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ABSTRACT

Zhai, Xiaoling Ph.D., Purdue University, December 2019. Signal Propagation within
a Heterogeneous Bacterial Community. Major Professor: Andrew Mugler Professor.

Reliable signal transmission among cells is important for long-range coordina-

tion [1,2]. While higher organisms have designated structures for signal transmission,

such as axons, it remains unclear how simpler communities of cells are organized to

relay signals [3, 4]. Furthermore, many biological systems exhibit spatial heterogene-

ity, which can interrupt signal propagation. In this thesis, we investigate this problem

by modeling the spatial organization and dynamics of electrochemical signaling, and

we compare our results to experiments from our collaborators on Bacillus subtilis

bacterial biofilms. The experiments show that only a fraction of cells participates in

signal propagation and that these cells are spatially clustered with a size distribu-

tion that follows a power-law decay. These observations suggest that the fraction of

participating cells is just at the tipping point between a disconnected and a fully con-

nected conduit for signal transmission. We utilize percolation theory and a minimal

FitzHugh-Nagumo-type excitable dynamics model to test this hypothesis, and geneti-

cally modified biofilms with altered structure and dynamics to validate our modeling.

Our results suggest that the biofilm is organized near the critical percolation point

in order to negotiate the benefit and cost of long-range signal transmission. Then,

more detailed experiments show that the participation probability is correlated from

cell to cell and varies in space. We use these observations to develop an enhanced

percolation model, and show using simulations and a renormalization argument that

the main conclusions are unaffected by these features. Finally, we use our dynamic

model to investigate the effects of heterogeneity beyond the radial wave regime and

into the spiral wave regime. We find that spatial correlations in the heterogeneity pro-
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mote or suppress spiraling depending on the parameters, a surprising feature that we

explain by demonstrating that these spirals form by distinct mechanisms. We char-

acterize the dependence of the spiral period on the heterogeneity using techniques

from percolation theory. Taken together, our results reveal that the spatial structure

of cell-to-cell heterogeneity can have important consequences for signal propagation

in cellular communities.
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1. INTRODUCTION

Biological systems such as tissues or bacterial communities often require reliable sig-

nal transmission among cells to coordinate actions at a distance [1,2]. In metaozoans,

highly specialized and sophisticated structures are dedicated to signal transmission,

such as axons that relay electrical signals in the nervous system. Densely-packed bac-

terial communities have also been shown to benefit from coordinating their metabolic

activities over long distances (exceeding hundreds of cell lengths) to cope with nutri-

ent competition [5, 6]. However, these bacterial communities face at least two main

challenges to coordinating cellular actions at long distances. First, it is unclear how

bacterial communities can achieve reliable signal propagation to desired target sites

without specialized structures that direct the signals. Second, bacterial communi-

ties exhibit significant cell-to-cell heterogeneity that can constitute a key obstacle

for long-range signal propagation [7–9]. For example, if only a fraction of cells con-

tributes to signal transmission, the resulting cell-to-cell heterogeneity could cause the

propagating signal to die out before reaching its desired target [4, 10–12]. It is thus

of importance to determine the heterogeneity of bacterial communities in the context

of long-range signal transmission.

The molecular mechanism that underlies signal propagation from the interior of

the Bacillus subtilis community towards its edge is based on ion channel-mediated

electrical cell-to-cell signaling. Specifically, electrical signaling is initiated by cells in

the biofilm interior when they experience glutamate starvation during biofilm expan-

sion. This nutrient starvation leads to the opening of the metabolically-gated YugO

potassium ion channel and subsequent release of intracellular potassium. Potassium

ions cannot diffuse far in the densely packed biofilm community, and thus the re-

sulting local increase in extracellular potassium causes immediately adjacent cells to

depolarize, which interferes with their uptake of glutamate, a charged amino acid.
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Consequently, the depolarized neighboring cell also experiences glutamate limitation

and opens its potassium ion channels, releasing its own potassium ions [13]. This

cell-to-cell relay mechanism gives rise to a chain-reaction that propagates the signal

to the biofilm periphery. When the electrical signaling reaches the biofilm edge, it

halts growth of peripheral cells and thereby reduces their nutrient consumption. This

reduction in nutrient consumption allows higher nutrient availability to the stressed

cells in the biofilm interior. When nutrient stress in the interior is alleviated, electrical

signaling ceases. Now the biofilm resumes growth, which again results in a renewed

starvation of interior cells and initiation of the electrical signaling. In this way, the

biofilm periodically generates electrical signaling to propagate stress signals from the

interior to the periphery of the biofilm to achieve transient starvation relief for inte-

rior cells. Electrochemical signaling thus increases the overall fitness of the biofilm

against chemical attack by maintaining a viable population of sheltered interior cells.

In addition to the population-level benefit, electrical signaling carries a measurable

cost to individual cells, in the form of a reduction in growth rate [5]. This trade-off

between single-cell level cost and population-level benefit suggests that perhaps not

all cells must carry the burden of relaying the signal for long-range transmission to

succeed. But it is unclear what fraction of signaling cells is needed and how these

cells would be organized in space to transmit the signal. Notably, signal propagation

through inhomogeneous populations is not a problem exclusive to biological systems,

but a general question that has been deeply explored in fields such as physics, chem-

istry and materials science [14–16]. Percolation theory has emerged as the simplest

statistical physics approach that directly addresses this problem. Percolation theory

has been commonly applied to study signal propagation through various spatially

extended heterogeneous systems [17,18]. In particular, percolation denotes the emer-

gence of a connected path (connected cluster of cells) that can span the entire size of

a spatially extended system, providing a conduit for signal transmission.

Here, we apply the framework of percolation theory to understand how electro-

chemical signals are propagated across a heterogeneous B. subtilis biofilm community.
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By incorporating excitable dynamics into a percolation model, we predict the ability

of a biofilm to transmit a signal given different fractions of cells participating in sig-

naling as well as different signaling dynamics. We define cost and benefit functions for

each set of signaling parameters and predict a region in parameter space, determined

by the critical percolation point, where the signaling benefit outweighs the associated

cost. Integration of mathematical predictions with quantitative experimental data

from wild type and mutant biofilms suggests that wild type biofilms operate near

this region. Our findings are likely to apply to other percolation systems where the

benefit exhibits a sharp sigmoidal shape because it is a population-level property and

thus determined by the percolation threshold, while the cost is associated with the

individual units that comprise the system and thus increases linearly with the fraction

of signaling units. We argue that in such systems, the benefit will outweigh the cost

near the percolation threshold.
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2. THESIS PLAN

Here we brifly describe the basic components of the thesis. Further details on each

component will follow in Chapter 3-6.

2.1 Signal percolation within a bacterial community

Reliable signal transmission is of fundamental importance for long-range coordi-

nation among cells. However, many biological systems exhibit spatial heterogeneity,

which can interrupt signal propagation. Here we show how electrical signaling in

a Bacillus subtilis biofilm community overcomes organized cell-to-cell heterogeneity

to enable reliable signal transmission. We integrated quantitative measurements of

genetically modified biofilms with the mathematical framework of percolation theory,

to relate the spatial organization of biofilm heterogeneity to signal propagation. This

approach revealed signal percolation, in other words, fully connected pathways of

signaling cells within heterogeneous biofilms.

2.2 Dynamic model of electrical signaling in a bacterial community

Here we focus on the dynamics of the electrochemical signals in the biofilm using

the FitzHugh-Nagumo (FN) model of excitable dynamics [19]. This simple model,

commonly used for studying action potential dynamics in neurons, accounts here for

excitable dynamics in individual cells as well as for the transmission of signals between

neighboring cells. We integrated the FN model with percolation theory by evolving

the dynamics on a two dimensional lattice of excitable cells. Simulations show that

successful signal propagation through the lattice of cells depends on both the firing

duration and the fraction of firing cells. Specifically, high cell-level excitability can
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reduce the threshold of signal percolation. Importantly, for the same dynamic param-

eters, a fraction of firing cells near or above the threshold enables successful signal

transmission, while a fraction below the threshold fails to propagate the signal.

2.3 Statistics of correlated percolation in a bacterial community

Despite the success of percolation theory in describing signaling in the biofilm, two

key assumptions of percolation theory are violated in this system. First, the probabil-

ity for a cell to signal is not independent from other cells but instead is correlated with

its nearby neighbors. We develop a mechanistic model, in which correlated signaling

emerges from cell division, phenotypic inheritance, and cell displacement, that repro-

duces the experimental results. Second, the fraction of signaling cells is not constant

but instead varies from biofilm to biofilm. We find that the first violation does not

significantly affect the spatial statistics, which we rationalize using a renormalization

argument. We find that the second violation widens the range of signaling fractions

around the percolation threshold at which one observes the characteristic power-law

statistics of cluster sizes, consistent with our experimental results. We validate our

model using a mutant biofilm whose signaling probability decays along the propaga-

tion direction. Our results identify key statistical features of a correlated percolating

system and demonstrate their functional utility for a multicellular community.

2.4 Spiral wave propagation in communities with spatially correlated het-

erogeneity

Many multicellular communities propagate signals in a directed manner via ex-

citable waves. Cell-to-cell heterogeneity is a ubiquitous feature of multicellular com-

munities, but the effects of heterogeneity on wave propagation are still unclear. Here

we use our minimal FN model to investigate excitable wave propagation in a two-

dimensional heterogeneous community. The model shows three dynamic regimes in

which waves either propagate directionally, die out, or spiral indefinitely, and we
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characterize how these regimes depend on the heterogeneity parameters. We find

that in some parameter regimes, spatial correlations in the heterogeneity enhance

directional propagation and suppress spiraling. However, in other regimes, spatial

correlations promote spiraling, a surprising feature that we explain by demonstrating

that these spirals form by a second, distinct mechanism. Finally, we characterize the

dependence of the spiral period on the degree of heterogeneity in the system by using

techniques from percolation theory. Our results reveal that the spatial structure of

cell-to-cell heterogeneity can have important consequences for signal propagation in

cellular communities.
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3. SIGNAL PERCOLATION WITHIN A BACTERIAL

COMMUNITY

Parts of this chapter have been published as J. W. Larkin, X. Zhai, K. Kikuchi, S.

Redford, A. Prindle, J. Liu, S. Greenfield, A. M. Walczak, J. Garcia-Ojalvo, A. Mu-

gler, G. M. Süel, “Signal percolation within a bacterial community,” Cell Systems

7(2):137-145, 2018.

Signal transmission among cells enables long-range coordination in biological sys-

tems. However, such propagation in extended systems is strongly influenced by spatial

heterogeneities [14–16,20] that frequently cause transmission failures [11,21,22]. Such

heterogeneities are common in biological systems [7–9], provoking the question of how

biologically important signals are robustly propagated. Here we studied this prob-

lem in a bacterial biofilm community that benefits from the transmission of electrical

signals through a cell-to-cell relay mechanism. We find that only a fraction of cells

participates in electrical signaling, and that these cells are spatially clustered with

a size distribution that follows a power-law. These traits suggest the emergence of

a cluster that can span the entire system, what is known in statistical physics as

percolation [23].
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Fig. 3.1. (A) Biofilms undergo electrochemical signaling where the stressed
biofilm interior periodically signals cells at the biofilm edge (arrows). Bot-
tom cartoon depicts heterogeneous signaling where some cells participate
in signaling (cyan), becoming hyperpolarized, while some cells do not
participate (black). (B) Cell elongation rate is inversely correlated with
membrane polarization, indicating a cost of electrical signaling activity
to individual cells (N = 35 cells, error bars, ± SEM). (C) Percolation
theory predicts the emergence of a connected path of firing cells (yellow
outline) when the fraction of firing cells exceeds a critical value (left) but
not below this critical value (right). (D) Image illustrating a method for
counting the number of neighbors for a given cell, highlighted in white
(left). Scale bar, 2 mm. Histogram (right) indicates the modal number
of nearest neighbors is 6 (N = 100 cells). (E) Using the experimentally
constrained nearest neighbor value of 6, firing and non-firing cells are ran-
domly positioned on a two-dimensional lattice with probability φ (0.5 in
this image). (F) Representative snapshots showing lattice simulations at
various values of φ. (G) Onset of connectivity (percolation) is predicted
when φ exceeds 0.45. The φ values for the representative images in (F)
are indicated on the graph by their respective colored circles. (H) Model-
generated cluster size distribution at the percolation threshold (φ = 0.45),
where clusters are distributed according to a power law.
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3.1 Heterogeneity in signaling

Cells that reside in large, dense communities such as biofilms and tissues must

coordinate so that inner cells maintain sufficient access to resources. It was recently

discovered that in biofilms of Bacillus subtilis bacteria, this coordination takes the

form of a metabolic tradeoff [5]: cells on the interior of the biofilm have limited access

to nutrients from the exterior, but periodically withhold a key metabolic compound

(ammounium) from the exterior cells. This causes reduced growth of the exterior

cells, allowing nutrients to diffuse into the interior. The interior cells then release

the ammonium, allowing the exterior cells to resume growth, altogether resulting in

growth oscillations. It was further discovered that this process is mediated by an

oscillatory electrical signal [13]. Ion channels regulate the release of potassium ions,

which diffuse within the extracellular space and trigger subsequent release by nearby

cells. This cell-to-cell cascading mechanism results in spatially propagating waves of

potassium from the center of the biofilm to the periphery (Fig. 3.1A). These waves

coordinate the metabolic activity and have many properties in common with electrical

signal transmission in neurons, as well as other types of active cell-cell communication.

Here, we demonstrate that participation in the electric signaling comes at a cost to

individual cells. Using a fluorescent reporter of membrane potential (the cationic dye

thioflavin T, ThT; cyan in Fig. 3.1A), we find that cells with increased potential

have a reduced growth rate. Thus, although participating in the signal transmission

carries a metabolic benefit to the entire community, it carries a metabolic cost to

individual cells. Indeed, we find that as a result, not all cells participate in the signal

transmission, leading to cell-to-cell heterogeneity in membrane potential across the

population. How to maintain the connected signal path but minimize the fraction of

firing cells, is thus a percolation problem.



10

Fig. 3.2. Disordered lattices have the same percolation properties as tri-
angular lattices. Related to Fig. 3.1. (A) A disordered lattice may be
created by starting with a triangular lattice and adding random noise (σ)
to the height of each cell. (B) This yields a model biofilm with a distri-
bution of nearest neighbor numbers, as shown in this histogram from a
σ = 0.4 biofilm. Some cells have more than 6 nearest neighbors, some
fewer. (C) These perturbations do not affect the percolation threshold, as
shown in this connectivity plot near the threshold value of φc = 0.45. σ =
0 represents the triangular lattice used in the paper. All curves overlap.
(D) For different σ values, the cluster size distribution is not significantly
changed near the percolation threshold, as shown in this cluster size dis-
tribution plot for different σ values.

3.2 Percolation theory

To describe the connectivity and clustering statistics of firing cells in the biofilm,

we simulate cells on a regular two-dimensional lattice. Because cells in the experi-
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mental biofilms have a modal value of six neighbors (Fig. 3.1D), we use a triangular

lattice, in which cells have six nearest neighbors to which they connect forming tri-

angles [23]. Other lattices that would be good approximations of the biofilm predict

similar results to those of the triangular lattice (Fig. 3.2). Percolation theory de-

scribes the statistics of lattices in which a fraction φ of cells are firing. Firing cells

are positioned uniform randomly within the lattice.

Percolation theory predicts that for sufficiently large lattices there is a critical

threshold φc at which several key features occur [23]. First, the probability of a

connected path (a contiguous path of firing cells that spans from one side of the lattice

to the other) transitions from 0 to 1 at φc (Fig. 3.1G). Second, at φc the distribution

of cluster sizes becomes a power law, p(n) ∝ n−α(Fig. 3.1H), where a cluster is defined

as a group of contiguous firing cells, and n is the number of cells in the cluster. For

two-dimensional infinite lattices, the exponent is α = 187
91
≈ 2.05 [23]). Below φc the

distribution falls off exponentially (Fig. 3.3), and above φc the distribution acquires

weight near the lattice size due to the emergence of a giant cluster (Fig. 3.3).

In all simulations we use a lattice size that corresponds to the approximate ob-

servation window in the experiments, L = 35 cell heights by W = 200 cell widths.

Connectivity is determined along the shorter direction L, since this is the direction of

signal propagation in the biofilm. The asymmetric geometry (L 6= W) is responsible

for the deviation of the percolation threshold (φc = 0.45) seen in the main figures

from the predicted value for a symmetric triangular lattice (φc = 0.5) (Stauffer and

Aharony, 1994). Fig. 3.1G, 3.1H, and 3.3 were generated using 2000 realizations of

the lattice.

Percolation theory predicts the transition of a network from having only localized

short-range connections to the emergence of a fully connected path that spans the

entire system (Fig. 3.1 C). Specifically, for a defined two-dimensional lattice, the onset

of percolation occurs when the fraction of randomly positioned firing cells, φ, reaches

a critical value, φc [23]. At this point, the system undergoes a sharp phase transition

in its connectivity, giving rise to a connected cluster of firing cells with a size close
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to that of the entire system. Below the critical φ, too few cells are firing to have

sufficient adjacent cells to comprise a fully connected cluster that can span the entire

size of the system. Therefore, the probability of having a fully connected conduit for

signal transmission across the system remains zero below the critical fraction, but

then suddenly jumps to 1 (complete connectivity) as φ reaches the critical value. In

other words, only when φ has reached the critical fraction of firing cells can there be

clusters of firing cells that are large enough to span the system. This gives rise to the

characteristic sudden phase transitions associated with criticality (Fig. 3.1 G) [23].

Fig. 3.3. Cluster size distribution in model biofilms changes with fraction
of firing cells. Related to Fig. 3.1. Model-generated cluster size distribu-
tions for values of φ depicted in Figure 3.1 F, G. Only when φ = φc , are
clusters distributed according to a power-law (black circles). Above the
percolation threshold (magenta circles), a giant cluster develops near the
system size.

Given the experimentally constrained size of the system and a modal value of six

neighbors for the biofilm cells (Fig. 3.1 D), the model predicts an onset of signaling

connectivity (percolation) when the fraction of firing cells in the biofilm reaches 0.45

(Figures 1E−1G, see Fig. 3.2 C for lattices with different numbers of nearest neigh-
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bors). At this critical fraction, a firing cell is likely to have at least one immediately

adjacent neighbor that is also a firing cell. Consequently, the cluster size distribution

of firing cells will have a long tail. In other words, there is always a finite probability

of finding a very large, system-spanning cluster of firing cells. Specifically, theory

predicts that near this critical percolation threshold, and only near this point, the

distribution of cluster sizes formed by signaling cells follows a power-law decay with

an exponent of 2.05 [23] (Fig. 3.1H and Fig. 3.3). While the critical value for the

fraction of firing cells depends on the specifics of the lattice, such as the number of

neighboring cells, the exponent is universal (Fig. 3.2 D). This means that the expo-

nent value is the same for any two-dimensional lattice and thus a very stringent and

general prediction [24].

To reiterate, percolation theory thus makes two precise predictions required for

signal transmission to become possible in bacterial communities: (1) the fraction of

firing cells in the biofilm should be at, or above, the critical percolation threshold of

0.45, and (2) near the percolation threshold, the distribution of cluster sizes formed

by firing cells should follow a power-law decay with a slope of 2.05.

Fig. 3.4. Microfluidic system for single molecule measurements of biofilms.
(A) Schematic of microfluidic device used in these experiments. Cells are
seeded under a strip of PDMS (bottom) and allowed to grow into a biofilm
as media flow is controlled. During biofilm growth, the edge region under
the PDMS strip is confined to single cell thickness (e.g. blue rectangle),
enabling imaging at single-cell resolution, as shown in the phase image in
(B), Scale bar, 20 µm.
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Fig. 3.5. Electrical signaling within biofilms is heterogeneous at the single-
cell level. (A) Membrane polarization is heterogeneous at the single-cell
level within signaling biofilms. Cyan overlay indicates fluorescence of
Thioflavin T (ThT), a cationic membrane polarization reporter. Scale
bar, 10 µm (see also Fig. 3.4 ). (B) Histogram of individual cell ThT in-
tensity (N = 14,936 cells) during a signal pulse. The bimodal shape of the
histogram indicates that only a fraction of firing cells (cyan) participate in
signaling (0.43 ± 0.02, mean ± SEM). (C) Firing cells are spatially clus-
tered within biofilms. Yellow outlines indicate cluster edges identified by
image analysis based on ThT fluorescence. Scale bar, 10 µm. (D) Cluster
sizes (N = 7,034 clusters) are distributed according to a power-law decay
across 3 decades with an approximate exponent of 2. These properties
indicate that the arrangement of firing cell clusters within the biofilm can
be described by percolation theory.
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3.3 Testing percolation theory predictions

To test these theoretical predictions, we determined the spatial arrangement of

signaling cells within biofilms. We utilized a microfluidic platform to grow B. sub-

tilis biofilm communities [5] and image them with single-cell resolution (Fig. 3.4).

The microfluidic growth chamber contained designated regions where the biofilm was

constrained in height to a two-dimensional monolayer. This allowed us to accurately

quantify the spatial organization and dynamics of electrochemical signaling at the

single-cell level. Furthermore, the two-dimensional geometry allowed us to directly

investigate signal transmission in a geometry where the number of neighboring cells

is limited, compared with three-dimensional regions of the biofilm where each cell has

more than six neighbors on average. The ability of the biofilm to transmit signals

even in a monolayer is crucial, since the leading edge of the biofilm is predominantly

a monolayer [25] and constitutes the destination for electrochemical signaling (Fig.

3.5A).

To measure membrane potential of individual bacteria within biofilms during

electrochemical signaling, we used the previously characterized fluorescent reporter

thioflavin-T (ThT), which acts as a Nernstian membrane potential indicator [13].

Specifically, the higher the membrane potential of the cell, the larger the amplitude

of the fluorescent ThT signal. Single-cell resolution measurements of the biofilm show

that only some cells exhibit pulses in electrical activity, while others do not appear

to participate in signaling (Fig. 3.5A, 3.5B, and 3.6). Analysis of all cells reveals

a bimodal distribution of membrane potential amplitudes during signal propagation,

with the fraction of signaling cells being φ = 0.43 ± 0.02 (Fig. 3.5B, in agreement

with the theoretically predicted percolation threshold. We then measured the spatial

distribution of signaling (firing) cells and determined that they were clustered in space

(Fig. 3.5C). Moreover, the distribution of cluster sizes follows a power-law decay that

extends across three decades and has an exponent of approximately 2 (Fig. 3.5D).

Both the fraction of firing cells and the distribution of firing cell cluster sizes are thus
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consistent with percolation theory predictions. These results suggest that the spatial

organization of signaling cells within the bacterial community may be organized near

the percolation threshold.

Fig. 3.6. Cells generally do not switch signaling state between pulses.
Related to Fig. 3.5. A heatmap of 320 single cell ThT traces from two
consecutive pulses in a wild-type biofilm. Each column is a ThT trace
from one cell with time increasing along the vertical axis. The traces are
organized with hierarchical clustering. The heatmap illustrates that the
cells maintain their firing state. Cells that fire on the first pulse have a
much higher probability of firing on the second pulse than those that do
not and vice versa.
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Fig. 3.7. Experimental tuning of firing cell fraction and pulse duration
with mutant biofilms. (A) A series of cartoons illustrates the function
of genes deleted in the mutant strains. (B) Representative images from
time points of peak signaling activity depicting the fraction of firing cells
for each strain (cyan ThT fluorescence). Scale bar, 10 µm. (C) Mutant
strains exhibit decreased (∆trkA, 0.13 ± 0.04, n = 7, mean ± SEM) or
increased (∆sinR, 0.74 ± 0.04, n = 4 and ∆ktrA 0.48 ± 0.11, n = 4)
fraction of firing cells relative to wild-type (0.43 ± 0.02, n = 12). Wild-
type is near, but slightly below, the percolation threshold, φc = 0.45. The
∆trkA strain (purple), which lacks the gating domain of the potassium
channel YugO, is expected to exhibit reduced signaling activity. The
∆sinR mutant (orange) lacks a transcription factor (SinR) that represses
expression of YugO, resulting in higher signaling activity.
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3.4 Further experimental validation through mutants

We further validated the percolation theory by utilizing three gene-deletion strains

that generate biofilms with altered structure (Fig. 3.7 A). ∆trkA strain lacks the

TrkA gating domain of the YugO potassium ion channel and is known to be deficient

in electrochemical signaling [13,26,27]. Indeed, biofilms formed by the ∆trkA strain

contain a low fraction of firing cells, 0.13 ± 0.04 (mean ± SEM), compared with 0.43

± 0.02 observed in wild-type biofilms (Fig. 3.7B and 3.7C). We also utilized a strain

that lacks the KtrA potassium pump (∆ktrA) and generates biofilms with a fraction

of firing cells similar to wild-type biofilms (0.48 ± 0.11). In contrast, deletion of SinR

(∆sinR), a transcription factor that represses expression of the YugO ion channel [28],

results in biofilms with a higher fraction of firing cells, 0.74 ± 0.04 (Fig. 3.7 B and

3.7C). Biofilms formed by these strains thus contain structural differences as defined

by differences in the fraction of firing cells. Based on percolation theory, we would

predict that since wild-type, ∆ktrA, and ∆sinR have fractions at or above φc, signals

should percolate and their amplitudes should be constant in the transmission. In

contrast, since ∆trkA has a fraction which is below φc, we would predict that the

signal cannot reach the periphery and the amplitude should decay very quickly. We

see in Fig. 3.8 that these predictions are observed in experiments.
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Fig. 3.8. Signal transmission occurs near or above the percolation thresh-
old (A) Phase images with overlaid ThT intensity (cyan) during peak
signaling show steady signal propagation in wild-type (top) and spatial
signal decay in ∆trkA (bottom). Scale bar, 10 µm. (B) Transmission
amplitude measurements show that wild-type (n = 7), ∆ktrA (n = 4),
and ∆sinR (n = 4) propagate the signal at a constant amplitude, while
∆ trkA (n = 5) does not. Transmission amplitude is defined as the frac-
tion of firing cells at a given position divided by the firing fraction at the
beginning of the field of view (error bars, ± SEM).
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4. DYNAMIC MODEL OF ELECTRICAL SIGNALING IN

A BACTERIAL COMMUNITY

Parts of this chapter have been published as J. W. Larkin, X. Zhai, K. Kikuchi, S.

Redford, A. Prindle, J. Liu, S. Greenfield, A. M. Walczak, J. Garcia-Ojalvo, A. Mu-

gler, G. M. Süel, “Signal percolation within a bacterial community,” Cell Systems

7(2):137-145, 2018.

Signal transmission is an inherently dynamic process that unfolds over time. In

our system, the signal propagates from one cell to the next, where each cell undergoes

an excitable pulse (firing) in its membrane potential. The amplitude of the pulse must

be sufficiently high to trigger a response in the neighboring cell. It is also important

that the cell does not spend excessive time in the firing (and thus non-growing) state,

as this would result in unnecessary cost (Fig. 3.1 B). In its simplest form, percolation

theory is a statistical framework that does not account for such pulse durations and

signaling dynamics of cells. Therefore, we created a model that takes into account

both the spatial arrangement of firing cells and the single-cell dynamics during signal

transmission.

4.1 Dynamic model

To model the single-cell dynamics of electrical pulses in the biofilm, we utilized

the FitzHugh-Nagumo (FN) model (Fig. 4.1A) [19]. The FN model is a minimal

model of excitable dynamics and is commonly utilized for studying action potential

dynamics in neurons. Our model accounts for excitable dynamics in individual cells

as well as the transmission of signals between neighboring cells (Fig. 4.1B, 4.1C).

The model contains three parameters: The first is the activation or firing threshold
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Fig. 4.1. An Excitable Model for Signal Propagation in Biofilms. (A)
Model equation combines excitation (blue) and cell-cell communication
(orange) to give rise to excitable propagation. The geometric factor gj
is one-fourth at the cell poles and one-half otherwise. (B) A cartoon
trace illustrates firing (blue-shading) followed by a refractory period (gray-
shading) for a given excitable cell. (C) Cell-cell communication (arrows)
allows directional signal propagation from one cell to another. Refractory
cells are gray and excited cells are blue. (D) Example model snapshots
depict complete signal propagation (direction indicated by arrow) in the
regime above the percolation threshold (left, φ = 0.5) and incomplete
signal propagation below the percolation threshold (right, φ = 0.2). Both
cases have the same values for the dynamic parameters, ε = 10, µ0 = 0.01,
τ= 300 for firing cells or τ = 5 for non-firing cells. (E) Example amplitude
profiles for the images shown in (D) (error bars indicate ± SEM, N = 3).

µ0, which defines the amplitude that an external signal has to exceed in order to

trigger a response in the form of a pulse. The second parameter is the recovery

time τ , which sets the pulse duration of a given response. The third parameter is

the ratio of excitation to cell-to-cell coupling strength, which when sufficiently high

supports pulse-coupled wave dynamics. Specifically, we use a discretized Laplacian

term to account for the cell-cell communication (Fig. 4.1A and 4.1C). In general,

the parameters of this phenomenological model do not have a precise mechanistic

interpretation, but rather are calibrated from the experiments as described in section

4.3.
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In all dynamical simulations, cells in the first row are initialized with µ = 1 to

trigger the excitable wave; all other cells are initialized with µ = 0. We use a lattice

of L′ = 100 rows by W = 200 and record from a window of L = 35 by W = 200 that

is positioned just after the first row. Choosing L′ > L avoids boundary effects at the

last row. We use an absorbing boundary at the last row and reflecting boundaries

on the other three sides. To evolve the dynamics, we discretize the FN model in

time using the fourth-order Runge-Kutta method with time step ∆t = 0.02. For the

cell-cell coupling we use gj = 1
2

and 1
4

(Fig. 4.1A) for the two short-edge and four

long-edge neighbors, respectively, corresponding to a rectangular cell with a 2-to-1

aspect ratio on a triangular lattice.

To account for heterogeneity in signaling, a fraction φ of cells are firing and are

positioned randomly in accordance with percolation theory as described above. All

firing cells have the same FN parameters, given below. Non-firing cells have the same

parameters as firing cells, except that we reduce the recovery time τ by a factor of

60, which we find strongly reduces the firing propensity of these cells (Fig. 4.1D and

4.1E). We integrated the FN model with percolation theory by evolving the dynamics

on a two-dimensional lattice of excitable cells. Simulations show that successful signal

propagation through the lattice of cells depends on both the fraction of firing cells and

their excitable dynamics. For the same dynamic parameters, a fraction of firing cells

near or above the percolation threshold enables successful signal transmission, while

a fraction below the threshold fails to propagate the signal (Fig. 4.1D and 4.1E). For

the same fraction of firing cells, a low activation threshold (high excitability) enables

successful signal transmission, while a high activation threshold (low excitability) pre-

vents signal propagation (Fig. 4.2A). While successful signal transmission depends on

the spatial distribution of cell-to-cell heterogeneity, the dynamics of firing cells also

play a role and can for example enhance signal propagation (Fig. 4.2B). Without

requiring a precise mechanistic description at the molecular level, this phenomeno-

logical model generates testable predictions to determine the relationship between a
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spatially heterogeneous population of electrically active cells and long-range signal

propagation.

Fig. 4.2. A percolation theory-based model for electrochemical signaling
in biofilms accounting for both structure and dynamics. (A) Example
model snapshots depicting complete signal propagation (direction indi-
cated by cyan arrow) in the high excitability regime (left) and incomplete
signal propagation in the low excitability regime (right). (B) Phase space
diagrams defined by recovery time and fraction firing illustrate the pa-
rameter region (cyan shading) capable of complete signal propagation.
The high excitability regime (left) has a large region of complete signal
propagation, while the low excitability regime has a small region of prop-
agation, including areas where propagation fails despite being above the
percolation threshold (red dotted line).
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Fig. 4.3. Experimental tuning of firing cell fraction and pulse duration
with mutant biofilms. (A) Heatmaps depict single-cell ThT trajectories
(N = 100) for all strains. Each column is one cell trace, with time pro-
gressing downward. The color scale varies across strains due to baseline
fluorescence differences among experiments). (B)The model predicts het-
erogeneous single-cell time traces. Related to Fig. 4.1. Heatmaps display-
ing time traces from the model for 100 randomly chosen cells from biofilms
with parameters matched to those of the four experimental strains. For
each heatmap, a single column is that trace from one cell and time moves
from top to bottom. (C) Pulse duration measurements, where pulse du-
ration is defined as the amount of time membrane polarization remains
above baseline level. All mutant strains (∆trkA 30.6 ± 2.6, 124 cells,
three biofilms, and ∆ktrA 45.7 ± 2.4, 204 cells, three biofilms, and ∆sinR
34.1 ± 2.0, 165 cells, three biofilms, mean ± SEM) have larger pulse du-
rations than wild-type (18.1 ± 1.0, 383 cells, three biofilms). (D) A phase
plot of pulse duration and fraction firing for each strain. ∆trkA lies be-
low the percolation threshold (dotted line) and ∆sinR above, both with
longer pulse duration than wild-type. Wild-type and ∆ktrA lie near the
threshold, but with different pulse times (error bars, ± SEM).
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4.2 Experimental dynamics

To experimentally investigate how biofilm dynamics and spatial structure jointly

determine signal transmission and to integrate our findings with mathematical pre-

dictions, we utilized the three gene-deletion strains described in the previous chapter

that generate biofilms with altered structure and dynamics (Fig. 3.7 A). To charac-

terize the signaling dynamics of each strain, we tracked hundreds of individual cells

within the wild-type and genetically modified biofilms and measured their electrical

activity during signal transmission (Fig. 4.3 A). We found that the wild-type biofilm

has the shortest pulse duration, followed by ∆sinR and ∆trkA biofilms (Fig. 4.3 C).

The absence of the KtrA potassium uptake pump extends the pulse duration, presum-

ably by delaying the recovery of intracellular potassium stores. Notably, wild-type

and ∆ktrA biofilms have a similar fraction of firing cells, despite their difference in

average pulse durations. In contrast, ∆trkA and ∆sinR biofilms have similar pulse

durations, even though ∆trkA biofilms contain the lowest and ∆sinR biofilms the

highest fraction of firing cells (see Fig. 4.3B for single-cell traces from the model).

Together, these strains show that the fraction of firing cells and average pulse dura-

tions can be separately modulated, allowing us to experimentally explore the phase

space defined by the structure and dynamics of biofilms during signal transmission

(Fig. 4.3 D).

4.3 Model calibration and validation

We calibrate the parameters of the model (Fig. 4.1A) from the wild type (WT)

data in the following way. The fraction of firing cells φ = 0.43 is obtained directly from

the experiments (Fig. 3.7C). The excitation strength ε must be larger than 1 because

otherwise diffusion outpaces excitation and the wave does not propagate; therefore we

set ε = 10 (note that because the model is phenomenological, the diffusion we describe

here is effective and does not correspond to the diffusion of, say, the potassium ions

between cells). The threshold u0 must be significantly less than 1 because otherwise
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signal from a neighboring cell is insufficient to trigger an excitation and the wave

does not propagate; we find that µ0 = 0.02 suffices (Fig. 4.1D). The recovery time

of firing cells τ = 300 is set such that the mean wavelength over 10 simulations is

equal to the approximate experimental wavelength of 35 cells. Finally, we convert

from dimensionless time t to minutes by equating the mean pulse duration in the

simulations to the experimental value (Fig. 4.3C). Pulse duration is averaged over all

firing cells and defined as the time over which u > 0.6. See Fig. 4.3B for single-cell

time traces from model biofilms with parameters corresponding to each experimental

strain.

We validate the model using one of the mutant strains, ∆sinR. This strain has a

higher fraction φ = 0.74 of firing cells than WT. We anticipate that because structure

and dynamics are connected in the integrated model, changing the fraction of firing

cells will also change the mean pulse duration. We test this expectation in the model,

setting φ = 0.74 and keeping all other parameters the same as WT. We observe in

the simulations that the mean pulse duration rises from 18.1 min (WT) to 33.2 min

(∆sinR). In the experiments, we measure the mean pulse duration for ∆sinR to be

34.1 min, which agrees very closely with the value from the simulations. This validates

the model and demonstrates that structure and dynamics are tightly connected in the

integrated model.
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4.4 Cost and benefit

Fig. 4.4. The definition of collective benefit and collective cost. (A) Collec-
tive benefit of signaling is defined as the ratio of transmission amplitudes
at the biofilm edge and at the beginning of the field of view. Experimen-
tal data are shown by points (error bars, ± SEM). The model output for
wild-type parameters (black curve) illustrates the nonlinear nature of col-
lective benefit. (B) Collective cost of signaling is defined as the product
of the firing cell fraction, φ, and mean pulse time. Experimental data are
shown as points (error bars, ± SEM). Lines represent the cost that would
be incurred for each strain given its mean pulse time.

The different combinations of biofilm structure and dynamics that are accessible

through genetic perturbations provide an opportunity to investigate why the wild-

type cell-to-cell heterogeneity is organized near the critical percolation threshold.

Motivated by the notion that biological processes carry not only a benefit, but also a

cost, we asked whether the observed spatial organization of wild-type biofilms could

be explained by the balance between the benefit and cost of signal transmission. The

benefit is defined by the ability to successfully transmit the signal within the biofilm,

since such signaling has been previously shown to increase the population-level fitness

against chemical attack [5]. Therefore, we can experimentally define the population-
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level benefit of signaling based on the fidelity of signal transmission. Specifically, we

measure the relative fraction of cells that relay the signal at the two most distant

locations within the field of view of our experimental set up (approximately 25 cell

lengths in Fig. 4.4 B). We find that the wild-type and mutant biofilms that contain

a fraction of firing cells that are near or above the critical percolation threshold can

successfully transmit the signal without a decay in its amplitude (Fig. 4.4A and

4.4B). In contrast, the ∆trkA strain, which has a fraction of firing cells well below

the percolation threshold (Fig. 3.7C and 4.3D), fails to transmit the signal (Fig.

4.4A and 4.4B). We can now relate this experimentally determined benefit to the

mathematical model based on the fidelity of signal transmission. In particular, the

model predicts that as a function of φ, the benefit will sharply rise in a sigmoidal

manner (Fig. 4.4 C). This sudden rise in the population-level benefit is due to the

sudden transition in connectivity at the percolation threshold that enables signal

transmission through the system. Beyond the percolation threshold, the benefit is

predicted to saturate, since a fully connected conduit for signaling has already been

formed, and a further increase in the fraction of firing cells does not qualitatively alter

signal transmission. Our experimental data are consistent with the mathematically

predicted benefit function (Fig. 4.4 C).
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Fig. 4.5. Cost-benefit negotiation in signal transmission. (A) The benefit
(transmission efficiency) is plotted for different dynamic parameters as a
function of φ and resulting pulse time (green color scale). When plotted as
a function of φ only, the curves line up with benefit rising near the thresh-
old (inset) (B) The cost function is plotted for the corresponding benefit
curves from (A). (C) Benefit/cost ratio is plotted as a function of φ for
the different model curves in (A) and (B), illustrating that, no matter the
dynamic model parameters, benefit/cost ratio has a peak near the perco-
lation threshold. This comes from the fact that benefit is highly nonlinear
in φ, while cost increases smoothly for any set of dynamic parameters
(inset). (D) Measured benefit/cost ratio is plotted for each strain (dots,
error bars indicate ± SEM), along with the model output given wild-type
parameters (curve). The ratio exhibits a peak due to the linear cost but
highly nonlinear benefit, with wild-type near the maximum (see also Fig.
4.6). Inset plot overlays cost and benefit on separate y axes.
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Fig. 4.6. Benefit minus cost yields a peak near the percolation threshold.
Related to Fig. 4.5. Benefit minus cost is plotted as a function of fraction
of firing cells for experimental data (colored points) and the model with
wild-type parameter values (black line). Because benefit is a number
between 0 and 1 and cost unbounded, we normalize cost by dividing it by
the highest pulse time value measured. The curve bends down at higher φ
values because the pulse time from the model slightly increases with φ for
the same τ value. As with benefit divided by cost, this function exhibits
a peak near the percolation threshold.

On the other hand, community-level benefit is also associated with a single-cell-

level cost. Specifically, firing cells incur a metabolic burden during their electrical

activity, as illustrated by the experimentally observed reduction in their cell elon-

gation rate (Fig. 3.1B). Therefore, we define population-level cost as the fraction of

firing cells multiplied by their mean signaling duration (Fig. 4.4B). The biofilm incurs

greater cost with an increasing number of firing cells, or longer firing durations per

cell. Consequently, the cost function increases gradually with the fraction of firing

cells. While both the cost and benefit increase as a function of the fraction of firing

cells, the smooth rise of the cost function and the sharp sigmoidal shape of the benefit

function imply an intriguing cost-benefit relationship (Fig. 4.4A and 4.4B).
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To determine the cost and benefit curves in Fig. 4.4 and 4.5, we use the following

procedure. In Fig. 4.4A, we vary φ while keeping all other parameters as calibrated

above. For each φ value, we calculate the benefit as the average over 100 simulations

of the ratio of the number of firing cells in the final five rows to that in the initial five

rows. In Fig. 4.5D, we calculate the cost as the average over 100 simulations of the

product of the fraction of firing cells and the mean pulse duration. In Fig. 4.5A−C,

for each φ value, we vary τ in the range 5 to 1000 and measure the mean duration

and benefit-to-cost ratio over 30 simulations for each τ value. Then we use linear

interpolation to find the benefit-to-cost ratio corresponding to a particular duration.

This produces curves of benefit-to-cost ratio vs. φ at fixed duration. Finally, we

smooth these curves using a Gaussian filter of width 0.01, producing the result in

Fig. 4.5C.

We find that the intersection of a nonlinear benefit function and a linear cost

function gives rise to a non-monotonic benefit-to-cost relationship. Specifically, the

cost rises at a constant rate, while the benefit jumps at the percolation threshold and

then saturates (Fig. 4.5A and 4.5B). This suggests that the benefit-to-cost ratio would

be highest near the percolation threshold. Indeed, when we plot the benefit-to-cost

ratio from the model as a function of the fraction of firing cells, we find a well-defined

peak near the percolation threshold (Fig. 4.5C and 4.5D). The result does not depend

on the specific way in which benefit and cost are compared: subtracting the cost from

the benefit, for instance, also yields a peak near the percolation threshold (Fig. 4.6).

The experimentally determined values place the wild-type biofilm near this region

defined by the peak, while the mutant biofilms are located away from this region

(Fig. 4.5D). These results indicate that the spatial organization of heterogeneity

in the wild-type biofilm promotes efficient signal transmission by residing near the

percolation threshold.

We note that given a sharp rise in the benefit due to the critical phase transition,

the benefit will outweigh the cost near the percolation threshold for a broad range of

slopes of the cost function (Fig. 4.5C and 4.5D inset). We also note that linearity is
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not required, for as long as the cost function increases gradually, the benefit-to-cost

function will always be dominated by the jump in the benefit.

4.5 Discussion

It has been suggested that biological systems across different scales exhibit prop-

erties consistent with critical phase transitions. This claim is often justified by the

observation of scale-free behaviors, such as power-law dependencies [20,29,30]. How-

ever, two common concerns are that many biological systems lack an underlying

theoretical justification of a critical phase transition, and that the biological purpose

of operating near a phase transition is unclear [31]. Here we demonstrate that the

spatial organization of a bacterial biofilm is consistent with percolation theory, which

is well-known to exhibit a critical phase transition. Specifically, we observe a power

law that arises at the predicted value (percolation threshold) and with the predicted

exponent. Furthermore, we offer a biological rationale for why the system would be at

criticality, by showing that the benefit outweighs the cost near the critical point. The

scale-free nature of the critical point also suggests that efficient signal transmission

is independent of the size of the biofilm. In other words, signals can be efficiently

transmitted as the biofilm grows, without the biofilm having to adjust the fraction

of firing cells. It is thus intriguing to speculate that a cost-benefit negotiation may

be an organizing principle that drives the biofilm structure to the critical percolation

threshold. Our findings suggest that the cost and benefit of signal transmission may

play a role in promoting spatial heterogeneity that is organized near criticality. Con-

sequently, the theory developed in statistical physics to describe criticality may also

describe the spatiotemporal organization of diverse biological systems and provide a

conceptual framework to uncover the functional pressures that drive these systems to

phase transition points.
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5. STATISTICS OF CORRELATED PERCOLATION IN A

BACTERIAL COMMUNITY

Parts of this chapter have been accepted for publication as X. Zhai, J. W. Larkin,

K. Kikuchi, S. E. Redford, U. Roy, G. M. Süel, A. Mugler, “Statistics of correlated

percolation in a bacterial community,” PLoS Computaitonal Biology.

Signal propagation over long distances is a ubiquitous feature of multicellular com-

munities, but cell-to-cell variability can cause propagation to be highly heterogeneous.

Simple models of signal propagation in heterogenous media, such as percolation the-

ory, can potentially provide a quantitative understanding of these processes, but it is

unclear whether these simple models properly capture the complexities of multicel-

lular systems. In the previous chapters we describe how in biofilms of the bacterium

Bacillus subtilis, the propagation of an electrical signal is statistically consistent with

percolation theory, and yet it is reasonable to suspect that key features of this system

go beyond the simple assumptions of basic percolation theory. Indeed, we will show

here that the probability for a cell to signal is not independent from other cells as

assumed in percolation theory, but instead is correlated with its nearby neighbors.

We will develop a mechanistic model, in which correlated signaling emerges from cell

division, phenotypic inheritance, and cell displacement, that reproduces the exper-

imentally observed correlations. We find that the correlations do not significantly

affect the spatial statistics, which we rationalize using a renormalization argument.

Moreover, the fraction of signaling cells is not constant in space, as assumed in per-

colation theory, but instead varies within and across biofilms. We find that this

feature lowers the fraction of signaling cells at which one observes the characteristic

power-law statistics of cluster sizes, consistent with our experimental results. We

validate the model using a mutant biofilm whose signaling probability decays along
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the propagation direction. Our results reveal key statistical features of a correlated

signaling process in a multicellular community. More broadly, our results identify

extensions to percolation theory that do or do not alter its predictions and may be

more appropriate for biological systems.

5.1 Applications of percolation theory to complex biological systems

Long-range signal transmission is central to the function of many multicellular

communities. However, cell-to-cell variability within these communities [32, 33] can

cause some cells not to participate in signaling, which may degrade or attenuate the

signal [34–36]. In physics, signal transmission in the presence of non-propagating

agents is the domain of percolation theory [37]. As a result, many investigators have

turned to percolation theory to describe signal transmission in multicellular systems.

In bacterial communities, percolation theory has been used to predict the scaling

laws that result from signal disruption during quorum sensing [38]. In neuroscience,

percolation theory has been used to describe (i) the transition from a fully connected

to a disconnected electrical network in rat hippocampus cultures [39,40], (ii) the spa-

tiotemporal structure of viral propagation within astrocyte monolayers [41], and (iii)

the transition from conscious to unconscious brain activities during general anesthe-

sia [18]. In pancreatic islets, percolation theory has been used to understand the

dependence of calcium wave propagation on the coupling strength of gap junctions

between the islet cells [42]. In colonies of Spirostomum (an aquatic worm-like cell),

percolation theory was recently shown to describe how the propagation of a hydro-

dynamic cell-to-cell trigger-wave depends on the colony density [43].

In the previous chapters we demonstrated that the transmission of an electrical

signal from the interior to the periphery of a biofilm of Bacillus subtilis bacteria is

consistent with the predictions of percolation theory [36]. In this system, starvation

of the interior cells causes release of intracellular potassium, which leads to depolar-

ization and potassium release in neighboring cells, resulting in a cell-to-cell relay wave
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that propagates to the biofilm periphery [5, 13, 46]. The signal temporarily prevents

peripheral cells from taking up nutrients and thus allows nutrients to diffuse to the in-

terior cells, preserving biofilm viability and increasing its overall fitness [5]. However,

it turns out that not all cells participate in the potassium release: we discovered that

the fraction of participating cells is near the percolation threshold, and that clusters of

participating cells have a size distribution that follows a power law with an exponent

predicted by percolation theory [36]. Operating near the percolation threshold allows

the biofilm to maintain successful signal transmission while minimizing the number

of cells that undergo the costly potassium release [36].

Despite the success of percolation theory as a description of signal transmission

within this system, it is reasonable to suspect that several key assumptions of perco-

lation theory may require scrutiny in this and many similar multicellular systems [36].

First, percolation theory assumes that the probability for each cell to participate in

signal transmission is independent of other cells. However, in reality it may be that

the participation probability of a cell is correlated with that of its neighbors. For

example, if the molecular mechanism governing participation is heritable, then one

expects the participation of a given cell to be correlated with other cells in its lineage,

which are most likely to be nearby in the densely packed biofilm. Second, percolation

theory assumes that the participation probability does not vary from one biofilm to

another, or from location to location within a biofilm. However, in reality we know

that there is variability across biofilms, and particular mutant strains have spatial

variability in the participation fraction [36]. These considerations raise the question

of when and how percolation theory remains a predictive description of signal trans-

mission in biological systems. Conversely, they suggest a strategy by which deviations

from percolation theory would give important insights about the ways in which a bi-

ological system differs from the model assumptions [47]. They also raise the broader

question of which predictions of a model from statistical physics are dependent on

the model details, and which predictions are universal.
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Here we use a combination of simulations and experiments to investigate the

statistical properties of signal percolation in a bacterial biofilm. We find that signal

correlations exist between cells, due to a combination of phenotypic inheritance and

spatial proximity of a cell to its progeny. We find that while these correlations lower

the percolation threshold, they are not sufficiently long-range to affect the cluster size

statistics. Instead, we find that variability in the signaling fraction within and across

biofilms affects the statistics by widening the range of fractions at which one observes

the power-law distribution of cluster sizes. We validate our findings using a mutant

biofilm whose participation fraction decays as a function of propagation distance. Our

results demonstrate that certain community-level signaling properties are robust to

cell-level features whereas others are not, and we discuss the implications for biofilm

function.

5.2 Results

We first review the key features of electrical signaling in the biofilm [5,13,36,46],

and those of percolation theory, as these features will motivate our present results.

The electrical signal is transmitted by cells across the biofilm in a wave-like manner

(Fig 5.1A). We measure the membrane potential of cells during the peak of signal

transmission using a fluorescent dye (cyan in Fig 5.1B; see Materials and methods).

We previously observed a bimodal distribution of dye intensity across cells [36], which

provides a threshold above or below which we define cells as “on” (participating in

the signal) or “off” (not participating in the signal), respectively. This observation

motivates our use of percolation theory, as percolation theory describes the connec-

tivity and spatial statistics of systems on a lattice in which each cell has a probability

φ to be on.

We alert the reader that in typical applications of percolation theory, one can

measure both the input (the ability of each component to signal or not) and the output

(whether or not each component actually participates in the signal as it propagates).
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Fig. 5.1. Signaling probability of each cell is correlated with neighbor-
ing cells. (A) Cartoon illustrating electrical signaling wave transmitted
across biofilm. Cyan represents cells that participate in signaling. (B)
Zoomed-in snapshot of cells in biofilm during peak of signal transmission
(actual experimental window is approximately 35 cells tall by 230 cells
wide). Cyan indicates fluorescence intensity of ThT dye, proportional to
membrane potential. (C) Correlation function is longer-range than that
from randomized data (N = 3 biofilms). (D) Correlations are signifi-
cantly longer than random both perpendicular (x) and parallel (y) to the
signaling direction (p < 0.001 and p = 0.007 assuming Gaussian errors,
respectively).
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Here, because we do not know the molecular mechanism that confers the ability to

signal, we can only measure the output. Nonetheless, we observe in [36] that (i)

isolated clusters participate in signaling, and (ii) the percolation threshold remains

predictive of whether the signal propagates across the biofilm. Therefore, as in [36],

we conclude that the signaling mechanism is sufficiently short-range that percolation

is a relevant criterion for propagation, but sufficiently long-range that the output can

be treated as a reasonably good proxy for the input.

Our experiments focus on a 2D cell monolayer at the edge of the biofilm (see

Materials and methods). We previously found that cells are most likely to have six

neighbors [36]. For an infinite 2D, six-neighbor lattice, percolation theory predicts

that (i) a connected path of on-cells emerges above the critical value φc = 1/2, and

that (ii) at φc, the distribution of on-cell cluster sizes P (n) becomes a power law [37].

In the experiments, we image a finite window of approximately 35 by 230 cells

(see Materials and methods). Finite-size effects can change the value of φc at which

connectivity sets in, which we call φconn
c [37]. Indeed, simulations predict that φconn

c =

0.45 in this finite geometry [36]. Finite-size effects should not change the value of

φc at which P (n) becomes a power law, which we call φpow
c = 1/2, so long as

√
n

is sufficiently below the smaller lattice dimension. However, at larger n values the

distribution will deviate from a power law, even at φpow
c , due to finite-size effects.

We previously observed that the fraction of on-cells in the experiments is φ =

0.43±0.02 (mean ± standard error), and that the distribution P (n) of on-cell cluster

sizes is a power law over three decades [36]. The fact that φ ≈ φconn
c suggests that the

system sits at the connectivity threshold. However, the fact that φ < φpow
c raises the

question of why a power law is observed, particularly one with no apparent finite-size

effects at large n. To address this question, as well as the broader question of what

features of percolating systems are expected to be robust to the underlying assump-

tions about the components, we now investigate the effects of signal correlations and

of variability in the signaling fraction.
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5.2.1 Participation in signaling is spatially correlated

Percolation theory assumes that a fraction φ of on-cells are situated randomly in

space. However, in the biofilm one might expect that on-cells are spatially co-located,

for example if participating in the signal is a heritable phenotype. To determine

whether there are spatial correlations in on-cells, we measure the radial autocorrela-

tion function

C(r) = 〈sisj〉r − φ2, (5.1)

where s = 1 for on-cells, s = 0 for off-cells, and the average is taken over all pixels

i and j whose separation is r (see Materials and methods). We find that C(r) is a

decreasing function of r, as expected (Fig 5.1C, cyan curve). We then compare C(r)

to the autocorrelation function computed with the locations of on-cells randomized.

Specifically, we retain the locations of all cells and the number of on-cells, but we ran-

domize which cells are on (as would be the case in percolation theory). We see in Fig

5.1C that C(r) falls off more steeply in this case (gray curve). These results suggest

that on-cells are more spatially correlated than expected from random placement.

We next investigate the strength of correlation perpendicular (x) and parallel (y)

to the direction of signal transmission (Fig 5.1B). We define the correlation lengths

as ξx =
∫
dx C(x) and ξy =

∫
dy C(y), where C(x) and C(y) are defined as in Eq

5.1 but restricted to separations perpendicular (x) or parallel (y) to the signaling

direction, and the integrals run from zero to the maximal separation values. Even in

the randomized data, we see that the correlation length is larger in the y direction

than in the x direction (compare the gray bars in Fig 5.1D) because cells are longer

than they are wide, and the long axis of each cell is generally oriented in the signaling

direction (Fig 5.1B). In the actual (non-randomized) data, the correlation lengths

are 70% larger than random in both the x and y directions, and both differences are

significant (p < 0.01; Fig 5.1D). These results suggest that on-cells are significantly

correlated both parallel and perpendicular to the signaling direction.
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To quantify the correlation at the single-cell level, we consider the conditional

probabilities p(on|on) and p(off|off), where p(on|on) is the probability that a cell is

on given that the cell above it is also on, and similarly for p(off|off). We then calculate

the order parameter

ρ = p(on|on)− p(on|off), (5.2)

where p(on|off) = 1− p(off|off). With no correlation, we have p(on|on) = p(on|off) =

φ, and therefore ρ = 0. With perfect correlation, we have p(on|on) = 1 and

p(on|off) = 0, and therefore ρ = 1. Thus, ρ quantifies the cell-to-cell correlation

in the signaling direction on a scale from zero to one.

We estimate the conditional probabilities, and thus ρ, in two ways (Fig 5.2). First,

because cell division is usually parallel to the signaling direction, we track division

events that occur in between signal pulses (Fig 5.2A; see Materials and methods). We

then count the number of times that the top cell has the same or different signaling

state as the bottom cell. From this method we obtain ρdiv = 0.38 (Fig 5.2B). Second,

we estimate the conditional probabilities directly from pairs of cells that are adjacent

to each other in the signaling direction during signaling (Fig 5.2C; see Materials

and methods). From this method we obtain ρadj = 0.17 (Fig 5.2D). These results

confirm at the single-cell level that spatial correlations exist in the signaling direction

(ρadj > 0) but suggest that these correlations are less strong than those produced

directly by division (ρadj < ρdiv).

5.2.2 Mechanistic model of correlated signaling

To understand the experimental results above, we propose a mechanistic model of

spatially correlated cell signaling. We hypothesize that the signaling state is heritable

during cell division with a certain probability, and that cell displacement can occur at

the leading edge as the biofilm grows. The assumption that cells possess a signaling

state variable is supported by the observation that a cell generally does not switch

its on/off signaling behavior between successive pulses in the experiments [36].
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Pulse 1

Pulse 2

Fig. 5.2. Order parameter ρ quantifies degree of spatial correlations. (A,
B) Lineage-tracing experiments yield ρdiv = 0.38 (N = 49 division events).
(C, D) Spatial analysis of the biofilm images yield ρadj = 0.17 (N = 51
cell pairs).
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Specifically, as shown in Fig 5.3A, we generate a 2D, six-neighbor lattice of rectan-

gular cells with aspect ratio 2 (the approximate experimental value) in the following

way. Each cell divides after a time τ drawn from a Gaussian distribution with mean

τ̄ and standard deviation δτ . The “mother” cell (m) retains its location and signaling

state, while the “daughter” cell (d) occupies one of the eligible neighboring locations

with equal probability. Eligibility requires that the neighboring location either be

empty or be occupied by a neighboring cell (n) that, when displaced by the division

along the same direction, would occupy an empty location (Fig 5.3A). Because the

biofilm is growing downward, the eligible locations will most often be the location

directly below and, with lower probability, the locations below-and-to-the-right and

below-and-to-the-left. The signaling state of the daughter, given that of the mother,

is determined from the division parameter ρdiv and the fraction of on-cells φ according

to

p(on|on) = φ+ ρdiv − φρdiv, (5.3)

p(on|off) = φ− φρdiv, (5.4)

which follow from Eq 5.2 and the requirement that the fraction of on-cells remains

φ throughout the process (see Materials and methods). We produce a 100 by 230

lattice of cells by initializing the top row randomly and generating the next 99 rows

according to the above mechanism. Then we remove the top 55 and bottom 10 rows,

leaving a 35 by 230 cell window as in the experiments. This procedure allows the

mechanism to achieve statistical steady state and focuses on the biofilm edge as in

the experiments.

We find that the spatial statistics are not sensitive to the value of δτ/τ̄ , so long as it

is greater than zero, and therefore we average our results over the range 0 < δτ/τ̄ < 1

(rejecting samples with τ ≤ 0 for large δτ). We also find that allowing neighbor cell

displacement is necessary to generate correlations in the x direction, but that allowing

two or more levels of displacement does not qualitatively change the results. Thus,
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Fig. 5.3. Mechanistic model of correlated signaling captures experimental
features. (A) Mother cell (m) produces daughter cell (d) with correlated
signaling state at any neighboring site at which a maximum of one neigh-
bor cell (n) is displaced. Cyan indicates that cell has the ability to signal.
(B) Correlations are significantly longer than random both perpendicular
(x) and parallel (y) to the signaling direction (N = 104 lattices; p < 0.001
for both assuming Gaussian errors). Compare to experiments in Fig 5.1D.
(C) Stochasticity in division times, neighbor selection, and cell displace-
ment reduces correlation parameter from ρdiv = 0.38 to ρadj = 0.19±0.01,
close to experimentally measured ρadj = 0.17 (N = 104 lattices).
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the only parameters in the model are φ and ρdiv, which we set from the experiments

as φ = 0.43 [36] and ρdiv = 0.38 (Fig 5.2B).

This model, with no free parameters, makes three predictions. Specifically, the

model predicts that (i) the correlation length in the x direction is significantly different

from random (Fig 5.3B), (ii) the correlation length in the y direction is significantly

different from random (Fig 5.3B), and (iii) the spatial correlation parameter measured

from adjacent cells in the y direction after the biofilm is generated is ρadj = 0.19±0.01

(Fig 5.3C). The model output ρadj is reduced from the model input ρdiv = 0.38 due to

the stochasticity in division times, neighbor selection, and cell displacement. Predic-

tions (i) and (ii) are consistent with the experiments, as both the x and y correlation

lengths were found to be significantly different than random (Fig 5.1D). Prediction

(iii) is also consistent with the experiments, as ρadj was measured to be 0.17 (Fig

5.2D), which is very close to 0.19± 0.01. We have also checked that these predictions

remain unchanged when accounting for the fact that on-cells grow more slowly than

off-cells [36] (see Materials and methods). The fact that all three predictions are

validated by the experiments gives us confidence that the model captures the basic

underlying mechanism, especially because it has no free parameters.

5.2.3 Impact of correlations on spatial statistics

We now use our mechanistic model to investigate the impact of the spatial corre-

lations on the statistical properties of the biofilm. First we focus on the connectivity:

the probability, over an ensemble of simulated biofilms, that a connected path of on-

cells exists from the top to the bottom of the lattice. The connectivity is expected

to show a sharp transition from 0 to 1 at a critical fraction of on-cells φconn
c . For

an infinite lattice (in 2D with six neighbors), φconn
c = 1/2 [37]. Finite-size effects

reduce the sharpness, but φconn
c can still be defined as the value of φ for which the

connectivity is 50%. For a finite lattice of the approximate size of the experimental

window (35 cells tall by 230 cells wide), without correlations, we previously found
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Fig. 5.4. Spatial correlations increase connectivity but have little effect
on cluster size distribution. (A) Connectivity, defined as probability that
a connected path of on-cells exists, occurs at lower on-cell fraction φ as
correlation parameter ρdiv increases (N = 103 lattices). (B) Connectivity
threshold φconn

c , defined as φ value for which connectivity is 50%, decreases
with ρdiv (N = 103 lattices). (C) Spatial correlations (ρdiv = 0.38) have
little effect on distribution, in particular not removing exponential rolloff
at large n (N = 103 lattices).

φconn
c = 0.45 [36] (Fig 5.4A, dark green curve). With correlations, using our mech-

anistic model with ρdiv = 0.38, we find φconn
c = 0.4 (Fig 5.4A, light green curve).

More generally, the connectivity threshold is shown as a function of ρdiv in Fig 5.4B,

and we see that as ρdiv → 1, φconn
c becomes close to zero, even with the stochasticity

inherent in the model. Thus, spatial correlations reduce the connectivity threshold.

This makes sense, as correlations increase the probability of connected on-cells, par-

ticularly in the signaling direction, and this lowers the fraction of on-cells needed to

created a connected path.

Second, we investigate the impact of correlations on the distribution of on-cell

cluster sizes P (n). The distribution is expected to become a power law at a critical

fraction of on-cells φpow
c = 1/2 [37]. The experimental fraction of on-cells is φ =

0.43 ± 0.02 [36], which is lower than φpow
c . In simulations without correlations, at

φ = 0.43, we find that P (n) acquires a rolloff (when viewed on a log-log scale) at

large n (Fig 5.4C, dark red curve). The rolloff indicates that the distribution is
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Fig. 5.5. Short-range correlations do not affect critical properties. (A) Il-
lustration of the renormalization argument: upon site decimation, lattice
remains triangular, φ remains constant, and ρ vanishes. (B) Correla-
tion function in experiments is short-range, i.e. sub-power-law (N = 3
biofilms).

becoming more exponential, as expected for φ < φpow
c . However, in experiments,

we find that P (n) maintains the power law dependence, with no rolloff, for three

decades, i.e. out to n = 103 [36]. Because we have seen that spatial correlations

preserve connectivity at lower φ (Fig 5.4A and B), we hypothesize that correlations

may also preserve the power law dependence of P (n) at lower φ, and thus explain

the experimental observation. Surprisingly, using our mechanistic model, we find

that the spatial correlations actually have little impact on P (n) (Fig 5.4C, light red

curve): the rolloff is slightly shifted to larger n, but it is certainly still present over

the three-decade range.

Why do correlations not change the distribution of cluster sizes? Renormalization-

group arguments from statistical physics imply that correlations do not change the

critical properties of percolation theory if the correlations are sufficiently short-range

[48]. The intuitive reason can be seen from a site-decimation procedure [37], as

illustrated in Fig 5.5A. We imagine decimating every other cell in each column (red

X’s), with each remaining cell expanding to fill the space below it. Fig 5.5A illustrates
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that the resulting lattice remains triangular (green lines). Furthermore, because the

probability of any cell to be on is φ, the fraction of on-cells remains φ after decimation.

Finally, the new conditional probabilities after one round of decimation are

p1(on|on) = p(on|on)p(on|on) + p(on|off)p(off|on), (5.5)

p1(on|off) = p(on|on)p(on|off) + p(on|off)p(off|off), (5.6)

which follow from the rules of probability and the assumption that the signaling

state is spatially Markovian, i.e. the daughter is conditionally independent of the

grandmother given the mother (see Materials and methods). As a result, the cor-

relation parameter after one round of decimation is ρ1 = p1(on|on) − p1(on|off) =

[p(on|on) − p(on|off)]2 = ρ2, where the first and last steps use the definition in Eq

5.2, and the middle step inserts the expressions in Eqs 5.5 and 5.6 and simplifies (see

Materials and methods). Similarly, after j rounds of decimation we have ρj = ρj+1.

Because ρ < 1, we see that ρj → 0 as j → ∞. Thus, correlations vanish upon re-

peated rounds of decimation and renormalization. This means that correlations are

not expected to change the critical properties of the distribution P (n).

The above intuition only holds if the correlations are sufficiently short-range. In-

deed, Eqs 5.5 and 5.6 assume that the correlations are minimally short-range, namely

Markovian. In general, it has been shown that spatial correlations only affect the

critical properties of percolation if they decay as a power law, specifically C(r) ∼ r−a

with a > 3/2 in 2D [48]. As seen in Fig 5.5B, the correlations in the experimental

data are much shorter-range than a power law. This suggests that the spatial cor-

relations that we observe in the biofilm are not sufficiently long-range to affect the

critical properties. Together with Fig 5.4C, we conclude that spatial correlations are

not sufficient to explain the experimentally observed power law dependence of P (n)

over three decades [36].
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A BModel Experiment

Fig. 5.6. Variability can lead to power-law cluster size distribution, even
for φ < φc. (A) In the model, variability (σφ = 0.07) removes rolloff,
causing distribution to approach a power law over three decades (N = 103

lattices). (B) In the experiments, cluster size distributions from individual
biofilms are power laws without significant rolloff, consistent with the
model and the fact that we find variability in φ within each biofilm. Data
are from [36] but processed individually for each biofilm.
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5.2.4 Variability in signaling fraction

If spatial correlations cannot explain the experimentally observed power law, then

what can? An important feature of the experiments that is not yet accounted for in

the model is variability in the on-cell fraction φ. In particular, we previously observed

that the value of φ is roughly Gaussian-distributed across 12 experiments with a mean

of φ̄ = 0.43 and a standard deviation of σφ = 0.07 (from which the standard error

of 0.07/
√

12 = 0.02 comes) [36]. Furthermore, subdividing each of the 12 images

into either 4 or 16 equal parts with the same aspect ratio as the original image, we

find that the standard deviation of the on-cell fraction across parts (averaged over

all images) is σφ = 0.04 (4 parts) or σφ = 0.05 (16 parts). Because these values are

similar to σφ = 0.07, we conclude that the variability within biofilms is similar to

that across the biofilms in our experiments.

Some variability is expected from finite size effects. Specifically, in basic percola-

tion theory, binomial statistics dictate that the standard deviation in the fraction of

on-cells would be
√
Nφ̄(1− φ̄)/N = 0.006 in a biofilm with N = 230 × 35 = 8,050

cells. In our mechanistic model with correlations, we find that the standard deviation

is similarly small at 0.009. Because these values are much smaller than the observed

value of σφ = 0.07, we conclude that the experimental variability is not due to finite

size effects alone, and that it is necessary to explicitly incorporate variability into the

model.

To incorporate variability in the on-cell fraction, we draw φ for each lattice from

a Gaussian distribution with standard deviation σφ. Because we have found that

correlations have little effect on P (n), we set ρdiv = 0 from here on for simplicity.

The results are shown in Fig 5.6A, and we see that σφ has a significant effect on the

distribution. In particular, for the experimental value σφ = 0.07 (light green curve),

we see that the exponential rolloff at large n is removed, extending the range of the

power law out to n ∼ 103 as observed in the experiments [36]. The intuitive reason is

that a non-negligible fraction of lattices in the ensemble have φ values that are equal
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to or greater than φpow
c = 1/2. Because φ is higher in these lattices, they are more

likely to have large clusters. Therefore, these lattices dominate the distribution at

large n, eliminating the rolloff. Thus, variability in φ effectively widens the range of

mean φ̄ values at which a power law distribution is observed. We conclude that the

experimental variability in φ across biofilms is sufficient to explain the experimentally

observed power-law distribution.

Given that we also observe variability in φ within each biofilm, to a similar degree

as across biofilms, our results suggest that the cluster size distribution from each

biofilm individually should follow a power law without a significant rolloff. We test

this hypothesis in Fig 5.6B by plotting the data from [36] separately for each biofilm.

We see that indeed, the individual distributions follow a power law and do not exhibit

significant rolloffs. This result suggests that the mechanism we identify above, in

which variability widens the range of φ̄ values at which a power law distribution is

observed, also applies at the individual biofilm level. It also shows that the signaling

statistics are reproducible from biofilm to biofilm and thus constitute a plausible

feature that could be optimized for biological function, as suggested in our previous

work [36].

5.2.5 Model validation using mutant strain

How can our model be tested with further experiments? One approach is to inves-

tigate a system with a different fraction of on-cells and see if our model remains valid.

We previously investigated mutant strains with different on-cell fractions, including

the ∆trkA strain with φ̄ = 0.13 and σφ = 0.1 [36]. As seen in Fig 5.7A (light red

curve), basic percolation theory (ρdiv = 0, σφ = 0) predicts that a system with an

on-cell fraction of φ = 0.13 would have a distribution of cluster sizes P (n) that is

entirely exponential because 0.13 is much lower than φpow
c = 1/2.

However, the ∆trkA strain differs from the wild-type strain in that the fraction

of on-cells is not constant in space, but rather decreases along the signaling direction
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Fig. 5.7. Statistics of mutant ∆trkA strain. (A) We progressively in-
corporate into the model the on-cell fraction φ = 0.13 (light red), the
exponential decay of φ in space with lengthscale λ = 7 cells (dark red),
and the variability σφ = 0.1 across lattices (green); N = 103 lattices for
each. Resulting P (n) is a power law (green) despite the fact that 0.13 is
far below the critical fraction φpow

c = 1/2. (B) P (n) from ∆trkA data is a
power law whose exponent is consistent with the model (N = 7 biofilms).
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[13] with a characteristic lengthscale of approximately λ = 15 µm, or about 7 cell

lengths [36]. The reason for this decrease is likely that the signal is dying out due to

insufficient connectivity of the on-cells. Therefore, in the case of ∆trkA, the on-cell

fraction is sufficiently low that it is likely no longer fair to treat the ability to signal

and the act of signaling as equivalent. Because the experiments measure the latter,

we must incorporate the observed spatial decrease into the model. To do so, we allow

the on-cell fraction to vary as φ(y) = φ0e
−y/λ, where φ0 is set to ensure that the

spatial average of φ(y) is 0.13. We see in Fig 5.7A (dark red curve) that this feature

extends the distribution to larger cluster sizes n. The reason is similar to that given

above regarding variability: the portions of the lattice in which φ is large contain

large clusters, thereby enhancing the large-n region of the distribution. Nonetheless,

the distribution remains far from a power law in its shape. In particular, a clear

exponential rolloff at large n is evident.

If our main finding above is correct, namely that variability in φ across biofilms

is a crucial determinant of the shape of P (n), then we must also incorporate into our

model the variability σφ = 0.1 observed for the ∆trkA strain. Indeed, we find that

doing so has a major effect on the distribution (Fig 5.7A, green curve). Specifically,

it removes the exponential rolloff, resulting in a power-law distribution over almost

three decades. This is a strong prediction, considering that φ̄ = 0.13 is much lower

than φpow
c = 1/2, and that without variability the shape is far from a power law even

after accounting for the spatial dependence of φ.

To test this prediction, we measure the distribution of cluster sizes in the ∆trkA

biofilms (see Materials and methods). Remarkably, the result, shown in Fig 5.7B, is

a distribution that is roughly a power law over almost three decades, consistent with

the model prediction. Indeed, the power-law exponent of 2.08 estimated from the

model distribution via a maximum likelihood technique [49] (Fig 5.7A, green line) is

consistent with the slope of the experimental distribution (Fig 5.7B, green line). This

result validates our model. In particular, it supports the finding that variability of
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the signaling fraction across biofilms plays an important role in shaping the statistical

properties of the system.

5.3 Discussion

We have shown that experimentally observed features that go beyond the ba-

sic assumptions of percolation theory, including spatial correlations, variability, and

non-uniformity, can have important consequences for signal propagation in a bacte-

rial community. Using a mechanistic model that accounts for heritability in a cell’s

propensity to participate in signaling, we have found that signal correlations decrease

the fraction of participating cells needed to create a connected path, but have little

effect on the cluster statistics. In contrast, variability of the signaling fraction across

samples has a significant effect on the statistics, in particular producing a power-law

distribution of cluster sizes at signaling fractions lower than the expected critical frac-

tion from percolation theory. We have validated our model using a mutant strain,

in particular finding that both spatial decay and variability in the signaling fraction

play a crucial role in shaping the signaling statistics.

While it is clear that key observations in this system are consistent with the pre-

dictions of percolation theory (the fraction of signaling cells is very close to the per-

colation threshold and the cluster size distribution is a power law with the predicted

exponent [36]), the deviations of other observations from either the assumptions or

predictions of percolation are informative. In this sense we recognize that percolation

theory is a toy model. Searching for deviations from the toy model has allowed us in-

fer information about the biological mechanism, and then develop an enhanced model

of percolation that is more appropriate. The approach of extending percolation to

account for additional features has a long precedent in the literature, with variants

including explosive percolation, fractional percolation, correlated percolation, boot-

strap percolation, invasion percolation, and dynamical percolation [37, 50–52]. This

approach is particularly suitable for biological systems, where it is natural to expect
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that the complexities of growth and variability may lead to observable departures

from simple textbook models.

We found that incorporating the experimentally observed variability and non-

uniformity of the signaling fraction into the model was necessary to explain the ex-

perimentally observed cluster statistics, whereas incorporating the experimentally

observed spatial correlations in signaling was not necessary. This finding implies that

certain underlying cell-level features are important in determining population-level

statistical properties, whereas others are not. This categorization is consistent with

approaches from statistical physics, particularly the renormalization group, which re-

flect the powerful notion that some microscopic details are relevant for macroscopic

properties, whereas others are provably irrelevant [53]. Indeed, we explain our finding

that spatial correlations do not affect the cluster statistics using a renormalization ar-

gument (Fig 5.5), as well as more rigorous known results from statistical physics [48].

It will be interesting to see what other cell-level features are relevant or irrelevant for

capturing population-level phenomena in multicellular systems.

Finite-size effects play an important role in our results. In particular, our experi-

mental observation window is sufficiently short in the signaling direction (∼35 cells)

that spatial correlations in the signaling propensity have a measurable effect on the

connectivity (Fig 5.4). Yet, the window is wide perpendicular to signaling (∼230

cells), and thus the window area is sufficiently large that the spatial correlations have

little effect on the cluster size statistics. This choice of window size follows from

experimental constraints and the desire to focus on the short and wide biofilm edge,

where signaling is most important for function [13]. Nonetheless, it is an interesting

open question how the finite size and aspect ratio of the system set distinct thresholds

for the relevance of correlations to the connectivity and cluster statistics.

Dimensionality also plays an important role in our results. Because the biofilm

edge is where cell growth is most pronounced, it is quasi-two-dimensional. In fact,

biofilm formation itself can promote cell spreading via osmotic pressure gradients,

reducing biofilm thickness at the edge [25]. This is part of the reason that our experi-
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ments have focused on 2D monolayers of cells. However, the properties of percolation

theory depend critically on the dimensionality of the system [37]. In particular, the

percolation threshold is generally smaller in 3D lattices than in 2D lattices [54] be-

cause there are more available paths for the signal to take. This observation suggests

that a lower fraction of signaling cells is necessary in the bulk of the biofilm than

at its edge. This prediction is currently difficult to test, as the 2D nature of our

experiments is crucial for obtaining fluorescence data at the single-cell level.

The fact that spatial correlations lower the connectivity threshold in a finite system

may help explain why the biofilm has an on-cell fraction of φ = 0.43±0.02 [36]. Naive

percolation theory predicts a threshold of φconn
c = 1/2 [37], which the biofilm does

not meet. Accounting for finite-size effects lowers the threshold to φconn
c = 0.45 [36]

(Fig 5.4), which the biofilm barely meets. Accounting for correlations lowers the

threshold further to φconn
c = 0.4 (Fig 5.4), which the biofilm meets comfortably.

Thus, correlations provide some leeway between the necessary and observed signaling

fraction, which may enhance the reliability of signaling or make it robust to errors.

Although we observe spatial correlations in the signaling activity, and the results

are consistent with a model that assumes inheritance of the signaling state, the inher-

itance mechanism is unknown. B. subtilis cells maintain phenotypic states through

intracellular genetic networks that control the production of transcription factors [55].

Moreover, the inheritance of transcription factors and other proteins from parent cells

to daughter cells can maintain specific cell types for several generations, leading to

spatial correlation of cell types [56]. B. subtilis has even evolved the ability to control

the number of generations over which certain phenotypic states are maintained [57].

Such a mechanism could drive the inheritance in signaling state that we observe here:

the transcription factors regulating the expression or non-expression of ion channels,

for example, could be passed from mother to daughter.

The effect of spatial correlations is a general question that is fundamental to

understanding multicellular behaviors. The length scale of cell-to-cell signaling in

quorum sensing bacterial communities depends on the establishment of spatial corre-
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lations [38,58]. Moreover, the interplay of spatial heterogeneity and signaling length-

scale dictates the cooperativity of pathogenic Pseudomonas aeruginosa biofilms [59].

In eukaryotes, spatial correlations in cell-substrate interactions can drive collective

cell migration [60], which is a fundamental multicellular process in tissue develop-

ment [61] and wound healing [62].

Our study motivates further avenues of exploration in both statistical physics and

cell biology. In statistical physics, our study motivates more general investigations

of whether and how particular microscopic features affect macroscopic properties of

percolation. The effects of spatial correlations in the site occupation probability are

relatively well understood [50, 52, 63–66], whereas the effects of variability and non-

uniformity in the site occupation probability are still relatively open questions [67,68].

In cell biology, our study builds on previous work [18, 36, 39–43] that demonstrates

the utility of percolation theory as a quantitative and predictive description of mul-

ticellular phenomena. It will be interesting to see in what biological systems ideas

from percolation theory will provide useful insights next.

5.4 Materials and methods

5.4.1 Analysis of experiments

Computation of correlation function

To compute correlation functions, we first thresholded ThT images so that they

were binary: biofilm regions above the ThT threshold would appear white and sub-

threshold regions would appear black. We then applied a 2-pixel radius median filter

to thresholded images so that clusters of on-cells became contiguous white regions.

From this image, we created a 2D autocorrelation plot using the ImageJ command

FD Math. The resulting plot was mean-subtracted and normalized such that the

origin had a value of 1 and decayed to 0 away from the origin (see source code for

the Radially Averaged Autocorrelation ImageJ plugin for further details).
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To compute the radial autocorrelation curves (Fig 5.1C), we took a radial average

of this 2D correlation plot. For x and y correlation curves, we took profiles of the

correlation plot along the x and y axes, respectively.

To construct randomized images for such correlation computations, we took seg-

mented biofilm images and randomly assigned a fraction of cells to be on and made

them white. We then computed the autocorrelation curve on these images the same

way as with the experimental images.

Lineage tracing for ρdiv

To determine ρdiv, we tracked individual cell lineages over time within biofilms

using the mTrackJ imageJ plugin [69]. For each lineage, we recorded the firing state

(i.e. on or off) of the parent cell and the daughter cells. Using many lineages, we

computed the conditional probabilities p(on|on), p(on|off), p(off|on), and p(off|off).

We then computed the order parameter ρdiv using Eq 5.2.

Spatial analysis for ρadj

To determine ρadj, we segmented cells in static images taken during signal pulses

and determined the firing state of each cell (i.e. on or off). Because the electrical

signal propagates in the direction of cell growth, cells are generally oriented along the

signaling direction (Fig 5.1B). The adjacent cell in each case was defined as the cell

whose bottom edge was closest to the given cell’s top edge, and whose centroid was

within half the average cell width. We then computed the conditional probabilities

p(on|on), p(on|off), p(off|on), and p(off|off) for the firing state of a cell given the state

of the adjacent cell. We then computed the order parameter ρadj using Eq 5.2.
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Image analysis for ∆trkA

We evaluated the cluster size distribution for ∆trkA biofilms in Fig 5.7B by first

segmenting single biofilm cells in phase images using the Trainable Weka Segmen-

tation plugin in ImageJ. We then thresholded the corresponding ThT images as de-

scribed in the above section on computing correlation curves. Each contiguous white

region in the thresholded image was a cluster of on-cells. We then counted how many

segmented cells had the majority of their area within each cluster. The curve in Fig

5.7B plots the normalized histogram of these cluster sizes.

5.4.2 Theoretical methods

Mechanistic model

To derive Eqs 5.3 and 5.4, we require that the fraction of on-cells is φ at each step

in the growth process. Specifically, the rules of probability state that

p(d) =
∑
m

p(d,m) =
∑
m

p(d|m)p(m), (5.7)

where d is the signaling state (on, off) of the daughter, and m is the signaling state (on,

off) of the mother. Taking d = on and requiring that p(on) = φ and p(off) = 1 − φ,

Eq 5.7 becomes

φ = p(on|on)φ+ p(on|off)(1− φ). (5.8)

Solving for φ, we obtain

φ =
p(on|off)

1 + p(on|off)− p(on|on)
. (5.9)

Combining this equation with Eq 5.2 and solving for the conditional probabilities, we

obtain Eqs 5.3 and 5.4.
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Differential growth rates

We previously observed that signal participation reduces the cell elongation rate

[36], implying that on-cells grow more slowly than off-cells. Specifically, Fig 1B of [36]

shows that the elongation rate is reduced by a factor of about 4 at peak signaling

activity. On-cells signal for about 20 minutes (Fig 4E of [36]), whereas pulses occur

every 80 minutes or so (Fig S4 of [36]). Therefore the net growth rate ratio of on-cells

to off-cells is approximately γ = (1/4)(20/80) + (1)(60/80) ≈ 80%.

To incorporate this feature into the model, we take the mean division time to

be τ̄ and τ̄ /γ for off-cells and on-cells, respectively. Differential growth rates change

the resulting fraction of on-cells in the lattice, and therefore Eqs 5.3 and 5.4 must be

modified to maintain this fraction at φ. Specifically, using the shorthand q ≡ p(on|on)

and r ≡ p(on|off) and recognizing that p(off|on) = 1 − q and p(off|off) = 1 − r, the

deterministic dynamics of the number of on- and off-cells are

ṅon = γqnon + rnoff , (5.10)

ṅoff = γ(1− q)non + (1− r)noff , (5.11)

where time is scaled by τ̄ . At long times, the larger of the two eigenvalues of this

linear dynamical system is

λ+ =
1

2

[
1 + γq − r +

√
(1 + γq − r)2 − 4γ(q − r)

]
, (5.12)

and the ratio of the two components of the corresponding eigenvector gives the ratio

of non and noff . Setting the ratio of non and non + noff to φ obtains

φ =
r

λ+ + r − γq
. (5.13)

Note that taking γ = 1 makes λ+ = 1, and Eq 5.13 recovers Eq 5.9. Combining Eqs

5.12 and 5.13 with ρ = q − r (Eq 5.2) and solving for q and r obtains

p(on|on) = φ+
ρ(1− φ)

1− (1− γ)φ
, (5.14)

p(on|off) = φ− γφρ

1− (1− γ)φ
. (5.15)
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These expressions replace Eqs 5.3 and 5.4, respectively. This derivation ignores the

differential crowding effects in the simulation due to the differential growth rates, but

for φ = 0.43, ρ = 0.38, and γ = 0.8 we still find that the resulting fraction of on-cells

in the lattice is 0.428± 0.009, which includes 0.43 within error.

In this model with differential growth rates, we find that all of the predictions of

Fig 3 remain unchanged: the correlation lengths in both the x and y directions are

significantly larger than random (p < 0.001 for both), and ρadj = 0.19 ± 0.02, which

actually now agrees with the measured 0.17 within error.

Renormalization argument

To derive Eqs 5.5 and 5.6, we recognize that the conditional probability of the

daughter given the mother after one round of decimation is the conditional probability

of daughter given the grandmother before the decimation. Again using the rules of

probability, we write the latter as

p(d|g) =
∑
m

p(d,m|g) =
∑
m

p(d|m, g)p(m|g), (5.16)

where g is the signaling state (on, off) of the grandmother. The spatial Markovian

assumption states that d is conditionally independent of g given m. Therefore we

have p(d|m, g) = p(d|m), and Eq 5.16 becomes

p(d|g) =
∑
m

p(d|m)p(m|g). (5.17)

Setting d = on and g = on gives Eq 5.5. Setting d = on and g = off gives Eq 5.6.

To derive the relation ρ1 = ρ2 below Eq 5.6, we insert Eqs 5.5 and 5.6 into the

definition ρ1 = p1(on|on) − p1(on|off). Again using the shorthand q ≡ p(on|on) and

r ≡ p(on|off) and recognizing that p(off|on) = 1 − q and p(off|off) = 1 − r, this

insertion obtains

ρ1 = q2 + r(1− q)− qr − r(1− r) = q2 − 2qr + r2 = (q − r)2. (5.18)

Because ρ = q − r (Eq 5.2), we see that ρ1 = ρ2.
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6. SPIRAL WAVE PROPAGATION IN COMMUNITIES

WITH SPATIALLY CORRELATED HETEROGENEITY

Parts of this chapter have been submitted for publication as X. Zhai, J. W. Larkin,

G. M. Süel, A. Mugler, “Spiral wave propagation in communities with spatially cor-

related heterogeneity.”

Excitable wave propagation is ubiquitous in multicellular communities. How-

ever, the effects of cell-to-cell heterogeneity on excitable wave propagation are still

poorly understood. I̊n particular, in many multicellular communities such as bacte-

rial biofilms the heterogeneity is spatially correlated along the signal direction. Here

we ůse an excitable wave model to investigate wave propagation in communities with

correlated heterogeneity. Surprisingly, we find that correlations can either promote

or suppress the formation of spiral waves, depending on the excitation timescale. We

explain this and related phenomena using a combination of minimal mathematical

modeling, dynamic simulations, and percolation theory. Our work sheds light on how

cell-level spatial statistics affect community-level signaling dynamics, and expands

the understanding of wave propagation in heterogeneous media.

6.1 Heterogeneity and spiraling in biological systems

Collective behaviors are omnipresent in natural systems. They exist in diverse

systems such as animal flocking, microbial colony formation and synchronization,

traffic jamming, and social segregation in human populations [70–74]. Many of these

systems span a hierarchy of scales and complexity, but the collective behavior at

larger scales can often be understood without knowledge of many details at smaller

scales [75–78]. This coarse-grained approach is often used to describe communities
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where a directed signal travels from agent to agent to serve a function, which permits

connections to reaction-diffusion systems of excitable media [79].

Directed signal propagation in multicellular communities is an important and

commonly observed phenomenon. In the nervous system, a neuron passes an elec-

trochemical signal to another neuron directly through a synapse. In a biofilm of

Bacillus subtilis bacteria, the interior cells transmit an electrochemical wave to the

periphery to mediate the metabolic activity [5,13]. In pancreatic islets, gap junction

coupling mediates electrical communication between cells [42]. The social amoebae

Dictyostelium discoideum communicate via the signaling molecule cyclic adenosine

monophosphate (cAMP) to coordinate aggregation [75].

Heterogeneity in these communities may pose a challenge to directed wave propa-

gation. The stochastic expression of genes leads to non-uniform protein distributions

across cells in a population. As a result, cells have heterogeneous responses to the

wave propagation, and obstacles are naturally generated. For example, in the biofilm,

a fraction of cells do not participate in the signal transmission, which can cause prop-

agation failure [36, 80]. In cardiac cells, cell death can result in large patches of

non-conductive tissue [81, 82], which are related to heart disease such as fibrosis and

ischemia [81,83]. Heterogeneities play an important role in deciding the wave pattern

and result in a variety of wave behaviors, including wave death and spirals [82]. How-

ever, the impact of heterogeneity on wave propagation is still not fully understood.

The influence of heterogeneity on wave propagation has been investigated exper-

imentally using cell monolayers [84] and patterned chemical systems [85–87], and

theoretically using the FitzHugh-Nagumo model and cellular automata models [81].

When the length scales of the heterogeneities in the medium are close to the length

scales associated with the propagating front, propagating waves can develop breaks,

which can either block wave propagation or cause spiraling [81]. There are several

mechanisms to explain the formation of spirals. For example the heterogeneity of

the reaction field can stochastically generate unidirectional sites, which can induce

spirals [82]. Spiral waves can also form as a result of an interaction between chemical
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waves [88,89]: when a chemical wave comes close to another wave from the back, part

of the wave vanishes because of the refractory region of the preceding wave, and as a

result spiral cores are formed.

Spiral waves can be either beneficial or detrimental to function. For example,

spiral reentry of the action potential can induce heart failure [90,91], whereas a spiral

pattern formed on the nest of honeybees is an effective protection mechanism [92].

Therefore it is important to understand the formation of spiral waves in order to

better understand community-level function in living systems.

Here we focus on excitable wave propagation in a two-dimensional heterogeneous

community. We use a minimal FitzHugh-Nagumo-type model to describe the ex-

citability of cells and introduce heterogeneity in the model parameters. Our model

predicts three dynamic regimes (directed propagation, wave death, and spiraling), and

we demonstrate how these regimes depend on the heterogeneity. We then introduce

spatial correlations in the heterogeneity, which naturally arise due to lineage-based

inheritance and cell-to-cell interactions [80]. Intuitively, one expects correlations to

cause channeling and therefore promote directed propagation, and we indeed find

this result in particular parameter regimes. However, we also find in other parameter

regimes that correlations promote the emergence of spiral waves, a surprising feature

that we explain by distinguishing between two different spiraling mechanisms. Finally,

we characterize the dependence of the spiral period on the degree of heterogeneity in

the system using percolation theory. Our results suggest that the spatial structure of

cell-to-cell heterogeneity can have important consequences for signal propagation in

cellular communities.

6.2 Materials and methods

We construct an integrated model combining the FitzHugh-Nagumo (FN) model

[93,94] and spatial heterogeneity. We use the FN model to describe the excitation of

a single cell, which is coupled to its four neighbors in a square lattice. Heterogeneities
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are introduced by randomly assigning each cell to be “on” or “off” which determines

its parameter values (Fig. 6.1), as described below.

6.2.1 Excitable wave model

Hodgkin and Huxley proposed the first quantitative mathematical model to de-

scribe action potential propagation through very careful experimentation on the squid

giant axon [95]. Modifying the Hodgkin and Huxley model for excitable media,

FitzHugh and Nagumo established a partial differential equation model of two vari-

ables [93,94]. The FN model is a simplified variant of the Hodgkin and Huxley model,

which traces the fast-slow dynamics of an excitable system [96].

Fig. 6.1. Excitable wave propagation model in a two-dimensional het-
erogenous medium. (A) We evolve the dynamics on a 100 × 100 square
lattice. A wave is triggered by the central 6 by 6 cells and propagates
outward to the edges (cyan). (B) To introduce the heterogeneity, each
cell is randomly assigned to be “on” (small τ) or “off” (large τ). Cyan
indicates cells undergoing an excitation (u→ 1), whereas on and off refer
to the propensity of a cell to fire, regardless of its current value of u.
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We use a minimal FitzHugh-Nagumo-type model [97] to describe excitable wave

propagation in a two-dimensional heterogeneous community. This minimal model is

dui
dt

= ε[u2
i (1− ui)− wi] +

∑
j∈N (i)

(uj − ui), (6.1)

dwi
dt

=
1

τ
ui, (6.2)

where i indexes the cells, and N (i) denotes the four neighbors of cell i. The variables

u and w are often called the excitation and recovery variables, respectively. The

parameters in this reaction-diffusion system are the excitation strength ε, which when

sufficiently high supports pulse-coupled wave propagation [98], and the recovery time

τ , which sets the pulse duration of the signal and thus governs the dynamics. The

second term in Eq. 6.1 is a discretized Laplacian term to account for the cell-cell

communication. The minimalistic nature of this model promotes the interpretation

of dynamics for single cells in excitable media.

In all dynamical simulations, cells in the center are initialized with u = 1 to trigger

the excitable wave; all other cells are initialized with w = 0 (Fig. 6.1A). We use a

square lattice of 100×100 cells with absorbing boundaries on four sides. To evolve the

dynamics, we discretize the FN model in time using the fourth-order Runge-Kutta

method with time step ∆t = 0.02. We have checked that the simulation results are

qualitatively the same with ∆t = 0.0001, 0.001, and 0.01, but qualitatively change

with a time step of ∆t = 0.1, which justifies our choice of ∆t on the order of 0.01.

6.2.2 Introduction of heterogeneity

We start with a homogeneous community (all cells have the same parameter val-

ues), and set the parameters in the following way to support directed propagation.

The excitation strength ε must be larger than 1 because otherwise diffusion outpaces

excitation and washes away the signal; therefore we set ε = 10 [36]. This places the

model in a diffusion-limited regime, which is consistent with signaling in the biofilms

of Bacillus subtilis [13]. We find that the recovery time τ needs to be sufficiently large
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(τ > 7) because otherwise the excitation is too short-lived to trigger its neighbors

with ε = 10.

To introduce heterogeneity, we must choose (i) the parameter to which hetero-

geneity will be introduced, and (ii) the distribution from which the parameter values

will be drawn. For the parameter, we choose τ (we find that choosing ε has little effect

and the wave always propagates). For the distribution, we use a binary distribution

for heterogeneity in the parameter τ : each cell has probability φ to be on with τon > 7,

and probability 1−φ to be off with τoff = 5. Here we compare this distribution to two

others, a log-uniform and a lognormal distribution (both ensure that τ stays positive),

in terms of the resulting wave dynamics. To compare all distributions on equal foot-

ing, we plot the dynamic phases in the space of the distribution’s mean and standard

deviation. We see in Fig. 6.2 that the phase diagram of wave death (blue), radial

propagation (green), and spirals (red) are qualitatively similar in all three cases. We

conclude that the relationship between wave dynamics and heterogeneity is largely

independent of the distribution from which the heterogeneity is drawn in our model.

Therefore we focus only on binary heterogeneity in what follows.

6.2.3 Spatial correlations

We introduce radially directed spatial correlations using the following procedure.

First, we randomly assign the cells in the central 6 by 6 grid to be on with probability

φ, and off otherwise. Then, for each cell with unassigned neighbors (in random order),

we choose a neighbor at random. With probability ρ we assign the neighbor to the

same on/off state as the original cell. Otherwise, we assign the on/off state from the

binary distribution. We repeat these steps until all cells are assigned. Therefore, ρ is

the probability that a cell has the same on/off state as its radially inward neighbor, as

opposed to being randomly assigned. In the limit of ρ = 0, the on-cells are randomly

distributed in the excitable medium. Conversely, in the limit of ρ = 1, radii of

perfectly correlated on or off-cells extend from the center to the periphery of the
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Fig. 6.2. Phase diagrams in the parameter space of mean and standard
deviation with three different choices for the distribution of τ values: (A)
binary, (B) log-uniform, and (C) lognormal. We see that the structure of
the phase diagram is largely insensitive to the choice of distribution.
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Fig. 6.3. Example lattices as in Fig. 6.5A, but for the full range of values
0 ≤ ρ ≤ 1.

excitable medium. Thus, ρ serves as an order parameter for the system. Examples

of lattices with ρ values from 0 to 1 are shown in Fig. 6.3.

6.3 Results

6.3.1 Heterogeneity produces three dynamic regimes

First we focus on uncorrelated heterogeneity (ρ = 0). As we vary the fraction

of on-cells φ and their response timescale τon, we find three dynamic regimes, which

we denote wave death, radial propagation, and spiral (Fig. 6.4). Wave death means

that the wave dies (u→ 0) before reaching any edge (Fig. 6.4A). Radial propagation

means that the wave propagates from the center to the edge (Fig. 6.4B). Spiral means

that the wave forms a spiral pattern and can survive indefinitely (Fig. 6.4C). We
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distinguish between radial propagation and spiral using the following criterion: if each

cell undergoes at most one excitation we define the dynamics as radial propagation;

otherwise we define the dynamics as spiral.

For ρ = 0 (Fig. 6.5A, left), the phase diagram of these dynamic regimes in the

space of φ and τon is shown in Fig. 6.5B (left). We see that for sufficiently small φ,

there are not enough on-cells to support the excitable wave; the wave cannot transmit

Fig. 6.4. Examples of the three dynamic regimes. No spatial correlations
are present (ρ = 0). Brightness is proportional to signal strength u,
showing wavefront (cyan, u → 1) and refractory wave back (black, u <
0). (A) Wave death: signal dies before reaching any edge. (B) Radial
propagation: wave propagates to edge and is absorbed at boundaries. (C)
Spiral: wave spins back on itself and persists indefinitely; white arrow
indicates spiral head. Here φ = 0.22 and τon = 281 in A, φ = 0.49 and
τon = 49 in B, and φ = 0.49 and τon = 281 in C.
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Fig. 6.5. Correlated heterogeneity can either suppress or promote spiral
waves. (A) With no correlation (ρ = 0, left), on-cells are randomly dis-
tributed in the medium. Radial correlation (ρ = 0.75, right) produces
channels of on-cells. Here φ = 0.46. (B) Correlation suppresses spiraling
at large τon (top red regime) but promotes spiraling at small τon (bot-
tom light red regime). We refer to these subregimes as secondary spirals
and breakup spirals, respectively. Phase diagrams in B contain 20 trials;
spiral phase means that a spiral was observed in at least one trial, and
otherwise we label with wave death or radial propagation, whichever is
more frequent (see Fig. 6.6 for frequencies of all phases). Labels C-F in
B correspond to the dynamics shown in panels C-F. White arrows in C-F
indicate spiral head.
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Fig. 6.6. Data used to plot phase diagrams in Fig. 6.5B. Color shows, at
each point, the number of trials out of 20 that fall into each of the four
dynamic regimes.

to the edge, resulting in wave death (blue). In contrast, for intermediate and large φ

there are enough on-cells to support the wave, and we have mostly radial propagation

(green). However, for a specific range of φ and when τon is sufficiently large, the wave

becomes long-lived, and we see that this gives rise to spiraling (red; the difference

between red and light red will be discussed below).
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6.3.2 Spatial correlation can either suppress or promote spiraling

Next, we investigate the effects of spatially correlated heterogeneity (ρ > 0).

Correlation can occur, for example, if excitation properties are inherited from cell to

cell as the cells grow radially outward to form the community [80]. Radial correlation

creates channels of on-cells, as seen in Fig. 6.5A (right) for ρ = 0.75 (see Fig. 6.3 for

other values of ρ). Intuitively, we would expect that channeling should promote radial

propagation and suppress spiraling. However, we find that it can either suppress or

promote spiraling depending on the parameter regime. Specifically, as seen in Fig.

6.5B, the top portion of the red spiral regime in the phase diagram shrinks compared

to the ρ = 0 case, as expected, whereas the bottom portion of the red spiral regime

expands (Fig. 6.5B, right, light red). The latter is a surprising feature because one

expects channeling to be beneficial to radial propagation and thus detrimental to

spiraling.

Because of the different responses to correlated heterogeneity, we hypothesize that

spirals in the top and bottom portions of the spiral regime are formed by different

mechanisms. To investigate this hypothesis, we focus on specific examples within

these regimes (see the labels C-F in Fig. 6.5B, which correspond to Fig. 6.5C-F).

In the top regime, when the heterogeneity is uncorrelated, we see in Fig. 6.5C that

some cells remain on after the wave has passed. These cells then trigger secondary

excitations that become spirals. We therefore refer to these spirals as secondary

spirals. When the heterogeneity is correlated, we see in Fig. 6.5E that these secondary

spirals are suppressed by the channeling effect, and the wave propagates radially via

the channels.

In the bottom regime, when the heterogeneity is uncorrelated, we see in Fig. 6.5D

that the wave propagates radially. However, when the heterogeneity is correlated, we

see in Fig. 6.5F that spirals form. The formation mechanism is different here than it

is for the secondary spirals. Here, when the wavefront confronts a barrier of off-cells

between channels, the wavefront breaks. Broken pieces of the wavefront then become
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spirals. We therefore refer to these spirals as breakup spirals. Because the channeling

is what causes the breakup, breakup spirals are enhanced by correlated heterogeneity,

in contrast to secondary spirals.

To make this distinction quantitative, we define the following criterion. In the

time before the first excitation of a boundary cell occurs, if the fraction of cells that

undergo an excitation is more than (less than) the fraction of on-cells φ, then we

define the spiral as secondary (breakup) and color that point red (light red). The

reason for this definition is that secondary spirals generally form after the passage

of a radial wavefront that initially excites most cells (Fig. 6.5C), whereas breakup

spirals generally form from a broken wavefront that initially excites only some on-

cells (Fig. 6.5F). Using this definition, we see a clear distinction between secondary

spirals at ρ = 0 (left, red) and breakup spirals at ρ = 0.75 (right, light red). At

intermediate ρ values, we see that as one type of spiral regime shrinks, the other one

grows, as expected (see Fig. 6.7). These results demonstrate that the distinct spiral

mechanisms we identify qualitatively are quantitatively supported by the data.

We can now understand why secondary spirals form at large τon, whereas breakup

spirals form at small τon (Fig. 6.5B). τon sets the timescale for the excitation, including

the refractory period. For a secondary spiral to form, large τon is necessary because

this allows some of the on-cells—specifically, those that are surrounded by other on-

cells—to remain excited long after the wave has passed. In contrast, for a breakup

spiral to form, small τon is necessary because this means that the cells near the broken

piece have already completed their refractory period. They are able to become excited

again, which allows propagation of the breakup spiral.

6.3.3 Dependence of spiral period on anchor size

Our investigation of specific examples in Fig. 6.5C-F suggests that when spirals

form, they circulate around clusters of off-cells in the medium, which we refer to as

anchors. We will specifically test this hypothesis in the next section. Here, however,
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Fig. 6.7. Phase diagrams as in Fig. 6.5B, but for intermediate value of ρ.
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Fig. 6.8. Simplified example to investigate spiral period. (A) A circular
off-cell anchor (black) with diameter d is surrounded by on-cells (white).
Cells are initialized to trigger a counter-clockwise spiral, shown in B. (C)
Period T as a function of d with various values of τ .

we first consider a simplified example to investigate the relationship between anchor

size and spiral period. In Fig. 6.8A, a circular off-cell anchor with diameter d is

surrounded by on-cells. The two central columns of cells above the anchor are initiated

with u = 1 to trigger the wave, and w = 0.2 (a refractory state) to prevent wave

propagation to the right, respectively. As a result, a spiral forms that travels around

the anchor in a counter-clockwise direction (Fig. 6.8B).
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In a homogeneous medium, the speed of a wave propagating according to Eqs. 6.1

and 6.2 is known [97] in the limit of τ → ∞ to be v =
√
ε/2. Because the distance

that the spiral travels around the anchor is πd, the period of rotation is T = πd/v, or

T =
πd√
ε/2

. (6.3)

Fig. 6.8C shows a test of this prediction in our simple example. We see that the mea-

sured period approaches the predicted period as τ increases, as expected. However,

we see that the measured period remains larger than the predicted period, even for

large τ . This is because the spiral head propagates at a slower speed than a radial

wave would. Indeed, we have estimated in the secondary spiral regime of our het-

erogenous lattices (Fig. 6.5B left, φ = 0.49, τon = 281) that spiral heads propagate

about 15% slower than the initial radially propagating wavefront.

We also see in Fig. 6.8C a deviation from the prediction for small d when τ is

large, which can be understood as follows. When the anchor size is small enough that

the period is less than the recovery time τ , the wavefront is disrupted by the previous

wave back. That is, the spiral head returns to its starting point before the cells at

that point have completed their recovery. The progress of the spiral is delayed by the

completion of the recovery, which increases the period. Quantitatively, this condition

will occur when the predicted period in Eq. 6.3 is larger than τ , which sets a value of

d > τ
√
ε/2/π below which the prediction should fail. For example, with τ = 42 and

ε = 10, we expect a deviation below d ≈ 30, which is consistent with Fig. 6.8C (red

curve).

6.3.4 Dependence of spiral period on heterogeneity

In the heterogeneous system, the anchors consist of the naturally occurring clusters

of off-cells. The spatial statistics of these clusters are given by percolation theory [99],

which describes the probabilistic and connectivity properties of regular lattices in

which each site is either on or off. Therefore, the goal of this section is to use per-

colation theory to investigate how the heterogeneity parameters φ and ρ affect the
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spatial structure of the community and in turn, the spiral dynamics. Percolation

theory has been recently used to describe wave propagation in various multicellu-

lar systems, including electrical signaling in bacterial biofilms [36, 80] and neuronal

populations [18, 39–41], quorum sensing in bacterial communities [38]. calcium wave

propagation in pancreatic islets [42], and hydrodynamic waves in aquatic cells [100].

Intuitively we expect that at any ρ, the spiral period is a monotonically decreasing

function of φ because the off-cell clusters shrink with φ. To make this expectation

quantitative, we turn to percolation theory. Two-dimensional percolation theory on

a square lattice applies when ρ = 0 and predicts a critical threshold φc ≈ 0.59,

above which there exists a giant on-cell cluster spanning the medium. We expect this

regime to be dominated by radial propagation. Conversely, below a complementary

threshold of φ = 1 − φc ≡ pc ≈ 0.41, there exists a giant off-cell cluster. We expect

this regime to be dominated by wave death. Indeed, we see in Fig. 6.5B (left) that,

roughly speaking, radial propagation occurs for φ > φc, wave death occurs for φ < pc,

and spirals occur within pc < φ < φc. These regimes are rough because percolation

theory accounts for the static structure of the lattice but not the excitable dynamics.

Near either percolation threshold, percolation theory provides scaling relations for

the cluster properties. Therefore, we use percolation theory to understand how the

anchor size scales with φ. Specifically, above pc, the mean off-cell cluster size scales

as [99]

noff ∼ (φ− pc)−γ (6.4)

where γ = 43/18 ≈ 2.39. We confirm this scaling with progressively larger lattice

sizes in the inset of Fig. 6.9A. We see that the mean anchor size is indeed a decreasing

function of φ.

The period should depend on the circumference of the off-cell cluster being cir-

culated. To the extent that the fractal dimension [99] of the off-cell cluster is near
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Fig. 6.9. Dependence of spiral period on heterogeneity parameters with
predictions from percolation theory. (A-D) Uncorrelated heterogeneity
(ρ = 0). A shows period T vs. fraction of on-cells φ predicted by two-
dimensional percolation theory and computed from simulations. Predic-
tion fails as described in text and illustrated in B-D. Inset confirms scaling
prediction of percolation theory for various N×N system sizes. B-D show
examples (labeled in A) of spiral dynamics (cyan, trace of spiral head; see
Fig. 6.10 for full spiral in C) and anchoring cluster(s) of off-cells (in D
there are many clusters, distinguished by color). (E-G) Strongly corre-
lated heterogeneity (ρ = 0.95). E is as in A but with one-dimensional
percolation theory to describe quasi-one-dimensional clusters. Prediction
succeeds at large φ. I̊nset: Squared deviation between prediction and sim-
ulation as a function of φ and ρ. Data smoothed using two-dimensional
Gaussian filter with standard deviation 0.04. F and G are as in B-D. In
A-D, τon = 240; in E̊ (inset), F, and G, τon = 9. In A and E, period is
calculated as average time between excitations (u > 0.6) from cases out
of 1000 trials where spiraling occurred; error bars are standard error.
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Fig. 6.10. Cumulative path of spiral head (cyan) and instantaneous ex-
cited cells that make up spiral (red) at various times, corresponding to
Fig. 6.9C. For clarity, we color excited cells red to distinguish them from
cyan path, and we do not show other cells.

two (at φ = pc it is 91/48 ≈ 1.90), the mean circumference should be roughly π
√
noff .

Therefore, following Eq. 6.3, we predict that the spiral period should be

T =
π
√
noff√
ε/2

. (6.5)

This prediction is shown in Fig. 6.9A (cyan dashed line), where noff is computed

numerically. Above φ = pc we see the power-law decay from percolation theory, while

below φ = pc the divergence of noff and thus T is prevented by the finite size of

the lattice. We then compare this prediction to the dynamic simulation results by

plotting the average spiral period (cyan data points in Fig. 6.9A). We see for both

the prediction and the simulation results that T decreases with φ as expected, but

that otherwise the agreement is poor.

To understand the deviation between the prediction and the simulations, we in-

vestigate the dynamics of individual spirals at various values of φ. We plot the path of

the spiral head over a full period (Fig. 6.9B-D; see Fig. 6.10 for an example of the full

spiral). When φ < pc (Fig. 6.9B), the giant off-cell cluster spans the whole system.
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In contrast, the spiral typically circulates only a small part of the cluster. Therefore

the observed period is less than predicted, as seen in Fig. 6.9A. When φ ≈ pc (Fig.

6.9C), the spiral typically circulates the bulk of a single off-cell cluster. The spiral

avoids the fractal “arms” of the cluster, but the cluster is also not maximally dense.

These two effects compensate, such that the predicted and observed periods generally

agree. When φ > pc (Fig. 6.9D), the mean off-cell cluster size is small, but the spiral

typically circulates multiple nearby clusters. Therefore the observed period is greater

than predicted, as seen in Fig. 6.9A.

Thus, we conclude that with uncorrelated heterogeneity (ρ = 0), percolation the-

ory confirms that the spiral period decreases with the on-cell fraction, but it does not

provide quantitative predictions due to the fact that it cannot capture the details of

the propagation dynamics. What about highly correlated heterogeneity, when ρ is

large?

Standard percolation theory assumes ρ = 0 and therefore does not apply for

general ρ. However, when ρ is very large (ρ→ 1), the off-cell clusters become highly

distended in the radial direction due to the correlation. Therefore, they become quasi-

one-dimensional, and we may expect that tools from one-dimensional percolation

theory [99] could provide a predictive understanding. Indeed, if we consider any

radius of the system as a one-dimensional lattice, we can calculate, for a randomly

chosen off-cell in that lattice, the mean length of the chain of off-cells of which it is a

member.

Considering any radius of the system as a one-dimensional lattice of L cells. De-

note the center and edge of the radius as the left and right end of the lattice, respec-

tively. Calling any cell in this lattice a “mother” cell m, and its rightward neighbor
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a “daughter” cell d, the conditional probabilities P (d|m) of the state of the daughter

given the state of the mother are

P (d = on|m = on) = ρ+ (1− ρ)φ, (6.6)

P (d = off|m = off) = ρ+ (1− ρ)(1− φ), (6.7)

P (d = on|m = off) = (1− ρ)φ, (6.8)

P (d = off|m = on) = (1− ρ)(1− φ). (6.9)

In Eqs. 6.6 and 6.7, the daughter is guaranteed to be in the same state as the mother

with probability ρ (first term), and with probability 1 − ρ it could also be in the

same state by chance, either on with probability φ or off with probability 1 − φ,

respectively (second term). In Eqs. 6.8 and 6.9, the daughter is in the opposite

state as the mother, which requires both anti-correlation with probability (1−ρ) and

selection of the opposite state by chance with probability φ or 1− φ, respectively.

Given these conditional probabilities, we calculate the probability qs that a ran-

domly chosen cell is at the left end of a chain of off-cells of size s. It must be off with

probability 1 − φ, its mother must be on with probability P (m = on|d = off), the

next s − 1 rightward cells must be off with probability P (d = off|m = off), and the

next cell after that must be on with probability P (d = on|m = off), giving

qs = (1− φ)P (m = on|d = off)

× P (d = off|m = off)s−1

× P (d = on|m = off) (6.10)

= φ2(1− φ)(1− ρ)2[ρ+ (1− ρ)(1− φ)]s−1. (6.11)

The second step follows from Eqs. 6.7 and 6.8 and Bayes’ theorem,

P (m = on|d = off) =
P (m = on)P (d = off|m = on)

P (d = off)

=
φ(1− ρ)(1− φ)

1− φ
= φ(1− ρ), (6.12)

where we have used Eq. 6.9.
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The probability qs is equivalent to the number Ns of chains of size s, divided by

the lattice size L. Similarly, the probability that a randomly chosen cell is a member

of a chain of size s (not just the left end) is Nss/L. Finally, the probability Ps that

a randomly chosen cell is a member of a chain of size s, given that it is an off-cell, is

Nss/L divided by the probability of being an off-cell, 1− φ. Therefore, we have

Ps =
qss

1− φ
. (6.13)

Thus, the mean length of a chain containing a randomly chosen off-cell is

n1D
off =

∞∑
s=1

Pss =
1

1− φ

∞∑
s=1

qss
2 =

2

(1− ρ)

1

φ
− 1, (6.14)

as in Eq. 6.14, where we have used Eq. 6.11 and the properties of a geometric series.

Note that the mean chain size decreases with φ and increases with ρ until diverging

for ρ→ 1, as expected.

The circumference of the chain (ignoring the ends) is twice this length, such that

the predicted spiral period is

T =
2

v(τon)

[
2

(1− ρ)

1

φ
− 1

]
. (6.15)

F̊or v(τon) we use the radial wave speed measured in a uniform lattice of on-cells with

τ = τon instead of the large-τ approximation
√
ε/2 because τon is constrained to be

small as discussed below.

When φ is small, there are many off-cells in the system. Chains of off-cells from

neighboring radii will fall next to each other, the quasi-one-dimensional nature of the

clusters will be lost, and we expect this analysis to fail. On the other hand, when

φ is large, chains of off-cells will be rare, and we expect this analysis to be valid.

Therefore, we expect Eq. 6.15 to hold at large ρ→ 1 and large φ→ 1.

The prediction in Eq. 6.15 is compared with simulations in Fig. 6.9E for ρ = 0.95

(main panel). As expected, we see that the prediction fails at small φ but succeeds at

large φ. Indeed, as seen in Fig. 6.9F, at small φ, chains of off-cells from neighboring

radii fall next to each other, and the clusters are no longer quasi-one-dimensional. In
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contrast, as seen in Fig. 6.9G, at large φ, the clusters quasi-one-dimensional and well

separated, and the spiral generally circulates one of the clusters.

To check that the agreement between the prediction and simulations holds beyond

the particular choice of parameters in Fig. 6.9E (main panel), we perform a more

comprehensive exploration of the parameter space, defined by ε, τon, ρ, and φ. We

find that spiral formation is highly sensitive to the value of ε. This makes intuitive

sense because if ε is too small then diffusion outpaces excitation and the wave cannot

propagate; whereas if ε is too large then propagation is too fast and only radial waves

form. These constraints confine us to the regime of our current value ε = 10.

W̊ith regard to τon, the relevant range is constrained by two effects. On the one

hand, propagation requires τon > 7, which is the criterion for on- vs. off-cells. On the

other hand, Fig. 6.5B (right) illustrates that small τon is necessary in order to have

spiral formation out to large φ, where Eq. 6.15 is valid. These constraints overlap

in the regime τon ∼ 10. Therefore, Fig. 6.9E shows results for τon = 9, 18, and 27

(main panel). We see that both the prediction curves and the simulation data each

converge to a fixed trend as τon increases, as expected, and that the data agree with

their respective prediction as φ increases, as expected.

T̊his leaves φ and ρ. We plot the deviation between Eq. 6.15 and the simulations

as a function of φ and ρ for τon = 9 in the inset of Fig. 6.9E. We see that the deviation

is smallest (dark blue) for large φ and ρ as expected, but we also see that this trend

breaks down if either φ or ρ become too large. The reason that the trend breaks down

at very large φ is simply, as mentioned above, that spirals do not form if φ is too

large. The reason that the trend breaks down at very large ρ is that the mean length

of the quasi-one-dimensional off-cell anchors exceeds the boundary of the system.

Specifically, from Eq. 6.14, this length is approximately 2/(1 − ρ) for large φ, which

exceeds the system half-width of 50 cells when ρ exceeds about 0.96. Indeed, we see

in the inset of Fig. 5E that the agreement begins to diverge beyond ρ ≈ 0.96.
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T̊hus, apart from these limitations at the extremes of φ and ρ, we find that the

predictions of percolation theory agree with the simulations in the regimes were we

expect them to be valid. These more comprehensive checks validate our theory.

6.4 Discussion

We have developed a model that describes wave propagation in a spatially cor-

related heterogeneous medium. Despite the minimal nature of the model, and the

idealization of cells as squares on a regular lattice, our model supports multiple dy-

namic regimes including wave death, radial propagation, and spiraling. We have

discovered that spirals arise via two distinct mechanisms—secondary triggers and

wavefront breakup—and that spatial correlations in the heterogeneity suppress the

former and promote the latter, in two distinct regimes within parameter space. Fur-

thermore, we have shown using percolation theory that the structural properties of the

heterogeneity influence the dynamic properties of spiraling (the period), and that the

predictive power of percolation theory is best when the spatial correlation is strong.

Taken together, our results suggest that the spatial structure of cell-to-cell hetero-

geneity can have important consequences for directed signal propagation in cellular

communities.

The minimal nature of the model facilitates its application as a phenomenolog-

ical description of experiments on signaling in cellular communities. Because there

are only two parameters describing the dynamics (the time scale and the excitation

strength), and two parameters describing the heterogeneity (the fraction and spatial

correlation of on-cells), these parameters could be easily calibrated to experimental

observations. Because the parameters and variables are dimensionless, the cell length

scale and signal time scale would set the units of length and time, and then other

observables such as the wavelength and fraction of signaling cells could calibrate other

parameters to the point where predictions could be made and tested with no further

free parameters [36].
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Spatially correlated heterogeneity is a common feature in many multicellular sys-

tems. Electrical signaling in Bacillus subtilis biofilms is spatially correlated along

the signaling direction [80], potentially due to the maintenance and inheritance of

a phenotypic state over several cell generations [55–57]. Similarly, the lengthscale

of cell-to-cell signaling in quorum sensing bacterial communities has been shown to

depend on the establishment of spatial correlations [38,58]. In eukaryotes, spatial cor-

relations in cell-substrate interactions can drive collective cell migration [60], which is

a fundamental multicellular process in tissue development [61] and wound healing [62].

Thus, our findings on how spatial correlations influence excitable signal propagation

could find broad application across multicellular biology.

Our work could also provide insights on how one might engineer heterogeneous

media to produce spiral waves. First, the excitability threshold must be low; in this

work we set it to zero (in the typical FN there is an additional threshold parameter

in Eq. 6.1). Second, an intermediate degree of heterogeneity is required, with not too

many or too few excitable cells (Fig. 6.5B), which could be controlled by genetic engi-

neering [36] or different fractions of a multi-species cell mixture. Third, either a large

or a small excitation timescale is required depending on the degree of spatial correla-

tion (Fig. 6.5B). The excitation timescale could be changed by mutation [36], and the

spatial correlation could be controlled by modulating the degree of cell redistribution

in a microfludic device or by using strains with differential growth rates.

Our model has limitations, and several extensions are natural. Although we check

that our results are insensitive to the heterogeneity distribution (Fig. 6.2), we only

add heterogeneity to one parameter (the timescale). It may be more realistic to

add heterogeneity to all parameters [101], including the excitation strength and, if

included, the excitation threshold. Moreover, we assume that cells exist on a regular

square lattice and that heterogeneity is only correlated in the radial direction. It may

be more realistic to add disorder to either the lattice structure, cell size [36], or spatial

direction of the heterogeneity [80]. Finally, we assume that noise only enters spatially

in the assignment of cell on/off states, not dynamically in the excitable system of Eqs.
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6.1 and 6.2. Noise could cause untriggered excitations even for off-cells (especially

because we set the threshold to zero), and it may be more realistic to include noise

terms in the dynamics. Such noise has been shown to alter the boundaries between

dynamic regimes in excitable systems, including in Bacillus subtilis [102]. It will be

interesting to see how our model can be generalized, as well as how it can be used to

understand or engineer experimental systems in future work.
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7. SUMMARY

Signal transmission among cells enables long-range coordination in biological systems.

However, the scarcity of quantitative measurements hinders the development of theo-

ries that relate signal propagation to cellular heterogeneity and spatial organization.

We address this problem in a bacterial community that employs electrochemical cell-

to-cell communication. We developed a model based on percolation theory, which

describes how signals propagate through a heterogeneous medium. Our model pre-

dicts that signal transmission becomes possible when the community is organized

near a critical phase transition between a disconnected and a fully connected conduit

of signaling cells. By measuring population-level signal transmission with single-cell

resolution in wild-type and genetically modified communities, we confirm that the

spatial distribution of signaling cells is organized at the predicted phase transition.

Our findings suggest that at this critical point, the population-level benefit of sig-

nal transmission outweighs the single-cell level cost. The bacterial community thus

appears to be organized according to a theoretically predicted spatial heterogeneity

that promotes efficient signal transmission.

However, we find experimentally that key features of this system go beyond the

simple assumptions of basic percolation theory, which include site-to-site indepen-

dence and spatial uniformity of the signaling probability. Why are the predictions

of percolation theory still upheld? Using a computational model, we find that the

cell-to-cell dependence does not change the predictions due to the universal nature

of percolation theory near its critical point, and the spatial variability of the sig-

naling probability actually expands the parameter range over which the predictions

hold. We validate our findings using a mutant bacterial strain. Our work explores

the robustness of percolation theory to its underlying assumptions, and the resulting

consequences for long-range bacterial signaling.
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Finally, motivated by experimental systems that exhibit spiral waves, we use our

minimal FitzHugh-Nagumo-type model to investigate excitable wave propagation in

a two-dimensional heterogeneous community more generally. The model shows three

dynamic regimes in which waves either propagate directionally, die out, or spiral

indefinitely, and we characterize how these regimes depend on the heterogeneity pa-

rameters. We find that in some parameter regimes, spatial correlations in the het-

erogeneity enhance directional propagation and suppress spiraling. However, in other

regimes, spatial correlations promote spiraling, a surprising feature that we explain

by demonstrating that these spirals form by a second, distinct mechanism. We char-

acterize the dependence of the spiral period on the degree of heterogeneity in the

system by using techniques from percolation theory. Overall, our results reveal that

the spatial structure of cell-to-cell heterogeneity can have important consequences for

signal propagation in cellular communities.
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