN-PoA expressions when forking and block-withholding are

the worst equilibrium, respectively. U i
nj ,Sp

is the overall expected utility for miner i,

with private chain length nj in the ((Sp, Sp), (Sp, Sp)) equilibrium. The AMD problem

that searches for optimal payoffs E
ni,nj
Si,Sj

can then be stated as follows, in equations

4.12 & 4.13:

minimize
E
ni,nj
Si,Sj

U1
n1,Sp

+ U1
n2,Sp

+ U2
n1,Sp

+ U2
n2,Sp

U1
n1,Sl

+ U1
n2,Sl

+ U2
n1,Sl

+ U2
n2,Sl

subject to BN IC Constraints (4.2-4.5),

IR Constraints,

BNE Constraint,

E
ni,nj
Si,Sj

∀ Si, Sj ∈ {Sp, Sw, Sl}, (ni, nj) ∈ {1, 2, 3, ...}

(4.12)

minimize
E
ni,nj
Si,Sj

U1
n1,Sw

+ U1
n2,Sw

+ U2
n1,Sw

+ U2
n2,Sw

U1
n1,Sl

+ U1
n2,Sl

+ U2
n1,Sl

+ U2
n2,Sl

subject to BN IC Constraints (4.2-4.5),

IR Constraints,

BNE Constraint,

E
ni,nj
Si,Sj

∀ Si, Sj ∈ {Sp, Sw, Sl}, (ni, nj) ∈ {1, 2, 3, ...}

(4.13)

Note that E
ni,nj
Si,Sj

are treated as variables for optimization. The optimal payoffs are

used to search for functional forms for V win, V loss. Estimating the functional forms

serves two objectives: first it helps in identifying impact of changing private and

public chain lengths on E
ni,nj
Si,Sj

and second, it helps in identifying incentives each

agent should be given to reduce selfish behavior in the system. Indirectly, reduction

in selfish behavior leads to an improvement/minimization in the price of anarchy.

Past work in transportation systems deals with similar notions of improving price of

anarchy measures through modifying underlying mechanisms or incentives (Cominetti

et al., 2009; Youn et al., 2008; Zhang et al., 2018). In our case, since it is unclear how

optimal payoffs should incentivize honest increments in ∆n,∆L, we bound/minimize
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the price of anarchy by identifying the optimal payoffs and then searching for the

functional form.

4.4 Empirical Estimation of Payoff Function

We use standard R optimization library Rsolnp (Ghalanos and Theussl, 2012)

for minimizing Φ
Sp
1 , ΦSw

1 . Specifically, for 20 variables involved in each of the min-

imization problems, the optimal values are used for empirically estimating impact

of changing private and public chain lengths on designed incentives. Our formula-

tion assumes separate payoff functions for win and loss for miners – V win, V loss. For

simplicity and keeping focus on structural relationships, a linear functional form is

assumed as follows.

V win = e0 + e1δ12 + e2∆L1 (4.14)

V loss = k0 + k1δ21 + k2∆L2 (4.15)

Clearly, assumption of linearity for payoff functions is an approximation. Such ap-

proximations may not serve to identify the exact structure of incentives but gives an

estimate of how changes in private and public chain impact designing payoffs. Fur-

ther, in order to estimate payoff functions separately, it is assumed that the expected

payoff can be proportionately divided into two parts, given hash powers m1,m2. Us-

ing this, we separately estimate the win and loss functions and analyze the impact

of δ12, δ21,∆L1,∆L2 on wins or losses incurred. The data is formed from randomly

sampling 200, 000 values generated from 200, 000 optimization trials with: random

starting points, proportional hash power, private chain lengths, priors on both min-

ers. For ease of convergence of gradient descent, dependent and independent variables

are scaled to between [0, 1]. Scaling of variables has no limiting consequences and is

done to ensure that the choice of arbitrary bounds in optimization does not impact

estimation of coefficients.
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For the case where ((Sp, Sp), (Sp, Sp)) is the worst equilibrium, insights are as

follows: coefficients for private chain length differences in win and loss – δ12, δ21 –

as well as public chain additions – ∆L1, ∆L2 – are negative (e1 = −0.082 (p <

0.01), k1 = −0.181 (p < 0.01), e2 = −0.072 (p < 0.01), k2 = −0.058 (p < 0.01)).

Negative coefficients implies punishment for mining activity using private chains.

More precisely, our designed incentive penalizes winning miner when increasing public

chain length using private chain and prevents free-riding by the losing miner. The

winning miner decides between forking, withholding and honest mining by comparing

payoffs. With negative coefficients on δ12,∆L1, winning miner suffers the most when

forking the chain and the least when mining honestly. Relatedly, the losing miner

incurs changes in private chain length depending on action by the winning miner.

In order to prevent losing miner from benefiting from selfish actions of the winner,

negative δ21,∆L2 coefficients ensure no such free-riding happens3. Essentially, this

incentive design discourages any strategy of forking using private/hidden information

by penalizing the amount with which the private information could harm or benefit

other miners. From a public goods perspective, using private chains of lengths > 1, for

augmenting public chain exerts negative externality on other miner. The penalty on

using private chains is therefore a tax the selfish miner pays. Further, intercepts e0, k0

when estimating V wins, V loss are positive (e0 = 0.243 (p < 0.01), k0 = 0.155 (p < 0.01))

– indicating fixed positive payoffs (e.g., block payoff) are important to incentivize

individually rational mining behavior.

For the case where ((Sw, Sw), (Sw, Sw)) is the worst equilibrium, insights are as

follows: coefficients for private chain length differences in win and loss – δ12, δ21 – are

negative whereas public chain additions – ∆L1, ∆L2 – are positive (e1 = −0.047 (p <

0.01), k1 = −0.072 (p < 0.01), e2 = 0.326 (p < 0.01), k2 = 0.139 (p < 0.01)). In other

words, withholding blocks is penalized whereas increments in public chain lengths is

not. This intuitively follows from: (1) forking is not the worst in terms of miner wel-

fare considering private and public chain length changes and, (2) simply withholding

3Free-riding is a common problem in private provisions of public good (Bergstrom et al., 1986). Pe-
nalizing gains in private information from public provisions keeps free riding incentives unattractive.
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blocks isn’t necessarily harmful for other miners, as long as the withheld blocks are

not used to augment public chain. Here too, free-riding by the losing miner is pre-

vented by penalizing changes in private chain length δ21. Intuitively, our mechanism

mirrors notions from VCG or Clarke Tax (Dash et al., 2003; Ephrati and Rosenschein,

1991) for autonomous agents. Considering the public blockchain as a public good,

each miner is taxed for the externality (mined blocks to add to the public chain) it

introduces when contributing to the chain using selfish or honest behavior. If the ex-

ternality is worst when forking the public chain, the tax extracts part of payoff from

both the winning and losing miners and if the externality is worst when withholding

blocks with no impact on public chain, the tax extracts part of payoff for withholding

blocks.

Proposition 2 Consider the two miner scenario and suppose marginal penalty/tax

on change in private chain length is made higher than that of change in public chain

length, when a miner wins. Then if 1 ≤ n2 < n1 ≤ 2n2, miner 1 with private chain

length n1 has Sl as the dominant strategy. Further, when n1 = n2, (Sl, Sl) is the

dominant strategy equilibrium.

The intuitive implication from Proposition 2 is that if miners are faced with the

prospect of getting penalized for increments on their private chain lengths more than

on working on the public chain, then honest mining can be incentivized for those

miners who have longer private chains. This builds on the discussion of selfish mining

strategy in Eyal and Sirer (2018). Specifically, Eyal and Sirer (2018) shows that selfish

miners tend to work on private chains if there is a possibility of controlling the longest

chain by adding their private blocks. In doing this, selfish miners always try to keep

ahead of number of blocks mined by the honest majority, since maintaining longer

private chain provides an opportunity of forking the public chain. By penalizing

such selfish behavior, we show that any work on increments on private chains can be

disincentivized and public chain mining can be incentivized.
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Corollary 2 Suppose 1 ≤ n1 < n2. Then augmenting private chain length is the

dominant strategy for miner 1. However, once 1 ≤ n2 ≤ n1 ≤ 2n2, working on public

chain is the dominant strategy.

This further provides intuition of strategy followed by miner 1 who has shorter private

chain length. In such a scenario, even if miner 1 works on a private chain and

increments its length, on reaching or exceeding the chain length of other miner 2 then

Sl becomes the dominant strategy (following Proposition 2). Hence, private chain

lengths do not provide incentive to selfish miners to fork the public chain.

4.5 Generalization of Designed Incentives

In this section, the discovered mechanism/incentive scheme from Section 4.3 is

generalized to N > 2 miners. A direct mechanism is assumed that requires miners to

report their private information (private chain lengths)4. The mechanism then waits

for Proof-of-Work to be generated, following which, depending on action taken by

winning miner, payoffs are awarded to the winner along with any to losing miners.

Every other parameter for a miner, e.g., computational power, is assumed to be pub-

lic information. Using the general definition of mechanism design problems (Nisan,

1999), following are the components of the mechanism for N miners with mining

powers given by the vector M = {m1,m2, ...,mN}:

1. Private chain lengths: X = {n1, n2, n3, ...., nN} such that ni ∈ (1, η) ∀ i ∈ N .

These are private types for miners. Each miner reports this length to the

mechanism each round, irrespective of win or loss.

2. Assume the same game and action space for the miners as in Section 4.3, i.e.,

Ai = {Sp, Sw, Sl}. As in Section 4.3, each round miners are trying to mine a

single block and on winning the round can either: fork the public chain Sp, or

4Using revelation principle (Dasgupta et al., 1979; Green and Laffont, 1977; Myerson, 1979), we
restrict our search to mechanisms in which agents report their private information to the mechanism
designer.
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withhold block and add to private chain Sw or add to public chain to increment

public chain length by 1, i.e. honest mining Sl.

3. Set of outcomes O is related to actual observed public chain increments ∆L and

is defined as O ∈ {ni + 1, 0, 1} ∀ i ∈ N where ni is the reported private chain

length of the winning miner i who forks the chain (Sp), 0 is when the winning

miner decides to build private chain (Sw) and 1 is honest mining outcome (Sl).

Note that by construction, ∆L = ni + 1 in the case of forking accounts for the

reported private chain length ni of the miner along with the newly mined block.

Hence, any forking that results in a public chain increment that is actually

different from reported ni length is deemed infeasible by the mechanism5.

4. Each miner’s utility is given by:

ui = gwin(∆nwin
i ,∆Lwin)︸ ︷︷ ︸

Expected Payoff from Win

+ gloss(∆nloss
i ,∆Lloss)︸ ︷︷ ︸

Expected Payoff from Loss

− c(mi)︸ ︷︷ ︸
Cost of Mining

(4.16)

where ∆Lwin,∆Lloss have the same interpretation as in Section 4.3. However

∆nwin
i ,∆nloss

i needs reinterpretation from N > 2 miners perspective. Further,

in keeping with all-pay contest theory (Siegel, 2009) and reality of mining in

cryptocurrency systems (Antonopoulos, 2014; Swan, 2015), assume that each

round all miners incur the convex and non-decreasing cost c(mi) of mining

irrespective of win or loss. Further, similar to Section 4.4 assume that it is

individually rational for miners to mine every round, i.e., gwin(∆nwin
i ,∆Lwin) +

gloss(∆nloss
i ) ≥ c(mi).

5. Assume existence of a decision rule d : ni → O that takes reported private

chain length as inputs from winning miner i (given private chain length ni) and

maps outcome of public chain length increment. As before, the designer con-

siders the desirable outcome as honest mining (Sl) and all other outcomes as

5Recent mining attacks such as Stubborn Mining (Nayak et al., 2016; Wang et al., 2019) do analyze
cases where selfish miners partially reveal private chains but augment public chain with different
length. Our mechanism essentially treats any such action by miners as infeasible.
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undesirable (Sp, Sw). In doing so, the designer is assumed to be minimizing N

agent Price-of-Anarchy (Leme and Tardos, 2010) or maximizing Hammond Eq-

uity (Hammond, 1976) of the system. Hammond Equity captures the notion of

reducing inequality by enforcing certain constraints. Generally, the constraints

relate to the recipient’s utility gain and it is ensure that this utility gain is equal

to the donor’s utility loss. Similar notions have been used in recent literature

(Asheim et al., 2016; De and Mitra, 2017; Mariotti and Veneziani, 2017; Moulin,

2017).

It is clear that computing ∆n in a multi-player case needs reformulation. In a two

player case, ∆n is simply absolute difference between the private chain lengths. How-

ever, extending this definition to multiplayer could be done in a variety of ways that

preserve decision-making elements from a miner’s perspective and also simplify math-

ematical analysis. In other words, extending definition of ∆n to multi-player scenario

while ensuring mathematical tractability should ensure that the mechanism makes

miners take into account differences between self and other private chain lengths

before acting selfishly (forking, block-withholding) or honestly. Hence, two main def-

initions of ∆n are considered: (1) ∆nsi = |nsi −min (Xs)|, ∀ i ∈ N, s ∈ {win, loss},

(2) ∆nsi =
∣∣∣nsi − X̃∣∣∣ ∀ i ∈ N, s ∈ {win, loss}. In words, first definition compares

i′s private chain length (on win or loss) and minimum of all other miner’s private

chain lengths; second definition considers i′s private chain length (on win or loss) and

median of all miner’s private chain lengths. Simulation is used to test the efficacy

of both definitions of ∆n. Theoretical analysis is done only for the first definition.

Expanding on the first definition, following is ∆nwin
i ,∆nloss

i :

∆nwin
i = |nAii −min(X ′)| : X ′ = X \ {ni} (4.17)

∆nloss
i = |ni −min(X ′′)| : X ′′ = X \ {nj}. j 6= i (4.18)

where Ai ∈ {Sp, Sw, Sl} and nAii ∈ {0, ni + 1, ni} ∀ Ai ∈ {Sp, Sw, Sl}. In other words,

n
Sp
i = 0 when miner i wins and forks (Sp), n

Sw
i = ni + 1 when miner i wins and
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builds private chain (Sw) and nSli = ni when miner i wins and mines honestly (Sl).

Note that X ′, X ′′ is the set of private chain lengths of all other miners, after miner

i suffers a win or loses to miner j respectively. More precisely, if miner i wins then

X ′ ≡ X \ {ni} whereas a loss gives X ′′ ≡ X \ {nj} where j is the miner who wins

instead of miner i. Since each miner is deciding between selfish and honest behaviors,

each possible winner of a mining round chooses between the actions based on the

following expected payoffs:

(4.19)u
Sp
i = gwin(|min(X ′)|, ni + 1) + gloss(|ni −min(X ′′)|,∆L′′)− c(mi)

(4.20)uSwi = gwin(|ni + 1−min(X ′)|, 0) + gloss(|ni −min(X ′′)|,∆L′′)− c(mi)

(4.21)uSli = gwin(|ni −min(X ′)|, 1) + gloss(|ni −min(X ′′)|,∆L′′)− c(mi)

where ∆L′′ is increment in public chain length after miner loses to miner j. In the

following subsections, we give structure to the expected payoff functions to formulate

incentives that make honest mining a weakly dominant strategy.

4.5.1 Additively Separable Incentives

Without loss of generality, assume an additively separable structure of gs(∆nsi ,∆L
s) ∀ s ∈

{win, loss} as gwin(∆nwini ,∆Lwin) = h1(∆Lwin) + h2(∆nwini ), gloss(∆nlossi ,∆Lloss) =

h3(∆Lloss) + h4(∆nlossi ). Further, assume h1(.), h2(.) are concave utility functions on

finite outcome sets K1 = {0, ni+ 1, 1}, K2 = {|nSpi −min(X ′)|, |nSwi −min(X ′)|, |nsli −

min(X ′)|} respectively, that represent outcomes from chain increments ∆Lwin, ∆nwin

respectively. In addition, to prevent free-riding, assume payoff from win dominates

payoff from loss. Additive separability is a common structure of utility functions,

widely used in modeling utility functions of agents in public goods economics (Azevedo

et al., 2013; Bergstrom et al., 1986) and finite goods consumption models(Gorman,

1968a,b). Similarity between public goods and blockchain has been noted in David-

son et al. (2016); Glaser (2017); Kewell et al. (2017). First, the public ledger feature
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and value to all users from rule & history consensus of blockchain, especially in cryp-

tocurrency applications, has been compared to externality of public good consumption

(Casey and Vigna, 2018; Tapscott and Tapscott, 2016). Second, miners support pro-

vision of public good through private effort/provision(Narayanan et al., 2016). That

is, block payoff is private consumption for the miners for winning mining round for

providing services to execute transactions through the system.

Assume each miner i is able to preference order payoffs �i based on publicly

observable outcome – public chain increment – and private chain increments, from

taking actions Sp, Sw, Sl. Further, assume that the preference ordering is complete,

transitive and reflexive. Since the mechanism requires miners to report private chain

length each round, preference ordering on outcomes assumes miners know that on

winning, how each action would change public and private chain lengths. Clearly, the

ordering depends on the how ∆nwin,∆Lwin impacts utility of the miner. Extending

function insights of V win, V loss from section 4.4 following are defined for ∆nwin,∆nloss

and functions h1, h2:

Definition 4.5.1 Zero Minimum Rule: ∆ni is defined as:

∆nwin
i =


0, Ai = Sp

ni + 1, Ai = Sw

ni, Ai = Sl

(4.22)

∆nloss
i = ni ∀ Ai (4.23)

such that min(X ′) = min(X ′′) = 0.

Zero minimum rule essentially allows the mechanism to compare each miner’s reported

private chain length to the ideal case: zero private chain length (Gramoli, 2017; Natoli

and Gramoli, 2016). In doing so, the mechanism simplifies measurement of differences

in private chain length for a winning miner, in any given round. Essentially, the

mechanism tracks each individual miner’s change in private chain length without

involving other miners private chain information.
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Definition 4.5.2 Public Chain Dominance: Payoff from unit increment in pub-

lic chain dominates payoff from unit increment in private chain: h1(1) − h1(0) ≥

h2(1)− h2(0).

Public chain dominance follows from notions of discovered payoff structure of winning

miner, as explained in Section 4.4. Specifically, each round winning miner considers

payoff between increments in public or private chain and as shown in 2 miner sim-

ulations in Section 4.4, incentivizing public over private chain increments can help

incentivize honest mining.

Proposition 3 Any winning miner with private chain length ni > 0, Sl is a weakly

dominant strategy under Zero Minimum Rule and Public Chain Dominance. Further,

a mechanism with such payoffs is strategy-proof.

Proposition 3 provides intuition of generalizing the two-miner mechanism in Sec-

tion 4.4 to N miners. More formally, using concave payoff on discrete and finite

outcome sets, it is shown that honest mining is the weakly dominant strategy for

any given miner having non-negative reported private chain length. The way the

mechanism implements this is using two comparisons: first, by comparing between

increments to private chain and second, between increments to public chain. These

comparisons enable the mechanism to penalize large increments and reward shorter

(honest) increments. Specifically, the mechanism has the highest reward for unit in-

crement to the public chain and zero increment to private chain. In this way, any

miner is incentivized to reduce augmenting private chain length and add one block to

the public chain on winning a round. Note that by assuming concavity of payoffs, this

generalized mechanism improves on the incentives designed in the two-miner case in

Section 4.4. Specifically, concavity improves on the linear payoff structure and helps

in enabling honest mining be a dominant strategy, irrespective of declared private

chain length.

It is also clear from the proposition that miners have no incentive misrepresenting

their private information. That is, no miner is better off reporting a higher or lower
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private chain length or false action. This is a result of the single-peaked nature of

payoffs (resulting from concavity of h1(.), h2(.)) for any miner that wins a round.

Even if a miner reports an action A
′
i instead of action Ai, taking any action that

extends public blockchain by any other length other than 1 is dominated. Hence, the

miner is better off taking Sl than Sp, Sw.

4.5.2 Schur-Concave Incentives

In order to address limitations from additive seperability, zero minimum and pub-

lic chain dominance rule, another incentive design is introduced. Previous rules are

relaxed and instead, the following is definition of ∆nwini :

∆nwin
i =

n
Ai
i −min(X ′) , min(X ′) ≤ ni + 1

nAii , min(X ′) > ni + 1
(4.24)

such that nAii ∈ {0, ni + 1, ni} when miner takes actions Sp, Sw, Sl respectively. Con-

tinuing from the definition of mechanism in Section 4.5, following are defined.

Definition 4.5.3 Zero Externality Loss: gloss(∆nloss
i ,∆Lloss) = 0 ∀ (∆nloss

i ,∆Lloss) ∈

R2.

Zero externality loss implements payoffs similar to current mining mining protocols

where losing miners incur cost of mining only (Antonopoulos, 2014; Böhme et al.,

2015; Osborne et al., 2004). Hence, designing mechanisms that incorporate this aspect

of mining enables consideration of implementability of proposed mining incentives

(Bergemann and Morris, 2005; Green and Laffont, 1986).

Definition 4.5.4 Inequality Measurement: For a winning miner, pre-order of

vectors of private and public chain increment x = (∆nwin,∆Lwin) ∈ R2 \ (0, 0) can be

computed using majorization.

Inequality Measurement considers measuring differences between public and private

chain increments. More precisely, our mechanism looks to evaluate how a winning
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miner’s actions may result in increments to public and private chains that are more

unequal than desired. The notion of inequality allows our mechanism to show how

forking or working only on private chain results in public and private chain incre-

ments that are higher, more unequal and therefore undesirable for the system when

compared to honest mining. Inequality measurement has been similarly used to mea-

sure inequality in parameters related to agent consumption, e.g., income, through the

Lorenz Curve or Gini Index (Gastwirth, 1972; Lorenz, 1905).

Definition 4.5.5 Ordered Win Payoff: gwin(∆nwin,∆Lwin) is Schur-Concave and

positive valued for (∆nwin,∆Lwin) ∈ R2 \ (0, 0) but gwin(0, 0) = 0.

Definition 4.5.5 basically implies that a miner gets a positive payoff only from a non-

zero net input to the system – in terms of ∆Lwin or ∆nwin. Using these assumptions

and rewriting the sets of payoffs for each action considered by miner i gives the

following ∀ A−i ∈ {Sp, Sw, Sl}:

u
Sp,A−i
i =

gwin(−min(X ′), ni + 1), min(X ′) ≤ ni + 1

gwin(0, ni + 1), min(X ′) > ni + 1
(4.25)

u
Sw,A−i
i =

gwin(ni + 1−min(X ′), 0), min(X ′) ≤ ni + 1

gwin(ni + 1, 0), min(X ′) > ni + 1
(4.26)

u
Sl,A−i
i =

gwin(ni −min(X ′), 1), min(X ′) ≤ ni + 1

gwin(ni, 1), min(X ′) > ni + 1
(4.27)

Proposition 4 For any miner with private chain length ni > 0, Sl is a weakly dom-

inant strategy under Zero Externality Loss, Inequality Measurement and Wins Payoff

structure. Further, such a direct mechanism is strategy-proof.

The key takeaway from Proposition 4 is that whenever miner’s actions result in dis-

parate increments in public and private chain, payoffs should be low. Forking or
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block-withholding in any given round results in such disparate increments (when

compared to honest mining) and are therefore penalized. In the spirit of Proposition

3, here a miner has no incentive in misreporting chain length because even on doing

so, the measurement of inequality between increments enables penalization. Hence,

the miner finds no way of gaming the system and therefore mines honestly.

In order to substantiate the claims, we present a rigorous numerical example. As

before, consider 5 miners and private chains of lengths X = {1, 3, 5, 4, 2}.

No winning miner has minimum private chain:

Suppose either miner ni = 3 wins or loses to miner with nj = 5. Consider the payoffs

noting that min(X ′) = min(X ′′) = 1.

u
Sp,S−i
i =

{
gwin(−1, 4), ∀ S−i ∈ {Sp, Sw, Sl} (4.28)

u
Sw,S−i
i =

{
gwin(3, 0), ∀ S−i ∈ {Sp, Sw, Sl} (4.29)

u
Sl,S−i
i =

{
gwin(2, 1), ∀ S−i ∈ {Sp, Sw, Sl} (4.30)

Compare vectors {(1, 2), (3, 0), (−1, 4)}. By Schur-concavity, since (−1, 4) ma-

jorizes (2, 1) implies gwin(1, 4) ≤ gwin(2, 1) and (3, 0) majorizes (2, 1) implies gwin(3, 0) ≤

gwin(2, 1).

Miner loses to minimum private chain miner :

Now suppose either miner ni = 2 wins or loses to miner with nj = 1. Consider the

payoffs noting that min(X ′) = 1,min(X ′′) = 2.

u
Sp,S−i
i =

{
gwin(−1, 3), ∀ S−i ∈ {Sp, Sw, Sl} (4.31)

u
Sw,S−i
i =

{
gwin(2, 0), ∀ S−i ∈ {Sp, Sw, Sl} (4.32)

u
Sl,S−i
i =

{
gwin(1, 1), ∀ S−i ∈ {Sp, Sw, Sl} (4.33)

Again compare the vectors {(1, 1), (2, 0), (−1, 3)}. By Schur-concavity, since (−1, 3)

majorizes (1, 1) and (2, 0) majorizes (1, 1), we have that gwin(1, 1) ≥ gwin(2, 0) and

gwin(1, 1) ≥ gwin(−1, 3).
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Minimum private chain miner wins or loses :

Now suppose either miner ni = 1 wins or loses to miner with nj = 2. Consider the

payoffs noting that min(X ′) = 2,min(X ′′) = 1.

u
Sp,S−i
i =

{
gwin(−2, 2), ∀ S−i ∈ {Sp, Sw, Sl} (4.34)

u
Sw,S−i
i =

{
gwin(0, 0), ∀ S−i ∈ {Sp, Sw, Sl} (4.35)

u
Sl,S−i
i =

{
gwin(−1, 1), ∀ S−i ∈ {Sp, Sw, Sl} (4.36)

By definition, since gwin(0, 0) = 0, minimum private chain miner has zero payoff from

Sw. In addition, since (−2, 2) majorizes (−1, 1), by Schur Concavity, uSli � u
Sp
i .

4.5.3 Additive Separability with Concave payoffs

In this section, we propose a mechanism that combines ideas from previous two

sections (Sections 4.5.1 & 4.5.2). Specifically, we relax all definitions from Section

4.5.1, maintain definitions from Section 4.5.2. Further, we assume the same additive

separable structure of gwin as in Section 4.5.1 and that h1(∆nwin), h2(∆Lwin) are

real valued concave functions ∀ (∆nwin,∆Lwin) ∈ R2 \ (0, 0) such that
∑2

i=1 hi(xi) >

0 ∀ (x1, x2) ∈ R2 \ (0, 0),
∑2

i=1 hi(0) = 0.

Under Zero Externality Loss, Inequality Measurement and Win Payoff assump-

tions, payoffs can be reformulated as follows:

u
Sp,S−i
i =

h1(ni + 1) + h2(−min(X ′)), min(X ′) ≤ ni + 1

h1(ni + 1) + h2(0), min(X ′) > ni + 1
(4.37)

u
Sw,S−i
i =

h1(0) + h2(ni + 1−min(X ′)), min(X ′) ≤ ni + 1

h1(0) + h2(ni + 1), min(X ′) > ni + 1
(4.38)
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uSli =

h1(1) + h2(ni −min(X ′)), min(X ′) ≤ ni + 1

h1(1) + h2(ni), min(X ′) > ni + 1
(4.39)

Proposition 5 For any miner with private chain length ni > 0, Sl is a weakly domi-

nant strategy under Zero Externality Loss, Inequality Measurement, Win Payoff struc-

ture and additively separable concave payoffs. Further, such a direct mechanism is

strategy-proof.

Proposition 5 basically extends the reasoning from Proposition 4 and presents an

incentive structure with additive separability. In doing so, the mechanism demon-

strates implementability (Ashlagi et al., 2010; Bergemann and Morris, 2005; Green

and Laffont, 1986). In other words, separating payoffs from public and private chain

increments opens possibilities of designing incentives that are quasilinear or incor-

porate different context dependent functional structures to public and private chain

payoffs. We keep experimental analysis of impact of different structures on miner

incentives, for future work.

4.5.4 Myopic Miner

In this section, we directly extend the model in Eyal and Sirer (2018); Sapirshtein

et al. (2016) and show how proposed incentive structure makes honest mining a

dominant strategy. First, the definition for ∆nsi ∀ s ∈ {win, loss} is revised. Instead,

as shown in Eyal and Sirer (2018); Sapirshtein et al. (2016) it is assumed that the

miner is myopic and considers only the difference in increment in its own private chain

length to increment in public chain length each round by honest miners. Hence, ∆nsi

is redefined as δi = ni − lh. Essentially, δi is the lead a selfish miner’s private chain

length ni has on the increment in public chain lh by honest miners at the beginning

of each round. As shown in Eyal and Sirer (2018), the selfish miner always tries to

keep the lead such that δi ≥ 1 ⇒ ni ≥ lh + 1.
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Extending definition of payoff function from Section 4.5.2, suppose definitions

4.5.3, 4.5.4 and 4.5.5 hold. Then a myopic miner only considers expected payoffs

from forking, withholding and honest mining as per:

u
Sp
i = gwin(−lh, ni + 1), ∀ ni ≥ lh + 1, ni ∈ {0, 1, 2, ..} (4.40)

uSwi = gwin(ni + 1− lh, 0), ∀ ni ≥ lh + 1, ni ∈ {0, 1, 2, ..} (4.41)

uSli = gwin(ni − lh, 1) ∀ ni ∈ {0, 1, 2, ..} (4.42)

Each action represents the appropriate changes in δi and ∆L′. When miner forks the

chain, his private chain length is zero and hence δi = −lh; when withholding private

chain length is incremented by 1 and hence δi = ni + 1− lh and finally when honest

mining, δi = ni − lh remains the same.

Proposition 6 For any myopic miner with ni ≥ 0, under Zero Loss Externality, In-

equality Measurement and Ordered Win Payoffs, honest mining is a dominant strat-

egy. Further, such a direct mechanism is strategy-proof.

The idea presented in Proposition 6 is an extension of Proposition 4 with a revised

notion of comparing private chain increments with the honest majority. In spirit of

Eyal and Sirer (2018); Sapirshtein et al. (2016), private chain increments measured in

comparison to honest miner actions keep intact penalization for more unequal private

and public chain increments. In addition, Proposition 6 shows that even if miners

misreport private chain length, the mechanism makes honest mining dominant by

measuring (and penalizing) how much each miner is acting selfishly (keeping a lead

on honest miners) or honestly.



89

4.6 Conclusion

Theoretical analysis of mining incentives help establish the importance of design-

ing the right incentives to encourage desired behavior. The optimal payoffs structure

discovered does minimize selfish behavior and incentivize the honest behavior among

miners. The key takeaway from analysis is that under either definition of ∆n, greater

penalty on actions that have negative externality on the system helps to incentivize

honest mining. However, following are some limitations of the designed incentives.

First, since there is no publicly available time-series data of miner actions for any

cryptocurrency, our assumptions of how miners would behave and update their belief

about the reward on winning a round under incomplete information may be over-

assumed. For instance, we don’t consider the case where new miners join or leave the

blockchain system in a later round. It can be expected that new miners who join or

leave the system may lead to changes in overall network hash rate which would imply

changes to miners’ action. This is because dynamic miner entry might lead to changes

in ∆n measurements. However, as shown, if penalty for negative externality to system

is high enough, convergence to honest mining is possible. Third, the current miners’

decision making strategy does not account for multiple complex incentives other than

payoff maximization. For instance, off-platform Bitcoin prices may drive miner de-

cisions on forking or block-withholding (Eyal et al., 2016; Narayanan et al., 2016).

However, in spite of the limitations, our attempt at designing incentives for disincen-

tivizing selfish mining points to the larger aim at strengthening the cryptocurrency

protocols. Specifically, given that blockchain systems are protocol heavy rather than

application heavy (Narayanan et al., 2016; Tapscott and Tapscott, 2016), the need

to have robust protocols that maintain decentralization in the system is critical for

the survival of cryptocurrencies. Our designed incentives provide a framework for

developing further approaches to solving this problem in this area.
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X. Drèze and F.-X. Hussherr. Internet advertising: Is anybody watching? Journal
of interactive marketing, 17(4):8–23, 2003.

B. Edelman, M. Ostrovsky, and M. Schwarz. Internet advertising and the generalized
second-price auction: Selling billions of dollars worth of keywords. The American
economic review, 97(1):242–259, 2007.

B. Ellickson, B. Grodal, S. Scotchmer, and W. R. Zame. Clubs and the market:
large finite economies. Journal of Economic Theory, 101(1):40–77, 2001.

M. T. Elliott and P. S. Speck. Consumer perceptions of advertising clutter and its
impact across various media. Journal of advertising research, 38(1):29–30, 1998.

W. Elmaghraby and P. Keskinocak. Combinatorial auctions in procurement. In
The practice of supply chain management: Where theory and application converge,
pages 245–258. Springer, 2004.

E. Ephrati and J. S. Rosenschein. The clarke tax as a consensus mechanism among
automated agents. In AAAI, volume 91, pages 173–178, 1991.

D. S. Evans. The online advertising industry: Economics, evolution, and privacy.
The journal of economic perspectives, 23(3):37–60, 2009.

I. Eyal. Blockchain technology: Transforming libertarian cryptocurrency dreams to
finance and banking realities. Computer, 50(9):38–49, 2017.

I. Eyal and E. G. Sirer. Majority is not enough: Bitcoin mining is vulnerable.
Communications of the ACM, 61(7):95–102, 2018.

I. Eyal, A. E. Gencer, E. G. Sirer, and R. Van Renesse. Bitcoin-ng: A scalable
blockchain protocol. In 13th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 16), pages 45–59, 2016.

Eyeo. Contribute to adblock plus. AdBlock Plus Website, 2013.

R. F.-I. Fedorko. User preferences in the field of online ad-blocking. Perspectives,
10(7):1–11, 2018.

C. Foster. The cost of ad blocking - pagefair and adobe 2016 ad blocking report.
2016.

Y. Fujishima, K. Leyton-Brown, and Y. Shoham. Taming the computational com-
plexity of combinatorial auctions: Optimal and approximate approaches. In IJCAI,
volume 99, pages 548–553, 1999.



95

R. Gan, Q. Guo, H. Chang, and Y. Yi. Ant colony optimization for winner determi-
nation in combinatorial auctions. In Natural Computation, 2007. ICNC 2007. Third
International Conference on, volume 4, pages 441–445. IEEE, 2007.

K. Garimella, O. Kostakis, and M. Mathioudakis. Ad-blocking: A study on per-
formance, privacy and counter-measures. In Proceedings of the 2017 ACM on Web
Science Conference, pages 259–262. ACM, 2017.

J. L. Gastwirth. The estimation of the lorenz curve and gini index. The review of
economics and statistics, pages 306–316, 1972.

W. Geng and Z. Chen. Optimal pricing of virtual goods with conspicuous features
in a freemium model. International Journal of Electronic Commerce, 23(3):427–449,
2019.

A. Ghalanos and S. Theussl. Rsolnp: general non-linear optimization using aug-
mented lagrange multiplier method. R package version, 1, 2012.

F. Glaser. Pervasive decentralisation of digital infrastructures: a framework for
blockchain enabled system and use case analysis. In Proceedings of the 50th Hawaii
International Conference on System Sciences, 2017.

R. Gonen and D. Lehmann. Optimal solutions for multi-unit combinatorial auctions:
Branch and bound heuristics. 2000.

W. Gorman. Conditions for additive separability. Econometrica: Journal of the
Econometric Society, pages 605–609, 1968a.

W. M. Gorman. The structure of utility functions. The Review of Economic Studies,
35(4):367–390, 1968b.

V. Gramoli. From blockchain consensus back to byzantine consensus. Future
Generation Computer Systems, 2017.

J. Green and J.-J. Laffont. Characterization of satisfactory mechanisms for the
revelation of preferences for public goods. Econometrica: Journal of the Econometric
Society, pages 427–438, 1977.

J. R. Green and J.-J. Laffont. Partially verifiable information and mechanism design.
The Review of Economic Studies, 53(3):447–456, 1986.

J. Greenberg. Ad blockers are making money off ads (and tracking, too). Wired
Business, 2016.

R. Guerraoui and J. Wang. On the unfairness of blockchain. In International
Conference on Networked Systems, pages 36–50. Springer, 2018.

Y. Guo, A. Lim, B. Rodrigues, and Y. Zhu. Heuristics for a bidding problem.
Computers & operations research, 33(8):2179–2188, 2006.

W. J. Gutjahr. A graph-based ant system and its convergence. Future generation
computer systems, 16(8):873–888, 2000.

J. Hamari, N. Hanner, and J. Koivisto. Service quality explains why people use
freemium services but not if they go premium: An empirical study in free-to-play
games. International Journal of Information Management, 37(1):1449–1459, 2017.



96

P. J. Hammond. Equity, arrow’s conditions, and rawls’ difference principle.
Econometrica: Journal of the Econometric Society, pages 793–804, 1976.

R. W. Helsley and W. C. Strange. Exclusion and the private enforcement of property
rights. Journal of Public Economics, 53(2):291–308, 1994.

J. L. Hemmer. Internet advertising battle: Copyright laws use to stop the use of
ad-blocking software, the. Temp. J. Sci. Tech. & Envtl. L., 24:479, 2005.

A. Holland and B. O’Sullivan. Robust solutions for combinatorial auctions. In
Proceedings of the 6th ACM Conference on Electronic Commerce, pages 183–192.
ACM, 2005.

H. H. Hoos and C. Boutilier. Solving combinatorial auctions using stochastic local
search. In AAAI/IAAI, pages 22–29, 2000.

J. Huang and W. Cheng. Filtering performance analysis and application study
of advertising filtering tools. In 2017 12th International Conference on Intelligent
Systems and Knowledge Engineering (ISKE), pages 1–5. IEEE, 2017.

G. Huberman, J. D. Leshno, and C. Moallemi. An economist’s perspective on the
bitcoin payment system. In AEA Papers and Proceedings, volume 109, pages 93–96,
2019.

M. Ikram and M. A. Kaafar. A first look at mobile ad-blocking apps. In 2017 IEEE
16th International Symposium on Network Computing and Applications (NCA),
pages 1–8. IEEE, 2017.

U. Iqbal, Z. Shafiq, and Z. Qian. The ad wars: retrospective measurement and
analysis of anti-adblock filter lists. In Proceedings of the 2017 Internet Measurement
Conference, pages 171–183. ACM, 2017.

G. Iyer, D. Soberman, and J. M. Villas-Boas. The targeting of advertising. Marketing
Science, 24(3):461–476, 2005.

S. Jiang and J. Wu. Bitcoin mining with transaction fees: A game on the block
size. In Proc. of the 2nd IEEE International Conference on Blockchain (Blockchain
2019), 2019.

J. P. Johnson. Targeted advertising and advertising avoidance. The RAND Journal
of Economics, 44(1):128–144, 2013.

Y. Kannai. Remarks concerning concave utility functions on finite sets. Economic
Theory, 26(2):333–344, 2005.

P. Karaenke, M. Bichler, and S. Minner. Retail warehouse loading dock coordination
by core-selecting package auctions. In ECIS, 2015.

P. Karaenke, M. Bichler, and S. Minner. Coordination is hard: Electronic market
mechanisms for increased efficiency in transportation logistics. Management Science,
2018.

A. Karsenty. Ad-blocking and new business models on the internet. DigiWorld
Economic Journal, 104(104), 2016.



97

Z. Katona and M. Sarvary. Eyeo’s Adblock Plus: Consumer Movement or
Advertising Toll Booth? The Berkeley-Haas Case Series. University of California,
Berkeley. Haas . . . , 2018.

B. Kewell, R. Adams, and G. Parry. Blockchain for good? Strategic Change, 26(5):
429–437, 2017.

A. Kiayias, E. Koutsoupias, M. Kyropoulou, and Y. Tselekounis. Blockchain mining
games. In Proceedings of the 2016 ACM Conference on Economics and Computation,
pages 365–382. ACM, 2016.

V. Krammer. An effective defense against intrusive web advertising. In Privacy,
Security and Trust, 2008. PST’08. Sixth Annual Conference on, pages 3–14. IEEE,
2008.

J. A. Kroll, I. C. Davey, and E. W. Felten. The economics of bitcoin mining,
or bitcoin in the presence of adversaries. In Proceedings of WEIS, volume 2013,
page 11, Washington D.C., USA, 2013. WEIS, 2013.

A. M. Kwasnica, J. O. Ledyard, D. Porter, and C. DeMartini. A new and improved
design for multiobject iterative auctions. Management science, 51(3):419–434, 2005.

Y. Kwon, D. Kim, Y. Son, E. Vasserman, and Y. Kim. Be selfish and avoid dilemmas:
Fork after withholding (faw) attacks on bitcoin. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, pages 195–209.
ACM, 2017.

A. H. Lashkari, A. Seo, G. D. Gil, and A. Ghorbani. Cic-ab: Online ad blocker
for browsers. In 2017 International Carnahan Conference on Security Technology
(ICCST), pages 1–7. IEEE, 2017.

H. C. Lau and Y. G. Goh. An intelligent brokering system to support multi-
agent web-based 4/sup th/-party logistics. In Tools with Artificial Intelligence,
2002.(ICTAI 2002). Proceedings. 14th IEEE International Conference on, pages 154–
161. IEEE, 2002.

C.-S. Lee. An analytical framework for evaluating e-commerce business models and
strategies. Internet Research, 11(4):349–359, 2001.

K. Lee. Transaction costs and equilibrium pricing of congested public goods with
imperfect information. Journal of Public Economics, 45(3):337–362, 1991.

D. Lehmann, R. Müller, and T. Sandholm. The winner determination problem.
Combinatorial auctions, pages 297–318, 2006.

R. P. Leme and E. Tardos. Pure and bayes-nash price of anarchy for generalized
second price auction. In 2010 IEEE 51st Annual Symposium on Foundations of
Computer Science, pages 735–744. IEEE, 2010.

P. Levy, D. Sarne, and I. Rochlin. Contest design with uncertain performance and
costly participation. In IJCAI, pages 302–309, 2017.



98

Y. Lewenberg, Y. Bachrach, Y. Sompolinsky, A. Zohar, and J. S. Rosenschein. Bit-
coin mining pools: A cooperative game theoretic analysis. In Proceedings of the
2015 International Conference on Autonomous Agents and Multiagent Systems,
pages 919–927. International Foundation for Autonomous Agents and Multiagent
Systems, 2015a.

Y. Lewenberg, Y. Sompolinsky, and A. Zohar. Inclusive block chain protocols. In
International Conference on Financial Cryptography and Data Security, pages 528–
547. Springer, 2015b.

K. Leyton-Brown, Y. Shoham, and M. Tennenholtz. An algorithm for multi-unit
combinatorial auctions. In AAAI/IAAI, pages 56–61, 2000.

K. Leyton-Brown, E. Nudelman, and Y. Shoham. Learning the empirical hardness
of optimization problems: The case of combinatorial auctions. In International
Conference on Principles and Practice of Constraint Programming, pages 556–572.
Springer, 2002.

K. Leyton-Brown, E. Nudelman, and Y. Shoham. Empirical hardness models:
Methodology and a case study on combinatorial auctions. Journal of the ACM
(JACM), 56(4):22, 2009.

W. Li, S. Andreina, J.-M. Bohli, and G. Karame. Securing proof-of-stake blockchain
protocols. In Data Privacy Management, Cryptocurrencies and Blockchain
Technology, pages 297–315. Springer, 2017a.

W. Li, W. Hui, A. Leung, and W. T. Yue. Content restrictions on adblock usage.
In PACIS, page 84, 2017b.

B. Liu, J. Lu, R. Wang, and J. Zhang. Optimal prize allocation in contests: The
role of negative prizes. Journal of Economic Theory, 175:291–317, 2018.

M. O. Lorenz. Methods of measuring the concentration of wealth. Publications of
the American statistical association, 9(70):209–219, 1905.

D. Malandrino, A. Petta, V. Scarano, L. Serra, R. Spinelli, and B. Krishnamurthy.
Privacy awareness about information leakage: Who knows what about me? In
Proceedings of the 12th ACM workshop on Workshop on privacy in the electronic
society, pages 279–284. ACM, 2013.

M. Malloy, M. McNamara, A. Cahn, and P. Barford. Ad blockers: Global prevalence
and impact. In Proceedings of the 2016 ACM on Internet Measurement Conference,
pages 119–125. ACM, 2016.

V. Maniezzo and A. Carbonaro. Ant colony optimization: an overview. In Essays
and surveys in metaheuristics, pages 469–492. Springer, 2002.

F. Manjoo. Ad blockers and the nuisance at the heart of the modern web. The New
York Times, 2015.

S. Mansfield-Devine. When advertising turns nasty. Network Security, 2015(11):
5–8, 2015.

M. Mariotti and R. Veneziani. Opportunities as chances: maximising the probability
that everybody succeeds. The Economic Journal, 128(611):1609–1633, 2017.



99

D. Martens, M. De Backer, R. Haesen, J. Vanthienen, M. Snoeck, and B. Baesens.
Classification with ant colony optimization. IEEE Transactions on Evolutionary
Computation, 11(5):651–665, 2007.

D. Masclet, C. Noussair, S. Tucker, and M.-C. Villeval. Monetary and nonmonetary
punishment in the voluntary contributions mechanism. American Economic Review,
93(1):366–380, 2003.

F. S. McChesney, M. Reksulak, and W. F. Shughart. Competition policy in public
choice perspective. The Oxford Handbook of International Antitrust Economics, 1:
147, 2015.

R. A. Miller. The legal fate of internet ad-blocking. BUJ Sci. & Tech. L., 24:299,
2018.

H. Moulin. One-dimensional mechanism design. Theoretical Economics, 12(2):587–
619, 2017.

U. Mukhopadhyay, A. Skjellum, O. Hambolu, J. Oakley, L. Yu, and R. Brooks. A
brief survey of cryptocurrency systems. In 2016 14th annual conference on privacy,
security and trust (PST), pages 745–752. IEEE, 2016.

S. Muthukrishnan. Ad exchanges: Research issues. In International Workshop on
Internet and Network Economics, pages 1–12. Springer, 2009.

R. B. Myerson. Incentive compatibility and the bargaining problem. Econometrica:
journal of the Econometric Society, pages 61–73, 1979.

S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Working Paper, 2008.

G. Nan, D. Wu, M. Li, and Y. Tan. Optimal freemium strategy for information
goods in the presence of piracy. Journal of the Association for Information Systems,
19(4):3, 2018.

A. Narayanan, J. Bonneau, E. Felten, A. Miller, and S. Goldfeder. Bitcoin and
cryptocurrency technologies: a comprehensive introduction. Princeton University
Press, 2016.

C. Natoli and V. Gramoli. The blockchain anomaly. In 2016 IEEE 15th International
Symposium on Network Computing and Applications (NCA), pages 310–317. IEEE,
2016.

K. Nayak, S. Kumar, A. Miller, and E. Shi. Stubborn mining: Generalizing selfish
mining and combining with an eclipse attack. In 2016 IEEE European Symposium
on Security and Privacy (EuroS&P), pages 305–320. IEEE, 2016.

J. Newman and F. E. Bustamante. The value of first impressions. In International
Conference on Passive and Active Network Measurement, pages 273–285. Springer,
2019.

T. Niemand, S. Tischer, T. Fritzsche, and S. Kraus. The freemium effect: Why
consumers perceive more value with free than with premium offers. 2015.

N. Nisan. Algorithms for selfish agents. In Annual Symposium on Theoretical
Aspects of Computer Science, pages 1–15. Springer, 1999.



100

R. Nithyanand, S. Khattak, M. Javed, N. Vallina-Rodriguez, M. Falahrastegar, J. E.
Powles, E. De Cristofaro, H. Haddadi, and S. J. Murdoch. Adblocking and counter
blocking: A slice of the arms race. In FOCI, 2016.

M. J. Osborne et al. An Introduction to Game Theory, volume 3. Oxford University
Press, New York, 2004.

W. Palant. Adblock plus user survey results. AdBlock Plus, 2011. URL
https://adblockplus.org/blog/adblock-plus-user-survey-results-part-0.
[Online; posted 10-October-2011].

D. C. Parkes and L. H. Ungar. Iterative combinatorial auctions: Theory and practice.
AAAI/IAAI, 7481, 2000.

J. Pfeiffer and F. Rothlauf. Greedy heuristics and weight-coded eas for multidi-
mensional knapsack problems and multi-unit combinatorial auctions. In Operations
Research Proceedings 2007, pages 153–158. Springer, 2008.

E. L. Post and C. N. Sekharan. Comparative study and evaluation of online ad-
blockers. In Information Science and Security (ICISS), 2015 2nd International
Conference on, pages 1–4. IEEE, 2015.

G. V. Prasad, A. S. Prasad, and S. Rao. A combinatorial auction mechanism for
multiple resource procurement in cloud computing. IEEE Transactions on Cloud
Computing, 2016.

J. Puchinger, G. R. Raidl, and U. Pferschy. The core concept for the multidimen-
sional knapsack problem. In European Conference on Evolutionary Computation in
Combinatorial Optimization, pages 195–208. Springer, 2006.

J. Puchinger, G. R. Raidl, and U. Pferschy. The multidimensional knapsack problem:
Structure and algorithms. INFORMS Journal on Computing, 22(2):250–265, 2010.

E. Pujol, O. Hohlfeld, and A. Feldmann. Annoyed users: Ads and ad-block usage
in the wild. In Proceedings of the 2015 ACM Conference on Internet Measurement
Conference, pages 93–106. ACM, 2015.

A. Ray and M. Ventresca. An ant colony approach for the winner determination
problem. In European Conference on Evolutionary Computation in Combinatorial
Optimization, pages 174–188. Springer, 2018.

A. Ray, M. Ventresca, and H. Wan. A mechanism design approach to blockchain
protocols. In 2018 IEEE International Conference on Blockchain, pages 1603–1608.
IEEE, 2018a.

A. Ray, M. Ventresca, and H. Wan. A mechanism design approach to blockchain
protocols. In Proceedings of the IEEE 2018 Cybermatics Congress, pages 1603–1608.
2018 IEEE International Conference on Blockchain, 2018b.

M. K. Richter and K.-C. Wong. Concave utility on finite sets. Journal of economic
theory, 115(2):341–357, 2004.

D. Ron and A. Shamir. Quantitative analysis of the full bitcoin transaction graph.
In International Conference on Financial Cryptography and Data Security, pages
6–24. Springer, 2013.



101
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A. APPENDIX A

A.1 Proof Lemma 1

Proof Second stage, users choose between

u1 = α(v − t) (A.1)

u2 = α(v + z − tmw)− c(n2) (A.2)

The indifference point is α1 = c
c+z+t(1−mw)

. Mass of free usage members is n2 =

1−
(

c
c+z+t(1−mw)

)
. It is easy to see that given parameter range assumptions the max

value α1 assumes is 1
1+z
∀ z ∈ (1, v) and minimum value is zero. Hence mass of

free members is between
(
1− 1

1+z
, 1
]
⊂ [1

2
, 1]. For AB, since mass of free members

is always greater than free members, the decision is to charge whitelisters the lower

price γLw.

A.2 Proof Lemma 2

Proof Second stage, users choose between

u1 = α(v − t) (A.3)

u3 = α(v + z)− c(n3)− pa (A.4)

The indifference point is α = c+pa
c+t+z

. Mass of paid usage members us n3 = 1−
(
c+pa
c+t+z

)
.

First stage, AB solves for premium price for optimizing revenue. Since objective

function is trivially concave, p∗a = t+z
2

, which implies α3 = 2c+t+z
2(c+t+z)

. Mass of paid

users at equilibrium is n∗3 = 1− 2c+t+z
2(c+t+z)

. Now, note that 2c+t+z
2(c+t+z)

can be simplified to

1
2

+ c
2(c+t+z)

≥ 1
2
. This implies that n∗3 ≤ 1

2
.
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A.3 Proof Lemma 3

Proof Second stage, users choose between

u1 = α(v − t) (A.5)

u2 = α(v + z − tmw)− c(n2 + n3) (A.6)

u3 = α(v + z)− c(n2 + n3)− pa (A.7)

In the two stage game, Stage 1 – AB sets price for advertisers based on following:

pw =

γLw, n2 ≥ n3

γHw , n2 < n3

(A.8)

where γHw > γLw; γHw , γ
L
w ∈ (0, 1), and price for premium membership pa. For freemium,

n2 denotes mass of free members while n1 is mass of non-members. As derived from

stage 2, mass of free members is n2 = pa
tmw
− c

c+z+t(1−mw)
and of premium members is

n3 = 1 − pa
tmw

such that α1 = c
c+z+t(1−mw)

and α2 = pa
tmw

. So the AB basically has to

solve the following problem, and choose between two revenue choices:

max
pa

γLwmw + pan3

s.t. pa − tmw ≤ 0

1 +
c

c+ z + t(1−mw)
− 2pa
tmw

≤ 0

(A.9)

and

max
pa

γHwmw + pan3

s.t. pa − tmw ≤ 0

2pa
tmw

− c

c+ z + t(1−mw)
− 1 < 0

(A.10)
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Solving first problem, Equation A.9, we have the following Lagrangean

L = γLwmw + pa

(
1− pa

tmw

)
− λ1 (pa − tmw)− λ2

(
1 +

c

c+ z + t(1−mw)
− 2pa
tmw

)

The FOC is

FOC : 1− 2pa
tmw

− λ1 +
2λ2

tmw

Following are the complementary slackness conditions to analyze:

• Case 1 λ1 = 0, λ2 = 0: p∗a = tmw
2

. This is clearly not valid since c
c+z+t(1−mw)

< 0

doesn’t hold.

• Case 2 λ1 = 0, λ2 > 0: This implies second constraint holds with equality.

Hence solving 2pa
tmw

= 1+ c
c+z+t(1−mw)

, we have that p∗a = tmw
2

(
1 + c

c+z+t(1−mw)

)
<

tmw ∀ c
c+z+t(1−mw)

∈ (0, 1
2
).

• Case 3 λ1 > 0, λ2 = 0: This implies first constraint holds with equality such

that p∗a = tmw, and second holds with inequality since −1 + c
c+z+t(1−mw)

< 0.

However, in FOC, λ1 = −1 < 0 hence this solution doesn’t hold.

• Case 4 λ1 > 0, λ2 > 0: This implies both constraints holds with equality. But

this is impossible since on solving, we get different values of p∗a.

Hence, AB has mass of premium members is n3 = 1
2
− c

2(c+z+t(1−mw))
while mass of

free members is n2 = 1
2
− c

2(c+z+t(1−mw))
. Revenue from this is

π∗AB =
tmw

2

(
1 +

c

c+ z + t(1−mw)

)(
1

2
− c

2(c+ z + t(1−mw))

)
+ γLwmw.

Solving second problem, following is the Lagrangean:

L = γHwmw + pa

(
1− pa

tmw

)
− λ1 (pa − tmw)− λ2

(
2pa
tmw

− c

c+ z + t(1−mw)
− 1

)
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The FOC is the same and is

FOC : 1− 2pa
tmw

− λ1 −
λ2

tmw

Following are the complementary slackness conditions to analyze:

• Case 1 λ1 = 0, λ2 = 0: p∗a = tmw
2

. This is a valid solution in this case.

• Case 2 λ1 = 0, λ2 > 0: This implies second constraint holds with equality. This

is not possible in this scenario and hence, this case is neglected.

• Case 3 λ1 > 0, λ2 = 0: This implies first constraint holds with equality such

that p∗a = tmw, and second is violated since 1 − c
c+z+t(1−mw)

> 0 ∀ σ ∈ (1 −
c

c+z+t(1−mw)
, 1). Further, in FOC, λ1 = −1 < 0 hence this solution doesn’t hold.

• Case 4 λ1 > 0, λ2 > 0: This implies both constraints holds with equality. But

this is impossible since on solving, we get different values of p∗a.

So analyzing revenues from all three cases we have that AB revenue from this is

π∗AB =
tmw

4
+ γHwmw.

Comparison of revenue from these two scenarios help establish mass of whitelisted

advertisers for which AB charges higher or lower. In doing so, note that the following

holds true ∀ σ ∈ [1
2
, 1), c, t,mw ∈ (0, 1):

1

2

(
1 +

c

c+ z + t(1−mw)

)(
1

2
−
(

c

c+ z + t(1−mw)

))
<

1

4

This is because the following simplifies to,

⇒ 1

2

(
1 +

c

c+ z + t(1−mw)

)(
1

2
−
(

c

c+ z + t(1−mw)

))
− 1

4

⇒ −1

4

((
c

c+ z + t(1−mw)

)
+ 2

(
c

c+ z + t(1−mw)

)2
)
< 0
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Therefore, since γHw > γLw and 1
2

(
1 + c

c+z+t(1−mw)

)(
1
2
−
(

c
c+z+t(1−mw)

))
< 1

4
, AB

always chooses p∗a = tmw
2

such that revenue is

π∗AB =
tmw

4
+ γHwmw

A.4 Proof Proposition 1

Proof Comparison - Ad-Exchange vs. Paid

This is a proof by deduction using properties of functions on compact sets. Specifi-

cally, all 8 extreme cases corresponding to the set I : (c, t,mw) ∈ {(0, 1)×(0, 1)×(0, 1)}

are listed out, and under each case, a function defined as difference between area un-

der the graphs under ad-exchange and paid models is analyzed. For each case it

shown that difference in ad-exchange vs. paid welfare is non-negative and finally, it

is shown that since the difference in welfare is nowhere negative or zero, the only

scenario is that the difference is positive over the domain I.

Case c t mw Indifference Point - Ad-Ex Indifference Point - Paid

1 1 1 1 1
1+z

3+z
2(2+z)

2 1 1 0 1
2+z

3+z
2(2+z)

3 1 0 1 1
1+z

2+z
2(1+z)

4 1 0 0 1
1+z

2+z
2(1+z)

5 0 1 1 0 1
2

6 0 1 0 0 1
2

7 0 0 1 0 1
2

8 0 0 0 0 1
2
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Recall that user welfare under these two models is,

V ad-ex
1 = (v + z − tmw)

(
1− α2

1

2

)
− c(1− α1)2

V paid
1 = (v + z)

(
1− α2

3

2

)
− c(1− α3)2 − t+ z

2
(1− α3)

Case 1: Area under the graph considering ad-exchange is

(v + z − 1)

(
1−

(
1

1+z

)2

2

)
−
(

1− 1

1 + z

)2

and considering paid is

(v + z)

1−
(

3+z
2(2+z)

)2

2

− (1− 3 + z

2(2 + z)

)2

− 1 + z

2

(
1− 3 + z

2(2 + z)

)

Subtracting paid welfare from ad-exchange welfare and collecting terms for v+ z, we

have

⇒ (v + z)

2

((
3 + z

2(2 + z)

)2

− 1

(1 + z)2

)
> 0 ∀ v > 2, z ∈ (1, v)

Collecting rest of the terms

⇒ −1

2

(
1−

(
1

1 + z

)2
)
−
(

z

1 + z

)2

+

(
1− 3 + z

2(2 + z)

)2

+
1 + z

2

(
1− 3 + z

2(2 + z)

)

⇒ −1

2

(
1−

(
1

1 + z

)2
)
−
(

z

1 + z

)2

+

(
1− 3 + z

2(2 + z)

)((
1− 3 + z

2(2 + z)

)
+

1 + z

2

)

⇒ −1

2

(
1−

(
1

1 + z

)2
)
−
(

z

1 + z

)2

+

(
1 + z

2(2 + z)

)((
1 + z

2(2 + z)

)
+

1 + z

2

)
⇒ (3 + z)(1 + z)2

4(2 + z)2
− (2z + 3z2)

2(1 + z)2
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Adding to previous term, we have that

(v + z)

2

((
3 + z

2(2 + z)

)2

− 1

(1 + z)2

)
+

(3 + z)(1 + z)2

4(2 + z)2
− (2z + 3z2)

2(1 + z)2
> 0 ∀ z ∈ (1, v), v > 2

So summation of both terms is > 0 such that, ad-exchange is better than paid model.

Case 2: Area under the graph considering ad-exchange is

(v + z − 1)

(
1−

(
1

2+z

)2

2

)
−
(

1− 1

2 + z

)2

and considering paid is

(v + z)

1−
(

3+z
2(2+z)

)2

2

− (1− 3 + z

2(2 + z)

)2

− 1 + z

2

(
1− 3 + z

2(2 + z)

)

Subtracting paid welfare from ad-exchange welfare and collecting terms for v+ z, we

have

⇒ (v + z)

2

((
3 + z

2(2 + z)

)2

− 1

(2 + z)2

)
> 0 ∀ v > 2, z ∈ (1, v)

Collecting rest of the terms,

⇒ −1

2

(
1−

(
1

2 + z

)2
)
−
(

1 + z

2 + z

)2

+

(
1− 3 + z

2(2 + z)

)2

+
1 + z

2

(
1− 3 + z

2(2 + z)

)

⇒ −1

2

(
1−

(
1

2 + z

)2
)
−
(

1 + z

2 + z

)2

+

(
1− 3 + z

2(2 + z)

)((
1− 3 + z

2(2 + z)

)
+

1 + z

2

)

⇒ −1

2

(
1−

(
1

2 + z

)2
)
−
(

1 + z

2 + z

)2

+

(
1 + z

2(2 + z)

)((
1 + z

2(2 + z)

)
+

1 + z

2

)
⇒ z3 − z2 − 9z − 7

4(2 + z)2
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Again, summation of both terms gives,

⇒ z3 − z2 − 9z − 7

4(2 + z)2
+

(v + z)

2

((
3 + z

2(2 + z)

)2

− 1

(2 + z)2

)
> 0 ∀ v > 2, z ∈ (1, v)

proves that ad-exchange is better than paid.

Case 3: Area under the graph considering ad-exchange is

(v + z)

(
1−

(
1

1+z

)2

2

)
−
(

1− 1

1 + z

)2

and considering paid is

(v + z)

1−
(

2+z
2(1+z)

)2

2

− (1− 2 + z

2(1 + z)

)2

− z

2

(
1− 2 + z

2(1 + z)

)

Subtracting paid welfare from ad-exchange welfare and collecting terms for v+ z, we

have

⇒ (v + z)

2

((
2 + z

2(1 + z)

)2

− 1

(1 + z)2

)
> 0 ∀ z ∈ (1, v), v > 2

Collecting rest of the terms we have

−
(

1− 1

1 + z

)2

+

(
1−

(
2 + z

2(1 + z)

))((
1−

(
2 + z

2(1 + z)

))
+
z

2

)
⇒ −

(
z

1 + z

)2

+

(
z

2(1 + z)

)(
z

2(1 + z)
+
z

2

)
⇒ −

(
z

1 + z

)2

+
1

4

(
z

(1 + z)

)2

+
z2

4(1 + z)

⇒ −3

4

(
z

1 + z

)2

+
z2

4(1 + z)

⇒ z2

4

(
1

1 + z
− 3

(1 + z)2

)
⇒ z2(z − 2)

4(1 + z)2
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Adding this to the previous terms we have

(v + z)

2

((
2 + z

2(1 + z)

)2

− 1

(1 + z)2

)
+
z2(z − 2)

4(1 + z)2
> 0 ∀ z ∈ (1, v), v > 2

Note that proof for Case 3 covers for Case 4. Further, for Case 5, user welfare is

higher under ad-exchange than paid since

⇒ (v + z − 1)
1

2
− (v + z)

3

8
+
z + 1

4
(A.11)

⇒ (v + z)
1

8
+
z − 1

4
> 0 ∀ z ∈ (1, v) v > 2 (A.12)

For Case 6-8, following holds

⇒ (v + z)
1

2
− (v + z)

3

8
+
z + 1

4
(A.13)

⇒ (v + z)
1

8
+
z + 1

4
> 0 (A.14)

Having analyzed the end points of c, t,mw interval, more generally consider the fol-

lowing function, defined as difference between ad-exchange and paid user welfares:

g(c, t,mw) =
1

2

(
(α3 − α1) ((v + z)(α3 + α1)− 2c(2− α1 − α3)) + (t+ z)(1− α3)− tmw(1− α2

1)
)

(A.15)

Using a proof by contradiction strategy, we show that since g(c, t,mw) is defined on

a closed interval I : (c, t,mw) ∈ {(0, 1) × (0, 1) × (0, 1)}, if the function takes non-

negative value at end points of this interval then for g(c, t,mw) to take a negative

value, at some point on the interior of the interval, ∃ (c, t,mw) s.t. g(c, t,mw) =

0. This is a direct rephrasing of the Bolzano Theorem – a generalization of the
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Intermediate Value Theorem1. Hence, suppose ∃ (c, t,mw), s.t. g(.) = 0. Equating

equation A.15 to zero, we have that

(α3 − α1) ((v + z)(α3 + α1)− 2c(2− α1 − α3)) + (t+ z)(1− α3)− tmw(1− α2
1) = 0

It is clear that since α3 > α1 ∀ c, t,mw ∈ (0, 1) the only values for which the above

expression equals zero is when

(
tmw(1− α2

1)− (t+ z)(1− α3)

α3 − α1

)
= (v + z)(α3 + α1)− 2c(2− α1 − α3)

This is clearly not possible since the LHS of equation is negative because (t+ z)(1−

α3) > tmw(1 − α2
1) ∀ c, t,mw ∈ (0, 1), z ∈ (1, v) and α3 − α1 > 0, while the RHS is

clearly positive ∀ c, t,mw ∈ (0, 1), z ∈ (1, v) v > 2. Therefore there do not exist any

(c, t,mw) ∈ I where g(c, t,mw) = 0, which is a contradiction. More generally, using

Intermediate Value Theorem, consider a multivariate continuous function g(c, t,mw),

defined as the difference between ad-exchange user welfare and paid user welfare,

on the connected interval I : (c, t,mw) ∈ {(0, 1) × (0, 1) × (0, 1)} that takes values

g(0, 0, 0) > 0 and g(1, 1, 1) > 0 on the interval end points. Since value on the

endpoints are positive, and the function does not equal zero on any intermediate

point vector (c, t,mw) ∈ I, the function takes positive values in the range g(c, t,mw) ∈

(g(0, 0, 0), g(1, 1, 1)). Therefore, ad-exchange has higher welfare for users than paid

revenue model.

Comparison - Ad-Exchange vs. Freemium

This is a proof by deduction. Specifically, comparing user welfare, following expression

is analyzed. V ad-ex
1 − V frm

1 :

(v + z − tmw)

(
1− α2

1

2

)
− c(1− α1)2 −

((
α2

2 − α2
1

2

)
(v + z − tmw)

− c(α2 − α1) (1− α1) +
1− α2

2

2
(v + z)− c(1− α2) (1− α1)− (1− α2)

(
tmw

2

))
1IVT: Let I = [a, b] be a closed interval in R, and let f be a continuous real-valued function on I.
Then f assumes every value between f(a) and f(b).
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Collecting terms with same coefficients, consider v + z − tmw.

(
1− α2

1

2

)
−
(
α2

2 − α2
1

2

)
⇒ 1− α2

2

2

Similarly, for c, we have

(α2 − α1) (1− α1) + (1− α2) (1− α1)− (1− α1)2

⇒ (1− α1) (α2 − α1 − 1 + α1 + 1− α2)

⇒ 0

Collecting simplified terms and other terms we get

(v + z − tmw)

(
1− α2

2

2

)
− (1− α2

2)

2
(v + z) + (1− α2)

(
tmw

2

)
⇒ −(1− α2

2)

2
(tmw) + (1− α2)

(
tmw

2

)
⇒ −tmw

2
(1− α2) (2 + α2) < 0

Clearly, Freemium better than Ad-Exchange Model for User welfare. By transitivity,

it can concluded that

Freemium � Ad-Exchange � Paid (A.16)
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A.5 Proof Lemma 4

Proof Considering CP, recall that CP payoffs under ad-exchange and paid is as

follows:

πad-ex
CP =

(1− k)mw

2

(
1− α2

1

)
+
α2

1

2

πpaid
CP =

1

2
(α3)2

Subtracting πpaid
CP from πad-ex

CP we get,

(1− k)mw

2
(1− α2

1) +
α2

1 − α2
3

2

In order to determine the scenarios where CP earns more or less from ad-exchange,

than paid, define the following as threshold revenue sharing fraction

kapτ = 1− α2
3 − α2

1

mw(1− α2
1)

(A.17)

where α3 = 2c+t+z
2(c+t+z)

, α1 = c
c+z+t(1−mw)

. It is important to note that since k ∈ (0, 1) it

must be true that

0 ≤ kapτ ≤ 1

⇒ 0 ≤ 1− α2
3 − α2

1

mw(1− α2
1)
≤ 1

⇒ α2
3 − α2

1

mw(1− α2
1)
≤ 1 ∩ α2

3 − α2
1

mw(1− α2
1)
≥ 0
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Substituting expressions for α1, α3 we get for
α2
3−α2

1

mw(1−α2
1)
≤ 1,

mw ≥

(
2c+t+z

2(c+t+z)

)2

−
(

c
c+z+t(1−mw)

)2

1−
(

c
c+z+t(1−mw)

)2

⇒ mw −mw

(
c

c+ z + t(1−mw)

)2

≥
(

2c+ t+ z

2(c+ t+ z)

)2

−
(

c

c+ z + t(1−mw)

)2

⇒ mw +

(
c

c+ z + t(1−mw)

)2

(1−mw) ≥
(

2c+ t+ z

2(c+ t+ z)

)2

⇒ 1− (1−mw) +

(
c

c+ z + t(1−mw)

)2

(1−mw) ≥
(

2c+ t+ z

2(c+ t+ z)

)2

⇒ 1−M +M

(
c

c+ z + tM

)2

≥
(

2c+ t+ z

2(c+ t+ z)

)2

where M = 1 −mw. Simplifying the above expression we get a cubic polynomial in

M as follows:

−M3t2+2tM2

(
1− α3

2
− (c+ z)

)
+
(
2t(c+ z)(1− α3)− 2cz − z2

)
M+(c+z)2(1−α3) ≥ 0

(A.18)

Suppose the LHS cubic polynomial is denoted PM . Given that PM can never always

be increasing or decreasing, it is sufficient to establish that the polynomial has at least

one root of M ∈ (0, 1) such that the polynomial is increasing or decreasing greater or

less than that root. For that, suppose PM has three roots m1,m2,m3. Then it must

be true that

m1m2m3 =
(c+ z)2(1− α3)

t2
> 0∑

i,j

mimj = −2t(c+ z)(1− α3)− 2cz − z2

t2
, i 6= j, i, j = {1, 2, 3}

m1 +m2 +m3 =
(1− α3)− 2(c+ z)

t
< 0

By construction, M ∈ (0, 1). So, product of all roots being positive implies either all

are positive or only one is positive, other two being negative. Further, summation
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of all roots being negative implies that all roots cannot be positive. Hence only one

possibility remains that ∃ mi > 0 ∈ (0, 1), i ∈ {1, 2, 3}, while mj,mk < 0, i 6= j, i 6=

k, i, j, k ∈ {1, 2, 3}. This can also be verified by the Intermediate value theorem

where substituting M = 0 in cubic equation, we have

M = 0⇒ PM ≡ (c+ z)2(1− α3) > 0

M = 1⇒ PM ≡ c2 − α3(c+ z + t)2 < 0

So, PM(M = 0) > 0 and PM(M = 1) < 0 implying there must be at least one

M ∈ (0, 1) such that PM(M) = 0. So for a given kapτ ∈ (0, 1), for Ad-exchange to

be a better model than Paid, ∃ m̂w such that PM ≥ 0, mw ∈ (m̂w, 1) such that any

revenue sharing k ∈ (0, kapτ ) is valid for CP to enjoy better returns from Ad-exchange

than from Paid.

Conversely, solving the inequality

k ≤ 1− α2
3 − α2

1

mw(1− α2
1)

⇒ kmw(1− α2
1) ≤ mw(1− α2

1)− (α2
3 − α2

1)

⇒ mw(1− α2
1)(k − 1) + (α2

3 − α2
1) ≤ 0

⇒ (1−M)(1− α2
1)(k − 1) + (α2

3 − α2
1) ≤ 0

⇒ (1−M)(1− c2

(c+ z + tM)2
)(k − 1) + (α2

3 −
c2

(c+ z + tM)2
) ≤ 0

⇒ (1−M)((c+ z + tM)2 − c2)(k − 1) + α2
3(c+ z + tM)2 − c2 ≤ 0

we have a cubic polynomial PM in M . For this polynomial to have at least one

real root in (0, 1), it must be true that PM(M = 0) and PM(M = 1) should be of

opposite sign. In fact, PM(M = 1) > 0 and for PM(M = 0) < 0, following must hold:
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k < 1 − α2
3. Therefore the following can be said about CP: For k ∈ (0, 1 − α2

3) &

mw ∈ (m̂w, 1) where m̂w satisfies:

mw + (1−mw)

(
c

c+ z + t(1−mw)

)2

≥
(

2c+ t+ z

2(c+ t+ z)

)2

mw((c+ z + t(1−mw))2 − c2)(k − 1) +

(
2c+ t+ z

2(c+ t+ z)

)2

(c+ z + t(1−mw))2 − c2 ≤ 0

CP is better off under Ad-Exchange than under Paid model.

A.6 Proof Lemma 5

Proof Comparing CP Welfare/payoff, πad-ex
CP − πfrm

CP :

(1− k)mw

2

(
1− α2

1

)
+
α2

1

2
− mw

2

(
α2

2 − α2
1

)
− 1

2
(α1)2

Threshold for k to be defined here is

k ≤ 1−
1
4
− α2

1

1− α2
1

(A.19)

such that k ∈ (0, 1 −
1
4
−α2

1

1−α2
1
) for Ad-Exchange to be a better model than Freemium.

Again, substituting α1 we have,

k ≤ 1−
1
4
−
(

c
c+z+t(1−mw)

)2

1−
(

c
c+z+t(1−mw)

)2

⇒
1
4
−
(

c
c+z+t(1−mw)

)2

1−
(

c
c+z+t(1−mw)

)2 ≤ 1− k

⇒ (c+ z + t(1−mw))2 − 4c2

4 ((c+ z + t(1−mw))2 − c2)
≤ 1− k

⇒ (c+ z + tM)2 − 4c2 ≤ 4(c+ z + tM)2 − 4c2 − k(4(c+ z + tM)2 − 4c2)
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This is a quadratic expression in M denoted QM , the discriminant of the quadratic

expression should be non-negative for there to exist at least one root M ∈ (0, 1).

Therefore, collecting terms for coefficients of M,M2 and constant term, we have that

since QM(M = 0) and QM(M = 1) take negative values for k < 3
4
, the CP is better

off with Ad-Exchange for mw ∈ (0,m1)∪ (m2, 1) and k < 3
4
. Otherwise, Freemium is

better.

A.7 Proof Proposition 2

For CP welfare comparison,

πfrm
CP =

mw

2

(
1

4
−
(

c

c+ z + t(1−mw)

)2
)

+
1

2

(
c

c+ z + t(1−mw)

)2

− 1

2

(
2c+ t+ z

2(c+ t+ z)

)2

which simplifies for sake of comparison,

mw

(
1

4
− α2

1

)
+
(
α2

1 − α2
3

)
Analyzing expression, we have that for Freemium to be better than paid, mw should

be such that mw ∈ (0, 1) and

mw ≥
α2

3 − α2
1

1
4
− α2

1

The RHS of inequality should obey

0 ≤ α2
3 − α2

1
1
4
− α2

1

≤ 1

⇒ α2
3 − α2

1
1
4
− α2

1

≥ 0 ∪ α
2
3 − α2

1
1
4
− α2

1

≤ 1
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The expression is trivially non-negative, given α1, α3. However, since α3 >
1
2
, it must

be true that α2
3 >

1
4
⇒ α2

3 − α2
1 >

1
4
− α2

1. More specifically,

α2
3 − α2

1
1
4
− α2

1

> 1

This implies that mw ≥ α2
3−α2

1
1
4
−α2

1
> 1 does not hold and so, Freemium cannot be better

than paid. So, there doesn’t exist mw ∈ (0, 1) such that Freemium is better than

Paid. Hence for CP, Paid is always better than Freemium.

A.8 Proof Lemma 6

Considering AB, comparing the two revenue models,

kmw

2

(
1− α2

1

)
+ γLwmw −

(
t+ z

2

)
(1− α3)

Checking for ranges where Ad-Exchange is better than paid, it is clear that

kmw

2

(
1− α2

1

)
+ γLwmw ≥

(
t+ z

2

)
(1− α3)

⇒ kmw

(
1− α2

1

)
≥ (t+ z)(1− α3)− 2γLwmw

⇒ k ≥ (t+ z)(1− α3)

mw (1− α2
1)
− 2γLw

(1− α2
1)

It must be true that:

0 ≤ (t+ z)(1− α3)

mw (1− α2
1)
− 2γLw

(1− α2
1)
≤ 1

⇒ (t+ z)(1− α3)

mw (1− α2
1)
≥ 2γLw

(1− α2
1)
∩ (t+ z)(1− α3)

mw (1− α2
1)
≤ 1 +

2γLw
(1− α2

1)

From the first inequality, we have that mw ≤ (t+z)(1−α3)
2γLw

and from second, it is true for

all mw ∈ (mw, 1). Solving the original inequality we have that for mw ∈ (0, 1) for at

least one value, we must have that k > (1−α3)(z+ t)−2γLw. Hence, for Ad-Exchange
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to be better model for AB, k ∈ ((1− α3)(z + t)− 2γLw, 1) and mw ∈ (mw,
(t+z)(1−α3)

2γLw
)

where mw satisfies:

(t+ z)(1− α3)

mw (1− α2
1)
≤ 1 +

2γLw
(1− α2

1)

A.9 Proof Proposition 3

Proof Comparing AB models for Ad-Exchange & Freemium,

kmw

2

(
1− α2

1

)
+ pwmw −

(
pwmw +

tmw

4

)
⇒ kmw

2

(
1− α2

1

)
− tmw

4

Substituting value for α1 = c
c+z+t(1−mw)

we have that for Ad-Exchange to better than

Freemium following should hold

kmw

2

(
1− α2

1

)
− tmw

4
≥ 0

⇒ k ≥ t

2(1− α2
1)

⇒ k ≥ t

2(1−
(

c
c+z+t(1−mw)

)2

)

⇒ 2k − 2kc2

(c+ z + t(1−mw))2
− t ≥ 0

⇒ 2k(c+ z + t(1−mw))2 − 2kc2 − t(c+ z + t(1−mw))2 ≥ 0

This is a quadratic expression in M = 1 − mw with discriminant as 8c2kt2(2k − t)

and values at the domain extremes M = 0 and M = 1 as positive, given c, t ∈ (0, 1)

and z ∈ (1, v). Therefore for there to exist roots in interior of domain it must be true

that 8c2kt2(2k − t) > 0⇒ k > t
2
. Hence, it is clear from the quadratic equation that
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for k > t
2

and mw ∈ (m1,m2), Ad-Exchange is better than Freemium. Otherwise

Freemium is better. Comparing Freemium and Paid business models for AB we have

γHwmw +
tmw

4
−
(
t+ z

2

)
(1− α3)

Solving for mw it is clear that,

mw

(
t

4
+ γHw

)
≥
(
t+ z

2

)
(1− α3)

⇒ mw ≥
(

t+ z

( t
2

+ 2γHw )

)
(1− α3)

Hence, for values of mw ∈
((

t+z
( t
2

+2γHw )

)
(1− α3) , 1

)
Freemium is better than Paid.

A.10 Proof Lemma 7

Proof Consider Ad-Ex vs. Ad-Ex. Following are true for benefits zi:

∂π∗AB1

∂z1

=
m1

c1 + c2 + 2kf
> 0

∂π∗AB1

∂z2

= − m1

c1 + c2 + 2kf
< 0

∂π∗AB2

∂z1

= − m2

c1 + c2 + 2kf
< 0

∂π∗AB2

∂z2

=
m2

c1 + c2 + 2kf
> 0
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So both AB’s benefit from own increase in club benefits but are hurt by other’s

increase in benefits. Finally,

∂π∗AB1

∂c1

= −m1

(
c2 + kf + z1 − z2 + t(m2 −m1)

(c1 + c2 + 2kf )2

)
< 0

∂π∗AB1

∂c2

= m1

(
c1 + kf + z2 − z1 + t(m1 −m2)

(c1 + c2 + 2kf )2

)
> 0

∂π∗AB2

∂c2

= −m2

(
c1 + kf + z2 − z1 + t(m1 −m2)

(c1 + c2 + 2kf )2

)
< 0

∂π∗AB2

∂c1

= m2

(
c2 + kf + z1 − z2 + t(m2 −m1)

(c1 + c2 + 2kf )2

)
> 0

Congestion costs also have opposite effect on profits as benefits.

Now consider Ad-ex vs. Paid. For increase in z1, z2,

∂π∗AB1

∂z1

=
m1

2(c1 + c2 + kf + kp)
> 0

∂π∗AB2

∂z1

= −c1 + tm1 + kf + z2 − z1

2(c1 + c2 + kf + kp)
< 0

∂π∗AB2

∂z2

=
c1 + tm1 + kf + z2 − z1

2(c1 + c2 + kf + kp)
> 0

∂π∗AB1

∂z2

= − m1

2(c1 + c2 + kf + kp)
< 0

and for increase in congestion costs,

∂π∗AB1

∂c1

= −m1

(
c2 + kp + z1 − z2 − tm1

2(c1 + c2 + kf + kp)2

)
< 0

∂π∗AB1

∂c2

= m1

(
c1 + kf + z2 − z1 + tm1

2(c1 + c2 + kf + kp)2

)
> 0

∂π∗AB2

∂c2

= −(c1 + tm1 + kf + z2 − z1)2

4(c1 + c2 + kf + kp)2
< 0

∂π∗AB2

∂c1

=
(c1 + 2c2 + kf + 2kp + z1 − z2 − tm1)(c1 + tm1 + kf + z2 − z1)

4(c1 + c2 + kf + kp)2
> 0
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Now consider Ad-ex vs. Freemium. Suppose AB1 is Freemium and AB2 is Ad-Ex. It

is clear that since in Freemium, AB doesn’t earn from free members but from price

of whitelisting, at equilibrium

p∗1 =
tm1

2

Hence π∗AB1 = m1γ1 +
t2m2

1

4(kp−kf )
. It is clear from the expression that this is a concave

function in m1 which does not depend on c1. Hence
∂π∗AB1

∂c1
=

∂π∗AB1

∂c2
= 0. Further,

∂π∗AB2

∂c1
= m1

(
c2+kf+z1−z2+t(m1−m2)

2(c1+c2+2kf )2

)
> 0 and

∂π∗AB2

∂c2
= −m2

(c1+kf+z2−z1+t(m1−m2))

2(c1+c2+2kf )2
< 0

still hold. For all other Freemium competition models, this holds true since each case,

differentiation expressions are one of the earlier derived ones.

A.11 Proof Proposition 4

Proof Consider Ad-Exchange vs. Ad-Exchange. Users choose from two Free ABs

essentially. Solving for indifferent user at x ∈ (0, 1) we have that

x =
z1 − z2 + kf + c2n2 − c1n1 + t(m2 −m1)

2kf

Solving for member masses, we have in Stage 2,

n1 = 1− c1 + kf − (z1 − z2 + t(m2 −m1))

c1 + c2 + 2kf

n2 = 1− c2 + kf − (z2 − z1 + t(m1 −m2))

c1 + c2 + 2kf
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Hence user participation is a function of mi, zi, ci. Each of these parameters is exoge-

nous but can change with change in AB technology. Substituting user masses in first

stage equations for AB we have

πAB1 = m1

(
1− c1 + kf − (z1 − z2 + t(m2 −m1))

c1 + c2 + 2kf

)
πAB2 = m2

(
1− c2 + kf − (z2 − z1 + t(m1 −m2))

c1 + c2 + 2kf

)

It is clear to see that:

∂π∗AB1

∂m1

=

(
1− c1 + kf − (z1 − z2 + t(m2 −m1))

c1 + c2 + 2kf

)
+m1

(
− t

c1 + c2 + 2kf

)
⇒
(

1− c1 + kf − (z1 − z2 + t(m2 −m1))

c1 + c2 + 2kf

)
−m1

(
t

c1 + c2 + 2kf

)
⇒ c2 + kf + t(m2 − 2m1) + z1 − z2

c1 + c2 + 2kf
> 0

given parameter ranges and boundary condition while,

∂π∗AB2

∂m2

=
c1 + kf + t(m1 − 2m2) + z2 − z1

c1 + c2 + 2kf
> 0

is also true. More specifically, the points at which both the expressions equal zero

are for values of m1,m2 that are clearly greater than one. Hence, both expressions

are positive in the domain mw ∈ (0, 1). Further, it is also true that

∂π∗AB1

∂m2

=
tm1

c1 + c2 + 2kf
> 0

∂π∗AB1

∂m2

=
tm2

c1 + c2 + 2kf
> 0

So both ad-blockers benefit from increase in mass of whitelisters at either AB.
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Consider the Ad-Ex vs. Paid duopoly. Assume AB1 is Ad-Exchange and AB2 is

Paid. Solving for indifferent user we have,

x =
z1 − z2 + p2 + kp + c2n2 − c1n1 − tm1

kf + kp

Solving for member masses, we have in Stage 2,

n1 = 1− c1 + kf + tm1 − p2 − (z1 − z2)

c1 + c2 + kf + kp

n2 = 1− c2 + kp + z1 − z2 + p2 − tm1

c1 + c2 + kf + kp

Solving for optimal price in Stage 1, we have p∗2 =
c1+tm1+kf+z2−z1

2
. Substituting in

expressions we have equilibrium masses as,

n∗1 =
1

2

(
c1 + 2c2 + kf + 2kp + z1 − z2 − tm1

c1 + c2 + kf + kp

)
n∗2 =

1

2

(
c1 + kf + z2 − z1 + tm1

c1 + c2 + kf + kp

)

and therefore equilibrium profits are:

π∗AB1 =
m1

2

(
c1 + 2c2 + kf + 2kp + z1 − z2 − tm1

c1 + c2 + kf + kp

)
π∗AB2 =

(c1 + tm1 + kf + z2 − z1)2

4(c1 + c2 + kf + kp)

Hence user participation is a function of same three variables. First note that p∗2 is

increasing in m1, c1, z2 and decreasing in z1. Further, for m1 increase:

∂π∗AB1

∂m1

=
c1 + 2c2 + kf + 2kp + z1 − z2 − 2tm1

c1 + c2 + kf + kp
> 0

∂π∗AB2

∂m1

=
t(c1 + tm1 + kf + z2 − z1)

4(c1 + c2 + kf + kp)
> 0

both AB’s benefit from it.



128

Now consider Freemium vs. Ad-Ex. There are two indifference points here – one

for a free vs. paid user for freemium AB and the other, free vs. ad-exchange user for

the other AB. Assume AB1 is freemium and AB2 is Ad-Exchange. Accordingly, the

two indifference users are:

x1 =
tm1 − p1

kp − kf
, Freemium Indifferent User

x2 =
z1 − z2 + kf + c2n2 − c1n1 + t(m2 −m1)

2kf
, Ad-Exchange Indifferent User

Solving for Stage 2 masses, we have same result as Ad-Exchange competition:

n1 = 1− c1 + kf − (z1 − z2 + t(m2 −m1))

c1 + c2 + 2kf

n2 = 1− c2 + kf − (z2 − z1 + t(m1 −m2))

c1 + c2 + 2kf

The first stage AB1 problem is maxp1 γ1m1 + p1

(
1− tm1−p1

kp−kf

)
, concave in p1. Hence,

price at equilibrium is p∗1 = m1t
2

. So, premium membership is x∗1 = tm1

2(kp−kf )
. Using

boundary conditions this can be shown to be less than x∗2, and greater than zero.

Further, effect of increase in m1,m2 is the same where

∂π∗AB1

∂m1

= γ1 +
t2m1

2(kp − kf )
> 0

∂π∗AB1

∂m2

= 0

∂π∗AB2

∂m1

=
tm2

c1 + c2 + 2kf
> 0

∂π∗AB2

∂m2

=
c1 + kf + z2 − z1 + t(m1 − 2m2)

c1 + c2 + 2kf
> 0

In the case of Freemium vs. Paid, there are two indifferent user points – one for

a free vs. paid user for freemium AB and the other, free vs. paid user for the other
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AB. Assume AB1 is freemium and AB2 is Paid. Accordingly, the two indifference

users are:

x1 =
tm1 − p1

kp − kf
, Freemium Indifferent User

x2 =
z1 − z2 + kp + c2n2 − c1n1 − tm1

kp + kf
, Paid Indifferent User

Solving for Stage 2 masses, we have same result as Ad-Exchange competition:

n1 = 1− c1 + kf + tm1 − p2 − (z1 − z2)

c1 + c2 + kf + kp

n2 = 1− c2 + kp + z1 − z2 + p2 − tm1

c1 + c2 + kf + kp

Solving for equilibrium prices in Stage 1, we have

p∗1 =
tm1

2

p∗2 =
c1 + tm1 + kf + z2 − z1

2

Substituting and simplifying, the equilibrium masses for both ABs are:

n∗1 =
1

2

(
c1 + 2c2 + kf + 2kp + z1 − z2 − tm1

c1 + c2 + kf + kp

)
n∗2 =

1

2

(
c1 + kf + z2 − z1 + tm1

c1 + c2 + kf + kp

)

where premium members are n∗p1 = tm1

2(kp−kf )
. Similar to Ad-Exchange vs. Freemium,

∂π∗AB1

∂m1

= γ1 +
t2m1

2(kp − kf )
> 0

∂π∗AB1

∂m2

= 0

∂π∗AB2

∂m1

=
t(tm1 + c1 + kf + z2 − z1)

2(c1 + c2 + kf + kp)
> 0

∂π∗AB2

∂m2

= 0
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Hence, insights are same too.

Finally, in the case of Freemium vs. Freemium, participating masses in Stage 2 is

similar to Ad-Exchange vs. Ad-Exchange. That is, in Stage 2,

n1 = 1− c1 + kf − (z1 − z2 + t(m2 −m1))

c1 + c2 + 2kf

n2 = 1− c2 + kf − (z2 − z1 + t(m1 −m2))

c1 + c2 + 2kf

are the total participating masses in two Freemium ABs in Stage 2. Solving for

premium member masses in Stage 2 we have

x1 =
tm1 − p1

kp − kf
, Freemium Indifferent User for AB1

x2 = 1− tm1 − p2

kp − kf
, Freemium Indifferent User for AB2

Stage 1 Equilibrium prices are:

p∗1 =
tm1

2

p∗2 =
tm2

2

Equilibrium masses for premium members are:

n∗p1 =
tm1

2(kp − kf )

n∗p2 =
tm2

2(kp − kf )

while free members are

n∗f1 =
c2 + kf + t(m2 −m1) + z1 − z2

c1 + c2 + 2kf
− tm1

2(kp − kf )

n∗f2 =
tm2

2(kp − kf )
− c2 + kf + t(m2 −m1) + z1 − z2

c1 + c2 + 2kf
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Effect of increase in m1,m2,

∂π∗AB1

∂m1

= γ1 +
t2m1

2(kp − kf )
> 0

∂π∗AB1

∂m2

= 0

∂π∗AB2

∂m1

= 0

∂π∗AB2

∂m2

= γ2 +
t2m2

2(kp − kf )
> 0

Hence, increase in whitelisting never hurts but benefits ABs.

A.12 Proof Proposition 5

Proof For the Paid vs. Paid case, we have that Stage 2 masses are:

n1 = 1− (p1 − p2) + z2 − z1 + c1 + kp
c1 + c2 + 2kp

n2 = 1− (p2 − p1) + z1 − z2 + c2 + kp
c1 + c2 + 2kp

Solving for optimal prices in Stage 1, we have that:

p∗1 =
c1 + 2c2 + 3kp + z1 − z2

3

p∗2 =
c2 + 2c1 + 3kp + z2 − z1

3
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Note that optimal prices are increasing in both congestion costs. Further, prices are

increasing in self benefits but decreasing in others benefits. Solving for equilibrium

masses we have:

n∗1 =
c1 + 2c2 + 3kp + z1 − z2

3(c1 + c2 + 2kp)

n∗2 =
c2 + 2c1 + 3kp + z2 − z1

3(c1 + c2 + 2kp)

So at equilibrium, the profits are increasing in congestion costs:

∂π∗AB1

∂c1

=
(c1 + 2c2 + 3kp + z1 − z2)(c1 + kp + z2 − z1)

9(c1 + c2 + 2kp)2
> 0

∂π∗AB1

∂c2

=
(c1 + 2c2 + 3kp + z1 − z2)(3c1 + 2c2 + 5kp + z2 − z1)

9(c1 + c2 + 2kp)2
> 0

and

∂π∗AB2

∂c1

=
(c2 + 2c1 + 3kp + z2 − z1)(2c1 + 3c2 + 5kp + z1 − z2)

9(c1 + c2 + 2kp)2
> 0

∂π∗AB2

∂c2

=
(c2 + 2c1 + 3kp + z2 − z1)(c2 + kp + z1 − z2)

9(c1 + c2 + 2kp)2
> 0

while profits are increasing in self benefits and decreasing in others benefits.

A.13 Proof Proposition 6

Consider the user problem – selection between ui, uk, uj where ui, uj are for paid

AB users. Hence there are two indifference points, where on one indifference point

x1 user is indifferent between joining AB1 and not joining at all while on x2, user is

indifferent between joining AB2 and not joining at all.
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Solving for stage 2 masses we have:

n1 =
z1 + t− p1

c1 + kp

n2 =
z2 + t− p2

c2 + kp

In the first stage, AB1 & 2 solve for optimal prices given these masses. Trivially

concave, the optimal prices are:

p∗1 =
t+ z1

2

p∗2 =
t+ z2

2

Substituting back in stage 2 expressions, it is easy to see that

n∗1 =
t+ z1

2(c1 + kp)

n∗2 =
t+ z2

2(c2 + kp)

From here, it is clear that profits at equilibrium are π∗AB1 = (t+z1)2

4(c1+kp)
and π∗AB2 =

(t+z2)2

4(c2+kp)
. These are clearly decreasing in c1, c2 respectively and increasing in t, z1 and

t, z2, respectively.
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B. APPENDIX B

B.1 Proof Proposition 1 - Part 1

Proof This is a proof by contradiction. The basic strategy is to show that if there

does exist a path that is not feasible, then by construction that path cannot represent

a solution to the WDP-IP problem.

Suppose an infeasible path exists. By Definition 1, it is clear that since edges exist

only between disjoint bundles, any infeasible path cannot be between nodes having

items in common. Then the infeasible path will be such that it has at least one node

that has more than one visits. A visit to a node implies allocation of the bundle by

construction. By WDP-IP constraint equation (2), since each item up for auction can

be allocated at most once, more than one visit implies that the bundles visited more

than once have items that have been allocated more than once. But this is violates

equation (2) of WDP-IP. Therefore, an infeasible path cannot represent a feasible

solution to the WDP-IP problem.

B.2 Proof of Proposition 1 - Part 2

Proof This is a proof by contradiction. The basic strategy is to show that if there

does exist a feasible path that does not have maximum weight then that cannot be

equivalent to the optimal solution, as defined by WDP-IP.

Suppose there exists a feasible path P ∗ ≡ {s, vz, vz+1, ..., vz+p, t}, such that it is

the optimal solution to the problem but for contradiction does not have the maximum

weight. From the WDP-IP and Proposition 1-Part 1, we know that any feasible path

of the graph represents a feasible solution to WDP-IP. Hence, P ∗ is represented as

an allocation with revenue
∑

j∈P ∗ xjqj with xz = 1, xz+1 = 1, ...., xz+p = 1, all other



135

xj = 0 ∀ j = {1, 2, 3...l} \ {z, z+ 1, z+ 2, ...z+ p} bids such that
l∑

j=1

Aijxj ≤ 1 ∀ i ∈

{1, 2, 3, 4...., k} is satisfied. Since weights on edges are strictly positive, there must

exist at least one node vj ∈ {1, .., l} \ {z, .., z + p} such that adding the node(s) to

the path results in increasing the revenue from P ∗ (if not, then P ∗ has the maximum

revenue, represents optimal solution and we are done). By feasibility, these nodes

can only be added to the path such that bundles on the path are disjoint in nature.

Hence, there must be at least one node that can be removed and replaced with other

unselected nodes in the graph such that a new feasible path P
′

can be constructed

that has
∑

j∈P ′ xjqj ≥
∑

j∈P ∗ xjqj. But this implies that the existing feasible path is

not optimal, which is a contradiction. Hence, a feasible path of maximum weight is

an optimal solution to the WDP-IP problem.

B.3 Proof of Proposition 2

Proof This is a proof by induction. The basic idea is to show that as the number of

ants N →∞, for positive values of τmin, α, β the probability that the ant system con-

verges onto Mopt converges to 1. Suppose the probability of at least one ant traversing

the optimal path is given by Popt. For any ant at any node vi, the probability of select-

ing the next node vj in its neighborhood (N(i)) is given by pij =
ταij [wij ]

β∑
j∈N(i) τ

α
ij [wij ]

β . Since

pheromones are bounded by RPU [τmin, τmax], pij ≥ pmin
ij =

ταmin[wij ]
β∑

j∈N(i)\q τ
α
maxw

β
ij+τ

α
minw

β
iq

.

The pmin
ij considers all edges from node vi except those that have been randomly

pruned by RGP. Further, pmin
ij considers all edges from vi except one (q ⊂ N(i)) as

having τmax and that one edge q as having τmin such that it has not been pruned.

Since each vertex is chosen stochastically given the current vertex an ant is on, the

probability p̄ of an ant traversing the optimal path Mopt of cardinality |L| is such that

p̄ ≥ (pmin
ij )|L|. Therefore, if N ants are used for solution construction, the probability

that no ant traverses the optimal path is (1− p̄)N . Using this, we can express Popt as

Popt = 1− (1− p̄)N ≥ 1− (1− (pmin
ij )|L|)N
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Hence, Popt ≥ 1−(1−(pmin
ij )|L|)N . Substituting expression for pmin

ij =
ταmin[wij ]

β∑
j∈N(i)\q τ

α
maxw

β
ij+τ

α
minw

β
iq

.

we have that

Popt ≥ 1−

1−

(
ταmin[wij]

β∑
j∈N(i)\q τ

α
maxw

β
ij + ταminw

β
iq

)|L|N

The expression within parenthesis can be made arbitrarily small using either larger N ,

and/or values of τmin, α, β s.t. 1− (pmin
ij )|L| decreases. Hence, for values of τmin, α, β

the probability Popt can be made arbitrarily close to one.
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B.4 TrACA Comparison

The experiments were run on an Intel i5-Core 3.5 GHz computer, Windows OS
with 16GB RAM. The source code for preprocessing was written in R and for the ant
colony system was written in MATLAB.

Table B.1.: Experimental Run Results - Test Instances 101-410

Instance CPLEX MA ACLS ACO Best ACO Median %Diff ACO Best vs. CPLEX % Diff ACO Best vs. MA % Diff ACO Best vs. ACLS

in101 67, 101.940 67, 101.930 69, 840.070 72, 724.620 69, 505.350 8.379 8.379 4.130
in102 72, 518 67, 797.610 70, 897.460 72, 391.300 70, 816.550 −0.175 6.776 2.107
in103 69, 791 66, 350.990 69, 791.250 70, 263.900 68, 500.380 0.678 5.897 0.677
in104 70, 951 64, 618.510 67, 268.710 72, 709.650 72, 709.650 2.479 12.521 8.088
in105 71, 852 66, 376.830 69, 834.280 74, 710.870 69, 655.450 3.979 12.556 6.983
in106 66, 621 65, 481.640 66, 436.080 70, 109.670 65, 481.070 5.237 7.068 5.530
in107 69, 182 66, 245.700 69, 182.250 69, 398.190 68, 556.220 0.312 4.759 0.312
in108 75, 147 74, 588.510 74, 588.510 75, 776.730 73, 403.750 0.838 1.593 1.593
in109 66, 439 62, 492.660 66, 239.280 68, 652.180 65, 638.600 3.331 9.856 3.643
in110 65, 215 65, 171.190 67, 395.070 68, 154.710 66, 103.890 4.508 4.578 1.127
in111 68, 411.910 72, 969.160 NA 74, 498.480 72, 711.300 8.897 2.096 NA
in112 71, 203.710 66, 671.670 NA 71, 342.480 70, 649.440 0.195 7.006 NA
in113 70, 960.220 68, 901.960 NA 72, 440.320 72, 440.320 2.086 5.135 NA
in114 66, 222.390 64, 190.630 NA 68, 239.570 67, 749.260 3.046 6.308 NA
in115 69, 312.600 62, 052.250 NA 69, 908.300 67, 582.560 0.859 12.660 NA
in116 65, 811.620 64, 849.850 NA 69, 093.730 68, 973.010 4.987 6.544 NA
in117 69, 354.130 66, 466.390 NA 69, 982.830 67, 505.990 0.907 5.291 NA
in118 68, 569.090 69, 239.960 NA 71, 385.200 67, 132.890 4.107 3.098 NA
in119 67, 038.420 63, 968.320 NA 66, 153.540 64, 083.190 −1.320 3.416 NA
in120 74, 660.720 68, 587.410 NA 74, 648.330 72, 865.390 −0.017 8.837 NA
in201 78, 114 77, 499.820 81, 557.740 81, 557.740 81, 557.740 4.409 5.236 0
in202 90, 708.120 90, 464.190 90, 464.190 90, 708.130 90, 333.850 0.00001 0.270 0.270
in203 86, 239.210 86, 239.210 86, 239.210 86, 239.210 86, 239.210 0 0 0
in204 84, 709.310 81, 969.050 87, 075.420 87, 075.430 85, 480.420 2.793 6.230 0.00001
in205 82, 464.150 82, 469.190 82, 469.190 86, 515.950 84, 840.310 4.913 4.907 4.907
in206 88, 478.770 86, 881.420 86, 881.420 91, 518.960 87, 755.490 3.436 5.338 5.338
in207 93, 129.240 91, 033.510 91, 033.510 93, 129.250 91, 247.660 0.00001 2.302 2.302
in208 94, 904.680 83, 667.760 91, 782.200 94, 904.680 91, 782.040 0 13.430 3.402
in209 83, 027.590 81, 966.650 81, 966.650 87, 268.960 86, 356.430 5.108 6.469 6.469
in210 86, 940.490 85, 079.980 87, 569.190 89, 962.400 86, 878.260 3.476 5.739 2.733
in211 83, 250.210 79, 746.140 NA 84, 913.680 83, 618.950 1.998 6.480 NA
in212 90, 778.200 81, 061.380 NA 90, 778.210 88, 124.010 0.00001 11.987 NA
in213 84, 487.620 83, 549.210 NA 85, 369.180 84, 169.240 1.043 2.178 NA
in214 85, 181.610 81, 935.320 NA 85, 181.610 84, 823.260 0 3.962 NA
in215 90, 538.840 83, 663.140 NA 91, 531.690 88, 879.960 1.097 9.405 NA
in216 88, 869.740 83, 286.630 NA 91, 580.930 91, 580.930 3.051 9.959 NA
in217 85, 267.590 83, 125.250 NA 86, 962.930 86, 895.060 1.988 4.617 NA
in218 89, 914.390 86, 936.780 NA 94, 965.190 90, 151.270 5.617 9.235 NA
in219 87, 883.450 88, 054.210 NA 90, 309.730 89, 760.600 2.761 2.562 NA
in220 87, 883.450 86, 937.850 NA 89, 792.910 88, 255.520 2.173 3.284 NA
in401 77, 417.480 72, 948.070 77, 417.480 77, 417.480 77, 417.480 0 6.127 0
in402 76, 273.330 71, 454.780 74, 469.070 76, 273.340 76, 273.340 0.00001 6.744 2.423
in403 74, 843.950 74, 843.960 74, 843.960 74, 843.960 74, 843.960 0.00001 0 0
in404 78, 761.690 78, 761.680 78, 761.680 78, 761.690 78, 761.690 0 0.00001 0.00001
in405 75, 915.900 72, 674.250 74, 899.120 75, 915.900 75, 336.860 0 4.461 1.358
in406 72, 863.320 71, 791.030 71, 791.030 72, 863.320 72, 863.320 0.00001 1.494 1.494
in407 76, 365.720 73, 935.280 73, 935.280 76, 365.720 76, 365.720 0 3.287 3.287
in408 77, 018.830 72, 580.040 77, 018.730 77, 018.830 77, 018.830 0 6.116 0.0001
in409 73, 188.620 68, 724.530 73, 188.620 73, 188.620 73, 188.620 0 6.496 0
in410 73, 791.650 71, 791.570 73, 791.660 73, 791.660 73, 710.070 0.00001 2.786 0
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Table B.2.: Experimental Run Results - Test Instances 411-620

Instance CPLEX MA ACLS ACO Best ACO Median %Diff ACO Best vs. CPLEX % Diff ACO Best vs. MA % Diff ACO Best vs. ACLS

in411 73, 935.400 71, 200.550 NA 73, 935.410 73, 898.990 0.00001 3.841 NA
in412 75, 292.630 75, 292.630 NA 75, 292.630 75, 292.630 0 0 NA
in413 74, 434.900 73, 350.870 NA 74, 434.990 74, 434.990 0.0001 1.478 NA
in414 77, 146.370 77, 146.360 NA 77, 146.370 76, 749.550 0 0.00001 NA
in415 73, 519.130 71, 926.730 NA 73, 519.130 73, 519.130 0 2.214 NA
in416 73, 487.010 72, 520.660 NA 73, 487.020 73, 487.020 0.00001 1.333 NA
in417 74, 981.350 74, 680.990 NA 74, 981.350 74, 981.350 0 0.402 NA
in418 71, 404.840 71, 404.840 NA 71, 404.840 71, 404.840 0 0 NA
in419 72, 505.210 70, 472.840 NA 72, 505.210 72, 505.210 0 2.884 NA
in420 75, 510.680 71, 381.020 NA 75, 510.680 75, 510.680 0.00001 5.785 NA
in421 75, 694.940 75, 694.940 NA 75, 694.950 74, 729.600 0.00001 0.00001 NA
in422 77, 443.910 72, 850.900 NA 77, 443.910 77, 443.910 0 6.305 NA
in423 68, 134.350 68, 134.350 NA 68, 134.350 68, 134.350 0.00001 0.00001 NA
in424 77, 352.760 73, 196.150 NA 77, 352.760 76, 385.110 0 5.679 NA
in425 77, 333.910 73, 258.590 NA 77, 333.910 77, 333.910 0 5.563 NA
in426 76, 430.180 74, 524.800 NA 76, 430.180 76, 430.180 0 2.557 NA
in427 76, 387.570 73, 147.950 NA 76, 387.570 76, 387.570 0 4.429 NA
in428 77, 384.940 76, 554.580 NA 77, 384.940 76, 609.980 0 1.085 NA
in429 75, 540.960 75, 540.960 NA 75, 540.960 75, 540.960 0 0.00001 NA
in430 79, 038.750 76, 264.920 NA 79, 038.750 79, 038.750 0 3.637 NA
in501 88656.950 79, 132.030 84, 165.230 88, 656.960 86, 780.240 0.00001 12.037 5.337
in502 83757.540 80, 340.760 83, 163.660 86, 236.910 84, 915.890 2.87 7.339 3.695
in503 86318.170 83, 277.710 83, 277.710 86, 318.180 85, 106.870 0.00001 3.651 3.651
in504 84220.220 81, 903.020 83, 947.130 85, 600.000 83, 947.140 1.6 4.514 1.969
in601 106, 817.500 99, 044.320 105, 286.700 108, 800.400 105, 058.500 1.856 9.850 3.337
in602 98, 579.420 98, 164.230 101, 150.900 105, 611.500 102, 360.800 7.133 7.587 4.410
in603 98, 953.480 94, 126.960 96, 628.980 105, 121.000 99, 171.900 6.233 11.680 8.788
in604 100, 005.800 103, 568.900 106, 127.200 107, 733.800 105, 838.900 7.728 4.021 1.514
in605 105, 105.200 102, 404.800 106, 273.500 109, 841.000 105, 925.800 4.506 7.262 3.357
in606 107, 113.100 104, 346.100 105, 218.200 107, 113.100 105, 218.200 0.00001 2.652 1.801
in607 102, 119.100 105, 869.400 105, 869.400 113, 180.300 105, 869.400 10.832 6.906 6.906
in608 101, 044.800 95, 671.770 99, 541.750 105, 266.100 104, 285.700 4.178 10.028 5.751
in609 109, 472.300 98, 566.940 104, 602.400 109, 472.300 104, 084.700 0 11.064 4.656
in610 106, 453.600 102, 468.600 109, 008.400 113, 717.000 111, 487.900 6.823 10.977 4.319
in611 100, 666.300 98, 974.640 NA 106, 666.300 101, 902.400 5.960 7.771 NA
in612 109, 796.700 106, 056.100 NA 109, 796.700 106, 056.100 0 3.527 NA
in613 98, 009.040 93, 289.850 NA 107, 980.200 105, 559.100 10.174 15.747 NA
in614 102, 002.600 97, 510.720 NA 108, 364.600 106, 152.600 6.237 11.131 NA
in615 103, 149.500 101, 770.700 NA 110, 508.800 108, 615.900 7.135 8.586 NA
in616 105, 412.700 100, 169.500 NA 109, 740.500 105, 441.800 4.106 9.555 NA
in617 103, 864.700 100, 653.900 NA 113, 302.400 106, 931.500 9.087 12.566 NA
in618 101, 855.300 102, 378.300 NA 111, 385.100 108, 048.500 9.356 8.798 NA
in619 99, 021.430 97, 306.300 NA 107, 571.600 105, 627.100 8.635 10.549 NA
in620 102, 111.700 102, 951.700 NA 110, 938.000 107, 924.700 8.644 7.757 NA
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B.5 Comparison with Best Exact Algorithm - Max W Clique

Table B.3.: Comparison with Optimal using Max W Clique

Instance MaxWClique ACO Best ACO Median %Diff ACO Best vs. MaxWClique % Of Optimal Solution

in101 72, 724.610 72, 724.620 69, 505.350 0.00001 100
in102 72, 518.220 72, 391.300 70, 816.550 −0.175 99.825
in103 72, 129.500 70, 263.900 68, 500.380 −2.586 97.414
in104 72, 709.640 72, 709.650 72, 709.650 0.00001 100
in105 75, 646.120 74, 710.870 69, 655.450 −1.236 98.764
in106 71, 258.610 70, 109.670 65, 481.070 −1.612 98.388
in107 69, 713.400 69, 398.190 68, 556.220 −0.452 99.548
in108 75, 813.200 75, 776.730 73, 403.750 −0.048 99.952
in109 69, 475.890 68, 652.180 65, 638.600 −1.186 98.814
in110 68, 295.280 68, 154.710 66, 103.890 −0.206 99.794
in111 75, 133.290 74, 498.480 72, 711.300 −0.845 99.155
in112 71, 342.480 71, 342.480 70, 649.440 0.00000 100
in113 73, 365.870 72, 440.320 72, 440.320 −1.262 98.738
in114 69, 224.750 68, 239.570 67, 749.260 −1.423 98.577
in115 70, 221.560 69, 908.300 67, 582.560 −0.446 99.554
in116 70, 032.430 69, 093.730 68, 973.010 −1.340 98.660
in117 69, 982.830 69, 982.830 67, 505.990 0.00000 100
in118 72, 160.980 71, 385.200 67, 132.890 −1.075 98.925
in119 67, 038.420 66, 153.540 64, 083.190 −1.320 98.680
in120 75, 514.930 74, 648.330 72, 865.390 −1.148 98.852
in201 81, 557.740 81, 557.740 81, 557.740 0.00000 100
in202 90, 708.120 90, 708.130 90, 333.850 0.00001 100
in203 86, 239.210 86, 239.210 86, 239.210 0.00000 100
in204 87, 075.420 87, 075.430 85, 480.420 0.00001 100
in205 86, 515.950 86, 515.950 84, 840.310 0.00000 100
in206 91, 518.960 91, 518.960 87, 755.490 0.00000 100
in207 93, 129.240 93, 129.250 91, 247.660 0.00001 100
in208 94, 904.670 94, 904.680 91, 782.040 0.00001 100
in209 87, 268.960 87, 268.960 86, 356.430 0.00001 100
in210 89, 962.390 89, 962.400 86, 878.260 0.00001 100
in211 84, 913.680 84, 913.680 83, 618.950 0.00000 100
in212 90, 778.200 90, 778.210 88, 124.010 0.00001 100
in213 85, 369.180 85, 369.180 84, 169.240 0.00001 100
in214 85, 181.600 85, 181.610 84, 823.260 0.00001 100
in215 91, 531.690 91, 531.690 88, 879.960 0.00000 100
in216 91, 580.930 91, 580.930 91, 580.930 0.00000 100
in217 86, 962.920 86, 962.930 86, 895.060 0.00001 100
in218 94, 965.190 94, 965.190 90, 151.270 0 100
in219 93, 586.430 90, 309.730 89, 760.600 −3.501 96.499
in220 89, 792.900 89, 792.910 88, 255.520 0.00001 100
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Table B.4.: Comparison with Optimal using Max W Clique

Instance MaxWClique ACO Best ACO Median %Diff ACO Best vs. MaxWClique % Of Optimal Solution

in401 77, 417.480 77, 417.480 77, 417.480 0.00000 100
in402 76, 273.330 76, 273.340 76, 273.340 0.00001 100
in403 74, 843.950 74, 843.960 74, 843.960 0.00001 100
in404 78, 761.690 78, 761.690 78, 761.690 0 100
in405 75, 915.900 75, 915.900 75, 336.860 0 100
in406 72, 863.320 72, 863.320 72, 863.320 0.00001 100
in407 76, 365.720 76, 365.720 76, 365.720 0 100
in408 77, 018.830 77, 018.830 77, 018.830 0.00000 100
in409 73, 188.620 73, 188.620 73, 188.620 0 100
in410 73, 791.650 73, 791.660 73, 710.070 0.00001 100
in411 73, 935.400 73, 935.410 73, 898.990 0.00001 100
in412 75, 292.630 75, 292.630 75, 292.630 0 100
in413 74, 434.900 74, 434.990 74, 434.990 0.0001 100
in414 77, 146.370 77, 146.370 76, 749.550 0.00000 100
in415 73, 519.130 73, 519.130 73, 519.130 0 100
in416 73, 487.010 73, 487.020 73, 487.020 0.00001 100
in417 74, 981.350 74, 981.350 74, 981.350 0.00000 100
in418 71, 404.840 71, 404.840 71, 404.840 0.00000 100
in419 72, 505.210 72, 505.210 72, 505.210 0.00000 100
in420 75, 510.680 75, 510.680 75, 510.680 0.00001 100
in421 75, 694.940 75, 694.950 74, 729.600 0.00001 100
in422 77, 443.910 77, 443.910 77, 443.910 0 100
in423 68, 134.350 68, 134.350 68, 134.350 0.00001 100
in424 77, 352.760 77, 352.760 76, 385.110 0 100
in425 77, 333.910 77, 333.910 77, 333.910 0 100
in426 76, 430.180 76, 430.180 76, 430.180 0 100
in427 76, 387.570 76, 387.570 76, 387.570 0 100
in428 77, 384.940 77, 384.940 76, 609.980 0 100
in429 75, 540.960 75, 540.960 75, 540.960 0 100
in430 79, 038.750 79, 038.750 79, 038.750 0 100
in501 88, 656.950 88, 656.960 86, 780.240 0.00001 100
in502 86, 236.910 86, 236.910 84, 915.890 0.00000 100
in503 87, 812.370 86, 318.180 85, 106.870 −1.702 98.298
in504 85, 600 85, 600.000 83, 947.140 0.00000 100
in601 108, 800.400 108, 800.400 105, 058.500 0.00000 100
in602 105, 611.500 105, 611.500 102, 360.800 0.00001 100
in603 105, 121.000 105, 121.000 99, 171.900 0.00000 100
in604 107, 733.800 107, 733.800 105, 838.900 0.00000 100
in605 109, 841.000 109, 841.000 105, 925.800 0.00000 100
in606 107, 113.100 107, 113.100 105, 218.200 0.00001 100
in607 113, 180.300 113, 180.300 105, 869.400 0.00000 100
in608 105, 266.100 105, 266.100 104, 285.700 0.00001 100
in609 109, 472.300 109, 472.300 104, 084.700 0.00000 100
in610 113, 717.000 113, 717.000 111, 487.900 0.00000 100
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Table B.5.: Comparison with Optimal using Max W Clique

Instance MaxWClique ACO Best ACO Median %Diff ACO Best vs. MaxWClique % Of Optimal Solution

in611 106, 666.300 106, 666.300 101, 902.400 0.00000 100
in612 109, 796.700 109, 796.700 106, 056.100 0.00000 100
in613 107, 980.100 107, 980.200 105, 559.100 0.00001 100
in614 108, 364.600 108, 364.600 106, 152.600 0.00001 100
in615 110, 508.800 110, 508.800 108, 615.900 0.00000 100
in616 109, 740.500 109, 740.500 105, 441.800 0 100
in617 113, 302.400 113, 302.400 106, 931.500 0.00000 100
in618 111, 385.100 111, 385.100 108, 048.500 0.00000 100
in619 107, 571.600 107, 571.600 105, 627.100 0.00000 100
in620 110, 938.000 110, 938.000 107, 924.700 0.00000 100

Table B.6.: Summary: TrACA vs MaxWClique (Wu and Hao, 2016). Max time taken
by TrACA ≈ 625 sec.

Test Instance OSP 100 OSP 200 OSP 300 OSP 400
Lau and Goh (2002)

in101-in120 0.02 0.03 0.041 0.033
in201-in220 0.053 0.095 0.13 0.17
in401-in430 0.5 0.61 0.69 0.73
in501-in504 0.008 0 0.025 0
in601-in620 0.033 0.083 0.143 0.18
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B.6 Regression & Bootstrap Results

Table B.7.: IRLS Estimated Coefficients

Dependent variable:

Run times

Avg. In-Degree −1,178.420∗∗∗

(254.233)
Avg. In-Degree Closeness 2,577.499

(3,300.123)
Avg. Out-Degree Closeness −2,595.040

(3,376.119)
Avg. Betweenness −20.704

(182.043)
Clustering Coefficient (Transitivity) −471.619∗∗∗

(101.655)
Eigenvalue 1,598.136∗∗∗

(397.583)
Avg. Eigenvector Centrality 838.843∗∗

(374.180)
Avg. Katz Centrality 6.140

(7.080)
Avg. Cluster Size −1.901

(9.670)
Std. Dev. Cluster Size 2.859

(8.530)
Avg. Node Strength −99.030∗∗∗

(28.199)
Constant 355.341∗∗∗

(0.811)

Observations 90
Residual Std. Error 5.742 (df = 78)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B.8.: Original sample value for each component of the bootstrapped statis-
tics (Original), Bootstrap estimates of bias (bootBias), standard error (bootSE ) and
median value of statistic (bootMed).

R Original bootBias bootSE bootMed 2.5% 97.5%

(Intercept) 2, 000 355.462 −0.534 2.285 354.708 351.517 360.473
AIni 2, 000 −759.771 −101.692 623.776 −839.495 −1, 880.657 564.500
AInCi 2, 000 12, 206.130 −1, 985.034 7, 713.555 10, 535.710 −927.121 29, 309.460
AOutCi 2, 000 −12, 399.840 2, 057.958 7, 939.376 −10, 644.690 −30, 018.690 1, 103.094
ABeti 2, 000 428.228 −134.332 476.376 312.259 −371.120 1, 496.240
CCi 2, 000 −608.652 71.821 231.755 −539.720 −1, 134.705 −226.241
EVi 2, 000 664.107 267.714 1, 107.816 931.728 −1, 774.887 2, 567.673
AEV Ci 2, 000 1, 853.234 −316.067 1, 009.278 1, 596.848 191.152 4, 147.449
AKCi 2, 000 12.180 −1.472 16.555 10.276 −18.797 46.099
ACSi 2, 000 30.161 3.958 26.498 27.012 −25.731 78.138
SCSi 2, 000 13.731 −3.036 24.536 12.977 −31.323 64.855
ANSi 2, 000 −13.840 3.369 90.286 −23.567 −194.166 159.748

Figure B.1.: Sensitivity analysis of bootstrapped coefficients for AIni, SCSi, CCi, AEV Ci
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B.7 Sample Box-Plots

Figure B.2.: TrACA results for instances 111-120. Red dots are CPLEX values. Blue squares
joined by lines are Memetic Algorithm values.

Figure B.3.: TrACA results for instances 601-610. Red dots are CPLEX values. Blue squares
joined by lines are Memetic Algorithm values.

B.8 Run-time Predictions

Predicted Run-times using Supervised learning model. Run-times are dependent
on problem complexity. Our findings regarding complexity of WDP are similar to ev-
idence from closely related problem - multidimensional knapsack (MKP) (Puchinger
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et al., 2006, 2010; Xia et al., 2004). MKP involves choosing a subset of items to max-
imize profit, such that resource constraints are not violated. One of the constraints
is defined as tightness. Tightness is defined as the inverse of total quantity of each
item requested by each set. For instance, lower value of tightness for item j implies
more sets have requested the jth item. Lower value of tightness makes solving MKP
harder (Puchinger et al., 2010). In terms of WDP, tightness is equivalent to inverse
of number of bundles that request an item (Cansizoglu, 2011; Pfeiffer and Rothlauf,
2008). TrACA clearly demonstrates that using its graphical formulation for solving
WDP, it is well suited to solve large auctions that have higher likelihood for low
tightness for items.

Table B.9.: Predicted run-times vs. Actual run-times - Validation Set

Observations TrACA Predicted Run-time Actual Run-time S.E. (Standard Error)

1 157.650 161.400 1.264
2 602.024 597.021 1.649
3 420.383 407.664 1.723
4 608.360 593.151 2.582
5 319.853 323.599 3.195
6 154.447 153.699 1.369
7 149.958 148.188 1.786
8 409.204 421.463 2.433
9 169.720 169.964 2.574
10 350.948 357.696 1.984
11 407.331 403.494 2.826
12 570.320 557.922 1.875
13 380.794 384.180 2.003
14 134.977 135.436 3.285
15 382.159 383.195 2.343
16 581.560 589.612 1.705
17 152.093 155.853 2.048
18 150.444 152.520 1.425
19 394.143 398.866 2.920
20 401.712 408.108 3.361
21 159.113 160.895 2.156
22 155.660 157.628 1.514
23 587.256 613.290 2.669
24 415.602 417.553 1.719
25 600.414 619.785 1.927
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Table B.10.: Predicted run-times vs. Actual run-times - Test Set

Observations TrACA Predicted runtimes Actual runtimes S.E. (Standard Error)

1 444.908 446.255 3.639
2 406.306 409.015 1.815
3 395.892 389.741 2.911
4 160.151 160.354 2.064
5 610.949 611.307 1.856
6 354.300 348.166 2.174
7 397.482 389.191 2.057
8 150.983 149.777 1.522
9 428.136 420.688 1.819
10 161.534 155.064 2.619
11 567.663 543.512 1.862
12 576.123 569.499 1.967
13 437.300 436.220 3.009
14 616.808 666.477 2.193
15 143.267 145.932 1.746
16 387.443 391.939 2.133
17 342.538 346.308 2.317
18 354.844 335.790 2.499
19 380.367 382.820 2.445
20 572.779 563.744 1.769



147

Figure B.4.: Predicted Values from Bootstrapped IRLS Model for Validation & Test Set

B.9 CPLEX vs TrACA

Table B.11.: Summary: TrACA vs CPLEX. For Median Test we use Wilcoxon Rank
Sum test.

Test Instance Median Test ISP Z Score Solution Quality
Lau and Goh (2002)

in101-in120 4 0.32 0.44 2.5%
in201-in220 8 0.53 -0.45 2.55%
in401-in430 10 0.81 0.44 0%
in601-in620 13 0.75 -1.98 5.2%

We outline here the comparison of CPLEX & TrACA. Usually, many prior liter-
ature do not compare CPLEX with their meta-heuristic algorithms. CPLEX aims
to generate the optimal solution even though it may take a considerable amount of
time. Recall that, to keep the comparison consistent, we allow the CPLEX solver
run for the same duration as the maximum time TrACA takes to solve for each set
of instances (Table 3.1, Column 6). Table B.11 shows the results for comparison be-
tween CPLEX and TrACA. When choosing between CPLEX and TrACA, the choice
is between a deterministic algorithm and a heuristic. Hence the choice depends on
how TrACA’s solution distribution generated in repeated trials, within specified time,
compares with CPLEX results. Although the results from Median Test and ISP (Ta-
ble B.11 Columns 2, 3) point to better solution from CPLEX, values in Z score and
Solution Quality (Column 4, 5), point to value from using TrACA for repeated solving
of WDP. Further, we consider TrACA’s speed of convergence to optimal as another
parameter for comparison with CPLEX. As shown in Figure B.5, for instances in101
and in104, TrACA converges to a better solution in the 800th and 650th iteration
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respectively. For the most difficult instances in601-in620 in terms of size (1500 bids
of 1500 items), TrACA converges to better solution during the first 600 iterations for
10 out of 20 instances and before 1200 iterations for the rest 8 instances. In terms of
time, this translates to better results in as low as 4.5 minutes. Hence, the value from
using TrACA is in applications that need fast and repeated approximation within a
specified duration. For industrial applications, Bichler and Kalagnanam (2006) notes
that the private procurement auctions exhibit trends of repeated winner determina-
tion. In these auctions, the range of items can be 10 to nearly 100,000 with number
of bidders ranging from only a few up to several hundreds. With such variability in
number of items and bids, iterative combinatorial auctions are being used to improve
efficiency of allocation (Cramton et al., 2007).

Figure B.5.: Typical convergence pattern for 400 ant simulation run for 1500 iterations and Ran-
domized graph pruning happening at tc = {200, 450, 700, 950, 1350}. The graph shows CPLEX
solution constructions in the 601 sec it takes TrACA to construct solution for in101, in104 instances.
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B.10 Multi-Unit Multi-Item Simulations

Table B.12.: Results for Multi-Unit, Multi-Item Auction Simulations

Test Instance Maximum Revenue Time Taken (sec.) No. of Winning Bids

1 12, 666.190 6.240 10
2 13, 337.560 5.470 7
3 15, 050.360 6.870 8
4 11, 686.960 6.980 7
5 12, 903.910 5.980 8
6 13, 973.420 5.670 9
7 10, 927.230 6.390 10
8 13, 824.450 5.500 9
9 13, 147.860 5.080 10
10 12, 810.790 6.290 10
11 11, 972.500 6.200 8
12 12, 256.950 6.180 9
13 13, 996.160 5.360 9
14 13, 016.230 6.940 8
15 9, 785.222 6.440 10
16 13, 339.720 6.570 9
17 14, 605.560 6.490 8
18 12, 613.410 5.080 10
19 15, 071.530 5.390 8
20 12, 233.180 5.530 9
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Figure B.6.: Comparison of search: Single Unit Multi Item vs Multi Unit Multi Item. Convergence
trend shown for first 100 iterations.
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C. APPENDIX C

C.1 Proof Proposition 1

The proof uses the basic definition of dominant strategies that states a strategy
si ∈ Si is a dominant strategy for player i if ∀ ŝi 6= si and all s−i ∈ S−i, ui(si, s−i) ≥
ui(ŝi, s−i), and for at least one choice of s−i the inequality is strict. Consider the
same action space for miners A = {Sp, Sw, Sl}. Combining V win, V loss, suppose that
the expected payoff for miner 1, from any action is given by En1,n2

S1,S2
= γ0 − γ1δ12 −

γ2δ21 − γ3∆L1 − γ4∆L2, with γ1 > γ3. For n2 ≤ n1 ≤ 2n2, miner 1’s payoffs for all
actions of miner 2 are as follows:

En1,n2

Sp,Sp
= γ0 − γ1n2 − γ2n1 − γ3n1 − γ4n2 (C.1)

En1,n2

Sp,Sw
= γ0 − γ1n2 − γ2(n1 − n2 − 1)− γ3n1 (C.2)

En1,n2

Sp,Sl
= γ0 − γ1n2 − γ2(n1 − n2)− γ3n1 − γ4 (C.3)

En1,n2

Sw,Sp
= γ0 − γ1(n1 + 1− n2)− γ2n1 − γ4n2 (C.4)

En1,n2

Sw,Sw
= γ0 − γ1(n1 + 1− n2)− γ2(n1 − n2 − 1) (C.5)

En1,n2

Sw,Sl
= γ0 − γ1(n1 + 1− n2)− γ2(n1 − n2)− γ4 (C.6)

En1,n2

Sl,Sp
= γ0 − γ1(n1 − n2)− γ2n1 − γ3 − γ4n2 (C.7)

En1,n2

Sl,Sw
= γ0 − γ1(n1 − n2)− γ2(n1 − n2 − 1)− γ3 (C.8)

En1,n2

Sl,Sl
= γ0 − γ1(n1 − n2)− γ2(n1 − n2)− γ3 − γ4 (C.9)

Comparing payoffs for miner 1 actions Sl and Sw (i.e., equations C.4, C.5, C.6, C.7,
C.8, C.9), for all actions of miner 2, Sl dominates Sw for miner 1. This is because,
En1,n2

Sl,S−i
− En1,n2

Sw,S−i
> 0 ∀ S−i ∈ {Sp, Sw, Sl} since γ1 > γ3. Further, comparing miner 1

payoffs for actions Sl and Sp, E
n1,n2

Sl,S−i
−En1,n2

Sp,S−i
= 2γ1(n2−n1)+γ3(n1−1) ≥ 0 ∀ S−i ∈

{Sp, Sw, Sl} since n2 < n1 ≤ 2n2. Hence, Sl is a dominant strategy for miner 1. By
symmetry, similar analysis can be done for n1 < n2 ≤ 2n1.

Now, consider the case where n1 = n2. Then it is clear that same arguments hold
for miner 1 and by symmetry for miner 2. Using the equations C.1 - C.9, clearly
Sl strictly dominates Sw and dominates Sp. Hence, using elimination of dominated
strategies, (Sl, Sl) is the dominant strategy equilibrium.
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C.2 Proof Corollary 1

This is straightforward from equations C.1-C.9 and w.l.o.g consider miner 1 having
the shorter private chain length. Then, since γ1 + γ3 > 0 and γ1(n1 + 1) + γ3n1 > 0,
Sw dominates Sl and Sp.

Consider the case where miner 1 successfully mines on a private chain and shortens
the difference in chain lengths with the longer miner 2. Subsequently, when miner 1
gains in chain length to miner 2, following the previous proposition, Sl becomes the
dominant strategy for miner 1.

C.3 Proof Proposition 2

The basic strategy of the proof is to show that a miner i’s preference ordering
is unanimous in ranking payoff from action Sl as weakly the best. Therefore, given
weakly dominant strategies, no miner is better off with any other action.

Using definition of ∆nwini ,∆nlossi following are the payoffs miner i with private
chain ni > 0 faces when competing with any other miner j 6= i to mine a block:

u
Sp,Sp
i = h1(ni + 1) + h2(0) + h3(nj + 1) + h4(ni) (C.10)

u
Sp,Sw
i = h1(ni + 1) + h2(0) + h3(0) + h4(ni) (C.11)

u
Sp,Sl
i = h1(ni + 1) + h2(0) + h3(1) + h4(ni) (C.12)

u
Sw,Sp
i = h1(0) + h2(ni + 1) + h3(nj + 1) + h4(ni) (C.13)

uSw,Swi = h1(0) + h2(ni + 1) + h3(0) + h4(ni) (C.14)

uSw,Sli = h1(0) + h2(ni + 1) + h3(1) + h4(ni) (C.15)

u
Sl,Sp
i = h1(1) + h2(ni) + h3(nj + 1) + h4(ni) (C.16)

uSl,Swi = h1(1) + h2(ni) + h3(0) + h4(ni) (C.17)

uSl,Sli = h1(1) + h2(ni) + h3(1) + h4(ni) (C.18)

Since h1, h2 are assumed concave utility functions on finite sets K1 = {0, ni + 1, 1}
and K2 = {0, ni + 1, ni} respectively, by the theorem of concave utility functions on
finite sets (Chambers and Echenique, 2009; Kannai, 2005; Richter and Wong, 2004),
it is clear that:

• For K1, since ∃ α1 > 0, α2 > 0 such that α1 +α2 = 1 and α1 (ni + 1)+α2(0) = 1,
outcomes 1 � 0 and 1 � ni + 1. Hence, h1(1) ≥ h1(0) and h1(1) ≥ h1(ni + 1).

• For K2, since ∃ β1 > 0, β2 > 0 such that β1 +β2 = 1 and β1 (ni + 1)+β2(0) = ni,
outcomes ni � 0 and ni � ni+1. Hence, h2(ni) ≥ h2(0) and h2(ni) ≥ h2(ni+1).
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Using these inequalities, comparing dominance solvability when A−i = Sl, we have:

h1(1) ≥ h1(0), h2(ni) ≥ h2(ni + 1) (C.19)

⇒ h1(1) + h2(ni) ≥ h1(0) + h2(ni + 1) (C.20)

h1(1) ≥ h1(ni + 1), h2(ni) ≥ h2(0) (C.21)

⇒ h1(1) + h2(ni) ≥ h1(ni + 1) + h2(0) (C.22)

which trivially implies uSl,Sli ≥ uSw,Sli and uSl,Sli ≥ u
Sp,Sl
i . Using equations C.20,

C.22, similar comparisons with A−i = Sw and A−i = Sp yield uSl,Swi ≥ uSw,Swi and

uSl,Swi ≥ u
Sp,Sw
i ; u

Sl,Sp
i ≥ u

Sw,Sp
i and u

Sl,Sp
i ≥ u

Sp,Sp
i . Hence, Sl is weakly dominant

strategy.
Now misreporting private chain length by any other positive length does not

change the outcome since any misreporting of length simply changes α1, α2, β1, β2.
Further, if the miner misreports chain length as 0, then K1 = {0, 1, 1} and K2 =
{0, 1, 0}. Notice that on substituting these values in all payoff equations, miner is
indifferent between Sp & Sl while on comparing Sl & Sw, since public chain dominant
assumption applies, we have that Sl ≥ Sw and the outcome still is honest mining.
Hence, the mechanism is strategy-proof.

C.4 Proof Proposition 3

The basic strategy of the proof is similar to previous proposition. Essentially, this
is a proof by case where four cases are analyzed – each case, a miner i is compared
with another miner j as a possible winner and it is shown that under no circumstances
can action Sl be worse than action Sp, Sw.

• If min(X ′) = 0, among (0, ni+1), (ni+1, 0), (ni, 1) it is clear that by majorization
(0, ni + 1) � (ni, 1). So, by Schur-Concavity for majorization gwin(ni, 1) ≥
gwin(0, ni + 1), gwin(ni, 1) ≥ gwin(ni + 1, 0).

• If min(X ′) = k ≥ 1 such that ni − k ≥ 1, among (−k, ni + 1), (ni + 1 −
k, 0), (ni − k, 1) it is clear that if ni − k > 1 then since ni + 1 > ni + 1 − k >
ni − k, (−k, ni + 1) � (ni − k, 1), (ni + 1 − k, 0) � (ni − k, 1). Hence, again
by Schur-Concavity, gwin(ni − k, 1) ≥ gwin(−k, ni + 1), gwin(ni, 1) ≥ gwin(ni +
1 − k, 0). It is even simpler when ni − k = 1 because then, the vectors become
(−k, ni + 1), (2, 0), (1, 1). Since (−k, ni + 1) � (1, 1) and (2, 0) � (1, 1) we have
gwin(ni − k, 1) ≥ gwin(−k, ni + 1), gwin(ni − k, 1) ≥ gwin(ni + 1− k, 0).

• Now, if min(X ′) = ni+1 ∀ ni ∈ {0, 1, 2, ..}, among (−ni−1, ni+1), (0, 0), (−1, 1),
it is clear that (−ni − 1, ni + 1) � (−1, 1) and (0, 0) is dominated. Hence,
gwin(−1, 1) ≥ gwin(−ni − 1, ni + 1), gwin(−1, 1) ≥ gwin(0, 0).

• Finally, if min(X ′) > ni+1 ∀ ni ∈ {1, 2, ..}, then by definition ∆nwin
i = nAii ∀ Si ∈

{Sp, Sw, Sl}. Hence, among (0, ni+1), (ni+1, 0), (ni, 1) it is clear that (0, ni+1) �
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(ni, 1) and (ni + 1, 0) � (ni, 1). So, gwin(ni, 1) ≥ gwin(0, ni + 1), gwin(ni, 1) ≥
gwin(ni + 1, 0).

Consider a miner misreporting private chain length: ni = {0, 1, ni − k}. For
the first case, if min(X ′) = 0 then Sl payoffs are equal to Sp and Sw and miner is
indifferent. If min(X ′) = 1, Sl and Sp have equal payoffs with Sw having zero payoffs
– again miner indifferent. Finally min(X ′) > 1 then Sl payoffs are equal to Sp and Sw
and miner is indifferent. Now consider reporting ni = 1 – if min(X ′) = 0 then Sl again
dominate Sp and Sw – because vectors (2, 0), (0, 2) majorize (1, 1). If min(X ′) = 1
then Sl dominates Sp and is equal to Sw – because vectors (−1, 2), (1, 0) weakly
majorize (0, 1). Finally, when min(X ′) > 1, then if min(X ′) = 2, Sl dominates Sp
((−2, 2) � (−1, 1)) and payoff from Sw = 0 (gwin(0, 0) = 0). Otherwise, for any other
value of min(X ′) > 1, then Sl payoffs are equal to Sp and Sw and miner is indifferent
and same argument from before follows. Now consider reporting ni− k. As shown, if
min(X ′) = nj < ni − k, then by same arguments as before (−nj, ni − k + 1) � (ni −
k−nj, 1) and (ni−k+1−nj, 0) � (ni−k−nj, 1). Since misrepresenting private chain
lengths does not impact payoffs, using Revelation Principle for Dominant Strategies
then a direct mechanism is DSIC (dominant strategy incentive compatible).

Note that we do not consider cases where the miner misreports private chain
length as n

′
i > ni since, by definition the outcomes of the mechanism would have to

be {0, 1, n′i + 1} where, clearly, n
′
i + 1 6= ni + 1, the actual increment by which the

public chain is forked. Hence, this case is deemed infeasible by the mechanism and
therefore ignored.

C.5 Proof Proposition 4

Consider the vectors (−min(X ′), ni + 1), (ni + 1−min(X ′), 0), (ni −min(X ′), 1).
For ni ≥ 1, it is clear that:

• If min(X ′) = 0, among (0, ni+1), (ni+1, 0), (ni, 1) it is clear that by majorization
(0, ni + 1) � (ni, 1). So, by Karamata Inequality for majorization h1(ni + 1) +
h2(0) ≤ h1(1) + h2(ni).

• If min(X ′) = k ≥ 1 such that ni−k ≥ 1, among (−k, ni+1), (ni+1−k, 0), (ni−
k, 1) it is clear that if ni − k > 1 then since ni + 1 > ni + 1 − k > ni − k and
ni + 1 + k > ni + 1 − k, (k, ni + 1) � (ni − k, 1), (ni + 1 − k, 0) � (ni − k, 1).
Hence, again by Karamata Inequality, h1(ni + 1) + h2(−k) ≤ h1(1) + h2(ni − k)
and h1(ni + 1 − k) + h2(0) ≤ h1(1) + h2(ni − k). It is even simpler when
ni − k = 1 because then, the vectors become (−k, ni + 1), (2, 0), (1, 1). Since
(−k, ni+1) � (1, 1) and (2, 0) � (1, 1) we have h1(ni+1)+h2(−k) ≤ h1(1)+h2(1)
and h1(0) + h2(2) ≤ h1(1) + h2(1).

• Now, if min(X ′) = ni+1 ∀ ni ∈ {0, 1, 2, ..}, among (−ni−1, ni+1), (0, 0), (−1, 1),
it is clear that (−ni − 1, ni + 1) � (−1, 1) and (0, 0) is dominated. Hence,
h1(1) + h2(−1) ≥ h2(−ni − 1) + h1(ni + 1), h1(1) + h2(−1) ≥ h1(0) + h2(0).
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• Finally, if min(X ′) > ni+1 ∀ ni ∈ {1, 2, ..}, then by definition ∆nwin
i = nAii ∀ Si ∈

{Sp, Sw, Sl}. Hence, among (0, ni + 1), (ni + 1, 0), (ni, 1) it is clear that (0, ni +
1) � (ni, 1) and (ni + 1, 0) � (ni, 1). So, h1(1) + h2(ni) ≥ h1(ni + 1) + h2(0),
h1(1) + h2(ni) ≥ h1(0) + h2(ni + 1).

Consider a miner misreporting private chain length: ni = {0, 1, ni − k}. For
the first case, if min(X ′) = 0 then Sl payoffs are equal to Sp and Sw and miner is
indifferent. If min(X ′) = 1, Sl and Sp have equal payoffs with Sw having zero payoffs
– again miner indifferent. Finally min(X ′) > 1 then Sl payoffs are equal to Sp and Sw
and miner is indifferent. Now consider reporting ni = 1. If min(X ′) = 0 then Sl again
dominate Sp and Sw – because vectors (2, 0), (0, 2) majorize (1, 1). If min(X ′) = 1
then Sl dominates Sp and is equal to Sw – because vectors (−1, 2), (1, 0) weakly
majorize (0, 1). Finally, when min(X ′) > 1, then if min(X ′) = 2, Sl dominates Sp
((−2, 2) � (−1, 1)) and payoff from Sw = 0 (gwin(0, 0) = 0). Otherwise, for any other
value of min(X ′) > 1, when miner i reports ni = 1, then Sl payoffs are equal to Sp and
Sw and miner is indifferent. Now consider reporting ni − k. As shown, if min(X ′) =
nj < ni − k, then by same arguments as before (−nj, ni − k + 1) � (ni − k − nj, 1)
and (ni−k+ 1−nj, 0) � (ni−k−nj, 1). Since misrepresenting private chain lengths
does not impact payoffs, using Revelation Principle for Dominant Strategies then a
direct mechanism is DSIC (dominant strategy incentive compatible).

C.6 Proof Proposition 5

Consider any non-negative value of blocks added by honest miners lh ≥ 0. As
shown in Eyal and Sirer (2018); Sapirshtein et al. (2016), only when δi ≥ 1 ⇒ ni ≥
lh+1 do selfish miners consider either forking or withholding. Hence we only consider
those cases in the following proof.

By majorization, among vectors (−lh, ni + 1), (ni + 1− lh, 0), (ni− lh, 1), it is clear
that (−lh, ni + 1) � (ni− lh, 1) and (ni + 1− lh, 0) � (ni− lh, 1). By Schur-concavity
then, gwin(ni − lh, 1) ≥ gwin(−lh, ni + 1) and gwin(ni − lh, 1) ≥ gwin(ni + 1 − lh, 0).
Hence, Sl is the dominant strategy.

Now consider miner i misreporting private chain length. Clearly, on reporting ni =
{1, 2, 3, .., ni−k} majorization and Schur-concavity produce the same result. Further,
on reporting ni = 0, if honest mining increments lh > 0 then by Eyal and Sirer (2018),
miner mines honestly. In the rare case where honest mining increment lh = 0 (which
can happen if selfish miner wins consecutive rounds), even then reporting ni = 0
makes miner indifferent between actions (since ni < lh + 1 when ni = lh = 0). Hence,
the mechanism is strategy-proof.


