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 Nature has been adopted several techniques to survive over the past billion years of evolution. 

Geometrically patterned interfaces seem to be a common motif in Nature. In particular, architecture 

plays a crucial role in increasing the strength, toughness, and damage tolerance among different 

species. For instance, alligator, turtle, armadillo, sea urchin, ammonite, Ironclad beetle, and boxfish 

are among species included patterned interfaces inside their structure. Here, the role of shape, 

geometry, and microstructure of both interlocking and non-interlocking patterned interfaces inspired 

by Nature is investigated in enhancing the mechanical properties under multiaxial loading conditions. 

The role of non-interlocking patterned interfaces is studied under remote mode-I loading 

conditions. In particular, the role of the shape of the opening crack behind the crack tip is 

investigated as the crack propagates along the interface. The shape of the interface behind the crack 

tip for different amplitude-to-wavelength aspect ratios is studied by comparing the results from 

two analytical models with finite element simulations through the J-integral method. Additionally, 

the role of the material length scale is explored by investigating the relationship between the 

geometrical characteristic lengths and the emerging material length scale using a finite-element-

based cohesive zone model. The results suggest that geometrical toughening is influenced by a 

size effect, but it is bounded between two extreme conditions. 

The role of interlocking patterned interfaces is investigated for both boxfish carapace and Ironclad 

beetle cuticle. These two species are selected due to their extraordinary performance against attack 

and compression loads, which are fatal to the other species. The boxfish carapace (Lactoria 

cornuta) contains hexagonal dermal scutes, a combination of the brittle hexagonal plate 

(hydroxyapatite) on top of a very compliant (collagen) material. While the mineral plates are 

separated by patterned sutures (triangular patterns), there is no interphase material connecting 
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them. Instead, the connection between mineralized plates is done through the collagen base which 

is different from other naturally occurring sutures (e.g., sutures in turtle, alligator, armadillo). The 

protective role of the boxfish scute architecture in controlling the crack directions is investigated 

by employing analytical, numerical, and experimental tools for different geometrical and material 

parameters. Further analysis revealed that this architecture helps to arrest the cracks inside the 

sutures area. Additionally, the results confirmed that both architecture and material properties play 

a key role in controlling the direction of the crack inside the brittle plates. 

Beetles are a subclass of arthropod dating back over 300 million years. The complex cuticle 

microstructure found within the exoskeleton (elytra) of this specially adapted insect results in 

extremely high compressive resistance, far beyond any other beetle identified to date. Elytra 

consists of separated parts connected using dovetail-joints blades and contains a hierarchical 

assembly of alpha-chitin fibers embedded within a proteinaceous matrix that provides both 

strength and toughness. The architecture of the suture region of the elytra, modified for terrestrial 

living, has a unique architecture consisting of specially modified interlocking blades, whose 

elliptical geometry, laminated microstructure, and frictional interfacial features, enhance 

mechanical properties such as toughness and load resistance. The presence of microstructure inside 

the interlocking joints results in delamination inside blades and, thus, develops a new competing 

mechanism that is different from pull out or fractures. By using a combination of finite element 

analysis, experimental methods (i.e., optical and electron microscopy, computed tomography, and 

mechanical testing), and 3D printing prototype technique, the unique adaptations, novel 

architectural design features and interfacial structures are revealed within the exoskeleton of 

Ironclad beetle. The results from FE simulations and experiments confirmed that the ellipse shape 

for the blade has priority over the circular shape in terms of mechanical properties. Besides, 

including laminated architecture inside the blade’s geometry can increase the toughness of the 

system up to three times in comparison to the homogenous blades, and this method is beneficial 

for the materials with limited ductility. Thus, this model system represents a tough, resistance 

biological material that exemplifies a departure from other types of beetles and can be inspired for 

future engineering applications.
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CHAPTER 1. INTRODUCTION 

1.1 Literature Review 

Nature uses patterned interfaces technique to connect the separate parts or segments inside the 

carapace of various species. This type of connection causes smooth surfaces in connection joints 

as well as animal movements (increase flexibility and toughness). The geometrically patterned 

interfaces are widely used in Nature and provoke many outstanding mechanical properties in 

biological systems (Lin et al., 2014; Chen et al., 2015; Dunlop et al., 2010, and 2011). In recent 

studies, these geometrically patterned interfaces named sutures (Achrai and Wagner., 2017; Chen 

et al., 2011). The sutures interface can be seen through the armors of many species in Nature 

(Naleway et al., 2015). For example, the leatherback sea turtle osteoderm consists of bony plates 

interconnected by collagen fibers using sutures. Sutures offer both flexural and interlocking 

behavior for the carapace and prevent crack propagation between the osteoderms (Chen et al., 

2015). The sutures in the red-eared slider turtles connect the rigid ribs in the shell and increase the 

fatigue resistance of the osteoderm (Achrai et al., 2015). In the armadillo’s osteoderm, the bony 

plates are connected by sutures and non-mineralized interphase collagen fibers and result in 

enhancing the toughness of the osteoderm (Chen et al., 2011). Alligators are also developed 

arbitrary bony plates in their osteoderms interconnected by sutures and collagen Sharpey's, which 

offer both flexibility and protection (Sun et al., 2013). The fish carapace such as arapaima, teleost, 

and boxfish consist of bony rigid elements embedded in a compliant skin. These dermal armors 

protect species against the attack of predators (Vereney and Barthelat, 2014; Brute et al., 2008; 

Meyers et al., 2012; Lin et al., 2011). For instance, the carapace of the boxfish contains scutes, and 

each scute includes a highly mineralized plate and a compliant collagen base. The mineralized 

plates connected using triangular sutures shape, and unlike most other species in Nature, the 

collagen sharpy’s does not exist between the teeth (Yang et al., 2015). Another remarkable 

example of Nature is a woodpecker. Woodpeckers are capable of repeated pecking on a tree at 

remarkably high deceleration (10000 ms -2) without any brain injuries (Gibson, 2006). The study 

on the red-bellied woodpecker beak revealed that the beak develops suture lines in the outer layer 

(rhamphotheca)and results in increasing the ability to bear the compressive loads (Lee et al., 2014). 

The examples of patterned interfaces (sutures) in Nature are shown in Figure 1.1 
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(a)                                                             (b) 

 

(c)                                                              (d) 

Figure 1.1. Suture structures in Nature: (a) armadillo osteoderm sutures connect by collagen 
fibers (b) alligator osteoderm contains sutures interconnected by collagen fiber, (c) The cross-

sectional view of the woodpecker beak includes sutures (adapted from Lee et al., 2014), (d) sea 
urchin exhibits an architecture that induces a sinusoidal path (Hosseini et al., 2019). 

Sutures interface geometries include broad-ranging in Nature, from flat sutures interface such as 

infant human skulls (Sun et al., 2004) to complicated, fractal-like designs in ammonite (Saundres 

et al., 1996). These interfaces not only help to transmit loads and absorb energy but also benefit 

the systems by increasing mechanical properties such as stiffness and toughness (Li et al., 2012). 

For instance, role of cranial sutures in the skulls of humans (Miura et al. 2009), dinosaur (Rayfield, 

2004), Sus scrofa (Sun et al., 2004; and Popowics et al., 2007), goats (Jaslow et al., 2000), monkey 

cranium (Wang et al., 2010), Lizard (Moazen et al., 2008) is to protect brain against multiaxial 



21 

 

loadings which occur during impacts or mastication (Wang et al., 2010). For example, the giant 

theropod dinosaur was capable of producing exceptionally powerful chew forces and resisting 

multidirectional loadings (Rayfield, 2004). During the loading, the high strain can be distributed 

through cranial sutures, and thereby, less strain can be experienced in the face (Herring and 

Ochareon, 2005; Kupczik et al., 2007).  

Sutures interlocking behavior have been bioinspired through many numerical analysis (Li et al., 

2011, 2012, 2013), finite element analysis (Roth et al., 2007; Rayfield et al., 2007; Jasinoski et al., 

2010) and experimental studies (Malik et al., 2016; Mirkhalaf et al.,2014; Porter et al., 2016) . 

Ortiz and co-workers developed an analytical framework by using the principle of virtual work 

concept to invest the effect of sutures interface in enhancing the mechanical properties (Li et al., 

2011, 2012, 2013). The analytical solutions for stiffness, strength, failure mechanism and 

toughness were derived for four categories of suture shapes, including different angles (i.e., 

triangular, trapezoidal, rectangular, and anti-trapezoidal). Among the various sutures geometries, 

the triangular shape demonstrated the highest stiffness, strength, and fracture toughness in 

comparison to the other interfacial shapes. It was also shown that the presence of the bound-tip 

between interfacial layer and tooth geometry or decreasing the tip angle under mode-I loading can 

increase strain energy and load transfer to the tips and thereby, improve stiffness. Besides, 

increasing a tip angle can cause more ductile failure of the interface and results in higher toughness. 

This study suggested that the anti-trapezoidal shape is desired for situations where damage 

tolerance is required and can increase strain failure due to interlocking mechanical behavior (Lin 

et al., 2014). 

Zavattieri and the co-workers investigated crack propagation along the sinusoidal interface (non-

interlocking patterned interfaces) between two identical semi-infinite elastic materials under 

remote mode-I loading (Zavattieri et al., 2007).  The failure consisted of a series of stable and 

unstable crack propagation under a constant load. The parametric studies stated that the cohesive 

zone length of the interface, crack tip position, and shape of the initial open crack did not affect 

effective toughness while it had a significant influence on stable crack propagation behavior 

between the initiation of crack growth and beginning of unstable fracture. Their results also 

indicated that for values of the amplitude-to-wavelength aspect ratio (A/λ) larger than 0.5; the 

effective interface toughness (KIc/ K0) improved up to three times in comparison to the flat 

interfaces. Moreover, the authors showed that the Corttel and Rice analytical framework based on 
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a kinked crack (Cotterell and Rice., 1980) was only valid for small values of aspect ratio (A»λ≤ 

0.25) in the sinusoidal interface (Zavattieri et al., 2007, 2008). In a follow-up study, the fracture 

toughness between two elastically dissimilar solids under mode-I loading was found to be 

dependent on the interface aspect ratio, and mismatch in elastic properties (α) (Cordisco et al. 

2012). The critical value of α corresponds to the optimized value of Kc/ K0 was varying by changing 

the values of aspect ratio. Additionally, the authors also observed that the properties of the cohesive 

interface did not influence its interfacial toughness (Cordisco et al., 2012). 

In a subsequent study, the authors accounted for the inelastic behavior of the solid materials around 

interfacial cracks. This enabled to explore the transition from stable to unstable crack propagation, 

which causes an increase in the fracture toughness of the interface (Cordisco et al., 2014). In 2016, 

the failure behavior of patterned interfaces includes two phases of aluminum and polymer was 

investigated within the computational models by Hirsch and Kästner (Hirsch and K¨astner. 2017). 

The results stated that, for the constant value of the aspect ratio (i.e., A/λ =1), by increasing the 

length of the RVE, the required nodal force and traction increases under mode-I loading. However, 

three different failure mechanisms were observed under mode-II depend on the aspect ratios range, 

which the primary failure mechanism was the transition from adhesive to cohesive failure 

type(Hirsch and K¨astner. 2017). 

Experimental studies on interlocking patterned interfaces noticed a significant improvement in 

material fracture resistance, especially when fine-tuning considered in the interface topology 

(Mirkhalaf and Barthelat, 2017). Many researchers have used 3D printing techniques to understand 

the role of the sutures, such as jigsaw-like suture morphology, which can be found in diatoms and 

mollusk shells. For instance, in the study by Mirkhalf and Barthelat in 2017, the material toughness 

of the system was increased up to ten times with respect to the original polymer by using 

interlocking jigsaw patterns under tensile loading conditions. The idea of using a weaker interface 

within intricate architectures was also studied by carving weak interfaces using the laser-engraving 

technique to the aluminum oxide (Malik and Barthelat., 2016).  
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The process of crack growth in materials is a competition between several dissipation mechanisms. 

The driving force of a crack is defined by the stress and local crack tip deformation fields and can 

be presented by the critical energy release rate or fracture toughness.  The mechanisms associated 

with the resulting fracture toughness can be divided into two categories: intrinsic and extrinsic. In 

the intrinsic mechanisms, toughening is achieved by increasing the inherent microstructural 

resistance and usually occurs ahead of the crack tip. The extrinsic mechanisms occur wake of the 

crack tip and work to delay the crack propagation (Ritchie 1988, 1999). The study by Anderson et 

al. in 1979 presented the effect of fine-tuning the interface topology by performing the experiments 

such as increasing the surface areas (i.e., intrinsic mechanism) and controlling the roughness 

parameter at the material interfaces (Anderson et al., 2005). Another study by Evans and 

Hutchinson (Evans and Hutchinson 1989) stated that the toughening in the patterned interfaces 

result from the contact interaction and shear locking behind the crack (i.e., extrinsic mechanism). 

Bridging techniques, also known as an effective way along with plastic deformation to increase 

interface toughness under large deformations (Oh et al., 1988). A combined experimental and 

theoretical study of crack propagation along sinusoidal patterned interfaces in a double cantilever 

beam of different aspect ratios under mode-I revealed that the fracture resistance could increase 

with the aspect ratio. Besides, the crack initiation and propagation could be significantly delayed 

by increasing the aspect ratio of the sinusoidal patterned interfaces and results in a significant 

increase in the values of effective toughness (Cordisco et al., 2016). 

1.2 Motivation for this study 

As previously discussed in section 1.1, the geometrically patterned interfaces seem to be a common 

motif in Nature. Under various loading conditions, two types of behavior can be expected for 

patterned interfaces: 

i) Non-interlocking patterned interfaces (e.g., patterned interfaces exist inside the sea urchin, 

ammonites, and diatoms under tensile loadings) 

ii) Interlocking patterned interfaces (e.g., the interlocking interfaces exist in the boxfish carapace, 

Ironclad beetle cuticle, turtle, and alligator osteoderms under shear and compression loadings). 
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In the present study, the role of both non-interlocking and interlocking patterned interfaces on 

enhancing the mechanical properties will be investigated. Therefore, the motivations for this study 

are summarized as follows: 

Motivation 1: To understand the role of the shape of the crack behind the crack tip in non-

interlocking sinusoidal pattern interfaces under remote mode-I loading. 

The next focus of this study is to understand the role of interlocking patterned interfaces primarily 

inspired by Lactoria cornuta (boxfish) and Zopherinae Ironcladad beetle. These two species were 

selected because of their performance against the attack and multiaxial loads, as well as their 

specific architecture. 

Therefore, the second motivation for this study is to understand the role of boxfish architecture. 

During the shear test between two scutes of boxfish carapace, the damage only occurs around 

sutures, and therefore, the primary motivation for this part of the study is to understand the effect 

of architecture inspired by boxfish scute in controlling the crack direction. The boxfish carapace 

is presented in Figure 1.2 (a). Thus, the second motivation for this study can be expressed as 

follows; 

Motivation 2: To understand the protective role of boxfish scute architecture in controlling the 

crack direction under shear loading.  

Finally, the elytra of the Ironclad beetle (Figure 1.2(b)) adopted an incredibly strong and tough 

interdigitated set of ellipsoidal shaped blades connection (dovetail joints) that resemble pieces of 

a puzzle. The role of homogenous jigsaw interlocking blades on enhancing the mechanical 

properties previously investigated by Mirkhalaf and Barthelat in 2017. Based on this study, two 

competing mechanisms exist under tensile loading; i) pullout and ii) fracture in the neck. Blades 

in the Ironclad beetle developed a puzzle-like laminated architecture, and under loading (i.e., 

compression loads),  delamination inside the blades is primary reason for the failure. Thus, I 

hypothesize that elliptical geometry, the number of blades, and puzzle-like laminated architecture 

in Ironclad beetle suture incorporate additional interlocking features to resist fracture by uniformly 

distributing stress and developing delamination. Thereby, the next motivation for this study will 

be presented as follows;  
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Motivation 3: To gain insight into the mechanics of the interlocking sutures in Ironclad beetle and 

understand the benefits of having layered architecture inside the interlocking joints. 

 

                   

(a)                                              (b) 

Figure 1.2. (a) Image of Lactoria cornuta (b) Image of Diabolical Ironclad beetle (P. diabolicus) 

1.3 Goals and objective of this research 

The goal of this study is to gain a fundamental understanding and provide new insight into the 

mechanics of naturally occurring patterned interfaces (interlocking and non-interlocking) in order 

to achieve similar performance in biomimetic materials and structure.  

Therefore, the following objectives are presented for this study 

Objectives: 

1) To expand our understanding about the mechanics of naturally occurring patterned 

interfaces and their role in protection against attack and under multiaxial loadings  

2) To investigate the role of architecture (geometry and mechanical properties) in preventing 

catastrophic failure in the bio-inspired system.  

3)  To develop a guideline to design and fabricate a biomimetic material that can achieve 

similar performances to this biological material so that it can be translated to engineering, 

biomedical, and aerospace engineering applications. 

To achieve the above goal and objectives, the following tasks are required to get a better insight 

into the mechanics of interlocking patterns: 

5mm 
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 Analytical method 

 Numerical approach 

 Experimental procedure (3D printing, biomimetic, etc.) 

One of the focus of this research is to understand the role of pattern interfaces in the toughening 

mechanism of the system. The role of the crack shape behind the crack tip in the toughening of the 

patterned interfaces is studied under remote mode-I loading conditions. For this purpose, the 

sinusoidal pattern interfaces were evaluated regarding the interface fracture toughness of both low 

and high asperity aspect ratios. For all the aspect ratios, two identical linear and elastic solids 

bonded together within a semi-infinite domain using a patterned interface. In addition, the fracture 

process zone is assumed to be infinitely small in comparison to the size of the pattern, and 

therefore, the linear elastic fracture mechanics (LEFM) concept was applied along with the 

numerical J-integral to evaluate the role of the shape behind the crack tip.  Besides, I studied the 

ability of LEFM models (i.e., single and double kinked crack models) to estimate the role of the 

crack shape behind the crack tip for different values of aspect ratios. These models enable us to 

get a better insight into understanding the effect of patterns shape on the effective toughness in 

comparison with numerical results. Finally, a relation between the material fracture resistance, 

mechanical properties, and the characteristic geometrical lengths of the pattern is investigated for 

the sinusoidal patterned interface of different aspect ratios (fracture process zone is large with 

respect to the size of the patterns) by considering two approaches; (a) A finite element models of 

sinusoidal pattern interface using cohesive zone method (CZM) (previously discussed by 

Coredisco 2016; Hosseini et al., 2019) and (b) Experimental procedure using 3D printed samples 

of the sinusoidal patterned interface. During the tensile test on 3D printing samples, the Digital 

Image Correlation (DIC) technique was utilized along with the experiment to get a better insight 

into the strain distribution as well as crack propagation inside the patterned interfaces. The 

experimental results are used as an asset to confirm analytical and numerical solutions. The results 

and more discussions are presented in Chapter 2. 

Chapters 3 and 4 present an in-depth study of boxfish carapace architecture. The material 

characterization of both collagen base and mineralized plate, as well as the role of collagen 

architecture (bouligand architecture), are investigated in Chapter 3. The role of boxfish carapace 

architecture in controlling the crack direction under shear loading is discussed in chapter 4. 
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Boxfishes develop defense mechanisms (carapace architecture) which are different from other 

types of fish. In particular, four types of scale can be observed in fish which are categorized as; i) 

overlapping elasmoid scales in teleost, ii) interlocking ganoid scales in gars and bichirs, iii) 

partially imbricated placoid scales in sharks, iv) tessellating carapace scute in boxfish (Porter et 

al., 2017). As previously discussed, boxfish scutes contain a thin layer of very brittle mineralized 

plate (hydroxyapatite) which is placed on top of soft collagen subbase. Also, the mineralized plates 

develop sutures around its hexagonal plates. Boxfish carapace developed scutes similar to reptiles 

such as alligator, turtle, armadillo (Chen et al., 2015, Achrai et al., 2015, Chen et al., 2011, Sun et 

al., 2013) and used sutures for the purpose of connection. In most of the reptiles, the sutures 

connection are made through collagen sharpy’s while in boxfish; there is no connection between 

sutures. The shear test between two scutes revealed that the cracks are arrested around sutures area 

and thus, I hypothesize that the presence of sutures in its current combination (thin brittle plates 

on top of a compliant collagen base) can help to control the crack propagation direction in the 

mineralized plate under shear loading. To understand the correct behavior of the boxfish armor 

carapace, various methodologies were employed such as the finite element method, experiment on 

boxfish carapace, 3D printing, and molding techniques. In Chapter 3, I characterized the material 

properties of both collagen base and mineralized plate through reverse engineering techniques by 

using the FE models and in-situ experiment. In addition, the role of bouligand architecture inside 

the collagen subbase was investigated through FE model to understand the effect of the orientation 

of the layers in increasing toughness inside the collagen.  

Chapter 4 mainly focuses on the effect of scute architecture inspired by boxfish carapace in 

controlling the crack direction under shear loading conditions. For this purpose, the biomimetic 

samples are created using gypsum (brittle plate) and silicone (soft substrate). The gypsum samples 

were created by using the silicon molding technique. Finally, the assembly of gypsum, silicone 

with a variety of sutures angle were tested in shear using the universal tensile testing machine 

(MTS). The DIC method accompanied during the experiments to capture the crack propagation 

and strain distribution. In addition, the FE models similar to biomimetic samples were developed 

through FE software ABAQUS for the purpose of comparison with experiments and better insight 

into the crack propagation process. This chapter continues by deriving the simplified analytical 

models based on LEFM approach along with finite element solutions to predict the role composites 
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(the modulus and strength aspect ratio of the soft sub base to brittle plate) with an inclined crack 

and its effect in controlling the crack propagation direction.  

The compression resistance nature of Ironclad beetle is presented in Chapter 5. This chapter 

focuses on the abdominal portion of the Ironclad beetle exoskeleton, consisting of the elytra and 

ventral cuticle. The ordered arrangement and complex architectures found within the exoskeleton 

(elytra) of this specially adapted insect result in extremely high compressive resistance, far beyond 

any other beetle identified to date. More specifically, I wanted to understand the role of sutures 

connecting elytra parts in the Ironclad beetle. To date, structure-mechanical property relationships 

of blades have not yet been fully realized for the ironclad beetle’s exoskeleton. Here, by using a 

combination of optical and electron microscopy, computed tomography and mechanical testing, 

3D printing prototype, and finite element analysis, the unique adaptations, novel architectural 

design features and interfacial structures have been revealed within the exoskeleton of P. 

diabolicus and their divergence from terrestrial Coleoptera.  

The role of laminated architecture inside the interlocking blades bio-inspired by Ironclad beetle is 

studied in Chapter 6. In the Ironclad beetle blades, the arrangement of ultra and microstructural 

features associated with enhanced mechanical performance. Previous studies by Barthelat and 

Ortiz groups (Malik et al., 2017, Mirkhalaf and Barthelat, 2017, Porter et al., 2017, Li et al., 2011, 

2012 ) revealed the presence of two competing mechanisms inside the homogenous interlocking 

patterns such as pullout and fracture. However, the blades in Ironclad beetle consist of laminated 

architecture and result in delamination which is a dominant failure mode. Therefore, the 

architecture inside the Ironclad beetle adds a new competing mechanism to the system, which is 

required to be studied. This chapter mainly focuses on the failure mechanism of sutures, 

specifically, blades architecture with focusing on three competing mechanisms such as; pullout, 

delamination, and fracture. It is essential to understand why Nature follows this design and what 

are the benefits of having delamination over two other competing mechanisms. Both finite element 

analysis and 3D printing experiments are used to derive a better understanding of these new 

interlocking joints mechanisms. Finally, studying a single multi-layered blade enabled us to design 

multilayered composites by avoiding damage localization and increasing the toughness. 

The conclusions and findings of this study, along with future recommendations are presented in 

Chapter7. 
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1.4 Justification for this research 

Nature uses sutures or blades as a technique to connect separate parts. It causes smooth surface in 

connection joints and helps the animal movements (e.g., increase flexibility and toughness). In real 

life, many applications use interlocking interfaces or joints to connect separate parts, for instance, 

hull panels in rowboats, sectional kayaks, and interlocking panels in construction fields to reduce 

earthquake loads(Ali et al., 2012; Ghaffary and Karami, 2018 and 2019; Hosseini., 2013). The new 

Samsung’s foldable phone-tablet uses the interlocking joint connections to provides a customer 

with a large screen and the ability to fold the instruments. Dovetail joints in the gas turbines are 

another example of interlocking joints. In aero-engine rotating discs (i.e., gas turbines), the 

connection between the blades and disc provided using dovetail joints (Ruiz et al., 1984). In 

addition, connecting various materials (i.e., polymer, ceramic, steel, and aluminum) in composites 

always being a significant challenge in various industries such as aerospace and construction; as a 

result, there is a need for a proper connection techniques such as patterned interfaces between 

various materials (Kim et al., 2010; Ghavami et al., 2019; Ghavami, 2014). Here, I suggest the 

interlocking joints as a technique to connect various materials in order to increase bonding and 

avoid the present challenges. In general, this application is useful in any connection that smooth 

surfaces were required or bolts and nuts techniques are not desired. Studying Nature is a key that 

provides us an insight into the mechanism of patterned interfaces and eventually helps us to 

develop and improve design and guidelines for biomimetics materials. 
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CHAPTER 2. INVESTIGATING THE ROLE OF NON-INTERLOCKING 
SINUSOIDAL PATTERENED INTERFACES ON THE EFFECTIVE 

TOUGHNESS UNDER REMOTE MODE-I LOADING 

2.1 Introduction 

Non-interlocking patterned interfaces seem to be a common motif in Nature. In particular, 

geometry seems to play an essential role in increasing the strength, toughness, and damage 

tolerance among different species.  Here, the role of the shape of the opening crack behind the 

crack tip is investigated for the sinusoidal patterned interfaces as the crack propagates along the 

interface. In particular, I studied the shape of the interface behind the crack tip for different 

amplitude-to-wavelength aspect ratios with two analytical models and compared the results with 

finite element simulations through the J-integral. Additionally, I studied the role of material length 

scale by investigating the relationship between the geometrical characteristic lengths and the 

emerging material length scale using a finite element-based cohesive zone model and 3D printing 

prototyping technique. The results suggest that geometrical toughening is influenced by a size 

effect, but it is bounded between two extreme conditions.   

2.2 Problem Formulation 

Two semi-infinite, identical elastic materials with Young’s modulus E and Poisson’s ratio ν are 

bonded along with an interface for a periodic sinusoidal pattern morphology. The sinusoidal 

morphology is presented as follows. 

𝑦(𝑥) = 𝐴[1 + 𝑠𝑖𝑛 (2𝜋{𝑥 −
ఒ

ସ
}/𝜆)]                                                                                                       (2.1)                

Where 2A is a peak to valley amplitude of the interface and λ is a wavelength where the ratio of 

A/ λ is defined as an asperity aspect ratio. The value of kink angle γ has different values through 

the period of sinusoidal pattern and is defined as an angle between the horizontal line and tangent 

to the sinusoidal pattern. The solid is assumed to be sufficiently strong and tough with respect to 

the interface for all the cases. As such, the crack is constrained to growth along with the interface. 

Before the initial loading is applied, the crack tip is placed at (x, y) = (0, 0) (coincident with the 

center of coordinates). The open crack is represented by the region x < 0; whereas the interface is 

initially defined for x ≥ 0.  The valleys are presented by the positions x=n. 𝜆, and the peaks by the 
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positions x=n (𝜆 /2), where n=1, 2, ... represents the period number from the original crack tip 

position. The model domain is assumed to be in-plane strain, and the load is applied through a 

monotonically increasing mode-I stress intensity factor, KI. Since the materials are in linear elastic 

regime, the thickness near the crack tip does not affect the results and the K field results are valid 

and not dependent on the thickness. However, in an elastic-plastic material, thickness plays an 

important role, especially near the crack front and, therefore, influences the response of the 

material (i.e. deriving force) ( Kotousov and Wang, 2002; Kotousov et al., 2013; Zavattieri 2006). 

 An asymptotic K-field is applied as displacements at the boundary of the domain at a distance R0 

from the initial crack tip, assuming LEFM conditions hold in the entire domain, except near the 

crack tip where details of the interface become important. Equations 2 and 3 represent the applied 

displacement at the boundary for a given value of KI. 

𝑢௫ =
2(1 + 𝜈)𝐾ூ

𝐸
ඨ

𝑅

2𝜋
𝑐𝑜𝑠

𝜃

2
ቀ2 − 2𝜈 + 𝑠𝑖𝑛ଶఏ

ଶ
ቁ                                                                                (2.2) 

                                

𝑢௬ =
2(1 + 𝜈)𝐾ூ

𝐸
ඨ

𝑅

2𝜋
𝑠𝑖𝑛

𝜃

2
ቀ2 − 2𝜈 + 𝑐𝑜𝑠ଶఏ

ଶ
ቁ                                                                                (2.3) 

                                                                                   

Where 𝑅 = ඥ𝑥ଶ + 𝑦ଶ  ≫   𝐴, 𝜃 = 𝑡𝑎𝑛ିଵ(𝑦 𝑥⁄ ).  The crack will begin to propagate when 𝐾ூ 

reaches its critical value. Moreover, Interface assumed to be weaker than the elastic solids, so the 

crack always propagates along the interface. 
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                                           (a)                                                             (b) 

 

(c) 

Figure 2.1. a) Schematic of the semi-infinite crack growing along a sinusoidal patterned 
interface. (b) Details near the crack tip. The interface has a sinusoidal profile with amplitude A 
and wavelength 𝜆 as denoted in the inset figure. Schematics of one period of (c) the sinusoidal 

pattern where kink angle (𝛾 (𝑥)) is for different patterns Linear Elastic Fracture Mechanics 
(LEFM) 
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According to LEFM, there exists a remote critical interface toughness, KIc, which corresponds to 

the unstable crack tip growth without an increase in the applied KI. We are interested in the 

determinating the relationship between KIc and fracture toughness of a reference interface, K0. In 

this study, the size of fracture process zone, lfp, is much smaller in comparison  to the patterns 

length (i.e. A, 𝜆), lfp << A, 𝜆, the crack tip energy release rate for the flat interfaces can be 

approximated by Irwin’s expression shown in Equation 2.4 (Anderson et.al., 1995). 

𝐺 =
(1 − 𝜈ଶ)

𝐸
(𝑘ଵ

ଶ + 𝑘ଶ
ଶ) , 𝜓 = 𝑡𝑎𝑛ିଵ ൬

𝑘ଶ

𝑘ଵ
൰                                                                               (2.4)  

                                                                                   

Where k1, k2 are the asymptotic local stress intensity factors and 𝜓 is the phase angle between the 

shear and normal stresses. Inorder for crack to growth in an interface subjected to remote loading 

conditions the following equation should be satisfied  

𝐺 = 𝐺௖(𝜓)                                                                                                                                               (2.5)                                                                                     

Where 𝐺௖(𝜓) is the phase-dependent critical energy release rate of the interface.  In the case of the 

flat interface, the critical condition is 𝐺଴ = 𝐺௖(𝜓 = 0), and Equation 2.6 takes the form as follows 

𝐾ூ௖ = 𝐾଴ = ඥ𝐸 ∙ 𝐺଴ (1 − 𝜈ଶ)⁄                                                                                                              (2.6)  

In Equation 2.6, K0 represents the maximum remote stress intensity factor needed to break the flat 

interface. To obtain the KIc in the triangular pattern field, the local stress intensity factors need to 

be measured by the numerical J-integrals around the crack tip, and this is accomplished by using 

the virtual crack extension domain integral method implemented in ABAQUS (Parks., 1977 and 

Shih et al., 1986). In our model, the critical energy release rate is assumed to be independent of 

the phase angle at any crack tip position of the triangular interface, i.e., J = Gc(𝜓) = G0.  Thereby, 

one can obtain the normalized fracture criterion for crack growth in a pattern interface as follows 

(Equation 2.7), 

𝐾ூ

𝐾଴
=

1

ඥ𝐸 ∙ 𝐽 (1 − 𝜈ଶ)𝐾ூ
ଶ⁄

                                                                                                                        (2.7) 

Assuming the resistance to crack growth is independent of the intrinsic interface work of 

fracture(𝛤௖ = 𝛤଴), following the Griffith criterion (Anderson, 1995) we have, 
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𝐺ூ௖

𝐺଴
=

𝐴଴

𝐴௦
                                                                                                                                                     (2.8) 

In Equation 2.8, GIc and G0 represent the remote critical energy release rate needed to extend the 

crack along the sinusoidal and flat interfaces, respectively. The characteristic area for the 

sinusoidal interface is represented by As (the projection of sinusoidal pattern area into the 

horizontal direction) while the equivalent flat area is presented byA0. Equation 2.8 indicates the 

interface toughening results from the increase in the area in a pattern interface adds to an equivalent 

flat interface. Following Irwin equation (Anderson, 1995), Equation 2.8 can be expressed in a new 

form as Equation 2.9  regarding the normalized stress intensity factor, 

𝐾ூ௖

𝐾଴
= ඨ

𝐴଴

𝐴௦
                                                                                                                                                  (2.9) 

2.2.1 The single and double kinked crack models 

In this section, we present analytical approaches that can be used to explain the role of the shape 

of the crack behind the crack tip as the crack grows along the interface. The concept of the kinked 

crack tip in an infinite domain using a LEFM was first developed by Bilby and Cardew (1975). A 

solution for kinked crack has been proposed for the local elastic stress intensities at the crack tip 

(Bilby and Cardew, 1975; Cotterell and Rice, 1980). Similarly, in 1983, Sures developed an 

analytical model for a double kinked crack case based on the models developed by Cotterell and 

Rice (1980) (Suresh., 1983). The schematic of the single and double kinked crack models is shown 

in Figure 2.2(a) and (b), respectively. The local stress intensity factors at the crack tip can be 

represented by Equation 2.10 (Bilby and Cardew, 1975). 

 

𝑘ଵ = 𝑐ଵଵ (𝛼) ∙ 𝐾ூ + 𝑐ଵଶ (𝛼) ∙ 𝐾ூூ = 𝑐ଵଵ (𝛼). 𝐾ூ                                                                                (2.10)                 

𝑘ଶ = 𝑐ଶଵ (𝛼) ∙ 𝐾ூ + 𝑐ଶଶ (𝛼) ∙ 𝐾ூூ = 𝑐ଶଵ (𝛼) ∙ 𝐾ூ    

Where 𝑘ଵ, 𝑘ଶ are local stress intensity factors at the crack, and𝐾ூ , 𝐾ூூ  are the global stress intensity 

factors for mode I and II, respectively. Also, 𝛼 denotes the angle between the crack and the x-

direction. A single kinked crack model assumes that the length of the kinked crack is much smaller 
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than the length of the main crack, a >> b (see Figure 2.2(a)). Since the crack tip stress intensities 

are for mode I loading, thereby, 𝐾ூூ = 0.  The first order solutions for the angular functions can be 

expressed as (Cotterell and Rice, 1980) 

𝑐ଵଵ(𝛼) = 𝑐𝑜𝑠ଷ ቀ
𝛼

2
 ቁ                                                                                                                             (2.11)   

𝑐ଵଶ(𝛼) = −3 sin ቀ
𝛼

2
ቁ 𝑐𝑜𝑠ଶ ቀ

𝛼

2
 ቁ                                                                                                                        

𝑐ଶଵ(𝛼) =   sin ቀ
ఈ

ଶ
ቁ 𝑐𝑜𝑠ଶ ቀ

ఈ

ଶ
 ቁ                                                                                                    

  𝑐ଶଶ(𝛼) =   cos ቀ
ఈ

ଶ
ቁ [1 − 3 𝑠𝑖𝑛ଶ ቀ

ఈ

ଶ
 ቁ]                                                                                        

For the double kinked crack model, a, b, b’ represents the length of the crack segments, and it 

assumes that a>>b>>b′. The local stress intensity factors for a double kinked crack case subjected 

to a remote mode I KI field can be calculated using Equation 2.10. As the second kink (b’) 

develops, the stress intensity factors at the tip of the second kinked can be obtained by substituting 

the stress intensities of the first kink in Equation 8 for 𝐾ூ and 𝐾ூூ, respectively, and by setting 𝛼 =

𝛼ᇱ. This leads to the angular functions for the double kinked crack model (Suresh, 1983): 

𝑐ଵଵ(𝛼) = 𝑐𝑜𝑠ଷ(𝛼 2⁄ ) 𝑐𝑜𝑠ଷ(𝛼′ 2⁄ ) + 3 𝑠𝑖𝑛(𝛼 2⁄ ) 𝑐𝑜𝑠ଶ(𝛼 2⁄ ) 𝑠𝑖𝑛(𝛼′ 2⁄ ) 𝑐𝑜𝑠ଶ(𝛼′ 2⁄ )   

𝑐ଶଵ(𝛼) = 𝑐𝑜𝑠ଷ(𝛼 2⁄ )  𝑠𝑖𝑛(𝛼ᇱ 2⁄ ) 𝑐𝑜𝑠ଶ(𝛼ᇱ 2⁄ ) −  𝑠𝑖𝑛(𝛼 2⁄ ) 𝑐𝑜𝑠ଶ(𝛼 2⁄ ) 𝑐𝑜𝑠(𝛼ᇱ 2⁄ ) [1 −
  3 𝑠𝑖𝑛ଶ(𝛼ᇱ 2⁄ )]                                                                                                                                           (2.12)       

 

 

                               (a)                                                                          (b)                

Figure 2.2. (a) The single and (b) double kinked crack models. The values a, b, b’ represent the 
length of the crack segments (a>>b>>b').      
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In Equation 2.7, KI /K0 represents the maximum normalized global stress intensity factor needed 

to propagate the crack an infinitesimal distance along a patterned interface normalized with respect 

to the one needed for a flat growing crack.  By assuming 𝐺଴ = 𝐺௖(𝜓 = 0) and replacing Equation 

2.10 into Equation 2.7, the analytical solution for KIc /K0 can be achieved in terms of the angular 

functions. 

𝐾ூ௖

𝐾଴
=

1

ඥ𝑐ଵଵ
ଶ + 𝑐ଶଵ

ଶ
                                                                                                                                   (2.13) 

2.2.2 Cohesive Zone Model 

A cohesive zone model, CZM, is employed here to represent the interfacial decohesion at the 

bonded interface The CZM can be defined as a fracture process zone ahead of the crack tip which 

usually occurs due to the plasticity or microcracking, and it can be used to predict the uncracked 

region especially for the inelastic materials. In the LEFM approach, the fracture process zone ahead 

of the crack tip is negligible and can be ignored, while for the inelastic materials the size of the 

nonlinear fracture process zone is significant in comparison to the size of the crack geometry 

(Elices et al., 2001). As a result, the CZM introduces a new material length scale to the system 

considering that the crack develops a fracture process zone ahead of the crack tip. When the length 

of this fracture process zone, lcz, is much larger than any other geometrical features of the patterned 

interface, no closed-form solution can be obtained, and LEFM is no longer valid. As such, a 

numerical solution is needed, and results can be compared with the LEFM predictions which 

represent the extreme case when lcz is much smaller than any other characteristic length scale. This 

will enable us to get an insight into a relationship between the material fracture resistance, 

mechanical properties, and emerging characteristic lengths scales. 

In this model, the gradual degradation of the mechanical behavior in the fracture process zone is 

modeled using the cohesive traction-separation law which characterizes the inelastic contribution 

to the problem of interfacial debonding. Several cohesive constitutive models detailed in literature 

can be used to describe the CZM and fracture process zone ahead of the crack tip (Camacho and 

Ortiz, 1996; Espinosa and Zavattieri, 2003; Li et al., 2006; Tvergaard and Hutchinson, 1993; Xu 

and Needleman, 1994). In this section, a Tvergard-Hutchinson traction-separation law (Tvergaard 

& Hutchinson, 1993) is adopted. The Tvegard-Hutchinson traction-separation law relates the 

normal (𝛥n) and tangential (𝛥t) displacement discontinuities with the normal (Tn) and tangential 
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(Tt) tractions and has been successfully applied to describe single and mixed mode decohesion in 

adhesive joints in composites (Li et al., 2006) and metals. 

Viscosity parameters introduced to regularize instabilities during the initial crack propagation 

process. The strength of the cohesive interface in mode I and II (𝜎௠௔௫ , 𝜏௠௔௫, respectively) are 

defined as the peak stress of the traction-separation law for normal and shear modes and the work 

of separation as the energy dissipated by separation interfaces. Previous studies found that the ratio 

between the normal work of separation and the tangential work of separation has negligible effects 

in the effective toughness of the sinusoidal interfaces between similar elastic bodies when 

compared to flat interfaces (Zavattieri et al., 2007) for 𝐴 𝜆 < 2.0 ⁄ . Consequently, the values of 

normal and shear separation is chosen to be equal (𝛿n = 𝛿t) in such that the cohesive strength of 

the sinusoidal interface in both Modes I and II is the same, 𝜎max = 𝜏max and the work of separation 

is 𝛤Ic=𝛤IIc=𝛤c. Finally, for purposes of comparison between the cohesive work of separation for 

flat (𝛤0) and patterned interfaces is chosen such that 𝛤c = 𝛤0.  

Similarly, for a semi-infinite flat crack under a remote KI field, 𝛤0 = G0 (Cotterell and Rice, 1980). 

Under these assumptions, the CZM traction separation law is characterized by two intrinsic 

interfacial mechanical properties, 𝜎max and G0. Both can be used to estimate the size of the fracture 

process zone, lcz (Rice, 1980) 

 

𝑙௖௭ =
9𝜋

32
∙

𝐸

(1 − 𝜐)
∙

𝛤଴

𝜎௠௔௫
ଶ

                                                                                                                 (2.14)     

2.3 Dimensionless analysis for a patterned interface 

In general, within the CZM framework, the stress singularity obtained at the crack tip in the LEFM 

solution is substituted with a finite non-linear traction-separation law along lcz. For the case of flat 

crack, lcz << R0, and therefore, the CZM solution converges to LEFM. However, when lcz is 

comparable with respect to the pattern interface characteristic lengths (i.e., A, 𝜆), the effect of lcz 

needs to be considered (Cordisco et al.,2016). 

As such, KIc is expected to be a function of the geometrical parameters (A, 𝜆), material properties 

(E,𝜈, 𝑙௖௭), and the cohesive law parameters (𝜎max, 𝜏max, 𝛿n, 𝛿t).  Based on the assumptions discussed 
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before for CZM, some parameters such as 𝛿n, 𝛿t are assumed to be constant and removed from the 

analysis. We also assumed that σmax/τmax= 1.0, and it could be removed. Therefore, the 

dimensionless groups can then be expressed as follows, 

𝐾ூ௖

𝐾଴
= 𝛤 ൬

𝐴

𝜆
,
𝜎௠

𝐸
,
𝑙௖௭

𝜆
, 𝜈൰                                                                                                                        (2.15) 

The pattern normalized characteristic length is defined as the asperity aspect ratio, A/𝜆, and the 

material normalized characteristic length scale is defined by lcz/ 𝜆. For lcz/ λ > 1.0, the cohesive 

zone length is significantly larger than one sinusoidal asperity. In a larger area, the normal traction 

should also depend on the stress distribution along the sinusoidal morphology. A schematic of the 

cases with small and large cohesive zone length with respect to the geometrical length scale is 

shown in Figure 2.3. 

Presumably when lcz/ λ > 1.0, the fracture process zone is much larger than the geometrical features 

of the interface that the effect on the fracture energy could be in principle considered as an increase 

in effective area where the actual decohesion process takes place. As such, and following the 

Griffith criterion on the crack growth, we will have 

𝐺ூ௖

𝐺଴
=

𝐴଴

𝐴௦
                                                                                                                                                   (2.16) 

In Equation 2.16, GIc and G0 represent the critical energy release rate needed to extend the crack 

along the sinusoidal and flat interfaces respectively. As represent the characteristic area for the 

sinusoidal interface, while the equivalent projected flat area is presented by A0 (Figure 4(b)). 

Equation 2.16 describes the interface toughening results from the increase in the area in a pattern 

interface that adds to an equivalent flat interface. Following Irwin equation (Anderson, 1995), 

Equation 2.16 can be expressed regarding the normalized stress intensity factor, 

𝐾ூ௖

𝐾଴
= ඨ

𝐴଴

𝐴௦
                                                                                                                                               (2.17) 
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(a)                                                                   (b) 

Figure 2.3. (a) The cohesive zone length is very small compared to the length of the 

pattern (
௟೎೥

ఒ
≪ 1), (b) the cohesive zone length is larger than sinusoidal asperity (

௟೎೥

ఒ
≫ 1) 

2.4 Analytical and Numerical role of sinusoidal patterned interfaces on the toughness 

In this section, the effect of sinusoidal non-interlocking patterned interfaces on the effective 

toughness is investigated using both analytical models (single and double kinked cracks) and 

numerical J-integral method. The effective toughness is calculated for different values of the 

aspect ratio for the sinusoidal non-interlocking patterned interface. At the end of this section, the 

results from the sinusoidal non-interlocking pattern will be compared to the non-interlocking 

triangular and arbitrary patterns that discussed previously by Hosseini et al., 2019. 

2.4.1 Sinusoidal non-interlocking patterned interfaces 

In this section, several sinusoidal pattern interfaces with aspect ratios ranging between 0.0 < A/𝜆 

≤ 2.0 were studied. The fracture process zone is assumed to be infinitely small with respect to the 

size of the pattern, and therefore, the single and double kinked crack approaches can be utilized 

along with a numerical J-integral method to study the effect of shape behind the crack tip. Cases 

with larger fracture process zone will be investigated in section 2.4. 

The role of the shape of the crack behind the initial crack tip in the sinusoidal pattern was 

investigated by Zavattieri et al., 2007. In that study the authors considered two different shapes for 

the initial crack path; i) half sinusoid interface (an initial straight crack with the crack tip located 
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at the transition from straight to sinusoid), ii) full sinusoid interface, where the crack tip placed 

within the sinusoidal path (see Figure 2.4(a)). For the case of the half-sinusoidal interface, the first 

and second instabilities occur at x/λ = 1/3 and x/λ = 1/2 respectively.  It is also observed that the 

value of 𝐾ூ 𝐾଴⁄  for a second instability in the half-sinusoidal case is equal to 𝐾ூ஼ 𝐾଴⁄ of the full-

sinusoidal case. From the second instability, the crack grows indefinitely at constant load and, as 

such, that point was selected as the effective toughness of the half-sinusoidal interface (Figure 

2.4(b)). For the half-sinusoid case, the first instability of the interface path follows exactly the 

LEFM results predicted by single kinked crack approximation while the second instability falls 

exactly on the effective interface toughness (KIc/K0) calculated from the numerical J-integral as 

presented in Figure 2.4(c). This results lead to two important observations : (1) It pattern needed a 

lower load (lower KI/K0) to trigger unstable crack propagation when the shape of the open crack 

behind the crack tip is flat in comparison to the sinusoidal pattern. Figure 2.4(a) shows the 

difference in the stress distribution surrounding the crack tip suggesting that the sinusoidal shape 

of the crack behind the crack tip may shield the crack tip and therefore delaying the unstable crack 

propagation, (2) The single kinked crack approximation is better suited for predicting the first 

instability in the half-sinusoidal case. This occurs because the shape of the open crack in the single 

kinked crack is indeed flat and matches the general shape of the single kinked crack model as 

shown in Figure 2.2(a). In order to predict the second instability in the half-sinusoidal case (or the 

first instability in the full-sinusoidal case), which corresponds to the effective toughness of the 

sinusoidal interface, a more complex description of the sinusoidal geometry of the open crack 

behind the crack tip is may be required. As a result, the two conditions with the analytical models 

(single and double kinked crack models) were utilized to understand the role of the shape behind 

the crack tip. 

The single kinked crack approach is adopted such that, for each point along the sinusoidal path, 

the crack tip is defined as a tangent to the sinusoidal path and the kinked angle is defined by the 

angle between the tangent and the horizontal line.  By using this method, Zavattieri et al. (2007) 

demonstrated that the effective toughness of the interface, 𝐾ூ஼ 𝐾଴⁄ , can be reasonably estimated 

with the single kinked crack approach for 𝐴 𝜆⁄ < 0.25. However, it becomes less accurate for 

  𝐴 𝜆⁄ > 0.25.  Although the results stated that the angle at the crack tip plays an important role in 

the value of 𝐾ூ஼ 𝐾଴⁄  for the 𝐴 𝜆⁄ < 0.25,  some geometrical aspect of the sinusoidal crack behind 

the crack tip seems to be missing for larger aspect ratios. Therefore, we aim to employ the double 
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kinked crack model to determine if more information about the shape of the crack behind the crack 

tip plays an essential role on the effective toughness, especially for the higher values of the aspect 

ratio. Figure 2.4(d) shows the effect of shape on 𝐾ூ஼ 𝐾଴⁄  for 𝐴 𝜆⁄ = 0.5 by changing the angle 𝛼  

(see Figure 2.2(b)) in the double kinked crack model definition and placing a crack tip at 𝑥 𝜆⁄ =

0.25 (From the single kinked crack approach, for 𝐴 𝜆⁄ = 0.5,  the 𝐾ூ஼ 𝐾଴⁄  occurs at 𝑥 𝜆⁄ = 0.25). 

The comparison between single kinked, the double kinked crack and numerical J-integral method 

for different values of 𝛼  (Figure 2.4(d)) suggest that, as the angle 𝛼  increases, the double kinked 

crack solution converges to the numerical J-integral method.  
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(a)                                     (b) 

       

                                                (c)                                                          (d) 

Figure 2.4. (a) The normalized stress field contour near the crack tip for the half and full 
sinusoidal pattern interfaces for 𝐴 ⁄ 𝜆 = 0.5, (b) The numerical results for 𝐾ூ ⁄ 𝐾଴  along  the 

sinusoidal path for both half and full sinusoidal pattern interface, (c) Value of the critical load at 
which the first and the second instability occurs. The second instability corresponds to the 

calculated apparent interface toughness (Figure adapted from Zavattieri et al., 2007), (d) the 
effect of angle 𝛼 on the value of 𝐾ூ஼ 𝐾଴⁄  for 𝐴 𝜆 = 0.5⁄ . 

 

yy Stress field 
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The direct application of the single and double kinked crack models on sinusoidal patterned 

interfaces is challenging due to the shape of the sinusoid. The schematic of single kinked approach 

which used by Zavattieri et al., 2007 to determine the fracture toughness is shown in Figure 2.6(a). 

Using both single and double kinked crack models on the sinusoidal patterned interfaces are 

challenging due to the shape of the sinusoid, especially, for the double kinked crack, since the two 

kink cracks should be able to capture the shape of the sinusoidal pattern. Nonetheless, if successful, 

the double kinked crack model could become a valuable tool to understand the shape of the crack 

behind the crack tip and to develop design guidelines for patterned interfaces. As presented in 

Figure 2.2(b), the double kinked crack model represented by two kinked cracks followed by one 

main horizontal crack. For each point along the sinusoidal path, the crack tip is defined as a tangent 

to the sinusoidal path similar to the single kinked crack model that used by Zavattieri et al., 2007. 

Previously, Zavattieri et al. in 2007 investigated the effect of the shape of the initial crack path on 

the effective toughness of the sinusoidal patterns interface based on the above information, in order 

to account for the shape of the initial crack path behind the crack tip using double kinked crack 

approach, at least a wavelength is considered. In following, the step-by-step procedure of 

developing the double kinked crack model on the sinusoidal interface will be explained along a 

half period of the sinusoidal interface (see Figure 2.5(b)).  

1) Point A represents the peak of the previous sinusoidal period and it is placed at (−
ఒ

ଶ
 ,2𝐴). The 

shape of the crack on the left of A is represented by the segment a (as shown in Figure 2.2 (b) and 

Figure 2.5(b)), assuming that this portion of the crack is sufficiently far from the crack tip, and 

therefore, we neglect its influence. As such the horizontal crack a is defined by 𝑦 = 2𝐴. 

2) The position of the evolving crack tip, defined by point B , is defined by the tangent along the 

sinusoidal interface at such point. The tangent also defines the line b’.  The crack tip position varies 

along the repeating segment (0,0) to (
ఒ

ଶ
 ,2𝐴).  The evolution of KI/K0 is considered to repeat along 

similar periods. 

3) I defined the interval AB [𝑋஺ − 𝑋஻], selected between points A and B as shown between green 

brackets in Figure 2.5 (b). 

4) The segment b (line  𝐴𝑂ᇱ) is defined by linear regression of all the points along the sinusoid 

between points A and B (interval [𝑋஺ − 𝑋஻] ).  



44 

 

5) Point O is defined as an intersection between lines b and b’.   

A MATLAB code was developed to calculate the linear regression of the sinusoidal path up to the 

point of the crack tip. Due to the periodicity, only one wavelength for each sinusoidal pattern is 

presented for the results.  

 

                               (a)                                                                                (b) 

Figure 2.5. (a) A schematic of using the single kinked crack model in the sinusoidal patterned 
interface. (b) The definition for double kinked crack used for sinusoidal pattern interface 

The comparison between three different methods (i.e. analytical approaches and the numerical J-

integral) for the sinusoidal pattern interfaces with different values of aspect ratio (0 < 𝐴/ 𝜆 <

2.0) are presented in Figure 2.6(a)-(e). These results reveal that, for the small values of aspect ratio 

(𝑒. 𝑔. , 𝐴/ 𝜆 = 0.1), the single kinked crack model follows closely the numerical J-integral results 

and even shows a better response in comparison to the double kinked crack (Figure 2.6(a)). This 

can be explained by the fact for the small values of aspect ratios (A/ 𝜆<0.25), the shape behind the 

crack tip is not wavy enough (close to the straight line). Moreover, Zavattieri et al., 2007, found 

that for A/ 𝜆<0.25, the results from the flat-half sinusoid was very similar to the full-sinusoid case. 

Therefore, for small values of aspect ratio, the shape behind the crack tip can be ignored, and as a 

result, the single kinked crack analytical model would be a good option.  As the aspect ratio 

increases, the single kinked crack model is not able to predict the correct value for the sinusoidal 

interface, while, the double kinked crack model shows higher values for effective toughness in 

comparison with the single kinked crack, it shows lower values in compare with the numerical J-

integral. These results confirm the role of shape behind the crack tip and these finding are in 

accordance with Zavattieri et al., 2007. Finally, the effective fracture toughness for all three 
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different methods for different values of the aspect ratios are presented in Figure 2.5 (f). Finally, 

an accurate value of KI / K0 along the interface is obtained by solving the numerical J-integral 

method. 

   
         (a)                                                  (b) 

     
       (c)                                                   (d) 

          
     (e)                                                   (f) 

Figure 2.6. A comparison between single and double kinked crack model with numerical J-
integral over the sinusoidal path for different values of aspect ratio (a) 𝐴/ 𝜆 = 0.1, (b) 𝐴/ 𝜆 =

0.5 , (c) 𝐴/ 𝜆 = 1.0, (d) 𝐴/ 𝜆 = 1.5, (e) 2.0. (f) The predicted effective toughness on sinusoidal 
interfaces for low and high asperity aspect ratios 
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When the aspect ratio is small enough  (𝐴 𝜆 < 0.25⁄  ), the interfacial shape is very close to the 

straight line. Thus, one can use the single kinked crack approximation to predict the correct value 

for the effective interface toughness and ignore the effect of shape behind the crack tip. The single 

kinked crack approximation is suitable for the cases where the shape behind the crack tip is not 

important or can be ignored. However, For the larger values of the aspect ratios  (𝐴 𝜆 > 0.25⁄  ), 

the shape behind the crack tip plays an important role and cannot be ignored anymore.  

2.5 Comparison between triangular, arbitrary, and sinusoidal patterned interface under 
remote mode-I loading 

In this section, a comparison between triangular, arbitrary, and sinusoidal patterned interfaces is 

performed for the representative aspect ratio of 0.3. Previously, the role of other non-interlocking 

patterned interfaces (i.e. triangular and arbitrary pattern interfaces) discussed (Cordisco et al., 

2014; Hosseini et al., 2019). In Figure 2.7, the resistant curve for the triangular, arbitrary, and 

sinusoidal pattern interface is shown in solid green, blue, and red curves, respectively. Based on 

Figure 2.7, the triangular and arbitrary pattern interfaces show equal value for the effective 

toughness (KIc/K0=1.46) which is higher than the effective toughness for the sinusoidal pattern 

interface (KIc/K0=1.37). It is also interesting to notice that KIc/K0 in an arbitrary interface occurs at 

the segment with a maximum kink angle (𝛾 = 70°). Where this value is equal to the effective 

toughness of the triangular pattern with kink angle equal to 𝛾 = 50° and this can be explained 

because the effective toughness depends on the shape of the crack behind the crack tip. However, 

both the triangular and arbitrary pattern interfaces develop sharp angles in their tips, which might 

cause stress concentration in those areas. In actual materials, these stress concentrations might 

cause crack branching into the solid part and therefore not constrained the crack to growth along 

the interface path (Liu and Li., 2018). ). Such condition is not considered in our models, and it is 

beyond the scope of this work. As a result, one can conclude that the sinusoidal interface path 

might be more desirable pattern in comparison to the two other pattern shapes. Although it gives 

a little bit lower value of fracture toughness in comparison to the two other cases, we can make 

sure that the crack constrained to propagate through the sinusoidal path.  
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Figure 2.7. Crack propagation paths for the triangular, arbitrary, and sinusoidal patterned 
interfaces of 𝐴 𝜆⁄ = 0.3.  
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2.6 Effect of materials and geometrical length scales in the sinusoidal pattern interfaces 

2.6.1 Background 

In section 2.3, we found that when the fracture process zone is significantly small compared to the 

size of the pattern, the increase in the normalized macroscopic fracture toughness could be 

associated to the shape of the crack behind the crack tip and the crack kink direction with respect 

to the remote loading conditions. It was shown that the shape of the pattern could be used to 

maximize the normalized macroscopic fracture toughness, it has also been demonstrated that for 

sinusoidal patterned interfaces between two identical elastic materials, the A/𝜆 ratio is a key 

parameter in characterizing interface toughening with respect to flat interfaces (Zavattieri et al., 

2007, 2008). However, specifying the interface, A/ 𝜆 or the shape are not adequate criteria to 

explain the A, 𝜆 geometric length scales magnitudes that maximize toughness. Additional 

considerations regarding the size scale at which the interface pattern is designed should also be 

evaluated. In order to design materials and benefits from patterned interfaces (i.e., improve crack 

propagation resistance at multiple scales similar to Nature), a relation between the material fracture 

resistance mechanical properties and the characteristic geometrical lengths of the pattern is 

required (Barthelat et al., 2007; Krauss et al., 2009),. The pattern adds a new geometric length 

scale to the crack propagation problem, and the relation to material length scales in the damage 

zone (Anderson, 1995; Bazant and Planas, 1997; Cavalli and Thouless, 2001) have to be 

considered. In this section, we seek for a relationship between the patterned geometrical 

characteristic lengths and the material length scale, which allows the construction of design 

guidelines for fracture-resistant materials at multiple scales following the concept of interface 

patterning. To generalize the problem of crack propagation along patterned interfaces, the semi-

infinite theoretical model proposed in section 2.3 for the sinusoidal pattern (asymptotic field 

solution for the K-field between two identical elastic materials) is used to find fundamental 

relations between the pattern and material lengths scales independent to additional characteristic 

length scales such as the material structural size or boundary conditions. A cohesive zone model 

(Barenblatt, 1959; Dugdale, 1959; Espinosa and Zavattieri, 2003; Xu and Needleman, 1994) is 

used to characterize the interface de-cohesion and introduce the fracture process zone as an 

additional material length scale associated to the damage ahead of the crack tip (Bazant and Planas, 

1997; Cavalli and Thouless, 2001; Li et al., 2004). 
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Figure 2.8. Normalized macroscopic fracture toughness against the normalized fracture process 
zone size (adopted from Cordisco, 2014). 

2.6.2 Experimental Investigation 

As previously discussed, patterned interfaces add an interesting interplay between the geometrical 

and material characteristic length scale to the design. In this section, the effect of the characteristic 

length scale is investigated experimentally using 3D printed specimens. Therefore, the samples 

with a sinusoidal patterned interface considering for different aspect ratios 

(𝐴 𝜆 = 0.0, 0.25, 0.5, 1.0)⁄  are printed with a Connex 350 3D Printer using a combination of stiff 

and soft/weak polymers. All the samples were designed with 𝜆 =20 mm, and varying amplitude, 

A = 0 mm, 5.0 mm, 10.0 mm, and 20.0 mm, with a total sample width of 40 mm. The out of plane 

thickness was 2.0 mm for all the samples.  The midline of the wavy layer follows the sinusoidal 

function presented in Equation 1. Then the top and bottom parts of the interfaces are connected 

using Tango Black Polymer. The 3D print samples are shown in Figure 2.9 (a). The experimental 
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tests were performed under Quasi-Static Mode-I loading conditions using a tensile test machine. 

Digital Image Correlation method (DIC) is also utilized during the experiments in order to get a 

better insight into the interfacial separation between two parts in the sinusoidal patterned 

interfaces. The Lagrangian strain distribution along the sinusoidal pattern interface of different 

aspect ratios is shown in Figure 2.9 (b) followed by the stress-strain curves from the sinusoidal 

patterned interfaces presented in Figure 2.9 (c). The DIC results confirm higher strain distribution 

along the sinusoidal path for larger aspect ratios. Also, results confirm more uniform strain which 

means no crack propagation. These results confirm that multiple nucleation sites show up 

randomly along the sinusoidal and spread almost simultaneously along the width of the sample 

suggesting that crack propagation is not the main separation mechanism.  As a result, by changing 

the aspect ratios of the sinusoidal interface and inducing an effective change of the area of the 

interfaces, the effective toughness from these tests eventually can be compared with those obtained 

for large 𝑙௖௭ 𝜆⁄  >> 1.   

The results state that, by increasing the aspect ratios, the maximum force under tension increases. 

Since the area under stress-strain curves can be defined as the energy release rate, thus the energy 

release rate increases by increasing the aspect ratio. Since the value of the lcz  is bigger than the 

geometrical length scale of each sample, the effective toughness for these samples can be estimated 

according to Equations 2.10 &11. The effective toughness for different values of aspect ratio using 

different methods (numerical J-integral, CZM method for different ratios of lcz/ λ, and 

experimental approach using 3D print samples) are presented in Figure 2.10.  The results from the 

numerical J-integral and Irwine equation (Equation 2.9) are presented in solid black lines. The 

simulations for different lcz/ λ ratios using numerical CZM shown in thin dashed lines (adopted 

from Cordisco, 2014) and experimental results are presented in solid red line. 
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(a) 

 

                                        (b)                                                                         (c) 

Figure 2.9. (a) 3D printing samples with the sinusoidal interface of aspect ratios of 0, 0.25, 0.5, 
1.0. (b) Strain distribution around sinusoidal pattern interfaces of different aspect ratios. (c) 
Stress-strain curve for sinusoidal patterned interfaces of different aspect ratios under remote 

mode-I loading. 
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The CZM results are in excellent accordance to the limiting cases shown by thick solid lines when 

the CZM is set such that lcz/ λ tends to zero, the results converge to the numerical J-integral 

solution, and when lcz/ λ tends to infinity, the results converge to Irwine equation (Equation 2.9). 

The results from the 3D prints experiments for three different aspect ratios are also very close to 

the case where lcz/ λ tends to infinity, and this is due to the fact that the cohesive zone length is 

bigger than geometric length scales for the sinusoidal patterns.  The results in Figure 2.10 also 

indicated that by increasing aspect ratio (A/ λ) values, lcz/ λ controls the interface toughening. 

Developing sinusoidal material interfaces by maximizing A/ λ and minimizing lcz/ λ at a pre-defined 

material length scale, results in material resistance to crack propagation. Therefore, both A/ λ and 

lcz/ λ must be considered as two primary characteristic dimensionless groups in defining interface 

toughnessof patterned interfaces. 

 

Figure 2.10. Crack propagation resistance vs. interface aspect ratios A/ λ for various values of 

 lcz/ λ 
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2.7 Summary and Conclusions 

The effect of the sinusoidal patterned interface on effective toughness is investigated using both 

numerical and analytical methods. For the sinusoidal patterned interfaces, for the aspect ratios of 

𝐴 𝜆⁄ < 0.25, the effective toughness of the interface could be estimated using a single kinked crack 

formula, and single kinked crack model presents better performance in predicting the effective 

toughness in compare to the double kinked crack approach. A double kinked crack model over the 

sinusoidal interface shows higher values of the effective toughness in comparison to the single 

kinked crack approach, notably, for the cases with higher values of aspect ratios. This confirms 

the importance of considering the shape of the crack behind the crack tip. However, the correct 

results still need to be calculated using numerical methods. 

The idea of using both single and double kinked crack models, confirm that one can use the single 

kinked crack model to estimate the effective toughness when the shape behind the crack tip is not 

important, or the pattern is flattened enough that shape behind the crack tip can be ignored. 

However, for the higher values of aspect ratio, the shape behind the crack tip shown a great 

influence on the effective toughness and cannot be ignored. 

Finally, the relationship between the interface geometric characteristic lengths (A,𝜆) and the 

interface material length scale (lcz/𝜆)  suggested that when lcz/𝜆 tends to zero, the shape of the crack 

behind the crack tip, and the crack kinking direction with respect to the remote loading conditions 

significantly contributes to the interface toughening mechanics. While in cases where lcz/𝜆 ≫ 1, 

the contribution is mainly obtained by the increase in the crack propagation length or area and, 

thus, one can easily confirm that lcz/𝜆 represents another key role for developing design guidelines, 

which can be used to improve the resistance to crack propagation at multiple material length scales 

in the sinusoidal pattern interfaces. 
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Also, in the presented research, the 3D printing samples with sinusoidal pattern interfaces were 

tested under remote tensile loading conditions. In these tests, by increasing the aspect ratio of the 

sinusoidal pattern, the interface area increases and since the separation between surfaces is 

governed by the instantaneous forces, the effective toughness from these tests can be compared 

with results of the large fracture process zone. The DIC results also confirm more uniform strain 

along the sinusoidal pattern and no crack tip along the sinusoidal path interface and separation in 

the interface occurs in random locations (similar to the trend that expected in interface with large 

fracture process zone). The results of the experiment using 3D printing prototype, with three 

different aspect ratios are also validated the idea that when lcz/𝜆 tends to large values, the effective 

toughness depends on the interface area.  Therefore, higher values for KIc/K0 can be obtained by 

selecting lcz/𝜆 < 1.0 and the largest possible value of the aspect ratio (A/ 𝜆). 
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CHAPTER 3. BOXFISH SCUTE MATERIAL CHARACTERIZATION 

3.1 Introduction 

Biological systems provide a great source of inspiration for mechanical applications due to 

resistance and extraordinary performance against attack in billions of years of evolution. In 

engineering applications, there is always a tradeoff between stiffness, strength, and toughness. 

However, biological systems overcome this issue by developing specific architectures (Naleway 

et al., 2015). Different species develop various defending mechanisms to protect themselves. 

Previously, scientists have been exploring the role of architecture in dermal armors of various fish 

due to their ability to defend against predators attack while maintaining enough flexibility to 

maneuver efficiently (Porter et al., 2017). For example, the teleost fish develops overlapping 

elasmoid scales, while gars develop interlocking scales in their carapace. These scales protect 

arrays of tough bony plates and usually contribute to less than 20% of the weight of the fish 

(Meyers et al., 2012; Lin et al., 2011; Vernerey and Barthelat 2014). Sharks carapace contains 

imbricated placoid scales, and these scales responsible for anti-biofouling and reduction in drag 

forces (Porter et al., 2017).  Boxfish carapace includes hexagonal scutes tessellations and shows 

high resistance against the attack of other predators such as shark (Yang et al., 2015). Boxfishes 

belong to the Tetraodontiforms order, which also includes triggerfish, pufferfish, trunkfish, and 

ocean fish, as well as 37 other species among the Ostracidae and Aracandiae families (Santini et 

al., 2013). Boxfishes (the family of Ostraciidae) has a rigid armor-like carapace (Besseau and 

Bouligand 1998) and characterized by their boxy shape with a carapace consisted of hexagonal 

bony plates. This boxy structure results in several vortices around the carapace and provides a self-

correcting swimming motion (Bartol et al., 2005; Gharib et al., 2002). Due to the boxy structure 

of the carapace, the boxfish is only capable of low-speed swimming (about 5-6 body length per 

second) in comparison to other types of fish. Thus, this armor carapace is responsible for protecting 

these species against attack or penetration. The scute of the boxfish composed of two primary 

components: i) a thin layer of the mineralized plate and ii) the protein sub-base. The mineralized 

plates mostly contain hydroxyapatite (Caଵ଴(POସ)଺(OH)ଶ) and soft sub-base is primarily made of 

typed-I collagen (Yang et al., 2015). 



56 

 

The carapace or osteoderm of various species in Nature develops several connection techniques 

not only to advance the movement and flexibility but also, provide a defense mechanism similar 

to the biological systems. In Nature, patterned (non-interlocking and interlocking) interfaces are 

one of the most common techniques for connection. Role of non-interlocking pattern interfaces 

previously discussed in Chapter 2. In the current study, the geometry of the interlocking patterned 

interfaces is referred to as sutures. Sutures can be seen in a variety of species ranging from very 

smooth sutures interface (those found in infant human skulls) to more complex geometries as those 

found in ammonite (Sun et al., 2004; Saundres and Work, 2004). The other examples from Nature 

are Armadillo, Alligator, leatherback sea turtle, and woodpecker. In Armadillo osteoderm, sutures 

connect the bony plates using non-mineralized collagen fibers and result in increasing osteoderm 

toughness (Chen et al., 2011). Alligators have also developed arbitrary bony plates in their 

osteoderms, which are interconnected by 3D-shape zigzag sutures and collagen Sharpey's fiber 

that offer flexibility to the system(Sun et al., 2013).  The sutures in leatherback sea turtle also 

increase the strength of the carapace and prevent crack propagation inside bony plates (Chen et al., 

2015). Another remarkable example in nature is the skull of woodpeckers, which are capable of 

repeated pecking on a tree at remarkably high deceleration (10000𝑚 𝑠ଶ⁄ ) without any apparent 

brain injury (Gibson, 2006; Jung et al. 2019). 

In this chapter, I firstly characterized the material properties of the boxfish scute (both 

hydroxyapatite and collagen type I sub-base) using literature, in-situ test, and FE models. Previous 

studies on the boxfish collagen type I using in-situ SAX analysis reveals the existence of bouligand 

microstructure (Besseau and Bouligand 1998) in increasing the toughness of the system. Here, I 

investigate the role of bouligand architecture inside collagen type-I numerically under shear 

loading conditions.  

The followings are the objective for this chapter: 

Objective 1: Material characterization for boxfish scute using (both hydroxyapatite and collagen 

type I sub-base) using literature, in-situ experiments, and FE models 

Objective 2: To understand the role bouligand architecture inside collagen type-I under shear 

loading 
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3.2 Scute structure 

Boxfish carapace contains hexagonal dermal scutes, a combination of the brittle hexagonal plate 

(hydroxyapatite) on top of a very compliant (collagen) material. This offers a flexible armor that 

protects the boxfish against predators. The mineralized plates are separated by patterned (zigzag) 

sutures; there is no interphase material connecting them. Instead, the connection between 

mineralized plates is done through the collagen base (see Fig. 3.1). This is different from other 

naturally occurring sutures (e.g., sutures in turtle, alligator, and armadillo). The microcomputed 

tomography images of the boxfish carapace (In this study, Lactoria cornuta) is presented in Figure 

3.1 (a) & (b). The sutures of the boxfish carapace are presented in Figure 3.1(c). 

            

                              (a)                                    (b)                                              (c) 

Figure 3.1. Micro-computed tomography image of boxfish (Lactoria cornuta) (a) perspective 
view,(b) ventral view, (c) zigzag sutures in the mineralized plate (Figure adapted from Yang et 

al., 2015). 

3.3 Boxfish scute material characterization 

In this section, the material properties for both mineralized plate and type-I collagen sub-base is 

characterized using both numerical modeling and in-situ experimental tests. The primary purpose 

of this characterization is to get insight through the composite properties of each scute. Also, it 

enables us to use this material property for further analysis, such as shear tests (a detailed 

discussion will be presented in Chapter 4).  
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3.3.1 Characterization for collagen type-I 

Collagen type-I exists in the body of many animals in Nature; for example, rat-tail, rabbit skin, 

human skin, human tendons, and bone (Gentelaman et al., 2003; Haut., 1986; Miyazaki and 

Hayashi, 1999; Yang et al., 2015; Rigby et al., 1959; Freed and Doehring, 2005). Collagen type-I 

in Nature behaves as a hyperelastic material with an average elastic modulus ranging between 0.1-

1.1 GPa (see Table3.1). Besides, the stress-strain curves for collagen type-I demonstrate significant 

variations in different species as the rabbit skin represents more ductile behavior (lower tensile 

strength and stiffness) in comparison to rat tail and teleost fish, which demonstrate higher stiffness 

and more brittle-like behavior (see Figure 3.2). Due to significant variations in collagen material 

in Nature, there is a need to characterize the collagen type-I, which exists in boxfish scute. 

The schematic of the geometry and dimension of single hexagonal scute from boxfish carapace is 

presented in Figure 3.3. As presented in Figure 3.3, the geometry of each scute is very small, and 

therefore, it is physically impossible to perform tensile tests using coupon (dog bone) samples.  

Table 3.1. Collagen type I in different animals 

Animal Elastic modulus 

Crosslinked rat tail tendon (Gentleman et al., 2003) 1.10 GPa 

Non-crosslinked rat tail tendon (Gentleman et al.,2003) 50–250 MPa 

Rattail tendon (Haut 1986) 960–1570 MPa 

Rat tail tendon (Kato et al., 1989) 480–540 MPa 

Rabbit patellar tendon (Miyazaki and Hayashi, 1999) 30–80 MPa 

Skin (Yang et al., 2015) 0-50 MPa 

Tendon( Rigby et al., 1959) 1 GPa 

Mitral Valve (Freed and Doehring, 2005) 10-50 MPa 
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Figure 3.2. Stress-strain curves for collagen type-I in Nature 

As a result, a reverse engineering technique was employed in order to characterize the mechanical 

properties of the collagen in the sub-base. As previously discussed, each scute in the boxfish 

carapace connected only through the collagen interface, and there is no connection between sutures 

in mineralized plates. The schematic of two scutes of boxfish carapace when the mineralized plates 

removed from the top part is presented in Figure 3.3(b). 

                

                                         (a)                                                                (b) 

Figure 3.3. (a) The schematic of single scute of boxfish (Lactoria cornuta) carapace, (b) the 
schematic of two collagen sub-base used for both in-situ experiments and FE models. 
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3.3.2 In-situ experimental tests between two scutes without mineralized plates 

Several in-situ tensile tests were conducted between two scutes without mineral plates to determine 

the stress-strain curves. The average geometrical lengths scale (i.e., width, average thickness, and 

initial length) of each scute were shown in Table 3.2. The lower and higher values of stress-strain 

curves from the tests are selected and named as a lower and upper bound, respectively. Therefore 

two sets of finite element results were developed with respect to these bounds. 

Table 3.2. The initial geometry of the scutes used for the tensile test 

Test numbers Average width (mm) Average thickness (mm) Initial length L0 (mm) 

Test1 3.76 0.54 2.68 

Test2 3.38 0.64 2.94 

3.3.3 Finite element modeling 

In order to gain the correct behavior of the collagen base, the reverse engineering technique was 

used in this section followed by several FE simulations in order to predict the correct behavior of 

both collagen base and interface (see Figure 3.3(b)). Several cases were needed to run to obtain 

the correct behavior of both collagen and cohesive interface between scutes. Collagen material is 

defined as a hyperelastic material, and traction-separation law was utilized to model the cohesive 

interface between the collagen. Once the correct initial stiffness of the collagen was determined, 

the next step is to develop an accurate model for the cohesive interface. The traction separation 

law in ABAQUS assumes initially linear elastic followed by initiation and damage evolution (see 

Figure 3.4). Therefore, the cohesive surface defines by two parameters, maximum strength, and 

fracture energy. Finally, for the purpose of validation, two sets of parametric studies were 

developed. 
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Figure 3.4. Traction-Separation Law used in ABAQUS for cohesive Interface 

 

For case 1, the maximum stress Tmax in the traction-separation was kept constant, and the fracture 

energy varies between 2N/mm to 6N/mm while for case 2, the fracture energy kept constant and 

equal to 5N/mm and maximum stress varying between 10-15 MPa. The result from both cases 1 

and 2 are presented in Figure 3.5 (a) and (b), respectively. The primary purpose of this parametric 

study is to make sure that we are consistent in the characterization. 

 

                                          (a)                                                              (b) 

Figure 3.5. Validation of characterization technique. (a) Constant fracture energy (5 N/mm) for 
all the cases for the maximum stress ranging between 10-15 MPa. (b) Constantan maximum 

stress of 12 MPa and fracture energy ranging between 2-6 N/mm. 

The summary of cohesive interface characterization is presented in Table 3.3 for the lower and 

upper bounds. 
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Table 3.3. Cohesive interface characterization using ABAQUS for the lower and upper bound 

 Maximum Nominal Stress (MPa) Fracture Energy (N/mm) 

Lower bound 12 5 

Upper bound 15 8 

The finite element results for collagen type-I material characterization for lower and upper bounds 

are presented in Fig 3.6 (a).  The comparison between FE simulations and in-situ experiments for 

two scutes of boxfish without mineral plates shows a good consistency between experiments and 

FE results (Fig 3.6 (b)). The schematic of FE simulations between two collagen subbases is 

presented in Fig 3.6 (c). Finally, the maximum principal stress distribution contour on bulk 

collagen during the tension test is presented in Fig 3.6(d). 

 

(a)                                                          (b) 

              

(c)                                                                  (d) 

Figure 3.6. (a) The upper and lower bounds for the collagen material used in FE analysis. (b) 
Comparison between experiments FE simulations (c) Schematics of the tensile test (d) Maximum 

Principle stress contour on bulk collagen during the tension test. 
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3.4 Mineralized plate characterization (Hydroxyapatite) 

The mineralized plates are mainly made of Hydroxyapatite (HA), Ca5(PO4)3(OH) (Yang et 

al.,2015; B. The fracture toughness of hydroxyapatite can be found in literature as shown in Table 

3.4.  

Table 3.4. Fracture toughness of the hydroxyapatite in literature 

Fracture toughness MPa√𝑚 Literatures 

Temperature (℃) 

1000°            0.82 

1200°             0.78 

 

Mobasherpour, I., et al, 2009 

1.2 Halouani, R., et al. 1994 

1 Van Dijk et al., 1981 

 

Based on the literature, the average value of fracture toughness of hydroxyapatite is assumed to be 

1 MPa√𝑚 . Moreover, the maximum strength of the hydroxyapatite is adopted from Woodard et 

al., 2007, and it is equal to 26 MPa (Woodard et al., 2007). 

The finite element models of two scutes (similar to the test developed by Yang et al., 2015) under 

tensile loading is developed using the material characterized in sections 3.3 and 3.4. Both FE 

simulations and the experiments show a good agreement with each other, as shown in Figure 3.7. 
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(a) 

 

(b) 

Figure 3.7. (a) The maximum principal stress in the beginning and after the separation between 
two scutes. (b) a comparison between stress-strain curves from finite element results and the 

experiments using lower and upper bounds. Finally, the comparison between stress-strain curves 
for collagen type-I that characterized for boxfish scute using reverse engineering technique and 

collagen type-I in other species is shown in Figure 3.8.  
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Figure 3.8. Comparison between collagen type-I found in boxfish scute and other species 

3.5 Collagen type-I microstructure (role of bouligand microstructure) 

Although the scale geometry and entire structural layout of the carapace/osteoderms play an 

essential role in the overall performance of the biological system, recent studies state that 

microstructure of each scale is another essential factor (Rivera et al., 2019; Salinas et al.; 2017; 

Suksangpanya et al., 2017). Specific attention goes to boxfish collagen type I. The ladder-like 

micro-structures of collagen within the scute interior can be seen (Fig. 3.9 (a)). However, during 

in situ SEM mechanical loading, it can be seen that these collagen planes deform in a much more 

complex way that would be expected from a ladder-like structure consisting of 

bidirectional/orthogonal collagen fibrils and forms this unique S-shape structure (Fig. 3.9 (b)). It 

is hypothesized that this S-shape is due to bouligand microstructure between each ladder. Similar 

behavior was observed throughout the interior of the scute’s collagen base. It is proposed that this 

structure allows for the collagen planes to realign with applied stress; therefore, increasing the 

deformation resistance of the scute interior, which is similar to previous literature on the 

deformation response of Bouligand structures found in nature (Garner et al., 2019). 
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                                        (a)                                                                (b) 

Figure 3.9. (a) Collagen base in boxfish scute contains ladder-like bouligand structure, (b) 
Presence of “S” shape after applying shear test between two scutes (Figure adapted from Garner 

et al., 2019). 

 

To understand the reason why the S-shape developed in collagen after shear test, a 3D finite 

element (FE) model of material element unit cell was developed by employing  N (N = 20) stacked 

layers of continuum shell elements of thickness d and a pitch distance of D as presented in Figure 

3.10 (a) and (b). Such a unit cell represents the behavior of bouligand structure inside the collagen 

scute, showing the material element cell in the forms of N helicoidally stacked layers with different 

orientations. The material property is adopted from a nacre (Barthelat et al.,2006) due to the 

anisotropic nature of the material. The layers were completely bonded together, and shear 

displacement control applied on the top and bottom surfaces of the model. The results from FE 

models of both homogenized material and bouligand architecture are compared and presented in 

Figure 3.10 (c), respectively. The comparison between the normalized horizontal displacements of 

these two microstructures reveals that the S-shape could be explained due to the nonlinearity in 

geometry caused by anisotropic material orientation in the bouligand architecture. 
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                                      (a)                                                               (b) 

                                         

                                                                         (c) 

Figure 3.10. (a) Schematic diagram of the layered model for finite element model where, D 
defines pitch distance, d accounts for the layer thickness, and the total number of layers are equal 

to 20 (N=20) (b) horizontal displacement of element unit cell for Bouligand cells, (c) the 
normalized horizontal displacements of Bouligand structure and homogenous material along 

vertical (y) direction (pitch angle direction (D)). 

 

In addition to the above results, the role of plate orientation was also studied for four different 

orientations: i) +45/-45, ii) 0/90, iii) bouligand microstructure (similar to what we observed in 

boxfish), iv) 0/0 orientations. Both loading and boundary conditions were similar to the previous 

paragraph.  The results from this parametric case studies are presented in Figure 3.11(a)-(d). 
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                                              (a)                                                                       (b) 

 

                                            (c)                                                                          (d) 

Figure 3.11. Horizontal deformation under simple shear for different orientation after fifty cycles 
of loading and unloading, (a) +45/-45 orientation, (b) 0/90 orientation, (c) bouligand structure, 

(d) 0/0 orientation 

 

Figure 3.11 shows the horizontal displacement after one cycle of loading and unloading for all four 

different orientations. Based on comparison, the bouligand structure shows higher horizontal 

displacements in comparison to the other three orientations. The normalized values of peak load, 

stiffness, toughness, and maximum horizontal displacements for all four orientations are presented 

in Fig 3.12. All the values in Fig 3.12 were normalized with respect to the 0/0 orientation model. 

The results state that the bouligand orientation presents a better performance in comparison to the 

other orientations in terms of stiffness and maximum horizontal displacements. However, the peak 

load and toughness are the highest for 0/90 orientation. As expected, the lowest values for all the 

mechanical properties occur at 0/0 orientation. These results also confirm that the loading direction 
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is important, and one should also consider the material orientations with respect to the applied 

loading conditions. 

 

Figure 3.12. Comparison between normalized peak load (red), normalized stiffness (purple), 
normalized toughness (blue), and normalized maximum horizontal displacement (black) for all 
four types of orientations (+45/-45, 0/90, bouligand, and 0/0 orientations) in this study. All the 

values are normalized with respect to 0/0 orientation. 

3.6 Summary and conclusions 

In this chapter, materials used in each scute of boxfish carapace were characterized using in-situ 

experiments, FE simulations (reverse engineering technique), and literature. The results from the 

FE simulations of collagen type-I show a good agreement with the experiments. Finally, the role 

of bouligand architecture inside the collagen base was investigated using 3D unit cell in forms of 

N helicoidally stack layers with different orientations for a single pitch similar to the boxfish 

microstructure. The results stated that the nonlinearity which we observed during SEM mechanical 

testing can be explained due to the anisotropic nature of the bouligand orientation. 
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CHAPTER 4. ROLE OF BOXFISH SCUTE ARCHITECTURE IN 
CONTROLLING THE CRACK DIRECTION 

4.1 Introduction 

Over billions of years of evolution, biological systems develop various sophisticated mechanisms 

to protect against attack or adapt into habitat to survive. Studying these mechanisms enable us to 

understand the mechanics and provide insight to develop or improve future engineering 

applications. Biological systems overcome the tradeoff between stiffness, strength, and toughness 

by means of specific microstructure or architectures. For instance, many arthropods such as 

beetle’s family (Cheng et al., 2019; Libby et al., 2014; Jewell et al.,2007; Yang et al., 2017; Rivera 

et al., 2019), mantis shrimp (Suksangpanya et al., 2018), and crabs (Cheng et al., 2008 ) have been 

evolved bouligand microstructure inside their bodies. The existence of this architecture helps to 

increase toughness as well as damage tolerant properties. Patterned interfaces, including both non-

interlocking and interlocking patterns, are another common motif in Nature to enhance mechanical 

properties such as toughness (Hosseini et al., 2018 and 2019; Cordisco et al., 2012, 2016 and 2017; 

Rivera et al., 2019).  

Marins are also developed various dermal armors as a defense mechanism approach. The 

overlapping elasmoid scales in teleost fish, interlocking ganoid scale in gars, imbricated placoid 

scales in sharks, and interlocking hexagonal scutes in boxfish are all examples of armors developed 

in order to protect these fish against attack or penetration. Moreover, these microstructures help to 

maintain flexibility in order to maneuver in the water as well as reducing the drag force (Porter et 

al., 2017).  Although both dermal armor and scale geometry play an essential role in the 

performance of the marine species, an individual scale architecture is another key in increasing the 

mechanical properties. For instance, elasmoid scales in teleost fish have been developed a gradient 

of mineralization through the scales thickness to resist against penetration and increase bending 

stiffness (Dastjerdi et al., 2015). Similarly, arapaima gigas carapace contains elasmoid scales and 

further analysis through the microstructure of these scales reveals the presence of the inner lamellar 

layer, which consists of uniaxial mineralized collagen fibrils. In each layer, the fibrils alignment 

changes periodically and create bouligand type structure (Zimmermann et al., 2013). 
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Boxfishes (superfamily Ostraciodea) belong to the Tetraodontiforms order and developed flexible 

dermal armor which differs from other families of fish (Santini et al., 2013; Yang et al., 2015). 

Boxfishes can reach speeds higher than six body lengths per second to achieve minimal turning 

radius as well as control of their position (Bartol et al., 2005; Van Wassenbergh et al., 2014). Also, 

boxfishes are capable of producing destabilizing vortices which help to enhance maneuverability 

in high turbulent waters, and as a result, these species can efficiently navigate in coral reef habitat 

(Bartol et al., 2005). Since the speed of boxfishes is slow in comparison with other types of fish, 

the specific carapace architecture is responsible for providing defense mechanisms against attack. 

The in-situ experiments on the two scutes of the boxfish reveal that specific boxfish scute 

architecture can help in controlling the crack direction in the hard(brittle) mineralized plates (more 

explanation will be provided through the manuscript). Therefore, the primary purpose of this study 

is to understand the role of boxfish scute and its architecture in protecting the carapace and if this 

architecture can provide us insight into the mechanics of controlling cracks propagation direction. 

To this aim, this study explains the role of architecture such as sutures geometry (sutures angle) 

and material properties (role of bi-layered material, a combination of brittle and soft substrate) by 

using analytical, numerical and experimental models.  

4.1.1 Boxfish scute geometry 

Boxfishes are mostly recognized by their boxy-shape carapace and non-overlapping hexagonal 

scutes, which make them different from other types of fish, as can be seen in Fig4.1 (a). The study 

by Yang et al., 2015 on boxfish carapace (Lactoria cornuta) revealed that each hexagonal scutes 

contain two distinct parts, i) a thin layer of mineralized plates which mostly contains 

hydroxyapatite (brittle materials), and ii) a thick layer of soft material which is type-I collagen 

(Yang et al., 2015). Also, sutures (triangular-like) microstructure evolved around mineralized 

plates, and unlike other species such as turtle, alligator, and armadillo (Chen et al., 2013; Chen et 

al., 2015; Yang et al., 2013) no interface connection exists between sutures. As a result, the 

connection only occurs through the collagen base. The experimental results between two scutes 

under tensile tests reveal that the collagen base is mainly responsible for the separation, and suture 

interfaces do not play a role. Under shear loading between two scutes, cracks arrested around 

sutures areas, and as a result, the collagen base was responsible for the rest of the separation. Since 

the mineralized plate mainly consists of hydroxyapatite (a biological ceramic/ brittle behavior), it 
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is expected to see at least one main dominant crack propagates through the entire plates under 

shear loading when sutures presence. However, based on in-situ shear test results, multiple cracks 

developed around sutures areas without any damage in the mineralized plates, and thereby, it is 

hypothesized that collagen beneath should play a role in controlling the crack direction as shown 

in Figure 4.1 (b) and (c). The carapace of the boxfish represents excellent resistance against punch, 

bending, and shear loadings (Yang et al., 2015). The presence of brittle plates on top of the soft 

substrate and its damage mechanisms have been investigated through many studies. A quick 

summary of previous works regarding the brittle plates and soft subbase laminates (see section 

4.1.2) can give us more insight through the mechanics of boxfish scute.  

 

(a)

 

(b)                                                                       (c) 

Figure 4.1. (a) The boxfish carapace, the red zoomed box presents the hexagonal scutes, (b) 
schematic of shear tests between two boxfish scutes, (c) cracks propagating around sutures area 

in mineralized plate after the shear test. 

4.1.2 Coating technique used in material science  

Coating hard thin ceramics on the soft substrate is an engineering technique to increase the 

performance and mechanical properties of the brittle materials. This technique can be found in a 
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variety of applications from wear, corrosion, thermal, and electrical resistance applications to 

ceramic armor, laminated windows, eyeglasses, and biomedical applications such as dental crown 

and hip prostheses (Deng et al., 2002). Since these coatings are mainly brittle, the life of the 

components is limited by the failure of these brittle coatings or plates. The damage is mainly 

caused due to the stress concentration arising from contact loading. Therefore, many studies have 

been done to gain an understanding of the damage mechanisms of brittle, thin plates on the soft 

substrate (Lawn et al, 2004; Kim et al., 2003). The observations by Lawn et al. in 2004 revealed a 

competing mechanism between damage modes in the bi-layers material. These competing 

mechanisms can be described as i) cone cracks or quasi-plasticity at the top (in the contact area), 

and ii) laterally extend cracks at the lower surfaces. The schematic of each damage mechanism for 

brittle plates is presented in Fig 4.2 (a). The relationship between cone crack (C) and quasi-

plasticity (Y) with corresponding critical contact load have been investigated analytically and are 

presented in Equations 4.1 and 4.2 respectively (Lawn and Ceram, 1998, Guiberteau et al., 1994). 

𝑃௖ = 𝐴 ቆ
𝑇ଶ

𝐸
ቇ 𝑟                                                                                                                                            (4.1) 

𝑃௬ = 𝐷𝐻 ൬
𝐻

𝐸
൰

ଶ

𝑟ଶ                                                                                                                                      (4.2) 

Where E is the Young’s Modulus, T accounts for toughness, “H” represents Hardness, and  “A” 

and “D” are dimensionless coefficients. When 𝑃>𝑃𝐶, cone cracks expand stably by Roesler’s 

relation for penny-like cracks. The results from the bilayer material (brittle material on top of the 

soft substrate) present another damage mechanism. Under the same Hertzian contact condition, 

another stress state will show a mismatch between layer components. As a result, it can induce 

new stress states in the brittle plates such as ceramic due to the flexure on a soft base and finally 

generate subsurface radial cracks (R) (Lawn et al., 2002). This stress can become dominant as the 

thickness of the brittle plate becomes thinner (similar to the boxfish scute). The schematic of the 

bilayer sample under the Hertzian contact test is presented in Figure 4.2 (b). 
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                                                   (a)                                                          (b) 

Figure 4.2. Schematic of Hertzian contact of the sphere of the radius of  𝑟௜  under contact load of 
𝑃 and contact on top of (a) brittle plate, (b The bilayer sample(figure adopted from Lawn et al., 

2002). 

If the deformation of the substrate remains elastic (or the thickness of the brittle blade is larger 

than the subbase), then all the damage from external contact is carried out by brittle plate and 

Equations 4.1 and 4.2 can be used to calculate the critical applied load. For the thinner thickness 

of the brittle plate, flexural stresses become the primary reason for radial cracks initiation (Chai et 

al., 1999). The maximum tensile stress in the middle of the bi-layer sample (Figure 4.2(b)) can be 

determined by the plates theory on the elastic regime (Timoshenko and Woinowsky-Krieger, 

1959). By substituting this stress to the flexural bulk strength, 𝜎஼  yields the critical load for radial 

cracking, as presented in Equation 4.3. 

𝑃ோ = 𝐵𝜎஼𝑑ଶ/log (𝐶 𝐸஼ 𝐸ௌ)⁄                                                                                                                         (4.3) 

Where B and C are dimensionless constant, and 𝑑 is the flexing plate. 𝜎஼  is the strength and 𝐸஼ 𝐸ௌ⁄   

is the modulus of ceramic to the soft substrate. In another study, the relationship between the 

various ratios of the brittle plate to the soft substrate is investigated by Chai et al. in 2004.  Based 

on this study, ceramic layer thickness played an important role in damage mechanisms and caused 

four different categories of failure, as presented in Figure 4.3 (Chai et al., 2004).    
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                      (a)                                                   (b)                                                  (c)          

Figure 4.3. Schematic of bilayer architecture including brittle layer (thickness d) and young’s 
modulus of Ec on a compliant base of modulus Es under sphere contact of radius r at load P. 
Competing fracture mechanism inside brittle plate:(a) cone crack at the top surface, (b) ring 
crack and radial crack at the top and  bottom  surface of brittle plate,respectively and (c) ring 

cracks through brittle plate (Figure reproduced from Chai et al., 2004). 

The purpose of this study is to understand the mechanics of boxfish scute architecture (patterned 

geometry and material) in controlling the crack propagation direction under shear loading. Here, I 

try to explain how this architecture bio-inspired from boxfish scute can help in controlling the 

crack direction using analytical methods, numerical analysis, and experiments. To this aim, the 

biomimetic samples were created using gypsum (brittle phase, including sutures) and silicone (soft 

phase) for various cases. Similarly, the FE simulation of the biomimetic samples was created to 

get a better insight into the mechanics of this architecture. In the next, I will investigate the role of 

a kinked crack in bi-layered materials and the effect of material properties on the crack propagation 

angle. 
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4.2 Problem formulation 

As discussed in the previous section, the boxfish scute architecture (both a combination of soft and 

brittle material and sutures existence) can help to control the crack propagation direction in the 

brittle plates. Brittle plates, including triangular sutures interfaces, were placed on top of soft 

material (Fig 4.4 (a)). In the brittle material consisting of sutures interface, under shear loading, it 

is hypothesized that at least one dominant crack propagates through the plates while adding soft 

material beneath can help to control the crack direction parallel to the loading as demonstrated in 

Fig 4.4 (b) and (c) respectively.   

 

                         (a)                                                      (b)                                            (c) 
Figure 4.4. (a) Schematic of biomimetic sample bio-inspired by boxfish scute contains brittle 

material (Material 1), soft material (Material 2) , and an adhesive layer (highlighted in blue), (b) 
schematic of crack propagation including sutures for brittle plates under shear, (c) schematic of 

bi-layer material consisting sutures under shear loading and crack propagation. 
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4.3 Dimensionless analysis 

In the bio-inspired sample, specific material properties for hard plates, soft sub-base, interface 

interlocking geometry, as well as the adhesive connection between hard and soft parts play an 

essential role in crack propagation, delaying the crack, and overall performance of the bi-layered 

materials. Therefore, we require a dimensionless analysis to obtain model parameters that have the 

most effect on the behavior of the system, such as toughness, energy dissipation, and angle of 

crack propagation. Based on the test geometry and material properties, the following 

dimensionless groups are needed to be investigated for the geometrical parameters 

(𝜃, 𝑙ଵ, 𝐿, 𝑊, 𝑡ଵ, 𝑡ଶ), material properties (𝐸ଵ,𝜈ଵ,𝜎௙௕ , 𝐾ூ௖, 𝐾ூூ௖,𝐸ଶ,𝜈ଶ, 𝜎௙௦ ), and the cohesive law 

parameters 𝜎௠௔௫ , Λଵ, Λଶ, 𝛿௡, 𝛿௧. The schematic of the sample with the variables is presented in Fig 

4.4 (a). In order to prevent delamination between a brittle plate and soft substrate, we assume 

perfect bonding between the brittle plate and soft substrate, and therefore, the parameters regarding 

the adhesives can be removed from the analysis. The parameters considered in this study are 

presented in Eqn.4.4. 

𝑃௠௔௫ , 𝛼, 𝐾,  𝐸 = 𝑓(𝜃, 𝑙ଵ, 𝐿, 𝑊, 𝑡ଵ, 𝑡ଶ, 𝐸ଵ,𝜈ଵ,𝜎௙௕ , 𝐾ூ௖, 𝐾ூூ௖,𝐸ଶ,𝜈ଶ, 𝜎௙௦ )                                           (4.4) 

Where 𝑃௠௔௫ is the maximum load that can be achieved during the shear test, 𝛼 is the crack 

propagation angle with respect to the original crack, and  G and E are the energy absorption and 

initial stiffness respectively. Following Buckingham’s ‘Π-theorem’ (Buckingham, 1914), the total 

number of variables is equal to thirteen. Based on Buckingham’s Π theorem, one can also express 

them in terms of  𝜋௜ where 𝐹൫𝜋ଵ , 𝜋ଶ , … , 𝜋௣ ൯ = 0. Considering this, we will end up with (𝑝 = 𝑛 −

𝑘 = 15 − 2 = 13) twelve dimensionless groups. Finally, the following dimensionless group is 

utilized in Equation 4.5; 
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 In the above Equation, the geometrical values such as  L, W, and thicknesses can assume to be 

constant. I also assumed that the Poisson's ratio does not affect the results, the following 

dimensionless group were selected for this study 
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4.4 Biomimetic samples bio-inspired from boxfish scute under shear loading 

To get a better insight into the role of architecture, the following experiment is designed using 

gypsum and silicone as hard and compliant parts, respectively. Gypsum is selected because of its 

hard and brittle nature. It can also replicate similar behavior as organic ceramics such as 

hydroxyapatite that can be found in boxfish carapace. Similarly, silicone demonstrates hyperelastic 

behavior similar to the type-I collagen in boxfish scute. Also, the aspect ratio of brittle to soft 

material in both boxfish and biomimetic samples are very close to each other (see Table 4.1). Due 

to the brittle nature of the gypsum, creating patterned interfaces are very hard. Therefore, the 

molding technique (using silicone and 3D printing parts) The connection between silicone and 

gypsum is made through Loctite adhesive. Loctite adhesives are known for their intense nature of 

the connection, and it can create perfect bonding between gypsum and the silicone. 

Table 4.1. Comparison between material properties in Boxfish scute and biomimetic samples 

Material E (MPa) 𝜈 

Hydroxyapatite (Boxfish scute) 1000-2000 0.3 

Collagen Type I (Boxfish scute) 40-50 0.22 

Gypsum 50-55 0.3 

Silicone 0.5-1 0.2 
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4.4.1 Methodology for creating molds and performing shear tests 

In order to create samples using brittle material such as gypsum with interdigitated (zig-zag shape) 

sutures, I used the silicone molding technique. The 3D printed samples with triangular sutures are 

used as a negative part, and silicone is used to create a mold. In this study, the master part is created 

using 3D printing machine (Connex 350) as shown in Figure 4.5 (a). In order to set the master part 

in position, a plexiglass plate is required, and the master part needed to be attached to this plate 

(the hot glue was used to connect the master part to the plexiglass plate). Then, the wall created 

around the master part using cardboard plates. The silicone AM128 is used as a mold and pour on 

top of the master part. After 24 hours, the walls and plexiglasses are removed, and the negative 

part was ready to use. In order to create the gypsum samples, the gypsum powder is combined with 

water using the aspect ratio of 2:1. After the gypsum samples dried, the sample removed from the 

mold and preserve 72 hours in the oven with 40℉ to achieve stable material properties. The 3D 

printing sample, silicone mold, and gypsum samples preparation are shown in Figure 4.5(a-d), 

respectively. 

 

Figure 4.5. (a) 3D-printed master part, (b) mold created from 3D printed parts, (c) negative mold 
can be used to create gypsum sample, (d) creating gypsum samples from the negative mold. 
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To perform the shear test on the samples, the frame is designed using 2080 aluminum extrusions 

in order to be used in conjunction with the universal tensile testing machine (MTS). As shown in 

Fig 4.6 (c), the left side of the girder can move in tension while the other side constrained against 

the movement.  

4.5 Biomimetic shear tests  

As explained in the previous section, two types of biomimetic samples with various suture angles 

developed from the gypsum (Fig 4.6 (a)) and gypsum with silicone (Fig 4.6 (b)). All the samples 

tested under shear. The shear testing apparatus is shown in Fig 4.6 (c). The purpose of this section 

is to understand the role of sutures angle in enhancing the mechanical properties of a brittle 

material such as gypsum (see section 4.5.1). This section follows by series of tests when silicon 

subbase added to the system in order to understand the role of soft subbase in this architecture 

(section 4.5.2). Both simulations and experiments used alongside each other to get a better insight 

into the mechanics of this architecture in controlling the crack direction. 

 

                        (a)                                                    (b)                                                  (c) 
Figure 4.6. (a) biomimetic samples developed from Gypsum with 𝜃=25°,45°,50°,75°, 110°, (b) 

biomimetic sample include gypsum (brittle) and Silicone (soft substrate), (c) Apparatus for 
performing shear test developed from 8020 extrusions.      
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4.5.1 Crack modeling using Extended Finite Element Method (XFEM) 

In ABAQUS, modeling discontinuities such as cracks can be utilized using XFEM method. The 

XFEM concept is developed from the theory of partition unity. This method provides 

discontinuities in an element by enriching degrees of freedom using displacement functions to 

model discontinuities (i.e., cracks) as an enriched feature. This method avoids the limitation of 

remeshing technique and improves the limitations related to meshing crack surfaces (Belytschko 

and Black (1999)). The special enriched functions ensure the presence of discontinuities in 

combination with additional degrees of freedom.  The nodal enrichment functions are presented in 

Eqn 4.7 

𝑢 = ෍ 𝑁ூ

ே

ூୀଵ

(𝑥)[𝑢ூ + 𝐻(𝑥)𝑎ூ + ෍ 𝐹ఈ(𝑥)𝑏ூ
ఈ]                                                                                     (4.7)

ସ

ఈୀଵ

 

Where 𝑁ூ(𝑥) is the nodal shape function, 𝑢ூ is nodal displacement vector in  the continuous part, 

𝑎ூ represents the nodal enriched degree of freedom, and H(x) accounts for the discontinuous jump 

function around the crack surfaces. The last term consists of the nodal enriched degree of freedom 

vector, 𝑏ூ
ఈ, and the elastic asymptotic crack-tip functions, 𝐹ఈ(𝑥). The first term on the Eqn4.7 

defines the nodal displacement for all the nodes in the model; the second term applies to the nodes 

that are cut by the crack, and finally,  the third term defines for nodes that are cut by the crack tip. 

The demonstration of a coordinate system in XFEM model is presented in Figure 4.7. 

 

Figure 4.7. Local coordinates for a smooth crack 
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In Figure 4.7, X presents Guass point while as discussed in the previous paragraph, the 

discontinuous jump function for the crack surface is presented by 𝐻(𝑥). The value of 𝐻(𝑥) is equal 

to (1), if  (𝑥 − 𝑥∗). 𝑛 ≥ 0 , otherwise, it has the value of (-1). Finally, the equation of the asymptotic 

crack tip functions in isotropic elastic material, 𝐹ఈ(𝑥) are given by Eqn 4.8.  

𝐹ఈ(𝑥) = ൤√𝑟𝑠𝑖𝑛
𝜃

2
, √𝑟𝑐𝑜𝑠

𝜃

2
 , √𝑟𝑠𝑖𝑛

𝜃

2
𝑐𝑜𝑠

𝜃

2
, √𝑟𝑠𝑖𝑛𝜃𝑐𝑜𝑠

𝜃

2
൨                                                          (4.8) 

Where a polar coordinate system placed at the crack tip and represents by (𝑟, 𝜃). Besides, modeling 

the crack-tip singularity requires continuously updates as the crack propagates and it depends on 

the location of the crack in the material. Abaqus only consider asymptotic singularity functions for 

modeling stationary crack approach. For the moving crack, the procedure to simulating crack 

initiation and propagation is based on traction-separation cohesive behavior within the XFEM 

framework which is called XFEM-based cohesive segmented method.  In the cohesive method, the 

cohesive surfaces are associated with the element boundaries and result in crack initiation and 

propagation in an arbitrary path. Therefore, the XFEM-based cohesive does not account for the 

stress singularity and only consider displacement jump across a crack element. Another method is 

XFEM based on the LEFM concept by using the Virtual Crack Closer Technique (VCCT) which 

also accounts for the stress singularity.  However, in this method, the crack should exist inside the 

model and it can not predict the crack initiation. In this analysis, first the XFEM XFEM-based 

cohesive segmented method is used to predict the crack initiation and then the XFEM based on 

LEFM approach was used for the crack propagation. 
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4.5.2 Shear tests on Gypsum samples without silicone sub base 

The strain distribution form both FE simulations and experiments for gypsum samples for different 

values of 𝜃 = 25°, 45°, 50°, 75°, 110° are presented in Fig 4.8 (a) side by side. The Digital Image 

Correlation technique was utilized along with the experimental shear test to capture the strain 

distribution during the tests. For all the cases, the values of thickness, width, and length of the 

samples kept constant and equal to 5mm, 70.5±0.5 mm, and 60 mm respectively.  Thus, as the 

angle 𝜃 increases, the number of sutures inside the width decreases. It is also notable that by 

decreasing the angle size, the contact area increases and thereby, one expected to see the higher 

mechanical properties, however, in brittle material another competing mechanism plays a role 

which is the crack angle and fracture. The results from both FE simulations and experiments 

confirm the presence of at least one main crack in all the cases, except for the case with 𝜃 = 25°. 

This could be explained by the fact that under the same loading condition, based on the sutures 

angle, the crack starts to propagate from various angles. Also, the comparison between normalized 

peak load, normalized toughness, and stiffness reveals that the maximum values occur at 𝜃 = 45 ° 

(see Fig 4.8(b)). In Fig 48(b) All the values normalized with respect to the  𝜃 = 45 °. In the 

previous study by  Yang et al., 2015  stated that the boxfish sutures angle ranging between 𝜃 =

45°~50° and  for all the samples 𝑙ଵ 𝐿 =⁄ 0.2. The green column in Fig 4.7(b) presents the sutures 

range in boxfish scute.  
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(a) 

Figure 4.8. (a) Comparison between FE simulations and Experiments using gypsum samples, (b) 
Comparison between normalized peak load, stiffness, and toughness of experiments and 

simulations (results are normalized with respect to angle 45 (𝜃=45°). 
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Figure 4.8 continued 

 

                                                                 (b) 

4.5.3 Shear tests on gypsum samples with silicone subbase 

In section 4.5.1 role of suture interfaces of various angles was studied for gypsum samples. In this 

section, the silicon was bonded to the gypsum samples using the Loctite adhesive (Fig. 4.6(b)). 

Boundary conditions and loading are similar to the previous section. Both experimental and FE 

simulation results confirm that the crack angle direction is controlled by adding silicone subbase. 

Also, adding soft subbase helps to develop multiple cracks around the sutures in comparison to the 

gypsum samples, where one main crack develops and propagates through the entire plate (Fig 

4.9(a)). A comparison of the mechanical properties of normalized peak load, normalized stiffness, 

and normalized toughness, reveals that the sutures with angle 𝜃=45° show higher values in 

comparison to the other sutures angle (Fig 4.9(b)) 

 

 



86 

 

 

(a) 

Figure 4.9. (a) Comparison between FE simulations and Experiments using gypsum and silicone 
samples, (b) Comparison between normalized peak load, stiffness, and toughness of experiments 

and simulations (results are normalized with respect to angle 45 (𝜃 =45°).         
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Figure 4.9 continued 

 

                                                         (b) 

4.6 The analytical method to predict crack angle propagation in brittle materials          

As discussed in section 4.5.1, when two brittle plates containing sutures come in contact and loaded 

under shear, the crack starts to propagate at an angle with respect to the sutures angle and far from 

the sutures the angle becomes equal to 45° (Hedayat., 2013). In this section, I am planning to use 

some simplification in order to use LEFM concepts in the prediction of crack angle propagation.  

The schematic of two brittle plates contains suture under shear loading condition is presented in 

Fig 4.10 (a). It is assumed that the shear loading is applied far away from the sutures. As shown in 

the red zoomed box, in a single suture under shear, the top kinked is under compression while the 

bottom kinked is under tension. The kinked under tension is responsible for crack propagation. 

Therefore, a single suture can be estimated by a kinked crack under pure shear. Based on the 

Mohr’s circle, the stress state on pure shear can be transformed to biaxial loading using 45° rotation 

as presented in Fig 4.10 (a). For all the cases in this study, 𝜃 represents the sutures angle and 𝜃 2⁄  
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represents the angle between the suture kinked and horizontal line. The angle 𝛽 is defined as an 

angle between a vertical line and kinked crack in a new coordinate system (after 45° rotation) and 

can be calculated as 𝛽 = 45 − 𝜃 2⁄ .  The construction of a single kinked crack model under biaxial 

loading for different angle 𝜃 = 25°, 45°, 50°  are presented in Fig 4.10(b).  The FE result from the 

kinked crack with 𝛽 = 22.5° is presented in figure 4.10 (c).  As shown in Fig 4.10 (c), the crack 

starts to propagate in angle, 𝛼௕௜ (the initial crack angle propagation) followed by secondary crack 

angle propagation 𝛼௕௙. 

 

(a) 

 

                                                                 (b) 

Figure 4.10. (a) Estimating the crack angle propagation in brittle sutures using kinked crack 
approximation  (b) schematic of converting sutures 𝜃 =25, 45, 50 to the equivalent kinked crack 
under bi-axial loading, (c) schematic of crack propagation for𝜃=25, 𝛼௕௜ presents the initial crack 

angle propagation, 𝛼௕௙ presents final crack angle propagation. 
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Figure 4.10 continued 

 

 

(c) 

 

The analytical solution for the kinked crack under pure shear for brittle materials developed based 

on the maximum principal stress method (MTS) (Godoutos et al.,2013).  Based on Linear Elastic 

Fracture Mechanics (LEFM) concept the cylindrical stress state at the crack tip can be presented 

as follow (Fig 4.10(a)); 
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Based on MTS criteria, the following equations are needed to be satisfied in order for the crack to 

propagates;  

𝜕𝜎ఏ

𝜕𝜃
= 0                                                                                                                                                     (4.10) 

 
𝜕ଶ𝜎ఏ

𝜕𝜃ଶ
< 0                                                                                                                                                 (4.11) 

 

 

By substituting Eqn 4.9 into Eqn. 4.10 and 4.11, we will have  
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Also, in a biaxial loading (see Fig 4.11(b)), we will have: 

𝐾ூ = 𝜎(𝑠𝑖𝑛ଶ𝛽 − 𝑐𝑜𝑠ଶ𝛽√𝜋𝑎)                                                                                                                   (4.14) 

𝐾ூூ = −2𝜎 𝑠𝑖𝑛𝛽 𝑐𝑜𝑠𝛽√𝜋𝑎 

Finally, the analytical solution can be obtained by inserting Eqn 4.14 into Eqns 4.12 and 4.13 and 

satisfying the condition for these equations. The analytical solution for kinked crack based on 

angle 𝛽 is presented in Fig 4.12. 

 

                                      (a)                                                                  (b) 

Figure 4.11. (a) spherical coordinate around the crack tip, (b) stress state for the biaxial load 

Finally, the comparison between analytical solution for the kinked crack under pure shear, and the 

crack angle prediction from both experiments, and FE simulation of interdigitated sutures under 

simple shear indicates a good match between analytical prediction, FE simulation, and experiments 

(see Fig 4.12). 
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Figure 4.12. Analytical solution for the kinked crack under biaxial load as shown in red, the FE 
results for initial crack angle propagation (𝛼௕௜ ) of different values of 𝛽 is shown in black, while 

the results from final crack angle propagation are shown in grey 

4.7 Role of soft material in controlling 

4.7.1 Effect of soft material elastic modulus with respect to the brittle plate modulus 

In this section, the role of soft material beneath the brittle material in controlling the crack direction 

is investigated for the kinked crack under pure shear loading (rotated biaxial loading). This section 

aims to study the effect of elastic modulus of the soft substrate with respect to the brittle plate in 

controlling the crack angle propagation. Therefore, a set of parametric analyses was developed in 

such a way that the elastic modulus of soft material is changing while the other parameters in the 

model are kept constant. As a result, for each value of kinked crack angle 𝛽, different values of 

the modulus aspect ratio exist. The modulus aspect ratio of soft to brittle modulus are ranging 

between 𝐸ଵ 𝐸ଶ⁄ = 0.001 − 1.  Where, 𝐸ଵ and 𝐸ଶ represent the modulus of soft material and brittle 

material, respectively. Figure 4.13 (a) presents the XFEM results from the plate with a soft 

substrate beneath the brittle plate for different values of 𝐸ଵ 𝐸ଶ⁄  and three selected kinked angle 

(𝛽 = 20°, 22.5°, 32.5°). The results for three selected angles (𝛽=20°, 22.5°, and 32.5°) for various 
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values of 𝐸ଵ 𝐸ଶ⁄  are presented in Fig 4.13(a). As shown in Figure 4.13 (a)and(b), when the value 

of 𝐸ଵ 𝐸ଶ⁄  is small (𝐸ଵ 𝐸ଶ⁄ = 0.001), it does not help in controlling the crack direction, as the value 

of modulus aspect ratio increases, the crack starts to deviate and propagate in a larger angle with 

respect to the kinked crack. The maximum change in the crack angle propagation can be observed 

when 𝐸ଵ 𝐸ଶ⁄ = 0.1 and then decreases as the aspect ratio increases. As a result, one could see that 

the optimized value of the aspect ratio is equal to 0.1. Also, the shear strain contour for three 

selected aspect ratio is presented in Fig 4.13 (b),(c), (d). The results state that for the soft base with 

lower values of stiffness, more damage can be observed in soft material, and in the onset of crack 

propagation, the crack propagates unstably. As we increase the 𝐸ଵ 𝐸ଶ⁄  to 0.1 it adds more shear to 

the system in comparison with 𝐸ଵ 𝐸ଶ⁄ = 0.01, and it helps to change the crack propagation 

direction by developing stable crack propagation (see Figure 14(c)). Finally, for the case with high 

elastic modulus aspect ratio(𝐸ଵ 𝐸ଶ⁄ = 1), a little damage can be observed in the silicone. After 

crack initiation, the crack propagates unstably and soft material does not play a role in controlling 

the crack direction. 

 

(a) 

Figure 4.13. Effect of the modulus aspect ratio of brittle to soft material presented for 𝜃 =25°, 
45°, 50° and 𝐸ଵ 𝐸ଶ = 0.001 − 1.0 ⁄ . (b) 𝐸ଵ 𝐸ଶ = 0.01 ⁄ ,  (c) 𝐸ଵ 𝐸ଶ = 0.1 ⁄ , (d) 𝐸ଵ 𝐸ଶ = 1 ⁄  for 𝜃 

=45°. 
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Figure 4.13 continued 

 

 

(b) 

 

(c) 
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Figure 4.13 continued 

 

(d) 

4.7.2 Effect of soft material strength with respect to the brittle plate strength 

In this part, I investigated the effect of soft material strength with respect to the brittle plate strength 

by considering three values of 𝜎௙௦ 𝜎௙௕ = 0.0075, 0.075, 0.75⁄  when 𝐸ଵ 𝐸ଶ = 0.1 ⁄  Where, 𝜎௙௦ and 

𝜎௙௕ accounts for material strength of the soft substrate and brittle plate, respectively. The results 

for three values strength ratios are presented in Figure 4.14. As expected, when the strength of soft 

material with respect to the hard plates is low or very high, it is not beneficial in controlling the 

crack direction. While with the correct strength ratio, we are able to control the crack direction. 
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Figure 4.14. Effect of the soft material to brittle material strength ratios for 
𝜎௙௦ 𝜎௙௕ = 0.0075, 0.075, 0.75⁄  

 

The schematic of the kinked crack angle under biaxial loading is presented in Fig. 4.15 (a). The 

coordinate system (shown in black) is defined in the center of the square and is parallel to sides of 

the square. Angle 𝛽 is defined as an angle between the vertical line in a coordinate system and a 

kinked crack. The local coordinate system is defined at the tip of a kinked crack (shown in purple). 

Under biaxial loading, the crack starts to propagate in an angle with respect to the kinked crack. 

For the brittle material, the initial crack angle propagation (𝛼௕௜) is defined as an angle between 

the crack and horizontal line in the local coordinate system, as presented in Fig 4.14(a). Since the 

kinked crack is much smaller in comparison to the size of the sample (the LEFM approach can be 

used along with XFEM method ), in the brittle material and far away from the crack tip, the crack 

starts to change the direction due to the loads and boundary conditions. Therefore, a secondary 

crack angle propagation is defined with respect to the local coordinate system (𝛼௕௙). Both 𝛼௕௜ and 

𝛼௕௙ are defined for the case with the brittle plate (no soft material exists). When soft material exists 

beneath the brittle plates, the angle of crack propagation with respect to the local coordinate system 

is defined by 𝛼′. 

A comparison between the crack angle propagation (𝛼) vs. different values of 𝛽 is presented in 

Fig 4.15(b). As shown in Fig 4.15 (b), the higher value of crack angle propagation occurs when 

𝐸ଵ 𝐸ଶ⁄ = 0.1. Although the aspect ratio of the soft to brittle material plays an important role in 

control the crack, based on Buckingham’s theorem that discussed in section 4.3, the role of soft 

material strength also needed to be considered. 
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As previously discussed, the sutures angle 𝜃 under simple shear can be estimated by a kinked crack 

of angle 𝛽. The results from normalized peak load, normalized stiffness, and toughness reveal that 

the maximum performance occurs when the sutures angle 𝜃 is equal to 45°. 
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                                  (a)                                                                             (b) 

 

                                                                   (c) 

Figure 4. 15. (a) schematic of RVE under biaxial load, 𝛽 (angle between kinked crack after 45° 
rotation and horizontal line in the local coordinate system; 𝛼௕௜ and 𝛼௕௙ are initial crack angle and 

secondary crack angle propagation in brittle material with respect to the kinked angle, 𝛼ᇱ is the 
crack angle propagation for composite models (include brittle and soft substrate), (b) Kinked 

crack angle (𝜃) vs. crack angle propagation (𝛼); (c) Comparison between normalized peak load, 

stiffness, and toughness of different kinked angle for  
ாభ

ாమ
 = =0.1. 
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4.8 Summary and Conclusions 

In this chapter, the role of architecture bio-inspired from boxfish scute carapace was investigated 

in controlling the crack direction. The boxfish carapace contains hexagonal dermal scutes, a 

combination of the brittle hexagonal plate (hydroxyapatite) on top of a very compliant (collagen) 

material. While the mineral plates are separated by patterned sutures (triangular interlocking 

patterns), there is no interphase material connecting them. Instead, the connection between 

mineralized plates is done through the collagen base. The in-situ experiments between two boxfish 

scute under shear loading condition reveal that the fracture occurs around the suture areas and 

cracks did not propagate through the mineralized. Therefore, a set of parametric studies using 

gypsum (brittle material) and silicone (soft material), including different sutures angle were 

developed along with FE simulation to understand the role of this architecture. Also, the role of 

soft material (i.e., the role of soft material elastic modulus to brittle material modulus) was 

investigated using FE simulations. The following results were obtained from this study, 

1) a parametric study for different values of sutures angle on top of soft material confirmed that 

the maximum value for peak load, stiffness, and toughness could be obtained when sutures angle 

is equal to 45°. Also, the existence of soft material beneath of brittle material can control the crack 

direction. 

2) In brittle material containing sutures under shear loading, the crack starts to propagate with an 

initial angle. This angle can be estimated using a simplified LEFM model with kinked crack. 

3) The FE simulation from a bi-layered material (consisting kinked crack in brittle material) under 

pure shear confirmed that the best performance in controlling the crack propagation angle direction 

could be obtained when 𝐸ଵ 𝐸ଶ = 0.1⁄ , 𝜎௙௦ 𝜎௙௕ = 0.075⁄ . Therefore, one can optimize this 

architecture for shear loading by selecting the sutures angle equal to 45°. 



99 

 

CHAPTER 5. INVESTIGATING THE ROLE OF IRONCLAD BEETLE 
CUTICLE IN ENHANCING THE MECHANICAL PROPERTIES 

5.1 Introduction 

Beetles are the subclass of arthropods and have lived on earth for over 300 million years. Their 

resistance against the attack of various predators and their structural and mechanical performance 

across flying terrestrial make them an attractive option for research.  One of the terrestrial beetles 

is the Zopherinae, ironclad beetles. The Ironclad beetle’s exoskeleton is known to bend 

entomologist’s steel pins and withstand high compressive loads, including the occasional 

automobile that would prove fatal to most insects. This study focuses on the abdominal portion of 

the exoskeleton, consisting of the elytra and ventral cuticle. The ordered arrangement and complex 

architectures found within the exoskeleton (elytra) of this specially adapted insect result in 

extremely high compressive resistance, far beyond any other beetle identified to date. More 

specifically, to understand the role of sutures connecting elytra parts in the Ironclad beetle. To 

date, structure-mechanical property relationships of blades have not yet been fully realized for the 

ironclad beetle’s exoskeleton. Here, using a combination of optical and electron microscopy, 

computed tomography and mechanical testing, 3D printing prototype, and finite element analysis, 

the unique adaptations, novel architectural design features and interfacial structures have been 

revealed within the exoskeleton of P. diabolicus and their divergence from terrestrial Coleoptera. 

The architecture of the suture region of the elytra, modified for terrestrial living, has a unique 

architecture consisting of specially modified interlocking blades, whose elliptical geometry, 

laminated microstructure and frictional interfacial features, enhances coupling strength, provides 

a uniform stress distribution and increases toughness significantly more than other terrestrial 

beetles. This model system represents a tough, damage tolerant biological material that exemplifies 

a departure from other types of beetles. In this chapter, I will investigate the role of Ironclad beetle 

cuticle under compression. Also, the role of blades in elytra will be investigated using both FE 

simulations and 3D printing mechanical testing. 
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5.2 Compression resistance nature of Ironclad beetle (P. diabolicus) 

The exoskeleton’s resistance to an external load in Ironclad beetle is investigated by comparing 

the maximum compressive force of other beetles native to the southern California region (see 

Figure 5.1). To this aim, Asbolus verrucosus, Eleodes grandicollis, and Cryptoglossa muricata 

were chosen for comparison due to their defense mechanisms (thanatosis), areas of prevalence and 

terrestrial nature (Rivera et al., 2019). Representing the bulk of the exoskeleton, the abdomen of 

the beetles consists of the elytra, sclerotized forewings that cover membranous hindwings, and 

ventral cuticle (Figure 5.2 (a)-(b)). For the insects tested, their elytra consist of two interdigitated, 

highly sclerotized elytron that does not separate (Figure 5.1 (d) and Figure 5.2 (b)). To date, 

structure-mechanical property relationships have not been fully realized for the ironclad beetle’s 

exoskeleton, but recent publications have examined other insect cuticles. Peak compression forces 

showed P. diabolicus fractured at 150 N with an average of 133 ± 17.0 N (~39,000 times its body 

weight) and exhibited a stiffening nature as it was compressed, indicating a complexity in the 

material properties of its exoskeleton or the arrangement of its constituents (Figure 5.1(b)). In 

contrast, the other beetles reached a peak load of 53N and exhibited a relatively diminished 

strength to weight ratio (inset Figure 5.1(c)).  With beetle exoskeletons composed of non-

mineralized alpha chitin fibers embedded in a proteinaceous matrix, it is hypothesized that the 

principal factors in compression resistance of P. diabolicus remain the bulk geometry and 

arrangement of the ultra and microstructure. In all specimens, fracture of the elytra along the 

medial suture marked the prime mode of failure, as stress typically concentrates between 

interlocking segments of insect exoskeletons. I further analyzed transverse cross-sections of the 

abdomen and identified the interfacial regions of interest denoted by the medial suture and lateral 

supports. Optical microscopy of polished cross-sections highlights varying thickness and degree 

of interdigitation between the sutures of the distinct species with the greatest geometric complexity 

joining the elytra of the ironclad.  
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Figure 5.1. Mechanical properties of beetles during compression and unique architectures. a) 
Diabolical Ironclad beetle (P. diabolicus), Scalebar 5 mm; b) Ironclad beetle under compression, 
c) Force vs. displacement curves for various beetles tested d) Optical micrographs of a transverse 

cross-section (green box), lateral supports (blue box) and medial sutures (yellow box). Bottom 
left: suture in Japanese flying beetle(Figure adapted from Rivera et al., 2019). 

5.3 Ironclad beetle microstructure 

The unique architecture within the exoskeleton of P. diabolicus that varies from the conventional 

terrestrial beetles and contributes to enhanced mechanical performance is presented in Figure 5.2. 

The exoskeleton primarily comprises of alpha chitin fibers in layers of assembled bundles (Balken) 

that are joined together by a proteinaceous matrix (Rivera et al.,2019). I further reveal toughening 

mechanisms resulting from the macro-structural architecture along with mechanical interfacial 

features (role of blades existence in elytra) that could provide insight into the fabrication of tough, 

impact-resistant composite materials.  
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                              (a)                                                              (b) 

Figure 5.2. (a) The diabolical ironclad beetle along with an isolated section of the abdomen 
section of the insect. b) a cross-section highlighting: the medial suture in the elytra, lateral 

support, and ventral cuticle (Figure Courtesy to Jesus Rivera UC Riverside). 

5.4 Finite element modeling of entire cuticle under compression 

To identify the origins of compression resistance, I develop a 3D finite element model of the full 

abdominal area of Ironclad beetle using the CT scan of the real Ironclad. FE simulation on the 

entire abdomen is very similar to the real tests on Ironclad beetle. Both mesh and CT scans are 

provided by Amira software, then the mesh transferred into ABAQUS software for further 

analysis. The mesh from the elytra and ventral part of the abdomen are presented in Figure 5.3. 

 

Figure 5.3. The CT scan from the abdomen of Ironclad beetle (a) elytra view (top view), (b) 
ventral view (bottom view), (c) side view, (d) meshed view of the entire abdomen used in 

ABAQUS software 
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Analyzing a transverse cross-section of the abdomen, the exoskeleton can be divided into three 

distinct regions, the elytra (comprised of two sclerotized-hardened forewings), the lateral supports 

and the ventral cuticle. With stress typically concentrating between interlocking segments. The 

Ironclad beetle had been developed variation in lateral supports promotes the region with specific 

stiffness to protect vital regions. Micro-computed tomography of the ironclad’s exoskeleton 

uncovers three region-specific interfaces between the elytra and ventral cuticle, providing lateral 

support. Polished transverse cross-sections of these regions reveal interdigitated, interlocking, and 

free-standing support variants (Figure 5.4). Besides, the top part of the elytra also connected by 

interdigitated blades (Figure 5.2 (b)). 

 

                                           (a)                                                                 (b) 

 

                                         (c)                                                                     (d) 

Figure 5.4. (a) CT scan from Ironclad beetle cuticle (photo courtesy to Jesus Rivera), location, 
and shapes of lateral supports (figure adapted from Rivera et al., 2019), (b) interdigitated 

support, (c) latching support, (d) free-standing support. 

In FE simulations, the entire abdomen of the beetle is located between two rigid plates and the 

compression load is applied quasi-statically on top of the elytra (Figure 5.5). The maximum 

principal stress distribution of the entire abdomen under compression along the length of the beetle 

is presented in Figure 5.6. 

5 mm 
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(a)                                                                        (b) 

Figure 5.5. (a) The geometry of Ironclad beetle under compression, (b) the maximum principal 
stress distribution along the beetle cuticle. 

 

The results from the maximum principal stress contour along different cross-sections confirm that 

the maximum stress concentration occurs around the places were sutures exist while lower stress 

concentration can be observed in places without sutures (e.g., latching or free-standing supports). 

This analysis gives us an insight into the performance of Ironclad beetle. Therefore, Investigating 

the effect of interlocking blades is a great interest in this research. It is essential to understand the 

role of the blade and its mechanism in protecting beetle carapace. Both experimental and numerical 

results confirmed higher stress concentration around interdigitating supports in comparison to 

latching/free-standing supports. The results also present higher stress concentration in elytra, 

where interdigitated sutures (blades) exist. The 3D model from the entire abdomen does not 

include any blades geometry, and thus, in the next section, a 2D models are developed in order to 

capture the role of blades geometry in Ironclad beetle. 
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Figure 5.6. The maximum principal stress for different cross-sections along the length of the 
beetle cuticle (3D FE model of abdomen). 
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5.5 2D Finite element models of Ironclad beetle cross-section. 

Higher stress concentration was observed in the areas where interface connections (blades) exist; 

however, the 3D model does not include blades geometry either in elytra or in the ventral part 

(lateral supports) due to the limitation with Amira software. Therefore, 2D models of various 

cross-sections (i.e., interdigitated, interlocking, and free-standing) of the Ironclad beetle were 

developed using CT scans and ABAQUS to understand the role of blades and interlocking 

mechanisms. The maximum principal stress distribution for all three types of lateral supports under 

compression loads are presented in Figure 5.7 (a)-(c). A comparison between load-displacement 

for all three types of lateral supports reveals that the cross-section with interdigitating supports 

presents higher values for load-displacement curves in comparison to two other cases. Besides, the 

load-displacement curves in Figure 5.7(d) presents two different slopes before failure, based on 

FE simulation and experimental observations, the first slope is due to engaging of the lateral 

supports while the second slop is related to the sutures engagement in elytra up to the failure point.  

Figure 5.7. 2D simulations of various cross-sections include lateral support. (a) section1, 
interdigitating lateral support, (b) interlocking lateral support, (c) free-standing lateral support, 
and (d) comparison between the load-displacement curve of FE simulations and Experiments. 

(a) (b) 

(c) (d) 
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As presented in Fig 5.7, blades in interface areas play an essential role in increasing the 

deformation, and subsequently compression resistance nature of the cuticle, however, many 

unknowns needed to be investigated, For example, the role of size, shape, and number of the blades 

are still unknown. Besides, the maximum principal stresses from FE simulations confirm that 

blades in elytra regions are mostly in tension (see Fig 5.8). For the rest of this study, all the 

simulations and experiments were performed under tensile loading condition. 

           

Figure 5.8. Local tensile and compressive stress on the suture while the section is subject to a 
compressive load. 

5.6 Investigating the role of the blades bio-inspired from Ironclad beetle elytra 

As discussed in previous sections, compared to flying beetles, the evolution of terrestrial variants 

has dictated the incorporation of additional interlocking features in the elytra, increasing the 

coupling strength of the suture. Hence, I attempt to quantify the variance between blade number 

and geometry using Finite element analysis (FEA) modeling of the biological structures and 

mechanical testing of additive manufactured mimics in tension (the credit of experimental work 

goes to Jesus Rivera from UC San Diego). FEA models of the bulk highlight stress concentration 

in sutures, with tension being the primary mode of loading, but one can also see localized regions 

of compression in the top regions of the blades (Figure 5.8). Further analysis of the sutures reveals 

the largest principal stresses in the necks and contact regions of the blades. During loading, the 

addition of blade segments results in relatively uniform stress distribution, while the geometry of 

the blade controls the localized stresses.  In order to understand the role of blades size and 

geometry, 3D printed samples were tested in tension to determine the failure mode. For this 

purpose, two sets of the parametric study were done to understand the role of size and number of 

Compression 
Tension 



108 

 

the blades. Finite element models were adopted along with 3D printed prototypes technique to 

evaluate variations in stiffness, toughness, and peak tensile load based on the number and geometry 

of the sutural blades under tensile load. To this end, two sets of parametric tests were designed. 

For the first set of tensile tests, case 1 (quantity variation), the number of the blades (with the 

naturally observed geometry) was varied up to five blades (See Figure.5.10 (b)). For case 2 

(capacity variation), the number of blades was increased while keeping the area constant, resulting 

in a decrease of feature size (Figure. 5.15). The geometry of each blade developed from three 

ellipses, as presented in Figure 5.9 (b). Geometric analysis of P. diabolicus’ blades (Fig. 5.9(a)) 

reveals a 1.8:1 ratio between the semi-major axis, with the primary geometry of each blade 

parametrically represented as three identical ellipses connected with a specific angle, θ (Fig. 

5.9(b)). Here, θ is defined as the angle between the centers of two adjacent ellipses and a horizontal 

line. In Ironclad beetle, the contact angle is 25° between ellipses. These elliptical elements appear 

to be optimized to distribute load uniformly while preventing slip under tension (as is seen in 

circular elements). 

                

 

                                     (a)                                                                         (b) 

Figure 5.9. (a) Blades geometry bio-inspired from Ironclad beetle elytra, (b) representative blade 
geometry used for both FE simulation and 3D printed samples. 

a 

b 𝜃 
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5.6.1 Identifying role of blades number (Case1-parametric study) 

The dimensions and geometry of blades for Case 1 are presented in Figure 5.10 (a) and (b), 

respectively. 

 

(a) 

 

(b) 

Figure 5.10. (a) geometry and the dimension of the sample used for the 3D printing and FE 
models, (b) the CAD geometry for the various number of blades under tensile loading condition.  

 

The tough resin is used to print the samples using forms lab 3D printer. The dogbane samples from 

tough resin were 3D printed and tested to get a material characterization of the tough resin using 

the ASTM D638 method. This material is used later in the analysis (Figure 5.11). The maximum 

principal stress distribution for one to four blades is presented in Figure 5.12 (a)-(d), respectively. 

The load-displacement curves from both experiments and finite element results for different blades 

number for case 1 are presented in Figure 5.13(a)-(d). 
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                                       (a)                                                                           (b) 

Figure 5.11. Material characterization for tough resin using tensile dogbone, (a) The dogbone 
geometry (based on ASTM D638), (b) Force vs. Displacement results of 3D printed dogbone 

samples under tensile loading (results courtesy to Jesus Rivera). 

 

Figure 5.12. Maximum principal stress distribution contour for case 1 with (a)one blade, (b) two 
blades, (c) three blades, (d) four blades, (e) five blades. 
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(a)                                                                 (b) 

 

       (c)                                                                 (d) 

Figure 5.13. load-displacement curves from both experimental and FE results under tensile 
loading, (a) one blade, (b) two blades, (c) three blades, and (d) four blades. 

 



112 

 

Tensile tests of 3D printed specimens and FE models of Case 1 highlight a linear trend between 

the number of blades and the mechanical properties (i.e., increased stiffness, toughness, and 

normalized peak load) of the sutures (Figure 5.14). Moreover, the FE models suggest that the initial 

stiffness increases with the number of blades, yet the 3D printed tests show the result in a stiffness 

plateau increases upon reaching three blades. This could result from the material limitations and 

air bubbles or uncured resin in the 3D printed polymer weakening the relatively small blades 

(Dizon et al., 2018). Furthermore, the increasing number of blade elements may raise the lateral 

bending and transverse strains during pullout, causing a plateau in the rate of deformation of the 

sample due to the lack of support material at their extremities.  Therefore, we do not see an increase 

in stiffness beyond three blades, but we see an increase in maximum load and toughness.  With 

broader samples at a greater scale, we expect a linear trend in stiffness, toughness, and normalized 

peak load with an increased number of blades mirroring the FE models.      

 

Figure 5.14. Parametric study samples (Effect of blades number). Comparison between 
Normalized Peak load, Stiffness, and Toughness of Experiments and Simulations 
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5.6.2 Identifying the role of blades number and size ( Case2- parametric study) 

In the next parametric study, for the constant values of dimensions (width, length, and thickness), 

the blades are designed in such a way that they cover the entire width of the connection. The 

purpose of this section is to understand the role of the number and size of blades. The purpose of 

this section is to respond to the following question. 

Why the Ironclad beetles have been developed two blades instead of having multiple smaller 

blades or one extremely large blade (the blade that covers the entire width of the beetle)? 

To answer the above question, five different blades geometry (see Figure 5.15 (a)-(e)), Case 2, was 

developed. All dimensions kept constant except the geometry of the blades (needs to cover the 

entire area). The maximum principal stress contour distribution under tensile test at peak load for 

all different blades geometries are presented in Figure 5.16(a)-(e). The material property of all the 

models assumed to be tough resin similar to case 1. 

 

                    (a)                       (b)                          (c)                         (d)                        (e) 

Figure 5. 15. The model geometries for Case2-parametric study 

The load-displacement curves with different numbers and sizes of blades are presented in Figure 

5.17. The results from Case 2, with one large blade, shows a smaller peak load in comparison to 

the other geometries. However, it exhibits more ductility, or in other words, it has the most 

significant failure strain in comparison with the other four models. As the number of blades 

increases, the maximum required force increases (up to four blades), and fracture strain decreases. 

As a result, for the constant value of the width, by increasing the number of the blades, the peak 

load increases due to the interlocking of the blades, and fracture strain decreases (less ductility) 

due to the damage in the blades.  It is also notable that peak load increases by increasing the number 

of blades up to four blades and then decreases for the case with five blades. This could be explained 
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due to the fracture of blades; however; it might be happening due to the nature of the resin. Finally, 

the results from these tests can respond to the question at the beginning of the section.  

 

                                  (a)                        (b)                     (c)                      (d)                     (e) 

Figure 5.16. Maximum principal stress distribution for Case 2, (a) one blade, (b) two blades, (c) 
three blades, (d) four blades, and (e) five blades. 

 

Figure 5.17. Load-displacement curves of case 2 for one-five blades from FE simulation 

Case 2 parametric study also provides insight into the competing mechanisms that exist between 

the scale and number of blades. As the quantity of features (i.e., blades) increases, we see a more 

uniform inelastic strain distribution leading to properties reminiscent of a homogenous material, 

higher stiffness, at the cost of decreased extensibility (Figure 5.17 and 5.18).   FE models and 
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tensile experiments indicate that the maximum toughness,  occurs for sutures with two blades, 

while the maximum stiffness and peak load occur in the sample with four blades (Figure 5.18). As 

fewer blade elements are utilized, there is a reduction in the inelastic strain concentration within 

the neck areas of the blades. This inelastic strain distribution can explain the transition from 

ductile-like failure (pull out with damage around the blades) to brittle-like failure (failure around 

the neck area) by increasing the number of the blades (or reducing the size of the blades) as 

presented in Figure 5.17.     

 

Figure 5.18. Parametric study samples (Effect of blades number and size). Comparison between 
Normalized Peak load, Stiffness, and Toughness of Experiments and Simulations 

Additionally, a plot of maximum and minimum principal stress vectors (see Fig 5.19 and Fig 5.20) 

indicates that as the number of the blades increases, a higher compression load is observed across 

the width of the center part of the blades as well as higher vertical tensile stress inside the neck 

area. The compressive stress provides confinement as the number of the blades increases and, 

therefore, higher values of stiffness can be expected for the sample with five blades. As the 

confinement increases, the tensile stress in the neck region increases. This leads to energy 

dissipation due to inelastic deformation to a point where brittle fracture at the neck becomes a 

competing mechanism.  As such, the sample with two blades exhibits the highest toughness. 

 



116 

 

 

Figure 5.19. Compressive stress and confinement as a function of blades.  First row: Minimum 
Principal stress contours for one blade (a), two (b), three (c), four (d), and five (e) blades; at the 
point of maximum load. Second row: Details of a central blade.  Third row: distribution of the 

principal directions associated with the minimum principal stress.  
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Figure 5.20. Tensile stress as a function of blades.  First row: Maximum Principal stress contours 
for one blade (a), two (b), three (c), four (d) and five (e) blades; at the point of maximum load. 

Second row: Details of a central blade.  Third row: distribution of the principal directions 
associated with the maximum principal stress. 

By comparing the results, one can conclude that two and three blades could be a proper choice for 

the number of blades. However, there is a tradeoff between failure strain, peak load, stiffness, and 

toughness, which might be affected by the material properties. In situations where higher 

toughness is required, two blades could be the right choice while, for the cases where less 

toughness is required, and instead more stiffness is desired, three blades could be a good option 

and this could also explain why Ironclad beetle selected two blades to connect elytra part. 
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5.7 Summary and conclusions 

In this chapter, the role of interfacial features (blades) in the elytra of the diabolical ironclad beetle, 

Phloeodes diabolicus, that assist the organism in withstanding predation and other external loads. 

At the macro scale, the exoskeleton incorporates varying lateral supports with stiffness gradients 

to protect vital organs and distribute the load throughout the elytra. Further analysis and 

mechanical characterization using finite element simulations and experiments of the elytra show 

the advantageous mechanical response of the interdigitated suture in P. diabolicus associated with 

the geometry and number of elements. Specifically, the shape of the ellipsoidal blade provides 

mechanical interlocking as well as stress distribution. The parametric study on the blades revealed 

that by varying number of blades during a tensile test, two blades have the greatest toughness while 

stress distribution, stiffness, and peak load seem to plateau after four blades. Yet, more work needs 

to be conducted on the role of architecture inside the interlocking blades.        
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CHAPTER 6. ROLE OF INTERLOCKING LAMINATED BLADES BIO-
INSPIRED BY IRONCLAD BEETLE BLADES 

6.1 Introduction 

Biological systems are distinct for the extraordinary nature of their structures and due to their 

optimal design and improvement of mechanical properties (i.e., ability to demonstrate high 

stiffness and toughness). These microstructures are of interest to many bio-inspired studies ( Fratzl 

et al., 2004; Espinosa et al., 2011). Nature utilized various techniques to protect different species 

against attack or penetration, for instance, the bouligand fiber orientation is an example of 

architecture that can be found in many biological systems such as dactyl club of Mantis shrimp 

(Weaver et al.,2012), collagen base in boxfish (Besseau and Bouligand 1998, and Garner et al., 

2019), exoskeleton of arthropods such as beetles (Cheng et al., 2019; Libby et al., 2014; Jewell et 

al.,2007; Yang et al., 2017). Bouligand architecture in Nature is a hierarchical structure that 

features uniaxial fiber layers assembled periodically into a helicoidal pattern. A recent study by 

Suksangpany et al. in 2017 reveals the role of bouligand architecture in developing multiple 

twisting microcracks as a source of energy dissipation and stress relaxation to prevent catastrophic 

failure (Suksangpanya et al., 2017). 

Patterned interfaces (including both interlocking and non-interlocking) are another technique 

utilized by Nature to enhance the mechanical properties of organic materials. The bony plates in 

leatherback sea turtle osteoderm connected using 3D triangular pattern (sutures) interfaces, this 

technique not only create a smooth surface in the osteoderm but also helps to spirit damage in the 

sutures areas, and thereby, enhancing energy absorption of the system (Chen et al., 2015). 

Similarly, interlocking sutures in the carapace of red-eared slider turtles connect the rigid ribs and 

increase the fatigue resistance of the entire osteoderm (Archai and Daniel Wagner, 2015). The 

bony plates in the alligators osteoderms are also connected by using both sutures and collagen 

sharpey's, which offer both flexibility and protection (Sun et al., 2013). Fish families such as 

arapaima, teleost, and boxfish also contain bony rigid elements, embedded in a compliant skin and 

help to protect them against attacks of predators (Vereney and Barthelat, 2014; Brute et al., 2008; 

Meyers et al., 2012; Lin et al., 2011). The carapace of the boxfish contains scutes, and each scute 

includes highly mineralized plate and a compliant collagen base. The mineralized plates connected 
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using triangular sutures shape, and unlike most other species in Nature, the collagen sharpy’s does 

not exist between the teeth. The study by Hosseini et al., 2020 suggested that these architecture 

helps to control the direction of the cracks and also arrest the crack in the sutures areas (Yang et 

al., 2015; Hosseini et al., 2020). Woodpeckers are another remarkable example in Nature with 

capability of repeated pecking on a tree at remarkably high deceleration (10000 ms -2) without any 

brain injury (Gibson, 2006). The study on the red-bellied woodpecker beak revealed that the beak 

develops suture lines which are responsible for increasing the ability to bear the compressive loads 

(Lee et al., 2014). Therefore, patterned interfaces are a solution from Nature to connect various 

parts in the exoskeleton/carapace and at the same time enhancing the mechanical properties. Both 

interlocking and non-interlocking patterned interfaces have been bio-inspired through many 

studies. For example, in a study by Ortiz group, the role of patterned interfaces for four categories 

of sutures geometry (i.e., triangular, rectangular, trapezoidal, and anti-trapezoidal) was 

investigated through an analytical framework (using the principle of virtual work). The results 

stated that the triangular pattern shows higher values for stiffness, strength, and toughness while 

the anti-trapezoidal pattern performs better in terms of damage tolerance (Lin et al., 2014). 

Zavattieri and co-workers investigated the role of the geometry of non-interlocking patterned 

interfaces in increasing toughness under remote mode-I loading conditions following a Linear 

Elastic Fracture Mechanics (LEFM) concept. The results stated that the shape behind the crack tip 

affects the small period of stable crack propagation before the unstable failure, while, the crack tip 

position and shape of the initial open crack does not affect the final value of the effective toughness 

as long as the crack tip follows the patterned interface. Besides, the effective toughness can be 

improved by increasing the amplitude to wavelength aspect ratio (𝐴 𝜆⁄ ). Their results also provide 

a new guideline for designing patterned interfaces in such a way that the higher values of effective 

toughness can be obtained by selecting the 𝑙௖௭ 𝜆 < 1⁄  and the largest possible values of  𝐴 𝜆⁄  

(Zavattieri et al., 2007 and 2008; Hosseini et al., 2019).  

Previously, the role of jigsaw-like interlocking blades (specific case for figure 6.1 (d), when a/b = 

1.0) was studied using the 3D printed jigsaw blades under tensile loading condition. Based on this 

study, two types of competing mechanisms can be expected due to material properties and blade 

geometries; i) pull out, and ii) fracture in the blades. Although the authors demonstrated that by 

using multi-stable and bi-stable blades, one could increase energy absorption, the study is limited 
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only to the geometries with pullout conditions and avoided discussion regarding the damage in the 

blades (Malik and Barthelat in 2016; Mirkhalaf and Barthelat, 2017). 

6.2 Ironclad beetle 

In recent years, the exoskeleton of arthropods such as beetles gets more attention due to specific 

microstructure, which enables these species not only to resist penetration or attack and but also to 

develop a lightweight cuticle (Rivera et al., 2019). Their resistance against the attack of various 

predators and their structural and mechanical performance across flying terrestrial make them an 

attractive option for research.  One of the terrestrial beetles is the Zopherinae, ironclad beetles. 

The Ironclad beetle’s exoskeleton is known to bend entomologist’s steel pins and withstand high 

compressive loads, including the occasional automobile that would prove fatal to most insects.  

The geometric features and morphologies of beetle elytra have been bio-inspired through many 

aviation applications for designing lightweight structures (Dai and Zhixiang,  2010). The Ironclad 

beetle exoskeleton contains chitin-fiber composite stack in a helicoidal pattern (bouligand 

orientation) consisting of three distinct regions named as epicuticle, exocuticle, and endocuticle, 

where the epicuticle is the outermost layer while the endocuticle is the last interior layer. The SEM 

images and Nano-indentation confirm that the epicuticle consists of three layers: cuticulin, protein, 

and waxy layer (Le Nguyen, 2017). The cuticulin thickness is approximately ranging between 12-

13 nm (depending on the species) and is the outer layer. The protein is the middle layer, while the 

wax is the last layer in the epicuticle region. The wax layer acts as a coating layer and prevents 

water penetration to the beneath layers (Wigglesworth 1972). Since epicuticle is a thin region, it 

is believed that the other two areas (the exocuticle and endocuticle, also known as procuticle) are 

responsible for enhancing the mechanical properties related to the beetle performance because the 

chitin-protein matrices that found in procuticle regions develop bouligand microstructure. 

In addition to the microstructure inside the beetle cuticle, further investigation by Rivera et al., 

2019 reveals another important geometric feature that exists inside the elytra. As presented in 

Figure 6.1 (a); the beetle elytra contain parts connected using interlocking dovetail joints blades, 

and each blade contains microstructure (layers of alpha-chitin fibers) that cause delamination 

under compression and tensile loadings (Rivera et al., 2019). Therefore, delamination can be 

observed as another competing mechanism along with pull out and failure. The image of the 
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Ironclad beetle cuticle is presented in Fig 6.1(a). The blue zoomed box presented the cross-section 

of the Ironclad beetle elytra, and the zoomed red box shows the blades were connecting the two 

separate parts in elytra (see Fig6.2 (b)). The geometry of the blades can be estimated by three 

adjacent ellipses, as presented in SEM Image and schematics in Fig 6.1 (c) and (d), respectively. 

In objectives for this study can be presented as follows; 

Objective1: 

Understanding the effect of blade geometry in enhancing the mechanical properties in homogenous 

materials. 

 To date, there is no study to reveal and understand this role of blade geometry. To this 

aim, three different materials (such as VeroWhite, Steel, and Ceramic) were studied for 

various values of aspect ratios and angle 𝜃 (the angle between the horizontal line and 

center of two adjacent ellipses). 

Objective 2: 

Role of architecture and delamination in enhancing the mechanical properties (i.e., toughness and 

energy dissipation) of the interlocking blades with limited ductility.  

 I developed the parametric and systemic finite element models to understand the competing 

mechanism between delamination, pull-out and fracture. The main goal of this study is to 

understand the trade-off between energy dissipation due to delamination and plastic 

deformation. I mainly wanted to address the following question,  

“What are the benefits of having delamination and when delamination has priority over 

plastic deformation and fracture.” 

 Understand the role of other parameters such as interfacial friction, material strength, 

fracture toughness, and fracture strain. 

Objective 3: 

Derive systematic design solution for the puzzle-like architecture materials using the 

information of a single interlocking multi-layered blade to avoid damage localization and 

increase energy dissipation 



123 

 

 This work is one of the outcomes of the parametric study of the single blade. I mainly 

wanted to address the following  question,  

“can we predict the behavior of puzzle-like multilayer architecture composite by studying 

only a single interlocking blade or unit cell?” 

Figure 6.1 (a) presents the abdominal view of the Ironclad beetle. The cross-section view of 

the abdomen is presented in Figure 6.1 (b), and interlocking sutures on the top part of elytra 

are presented in Figure 6.1(b). Figure 6.1(c) shows the SEM image from the interlocking blades 

in elytra 

                                 

                                           (a)                                                             (b) 

                                      

(c)                                                            (d) 

Figure 6.1. (a) Image of Ironclad beetle cuticle, (b) cross-section view of Ironclad beetle elytra 
(blue zoomed box), and dovetail joints blades which connected the two separate parts from 

elytra, (c) SEM Image from dovetail joints blades connect the elytra, (The courtesy of Figure 6.1 
(a), (b), and (c) goes to Jesus Rivera, University of California Riverside) (d) dovetail joint blades 

developed from three adjacent ellipses with major axis of a and b. The angle 𝜃 is an angle 
between the horizontal line and center of the adjacent two ellipses. 
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Based on Fig6.1 (d), the geometry of the blades can be approximated by three adjacent ellipses, 

however, the role of both geometric parameters such as aspect ratio ( 
௔

௕
 ) and angle 𝜃 needs to be 

investigated and considered for further analysis. In Ironclad beetle cuticle the ( 
௔

௕
 = 1.8-2.0) and 

value of  𝜃 = 25°. Here I want to understand why Ironclad beetle has been selected this aspect 

ratio range and value of 𝜃. 

6.3 Design of dovetail joints blades geometry 

The design of the blades is based on dovetail joint contour built from a series of three adjacent 

ellipses that are connected (center to center) by angle 𝜃.  In this study, I did not consider any 

adhesive at the blades interface, so the mechanical interlocking, friction, and contact mechanics 

control the interaction between blades. Due to the definition of this type of dovetail joints 

geometry, for each aspect ratio (
௔

௕
), there exists a critical value 𝜃, that blades geometry become 

physically inadmissible if the values of  𝜃 become larger than 𝜃஼௥௜௧௜௖௔௟. Figure 6.2 (a) presents the 

dovetail joints blades geometry developed from three blades with all the required variables. 

The ellipse equation and the aspect ratio of an ellipse major axis are defined by Eqn 6.1 and 6.2, 

respectively. As presented in Fig 6.2(a), the intersection between the tangent of two adjacent 

ellipses and the centerline is presented by point m(x,y). Therefore, the angle 𝜃 can be defined by 

Eqn 6.3. 

𝑥ଶ

𝑎ଶ
+

𝑦ଶ

𝑏ଶ
= 1.0                                                                                                                                            (6.1) 

𝑎

𝑏
= 𝑘                                                                                                                                                            (6.2) 

𝑡𝑎𝑛𝜃 =
𝑦

𝑥
                                                                                                                                                    (6.3) 

By inserting Eqns. 6.2 and 6.3 into Eqn. 6.1, the Eqn. 6.1 can be redefined as a function of angle 

𝜃, and aspect ratio 𝑘 and therefore, the intersection point (m(x,y)) can be determined as presented 

in Eqn. 6.4.  

𝑥ଶ

(𝑏𝑘)ଶ
+

(𝑥𝑡𝑎𝑛𝜃)ଶ𝑘ଶ

(𝑏𝑘)ଶ
= 1.0                                                                                                                    (6.4) 
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𝑥 =
𝑏𝑘

√1 + 𝑘ଶ𝑡𝑎𝑛𝜃ଶ
                                                                                                                                        

𝑦 =
𝑏𝑘𝑡𝑎𝑛𝜃

√1 + 𝑘ଶ𝑡𝑎𝑛𝜃ଶ
 

Based on similar triangle rules, the values of 𝑥ଵ and 𝑦ଵ can be determined as follows: 

𝑥ଵ

𝑦ଵ
=

𝑥

𝑦
=

𝑙

2𝑙
=

1

2
                                                                                                                                       (6.5) 

 In order to find the 𝜃஼௥௜௧௜௖௔௟, the Eqn 6.6 should be satisfied (see Fig 6.2(a)). Where,  𝑤ே represents 

the width of the neck in dovetail joint geometry.  

𝑤௡

2
= 𝑥ଵ − 𝑎 = 2𝑥 − 𝑎 ≥ 𝑜                                                                                                                  (6.6) 

 The critical value for 𝜃 can be obtained when Eqn 6.6 is equal to zero. By substituting a value for 

x from Eqn 6.4 to Eqn 6.6, I will have; 

4𝑏𝑘

√1 + 𝑘ଶ𝑡𝑎𝑛𝜃ଶ
 − 2𝑎 = 0                                                                                                                       (6.7) 

Solving the Eqn 6.7, the value of 𝜃஼௥௜௧௜௖௔௟ can be calculated as presented in Eqn 6.8. 

𝜃஼௥௜௧௜௖௔௟ = 𝑎𝑟𝑐𝑡𝑎𝑛 ቆ
√3

𝑘
ቇ =    𝑎𝑟𝑐𝑡𝑎𝑛 ൭

√3

(
௔

௕
)
൱                                                                                    (6.8) 

Since the values of aspect ratios are known, the values of 𝜃஼௥௜௧௜௖௔௟ can be calculated using Eqn 6.8. 

Figure 6.2(b) presents the value of  𝜃஼௥௜௧௜௖௔௟ vs. 𝑎/𝑏; the zoomed box shows the same graph up to 

𝑎/𝑏 =  10.0. Similarly, using the same strategy, various blades geometries for different value of 

𝑎/𝑏 and 𝜃 is presented in Fig.6.3.  For all the cases, the total, width, length, and thickness of the 

samples are kept constant. 
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                                            (a)                                                       (b) 

Figure 6.2. (a) Schematic of the geometry of the blade developed from three adjacent ellipses 
with all the required dimensions, (b) 𝜃஼௥௜௧௜௖௔௟ vs. 𝑎/𝑏; the zoomed box shows the same curve up 

to 
௔

௕
= 10 

Based on Figure 6.2(a), Eqn 6.8, the 𝜃௖௥௜௧௜௖௔௟ for each value of 𝑎 𝑏⁄  can be determined. The 

schematic of a single homogenous blade for various aspect ratios (0.8 ≤ 𝑎 𝑏 ≤ 10)⁄  and values of 

𝜃 are demonstrated in Figure 6.3.  
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Figure 6.3. Various blades geometries developed from three adjacent ellipses for different values 
of 𝑎/𝑏 and admissible 𝜃 
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6.4 Parametric analysis of homogeneous blades  

6.4.1 Boundary condition 

For all the cases, the displacement control load is applied on the top nodes of the sample. The 

bottom nodes of the sample are fixed against translational directions. The roller applied on the 

right side of the sample. Finally, the Homogenous Boundary Condition (HBC) is applied to the 

nodes on the left side of the sample. Using the theory developed by Aboudi in 1991 (Aboudi 1991), 

the homogenous boundary condition can be defined by satisfying the following conditions; 

i. Kinematic uniform boundary condition:  

𝑢௜(Γ) = 𝜀௜௝
଴ 𝑥௝                 ∀𝑥௝  ∈ Γ 

Where 𝜀௜௝
଴  is a constant tensor representing the global strain and independent of 𝑥௝ and 𝑢௜ is the 

displacement at point 𝑥௜ 

ii. Static Uniform Boundary condition:  

                     𝑡௜(Γ)=𝜎௜௝
଴ 𝑛௝               ∀𝑥௝  ∈ Γ  

Where 𝑡௜ is the traction vector at the boundary Γ and 𝜎௜௝
଴  is represented the global stresses, and 

finally, 𝑛௝is the vector normal to the Γ at the selected 𝑥௝. 

For all the cases in this study the HBC boundary conditions are applied. The HBC under tensile 

uniaxial loading is presented in Figure 6.4. By fixing the normal directions of side faces in the 

blade and applying the Equation constraint, we will have the following constraint; 

General condition: 

𝑢ଵ
௟௘௙௧

= 0            ,  𝑢ଵ
௥௜௚௛௧

− 𝑢ଵ
ோ௘௙

= 0                  (X-direction) 

𝑢ଶ
௕௢௧௧௢௠ = 0       ,  𝑢ଶ

௧௢௣
− 𝑢ଶ

ோ௘௙
= 0                      (Y-direction) 

𝑢ଷ
௥௘௔௥ = 0          ,   𝑢ଷ

௙௥௢௡௧
− 𝑢ଷ

ோ௘௙
= 0                (Z-direction) 

In the above equation, 𝑢௝
௜ is represents the displacement and “i” is account for the nodes set, while 

“j” represents the degree of freedom. Since our model is homogenous in the X direction, only the 

first equation is used for all the models. 
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Figure 6.4. Homogeneous Boundary Condition (HBC) applied on a representative model 
(𝑎 𝑏 = 2, 𝜃 = 25°)⁄  

6.4.2 Understanding the effect of blades geometry 

Previously, the role of circular blades geometry for a single and multi-stable circular blade was 

investigated by Barthelat and his co-workers (Malik and barthelat, 2016; Mirkhalaf and Barthelat, 

2017). In that study, the geometry of the circular blade was selected due to symmetry and uniform 

stress distribution. However, the dovetail joints blades are commonly used in many engineering 

applications, such as joints connecting blades to the disc in gas turbines (Ruiz et al., 1984; Witek 

et al.,2006). These types of blades are usually more ellipse like than circular shape. To this date, 

there is no study to understand the role of dovetail joints geometry on the mechanical properties 

and performance of the blades. Therefore, this section aims to understand the role of blade 

geometries (both  𝑎/𝑏 and  𝜃) and its effect on mechanical properties such as peak load, stiffness, 

and energy absorption. 

For this purpose, several FE models were developed for various aspect ratios and values of 𝜃 (see 

Figure 6.3). The material properties ranging from VeroWhite (polymer used for 3D printing), steel, 

and ceramic are assigned to the models and tensile loading is applied to the top surface of the 

blades. The HBC boundary condition was applied to all the models (see Figure 6.4). The width, 

length, and thickness of the entire models are constant and equal to 130 mm, 200 mm, and 12 mm 

respectively. The material for polymer (Vero white) is characterized by myself and modeled as an 
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elastic-plastic with the assumption of failure strain using ductile damage model in Abaqus and the 

material properties of steel and ceramic (Silicon carbide) are adopted from (Kopp and 

Dohmen,1990) and (Holmquist and Johnson, 2005), respectively.  The normalized results of the 

peak load (results are normalized with respect to 𝑎 𝑏 = 1)⁄  vs. 𝑎 𝑏⁄  and 𝜃 are presented in Figure 

6.5 (a) and (b), respectively. The results showed that the higher values of normalized peak load for 

the brittle material such as silicon carbide occurs at the lowest aspect ratio and minimum allowable 

𝜃. The results also state that by increasing the values of 𝜃 and 𝑎 𝑏⁄ , the normalized peak load 

decreases (Figure 6.5 (a), (b)). Similarly, the normalized values of energy dissipation for different 

values of aspect ratios reveal that by increasing 𝜃 and 𝑎 𝑏,⁄  the amount of energy dissipation 

decreases (Figure 6.5(c), (d)). Finally, the comparison between various aspect ratio confirmed that 

the blades with 𝑎 𝑏⁄ < 1 shows better performance with respect to circular blade in terms of both 

peak load and energy dissipation. 

The second material used for this study is VeroWhite, which is the family of a tough polymer used 

as 3D print materials in poly jet 3D printers (i.e., Connex350), and it behaves in an elastic-plastic 

with fracture strain of 0.2. The comparison between normalized peak load vs. 𝑎 𝑏⁄  and 𝜃 are 

presented in Figure 6.6 (a) and (b), respectively. Taking a closer look at the results confirm that 

the higher values of normalized peak load for various 𝜃 can be achieved when 𝑎 𝑏⁄  ranging 

between 1.5-2.5. In addition, the comparison between normalized energy dissipation with respect 

to the 𝑎 𝑏⁄  and 𝜃 reveals that for high aspect ratios (𝑎 𝑏⁄ > 2.5), Lower values of  𝜃 dissipate more 

energy. However, for 𝑎 𝑏⁄ > 2.5, the highest values of energy dissipation can be obtained when 

20 ≤ 𝜃 ≤ 30. Moreover, for the very low aspect ratio (𝑎 𝑏⁄ = 0.8), the highest value of energy 

dissipation occurs at 𝜃 = 40°. 

The last material used for this parametric study is steel. The comparison between normalized peak 

load and energy dissipation with respect to 𝑎 𝑏⁄  and 𝜃 are presented in Figure 6.7(a)-(d), 

respectively. Although steel shows higher values of peak load and energy dissipation in 

comparison to the polymer, the trends of the results for both peak load and energy dissipation are 

similar.  
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(a)                                                                    (b) 

 

                                        (c)                                                                       (d) 

Figure 6.5. The FE results of the blade including various 𝑎/𝑏 and 𝜃 for ceramic (Silicon 
carbide), all the results normalized with respect to a/b=1, (a) normalized peak load vs. 𝑎/𝑏, 
(b)normalized peak load vs. 𝜃, (c) normalized energy vs. 𝑎/𝑏, (d) normalized energy vs. 𝜃 
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(a)                                                                              (b) 

 

                                        (c)                                                                        (d) 

Figure 6.6. The FE results of the blade including various 𝑎/𝑏 and 𝜃 for polymer (VeroWhite), all 
the results normalized with respect to a/b=1, (a) normalized peak load vs. 𝑎/𝑏, (b)normalized 

peak load vs. 𝜃, (c) normalized energy vs. 𝑎/𝑏, (d) normalized energy vs. 𝜃 
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                                   (a)                                                                      (b) 

 

                                        (c)                                                                        (d) 

Figure 6.7. The FE results of the blade including various 𝑎/𝑏 and 𝜃 for Steel, all the results 
normalized with respect to a/b=1, (a) normalized peak load vs. 𝑎/𝑏, (b) normalized peak load vs. 

𝜃, (c) normalized energy vs. 𝑎/𝑏, (d) normalized energy vs. 𝜃 
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The Ashby plot of peak load and Energy (the area under stress-strain curves) of the three selected 

materials in this study with different values of aspect ratio and 𝜃 is presented in Figure 6.5(a), and 

(b) respectively. The results stated that the higher values of peak load could be obtained for the 

ceramic in comparison to the other two materials. Ceramics are very brittle, and therefore for all 

the cases, failure occurs inside the neck. Although higher values of peak load can be obtained with 

ceramics, the values of toughness are the lowest in comparison to the steel and polymer. In 

contrast, the blades containing steel have higher energy absorption due to the ductility and nature 

of the material. Finally, the comparison between peak load vs. energy of all three cases for all the 

possible values of 𝜃 is presented in Figure 6.8(c). 

This parametric study enables us to understand the role of blade geometry in homogenous material 

using three different material properties (ceramic (brittle), polymer, steel (ductile)). From all these 

studies, one can conclude that the ellipse shape for the blades performs better in terms of peak load 

and energy dissipation in comparison to the circular blade. For the brittle material, the higher 

values of peak load and toughness can be achieved by selecting the lower possible values of 𝑎 𝑏⁄  

, 𝜃. While for the polymer (low ductility) and steel (high ductility), the best performance can be 

obtained by choosing 1.5 ≤ 𝑎 𝑏⁄ ≤ 2.5, and 20 ≤ 𝜃 ≤ 30. Although, we could find the possible 

range for the aspect ratio and values of 𝜃, separate simulations needed to be done to find the 

optimized aspect ratio and 𝜃. 
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(a)                                                                          (b) 

 

(c) 

Figure 6.8. Ashby plot of a single blade of different a/b and 𝜃, and three distinct based material 
(steel, ceramic, polymer), (a) peak load vs. 𝜃, (b) energy absorption vs. 𝜃, (c) peak load vs. 

Toughness for various values of 𝜃. 
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6.5 Observation from Ironclad beetle (learning from Nature) 

The compression test of the Ironclad beetle cuticle and SEM images confirm the presence of 

laminated structure inside the interlocking joints (Figure 6.9 (a), (b)) in the elytra. Delamination is 

a key factor in this study since it brings another competing mechanism along with pull-out and 

fracture. Figure 6.9 (c), (d) presents the beginning of the delamination and failure of the cross-

sections of medial suture inside the elytra, respectively. 

 

 

(a)                              (b)                               (c)                               (d) 

Figure 6.9. SEM image from dovetail joint blades inside the elytra, (a) uncompressed cross-
sectional view, (b) highlighted crack initiation around the blade region, (c) fiber bridging and 

deamination inside the blade, (d) fracture blades with delaminated fiber inside the blades (photo 
courtesy to Jesus Rivera UC Riverside). 

To understand the role of architecture and geometry of the blades, three different “jigsaw” blades 

(see Figure 6.10 (a)) were developed using 3D printing prototype technique and FE simulations 

by varying the angle, θ, to 15°, 25°, and 50°. In all three cases, the primary aspect ratio of the 

ellipses is constant and set equal to 1.8:1 and the 3D printed jigsaw-shaped blades incorporate the 

layered architecture that mimics the ironclad beetle laminated microstructure. The Lagrangian 

strains during the tensile loading are presented for all geometries. The blade representing the 

Ironclad beetle (i.e., 25°) demonstrated relatively higher normalized values of peak load and 

toughness (Fig. 6.10(b)). Digital Image Correlation (DIC) results confirm pull out of the low angle 

(i.e., 15°) and nearly circular blade, with no strain or delamination occurring. However, when θ is 

increased to 25° (i.e., that which is found in the diabolical ironclad beetle), significant strain 

develops within the blade with subsequent delamination, followed by pullout. Finally, in the highly 

curved blade (θ =50°) significant strain is observed at the neck, followed by fracture (with no 

apparent delamination). A comparison between peak load and energy release rate of these three 
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cases are shown in Figure 6.10(c). The results for the case with θ=25° show higher values in 

comparison to the other two angles. Thus, these three different prototypes can confirm the presence 

of competing mechanisms based on blade geometry to provide maximum interlocking, while 

preventing localized stresses that would cause failure at the neck. This parametric study highlights 

the role of delamination to relieve strain, while maximizing the interfacial strength at the suture, 

revealing a new competing mechanism along with pullout and failure in these jigsaw puzzle-like 

architectures. Finally, a comparison between FE simulation and experiment between the 𝜃 = 25° 

is presented in Figure 6.7(d). The strain distribution presence a good agreement between FE model 

and the experiment. More discussion regarding FE simulations will be presented in the following 

sections.  
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                                                                          (a) 
Figure 6.10. (a) CAD model for the 3D printed geometries including 𝜃 = 15°, 25°, 50°  , (b) A 

lagrangian strain distribution of the blades using DIC technique, (c) A comparison between 
normalized peak load and energy dissipation in three cases with different values of 𝜃, (d) A side 

by side comparison between FE simulation and experiment for the case with 𝜃 = 25°. 

 



139 

 

Figure 6.10 continued 

 

(b) 

 

(c) 
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Figure 6.10 continued 

 

(d) 

6.6 Homogeneous polymer blade (side-free boundary condition) 

In section 6.4, the role of material properties, a/b, and 𝜃 were investigated for a single blade by 

employing the HBC boundary condition. Based on the observation from the real cuticle of the 

Ironclad Beetle, the dovetail joints connecting the elytra part are free to move due to the space 

inside the abdomen, therefore, for the rest of this study, the HBC boundary condition is removed 

from all the models. 

The load-displacement curves for different values of 𝑎 𝑏 ⁄ and 𝜃 of single blade containing 

VeroWhite polymer are presented in Fig 6.11(a). In these sets of tests, the HBC condition is 

removed from the model, and tensile loading is applied on the top while the bottom surface fixed 

against translational directions.  Theoretically, as the value of aspect ratios or 𝜃 increases, it is 

expected to have a higher peak load due to the increase in the contact area. For this particular 

material, the peak load increases by increasing the aspect ratio and 𝜃 up to 𝑎/𝑏 = 2.5 and then 

decreases for higher aspect ratios due to the fracture inside the neck. Besides, the peak load also 

increases by increasing the angle 𝜃. Depending on material properties (i.e., ductile, brittle, etc.) 

and damage mechanisms, different optimized aspect ratio and 𝜃 could be expected (see section 

6.3). Although optimization is not the aim of this section, one could see that ellipse geometry 

perform better in comparison to circular blades. Also, this section helps me to select the proper 

aspect ratios for the ellipse for the rest of this study and parametric analysis (i.e., including multi-

layered puzzle-like structure) 



141 

 

The normalized value of peak load, stiffness, and toughness (energy absorption) for all the cases 

with different values of aspect ratio is shown in Fig 6.11 (b), (c), and (d), respectively. The results 

show that the normalized peak load increases by increasing  𝜃 up to 𝑎/𝑏 =1.5 since no fracture or 

failure observed inside the blades. For 𝑎/𝑏 =1.8, 2.0, the maximum peak load occurs at 𝜃 = 30° 

and then decreases (this happens because of damage occurs in the blades for the values of 𝜃 higher 

than 𝜃 = 30°). Finally, for the large aspect ratio (𝑎/𝑏 =4.5), the peak occurs at 𝜃 = 10° and the 

value is much lower than the peak for 𝑎/𝑏 =2.5 as can be seen in Fig 6.4(b). Similarly, the 

normalized value of stiffness increases by increasing the aspect ratio (the highest values can be 

observed for a/b=3.5). In addition, the values of stiffness increase by increasing 𝜃 and then 

decreases after damage occurs in the neck. For example, for the a/b = 1.5, the stiffness values 

increase up to angle 𝜃 = 35° and then decreases for larger values of 𝜃 due to the damage 

occurrence. The comparison between energy absorption (toughness) for different values of a/b and 

𝜃 is presented in Fig 6.11 (d). The results state that the larger values of energy absorption belong 

to the a/b = 1.8 when 𝜃 = 30° (for this specific material). Finally, by comparing results from Fig 

6.11, (b)-(d) one could see that there is a tradeoff between stiffness, toughness, and peak load. 

Therefore, for the rest of this study (understand the effect of puzzle-like architecture), the following 

three aspect ratios (a / b= 1.8, 2.0, 2.5 ) were selected based on their performance with respect to 

the other aspect ratios in enhancing the mechanical properties. 
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(a) 

 

                                    (b) 

Figure 6.11. Role of blades shape for various 𝑎/𝑏 and 𝜃, (a) Load vs. Displacement curves, (b) 
normalized peak load, (c) normalized stiffness, (d) normalized toughness 



143 

 

                  Figure 6.11 continued 

 

(c) 

  

                                                                         (d) 
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6.7 Role of blades microstructure 

As previously discussed in section 6.5; Ironclad beetle developed microstructure (layers) from 

alpha-chitin fibers inside its cuticle. The interlocking blades are responsible for connecting 

separate parts inside elytra. These alpha-chitin layers of fibers also exist inside the interlocking 

joints and as discussed in section 6.5, under loading conditions (compressive or tensile) cause 

delamination inside the joints as failure mechanisms. Based on a study by Malik and barthelat 

2016, two types of competing mechanisms can be expected in the interlocking joints containing 

homogenous materials; i) pullout and ii) fracture. During loading, unlike homogenous blades, 

blades inside beetle elytra developed delamination as another competing mechanism. Therefore, 

the primary purpose of this study is to understand the role of multi-layered structure inside blades 

bio-inspired by Ironclad beetle, and if this technique could help to enhance the mechanical 

performance of the structure. To this aim, a set of systematic and parametric study is required to 

understand the role of the multilayered structure. Figure 6.12(a) presents a single blade (develop 

from three adjacent ellipses) contains multilayered. The required parameters for this study are 

discussed in the following sections. 

6.7.1 Dimensionless Analysis 

Based on the presented geometry and material properties for a blade (Figure 6.12(a)), the following 

dimensionless groups are needed to be investigated for the geometrical parameters 

(𝑎,  𝑏,  𝜃, 𝑛,  𝐿,  𝑊,  𝑡,  𝑡ଵ), material properties (𝐸ଵ,𝜈ଵ,𝜎௙ , 𝜀𝑓), and the cohesive law parameters 

(𝜎௠௔௫ , 𝜏𝑚𝑎𝑥, 𝐺ூ௖ , 𝐺ூூ௖). The schematic of the sample with the variables is presented in Fig 6.12 

(a).   

 

Where 𝑃௠௔௫ is the maximum load that can be achieved during the tensile test, G is the energy 

absorption. Since adhesives between laminated layers are modeled with zero thickness cohesive 

elements, no change is expected to occur in the initial stiffness of all the samples in comparison to 

the homogenous case. Following Buckingham’s ‘Π-theorem’ (Buckingham, 1914), the physical 

variable in Equation 6.9 can be combined in different dimensionless groups. The total number of 

variables is equal to eightteen. Based on Buckingham’s Π theorem, one can also express them in 

terms of  𝜋௜ where 𝐹൫𝜋ଵ , 𝜋ଶ , … , 𝜋௣ ൯ = 0. Considering this, we will end up with (𝑝 = 𝑛 − 𝑘 =

𝑃௠௔௫ ,  𝐺௖ = 𝑓(𝑎,  𝑏,  𝜃, 𝑛,  𝐿,  𝑊,  𝑡,  𝑡ଵ, 𝐸ଵ,  𝜈ଵ,  𝜎௙, 𝜀௙, 𝜎௠௔௫, 𝜏௠௔௫ , 𝐺ூ௖ , 𝐺ூூ௖   , 𝑓௙௥௜௖௧௜௢௡൯      (6.9) 
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18 − 2 = 16) sixteen dimensionless groups. Finally, the following dimensionless group is utilized 

in Equation 4.5; 

𝑃௠௔௫

𝐸ଵ𝑤𝑡
,

𝐺௖

𝐺ூ௖

= Ψ ൭𝜽, 𝒏,
𝒂

𝒃
,
𝒕𝟏

𝒂
,
𝜎௠௔௫

𝐸ଵ
,
𝜎௠௔௫

𝜏௠௔௫
, 𝜈ଵ,

𝜎௙

𝐸ଵ
, 𝜀௙,

(𝐺ூ௖ 𝜎௙൯⁄
ଶ

𝑤௡
,
(𝐺ூூ௖ 𝜎௙൯⁄

ଶ

𝑤௡
,

𝐺ூ௖

𝐺ூூ௖
,

𝑊

𝑤௡
,

𝐿

𝑊
, 𝒇𝒇𝒓𝒊𝒄𝒕𝒊𝒐𝒏൱ (6.10) 

 In the above Equation, the geometrical values such as L, W, and blade thickness are assumed to 

be constant and as a result, they are removed from the calculations. In this study, firstly, the effect 

of geometrical parameters will be investigated for various aspect ratios (𝑎 𝑏 = 1.8, 2.0, 2.5)⁄ . 

These aspect ratios are selected due to the results that I obtained in section 6.6 for the blades with 

homogenous material. Vero White is selected for the layers and tango black plus is selected as an 

adhesive. Also, the effect of 𝜃, for each aspect ratio is considered separately. Finally, four different 

values for 𝑡ଵ 𝑎 = 0.05, 0.1, 0.25, 0.45⁄  is considered in order to understand the role of the number 

of layers in the mechanical properties of the blades (Figure 6.12 (b), (c)). 
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                                                                   (a) 

 
(b) 

Figure 6.12. (a) Schematic of FE simulation for different values of aspect ratio and angle 𝜃 for 
𝑡ଵ 𝑎 = 0.1⁄ . (b) Multi-layered puzzle-like architecture geometries for a/b =1.8, 2.0,2.5, and all 
the admissible values of 𝜃 when 𝑡ଵ 𝑎 = 0.1⁄ , (c) four values of 𝑡ଵ 𝑎 = 0.05, 0.1, 0.25,0.5⁄  for a 

representative model with a/b = 2.0, 𝜃 = 25° 
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Figure 6.12 continued 

 

(c) 

6.8 Parametric study of architecture inside the interlocking joint (role of 
𝒕𝟏

𝒂
) 

In this section, the role of energy dissipation for various aspect ratios, angle𝜃, and 𝑡ଵ 𝑎⁄  (layers 

thickness normalized with respect to the major axes of the blade) will be investigated for a single 

multi-layered puzzle-like blade. A comparison between energy dissipation due to the plastic 

deformation and delamination will be studied for different values of 𝜃, 𝑡ଵ 𝑎⁄ , and, 𝑎 𝑏⁄  in order to 

understand the role of both geometry and architecture (puzzle-like multilayered structure). To this 

aim, Figures 6.13-6.16, present the comparison between the energy dissipation due to delamination 

and plastic deformation for three values of aspect ratios and admissible blade geometries when 

𝑡ଵ 𝑎⁄ =0.05, 0.1,0.25,0.45. 

6.8.1 Case study 1 (
𝒕𝟏

𝒂
= 𝟎. 𝟎𝟓) 

The comparison between the energy release rate when 𝑡ଵ 𝑎⁄ =0.05 for different values of aspect 

ratios and 𝜃 is presented in this section. This set of parametric study contains the maximum number 

of layers in comparison to other 𝑡ଵ 𝑎⁄  ratios. For all the cases, no fracture or damage observed in 

layers and delamination was responsible for total energy dissipation. The comparison between 

energy dissipation due to delamination and plastic deformation for different values of 𝜃 and 

a/b=1.8, 2.0,2.5 are presented in Figure 6.13 (a)-(c), respectively. The results stated that by 
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increasing both 
௔

௕
 and 𝜃, the energy dissipation due to delamination increases. Also, Due to the 

high number of layers, most of the energy dissipation occurs through delamination even for the 

high aspect ratio of a/b = 2.5. 

The results also revealed that, for the lower angles or aspect ratios the energy mostly dissipated 

through delamination, while for the model with high aspect ratios and angle (i.e.,𝜃 = 35°,
௔

௕
= 2.5), 

the energy not only dissipated through delamination but also through plastic deformation. 

Although the value of energy dissipation due to plastic deformation is much lower in comparison 

to the delamination.  Finally, by comparing Figure 6.13 (a)-(c) one can observe that by increasing 

the aspect ratio, the rate of energy dissipation increases for each value of 𝜃.  

 

 

    (a) 

Figure 6.13. Comparison of energy release rate for different values of aspect ratio and 𝜃 for 
𝑡ଵ 𝑎⁄ = 0.05, (a) a/b=2.5, (b) a/b=2.0, and (c) a/b=1.8. 
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Figure 6.13 continued 

   

(b) 

          

(c) 
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6.8.2 Case study 2 (
𝒕𝟏

𝒂
= 𝟎. 𝟏) 

In this section, the energy dissipation is investigated when 𝑡ଵ 𝑎⁄ = 0.1. The energy dissipation due 

to plastic deformation and delamination for three values of aspect ratios are shown in Figure 

6.14(a)-(c). For 𝑡ଵ 𝑎⁄  =0.1, the energy mostly dissipated through delamination, however, the small 

portion of energy dissipated through plastic deformation for all the aspect ratios. For instance, for 

the model with a/b=2.5, a slight increase in the energy dissipation caused by plastic deformation 

can be observed for 𝜃 = 30°, 𝑎𝑛𝑑 35°. Also in all the cases the rate of energy dissipation increases 

in comparison to the models with 𝑡ଵ 𝑎⁄ = 0.05. 

 

(a) 

Figure 6.14. Comparison of energy release rate for different values of aspect ratio and 𝜃 for 
𝑡ଵ 𝑎⁄ = 0.1, (a) a/b=1.8, (b) a/b=2.0, and (c) a/b=2.5. 
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Figure 6.14 continued 

 

(b) 

 

(c) 
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6.8.3 Case study 3 ( 
𝒕𝟏

𝒂
= 𝟎. 𝟐𝟓) 

By increasing the value of 𝑡ଵ 𝑎⁄  to 0.25 (using a smaller number of layers inside a single blade), 

one can observe that the value of energy dissipation due to delamination for different aspect ratios 

and values of 𝜃 is very close to the case where 𝑡ଵ 𝑎⁄ = 0.1. However, for the a/b =2.5, the results 

show higher energy dissipation due to plastic deformation, and as a result, the total energy 

dissipation is higher for  𝑡ଵ 𝑎⁄ = 0.25 in comparison to the  𝑡ଵ 𝑎⁄ = 0.1 (see Fig 6.12(c)). 

 

        (a) 

Figure 6.15. Comparison of energy release rate for different values of aspect ratio and 𝜃 for 
𝑡ଵ 𝑎⁄ = 0.25, (a) a/b=1.80, (b) a/b=2.0, and (c) a/b=2.50. 
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Figure 6.15 continued 

 

(b) 

 

(c) 
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6.8.4 Case study 4 (
𝒕𝟏

𝒂
= 𝟎. 𝟒𝟓) 

Finally, the comparison for the largest 𝑡ଵ 𝑎⁄  (𝑡ଵ 𝑎⁄ = 0.45) in this parametric study is presented in 

Figure 6.16 (a)-(c). For this case, the results indicated the lower values of energy dissipation due 

to plastic deformation and delamination for all the aspect ratios and angle 𝜃 with respect to the 

three other values of 𝑡ଵ 𝑎⁄ . This could be explained because of the smaller number of layers and 

excessive stress around the blade releases due to the delamination in fewer existing layers. 

 

 

            (a) 

Figure 6.16. Comparison of energy release rate for different values of aspect ratio and 𝜃 for 
𝑡ଵ 𝑎⁄ = 0.45, (a) a/b=1.80, (b) a/b=2.00, and (c) a/b=2.50. 
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Figure 6.16 continued 

 

(b) 

 

(c) 
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A side by side comparison between stress-strain curves and energy dissipation for a/b =2.0 and 

different values of 𝑡ଵ 𝑎⁄  for two selected values of 𝜃 (𝜃 = 20°, and 35°) are presented in Fig 

6.17(a)-(d). As shown in Fig6.17(a), for the case of  𝜃 = 20°, the values of stress increase up to a 

peak value and then decreases until the complete pullout occurs.  Figure 6.17(b) shows that the 

energy dissipation for all the values of  𝑡ଵ 𝑎⁄  occurs through delamination. Also, the highest energy 

dissipation was obtained for 𝑡ଵ 𝑎⁄ = 0.25. A similar comparison is presented for a/b =2.0, and 𝜃 =

35° is shown in Fig 6.17(c) and (d). For the higher angle such as 𝜃 = 35°, for all the models the 

stress increases up to the first peak (the first layer delaminated inside the male part). In the 

homogenous blade with a high angle (𝜃 = 35°), and under quasi-static tensile loading, there is 

drop-in stress after the first peak was reached. This happened due to the fracture in the neck area 

of the blade (for this specific material), while, for the model consisting multilayered, after the first 

peak, there is a drop-in stress-strain curve followed by an increase in stress values until the second 

peak achieved and finally pullout occurs in the system. The second peak for the cases with high 

angles confirms that by using multi-layers inside the blade, one can increase the toughness and 

energy dissipation of the system as shown in Fig 6.17(c) and (d). Also, a comparison between 

energy dissipation for different values of 𝑡ଵ 𝑎⁄  reveals that the maximum energy dissipation occurs 

due to the delamination when  𝑡ଵ 𝑎⁄ = 0.1. It is also notable that for both values of 𝜃 (𝜃 =

20° and 35°), a very large number of layers (𝑡ଵ 𝑎⁄ = 0.05) or a small number of layers (𝑡ଵ 𝑎⁄ =

0.45) demonstrate less energy dissipation in comparison to the two other 𝑡ଵ 𝑎⁄ (0.1, 0.25). For the 

𝑡ଵ 𝑎⁄ = 0.05, the existence of a high number of layers causes lots of tiny delamination inside the 

blade and resulted in lower peak load and energy dissipation, however, by decreasing the number 

of layers or increasing the thickness of each layer, the energy dissipation occurs due to both plastic 

deformation and delamination inside the blades. Also, localization was observed inside the blades 

for the high value of 𝑡ଵ 𝑎⁄ (𝑡ଵ 𝑎⁄ = 0.45). 
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                                           (a)                                                              (b) 

 

                                           (c)                                                              (d) 

Figure 6.17. A comparison between stress-strain curves and energy release rate side by side for 
various values of 

௧భ

௔
= 0.05, 0.1, 0.25, 0.45, (a) stress-strain curves for 𝑎 𝑏 = 2⁄  and 𝜃 = 20°, (b) 

Energy release rate due to delamination and plastic deformation for 𝑎 𝑏 = 2⁄  and 𝜃 = 20°, (c) 
stress-strain curves for 𝑎 𝑏 = 2⁄  and 𝜃 = 35°, (d) Energy release rate due to delamination and 

plastic deformation for 𝑎 𝑏 = 2⁄  and 𝜃 = 35°.  
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The normalized value for peak load and energy release rate vs. angle 𝜃 for various values of  𝑡ଵ 𝑎⁄  

is presented in Figure 6.18 (a) and (b), respectively. The results stated that when the values of 𝑡ଵ 𝑎⁄  

equal to 0.05, and 0.1; the value of peak load increases by increasing the angle 𝜃. However, for 

larger values of 𝑡ଵ 𝑎⁄  (i.e. 𝑡ଵ 𝑎⁄ = 0.25), the value of normalized peak load increases and then 

decreases due to the fracture in the neck areas of the blades, because for the high angles and larger 

values of 𝑡ଵ 𝑎⁄ , delamination layer does not exist inside the neck to dissipate strain concentration 

due to the interlocking. For example, when 𝑎 𝑏 = 2.5⁄  and  𝑡ଵ 𝑎⁄ = 0.25 the maximum peak load 

occurs in 𝜃 = 20°, while for when 𝑎 𝑏 = 1.8⁄  and  𝑡ଵ 𝑎⁄ = 0.05, maximum peak load occurs at 

𝜃 = 40°. This can be explained because there are competing mechanisms between the peak load 

and a number of the layers. As the number of layers decreases, the peak load increases; however, 

it occurs at smaller angle 𝜃, due to the fracture of the neck area for the higher angle. As the number 

of layers decreases, more localized damage can occur; also, the plastic deformation increases. 

Moreover, by increasing the angle 𝜃, the contact area increases, therefore more toughness can be 

expected. 

Finally, the maximum principal stress distribution at the peak load for 𝑎 𝑏 = 1.8⁄ , and different 

values of 𝑡ଵ 𝑎⁄  for two selected 𝜃 (𝜃 = 20 °, 40°) is presented in Figure 6.18(c). The results stated 

that when 𝜃 is small, delamination occurs in the female part follows by pull out even for the large 

values of 𝑡ଵ 𝑎⁄ . However, for the large angle 𝜃 (𝜃 = 40 °), the deamination starts in the male part 

except for the case with the largest number of layers (𝑡ଵ 𝑎⁄  = 0.05). It is also notable that for the 

homogenous blade material (𝑎 𝑏 = 1.8⁄  ) we observed plastic deformation followed by pull-out 

when 𝜃 = 20 °, and fracture inside the neck when 𝜃 = 40 °. Therefore, one could observe that 

adding delaminated layers inside the blade can help to relax the stress concentration via 

delamination specifically for samples with high angles (expected to see failure inside the neck). 

Thus, having multilayered puzzle-like architecture not only helps to relax the excessive strain and 

increases the toughness of the system but also helps to avoid failure in the neck and, therefore, 

resulted in large defamation followed pull-out. 
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(a)        

                                                              
 (b) 

Figure 6.18. (a) Comparison for different values of aspect ratio with different number of layers 
(a) normalized peak load, (b) Normalized energy release rate, (c) maximum principal stress 

distribution for two selected 𝜃and different values of  𝑡ଵ 𝑎 = 0.05,0.1, 0.25, 𝑎𝑛𝑑 0.45⁄  showing 
at the peak load for all the cases. 
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Figure 6.18 continued 

 

(c) 

6.8.5 Comparison between Multi-layered model and homogenous blade 

The comparison between the multilayered blade including Verowhite layers and Tangoblack 

adhesives with the homogenous blade of various angles is presented in Figure 6.19. The results 

indicate that adding delaminated layers can increase the toughness of the interlocking blades up to 

three times in comparison to the homogenous case by only sacrificing the peak load up to ten 

percent. The results from homogenous and multilayered blades are shown in green and purple 

colors, respectively. 
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Figure 6.19, load vs. toughness, comparison between multilayered and homogenous blades 

6.8.6 understanding the competing mechanism between energy release rates due to plastic 
deformation and delamination 

The comparison between the normalized energy dissipation of the homogenous blade when 

a/b=1.00, and 2.50 with a multi-layered puzzle-like blade (𝑡ଵ 𝑎⁄ = 0.1) for different values of 𝜃 

are presented in Figure 6.20 (a). This section aims to respond to the following question; 

“When including multilayered architecture inside the interlocking joints (delamination) has 

priority over plastic deformation?” 

 

As presented in Figure 6.20 (a), when a/b=1.00, the homogenous blades, including VeroWhite 

(polymer), show higher values of energy dissipation in comparison to a similar blade with multi-
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layered puzzle-like architecture for all the values of 𝜃. Similarly, for a/b=2.50, the values of energy 

dissipation in homogenous blade show higher values when 𝜃 < 25°, however, the multi-layered 

architecture demonstrates higher values of energy dissipation in comparison to the homogenous 

case when 𝜃 > 25°.  This can be explained since, for a/b=1 and all the values of 𝜃, a complete 

pull-out for the homogenous blade was observed and therefore, plastic deformation is responsible 

as the main source of energy dissipation. As a result, for all the values of 𝜃  and a/b=1, the plastic 

deformation is more beneficial than delamination. A similar explanation can be used for cases 

where 𝜃 < 25°. However, presence of fracture inside the neck (𝜃 > 25°, and a/b=2) caused lower 

energy dissipation due to plastic deformation; therefore, for these cases delamination plays a key 

role and benefits the system. Therefore, one could observe that delamination is beneficial for the 

blades with limited ductility. 

 
(a) 

Figure 6.20. (a) A comparison between energy dissipation of homogenous blade and multi-
layered puzzle-like blade for two aspect ratios 𝑎 𝑏 = 1.00, 2.50⁄  for all the admissible values of 
𝜃, (b) A comparison between maximum principal stress distribution of homogenous blade and 
multilayered puzzle-like blade (𝑡ଵ 𝑎 = 0.1)⁄  of 𝑎 𝑏 =  2.50⁄  and all the admissible values of 𝜃, 

(all the figures plotted at the peak load). 
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Figure 6.20 continued 

 

(b) 

6.9 Role of Interface friction 

In this section, the role of interface friction in multi-layered puzzle-like architecture is investigated. 

To this aim, the representative multi-layered model with a/b=2.5, 𝜃 = 30°, and 𝑡ଵ 𝑎⁄ =0.1 were is 

selected by employing two tangential friction coefficients (0.1, 0.5). The key is to understand if 

the interface friction between male and female parts can change the pull-out and load-displacement 

curve behavior. Figure 6.21 presents a comparison between the load-displacement curves of these 

two models. As presented in Figure 6.21(a), by adding friction into the system, a higher peak load 

can be achieved, as a result the toughness of the system will be increased (Figure 6.21(b)). Besides, 

adding friction can cause more delamination into the system (Figure 6.21(b)). Therefore, adding 

friction could be an effective way in increasing toughness of the system. 
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(a) 

 

                                                                           (b) 
Figure 6.21. A comparison between the model with two coefficients of friction, (a) load vs. 
displacement, (b) comparison between energy release rate due to plastic deformation and 

delamination of two models with different coefficient of friction. 
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6.10 Role of number of blades with microstructure 

In this section, the role of microstructure and blades number is investigated using both 3D printed 

prototype technique and FE simulation. The width, height, and thickness for all the samples are 

constant and equal to 128 mm, 200mm, and 12 mm, respectively. Also, geometrical features such 

as (a/b=1.8), θ=25° and (𝑡ଵ 𝑎⁄ = 0.05) is similar for all the samples. Figure 6.22(a) compare the 

FE simulation and experiments of the sample with different number of the blades at the peak load 

side by side. The comparison between normalized peak load, normalized stiffness, and toughness 

reveal that the maximum toughness occurs at two blades, while the maximum peak load and 

stiffness occur in the sample with four blades. Also, by increasing the number of blades, one can 

see that localization takes place in samples with three blades and higher. These results demonstrate 

why the sample with two blades contains higher toughness with respect to the other samples. 
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                                       (a)                                                          (b) 
Figure 6.22. Role of blades number include microstructure (a) A comparison between FE 

simulations and Experiments, (b) A comparison between normalized, peak load, Normalized, 
stiffness, and normalized toughness (t1/a=0.05) vs. blades number by keeping a/b =1.8 for all the 

cases 
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6.11 Understanding the stress-strain curve from a single blade 

The stress-strain curve from single blades consisting of multilayers (𝑡ଵ 𝑎 = 0.25)⁄  for two selected 

𝜃 (𝜃 = 10°, 30°) with 𝑎 𝑏 = 2.5⁄  is presented in Figure 6.23(a). For 𝜃 = 10° (as shown in red), 

the stress-strain curve shows a peak load followed by the pullout (see the negative part in the stress-

strain curve). However, for the value of 𝜃 = 30° (as shown in blue), the curve demonstrates a peak 

followed by negative stiffness and second peak. In homogenous material, for higher angles, we 

see fractures inside the neck. Delamination helps to dissipate more energy, add ductility to the 

system, and at the same time avoid failure inside the neck. The aim of this section is to understand 

a single blade in order to predict the behavior of a multi-layered composite. Figure 6.23(b) 

demonstrate the stress-strain curve for a multi-layered model of 𝑎 𝑏 = 2.5⁄  and 𝜃 =30°.This 

stress-strain curve can be estimated using a single spring, and spring-mass connection where when 

the peak load reaches the final value (second peak (F3)), the separation will occur. If we assume 

each blade as a unit cell (a combination of spring, and spring with mass), thus, a multilayered 

composite (see section 6.12) can be defined as a series of the unit cell and solution for this problem 

is already known.  One of the main points in designing a multi-layered composite is to avoid the 

damage localization. Taking a look at the stress-strain curves and simplification model confirm 

that the value of F3 should be higher than 𝐹ଵ in order to avoid damage localization. Also the area 

under F-∆ curve (the solution to the simplified model of spring, mass, and spring) can represent 

the energy dissipation of the system. One way to increase the energy dissipation is to increase the 

area of the first peak as presented by area 1 in Figure 6.23(b). As discussed in section 6.9, adding 

friction is a way to increase the energy dissipation of the system in the area belongs to the first 

peak (Figure 6.21(a)). 
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(a) 

Figure 6.23. (a) Stress vs. Strain for one multilayer blade (a/b =2.5) with  𝑡ଵ 𝑎 = 0.1⁄  for two 
selected 𝜃 (𝜃=10, and 30), (b) delamination process along the stress-strain curve (b) 𝜃=30, (c) 

𝜃=10. 
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Figure 6.23 continued 

 

(b) 

 

 

 

 

 



170 

 

6.12 Composite bio-inspired from Ironclad beetle blades 

In this section, the role of a puzzle-like composite inspired by a single multi-layered blade is 

investigated numerically. The primary purpose of this section is to provide a better understanding 

of the damage mechanism and energy dissipation of this architecture in composite materials. In 

order for this method to be successful, we should prevent damage localization. To this aim, I want 

to come up with the idea of how the parametric study of a single blade can help us to get a better 

insight into the damage mechanism of the puzzle-like microstructure and if this can let us improve 

the design and provide better insight for the architecture material. Therefore, two different models 

were developed, as presented in Fig 6.24 (a)-(b). The first model contains a single layer of a puzzle-

like microstructure (see Figure 6.24(a)). The second model includes multilayers as shown in Fig 

6.24(b). For all the models, the aspect ratio is equal to 2.0 and for the second model 𝑡ଵ 𝑎 = 0.1⁄ .  

This aspect ratio is selected to avoid damage localization. The width, height, and thickness of all 

samples are constant and is equal to 768mm, 192mm, and 15mm, respectively (Figure 6.25(a)-

(b)). The quasi-static tensile load is applied on top of each sample, and the HBC boundary 

condition is applied to the side of the models. The final geometry and schematic of boundary 

conditions applied to the composite architecture are presented in Figure 6.25. 
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(a) 

     

(b) 

Figure 6.24. Developing multilayers composite bio-inspired from multilayered blades, (a) 
composite contains one layer of blades, (b) composite contain three layers of blades, (c) 

composite developed multilayers blades. 



172 

 

 (a)         

 

                                                                            (b) 

 Figure 6.25. (a)The geometry of puzzle and multi-layered puzzle-like architecture composite, 
(b) Homogenous boundary condition applied on the side of the composites 
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The maximum principal stress distribution for all samples at the peak (when peak load occurs) and 

right before separation is presented in Figure 6.26(a)-(c). In puzzle-like architecture (Fig 6.26(a), 

delamination begins through puzzle-like paths followed by the fracture in the neck area of the 

blades. For the multi-layer composite model, several delaminations occur before fully separation 

occurred. The results indicate that the peak load in puzzle-like structure is higher in comparison to 

the multi-layered puzzle-like architecture. However, the sample with multi-layered architecture 

demonstrates higher toughness and energy dissipation in comparison with the puzzle-like 

architecture as shown in Fig 6.27. Also, the comparison between energy dissipation reveals that 

for the puzzle-like structure, energy dissipated through both plastic deformation and delamination 

shows lower values in comparison to multi-layered puzzle-like architecture. As the number of 

layers increases, the energy dissipation due to delamination increases. For example, in the case of 

the multi-layered puzzle, most of the energy dissipated through delamination, and this energy is 

five times of the energy dissipation (due to delamination) for a puzzle-like architecture (see Figure 

6.27). 
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(a) 

 

 
(b) 

Figure 6.26. Maximum principal stress distribution for three cases studies, (a)puzzle-like 
microstructure, (b) three-layers puzzle-like structure, and (c) multilayered puzzle-like 

microstructure.  
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Figure 6.26 continued 

 

(c) 

 

(d) 
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Figure 6.27. A comparison between energy dissipation due to plastic deformation and 
delamination for all three samples  
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6.13 Summary and conclusions 

In this chapter, the role of microstructure bio-inspired by Ironclad beetle’s blade was studied 

through FE simulations and 3D printing mechanical testing. The results indicated that by including 

microstructure inside the blade, one could increase energy dissipation due to delamination and 

avoid fracture or damage inside the blades. Adding layers into the blades microstructure can 

provide another competing mechanism to the system, which is different from two other expected 

mechanisms (i.e., pull out or fracture). Also, a comparison between blades with and without 

puzzle-like layers reveal that existing of architecture inside blade geometry can increase the energy 

dissipation up to four times with respect to the homogenous blades (depends on the puzzle-like 

layers number and angle 𝜃). Finally, the study of a single blade consisting of a multilayered puzzle-

like structure can be used as a guideline for designing the composite material in order to avoid 

localization. Based on the results of a single multi-layered puzzle-like blade, two types of stress-

strain curves can be observed. The first type of stress-strain curve can be obtained for low angle 𝜃 

(typically for 𝜃 < 30), where the stress increases by increasing the stain up to the peak and then 

decreases until the pullout happened. While in the second type of stress-strain curves (for high 

angle 𝜃 (for 𝜃 > 30), the first peak occurs at lower strain, follows by the second peak. Based on 

the comparison between these two cases, the multilayered blade with a high angle (is more 

desirable for the composite material since it avoids localization in the composites. 
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CHAPTER 7. SUMMARY AND CONCLUSIONS 

The main objective of this study was to gain insight into the mechanics of patterned interfaces 

inspired by Nature (i.e., non-interlocking and interlocking patterned interfaces) and their role in 

enhancing the mechanical properties such as stiffness, toughness, and flexural strength. Firstly, the 

role of non-interlocking sinusoidal patterned interfaces of various aspect ratios investigated 

numerically, analytically, and experimentally under remote mode-I loading conditions. 

Specifically, the role of crack shape behind the crack tip was investigated on the effective 

toughness of the weak interfaces using sinusoidally patterned of various aspect ratios. As observed 

in most cases in Nature, cracks could be controlled by employing relatively weaker interfaces as a 

strategy to not only avoid catastrophic failure by arresting the cracks but also improving the 

mechanical performance of the system (Huang et al., 2019).  

The models presented in Chapter2 assume that the interface is weak with respect to the bulk solid 

materials, and therefore the crack is constrained to follow the interface path direction without 

deflecting, penetrating or branching out into the solids.  Therefore, it is important to keep in mind 

that there could be a critical value of  𝐴 𝜆⁄  that is sufficiently large at which the crack may choose 

to grow through the solid depending on the solid strength and toughness (He and Hutchinson, 

1989). 

For the sinusoidal patterned interfaces with values of 𝐴 𝜆⁄ < 0.25, the effective toughness of the 

interface could be estimated using a single kinked crack formula, and a single kinked crack model 

presents better performance in predicting the effective toughness in comparison to the double 

kinked crack approach. A double kinked crack model over the sinusoidal interface shows higher 

values of the effective toughness in comparison to the single kinked crack approach, notably, for 

the cases with higher values of aspect ratios. This confirms the importance of considering the shape 

of the crack behind the crack tip. However, the correct results still need to be calculated using 

numerical methods. 
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Moreover, the relationship between the interface geometric characteristic lengths (A,𝜆) and the 

interface material length scale (lcz/𝜆)  suggested that when  lcz/𝜆 tends to zero, the shape of the 

crack behind the crack tip, and the crack kinking direction with respect to the remote loading 

conditions significantly contributes to the interface toughening mechanics. While in cases where 

lcz/𝜆 ≫ 1, the contribution is mainly obtained by the increase in the crack propagation length or 

area and, thereby the lcz/𝜆 represents another key role for developing design guidelines, which can 

be used to improve the resistance to crack propagation at multiple material length scales in the 

sinusoidal pattern interfaces. Finally, higher values for KIc/K0 can be obtained by selecting lcz/𝜆 < 

1.0 and the largest possible value of the aspect ratio(A/ 𝜆). While applying a similar treatment to 

the other geometrical patterns is expected to yield similar results, this is a topic for future work.  

Interlocking pattern interfaces can be seen through Nature. In this dissertation, the role of 

interlocking patterned interfaces was investigated for two representative species, boxfish, and 

Ironclad beetle. These two species were selected due to their extraordinary performance against 

attack or under compression loads. The boxfish carapace (Lactoria Cornuta) contains hexagonal 

dermal scutes, a combination of the brittle hexagonal plate (hydroxyapatite) on top of a very 

compliant (collagen) material. While the mineral plates are separated by patterned sutures 

(triangular interlocking patterns), there is no interphase material connecting them. Instead, the 

connection between mineralized plates is done through the collagen base. This is different from 

other naturally occurring sutures (e.g. sutures in turtle, alligator, armadillo). The in-situ shear test 

between two scutes in boxfish reveals that the damage only occurs around the suture areas, since 

the mineralized plates are brittle, and it is expected that at least one main crack propagates inside 

the entire plates, however, the cracks were arrested around the suture areas. Therefore, the soft 

collagen base plays an important role in controlling the crack direction. As a result, a systematic 

parametric study was developed using gypsum (brittle phase) and silicone (soft phase). The sutures 

angle 𝜃 varies between 25° and 110°. The results for the gypsum samples (without silicone on the 

bottom) including sutures under shear reveal the existence of at least one dominant main crack 

inside the brittle plates to propagates inside the plate. Also, a comparison between different values 

of sutures angle reveals that the maximum values of mechanical properties (i.e., peak load, 

stiffness, and toughness) can be obtained for angle 𝜃 = 45°. Similar shear tests were performed 

with samples, including silicone as a sub-base material. The results state that adding silicone 

beneath the brittle plate can change the crack propagation angle direction and as a result, the cracks 
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arrested in the sutures areas. For the samples with gypsum plate and silicone base, the angle  𝜃 =

45° shows the higher value in terms of mechanical properties. Boxfish sutures angle also ranging 

between 45° − 50°, this could explain that boxfish follows the optimized geometry. Finally, the 

role of soft material modulus and strength with respect to the brittle material modules was 

investigated numerically using a single kinked crack under pure shear. The results stated that the 

maximum change in crack angle propagation for a bi-layered material including kinked crack can 

be obtained when  𝐸ଵ 𝐸ଶ = 0.1⁄   and 𝜎௙௦ 𝜎௙௕ = 0.75⁄  . Therefore, for this architecture, the 

optimized value can be obtained by selecting  𝜃 = 45°, 𝐸ଵ 𝐸ଶ = 0.1⁄ , and 𝜎௙௦ 𝜎௙௕ = 0.75⁄ . 

As mentioned in Chapters 5 and 6, Ironclad beetle cuticle contains alpha-chitin fibers embedded 

within a proteinaceous matrix that provides both strength and toughness. The top part of the cuticle 

(elytra) consists of separated parts connected using dovetail joints (ellipse-like blades). This 

microstructure inside the cuticle extended inside the blades as well. Both FE simulation and 

experiments of Ironclad beetle under compression reveals that the areas containing blades 

experience higher stress concentration. Also, Ironclad beetle develops only two blades to connect 

the separate parts in the elytra. Therefore, the role of blades size and number also investigated in 

this study. The parametric study on the role of the size and number of blades revealed that, when 

the size of the blade is constant, by increasing the number of blades, all the mechanical properties 

of the system increases. In contrast, when the width of the sample is constant, the sample with two 

blades shows higher values of toughness, while the samples with four blades contain higher values 

for stiffness and peak load. This can be explained by the fact that as the number of the blades 

increases, a higher compression load is observed across the width of the center part of the blades 

as well as higher vertical tensile stress inside the neck area. The compressive stress provides 

confinement as the number of the blades increases and, therefore, higher values of stiffness can be 

expected for the sample with five blades. As the confinement increases, the tensile stress in the 

neck region increases. This leads to energy dissipation due to inelastic deformation to a point where 

brittle fracture at the neck becomes a competing mechanism.  As such, the sample with two blades 

exhibits the highest toughness.  
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The results indicated that by including microstructure inside the blade, one could increase energy 

dissipation due to delamination and avoid fracture or damage inside the blades. Adding layers into 

the blades microstructure can provide another competing mechanism to the system which is 

different from two other expected mechanisms (i.e., pull out or fracture). Also, a comparison 

between blades with and without puzzle-like layers reveal that existing of microstructure inside 

blade geometry can increase the energy dissipation up to four times with respect to the 

homogenous blades (depends on the puzzle-like layers number and angle 𝜃). Finally, the study of 

a single blade consisting of a multilayered puzzle-like structure can be used as a guideline for 

designing the composite material in order to avoid localization. Based on the results of a single 

multi-layered puzzle-like blade, two types of stress-strain curves can be observed. The first type 

of stress-strain curve can be obtained for low angle 𝜃 (for 𝜃 < 30), where the stress increases by 

increasing the stain up to the peak and then decreases until the pullout happened. While in the 

second type of stress-strain curves (for high angle 𝜃, 𝜃 > 30), the first peak occurs at lower strain 

follows by the second peak. Based on the comparison between these two cases, the multilayered 

blade with a high angle (is more desirable for the composite material since it avoids localization 

in the composites. 
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