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ABSTRACT

Hao, Botao Ph.D., Purdue University, December 2019. Statistical Guarantee for
Non-convex Optimization. Major Professor: Guang Cheng.

The aim of this thesis is to systematically study the statistical guarantee for two

representative non-convex optimization problems arsing in the statistics community.

The first one is the high-dimensional Gaussian mixture model, which is motivated by

the estimation of multiple graphical models arising from heterogeneous observations.

The second one is the low-rank tensor estimation model, which is motivated by

high-dimensional interaction model. Both optimal statistical rates and numerical

comparisons are studied in depth.

In the first part of my thesis, we consider joint estimation of multiple graphical

models arising from heterogeneous and high-dimensional observations. Unlike most

previous approaches which assume that the cluster structure is given in advance, an

appealing feature of our method is to learn cluster structure while estimating heteroge-

neous graphical models. This is achieved via a high dimensional version of Expectation

Conditional Maximization (ECM) algorithm (1). A joint graphical lasso penalty is

imposed on the conditional maximization step to extract both homogeneity and het-

erogeneity components across all clusters. Our algorithm is computationally efficient

due to fast sparse learning routines and can be implemented without unsupervised

learning knowledge. The superior performance of our method is demonstrated by ex-

tensive experiments and its application to a Glioblastoma cancer dataset reveals some

new insights in understanding the Glioblastoma cancer. In theory, a non-asymptotic

error bound is established for the output directly from our high dimensional ECM

algorithm, and it consists of two quantities: statistical error (statistical accuracy)



xii

and optimization error (computational complexity). Such a result gives a theoretical

guideline in terminating our ECM iterations.

In the second part of my thesis, we propose a general framework for sparse and low-

rank tensor estimation from cubic sketchings. A two-stage non-convex implementation

is developed based on sparse tensor decomposition and thresholded gradient descent,

which ensures exact recovery in the noiseless case and stable recovery in the noisy

case with high probability. The non-asymptotic analysis sheds light on an interplay

between optimization error and statistical error. The proposed procedure is shown to

be rate-optimal under certain conditions. As a technical by-product, novel high-order

concentration inequalities are derived for studying high-moment sub-Gaussian tensors.

An interesting tensor formulation illustrates the potential application to high-order

interaction pursuit in high-dimensional linear regression.



1

1. INTRODUCTION

The integration and interdiscipline between statistics and optimization are urgent

and productive. More and more statistical tools are being developed by borrowing

strengths from optimization, while optimization is looking to statistics for new insights,

speed, and robustness. In the era of big data, traditional statistics meets the curse of

heterogeneity and the emergence of new data types, such as matrix-value or tensor-

value data. In the optimization community, non-convex optimization has been shown

to handle these challenges efficiently but lacks a statistical guarantee. In this thesis, we

develop some new optimization tools for two classical non-convex statistical problems

as follows and provide the solid theoretical guarantee.

1.1 Simultaneous Clustering and Estimation of Heterogeneous Graphical

Models

Graphical models have been widely employed to represent conditional dependence

relationships among a set of variables. The structure recovery of an undirected

Gaussian graph is known to be equivalent to recovering the support of its corresponding

precision matrix (2). In the situation where data dimension is comparable to or

much larger than the sample size, the penalized likelihood method is proven to

be an effective way to learn the structure of graphical models (3; 4; 5). When

observations come from several distinct subpopulations, a naive way is to estimate

each graphical model separately. However, separate estimation ignores the information

of common structure shared across different subpopulations, and thus can be inefficient

in some real applications. For instance, in the glioblastoma multiforme (GBM) cancer

dataset from The Cancer Genome Atlas Research Network (6), (7) showed that GBM

cancer could be classified into four subtypes. Based on this cluster structure, it
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has been suggested that although the graphs across four subtypes differ in some

edges, they share many common structures. In this case, the naive procedure can be

suboptimal (8; 9). Such applications have motivated recent studies on joint estimation

methods (8; 9; 10; 11; 12; 13; 14) that encourage common structure in estimating

heterogeneous graphical models. However, all aforementioned approaches crucially

rely on an assumption that the class label of each sample is known in advance.

For certain problems, prior knowledge of the class membership may be available.

But this may not be the case for the massive data with complex and unknown

population structures. For instance, in online advertising, an important task is to

find the most suitable advertisement (ad) for a given user in a specific online context.

This could increase the chance of users’ favorable actions (e.g., click the ad, inquire

about or purchase a product). In recent years, user clustering has gained increasing

attention due to its superior performance of ad targeting. This is because users with

similar attributes, such as gender, age, income, geographic information, and online

behaviors, tend to behave similarly to the same ad (15). Moreover, it is very important

to understand conditional dependence relationships among user attributes in order

to improve ad targeting accuracy (16). Such conditional dependence relationships

are expected to share commonality across different groups (user homogeneity) while

maintaining some levels of uniqueness within each group (user heterogeneity) (17). In

this online advertising application, previously mentioned joint estimation methods

are no longer applicable as they need to know the user cluster structure in advance.

Furthermore, with the data being continuously collected, the number of underlying

user clusters grows with the sample size (18). This provides another reason for

simultaneously conducting user clustering and joint graphical model estimation, which

is much needed in the era of big data.

Our contributions in this work are two-fold. On the methodological side, we propose

a general framework of Simultaneous Clustering And estimatioN of heterogeneous

graphical models (SCAN). SCAN is a likelihood based method which treats the

underlying class label as a latent variable. Based on a high-dimensional version of
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Expectation Conditional Maximization (ECM) algorithm (1), we are able to conduct

clustering and sparse graphical model learning at the same time. In each iteration

of the ECM algorithm, the expectation step performs cluster analysis by estimating

missing labels and the conditional maximization step conducts feature selection and

joint estimation of heterogeneous graphical models via a penalization procedure. With

an iteratively updating process, the estimation for both cluster structure and sparse

precision matrices becomes more and more refined. Our algorithm is computationally

efficient by taking advantage of the fast sparse learning in the conditional maximization

step. Moreover, it can be implemented in a user-friendly fashion, without the need of

additional unsupervising learning knowledge.

As a promising application, we apply the SCAN method on the GBM cancer dataset

to simultaneously cluster the GBM patients and construct the gene regulatory network

of each subtype. Our method greatly outperforms the competitors in clustering

accuracy and delivers new insights in understanding the GBM disease. Figure 1.1

reports four gene networks estimated from the SCAN method. The black lines are

links shared in all four subtypes, and the color lines are uniquely presented in some

subtypes. Our findings generally agree with the GBM disease literature (7). Besides

common edges of all subtypes, we have discovered some unique gene connections that

were not found through separate estimation (8; 9). This new finding suggests further

investigation on their possible impact on the GBM disease. See Section 2.3.5 for more

discussions.

On the theoretical side, we develop non-asymptotic statistical analysis for the

output directly from the high dimensional ECM algorithm. This is nontrivial due to

the non-convexity of the likelihood function. In this case, there is no guarantee that the

sample-based estimator is close to the maximum likelihood estimator. Hence, we need

to directly evaluate the estimation error in each iteration. Let Θ represent vectorized

cluster means µk and precision matrices Ωk, see (2.1.2) for a formal definition. Given
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Fig. 1.1. Estimated gene networks corresponding to the Classical, Mes-
enchymal, Neural and Proneural clusters from our SCAN method applying
to the Glioblastoma Cancer Data. In each network, the black lines are the
links shared in all four groups. The color lines are the edges shared by
some subtypes.

an appropriate initialization Θ(0), the finite sample error bound of the t-th step

solution Θ(t) consists of two parts:∥∥Θ(t) −Θ∗
∥∥

2
≤ C · ε (n, p,K,Ψ(M))︸ ︷︷ ︸

Statistical Error(SE)

+ κt
∥∥Θ(0) −Θ∗

∥∥
2︸ ︷︷ ︸

Optimization Error(OE)

, (1.1.1)

with high probability. Here, K is the number of clusters, Ψ(M) measures the sparsity

of cluster means and precision matrices, and κ ∈ (0, 1) is a contraction coefficient.

The above theoretical analysis is applicable to any decomposable penalty used in the

conditional maximization step.

The error bound (1.1.1) enables us to monitor the dynamics of estimation error in

each iteration. Specifically, the optimization error decays geometrically with the itera-

tion number t, while the statistical error remains the same when t grows. Therefore,
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the maximal number of iterations T is implied, beyond which the optimization error

is dominated by the statistical error such that consequently the whole error bound is

in the same order as the statistical error. In particular,

K∑
k=1

(∥∥∥µ(T )
k − µ

∗
k

∥∥∥
2

+
∥∥∥Ω(T )

k −Ω∗k

∥∥∥
F

)
= OP


√
K5d log p

n︸ ︷︷ ︸
Cluster means error

+

√
K3(Ks+ p) log p

n︸ ︷︷ ︸
Precision matrices error

 ,

where d and s are the sparsity for a single cluster mean and precision matrix. This

result indicates that, after T steps, the SCAN estimator will fall within statistical

precision of the true parameter {µ∗k,Ω∗k}. It is worth mentioning that our theory

allows the number of clusters K to diverge polynomially with the sample size, reflecting

a typical big data scenario. When K is fixed, our statistical rate for the precision

matrix estimation under the Frobenius norm, i.e., OP (
√

(s+ p) log p/n), achieves the

optimal rate established in Theorem 7 of (19), which is the best rate we could obtain

even when the true cluster structure is given.

In the literature, a related line of research focuses on methodological developments

of high-dimensional clustering. (20) and (21) introduced regularized model-based

clustering and regularized K-means clustering, and (22) proposed a network-based

clustering approach by imposing a graphical lasso to each individual precision matrix

estimation. However, the regularized model-based clustering assumes an identical

covariance matrix in each cluster, while the network-based clustering treats each

graphical model estimation separately. As pointed out in (8) and (9), ignoring

the network information of other clusters may lead to suboptimal graphical model

estimation. During the submission of our paper, we became aware of an independent

work by (23) who also considered the multiple precision matrices estimation via a

Gaussian mixture model. Different from ours, (23) did not enforce the sparsity in

the cluster means, which would inevitably lead to sub-optimal estimators in high-

dimensional clustering (24; 25). Most importantly, no theoretical guarantee was

provided in (22) and (23). On the other hand, our SCAN method is more general

than these existing methods since we allow the sparsity in both cluster means and
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precision matrices, and our theoretical analysis of the general SCAN framework sheds

some lights on the behavior of these existing method, See Remark 2.1.1 for more

discussions. In addition, in terms of the heterogeneous graphical model estimation,

(26) proposed an interesting two-stage method which used hierarchical clustering to

obtain cluster memberships and then estimated the multiple graphical models based

on the attained cluster assignments. Despite its simplicity, it is unclear how the

performance of clustering in the first stage could affect the performance of precision

matrix estimation in the second stage. In comparison, our approach unifies clustering

and parameter estimation into one optimization framework, which allows us to quantify

both estimation errors in each iteration.

Another line of related work is the theoretical analysis of EM algorithm (24; 25; 27).

Specifically, (27) studied the low-dimensional Gaussian mixture model, while (25)

and (24) considered its high dimensional extensions. However, their methods are not

applicable for the estimation of heterogeneous graphical models due to the assumed

identity covariance matrix. In fact, our consideration of the general covariance matrix

demands more challenging technical analysis since simultaneous estimation of cluster

means and covariance matrices induces a bi-convex optimization beyond the non-

convexity of the EM algorithm itself. This also explains why ECM is needed instead

of EM. To address these technical issues, key ingredients of our theoretical analysis are

to bound the dual norm of the gradient of an auxiliary Q-function and employ nice

properties of bi-convex optimization (28) in the regularized M-estimation framework

(29). See Section 2.2 for more details.

1.2 Sparse and Low-rank Tensor Estimation via Cubic Sketchings

The rapid advance in modern scientific technology gives rise to a wide range of

high-dimensional tensor data (30; 31). Accurate estimation and fast communica-

tion/processing of tensor-valued parameters are crucially important in practice. For

example, a tensor-valued predictor, which characterizes the association between brain



7

diseases and scientific measurements, such as magnetic resonance imaging, becomes

the point of interest (32; 33; 34). Another example is tensor-valued image acquisition

algorithms that can considerably reduce the number of required samples by exploiting

the compressibility property of signals (35; 36).

In particular, the following tensor estimation model is widely considered in recent

literatures,

yi = 〈T ∗,Xi〉+ εi, i = 1, . . . , n. (1.2.1)

Here, Xi and εi are the measurement tensor and the noise, respectively. The goal

is to estimate the unknown tensor T ∗ from measurements {yi,Xi}ni=1. A number of

specific settings with varying forms of Xi have been studied, e.g., tensor completion

(37; 38; 39; 40), tensor regression (32; 33; 34; 41; 42; 43), multi-task learning (44), etc.

In this work, we focus on the case that the measurement tensor can be written

in a cubic form. For example, Xi = xi ◦ xi ◦ xi or Xi = ui ◦ vi ◦wi, depending on

T ∗ is symmetric or not. The cubic sketching form of Xi is motivated by a number of

applications.

• Interaction effect estimation: High-dimensional high-order interaction models

have been considered under a variety settings (45; 46; 47; 48). By writing

Xi = xi ◦ xi ◦ xi, we find that the interaction model has an interesting tensor

representation (see left panel of Figure 1.2) which allows us to estimate high-

order interaction terms using tensor techniques. This is in contrast with the

existing literature that mostly focused on pair-wise interactions due to the model

complexity and computational difficulties. More detailed discussions will be

provided in Section 3.4.

• High-order imaging/video compression: High-order imaging/video compression

is an important task in modern digital imaging with various applications (see

right panel of Figure 1.2), such as hyper-spectral imaging analysis (49) and facial

imaging recognition (50). In contrast to Gaussian ensembles for compression that

each entry of Xi is i.i.d. randomly generated (32; 41; 42), the non-symmetric
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cubic sketchings, i.e., Xi = ui ◦vi ◦wi, reduces the memory storage from O(np3)

to O(np), where n is sample size and p is the maximal dimension of tensor

modes, but still preserve the optimal statistical rate. More detailed discussions

will be provided in Section 3.5.

In practice, the total number of measurements n is considerably smaller than the

number of parameters in unknown tensor T ∗, due to all kinds of restrictions such

as time and storage. Fortunately, a variety of high-dimensional tensor data possess

intrinsic structures, such as low-rankness (31) and sparsity (51), which highly reduce

the effective dimension of the parameter and make the accurate estimation possible.

Please refer to (3.2.2) and (3.5.2) for low-rank and sparse assumptions.

Fig. 1.2. Illustration for interaction reformulation and tensor image/video
compression.

In this work, we propose a computationally efficient non-convex optimization

approach for sparse and low-rank tensor estimation via cubic-sketchings. Our procedure

is two-stage:

(i) obtain an initial estimate via the method of tensor moment (motivated by

high-order Stein’s identity), and then apply sparse tensor decomposition to the

initial estimate to output a provably warm start;

(ii) use a thresholded gradient descent to iteratively refine the warm start along

each tensor mode until convergence.
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In theory, we carefully characterize the optimization and statistical errors at

each iteration step. The output estimate is shown to converge in a geometric rate

to an estimation with minimax optimal rate in statistical error (in terms of tensor

Frobenius norm). In particular, after a logarithm factor of iterations, whenever

n & K2(s log(ep/s))
3
2 , the proposed estimator T̂ achieves∥∥∥T̂ −T ∗

∥∥∥2

F
≤ Cσ2Ks log(p/s)

n
, (1.2.2)

with high probability, where s, K, p, and σ2 are the sparsity, rank, dimension, and

noise level, respectively. We further establish the matching minimax lower bound to

show that (1.2.2) is indeed optimal over a large class of sparse low-rank tensors. Our

optimality result can be further extended to the non-sparse domain (such as tensor

regression (42; 52)) – to the best of our knowledge, this is the first optimality result

in both sparse and non-sparse low-rank tensor regressions.

The above theoretical analyses are non-trivial due to the non-convexity of the

empirical risk function, and the need to develop some new high-order sub-Gaussian

concentration inequalities. Specifically, the empirical risk function in consideration

satisfies neither restricted strong convexity (RSC) condition nor sparse eigenvalue

(SE) condition in general. Thus, many previous results, such as the one based on local

optima analysis (42; 53; 54), are not directly applicable. Moreover, the structure of

cubic-sketching tensor leads to high-order products of sub-Gaussian random variables.

Thus, the matrix analysis based on Hoeffding-type or Bernstein-type concentration

inequality (55; 56) will lead to sub-optimal statistical rate and sample complexity.

This motivates us to develop new high-order concentration inequalities and sparse

tensor-spectral-type bound, i.e., Lemmas 1 and 2 in Section 3.3.3. These new technical

results are obtained based on the careful partial truncation of high-order products of

sub-Gaussian random variables and the argument of bounded ψα-norm (57), and may

be of independent interest.

A related line of research is low-rank matrix estimation in the literature, e.g., the

spectral method and nuclear norm minimization (58; 59; 60). However, our cubic

sketching model is by-no-means a simple extension from matrix estimation problems.
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In general, many related concepts or methods for matrix data, such as singular value

decomposition, are problematic to apply in the tensor framework (61; 62). It is also

found that simple unfolding or matricizing of tensors may lead to suboptimal results

due to the loss of structural information (63). Technically, the tensor nuclear norm

is NP-hard to even approximate (38; 64), and thus the method to handle tensor

low-rankness is particularly different from the matrix.

Notation Throughout the paper, vector, matrix, and tensor are denoted by boldface

lower-case letters (e.g., x,y), boldface upper-case letters (e.g.,X,Y ), and script letters

(e.g., X ,Y), respectively. For any set A, let |A| be the cardinality. The diag(x) is

a diagonal matrix generated by x. For two vectors x and y, x ◦ y is the outer

product. Define ‖x‖q := (|x1|q + · · · + |xp|q)1/q. We also define the l0 quasi-norm

by ‖x‖0 = #{j : xj 6= 0} and l∞ norm by max1≤j≤p |xj|. Let ej be the canonical

vectors, whose j-th entry equals to 1 and all other entries equal to zero. We use [K]

to denote the set {1, 2, . . . , K}. For a vector µ ∈ Rp, ‖µ‖2 is its Euclidean norm. For

a matrix X ∈ Rp1×p2 , we denote ‖X‖F and ‖X‖2 as its Frobenius norm and spectral

norm, respectively, and define its matrix max norm as ‖X‖max = maxi,j |Xij| and its

max induced norm as ‖X‖∞ = maxi=1,...,p1

∑p2
j=1 |Xij|, which is simply the maximum

absolute row sum of the matrix. For a square matrix A ∈ Rp×p, let σmin(A) and

σmax(A) be its smallest and largest eigenvalue respectively and |A| be its determinant.

For a sub-Gaussian random variable Z, we use ‖Z‖ψ2 and ‖Z‖ψ1 to denote its Orlicz

norm. Specifically, ‖Z‖ψ2 = supp≥1 p
−1/2(E|Z|p)1/p and ‖Z‖ψ1 = supp≥1 p

−1(E|Z|p)1/p.

For two sequences {an} and {bn} of positive numbers, an . bn refers to the case

that an ≤ Cbn for some uniform constant C. We write 1(·) as an indicator function.

Throughout this thesis, we use C,C1, C2, . . . D,D1, D2, . . . to denote generic absolute

constants, whose values may vary at different places.
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2. SIMULTANEOUS CLUSTERING AND ESTIMATION

OF HETEROGENEOUS GRAPHICAL MODELS

2.1 Methodology

In this section, we introduce the SCAN method that simultaneously conducts

high-dimensional clustering and estimation of heterogeneous graphical models.

2.1.1 Heterogeneous Graphical Models

We start our discussions from heterogeneous graphical models with known labels.

Assume we are given K groups of data sets A1, . . . ,AK and the samples in the k-th

group are generated i.i.d. from the following Gaussian distribution:

fk(x;µk,Σk) = (2π)−p/2|Σk|−1/2 exp

{
−1

2
(x− µk)>Σ−1

k (x− µk)
}
, k = 1, . . . , K.

(2.1.1)

Let Ωk = Σ−1
k be the k-th precision matrix with the ij-th entry ωkij. For the k-th

pair of parameters (µk,Ωk), i.e.,

µk =


µk1

...

µkp

 ,Ωk =


ωk11 · · · ωk1p

...
. . .

...

ωkp1 · · · ωkpp

 ,

we write Θk :=~(µk,Ωk) = (µk1, . . . , µkp, ωk11, . . . , ωkp1, . . . , ωk1p, . . . , ωkpp) ∈ Rp2+p as

its vectorized representation, and write the parameter of interest Θ as

Θ =
(
Θ1, . . . ,ΘK

)> ∈ RK(p2+p). (2.1.2)

Note that the degrees of freedom of Θ are K(0.5p2 + 1.5p), including K sets of p

means, p variances, as well as p(p− 1)/2 covariances.
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In some cases, there may also exist some common structure across K precision

matrices. (8) formulated the joint estimation of heterogeneous graphical models as

argmax
Ω1,...,ΩK�0

K∑
k=1

∑
x∈Ak

log fk(x; Θk)− P(Ω1, . . . ,ΩK), (2.1.3)

where P(Ω1, . . . ,ΩK) is an entry-wise penalty which encourages both sparsity of each

individual precision matrix and similarity among all precision matrices.

In practice, the cluster label is not always available. A probabilistic model is thus

needed to accommodate the latent structure in the data. Assume the observation

xi; i = 1, . . . , n, from unlabeled heterogeneous population has the underlying density

f(x,Θ) =
K∑
k=1

πkfk(x; Θk), (2.1.4)

where πk is the probability that an observation xi belongs to the k-th subpopulation.

Here, for simplicity we assume the number of cluster K is identifiable. In order

to ensure the identifiability of fixed-dimensional Gaussian graphical models, some

sufficient conditions such as the strong identifiability condition was imposed on the

density functions. However these conditions are hard to verify in practice. In fact, the

identifiability issue for high dimensional mixture model is still an open problem (65)

and is beyond the scope of this paper.

Consider the penalized log-likelihood function for the observed data

logL(Θ|X) :=
1

n

n∑
i=1

log

(
K∑
k=1

πkfk

(
xi;µk, (Ωk)

−1
))
−R(Θ).

Our Simultaneous Clustering And estimatioN (SCAN) method aims to solve

max
πk,µk,Ωk

logL(Θ|X). (2.1.5)

For an illustration, we take

R(Θ) = λ1

K∑
k=1

p∑
j=1

|µkj|︸ ︷︷ ︸
P1(Θ)

+λ2

K∑
k=1

∑
i 6=j

|ωkij|︸ ︷︷ ︸
P2(Θ)

+λ3

∑
i 6=j

(
K∑
k=1

ω2
kij)

1/2

︸ ︷︷ ︸
P3(Θ)

, (2.1.6)
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where P1(Θ) and P2(Θ) impose sparsity of the estimated cluster mean and precision

matrix, and P3(Θ) encourages similarity among all estimated precision matrices. The

above three tuning parameters can be tuned efficiently via adaptive BIC. More details

can be found in Section 2.3.1.

Remark 2.1.1. It is worth mentioning that our SCAN method is applicable to penalty

functions other than (2.1.6). For instance, the cluster mean penalty can be replaced

by the group lasso penalty in (21) or the `0-norm penalty in (66). The group graphical

lasso penalty for the precision matrix estimation can be substituted by the structural

pursuit penalty in (67) or the weighted bridge penalty in (68). As shown in Section

2.1.2, only a slight modification of our algorithm is needed to accommodate other

penalty functions. We also note that SCAN reduces to the regularized model-based

clustering (20) when λ2 = λ3 = 0, reduces to the method by (22) when λ3 = 0,

and reduces to the method by (23) when λ1 = 0. Consequently, the technical tools

developed for the SCAN estimator in Section 2.2 are also applicable to these special

cases.

2.1.2 ECM Algorithm

In this subsection, we introduce an efficient ECM algorithm to solve the general

non-convex optimization problem in (2.1.5). The ECM replaces each M-step with an

conditional maximization (CM) step in which each parameter πk,µk,Ωk is maximized

separately, by fixing other parameters.

Denote the latent cluster assignment matrix as L, where Lik = 1(xi ∈ Ak);

i = 1, . . . , n, k = 1, . . . , K. If the cluster label Lik is available, the penalized log-

likelihood function for the complete data can be formulated as

logL(Θ|X,L) :=
1

n

n∑
i=1

K∑
k=1

Lik

[
log πk + log fk(xi; Θk)

]
−R(Θ).
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In the expectation step, the conditional expectation of the penalized log-likelihood

function is computed as

EL|X,Θ(t−1)

[
logL(Θ|X,L)

]
= Qn(Θ|Θ(t−1))−R(Θ), (2.1.7)

where R(Θ) is the penalty in (2.1.6) and

Qn(Θ|Θ(t−1)) :=
1

n

n∑
i=1

K∑
k=1

LΘ(t−1),k(xi)
[

log πk + log fk(xi; Θk)
]
, (2.1.8)

with the class label being computed based on the parameter Θ(t−1) and π
(t−1)
k obtained

at the previous iteration, that is,

LΘ(t−1),k(xi) =
π

(t−1)
k fk(xi; Θ

(t−1)
k )∑K

k=1 π
(t−1)
k fk(xi; Θ

(t−1)
k )

. (2.1.9)

In the conditional maximization step, maximizing (2.1.7) with respect to πk, µk,

Ωk yields the update of parameters. In particular, the update of πk is given as

π
(t)
k =

n∑
i=1

LΘ(t−1),k(xi)

n
, (2.1.10)

and the update of µk is given in the following Lemma.

Lemma 2.1.2. Let µ
(t)
k := arg maxµk Qn(Θ|Θ(t−1)) − R(Θ) and denote nk :=∑n

i=1 LΘ(t−1),k(xi). We have, for j = 1, . . . , p,

µ
(t)
kj =


g1,j(x; Θ

(t−1)
k )− nλ1

nkω
(t−1)
kjj

sign(µ
(t−1)
kj ) if

∣∣∣∑n
i=1 g2,j(xi; Θ

(t−1)
k )

∣∣∣ > λ1;

0 otherwise,

where

g1,j(x; Θ
(t−1)
k ) =

∑n
i=1 LΘ(t−1),k(xi)

(∑p
l=1 xilω

(t−1)
klj

)
ω

(t−1)
kjj nk

−
∑p

l=1 µ
(t−1)
kl ω

(t−1)
klj

ω
(t−1)
kjj

+ µ
(t−1)
kj ,

g2,j(xi; Θ
(t−1)
k ) = LΘ(t−1),k(xi)

( p∑
l=1,l 6=j

(xil − µ(t−1)
kl )ω

(t−1)
klj + xijω

(t−1)
kjj

)
.

Note that if the lasso penalty is replaced with other penalty functions, then the

update formula of µ
(t)
k in Lemma 2.1.2 can be modified accordingly. Given the pseudo
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sample covariance matrix S̃k, we are able to develop an update formula for Ωk by

establishing its connection with joint estimation of heterogeneous graphical models

(2.1.3).

Lemma 2.1.3. The solution of maximizing (2.1.7) with respect to (Ω1, . . . ,ΩK) is

equivalent to

(Ω
(t)
1 , . . . ,Ω

(t)
K ) := arg max

Ω1,...,ΩK�0

K∑
k=1

nk

[
log det(Ωk)−trace(S̃kΩk)

]
−R(Θ), (2.1.11)

where S̃k is a pseudo sample covariance matrix defined as

S̃k :=

∑n
i=1 LΘ(t−1),k(xi)(xi − µ

(t−1)
k )>(xi − µ(t−1)

k )∑n
i=1 LΘ(t−1),k(xi)

.

The solution for (2.1.11) can be solved efficiently via the ADMM algorithm by

slightly modifying the joint graphical lasso algorithm in (8). Since (8) do not impose

the symmetry condition for precision matrix update, {Ω(T )
k }Kk=1 in general is not

necessarily symmetric. Following the symmetrization strategy in (69) and (13), we

symmetrize Ω
(t)
k by

ω
(t)
kij = ω

(t)
kijI(|ω(t)

kij ≤ ω
(t)
kij|) + ω

(t)
kjiI(|ω(t)

kij > ω
(t)
kij|), (2.1.12)

where ω
(t)
kij is the ij-th entry of Ω

(t)
k and I(·) is the indicator function. This step

will not affect the convergence rate of the final estimator, which is illustrated in (69)

and (13). We summarize the high-dimensional ECM algorithm for solving the SCAN

method in Table 2.1. Our algorithm is computationally efficient due to fast sparse

learning routines shown in Lemmas 2.1.2 and 2.1.3.

In all of our experiments, we obtain (µ
(0)
k ,Ω

(0)
k ) by random initialization, which is

computationally efficient and practically reliable. In the theoretical study, we require

the initialization to be of a constant distance to the truth. See Remark 2.2.8 for more

discussions. Moreover, in the implementation, ECM step in Step 2 is terminated when

the updated parameters are close to their previous values:

K∑
k=1

{
‖µ(t)

k − µ
(t−1)
k ‖2

‖µ(t)
k ‖2

+
‖Ω(t)

k −Ω
(t−1)
k ‖F

‖Ω(t)
k ‖F

}
≤ 0.01.
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Table 2.1.
The SCAN Algorithm

Input: x1, . . . ,xn, number of clusters K, tuning parameters λ1, λ2, λ3.

Output: Cluster label L, cluster mean µk and precision matrix Ωk.

Step 1: Initialize cluster mean µ
(0)
k , positive definite precision matrix

Ω
(0)
k , and set π

(0)
k = 1/K, for each k ∈ [K].

Step 2: Until some termination conditions are met, for iteration t =

1, 2, . . .

(a) E-step. Find the cluster assignment LΘ(t−1),k(xi) as in (2.1.9).

(b) CM-step. Given LΘ(t−1),k(xi), update π
(t)
k , µ

(t)
k , and Ω

(t)
k in (2.1.10),

Lemma 2.1.2, Lemma 2.1.3, respectively. Symmetrize Ω
(t)
k by (2.1.12).

Remark 2.1.4. In the existing high-dimensional EM algorithms where the covariance

matrix is assumed to be an identity matrix (24; 25), sample-splitting procedures

have been routinely used in the M-step in order to facilitate the theoretical analysis.

Although it simplifies theoretical developments, such a sample-splitting procedure

does not take advantage of full samples in the M-step and is hard to implement in

practice. Our Algorithm 2.1 is able to avoid this sample-splitting step but still enjoys

nice theoretical properties. See Corollary 2.2.12 for more discussions on its statistical

guarantee.

2.2 Statistical Guarantee

In this section, we establish statistical guarantee for the SCAN estimator based on

sample-based analysis of (2.1.8) and population-based analysis of (2.2.3). Here, we

consider the high-dimensional setting where p� n and K is allowed to diverge with

n.
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We start by introducing some useful notation. Denote the index set of diagonal

components of K precision matrices by

G =
K⋃
k=1

Gk,with Gk =
(
k(p+ 1), k(2p+ 2), . . . , k(p2 + p)

)
, (2.2.1)

that is, ΘG = (ω111, . . . , ω1pp, . . . , ωK11, . . . , ωKpp) ∈ RKp. Let O be the complete

index set of Θ and Gc = O\G be the complement set of G. Denote Uk := {i : µ∗ki 6= 0}

where µ∗k is the true mean parameter, Vk := {(i, j) : i 6= j, ω∗kij 6= 0} where Ω∗k is the

true precision matrix and S1 =
⋃K
k=1 Uk, S2 =

⋃K
k=1 Vk. Define Ξ ⊆ RK(p2+p) as some

non-empty convex set of parameters. Denote the support space M as

M :=
{
V ∈ Ξ

∣∣ µki = 0 for all i 6∈ S1, (2.2.2)

ωkij = 0 for all pairs (i, j) /∈ S2, k = 1 . . . , K
}
,

where V follows the same definition style used for Θ in (2.1.2). Denote the sparsity

parameters:

s := #{(i, j) : ω∗kij 6= 0, i, j = 1 . . . p, i 6= j, k = 1, . . . , K},

d := #{i : µ∗ik 6= 0, i = 1, . . . , p, k = 1, . . . , K}.

2.2.1 Population-Based Analysis

We define a corresponding population version of Qn in (2.1.8) as

Q(Θ
′|Θ) := E

[
K∑
k=1

LΘ,k(X)[log π
′

k + log fk(X; Θ
′

k)]

]
. (2.2.3)

Without loss of generality, we assume the true prior probability π∗k = 1/K for each

k = 1, . . . , K. Recall that the update of weights in (2.1.10) is independent of the

updates of other parameters. Consequently, according to (2.1.1), maximizing Q(Θ
′|Θ)

over (µ
′

k,Ω
′

k) is equivalent to maximizing

K∑
k=1

E
[
LΘ,k(X)

{
1

2
log det(Ω

′

k)−
1

2
(X − µ′k)>Ω

′

k(X − µ
′

k)

}]
. (2.2.4)
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Clearly, the update of (µ
′

l,Ω
′

l) is independent of the update of (µ
′
t,Ω

′
t) for any t 6= l.

This enables us to characterize the update of each pair of parameters separately. For

any k = 1, . . . , K, define

Mµ
′
k
(Ω
′

k) := arg max
µ
′
k

Q(Θ
′ |Θ) and MΩ

′
k
(µ
′

k) := arg max
Ω
′
k

Q(Θ
′ |Θ).

We show in Lemma 2.2.1 that the population update of µ
′

k is independent of Ω
′

k,

while the population update of Ω
′

k is a function of µ
′

k.

Lemma 2.2.1. For any k = 1, . . . , K, we have

Mµ
′
k
(Ω
′

k) =
[
E[LΘ,k(X)]

]−1E[LΘ,k(X)X], (2.2.5)

MΩ
′
k
(µ
′

k) = E[LΘ,k(X)]
[
E[LΘ,k(X)(X − µ′k)(X − µ

′

k)
>]
]−1

. (2.2.6)

The difficulty of simultaneous clustering and estimation can be characterized by the

following sufficiently separable condition. Define Bα(Θ∗) :=
{
Θ ∈ Ξ :

∥∥Θ−Θ∗
∥∥

2
≤

α
}
.

Condition 2.2.2 (Sufficiently Separable Condition). Denote W = maxjWj, W
′

=

maxjW
′
j , W

′′
= maxjW

′′
j with Wj,W

′
j ,W

′′
j defined in (2.6.4), (2.6.7) and (2.6.8),

respectively. We assume K clusters are sufficiently separable such that given an

appropriately small parameter γ > 0, it holds a.s.

LΘ,k(X) · LΘ,j(X) ≤ γ

24(K − 1)
√

max{W,W ′ ,W ′′}
, (2.2.7)

for each pair {(j, k), j, k ∈ [K], j 6= k} and any Θ ∈ Bα(Θ∗).

Condition 2.2.2 requires that K clusters are sufficiently separable in the sense that

X belongs to the k-th cluster with probability either close to zero or close to one

such that LΘ,k(X) · LΘ,j(X) is close to zero. In the special case that K = 2 and

Ω∗1 = Ω∗2 = 1p, (27) requires ‖µ∗1 − µ∗2‖2 is sufficiently large. Our Condition 2.2.2

extends it to general K and general precision matrices. Note that the condition (2.2.7)

is related with the number of clusters K. As K grows, the clustering problem gets

harder and hence a stronger sufficiently separable condition is needed.
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The next lemma guarantees that the curvature of Q(·|Θ) is similar to that of

Q(·|Θ∗) when Θ is close to Θ∗, which is a key ingredient in our population-based

analysis.

Lemma 2.2.3 (Gradient Stability). Under Condition 2.2.2, the function {Q(·|Θ),Θ ∈

Ξ} satisfies, ∥∥∇Q(Θ∗|Θ)−∇Q(Θ∗|Θ∗)
∥∥

2
≤ τ ·

∥∥Θ−Θ∗
∥∥

2
, (2.2.8)

with parameter τ ≤ γ/12 for any Θ ∈ Bα(Θ∗). The gradient ∇Q(Θ∗|Θ) is taken

with respect to the first variable of Q(·|·).

2.2.2 Sample-Based Analysis

In this section, we analyze the sample-base function Qn, defined as the objective

function in (2.1.8). The statistical error comes from the approximation by using

sample-base function Qn to population-base function Q. We need one regularity

condition to ensure that Qn is strongly concave in a specific Euclidean ball.

Condition 2.2.4. There exist some positive constants β1, β2 such that 0 < β1 <

mink∈[K] σmin(Ω∗k) < maxk∈[K] σmax(Ω∗k) < β2.

Lemma 2.2.5 verifies the restricted strong concavity condition of Qn. Note that

(2.2.9) corresponds to the restricted eigenvalue condition in sparse linear regression

(29).

Lemma 2.2.5 (Restricted Strong Concavity). Suppose that Condition 2.2.4 holds.

Then for any Θ ∈ Bα(Θ∗), with probability at least 1− δ, each Θ′ ∈ C := {Θ′ | ‖Θ′−

Θ∗‖2 ≤ 2α} satisfies

Qn(Θ′|Θ)−Qn(Θ∗|Θ)−
〈
∇Qn(Θ∗|Θ),Θ′ −Θ∗

〉
≤ −γ

2

∥∥∥Θ′ −Θ∗
∥∥∥2

2
, (2.2.9)

with sufficiently large n, where γ = c ·min{β1, 0.5(β2 + 2α)−2} is the strong concavity

parameter for some constant c.
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Define P(Θ) = M1P1(Θ) + M2P2(Θ) + M3P3(Θ) for some positive constants

M1,M2,M3. Let P∗ be the dual norm of P , which is defined as P∗(Θ) = supP(Θ′)≤1〈Θ′,Θ〉.

For simplicity, write ‖ · ‖P∗ = P∗(·).

Condition 2.2.6. For any fixed Θ ∈ Bα(Θ∗), with probability at least 1− δ1,∥∥∥∇Qn(Θ∗|Θ)−∇Q(Θ∗|Θ)
∥∥∥
P∗
≤ ε1, (2.2.10)

and with probability at least 1− δ2, we have∥∥∥[∇Qn(Θ∗|Θ)−∇Q(Θ∗|Θ)
]
G

∥∥∥
2
≤ ε2, (2.2.11)

where G is the diagonal index set defined in (2.2.1). Here ε1 and ε2 are functions of

n, p,K, δ1, δ2.

Intuitively, ε1 and ε2 quantify the difference between the population-based and

sample-based conditional maximization step. Note that P does not penalize diagonal

elements of each precision matrix, thus∥∥∥∇Qn(Θ∗|Θ)−∇Q(Θ∗|Θ)
∥∥∥
P∗

=
∥∥∥[∇Qn(Θ∗|Θ)−∇Q(Θ∗|Θ)

]
Gc

∥∥∥
P∗
.

Our analysis makes use of the property of dual norm to bridge the SCAN penalty

term and the targeted error term in L2 norm. Note that our SCAN penalty does not

penalize diagonal terms of precision matrices, and hence it can be treated as a norm

only if it is applied to the parameter Θ without diagonal terms of precision matrices.

Otherwise, it is a semi-norm. For this purpose, we separate all the diagonal terms from

Θ. Therefore, our statistical error is split by two parts: one from the sparse estimate

of cluster means and non-diagonal terms in precision matrices, and another from the

estimate of diagonal terms of precision matrices. In Lemma 2.6.1, ε1 and ε2 will be

specifically calculated for our proposed SCAN penalty. In the high dimensional ECM

algorithm, there is no explicit form for the CM-step update due to the existence of

the penalty term. This is a crucial difference from the low-dimensional EM algorithm

in (27). Fortunately, the decomposability of SCAN penalty enables us to quantify

statistical errors by evaluating the gradient of Q-function.
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2.2.3 Statistical Error versus Optimization Error

In this section, we provide the final theoretical guarantee for the high-dimensional

ECM algorithm by combining the population and sample-based analysis.

Definition 1 Support Space Compatibility Constant . For the support subspace M⊆

RK(p2+p) defined in (2.2.2), we define

ν(M) = sup
Θ∈M\{0}

P(Θ)

‖Θ‖2

. (2.2.12)

Remark 2.2.7. The support space compatibility constant ν(M) is a variant of

subspace compatibility constant originally proposed by (29) and (70). Actually, ν(M)

can be interpreted as a notion of intrinsic dimensionality of M . In order to bound the

statistical error, we need some measures for the complexity of parameter Θ reflected by

the penalty term. One possible way is to specify a model subspaceM and require Θ lie

in the space. By choosing the support spaceM of parameter of interest Θ, the support

space compatibility constant ν(M) can measure the complexity of Θ relative to the

penalty term P and square norm. The larger ν(M) is, the more samples are needed

to guarantee statistical consistency. For examples, if the penalty P is L1 penalty with

s-sparse coordinate support space M′, then we have ν(M′) =
√
s. In the context of

group lasso penalty, we have ν(M′) =
√
|S|, where S is the index set of active groups.

For our SCAN penalty, ν(M) is specifically calculated by M1

√
Kd+(M2

√
K+M3)

√
s,

where d, s are the common sparsity parameters for single cluster means and precision

matrices accordingly and M1,M2,M3 are some absolute constants.

We first provide a general theory that applies to any decomposable penalty, such

as the group lasso penalty in (21) and fused graphical lasso penalty in (8). The

theoretical result of our SCAN penalty will be discussed in Corollary 2.2.12.

Theorem 1 . Suppose Conditions 2.2.2, 2.2.4, 2.2.6 hold and Θ∗ lies in the interior

of Ξ. Let κ = 6τ/γ, where τ, γ are calculated in Lemma 2.2.3 and Lemma 2.2.5.

Consider our SCAN algorithm in Table 2.1 with initialization Θ(0) falling into a ball
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Bα(Θ∗) for some constant radius α > 0 and assume the tuning parameters satisfy

λ1 = M1λ
(t)
n , λ2 = M2λ

(t)
n , λ3 = M3λ

(t)
n , and

λ(t)
n = ε+ κ

γ

ν(M)

∥∥Θ(t−1) −Θ∗
∥∥

2
. (2.2.13)

If the sample size n is large enough such that ε ≤ (1 − κ)γα/(6ν(M)), then Θ(t)

satisfies, with probability at least 1− tδ′,∥∥Θ(t) −Θ∗
∥∥

2
≤ 6ν(M)

(1− κ)γ
ε︸ ︷︷ ︸

Statistical Error(SE)

+ κt
∥∥Θ(0) −Θ∗

∥∥
2︸ ︷︷ ︸

Optimiation Error(OE)

, (2.2.14)

where δ′ = δ + δ1 + δ2 with δ, δ1, δ2 defined in Lemma 2.2.5 and Condition 2.2.6 and

ε = ε1 + ε2/ν(M).

The above theoretical result suggests that the estimation error in each iteration

consists statistical error and optimization error. From the definition of τ in Lemma

2.2.3, κ is less than 0.5 so that it is a contractive parameter. With a relatively good

initialization, even though ECM algorithm may be trapped into a local optima after

enough iterations, it can be guaranteed to be within a small neighborhood of the

truth, in the sense of statistical accuracy. In addition, with a proper choice of δ′, the

final probability 1− tδ′ will converge to 1; see Corollary 2.2.12 for details.

Remark 2.2.8. To our limited knowledge, there is no existing literature to guarantee

the global convergence of ECM algorithm in a general case. Compromisingly, we

have to require some constraints on the initial value. In our framework, the only

requirement for the initial value is to fall into a ball with constant radius to the truth.

Such a condition has also been imposed in EM algorithms (24; 25; 27) and can be

fulfilled by some spectral-based initializations (71).

Remark 2.2.9. In Theorem 1, we introduce an iterative turning procedure (2.2.13)

which appeared in high dimensional regularized M -estimation (29), and was also

applied in (24) to facilitate their theoretical analysis.

The error bound in (2.2.14) measures the estimation error in each iteration.

Here, optimization error decays geometrically with the iteration number t, while
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the statistical error remains the same when t grows. Therefore, this enables us to

provide a meaningful choice of the maximal number of iterations T beyond which

the optimization error is dominated by the statistical error such that the whole error

bound is in the same order of the statistical error.

In the following corollary, taking the SCAN penalty as an example, we provide a

closed form of the maximal number of iterations T and also an explicit form of the

estimation error.

Condition 2.2.10. The largest element of cluster means and precision matrices are

both bounded, that is, for some positive constants c1 and c2,

‖µ∗‖∞ := max
k∈[K]

‖µ∗k‖∞ < c1 and ‖Ω∗‖max := max
k∈[K]

‖Ω∗k‖max < c2.

Condition 2.2.11. Suppose that the number of clustersK satisfiesK2 = o(p(log n)−1).

Corollary 2.2.12. Suppose Conditions 2.2.2, 2.2.4, 2.2.10 and 2.2.11 hold. If sample

size n is sufficiently large such that

n ≥

(
6(CK‖Ω∗‖∞ + C ′K1.5)(

√
Kd+

√
Ks+

√
K) + C

′′
K1.5√p

(1− κ)γα

)2

log p,

and the iteration step t is large enough such that

t ≥ T = log1/κ

∥∥Θ(0) −Θ∗
∥∥

2

ϕ(n, p,K)
,

where ϕ(n, p,K) = 6C̃((1 − κ)γ)−1‖Ω∗‖∞(
√
Kd +

√
Ks+ p)

√
K3 log p/n for some

positive constant C̃, the optimization error in (2.2.14) is dominated by the statistical

error, and

K∑
k=1

(∥∥∥µ(T )
k − µ

∗
k

∥∥∥
2

+
∥∥∥Ω(T )

k −Ω∗k

∥∥∥
F

)

≤ 12C̃

(1− κ)γ

‖Ω∗‖∞
√
K5d log p

n︸ ︷︷ ︸
Cluster means error

+ ‖Ω∗‖∞

√
K3(Ks+ p) log p

n︸ ︷︷ ︸
Precision matrices error

 ,

with probability converging to 1.
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Remark 2.2.13. If K is fixed, the above upper bound reduces to

K∑
k=1

(∥∥∥µ(T )
k − µ

∗
k

∥∥∥
2

+
∥∥∥Ω(T )

k −Ω∗k

∥∥∥
F

)

.

‖Ω∗‖∞
√
d log p

n︸ ︷︷ ︸
Cluster means error

+ ‖Ω∗‖∞

√
(s+ p) log p

n︸ ︷︷ ︸
Precision matrices error

 .

(2.2.15)

Consider the class of precision matrix Q := {Ω : Ω � 0, ‖Ω‖∞ ≤ CQ} as in (19).

When CQ does not depend on n, p, our rate
√

(s+ p) log p/n in (2.2.15) is minimax

optimal for estimating s-sparse precision matrix under Frobenius norm (see Theorem

7 in (19)). The same rate has also been obtained in (26) for multiple precision

matrix estimation when the true cluster structure is assumed to be given in advance.

Moreover, our cluster mean error rate
√
d log p/n is minimax optimal for estimating

d-sparse cluster means; see (25). In short, Corollary 2.2.12 indicates that our procedure

is able to achieve optimal statistical rates for both cluster means and multiple precision

matrices even when the true cluster structure is unknown.

Remark 2.2.14. As a by-product, we establish the variable selection consistency of

Ω
(T )
k , which ensures that our precision matrix estimator can asymptotically identify

true connected links. Assume ‖Ω∗k‖∞ is bounded and the minimal signal in the

true precision matrix satisfies ωmin := min(i,j)∈Vk,k=1,...,K w
∗
kij > 2rn, where rn =

(
√
K5d+

√
K3(Ks+ p))

√
log p/n. The latter condition is weaker than that assumed

in (10), where they require a constant lower bound of ωmin. To ensure the model

selection consistency, we threshold the precision matrix estimator Ω
(T )
k such that ω̃kij =

ω
(T )
kij 1{|ω

(T )
kij | > rn} as in (72) and (9). See Theorem 2 in the online supplementary for

some results on the selection consistency result.

2.3 Numerical Study

In this section, we discuss an efficient tuning parameter selection procedure and

demonstrate the superior numerical performance of our method. We compare our

algorithm with three clustering and graphical model estimation methods:
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• Standard K-means clustering (73).

• Algorithm in (22) which applies graphical lasso for each precision matrix esti-

mation.

• A two-stage approach which first uses K-means clustering to obtain the clusters

and then applies joint graphical lasso (8) to estimate precision matrices.

For a fair comparison, we assume the number of clusters K is given in all methods.

2.3.1 Selection of Tuning Parameters

In our simultaneous clustering and graph estimation formulation, three tuning

parameters Λ := {λ1, λ2, λ3} need to be appropriately determined so that both the

clustering and network estimation performance can be optimized. In our framework,

the tuning parameters are selected through the following adaptive BIC-type selection

criterion. For a set of tuning parameters Λ := {λ1, λ2, λ3}, the adaptive BIC criterion

is defined as

BIC(Λ) = −2 log L̂(Λ) + log(n)dfΛ(µ) + 2dfΛ(Ω), (2.3.1)

where L̂(Λ) is the sample likelihood function and {dfΛ(µ), dfΛ(Ω)} is the degrees of

freedom of the model. Here, {dfΛ(µ), dfΛ(Ω)} can be approximated by the size of

selected variables in the final estimator. Therefore, according to the Gaussian mixture

model assumption, the adaptive BIC criterion in (2.3.1) can be computed as

−2
n∑
i=1

log

(
K∑
k=1

π̂kfk

(
xi; µ̂k, (Ω̂k)

−1
))

+
K∑
k=1

{log n · s1k + 2s2k} ,

where s1k = Card{i : µ̂ki 6= 0}, s2k = Card{(i, j) : Ω̂kij 6= 0, 1 ≤ i < j ≤ p} and

π̂k, µ̂k, Ω̂k are final updates from Algorithm 2.1. We choose a smaller weight for the

degrees of freedom of precision matrices as suggested in (8). The mixing weight π is

not counted into the degrees of freedom since it only contributes a constant factor.

In our experiment, we choose the optimal set of parameters minimizing the BIC

value in (2.3.1). In the high-dimensional scenario where p is very large, calculation of
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BIC over a grid search for all λ1, λ2, λ3 may be computationally expensive. Following

(8), we suggest a line search over λ1, λ2 and λ3. In detail, we fix λ2 and λ3 at their

median value of the given range and conduct a grid search over λ1. Then with tuned λ1

and median value of λ3, we conduct a grid search over λ2. The line search for λ3 is the

same. In our simulations, we choose the tuning range 10−2+2t/15 with t = 0, 1, . . . , 15

for all λ1, λ2, λ3.

2.3.2 Illustration

In this subsection, we demonstrate the importance of simultaneous clustering and

estimation in improving both the clustering performance and the estimation accuracy

of multiple precision matrices.

The simulated data consists of n = 1000 observations from 2 clusters, and among

them 500 observations are from N (µ1,Σ) and the rest 500 observations are from

N (µ2,Σ) with µ1 = (0, 1)>, µ2 = (0,−1)>, and

Σ =

 1 0.8

0.8 1

 .

The standard K-means algorithm treats the data space as isotropic (distances

unchanged by translations and rotations) (74). This means that data points in each

cluster are modeled as lying within a sphere around the cluster centroid. A sphere

has the same radius in each dimension. However, the non-diagonal covariance matrix

in the mixture model makes the cluster structure highly non-spherical. Thus, the

K-means algorithm is expected to produce an unsatisfactory clustering result. This is

illustrated in Figure 2.3.2 where K-means clustering clearly obtains wrong clusters.

On the other hand, by incorporating the precision matrix estimation into clustering,

our method is able to identify two correct clusters.

Figure 2.3.2 illustrates the estimation performance of precision matrices based on

the clusters estimated from the K-means clustering and our method. Clearly, our

SCAN method delivers an estimator with improved accuracy when compared to the
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Fig. 2.1. The first plot represents the true clusters shown in red and black
in the example of Section 2.3.2. The middle and right plots show the
clusters obtained from the standard K-means clustering (Kmeans) and
our SCAN method.

two stage method which applies joint graphical lasso (JGL) to the clusters obtained

from the K-means clustering. This suggests that an accurate clustering is critical for

the estimation performance of heterogeneous graphical models.

True Kmeans + JGL SCAN

Fig. 2.2. The true precision matrix and the estimated precision matrices
from the two stage method (Kmeans + JGL) and our SCAN method in
the example of Section 2.3.2.
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2.3.3 Effect of Sample Size and Dimension

We investigate the effect of sample size and dimension in terms of the estimation

error and computational time. First, we empirically demonstrate the derived upper

bound (2.2.15) for the estimation error by drawing the error pattern of our precision

matrix estimator against sample size and dimension. The setting is the same as Section

2.3.2 except that we consider a tri-diagonal convariance structure. The results are

summarized in Figure 2.3.3. In the first plot, we fix the dimension to be 10 and vary

the sample size from 400 to 2000. In the second plot, we fix the sample size to be 5000

and vary the dimension from 5 to 50. The box plot refers to the the actual numerical

values of precision matrix estimation errors, and the red dot is the theoretical error

rate in each scenario. These results demonstrate that the empirical errors match very

well with the theoretical error bound.

Fig. 2.3. Comparison of the numerical error and the theoretical error
rates of our SCAN method. The left panel displays the precision matrix
estimation error with varying sample sizes. The right panel displays the
precision matrix estimation error with varying dimensions.

Second, we compare the average running time of our SCAN algorithm with varying

sample sizes and dimensions. Figure 2.3.3 shows that our algorithm scales linearly

with the sample size and roughly linearly with the dimension. This illustrates the

efficiency and scalability of our proposed algorithm.
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Fig. 2.4. Running time of our algorithm. The left panel is the running
time with varying sample sizes and fixed dimension p = 10. The right
panel is the running time with varying dimensions and fixed sample size
n = 5000.

2.3.4 Simulations

In this subsection, we conduct extensive simulation studies to evaluate the perfor-

mance of our algorithm. To assess the clustering performance of various methods, we

compute the following clustering error (CE) which calculates the distance between

an estimated clustering assignment ψ̂ and the true assignment ψ of the sample data

X1, . . . ,Xn (21; 75),

CE(ψ̂, ψ) :=

(
n

2

)−1∣∣∣{(i, j) : 1(ψ̂(Xi) = ψ̂(Xj)) 6= 1(ψ(Xi) = ψ(Xj)); i < j}
∣∣∣,

where |A| is the cardinality of set A. To measure the estimation quality, we calculate

the precision matrix error (PME) and cluster mean error (CME)

PME :=
1

K

K∑
k=1

∥∥∥Ω̂(k) −Ω(k)
∥∥∥
F

; CME :=
1

K

K∑
k=1

∥∥∥µ̂(k) − µ(k)
∥∥∥

2
.
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Finally, to compare the variable selection performance, we compute the true positive

rate (TPR, percentage of true edges selected) and the false positive rate (FPR,

percentage of false edges selected)

TPR :=
1

K

K∑
k=1

∑
i<j 1(ωkij 6= 0, ω̂kij 6= 0)∑

i<j 1(ωkij 6= 0)
,

FPR :=
1

K

K∑
k=1

∑
i<j 1(ωkij = 0, ω̂kij 6= 0)∑

i<j 1(ωkij = 0)
.

In the simulation, a three-class problem is considered. We illustrate three different

types of network structures. In the first scenario, the network is assumed to have some

regular structures. We generate a 5-block tridiagonal precision matrix with p features

for the precision matrix. To allow the similarity of precision matrices across clusters,

we set the off-diagonal entry of Ω1,Ω2,Ω3 as η, 0.99η, and 1.01η, respectively. The

diagonal entries of Ω1,Ω2, and Ω3 are all 1.

In the second and third scenarios, followed by (8), we simulate each network

consisting of disjointed modules since many large networks in the real life exhibit a

modular structure comprised of many disjointed or loosely connected components of

relatively small size (76). Thus, each of three networks is generated with p features,

which has ten equally sized unconnected subnetworks. Among the ten subnetworks,

eight have the same structure and edge values across all the three classes, one remains

the same only for the first two classes and the last one appears only for the first class.

For the cluster structure of subnetwork, we consider two scenarios: power-law network

and chain network, which are generated using the algorithm in (76) and (77). The

detail construction is described as below.

Power-law network. Given an undirected network structure above, the initial ten-

block precision matrix (w1
ij)p×p is generated by

w1
ij =


1 i 6= j;

0 i 6= j, no edge;

Unif([−0.4,−0.1] ∪ [0.1, 0.4]) i 6= j, edge exits;
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To ensure positive definiteness and symmetry, we divide each off-diagonal entry

by 0.9 times the sum of the absolute values of off-diagonal entries in its row and

average this rescaled matrix with its transpose. Denote the final transformed

matrix by A. The covariance matrix corresponding to the first class is created

by

Σ1ij = dij
A−1
ij√

A−1
ii A

−1
jj

(2.3.2)

where dij = 0.9 for non-diagonal entry and dij = 1 for diagonal entry. For the

covariance matrix corresponding to the second class, we create Σ2 be identical

to Σ1 but reset one of ten block matrix to the identity matrix. Similarly, we

reset one additional block matrix for Σ3.

Chain network. In the scenario, each of ten blocks of the first covariance matrix

Σ1 is constructed in the following way. The ij-th element of each block has

the form σij = exp(−a|si − sj|), where s1 < s2 < · · · < sp/10 for some a > 0.

This is related to the autoregressive process of order one. In our case, we choose

a = 1 and si − si−1 ∼ Unif(0.5, 1) for i = 2, . . . , p/10. Similarly, we create Σ2

be identical to Σ1 but reset one of ten block matrix to the identity matrix and

reset one additional block matrix for Σ3.

After the networks are constructed, the samples are generated as follows. First,

the cluster membership Yi’s are uniformly sampled from {1, 2, 3}. Given the cluster

label, we generate each sample Xi ∼ N (µ(Yi),Σ(Yi)). Here, the cluster mean µ(Yi)

is sparse, where its first 10 variables are of the form

(µ1>5 ,−µ1>5 )> 1 (Yi = 1) + µ110 1(Yi = 2) + (−µ1>5 ,−µ1>5 )> 1 (Yi = 3),

with 15 being a 5-dimensional vector of all ones, and its last p− 10 variables are zeros.

For the first scenario, we consider 3 simulation models with varying choices of µ and

η:

• Model 1: µ = 0.8 and η = 0.3,



32

• Model 2: µ = 1 and η = 0.3,

• Model 3: µ = 1 and η = 0.4.

Here µ controls the separability of the three clusters with larger µ corresponding to

an easier clustering problem, and η represents the similarity level of precision matrices

across clusters. For the second and third scenarios, we considered three simulation

models with sequential choices of µ:

• Models 4,7: µ = 0.7,

• Models 5,8: µ = 0.8,

• Models 6,9: µ = 0.9.

The number of features p is equal to 100 and sample size is equal to 300. The results

are averaged over 50 experiments. The code is written in R and implemented on

an Intel Xeon-E5 processor with 64 GB of RAM. The average computation time for

SCAN of a single run took one and half minute.

In the experiment, our method selected the tuning parameters via the BIC criterion

in Section 2.3.1. For a fair comparison, we also used the same tuning parameters

λ1, λ2 in (22), and the same λ2, λ3 in the joint graphical lasso penalty of the two-

stage approach. We repeated the procedure 50 times and reported the averaged

clustering errors, estimation errors, and variable selection errors for each method

as well as their standard errors. Table 2.2 is for regular network, Table 2.3 is for

power-law networks and Table 2.4 is for chain networks. As shown in Table 2.3 and

Table 2.4, the standard K-means clustering method has the largest clustering error

due to a violation of its diagonal covariance matrix assumption. This will result in

poor estimation for multiple precision matrices. The method of (22) improves the

clustering performance of the standard K-means by using a graphical lasso in the

precision matrix estimation. However, it obtains a relatively large precision matrix

estimation error and very bad false positive rate since it ignores the similarity across

different precision matrices. In contrast, our SCAN algorithm achieves the best
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clustering accuracy and best precision matrix estimation accuracy for both scenarios.

This is due to our simultaneous clustering and estimation strategy as well as the

consideration of similarity of precision matrices across clusters. This experiment shows

that a satisfactory clustering algorithm is critical to achieve accurate estimations of

heterogeneous graphical models, and alternatively good estimation of the graphical

model can also improve the clustering performance. This explains the success of our

simultaneous method in terms of both clustering and graphical model estimation.

Table 2.2.
Simulation results of regular network. The clustering errors (CE), cluster
mean errors (CME), precision matrix errors (PME), true positive rates
(TPR) and false positive rates (FPR) of precision matrix estimation of
four methods. The minimal clustering error and minimal estimation error
in each simulation are shown in bold.

Models Methods CE CME PME TPR /FPR

K-means 0.1660.011 2.2560.108 NA NA /NA

Model 1 K-means + JGL 0.1660.011 2.2560.108 8.2060.090 0.9850.001 /0.0230.001

µ = 0.8 (22) 0.1040.007 1.1900.052 10.4580.0509 0.9600.002 /0.1070.001

η = 0.3 SCAN 0.0710.007 1.1200.063 7.6200.072 0.9930.001 /0.0220.001

K-means 0.2100.009 3.4280.114 NA NA/NA

Model 2 K-means + JGL 0.2100.009 3.4280.114 12.0990.317 0.9890.001 /0.0390.003

µ = 1 (22) 0.1250.012 1.8600.118 12.8330.253 0.9930.001 /0.1190.006

η = 0.3 SCAN 0.0580.012 1.4760.145 10.3010.332 0.9970.001 /0.0360.002

K-means 0.0210.002 1.2890.013 NA NA /NA

Model 3 K-means + JGL 0.0210.002 1.2890.013 7.6390.061 0.9930.001 /0.0290.002

µ = 1 (22) 0.0210.002 0.9680.018 10.1150.047 0.9680.001 /0.1060.001

η = 0.4 SCAN 0.0140.001 0.9560.018 7.6140.061 0.9930.001 /0.0290.002
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Table 2.3.
Simulation results of power-law network. The clustering errors (CE),
cluster mean errors (CME), precision matrix errors (PME), true positive
rates (TPR) and false positive rates (FPR) of precision matrix estimation
of four methods. The minimal clustering error and minimal estimation
error in each simulation are shown in bold.

Models Methods CE CME PME TPR /FPR

K-means 0.3310.007 3.2820.047 NA NA /NA

Model 4 K-means + JGL 0.3310.007 3.2820.047 49.5160.159 0.5750.002 /0.0340.002

µ = 0.7 (22) 0.3110.006 2.4940.055 50.9450.164 0.5780.002 /0.1340.002

SCAN 0.2830.008 2.3850.065 48.8450.146 0.5770.003 /0.0320.002

K-means 0.2280.010 2.7770.111 NA NA/NA

Model 5 K-means + JGL 0.2280.010 2.7770.111 48.6010.132 0.5820.002 /0.0440.003

µ = 0.8 (22) 0.1860.011 1.8370.113 49.2890.122 0.5840.001 /0.1310.001

SCAN 0.1560.012 1.7890.119 47.7290.118 0.5830.002 /0.0410.002

K-means 0.0830.010 1.6240.120 NA NA /NA

Model 6 K-means + JGL 0.0830.010 1.6240.120 46.8790.093 0.5890.002 /0.0700.003

µ = 0.9 (22) 0.0500.002 1.0030.018 47.5030.003 0.5910.001 /0.1280.001

SCAN 0.0450.002 1.0030.018 46.3560.086 0.5890.001 /0.0680.003

2.3.5 Glioblastoma Cancer Data Analysis

In this section, we apply our simultaneous clustering and graphical model estimation

method to a Glioblastoma cancer dataset. We aim to cluster the glioblastoma

multiforme (GBM) patients and construct the gene regulatory network of each subtype

in order to improve our understanding of the GBM disease.

The raw gene expression dataset measures 17814 levels of mRNA expression of

482 GBM patients. Each patient belongs to one of four subgroups of GBM: Classical,

Mesenchymal, Neural, and Proneural (7). Although they are biologically different,
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Table 2.4.
Simulation results of chain network. The clustering errors (CE), cluster
mean errors (CME), precision matrix errors (PME), true positive rates
(TPR) and false positive rates (FPR) of precision matrix estimation of
four methods. The minimal clustering error and minimal estimation error
in each simulation are shown in bold.

Models Methods CE CME PME TPR /FPR

K-means 0.2770.005 2.7050.070 NA NA /NA

Model 7 K-means + JGL 0.2770.005 2.7050.070 25.6080.183 0.9950.000 /0.0330.001

µ = 0.7 (22) 0.2670.006 1.8150.075 29.3410.109 0.9910.001 /0.1310.002

SCAN 0.2310.007 1.6520.087 25.1100.106 0.9910.001 /0.0310.001

K-means 0.2000.008 2.1240.098 NA NA/NA

Model 8 K-means + JGL 0.2000.008 2.1240.098 24.4990.127 0.9960.000 /0.0420.001

µ = 0.8 (22) 0.1680.004 1.0550.076 27.4940.121 0.9950.001 /0.1310.001

SCAN 0.1400.004 1.0460.038 23.8040.085 0.9960.000 /0.0390.001

K-means 0.1230.005 1.4650.040 NA NA /NA

Model 9 K-means + JGL 0.1230.005 1.4650.040 23.6630.097 0.9970.000 /0.0440.001

µ = 0.9 (22) 0.1160.003 1.0310.022 26.4760.090 0.9960.001 /0.1310.001

SCAN 0.0980.003 1.0250.022 23.4250.083 0.9980.000 /0.0430.002

these four subtypes share many similarities since they are all GBM diseases. For

our analysis, we considered the 840 signature genes established by (7). Following

the preprocess procedures in (9), we excluded the genes with no subtype information

or the genes with missing values. We then applied the sure independence screening

analysis (78) to finally include 50 genes in our analysis. These 50 signature genes

are highly distinctive for these four subtypes. In the analysis, we pretended that

the subtype information of each patient was unknown and evaluated the clustering

accuracy of various clustering methods by comparing the estimated groups with the

true subtypes. In all methods, we fixed K = 4. Moreover, we set the tuning parameters
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λ1 = 0.065, λ2 = 0.238, and λ3 = 0.138 in our SCAN algorithm. For a fair comparison,

we also used the same λ1, λ2 in (22), and the same λ2, λ3 in the joint graphical lasso

of the two-stage method.

Table 2.5 reported the clustering errors of all methods as well as the number of

informative variables in the corresponding estimated means and precision matrices.

The standard K-means clustering has the large clustering error due to its ignorance

of the network structure in the precision matrices. Therefore, the consequent joint

graphical lasso method of the network reconstruction is less reliable. The method in

(22) performed even worse. This is because their method estimates each precision

matrix individually without borrowing information from each other. In this gene

network example, all of the four graphical models share many edges due to the

commonality in the GBM diseases. (22)’s method may suffer from the small sample

size. Our method is able to achieve the best clustering performance due to the

procedure of simultaneous clustering and heterogeneous graphical model estimation.

Table 2.5.
The clustering errors and the number of selected features in cluster mean

and precision matrix of various methods in the Glioblastoma Cancer Data.

Methods Clustering Error
∑

k ‖µ̂(k)‖0

∑
k ‖Ω̂(k)‖0

K-means 0.262 200 NA

(22) 0.336 106 1820

K-means + JGL 0.262 200 1360

SCAN 0.222 128 1452

To evaluate the ability of reconstructing gene regulatory network of each subtype,

we report the four gene networks estimated from our SCAN method in Figure 1.1.

The black lines are links shared in all subtypes, and the color lines are uniquely

presented in some subtypes. Clearly, most edges are black lines, which indicates

the common structure of all subtypes. For instance, the link between ZNF45 and
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ZNF134 is significant across all the four subtypes. Those two genes belong to ZNF

gene family. They are known to play roles in making zinc finger proteins, which are

regulatory proteins that are functional important to many cellulars. As they play

roles in the same biological process, it is reasonable to expect this link is shared by

all GBM subtypes. There are two links that shared by three subtypes except neural

subtype: TNFRSF1B↔TRPM2, PTPRC↔ TRPM2. One link uniquely appears in

Proneural subtype: ACTR1A ↔DWED and one link FBXO3↔HMG20B is uniquely

shown in neural subtype. These findings agree with the existing results in (7). It

has been shown that the PTPRC is a well-described microglia marker and is highly

exposed in the set of murine astrocytic samples which are strongly associated with

the Mesenchymal group. In addition, TRPM2 and TNFRSF1B are shown frequently

in the GOTERM category of Mesenchymal group but less likely to appear in Neural

group. And FBXO3 is only significant in the cell part of neural subtype. Furthermore,

ACTR1A is only found in the intracellular non-membrane-bound organelle and protein

binding of Proneural subtype in the supplemental material of (7). It would also be of

interest to investigate unique gene links that were not discovered in existing literatures

for better understanding of GBM diseases.

2.4 Discussion

In this paper, we propose a new SCAN method for simultaneous clustering and

estimation of heterogeneous graphical models with common structures. We describe

the theoretical properties of SCAN and we show that the estimation error bound

of our SCAN algorithm consists of statistical error and optimization error, which

explicitly addresses the trade-off between statistical accuracy and computational

complexity. In our experiments, the tuning parameters can be chosen via an efficient

BIC-type criterion. For future work, it is of interest to investigate the model selection

consistency of these tuning parameters and study the distributed implementation of

ECM algorithm based on the work in (79).
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2.5 Main Proofs

In this section, we provide detailed proofs of key results: Theorem 1 and Corollary

2.2.12. The proofs of other lemmas and theorems are deferred to the next section.

2.5.1 Proof of Theorem 1

First we introduce some notation. Recall the definition of support space M in

(2.2.2). The orthogonal complement of support spaceM, namely, is defined as the set

M⊥ := {Θ′ ∈ Ξ | 〈V ,Θ′〉 = 0 for all V ∈M} .

The projection operator ΠM(Θ) : Ξ→ Ξ is defined as

ΠM(Θ) := arg min
V ∈M

‖V −Θ‖2 .

To simplify the notation, we frequently use the shorthand ΘM = ΠM(Θ) and ΘM⊥ =

ΠM⊥(Θ).

In order to efficiently solve the high-dimensional regularized problem, we explore

some good properties enjoyed by SCAN penalty in Lemma 2.5.1 and Lemma 2.5.2.

Similar properties can be derived by any decomposable penalty.

Lemma 2.5.1. The SCAN penalty P is convex and decomposable with respect to

(M,M⊥). In detail,

P(Θ1 + Θ2) = P(Θ1) + P(Θ2), for any Θ1 ∈M,Θ2 ∈M⊥.

The dual norm of SCAN penalty P is given by

P∗(Θ) := max
i,j,k,i 6=j

M1

√
µ2
kj,M2

√
ω2
kij,M3

(
K∑
k=1

ω2
kij

)1/2
 . (2.5.1)

Proof of Lemma 2.5.1: The convexity of SCAN comes from the convexity of lasso

penalty for cluster means and the convexity of group graphical lasso penalty for

precision matrices. The decomposability and derivation of dual norm is obvious from

the definition. Also see (70). �
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Lemma 2.5.2. For all vectors Θ belonging to support space M, P(ΘM) satisfies

the following inequality:

P(ΘM) ≤ ν(M) ‖ΘM‖2 , (2.5.2)

where ν(M) = M1

√
Kd+(M2

√
K+M3)

√
s is the support space compatibility constant

defined in (2.2.12) .

Proof of Lemma 2.5.2: The detailed proof of Lemma 2.5.2 is discussed in 2.6.5. �

Next lemma is a key step to establish our main theorem. It quantifies the estimation

error in one iteration step. According to this lemma, one can precisely understand how

the statistical error and optimization error accumulate with more and more iterations.

Lemma 2.5.3. Suppose Θ∗ lies in the interior of Ξ. If Θ(t−1) ∈ Bα(Θ∗), with choice

of λ
(t)
n = ε+ τ‖Θ(t−1) −Θ∗‖2/ν(M), final estimation error satisfies ‖Θ(t) −Θ∗‖2 ≤

6ν(M)λ
(t)
n /γ with probability at least 1− δ′ for all t = 1, 2, . . .. Here τ , λ and ν(M)

are defined in Lemma 2.2.3, Lemma 2.2.5 and Lemma 2.5.2 accordingly.

Proof of Lemma 2.5.3: Proof is postponed to section 2.5.3. �

Equipped with Lemmas 2.5.3, we are able to precisely quantify the final estimation

error after t iteration steps. This can be achieved by mathematical induction. For

simplicity, define κ := 6τ/γ. When t = 1, we have Θ(0) ∈ Bα(Θ∗). Applying Lemma

2.5.3 yields that

∥∥Θ(1) −Θ∗
∥∥

2
≤ 6λ

(1)
n ν(M)

γ

=
6ν(M)

γ
ε+ κ

∥∥Θ(0) −Θ∗
∥∥

2
.

Suppose the following inequality is true for some t ≥ 1,

∥∥Θ(t) −Θ∗
∥∥

2
≤ 1− κt

1− κ
6ν(M)

γ
ε+ κt

∥∥Θ(0) −Θ∗
∥∥

2
,
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with probability at least 1− tδ′. We need to verify when t = t+1, the above inequality

still holds. First, we show that Θ(t) is within a ball of Θ∗ with radius α. Under the

assumption that ε ≤ (1− κ)αγ/(6ν(M)) for sufficient large n, we have

∥∥Θ(t) −Θ∗
∥∥

2
≤ 1− κt

1− κ
6ν(M)

γ

(1− κ)αγ

6ν(M)
+ κt

∥∥Θ(0) −Θ∗
∥∥

2

≤ (1− κt)α + κtα = α.

Consequently, we have Θ(t) ∈ Bα(Θ∗). Applying Lemma 2.5.3 with t+ 1 implies that

∥∥Θ(t+1) −Θ∗
∥∥

2
≤ 6ν(M)ε

γ
+ κ

∥∥Θ(t) −Θ∗
∥∥

2

≤ 6ν(M)ε

γ
+ κ

(
1− κt

1− κ
6ν(M)ε

γ
+ κt

∥∥Θ(0) −Θ∗
∥∥

2

)
=

1− κt+1

1− κ
6ν(M)ε

γ
+ κt+1

∥∥Θ(0) −Θ∗
∥∥

2
,

with probability at least 1− (t+ 1)δ′. Therefore, we reach the conclusion that

∥∥Θ(t) −Θ∗
∥∥

2
≤ 1− κt

1− κ
6ν(M)

γ
ε+ κt

∥∥Θ(0) −Θ∗
∥∥

2

≤ 6ν(M)ε

(1− κ)γ
+ κt

∥∥Θ(0) −Θ∗
∥∥

2
,

with probability at least 1− tδ′. This concludes the proof of Theorem 1. �

2.5.2 Proof of Corollary 2.2.12

It is worth to notice that sufficiently large iterations ensure that the optimization

error will be dominated by statistical error finally as κ < 1/2. First we provide a

stopping rule T . Plugging ε1, ε2 from (2.6.14) & (2.6.15) into statistical error part and

letting δ = 1/p, we have:

SE =
1

1− κ
6

γ

[(√
Kd+ (

√
K + 1)

√
s
) (
CK‖Ω∗‖∞ + C ′K1.5

)√ log p

n

]

+
1

1− κ
6

γ

[
C
′′√

p

√
K3 log p

n

]
.
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Note that under Condition 2.2.11, K = o(p). Then SE is simplified by

SE ≤ 6C̃

(1− κ)γ
‖Ω∗‖∞

(√
Kd+

√
Ks+ p

)√K3 log p

n
,

for some constant C̃. For simplicity, let’s denote

ϕ(n, p,K) =
6C̃

(1− κ)γ
‖Ω∗‖∞

(√
Kd+

√
Ks+ p

)√K3 log p

n
.

Therefore, the bound (2.2.14) suggests a reasonable choice of the number of iterations.

In particular, when

t ≥ T = log1/κ

(∥∥Θ(0) −Θ∗
∥∥

2

ϕ(n, p,K)

)
, (2.5.3)

the optimization error is dominated by statistical error. Final estimation error will be

upper bounded by∥∥Θ(T ) −Θ∗
∥∥

2
≤ 12C̃

(1− κ)γ

(
‖Ω∗‖∞

√
K5d log p

n
+ ‖Ω∗‖∞

√
K3(Ks+ p) log p

n

)
,

with probability at least 1− T (26K2 + 8K + 1)/p. Plugging in the expression of T in

(2.5.3), the probability term is bounded by:

T (26K2 + 8K + 1)

p
.

log1/κ

(
n/
((√

Kd+
√
Ks+ p

)√
K3 log p

))
K2

p

.
K2 log1/κ n

p
.

Under Condition 2.2.11, T (26K2 + 8K + 1)/p goes to zero as K and p diverging.

Putting pieces together, we have∥∥Θ(T ) −Θ∗
∥∥

2
≤ 12C̃

(1− κ)γ

(
‖Ω∗‖∞

√
K5d log p

n
+ ‖Ω∗‖∞

√
K3(Ks+ p) log p

n

)
,

which implies

K∑
k=1

(∥∥∥µ(T )
k − µ

∗
k

∥∥∥
2

+
∥∥∥Ω(T )

k −Ω∗k

∥∥∥
F

)
≤ 12C̃

(1− κ)γ

(
‖Ω∗‖∞

√
K5d log p

n
+ ‖Ω∗‖∞

√
K3(Ks+ p) log p

n

)
,

with probability converging to 1. It ends the proof of Corollary 2.2.12. �
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2.5.3 Proof of Lemma 2.5.3

We first consider an unsymmetrized version of Θ(t). Our proof makes use of the

function f : Ξ→ R given by:

f(∆) := Qn(Θ∗ + ∆|Θ(t−1))−Qn(Θ∗|Θ(t−1))− λ(t)
n (P(Θ∗ + ∆)− P(Θ∗)) .

This function helps us evaluate the error between the iterative estimator Θ(t) and the

true parameter Θ∗. In addition, we exploit the following fact:f(0) = 0

f(∆̂) ≥ 0 when ∆̂ = Θ(t) −Θ∗.

(2.5.4)

The second property is from the optimality of Θ(t) in terms of the sample version

objective function. In detail,

Θ(t) = arg max
Θ′

Qn(Θ′|Θ(t−1))− λ(t)
n P(Θ′). (2.5.5)

Correspondingly, there is a classical result named self-consistency property for popu-

lation version objective function in (80), which in detail is

Θ∗ = arg max
Θ′

Q(Θ′|Θ∗). (2.5.6)

The whole proof follows two steps. In Step I, we show that f(∆) < 0 if ‖∆‖2 = ξ.

Next in Step II, we show that the error term ∆̂ must satisfy ‖∆̂‖2 < ξ under the

result in Step I.

Step I: we begin to establish an upper bound on f(∆) over the set C(ξ) := {∆ :

‖∆‖2 = ξ} for the chosen radius ξ = 6λ
(t)
n ν(M)/γ. From the assumption on n, when

n is large enough,

ε ≤ (1− κ)αγ

6ν(M)
≤ (2− κ)αγ

6ν(M)
,

6ν(M)ε

γ
≤ (2− κ)α.

On the other hand, as ‖Θ(t−1) −Θ∗‖2 ≤ α, ξ satisfies,

ξ =
6ν(M)ε

γ
+ κ

∥∥Θ(t−1) −Θ∗
∥∥

2
≤ 2α.
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It is sufficient to show that C(ξ) ⊆ C = {∆|‖∆‖2 ≤ 2α}. According to Lemma

2.2.5, replacing Θ′ −Θ∗ by ∆, then any ∆ ∈ C(ξ) enjoys restricted strong concavity

property, which implies:

Qn(Θ∗ + ∆|Θ(t−1))−Qn(Θ∗|Θ(t−1)) ≤
〈
∇Qn(Θ∗|Θ(t−1)),∆

〉
−γ

2
‖∆‖2

2,

with probability at least 1− δ. Subtracting λ
(t)
n (P(Θ∗+ ∆)−P(Θ∗)) from both sides,

we construct an upper bound of f(∆) in the right side,

f(∆) ≤
〈
∇Qn(Θ∗|Θ(t−1)),∆

〉︸ ︷︷ ︸
(i)

−λ(t)
n

(
P(Θ∗ + ∆)− P(Θ∗)

)︸ ︷︷ ︸
(ii)

−γ
2
‖∆‖2

2.

Bounding (i): Note that Qn is a sample version Q-function but Θ∗ comes from

population version Q-function (2.5.6). So we use ∇Q(Θ∗|Θ(t−1)) as a bridge to connect

the sample-based analysis and population-based analysis together.

(i) ≤ |
〈
∇Qn(Θ∗|Θ(t−1))−∇Q(Θ∗|Θ(t−1))

+∇Q(Θ∗|Θ(t−1))−∇Q(Θ∗|Θ∗),∆
〉
|

≤ |
〈
∇Qn(Θ∗|Θ(t−1))−∇Q(Θ∗|Θ(t−1)),∆

〉
|︸ ︷︷ ︸

Statistical Error(SE)

+ |
〈
∇Q(Θ∗|Θ(t−1))−∇Q(Θ∗|Θ∗),∆

〉
|︸ ︷︷ ︸

Optimization Error(OE)

.

Note that Θ∗ lies in the interior of Ξ. According to the self-consistency property

(2.5.6), ∇Q(Θ∗|Θ∗) = 0 which implies the first inequality holds. This decomposition

for (i) leads to the optimization error part and statistical error part.

For simplicity, we write h(Θ∗|Θ(t−1)) = ∇Qn(Θ∗|Θ(t−1))−∇Q(Θ∗|Θ(t−1)). Since

the group graphical lasso penalty does not penalize the diagonal element, it is a

semi-norm. Recall that both ∆ and h(Θ∗|Θ(t−1)) are K(p2 + p) dimensional vectors.

Then by the definition of G and Gc in (2.2.1), statistical error can be decomposed

further by:

SE ≤
∣∣〈h(Θ∗|Θ(t−1))Gc ,∆Gc〉|+ |〈h(Θ∗|Θ(t−1))G,∆G〉

∣∣
≤

∥∥h(Θ∗|Θ(t−1))Gc
∥∥
P∗ · P(∆Gc) + ‖h(Θ∗|Θ(t−1))G‖2 · ‖∆G‖2

≤ ‖h(Θ∗|Θ(t−1))‖P∗ · P(∆) + ‖h(Θ∗|Θ(t−1))G‖2 · ‖∆‖2.
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The second inequality comes from the generalized Cauchy-Schwarz inequality. After

excluding the diagonal terms from precision matrices, P(∆Gc) can be treated as a

norm. The last inequality is because both the penalties P and P∗ do not penalize the

diagonal term of precision matrices. Under statistical error Condition 2.2.6,

SE ≤ ε1P(∆) + ε2‖∆‖2, (2.5.7)

with probability at least 1− (δ1 + δ2).

On the other hand, from the assumption that Θ(t−1) is in the Bα(Θ∗), we are able

to apply the Gradient Stability condition in Lemma 2.2.3 to bound OE.

OE ≤ ‖∇Q(Θ∗|Θ(t−1))−∇Q(Θ∗|Θ∗)‖2 · ‖∆‖2 (2.5.8)

≤ τ‖Θ(t−1) −Θ∗‖2 · ‖∆‖2.

Therefore, putting (2.5.7) and (2.5.8) together, (i) is upper bounded by

(i) ≤ ε1P(∆) + ε2‖∆‖2 + τ‖Θ(t−1) −Θ∗‖2 · ‖∆‖2, (2.5.9)

with probability at least 1− (δ1 + δ2).

Bounding (ii): The decomposability of SCAN penalty in Lemma 2.5.1 implies

P(Θ∗+ ∆) = P(Θ∗+ ∆M) +P(∆M⊥). By triangle inequality, it is sufficient to bound

(ii),

(ii) = P(Θ∗ + ∆M) + P(∆M⊥)− P(Θ∗) (2.5.10)

≥ P(Θ∗)− P(∆M) + P(∆M⊥)− P(Θ∗)

= P(∆M⊥)− P(∆M).

Combining (2.5.9) and (2.5.10), f(∆) is upper bounded by:

f(∆) ≤ ε1P(∆) + ε2‖∆‖2 + τ‖Θ(t−1) −Θ∗‖2 · ‖∆‖2

− λ(t)
n (P(∆M⊥)− P(∆M))− γ

2
‖∆‖2

2.

Triangle inequality implies P(∆) ≤ P(∆M) + P(∆M⊥). After combining some terms,

the right hand side above could be further bounded by:

f(∆) ≤ −γ
2
‖∆‖2

2 + (λ(t)
n + ε1)P(∆M) + (ε1 − λ(t)

n )P(∆M⊥) (2.5.11)

+ ε2‖∆‖2 + τ‖Θ(t−1) −Θ∗‖2 · ‖∆‖2,
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with probability at least 1− (δ + δ1 + δ2). Let δ′ = δ + δ1 + δ2. According to Lemma

2.5.2, we have the inequality P(∆M) ≤ ν(M)‖∆M‖2. By the definition of ΠM(∆),

we have

‖∆M‖2 = ‖ΠM(∆)− ΠM(0)‖2 ≤ ‖∆− 0‖2 = ‖∆‖2.

Then P(∆M) is further bounded by

P(∆M) ≤ ν(M)‖∆‖2. (2.5.12)

Substituting (2.5.12) into (2.5.11), we obtain:

f(∆) ≤
(
ε1 +

ε2 + τ‖Θ(t−1) −Θ∗‖2

ν(M)

)
ν(M)‖∆‖2 −

γ

2
‖∆‖2

2

+λ(t)
n ν(M)‖∆‖2 + (ε1 − λ(t)

n )P(∆M⊥),

with at least probability 1− δ′. Recall that we choose

λ(t)
n = ε+

τ‖Θ(t−1) −Θ∗‖2

ν(M)
, ε = ε1 +

ε2
ν(M)

.

From the construction of λ
(t)
n , the inequality ε1 − λ(t)

n < 0 always holds. Therefore,

the upper bound for f(∆) can be simplified by

f(∆) ≤ −γ
2
‖∆‖2

2 + 2λ(t)
n ν(M)‖∆‖2

= −6(λ
(t)
n ν(M))2

γ
< 0.

where the above equality is due to ∆ ∈ C(ξ). Now we reach the conclusion that

f(∆) < 0 for all vectors ∆ ∈ C(ξ).

Step II: Now we start to prove the following statement: if for some optimal

solution Θ(t) in (2.5.5), the corresponding error term ∆̂ = Θ(t) − Θ∗ satisfies the

inequality ‖∆̂‖2 > ξ, there must exist some vectors ∆̃ which belong to C(ξ) such that

f(∆̃) ≥ 0. Before our forward proofs, let’s state a lemma which describe the curvature

of function Qn(·|Θ(t−1)).



46

Lemma 2.5.4. Qn(·|Θ(t−1)) satisfies the following inequality a.s.:

Qn(Θ(1)|Θ(t−1))−Qn

(
Θ(2)|Θ(t−1)

)
≤
〈
∇Qn

(
Θ(2)

∣∣Θ(t−1)
)
,Θ(1) −Θ(2)

〉
.

when (Θ(1),Θ(2)) = (Θ(t), t∗Θ(t) + (1− t∗)Θ∗) or (Θ∗, t∗Θ(t) + (1− t∗)Θ∗).

Proof of Lemma 2.5.4: The detailed proof of Lemma 2.5.4 is discussed in 2.6.6. �

The lemma tells us that we only require sample-based Q-function to be point-wise

concave rather than global concave. If ‖∆̂‖2 > ξ, then the line joining ∆̂ to 0 must

intersect the set C(ξ) at some intermediate points t∗∆̂, for some t∗ ∈ (0, 1). According

to Lemma 2.5.4,

Qn(Θ(t)|Θ(t−1))−Qn(t∗Θ(t) + (1− t∗)Θ∗|Θ(t−1))

≤
〈
∇Qn(t∗Θ(t) + (1− t∗)Θ∗|Θ(t−1)), (1− t∗)(Θ(t) −Θ∗)

〉
Qn(Θ∗|Θ(t−1))−Qn

(
t∗Θ(t) + (1− t∗)Θ∗|Θ(t−1)

)
≤
〈
∇Qn

(
t∗Θ(t) + (1− t∗)Θ∗|Θ(t−1)

)
,−t∗(Θ(t) −Θ∗)

〉
.

Adding the above two inequalities together with proper scaling, we can get

t∗Qn(Θ(t)|Θ(t−1)) + (1− t∗)Qn(Θ∗|Θ(t−1)) ≤ Qn(t∗Θ(t) + (1− t∗)Θ∗|Θ(t−1)).

According to the convexity of P(Θ),

P
(
Θ∗ + t∗∆̂

)
− P (Θ∗) = P

(
t∗Θ(t) + (1− t∗)Θ∗

)
− P(Θ∗)

≤ t∗P(Θ(t)) + (1− t∗)P(Θ∗)− P(Θ∗) = t∗
(
P(Θ(t))− P(Θ∗)

)
.

Putting the above pieces together, it is shown that

f(t∗∆̂) = Qn

(
t∗Θ(t) + (1− t∗)Θ∗|Θ(t−1)

)
−Qn

(
Θ∗|Θ(t−1)

)
− λ(t)

n (P(Θ∗ + ∆)− P(Θ∗))

≥ t∗
(
Qn(Θ(t)|Θ(t−1))−Qn(Θ∗|Θ(t−1))− λ(t)

n

(
P(Θ(t))− P(Θ∗)

))
= t∗f(∆̂).
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On the other hand, the optimality property (2.5.4) guarantees f(∆̂) ≥ 0, and hence

f(t∗∆̂) ≥ 0 as well. Thus, we have constructed a vector ∆̃ = t∗∆̂ with the claimed

properties. This proves the statement in the beginning of Step II. Therefore, combining

with the result in Step I, the contradiction of the statement in Step II implies that

∥∥Θ(t) −Θ∗
∥∥

2
≤ ξ =

6λ
(t)
n ν(M)

γ
, (2.5.13)

with probability at least 1− δ′. This concludes the proof of Lemma 2.5.3. �

2.6 Additional Proofs

2.6.1 Proof of Lemma 2.2.1

The result follows by setting the derivative of Q(Θ
′|Θ) with respect to µ

′

k or Ω
′

k

as zero. In particular, solving

∂Q(Θ
′|Θ)

∂µ
′
k

= E[LΘ,k(X)Ω
′

k(X − µ
′

k)] = 0,

implies that

arg max
µ
′
k

Q(Θ
′|Θ) =

[Ω
′

k]
−1E[LΘ,k(X)Ω

′

kX]

E[LΘ,k(X)]
=

E[LΘ,k(X)X]

E[LΘ,k(X)]
.

Similarly, solving

∂Q(Θ
′|Θ)

∂Ω
′
k

=
1

2
E[LΘ,k(X)][Ω

′

k]
−1 − 1

2
E[LΘ,k(X)(X − µ′k)(X − µ

′

k)
>] = 0,

implies (2.2.6). This ends the proof of Lemma 2.2.1. �

2.6.2 Proof of Lemma 2.2.3

We consider k-th group first∥∥∥∇Θ
′
k
Q(µ∗k,Ω

∗
k|Θ∗)−∇Θ

′
k
Q(µ∗k,Ω

∗
k|Θ)

∥∥∥
2
≤ τ ‖Θ−Θ∗‖2 , (2.6.1)
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for any Θ ∈ Bα(Θ∗). Remind that Θ
′

k = ~(µk,Ωk) ∈ Rp2+p. According to the

derivation in the proof of Lemma 2.2.1, we have

∇Θ
′
k
Q(Θ

′

k|Θ) =

 E
[
LΘ,k(X)Ω

′

k(X − µ
′

k)
]

vec
{

1
2
E[LΘ,k(X)]Ω

′−1
k − 1

2
E[LΘ,k(X)(X − µ′k)(X − µ

′

k)
>]
}>
 .

Define DL(Θ∗,Θ) = LΘ∗,k(X)−LΘ,k(X). Therefore, the square of the left hand side

of (2.6.1) can be simplified to∥∥∇Θ
′
k
Q(µ∗k,Ω

∗
k|Θ∗)−∇Θ

′
k
Q(µ∗k,Ω

∗
k|Θ)

∥∥2

2

= ‖E [DL(Θ∗,Θ)Ω∗k(X − µ∗k)]‖
2
2︸ ︷︷ ︸

I

+

∥∥∥∥1

2
E[DL(Θ∗,Θ)Ω∗−1

k − 1

2
E[DL(Θ∗,Θ)(X − µ∗k)(X − µ∗k)>]

∥∥∥∥2

F︸ ︷︷ ︸
II

.

If we can show I ≤ τ1‖Θ−Θ∗‖2
2 and II ≤ τ2‖Θ−Θ∗‖2

2, then we have τ =
√
τ1 + τ2

since ∥∥∥∇Θ
′
k
Q(µ∗k,Ω

∗
k|Θ∗)−∇Θ

′
k
Q(µ∗k,Ω

∗
k|Θ)

∥∥∥
2
≤
√
τ1 + τ2‖Θ−Θ∗‖2.

Bounding I: We apply Taylor expansion to simplify DL(Θ∗,Θ). Remind that,

by assumption, πk = 1/K, and hence we have

LΘ,k(X) =
πkfk(X; Θk)∑K
k=1 πkfk(X; Θk)

=
|Ωk|1/2 exp

{
−1

2
(X − µk)>Ωk(X − µk)

}∑K
k=1 |Ωk|1/2 exp

{
−1

2
(X − µk)>Ωk(X − µk)

} .
Then, Taylor expansion of LΘ,k(X) around Θ∗k leads to

LΘ,k(X) = LΘ∗,k(X) + [∇ΘLΘt,k(X)]>(Θ−Θ∗), (2.6.2)

where Θt = Θ∗ + t∆ with t ∈ [0, 1] and ∆ = Θ−Θ∗. Here the derivative of LΘ,k(X)

with respect to Θ = (Θ1, . . . ,ΘK) can be written as

∇ΘLΘ,k(X) =
(
[∇Θ1LΘ,k(X)]>, . . . , [∇ΘK

LΘ,k(X)]>
)>
, (2.6.3)

where

∇Θj
LΘ,k(X) =

{
−LΘ,k(X) · LΘ,j(X) · δΘj

(X) when j 6= k;

LΘ,k(X)[1− LΘ,k(X)] · δΘk
(X) when j = k,
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and, for j = 1 . . . , K, and Θj =~(µj,Ωj),

δΘj
(X) =

 Ωj(X − µj)
1
2
vec
{
Ω−1
j − (X − µj)(X − µj)>

}
 .

Next we apply this Taylor expansion to bound I. According to (2.6.2), we have

I =
∥∥E [Ω∗k(X − µ∗k)[∇ΘLΘt,k(X)]>(Θ−Θ∗)

]∥∥2

2

=
∥∥E [Ω∗k(X − µ∗k)[∇ΘLΘt,k(X)]>

]∥∥2

2
· ‖Θ−Θ∗‖2

2

≤ sup
t∈[0,1]

E
[
‖Ω∗k(X − µ∗k)‖

2
2 · ‖∇ΘLΘt,k(X)‖2

2

]
︸ ︷︷ ︸

τ1

·‖Θ−Θ∗‖2
2.

By the definition of ∇ΘLΘt,k(X), which equals to (2.6.3) with Θ = Θt, we have

‖∇ΘLΘt,k(X)‖2
2 =

∑
j 6=k

[LΘt,k(X)LΘt,j(X)]2 · [δΘtj
(X)]>δΘtj

(X)︸ ︷︷ ︸
A1

+
[
LΘt,k(X)

(
1− LΘt,k(X)

)]2 · [δΘtk
(X)]>δΘtk

(X)︸ ︷︷ ︸
A2

.

For each j = 1, . . . , K, we define

Wj := sup
t∈[0,1]

E
{

[δΘtj
(X)]>δΘtj

(X) · ‖Ω∗k(X − µ∗k)‖
2
2

}
, (2.6.4)

Then

τ1 ≤ sup
t∈[0,1]

E
[
‖Ω∗k(X − µ∗k)‖

2
2 (A1 + A2)

]
. (2.6.5)

Under Condition 2.2.2, it is sufficient to get an upper bound for τ1,

τ1 ≤ sup
t∈[0,1]

E
[
‖Ω∗k(X − µ∗k)‖

2
2A1

]
+ sup

t∈[0,1]

E
[
‖Ω∗k(X − µ∗k)‖

2
2A2

]
≤

∑
j 6=k

γ2

242(K − 1)2Mj

·Wj +

(
γ

24(K − 1)
√
Mk

(K − 1)

)2

·Wk.

It implies that

τ1 ≤
γ2

288
. (2.6.6)



50

Bounding II: We can apply similar trick above to bound II. By triangle inequality,

we have

II ≤
∥∥∥∥1

2
E
[
DL(Θ∗,Θ)Ω∗−1

k

]∥∥∥∥2

F︸ ︷︷ ︸
II1

+

∥∥∥∥1

2
E
[
DL(Θ∗,Θ)(X − µ∗k)(X − µ∗k)>

]∥∥∥∥2

F︸ ︷︷ ︸
II2

.

Apply Taylor expansion in (2.6.2), we obtain

II1 ≤
1

2
E
[
‖∇ΘLΘt,k(X)‖2

2 ‖Ω
∗−1
k ‖

2
F

]︸ ︷︷ ︸
γ21

·‖Θ−Θ∗‖2
2

II2 ≤
1

2
E
[
‖∇ΘLΘt,k(X)‖2

2

∥∥(X − µ∗k)(X − µ∗k)>
∥∥2

F

]
︸ ︷︷ ︸

γ22

· ‖Θ−Θ∗‖2
2 .

Analogously to (2.6.4), we define

W
′

j := sup
t∈[0,1]

E
{

[δΘtj
(X)]>δΘtj

(X)
∥∥Ω∗−1

k

∥∥2

F

}
, (2.6.7)

W
′′

j := sup
t∈[0,1]

E
{

[δΘtj
(X)]>δΘtj

(X)
∥∥∥(X − µ∗k)(X − µ∗k

)>∥∥∥2

F

}
. (2.6.8)

for each j = 1, . . . , K. Under Condition 2.2.2, we have that,

τ21 <
γ2

576
, τ22 <

γ2

576
, and hence τ2 <

γ2

288
.

This together with (2.6.6) implies that τ =
√
τ1 + τ2 < γ/12, namely∥∥∥∇Θ

′
k
Q(µ∗k,Ω

∗
k|Θ∗)−∇Θ

′
k
Q(µ∗k,Ω

∗
k|Θ)

∥∥∥
2
≤ γ

12
.

Now we take the summation

K∑
k=1

∥∥∥∇Θ
′
k
Q(µ∗k,Ω

∗
k|Θ∗)−∇Θ

′
k
Q(µ∗k,Ω

∗
k|Θ)

∥∥∥2

2
≤ γ

12
‖Θ−Θ∗‖2, (2.6.9)

for any Θ ∈ Bα(Θ∗). This ends the proof of Lemma 2.2.3. �
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2.6.3 Proof of Lemma 2.2.5

In order to compute γ, we consider each Θk = {µk,Ωk} individually. That means

we prove the following part first:

Qn(Θ′k|Θ)−Qn(Θ∗k|Θ)−
〈
∇Qn(Θ∗k|Θ),Θ′k −Θ∗k

〉
≤ −γ

2
‖Θ′k −Θ∗k‖

2
2 ,

where Qn(Θk|Θ) means we set Θi i 6= k to zero.

It is sufficient to compute γk in (2.2.9). Remind that Θ
′

k = ~(µk,Ωk) ∈ Rp2+p.

Therefore,

∇Θ
′
k
Qn(Θ

′

k|Θ) = ([∇µ′kQn(Θ
′

k|Θ)]>, [vec(∇Ω
′
k
Qn(Θ

′

k|Θ))]>)>, (2.6.10)

with

∇µ′kQn(Θ
′

k|Θ) =
1

n

n∑
i=1

[
LΘ,k(xi)Ω

′

k(xi − µ
′

k)
]

∇Ω
′
k
Qn(Θ

′

k|Θ) =
1

2n

n∑
i=1

[LΘ,k(xi)]Ω
′−1
k

− 1

2n

n∑
i=1

[LΘ,k(xi)(xi − µ
′

k)(xi − µ
′

k)
>].

Denote h(µ,Ω) := 1
2
(xi − µ)>Ω(xi − µ). According to the definition in (2.1.8),

we have

Qn(Θ′k|Θ)−Qn(Θ∗k|Θ) =
1

n

n∑
i=1

[
LΘ,k(xi)

{1

2
log det(Ω′k)

−1

2
log det(Ω∗k) + h(µ∗k,Ω

∗
k)− h(µ′k,Ω

′
k)
}]
.

This together with (2.6.10) implies that

Qn(Θ′k|Θ)−Qn(Θ∗k|Θ)−
〈
∇Θ

′
k
Qn(Θ∗k|Θ),Θ′k −Θ∗k

〉
= I + II,
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where

I =
1

n

n∑
i=1

[
LΘ,k(xi)

{
h(µ∗k,Ω

∗
k)− h(µ′k,Ω

∗
k)
}]

−(µ′k − µ∗k)>∇µ′kQn(Θ∗k|Θ(t)),

II =
1

n

n∑
i=1

[
LΘ,k(xi)

{1

2
log det(Ω′k)−

1

2
log det(Ω∗k)

+h(µ′k,Ω
∗
k)− h(µ′k,Ω

′
k)
}]
− [vec(Ω′k −Ω∗k)]

>∇Ω
′
k
Qn(Θ∗k|Θ(t)).

By a little algebra, we can show that

I = − 1

2n

n∑
i=1

LΘ,k(xi)(µ
′
k − µ∗k)>Ω∗k(µ

′
k − µ∗k).

Due to the positive definiteness of Ω∗k , it is shown the following inequality

(µ′k − µ∗k)>(Ω∗k − σmin(Ω∗k)Ip)(µ
′
k − µ∗k) ≥ 0

(µ′k − µ∗k)>Ω∗k(µ
′
k − µ∗k) ≥ (µ′k − µ∗k)>σmin(Ω∗k)Ip(µ

′
k − µ∗k) ≥ β1 ‖µ′k − µ∗k‖

2
2 .

Substituting the above bound, it is shown that

I ≤ −β1

2n

n∑
i=1

LΘ,k(xi)‖µ′k − µ∗k‖2
2. (2.6.11)

Therefore, it remains to show that

II ≤ − 1

2n

n∑
i=1

LΘ,k(xi)

2(β2 + 2α)2
‖vec(Ω′k −Ω∗k)‖2

2. (2.6.12)

Note that, in order to show (2.6.12), it is equivalent to deriving the strong concavity

parameter of g(Ωk), where

g(Ωk) :=
1

n

n∑
i=1

[
LΘ,k(xi)

{
1

2
log det(Ωk)− h(µ′k,Ωk)

}]
.

To see it, finding the strong concavity parameter of g(Ωk) aims to compute ρk such

that, for any Ω′k,Ω
∗
k ∈ Bα(Ω∗k),

g(Ω′k)− g(Ω∗k)−
〈
vec (∇g(Ω∗k)) , vec(Ω′k −Ω∗k)

〉
≤ −ρk/2 · ‖Ω′k −Ω∗k‖2

F ,
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where the left hand side is exactly II. According to Taylor expansion, we can expand

g(Ω′k) around Ω∗k and obtain

g(Ω′k) = g(Ω∗k) +
〈
vec(∇g(Ω∗k), vec(Ω′k −Ω∗k)

〉
+

1

2
[vec(Ω′k −Ω∗k)]

>∇2g(Z) [vec(Ω′k −Ω∗k)] ,

where Z = tΩ′k + (1 − t)Ω∗k with t ∈ [0, 1]. For any two matrices A,B, we write

A � B if A−B is positive semi-definite. We denote 1p as the identity matrix with

dimension p× p. And σi(A) is the i-th eigenvalue of matrix A. Therefore, if we can

show that −∇2g(Z) � m1p, i.e., the minimal eigenvalue value σmin(−∇2g(Z)) ≥ m,

for some positive m ∈ R, then we have the strongly concavity parameter ρk = m.

By the definition, we have ∇2g(Ω∗k) = − 1
2n

∑n
i=1 LΘ,k(xi)[Ω

∗
k]
−1 ⊗ [Ω∗k]

−1. Denote

∆̃ = Ω′k −Ω∗k. We obtain

−∇2g(Z) =
1

2n

n∑
i=1

LΘ,k(xi)
(
Ω∗k + t∆̃

)−1

⊗
(
Ω∗k + t∆̃

)−1

.

According to Theorem 4.2.1 2 in (81), for any two matrices A,B, the minimal

eigenvalue value of A⊗B equals the products of the minimal eigenvalue values of A

and B. Therefore, we have σmin (A−1 ⊗A−1) = [σmin(A−1)]
2

= [σmax(A)]−2 = ‖A‖−2
2 ,

where ‖A‖2 refers to the spectral norm of matrix A. Hence,

σmin(−∇2g(Z)) =
1

2n

n∑
i=1

LΘ,k(xi)‖Ω∗k + t∆̃‖−2
2

≥ 1

2n

n∑
i=1

LΘ,k(xi)
[
‖Ω∗k‖2 + ‖t∆̃‖2

]−2

.

As ‖Θ′ −Θ∗‖ ≤ 2α, ‖Ω′k −Ω∗k‖2 ≤ ‖Θ′ −Θ∗‖2 ≤ 2α. Therefore,

σmin(−∇2g(Z)) ≥ 1

2n

n∑
i=1

LΘ,k(xi) [‖Ω∗k‖2 + 2α]−2

≥ 1

2n

n∑
i=1

LΘ,k(xi) (β2 + 2α)−2 ,

which implies (2.6.12). Putting the upper bound of I and II together,

I + II ≤ − 1

2n

n∑
i=1

LΘ,k(xi)︸ ︷︷ ︸
(a)

·min

{
β1,

1

2(β2 + 2α)2

}
‖Θ′k −Θ∗k‖2

2. (2.6.13)
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However, (a) is a random term but we require a non-random strong concavity pa-

rameter. Thus a concentration bound will be applied on it. {LΘ,k(xi), i = 1, . . . , n}

are independent random variables with 0 ≤ LΘ,k(xi) ≤ 1. After applying a basic

Hoeffding’s inequality, we have

P

(∣∣∣∣∣ 1n
n∑
i=1

LΘ,k(xi)− E[LΘ,k(X)]

∣∣∣∣∣ ≤ t

)
≥ 1− 2e−2nt2 ,

which implies ∣∣∣∣∣ 1n
n∑
i=1

LΘ,k(xi)− E[LΘ,k(X)]

∣∣∣∣∣ ≤
√

1

2
log

2K

δ

√
1

n
,

with probability at least 1 − δ/K. As
√

log(2K/δ)/2n = o(1), there exists some

constant c such that √
log 2K

2δn
− E[LΘ,k(X)] ≤ −c,

when n is large enough. Then plugging it into (2.6.13),

I + II ≤ −1

2
c ·min

{
β1,

1

2(β2 + 2α)2

}
‖Θ′k −Θ∗k‖2

2,

with probability at least 1− δ/K, where

γ = cmin

{
β1,

1

2(β2 + 2α)2

}
.

Once the individual strong concavity parameter is computed, we can simply take

the summation from 1 to K:

K∑
k=1

Qn(Θ′k|Θ)−Qn(Θ∗k|Θ)− 〈∇Qn(Θ∗k|Θ),Θ′k −Θ∗k〉 ≤ −
1

2

K∑
k=1

γ ‖Θ′k −Θ∗k‖
2
2

which implies

Qn(Θ′|Θ)−Qn(Θ∗|Θ)−
〈
∇Qn(Θ∗|Θ),Θ′ −Θ∗

〉
≤ −1

2
γ ‖Θ′ −Θ∗‖2

2

with probability at least 1− δ. This ends the proof of Lemma 2.2.5. �
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2.6.4 A Key Lemma for Proving Corollary 2.2.12

The next lemma computes the statistical errors in Condition 2.2.6 for our SCAN

penalty and provides explicit forms of the corresponding ε1, ε2 and δ1, δ2.

Lemma 2.6.1. Suppose that Condition 2.2.10, 2.2.11 hold, then Condition 2.2.6 is

satisfied for SCAN penalty with

ε1 = (CK‖Ω∗‖∞ + C ′K1.5)

√
log p+ log(e/δ)

n
, δ1 = (18K2 + 6K)δ,(2.6.14)

ε2 = C
′′√

p

√
K3 (log p+ log(e/δ))

n
, δ2 = (8K2 + 2K)δ, (2.6.15)

for some absolute constant C,C ′, C
′′
> 0. Here ‖Ω∗‖∞ is the overall max induced

norm defined as ‖Ω∗‖∞ = maxk∈[K] ‖Ω∗k‖∞.

In Lemma 2.6.1, the number of clusters K is allowed to grow with the sample size

n and the dimension p. The diverging rate of K controls the convergence probability

at each iteration and is upper bounded to ensure that the statistical errors hold with

a high probability tending to 1 with a proper choice of δ, e.g., δ = 1/p.

Proof of Lemma 2.6.1: For the first part of this proof, we focus on the upper

bound of ‖∇Qn(Θ∗|Θ)−∇Q(Θ∗|Θ)‖P∗ . Recall that

∇Qn(Θ∗|Θ)−∇Q(Θ∗|Θ)

=


∇Θ∗1

Qn(Θ∗|Θ)−∇Θ∗1
Q(Θ∗|Θ)

...

∇Θ∗K
Qn(Θ∗|Θ)−∇Θ∗K

Q(Θ∗|Θ)



=



∇µ∗1Qn(Θ∗|Θ)−∇µ∗1Q(Θ∗|Θ)

vec
{
∇Ω∗1

Qn(Θ∗|Θ)−∇Ω∗1
Q(Θ∗|Θ)

}>
...

∇µ∗KQn(Θ∗|Θ)−∇µ∗KQ(Θ∗|Θ)

vec
{
∇Ω∗K

Qn(Θ∗|Θ)−∇Ω∗K
Q(Θ∗|Θ)

}>


. (2.6.16)
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For simplicity, we define hµk(Θ
∗) = ∇µ∗kQn(Θ∗|Θ) − ∇µ∗kQ(Θ∗|Θ) and hΩ∗k

(Θ∗) =

∇Ω∗k
Qn(Θ∗|Θ)−∇Ω∗k

Q(Θ∗|Θ). Then from the definition of dual norm P∗ (2.5.1), we

can have

‖∇Qn(Θ∗|Θ)−∇Q(Θ∗|Θ)‖P∗ ≤M1 max
k∈[K]

‖hµk(Θ∗)‖∞︸ ︷︷ ︸
I

+M2 max
k∈[K]

∥∥hΩ∗k
(Θ∗)

∥∥
max︸ ︷︷ ︸

II

+M3 max
i,j

∥∥∥[hΩ∗k
(Θ∗)

]
ij
, . . . ,

[
hΩ∗k

(Θ∗)
]
ij

∥∥∥
2︸ ︷︷ ︸

III

,

which are corresponding to the penalty on element-wise cluster means, element-wise

precision matrices and group structures of multiple precision matrices, respectively.

Bounding Statistical Error for k-th Cluster Mean: Referring to the proof in

Lemma 2.2.1,

hµ∗k(Θ
∗) =

1

n

n∑
i=1

LΘ,k(xi)Ω
∗
k(xi − µ∗k)− E [LΘ,k(X)Ω∗k(X − µ∗k)] .

Note that ‖Ω∗k‖∞ is a scalar. By using triangle inequality, we simplify I by two parts:

I ≤ ‖Ω∗k
∥∥
∞

∥∥∥∥∥ 1

n

n∑
i=1

LΘ,k(xi)(xi − µ∗k)− E [LΘ,k(X)(X − µ∗k)]

∥∥∥∥∥
∞

≤ ‖Ω∗k‖∞

∥∥∥∥∥ 1

n

n∑
i=1

LΘ,k(xi)xi − E [LΘ,k(X)X]

∥∥∥∥∥
∞︸ ︷︷ ︸

I1

+ ‖Ω∗k‖∞

∥∥∥∥∥
(

1

n

n∑
i=1

LΘ,k(xi)− E [LΘ,k(X)]

)
µ∗k

∥∥∥∥∥
∞︸ ︷︷ ︸

I2

.

Bounding I1: Denote

ζ =
1

n

n∑
i=1

LΘ,k(xi)xi − E [LΘ,k(X)X]

For ζ ∈ Rp, we consider the j-th coordinate ζj of ζ

ζj =
1

n

n∑
i=1

LΘ,k(xi)xij − E [LΘ,k(X)Xj] . (2.6.17)

We introduce a set of missing data {ci, i = 1, . . . , n}, which are independent copies

of random variable c. The pair (xi, ci) are the independent copy of (X, c). Here c
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takes a value from the set {1, . . . , K}, where c = k′ indicates that X was generated

by the k′-th mixture component. In another word, the conditional distribution of X

is defined below:

X|c = k′ ∼ N (µ∗k′ ,Σ
∗
k′)

P(c = k′) = πk′ ,

K∑
k′

πk′ = 1.

This is the usual choice of missing data in EM approaches to mixture modeling. The

quantity (xi, ci) is referred to as the completed data. Now by the assumption, the

j-th coordinate xij of xi can be rewritten as the form below:

xij =
K∑
k′=1

I{ci = k′}(µ∗k′j + Vk′j), j ∈ [p] (2.6.18)

where µ∗k′j is the j-th coordinate of the true cluster mean µ∗k′ and Vk′j ∼ N (0,Σ∗k′jj).

Plugging (2.6.18) into (2.6.17), it suffices to bound ζj.

|ζj| ≤

∣∣∣∣∣ 1n
n∑
i=1

K∑
k′=1

LΘ,k(xi)I{ci = k′}µ∗k′j − E

[
K∑
k′=1

LΘ,k(X)I{c = k′}µ∗k′j

]∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
i=1

K∑
k′=1

LΘ,k(xi)I{ci = k′}V ∗k′j − E

[
K∑
k′=1

LΘ,k(X)I{c = k′}V ∗k′j

]∣∣∣∣∣
≤

K∑
k′=1

∣∣∣∣∣ 1n
n∑
i=1

LΘ,k(xi)I{ci = k′}µ∗k′j − E
[
LΘ,k(X)I{c = k′}µ∗k′j

]∣∣∣∣∣︸ ︷︷ ︸
ζj1

+
K∑
k′=1

∣∣∣∣∣ 1n
n∑
i=1

LΘ,k(xi)I{ci = k′}V ∗k′j − E
[
LΘ,k(X)I{c = k′}V ∗k′j

]∣∣∣∣∣︸ ︷︷ ︸
ζj2

.

We bound ζj1 first. Based on the fact that |LΘ,k(xi)I{ci = k′}µ∗k′j| ≤ |µ∗k′j| ≤

‖µ∗k′‖∞ almost surely it can show that LΘ,k(xi)I{ci = k′}µ∗k′j is a sub-gaussian random

variable with norm ‖µ∗k′‖∞. Following the Example 5.8 in (82), ‖LΘ,k(xi)I{ci =

k′}µ∗k′j‖ψ2 ≤ ‖µ∗k′‖∞ where ‖ · ‖ψ2 is defined as sub-Gaussian norm. According to

supporting Lemma 2.8.3∥∥∥LΘ,k(xi)I{ci = k′}µ∗k′j − E
[
LΘ,k(X)I{c = k′}µ∗k′j

] ∥∥∥
ψ2

≤ 2
∥∥∥µ∗k′∥∥∥∞.
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The standard concentration result in supporting Lemma 2.8.4 yields that for every

t ≥ 0 and some constant D1,

P (|ζj1 | ≥ t) ≤ e exp

(
− D1nt

2

4‖µ∗k′‖2
∞

)
,

which implies that, with probability at least 1− δ,

|ζj1| ≤
√

4

D1

‖µ∗k′‖∞

√
log(e/δ)

n
. (2.6.19)

Now we start to bound ζj2 . The fact that LΘ,k(xi)I{ci = k′} ≤ 1 shows that it

is a sub-gaussian random variable with norm ‖LΘ,k(xi)I{ci = k′}‖ψ2 ≤ 1. V ∗k′j is

a Gaussian random variable so that it is also a sub-gaussian random variable with

norm ‖V ∗k′j‖ψ2 ≤ (‖Σ∗k′‖max)1/2. Then using the result in supporting Lemma 2.8.2,

LΘ,k(xi)I{ci = k′}V ∗k′j is sub-exponential random variable. Moreover, there exists

constant D2 such that∥∥∥LΘ,k(xi)I{ci = k′}V ∗k′j
∥∥∥
ψ1

≤ D2

(
‖Σ∗k′‖max

)1/2

.

Supporting lemma 2.8.3 implies∥∥∥LΘ,k(xi)I{ci = k′}V ∗k′j − E
[
LΘ,k(X)I{c = k′}V ∗k′j

] ∥∥∥
ψ1

≤ 2D2

(
‖Σ∗k′‖max

)1/2

.

Following the concentration inequality of sub-exponential random variables in sup-

porting Lemma 2.8.5, there exists some constant D3 such that the following inequality

P
(
|ζj2| ≥ t

)
≤ 2 exp

(
−D3 min

{
t2

4D2
2‖Σ∗k′‖max

,
t

2D2(‖Σ∗k′‖max)1/2

}
n

)
,

holds every t ≥ 0. For sufficient small t, it reduces to

P
(
|ζj2| ≥ t

)
≤ 2 exp

(
−D3

nt2

4D2‖Σ∗k′‖max

)
,

which implies that

|ζj2| ≤
√

4D2

D3

(‖Σ∗k′‖max)1/2

√
log(2/δ)

n
, (2.6.20)

with probability at least 1− δ.
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Adding (2.6.19) and (2.6.20) together, we have

|ζj1|+ |ζj2| ≤
√

4

D1

‖µ∗k′‖∞

√
log(e/δ)

n
+

√
4D2

D3

(‖Σ∗k′‖max)1/2

√
log(2/δ)

n

≤
√

4

D

(
‖µ∗k′‖∞ + (‖Σ∗k′‖max)1/2

)√ log(e/δ)

n
,

by taking D = min{D1, D3/D2}, with at least probability 1 − 2δ. Therefore, it’s

sufficient to bound |ζj| by

|ζj| ≤
√

4

D

K∑
k′=1

(
‖µ∗k′‖∞ + (‖Σ∗k′‖max)1/2

)√ log(e/δ)

n
,

with at least probability 1 − 2Kδ. Taking the union bound over p coordinates, we

obtain

I1 ≤
√

4

D

K∑
k′=1

(
‖µ∗k′‖∞ + (‖Σ∗k′‖max)1/2

)√ log(e/δ) + log p

n
, (2.6.21)

with at least probability 1− 2Kδ.

Bounding I2: Recall that

I2 =

∥∥∥∥∥
(

1

n

n∑
i=1

LΘ,k(xi)− E [LΘ,k(X)]

)
µ∗k

∥∥∥∥∥
∞

≤

∣∣∣∣∣ 1n
n∑
i=1

LΘ,k(xi)− E [LΘ,k(X)]

∣∣∣∣∣ ‖µ∗k‖∞ .
{LΘ,k(xi)|i = 1, . . . n} are bounded independent random variables within interval

between 0 and 1. Then it follows Hoeffding’s inequality in supporting Lemma 2.8.6

that

P

(∣∣∣∣∣ 1n
n∑
i=1

LΘ,k(xi)− E[LΘ,k(X)]

∣∣∣∣∣ ≤ t

)
≥ 1− 2e−2nt2 ,

which implies ∣∣∣∣∣ 1n
n∑
i=1

LΘ,k(xi)− E[LΘ,k(X)]

∣∣∣∣∣ ≤
√

1

2
log

2

δ
·
√

1

n
, (2.6.22)

with probability at least 1− δ. Combining with the reminder term ‖µ∗k‖,

I2 ≤
√

1

2
log

2

δ
·
√

1

n
‖µ∗k‖∞. (2.6.23)
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Note that the bound in (2.6.21) is OP ((log p/n)1/2) while the bound in (2.6.23) is

OP ((1/n)1/2), there exists some constant D4 such that I2 ≤ D4I1. Consequently, we

conclude that I is upper bounded by

I ≤ (1 +D4)‖Ω∗k‖∞

√
4

D

K∑
k′=1

(
‖µ∗k′‖∞ + (‖Σ∗k′‖max)1/2

)√ log(e/δ) + log p

n
,

with probability at least 1− (2K + 1)δ. For simplicity, let

ϕK =
K∑
k′=1

(
‖µ∗k′‖∞ + (‖Σ∗k′‖max)1/2

)
, C1 =

√
4(1 +D4)2

D
. (2.6.24)

Applying union bound,

max
k∈[K]

I ≤ C1 ‖Ω∗‖∞ ϕK

√
log p+ log(e/δ)

n
, (2.6.25)

with probability at least 1−K(2K + 1)δ.

Bounding Statistical Error for k-th Precision Matrix: Referring to the proof

in Lemma 2.2.1,

hΩ∗k
(Θ∗) =

1

2n

n∑
i=1

LΘ,k(xi)Σ
∗
k −

1

2n

n∑
i=1

LΘ,k(xi)(xi − µ∗k)(xi − µ∗k)>

− 1

2
E [LΘ,k(X)] Σ∗k +

1

2
E
[
LΘ,k(X)(X − µ∗k)(X − µ∗k)>

]
.

Now we get an explicit from for hΩ∗k
(Θ∗). Then II is decomposed as below:

II ≤

∥∥∥∥∥1

2

(
1

n

n∑
i=1

LΘ,k(xi)Σ
∗
k − E [LΘ,k(X)Σ∗k]

)∥∥∥∥∥
max︸ ︷︷ ︸

II1

+

∥∥∥∥∥1

2

(
1

n

n∑
i=1

LΘ,k(xi)(xi − µ∗k)(xi − µ∗k)> − E
[
LΘ,k(X)(X − µ∗k)(X − µ∗k)>

])∥∥∥∥∥
max︸ ︷︷ ︸

II2

.

The first term is easy to deal with: since 1
n

∑n
i=1 LΘ,k(xi)− E [LΘ,k(X)] is scalar by

the definition of LΘ,k(X) we can pull it out of the norm. Combining with the result

in (2.6.22), the first term is upper bounded by

II1 ≤ ‖Σ∗k‖max

√
1

2
log

2

δ
·
√

1

n
, (2.6.26)
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with probability at least 1− δ.

For the second term II2, it can be decomposed as four following terms:

II2 ≤

∥∥∥∥∥1

2

(
1

n

n∑
i=1

LΘ,k(xi)xix
>
i − E

[
LΘ,k(X)XX>

])∥∥∥∥∥
max︸ ︷︷ ︸

II21

+

∥∥∥∥∥1

2

(
1

n

n∑
i=1

LΘ,k(xi)xiµ
∗T
k − E

[
LΘ,k(X)Xµ∗

>

k

])∥∥∥∥∥
max︸ ︷︷ ︸

II22

+

∥∥∥∥∥1

2

(
1

n

n∑
i=1

LΘ,k(xi)µ
∗
kx
>
i − E

[
LΘ,k(X)µ∗kX

>])∥∥∥∥∥
max︸ ︷︷ ︸

II23

+

∥∥∥∥∥1

2

(
1

n

n∑
i=1

LΘ,k(xi)µ
∗
kµ
∗>
k − E

[
LΘ,k(X)µ∗kµ

∗>
k

])∥∥∥∥∥
max︸ ︷︷ ︸

II24

.

For the bound of II22 and II23, we can just simply pull the µ∗k out, which implies

II22 =

∥∥∥∥∥1

2

(
1

n

n∑
i=1

LΘ,k(xi)xi − E [LΘ,k(X)X]

)
µ∗
>

k

∥∥∥∥∥
max

(2.6.27)

≤

∥∥∥∥∥1

2

(
1

n

n∑
i=1

LΘ,k(xi)xi − E [LΘ,k(X)X]

)∥∥∥∥∥
∞

‖µ∗k‖∞

(a)

≤
√

4

D
‖µ∗k‖∞ ϕK

√
log(e/δ) + log p

n
,

with probability at least 1− 2Kδ, where (a) follows (2.6.21).

Next we turn to bound II21. Expand xix
>
i to matrix form for convenient use

xix
>
i =


xi1xi1 . . . xi1xip

...
. . .

...

xipxi1 . . . xipxip

 .

Since we require a matrix max norm here, it suffices to bound II21 individually, namely

ζjj′ =
1

2

(
1

n

n∑
i=1

LΘ,k(xi)xijxij′ − E [LΘ,k(X)XjXj′ ]

)
.
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Recall in (2.6.18) the j-th coordinate of xi could be expressed as

xij =
K∑
k′=1

I{ci = k′}(µ∗k′j + Vk′j).

By straightforward algebra,

xijxij′ =
K∑
k′=1

I{ci = k′}(µ∗k′j + Vk′j) ·
K∑
k′=1

I{ci = k′}(µ∗k′j′ + Vk′j′)

(a)
=

K∑
k′=1

I{ci = k′}2(µ∗k′j + Vk′j)(µ
∗
k′j′ + Vk′j′)

=
K∑
k′=1

I{ci = k′}
(
µ∗k′jµ

∗
k′j′ + µ∗k′jVk′j′ + Vk′jµ

∗
k′j′ + Vk′jVk′j′

)
,

where (a) follows the fact that I{ci = k}I{ci = k′} = 0 for any k 6= k′. Consequently,

we divide ζjj′ into four parts:

ζjj′ =
1

2

K∑
k′=1

(
ζjj′(µ

∗
k′jµ

∗
k′j′) + ζjj′(µ

∗
k′jVk′j′) + ζjj′(Vk′jµ

∗
k′j′) + ζjj′(Vk′jVk′j′)

)
,

where

ζjj′(µ
∗
k′jµ

∗
k′j′) =

1

n

n∑
i=1

LΘ,k(xi)I{ci = k′}µ∗k′jµ∗k′j′

−E
[
LΘ,k(X)I{c = k′}µ∗k′jµ∗k′j′

]
.

Taking the supreme over set [p] in terms of p, p′,

sup
j,j′∈[p]

|ζjj′ | ≤
K∑
k′=1

(
sup
j,j′∈[p]

|ζjj′(µ∗k′jµ∗k′j′)|

)
︸ ︷︷ ︸

(i)

+
K∑
k′=1

(
sup
j,j′∈[p]

|ζjj′(µ∗k′jVk′j′)|

)
︸ ︷︷ ︸

(ii)

+
K∑
k′=1

(
sup
j,j′∈[p]

|ζjj′(Vk′jµ∗k′j′)|

)
︸ ︷︷ ︸

(iii)

+
K∑
k′=1

(
sup
j,j′∈[p]

|ζjj′(Vk′jVk′j′)|

)
︸ ︷︷ ︸

(iv)

.

We will bound (i), (ii), (iii) and (iv) sequentially. LΘ,k(xi)I{ci = k′}µ∗k′jµ∗k′j′ is a

sub-gaussian random variable with

‖LΘ,k(xi)I{ci = k′}µ∗k′jµ∗k′j′‖ψ2 ≤ ‖µ∗k′‖2
∞.
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According to supporting Lemma 2.8.3,∥∥LΘ,k(xi)I{ci = k′}µ∗k′jµ∗k′j′ − E[LΘ,k(X)I{c = k′}µ∗k′jµ∗k′j′ ]
∥∥
ψ2
≤ 2‖µ∗k′‖2

∞.

Applying concentration inequality in supporting Lemma 2.8.4 yields that

P
(
|ζjj′(µ∗k′jµ∗k′j′)| ≤ t

)
≥ 1− e exp

(
− D4nt

2

4‖µ∗k′‖4
∞

)
, (2.6.28)

for any t > 0 and some constant D4. After properly choosing t,

(i) ≤
√

4

D4

‖µ∗k′‖2
∞

√
log p+ log(e/δ)

n
, (2.6.29)

with probability at least 1 − δ. Note that both LΘ,k(xi)I{ci = k′}µ∗k′jVk′j′ and

LΘ,k(xi)I{ci = k′}Vk′j′µ∗k′j are sub-exponential random variables with norm ‖µ∗k′‖∞(‖Σ∗k′‖max)1/2.

Similar to the step in (2.6.20),

∣∣ζjj′(µ∗k′jVk′j′)∣∣ ≤√ 4

D5

(
‖µ∗k′‖∞(‖Σ∗k′‖max)1/2

)√ log(2/δ)

n
,

with at least probability 1− δ. Taking the union bound, it is shown that

(ii), (iii) ≤
√

4

D5

(
‖µ∗k′‖∞(‖Σ∗k′‖max)1/2

)√ log p+ log(2/δ)

n
, (2.6.30)

with probability at least 1− δ for sufficient large n.

Lastly, the fact that both LΘ,k(xi)I{ci = k′}Vk′j and Vk′j′ are sub-gaussian random

variables implies LΘ,k(xi)I{ci = k′}Vk′jVk′j′ is sub-exponential random variable with

parameter ‖Σ∗k′‖max. Applying concentration result, there exists some constant D6

such that the following inequality

P (|ζjj′(Vk′jVk′j′)| ≥ t) ≤ 2 exp

(
− D6nt

2

4‖Σ∗k′‖2
max

)
,

holds for sufficiently small t > 0. Therefore,

P

(
sup
j,j′∈[p]

|ζjj′(Vk′jVk′j′)| ≥ t

)
≤ 2p2 exp

(
− D6nt

2

4‖Σ∗k′‖2
max

)
.

When n is sufficiently large, with probability at least 1− δ

(iv) ≤
√

4

D6

‖Σ∗k′‖max

√
2 log p+ log(2/δ)

n
. (2.6.31)
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Putting (2.6.29), (2.6.30) and (2.6.31) together and after some adjustments, II21 is

upper bounded by

II21 ≤
√

1

D7

K∑
k′=1

(
‖µ∗k′‖∞ + (‖Σ∗k′‖max)1/2

)2

√
2 log p+ log(e/δ)

n
,

with probability at least 1− 4Kδ. D7 = min(D4, D5, D6). For simplicity, we denote

ϕ′K =
K∑
k′=1

(
‖µ∗k′‖∞ + (‖Σ∗k′‖max)1/2

)2
.

Therefore,

II21 ≤
√

2

D7

ϕ′K

√
log p+ log(e/δ)

n
, (2.6.32)

with probability at least 1− 4Kδ.

For the last, it remains to bound II24. Recall that

II24 =

∥∥∥∥∥1

2

(
1

n

n∑
i=1

LΘ,k(xi)µ
∗
kµ
∗>
k − E

[
LΘ,k(X)µ∗kµ

∗>
k

])∥∥∥∥∥
max

≤

∣∣∣∣∣12
(

1

n

n∑
i=1

LΘ,k(xi)− E [LΘ,k(X)]

)∣∣∣∣∣ ∥∥µ∗kµ∗>k ∥∥max
.

Applying the result in (2.6.22), we have

II24 ≤ ‖µ∗kµ∗
>

k ‖max

√
1

2
log

2

δ
·
√

1

n
, (2.6.33)

with probability at least 1− δ.

Putting (2.6.27), (2.6.32) and (2.6.33) together, now we can have a upper bound

for II2.

II2 ≤
√

1

D7

(2‖µ∗k‖∞ϕK + ϕ′K)

√
log p+ log(e/δ)

n
, (2.6.34)

for D7 < D/2 with at least probability 1−(8K+1)δ. The upper bound in (2.6.26) is of

order OP (n−1/2) while the upper bound in (2.6.34) is of order OP ((log p/n)1/2). Thus

there exists some constant D8 such that II1 ≤ D8II2. Let C2 = ((1 + D8)
2/D7)

1/2.

Applying union bound,

max
k∈[K]

II ≤ C2 (2‖µ∗‖∞ϕK + ϕ′K)

√
log p+ log(e/δ)

n
, (2.6.35)
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with at least probability 1−K(8K + 2)δ.

Bound the Group Structure Part of Precision Matrix:

Recall that

III = max
i,j

∥∥∥ [∇Ω∗1
Qn(Θ∗|Θ)−∇Ω∗1

Q(Θ∗|Θ)
]
ij
,

. . . ,
[
∇Ω∗K

Qn(Θ∗|Θ)−∇Ω∗K
Q(Θ∗|Θ)

]
ij

∥∥∥
2

≤ max
i,j

√
K
∥∥∥ [∇Ω∗1

Qn(Θ∗|Θ)−∇Ω∗1
Q(Θ∗|Θ)

]
ij
,

. . . ,
[
∇Ω∗K

Qn(Θ∗|Θ)−∇Ω∗K
Q(Θ∗|Θ)

]
ij

∥∥∥
∞

≤
√
K max

k∈[K]

∥∥[∇Ω∗k
Qn(Θ∗|Θ)−∇Ω∗k

Q(Θ∗|Θ)
]∥∥

max
.

According to the result in (2.6.35) and applying union bound over [K],

P

(
III ≥ C2

√
K (2‖µ∗k‖∞ϕK + ϕ′K)

√
log p+ log(e/δ)

n

)
≤ K(8K + 2)δ.

Thus, III is upper bounded by

III ≤ C2

√
K (2‖µ∗‖∞ϕK + ϕ′K)

√
log p+ log(e/δ)

n
, (2.6.36)

with at least probability 1−K(8K + 2)δ.

Finally, putting the upper bound (2.6.25), (2.6.35) and (2.6.36) together, we have

a upper bound for the following statistical error∥∥∇Qn(Θ∗|Θ)−∇Q(Θ∗|Θ)
∥∥
P∗

≤ C
(

(‖Ω∗‖∞ + (
√
K + 1)‖µ∗‖∞)ϕK + 2(

√
K + 1)ϕ′K

)√ log p+ log(e/δ)

n
,

with probability at least 1 − (18K + 6)δ, where C = max(M1C1,M2C2,M3C3).

Under regularity Condition 2.2.10, ϕK ≤ (c1 + c
1/2
2 )K, ϕ′K ≤ (c1 + c

1/2
2 )2K. Let

C = C(c1 + c
1/2
2 ) and C ′ = c2

1 + c1c
1/2
2 + 2(c1 + c

1/2
2 )2. Consequently, the upper bound

for statistical error can be written as:

‖∇Qn(Θ∗|Θ)−∇Q(Θ∗|Θ)‖P∗ ≤
(
CK‖Ω∗‖∞ + C ′K1.5

)√ log p+ log(e/δ)

n
,

with probability at least 1− (18K + 6)δ. �
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For the second part of Lemma 2.6.1, we are aiming to bound the statistical error

arising from the estimation for diagonal term. The definition of G in (2.2.1) implies

that [∇Qn(Θ∗|Θ) − ∇Q(Θ∗|Θ)]G is a Kp-dimensional vector. Following the same

derivation before, it suffices to have:

∥∥[∇Qn(Θ∗|Θ)−∇Q(Θ∗|Θ)]G
∥∥

2

≤
√
Kp
∥∥[∇Qn(Θ∗|Θ)−∇Q(Θ∗|Θ)]G

∥∥
max

(a)

≤
√
Kp · C2 (2‖µ∗‖∞ϕK + ϕ′K)

√
log p+ log(e/δ)

n

=
√
K · C2 (2‖µ∗‖∞ϕK + ϕ′K)

√
p(log p+ log(e/δ))

n
,

with probability at least 1 − (8K2 + 2K)δ where (a) comes from (2.6.36). Now

combining two parts together, we end the proof of Lemma 2.6.1. �

2.6.5 Proof of Lemma 2.5.2

For any Θ ∈M,

P(Θ)

‖Θ‖2

=
P1(Θ)

‖Θ‖2

+
P2(Θ)

‖Θ‖2

+
P3(Θ)

‖Θ‖2

≤
M1

∑K
k=1

∑p
j=1 |µkj|√∑K

k=1 ‖µk‖2
2

+
M2

∑K
k=1

∑
i 6=j |ωkij|√∑K

k=1 ‖Ωk‖2
F

+

∑
i 6=jM3(

∑K
k=1 ω

2
kij)

1/2√∑K
k=1 ‖Ωk‖2

F

.

By Cauchy’s inequality, we can have

P(ΘM)

‖ΘM‖2

≤M1

√
Kd+M2

√
Ks+M3

√
s.

Recall that d and s are the sparse parameter for a single cluster mean and precision

matrix, respectively. This ends the proof of Lemma 2.5.2. �
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2.6.6 Proof of Lemma 2.5.4

First we consider each Θk = {µk,Ωk} individually. That means we prove the

following part first:

Qn(Θ
(1)
k |Θ

(t−1))−Qn(Θ
(2)
k |Θ

(t−1))−
〈
∇Θk

Qn(Θ
(2)
k |Θ

(t−1)),Θ
(1)
k −Θ

(2)
k

〉
≤ 0,

where Qn(Θk|Θ) means we set Θi i 6= k to zero.

Following the same technique we use in the proof of Lemma (2.2.5), the decompo-

sition can be made as below:

Qn(Θ
(1)
k |Θ

(t−1))−Qn(Θ
(2)
k |Θ

(t−1))−
〈
∇Θk

Qn(Θ
(2)
k |Θ

(t−1)),Θ
(1)
k −Θ

(2)
k

〉
= I + II,

where

I =
1

n

n∑
i=1

[
LΘ,k(xi)

{
h(µ

(2)
k ,Ω

(2)
k )− h(µ

(1)
k ,Ω

(2)
k )
}]

−(µ
(1)
k − µ

(2)
k )>∇µkQn(Θ

(2)
k |Θ

(t−1)),

II =
1

n

n∑
i=1

[
LΘ,k(xi)

{1

2
log det(Ω

(1)
k )− 1

2
log det(Ω

(2)
k )

+h(µ
(1)
k ,Ω

(2)
k )− h(µ

(1)
k ,Ω

(1)
k )
}]
− [vec(Ω

(1)
k −Ω

(2)
k )]>∇Ωk

Qn(Θ
(2)
k |Θ

(t−1)).

Bounding I: By a little algebra, we can show that

I = − 1

2n

n∑
i=1

LΘ,k(xi)(µ
(1)
k − µ

(2)
k )>Ω

(2)
k (µ

(1)
k − µ

(2)
k ).

Plugging in (Θ(t), t∗Θ(t) + (1− t∗)Θ∗), we have

I = −(1− t∗)2

2n

n∑
i=1

LΘ,k(xi)(µ
(t)
k − µ

∗
k)
>
(
t∗Ω

(t)
k + (1− t∗)Ω∗k

)
(µ

(t)
k − µ

∗
k).

Recall that Θ(t) is the solution of the optimization problem (2.5.5). The algorithm

guarantees that Ω
(t)
k is positive definite. Thus, from the positive definiteness of Ω

(t)
k

and Ω∗k, it is sufficient to show that

I ≤ 0 holds a.s.. (2.6.37)
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When plugging in (Θ∗, t∗Θ(t) + (1− t∗)Θ∗), we have the same conclusion.

Bounding II: Define

g(Ω
(2)
k ) :=

1

n

n∑
i=1

[
LΘ,k(xi)

{
1

2
log det(Ω

(2)
k )− h

(
µ

(1)
k ,Ω

(2)
k

)}]
.

We rewrite II as

g(Ω
(1)
k )− g(Ω

(2)
k )−

〈
vec
(
∇g(Ω

(2)
k )
)
, vec

(
Ω

(1)
k −Ω

(2)
k

) 〉
.

According to Taylor expansion, we can expand g(Ω
(1)
k ) around Ω

(2)
k and obtain

g(Ω
(1)
k ) = g(Ω

(2)
k ) +

〈
vec(∇g(Ω

(2)
k ), vec(Ω

(1)
k −Ω

(2)
k )
〉

+
1

2

[
vec(Ω

(1)
k −Ω

(2)
k )
]>
∇2g(Z)

[
vec(Ω

(1)
k −Ω

(2)
k )
]
,

where Z = tΩ
(1)
k + (1 − t)Ω(2)

k with t ∈ [0, 1]. So an equivalent expression for II is

given below:

II =
1

2

[
vec(Ω

(1)
k −Ω

(2)
k )
]>
∇2g(Z)

[
vec(Ω

(1)
k −Ω

(2)
k )
]
.

By the definition of function g we construct, the negative Hessian matrix of function

g is

−∇2g(Z) =
1

2n

n∑
i=1

LΘ,k(xi)Z
−1 ⊗ Z−1.

According to the analysis in the proof of Lemma 2.2.5, σmin (Z−1 ⊗ Z−1) = [σmin(Z−1)]
2 ≥

0. Therefore, ∇2g(Z) is a negative semi-definite matrix, which implies that II ≤ 0

holds a.s. for any pair of points (Θ(1),Θ(2)). Incorporating with the fact that I < 0,

it implies that

Qn(Θ
(1)
k |Θ

(t−1))−Qn(Θ
(2)
k |Θ

(t−1))−
〈
∇Θk

Qn(Θ
(2)
k |Θ

(t−1)),Θ
(1)
k −Θ

(2)
k

〉
≤ 0,

holds a.s. for pair points (Θ(t), t∗Θ(t) + (1− t∗)Θ∗), (Θ(t), t∗Θ(t) + (1− t∗)Θ∗). After

doing the summation from 1 to K, we finish the proof of Lemma 2.5.4. �
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2.6.7 Variable Selection Consistency

Theorem 2 . Denote the final precision matrix estimator as Ω̃k and the set of its

nonzero off-diagonal elements as Ṽk. Under minimal signal condition, we have, with

probability tending to 1, Ṽk = Vk for any k = 1, . . . , K.

Proof: We prove it in two steps. In Step 1, we show that Ṽk ⊃ Vk, and in Step 2,

we show that Ṽk ⊂ Vk, both with high probability.

Step 1: In order to prove Ṽk ⊃ Vk, it is sufficient to show that for any (i, j) ∈ Vk
with any k = 1, . . . , K, ω̃kij 6= 0. Note that

|ω(T )
kij | ≥ |ω

∗
kij| − |ω

(T )
kij − ω

∗
kij| ≥ |ω∗kij| −

√∑
i,j

(ω
(T )
kij − ω∗kij)2,

Moreover, √∑
i,j

(ω
(T )
kij − ω∗kij)2 ≤ ‖Θ(T ) −Θ∗‖2. (2.6.38)

According to Corollary 2.2.12 and minimal signal condition we have

|ω(T )
kij | > rn.

Therefore, we see that ω̃kij 6= 0, which implies Ṽk ⊃ Vk.

Step 2: In order to show Ṽk ⊂ Vk, we need to check that, for any (i, j) ∈ Vck, the

estimator ω̃kij = 0. Note that, the estimator before the thresholding step satisfies,

|ω(T )
kij | = |ω

(T )
kij − ω

∗
kij| ≤

√∑
i,j

(ω
(T )
kij − ω∗kij)2.

From (2.6.38), it is known that |ω(T )
kij | ≤ rn. Therefore, the thresholding step will set

ω̃kij = ω
(T )
kij 1{|ω̂kij| > rn} = 0 with high probability. This ends the proof of Theorem

2. �
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2.7 Updates Steps of SCAN Algorithm

2.7.1 Proof of Lemma 2.1.2:

The KKT conditions for µkj to be a maximizer of Q(Θ|Θ(t−1))−R(Θ) are

1

n

n∑
i=1

LΘ(t−1),k

( p∑
l=1

(xil − µkl)ωklj
)

= λ1sign(µkj), when µkj 6= 0,∣∣∣∣∣ 1n
n∑
i=1

LΘ(t−1),k

( p∑
l=1,l 6=j

(xil − µkl)ωklj + xijωkjj

)∣∣∣∣∣ ≤ λ1, when µkj = 0.

Therefore, the update of µ
(t)
kj is given as:

If

∣∣∣∣∣ 1n
n∑
i=1

LΘ(t−1),k(xi)
( p∑
l=1,l 6=j

(xil − µ(t−1)
kl )ω

(t−1)
klj + xijω

(t−1)
kjj

)∣∣∣∣∣ ≤ λ1,

then µ
(t)
kj = 0; Else

µ
(t)
kj =

(
ω

(t−1)
kjj

1

n

n∑
i=1

LΘ(t−1),k(xi)
)−1{ 1

n

n∑
i=1

LΘ(t−1),k(xi)
( p∑
l=1

xilω
(t−1)
klj

)
−

( 1

n

n∑
i=1

LΘ(t−1),k(xi)
)( p∑

l=1

µ
(t−1)
kl ω

(t−1)
klj − µ(t−1)

kj ω
(t−1)
kjj

)
− λ1sign(µ

(t−1)
kj )

}
Using the definitions of g1,j(x; Θ

(t−1)
k ) and g2,j(xi; Θ

(t−1)
k ), we finish the proof of

Lemma 2.1.2. �

2.7.2 Proof of Lemma 2.1.3:

Recall that in (2.1.7)

Qn(Θ|Θ(t−1)) :=
1

n

n∑
i=1

K∑
k=1

LΘ(t−1),k(xi)[log πk + log fk(xi; Θk)]−R(Θ),
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Then,

max
Ω1,...,ΩK

1

n

n∑
i=1

K∑
k=1

LΘ(t−1),k(xi)[log πk + log fk(xi; Θk)]−R(Θ)

= max
Ω1,...,ΩK

1

n

n∑
i=1

K∑
k=1

LΘ(t−1),k(xi)[log πk −
p

2
log(2π) +

1

2
log det(Ωk)

−1

2
(xi − µk)>Ωk(xi − µk)]−

1

2
R(Θ)

= max
Ω1,...,ΩK

1

n

K∑
k=1

{
1

n

n∑
i=1

LΘ(t−1),k(xi)[log det(Ωk)− (xi − µk)>Ωk(xi − µk)]

}
−R(Θ)

= max
Ω1,...,ΩK

1

n

K∑
k=1

nk[log det(Ωk)− trace(S̃kΩk)]−R(Θ),

where the last equality is because

1

n

n∑
i=1

LΘ(t−1),k(xi)(xi − µk)>Ωk(xi − µk)

=
1

n

∑
xi∈Ak

trace((xi − µk)(xi − µk)>Ωk)

=
1

n
trace

( ∑
xi∈Ak

(xi − µk)(xi − µk)>Ωk

)
.

Then plugging in the last update of µk leads to the desirable result. �

2.8 Supporting Lemma

Lemma 2.8.1. Consider a finite number of independent centered sub-gaussian random

variables Xi. Then
∑

iXi is also a centered sub-gaussian random variable. Moreover,∥∥∥∥∥∑
i

Xi

∥∥∥∥∥
2

ψ2

≤ C
∑
i

‖Xi‖2
ψ2
,

where C is an absolute constant.

Lemma 2.8.2. Let X, Y be two sub-Gaussian random variables. Then Z = X · Y is

sub-exponential random variable. Moreover, there exits constant C such that

‖Z‖ψ1
≤ C ‖X‖ψ2

· ‖Y ‖ψ2
. (2.8.1)
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Lemma 2.8.3. Let X be sub-Gaussian random variable and Y be sub-exponential

random variables. Then X − E[X] is also sub-Gaussian; Y − E[Y ] is also sub-

exponential. Moreover, we have

‖X − E[X]‖ψ2
≤ 2 ‖X‖ψ2

, ‖Y − E[Y ]‖ψ1
≤ 2 ‖Y ‖ψ1

.

Lemma 2.8.4. Suppose X1, X2, . . . , Xn are n iid centered sub-Gaussian random

variables with ‖X1‖ψ2 ≤ K. Then for every t ≥ 0, we have

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi

∣∣∣∣∣ ≥ t

)
≥ e · exp

(
−Cnt

2

K2

)
,

where C is an absolute constant.

Lemma 2.8.5. Suppose X1, X2, . . . , Xn are n iid centered sub-expoential random

variables with ‖X1‖ψ1 ≤ K. Then for every t ≥ 0, we have

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi

∣∣∣∣∣ ≥ t

)
≥ 2 · exp

(
−C min

{
t2

K2
,
t

K

}
n

)
,

where C is an absolute constant.

Lemma 2.8.6. Hoeffding’s inequality Suppose X1, X2 . . . Xn are independent random

variable, a1 ≤ Xi ≤ bi, then we can have

P

(∣∣∣∣∣ 1n
n∑
i=1

(Xi − EXi)

∣∣∣∣∣ > ε

)
≤ 2 exp

{
−2nε2

1
n

∑n
i=1(bi − ai)2

}
.

Moreover, if ai = 0 and bi = 1, then we have

P

(∣∣∣∣∣ 1n
n∑
i=1

(Xi − EXi)

∣∣∣∣∣ > ε

)
> 1− 2e−2nε2 .
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3. SPARSE AND LOW-RANK TENSOR ESTIMATION

VIA CUBIC SKETCHINGS

3.1 Preliminary

We introduce notations and operations on the matrix. For matricesA = [a1, . . . ,aJ ] ∈

RI×J and B = [b1, . . . , bL] ∈ RK×L, the Kronecker product is defined as a (IK)-by-

(JL) matrix A⊗B = [a1 ⊗B · · ·aJ ⊗B], where aj ⊗B = (aj1B
>, . . . , ajIB

>)>.

If A and B have the same number of columns J = L, the Khatri-Rao product is

defined as A �B = [a1 ◦ b1,a2 ◦ b2, · · · ,aJ ◦ bJ ] ∈ RIK×J . If the matrices A and

B are of the same dimension, the Hadamard product is their element-wise matrix

product, such that (A ∗B)ij = Aij ·Bij . For matrix X = [x1 · · ·xn] ∈ Rm×n, we also

denote the vectorization vec(X) = (x>1 , . . . ,x
>
n ) ∈ R1×mn and column-wise `2 norms

as Norm(X) = (‖x1‖2, . . . , ‖xn‖2) ∈ R1×n.

In the end, we focus on tensor notation and relevant operations. Interested readers

are referred to (31) for more details. Suppose X ∈ Rp1×p2×p3 is an order-3 tensor, then

the (i, j, k)-th element of X is denoted by [X ]ijk. The successive tensor multiplication

with vectors u ∈ Rp2 , v ∈ Rp3 is denoted by X×2u×3v =
∑

j∈[p2],l∈[p3] ujvlX[:,j,l] ∈ Rp1 .

We say X ∈ Rp1×p2×p3 is rank-one if it can be written as the outer product of three

vectors, i.e., X = x1 ◦ x2 ◦ x3 or [X ]ijk = x1ix2jx3k for all i, j, k. Here “◦” represents

the vector outer product. X is symmetric if [X ]ijk = [X ]ikj = [X ]jik = [X ]jki =

[X ]kij = [X ]kji for all i, j, k. Rank-one tensor is symmetric if and only if it can be

decomposed as x ◦ x ◦ x for some vector x.

More generally, we may decompose a tensor as the sum of rank one tensors as

follows,

X =
K∑
k=1

ηkx1k ◦ x2k ◦ x3k, (3.1.1)
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where ηk ∈ R,x1k ∈ Sp1−1,x2k ∈ Sp2−1,x3k ∈ Sp3−1. This is the so-called CANDE-

COMP/PARAFAC, or CP decomposition (31) with CP-rank being defined as the

minimum number K such that (3.1.1) holds. {x1k}Kk=1, {x2k}Kk=1, {x3k}Kk=1 are called

factors along first, second and third mode. Note that factors are normalized as unit

vectors to guarantee the uniqueness of decomposition, and η = {η1, . . . , ηK} plays an

analogous role of singular values in matrix value decomposition here. Several tensor

norms also need to be introduced. The tensor Frobenius norm and tensor spectral

norm are defined respectively as

‖X‖F =

√√√√ p1∑
i=1

p2∑
j=1

p3∑
k=1

X 2
ijk, ‖X‖op := sup

u∈Rp1 ,v∈Rp2 ,w∈Rp3

|〈X ,u ◦ v ◦w〉|
‖u‖2‖v‖2‖w‖2

, (3.1.2)

where 〈X ,Y〉 =
∑

i,j,k XijkYijk. Clearly, ‖X‖2
F = 〈X ,X〉. We also consider the

following sparse tensor spectral norm,

‖X‖s := sup
‖a‖=‖b‖=‖c‖=1

max{‖a‖0,‖b‖0,‖c‖0}≤s

∣∣〈X ,a ◦ b ◦ c〉∣∣. (3.1.3)

By definition, ‖X‖s ≤ ‖X‖op. Suppose X = x1 ◦ x2 ◦ x3 and Y = y1 ◦ y2 ◦ y3 are

two rank-one tensors, then it is easy to check that ‖X‖F = ‖x1‖2‖x2‖2‖x3‖2 and

〈X ,Y〉 = (x>1 y1)(x>2 y2)(x>3 y3).

3.2 Symmetric Tensor Estimation via Cubic Sketchings

In this section, we focus on the estimation of sparse and low-rank symmetric

tensors,

yi =
〈
T ∗,Xi

〉
+ εi, Xi = xi ◦ xi ◦ xi ∈ Rp×p×p, i = 1, . . . , n, (3.2.1)

where xi are random vectors with i.i.d. standard normal entries. As previously

discussed, the tensor parameter T ∗ often satisfies certain low-dimensional structures

in practice, among which the factor-wise sparsity and low-rankness (41) commonly
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appear. We thus assume T ∗ is CP rank-K for K � p and the corresponding factors

are sparse,

T ∗ =
K∑
k=1

η∗kβ
∗
k ◦ β∗k ◦ β∗k, with ‖β∗k‖2 = 1, ‖β∗k‖0 ≤ s,∀k ∈ [K]. (3.2.2)

The CP low-rankness has been widely assumed in literature for its nice scalability

and simple formulation (34; 43; 49). Different from the matrix factor analysis, we do

not assume the tensor factors β∗k here are orthogonal. On the other hand, since the

low-rank tensor estimation is NP-hard in general (83), we will introduce an incoherence

condition in the forthcoming Condition 3 to ensure that the correlation among different

factors β∗k is not too strong. Such a condition has been used in recent literature on

tensor data analysis (84), compressed sensing (85), matrix decomposition (86), and

dictionary learning (87).

Based on observations {yi,Xi}ni=1, we propose to estimate T ∗ via minimizing the

empirical squared loss since the close-form gradient provides computational conve-

nience,

T̂ = argmin
T

L(T ) subject to T is sparse and low-rank, (3.2.3)

where

L(T ) = L (ηk,β1, . . . ,βK) =
1

n

n∑
i=1

(yi − 〈T ,Xi〉)2

=
1

n

n∑
i=1

(
yi −

K∑
k=1

ηk
(
x>i βk

)3

)2

.

(3.2.4)

Equivalently, (3.2.3) can be written as,

min
ηk,βk

1

n

n∑
i=1

(
yi −

K∑
k=1

ηk(x
>
i βk)

3
)2

,

s.t. ‖βk‖2 = 1, ‖βk‖0 ≤ s, for k ∈ [K].

(3.2.5)

Clearly, (3.2.5) is a non-convex optimization problem. To solve it, we propose a

two-stage method as described in the next two subsections.
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3.2.1 Initialization

Due to the non-convex optimization (3.2.5), a straightforward implementation of

many local search algorithms, such as gradient descent and alternating minimiza-

tion, may easily get trapped into local optimums and obtain sub-optimal statistical

performances. Inspired by recent advances of spectral method (e.g., EM algorithm

(88), phase retrieval (89), and tensor SVD (62)), we propose to evaluate an initial

estimate {η(0)
k ,β

(0)
k } via the method of moment and sparse tensor decomposition (a

variant of high-order spectral method) in the following Steps 1 and 2, respectively.

The pseudo-code is given in Algorithm 1.

Step 1: Unbiased Empirical Moment Estimator. Construct the empirical

moment based estimator Ts,

Ts :=
1

6

[ 1

n

n∑
i=1

yixi ◦ xi ◦ xi

−
p∑
j=1

(
m1 ◦ ej ◦ ej + ej ◦m1 ◦ ej + ej ◦ ej ◦m1

)]
,

where m1 :=
1

n

n∑
i=1

yixi, ej is the canonical vector.

(3.2.6)

As will be shown in Lemma 4, Ts is an unbiased estimator of T ∗. The construction

of (3.2.6) is motivated by high-order Stein’s identity ((90); also see Theorem 9 for a

complete statement). Intuitively speaking, based on the third-order score function for a

Gaussian random vector x: S3(x) = x◦x◦x−
∑p

j=1(x◦ej ◦ej+ej ◦x◦ej+ej ◦ej ◦x),

we can construct the unbiased estimator of T ∗ by properly choosing a continuously

differentiable function in high-order Stein’s identity. See the proof of Lemma 4 for

more details.

Step 2: Sparse Tensor Decomposition. The method of moment estimator

obtained in Step 1 provides an initial estimate for tensor T ∗. Then we further obtain
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good initialization for the factors {η(0)
k ,β

(0)
k } via truncation and alternating rank-1

power iterations (51; 91),

Ts ≈
K∑
k=1

η
(0)
k β

(0)
k ◦ β

(0)
k ◦ β

(0)
k .

Note that the tensor power iterations recover one rank-1 component per time. To

identify all rank-1 components, we generate a large number of different initialization

vectors at first, implement a clustering step, and choose the centroids as the estimates

in the initialization stage. This scheme originally appears in tensor decomposition

literature (84; 91), although our problem setting and proof techniques are very different.

This procedure is also very different from the matrix setting since the rank-1 component

in singular value decomposition is mutually orthogonal, but we do not enforce the

exact orthogonality here for T ∗.

More specifically, we firstly choose a large integer M � K and generate M starting

vectors {b(0)
m }Mm=1 ∈ Rp through sparse SVD as described in Algorithm 3. Then for

each b
(0)
m , we apply the following truncated power update:

b̃(l+1)
m =

Ts ×2 b
(l)
m ×3 b

(l)
m

‖Ts ×2 b
(l)
m ×3 b

(l)
m ‖2

, b(l+1)
m =

Td(b̃
(l+1)
m )

‖Td(b̃(l+1)
m )‖2

, l = 0, . . . ,

where ×2,×3 are tensor multiplication operators defined in Section 3.1 and Td(x) ∈ Rp

is a truncation operator that sets all but the largest d entries in absolute values to

zero for any vector x ∈ Rp. It is noteworthy that the symmetry of Ts implies

Ts ×2 b
(l)
m ×3 b

(l)
m = Ts ×1 b

(l)
m ×3 b

(l)
m = Ts ×1 b

(l)
m ×2 b

(l)
m .

This means the multiplications along different modes are the same. We run power

iterations till its convergence, and denote bm as the outcome. Finally, we apply

K-means to partition {bm}Mm=1 into K clusters, then let the centroids of the output

clusters be {β(0)
k }Kk=1 and calculate η

(0)
k = Ts ×1 β

(0)
k ×2 β

(0)
k ×3 β

(0)
k for k ∈ [K].
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Algorithm 1 Initialization in cubic sketchings
Require: response {yi}ni=1, sketching vector {xi}ni=1, truncation level d, rank K, stopping

error ε = 10−4.

1: Step 1: Calculate the moment-based tensor Ts as (3.2.6).

2: Step 2:

3: For m = 1 to M

Generate b
(0)
m through Algorithm 3.

4: Repeat power update:

b̃(l+1)
m =

Ts ×2 b
(l)
m ×3 b

(l)
m

‖Ts ×2 b
(l)
m ×3 b

(l)
m ‖2

, b(l+1)
m =

Td(b̃
(l+1)
m )

‖Td(b̃
(l+1)
m )‖2

, l = l + 1.

5: Until ‖b(l+1)
m − b(l)

m ‖2 ≤ ε.

6: End for.

7: Perform K-means for {b(l)
m }Mm=1. Denote the centroids of K clusters by {β(0)

k }
K
k=1.

8: Calculate η
(0)
k = Ts ×1 β

(0)
k ×2 β

(0)
k ×3 β

(0)
k , k ∈ [K].

9: return symmetric tensor estimator {η(0)
k ,β

(0)
k }

K
k=1.
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3.2.2 Thresholded Gradient Descent

After obtaining a warm start in the first stage, we propose to apply the thresholding

gradient descent to iteratively refine the solution to the non-convex optimization

problem (3.2.5). Specifically, denote X = (x1, . . . ,xn) ∈ Rp×n, y = (y1, . . . , yn)> ∈

Rn, η = (η1, . . . , ηK)> ∈ RK and B = (β1, . . . ,βK) ∈ Rp×K . Recall that L(B,η) =

L(T ), and hence let

∇BL(B,η) = (∇β1L(B,η)>, . . . ,∇βKL(B,η)>) ∈ R1×pK ,

be the gradient function with respect to B. Based on the detailed calculation in

Lemma 3.11.1, ∇BL(B,η) can be written as

∇BL(B,η) =
6

n
[{(B>X)>}3η − y]>[({(B>X)>}2 � η>)> �X]>, (3.2.7)

where {(B>X)>}3 and {(B>X)>}2 are entry-wise cubic and squared matrices of

(B>X)>. Define ϕh(x) as the thresholding function with a level h that satisfies the

following minimal assumptions:

|ϕh(x)− x| ≤ h,∀x ∈ R, and ϕh(x) = 0, when |x| ≤ h. (3.2.8)

Many widely used thresholding schemes, such as hard thresholding Hh(x) = xI(|x|>h),

soft-thresholding Sh(x) = sign(x) max(|x| − h, x), satisfy (3.2.8). With slightly

abuse of notations, we further define the vector thresholding function as ϕh(x) =

(ϕh(x1), . . . , ϕh(xp)), for x ∈ Rp.

The initial estimates η(0) and B(0) will be updated by thresholded gradient descent

in two steps summarized in Algorithm 2. It is noteworthy that only B is updated in

the Step 3, while η will be updated in Step 4 after the update of B is finished.

Step 3: Updating B via Thresholded Gradient descent. We update B(t)

in each iteration step via thresholded gradient descent,

vec(B(t+1)) = ϕµh(B(t))
φ

(vec(B(t))− µ

φ
∇BL(B(t),η(0))). (3.2.9)

Here,



80

• µ is the step size and φ =
∑n

i=1 y
2
i /n serves as an approximation for (

∑K
k=1 η

∗
k)

2

(see Lemma 15);

• h(B) ∈ R1×K is the thresholding level defined as

h(B) =

√
4 log np

n2
[{{(B>X)>}3η(0) − y}2]>{{(B>X)>}2 � η(0)>}2.

Step 4: Updating η via Normalization. We normalize each column of B(T )

and estimate the weight parameter as

B̂ = (β̂1, . . . , β̂K)> =
( β

(T )
1

‖β(T )
1 ‖2

, . . . ,
β

(T )
K

‖β(T )
K ‖2

)
,

η̂ = (η̂1, . . . , η̂K)> =
(
η

(0)
1 ‖β

(T )
1 ‖3

2, . . . , η
(0)
K ‖β

(T )
K ‖

3
2

)>
.

(3.2.10)

The final estimator for T ∗ is

T̂ =
K∑
k=1

η̂kβ̂k ◦ β̂k ◦ β̂k.

Remark 1 (Stochastic Thresholded Gradient descent). Evaluating the gradient (3.2.7)

at each iteration requires O(npK2) operations, which is an issue when n or p is large.

To economize the computational cost, a stochastic version of thresholded gradient

descent algorithm can be easily carried out by sampling a subset of summand functions

(3.2.7) at each iteration. This will accelerate the procedure especially in the case

of large-scale settings. Details could refer to Section 3.11.2 in the supplementary

materials.

3.3 Theoretical Analysis

In this section, we establish the geometric convergence rate in optimization error

and minimax optimal rate in statistical error of the proposed symmetric tensor

estimator.
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Algorithm 2 Thresholded gradient descent in cubic sketchings
Require: response {yi}ni=1, sketching vector {xi}ni=1, step size µ, rank K, stopping error

ε = 10−4, warm-start {η(0)
k ,β

(0)
k }

K
k=1.

1: Step 3: Let t = 0.

2: Repeat thresholded gradient descent

3: • Compute thresholding level h(B).

• Calculate the thresholded gradient descent update

vec(B(t+1)) = ϕµh(B)
φ

(
vec(B(t))− µ

φ
∇BL(B(t),η(0))

)
,

where φ = 1
n

∑n
i=1 y

2
i . The detailed form of ∇BL(B,η(0)) refers to (3.2.7).

4: Until ‖B(T+1) −B(T )‖F ≤ ε.

5: Step 4: Perform column-wise normalization and update the weight as (3.2.10). Con-

struct the final estimator T̂ =
∑K

k=1 η̂kβ̂k ◦ β̂k ◦ β̂k.

6: return symmetric tensor estimator T̂ .

Algorithm 3 Sparse SVD

Require: tensor Ts, cardinality parameter d.

1: Compute θ̃ = Td(θ), where θ ∼ N (0, Id).

2: Calculate u as the leading singular vector of Ts ×1 θ̃.

3: return the sparse vector Td(u)/‖u‖2.
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3.3.1 Assumptions

Conditions 1-3 are on the true tensor parameter T ∗ while Conditions 4-5 are on

the measurement scheme. The first condition guarantees the model identifiability for

CP-decomposition.

Condition 1 (Uniqueness of CP-decomposition). The CP-decomposition form (3.2.2)

is unique in the sense that if there exists another CP-decomposition T ∗ =
∑K′

k=1 η
∗′
k β
∗′
k ◦

β∗
′

k ◦ β∗
′

k , it must have K = K ′ and be invariant up to a permutation of {1, . . . , K}.

For technical purpose, we introduce the following conditions to ensure that the

CP-decomposition of T ∗ has a regular form in the sense that the operator norm of

T ∗ can be bounded by the largest factor and all factors are in the same order. Similar

assumptions were previously used in literature (e.g., (32; 51)).

Condition 2 (Parameter space). The CP-decomposition T ∗ =
∑K

k=1 η
∗
kβ
∗
k ◦ β∗k ◦ β∗k

satisfies

‖T ∗‖op ≤ Cη∗max, K = O(s), and R = η∗max/η
∗
min ≤ C ′ (3.3.1)

for some absolute constants C,C ′, where η∗min = mink η
∗
k and η∗max = maxk η

∗
k. Recall

that s is the sparsity for β∗k.

The performance of Step 2, i.e. the tensor decomposition for initialization, is

crucial to the final estimation. However, as shown in the seminal work of (83),

the estimation of the low-rank tensor is NP-hard in general. Hence, we impose the

following incoherence condition that is widely used in tensor decomposition literature

(51; 91).

Condition 3 (Parameter incoherence). The true tensor components are incoherent

such that

Γ := max
1≤k1 6=k2≤K

|〈β∗k1 ,β
∗
k2
〉| ≤ min{C ′′K−

3
4R−1, s−

1
2},

where R is the singular value ratio defined in (3.3.1) and C
′′

is some small constant.
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Remark 3.3.1. The preceding incoherence condition has been widely used in different

scenarios in recent high-dimensional research, such as compressed sensing (85), matrix

decomposition (86), and dictionary learning (87). It can also be viewed as a relaxation

of orthogonality: if {β∗1, . . . ,β∗K} are mutually orthogonal, Γ equals zero. In addition,

we can show from both theory (Lemma 28 in the supplementary materials) and

simulation (Section 3.6) that the low-rank tensor T ∗ induced by (3.2.2) satisfies the

incoherence condition with high probability, if the component vectors β∗k are randomly

generated, say from Gaussian distribution.

We also introduce the following conditions on noise and sample complexity.

Condition 4 (Sub-exponential noise). The noise {εi}ni=1 are i.i.d. randomly gen-

erated with mean 0 and variance σ2 satisfying 0 < σ < C
∑K

k=1 η
∗
k. (εi/σ) is sub-

exponential distributed, i.e., there exists constant Cε > 0 such that ‖(εi/σ)‖ψ1 :=

supp≥1 p
−1(E|εi/σ|p)1/p ≤ Cε, and independent of {Xi}ni=1.

The sample complexity condition is crucial for our algorithm, especially in the

initialization stage. Ignoring any polylog factors, Condition 5 is even weaker than the

sparse matrix estimation case (n & s2) in (89).

Condition 5 (Sample complexity). We assume a sufficient number of observations is

observed,

n ≥ C
′′′
K2(s log(ep/s))

3
2 log4 n.

3.3.2 Main Theoretical Results

Our main Theorem 3 shows that based on a good initializer, the output from

the proposed thresholded gradient descent can achieve optimal statistical rate after

sufficient iterations. Here, we define a contraction parameter

0 < κ = 1− 32µK−2R−
8
3 < 1,

and also denote E1 = 4Kη
∗2

3
maxε2

0 and E2 = C0η
∗−4

3
min /16 for some C0 > 0.
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Theorem 3 (Statistical Error and Optimization Error). Suppose Conditions 3-5 hold

and the initial estimator {β(0)
k , η

(0)
k }Kk=1 satisfies

max
1≤k≤K

{∥∥β(0)
k − β

∗
k

∥∥
2
, |η(0)

k − η
∗
k|
}
. K−1, (3.3.2)

with probability at least 1 − O(1/n) and |supp(β
(0)
k )| . s. Assume the step size

µ ≤ µ0, where µ0 is defined in (3.9.6). Then, the output from the thresholded gradient

descent update in (3.2.9) satisfies:

• For any t = 0, 1, 2, . . ., the factor-wise estimator satisfies

K∑
k=1

∥∥∥ 3

√
η(0)

k β
(t+1)
k − 3

√
η∗kβ

∗
k

∥∥∥2

2
≤ E1κ

t + E2
σ2s log p

n
, (3.3.3)

with probability at least 1−O(tKs/n).

• When the total number of iterations is no smaller than

T ∗ =
(

log(
n

σ2s log p
∨ 1) + log

E1

E2

)
/ log κ−1, (3.3.4)

there exists a constant C1 (independent of K, s, p, n, σ2) s.t. the final estimator

T̂ =
∑K

k=1 η
(0)
k β

(T ∗)
k ◦ β(T ∗)

k ◦ β(T ∗)
k is upper bounded by∥∥∥T̂ −T ∗
∥∥∥2

F
≤ C1σ

2Ks log p

n
, (3.3.5)

with probability at least 1−O(T ∗Ks/n).

Remark 2 . From (3.3.3), the error bound can be decomposed into an optimization

error E1κ
t (which decays with a geometric rate as iterations) and a statistical error

E2
σ2s log p

n
(which does not decay as iterations). In particular, the convergence rate of

the optimization error relies on the rank K and the singular value ratio R in the sense

that the smaller K or R, the faster convergence. Also from (3.3.5), we note that in

the special case that σ = 0, T̂ exactly recover T ∗ with high probability.

The next theorem shows that Steps 1 and 2 of Algorithm 1 provides a good

initializer required in Theorem 3.
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Theorem 4 (Initialization Error). Suppose the number of initializations L ≥ KC3γ−4
,

where γ is a constant defined in (3.9.3). Given that Conditions 1-4 hold, the initial

estimator obtained from Steps 1-2 with a truncation level s ≤ d ≤ Cs satisfies

max
1≤k≤K

{
‖β(0)

k − β
∗
k‖2, |η(0)

k − η
∗
k|
}
≤ C2KRδn,p,s +

√
KΓ2, (3.3.6)

and |supp(β
(0)
k )| . s with probability at least 1− 5/n, where

δn,p,s = (log n)3
(√s3 log3(ep/s)

n2
+

√
s log(ep/s)

n

)
. (3.3.7)

Moreover, if the sample complexity condition 5 is satisfied, then the above bound

satisfies (3.3.2).

Remark 3 (Interpretation of initialization error). The upper bound of (3.3.6) consists

of two terms, which corresponds to the approximation error of Ts to T ∗ and the

incoherence condition of β∗k’s, respectively. Especially, the former converges to zero

as n grows while the latter does not. This indicates that the convergence rate of the

initial estimate is significantly slower than that of the final estimate after iterative

updates, unless

n & (s log(ep/s))2 and Γ2 .

√
s log(ep/s)

nK
.

More detailed numerical comparisons will be provided later in Section 3.6.

The proof of Theorems 3 and 4 are involved and postponed to Section 3.9.1-3.9.2

in the supplementary materials. The combination of Theorems 3 and 4 immediately

yields the following upper bound for the final estimate as one main result in this

paper.

Theorem 5 (Upper Bound). Suppose Conditions 1 – 5 hold, s ≤ d ≤ Cs. After T ∗

iterations, there exists a constant C1 not depending on K, s, p, n, σ2, such that the

proposed procedure yields∥∥∥T̂ −T ∗
∥∥∥2

F
≤ C1σ

2Ks log p

n
, (3.3.8)

with probability at least 1−O(T ∗Ks/n), where T ∗ is defined in (3.3.4).
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The above upper bound turns out to match with the minimax lower bound for a

large class of sparse and low rank tensors.

Theorem 6 (Lower Bound). Consider the following class of sparse and low-rank

tensors,

Fp,K,s =

T :
T =

∑K
k=1 ηkβk ◦ βk ◦ βk, ‖βk‖0 ≤ s, for k ∈ [K],

T satisfies Conditions 1, 2, and 3.

 . (3.3.9)

Suppose that {Xi}ni=1 are i.i.d standard normal cubic sketchings with i.i.d. N(0, σ2)

noise in (3.2.1). We have the following lower bound result,

inf
T̃

sup
T ∈Fp,K,s

E
∥∥∥T̃ −T

∥∥∥2

F
≥ cσ2Ks log(ep/s)

n
.

The proof of Theorem 6 is deferred to Section 3.9.3 in the supplementary materials.

Combining Theorem 5 and Theorem 6 together, we immediately obtain the following

minimax-optimal rate for sparse and low-rank tensor estimation with cubic sketchings

when log p � log(p/s):

inf
T̃

sup
T ∗∈Fp,K,s

E
∥∥∥T̃ −T ∗

∥∥∥2

F
� σ2Ks log(p/s)

n
. (3.3.10)

The rate in (3.3.10) sheds light upon the effect of dimension p, noise level σ2, sparsity

s, sample size n and rank K to the estimation performance.

Remark 4 (Non-sparse low-rank tensor estimation via cubic-sketchings). When the

low-rank tensor T ∗ is not necessarily sparse, i.e.,

T ∗ ∈ Fp,K =

T :
T =

∑K
k=1 ηkβk ◦ βk ◦ βk, for k ∈ [K],

T satisfies Conditions 1, 2, and 3

 ,

we can apply the proposed procedure with all the truncation/thresholding steps

removed. If n ≥ O(p3/2), one can apply similar arguments of Theorems 3-5 to show

that the output estimation T̂ ′ satisfies∥∥∥T̂ ′ −T ∗
∥∥∥2

F
.
σ2Kp

n
. (3.3.11)

for any T ∗ ∈ Fp,K with high probability. Furthermore, similar arguments of Theorem

6 imply that the rate in (3.3.11) is minimax optimal.
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Remark 5 (Comparison with existing matrix results). Our cubic sketching tensor

results are not a direct extension of the existing matrix results. For example, (55; 56)

studied the low-rank matrix recovery based on rank-1 projections: yi = x>i Txi + εi

based on the convex nuclear norm minimization. The theoretical properties of their

estimate are analyzed under a `1/`2-RIP or Restricted Uniform Boundedness (RUB)

condition. However, tensor nuclear norm is computationally infeasible and following

the arguments in (89; 92), one can check that our cubic sketching framework does

not satisfy RIP or RUB conditions in general. Thus, these previous results cannot be

directly applied.

In addition, the analysis of gradient updates for the tensor case is significantly

more complicated than the matrix case. First, we require high-order concentration

inequalities for the tensor case since the cubic-sketching tensor leads to high-order

products of sub-Gaussian random variables (see Section 3.3.3 for details). The

necessity of high-order expansions in the analysis of gradient updates for the tensor

case also significantly increases the hardness of the problem. To ensure the geometric

convergence, we need much more subtle controls on the regularity conditions comparing

to the ones in the matrix case (92).

3.3.3 Key Lemmas: High-order Concentration Inequalities

As mentioned earlier, one major challenge for theoretical analysis of cubic sketching

is to handle heavy tails of high-order Gaussian moments. One can only handle up-to

second moments of sub-Gaussian random variables by directly applying the existing

Hoeffding’s or Bernstein’s concentration inequalities. Rather, we need to develop

the following two high-order concentration inequalities as technical tools: Lemma 1

characterizes the tail bounds for the sum of sub-Gaussian products, and Lemma 2

provides the concentration inequalities for Gaussian cubic sketchings. The proofs of

Lemma 1 and 2 are given in Section 3.8.2.
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Lemma 1 (Concentration inequality for sum of sub-Gaussian products). Suppose

Xi = (x>1i, . . . ,x
>
mi)
> ∈ Rm×p, i ∈ [n] are n i.i.d random matrices. Here, xij is the

j-th row of Xi and suppose it is an isotropic sub-Gaussian vector. Then for any

vectors a = (a1 . . . , an) ∈ Rn, {βj}mj=1 ⊆ Rp, and 0 < δ < 1, we have∣∣∣ n∑
i=1

ai

m∏
j=1

(x>ijβj)− E
( n∑
i=1

ai

m∏
j=1

(x>ijβj)
)∣∣∣

≤ C

m∏
j=1

‖βj‖2

(
‖a‖∞(log δ−1)m/2 + ‖a‖2(log δ−1)1/2

)
,

with probability at least 1− δ for some constant C.

Note that in Lemma 1, entries in each matrix Xi are not necessarily independent

even {Xi}ni=1 are independent matrices. Building on Lemma 1, Lemma 2 provides

a generic spectral-type concentration inequality that can be used to quantify the

approximation error for Ts introduced in Step 1 of the proposed procedure.

Lemma 2 (Concentration inequality for Gaussian cubic sketchings). Suppose {x1i}ni=1
iid∼

N (0, Ip1), {x2i}ni=1
iid∼ N (0, Ip2), {x3i}ni=1

iid∼ N (0, Ip3), β1 ∈ Rp1 , β2 ∈ Rp2 , β3 ∈ Rp3

are fixed vectors.

• Define Mnsy = 1
n

∑n
i=1〈x1i ◦x2i ◦x3i,β1 ◦β2 ◦β3

〉
x1i ◦x2i ◦x3i. Then E(Mnsy) =

β1 ◦ β2 ◦ β3, and∥∥∥Mnsy − E(Mnsy)
∥∥∥
s

≤ C(log n)3
(√s3 log3(ep/s)

n2
+

√
s log(ep/s)

n

)
‖β1‖2‖β2‖2‖β3‖2,

with probability at least 1− 10/n3.

• Define Msym = 1
n

∑n
i=1〈x1i◦x1i◦x1i,β1◦β1◦β1

〉
x1i◦x1i◦x1i. Then E(Msym) =

6β1 ◦ β1 ◦ β1 + 3
∑p

m=1(β1 ◦ em ◦ em + em ◦ β1 ◦ em + em ◦ em ◦ β1), and∥∥∥Msym − E(Msym)
∥∥∥
s

≤ C(log n)3
(√s3 log3(ep/s)

n2
+

√
s log(ep/s)

n

)
‖β1‖3

2,

with probability at least 1− 10/n3.
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Here, C is an absolute constant and ‖ · ‖s is the sparse tensor spectral norm defined

in (3.1.3).

Note that Msym is the major term in the unbiased empirical moment estimator Ts
in (3.2.6), while Mnsy corresponds to the non-symmetric unbiased empirical moment

estimator T that will be introduced later in (3.5.4).

3.4 Application to High-Order Interaction Effect Models

In this section, we estimate high-order interaction effect models in the cubic

sketching framework. Specifically, we consider the following three-way interaction

model

yl = ξ0 +

p∑
i=1

ξizli +

p∑
i,j=1

γijzlizlj +

p∑
i,j,k=1

ηijkzlizljzlk + εl, l = 1, . . . , n. (3.4.1)

Here ξ, γ, and η are coefficients for main effect, pairwise interaction, and triple-wise

interaction, respectively. Importantly, (3.4.1) can be reformulated as the following

tensor form (also see the left panel in Figure 1.2)

yl = 〈B,xl ◦ xl ◦ xl〉+ εl, l = 1, . . . , n, (3.4.2)

where xl = (1, z>l )> ∈ Rp+1 and B ∈ R(p+1)×(p+1)×(p+1) is a tensor parameter corre-

sponding to coefficients in the following way:

B[0,0,0] = ξ0,

B[1:p,1:p,1:p] = (ηijk)1≤i,j,k≤p,

B[0,1:p,1:p] = B[1:p,0,1:p] = B[1:p,1:p,0] = (γij/3)1≤i,j≤p,

B[0,0,1:p] = B[0,1:p,0] = B[1:p,0,0] = (ξi/3)1≤i≤p.

(3.4.3)

We next argue that it is reasonable to assume B is low rank and sparse in the tensor

formulation of high-order interaction models. First, in modern biomedical research

such as (93), only a small portion of coefficients contribute to the response, leading to

a highly sparse B. Further, (94) suggested that for the low-enough rank it is suitable
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to model sparse tensors as arising from sparse loadings, saying CP-decomposition.

Moreover, this low-rank-and-sparse assumption (or approximation) seems necessary

when the sample size is limited. Specifically, we assume B is of CP rank-K with

s-sparse factors, where K, s� p. It is easy to see that the number of parameters in

(3.4.4) is K(p+ 1), which is significantly smaller than (p+ 1)3, the total number of

parameters in the original three-way interaction effect model (3.4.1). In this case,

(3.4.2) can be written as

yl =
〈 K∑
k=1

ηkβk ◦ βk ◦ βk,xl ◦ xl ◦ xl
〉

+ εl, l = 1, . . . , n,

where ‖βk‖2 = 1, ‖βk‖0 ≤ s, k ∈ [K].

(3.4.4)

By assuming zl
iid∼ Np(0, Ip), the high-order interaction effect model (3.4.2) reduces

to the symmetric tensor estimation model (3.2.1) with the only difference that the first

coordinate of xl, i.e., the intercept, is always 1. To accommodate this slight difference,

we only need to adjust the initial unbiased estimate in the above two-step procedure.

We first obtain Ts in (3.2.6) by replacing xi therein by xl, where xl corresponds the

l-th observation

Ts =
1

6n

n∑
l=1

ylxl ◦ xl ◦ xl −
1

6

p∑
j=1

(a ◦ ej ◦ ej + ej ◦ a ◦ ej + ej ◦ ej ◦ a),

where a =
1

n

n∑
l=1

ylxl,

(3.4.5)

then construct empirical-moment-based initial tensor Ts′ as

• For i, j, k 6= 0, Ts′[i,j,k] = Ts[i,j,k]. And Ts′[i,j,0] = Ts[i,j,0], Ts′[0,j,k] = Ts[0,j,k], Ts′[i,0,k] =

Ts[i,0,k].

• For i 6= 0, Ts′[0,0,i] = Ts′[0,i,0] = Ts′[i,0,0] = 1
3
Ts[0,0,i] − 1

6
(
∑p

k=1 Ts[k,k,i] − (p+ 2)ai).

• Ts′[0,0,0] = 1
2p−2

(
∑p

k=1 Ts[0,k,k] − (p+ 2)Ts[0,0,0]).

Lemma 5 verifies that Ts′ is an unbiased estimator for B.

Theoretical results in Section 3.3 imply the following upper and lower bound results

in this particular example.
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Corollary 1 . Suppose that z1, . . . ,zn are i.i.d. standard Gaussian random vectors

and B satisfies Conditions 1, 2 and 3. The output, denoted as B̂, from the proposed

Algorithms 1 and 2 based on Ts′ satisfies∥∥∥B̂ − B∥∥∥2

F
≤ C

σ2Ks log p

n
(3.4.6)

with high probability. On the other hand, considering the following class of B,

Fp+1,K,s =

B :
B =

∑K
k=1 ηkβk ◦ βk ◦ βk, ‖βk‖0 ≤ s, for k ∈ [K],

B satisfies Conditions 1, 2, and 3,

 .

then the following lower bound holds,

inf
B̂

sup
B∈Fp+1,K,s

E
∥∥∥B̂ − B∥∥∥2

F
≥ C

σ2Ks log p

n
.

3.5 Non-symmetric Tensor Estimation Model

In this section, we extend the previous results to the non-symmetric tensor case.

Specifically, we have T ∗ ∈ Rp1×p2×p3 , and

yi = 〈T ∗,Xi〉+ εi, Xi = ui ◦ vi ◦wi, i ∈ [n], (3.5.1)

where ui ∈ Rp1 ,vi ∈ Rp2 ,wi ∈ Rp3 are random vectors with i.i.d. standard normal

entries. Again, we assume T ∗ is sparse and low-rank in a similar sense that

T ∗ =
K∑
k=1

η∗kβ
∗
1k ◦ β∗2k ◦ β∗3k,

‖β∗1k‖2 = ‖β∗2k‖2 = ‖β∗3k‖2 = 1, max{‖β∗1k‖0, ‖β∗2k‖0, ‖β∗3k‖0} ≤ s.

(3.5.2)

Denote the following:

• B1 = (β11, · · · ,β1K), B2 = (β21, · · · ,β2K), B3 = (β31, · · · ,β3K),

• U = (u1, . . . ,un), V = (v1, . . . ,vn), W = (w1, . . . ,wn),

η = (η1, . . . , ηk)
>,y = (y1, . . . , yn)>.
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Then, the empirical risk function can be written compactly as

L(B1,B2,B3,η) =
1

n

∥∥∥(U>B1) ∗ (V >B2) ∗ (W>B3) · η − y
∥∥∥2

2
. (3.5.3)

We note that (3.5.3) is non-convex, but fortunately tri-convex in terms of B1, B2 and

B3. This allows us to develop a block-wise thresholded gradient descent algorithm as

detailed below.

The major steps of the estimation procedure for non-symmetric tensors are sketched

below. The complete algorithm is deferred to Section 3.10.1 in the supplementary

materials.

Step 1: (Method of Tensor Moments) Construct an empirical-moment-based

estimator,

T :=
1

n

n∑
i=1

yiui ◦ vi ◦wi ∈ Rp1×p2×p3 . (3.5.4)

to which sparse tensor decomposition is applied for initialization.

Step 2: (Block-wise Gradient descent) Lemma 17 in the supplementary mate-

rials shows that the gradient function for (3.5.3) with respect to B1 can be

written as

∇B1L(B1,B2,B3,η) = D>(C>1 �U)> ∈ R1×(p1K), (3.5.5)

whereD = (B>1 U )>∗(B>2 V )>∗(B>3 W )>η−y andC1 = (B>2 V )>∗(B>3 W )>�

η>. For t = 1, . . . , T we fix B
(t)
2 and B

(t)
3 and update B

(t+1)
1 via block-wise

thresholded gradient descent,

vec(B
(t+1)
1 ) = ϕ

µh(B
(t)
1 )

φ

(
vec(B

(t)
1 )− µ

φ
∇B1L(B

(t)
1 ,B

(t)
2 ,B

(t)
3 ,η)

)
,

where φ =
∑n

i=1 y
2
i /n, µ is the step size and h(B) =

√
4 lognp
n2 {D2}>{C2}. The

updates of B2,B3 are similar.

The main theoretical analysis is different from the symmetric one in two folds.

First, the non-symmetric cubic sketching tensor is formed by three independent
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Gaussian vectors. This leads to differences in many high-order moment calculations.

Second, the corresponding CP-decomposition, i.e., (3.5.2), essentially forms a bi-convex

optimization. In this case, standard convex analysis for vanilla gradient descent (95)

could be applied given a good enough initialization.

We impose similar regularity conditions whose detailed forms and explanations

are postponed to Section 3.10.1 and the proof to Section 3.10.2. The main theorems

for non-symmetric tensor estimation are presented as follows.

Theorem 7 (Upper Bound). Suppose Conditions 6 – 9 in the supplementary materials

hold and n & (s log(p0/s))
3/2, where p0 = max{p1, p2, p3}. For any t = 0, 1, 2, . . ., the

estimation output by Algorithm 3.10.1 satisfies

K∑
k=1

3∑
j=1

∥∥∥ 3
√
ηkβ

(t+1)
jk − 3

√
η∗kβ

∗
jk

∥∥∥2

2
≤ Op

(
κt +

σ2s log p0

n

)
for some 0 < κ < 1. When the total number of iterations is no smaller than

log( n
σ2s log p0

∨ 1)/ log κ−1, the final estimator T̂ satisfies∥∥∥T̂ −T ∗
∥∥∥2

F
≤ Op

(σ2Ks log p0

n

)
.

Theorem 8 (Lower Bound). Consider the class of incoherent sparse and low-rank

tensors F = {T : T =
∑K

k=1 β1k ◦β2k ◦β3k, ‖βi,k‖0 ≤ s for i = 1, 2, 3, k = 1, . . . , K}.

If {Xi}ni=1 are i.i.d standard normal cubic sketchings with i.i.d. N(0, σ2) noises in

(3.5.1), the following lower bound holds,

inf
T̂

sup
T ∈F

E
∥∥∥T̂ −T

∥∥∥2

F
≥ Cσ2sK log(e · p0/s)

n
. (3.5.6)

It can be seen from Theorems 7 and 8 that our proposed algorithm achieves

minimax-optimal estimation error rate in the class of F as long as log(p0) � log(p0/s).

3.6 Numerical Results

In this section, we empirically examine the effect of noise level, CP-rank, sample

size, dimension, and sparsity on the estimation performance. We also examine
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the robustness of the proposed algorithm under the setting when the incoherence

assumption used in theory fails to hold.

In each setting, we generated T ∗ =
∑K

k=1 β
∗
k ◦ β∗k ◦ β∗k, where |supp(β∗k)| = s

was uniformly selected from {1, . . . , p}, the nonzero entries of β∗k were drawn from

standard Gaussian distribution. Next we normalized each vector β∗k and aggregated

the coefficient as η∗k. The cubic sketchings {Xi}ni=1 were generated as Xi = xi ◦xi ◦xi,

where {xi}ni=1 were from standard Gaussian distribution. The noise {εi}ni=1
iid∼ N(0, σ2)

or Laplace(0, σ/
√

2). Additionally, we adopt the following stopping rules: (1) the

initialization iteration (Step 2 in Algorithm 1) is stopped if ‖b(l+1)
m − b(l)

m ‖2 ≤ 10−6; (2)

the gradient update iteration (Step 3 in Algorithm 2) is stopped if ‖B(T+1)−B(T )‖F ≤

10−6. All presented results were based on 200 repetitions. The code was written in R

and implemented on an Intel Xeon-E5 processor with 64 GB of RAM.

First, we consider the percent of successful recovery in the noiseless case. Let

K = 3, s/p = 0.3, p = 30 or 50, so that the total number of unknown parameters

in T ∗ is 2.7 × 104 or 1.25 × 105. The sample size n ranges from 500 to 6000. The

recovery is called successful if the relative error ‖T̂ − T ∗‖F/‖T ∗‖F < 10−4. We

report the percent of successful recovery in Figure 3.1.

Fig. 3.1. Percent of successful recovery with varying sample size.
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It is clear from Figure 3.1 that the empirical relation with dimensionality and

sample size is consistent with our theory.

We then move to the noisy case where the empirical estimation error is examined.

We select K = 3, s/p = 0.3, p = 30 or 50, {εi}ni=1
iid∼ N(0, σ2) and consider two specific

scenarios: (1) sample size n = 6000, 8000, or 10000, s/p = 0.3, the noise level σ

varies from 0 to 200; (2) noise level σ = 200, sample size n varies from 4000 to 10000,

p = 30, s/p = 0.1, 0.3, 0.5. The estimation errors in terms of ‖T̂ −T ∗‖F under these

two scenarios are plotted in Figures 3.2 and 3.3, respectively. From these results,

we can see that the proposed algorithm achieves reasonable estimation performance:

Algorithms 1 and 2 yield more accurate estimation with smaller variance σ2 and/or

large value of sample size n.
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Fig. 3.2. Estimation error for different noise levels. The left panel is p = 30
and the right panel is p = 50.

Fig. 3.3. Estimation error for different sample sizes. The left panel is for
initial estimation error and the right panel is for final estimation error.

Next, we demonstrate that the low-rank tensor parameter T ∗ with randomly

generated factors β∗k satisfies the incoherence Condition 3 with high probability. Set

the CP-rank K = 3 and the sparsity level s/p = 0.3 with the dimension p ranging

from 10 to 2000. We compute the incoherence parameter Γ defined in Condition

3. The left panel of Figure 3.4 shows that the incoherence parameter Γ decays in a

polynomial rate as s grows, which matches the bound in Condition 3. Recall we also

provide theoretical justification on this point in Lemma 28.
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Fig. 3.4. Left panel: incoherence parameter Γ with varying sparsity. Here,
the red line corresponds to the rate

√
s required in the theoretical analysis.

Right panel: average relative estimation error for tensors with varying
incoherence.

We further examine the performance of the proposed algorithm when the incoher-

ence condition required in the theoretical analysis fails to hold. Specifically, we set

the CP-rank K = 3, p = 30, and the sparsity level s/p = 0.3. We construct enormous

copies of tensor parameter T ∗
j with i.i.d. standard normal factor vectors β∗k. For each

T ∗
j , we calculate the incoherence Γj defined in Condition 3, and then manually pick

40 parameter tensors T ∗
j′ such that

0.01 · (j′ − 1) ≤ Γj′ ≤ 0.01 · j′ for j′ = {1, 2, . . . , 40}.

By this construction, we obtain a set of tensor parameter {T ∗
j′ } with incoherence

uniformly varying from 0 to 0.4. The right panel of Figure 3.4 plots the relative error

for estimating T ∗ based on observations from cubic sketchings of T ∗
j′ based on 1000

repetitions. We can see that the proposed algorithm achieves small relative errors

even when the true factors are highly coherent.

Moreover, we consider another setting with Laplace distributed noise which is a

sub-exponential random variable. Suppose {εi}ni=1
iid∼ Lap(σ) with density f(x) =

1
σ

exp(−2|x|/σ). With n = 3000, p = 30, and varying values of σ, the average

estimation error and its comparison with Gaussian noise setting are provided in Figure
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3.5. We note that the estimation errors under Laplace noise are slightly higher than

those under Gaussian noise.

Fig. 3.5. Comparison of estimation errors between Laplace error and
Gaussian error.

Next, we compare the estimation errors of initial and final estimators for different

ranks and sample sizes. First we set K = 3, p = 30, s/p = 0.3 and consider the noiseless

setting. It is clear from Figure 3.6 that the initialization error decays sufficiently, but

does not converge to zero as sample size n grows. This result matches our theoretical

findings in Theorem 4. As discussed in Remark 3, the initial stage may yield an

inconsistent estimator due to the incoherence among βk’s. After sufficient steps of

thresholded gradient descent (Steps 3 and 4 in Algorithm 2), the initial estimator

is refined to lead to the final estimate that is proven to be minimax-optimal. Thus,

we evaluate and compare estimation errors for both initial and final estimators for

K = 3 or 5 and growing sample sizes n. We can see from the right panel of Figure 3.6,

the final estimator is more stable and accurate compared with the initial one, which

illustrates the merit of thresholded gradient descent step of the proposed procedure.
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Fig. 3.6. Log absolute estimation error of initial estimation error (left
panel) and initialization/final estimation error comparisons (right panel).

Last but not the least, we compare the performance of our method with the

alternating least square (ALS)-based tensor regression method (32). We specifically

consider two schemes for the initialization of ALS: (a) {β(0)
k } were generated as i.i.d.

standard Gaussian (cold start), and (b) {β(0)
k } were generated from the proposed

Algorithm 1 (warm start). Setting K = 2, s/p = 0.2, p = 30, {εi}ni=1
iid∼ N(0, 2002),

we applied both our proposed procedure and the ALS-based algorithm, and recorded

average estimation errors with standard deviations for both initial and final estimators

in Table 3.6. From the result, one can see our proposed algorithm significantly

outperforms the ALS proposed by (32) under both cold and warm start schemes.

The main reason was pointed out in Remark 5: the cubic sketchings setting possesses

distinct aspects compared with the i.i.d. random Gaussian sketching setting, so that

the method proposed by (32) does not exactly fit.

3.7 Discussions

The current paper focuses on the third order tensor estimation. But, all the results

can be extended to higher-order case via high-order sketchings as follows. To be

specific, suppose

yi = 〈T ∗,x⊗mi 〉+ εi, i = 1, . . . , n,



100

Table 3.1.
The estimation error and the standard deviation (in subscript) of the
proposed method and ALS-based method.

Sample size ours warm start cold start initial

n = 4000 4.0230.135 32.8281.798 37.7851.233 38.0321.748

n = 5000 1.9450.097 32.3462.343 36.9622.106 33.7161.786

n = 6000 1.7730.092 22.2201.215 59.9723.407 25.5791.483

where T ∗ ∈ (Rp)⊗m is an order-m, sparse, and low-rank tensor. In order to estimate

T ∗ from {yi,xi}ni=1, one can first generalize Theorem 9 to construct the order-m

tensor moment estimate for the initial stage, by noting that the score function Sm(x)

and the density function p(x) satisfy a nice recursive equation:

Sm(x) := −Sm−1(x) ◦ ∇ log p(x)−∇Sm−1(x).

Then, one can similarly perform high-order sparse tensor decomposition and thresh-

olded gradient descent to estimate T ∗. On the theoretical side, by a careful general-

ization of the truncation argument and ψ(2/m)-norm concentration inequality, we can

similarly show under mild conditions, when n ≥ C(log n)m(s log p)m/2, the proposed

procedure achieves the following rate of convergence with high probability,∥∥∥T̃ −T ∗
∥∥∥2

F
. σ2Kms log(p/s)

n
,

where C > 0 is some constant which does not depend on n, p,K, m and σ2. The

minimax optimality can be shown similarly.

3.8 Proofs

In this section, we provide detailed proofs for empirical moment estimator and

concentration results in Sections 3.8.1 and 3.8.2.
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3.8.1 Moment Calculation

We first introduce three lemmas to show that the empirical moment based tensors

(3.2.6), (3.4.5), and (3.5.4) are all unbiased estimators for the target low-rank tensor in

the corresponding scenarios. Detail proofs of three lemmas are postponed to Sections

3.9.5, 3.9.6 and 3.9.7 in the supplementary materials.

Lemma 3 (Unbiasedness of moment estimator under non-symmetric sketchings).

For non-symmetric tensor estimation model (3.5.1) & (3.5.2), define the empirical-

moment-based tensor T by

T :=
1

n

n∑
i=1

yiui ◦ vi ◦wi.

Then T is an unbiased estimator for T ∗, i.e.,

E(T ) =
K∑
k=1

η∗kβ
∗
1k ◦ β∗2k ◦ β∗3k.

The extension to the symmetric case is non-trivial due to the dependency among

three identical sketching vectors. We borrow the idea of high-order Stein’s identity,

which was originally proposed in (90). To fix the idea, we present only third order

result for simplicity. The extension to higher-order is straightforward.

Theorem 9 (Third-order Stein’s Identity, (90)). Let x ∈ Rp be a random vector with

joint density function p(x). Define the third order score function S3(x) : Rp → Rp×p×p

as S3(x) = −∇3p(x)/p(x). Then for continuously differentiable function G(x) : Rp →

R, we have

E [G(x) · S3(x)] = E
[
∇3G(x)

]
. (3.8.1)

In general, the order-m high-order score function is defined as

Sm(x) = (−1)m
∇mp(x)

p(x)
.

Interestingly, the high-order score function has a recursive differential representation

Sm(x) := −Sm−1(x) ◦ ∇ log p(x)−∇Sm−1(x), (3.8.2)
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with S0(x) = 1. This recursive form is helpful for constructing unbiased tensor

estimator under symmetric cubic sketchings. Note that the first order score function

S1(x) = −∇ log p(x) is the same as score function in Lemma 26 (Stein’s lemma (96)).

The proof of Theorem 9 relies on iteratively applying the recursion representation of

score function (3.8.2) and the first-order Stein’s lemma (Lemma 26). We provide the

detailed proof in Section 3.9.4 for the sake of completeness.

In particular, if x follows a standard Gaussian vector, each order score function

can be calculated based on (3.8.2) as follows,

S1(x) = x,S2(x) = x ◦ x− Id×d,

S3(x) = x ◦ x ◦ x−
p∑
j=1

(
x ◦ ej ◦ ej + ej ◦ x ◦ ej + ej ◦ ej ◦ x

)
.

(3.8.3)

Interestingly, if we let G(x) =
∑K

k=1 η
∗
k(x

>β∗k)
3, then

1

6
∇3G(x) =

K∑
k=1

η∗kβ
∗
k ◦ β∗k ◦ β∗k, (3.8.4)

which is exactly T ∗. Connecting this fact with (3.8.1), we are able to construct the

unbiased estimator in the following lemma through high-order Stein’s identity.

Lemma 4 (Unbiasedness of moment estimator under symmetric sketchings). Consider

the symmetric tensor estimation model (3.2.1) & (3.3.9). Define the empirical first-

order moment m1 := 1
n

∑n
i=1 yixi. If we further define an empirical third-order-

moment-based tensor Ts by

Ts :=
1

6

[ 1

n

n∑
i=1

yixi ◦ xi ◦ xi −
p∑
j=1

(
m1 ◦ ej ◦ ej + ej ◦m1 ◦ ej + ej ◦ ej ◦m1

)]
,

then

E(Ts) =
K∑
k=1

η∗kβ
∗
k ◦ β∗k ◦ β∗k.

Proof. Note that yi = G(xi) + εi. Then we have

E
( 1

n

n∑
i=1

yiS3(x)
)

= E
( 1

n

n∑
i=1

(G(xi) + εi)S3(xi)
)
,



103

where S3(x) is defined in (3.8.3). By using the conclusion in Theorem 9 and the fact

(3.8.4), we obtain

E(Ts) = E
( 1

6n

n∑
i=1

yiS3(x)
)

=
K∑
k=1

η∗kβ
∗
k ◦ β∗k ◦ β∗k,

since εi is independent of xi. This ends the proof. �

Although the interaction effect model (3.4.1) is still based on symmetric sketchings,

we need much more careful construction for the moment-based estimator, since the

first coordinate of the sketching vector is always constant 1. We give such an estimator

in the following lemma.

Lemma 5 (Unbiasedness of moment estimator in interaction model). For interaction

effect model (3.4.1), construct the empirical moment based tensor Ts′ as following

• For i, j, k 6= 0, Ts′[i,j,k] = Ts[i,j,k]. And Ts′[i,j,0] = Ts[i,j,0], Ts′[0,j,k] = Ts[0,j,k], Ts′[i,0,k] =

Ts[i,0,k].

• For i 6= 0, Ts′[0,0,i] = Ts′[0,i,0] = Ts′[i,0,0] = 1
3
Ts[0,0,i] − 1

6
(
∑p

k=1 Ts[k,k,i] − (p+ 2)ai).

• Ts′[0,0,0] = 1
2p−2

(
∑p

k=1 Ts[0,k,k] − (p+ 2)Ts[0,0,0]).

The Ts′ is an unbiased estimator for B, i.e.,

E(Ts′) =
K∑
k=1

ηkβk ◦ βk ◦ βk.

3.8.2 Proofs of Lemmas 1 and 2: Concentration Inequalities

We aim to prove Lemmas 1 and 2 in this subsection. These two lemmas provide

key concentration inequalities of the theoretical analysis for the main result. Before

going into technical details, we introduce a quasi-norm called ψα-norm.

Definition 2 (ψα-norm (57)). The ψα-norm of any random variable X and α > 0 is

defined as

‖X‖ψα := inf
{
C ∈ (0,∞) : E[exp(|X|/C)α] ≤ 2

}
.
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Particularly, a random variable who has a bounded ψ2-norm or bounded ψ1-norm

is called sub-Gaussian or sub-exponential random variable, respectively. Next lemma

provides an upper bound for the p-th moment of sum of random variables with bounded

ψα-norm.

Lemma 6 . Suppose X1, . . . , Xn are n independent random variables satisfying

‖Xi‖ψα ≤ b with α > 0, then for all a = (a1, . . . , an) ∈ Rn and p ≥ 2,(
E
∣∣∣ n∑
i=1

aiXi − E(
n∑
i=1

aiXi)
∣∣∣p)1

p

≤

 C1(α)b
(√

p‖a‖2 + p1/α‖a‖∞
)
, if 0 < α < 1;

C2(α)b
(√

p‖a‖2 + p1/α‖a‖α∗
)
, if α ≥ 1.

(3.8.5)

where 1/α∗ + 1/α = 1, C1(α), C2(α) are some absolute constants only depending on

α.

If 0 < α < 1, (3.8.5) is a combination of Theorem 6.2 in (97) and the fact that

the p-th moment of a Weibull variable with parameter α is of order p1/α. If α ≥ 1,

(3.8.5) follows from a combination of Corollaries 2.9 and 2.10 in (98). Continuing

with standard symmetrization arguments, we reach the conclusion for general random

variables. When α = 1 or 2, (3.8.5) coincides with standard moment bounds for a sum

of sub-Gaussian and sub-exponential random variables in (82). The detailed proof of

Lemma 6 is postponed to Section 3.9.8.

When 0 < α < 1, by Chebyshev’s inequality, one can obtain the following

exponential tail bound for the sum of random variables with bounded ψα-norm.

This lemma generalizes the Hoeffding-type concentration inequality for sub-Gaussian

random variables (see, e.g. Proposition 5.10 in (82)), and Bernstein-type concentration

inequality for sub-exponential random variables (see, e.g. Proposition 5.16 in (82)).

Lemma 7 . Suppose 0 < α < 1, X1, . . . , Xn are independent random variables

satisfying ‖Xi‖ψα ≤ b. Then there exists absolute constant C(α) only depending on α

such that for any a = (a1, . . . , an) ∈ Rn and 0 < δ < 1/e2,∣∣∣ n∑
i=1

aiXi − E(
n∑
i=1

aiXi)
∣∣∣ ≤ C(α)b‖a‖2(log δ−1)1/2 + C(α)b‖a‖∞(log δ−1)1/α
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with probability at least 1− δ.

Proof. For any t > 0, by Markov’s inequality,

P
(∣∣∣ n∑

i=1

aiXi − E
( n∑
i=1

aiXi

)∣∣∣ ≥ t
)

= P
(∣∣∣ n∑

i=1

aiXi − E
( n∑
i=1

aiXi

)∣∣∣p ≥ tp
)

≤
E
∣∣∣∑n

i=1 aiXi − E
(∑n

i=1 aiXi

)∣∣∣p
tp

≤
C(α)pbp

(√
p‖a‖2 + p1/α‖a‖∞

)p
tp

,

where the last inequality is from Lemma 6. We set t such that exp(−p) = C(α)pbp(
√
p‖a‖2+

p1/α‖a‖∞)p/tp. Then for p ≥ 2,∣∣∣ n∑
i=1

aiXi − E
( n∑
i=1

aiXi

)∣∣∣ ≤ eC(α)b
(√

p‖a‖2 + p1/α‖a‖∞
)

holds with probability at least 1− exp(−p). Letting δ = exp(−p), we have that for

any 0 < δ < 1/e2,∣∣∣ n∑
i=1

aiXi − E
( n∑
i=1

aiXi

)∣∣∣ ≤ C(α)b
(
‖a‖2(log δ−1)1/2 + ‖a‖∞(log δ−1)1/α

)
,

holds with probability at least 1− δ. This ends the proof. �

The next lemma provides an upper bound for the product of random variables in

ψα-norm.

Lemma 8 (ψα for product of random variables). Suppose X1, . . . , Xm are m random

variables (not necessarily independent) with ψα-norm bounded by ‖Xj‖ψα ≤ Kj . Then

the ψα/m-norm of
∏m

j=1Xj is bounded as∥∥∥∥∥
m∏
j=1

Xj

∥∥∥∥∥
ψα/m

≤
m∏
j=1

Kj.

Proof. For any {xj}mj=1 and α > 0, by using the inequality of arithmetic and

geometric means we have(
|
m∏
j=1

xj
Kj

|
)α/m

=
( m∏
j=1

| xj
Kj

|α
)1/m

≤ 1

m

m∑
j=1

| xj
Kj

|α.
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Since exponential function is a monotone increasing function, it shows that

exp
(
|
m∏
j=1

xj
Kj

|
)α/m

≤ exp
( 1

m

m∑
j=1

| xj
Kj

|α
)

=
( m∏
j=1

exp(| xj
Kj

|α)
)1/m

≤ 1

m

m∑
j=1

exp
(
| xj
Kj

|α
)
.

(3.8.6)

From the definition of ψα-norm, for j = 1, 2, . . . ,m, each individual Xj has

E
(

exp(
|Xj|
Kj

)α
)
≤ 2. (3.8.7)

Putting (3.8.6) and (3.8.7) together, we obtain

E
[

exp
(
|
∏m

j=1 Xj∏m
j=1 Kj

|
)α/m]

= E
[

exp
(
|
m∏
j=1

Xj

Kj

|
)α/m]

≤ 1

m

m∑
j=1

E
[

exp
(
|Xj

Kj

|
)α]
≤ 2.

Therefore, we conclude that the ψα/m-norm of
∏m

j=1Xj is bounded by
∏m

j=1 Kj. �

Proof of Lemma 1. Note that for any j = 1, 2, . . . ,m, the ψ2-norm of X>j βj is

bounded by ‖βj‖2 (82). According to Lemma 8, the ψ2/m-norm of
∏m

j=1(X
>
j βj) is

bounded by
∏m

j=1 ‖βj‖2. Directly applying Lemma 7, we reach the conclusion. �

Proof of Lemma 2. We first focus on the non-symmetric version and the proof

follows three steps:

1. Truncate the first coordinate of x1i,x2i,x3i by a carefully chosen truncation

level;

2. Utilize the high-order concentration inequality in Lemma 20 at order three;

3. Show that the bias caused by truncation is negligible.

With slightly abuse of notations, we denote a, x, y etc. as their first coordinate of

a,x,y etc. Without loss of generality, we assume p := max{p1, p2, p3}. By unitary
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invariance, we assume β1 = β2 = β3 = e1, where e1 = (1, 0, . . . , 0)>. Then, it is

equivalent to prove∥∥∥Mnsy − E(Mnsy)
∥∥∥
s

=
∥∥∥ 1

n

n∑
i=1

x1ix2ix3ix1i ◦ x2i ◦ x3i − e1 ◦ e1 ◦ e1

∥∥∥
s

≤ C(log n)3
(√s3 log3(p/s)

n2
+

√
s log(p/s)

n

)
.

Suppose x1 ∼ N (0, Ip1),x2 ∼ N (0, Ip2),x3 ∼ N (0, Ip3) and {x1i,x2i,x3i}ni=1 are

n independent samples of {x1,x2,x3}. And define a bounded event Gn for the first

coordinate and its corresponding population version,

Gn = {max
i
{|x1i|, |x2i|, |x3i|} ≤M},G = {max{|x1|, |x2|, |x3|} ≤M},

where M is a large constant to be specified later. Decomposing ‖Mnsy −E(Mnsy)‖s as∥∥∥Mnsy − E(Mnsy)
∥∥∥
s

≤
∥∥∥ 1

n

n∑
i=1

x1ix2ix3ix1i ◦ x2i ◦ x3i − E
(
x1x2x3x1 ◦ x2 ◦ x3

∣∣G)∥∥∥
s︸ ︷︷ ︸

M1:main term

+
∥∥∥E(x1x2x3x1 ◦ x2 ◦ x3

∣∣G)− e1 ◦ e1 ◦ e1

∥∥∥
s︸ ︷︷ ︸

M2:bias term

,

we will prove that M2 is negligible in terms of convergence rate of M1.

Bounding M1. For simplicity, we define x′1 = x1|G, x′2 = x2|G, x′3 = x3|G, and

{x′1i,x′2i,x′3i}ni=1 are n independent samples of {x′1,x′2,x′3}. According to the law of

total probability, we have

P
(
M1 ≥ t

)
≤ P

(
Gcn
)

+ P
(∥∥∥ 1

n

n∑
i=1

x′1ix
′
1i ◦ x′3ix′2i ◦ x′i1x′3i − E

(
x′1x

′
1 ◦ x′2x′2 ◦ x′3x′3

)∥∥∥
s︸ ︷︷ ︸

M11

≥ t
)
.

According to Lemma 22, the entry of x′1ix
′
1i, x

′
2ix
′
2i, x

′
3ix
′
3i are sub-Gaussian random

variable with ψ2-norm M2. Applying Lemma 20, we obtain

P
(
M11 ≥ C1M

6δn,s

)
≤ 1

p
,
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where δn,s = ((s log(p/s))3/n2)1/2 + (s log(p/s)/n)1/2.

On the other hand,

P(Gcn) ≤ 3
n∑
i=1

P(|x1i| ≥M) ≤ 3ne1−C2M2

Putting the above bounds together, we obtain

P
(
M1 ≥ C1M

6δn,s

)
≤ 1/s+ 3ne1−C2M2

.

By setting M = 2
√

log n/C2, the bound of M1 reduces to

P
(
M1 ≥

64C1

C3
2

δn,s(log n)3
)
≤ 1

p
+

3e

n3
. (3.8.8)

Bounding M2. There exists % ∈ Sp−1 such that

M2 =
∣∣∣E(x1x2x3(x>1 %)(x>2 %)(x>3 %)

∣∣∣G)− (e>1 %)3
∣∣∣.

Since x1j is independent of x1k for any j 6= k, E(x1(x>1 %)|G) = E(x2
1%1|G). Then

M2 =
∣∣∣E(x2

1x
2
2x

2
3%

3
1

∣∣∣G)− %3
1

∣∣∣
=

∣∣∣%3
1E
(
x2

1

∣∣∣|x1| ≤M
)
E
(
x2

2

∣∣∣|x2| ≤M
)
E
(
x2

3

∣∣∣|x3| ≤M
)
− %3

1

∣∣∣,
where the second equation comes from the independence among each coordinate of

{x1i,x2i,x3i}.

By the basic property of Gaussian random variable, we can show

1 ≥ E
(
x2
i

∣∣|xi| ≤M
)
≥ 1− 2Me−M

2/2, i = 1, 2, 3.

Plugging them into M2, we have

M2 ≤
∣∣%3

1

∣∣∣∣∣(1− 2Me−M
2/2
)3

− 1
∣∣∣

≤
∣∣∣12M2e−M

2 − 6Me−M
2/2 − 8M3e−3M2/2

∣∣∣
≤

∣∣∣26M3e−M
2/2
∣∣∣,

where the second inequality is due to ‖%‖2
2 = 1 and the last inequality holds for a

large M > 0. By the choice of M = 2
√

log n/C2, we have M2 ≤ 208/C
3/2
2 (log n)

3
2/n2

for some constant C2. When n is large, this rate is negligible comparing with (3.8.8)
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Bounding M : We put the upper bounds of M1 and M2 together. After some

adjustments for absolute constant, it suffices to obtain

P
(
M1 +M2 ≤ C(log n)3

(√s3 log3(p/s)

n2
+

√
s log(p/s)

n

))
≥ 1− 10

n3
.

This concludes the proof of non-symmetric part. The proof of symmetric part remains

similar and thus is omitted here. �

3.9 Additional Results

3.9.1 Proof of Theorem 4: Initialization Effect

Theorem 4 gives an approximation error upper bound for the sparse-tensor-

decomposition-based initial estimator. In Step I of Section 3.2.1, the original problem

can be reformatted to a version of tensor denoising:

Ts = T ∗ + E , where E = Ts − E(Ts). (3.9.1)

The key difference between our model (3.9.1) and recent work is that E arises from

empirical moment approximation, rather than the random observation noise considered

in (91) and (51). Next lemma gives an upper bound for the approximation error.

Lemma 9 (Approximation error of Ts). Recall that E = Ts − E(Ts), where Ts is

defined in (3.2.6). Suppose Condition 4 is satisfied and s ≤ d ≤ Cs. Then

‖E‖s+d ≤ 2C1

K∑
k=1

η∗k

(√s3 log3(p/s)

n2
+

√
s log(p/s)

n

)
(log n)4 (3.9.2)

with probability at least 1− 5/n for some uniform constant C1.

Next we denote the following quantity for simplicity,

γ = C2 min
{R−1

6
−
√
K

s
,
R−1

4
√

5
− 2√

s

(
1 +

√
K

s

)2

}, (3.9.3)
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where R is the singular value ratio, K is the CP-rank, s is the sparsity parameter, Γ

is the incoherence parameter and C2 is uniform constant.

Next lemma provides theoretical guarantees for sparse tensor decomposition

method.

Lemma 10 . Suppose that the symmetric tensor denoising model (3.9.1) satisfies

Conditions 1, 2 and 3 (i.e., the identifiability, parameter space and incoherence).

Assume the number of initializations L ≥ KC3γ−4
and the number of iterations N ≥

C4 log
(
γ/
(

1
η∗min
‖E‖s+d +

√
KΓ2

))
for constants C3, C4, the truncation parameter

s ≤ d ≤ Cs. Then the sparse-tensor-decomposition-based initialization satisfies

max
{
‖β(0)

k − β
∗
k‖2, |η(0)

k − η
∗
k|
}
≤ C4

η∗min

‖E‖s+d +
√
KΓ2, (3.9.4)

for any k ∈ [K].

The proof of Lemma 10 essentially follows Theorem 3.9 in (51), we thus omit the

detailed proof here. The upper bound in (3.9.4) contains two terms: C4

η∗min
‖E‖s+d and

√
KΓ2, which are due to the empirical moment approximation and the incoherence

among different βk, respectively.

Although the sparse tensor decomposition is not optimal in statistical rate, it does

offer a reasonable initial estimation provided enough samples. Equipped with (3.9.2)

and Condition 2, the right side of (3.9.4) reduces to

C4

η∗min

‖E‖s+d +
√
KΓ2

≤ 2C1C4KR
(√s3 log3(p/s)

n2
+

√
s log(p/s)

n

)
(log n)4 +

√
KΓ2,

with probability at least 1− 5/n. Denote C0 = 4 · 2160 · C1C4. Using Conditions 3

and 5, we reach the conclusion that

max
{
‖β(0)

k − β
∗
k‖2, |η(0)

k − η
∗
k|
}
≤ K−1R−2/2160,

with probability at least 1− 5/n. �



111

3.9.2 Proof of Theorem 3: Gradient Update

We first introduce the following lemma to illustrate the improvement of one step

thresholded gradient update under suitable conditions. The error bound includes two

parts: the optimization error that describes one step effect for gradient update, and

the statistical error that reflects the random noise effect. The proof of Lemma 11 is

given in Section 3.9.10 in the supplementary materials. For notation simplicity, we

drop the superscript of η
(0)
k in the following proof.

Lemma 11 . Let t ≥ 0 be an integer. Suppose Conditions 1-5 hold and {β(t)
k , ηk}

satisfies the following upper bound

K∑
k=1

∥∥∥ 3
√
ηkβ

(t)
k − 3

√
η∗kβ

∗
k

∥∥∥2

2
≤ 4Kη

∗2
3

maxε
2
0, max

k∈[K]

∣∣∣ηk − η∗k∣∣∣ ≤ ε0, (3.9.5)

with probability at least 1−O(K/n), where ε0 = K−1R−
4
3/2160. As long as the step

size µ satisfies

0 < µ ≤ µ0 =
32R−20/3

3K[220 + 270K]2
, (3.9.6)

then {β(t+1)
k } can be upper bounded as

K∑
k=1

∥∥∥ 3
√
ηkβ

(t+1)
k − 3

√
η∗kβ

∗
k

∥∥∥2

2

≤
(

1− 32µK−2R−
8
3

) K∑
k=1

∥∥∥ 3
√
ηkβ

(t)
k − 3

√
η∗kβ

∗
k

∥∥∥2

2︸ ︷︷ ︸
optimization error

+ 2C0µ
2K−2R−

8
3η
∗−4

3
min

σ2s log p

n︸ ︷︷ ︸
statistical error

,

with probability at least 1−O(Ks/n).

In order to apply Lemma 11, we prove that the required condition (3.9.5) holds at

every iteration step t by induction. When t = 0, by (3.3.2) and Condition 2,∥∥∥β(0)
k − β

∗
k

∥∥∥
2
≤ ε0,

∣∣∣ηk − η∗k∣∣∣ ≤ ε0, for k ∈ [K],
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holds with probability at least 1−O(1/n). Since the initial estimator output by first

stage is normalized, i.e., ‖β(0)
k ‖2 = ‖β∗k‖2 = 1, by triangle inequality we have∥∥∥ 3

√
ηkβ

(0)
k − 3

√
η∗kβ

∗
k

∥∥∥
2
≤

∥∥∥ 3
√
ηkβ

(0)
k − 3

√
η∗kβ

(0)
k + 3

√
η∗kβ

(0)
k − 3

√
η∗kβ

∗
k

∥∥∥
2

≤ | 3√ηk − 3
√
η∗k|+ 3

√
η∗k

∥∥∥β(0)
k − β

∗
k

∥∥∥
2
.

Note that ∣∣∣ 3
√
ηk − 3

√
η∗k

∣∣∣ ≤ ε0

( 3
√
ηk)2 + 3

√
ηkη∗k + ( 3

√
η∗k)

2
≤ ε0

3
√
η∗k.

This implies ∥∥∥ 3
√
ηkβ

(0)
k − 3

√
η∗kβ

∗
k

∥∥∥
2
≤ 2 3
√
η∗kε0,

with probability at least 1−O(1/n). Taking the summation over k ∈ [K], we have

K∑
k=1

∥∥∥ 3
√
ηkβ

(0)
k − 3

√
η∗kβ

∗
k

∥∥∥2

2
≤

K∑
k=1

4η
∗2

3
k ε2

0 ≤ 4Kη
∗2

3
maxε

2
0,

with probability at least 1−O(K/n), which means (3.9.5) holds for t = 0.

Suppose (3.9.5) holds at the iteration step t− 1, which implies

K∑
k=1

∥∥∥ 3
√
ηkβ

(t)
k − 3

√
η∗kβ

∗
k

∥∥∥2

2

≤
(

1− 32µK−2R−
8
3

) K∑
k=1

∥∥∥ 3
√
ηkβ

(t−1)
k − 3

√
η∗kβ

∗
k

∥∥∥2

2
+ µ2C0K

−2R−
8
3η
∗4

3
min

σ2s log p

n

≤4Kη
∗2

3
maxε

2
0 − µ

(
128KR−

8
3η
∗2

3
maxε

2
0 − 2C0K

−2R−
8
3η
∗4

3
min

σ2s log p

n

)
.

Since Condition 5 automatically implies

n

s log p
≥ C0σ

2R−
2
3η
∗2

3
minK

64ε2
0

,

for a sufficiently large C0, we can obtain

K∑
k=1

∥∥∥ 3
√
ηkβ

(t)
k − 3

√
η∗kβ

∗
k

∥∥∥2

2
≤ 4Kη

∗2
3

maxε
2
0.

By induction, (3.9.5) holds at each iteration step.
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Now we are able to use Lemma 11 recursively to complete the proof. Repeatedly

using Lemma 11, we have for t = 1, 2, . . . ,

K∑
k=1

∥∥∥ 3
√
ηkβ

(t+1)
k − 3

√
η∗kβ

∗
k

∥∥∥2

2

≤
(

1− 32µK−2R−
8
3

)t K∑
k=1

∥∥∥ 3
√
ηkβ

(0)
k − 3

√
η∗kβ

∗
k

∥∥∥2

2
+
C0η

∗−4
3

min

16

σ2s log p

n
,

with probability at least 1−O(tKs/n). This concludes the first part of Theorem 3.

When the total number of iterations is no smaller than

T ∗ =
log(C3η

∗−4/3
min σ2s log p)− log(64η

∗2/3
maxKε0n)

log(1− 32µK−2R−8/3)
,

the statistical error will dominate the whole error bound in the sense that

K∑
k=1

∥∥∥ 3
√
ηkβ

(T ∗)
k − 3

√
η∗kβ

∗
k

∥∥∥2

2
≤ C3η

∗−4
3

min

8

σ2s log p

n
, (3.9.7)

with probability at least 1−O(T ∗Ks/n).

The next lemma shows that the Frobenius norm distance between two tensors can

be bounded by the distances between each factors in their CP decomposition. The

proof of this lemma is provided in Section 3.9.11.

Lemma 12 . Suppose T and T ∗ have CP-decomposition T =
∑K

k=1 ηkβk ◦ βk ◦ βk
and T ∗ =

∑K
k=1 η

∗
kβ
∗
k ◦ β∗k ◦ β∗k. If |ηk − η∗k| ≤ c, then∥∥∥T −T ∗
∥∥∥2

F
≤ 9(1 + c)

( K∑
k=1

∥∥∥ 3
√
ηkβk − 3

√
η∗kβ

∗
k

∥∥∥2

2

)( K∑
k=1

( 3
√
η∗k)

4
)

Denote T̂ =
∑K

k=1 ηkβ
(T ∗)
k ◦ β(T ∗)

k ◦ β(T ∗)
k . Combing (3.9.7) and Lemma 12, we

have ∥∥∥T̂ −T ∗
∥∥∥2

F
≤ 9(1 + ε0)

C3η
∗−4

3
min

8

σ2s log p

n
Kη

∗4
3

max,

=
9C3R

4

σ2Ks log p

n
,

with probability at least 1 − O(TKs/n). By setting C1 = 9C2/4, we complete the

proof of Theorem 3. �
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3.9.3 Proofs of Theorems 6 and 8: Minimax Lower Bounds

We first consider the proof for Theorem 8 on non-symmetric tensor estimation.

Without loss of generality we assume p = max{p1, p2, p3}. We uniformly randomly

generate {Ω(k,m)}m=1,...,M
k=1,...,K

as MK subsets of {1, . . . , p} with cardinality of s. Here

M > 0 is a large integer to be specified later. Then we construct {β(k,m)}m=1,...,M
k=1,...,K

⊆ Rp

as

β
(k,m)
j =


√
λ, if j ∈ Ω(k,m);

0, if j /∈ Ω(k,m).

λ > 0 will also be specified a little while later. Clearly, ‖β(k,m1) − β(k,m2)‖2
2 ≤ 2sλ

for any 1 ≤ k ≤ K, 1 ≤ m1,m2 ≤ M . Additionally, |Ω(k,m1) ∩ Ω(k,m2)| satisfies the

hyper-geometric distribution: P
(∣∣Ω(k,m1) ∩ Ω(k,m2)

∣∣ = t
)

=
(st)(

p−s
s−t)

(ps)
.

Let w(k,m1,m2) =
∣∣Ω(k,m1) ∩ Ω(k,m2)

∣∣, then for any s/2 ≤ t ≤ s,

P
(
w(k,m1,m2) = t

)
=

s···(s−t+1)
t!

· (p−s)···(p−2s+t+1)
(s−t)!

p···(p−s+1)
s!

≤
(
s

t

)
·
(

s

p− s+ 1

)t
≤2s

(
s

p− s+ 1

)t
≤
(

4s

p− s+ 1

)t
.

Thus, if η > 0, the moment generating function of w(k,m1,m2) − s
2

satisfies

E exp
(
η
(
w(k,m1,m2) − s

2

))
≤ exp(0) · P

(
w(k,m1,m2) ≤ s

2

)
+

s∑
t=bs/2c+1

exp
(
η
(
t− s

2

))
· P
(
w(k,m1,m2) = t

)
≤1 +

s∑
t=bs/2c+1

(4s/(p− s+ 1))t exp (η(t− s/2))

≤1 + (4s/(p− s+ 1))s/2
1

1− 4s/(p− s+ 1) · eη
.
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By setting η = log((p− s+ 1)/(8s)), we have

P

(
K∑
k=1

w(k,m1,m2) ≥ 3sK

4

)
= P

(
K∑
k=1

w(k,m1,m2) − sK

2
≥ sK

4

)

≤
E exp

(
η(
∑K

k=1w
(k,m1,m2) − sK

2
)
)

exp
(
η · sK

4

) =

∏K
k=1 E exp

(
η(w(k,m1,m2) − s

2
)
)

exp(η · sK
4

)

≤
(
1 + (4s/(p− s+ 1))s/2 · 2

)K
exp

(
−sK

4
log

(
p− s+ 1

8s

))
≤ exp (−c0sK log(p/s))

for some small uniform constant c0 > 0.

Next we choose M = bexp(c0/2 · sK log(p/s))c. Note that

‖β(k,m1) − β(k,m2)‖2
2 = λ ·

(∣∣Ω(k,m1) \ Ω(k,m2)
∣∣+
∣∣Ω(k,m2) \ Ω(k,m1)

∣∣)
=λ
(∣∣Ω(k,m1)

∣∣+
∣∣Ω(k,m2)

∣∣− 2
∣∣Ω(k,m1) ∩ Ω(k,m2)

∣∣)
=2λ

(
s−

∣∣Ω(k,m1) ∩ Ω(k,m2)
∣∣) ,

then we further have

P

(
K∑
k=1

‖β(k,m1) − β(k,m2)‖2
2 ≥

sKλ

2
,∀1 ≤ m1 < m2 ≤M

)

=P

(
K∑
k=1

w(k,m1,m2) ≤ 3K

4
,∀1 ≤ m1, < m2 ≤M

)

≥1− M(M − 1)

2
exp (−c0sK log(p/s))

>1−M2 exp (−c0sK log(p/s)) ≥ 0,

which means there are positive probability that
{
β(k,m)

}
k=1,...,K
m=1,...,M

satisfy

sKλ

2
≤ min

1≤m1<m2≤M

K∑
k=1

∥∥β(k,m1) − β(k,m2)
∥∥2

2

≤ max
1≤m1<m2≤M

K∑
k=1

∥∥β(k,m1) − β(k,m2)
∥∥2

2
≤ 2sKλ.

(3.9.8)

For the rest of the proof, we fix
{
β(k,m)

}
k=1,...,K
m=1,...,M

to be the set of vectors satisfying

(3.9.8).
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Next, recall the canonical basis ek = (0, . . . ,

k-th︷︸︸︷
1 , 0, · · · , 0) ∈ Rp. Define

T (m) =
K∑
k=1

β(k,m) ◦ ek ◦ ek, 1 ≤ m ≤M.

For each tensor T (m) and n i.i.d. Gaussian sketches ui,vi,wi ∈ Rp, we denote the

response

y(m) =
{
y

(m)
i

}n
i=1

, y
(m)
i = 〈ui ◦ vi ◦wi,T

(m)〉+ εi,

where εi
iid∼ N(0, σ2), i = 1, . . . , n. Clearly,

(
y(m),u,v,w

)
follows a joint distribution,

which may vary based on different values of m.

In this step, we analyze the Kullback-Leibler divergence between different distri-

bution pairs:

DKL

(
(y(m1),u,v,w), (y(m2),u,v,w)

)
:= E(y(m1),u,v,w)

p(y(m1),u,v,w)

p(y(m2),u,v,w)
.

Note that conditioning on fixed values of u,v,w,

y
(m)
i ∼ N

(
K∑
k=1

(β(k,m)>ui) · (e(k)>vi) · (e(k)>wi), σ
2

)
.

By the KL-divergence formula for Gaussian distribution,

E(y(m1),u,v,w)

(
p(y(m1),u,v,w)

p(y(m2),u,v,w)

∣∣∣u,v,w)
=

1

2

n∑
i=1

(
K∑
k=1

((
β(k,m1) − β(k,m2)

)>
ui

) (
e(k)>vi

) (
e(k)>wi

))2

σ−2.

Therefore, for any m1 6= m2,

DKL

(
(y(m1),u,v,w), (y(m2),u,v,w)

)
=Eu,v,w

1

2

n∑
i=1

(
K∑
k=1

(β(k,m1) − β(k,m2))>ui)(e
(k)>vi)(e

(k)>wi)

)2

σ−2

=
σ−2

2

n∑
i=1

K∑
k=1

Eu((β(k,m1) − β(k,m2))>ui)
2Ev(e(k)>vi)

2Ew(e(k)>wi)
2

=
nσ−2

2

K∑
k=1

‖β(k,m1) − β(k,m2)‖2
2 ≤ σ−2nKsλ.



117

Meanwhile, for any 1 ≤ m1 < m2 ≤M ,

‖T (m1) −T (m2)‖F =

∥∥∥∥∥
K∑
k=1

(β(k,m1) − β(k,m2)) ◦ e(k) ◦ e(k)

∥∥∥∥∥
F

=

√√√√ K∑
k=1

‖β(k,m1) − β(k,m2)‖2
2

(3.9.8)

≥
√
sKλ

2
.

By generalized Fano’s Lemma (see, e.g., (99)),

inf
T̂

sup
T ∈F

E‖T̂ −T ‖F ≥
√
sKλ

2

(
1− σ−2nKsλ+ log 2

logM

)
.

Finally we set λ = cσ2

n
log(p/s) for some small constant c > 0, then

inf
T̂

sup
T ∈F

E‖T̂ −T ‖2
F ≥

(
inf
T̂

sup
T ∈F

E‖T̂ −T ‖F
)2

≥ cσ2sK log(p/s)

n
.

which has finished the proof of Theorem 8.

For the proof for Theorem 6, without loss of generality we assume K is a multiple

of 3. We first partition {1, . . . , p} into two subintervals: I1 = {1, . . . , p−K/3}, I2 =

{p − K/3 + 1, . . . , p}, randomly generate {Ω(k,m)}m=1,...,M
k=1,...,K/3

as (MK/3) subsets of

{1, . . . , p−K/3}, and construct {β(k,m)}m=1,...,M
k=1,...,K

⊆ Rp−K/3 as

β(k,m) =


√
λ, if j /∈ Ω(k,m);

0, if j /∈ Ω(k,m).

With M = exp(csK log(p/s)) and similar techniques as previous proof, one can show

there exists positive possibility that

sKλ

6
≤ min

1≤m1<m2≤M

K/3∑
k=1

‖β(k,m1) − β(k,m2)‖2
2

≤ max
1≤m1<m2≤M

K/3∑
k=1

‖β(k,m1) − β(k,m2)‖2
2 ≤

2sK

3
λ.

We then construct the following candidate symmetric tensors by blockwise design,

T (m) ∈ Rp×p×p,



T (m)
[I1,I2,I2] =

∑K/3
k=1 β

(k,m) ◦ e(k) ◦ e(k),

T (m)
[I2,I1,I2] =

∑K/3
k=1 e

(k) ◦ β(k,m) ◦ e(k),

T (m)
[I2,I2,I1] =

∑K/3
k=1 e

(k) ◦ e(k) ◦ β(k,m),

T (m)
[I1,I1,I1], T

(m)
[I1,I1,I2], T

(m)
[I1,I2,I1], T

(m)
[I2,I1,I1], T

(m)
[I2,I2,I2] are all zeros.
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Then we can see for any u ∈ Rp,

〈T (m),u ◦ u ◦ u〉 = 3

K/3∑
k=1

(
β(k,m)>uI1

)
·
(
e(k)>uI2

)2
.

The rest of the proof essentially follows from the proof of Theorem 8. �

3.9.4 Proof of Theorem 9: High-order Stein’s Lemma

The proof of this theorem follows from the one of Theorem 6 in (90). For the sake

of completeness, we restate the detail here. Applying the recursion representation of

score function (3.8.2), we have

E
[
G(x)S3(x)

]
= E

[
G(x)

(
− S2(x) ◦ ∇x log p(x)−∇xS2(x)

)]
= −E

[
G(x)S2(x) ◦ ∇x log p(x)

]
− E

[
G(x)∇xS2(x)

)]
.

Then, we apply the first-order Stein’s lemma (see Lemma 26) on function G(x)S2(x)

and obtain

E
[
G(x)S3(x)

]
= E

[
∇x
(
G(x)S2(x)

)]
− E

[
G(x)∇xS2(x)

)]
= E

[
∇xG(x)S2(x) +∇xS2(x)G(x)

]
− E

[
G(x)∇xS2(x)

)]
= E

[
∇xG(x)S2(x)

]
.

Repeating the above argument two more times, we reach the conclusion. �

In this subsection, we present the detail proofs of moment calculation, including

non-symmetric case, symmetric case, and interaction model.
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3.9.5 Proof of Lemma 3

By the definition of {yi} in (3.5.1) & (3.5.2), we have

E
( 1

n

n∑
i=1

yiui ◦ vi ◦wi

)
= E

( 1

n

n∑
i=1

εiui ◦ vi ◦wi

)
+ E

( 1

n

n∑
i=1

K∑
k=1

η∗k(β
∗>
1k ui)(β

∗>
2k vi)(β

∗>
3k wi)ui ◦ vi ◦wi

)
.

(3.9.9)

First, we observe E(εiui ◦ vi ◦ wi) = 0 due to the independence between εi and

{ui,vi,wi}. Then, we consider a single component from a single observation

M = E((β∗>1k ui)(β
∗>
2k vi)(β

∗>
3k wi)ui ◦ vi ◦wi), i ∈ [n], k ∈ [K].

For notation simplicity, we drop the subscript i for i-th observation and k for k-th

component such that

M = E
(

(β∗>1 u)(β∗>2 v)(β∗>3 w)u ◦ v ◦w
)
∈ Rp1×p2×p3 . (3.9.10)

Each entry of M can be calculated as follows

Mijk = E
(

(β∗>1 u)(β∗>2 v)(β∗>3 w)uivjwk

)
= E

(
(β∗1iui +

∑
m6=i

β∗1mum)ui

)
E
(

(β∗2jui +
∑
m 6=j

β∗2mvm)vj

)
×E
(

(β∗3kwk +
∑
m6=k

β∗3mwm)wk

)
= β∗1iβ

∗
2jβ
∗
3k,

which implies M = β1 ◦ β2 ◦ β3. Combining with n observations and K components,

we can obtain

E
(
T
)

=
1

n

n∑
i=1

K∑
k=1

η∗kβ1k ◦ β2k ◦ β3k.

This finished our proof. �
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3.9.6 Proof of Lemma 4

In this subsection, we provide an alternative and more direct proof for Lemma 4.

We consider a similar single component of (3.9.10) but with a symmetric structure,

namely, Ms = E
(

(β∗>x)3x ◦ x ◦ x
)

. Based on the symmetry of both underlying

tensor and sketchings, we will verify the following three cases:

• When i = j = k, then

Msiii = E
(
β∗i xi +

∑
m 6=i

β∗mxm

)3

x3
i

= E
(
β∗3i x

3
i + 3β∗2i x

2
i

(∑
m6=i

β∗mxm
)

+3β∗i xi
(∑
m6=i

β∗mxm
)2

+
(∑
m6=i

β∗mxm
)3
)
x3
i

= 15β∗3i + 9β∗i
∑
m 6=i

β∗2m = 9β∗i + 6β∗3i .

The last equation is due to ‖β∗‖2 = 1.

• When i 6= j 6= k, then

Msijk = E
(
β∗i xi + β∗jxj + β∗kxk +

∑
m6=i,j,k

β∗mxm

)3

xixjxk

= E
(
β∗i xi + β∗jxj + β∗kxk

)3
xixjxk

= 6β∗i β
∗
jβ
∗
k .

• When i = j 6= k, then

Msiik = E
(
β∗i xi + β∗kxk +

∑
m 6=i,k

β∗mxm

)3

x2
ixk

= 9β∗2i β
∗
k + 3β∗3k + 3β∗k

( ∑
m6=i,k

β∗2m
)

= 9β∗2i β
∗
k + 3β∗k

(∑
m 6=i

β∗2m
)

= 3β∗k + 6β∗2i β
∗
k .
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Therefore, it is sufficient to calculate Ms by

Ms =3
K∑
k=1

η∗k

( p∑
m=1

β∗k ◦ em ◦ em + em ◦ β∗k ◦ em + em ◦ em ◦ β∗k
)

+ 6
K∑
k=1

η∗kβ
∗
k ◦ β∗k ◦ β∗k.

The first term is the bias term due to correlations among symmetric sketchings.

Denote M1 = 1
n

∑n
i=1 yixi and note that E

(
1
n

∑n
i=1 yixi

)
= 3

∑K
k=1 η

∗
kβ
∗
k. Therefore,

the empirical first-order moment M1 could be used to remove the bias term as follows

E
(
Ms −

p∑
m=1

(
M1 ◦ em ◦ em + em ◦M1 ◦ em + em ◦ em ◦M1

))
= 6

K∑
k=1

η∗kβ
∗
k ◦ β∗k ◦ β∗k.

This finishes our proof. �

3.9.7 Proof of Lemma 5

As before, consider a single component first. For notation simplicity, we drop the

subscript l for l-th observation and k for k-th component. Since each component is

normalized, the entry-wise expectation of (β>x)3x ◦ x ◦ x can be calculated as[
E(β>x)3x ◦ x ◦ x

]
0,0,0

= 3β0 − 2β3
0[

E(β>x)3x ◦ x ◦ x
]

0,0,i
= 3βi[

E(β>x)3x ◦ x ◦ x
]

0,i,i
= 6β0β

2
i + 3β0[

E(β>x)3x ◦ x ◦ x
]

0,i,j
= 6β0βiβj[

E(β>x)3x ◦ x ◦ x
]
i,i,i

= 6β3
i + 9βi[

E(β>x)3x ◦ x ◦ x
]
i,i,j

= 6β2
i βj + 3βj[

E(β>x)3x ◦ x ◦ x
]
i,j,k

= 6βiβjβk.
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Due to the symmetric structure and non-randomness of first coordinate, there are bias

appearing for each entry. For i, j, k 6= 0, we could use
∑p

m=1(a ◦ em ◦ em + em ◦ a ◦

em + em ◦ em ◦ a) to remove the bias as shown in the previous proof of Lemma 4. For

the subscript involving 0, the following two calculations work for removing the bias,

E
(1

3
Ts −

1

6
(

p∑
k=1

Ts,[k,k,i] − (p+ 1)ai)
)

= β2
0βi.

E
( 1

2p− 2
(

p∑
k=1

Ts[0,k,k] − (p+ 2)Ts[0,0,0])
)

= β3
0 .

This ends the proof. �

3.9.8 Proof of Lemma 6

Without loss of generality, we assume ‖Xi‖ψα = 1 and EXi = 0 throughout this

proof. Let β = (log 2)1/α and Zi = (|Xi| − β)+, where (x)+ = x if x ≥ 0 and (x)+ = 0

if else. For notation simplicity, we define ‖X‖p = (E|X|p)1/p for a random variable

X. The following step is to estimate the moment of linear combinations of variables

{Xi}ni=1.

According to the symmetrization inequality (e.g., Proposition 6.3 of (100)), we

have ∥∥∥ n∑
i=1

aiXi

∥∥∥
p
≤ 2
∥∥∥ n∑
i=1

aiεiXi

∥∥∥
p

= 2
∥∥∥ n∑
i=1

aiεi|Xi|
∥∥∥
p
, (3.9.11)

where {εi}ni=1 are independent Rademacher random variables and we notice that

εiXi and εi|Xi| are identically distributed. Moreover, if |Xi| ≥ β, the definition of

Zi implies that |Xi| = Zi + β. And if |Xi| < β, we have Zi = 0. Thus, we have

|Xi| ≤ Zi + β at any time and it leads to

2
∥∥∥ n∑
i=1

aiεi|Xi|
∥∥∥
p
≤ 2

∥∥∥ n∑
i=1

aiεi(β + Zi)
∥∥∥
p
. (3.9.12)

By triangle inequality,

2
∥∥∥ n∑
i=1

aiεi(β + Zi)
∥∥∥
p
≤ 2
∥∥∥ n∑
i=1

aiεiZi

∥∥∥
p

+ 2
∥∥∥ n∑
i=1

aiεiβ
∥∥∥
p
. (3.9.13)
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Next, we will bound the second term of the RHS of (3.9.13). In particular, we will

utilize Khinchin-Kahane inequality, whose formal statement is included in Lemma 27

for the sake of completeness. From Lemma 27 we have∥∥∥ n∑
i=1

aiεiβ
∥∥∥
p
≤

(p− 1

2− 1

)1/2∥∥∥ n∑
i=1

aiεiβ
∥∥∥

2

≤ β
√
p
∥∥∥ n∑
i=1

aiεi

∥∥∥
2
. (3.9.14)

Since {εi}ni=1 are independent Rademacher random variables, some simple calculations

implies (
E
( n∑
i=1

εiai

)2)1/2

=
(
E
( n∑
i=1

ε2
i a

2
i + 2

∑
1≤i<j≤n

εiεjaiaj

))1/2

=
( n∑
i=1

a2
iEε2

i + 2
∑

1≤i<j≤n

aiajEεiEεj
)1/2

=
( n∑
i=1

a2
i

)1/2

= ‖a‖2. (3.9.15)

Combining inequalities (3.9.12)-(3.9.15),

2
∥∥∥ n∑
i=1

aiεi|Xi|
∥∥∥
p
≤ 2
∥∥∥ n∑
i=1

aiεiZi

∥∥∥
p

+ 2β
√
p‖a‖2. (3.9.16)

Let {Yi}ni=1 are independent symmetric random variables satisfying P(|Yi| ≥ t) =

exp(−tα) for all t ≥ 0. Then we have

P(Zi ≥ t) ≤P(|Xi| ≥ t+ β) = P (exp(|Xi|α) ≥ exp((t+ β)α))

≤(E|Xi|α) · exp(−(t+ β)α) ≤ 2 exp(−(t+ β)α)

≤2 exp(−tα − βα) = P(|Yi| ≥ t),

which implies ∥∥∥ n∑
i=1

aiεiZi

∥∥∥
p
≤
∥∥∥ n∑
i=1

aiεiYi

∥∥∥
p

=
∥∥∥ n∑
i=1

aiYi

∥∥∥
p
, (3.9.17)

since εiYi and Yi have the same distribution due to symmetry. Combining (3.9.16)

and (3.9.17) together, we reach∥∥∥ n∑
i=1

aiXi

∥∥∥
p
≤ 2β

√
p‖a‖2 + 2

∥∥∥ n∑
i=1

aiYi

∥∥∥
p
. (3.9.18)
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For 0 < α < 1, it follows Lemma 25 that∥∥∥ n∑
i=1

aiYi

∥∥∥
p
≤ C1(α)(

√
p‖a‖2 + p1/α‖a‖∞), (3.9.19)

where C1(α) is some absolute constant only depending on α.

For α ≥ 1, we will combine Lemma 24 and the method of the integration by

parts to pass from tail bound result to moment bound result. Recall that for every

non-negative random variable X, integration by parts yields the identity

EX =

∫ ∞
0

P(X ≥ t)dt.

Applying this to X = |
∑n

i=1 aiYi|p and changing the variable t = tp, then we have

E|
n∑
i=1

aiYi|p =

∫ ∞
0

P
(
|

n∑
i=1

aiYi| ≥ t
)
ptp−1dt

≤
∫ ∞

0

2 exp
(
− cmin

( t2

‖a‖2
2

,
tα

‖a‖αα∗

))
ptp−1dt, (3.9.20)

where the inequality is from Lemma 24 for all p ≥ 2 and 1/α + 1/α∗ = 1. In this

following, we bound the integral in three steps:

1. If t2

‖a‖22
≤ tα

‖a‖α
α∗

, (3.9.20) reduces to

E|
n∑
i=1

aiYi|p ≤ 2p

∫ ∞
0

exp
(
− c t2

‖a‖2
2

))
tp−1dt.

Letting t′ = ct2/‖a‖2
2, we have

2p

∫ ∞
0

exp
(
− c t2

‖a‖2
2

))
tp−1dt =

p‖a‖p2
cp/2

∫ ∞
0

e−t
′
t′p/2−1dt′

=
p‖a‖p2
cp/2

Γ(
p

2
) ≤ p‖a‖p2

cp/2
(
p

2
)p/2,

where the second equation is from the density of Gamma random variable. Thus,

(
E|

n∑
i=1

aiYi|p
)1
p ≤ p1/p

(2c)1/2

√
p‖a‖2 ≤

√
2√
c

√
p‖a‖2. (3.9.21)
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2. If t2

‖a‖22
> tα

‖a‖α
α∗

, (3.9.20) reduces to

E|
n∑
i=1

aiYi|p ≤ 2p

∫ ∞
0

exp
(
− c tα

‖a‖αα∗

))
tp−1dt.

Letting t′ = ctα/‖a‖αα∗ , we have

2p

∫ ∞
0

exp
(
− c tα

‖a‖αα∗

))
tp−1dt =

2p‖a‖pα∗
αcp/α

∫ ∞
0

e−t
′
t′p/α−1dt′

=
2

α

p‖a‖pα∗
cp/α

Γ(
p

α
) ≤ 2

α

p‖a‖pα∗
cp/α

(
p

α
)p/α.

Thus,

(
E|

n∑
i=1

aiYi|p
)1
p ≤ 2p1/p

(cα)1/α
p1/α‖a‖α∗ ≤

4

(cα)1/α
p1/α‖a‖α∗ . (3.9.22)

3. Overall, we have the following by combining (3.9.21) and (3.9.22),

(
E|

n∑
i=1

aiYi|p
)1
p ≤ max

(√2

c
,

4

(cα)1/α

)(√
p‖a‖2 + p1/α‖a‖α∗

)
.

After denoting C2(α) = max
(√

2
c
, 4

(cα)1/α

)
, we reach

∥∥∥ n∑
i=1

aiYi

∥∥∥
p
≤ C2(α)

(√
p‖a‖2 + p1/α‖a‖α∗

)
. (3.9.23)

Since 0 < β < 1, the conclusion can be reached by combining (3.9.18),(3.9.19) and

(3.9.23). �

3.9.9 Proof of Lemma 9

Firstly, let us consider the non-symmetric perturbation error analysis. According

to Lemma 3, the exact form of E = T − E(T ) is given by

E =
1

n

n∑
i=1

yiui ◦ vi ◦wi −
K∑
k=1

η∗kβ
∗
1k ◦ β∗2k ◦ β∗3k.
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We decompose it by a concentration term (E1) and a noise term (E2) as follows,

E =
1

n

n∑
i=1

〈ui ◦ vi ◦wi,

K∑
k=1

η∗kβ
∗
1k ◦ β∗2k ◦ β∗3k〉ui ◦ vi ◦wi −

K∑
k=1

η∗kβ
∗
1k ◦ β∗2k ◦ β∗3k︸ ︷︷ ︸

E1

+
1

n

n∑
i=1

εiui ◦ vi ◦wi︸ ︷︷ ︸
E2

.

Bounding E1: For k-th componet of E1, we denote

E1k =
1

n

n∑
i=1

〈ui ◦ vi ◦wi,β
∗
1k ◦ β∗2k ◦ β∗3k〉ui ◦ vi ◦wi − β∗1k ◦ β∗2k ◦ β∗3k.

By using Lemma 2 and s ≤ d ≤ Cs, it suffices to have for some absolute constant C11,

‖E1k‖s+d ≤ C11δn,p,s, where δn,p,s = (log n)3
(√s3 log3(p/s)

n2
+

√
s log(p/s)

n

)
,

with probability at least 1− 10/n3, where ‖ · ‖s+d is the sparse tensor spectral norm

defined in (3.1.3). Equipped with the triangle inequality, the sparse tensor spectral

norm for E1 can be bounded by

‖E1‖s+d ≤ C11δn,p,s

K∑
k=1

η∗k, (3.9.24)

with probability at least 1− 10K/n3.

Bounding E2: Note that the random noise {εi}ni=1 is independent of sketching vector

{ui,vi,wi}. For fixed {εi}ni=1, applying Lemma 20, we have for some absolute constant

C12 ∥∥∥ 1

n

n∑
i=1

εiui ◦ vi ◦wi

∥∥∥
s+d
≤ C12‖ε‖∞C11δn,p,s,

with probability at least 1− 1/p. According to Lemma 23, we have

P
(
‖E2‖s+d ≥ C12σ log nδn,p,s

)
≤ 1

p
+

3

n
≤ 4

n
. (3.9.25)

Bounding E: Putting (3.9.24) and (3.9.25) together, we obtain

‖E‖s+d ≤
(
C11

K∑
k=1

η∗k + C12σ log n
)
δn,p,s,
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with probability at least 1− 5/n. Under Condition 9, we have

‖E‖s+d ≤ 2C1

K∑
k=1

η∗kδn,p,s log n,

with probability at least 1− 5/n.

The perturbation error analysis for the symmetric tensor estimation model and

the interaction effect model is similar since the empirical-first-order moment converges

much faster than the empirical-third-order moment. So we omit the detailed proof

here. �

3.9.10 Proof of Lemma 11

Lemma 11 quantifies one step update for thresholded gradient update. The proof

consists of two parts.

First, we evaluate an oracle estimator {β̃(t+1)
k }Kk=1 with known support information,

which is defined as

β̃
(t+1)
k = ϕµ

φ
h(β

(t)
k )

(
β

(t)
k −

µ

φ
∇kL(β

(t)
k )F (t)

)
. (3.9.26)

Here,

• h(β
(t)
k ) is the k-th component of h(B(t)) defined in (3.2.2).

• ∇BL(B) = (∇1L(β1), · · · ,∇KL(βK)).

• F (t) = ∪Kk=1F
(t)
k , where F

(t)
k = supp(β∗k) ∪ supp(β

(t)
k ).

• For a vector x ∈ Rp and a subset A ⊂ {1, . . . , p}, we denote xA ∈ Rp by keeping

the coordinates of x with indices in A unchanged, while changing all other

components to zero.

We will show that β̃
(t+1)
k converges as a geometric rate for optimization error and an

optimal rate for statistical error. See Lemma 13 for details.
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Second, we aim to prove that β̃
(t+1)
k and β

(t+1)
k are almost equivalent with high

probability. See Lemma 14 for details. For simplicity, we drop the superscript of

β
(t)
k , F

(t) in the following proof, and denote β̃
(t+1)
k , β

(t+1)
k and F (t+1) by β̃+

k , β̃+
k and

F+, respectively.

Lemma 13 . Suppose Conditions 1-5 hold. Assume (3.9.5) is satisfied and |F | . Ks.

As long as the step size µ ≤ 32R−20/3/(3K[220 + 270K]2), we obtain the upper bound

for {β̃+
k },
K∑
k=1

∥∥∥ 3
√
ηkβ̃

+
k − 3

√
η∗kβ

∗
k

∥∥∥2

2
≤
(

1− 32µ
R−

8
3

K2

) K∑
k=1

∥∥∥ 3
√
ηkβk − 3

√
η∗kβ

∗
k

∥∥∥2

2

+ 2C3µ
2R−

8
3η
∗−4

3
min

σ2K−2s log p

n
,

(3.9.27)

with probability at least 1− (21K2 + 11K + 4Ks)/n.

The proof of Lemma 13 is postponed to the Section 3.9.12. Next lemma guarantees

that with high probability, {β+
k }Kk=1 is equivalent to the oracle update {β̃+

k }Kk=1 with

high probability.

Lemma 14 . Recall that the truncation level h(βk) is defined as

h(βk) =

√
4 log np

n

√√√√ n∑
i=1

( K∑
k=1

ηk(x>i βk)
3 − yi

)2(
ηk(x>i βk)

2
)2

. (3.9.28)

If |F | . Ks, we have β+
k = β̃+

k for any k ∈ [K] with probability at least 1− (n2p)−1

and F+ ⊂ F .

The proof of Lemma 14 is postponed to the Section 3.9.12. By using Lemma 14

and induction, we have

F (t+1) ⊂ · · ·F (1) ⊂ F (0) = ∪Kk=1supp(β∗k) ∪ supp(β
(0)
k ).

It implies for every t, we have |F (t)| . Ks. Combining with Lemmas 13 and 14

together, we obtain with probability at least 1− (21K2 + 11K + 4Ks)/n,

K∑
k=1

∥∥∥ 3
√
ηkβ

+
k − 3

√
η∗kβ

∗
k

∥∥∥2

2
≤
(

1− 32µK−2R−
8
3

) K∑
k=1

∥∥∥ 3
√
ηkβk − 3

√
η∗kβ

∗
k

∥∥∥2

2

+ 2C3µ
2R−

8
3η
∗−4

3
min

σ2K−2s log p

n
,

(3.9.29)
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This ends the proof. �

3.9.11 Proof of Lemma 12

Based on the CP low-rank structure of true tensor parameter T ∗, we can explicitly

write down the distance between T and T ∗ under tensor Frobenius norm as follows∥∥∥T −T ∗
∥∥∥2

F
=
∑
i1,i2,i3

( K∑
k=1

ηkβki1βki2βki3 −
K∑
k=1

η∗kβ
∗
ki1
β∗ki2β

∗
ki3

)2

.

For notation simplicity, denote β̄k = 3
√
ηkβk, β̄

∗
k = 3

√
η∗kβ

∗
k. Then

∥∥∥T −T ∗
∥∥∥2

F
=
∑
i1,i2,i3

( K∑
k=1

β̄ki1 β̄ki2 β̄ki3 −
K∑
k=1

β̄∗ki1 β̄
∗
ki2
β̄∗ki3

)2

=
∑
i1,i2,i3

( K∑
k=1

(β̄ki1 − β̄∗ki1)β̄
∗
ki2
β̄∗ki3 +

K∑
k=1

β̄ki1(β̄ki2 − β̄∗ki2)β̄
∗
ki3

+
K∑
k=1

β̄ki1 β̄ki2(β̄ki3 − β̄∗ki3)
)2

= RHS.

Since (a+ b+ c)2 ≤ 3(a2 + b2 + c2), we have

RHS ≤3
∑
i1,i2,i3

[
(
K∑
k=1

(β̄ki1 − β̄∗ki1)β̄
∗
ki2
β̄∗ki3)

2 + (
K∑
k=1

β̄ki1(β̄ki2 − β̄∗ki2)β̄
∗
ki3

)2

+ (
K∑
k=1

β̄ki1 β̄ki2(β̄ki3 − β̄∗ki3))
2
]
.

Equipped with Cauchy-Schwarz inequality, RHS can be further bounded by

RHS ≤ 3
∑
i1,i2,i3

[ K∑
k=1

(β̄ki1 − β̄∗ki1)
2

K∑
k=1

β̄∗2ki2 β̄
∗2
ki3

+
K∑
k=1

(β̄ki2 − β̄∗ki2)
2

K∑
k=1

β̄2
ki1
β̄∗2ki3

+
K∑
k=1

(β̄ki3 − β̄∗ki3)
2

K∑
k=1

β̄2
ki2

β̄2
ki1

]
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At the same time, using ηk ≤ (1 + c)η∗k for k ∈ [K],∥∥∥T −T ∗
∥∥∥2

F
≤ 3

[ p∑
i1=1

K∑
k=1

(β̄ki1 − β̄∗ki1)
2(

p∑
i2=1

p∑
i3=1

K∑
k=1

β̄∗2ki2 β̄
∗2
ki3

)

+

p∑
i2=1

K∑
k=1

(β̄ki2 − β̄∗ki2)
2(

p∑
i1=1

p∑
i3=1

K∑
k=1

β̄2
ki1
β̄∗2ki3)

+

p∑
i3=1

K∑
k=1

(β̄ki3 − β̄∗ki3)
2(

p∑
i2=1

p∑
i1=1

K∑
k=1

β̄2
ki2
β̄2
ki1

)
]

= 3
( K∑
k=1

‖β̄k − β̄∗k‖2
2

)( K∑
k=1

( 3
√
η∗k)

4 +
K∑
k=1

( 3
√
η∗k)

2( 3
√
ηk)

2 +
K∑
k=1

( 3
√
ηk)

4
)

≤ 9(1 + c)
( K∑
k=1

‖β̄k − β̄∗k‖2
2

)( K∑
k=1

( 3
√
η∗k)

4
)
.

For the non-symmetric tensor estimation model, we have∥∥∥T −T ∗
∥∥∥2

F
=
∑
i1,i2,i3

( K∑
k=1

ηkβ1ki1β2ki2β3ki3 −
K∑
k=1

η∗kβ
∗
1ki1

β∗2ki2β
∗
3ki3

)2

.

Following the same strategy above, we obtain∥∥∥T −T ∗
∥∥∥2

F
≤3(1 + c)

( K∑
k=1

‖β̄1k − β̄∗1k‖2
2 +

K∑
k=1

‖β̄2k − β̄∗2k‖2
2

+
K∑
k=1

‖β̄3k − β̄∗3k‖2
2

)( K∑
k=1

( 3
√
η∗k)

4
)
.

This ends the proof. �

3.9.12 Proof of Lemma 13

First of all, let us state a lemma to illustrate the effect of weight φ.

Lemma 15 . Consider {yi}ni=1 come from either non-symmetric tensor estimation

model (3.5.1) or symmetric tensor estimation model (3.2.1). Suppose Conditions 3-5

hold. Then φ = 1
n

∑n
i=1 y

2
i is upper and lower bounded by

(16− 6Γ3 − 9Γ)(
K∑
k=1

η∗k)
2 ≤ 1

n

n∑
i=1

y2
i ≤ (16 + 6Γ3 + 9Γ)(

K∑
k=1

η∗k)
2,
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with probability at least 1− (K2 +K + 3)/n, where Γ is the incoherence parameter.

According to Lemma 15, 1
n

∑n
i=1 y

2
i approximates (

∑K
k=1 η

∗
k)

2 up to some constants

with high probability. Moreover, we know that from (3.9.5), maxk |ηk − η∗k| ≤ ε0 for

some small ε0. Based on those two facts described above, we replace ηk by η∗k and φ

by (
∑K

k=1 η
∗
k)

2 for the sake of completeness. Note that this change could only result in

some constant scale changes for final results. Similar simplification was used in matrix

recovery scenario (101). Therefore, we define the weighted estimator and weighted

true parameter as β̄k = 3
√
η∗kβk, β̄

∗
k = 3

√
η∗kβ

∗
k. Correspondingly, define the gradient

function ∇kL(β̄k) on F as

∇kL(β̄k)F =
6 3
√
η∗k
n

n∑
i=1

( K∑
k′=1

(x>iF β̄k′)
3 − yi

)
(x>iF β̄k)

2xiF ,

and its noiseless version as

∇kL̃(β̄k)F =
6 3
√
η∗k
n

n∑
i=1

( K∑
k′=1

(x>iF β̄k′)
3 −

K∑
k′=1

(x>iF β̄
∗
k′)

3
)

(x>iF β̄k)
2xiF . (3.9.30)

According to the definition of thresholding function (3.2.8), β̃+
k can be written as

β̃+
k = βk −

µ

φ
∇kL(β̄k)F +

µ

φ
h(β̄k)γk,

where γk ∈ Rp satisfies supp(γk) ⊂ F , ‖γk‖∞ ≤ 1 and h(β̄k) is defined as

h(β̄k) =

√
4 log(np)

n

√√√√ n∑
i=1

( K∑
k=1

(x>iF β̄k)
3 − yi

)2

η
∗2

3
k (x>iF β̄k)

2. (3.9.31)

Moreover, we denote zk = β̄k − β̄∗k. With a little abuse of notations, we also drop the

subscript F in this section for notation simplicities.
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We expand and decompose the sum of square error by three parts as follows:

K∑
k=1

∥∥∥ 3
√
η∗kβ̃

+
k − 3

√
η∗kβ

∗
k

∥∥∥2

2

=
K∑
k=1

∥∥∥zk − µ 3
√
η∗k

φ
∇kL(β̄k) +

µ 3
√
η∗k

φ
h(β̄k)γk

∥∥∥2

2

=
K∑
k=1

∥∥∥zk − µ 3
√
η∗k
φ
∇kL(β̄k)

∥∥∥2

2︸ ︷︷ ︸
A: gradient update effect

+
K∑
k=1

∥∥∥µ 3
√
η∗k

φ
h(β̄k)γk

∥∥∥2

2︸ ︷︷ ︸
B: threshoding effect

+
K∑
k=1

〈
zk − µ

3
√
η∗k
φ
∇kL(β̄k),

µ 3
√
ηk

φ
h(β̄k)γk

〉
︸ ︷︷ ︸

C: cross term

.

(3.9.32)

In the following proof, we will bound three parts sequentially.

Bounding gradient update effect In order to separate the optimization error

and statistical error, we use the noiseless gradient ∇kL̃(β̄k) as a bridge such that A

can be decomposed as

A =
K∑
k=1

‖zk‖2
2 − 2µ

K∑
k=1

〈 3
√
η∗k
φ
∇kL(β̄k), zk

〉
+ µ2

K∑
k=1

∥∥∥ 3
√
η∗k
φ
∇kL(β̄k)

∥∥∥2

2

≤
K∑
k=1

‖zk‖2
2 − 2µ

K∑
k=1

〈 3
√
η∗k
φ
∇kL̃(β̄k), zk

〉
︸ ︷︷ ︸

A1

+2µ2

K∑
k=1

∥∥∥ 3
√
η∗k
φ
∇kL̃(β̄k)

∥∥∥2

2︸ ︷︷ ︸
A2

+ 2µ2

K∑
k=1

∥∥∥ 3
√
η∗k
φ

(
∇kL̃(β̄k)−∇kL(β̄k)

)∥∥∥2

2︸ ︷︷ ︸
A3

+ 2µ
K∑
k=1

〈
zk,

3
√
η∗k
φ

(
∇kL̃(β̄k)−∇kL(β̄k)

)〉
︸ ︷︷ ︸

A4

,

(3.9.33)

where A1 and A2 quantify the optimization error, A3 quantifies the statistical error,

and A4 is a cross term which can be negligible comparing with the rate of the statistical

error. The lower bound for A1 and upper bound for A2 together coincide with the

verification of regularity conditions in the matrix recovery case (92).



133

Step One: Lower bound for A1. Plugging in φ = (
∑K

k=1 η
∗
k)

2, we have

K−2R−
2
3η
∗−4

3
max ≤

( 3
√
η∗k)

2

φ
=

( 3
√
η∗k)

2

(
∑K

k=1 η
∗
k)

2
≤ K−2R

2
3η
∗−4

3
min . (3.9.34)

According to the definition of noiseless gradient ∇kL̃(βk) and zk, A1 can be expanded

and decomposed sequentially by nine terms,

A1 ≥K−2R−
2
3η
∗−4

3
max

[ 6

n

n∑
i=1

( K∑
k′=1

3(x>i zk′)(x
>
i β̄k′)

2

K∑
k=1

(x>i zk)(x
>
i β̄
∗
k)

2
)
⇐ A11

+
6

n

n∑
i=1

( K∑
k′=1

3(x>i zk′)(x
>
i β̄k′)

2

K∑
k=1

2(x>i zk)
2(x>i β̄

∗
k)
)
⇐ A12

+
6

n

n∑
i=1

( K∑
k′=1

3(x>i zk′)(x
>
i β̄k′)

2

K∑
k=1

(x>i zk)
3
)
⇐ A13

+
6

n

n∑
i=1

( K∑
k′=1

3(x>i zk′)
2(x>i β̄k′)

K∑
k=1

(x>i zk)(x
>
i β̄
∗
k)

2
)
⇐ A14

+
6

n

n∑
i=1

( K∑
k′=1

3(x>i zk′)
2(x>i β̄k′)

K∑
k=1

2(x>i zk)
2(x>i β̄

∗
k)
)
⇐ A15

+
6

n

n∑
i=1

( K∑
k′=1

3(x>i zk′)
2(x>i β̄k′)

K∑
k=1

(x>i zk)
2(x>i β̄

∗
k)
)
⇐ A16

+
6

n

n∑
i=1

( K∑
k′=1

3(x>i zk′)
3

K∑
k=1

(x>i zk)(x
>
i β̄
∗
k)

2
)
⇐ A17

+
6

n

n∑
i=1

( K∑
k′=1

3(x>i zk′)
3

K∑
k=1

2(x>i zk)
2(x>i β̄

∗
k)
)
⇐ A18

+
6

n

n∑
i=1

( K∑
k′=1

3(x>i zk′)
3

K∑
k=1

(x>i zk)
3
)]
⇐ A19,

(3.9.35)

where A11 is the main term according to the order of β̄∗k, while A12 to A19 are remainder

terms. The proof of lower bound for A11 to A19 follows two steps:

1. Calculate and lower bound the expectation of each term through Lemma 3.12.1:

high-order Gaussian moment;
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2. Argue that the empirical version is concentrated around their expectation with

high probability through Lemma 1: high-order concentration inequality.

Bounding A11. Note that A11 involves the product of dependent Gaussian

vectors. This brings difficulties on both the calculation of expectations and the use

of concentration inequality. According to the high-order Gaussian moment results in

Lemma 3.12.1, the expectation of A11 can be calculated explicitly as

E(A11) = 36
K∑
k=1

K∑
k′=1

(β̄∗>k′ β̄
∗
k)

2(z>k′zk)⇐ I1

+ 72
K∑
k=1

K∑
k′=1

(β̄∗>k′ β̄
∗
k)(z

>
k′β̄
∗
k)(z

>
k β̄
∗
k′)⇐ I2

+ 108
K∑
k=1

K∑
k′=1

(β̄∗>k′ β̄
∗
k)(z

>
k′β̄
∗
k′)(z

>
k β̄
∗
k)⇐ I3

+ 54
K∑
k=1

K∑
k′=1

(β̄∗>k′ β̄
∗
k′)(β̄

∗>
k β̄

∗
k)(z

>
k′zk)⇐ I4.

(3.9.36)

Note that I1 to I4 involve the summation of K2 term. To use incoherence Condition

3, we isolate K terms with k = k′. Then, I1 to I4 could be lower bounded as

I1 ≥ 36η
∗4/3
min

[ K∑
k=1

‖zk‖2
2 − Γ2

( K∑
k=1

‖zk‖2

)2]
I2 ≥ 72η

∗4/3
min

[ K∑
k=1

(z>k β̄
∗
k)

2 − Γ
( K∑
k=1

‖zk‖2

)2]
I3 ≥ 108η

∗4/3
min

[ K∑
k=1

(z>k β̄
∗
k)

2 − Γ
( K∑
k=1

‖zk‖2

)2]
I4 ≥ 54η

∗4/3
min

∥∥∥ K∑
k=1

zk

∥∥∥2

2
≥ 0,

where Γ is the incoherence parameter. Putting the above four bounds together, they

jointly provide

E(A11) ≥ 36η
∗4/3
min

K∑
k=1

‖zk‖2
2 −

(
36η

∗4/3
min Γ2 + 180η

∗4/3
min Γ

)( K∑
k=1

‖zk‖2

)2

. (3.9.37)
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On the other hand, repeatedly using Lemma 1, we obtain that with probability at

least 1− 1/n,∣∣∣ 1
n

n∑
i=1

(
(x>i zk′)(x

>
i β̄
∗
k′)

2(x>i zk)(x
>
i β̄
∗
k)

2 − E(x>i zk′)(x
>
i β̄
∗
k′)

2(x>i zk)(x
>
i β̄
∗
k)

2
)∣∣∣

≤ C
(log n)3

√
n

( 3
√
η∗max)4‖zk′‖2‖zk‖2.

Taking the summation over k, k′ ∈ [K], it could further imply that for some absolute

constant C,

∣∣∣A11 − E(A11)
∣∣∣ ≤ 18C

(log n)3

√
n

( 3
√
η∗max)4

( K∑
k=1

‖zk‖2

)2

, (3.9.38)

with probability at least 1−K2/n. Combining (3.9.37) and (3.9.38), we obtain with

probability at least 1−K2/n,

K−2R−
2
3η
∗−4

3
max A11

≥
[
36K−2R−

8
3 −K−

3
2

(
216R−

8
3 Γ + 18C

(log n)3

√
n

)] K∑
k=1

‖zk‖2
2,

(3.9.39)

whereR = η∗max/η
∗
min. Here, we use the fact Γ ≤ 1 and (

∑K
k=1 ‖zk‖2)2 ≤ K(

∑K
k=1 ‖zk‖2

2).

Bounding A12 to A19: For remainder terms, we follow the same proof strategy.

According to Lemma 3.12.1, the expectation of A12 can be calculated as

E(A12) = 36
K∑
k=1

K∑
k′=1

(z>k β̄
∗>
k′ )2(z>k′β̄

∗
k)⇐ I1

+72
K∑
k=1

K∑
k′=1

(z>k β̄
∗
k′)(β̄

∗>
k′ β̄

∗
k)(z

>
k′zk)⇐ I2

+108
K∑
k=1

K∑
k′=1

(z>k β̄k′)(z
>
k′β̄
∗
k′)(z

>
k β̄
∗
k)⇐ I3

+54
K∑
k=1

K∑
k′=1

(β̄∗>k′ β̄
∗
k′)(z

>
k′β̄
∗
k)(z

>
k zk)⇐ I4.
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Let us analyze I1 first. Under (3.9.5), ‖zk‖2 ≤ ε0
3
√
η∗k, it suffices to show that

K∑
k=1

K∑
k′=1

(z>k β̄k′)
2(z>k′β̄

∗
k) ≥ −

K∑
k=1

K∑
k′=1

‖zk‖2
2‖β̄∗k′‖2

2‖z′k‖2‖β̄∗k‖2

≥ −η
∗4

3
maxε0

( K∑
k=1

‖zk‖2

)2

.

This immediately implies a lower bound for E(A12) after we bound similarly for I2, I3

and I4,

E(A12) ≥ −270η
∗4

3
maxε0

( K∑
k=1

‖zk‖2

)2

. (3.9.40)

By Lemma 1, we obtain for some absolute constant C,

K−2R−
2
3η
∗−4

3
max A12

≥K−2R−
2
3η
∗−4

3
max

[
E(A12)− 18Cη

∗4
3

maxε0

( K∑
k=1

‖zk‖2

)2 (log n)3

√
n

]
≥−K−1R−

2
3 ε0

(
270 + 18C

(log n)3

√
n

)( K∑
k=1

‖zk‖2
2

)
,

(3.9.41)

with probability at least 1−K2/n. The detail derivation is the same as in (3.9.39),

so we omit here.

Similarly, the lower bounds of A13 to A19 can be derived as follows

K−
1
2η
∗−4

3
max A14 ≥ −K

1
2 ε0

(
270 + 18C

(log n)3

√
n

)( K∑
k=1

‖zk‖2
2

)
K−

1
2η
∗−4

3
max A13, A15, A17 ≥ −K

1
2 ε2

0

(
270 + 18C

(log n)3

√
n

)( K∑
k=1

‖zk‖2
2

)
K−

1
2η
∗−4

3
max A16, A18 ≥ −K

1
2 ε3

0

(
270 + 18C

(log n)3

√
n

)( K∑
k=1

‖zk‖2
2

)
K−

1
2η
∗−4

3
max A19 ≥ −K

1
2 ε4

0

(
270 + 18C

(log n)3

√
n

)( K∑
k=1

‖zk‖2
2

)
.

(3.9.42)
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Putting (3.9.39), (3.9.41) and (3.9.42) together, we have with probability at least

1− 9K2/n,

A1 ≥
[
36K−2R−

8
3 −K−

3
2

(
2160R−

3
3 Γ + 18C

(log n)3

√
n

)
−8ε0K

−1R−
2
3

(
270 + 18C

(log n)3

√
n

)]( K∑
k=1

‖zk‖2
2

)
.

For the above bound,

• When the sample size satisfies n ≥ (18CK1/2R8/3(log n)3)2, we have

max
{

18K−
3
2C

(log n)3

√
n

, 8ε0K
−1R−

2
3 18C

(log n)3

√
n

}
≤ K−2R−

8
3 .

• When ε0 ≤ K−1R−2/2160, we have

8ε0K
−1R−

2
3 270 ≤ K−2R−

8
3 .

• When the incoherence parameter satisfies Γ ≤ K−1/2/216, we have

K−
3
2 2160R−

8
3 Γ ≤ K−2R−

8
3 .

Note that those above conditions can be fulfilled by Conditions 3, 5 and (3.9.5). Thus,

we are able to simplify A1 by

A1 ≥ 32K−2R−
8
3

( K∑
k=1

‖zk‖2
2

)
, (3.9.43)

with probability at least 1− 9K2/n.

Step Two: Upper bound for A2. We observe the fact that

A2 =
K∑
k=1

∥∥∥1

φ
3
√
η∗k∇kL̃(β̄k)

∥∥∥2

2

= sup
w∈SKs−1

∣∣∣〈 K∑
k=1

3
√
η∗k
φ
∇kL̃(β̄k),w

〉∣∣∣2, (3.9.44)
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where S is a unit sphere. It is equivalent to show for any w ∈ SKs−1, A′2 =

|〈
∑K

k=1

3
√
η∗k
φ
∇kL̃(β̄k),w〉| is upper bounded. According to the definition of noiseless

gradient (3.9.30), A′2 is explicitly written as

A′2 =
6

n

n∑
i=1

( K∑
k′=1

(x>i β̄k′)
3 −

K∑
k′=1

(x>i β̄
∗
k′)

3
)( K∑

k=1

( 3
√
η∗k)

2

φ
(x>i β̄k)

2(x>i w)
)
.

Following by (3.9.34) and (3.9.35), similar decomposition can be made for A′2 as

follows, where the only difference is that we replace one x>i zk by x>i w.

A′2 ≤ K−2R
2
3η
∗−4

3
min

[ 6

n

n∑
i=1

( K∑
k′=1

3(x>i zk′)(x
>
i β̄k′)

2

K∑
k=1

(x>i w)(x>i β̄
∗
k)

2
)
⇐ A′21

+
6

n

n∑
i=1

( K∑
k′=1

3(x>i zk′)(x
>
i β̄k′)

2

K∑
k=1

2(x>i zk)(x
>
i w)(x>i β̄

∗
k)
)
⇐ A′22

+
6

n

n∑
i=1

( K∑
k′=1

3(x>i zk′)(x
>
i β̄k′)

2

K∑
k=1

(x>i zk)
2(x>i w)

)
⇐ A′23

+
6

n

n∑
i=1

( K∑
k′=1

3(x>i zk′)
2(x>i β̄k′)

K∑
k=1

(x>i w)(x>i β̄
∗
k)

2
)
⇐ A′24

+
6

n

n∑
i=1

( K∑
k′=1

3(x>i zk′)
2(x>i β̄k′)

K∑
k=1

2(x>i zk)(x
>
i w)(x>i β̄

∗
k)
)
⇐ A′25

+
6

n

n∑
i=1

( K∑
k′=1

3(x>i zk′)
2(x>i β̄k′)

K∑
k=1

(x>i zk)(x
>
i w)(x>i β̄

∗
k)
)
⇐ A′26

+
6

n

n∑
i=1

( K∑
k′=1

3(x>i zk′)
3

K∑
k=1

(x>i w)(x>i β̄
∗
k)

2
)
⇐ A′27

+
6

n

n∑
i=1

( K∑
k′=1

3(x>i zk′)
3

K∑
k=1

2(x>i zk)(x
>
i w)(x>i β̄

∗
k)
)
⇐ A′28

+
6

n

n∑
i=1

( K∑
k′=1

3(x>i zk′)
3

K∑
k=1

(x>i zk)
2(x>i w)

)]
.⇐ A′29
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Let’s bound A′21 first. By using the same technique when calculating E(A11) in

(3.9.36), we derive an upper bound for E(A′21),

E(A′21) ≤ 36η
∗4

3
max

( K∑
k=1

‖zk‖2 + (K − 1)
K∑
k=1

Γ‖zk‖2

)
+ 180η

∗4
3

max

( K∑
k=1

‖zk‖2 + (K − 1)
K∑
k=1

Γ‖zk‖2

)
+ 54η

∗4
3

max

(
K

K∑
k=1

‖zk‖2

)
.

Equipped with Lemma 2 and the definition of tensor spectral norm (3.1.3), it suffices

to bound A′21 by

R
2
3η
∗−4

3
min K

−1
2A′21 ≤ K−2R2

[
216 + 54K + 216KΓ + 18CKδn,p,s

]( K∑
k=1

‖zk‖2

)
with probability at least 1− 10K2/n3, where δn,p,s is defined in (3.3.7).

The upper bounds for A′22 to A′29 follow similar forms. Combining them together,

we can derive an upper bound for A′2 as follows

A′2 ≤ K−2R2
[
216 + 270K + 18CKδn,p,s

]( K∑
k=1

‖zk‖2

)
≤ K−2R2

[
220 + 270K

]( K∑
k=1

‖zk‖2

)
,

with probability at least 1− 90K2/n3, where the second inequality utilizes Condition

5. Therefore, the upper bound of A2 is given as follows

A2 ≤ K−1R4[220 + 270K]2
( K∑
k=1

‖zk‖2
2

)
, (3.9.45)

with probability at least 1− 90K2/n3.

Step Three: Upper bound for A3. By the definition of noisy gradient and noiseless

gradient, A3 is explicitly written as

A3 =
K∑
k=1

∥∥∥( 3
√
η∗k)

2

φ

6

n

n∑
i=1

εi(x
>
i β̄k)

2xi

∥∥∥2

2

≤ K−4R
4
3η
∗−8

3
min

K∑
k=1

(√
Ksmax

j

6

n

n∑
i=1

εi(x
>
i β̄k)

2xij

)2

,
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where the second inequality comes from (3.9.34). For fixed {εi}ni=1, applying Lemma

1, we have∣∣∣ n∑
i=1

εi(x
>
i β̄k)

2xij − E
( n∑
i=1

εi(x
>
i β̄k)

2xij

)∣∣∣ ≤ C(log n)
3
2‖ε‖2‖β̄k‖2

2,

with probability at least 1−1/n. Together with Lemma 23, we obtain for any j ∈ [Ks],∣∣∣ 6
n

n∑
i=1

εi(x
>
i β̄k)

2xij

∣∣∣ ≤ 6CC0σ‖β̄k‖2
2

(log n)3/2

√
n

,

with probability at least 1− 4/n, where σ is the noise level. According to (3.9.5),

∥∥∥β̄k − β̄∗k∥∥∥2

2
≤

K∑
k=1

∥∥∥β̄k − β̄∗k∥∥∥2

2
≤ Kη

∗2
3

maxε
2
0,

which further implies ‖β̄k‖2
2 ≤ (1 + K

1
2 ε0)

2η
∗2

3
max. Equipped with union bound over

j ∈ [Ks],

max
j∈[Ks]

∣∣∣ 6
n

n∑
i=1

εi(x
>
i β̄k)

2xij

∣∣∣ ≤ 6CC0σ(1 +K
1
2 ε0)2( 3

√
η∗max)2 (log n)3/2

√
n

,

with probability at least 1− 4Ks/n. Letting C = 6C0(Ce)−2/3(1 +K
1
2 ε0)2,

A3 ≤ Cη
∗−4

3
min R

8
3σ2K−2 s(log n)3

n
, (3.9.46)

with probability at least 1− 4Ks/n.

Step Four: Upper bound for A4. This cross term can be written as

A4 = 2
K∑
k=1

µ

φ
( 3
√
η∗k)

2
( 1

n

n∑
i=1

εi(x
>
i β̄k)

2(x>i zk)
)
.

To bound this term, we take the same step in Step Three which fixes the noise term

{εi}ni=1 first. Similarly, we obtain with probability at least 1− 4K/n,

A4 ≤ 2Cσ
(log n)

3
2

√
n

K−1R
4
3η
∗−2

3
min . (3.9.47)

This term is negligible in terms of the order when comparing with (3.9.46).
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Summary. Putting the bounds (3.9.43), (3.9.45), (3.9.46) and (3.9.47) together, we

achieve an upper bound for gradient update effect as follows,

A ≤
(

1− 64µK−2R−
8
3 + 2µ2K−1R4[220 + 270K]2

) K∑
k=1

‖zk‖2
2

+ 4µCK−2η
∗−4

3
min R

8
3
σ2s(log n)3

n
,

(3.9.48)

with probability at least 1− (18K2 + 4K + 4Ks)/n. �

Bounding thresholding effect The thresholding effect term in (3.9.32) can also

be decomposed into optimization error and statistical error. Recall that B can be

explicitly written as

B =
K∑
k=1

∥∥∥µη∗2
3

k

φ

4
√

log(np)

n

√√√√ n∑
i=1

( K∑
k′=1

(x>i β̄k′)
3 − yi

)2

(x>i β̄k)
4γk

∥∥∥2

2
,

where supp(γk) ⊂ Fk and ‖γk‖∞ ≤ 1. By using (a+ b)2 ≤ 2(a2 + b2), we have

B ≤µ2 64Ks log p

n

[ 1

n

n∑
i=1

( K∑
k′=1

(x>i β̄k′)
3 −

K∑
k′=1

(x>i β̄
∗
k′)

3
)( K∑

k=1

η
∗4

3
k

φ2
(x>i β̄k)

4
)

︸ ︷︷ ︸
B1:optimization error

+
1

n

n∑
i=1

ε2i

K∑
k=1

η
∗4

3
k

φ2
(x>i β̄k)

4

︸ ︷︷ ︸
B2:statistical error

]
.

Bounding B1. This optimization error term shares similar structure with (3.9.44)
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but with higher order. Therefore, we follow the same idea as we did in bounding

(3.9.44). Following by (3.9.34) and some basic expansions and inequalities,

B1 ≤K−2R
4
3η
∗−8

3
min

1

n

( K∑
k′=1

(x>i β̄k′)
3 −

K∑
k′=1

(x>i β̄
∗
k′)

3
)( K∑

k=1

(x>i β̄k)
4
)

≤K−2R
4
3η
∗−8

3
min

[ 1

n

n∑
i=1

( K∑
k=1

3K(x>i zk)
6 + 9K(x>i zk)

4(x>i β̄
∗
k)

2

+ 9K(x>i zk)
2(x>i β̄

∗
k)

4
) K∑
k′=1

(x>i β̄k′)
4
]
.

The main term is (x>i zk)
2(x>i β̄

∗
k)

4 according to the order of β̄∗k. We bound the main

term first. Note that there exists some positive large constant C such that

E
( 1

n

n∑
i=1

(x>i zk)
2(x>i β̄

∗
k′)

4(x>i β̄k′)
4
)
≤ C‖zk‖2

2‖β̄∗k‖4
2‖β̄k′‖4

2.

Together with Lemma 1 and (3.9.5), we have

K∑
k=1

K∑
k′=1

( 1

n

n∑
i=1

(x>i zk)
2(x>i β̄

∗
k′)

4(x>i β̄k′)
4
)

≤C
(

1 +
(log n)5

√
n

)
K2η

∗8
3

max(1 +K
1
2 ε0)4

K∑
k=1

‖zk‖2
2.

with probability at least 1− 3K2/n. Overall, the upper bound of B1 takes the form

B1 ≤K−2R
4
3η
∗−8

3
min

[
18C

(
1 +

(log n)5

√
n

)
K2η

∗8
3

max(1 +K
1
2 ε0)4

K∑
k=1

‖zk‖2
2

]
≤R418C

(
1 +

(log n)5

√
n

)
(1 +K

1
2 ε0)4

K∑
k=1

‖zk‖2
2,

(3.9.49)

with probability at least 1− 3K2/n.

Bounding B2. We rewrite B2 by

B2 =
K∑
k=1

η
∗4

3
k

φ2

( 1

n

n∑
i=1

ε2i (x
>
i β̄k)

4
)
.
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For fixed {εi}ni=1, accordingly to Lemma 1, we have∣∣∣ n∑
i=1

ε2i (x
>
i β̄k)

4 − E
( n∑
i=1

ε2i (x
>
i β̄k)

4
)∣∣∣ ≤ C(log n)2‖ε2‖2‖β̄k‖4

2.

Note that E((x>i β̄k)
4) = 3‖β̄k‖4

2. It will reduce to

1

n

n∑
i=1

ε2i (x
>
i β̄k)

4 ≤
( 3

n

n∑
i=1

ε2i + C
(log n)2

n
‖ε2‖2

)
‖β̄k‖4

2.

From Lemma 23, with probability at least 1− 3/n,

| 1
n

n∑
i=1

ε2i | ≤ C0σ
2,

1

n
‖ε2‖2 ≤ C0

σ2

√
n
.

Combining the above two inequalities, we obtain∣∣∣ 1
n

n∑
i=1

ε2i (x
>
i β̄k)

4
∣∣∣ ≤ 6C0σ

2‖β̄k‖4
2, (3.9.50)

with probability at least 1− 7/n. Plugging in the definition of φ and (3.9.5), B2 is

upper bounded by

B2 ≤ 6C0σ
2(1 +K

1
2 ε0)4η

∗−4
3

min R
8
3K−3, (3.9.51)

with probability at least 1− 7K/n.

Summary. Putting the bounds (3.9.49) and (3.9.51) together, we have similar upper

bound for thresholded effect,

B ≤ C2µ
2R4

K∑
k=1

‖zk‖2
2 + C3µ

2η
∗−4

3
min R

8
3K−2σ

2s log p

n
, (3.9.52)

with probability at least 1− (3K2 + 7K)/n. �
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Ensemble From the definition of γk, it’s not hard to see actually the cross term C

is equal to zero. Combining the upper bound of gradient update effect (3.9.48) and

thresholding effect (3.9.52) together, we obtain

K∑
k=1

∥∥∥ 3
√
ηkβ̃

+
k − 3

√
η∗kβ

∗
k

∥∥∥2

2

≤
(

1− 64µK−2R−
8
3 + 3µ2K−1R4[220 + 270K]2

)( K∑
k=1

‖zk‖2
2

)
+ 2C3µ

2R
8
3η
∗−4

3
min

σ2K−2s log p

n
.

As long as the step size µ satisfies

0 < µ ≤ 32R−20/3

3K[220 + 270K]2
,

we reach the conclusion

K∑
k=1

∥∥∥ 3
√
ηkβ̃

+
k − 3

√
η∗kβ

∗
k

∥∥∥2

2

≤
(

1− 32µK−2R−
8
3

) K∑
k=1

∥∥∥ 3
√
ηkβk − 3

√
η∗kβ

∗
k

∥∥∥2

2

+ 2C3µ
2R−

8
3η
∗−4

3
min

σ2K−2s log p

n
,

(3.9.53)

with probability at least 1− 4Ks/n. �

3.9.13 Proof of Lemma 14

Let us consider k-th component first. Without loss of generality, suppose F ⊂

{1, 2, . . . , Ks}. For j = Ks+ 1, . . . , p,

∂

∂βkj
L(βk) =

2

n

n∑
i=1

( K∑
k=1

ηk(x
>
i βk)

3 − yi
)
ηk(x

>
i βk)

2xij, (3.9.54)

and it’s not hard to see the independence between {x>i βk, yi} and xij. Applying

standard Hoeffding’s inequality, we have with probability at least 1− 1
n2p2

,

∣∣∣ ∂

∂βkj
L(βk)

∣∣∣ ≤ √4 log(np)

n

√√√√ n∑
i=1

(
K∑
k=1

ηk(x>i βk)
3 − yi)2(ηk(x>i βk))

2 = h(βk).
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Equipped with union bound, with probability at least 1− 1
n2p

,

max
Ks+1≤j≤p

∣∣∣ ∂

∂βkj
L(βk)

∣∣∣ ≤ h(βk).

Therefore, according to the definition of thresholding function ϕ(x), we obtain the

following equivalence,

ϕµ
φ
h(βk)

(
βk −

µ

φ
∇βkL(βk)

)
= ϕµ

φ
h(βk)

(
βk −

µ

φ
∇βkL(βk)F

)
, (3.9.55)

holds for k ∈ [K], with probability at least 1 − 1
n2p

. (3.9.55) also provides that

supp(β+
k ) ⊂ F for every k ∈ [K], which further implies F+ ⊂ F . Now we end the

proof. �

3.9.14 Proof of Lemma 15

First, we consider symmetric case. According to the definition of {yi}ni=1 from

symmetric tensor estimation model (3.2.1), we separate the random noise εi by the

following expansion,

1

n

n∑
i=1

y2
i =

1

n

n∑
i=1

[ K∑
k=1

η∗k(x
>
i β
∗
k)

3 + εi

]2

=
1

n

n∑
i=1

(
K∑
k=1

η∗k(x
>
i β
∗
k)

3)2

︸ ︷︷ ︸
I1

+
2

n

n∑
i=1

εi

K∑
k=1

η∗k(x
>
i β
∗
k)

3

︸ ︷︷ ︸
I2

+
1

n

n∑
i=1

ε2i︸ ︷︷ ︸
I3

.(3.9.56)

Bounding I1. We expand i-th component of I1 as follows

(
K∑
k=1

η∗k(x
>
i β
∗
k)

3)2

=
K∑
k=1

η∗k(x
>
i β
∗
k)

6 + 2
∑
ki<kj

η∗kiη
∗
kj

(x>i β
∗
ki

)3(x>i β
∗
kj

)3.

(3.9.57)

As shown in Corollary 3.12.1, the expectations of above two parts takes forms of

E(x>i β
∗
ki

)3(x>i β
∗
kj

)3 = 6(β∗>ki β
∗
kj

)3 + 9(β∗>ki β
∗
kj

)‖β∗ki‖
2
2‖β∗kj‖

2
2

E(x>i β
∗
k)

6 = 15‖β∗k‖2
2.
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Recall that ‖β∗k‖2 = 1 for any k ∈ [K] and Condition 3 implies for any ki 6= kj,

|β∗>ki β
∗
kj
| ≤ Γ, where Γ is the incoherence parameter. Thus, E(x>i β

∗
ki

)3(x>i β
∗
kj

)3 is

upper bounded by∣∣∣E(x>i β
∗
ki

)3(x>i β
∗
kj

)3
∣∣∣ ≤ 6Γ3 + 9Γ, for any ki 6= kj. (3.9.58)

By using the concentration result in Lemma 1, we have with probability at least

1− 1/n∣∣∣ 1
n

n∑
i=1

(x>i β
∗
k)

6 − E(
1

n

n∑
i=1

(x>i β
∗
k)

6)
∣∣∣ ≤ C1

(log n)3

√
n

,

∣∣∣ 1
n

n∑
i=1

(x>i β
∗
ki

)3(x>i β
∗
kj

)3 − E(
1

n

n∑
i=1

(x>i β
∗
ki

)3(x>i β
∗
kj

)3)
∣∣∣ ≤ C1

(log n)3

√
n

.

(3.9.59)

Putting (3.9.57),(3.9.58) and (3.9.59) together, this essentially provides an upper

bound for I1, namely

1

n

n∑
i=1

(
K∑
k=1

η∗k(x
>
i β
∗
k)

3)2 ≤
(

15 + 6Γ3 + 9Γ + 2C1
(log n)3

√
n

)
(
K∑
k=1

η∗k)
2, (3.9.60)

with probability at least 1−K2/n.

Bounding I2. Since the random noise {εi}ni=1 is of mean zero and independent of

{xi}, we have

E(εi

K∑
k=1

η∗k(x
>
i β
∗
k)

3) = 0.

By using the independence and Corollary 1, we have

P
( 1

n

n∑
i=1

εi(x
>
i β
∗
k)

3 ≥ C2
(log n)

3
2

n

√
nσ
)

≤ P
( 1

n

n∑
i=1

εi(x
>
i β
∗
k)

3 ≥ C2
(log n)

3
2

n

√
nσ
∣∣∣‖ε‖2 ≤ C0σ

√
n
)

+ P
(
‖ε‖2 ≥ C0

√
nσ
)

≤ 1

n
+

3

n
=

4

n
.

This further implies that

1

n

n∑
i=1

K∑
k=1

η∗k(x
>
i β
∗
k)

3εi ≤ (
K∑
k=1

η∗k)C2
(log n)

3
2

√
n

σ, (3.9.61)
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with probability at least 1− 4K/n.

Bounding I3. As shown in Lemma 23, the random noise εi with sub-exponential tail

satisfies

1

n

n∑
i=1

ε2i ≤ C3σ
2. (3.9.62)

with probability at least 1− 3/n.

Overall, putting (3.9.60), (3.9.61) and (3.9.62) together, we have with probability

at least 1− (K2 + 4K + 3)/n,

1
n

∑n
i=1 y

2
i

(
∑K

k=1 η
∗
k)

2
≤ 15 + 6Γ3 + 9Γ + 2C1

(log n)3

√
n

+
2C2σ

(
∑K

k=1 η
∗
k)

(log n)
3
2

√
n

+
C3σ

2

(
∑K

k=1 η
∗
k)

2
.

Under Conditions 4 & 5, the above bound reduces to

1

n

n∑
i=1

y2
i ≤ (16 + 6Γ3 + 9Γ)(

K∑
k=1

η∗k)
2,

with probability at least 1− (K2 + 4K + 3)/n. The proof of lower bound is similar,

and hence is omitted here.

Similar results will also hold for non-symmetric tensor estimation model. Through-

out the proof, the only difference is that

E(u>i β
∗
1k)

2(v>i β
∗
2k)

2(w>i β
∗
3k)

2 = 1.

�

3.10 Non-symmetric Tensor Estimation

3.10.1 Conditions and Algorithm

In this subsection, we provide several essential conditions for Theorem 7 and the

detail algorithm for non-symmetric tensor estimation.
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Condition 6 (Uniqueness of CP-decomposition). The CP-decomposition form (3.5.2)

is unique in the sense that if there exists another CP-decomposition T ∗ =
∑K′

k=1 η
∗′
k β
∗′
1k◦

β∗
′

2k ◦ β∗
′

3k, it must have K = K ′ and be invariant up to a permutation of {1, . . . , K}.

Condition 7 (Parameter space). The CP-decomposition of T ∗ =
∑K

k=1 η
∗
kβ
∗
1k ◦β∗2k ◦

β∗3k satisfies

‖T ∗‖op ≤ C1η
∗
max, K = O(s), and R = η∗max/η

∗
min ≤ C2

for some absolute constants C1, C2.

Condition 8 (Parameter incoherence). The true tensor components are incoherent

such that

Γ := max
ki 6=kj

{
|〈β∗1ki ,β

∗
1kj
〉|, |〈β∗2ki ,β

∗
2kj
〉|, |〈β∗3ki ,β

∗
3kj
〉|
}
≤ C min{K−

3
4R−1, s−

1
2}.

Condition 9 (Random noise). We assume the random noise {εi}ni=1 follows a sub-

exponential tail with parameter σ satisfying 0 < σ < C
∑K

k=1 η
∗
k.

3.10.2 Proof of Theorem 7

The main distinguished part of the proof for non-symmetric update is Lemma 16:

one-step oracle estimator, which is parallel to Lemma 11. For the sake of completeness,

we limit our attention to rank-one case and only provide the theoretical development

for one-step oracle estimator in this subsection. The generalization to general rank

case follows the exact same idea in the proof of symmetric update by incorporating

the incoherence condition (8).

For rank-one non-symmetric tensor estimation, the model (3.5.1) reduces to

yi = 〈η∗β∗1 ◦ β∗2 ◦ β∗3,ui ◦ vi ◦wi〉+ εi, for i = 1, . . . , n.

Suppose |supp(β∗1)| = s1, |supp(β∗2)| = s2, |supp(β∗3)| = s3 and denote s = max{s1, s2, s3}.

Define F
(t)
j = supp(β∗j ) ∪ supp(β

(t)
j ), F (t) = ∪3

j=1F
(t)
j and the oracle estimator as

β̃
(t+1)
1 = ϕµ

φ
h(β

(t)
1 )

(
β

(t)
j −

µ

φ
∇1L(β

(t)
1 ,β

(t)
2 ,β

(t)
3 )F (t)

)
,
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Algorithm 4 Non-symmetric tensor estimation via cubic sketchings
Require: response {yi}ni=1, sketching vector {ui,vi,wi}ni=1, truncation level d, step size µ,

rank K, stopping error ε = 10−4.

1: Step 1: Calculate the moment-based tensor T as (3.5.4) and do sparse tensor decom-

position on T to get a warm-start {η(0),B
(0)
1 ,B

(0)
2 ,B

(0)
3 }.

2: Step 2: Let t = 0.

3: Repeat block-wise thresholded gradient update

4: • Compute threshold level h(Bk) as defined in Step Two.

• Calculated block-wise thresholded gradient descent update

vec(B
(t+1)
1 ) = ϕµh(B1)

φ

(
vec(B

(t)
1 )− µ

φ
∇B1L(B

(t)
1 ,B

(t)
2 ,B

(t)
3 )
)

vec(B
(t+1)
2 ) = ϕµh(B2)

φ

(
vec(B

(t)
2 )− µ

φ
∇B2L(B

(t)
1 ,B

(t)
2 ,B

(t)
3 )
)

vec(B
(t+1)
3 ) = ϕµh(B3)

φ

(
vec(B

(t)
3 )− µ

φ
∇B3L(B

(t)
1 ,B

(t)
2 ,B

(t)
3 )
)
,

where φ = 1
n

∑n
i=1 y

2
i . The detail form of ∇B1L,∇B2L,∇B3L can refer (3.5.5)

5: Until max{‖B(T+1)
j −B(T )

j ‖F } ≤ ε.

6: Step 3: Do column-wise normalization as

B̂1 =
( β

(T )
11

‖β(T )
11 ‖2

, . . . ,
β

(T )
1K

‖β(T )
1K ‖2

)
,

B̂2 =
( β

(T )
21

‖β(T )
21 ‖2

, . . . ,
β

(T )
2K

‖β(T )
2K ‖2

)
,

B̂3 =
( β

(T )
31

‖β(T )
31 ‖2

, . . . ,
β

(T )
3K

‖β(T )
3K ‖2

)
.

And update the weight by

η̂ = η(0) ∗ (‖β(T )
11 ‖2‖β

(T )
21 ‖2‖β

(T )
31 ‖2, . . . , ‖β

(T )
1K ‖2‖β

(T )
3K ‖2‖β

(T )
3K ‖2)>.

The final estimator is T̂ =
∑K

k=1 η̂kβ̂1k ◦ β̂2k ◦ β̂3k.

7: return non-symmetric tensor estimator T̂ .
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where h(β
(t)
1 ) has the form of

√
4 log np

n

√√√√ n∑
i=1

(
η(u>i β

(t)
1 )(v>i β

(t)
2 )(w>i β

(t)
3 )− yi

)2

η
2
3 (v>i β

(t)
2 )2(w>i β

(t)
3 )2. (3.10.1)

The definitions of β̃
(t+1)
2 and β̃

(t+1)
3 are similar.

Lemma 16 . Let t ≥ 0 be an integer. Suppose Conditions 6-9 hold and {β(t)
j , η}

satisfies the following upper bound

max
j=1,2,3

‖ 3
√
ηβ

(t)
j − 3

√
η∗β∗j‖2 ≤ 3

√
η∗ε0, |η − η∗| ≤ ε0 (3.10.2)

with probability at least 1− CO(1/n). Assume the step size µ satisfies 0 < µ < µ0

for some small absolute constant µ0 and s ≤ d ≤ Cs. Then {β̃(t+1)
j } can be upper

bounded as

max
j=1,2,3

∥∥∥ 3
√
ηβ̃

(t+1)
j − 3

√
η∗β∗j

∥∥∥
2

≤ (1− µ

12
) max
j=1,2,3

∥∥∥ 3
√
ηβ

(t)
j − 3

√
η∗β∗j

∥∥∥
2

+ µ
3σ

( 3
√
η∗)2

√
3s log p

n
,

with probability at least 1− 12s/n.

Proof. We focus on j = 1 first. To simplify the notation, we drop the superscript of

iteration index t, and denote iteration index t+ 1 by +. Moreover, denote β̄j = 3
√
ηβj ,

β̄+
j = 3
√
ηβj, β̄

∗
j = 3
√
η∗β∗j for j = 1, 2, 3. Then, the gradient function is rewritten as

∇1L(β̄1, β̄2, β̄3) = 3
√
η

2

n

n∑
i=1

(
(u>i β̄1)(v>i β̄2)(w>i β̄3)

)
(v>i β̄2)(w>i β̄3)ui.

According to the definition of thresholded function, β̃+
1 can be explicitly written

by

β̃+
1 = ϕµ

φ
h(β̄1)

(
β1 −

µ

φ
∇1L(β̄1, β̄2, β̄3)F

)
= β1 −

µ

φ
∇1L(β̄1, β̄2, β̄3)F +

µ

φ
h(β̄1)γ,
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where γ ∈ Rp, supp(γ) ⊂ F and ‖γ‖∞ ≤ 1. Then the oracle estimation error ‖ 3
√
ηβ̃+

1 −
3
√
η∗β∗1‖2 can be decomposed by the gradient update effect and the thresholded effect,∥∥∥ 3

√
ηβ̃+

1 − 3
√
η∗β∗1

∥∥∥
2

=
∥∥∥β̄1 − β̄∗1 − µ

3
√
η

φ
∇1L(β̄1, β̄2, β̄3)F

∥∥∥
2︸ ︷︷ ︸

gradient update effect

+µ
3
√
η

φ

∣∣∣h(β̄1)
∣∣∣√3s︸ ︷︷ ︸

thresholded effect

. (3.10.3)

By using the tri-convex structure of L(β̄1, β̄2, β̄3), we borrow the analysis tool for

vanilla gradient descent (95) given sufficient good initial. Following this proof strategy,

we decompose the gradient update effect in (3.10.3) by three parts,∥∥∥ 3
√
ηβ̃+

1 − 3
√
η∗β∗1

∥∥∥
2
≤

∥∥∥β̄1 − β̄∗1 − µ
3
√
η

φ
∇1L̃(β̄1, β̄

∗
2, β̄

∗
3)F

∥∥∥
2︸ ︷︷ ︸

I1

+ µ
3
√
η

φ

∥∥∥∇1L̃(β̄1, β̄
∗
2, β̄

∗
3)F −∇1L̃(β̄1, β̄2, β̄3)F

∥∥∥
2︸ ︷︷ ︸

I2

+ µ
3
√
η

φ

∥∥∥∇1L̃(β̄1, β̄2, β̄3)F −∇1L(β̄1, β̄2, β̄3)F

∥∥∥
2︸ ︷︷ ︸

I3

+ µ
3
√
η

φ

∣∣∣h(β̄1)
∣∣∣√3s︸ ︷︷ ︸

I4

,

where∇1L̃ is the noiseless gradient as we defined in (3.9.30). We will bound I1, I2, I3, I4

successively in the following four subsections. For simplicity, during the following

proof, we drop the index subscript F as we did in Section 3.9.12. And φ =
∑n

i=1 y
2
i

approximates η∗2 up to constant due to Lemma 15.

Bounding I1 In this section, let us denote

3
√
ηL̃(β̄1, β̄

∗
2, β̄

∗
3)/φ = f(β̄1), 3

√
η∇1L̃(β̄1, β̄

∗
2, β̄

∗
3)/φ = ∇f(β̄1),

where supp(∇f(β̄1)) = F . When β2 and β3 are fixed, the update can be treated as a

vanilla gradient descent update. The following proof follows three steps. The first two

steps show that f(β̄1) is Lipshitz differentiable and strongly convex on the constraint

set F , and the last step utilizes the classical convex gradient analysis.
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Step One: Verify f(β̄1) is L-Lipschitz differentiable. For any β̄
(1)
1 and β̄

(2)
1 whose

support belong to F ,

∇f(β̄
(1)
1 )−∇f(β̄

(2)
1 ) =

( 3
√
η)2

φ

2

n

n∑
i=1

(
u>i (β̄

(1)
1 − β̄

(2)
1 )(v>i β̄

∗
2)2(w>i β̄

∗
3)2
)
ui.

Then, there exist π ∈ Ss−1 such that∥∥∥∇f(β̄
(1)
1 )−∇f(β̄

(2)
1 )
∥∥∥

2

=
( 3
√
η)2

φ

∣∣∣ 1
n

n∑
i=1

(
u>i (β̄

(1)
1 − β̄

(2)
1 )(v>i β̄

∗
2)2(w>i β̄

∗
3)2
)
u>i π

∣∣∣.
Applying Lemma 2 with multiplying (β̄

(1)
1 − β̄

(2)
1 ) ◦ β̄∗2 ◦ β̄∗3, it shows∣∣∣ n∑

i=1

[
(u>i (β̄

(1)
1 − β̄

(2)
1 )(u>i π)(v>i β̄

∗
2)2(w>i β̄

∗
3)2)

]∣∣∣
≤

(
1 + δn,p,s

)∥∥∥β̄(1)
1 − β̄

(2)
1

∥∥∥
2
η∗

4
3 ,

with probability at least 1− 10/n3, where δn,p,s is defined in (3.3.7). Under Condition

(5) with some constant adjustments, we obtain∥∥∥∇f(β̄
(1)
1 )−∇f(β̄

(2)
1 )
∥∥∥

2
≤ 57

16

∥∥∥β̄(1)
1 − β̄

(2)
1

∥∥∥
2
. (3.10.4)

with probability at least 1− 10/n3. Therefore, f(β̄1) is Lipschitz differentiable with

Lipschitz constant L = 57
8

.

Step Two: Verify f(β̄1) is α-strongly convex. It is equivalent to prove that

∇2f(β̄1) � mIp. Based on the inequality (3.3.19) in (81), it shows that

λmin

(
∇2(f(β̄1))

)
≥ λmin

(
E(∇2f(β̄1))

)
− λmax

(
∇2f(β̄1)− E(∇2f(β̄1)

)
. (3.10.5)

The lower bound of λmin(∇2(f(β̄1))) breaks into two parts: an lower bound for

λmin(E(∇2f(β̄1))), and an upper bound for λmax(∇2f(β̄1)−E(∇2f(β̄1)). The Hessian

matrix of f(β̄1) is given by

∇2f(β̄1) =
( 3
√
η)2

φ

2

n

n∑
i=1

(v>1 β̄
∗
2)2(w>i β̄

∗
3)2uiu

>
i .
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Since ui,vi,wi are independent with each other, we have E(∇2f(β̄1)) = 2I, which

implies λmin

(
E(∇2f(β̄1))

)
≥ 2.

On the other hand,

λmax

(
∇2f(β̄1)− E(∇2f(β̄1))

)
=
∥∥∥∇2f(β̄1)− E(∇2f(β̄1))

∥∥∥
2

≤ a>
(
∇2f(β̄1)− E(∇2f(β̄1))

)
b =

2

n

n∑
i=1

(v>i β̄
∗
2)2(w>i β̄

∗
3)2(u>i a)(u>i b)

−E
( n∑
i=1

(v>i β̄
∗
2)2(w>i β̄

∗
3)2(u>i a)(u>i b)

)
η∗−

4
3 .

where a, b ∈ Ss−1. Equipped with Lemma 2, it yields that with probability at least

1− 10/n3,

λmax

(
∇2f(β̄1)− E(∇2f(β̄1))

)
≤ 2δn,s,p.

Together with the lower bound of λmin(E(∇2f(β̄1))), we have

λmin(∇2f(β̄1)) ≥ 2− 2δn,p,s,

Under Condition 5, the minimum eigenvalue of Hessian matrix ∇2f(β̄1) is lower

bounded by 19
10

with probability at least 1 − 10/n3. This guarantees that f(β̄1) is

strongly-convex with α = 19
10

.

Step Three: Combining the Lipschitz condition, strongly-convexity and Lemma

3.11 in (95), it shows that

(
∇f(β̄1)−∇f(β̄∗1)>

)(
β̄1 − β̄∗

)
≥ αL

α + L

∥∥∥β̄1 − β̄∗1
∥∥∥2

2
+

1

α + L

∥∥∥∇f(β̄1)−∇f(β̄∗1)
∥∥∥2

2
.

Since the gradient vanishes at the optimal point, the above inequality times 2µ

simplifies to

−2µ∇f(β̄1)>(β̄1 − β̄∗1) ≤ − 2µαL

α + L

∥∥∥β̄1 − β̄∗1
∥∥∥2

2
− 2µ

α + L

∥∥∥∇f(β̄1)
∥∥∥2

2
. (3.10.6)
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Now it’s sufficient to bound ‖β̄1 − β̄∗1 − µ∇f(β̄1)‖2 as follows∥∥∥β̄1 − β̄∗1 − µ∇f(β̄1)
∥∥∥2

2

=
∥∥∥β̄t1 − β̄∗1∥∥∥2

2
+ µ2

∥∥∥∇f(β̄1)
∥∥∥2

2
− 2µ∇f(β̄1)>(β̄1 − β̄∗)

≤
(

1− 2µ
αL

α + L

)∥∥∥β̄1 − β̄∗1
∥∥∥2

2
+ µ
(
µ− 2

α + L

)∥∥∥∇f(β̄1)
∥∥∥2

2
.

where L, α are Lipschitz constant and strongly convexity parameter, respectively. If

µ < 80
361

, the last term can be neglected and we obtain the desired upper bound,∥∥∥β̄1 − β̄∗1 − µ
3
√
η

φ
∇1L̃

(
β̄1, β̄

∗
2, β̄

∗
3

)∥∥∥
2
≤
(

1− 3µ
)∥∥∥β̄1 − β̄∗1

∥∥∥
2
, (3.10.7)

with probability 1− 20/n3. This ends the proof. �

Bounding I2 For simplicity, we write z1 = β̄1 − β̄∗1, z2 = β̄2 − β̄∗2, z3 = β̄3 − β̄∗2.

By the definition of noiseless gradient, it suffices to decompose I2 by

η−
1
3

∥∥∥∇1L̃(β̄1, β̄
∗
2, β̄

∗
3)−∇1L̃(β̄1, β̄2, β̄3)

∥∥∥
2

≤
∥∥∥ 1

n

n∑
i=1

(u>i β̄1)(v>i β̄2)(v>i z2)(w>i β̄3)(w>i z3)ui

∥∥∥
2

+
∥∥∥ 1

n

n∑
i=1

(u>i β̄1)(v>i β̄2)(v>i z2)(w>i β̄3)(w>i β̄
∗
3)ui

∥∥∥
2

+
∥∥∥ 1

n

n∑
i=1

(u>i β̄1)(v>i β̄
∗
2)(v>i β̄2)(w>i β̄3)(w>i z3)ui

∥∥∥
2

+
∥∥∥ 1

n

n∑
i=1

(u>i z1)(v>i β̄
∗
2)(v>i z2)(w>i β̄

∗
3)(w>i z3)ui

∥∥∥
2

+
∥∥∥ 1

n

n∑
i=1

(u>i z1)(v>i β̄
∗
2)(v>i z2)(w>i β̄

∗
3)2ui

∥∥∥
2

+
∥∥∥ 1

n

n∑
i=1

(u>i z1)(v>i β̄
∗
2)2(w>i β̄

∗
3)(w>i z3)ui

∥∥∥
2
.
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Repeatedly using Lemma 2, we obtain

η−
1
3

∥∥∥∇1L̃(β̄1, β̄
∗
2, β̄

∗
3)−∇1L̃(β̄1, β̄2, β̄3)

∥∥∥
2

≤
(

1 + δn,p,s

)[
(1 + ε0)3ε0 + (1 + ε0)3 + (1 + ε0)3 + ε2

0 + 2ε0

]
η∗

4
3 max

j
‖zj‖2

≤ 5

2

(
1 + δn,p,s

)
η∗

4
3 max

j
‖zj‖2,

for sufficiently small ε0 with probability at least 1 − 60/n3. Under Condition 5, it

suffices to get

3
√
η

φ

∥∥∥∇1L̃(β̄1, β̄2, β̄3)−∇1L̃(β̄1, β̄
∗
2, β̄

∗
3)
∥∥∥

2
≤ 8

3
max
j=1,2,3

∥∥∥β̄j − β̄∗j∥∥∥
2
, (3.10.8)

with probability at least 1− 6/n. �

Bounding I3 I3 quantifies the statistical error. By the definition of noiseless gradient

and noisy gradient, we have

3
√
η

φ

∥∥∥∇1L̃(β̄1, β̄2, β̄3)−∇1L(β̄1, β̄2, β̄3)
∥∥∥

2

=
( 3
√
η)2

φ

∥∥∥ 2

n

n∑
i=1

εi(v
>
i β̄2)(w>i β̄3)ui

∥∥∥
2
.

The proof of this part essentially coincides with the proof for symmetric tensor

estimation. Combining Lemmas 1 and 23, we have∣∣∣ 2
n

n∑
i=1

εi(v
>
i β̄2)(w>i β̄3)uij

∣∣∣ ≤ C(1 + ε0)2η∗
2
3σ

(log n)
3
2

√
n

,

with probability at least 1−4/n. Applying union bound over 3s coordinates, it suffices

to get

P
(

max
j∈[3s]

∣∣∣ 1
n

n∑
i=1

εi(v
>
i β̄2)(w>i β̄3)uij

∣∣∣ ≥ C(1 + ε0)2η∗−
2
3σ

(log n)
3
2

√
n

)
≤ 12s

n
.

Therefore, we reach

3
√
η

φ

∥∥∥∇1L̃(β̄1, β̄2, β̄3)−∇1L(β̄1, β̄2, β̄3)
∥∥∥

2
≤ 2Cη∗−

2
3σ

√
3s(log n)3

n
, (3.10.9)

with probability at least 1− 12s/n. �
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Bounding I4 According to the definition of thresholding level h(β1) in (3.10.1), we

can bound the square as follows,

( 3
√
η)2

φ2
h2(β̄1) =

( 3
√
η)4

φ2

4 log np

n2

n∑
i=1

(
(u>i β̄1)(v>i β̄2)(w>i β̄3)

−(u>i β̄
∗
1)(v>i β̄

∗
2)(w>i β̄

∗
3)− εi

)2

(v>i β̄2)2(w>i β̄3)2

Based on the basic inequality (a+ b)2 ≤ 2(a2 + b2), we have(
(u>i β̄1)(v>i β̄2)(w>i β̄3)− (u>i β̄

∗
1)(v>i β̄

∗
2)(w>i β̄

∗
3)− εi

)2

≤ 2
(

(u>i β̄1)(v>i β̄2)(w>i β̄3)− (u>i β̄
∗
1)(v>i β̄

∗
2)(w>i β̄

∗
3)
)2

+ 2ε2i .

Denote I1 and I2 corresponding to optimization error and statistical error,

I1 =
( 3
√
η)4

φ2

4 log np

n2

n∑
i=1

(
(u>i β̄1)(v>i β̄2)(w>i β̄3)

−(u>i β̄
∗
1)(v>i β̄

∗
2)(w>i β̄

∗
3)
)2

(v>i β̄2)2(w>i β̄3)2

I2 =
( 3
√
η)4

φ2

4 log np

n2

n∑
i=1

ε2i (v
>
i β̄2)2(w>i β̄3)2.

Next, I1 is decomposed by some high-order polynomials as follows

I1 =
( 3
√
η)4

φ2

4 log np

n2

( n∑
i=1

(u>i z1)2(v>i z2)2(w>i z3)2(v>i β̄2)2(w>i β̄3)2

+
n∑
i=1

(u>i z1)2(v>i z2)2(w>i β̄
∗
3)2(v>i β̄2)2(w>i β̄3)2

+
n∑
i=1

(u>i z1)2(v>i β̄
∗
2)2(w>i z3)2(v>i β̄2)2(w>i β̄3)2

+
n∑
i=1

(u>i z1)2(v>i β̄
∗
2)2(w>i β̄

∗
3)2(v>i β̄2)2(w>i β̄3)2

+
n∑
i=1

(u>i β̄
∗
1)2(v>i β̄

∗
2)2(w>i z3)2(v>i β̄2)2(w>i β̄3)2

+
n∑
i=1

(u>i β̄
∗
1)2(v>i z2)2(w>i β̄

∗
3)2(v>i β̄2)2(w>i β̄3)2

+
n∑
i=1

(u>i β̄
∗
1)2(v>i z2)2(w>i z3)2(v>i β̄2)2(w>i β̄3)2

)
.

(3.10.10)
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Each term contains the product of Gaussian random vectors form up to power ten.

For the first term, by using Lemma 1,

1

n

n∑
i=1

(u>i z1)2(v>i z2)2(w>i z3)2(v>i β̄2)2(w>i β̄3)2

≤ (1 + ε0)4ε4
0

(
1 + C

(log n)5

√
n

)
η∗

8
3 max
j=1,2,3

‖zj‖2
2,

with probability at least 1− 1/n. Similar bounds holds for other terms. As long as

n ≥ C log10 n, we have with probability at least 1− 7/n,

I1 ≤
7 log p

n
max
j=1,2,3

∥∥∥β̄j − β̄∗j∥∥∥2

2
. (3.10.11)

Now we turn to bound I2. For fixed {εi}, we have,∣∣∣ n∑
i=1

ε2i (v
>
i β̄2)2(w>i β̄3)2 −

n∑
i=1

ε2i ‖β̄2‖2
2‖β̄3‖2

2

∣∣∣
≤ C(log n)2‖ε2‖2‖β̄2‖2

2‖β̄3‖2
2,

with probability at least 1− n−1. Combining with Lemma 23,

I2 ≤ 4σ2η∗
4
3

log p

n
. (3.10.12)

Putting (3.10.11) and (3.10.12) together, the thresholded effect can be bound by

3
√
η

φ
|h(β1)| ≤

√
7 log np

n
max
j=1,2,3

∥∥∥β̄j − β̄∗j∥∥∥
2

+
2σ

( 3
√
η∗)2

√
log np

n
, (3.10.13)

with probability at least 1− 8/n, provided n & (log n)10. �

Summary Putting the upper bounds (3.10.7), (3.10.8) and (3.10.13) together, we

obtain that if step size µ satisfies 0 < µ < µ0 for some small µ0,∥∥∥ 3
√
ηβ̃+

1 − 3
√
η∗β∗1

∥∥∥
2
≤ (1− µ

12
) max
j=1,2,3

∥∥∥β̄j − β̄∗j∥∥∥
2

+ µ
3σ

( 3
√
η∗)2

√
3s log p

n
,

with probability at least 1− 12s/n. This finishes our proof. �
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3.11 Matrix Form Gradient and Stochastic Gradient descent

3.11.1 Matrix Formulation of Gradient

In this section, we provide detail derivations for (3.2.7) and (3.5.5).

Lemma 3.11.1. Let η = (η1, . . . , ηK) ∈ RK×1,X = (x1, . . . ,xn) ∈ Rp×n and B =

(β1, . . . ,βK) ∈ Rp×K . The gradient of symmetric tensor estimation empirical risk

function (3.2.5) can be written in a matrix form as follows

∇BL(B,η) =
6

n
[((B>X)>)3η − y]>[(((B>X)>)2 � η>)> �X]>.

Proof. First let’s have a look at the gradient for k-th component,

∇Lk(βk) =
6

n
(
K∑
k=1

ηk(x
>
i βk)

3 − yi)ηk(x>i βk)xi ∈ Rp×1, for k = 1, . . . , K.

Correspondingly, each part can be written as a matrix form,

((B>X︸ ︷︷ ︸
K×n

)>)3η − y ∈ Rn×1

(((B>X)>)2 � η>)> �X ∈ RpK×n.

This implies that [((B>X)>)3η−y]>[(((B>X)>)2�η>)>�X]> ∈ R1×pK . Note that

∇BL(B,η) = (∇L1(β1)
>, . . . ,∇LK(βK)>) ∈ R1×pK . The conclusion can be easily

derived. �

Lemma 17 . Let η = (η1, . . . , ηK) ∈ RK×1,U = (u1, . . . ,un) ∈ Rp1×n,V =

(v1, . . . ,vn) ∈ Rp2×n,W = (w1, . . . ,wn) ∈ Rp3×n and B1 = (β11, . . . ,β1K) ∈

Rp1×K ,B2 = (β21, . . . ,β2K) ∈ Rp2×K ,B3 = (β31, . . . ,β3K) ∈ Rp3×K . The gradi-

ent of non-symmetric tensor estimation empirical risk function (3.5.3) can be written

in a matrix form as follows

∇B1L(B1,B2,B3,η) = D>(C>1 �U)>,

where D = (B>1 U )> ∗ (B>2 V )> ∗ (B>3 W )>η−y and C1 = (B>2 V )> ∗ (B>3 W )>�η>.
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Proof. Recall that {∗,�} represent Hadamard product and Khatri-Rao product

respectively. Then the dimensionality of D,C1,C1 �U can be calculated as follows

D = (B>1 U)>︸ ︷︷ ︸
n×K

∗ (B>2 V )>︸ ︷︷ ︸
n×K

∗ (B>3 W )>︸ ︷︷ ︸
n×K

η − y ∈ Rn×1,

C1 = (B>2 V )> ∗ (B>3 W )> � η> ∈ Rn×K ,C>1 �U ∈ RKp1×n.

Therefore,

∇B1L(B1,B2,B3,η) = D>(C>1 �U)> = (∇1L(β1)>, . . . ,∇KL(βK)>).

�

3.11.2 Stochastic Gradient descent

Stochastic thresholded gradient descent is a stochastic approximation of the gradi-

ent descent optimization method. Note that the empirical risk function (3.2.5) that

can be written as a sum of differentiable functions. Followed by (3.2.7), the gradient

of (3.2.5) evaluated at i-th sketching {yi,xi} can be written as

∇BLi(B,η) = [((B>xi)
>)3η − yi][(((B>xi)>)2 � η>)> � xi]> ∈ R1×pK ,

Thus, the overall gradient ∇BLi(B,η) defined in (3.2.7) can be expressed as a

summand of ∇BLi(B,η),

∇BLi(B,η) =
1

n

n∑
i=1

∇BLi(B,η).

The thresholded step remains the same as Step 3 in Algorithm1. Then the symmetric

update of stochastic thresholded gradient descent within one iteration is summarized

by

vec(B(t+1)) = ϕµSGD
φ

h(B(t))

(
vec(B(t))− µSGD

φ
∇BLi(B(t))

)
.
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3.12 Technical Lemmas

Lemma 18 . Suppose x ∈ Rp is a standard Gaussian random vector. For any

non-random vector a, b, c ∈ Rp, we have the following tensor expectation calculation,

E
(

(a>x)(b>x)(c>x)x ◦ x ◦ x
)

=
(
a ◦ b ◦ c+ a ◦ c ◦ b+ b ◦ a ◦ c+ b ◦ c ◦ a+ c ◦ b ◦ a+ c ◦ a ◦ b

)
+ 3

p∑
m=1

(
a ◦ em ◦ em(b>c) + em ◦ b ◦ em(a>c) + em ◦ em ◦ c(a>b)

)
,

(3.12.1)

where em is a canonical vector in Rp.

Proof. Recall that for a standard Gaussian random variable x, its odd moments

are zero and even moments are E(x6) = 15,E(x4) = 4. Expanding the LHS of (3.12.1)

and comparing LHS and RHS, we will reach the conclusion. Details are omitted here. �

Lemma 19 . Suppose u ∈ Rp1 ,v ∈ Rp2 ,w ∈ Rp3 are independent standard Gaussian

random vectors. For any non-random vector a ∈ Rp1 , b ∈ Rp2 , c ∈ Rp3 , we have the

following tensor expectation calculation

E
(

(a>u)(b>v)(c>w)u ◦ v ◦w
)

= a ◦ b ◦ c. (3.12.2)

Proof. Due to the independence among u,v,w, the conclusion is easy to obtain

by using the moment of standard Gaussian random variable. �

Note that in the left side of (3.12.1), it involves an expectation of rank-one tensor.

When multiplying any non-random rank-one tensor with same dimensionality, i.e.

a1 ◦ b1 ◦ c1, on both sides, it will facilitate us to calculate the expectation of product

of Gaussian vectors, see next Lemma for details.
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Lemma 3.12.1. Suppose x ∈ Rp is a standard Gaussian random vector. For any

non-random vector a, b, c,d ∈ Rp, we have the following expectation calculation

E(x>a)6 = 15‖a‖6
2,

E(x>a)5(x>b) = 15‖a‖4
2(a>b),

E(x>a)4(x>b)2 = 12‖a‖2
2(a>b)2 + 3‖a‖4

2‖b‖2
2,

E(x>a)3(x>b)3 = 6(a>b)3 + 9(a>b)‖a‖2
2‖b‖2

2,

E(x>a)3(x>b)2(x>c) = 6(a>b)2(a>c) + 6(a>b)(b>c)(a>a)

+3(a>c)(b>b)(a>a),

E(x>a)2(x>b)(x>c)2(x>d) = 2(a>c)2(b>d) + 4(a>c)(b>c)(a>d)

+6(a>c)(a>b)(c>d) + 3(c>x)(b>d)(a>a).

Proof. Note that E((x>a)3(x>b)3) = E((x>a)3〈x ◦ x ◦ x, b ◦ b ◦ b〉). Then we

can apply the general result in Lemma 18. Comparing both sides, we will obtain the

conclusion. Others part follows the similar strategy. �

Next lemma provides a probabilistic concentration bound for non-symmetric rank-

one tensor under tensor spectral norm.

Lemma 20 . Suppose X = (x>1 , · · · ,x>n )>,Y = (y>1 , · · · ,y>n )>,Z = (z>1 , · · · , z>n )>

are three n×p random matrices. The ψ2-norm of each entry is bounded, s.t. ‖Xij‖ψ2 =

Kx, ‖Yij‖ψ2 = Ky, ‖Zij‖ψ2 = Kz. We assume the row of X,Y ,Z are independent.

There exists an absolute constant C such that,

P
(∥∥∥ 1

n

n∑
i=1

[
xi ◦ yi ◦ zi − E(xi ◦ yi ◦ zi)

]∥∥∥
s
≥ CKxKyKzδn,p,s

)
≤ p−1.

P
(∥∥∥ 1

n

n∑
i=1

[
xi ◦ xi ◦ xi − E(xi ◦ xi ◦ xi)

]∥∥∥
s
≥ CK3

xδn,p,s

)
≤ p−1.

Here, ‖·‖s is the sparse tensor spectral norm defined in (3.1.3) and δn,p,s =
√
s log(ep/s)/n+√

s3 log(ep/s)3/n2.
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Proof. Bounding spectral norm always relies on the construction of the ε-net.

Since we will bound a sparse tensor spectral norm, our strategy is to discrete the

sparse set and construct the ε-net on each one. Let us define a sparse set B0 =

{x ∈ Rp, ‖x‖2 = 1, ‖x‖0 ≤ s}. And let B0,s be the s-dimensional set defined by

B0,s = {x ∈ Rs, ‖x‖2 = 1}. Note that B0 is corresponding to s-sparse unit vector set

which can be expressed as a union of subsets of dimension s by expanding some zeros,

namely B0 = ∪ B0,s. There should be at most
(
p
s

)
≤ ( ep

s
)s such set B0,s.

Recalling the definition of sparse tensor spectral norm in (3.1.3), we have

A =
∥∥∥ 1

n

n∑
i=1

[
xi ◦ yi ◦ zi − E(xi ◦ yi ◦ zi)

]∥∥∥
s

= sup
χ1,χ2,χ3∈B0

∣∣∣ 1
n

n∑
i=1

[
〈xi,χ1〉〈yi,χ2〉〈zi,χ3〉 − E(〈xi,χ1〉〈yi,χ2〉〈zi,χ3〉)

]∣∣∣.
Instead of constructing the ε-net on B0, we will construct an ε-net for each of subsets

B0,s. Define NB0,s as the 1/2-set of B0,s. From Lemma 3.18 in (102), the cardinality

of N0,s is bounded by 5s. By Lemma 21, we obtain

sup
χ1,χ2,χ3∈B0,s

∣∣∣ 1
n

n∑
i=1

[
〈xi,χ1〉〈yi,χ2〉〈zi,χ3〉 − E(〈xi,χ1〉〈yi,χ2〉〈zi,χ3〉)

]∣∣∣
≤23 sup

χ1,χ2,χ3∈NB0,s

∣∣∣ 1
n

n∑
i=1

[
〈xi,χ1〉〈yi,χ2〉〈zi,χ3〉 − E(〈xi,χ1〉〈yi,χ2〉〈zi,χ3〉)

]∣∣∣.
(3.12.3)

By rotation invariance of sub-Gaussian random variable, 〈xi,χ1〉, 〈yi,χ2〉, 〈zi,χ3〉 are

still sub-Gaussian random variables with ψ2-norm bounded by Kx, Ky, Kz, respectively.

Applying Lemma 1 and union bound over NB0,s , the right hand side of (3.12.3) can

be bounded by

P
(

RHS ≥ 8KxKyKzC
(√ log δ−1

n
+

√
(log δ−1)3

n2

))
≤ (5s)3δ,

for any 0 < δ < 1.

Lastly, taking the union bound over all possible subsets B0,s yields that

P
(
A ≥ 8KxKyKzC

(√ log δ−1

n
+

√
(log δ−1)3

n2

))
≤ (

ep

s
)s(5s)3δ = (

125ep

s
)sδ.
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Letting p−1 = (125ep
s

)sδ, we obtain with probability at least 1− 1/p

A ≤ CKxKyKz

(√s log(p/s)

n
+

√
s3 log3(p/s)

n2

)
,

with some adjustments on constant C. The proof for symmetric case is similar to

non-symmetric case so we omit here. �

Lemma 21 (Tensor Covering Number(Lemma 4 in (103) )). Let N be an ε-net for a

set B associated with a norm ‖ · ‖. Then, the spectral norm of a d-mode tensor A is

bounded by

sup
x1,...,xd−1∈B

‖A ×1 x1 . . .×d−1 xd−1‖2

≤
( 1

1− ε

)d−1

sup
x1···xd−1∈N

‖A ×1 x1 · · · ×d−1 xd−1‖2.

This immediately implies that the spectral norm of a d-mode tensor A is bounded by

‖A‖2 ≤ (
1

1− ε
)d−1 sup

x1...xd−1∈N
‖A ×1 x1 · · · ×d−1 xd−1‖2,

where N is the ε-net for the unit sphere Sn−1 in Rn.

Lemma 22 (Sub-Gaussianess of the Product of Random Variables). Suppose X1 is

a bounded random variable with |X1| ≤ K1 almost surely for some K1 and X2 is

a sub-Gaussian random variable with Orlicz norm ‖X2‖ψ2K2. Then X1X2 is still a

sub-Gaussian random variable with Orlicz norm ‖X1X2‖ψ2 = K1K2.

Proof: Following the definition of sub-Gaussian random variable, we have

P
(∣∣X1X2

∣∣ > t
)

= P
(∣∣X2

∣∣ > t∣∣X1

∣∣) ≤ P
(∣∣X2

∣∣ > t∣∣K1

∣∣) ≤ exp
(

1− t2/K2
1K

2
2

)
,

holds for all t ≥ 0. This ends the proof. �
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Lemma 23 (Tail Probability for the Sum of Sub-exponential Random Variables

(Lemma A.7 in (89))). Suppose ε1, . . . , εn are independent centered sub-exponential

random variables with

σ := max
1≤i≤n

‖εi‖ψ1 .

Then with probability at least 1− 3/n, we have∣∣∣ 1
n

n∑
i=1

εi

∣∣∣ ≤ C0σ

√
log n

n
,
∥∥ε∥∥∞ ≤ C0σ log n,

∣∣∣ 1
n

n∑
i=1

ε2i

∣∣∣ ≤ C0σ
2,
∣∣∣ 1
n

n∑
i=1

ε4i

∣∣∣ ≤ C0σ
4,

for some constant C0.

Lemma 24 (Tail Probability for the Sum of Weibull Distributions (Lemma 3.6 in

(57))). Let α ∈ [1, 2] and Y1, . . . , Yn be independent symmetric random variables

satisfying P(|Yi| ≥ t) = exp(−tα). Then for every vector a = (a1, . . . , an) ∈ Rn and

every t ≥ 0,

P
(
|

n∑
i=1

aiYi| ≥ t
)
≤ 2 exp

(
− cmin

( t2

‖a‖2
2

,
tα

‖a‖αα∗

))
Proof. It is a combination of Corollaries 2.9 and 2.10 in (98).

Lemma 25 (Moments for the Sum of Weibull Distributions (Corollary 1.2 in (104))).

LetX1, X2, . . . , Xn be a sequence of independent symmetric random variables satisfying

P(|Yi| ≥ t) = exp(−tα), where 0 < α < 1. Then, for p ≥ 2 and some constant C(α)

which depends only on α,∥∥∥∥∥
n∑
i=1

aiXi

∥∥∥∥∥
p

≤ C(α)(
√
p‖a‖2 + p1/α‖a‖∞).

Lemma 26 (Stein’s Lemma (96)). Let x ∈ Rd be a random vector with joint

density function p(x). Suppose the score function ∇x log p(x) exists. Consider any

continuously differentiable function G(x) : Rdx → R. Then, we have

E
[
G(x) · ∇x log p(x)

]
= −E

[
∇xG(x)

]
.
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Lemma 27 (Khinchin-Kahane Inequality (Theorem 1.3.1 in (105))). Let {ai}ni=1

a finite non-random sequence, {εi}ni=1 be a sequence of independent Rademacher

variables and 1 < p < q <∞. Then∥∥∥ n∑
i=1

εiai

∥∥∥
q
≤
(q − 1

p− 1

)1/2∥∥∥ n∑
i=1

εiai

∥∥∥
p
.

Lemma 28 . Suppose each non-zero element of {xk}Kk=1 is drawn from standard

Gaussian distribution and ‖xk‖0 ≤ s for k ∈ [K]. Then we have for any 0 < δ ≤ 1,

P
(

max
1≤k1<k2≤K

|〈xk1 ,xk2〉| ≤ C
√
s
√

logK + log 1/δ
)
≥ 1− δ,

where C is some constant.

Proof. Let us denote Sk1k2 ⊂ [1, 2, . . . , p] as an index set such that for any

i, j ∈ Sk1k2 , we have xk1i 6= 0 and xk2j 6= 0. From the definition of Sk1k2 , we know

that |Sk1k2| ≤ s and x>k1xk2 =
∑p

j=1 xk1jxk2j =
∑

j∈Sk1k2
xk1jxk2j. We apply standard

Hoeffding’s concentration inequality,

P
(
|〈xk1 ,xk2〉| ≥ t

)
= P

(
|
∑

j∈Sk1k2

xk1jxk2j| ≥ t
)
≤ e exp

(
− ct2

s

)
.

Letting ct2/s = log(1/δ), we reach the conclusion.
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