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ABSTRACT

Assogba Onanga, Franck Ph.D., Purdue University, December 2019. Parity-Time
Symmetry in Non-Hermitian Quantum Walks. Major Professor: Yogesh N. Joglekar.

Over the last two decades a new theory has been developed and intensively in-

vestigated in quantum physics. The theory stipulates that a non-Hermitian Hamil-

tonian can also represents a physical system as long as its energy spectra can be

purely real in certain regime depending on the parameters of the Hamiltonian. It was

demonstrated that the reality of the eigenenergy was conditioned by a certain kind of

symmetry embedded in the actual non-Hermitian system. Indeed, such systems have

a combined reflection (parity) symmetry (P) and time-reversal symmetry (T ), PT

symmetry. The theory opens the door to new features particularly in open systems

in which there could be gain and/or loss of particle or energy from and/or to the

environment. A key property of the theory is the PT -symmetry breaking transition

phenomenon which occurs at the exceptional point (EP). The exceptional points are

special degeneracies characterized by a coalescence of not only the eigenvalues but

also of the corresponding eigenvectors of the system; and the coalescence happens

when the gain-loss strength, a measure of the openness of the system, exceeds the

intrinsic energy-scale of the system.

In recent years, quantum walks with PT -symmetric non-unitary time evolution

have been realized in systems with balanced gain and loss. These systems fall in two

categories namely continuous time quantum walks (CTQW) that are characterized

by a unitary or non-unitary time evolution Hamiltonian, and discrete-time quantum

walks (DTQW) whose dynamic is described by a unitary or non-unitary time evolu-

tion operator consisting of a product of shift, coin, and gain-loss operations.
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In this thesis, we investigate the PT -symmetric phase of CTQW and DTQW in a

variety of non-Hermitian lattice systems with both position-dependent and position-

independent, parity-symmetric tunneling functions in the presence of PT -symmetric

impurities located at arbitrary parity-symmetric site on the lattice. Moreover, we

explore the topological phase diagram and its novel features in non-Hermitian, homo-

geneous and non-homogeneous, PT -symmetric DTQW with closed or open boundary

conditions. We conduct our study using analytical and numerical approaches that are

directly and easily implementable in physical experiments. Among others, we found

that, despite their non-unitary evolution, open systems governed by parity-time sym-

metric Hamiltonians support conserved quantities and that the PT -symmetry break-

ing threshold depends on the physical structure of the Hamiltonian and its underlying

symmetries.
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1. INTRODUCTION

The first two chapters of this thesis interpolate material from four papers by the

author [1–4]. Chapter 1 uses material from references [1] and [2], both coauthored

with Andrew K. Harter and Yogesh N. Joglekar. Meanwhile, chapter 2 is based on

reference [3], coauthored with Yogesh N. Joglekar and Andrew K. Harter and [4],

coauthored with Zhihao Bian et al..Some material from each of these papers has also

been incorporated into this introduction chapter.

From the beginning of the last century, the world has witnessed scientific and tech-

nical development as the result of the discovery and study of the field of quantum

mechanics. Quantum mechanics is a physical science dealing with the behaviour of

matter and energy on the scale of atoms and subatomic particles and waves. The suc-

cess of quantum mechanics comes from its accuracy on predicting physical behaviour

of systems, including systems where Newtonian mechanics has failed. Quantum me-

chanics has been the foundation of several related disciplines including condensed

matter physics [5], quantum chemistry [6,7], particle physics [8], nanotechnology and

electronics [9].

In quantum mechanics the state of a physical system is represented by a vector in

a Hilbert space which is a complex vector space with an inner product that makes it

a complete, metric space. In the Hilbert space L2(R) of square-integrable complex-

valued functions ψ : R→ C, the inner product of two wave functions is given by

〈φ|ψ〉 =

∫ +∞

−∞
dxφ(x)∗ψ(x). (1.1)

Additionally in standard quantum mechanics, a Hamiltonian describing a closed phys-

ical system is required to possess Hermiticity, sufficient condition that guaranties real
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eigenenergy of the system. An operator A defined in the Hilbert space is called

Hermitian with respect to the standard inner product if∫
(Âφ)∗φdx =

∫
φ∗Âφdx. (1.2)

Particularly, the position operator x̂ and the momentum operator are Hermitian oper-

ators. As a consequence, the Hamiltonian operator is Hermitian. Indeed, computing

an inner product involving the position operator x̂, we have

∫
(x̂φ)∗φdx =

∫
(xφ)∗φdx =

∫
φ ∗ xφdx =

∫
φ ∗ x̂φdx,

thus, the position operator x̂ is Hermitian. Similarly, computing an inner product

with the momentum operator p̂, we have,∫
(p̂φ)∗φdx =

∫ (
−i~dφ

dx

)∗
φdx

= i~
∫ (

dφ

dx

)∗
φdx

and after integrating by part with the condition that φ is a smooth complex function

rapidly decreasing at infinity, we get on the right-hand side

−i~
∫
φ∗
dφ

dx
dx =

∫
φ∗p̂φdx,

hence, the momentum operator defined by p̂ = −i~d/dx is Hermitian. Moreover, the

kinetic energy operator K̂ = p̂2/2m is Hermitian since,∫
(K̂φ) ∗ φdx =

1

2m

∫
(p̂2φ)∗

=
1

2m

∫
(p̂φ)∗p̂φdx

=
1

2m

∫
φ∗p̂2φdx

=

∫
φ∗K̂φdx.
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Therefore, the Hamiltonian given by Ĥ = K̂ + V̂ (x̂) is Hermitian.

Consider a Hamiltonian Ĥ with an energy eigenvector |φn〉, such that Ĥ |φn〉 =

En |φn〉, we have

Ĥ |φn〉 = En |φn〉

=⇒ 〈φn| Ĥ† = E∗n 〈φn|

=⇒ 〈φn| Ĥ = E∗n 〈φn| . (1.3)

Combining the three lines of Eq. 1.3, we get

〈φn| Ĥ |φn〉 = E∗n 〈φn|φn〉

= En 〈φn|φn〉 , (1.4)

since 〈φn|φn〉 6= 0 it follows that

E∗n = En. (1.5)

Thus, Hermiticity guarantees real energy spectra. Moreover, the eigenvectors of a

Hermitian operator are orthogonal. Indeed, by changing the subscript n to m and

taking the Hermitian conjugate in the second line of and combining all the lines of

Eq. 1.3, we get

〈φn| Ĥ |φm〉 = En 〈φm|φn〉

= Em 〈φn|φm〉 , (1.6)

it follows that

(En − Em) 〈φn|φm〉 = 0, (1.7)

which implies that the eigenvectors are orthogonal if the energy eigenvalues are non-

degenerate. In quantum mechanic, the evolution of a wavefunction forward in time is

defined by applying the time evolution operator. For a time independent Hamiltonian,

we have

|φ(t)〉 = Û |φ(0)〉 , (1.8a)

Û = e−iĤt/~, (1.8b)
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where Û denotes the time-evolution operator and ~ = h/2π is the reduced Plank con-

stant; without loss of generality, let us set ~ = 1. The Hermiticity of the Hamiltonian

guarantees the unitarity, which by extension implies the probability conservation, of

the time evolution operator [10]. Actually, U †(t)U(t) = exp(+iHt)exp(−iHt) = 1.

In reality, except the whole universe there is no such thing as closed system because

of an exchange of energy or particles with the environment of the system, in which

case the Hamiltonian of the system is no longer Hermitian. Non-Hermitian Hamilto-

nian have been ideologically used to describe open system with gain and/or loss that

result with interaction with the environment. In 1998, Bender and Boettcher [11]

showed that a large class of non-Hermitian Hamiltonians can have an entirely real

spectra as long as the system possesses parity-time (PT ) symmetry, a combined par-

ity symmetry (P) and time-reversal symmetry (T ). The parameter space over which

the spectrum of the PT -symmetric Hamiltonian is real is called the region of unbro-

ken PT symmetry, in which case every eigenfunction of the PT -symmetric Hamil-

tonian is also an eigenfunction of the PT operator. Broken PT symmetry occurs

when some eigenvalues of the PT -symmetric Hamiltonian become complex; thus, the

Hamiltonian and the PT operator no longer share simultaneous eigenfunctions. PT -

symmetric systems can be thought of as intermediate between traditionally closed and

open systems. Indeed, an unbroken PT -symmetric system resembles a closed system

because it is in equilibrium; however, it is not closed because it is in contact with the

external environment. Similarly, a broken PT -symmetric resembles an open system

because it is not in equilibrium but unlike most open systems the net probability flux

vanishes and the system has PT symmetry. The parity operator, space-reflection

operator, P operates on a particular state to give the reflection-symmetric version of

the original state, and P2 = 1, where 1 is the identity matrix. P is a linear operator

because it satisfies the condition

P(a |Ψ〉+ b |Φ〉) = aP |Ψ〉+ bP |Φ〉 . (1.9)
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The time-reversal operator T is an antilinear operator that performs complex conju-

gation (T 2 = 1) and it satisfies the condition

T (a |Ψ〉+ b |Φ〉) = a∗T |Ψ〉+ b∗T |Φ〉 . (1.10)

The action of the parity operator P on the quantum-mechanical coordinate operator

x̂ and the momentum operator p̂ is to change their signs:

Px̂P = −x̂ and P p̂P = −p̂. (1.11)

The effect of the time-reversal operator on x̂ and p̂ is given by

T x̂T = x̂ and T p̂T = −p̂ (1.12)

Both, the parity operator P and the time-reversal operator T leaves invariant the

Heisenberg commutation relation of quantum mechanics,

x̂p̂− p̂x̂ = i~1; (1.13)

with the condition,

T iT = −i. (1.14)

Moreover, P and T operators commute:

PT − T P = 0, (1.15)

it follows that

(PT )2 = 1. (1.16)

For a system described by a (Hermitian or non-Hermitian) Hamiltonian H to have

PT symmetry, it is required that the Hamiltonian satisfies the following relation:

(PT )H(PT )−1 = (PT )H(PT ) = H, (1.17)

in which case H and PT may share a common set of eigenfunctions [11–14].

H |Ψn〉 = En |Ψλ〉 , PT |Ψn〉 = λ |Ψn〉 . (1.18)
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A multiplication of the second equality in Eq. 1.18 by PT from the right hand side

and the use of the property (PT )2 give,

PT (PT |Ψn〉) = PT (λ |Ψn〉 ,

(PT )2 |Ψn〉 = λ∗PT |Ψn〉 ,

|Ψn〉 = λ∗(λ |Ψ〉 , (1.19)

|Ψn〉 = |λ|2 |Ψn〉

Therefore, |λ|2 = 1 and the eigenvalue λ is a pure phase, λ = eiα. One can choose the

phase α such that λ = 1; thus, PT |Ψn〉 = |Ψn〉. A multiplication of the first equality

in Eq. 1.18 from the right hand side gives,

PT (H |Ψn〉) = PT (En |Ψn〉 ,

H(PT |Ψn〉) = E∗n(PT |Ψn〉 ,

H |Ψn〉 = E∗n |Ψn〉 , (1.20)

En |Ψn〉 = E∗n |Ψn〉 ,

En = E∗n.

This confirms that the eigenvalue is real when the Hamiltonian H and PT share

simultaneously the same set of eigenfunctions. The combined symmetry operator

PT is a unitary operator that can still prevail for a non-Hermitian Hamiltonian even

if that Hamiltonian has neither parity symmetry (P) nor time-reversal symmetry (T ).

PT -symmetric Hamiltonians correspond to a particular figures of pseudo-Hermitian

operators. A linear operator O is pseudo-Hermitian if there is a Hermitian operator

η such that O† = ηOη−1. In fact, for η = 1 and η = P we retrieve the conditions

for Dirac Hermiticity and PT symmetry respectively [12]. With this kind of pseudo-

Hermitian design of the Hamiltonian, the eigenfunctions are no longer orthogonal

and the structure of the vector space of the eigenmodes is completely changed. A

sharp symmetry-breaking transition is established once the non-Hermicity parameter

exceeds a certain threshold value. In that regime, the Hamiltonian and the parity-

time operator, despite they still commute, have different sets of eigenfunctions and
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the eigenvalues of the system are no longer real. Furthermore, there is a creation

of singular points, exceptional points (EP), at the PT breaking region where the

eigenvalue branches merge. The number of coalesced eigenvalues will denote the

order of the EP. These points have a prominent role in PT -symmetry studies [11–13].

Despite serious challenges posed by decoherence and other factors, the past decade

have witnessed a large number of experimental realizations of PT -symmetry systems

specially in optical and photonic lattices [15–29]. In general, the parameter space must

be investigated analytically or numerically to find the domain where the eigenvalues

remain real. As an example, for a 2× 2 non-Hermitian Hamiltonian defined by

H =

 iγ −J

−J −iγ

 , (1.21)

where the energy parameters J and γ are non-negative real numbers. Solving the

eigenvalue problem gives two energy eigenvalues as

λ± = ±
√
J2 − γ2. (1.22)

Figure 1.1 shows the variations of the eigenvalues as a function of γ with respect to

J . The top panel shows the real part of the eigenvalues as a function of γ/J , where

the eigenvalues are purely real (unbroken PT symmetry) for γ < J . As the value of γ

increases toward J , the eigenvalues begin to converge until they coalesce at the PT -

symmetry-breaking threshold γPT = J , with the emergence of exceptional point of

order 2 (EP2). The bottom panel reveals that for γ > J the PT symmetry is broken,

and the eigenvalues are purely imaginary. In a similar way to their eigenvalues, the

eigenvectors coalesce at the exceptional point γ = J . In the unbroken region where

γ < J , the normalized eigenvectors are given by

u± =
1√
2

 1

iγ±
√
J2−γ2

J

 . (1.23)

At γ = 0, the Hamiltonian is Hermitian and the eigenvalues are orthonormal; but as

γ → J− the eigenvectors are still linearly independent but not orthogonal, dynamic
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that is justified by a modulation of the Dirac norm in the unbroken region. In the

broken region where γ > J , the normalized eigenvectors are given by

v± = J
(

2γ2 ∓ 2γ
√
γ2 − J2

)−1/2

 1

iγ∓i
√
γ2−J2

J

 . (1.24)

The angle between the two eigenvectors in the unbroken and broken PT symmetry

regions are

̂< u+, u− > = cos−1

(
Re(u+ · u−)

‖u+‖ ‖u−‖

)
= cos−1(

γ

J
) (1.25a)

̂< v+, v− > = cos−1(
J

γ
) (1.25b)

respectively. Indeed, when γ = 0 (Hermitian system), the eigenvectors are orthogonal

and as γ increases toward J , they are closing on each other where the angle between

them decreases until they become parallel at γ = J , then start pulling away from

each other as γ is becoming larger than J .

Although the initial focus of PT symmetry theory was to develop a complex

extension of the quantum mechanics [13], in recent years, the study of PT symmet-

ric systems has gained much interest for its successful application to open systems

with balanced gain and loss [30]. Typically, in such a system, the parity symme-

try denotes a reflection symmetry in its spatial arrangement, and when balanced

gain and loss (which lead to non-Hermiticity) are introduced, the resultant open sys-

tem is intrinsically PT -symmetric. For small gain and loss rates, the eigenvalues of

the PT -symmetric Hamiltonian describing such a system remain real; but when the

strength of the gain/loss exceeds the PT -symmetry breaking threshold, two or more

of its eigenvalues become first, degenerate and then complex-conjugate pairs. This

emergence of complex conjugate eigenvalues is known as PT symmetry breaking and

leads to unbounded, exponential violation of unitarity in the time-development of

the system because one expects the probability defined by the norm of the vector

state to remain constant in time.. Thus, below the threshold, the system remains
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Fig. 1.1. Top panel: Real part of the eigenvalues λ± as a function of
γ with respect to J , Eq. 1.22. For γ < J , the eigenvalues are purely
real, meaning an unbroken PT symmetry. Bottom panel: Imaginary
part of λ± as a function of γ/J . For γ > J , the PT symmetry
is broken, and the eigenvalues are purely imaginary. At the PT -
symmetry-breaking threshold, γ = J , the eigenvalues coalesce.

in a quasi equilibrium state, and above it, the system is far removed from equilib-

rium. The existence of a finite threshold is the hallmark of a PT symmetry breaking

transition and the accompanying phenomena that occur at the exceptional point [31].

While PT -symmetric Hamiltonian may, in general, be continuous in their degrees

of freedom, it is the discrete PT -symmetric systems that have proven to be the ex-

perimentally implementable ones. Recent developments in the fabrication techniques

of optical devices have led to the ability to easily create and control arrays of cou-

pled optical waveguides, and the couplings of these arrays can be tuned to match

the dynamics of a large variety of different tight-binding Hamiltonians [32–34]. con-

trolled loss and gain can also be implemented relatively straightforwardly, allowing
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the observable dynamics to extend into the non-Hermitian realm [18, 35, 36], while

cost-effective fabrication processes promise to further boost the importance of such

tunable systems [37]. The interactions within theses systems, in one dimension, are

dominated by nearest-neighbor hopping; however, for certain one or two dimensional

waveguide geometries, higher order (or long-range) hopping can be made relevant.

These systems have been greatly successful in demonstrating a variety of quantum

phenomena, including localization and the presence of edge modes in a classical, and

experimentally viable setting [38].

On the other end, in recent years, quantum walks, which are quantum analogue

of classical random walks, with non-unitary evolution have been realized in systems

with balanced gain and loss. These systems fall in two categories namely continuous

time quantum walks (CTQW), characterized by an Hermitian or non-Hermitian, PT

symmetric Hamiltonian [39], and discrete-time quantum walks (DTQW) which are de-

fined by a unitary or non-unitary time evolution operator consisting of shift, coin, and

gain-loss operations [40]. Our study is largely focused on non-Hermitian CTQW and

non-unitary DTQW models where gain and loss are located at reflection-symmetric

sites.

In this thesis we investigate CTQW described by a time-evolution of a non-

Hermitian Hamiltonian with a PT -symmetry, and DTQW models where gain and loss

are localized at reflection-symmetric sites, and investigate the interplay between PT

breaking transition that is governed by gain-loss strength and topological transitions

that are governed by coin operators. In chapter 1, we investigate the PT -breaking

phenomena for a real, parity-symmetric, hopping Hamiltonian augmented by a non-

Hermitian, balanced, gain-loss potential. Our results are found using a tight-binding

model through simulation in Matlab. We present a new class of discrete models

in which the tunneling Hamiltonian is not parity-symmetric, yet the models have

a nonzero PT -breaking in presence of a pair of gain-loss impurities ±iγ located at

reflection-symmetric sites. We uncover a hidden symmetry that is instrumental to the

finite threshold strength. Our predictions substantially broaden possible realizations
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of a PT system, particularly in optical waveguide arrays or coupled microstructures,

by eliminating the parity-symmetry constraint. In chapter 2, we discuss the dynamics

of the wave-function phases in a wide range of PT -symmetric lattice models. In par-

ticular, we numerically show that, starting with a random initial state, a universal,

gain-site location dependent locking between wave-function phases at adjacent sites

occurs in the PT -symmetric-broken region. Our results pave way towards under-

standing the physically observable implications of time invariance of the PT product

(defined by 〈Ψ(t)|Ψ(t)〉PT = 〈Ψ(t)| PT |Ψ(t)〉) in the nonunitary dynamics produced

by PT -symmetric Hamiltonians. Lastly, in chapter 3, we investigate PT symmetry

of the time-evolution operator of nonunitary quantum walks (QW). We provide a

necessary and sufficient condition for the time-evolution operator of the nonunitary

QW to retain PT symmetry in various schemes of QW depending on position and

coin parameters. We employ DTQW to investigate a nontrivial topological effects.
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2. PT-SYMMETRY IN PHOTONIC LATTICES

What model of periodic hopping disorder retains a nonzero PT threshold? To an-

swer that question, we investigate a general theoretical model which exhibits such a

disorder in its couplings. First, we review the PT -symmetric, uniform lattice with

nearest-neighbor couplings which has been extensively studied and forms the starting

point for our model [41, 42].

2.1 The Uniform Lattice

Let us consider a system of N waveguides with constant couplings J > 0, where

J defines the natural energy or frequency scale for the lattice. The system can be

described as a tight-binding lattice with a basis which is defined by the waveguide

labels m = 1, 2, . . . , N . The constant coupling Hamiltonian is given by

H0 = −J
N−1∑
k=1

(|k〉 〈k + 1|+ |k + 1〉 〈k|) = H†0, (2.1)

where |k〉 denotes a single-particle state localized at site k. The action of the parity

operator on such a lattice is given by P : k → k̄ = N + 1− k, and the time-reversal

operator corresponds to complex conjugation, T = ∗. The system described here is

Hermitian. Suppose we introduce a balanced gain and loss, with strength γ, at parity

symmetric sites k and k̄ respectively. This corresponds, in the description of a tight-

binding Hamiltonian, to a pair of complex-conjugate imaginary potentials located at

the parity-symmetric locations with Hamiltonian given by

Γ = iγ(|m0〉 〈m0| − |m̄0〉 〈m̄0|) = −Γ†. (2.2)
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In this system, the underlying pattern of couplings H0 is uniform and real, and thus

commutes with PT . Because the gain and loss are complex conjugates and located at

parity-symmetric locations, they also commute with PT , and the full non-Hermitian

Hamiltonian H(γ) = H0 + Γ is, too, PT -symmetric; that is, PT HPT = H. A

representation of the lattice system is shown in Fig. 2.1. Starting from zero, the gain-

loss strength γ is increased, the eigenvalues of H(γ) remain real and its eigenfunctions

are simultaneous eigenfunctions of PT until the PT symmetry is broken at γ = γPT ,

resulting in complex conjugate eigenvalues for H(γ). The PT -phase marked by the

reality of the spectrum happens when γ ≤ γPT (m0) where the gain-location dependent

γPT is the PT -symmetry breaking threshold. For an odd size lattice N , γPT → J/2

(γPT → J) when d = 2 (d = N −1). For an even size lattice, the maximum threshold

γPT occurs when the distance d between the gain and loss potentials is minimum or

maximum at d = 1 or d = N − 1, Fig. 2.2. It worth mentioning that the unexpected

robustness of the PT -symmetry-breaking threshold is the largest gain-loss distance

is due to open boundary conditions [42,43].

Fig. 2.1. A representation of N -site tight-binding lattice with uniform
coupling J ; gain and loss represented by ±γ are located at sites m0

and m̄0 respectively.

2.2 Disordered Lattice

The elements of the Hamiltonian can be altered with a random, uncorrelated

disorder; in which case the threshold is suppressed to zero because a random disorder

does not preserve the symmetries of the Hamiltonian. But this problem can be
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Fig. 2.2. PT -symmetry-breaking threshold γPT in unit of J for even
(a) and odd (b) cases as a function of gain location m0/N < 0.5 for
different system size N . The shaded area indicates the fraction of
the lattice for which the PT -threshold decays monotonically with d,
thus the results are the expectation in an infinite lattice. In the non-
shaded area, m0/N ≤ 0.35, due to the boundary,the γPT increases as
a function of d, [1].

(a)

(b)

(c)

(d)

Fig. 2.3. Disordered PT -symmetric lattices with open boundary con-
ditions. (a) For a lattice size N = 11 with m0 = 3 and random
periodic tunneling Jk = J(1 + λ1rk); λ1 = 1 is the strength of the
disorder and r1, . . . , rp are p random numbers from a standard nor-
mal distribution. (b) The tunneling disorder with period p = 3. (c)
N = 15 uniform lattice with a gain site m0 = 4 and random on-site
potentials Vk = J0rk with 0 = 1. (d) The potential disorder has period
p = 4, [2].

circumvented by a choice of a periodic disorder. For an inquiry in that claim, let
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consider two classes of Hamiltonian disorders in a periodic lattice of period p, one in

the tunneling amplitude and other in the on-site potential, given respectively by,

HT = Jλ1

N−1∑
k=1

rk(|k〉 〈k + 1|+ |k + 1〉 〈k|), (2.3a)

VO = Jλ0

N∑
k=1

rk |k〉 〈k| , (2.3b)

where the dimensionless number λ1 and λ0 represent the strength of tunneling and

on-site disorder respectively. r1, . . . , rp are independent, identically distributed (i.i.d.)

random numbers drawn from a standard normal distribution with zero mean and unit

variance, and the periodic nature of disorder implies that rk′ = rk if k′ − k = 0 mod

p. We emphasize that although the randomness of disorder is only confined to a

unit-cell of size p, the lattice with N sites may or may not contain integer number

of such unit cells. The existence of a finite threshold depends critically on these

details and, thus, cannot be obtained via the Bloch-theorem approach. Figure 2.3

(panels a and b) shows an illustration of a disordered lattice chain with N = 11 sites

with gain potential iγ at m0 = 3. The chain has a periodic tunneling disorder of

period p = 3 with three independent, random tunnelings within a unit cell given by

Jk = J(1 + λ1rk). Figure 2.3 (panels c and d) shows an on-site potential disordered

lattice with N = 15 sites, gain potential m0 = 4, and disorder period p = 4; the

four independent random potentials are given by Vk = Jλ0rk. In each of the above

cases, the potential is not PT -symmetric. So, at first hand, it is reasonable to expect

a zero PT -symmetry breaking threshold for the disordered Hamiltonian. However

after investigation , we detected that the Hamiltonian has a non-zero PT -symmetry

breaking for some specific choices of the system size and location of the gain poten-

tial accordingly with the periodicity p of the tunneling amplitude or of the on-site

potential. Indeed The Hamiltonian has a finite nonzero threshold when the system
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size N , the gain location m0, and the periodicity p of the tunneling amplitude (or

on-site potential) are described by

N + 1 = 0 mod p,

m0 = 0 mod p. (2.4)

(a) (b)

Fig. 2.4. (a) PT -symmetry breaking threshold γPT as a function of
gain location m0 < N/2 and tunneling disorder period p ≤ N/2 for
an N = 17 site lattice shows that γPT > 0 if only N + 1 = 0 mod p
and m0 = 0 mod p; otherwise it is zero. (b) γPT as a function of m0

and on-site disorder period p; at p = 2, γ(m0) > 0 for all m0.

Figure 2.4a shows, for a system size N = 17, a phase diagram of the PT -symmetry

breaking threshold γPT as a function of the gain location m0 and the disorder period

p of the tunneling amplitude with tunneling strength λ1 = 1. Precisely, it is shown

that γPT is nonzero only when N + 1 and m0 are multiples of the disorder period p.

Indeed, for p = 2 the threshold γPT is nonzero only when m0 is even, for p = 3 it is

nonzero for m0 ∈ 3, 6, and for p = 6 it is nonzero for mo = 6. It is definitely zero

for periods p ∈ {4, 5, 7, 8} for any gain-site location m0. These result confirm that an

appropriate choice of the tunneling disorder period, gain-site location, and a system

size leads to a positive PT -symmetry breaking threshold. Similarly in Fig. 2.4b,

the plot of γPT as a function of the gain-site location m0 and the on-site disorder

period p with strength λ0, where we have a nonzero γPT only when p ∈ {2, 3, 6} and
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it zero when p ∈ {4, 5, 7, 8}. There is a singularity with the on-site periodic disorder

for the case p = 2 when the γPT is positive for odds m0 as well. In fact, for an odd

lattice size, which is the case for N = 17, the on-site disorder is always PT -symmetric.

  
 

 

  

Fig. 2.5. Illustration of a 1D lattice with nearest neighbor couplings
J + λ11A1 ∈ {J1, J

′
1} and next-nearest neighbor couplings λ12A2 ∈

{J2, J
′
2}. This corresponds to a periodicity p = 2 and p′ = 2 along the

first and second off-diagonals of the Hamiltonian respectively.

We also study systems with higher order of connectivity in a lattice model where

hopping or tunneling processes arise between sites k and k + n with n ≥ 1. Let

consider a system with both nearest-neighbor and next-nearest-neighbor couplings

defined by A1(n) and A2(n) respectively. Thus, the Hamiltonian is given by

H1,2 =
N−1∑
k=1

(λ11A1 |k〉〈k + 1|+ λ12A2 |k〉〈k + 2|+ h.c) , (2.5)

where in system with couplings periodicity p = 2 we have A1 ∈ {J1, J
′
1} and A2 ∈

{J2, J
′
2} as described in fig 2.5, and h.c stands for Hermitian conjugate. Note that

if A1 = 0, the system would transform into two independent, isolated systems with

nearest neighbor couplings. This can be interpreted as a simple rearrangement of the

on-site labels which could corresponds to a transformation of pentadiagonal matrix to
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a tridiagonal matrix. Adding the effect of the on-site potential, the full non Hermitian

and non-PT -symmetric Hamiltonian is

H(γ) = H0 +H1,2 + Γ. (2.6)

Figure 2.6 shows the PT -symmetric breaking threshold γPT/J as a function of gain

location m0 and disorder period p for a lattice system of size N = 23. The left-hand

panel shows that when a uniform lattice is perturbed by random, periodic next-

nearest-neighbor hopping, the PT symmetry breaking threshold remains positive for

(m0, p) that satisfy Eq. 2.4. The center panel shows the same pattern for a positive

PT symmetry breaking threshold in the presence of both n = 1 and n = 2 pertuba-

tions. The right-hand panel shows that the PT -symmetric phase of the Hamiltonian

H(γ) = H0 + Γ is robust against random, periodic, long-range hopping pertubations

for specific periodicities and gain locations. Note that the positive threshold values

γPT/J obtained in Fig. 2.6 are for specific realizations of the disordered Hamiltonian;

accordingly, different disorder realizations will lead to different threshold values. How-

ever the locations in the (m0, p)-plane that lead to a positive threshold do not change.

In summary, we have explored the actions of random, periodic, long-range dis-

order on the outcome of the PT -symmetric phase in a uniform lattice with a pair

of balanced gain-loss potentials. Despite the sensibility of the PT symmetry of the

underlying Hermitian Hamiltonian, we discover that there exists a positive PT sym-

metry breaking threshold when the lattice size N and the gain location m0 are both

related to the disorder period p as defined in Eq. 2.4.
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(a) (b) (c)

Fig. 2.6. Phase diagram showing the PT -breaking threshold corre-
sponding to periodicity p and gain location m0, results are shown av-
eraged over 100 random realizations; the colorbar indicates the scale
of the results for each panel and is measured relative to J , the uni-
form coupling frequency. In (a), we have uniform nearest-neighbor
coupling combined with periodic disorder in next-nearest-neighbor
coupling modulated by λ12; in (b), periodic disorder is introduced
in both nearest-neighbor and next-nearest-neighbor couplings (same
periodicity), modulated by λ11 and λ12 respectively; in (c), we have
uniform nearest-neighbor coupling combined with periodic disorder in
third-nearest-neighbor coupling modulated by λ13, [1].
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3. TIME-INVARIANTS AND FOURTH-ORDER

EXCEPTIONAL POINT IN A PARITY-TIME

SYMMETRIC QUDIT

3.1 Time-Invariant in PT-Symmetric System

After the discovery of PT symmetry theory, the research has progressed along

two non overlapping lines. The first approach, fiercely researched initially, was to

develop a complex extension of quantum mechanics [13]. Because [PT , HPT ] = 0,

the PT product, defined as 〈ψ(t)|φ(t)〉PT ≡ [PT |ψ〉 (t)]T |φ(t)〉, remains constant

with time [44]. However, it is not positive-definite and therefore cannot be used to

construct a self-consistent quantum theory. To bypass that obstacle an Hamiltonian-

dependent, commuting operator C is defined such that the CPT product defined

similarly, is positive-definite and leads to a unitary time evolution [12, 44]. This

approach leads to the formulation of the pseudo-Hermiticity [14, 45–47] of the non-

Hermitian Hamiltonian and it has been extensively studied also in the language of

general intertwining operators. But its validity is limited to the PT -symmetric region

where the eigenvalues of HPT are purely real.

The second approach, started about a decade ago [35, 48], treats HPT as an

effective Hamiltonian for an open system, classical or quantum, where a unitary

time evolution is neither required nor expected. In this interpretation, the anti-

symmetric potential iγV represents a gain for the system when V > 0 and is ac-

companied by an equal loss with V < 0 at the parity-symmetric location. The

development of complex-conjugate eigenvalues corresponds to the emergence of two

eigenmodes, one of which amplifies with time and the other one decays. This ap-

proach does not change the fundamental, Dirac inner product of quantum theory,

and is applicable in both PT -symmetric and PT -broken (complex conjugate spec-
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trum) phases. It has been immensely successful in predicting a multitude of novel

phenomena in PT -symmetric systems and explaining the subsequent experimental

observations [17,18,22–24,49–54]. But, in this case, the constants of motion for such

a system [55] are not clear. The two approaches can be bridged by connecting the

time-invariant PT product mentioned in the first approach with the nonunitary evo-

lution of a physical system in the second approach. This can be done by showing that,

deep in the PT -broken state, the exponentially-in-time growth of the Dirac norm,

combined with the constant-in-time constraint on the PT product (and expectation

values of other intertwining operators), leads to phase locking that is independent of

the initial state. In the following sections, we investigate the time evolution of the

phase difference for systems with uniform and periodic coupling in open boundary

conditions settings.

3.1.1 PT -Symmetric Dimer and Trimer

A PT -symmetric dimer is a two level system (qubit) represented by two sites

|1〉 and |2〉 having tunneling amplitude J > 0 and gain/loss potentials ±iγ. The

Hamiltonian of a dimer is given by Eq. 1.21 and it can be defined in a compact form

by H2 = −Jσ1 + iγσ3 6= H†2 where σ1 and σ3 are standard Pauli matrices. H2 have

a PT symmetry (a combined parity symmetry P = σ1 and time-reversal symmetry

T = ∗) and its spectrum undergoes a PT transition at γPT = J where the two

eigenvalues ±λ2 = ±
√
J2 − γ2 coalesce same as the corresponding eigenfunctions.

From its definition,

H2 = −Jσ1 + iγσ3 =

 iγ −J

−J −iγ

 , (3.1)

and

H2 = (J2 − γ2)

1 0

0 1

 . (3.2)

Thus, the nonunitary time evolution operator exp(H2t) is defined by

G2 = cos(λ2t)1− i(H2/λ2) sin(λ2t). (3.3)
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In the PT -symmetric state, the norm of the evolved wavefunction oscillates with

time. At the exceptional point γ = J , it grows algebraically with time as t2 ( Since

H2
2 = 0 at γ = J), and in the PT -broken state it grows exponentially as exp(+Λ2t)

where Λ2 =
√
γ2 − j2 > 0. Let consider a random initial state (φ1(0), φ2(0))T.

The time invariance of the PT product of the two two-state PT -symmetric system

(φ1(t), φ2(t))T =
(
r1(t)eiθ1(t), r2(t)eiθ2(t)

)T
is given by

NPT = 2r1(t)r2(t) cos(θ2(t)− θ1(t)) = const. (3.4)

For NPT = 0, in which case the initial state is localized only on one site or

has an initial π/2 phase difference between the two sites, it implies that the phase

difference between the two sites remains fixed, θ2 − θ1 = ±π/2. This result holds in

the Hermitian limit, γ = 0, as well.

For NPT 6= 0, in which case the initial state is spread over the two sites and com-

plex, thus the time invariance of NPT implies that the phase difference θ2−θ1 evolves

with time and is not stationary. However, in the PT -broken state, at advanced times

(Γ2t >> 1), the weights r1,2(t) grow exponentially. Thus, the time invariance of Eq.

3.4 requires that cos(θ2(t)− θ1(t)) ≈ cos(θ2(0)− θ1(0))e−2Λ2t → 0± depending on

the initial sign of NPT . That is, for an arbitrary initial state, the phase difference

θ2(t)− θ1(t)→ ±π/2, Fig. 3.1a. This result is completely different from the dynamic

in Hermitian case or PT -symmetric region.

For a PT -symmetric trimer (three-level) system with Hamiltonian, in compact

form, given by H3 = −JSx + iγSz, where Sx and Sz are spin-1 representations of

angular momentum operators [56]. The eigenvalues of the trimer are given by 0,±λ3

with λ3 =
√
J2 − γ2, which become degenerate at γPT = J and complex for γ > J .

The constant-in-time of the PT product is given by

r2
2 + 2r1(t)r3(t) cos(θ3(t)− θ1(t)) = const. (3.5)

From Eq. 3.5, one can notice that the PT product of a trimer has information about

the wave-function phases only at the gain and loss locations, but not about the neutral
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location. This makes impossible to obtain any definitive conclusions about the phase

locking in the PT -broken state based solely on Eq. 3.5, despite the numerical result

Fig. 3.1b.
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Fig. 3.1. (a) the phase difference for a two-level system, with gain
and loss, locks to π/2, (b) the two phase differences for a trimer, with
gain at first site and loss at third site, lock to π/2.

3.1.2 PT Product of a Uniform Tunneling Lattice Chain

Let consider an N -site tight-binding lattice with tunneling J > 0 and two impu-

rities defined by imaginary potentials; the Hamiltonian can be defined by

H(γ) = −J
N−1∑
k=1

(|k〉 〈k + 1|+ |k + 1〉 〈k|) + iγ(|m0〉 〈m0| − |m̄0〉 〈m̄0|), (3.6)

where |k〉 denotes a single-particle state localized at site k, m0 ≤ N/2, and m̄0 =

(N + 1 −m0) > N/2 is the reflection-counterpart of site m0. The nonunitary time

evolution operator of the Hamiltonian is defined by

G(t) = e−iHt, (3.7)
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and its action on a random initial state |φ(0)〉 is given by

G(t) |φ(0)〉 = |φ(t)〉 =
N∑
k=1

ak(t)e
iθk(t) |k〉 . (3.8)

The Dirac norm of the state φ(t) and its time invariant PT product with itself are

given by,

〈φ(t)|φ(t)〉 =
N∑
k=1

a2
k(t), (3.9a)

〈φ(t)|φ(t)〉PT =
N∑
k

ak(t)ak̄(t)e
i[θk(t)−θk̄(t)], (3.9b)

respectively.

The Dirac norm Eq. 3.9a is not constant in time. Indeed, it undergoes bounded

oscillations in PT -symmetric region, grows algebraically with time as a power that

depends on the order of the exceptional point at PT breaking transition point, in-

creases exponentially with time in the PT -broken regime.
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Fig. 3.2. Time evolution of neighboring site phase differences deep
in the PT -broken region with γ/J = 3, measured in unit of π, for
N = 8 site lattice . (a) Gain location m0 = 2 implies one phase
difference saturate to 3π/2 and the remaining saturate to π/2, (b)
gain location m0 = 5 implies four phase difference saturate to 3π/2
and the remaining three saturate to π/2.
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Figure 3.2 shows the time evolution of adjacent phase difference in a deep PT -

broken phase (γ/J = 3 >> γPT ) [43] of a chain system of N = 8, meaning N − 1 = 7

phase differences. Figure 3.2a shows the case when the gain is located at m0 = 2,

which reveals one phase difference saturate to 3π/2 while the rest are locked to π/2.

Fig. 3.2b describes the case when the gain is located at location m0 = 3 showing two

phase differences saturate to 3π/2 and the remaining saturate to π/2. The dynamic

shown by the figures is that all phase differences of the time evolved wave function up

to the gain site are locked to 3π/2 while the remaining saturate to π/2, independently

of the initial state. While Fig. 3.3 confirms the phase locking phenomenon it also

highlights the dependence of the PT -breaking threshold on the gain location. For the

same gain γ/J = 1.5 and different gain location mo, the time evolved of the phase

difference of the wave function behaves differently. Indeed with the gain location at

m0 = 2, Fig. 3.3a, the system is still in PT regime and the time evolution of the

phase difference undergoes oscillations while in Fig. 3.3b, where the gain location is

at m0 = 3, the system is in PT -broken regime with appearance of the phase locking

phenomena. Thus, Figs. 3.2 and 3.3 show that the gain site m0 is the location where,

deep in PT -broken regime, the locked time evolved phase difference changes from

3π/2 to π/2.

3.1.3 Periodic Tunneling Lattice Chain

A periodic tunneling lattice is a system chain with site-dependent tunneling am-

plitude J(k); and without a loss of generality, its Hamiltonian can be defined by Eq.

2.3a. Let consider an open N -site system with a single pair gain-loss potentials ±γ

located at m0 and m̄0 respectively with a tunneling amplitude with period p = 2.

Such a system bears the name of Su-Schrieffer-Heeger (SSH) [1, 57] model and its

coupling structure is given by

J(k) =

J k = 0 mod 2,

J(1− δ) k = 1 mod 2,

(3.10)
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Fig. 3.3. Time evolution of neighboring site phase differences deep in
the PT -broken regime with γ/J = 3, measured in unit of π, for N
= 6 site lattice . (a) With gain location at m0 = 2, the system is
in PT breaking transition phase, (b) with gain location at m0 = 3,
the system is in PT -broken regime which implies two phase difference
saturate to 3π/2 and the remaining three saturate to π/2.

where δ ≤ 1 defines the coupling relationship strength between the periodic couplings

[57, 58]. The SSH model Hamiltonian (HSSH) described here is parity symmetric for

an even N and the PT -breaking threshold depends on the strength δ for a fixed gain

location m0. Indeed, the γPT monotonically increases as a function of the coupling

relationship strength δ. Figure 3.4 shows the phase locking phenomenon for a SSH

chain model with the gain strength of γ/J = 2.3 locates at m0 = 2. In both cases

of Fig. 3.3, the time evolved of the only phase difference θ2(t) − θ1(t) (number of

phase differences up to the gain location) saturates to 3π/2 whereas the rest saturate

to π/2. For a small coupling relationship δ = 0.2, Fig. 3.3.a shows a fast phase

locking process i.e. the system reaches the PT -broken regime faster than in Fig.

3.3.b where the coupling strength is δ = 0.8. Again, the phase locking phenomenon

is independent of the random initial state, the gain-loss strength threshold and the

coupling relationship strength.
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Fig. 3.4. Time evolution of neighboring site phase differences deep in
PT -broken phase with γ/J = 3, measured in unit of π, for N = 8 SSH
chain with gain located at m0 = 2. (a) For small strength = 0.2, the
phase difference θ2(t)− θ1(t) saturates at 3π/2 while the rest saturate
at π/2 (b) with gain location at m0 = 3, the system is in PT -broken
regime which implies two phase difference saturate to 3π/2 and the
remaining three saturate to π/2.

For a period p ≥ 3, the tunneling lattice is labelled AAH model after the authors

Aubry-Andre Harper [59,60]. Unlike in SSH model where the tunneling profile shows

a parity symmetry for an even lattice number N , the tunneling profile of a AAH model

has no parity symmetry at all. As it has been explained above in section 2.2, the full

Hamiltonian of the lattice chain does sustain a PT symmetry when the N + 1 = 0

mod p and m0 mod p. Figure 3.5 shows the time evolution of neighboring site phase

difference for N = 8 AAH model with period p = 3. When the gain location is m0 = 3

and the loss site is m̄0 = 6, the two phase differences up to the gain location saturate

to 3π/2 while the remaining saturate to π/2 (left panel). Interchanging the gain and

loss locations (m0 = 6 and m̄0 = 2) leads to two phase differences saturate to π/2

and the rest saturate to 3π/2 as expected. These results reveal that when the initial

state is confined to a single site, then the evolved wave-function phase differences of
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neighboring sites, deep in PT -broken phase, are locked at 3π/2 up to the gain site,

and the remaining are locked at π/2.
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Fig. 3.5. Time evolution of neighboring site phase differences deep
in PT -broken phase with γ/J = 1 for an AAH chain with N = 8.
(a) for m0 = 3, two phase differences saturate to 3π/2 and the phase
differences after the gain site saturate to π/2. (b) For m0 = 6, the
two phase difference after the gain site saturate at π/2.

Figure 3.5 shows the dynamic of the time evolution of the phase difference of the wave

functions of a AAH model of lattice chain with a period p = 3; where the repeated

tunneling coupling and the gain-loss strength are given by {J1, J2, J3} = J{1, 0.7, 0.4}

and γ/J = 1 respectively. Here again, the phase locking phenomenon is manifested

in PT -broken regime independently of the random initial state of the system.

3.2 Extended PT -Symmetric Gain-Loss Potentials

The Hamiltonian of a lattice chain (N > 3) with an extended PT -symmetric

gain-loss potentials is given in a compact form by

H(γ) = −JSx + iγSz, (3.11)
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where Sx and Sz are spin S = (N − 1)/2 dimensional representations of the angular

momentum algebra, and the site index k in this chain maps on to the Sz angular

momentum projection index. Moreover, the tunneling amplitude between sites k and

k + 1 is given by
√
k(N − k)/2 and the PT -symmetric gain-loss potential changes

linearly from −iγS to +iγS in steps of iγ. Despite having an algebraically fragile

PT -symmetric phase, this type of Hamiltonian does model a perfect state transfer

phenomenon. The equidistant energy spectrum of the Hamiltonian shows a particle-

hole symmetry described by

εm = m
√
J2 − γ2, (3.12a)

−S ≤ m ≤ S. (3.12b)

This Hamiltonian has an exceptional point of order N at the PT -symmetry breaking

threshold γPT = J . Figure 3.6 shows the dynamic of the time evolution of the

adjacent phase differences. When the gain strength parameter γ is less than the

threshold γPT , the phase differences undergo a periodic oscillations with period Tos =

π/
√
J2 − γ2 (left panel). For γ = 1.1, the system is in PT -broken phase and all

adjacent phase differences are locked at 3π/2 (right panel). For the extended PT -

symmetric potential, the larger gain potential site plays the role gain location in

controlling the dynamic of the phase locking. This leads, in the broken phase, to all

adjacent phase differences being locked at 3π/2 when the larger gain potential site

is located at the end of the chain, whereas they all saturate at π/2 when the larger

gain site is located at the beginning of the chain. These results reveal that the phase-

locking phenomenon is robust in a wide different settings of finite lattices with open

boundary conditions. However, the investigation in the phase locking phenomenon

was motivated by the time-invariant PT product which from its definition provides

only one phase differences dependent equation while there are N−1 phase differences.

Thus, additional equations, in the form of other time invariants, are needed to fully

characterize the phase locking phenomenon.
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Fig. 3.6. (a) In PT -symmetric phase where γ <PT , the phase differ-
ences oscillate with period Tos = π/

√
J2 − γ2. For γ > γPT , all the

phase differences are locked at 3π/2 in this configuration where the
gain region is in the second half of the lattice chain.

3.3 Other Time-Invariants for HPT

By definition, a Hermitian operator η̂ is said to be an intertwining operator [14,47]

for a PT -symmetric Hamiltonian HPT with an energy scale J if it satisfies

H†PT η̂ = η̂HPT , (3.13)

It follows that η̂ is invariant under a transformation by the non-unitary time evolution

operator of HPT given by G(t) = exp(−iHPT t)/, i.e

G†(t)η̂G(t) = η̂. (3.14)
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Indeed, taking a power expansion of the propagator G(t) in the right hand side of the

3.14, we have,

G†(t)η̂G(t) = (1 + iH†PT +
(iH†PT t)

2

2!
+ . . . )η(1− iHPT t+

(−iHPT t)2

2
+ . . . )

= η − iηHPT − η
H2
PT t

2

2
+ · · ·+ iH†PT ηt+

H†PT ηHPT t
2

2
+ . . .

= η − iηHPT − η
H2
PT t

2

2
+ · · ·+ iηHPT + η

H2
PT t

2

2
+ . . .

= η.

Equation 3.14 implies that the expectation value of the operator η̂ in an arbitrary

state is time invariant. In principle, all time invariants can be derived by solving the

system of n2 linear Eqs. 3.14, where n denotes the dimension of HPT .

Most of theoretically studied lattice models and all experimentally investigated PT -

symmetric systems have transpose and PT symmetries. The transpose symmetry of

the Hamiltonian HPT implies its time-reversal symmetry is defined by

T HPT T = H†PT . (3.15)

Composing Eq. 3.15 on the left by the parity operator P and rearranging the equality

we get,

PT HPT T = PH†PT

=⇒ HPT PT T = PH†PT

HPT P = PH†PT (3.16)

Thus, the parity operator P is an intertwining operator and we can set η̂1 = P . Using

a recursion relation, we can construct a sequence of dimensionless, linearly indepen-

dent operators such that η̂k = η̂k−1HPT /J for k = 2, . . . , n, See box below. Due to

the characteristic equation of the HPT , the sequence stops at η̂n; and P(HPT /J)n

is a linear combination of lower-order intertwining operators. The construction of

sequence leads to a maximal set of n linearly independent constants of motion for a

n-dimensional Hamiltonian.
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η̂1 intertwining operator =⇒ η̂1HPT = H†PT η̂1

Define η̂2 = η̂1HPT /J . We have,

H†PT η̂2 = H†PT (η̂1HPT /J)

= (η̂1HPT η̂1) (η̂1HPT /J)

= (η̂1HPT / J) (HPT )

= η̂2HPT .

Thus, η̂2 is an intertwining operator of HPT .

Suppose η̂k−1 is an intertwining operator, we have η̂k−1HPT = H†PT η̂k−1

H†PT η̂k = H†PT (η̂k−1HPT /J)

= (η̂k−1HPT η̂k−1) (η̂k−1HPT /J)

= (η̂k−1HPT /J) (HPT )

= η̂kHPT .

Therefore, ηk is an intertwining operator for HPT

For instance, let consider a qudit system, system with extended PT -symmetric gain-

loss potentials, whose Hamiltonian is given in compact form by HQ = −JSx + iγSz.

Here Sx and Sz are spin-3/2 representation representations of the SU(2) group. The

PT -symmetric Hamiltonian has an antidiag(1,1,1,1) as a parity operator. Explicitly,

HPT is given by

HQ =
1

2


3iγ −

√
3J 0 0

−
√

3J iγ −2J 0

0 −2J −iγ −
√

3J

0 0 −
√

3J −3iγ

 (3.17)

From Eq. 3.12, the four equidistant eigenvalues are given by

λk = {−3/2,−1/2,+1/2,+3/2}
√
J2 − γ2, (3.18)
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which leads to an exceptional point of order 4, EP4, at the PT -symmetry breaking

threshold at γ = J . It worth mentioning the fact that the order of the exceptional

point equals the dimension of the system makes the qudid a prototype choice that

can be generalised to an arbitrary dimensional system.
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Fig. 3.7. (a) In the Hermitian limit, mode occupation numbers are
periodic with period Tos = 2π/J , and a perfect state transfer manifest
by a mirror of mode k to mode 5−k at time Tos/2. (b) PT -symmetric
phase with γ = 0.25J , the occupation numbers are still periodic but
no state transfer due the nonunitary dynamic of the qudit. In both
cases, the initial state is given by |φ0〉 = (1, 0, 0, 0)T.

Figure 3.7 shows the time evolution of the mode occupation numbers. In the top

panel (a), for γ = 0, the occupation numbers of the four modes undergo a perfect

state transfer characterised by Pk(t) = P5−k(t+π/J), where Pk(t) = | 〈k|φ(t)〉 |2; that

is, a perfect state transfer of the first (solid blue) and second (solid red) modes to the

fourth (dash blue) and third (dash orange) modes respectively at time Tos/2 = π/J .

The lower panel (b) shows the periodic occupation numbers with time period Tos(γ) =

2π/
√
J2 − γ2 in the PT -symmetric phase with γ = 0.25J ; there is no perfect state
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Fig. 3.8. (a) At the PT -breaking threshold γPT = J , the norm of the
state |φ(t)〉 grows with time as t6 showing that the exceptional point is
of order six. (b) Exponential growth with time of the time dependent
norm in the PT -broken phase with γ = 1.2J . In both cases, the
initial state is localized in the first mode, i.e |φ1〉 = (1, 0, 0, 0)T, [4].

transfer in this case due the nonunitary dynamic of the system.

The development of an exceptional point of order four (EP4) at γ = J is characterised

by H4
PT (γ = J) = 0. Thus from the power series expansion, the propagator G(t)

vanishes starting at the fourth order and the observed time-dependent norm P (t) =∑
k Pk(t) increases algebraically with time as t6, Fig. 3.8a.

Furthermore, the existence of the fourth order exceptional point can be demon-

strated by studying the spectrum of a perturbed PT -symmetric Hamiltonian from

the exceptional point; where the complex eigenvalues in the vicinity of EPn (ex-

ceptional point of order n) follow a Puiseux series in δ1/n. Thus, for a perturba-

tion of the qudid Hamiltonian HQ in the vicinity of the exceptional point given by

Hδ(γ) = HPT (γ) − iδ |1〉〈1|, the expected eigenvalues should scale as δ1/4. Figure

3.9a shows the plots of the real part of the eigenvalues λ1,2,3,4 as a function of the

perturbation δ (dot lines); plots that indeed scale as δ1/4 (green solid line). Similar
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trend in Fig. 3.9b for the plot of the imaginary part of λ1,2,3,4 as a function of the

perturbation δ.

Additionally, a numerical study of the intertwining operators reveals that, despite

generically dependent on γ, its expectation values ηk(t) = 〈φ(t)| η̂k |φ(t)〉 remain

constant regardless of the regime of the systems. In fact the expectation values η1,2

remain time invariants for different values of γ across all the phases of the system.

The constant in time of the expectation value of η1(t) is illustrated in figure 3.10(a)

in Hermitian case (γ = 0), in PT symmetry regime (γ = 0.3J), at the EP4 (γ = J)

, and in PT -broken phase (γ = 1.3), for a symmetric initial state given by |φ0〉 =

(|1〉+ |2〉+ |3〉+ |4〉)/2. In figure 3.10 (b), deep in PT -broken phase (γ = 1.3J) where

the norm of the wave function grows exponentially with time, the expectation value

of η2(t) remain constant in time independently of the initial state (|1〉 , |2〉). Although

being constant in time, the expectation value η2 is not positive definite for the initial

state |2〉. This suggests that an appropriate choice of the initial state does matter for

a meaningful measurement of the expectation values.



36

0 0.02 0.04 0.06 0.08 0.1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

R
e
(

i)

0 0.02 0.04 0.06 0.08 0.1
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Im
(

i)

(a)
4

1/4

2

1

3

1/4

(b)
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4. RANDOM WALKS

4.1 Classical Random Walks

The classical random walk is the mathematical description of a movement consist-

ing of random steps on some mathematical space such as integers. Classical random

walks have applications in various fields including biology, chemistry, computer sci-

ence, ecology, economy, and physics. An elementary example of classical random walk

is a random walk on the integer number line, Z, which starts at 0 and moves to the

right or to the left with equal probability depending on the coin flip. In that scenario

of an unbiased process, for a large number of time step t, the one dimensional classical

random walk has a symmetric probability distribution that approaches a Gaussian

distribution (independently of its starting point) with a deviation from origin ap-

proaching
√
t. Table. 4.1 shows a table of the probability distribution for a 5 steps

classical random walk on the line starting at 0.

Table 4.1.
Table of the probability distribution of a classical random walk on the
line starting at 0.

t

n
-5 -4 -3 -2 -1 0 1 2 3 4 5

0 1

1 1
2

1
2

2 1
4

1
2

1
4

3 1
8

3
8

3
8

1
8

4 1
16

1
4

3
8

1
4

1
16

5 1
32

5
32

5
16

5
16

5
32

1
32
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As an illustration, let us consider a classical random walk on the integers line

starting at 0 with equal 1
2

probability to move to the right or to the left. Let us

denote by nR, nL, and t the number of steps to the right, number of steps to the left,

and the total number of steps respectively. If n denotes the position of the walker

after T steps, we have

nR − nL = n, nR + nL = T, (4.1)

from which, it follows that

nR =
1

2
(T + n), nL =

1

2
(T− n). (4.2)

For a walk of T steps, the total number of possible T-step walks is 2T, and the total

number of possible paths ending at n is given by

T!

(nR)!(nL)!
=

T!

(1
2
(T + n))!(1

2
(T− n))!

. (4.3)

So the probability of walker ending at n is given by,

P (n) =
T!

(1
2
(T + n))!(1

2
(T− n))!

· 1

2T
. (4.4)

Using Stirling’s formula for large T, we have ln T! ∼= T ln T− T. Thus,

lnP (n) = ln

(
T!

(1
2
(T + n))!(1

2
(T− n))!

· 1

2T

)
∼= T ln T− T−

(
T + n

2

)
ln

(
T + n

2

)
+

(
T + n

2

)
−
(

T− n
2

)
ln

(
T− n

2

)
+

(
T− n

2

)
− T ln 2

= T ln T−
(

T + n

2

)
ln

(
T + n

2

)
−
(

T− n
2

)
ln

(
T− n

2

)
− T ln 2,

(4.5)

but

ln

(
T± n

2

)
= ln

T

2
+ ln

(
1± 2

n

T

)
∼= ln

T

2
± 2

n

T
− 1

2

(n
T

)2

, (4.6)
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which gives

lnP (n) = − n
2

2T
, (4.7)

thus,

P (n) ∝ e−
n2

2T , (4.8)

which indeed proves that for a large t, the probability distribution approaches a

Gaussian distribution, see Fig. 4.1. In higher dimension, an example of classical

random walks on a graph can be described by a particle moving on a lattice where a

node has 6 vertices, and the particle moves according to the outcomes from tossing

a dice. Particularly the classical random walks on a d-dimensional hypercube (where

in each step a neighboring vertex is chosen with probability 1/d) can be reduced to a

walk on a line of d+1 vertices, where the transition probability from vertex i to vertex

i+1 in the general case is given by pi,i+1 = d−i
d

and from i+1 to i by pi+1,i = i+1
d

[61].

Fig. 4.1. (a) and (b), probability distribution after T = 100 and
T = 500 respectively of a classical random walk.
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4.2 Quantum Random Walk

The notion of a quantum walk was originally discovered by Aharonov et al. in 1993

[40]. The quantum random walks are quantum analogue of classical random walks.

But unlike its classical counterpart in one-dimensional lattice where the walker can

take one direction only with a defined probability at a specific time step, a quantum

random walker can take both directions at each time step with a specified probability.

The shape of the probability distribution of a quantum random walk depends on

its initial state [61, 62]. Moreover, the deviation of the quantum random walk is

about the time step T meaning the walk spreads quadratically faster. Properties,

such as diffusion time, hitting time (the expected number of steps before node j is

visited, starting from node i), mixing time (measure of how fast the discrete ransom

walk converges to its limiting distribution), etc make the quantum random walks a

subject of intense and interesting studies in the past decade where they have been

widely used in study and realization of quantum computing, quantum information

and quantum cryptography [63]. They have also been realized in nuclear magnetic

resonance systems, optical cavities, optical lattices, ions trap, etc [61]. There are

two kind of quantum random walks, the continuous-time quantum walk defined on

a Hilbert space H composed exclusively of position space HP , and the discrete-time

quantum walk whose Hilbert space is a combination of the position space HP and the

coin space HC, H = HP ⊗HC.

4.2.1 Continuous-Time Quantum Walk

CTQW was initially proposed by Farhi and Gutmann [39], and its formalism

is derived from its classical counterpart fairly from the Markov process [64]. The

dynamic of the continuous-time quantum walk (CTQW) consists of a walker and a

generator (Hamiltonian) operator of the system that can be applied at any time.

The mathematical structure of the model is a diffusion-type differential equations.

Suppose we have a graph with N vertices indexed by integers n = 1, 2, · · · , N . A
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vertex may be connected to other vertices by an edge. Let µ denote the jumping rate

per unit time between vertices and impose the requirement that a walk is only possible

between nodes connected to an edge. Thus, the random walk can be described by a

stochastic generator matrix M whose matrix element Mab, probability to go from a

to b, equal to 1
da

(da is the degree of a), is defined by

Mab =


−µ a 6= b

0 a 6= b

daµ a = b

(4.9)

In infinitesimal time ε limit such that µε ≈ 1 is the probability of jumping from one

vertex to its neighbor, then the probability of being at vertex a at a given time t

is [64]
dpa
dt

= −
∑
b

Mabpb(t), (4.10)

with ∑
a

pa(t) = 1. (4.11)

To transition to the continuous-time quantum walk from its classical counterpart,

let us construct an N -dimensional Hilbert space H, a set of the vectors |a〉 where

a = 1, 2, · · · , N denote the vertices of the graph G, and define a Hamiltonian Ĥ with

matrix elements given by

〈a| Ĥ |b〉 = Mab. (4.12)

Thus, the Schroedinger equation of a quantum state |Ψ〉 ∈ H is defined by

i
d 〈a|Ψ(t)〉

dt
=
∑
b

〈a|H|b〉 〈b|Ψ(t)〉 (4.13)

Combining Eqs. 4.12 and 4.13, the unitary evolution operator defining a CTQW on

the graph G is given by [64],

Û(t) = e−iĤt/~. (4.14)

Starting at an initial state |Ψ0〉 the state of the walker at time t is |Ψ(t)〉 = Û |Ψ0〉,

from which the state |Ψ(t)〉 can be expressed as a complex superposition of basis
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states corresponding to the vertices. Figure 4.2a shows the time evolution of a CTQW

starting at Ψ(n, 0) = δn,0 and spreading over a discrete position space. Figure 4.2

(panels b and c) shows a symmetric spread of the probability distribution at a half

and the end of the propagation time respectively.
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Fig. 4.2. (a) Probability distribution of a CTQW starting at Ψ(n, 0) =
δn,0. (b) and (c) Instantaneous probability distribution at half and end
of the propagation time respectively.

4.2.2 Discrete-Time Quantum Walk

A DTQW on a one-dimensional lattice can be described by an ordered sequence

of coin and shift operations. The coin operator acts on the internal states of the

walker with an outcome that decides the action of the shift operator. To illustrate

this, let us consider a walker at an arbitrary position of |n0〉 on a one-dimensional

lattice. The walker flips a coin (with outcomes R and L) to decide which way to

move on the lattice, with a R (L) outcome corresponding to the right (left) direction

of the motion. These outcomes of the ’quantum coin’ represent the eigenstates of the

coin operator with |R〉 = (1, 0)Tand |L〉 = (0, 1)T. Unlike in classical random walk,

an outcome of the coin can also be a superposition of the two eigenstates. Basically,
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a coin operation is a rotation operation on the internal space of the walker, and can

be designed depending on the model of quantum random walk one desires. From the

results of the coin operator on the internal states of the walker, the shift operator

moves the walker on the position space spanned by |n〉 where n ∈ Z; and is a unitary

operator defined in this context by

S =

(∑
n

|n+ 1〉 〈n|

)
⊗ |R〉 〈R|+

(∑
n

|n− 1〉 〈n|

)
⊗ |L〉 〈L| . (4.15)

One frequently used coin operator is the Hadamard coin operator defined by

H =
1√
2

1 1

1 −1

 . (4.16)

Each step of the quantum walk is accomplished by the unitary operator U , a product

of elemental operators, defined by

U = S(I⊗H), (4.17)

which implements a ’coin’ toss followed by a move. Let consider the internal states

|R〉 and |L〉 as the spin ’up’ |↑〉 and |↓〉 respectively. Suppose the walker is initially

localized at the position |n0〉 = |0〉 and in an internal state |↑〉 so that its overall state

is |Ψ0〉 = |0〉 ⊗ |↑〉. Then a one step application of the unitary operator U results as

follow

|Ψ0〉
H−→ 1√

2
|0〉 ⊗ (|↑〉+ |↓〉), (4.18a)

S−→ 1√
2

(|1〉 ⊗ |↑〉+ |−1〉 ⊗ |↓〉). (4.18b)

After this first step, a measurement of the coin state in the standard basis gives an

equal probability of 1
2

for the states |↑〉 ⊗ |1〉 and |↓〉 ⊗ |−1〉. For a three steps walk

we have,

|Ψ0〉
U−→ 1√

2
(|〉 ⊗ |↑〉+ |−1〉 ⊗ |↓〉)

U−→ 1

2
(|2〉 ⊗ |↑〉+ |0〉 ⊗ (|↑〉+ |↓〉) + |−2〉 ⊗ |↓〉)

U−→ 1

2
√

2
(|3〉 ⊗ |↑〉+ |1〉 ⊗ (|↓〉+ 2 |↑〉)− |−1〉 ⊗ |↑〉+ |−3〉 ⊗ |↓〉)

(4.19)
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The probability distribution after the third step shows a shift to right, influenced by

the initial internal state (|↑〉) of the walker. Figure 4.3 (panel b and c) illustrates the

behavior of the probability distribution of the walker at t = 100 with an internal state

1√
2
(|↑〉 + |↓〉) (symmetric) and |↑〉 (justified to right) respectively. Figure 4.3a shows

the time evolution of the DTQW over t = 100 time steps for a walker starting initially

at position |0〉 with an internal state in a symmetric superposition of the eigenstates

of the internal state space. From Fig. 4.3, it is evident that the interference pattern

of the quantum walk is much complex and absent in the Gaussian obtained in the

classical walk. It is worth to note that the conditional shift operator S is responsible

for generating the entanglement between the coin and position degrees of freedom [65]

Succinctly, the state of the walker after t time steps is given by

|Ψ(t)〉 = U t |Ψ0〉 . (4.20)
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Fig. 4.3. (a) Probability distribution of a DTQW starting at |Ψ0〉 =
1√
2
(|↑〉 + |↓〉) ⊗ |0〉 using a Hadamard coin operator. (b) and (c)

Probability distribution after t = 100 time steps of a DTQW starting
at |Ψ0〉 = (|↑〉+ i |↓〉)⊗|0〉 and |Ψ0〉 = |↑〉⊗ |0〉 respectively. Only the
probability at the even points is plotted, since the odd points have
probability zero.
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It is also possible to perform the quantum walk in the Fourier space [63]. Suppose

the full state of the walker is defined by

|n, ↑↓〉 =
1

N

N−1∑
k=0

e−iωkn |k, ↑↓〉 , (4.21)

where n = 0, 1, 2 . . .N − 1 and ωk = 2πk/N . Using the Fourier shift theorem, the

translation operator can be reduced to an eigenvalue problem

Ŝ |k, ↑〉 = e−iωk |k, ↑〉 , (4.22a)

Ŝ† |k, ↓〉 = eiωk |k, ↓〉 , (4.22b)

where Ŝ =
∑

n |n− 1〉 〈n| and Ŝ† =
∑

n |n+ 1〉 〈n|. Using the position independent

Hadamard coin operator, one gets

U(F|Ψ〉) = U
N−1∑
k=0

↑∑
c=↓

βkc |k, c〉

=
N−1∑
k=0

(
|k〉 ⊗

(
e−iωk |↑〉 〈↑|+ eiωk |↓〉 〈↓|

)
C

↑∑
c=↓

βkc |c〉

)

=
N−1∑
k=0

(
|k〉 ⊗ e−iσ3ωkC

↑∑
c=↓

βkc |c〉

)

=
N−1∑
k=0

(
|k〉 ⊗ Ck

↑∑
c=↓

βkc |c〉

)
.

(4.23)

Equation 4.23 shows that the evolution of the quantum walk in Fourier space requires

only the application of a modified coin Ck at every node k [62, 63].

4.3 Non-Unitary Quantum Walks

4.3.1 Non-Unitary CTQW

Typically a non-unitary CTQW is represented by a time-evolution operator of a

non-Hermitian Hamiltonian. A sample case is described in [2] with an open bound-

aries system of N -site tight-binding lattice with gain and loss potentials ±iγ located
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at parity symmetric sites m0 ≤ N/2 and m̄0 = (N+1−m) > N/2 respectively. From

the parity of the size of the lattice the distance between the gain and the loss sites,

d = m̄0−m0, ranges from N −1 to one or two whether N is even or odd respectively.

The non-Hermitian, PT -symmetric effective Hamiltonian of system is given by

HPT = H0 + ∆H, (4.24)

where

H0 = −J
N−1∑
n=1

(|n〉 〈n+ 1|+ |n+ 1〉 〈n|) = H†0, (4.25a)

∆H = iγ(|m0〉 〈m0| − |m̄0〉 〈m̄0|) = −∆H†. (4.25b)

J > 0 is the hoping energy of the Hermitian Hamiltonian and |n〉 is a single-particle

state localized at lattice site n. The spectrum of the effective Hamiltonian HPT is

either purely real or complex conjugate pairs because it commutes with the antilinear

operator PT [13,14]. The PT -phase marked by the reality of the spectrum happens

when γ ≤ γPT (m0), where the gain-location dependent γPT is the PT -symmetry

breaking threshold. For an odd lattice size N , γPT → J/2 (γPT → J) when d = 2

(d = N−1). Figure 4.4 shows a case of a CTQW starting at Ψ(n, 0) = δn,0 on an odd

size lattice N = 81 with a nearest gain and loss locations at m0 = 40 and m̄0 = 42

respectively. Column (a) corresponds to Hermitian limit with γ = 0, columns (b)

and (c) correspond to the transition region with γ = 0.54J and PT -broken region

with γ = 1.1J respectively where γPT = J/2. For an even size lattice, the maximum

threshold γPT occurs when the distance d between the gain and loss potentials is

minimum or maximum at d = 1 or d = N − 1.

4.3.2 Non-Unitary DTQW

The dynamic of a non-unitary discrete-time quantum walk is governed by a prop-

agator G described by

G = SGΦC, (4.26)
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Fig. 4.4. Time-evolution for a CTQW; (a) γ = 0 (the unitary CTQW
in PT -phase), (b) γ = 0.54 (the non-unitary CTQW at the excep-
tional points), (c) γ = 1.1 (the non-unitary CTQW in the PT -broken
regime). (top panels) The contour maps of the logarithm of the
norm of the wave function ln(|ψ(t)|2) in the position and time plan.
(middle panels) The norm of the wave function at maximum time t
|Ψ(n)(tmax)|2. (bottom panels) The time dependence of the sum of
the probability distribution I(t).

where G and Φ represent the gain-loss operator and the phase operator respectively.

Depending on the internal state of the walker, the gain-loss operator amplifies or

damps the wave function while the phase operator adds a phase to the wave function

amplitude. The gain-loss operator and phase operator can be defined by

G =
∑
n

|n〉 〈n| ⊗ G̃, G̃ =

g↑(n) 0

0 g↓(n)

 , (4.27)

Φ =
∑
n

|n〉 〈n| ⊗ Φ̃n, Φ̃n =

eφ↑(n) 0

0 eφ↓(n)

 . (4.28)

An example of the experimental realization of the nonunitary quantum walk imple-

mented by two optical-fiber loops is depicted in Fig. 4.5 from [50]; in which case the

nonunitary quantum walk can be represented by a two-steps time-evolution operator

G defined by

G = SG2C(θ2)SG1C(θ1), (4.29)
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Fig. 4.5. From [50] (a) Two coupled fibre loops periodically switching
between gain and loss. Pulses are delayed or advanced as a result of a
length difference ∆L between the loops. PM, phase modulator. (b),
Pulse evolution in the networks. Passages through short and long
loops are indicated. (c) Equivalent PT -symmetric network. Gain
(red) and loss (blue) channels are positioned anti-symmetrically and
are periodically coupled.

with

S =
∑
n

|n− 1〉 〈n| 0

0 |n+ 1〉 〈n|

 , (4.30)

Gi =
∑
n

|n〉 〈n| ⊗ G̃i,n, G̃i,n =

gi,L(n) 0

0 gi,R(n)

 , (4.31)

and

C(θi) =
∑
n

|n〉 〈n| ⊗ C̃(θi,n), C̃(θi(n)) =

 cos[θi(n)] i sin[θi(n)]

i sin[θi(n)] cos[θi(n)].

 (4.32)

In the coin operator C(θi) and the gain-loss operator Gi, the subscript i = 1 or 2

distinguishes the parameter for the first or the second operator, respectively. Operator

with a tilde on the top acts on the space of the internal states of the walker. Thus,
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the operator C̃(θi, n) acts on the internal states of the walker at the position n while

the coin operator C(θi) mixes the walker’s internal states, where the value of θi(n)

determines the strength of the mixture at position n. The gain-loss operator Gi

multiplies the wave function amplitude by the factor gi,σ(n), where σ =↑ or ↓. If

gi,σ(n) 6= 1, then Gi and G are nonunitary operators. Suppose the walker was initially

at the position n = 0 defined by the wave function |Ψ(0)〉, then after t time steps it

would be represented by

|Ψ(t)〉 = Gt |Ψ(0)〉 =
∑

n,σ=↑,↓

ψn,σ(t) |n〉 ⊗ |σ〉 . (4.33)

From the eigenvalue equation, the quasi-energy ε is defined by

G |Ψλ〉 = λ |Ψλ〉 , λ = e−iε, (4.34)

where |Ψλ〉 is the eigenvector with eigenvalue λ. The quantum walk is unitary if

|λ| = 1 and ε is real with 2π periodicity, otherwise is nonunitary.

For an homogeneous nonunitary system in which all parameters are independent of

the position n, the operators can be defined in momentum space where the coin op-

erator C(θi,n) and the gain-loss operator Gi,n are both diagonal. Thus, the elemental

operators of the time-evolution operator are given by

G̃2 = G̃1
−1

= G̃ =

eγ 0

0 e−γ

 = eγσ3 , (4.35a)

C̃(θi) =

 cos[θi] i sin[θi]

i sin[θi] cos[θi]

 = eiθiσ1 , (4.35b)

S =
∑
k

|k〉 〈k| ⊗ S̃(k), S̃(k) =

e+ik 0

0 e−ik

 = eikσ3 , (4.35c)

where k is the wave number. In this context, the time-evolution operator is repre-

sented by

G =
∑
k

|k〉 〈k| ⊗ G̃(k), (4.36a)
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Fig. 4.6. Time-evolution of two-step DTQW in homogeneous system;
(a) eγ = 1 (unitary quantum walk),(b) eγ = 1.2 (non-unitary quantum
with all quasi-energy real), (c) eγ = 1.347 (non-unitary quantum at
the transition region),(d) eγ = 1.5 (non-unitary quantum walk in
the broken regime with complex quasi-energy). With θ1 = −π/7,
θ2 = π/4 and |Ψ0〉 = |Ψ(0)〉 = |0〉 ⊗ |L〉. Top panels: Contour maps
of the logarithm of the norm of the wave function ln(|Ψn(t)|2). Middle
panels: The norm of the wave function after 100 time steps |Ψn(t =
100)|2. Bottom panels: Sum of the weight of the wave function I(t)
as a function of time steps.

G̃(k) = G̃C̃(θ2)S̃(k)G̃−1C̃(θ1). (4.36b)

Figure 4.6 shows numerical results of the propagator for an homogeneous quantum

walk defined in Eq. 4.36 with C1(−π/7) and C2(π/4). Column (a) represents a

unitary quantum walk with eγ = 1; column (b), a nonunitary quantum walk with

entirely real quasi-energy when eγ = 1.2; column (c) nonunitary quantum walk with

exceptional point when eγ = 1.347; and column (d), a nonunitary quantum walk with

complex quasi-energy when eγ = 1.5. The norm of the wave function at time step T

in columns (a) and (b) where the nonunitary quantum walk has entirely real quasi-
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Fig. 4.7. Quasienergy and eigenvalues in two-step DTQW. The quasi-
energy defined in Eq. 4.47 with different gain/loss parameters with
θ1 = −π/7 and θ2 = π/4. The first column shows eigenvalue on a
unit circle with |λ| = 1 on a complex plan. The second column shows
the quasi-energy ε as a function of k where the solid (dashed) curves
are the real (imaginary) part of the quasi-energy.(a) (Fisrt row) For
eγ = 1, the quasi-energy are all real since the time-evolution operator
is unitary. (b) For eγ = 1.3, despite a non-unitary time-evolution
operator the quasi-energy is entirely real, and there are open gaps of
the quasi-energy around ε = 0, π. (c) For eγ = 1.347, with an entirely
real quasi-energy, the gap around ε = 0 closes. (d) For eγ = 1.5, the
quasi-energy becomes complex for |k|/π = 0.1, the gap closes.



53

energy is quite similar to the case of a unitary quantum walk in Fig. 4.3b. However

the sum of the weight of the wave function P (t) exhibits some small oscillations

around P (t) ≈ 1 when eγ 6= 1.

Nonunitary DTQW has various symmetries and the most useful one, beside PT

symmetry, are chiral symmetry (Γ) and particle hole symmetry (Ξ). In position and

momentum spaces, the parity symmetry operator P , time reversal symmetry operator

T , the chiral symmetry operator Γ and the particle hole symmetry operator Ξ are

represented as follows,

P =
∑
n

|−n〉 〈n| ⊗ P̃ =
∑
k

|−k〉 〈k| ⊗ P̃ , (4.37)

T =
∑
n

|n〉 〈n| ⊗ T̃ =
∑
k

|−k〉 〈k| ⊗ T̃ , (4.38)

Γ =
∑
n

|n〉 〈n| ⊗ Γ̃ =
∑
k

|k〉 〈k| ⊗ Γ̃, (4.39)

Ξ =
∑
n

|n〉 〈n| ⊗ Ξ̃ =
∑
k

|−k〉 〈k| ⊗ Ξ̃, (4.40)

from which, the symmetry of the propagator G can be defined as,

(PT )G(PT )−1 = G−1, (4.41a)

(P̃T̃ ) ˜G(k)(P̃T̃ )−1 = G̃−1(+k), (4.41b)

Γ̃G̃(k)Γ̃−1 = G̃−1(+k), (4.41c)

Ξ̃G̃(k)Ξ̃−1 = G̃(−k). (4.41d)

The appearance of the inverse of propagator in Eq. 4.41 makes its analytical solution

challenging. To overcome the difficulty, it is necessary to apply the symmetry time

frame; in which case for an homogeneous DTQW, the propagator becomes [66],

G ′ = C(θ1/2)SG2C(θ2)SG1C(θ1/2). (4.42)
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A detailed analysis of the quasienergy of the propagator G can be easy carried out

in momentum space by applying a Fourier transform on the propagator G. Thus, we

have:

G ′(k) =
∑

i=0,1,2,3

di(k)σi (4.43)

where σi (i = 1, 2, 3) are Pauli matrices and

d0(k) = cos θ1 cos θ2 cos 2k − sin θ1 sin θ2 cosh 2γ, (4.44a)

d1(k) = sin θ1 cos θ2 cos 2k + cos θ1 sin θ2 cosh 2γ, (4.44b)

d2(k) = d2 = − sin θ2 sinh 2γ, (4.44c)

d3(k) = cos θ2 sin 2k, (4.44d)

with d2
0(k) + d2

1(k)− d2
2(k) + d2

3(k) = 1. The eigenvalues and eigenvectors of G ′ are

λ±(k) = d0(k)± i
√

1− d2
0(k), (4.45a)

|ψ±(k)〉 =
1√

2 cos 2ωk
(e±iωk ,±ie±iωke−iνk)T, (4.45b)

with ωk and νk defined as

|d(k)|eiνk = d3(k) + id1(k), (4.46a)

cos 2ωk =

√
1−

(
d2

|d(k)|

)2

. (4.46b)

From Eq. 4.44a the quasienergy of the propagator is defined by

d0(k) = cos(±ε) = cos θ1 cos θ2 cos 2k − sin θ1 sin θ2 cosh 2γ. (4.47)

The plots of the eigenvalues and quasienergy of the propagator G = SG2C(π/4)SG1C(−π/7)

on Fig. 4.7 illustrate the parity-time symmetric behavior by featuring the existence

of a PT -symmetry phase, panels (a)-(b) and a PT -broken phase (Fig. 4.7, panels

(c)-(d)). When the gain strength parameter γ is not zero, the gain/loss operator Gi

becomes nonunitary, so does the propagator G. The scenario is illustrated in Fig. 4.7b

where γ 6= 0 but the quasienergy is still entirely real and the eigenvalues remain on a
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Fig. 4.8. Average displacement of the walker in the time frame sym-
metry of the coin parameter θ1. (a), For the measurement success
parameter p = 1, φ = π/2, and different values of α, i.e different
position of initial internal state on the Bloch sphere, the average dis-
placement scale as 〈∆x〉 ∝ (cos (α/2))2. (b) When p = 1 and α = π/4,
〈∆x〉 is still discrete for different values of φ.
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unit circle (PT -symmetric phase). Figure 4.7c shows the appearance of exceptional

point when γ ≈ γPT and the quasienergy becomes gapless at ε = 0; while Fig. 4.7d

corresponds to γ > γPT where the quasienergy becomes complex. Equation 4.44a

and right column of Fig. 4.7 show that the quasienergy is symmetric with respect to

ε = 0. An increasing γ changes drastically the behavior of the propagator manifested

by a linear grow at exceptional point and an exponential increase in broken regime.

The ease of maintaining the symmetries in nonunitary operators makes DTQW

an ideal platform to investigate and study topological properties. For example, the

development of edge states that are robust under symmetry-preserving perturbations,

which are also responsible for exponential amplification of wavefunction amplitudes

at specific positions and times. The existence and the number of these edge states

are dependent of the integer-value topological invariants characteristics of different

phases of the system [67]. For a given Floquet topological phase there are two distinct

topological invariant numbers, each associated with a specific symmetric time frame.

These topological numbers are robust against perturbations which preserve symme-

tries. Figure 4.9 depicts different phases of the propagator of a nonunitary DTQW

as a function of the parameters of the coin operators θ1 and θ2 with the gain/loss pa-

rameter γ = ln(1.1). The blue area corresponds to PT -phase regime while the orange

area represents the PT -broken regime. Note that as expected the orange area extends

as the gain parameter γ increases further past the threshold. The first experimental

observation of bulk topological invariants in nonunitary DTQW using single photon

in a delayed choice scheme was conducted not too long ago by Zhan et al. [68]. Not

only their work confirms the existing theory of the topological invariants, it also shows

that with a specific setup a topological invariant can be detected by a measurement

of the average displacement of the walker. Instead of a specific case of the initial in-

ternal state of the walker in their work, we generalize the computation of the average

displacement 〈∆x〉 for an initial internal state on the Bloch sphere. Let consider a

walker with an initial internal state given by cos (α/2) |+〉 + eiφ sin (α/2) |−〉, where

|±〉 = (|↑〉± |↓〉)/
√

2. In analogy to [68], the gain-loss operations are implemented by
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performing a partial measurement of the state of the walker at each time step with

the probability of a successful measurement given by 0 < p ≤ 1; thus, the positive

(Mp) and negative (Mn) partial measurement operators are given by

Mp =
∑
x

|x〉〈x| ⊗ √p |−〉〈−| , (4.48a)

Mn =
∑
x

|x〉〈x| ⊗ (|+〉〈+|+
√

1− p |−〉〈−|). (4.48b)

In a case of successful measurement after t time steps, the state of the coin walker is

then given by |ΨT 〉 = (MpG ′)(MnG ′)t−1 |Ψ0〉. With this setup, we numerically com-

pute the average displacement of the walker with an initial internal state varying on

the Bloch sphere. Not only the results in Fig. 4.8a confirm the discrete character

of the average displacement, they show that for p = 1 and φ = π/2, 〈∆x〉 scale as

∝ (cos (α/2))2. For p = 1 and α = π/4, Fig. 4.8b also shows the quantization of the

average displacement for different value of φ. We believe there is a way to charac-

terize the average displacement as function of the measurement success parameter p,

the coordinates of initial internal state on the Bloch sphere (α and φ), and the coin

operators parameters θi.

We also study a three-step DTQW whose dynamic is characterised by a combina-

tion of three coin/shift operations in a unit of time. For a unitary system, the time

evolution operator U is given by U = SC(θ2)SC(θ0)SC(θ1), where S and Ci=0,1,2

represent the shift operator and the coin operator respectively. A non-unitary system

can be engineered in three-step DTQW for instance by symmetrically incorporating

a gain/loss operator Gi and its inverse into U . In which case, the non-unitary time

evolution G is given by

G = SGC(θ2)SC(θ0)SG−1C(θ1). (4.49)

Here also, the state of the walker evolves as |Ψ(t+ 1)〉 = G |Ψ(t)〉. In the homoge-

neous case of a quantum walk, the probability of finding the walker at position n at
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Fig. 4.9. Two-step DTQW. Phase diagram as a function of θ1 and
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Fig. 4.10. The time evolution of a three-step quantum walk in ho-
mogeneous system, with θ0 = π/4, θ1 = π/9, θ2 = −3π/4 and the
walker initial state |Ψ0〉 = |0〉 ⊗ (|↑〉 + i |↓〉). (a) For γ = 0, the time
evolution G is unitary. (b) For γ = ln 1.3, nonunitary quantum walk
with all quasienergy real. (c) γ = ln 1.4805, nonunitary quantum walk
at PT -breaking transition phase. (d) γ = 1.5, three-step nonunitary
quantum walk in the broken regime with complex quasienergy. Top
panels: Contour maps of the logarithm of the norm of the wave func-
tion ln (|Ψn(t)|2). Middle panels: The norm of the wave function after
100 steps, |Ψn(t = 100)|2. Bottom panels: Sum of the weight of the
wave function as a function of time step, I(t).
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time t and the sum of the probability distributions over the position space are given

respectively by
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|Ψn(t)|2 = |Ψn,↑(t)|2 + |Ψn,↓(t)|2, (4.50a)

I(t) =
∑
n

|ψn(t)|2. (4.50b)

The bi-orthogonality (orthogonality defined on a combined vector space and its dual

space) of the eigenvectors (〈Ψm|Ψn〉 = δmn) guarantees I(t) = 1 for a unitary DTQW

(when γ = 0) Whereas it is expected to be different for a non-unitary case (when

γ 6= 0).

Figure 4.10 shows the numerical results of the time evolution of an homoge-

neous three-step DTQW in a periodic boundary setting for θ0 = π/4, θ1 = π/9,

and θ2 = −3π/4. In contrast to a single or two-step DTQW where the probability

distribution (at a large specific time step t) shows a bi-modal character in a unitary

regime (γ = 0),the probability distribution of a three-steps DTQW reveals a symmet-

ric quad-modal distinction for a walker initially in a superposition of internal states

and localized at site n0 = 0, i.e |Ψ0〉 = |0〉 ⊗ (|↑〉 + i |↓〉)/
√

(2) (Fig. 4.10a, middle

panel). A close analysis reveals that the variance of the inner extra pair of peaks in

3-step DTQW decreases as the central coin parameter θ0 goes from 0 to π/2 where

it vanishes.

The quasienergy ε of the propagator can be derived from the eigenvalue equation

and is given by

G |Ψλ〉 = λ |Ψλ〉

λ = e−iε, (4.51)

where Ψλ and λ are eigenvector and corresponding eigenvalue respectively. The

quasienergy ε is expected to be real for a unitary time-evolution when |λ| = 1. In

similar way to Eq. 4.43 in the two-step DTQW, we apply a Fourier transform to G

in order to analyse the relevant quasi-energies. We have,

G =
∑
k

|k〉 〈k| ⊗ G̃, (4.52a)
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G̃ =
∑

i=0,1,2,3

ni(k)σi, (4.52b)

where,

n0(k) =− cos θ0 cos θ1 cos θ2 cos(3k)

− sin θ0 cos θ1 sin θ2 cos(k)

+ cos θ0 sin θ1 sin θ2 cosh(2γ + ik)

− sin θ0 sin θ1 cos θ2 cosh(2γ − ik),

n1(k) =i cos θ0 cos θ2 sin θ1 cos(3k)

− i sin θ0 sin θ1 sin θ2 cos(k)

+ i cos θ0 cos θ1 sin θ2 cosh(2γ + ik)

+ i sin θ0 cos θ1 cos θ2 cosh(2γ − ik),

n2(k) =− i cos θ0 sin θ1 cos θ2 sin(3k)

+ i sin θ0 sin θ1 sin θ2 sin(k)

− sin θ0 cos θ1 cos θ2 sinh(2γ − ik)

− cos θ0 sin θ1 sin θ2 sinh(2γ + ik),

n3(k) = cos θ0 cos θ1 cos θ2 sin(3k)

− sin θ0 cos θ1 sin θ2 sin(k)

− sin θ0 sin θ1 cos θ2 sinh(2γ − ik)

− cos θ0 sin θ1 sin θ2 sinh(2γ + ik).

A solution to the eigenvalue problem, Eq. 4.51 gives

cos(±ε) = cos θ0 cos θ1 cos θ2 cos(3k)

− sin θ0 cos θ1 sin θ2 cos(k)

− cos θ0 sin θ1 sin θ2 cosh(2γ + ik)

− sin θ0 sin θ1 cos θ2 cosh(2γ − ik).

(4.53)

From equation 4.53, the requirement for a finite non-zero PT -breaking threshold is

given by

θ1 = nπ, θ0 − θ2 = nπ. (4.54)
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Fig. 4.11. Quasienergy and eigenvalues in three-step DTQW. The
quasienergy defined in Eq. 4.53 with different gain/loss parameters
with θ0 = π/4, θ1 = π/9 and θ2 = −3π/4. The top panel shows
the eigenvalue on a unit circle with |λ| = 1 in the complex plane.
The second panel shows the quasi-energy ε as a function of k where
the solid (dashed) curves are the real (imaginary) part of the quasi-
energy. First column: eγ = 1, the quasi-energy are all real since
the time-evolution operator is unitary. Second column: eγ = 1.3,
despite a non-unitary time-evolution operator the quasi-energy is en-
tirely real and there are open gaps of the quasi-energy around ε = 0, π.
Third column: eγ = 1.4805 with an entirely real quasi-energy, the gap
around ε = 0 closes. Fourth column: eγ = 1.5, the quasi-energy be-
comes complex for |k|/π = 0.1, the gap closes.

Figure 4.11 shows the results of a numerical study of the eigenvalues and the quasienergy

of the propagator G. Those results highlight, like in a two-step quantum walk, the

existence of real quasienergy (Fig. 4.11) in a non-unitary regime; evidence that the

three-step non-unitary time-evolution operator G possesses the parity-time symmetry.

The top panel of Fig. 4.11 displays a plot of the eigenvalues of propagator G in a

complex plane and the bottom panel features the plot of its quasienergy ε as a func-

tion of the wave vector k. When γ = 0, the propagator is unitary and its eigenvalues

fit a complex unit circle as expected (first column). For γ = ln 1.3, although the



64

propagator is nonunitary the eigenvalues still fit on a unit circle and the quasi-energy

is entirely real with an open gap around ε = 0, π (second column),i.e. the propagator

G is in a PT symmetry phase. At γ = ln 1.4805, the quasienergy of the nonunitary

propagator is still entirely real with a closure of the gap around ε = 0; moreover, there

is a coalescence of two pairs of eigenvalues in the complex plane, sign of development

of exceptional points PT -breaking transition (third column), meaning the PT sym-

metry threshold γPT ≈ ln 1.4805. When the gain strength parameter γ = ln 1.5,

part of the quasienergy becomes complex and the gap closes, PT -broken phase. In

all cases the quasienergy spectrum shows a symmetrical feature with respect to ε = 0.
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Fig. 4.12. Topological phase diagram of G for fixed center parameter
θ0 and eγ = 1.1 in PBC. (a) θ0 = π/4. The red arrow points to
(θ1, θ2) = (π/9,−3π/4). (b) θ0 = π/2.

To complete our work in three-step DTQW, we investigate the topological phase

diagram of the time evolution in the plane of the coin operator parameters θ1 and θ2 at

particular values of θ0. Although lacking a time frame symmetry due to its structure,

the propagator of the three-step does exhibit some topological phase transition in a

periodic boundary condition (PBC) as well in an open boundary condition (OBC)

settings. In contrast the two-step quantum walk in PBC settings, the phase diagram of

the propagator of the three-step revels a structure which is independent of the weight
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of the gain/loss parameter γ; assertion we proved in Eqs. 4.53, 4.54. Figure 4.12 shows

the phase diagram of the propagator G as a function of θ1 and θ2 for a fixed value of θ0

of the central coin parameter and gain/loss parameter γ = ln(1.1). For θ0 = π/2 (top

panel), the thin orange strips along some finite values of other coin parameter denote

the PT -symmetric regime, characteristic of the reality of the eigenvalues of the time-

evolution G; the blue area corresponds to PT -broken regime independently of the

gain parameter g. For θ0 = π/4 (bottom panel), the singularity of the PT -symmetric

regime along some specific values of the coin operator parameters θ1 and θ2; the red

arrow in Fig. 4.12b pinpoints a location in a PT -symmetric regime corresponding to

the values of the coin operator parameters used for the above numerical results.

A numerical study of the topological phase diagram of the time evolution operator

G in OBC reveals an extended PT -symmetric regime which depends on the gain-

loss parameter γ like in a two-step quantum walk with a PBC settings. As it is

shown in Fig. 4.13, for a fixed value of the coin parameter θ0 = π/2 and gain-loss

parameter γ = ln (1.1) (top panel), the PT -symmetric regime (orange strips) extends

symmetrically along the diagonal also along some specific values of the ends coin

parameter at θ1,2 = ±π/2; the blue region corresponds to the PT -broken phase. With

the same middle coin operator parameter θ0 = π/2 and a larger value γ = ln (1.4)

(bottom panel), the PT -symmetric region exhibits the same symmetric structure but

with a reduced area confirming the dependence of the topological phase transition of

the gain-loss parameter γ.

Figure 4.12 shows the topological phase diagram of the 3-step DTQW for a fixed

parameter (θ0) of the center coin, for θ0 = π/2 (a) and θ0 = π/4 (b). from equation

[4.54], one expects for these fixed value of θ0 = π/2 and θ0 = π/4, θ2 to be ±π/2 and

θ1 = ±π θ2 = π/4 (−3π/4) in PT -regime respectively (yellow stripes in the figures).

Lastly, we consider DTQW models where gain and loss are localized to only two,

reflection-symmetric sites, and investigate the dependence of the PT symmetry break-

ing transitions on other variables such as the gain-loss locations m0 or the coin pa-
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Fig. 4.13. Topological phase diagram of the propagator G for a fixed
center coin parameter θ0 = π/2, different gain/loss parameter in OBC
setting. (a) γ = ln(1.1) is marked by extended PT -symmetric region
(yellow area); (b) when γ = ln(1.4), the PT -symmetric region is
shrunk as expected.
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rameter θ. For that we choose a single-step DTQW whose propagator is given by

G = SGC, where G is a square matrix with the main diagonal given by the column

vector L defined by,

L(k) =


eγ k = m0

e−γ k = m̄0

0 otherwise

(4.55)
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Fig. 4.14. Gain parameter PT -breaking threshold gth = eγPT as a
function of the gain location m0 for even numbers of sites (a) and
odd numbers of sites (b). For large coin parameter θ, the PT gain
threshold decreases monotonically with the gain location and it is
strengthened again at small value of θ.

The scheme describes a quantum walk on a line of integers k where the walker only

experiences a gain at site k = m0 and a loss at site k = m̄0 = N −m0 + 1 respec-

tively (N is the size of the lattice). In closed boundary condition setting, the PT

gain threshold monotonically decreases as a function of the gain location for large

coin parameter θ and it enhances again as the distance between gain and loss sites
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increases for small value of θ, Fig. 4.14. Also, we uncovered that for even lattice

sizes, the gain parameter PT -breaking threshold gth scales as 1/ sin θ for both near-

est and farthest gain-loss locations figure 4.15(a). whereas for odd lattice sizes gth

scales as 1/ sin θ for largest gain-loss separations, but scales as as 1/
√

sin θ, Fig. 4.15b.

Moreover, we study the topological phase transitions of a non-homogeneous system

with site dependent coin parameter θ. Our result reveals, in open boundary conditions

(OBC), a finite gain PT -breaking threshold for certain periodical structure of the coin

operator. For instance, let us consider a site-dependent coin with periodicity p = 2

given by

C(θ1, θ2) = diag(X,C2(θ1), C2(θ2), C2(θ1), C2(θ2), . . . , X), (4.56)

where C2(θ)=exp(iXθ) is the 2x2 unitary coin operator, and the open boundary

conditions are imposed by choosing the coin operator X = σ1 (Pauli matrix) at the

two ends of the lattice. This DTQW approximates the finite Su-Schrieffer-Heeger

Hamiltonian for a CTQW. Figure 4.16 shows the PT symmetry threshold for an

even lattice with different locations of the gain and the loss. For closest and farthest

away gain and loss locations the gPT is robust for θ1 ' θ2 (left and right panels),

whereas gPT is weakened for a gain location at midway location on the lattice (center

panel). The phase diagram behaves differently for an odd lattice size where gPT

seems to strengthen as the gain location transfers from the beginning to the end of

the lattice, see Fig. 4.17.

Although lacking a PT -symmetric structure, the following periodical structure coins

operators also lead to a positive threshold,

C = XC2(θ1)C2(θ2)C2(θ2) . . . X (N = 0 mod 3)

C = XC2(θ1)C2(θ1)C2(θ2) . . . X (N = 1 mod 3). (4.57)

Thus, through this analysis we have expanded the class of DTQW models that show

PT symmetry breaking transition even though the underlying Hermitian DTQW is

not reflection symmetric.
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Fig. 4.16. Phase diagram of single step DTQW for an even lattice size.
The blue area corresponds to γPT = 0. When the distance d between
the gain location and the loss location is maximum (a). When d is
about a half the lattice size (b). when d is minimum (c).
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Fig. 4.17. Phase diagram of single step DTQW for an odd lattice size.
The blue area corresponds to γPT = 0. When the distance d between
the gain location and the loss location is maximum (a). When d is
about a half the lattice size (b). when d is minimum (c).
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5. SUMMARY

In this thesis, we investigated variant features of non-Hermitian PT -symmetric sys-

tems in continuous time and discrete time settings. In chapter two, we studied the

effects of random, periodic, long-range hopping disorder on the fate of the PT -

symmetric phase in uniform lattice with a single gain and single loss located at

mirror symmetric sites. Mathematically, the lattice models considered correspond

to tridiagonal matrices with Hermitian, random, periodic entries, combined with a

non-Hermitian, fixed, gain-loss potential entries along the main diagonal. While, in

general, PT -symmetric systems are fragile to random disorder we uncovered that for

some set of random disorder of period p, gain location m0 and lattice size N such that

{m0 = 0, N + 1 = 0} mod p, there exists a positive PT threshold. These results hold

as well for next-nearest-neighbor or higher hopping processes, consequently suggest

that there exists an hidden symmetry, which preserves the positive PT symmetry

breaking threshold of the clean lattice. Experimentally, the models studied can be re-

alized in coupled waveguide arrays with one gain waveguide and one lossy waveguide.

Preferably, if the on-site potentials or tunneling amplitudes are tunable; for example,

via voltage-controlled top-gate heaters. In chapter three, we investigated the fate

of phase differences between wave-function amplitudes on nearest-neighbor sites in

PT -symmetric lattice models and other time-invariants quantities of PT -symmetric

Hamiltonian. For a wide range of open chains, deep in the PT -broken phase, we

numerically found that the phase differences between adjacent sites, located before

the gain site, saturate at 3π/2 while the rest of the phase difference of the chain

saturate at π/2. However the trending disappears for lattice chains with periodic

boundary conditions but the saturation phenomenon is still valid. We presented an

analytical solution for all time invariants of a broad class of PT -symmetric Hamilto-

nians. Our results were confirmed using a single-photon interferometry by simulating
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the quantum dynamics of a PT -symmetric qudit across a fourth-order exceptional

point. The observed enhanced sensitivity at the fourth-order exceptional point and

phase locking signal the abundant and complex dynamics of PT -symmetric systems

with higher-order EPs that is potentially useful in developing ultrasensitive detection

devices such as whispering-gallery mode (WGM) sensors. In chapter four, we stud-

ied the properties of random walks. On one hand, we contrasted and compared the

classical walk with the quantum walk, and then investigated the different features of

quantum walk in the continuous and discrete time settings. We explored the time

evolution of DTQW embedded with PT symmetry in closed and open boundary con-

ditions. We derived the analytical and numerical solutions of the eigenvalue problem

for two-steps and three-steps of a one-dimensional DTQW, in finding the limit of PT

symmetry threshold. Additionally, we investigated the topological properties of the

non-unitary DTQW and.... The one-dimensional DTQW quantum walk (in which the

movement is only allowed on a line) has been experimentally implemented in a number

of different physical systems, ranging from neutral atoms in spin-dependent optical

lattices [69] to ions in a linear ion trap [70], from photons in arrays of evanescently

coupled waveguides [71] to optical setups with a fibre network, where additional opti-

cal amplifiers make it possible to control the effects of gain and loss [50]. We believe

that the results obtained in our study of the DTQW stimulate further developments

on PT symmetry of non-unitary time evolution operators, which has not been studied

enough yet, compared with non-Hermitian Hamiltonians systems.
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A. PHASE LOCKING IN ADJACENT SITES

% For the observation of the phase locking phenomenon ,

this code plots

% the phase difference of wave functions in adjacent sites

% and of the norm of the wavefunctions on each site.

clear;

tic

N=8; % number of sites

j=1; % tunneling parameter

gamma = 1.2*j; % gain strength parameter

tmax = 12;

m0=1; % gain location

m1=2*pi;

% Define a random initial state

r=rand(N,1);

psi0=exp(2i*pi*rand(N,1));

psi=r.*psi0;

% define the Hamiltonian

H1=zeros(N);

H1(m0,m0)=1i*gamma;

H1(N-m0+1,N-m0+1)=-1i*gamma;
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H2=full(gallery('tridiag ',N,-1,0,-1));

H = H1 + H2;

t=0:0.1: tmax;

A=zeros(N,length(t));

for k=1: length(t)

u=expm(-1i*H*t(k))*psi;

A(:,k)=u;

prob=abs(A).^2;

end

A1=angle(A);

B=diff(A1);

B=mod(B,m1);

% plot of the norms

figure

hold on;

plot(t,abs(A(:,:)));

xlim ([0 tmax]);

ylim ([0 1000]);

title('Norm of the wave functon per site');

xlabel('time t');

ylabel('u(:)');

prob = abs(A).^2;

plot(t,abs(A(4,:)));

plot(t,abs(A(3,:)));

%plot of the phase difference of adjacent sites

figure

hold on;
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plot(t,(1./pi)*(B(:,:)));

title('Phase difference between consecutive entry of u(t)'

);

xlabel('Normalized time Jt');

ylabel('\theta_i_+_1 - \theta_i ');

toc
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B. AVERAGE DISPLACEMENT IN DTQW

% This is the code for the plots of the average

displacement of the walker

% in different times frame symmetry , Fig. 4.8.

% Label x corresponds to the site index.

% Time evolution: U'=R(theta_1 /2)SR(\ theta_2)SR(\ theta_1

/2).

clear;

tic;

% Defining DTQW lattice parameters , coin -space basis and

projectors.

T=31;

N=31; % number of sites: choose odd for a symmetric

lattice.

xx=-(N-1) /2:1:(N-1) /2;%

vf=zeros (2*N,T); % DTQW state of the walker.

wf=zeros (2*N,T); % create ancilliary tracking for B=0.5

case.

X=[0 1;1 0];

Y=[0 -1i;+1i 0];



82

Z=[1 0;0 -1];

up =[1;0]; % basis element of the internal state

down =[0;1]; % basis element of the internal state

up1=(eye(2)+Z)/2;

down1=(eye (2)-Z)/2;

plus=(up+down)/sqrt (2); % symmetric state , eigenstate of X

.

minus=(up -down)/sqrt (2); % antisymmetric state , eigenstae

of X.

% The walker is localized on the central cell , and has a

coin -space

% wavefunction.

v=zeros(N,1);

v(floor ((N+1) /2))=1;

% state of the walker in the coin -space is arbitrary.

A=1/ sqrt (2);

B=0;

psicoin=A*plus+exp(1i*B*pi)*sqrt(1-A^2)*minus;

v1=kron(v,psicoin);

vf(:,1)=v1;

psitrack=A*plus+exp(1i*0.5* pi)*sqrt(1-A^2)*minus;

w1=kron(v,psitrack);

wf(:,1)=w1;

% Defining the shif operator that moves the walker to

right or left. Use

% PBC for a unitary shift operator.
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a=ones(N-1,1);

a1=diag(a,1);

a2=diag(a,-1);

a11=zeros(N);

a11(1,N)=1;

a22=a11 ';

s=kron(a2+a11 ,up1)+kron(a1+a22 ,down1);

% Define the measurement -loss operator with 0<=p<=1. The

plus -initial

% coin -state may be needed for the loss protocol to work.

p=1;

g=sqrt(1-p);

g00=(plus*plus ')+g*(minus*minus ');

g0e=sqrt(p)*(minus*minus ');

g0=kron(eye(N),g00);

gf=kron(eye(N),g0e);

% Coin operator is defined by two angles. Vary theta_1

only for PX work.

% U'=R(theta_1 /2)SR(\ theta_2)SR(\ theta_1 /2).

theta2=pi/2;

coin2=expm(1i*theta2*Y/2);

c2=kron(eye(N),coin2);

tt1 = -1:0.01:1; % theta_1 range in units of pi, for the

coin operator.

deltax=zeros(length(tt1) ,1);

dwellt=zeros(length(tt1) ,1);
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deltatrackx=zeros(length(tt1) ,1);

dwelltrackt=zeros(length(tt1) ,1);

%time -evolve the wavefunction for T steps and then extract

various weights

%for ranging over all values of theta_1.

for aa=1: length(tt1)

theta1=tt1(aa)*pi;

coin1=expm(1i*theta1*Y/4);

c1=kron(eye(N),coin1);

u=g0*c1*s*c2*s*c1; % Propagator of negative

measurement

uf=gf*c1*s*c2*s*c1; % Propagator that defines the

final state

for bb=2:T

vf(:,bb)=u*vf(:,bb -1);

wf(:,bb)=u*wf(:,bb -1);

end

vf1=uf*vf;

wf1=uf*wf;

vff=abs(kron(eye(N),down) '*vf1).^2+ abs(kron(eye(N)

,up)'*vf1).^2;

wff=abs(kron(eye(N),down) '*wf1).^2+ abs(kron(eye(N)

,up)'*wf1).^2;

% add the coin -space down and up weights.
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% calculate space -time averages for N and L

sectors.

deltax(aa)=sum(sum(xx '.* vff));

dwellt(aa)=sum(sum ((1:1:T) '.*vff '));

deltatrackx(aa)=sum(sum(xx '.* wff));

dwelltrackt(aa)=sum(sum ((1:1:T) '.*wff '));

end

diffx=deltax -deltatrackx;

difft=dwellt -dwelltrackt;

toc;
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C. PHASE DIAGRAM OF THE PT-BREAKING

THRESHOLD

% Code for the phase diagram of the PT-breaking threshold

as a function of

% the gain location.

clear;

tic;

J=1; % tunneling parameter

Loc =1; % location of the gain

N=110; % number of lattice sites

all=zeros(1,floor(N/2));

% take a loop over all possible location of the gain

for m0=Loc:Loc:floor(N/2)

m0bar=N+1-m0; % location of the loss

d=zeros(N,1);

d(m0 ,1)=1i;

d(m0bar ,1)=conj(d(m0 ,1));

H0=full(gallery('tridiag ',N,-J,0,-J));

CHAT =0;
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gamma =0;

deltagamma =1.e-3;

while(CHAT ==0)

gamma=gamma+deltagamma; %gain/loss parameter

H=gamma*diag(d)+H0;

D=eig(H);

maxerror=max(abs(imag(D)));

if(maxerror >1.e-8)

CHAT =1;

end

end

index=m0;

all(:,m0)=gamma;

x=linspace(0,m0/N,floor(N/2));

end

plot(x,all)

toc;
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