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ABSTRACT

Li, Z. Ph.D., Purdue University, December 2019. Coping with Limited Data: Machine-
Learning-Based Image Understanding Applications to Fashion and Inkjet Imagery.
Major Professor: Jan P. Allebach (School of Electrical Computer Engineering).

Machine learning has been revolutionizing our approach to image understanding

problems. However, due to the unique nature of the problem, finding suitable data or

learning from limited data properly is a constant challenge. In this work, we focus on

building machine learning pipelines for fashion and inkjet image analysis with limited

data.

We first look into the dire issue of missing and incorrect information on online

fashion marketplace. Unlike professional online fashion retailers, sellers on P2P mar-

ketplaces tend not to provide correct color categorical information, which is pivotal

for fashion shopping. Therefore, to assist users to provide correct color information,

we aim to build an image understanding pipeline that can extract garment region

in the fashion image and match the color of the fashion item to a pre-defined color

categories on the fashion marketplace. To cope with the challenges of lack of suitable

data, we propose an autonomous garment color extraction system that uses both clus-

tering and semantic segmentation algorithm to extract the identify fashion garments

in the image. In addition, a psychophysical experiment is designed to collect human

subjects’ color naming schema, and a random forest classifier is trained to given close

prediction of color label for the fashion item. Our system is able to perform pixel level

segmentation on fashion product portraits and parse human body parts and various

fashion categories with human presence.

We also develop an inkjet printing analysis pipeline using pre-trained neural net-

work. Our pipeline is able to learn to perceive print quality, namely high frequency
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noise level, of the test targets, without intense training. Our research also suggests

that in spite of being trained on large scale dataset for object recognition, features

generated from neural networks reacts to textural component of the image without

any localized features. In addition, we expand our pipeline to printer forensics, and

the pipeline is able to identify the printer model by examining the inkjet dot pattern

at a microscopic level. Overall, the data-driven computer vision approach presents

great value and potential to improve future inkjet imaging technology, even when the

data source is limited.
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1. INTRODUCTION

Image understanding problem aims to extract information of objects or understand

the scene of the image. Thanks to the recent development of consumer camera and

speciality camera, image understanding problem has been drastically expanded to a

much broader spectrum.

On the one hand, some research efforts focus on image semantic understanding,

that is to extract characteristics or information from the semantic objects in real world

images. This has been one of the most active research fields in the computer vision

disciplinary, covering topics from autonomous driving to cancer cell identification.

Another school of image understanding research is focused on analyzing and im-

proving imaging technologies by studying the configuration and characteristics of

imaging devices. One of the most interesting developments is using image under-

standing to improve cell phone camera image quality. For example, equipped with

the capability of analyzing the scene, modern Image Signal Processing (ISP) pipeline

can reduce noise under low-light shooting and create bokeh effect for portrait photos.

And this is just a facet of how imaging engineers are rethinking and revolutionizing

traditional ISP across the modern imaging industry.

Thanks to the recent development on neural network and large scale image datasets

like ImageNet [1] and COCO [2], neural networks have become a very prominent so-

lution for image understanding problems for its supreme accuracy and great compat-

ibility for hardware acceleration. Fig. 1.1 shows the ground breaking performance

improvement on image classification and localization led by AlexNet [3] in 2012. Since

then, an astronomical amount of interest has been invested into developing neural-

network-based image understanding research.

It is acknowledged that large amount of training data plays a crucial role in build-

ing machine learning or deep learning models. Large dataset usually contains larger
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Fig. 1.1.: The evolution of best result in ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) from 2011 to 2012 [4]. 2012 winning submission, AlexNet, im-

proves the classification error by 10%.

variation and diversity within the dataset, encouraging the model to improve gener-

alization capability. Smaller datasets also tend to be imbalanced, meaning certain

classes are much less represented. This will allow the model to be ”utilitarian”, omit-

ting the importance of certain under-represented classes in favor of most frequent

class.

However, for a particular image understanding problem, it can be hard to find and

build suitable datasets in such a large scale. For instance, medical imaging datasets

often only contains hundreds or even dozens of images due to the privacy issues and

the cost of annotation collection. It is critical to study machine learning models with

only limited data provided.

In this work, we aim to build image understanding algorithms for fashion and

inkjet imagery with limited image data. In Chapter 2, we present the problem of

identifying the color of the garment in online fashion images for online fashion mar-

ketplace, and Autonomous Garment Color Extraction System is proposed. Section
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2.1 illustrate the importance of understanding the color in a fashion image, and re-

lated research fields are reviewed in Section 2.2. We specifically highlight the fact the

difference between garment parsing (not necessarily having human body involved)

and human parsing (with human body involved) and the reason a less data-driven

method is desired. To deal with garment parsing without human body, in Section 2.3

and Section 2.4, our traditional image processing solution uses manually engineered

features and a novel clustering method to extract the garment pixels from fashion

images. As a compliment to the traditional image processing method, in Section 2.5,

we adapt Multiple Human Parsing dataset, and use semantic segmentation networks

to identify different fashion pieces utilizing the human body cues.

To extract the garment color and map the color into a verbal color description,

in Section 2.6, we study existing color naming theories, especially fashion color nam-

ing theory. We conclude that, compared with traditional color naming method, a

machine-learning-based color naming method is better at adapting the fast changing

nature of fashion naming trends and capturing the subtle difference between some

of the fashion color names. In this section, we design and conduct a psychophysical

experiment called Reversed Color Naming Experiment to collect how human subjects

associate color names with color appearances. Then, we build a random forest classi-

fier trained on our collected data to map a CIEL*a*b* color coordinate to predefined

color name. Finally, we present our pipeline integration and results in Section 2.8.

Then, in Chapter 3, we are showing another approach to leverage the power of

neural networks without intensive training for image understanding tasks. In this

chapter, we are aiming to build image processing pipelines to analyze Inkjet imaging

systems. Our objectives are:

• To characterize the image quality of inkjet prints, specifically graininess noise

in the inkjet printing.

• To develop a inkjet printer forensic system that can predict the source printer

by looking at the printed dot patterns in the microscopic level.
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In Section 3.1, we illustrate the importance of printer forensics, as well as devel-

oping new image analysis pipeline for printing quality analysis. Next, Section 3.2

revisits recent development of neural networks on image processing, particularly on

image quality and printer forensics. The next two sections 3.3 and 3.4 dive into each

project respectively and explain how we use neural networks to do image recognition

without training the network. Our evaluation shows robust performance on for both

forensics and image quality tasks.

In the end, we readdress the problem proposed in our work – the challenges of build

image processing algorithms with machine learning where data is limited. Chapter

4 summarizes different approaches developed in our work, and our contributions and

conclusions are drawn in our closing statement.
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2. AUTONOMOUS GARMENT COLOR EXTRACTION

SYSTEM USING MACHINE LEARNING

2.1 Background Overview

Online shopping is an exponentially growing market. Retail sales world-wide,

including both in-store and inter- net purchases, totaled approximately $22.5 trillion

in 2014, with $1.316 trillion of sales occurring online. By 2018, ecommerce retail

spending is projected to increase to nearly $2.5 trillion1 [5]. Online marketplace not

only has changed our lives with its convenience and huge diversity of products and

services, but also cultivated a number of e-commerce giants. However, in recent times,

public attention has switched to Peer-to-Peer (P2P) business model from traditional

Business-to-Customer (B2C).

The P2P online marketplace allows its users to post and sell their items to other

users on the platform, and P2P economy has been growing rapidly since PayPals

acquisition by online retailer eBay in 2002. However, the traditional P2P e-commerce

marketplace also became the disreputable nest of Internet fraud because the sellers

were usually anonymous, the information is incomplete and messy as listed in ta-

ble 2.1. Thankfully, modern P2P marketplace has evolved into a much advanced and

specialized form: first, specialized marketplaces on particular markets like Airbnb (a

service that allows users share the surplus space in their properties with travelers for

profit), Uber (a ride sharing service), or Poshmark (a fashion marketplace that users

can trade clothes and other fashion items) are thriving; second, by connecting to so-

cial networks, users can obtain a better knowledge with each other via checking each

other’s social profiles; third, these modern P2P websites are more positioned to be

1http://www.emarketer.com/Article/Retail-Sales-Worldwide-Will-Top-22-Trillion-

This-Year/1011765
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everyday users’ selling platform with lower entering barrier by developing easy-to-use

mobile applications.

Despite the fact that improvement and progress has been made to the P2P econ-

omy, most P2P e-commerce websites only maintain the web services and provide

marginal services to the users. This creates a more friendly and easy-to-use atmo-

sphere for both shoppers and sellers, leading to a more dynamic shopping experience.

However, it also creates some problems due to the lack of management and details.

Some of the information provided by average sellers is not correct, and some prod-

ucts are missing some very important information. This type of problems often cause

miscommunication or publicity issues, leading to a slower sale performance or worse

shopping experience.

Hence, an Artificial Intelligence (AI)-based shopping/marketing assistant is highly

anticipated by the sellers and the service providers. This type of the assistant should

be developed to

1. identify the item the sellers are selling based on the users’ input

2. capture and understand the features of the listed item

3. fill out the missing information automatically from given information

4. correct the users’ potential mistake if necessary

5. improve the quality of the users’ listings if possible

This chapter provides an overview of the project achieved and proposed by this

research. Section 2.1.1 takes a closer look at the how color information is managed

on fashion online marketplace, and we analyze some of case where the color misinfor-

mation occurs. Our accomplished work to solve this problem is highlighted in part

2.1.2.
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Table 2.1.: Comparison on information organization on between B2C and P2P

Model B2C P2P

Visuals

• Shot in professional settings

• Professional camera deployed

• Models and mannequins

• Balanced and ample lighting

• Shot in household

• Most commonly cell phone

camera

• Hangers, self-modeled or none

• Various lighting

Texts

• Accurate categorization

• Specific details are provided

• less missing fields

• Wrong categorization

• Less details and vague de-

scriptions

• More missing fields

Management

and Moderation • Well managed and updated by

professional teams. Regula-

tions and restrictions are en-

forced.

• Listings only include sale re-

lated information.

• Managed by sellers, minimum

interference from the website

• Listings may include informa-

tions for other purposes: net-

working/self promoting, sale

events, and other advertise-

ment or even spam.
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2.1.1 Color Management on Fashion P2P Marketplace

As stated in the introduction, information organization has been a critical chal-

lenge for the online marketplace. Unfortunately, for fashion market, these problems

on information organization also persist. For example, as one of the most defining

features of a fashion product, color information on P2P websites is not always pro-

vided by the sellers, and sometimes the color information provided by the sellers can

be inaccurate.

• Incomplete or inaccurate user input. Incomplete user input includes two

kinds: first, sellers might simply forget or omit the part of inputing item’s

color(s). Another scenario is that sellers fail to report the full spectrum of the

color. An example is given in fig. 2.1, in which only one of three colors is labeled

by the user. There are also some cases where the sellers provide the wrong color.

Inaccurate input is less likely to happen compared with incomplete input, but

both of these two cases are frequent enough to influence overall site searching

accuracy hence to effect the selling/shopping experience.

• Photography color inconsistency. This means that the color shown in the

images does not agree with the color information provided by the seller, or the

real colors of the item. Fig. 2.2 shows an example of color inconsistency. This

can be caused by undesirable lighting condition, the device’s color reproduction

capabilities, or additional photo post-processing done by the user. Note that

some of the colors have very similar appearance, for example, black v.s. navy

blue, pink v.s. cream white, and gold v.s. yellow. In this case, it is hard

for human viewers to distinguish the fine difference of the colors by looking at

a single color patch. A reference color is usually recommended to get more

accurate color perception.

Hence, there are several factors that come to our attention to improve the quality

of the color information. First of all, a more user-friendly is hard to control the
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Fig. 2.1.: Example of the case of incomplete color input. In this listing, based on

the images provided by the user, the colors input should be white, black, and cream.

However, only cream color is marked. Source:Poshmark.com.
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Fig. 2.2.: Example of the case of photography color inconsistency. In this listing, the

seller (overmars6) is selling a dress of red and blue stripes, however due to various

reasons, the blue strips appear closer to black. Source:Poshmark.com.
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quality of the fashion photography. Previously we have done research to develop an

SVM based aesthetic quality predictor to assess the aesthetic quality of an image.

Therefore, we would like to design a fashion image understanding system that

can autonomously identify the garment region from a fashion image and extract the

garment color. This result can be used to fill in some missing information on the

website, and also allows user to reflect how accurate their photos and information

are.

2.1.2 Accomplished Research Works

We propose the Autonomous Garment Color Extraction System to extract color

from the fashion portrait image, shown in Fig.2.3. Our proposed structure has so far

achieved the following contributions:

• A novel semantic segmentation structure with pixel-level accuracy

based on unsupervised learning methods.

Heuristically, supervised machine learning method is capable of producing more

accurate semantic segmentation results. With recent exponential growth of deep

neural network theory, the segmentation result on generic images produced by

these new classifiers has been further improved. However, one of the major

drawbacks of most of supervised learning methods is that a large dataset is

desirable as it tends to improve the classification performance. This is especially

true in the case of neural networks, where a huge amount of labeled ground

truth is required. The pros and cons of these method will be further discussed

in Section 2.2. For our research on images on fashion marketplace, we study and

discover some of the common traits that are shared by these studied images.

Therefore, a simpler yet effective structure aimed to fashion product images is

built based on the features at the mean time to reduce the requirement of labeled

training data. We believe that despite of the unignorable success of the recent

applications of the deep neural network, it is possible to use computer vision
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based features to develop a classifier with certain types of semantic segmentation

performance.

• Study the fashion color naming system and create a computational

color model to extract the color.

In this system, we use the Gaussian Mixture Model to extract the dominate color

in the garment region, and matching the garment color with a color description.

As discussed in detail in the Section 2.2, most of the previous works, that

are related to assign a descriptive phrase to a certain color coordinate, are

focused on how to name a color in a systematic way with universal dictionary.

Specifically for color naming in fashion domain, few work has been done to look

into the process that maps color coordinates to words, as most of the fashion

retailing business names the color of the product before releasing the products to

the market. Therefore, our research finds some of the potential problems in the

P2P online fashion marketplaces, and provides a preliminary color categorizing

system based on different natures of the colors.
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Fig. 2.3.: An overview of the Autonomous Garment Color Extraction System

(AGCES). The system utilizes the segmentation, and use engineered features to select

garment region. The final segmentation mask is used to find the color of the item.
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2.2 Related Work

As stated in the previous section, in order to extract the color from the garment in

the image, we need to find the garment region in the image first. This task falls into

the category of semantic segmentation, where each pixel of an image is labeled with

a physical meaning corresponding an object class. After we retrieve the pixel values

of the garment region, we will be able to use color matching algorithm to assign the

correct label to the color, hence name the color of the garment. In this chapter, we

provides overview on previous works on related research fields, namely image semantic

segmentation, fashion image understanding and color naming analysis.

2.2.1 Semantic Segmentation

Semantic segmentation, also known as scene parsing, is one of the most studied

image understanding problems. Unlike unsupervised image segmentation, which aims

to partition an image into coherent small regions according to the low-level cues

including color or other proximity [6], semantic segmentation requires the algorithm

to understand the image, and classify each pixel of an image into one of the several

predefined object classes [7], and has been studied and highlighted for long time due

to the fact that more applications nourish from inferring knowledge from imagery [8],

including autonomous driving [9–11], medical imaging [12] and more.

Prior to the recent exploding computer vision applications of Convolution Neu-

ral Networks (CNNs), the most common approach to the semantic segmentation

problem was to use Conditional Random Fields (CRFs) [7, 13]. Shotton et al. [14]

designed a texture-layout filter and proposed a discriminative model based on con-

ditional random field to capture the spatial interactions between labels. Schroff et

al. [15] introduced a pipeline that uses Random Forests on class based pixel-wise

segmentation by combining spatial context and discriminative classifiers. Verbeek et

al. [16] introduced a method based on learning CRFs considering both local features

and contextual features from datasets that are not fully labeled. However, these tra-
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ditional computer vision scene parsers are limited by the structure of the classifiers,

and it is difficult to engineer capable image features to work on all the scenes.

CNNs and recent high-performance computing system development enable image

recognition research to achieve new state-of-art performance. Krizhevsky et al. [3]

train a ImageNet network with 1.2 million images to do classification for 1000 differ-

ent classes. Simonyan et al. [17] investigate the performance of the network regarding

various network depths, hence improve the performance on the ImageNet Large Scale

Visual Recognition Challenge (ILSVRC) [18]. Szegedy et al. [19] developed a deeper

and wider network GoogLeNet, further improved the ILSVRC14 classification result.

These recent success proves that neural networks are capable of recognizing compre-

hensive scenes, but it would not produce pixel-wise semantic labeling result.

Long et al. [20] re-structured the Convolutional Network to direct, dense predic-

tion of semantic segmentation. This Fully Convolutional Network (FCN) structure

provides an end-to-end learning solution to semantic segmentation problems. How-

ever, like any other supervised learning methods, these neural network based methods

are limited by the ground truth and the predefined class. Although most of the pop-

ular datasets include many instances of humans, the datasets that include different

clothing information are relatively rare. In next section, more research on fashion

image understanding and fashion image segmentation is briefly examined.

2.2.2 Fashion Image Understanding

Fashion understanding has been a very popular topic recently, not only because

of the growing fashion industry that is estimated to be worth 2.5 trillion dollars

in next four or five years [21], but also because clothing understanding can be an

important clue of many human-centric research and analysis. Some of the current

advanced methods include clothing semantic attribute summarization [22–25], fashion

landmark detection [21,26] and trending discovery [27–29]. And one of the most active

topics is clothing retrieval.
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Recognizing clothing is a challenging problem because of the wide variation of

clothing appearance, layering, style and interaction with human body. However, some

progress has been made to pursue the goal. Some recent practices combine visual cues

from human body detection and fashion landmark localization. A popular approach

is to train a bounding box detector to find the garments in the image [5, 30]. Fu

at el. [31] introduced a pipeline that uses the human parts as semantic parts, and

encodes semantic context into the Bag-Of-Words (BOW) model to label pixels of

the garment. Kalantidis et al. [32] utilized the pose estimation, and segmented and

classified the garments based on the pixel position related to the human body using

a multi-probe locality-sensitive hashing (LSH) index.

In addition, for pixel-wise clothing parsing, Yamaguchi et al. [33] developed a

clothing parser based on pose estimation and CRF based on the Fashionista dataset.

More recently, Yamaguchi et al. [34] proposed a framework to produce pixel-wise

labeling by analyzing images that are similar to the query image.

One of the challenges is that there is not a sufficiently generic public fashion

dataset available for fashion semantic segmentation. Most of the datasets are similar:

street shots with full or part of human body. Xiao et al. [35] developed Fashion-

MNIST data set that consisting of more than 60,000 28x28 grayscale images. Each

image has a label from 10 classes including T-shirt, Trouser, Pullover, etc. More

comprehensive, Liu et al. [25,26] developed a dataset that contains more than 800,000

real-life fashion images mostly for bounding box and fashion landmark localization.

Fashionista dataset [33] includes 158,235 photos and labeled pixelwise by human

subjects. However, this dataset only has images with full human body modeling the

garments.

2.2.3 Color Naming System

Many computer vision research and applications have been done using color in-

formation of the image or the video, yet, it is still under development the ability or
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complete theories to name individual colors, pinpoint objects of specific colors, and

communicate the impression of a certain color composition [36]. Color interpretation

is highly convoluted with the image content, and other factors like human perception,

culture and linguistics. Therefore a flexible computational model for color categoriza-

tion is desired. Some of challenges unaddressed include:

1. The critical problem of color categorization is the definition of the basic colors

that are considered ”most representative”. These colors are prototypical colors,

and they are the foundation of the different color categories.

2. Another open issue of building a color categorization system is generalization

from the prototypical ones to non-prototypical ones.

3. There are also difficulties capturing color appearance from a complex scene or

interpreting from human viewers’ description.

As stated above, color perception and description is a multi-disciplinary cross-

cultural research topic. Linguists and Psychologists have made many efforts to un-

derstand the mechanism of color naming. Berlin and Kay [37] investigated 20 lan-

guages by experiments and another 78 through literature review, and defined 11 basic

terms in English: black, white, red, green, yellow, blue, brown, pink, orange, purple,

and gray. Berlin and Kay also discovered that human subjects perform better at

pick ”representative example” for each of the color terms than in forming clear de-

cision boundaries between these terms. This theory enables the definition of focal

colors, which represent the centers of color categories, and the hypothesis of graded

(fuzzy) classification [36]. Based on the fuzzy membership theory, Kay and McDaniel’s

model [38] defined the color categorization based on fuzzy set theory by giving a cer-

tain color a degree (from 0 to 1) of belonging a certain set. This means that the focal

color of each color set has the degree of 1 of belonging its corresponding color set,

and other non-focal colors’ membership degrees decrease according to the distance

from the focal color in some color space. However this model only considered four
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sets of colors (red, green, yellow, and blue), and it does not include the solution on

nonspectral basic color such as brown, pink and gray. Despite the fact that the uni-

versally proper and accurate wording is still an ongoing research topics in linguistics

and psychology, in real life situation there are some color naming and notation stan-

dards implemented. In this section, we first look into general Color Naming Systems

(CNSs) and color describing dictionaries, and then we review how color information

has been managed in fashion industry and related research.

Color Naming Standard

Although many well defined numerical color spaces have been developed, and

these methods have been proved to be effective in terms of most of color-related image

processing and computer graphics tasks, in everyday life the most common way to

communicate about color is through verbal description. Thus Color Naming System

is desired to transform information from color spaces to color names. So far there are

several proposed work mapping color coordinates to verbal description. One of the

most commonly used color naming system is Munsell color standard [39]. Munsell

Color System was developed in the late 1800s by Albert Henry Munsell2. It has been

widely used in paint and textile production [36]. However, this proposed system is

lack of the color vocabulary and exact transform from any color space to Munsell.

Miyahara [40] improved the Munsell system by proposing a transform from CIEXYZ

to Munsell system, however it is not always accurate in certain regions in CIEXYZ.

To expand the vocabulary of the color naming system, Maerz and Paul [A Dictionary

of Color] developed the first version of color naming dictionary including 3000 English

words and phrases, and later, The National Bureau of Standards published a more

detailed dictionary including 7500 different names that has been used in specific fields

such as biology, textile, dyes and paint industry. However, both dictionaries are not

organized in a systematic way, which makes the generalization more difficult. To

2http://munsell.com/color-blog/munsell-color-order-system-what-is-it-and-how-is-

it-used/
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address this issue, NBS developed ISCC-NBS dictionary of color names according to

the recommendation of Inter-Society Council. ISCC-NBS includes color names for 267

regions, and all the terms are sorted by the dimension of the color space: hue, lightness

and saturation. This system divides the lightness into 5 levels (very dark, dark,

medium, light and very light), and 4 levels for saturation (grayish, moderate, strong,

and vivid), and three terms that consider both lightness and saturation (brilliant,

pale, and deep). ISCC-NBS also expands to 28 basic sets (red, orange, yellow, green,

blue, violet, purple, pink, brown, brown, olive,black, white, and gray).

Some other alternative systems have been proposed as well. An extension of

the CNS model is color naming method (CNM). This was originally proposed by

Tominaga [41]. This method utilizes a predefined set of color names in the Munsell

color space, and proposes a method to map pixel values to specific color names using

coptical measurement system. The color names in this method are specified at one

of four accuracy levels (fundamental, gross, medium, and minute) so that names

from the higher accuracy level correspond to smaller color regions in the Munsell

space [36]. However, there are some drawbacks: nonstandard vocabulary used in the

system increases the difficulties mapping to standard color names; the color space

conversion is beyond the closely controlled setting in CNM. Lammens [42] proposed

a color categorization system based on Gaussian normal distribution. Belpaeme [43]

built a another color categorization framework based on the notion of color primitives

surrounded by color regions with fuzzy boundaries and modeling via adaptive radial

basis function networks [36]. Mojsilovic [36] studied the National Bureau of Standards’

color recommendation for color names and developed a new set of vocabulary and

syntax, and a new perceptually based color-naming metric was proposed to match an

arbitrary input color to a color name.

3Photo credit: https://www.policymap.com/2015/08/color-me-curious-why-policymap-

maps-are-purple/
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Fig. 2.4.: Munsells cylindrical color tree: the radius from the center to the peripheral

represents chroma (saturation), the line in the center represents value (lightness) and

the circle represents hue.3

Fashion Color Analysis

For color management in fashion industry, unlike other industries, where color

names usually are given based on the color appearance, most of the fashion color

naming are done by the manufacturers individually before products are released.

Other than that, seasonal trending color names are also predefined by the team at

the Pantone Color Institute in Pantone Fashion Color Trend Report [44] every season.

However, these color naming practices do not use any standard color naming dictio-

nary, only consider trending colors, and changes constantly by the season. Besides,

these names are commonly used among fashion experts and high-end fashion brands,

yet it is not a standard and universally recognized color naming system by all the

fashion manufacturers.

However, there are several research topics has been conducted to do color mapping

from color coordinates to color names by viewers. Most of the clothing attribute

classification research we present in the previous section uses different sets of color.

Deep Fashion dataset [25] uses 10 color set with cyan and blue covering different
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shades of blue. Bossard’s dataset [22] has 13 color pre-defined with non=protypical

color teal and beige.
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2.3 System Overview

2.3.1 Bound the Problem

When it comes to fashion image analysis, it comes as no surprise that there is a

huge variety of fashion images on the online fashion marketplace. Some of the images

have very complex combinations of fashion items, many layers of clothings and other

accompanying objects in the image. These images are usually designed and produced

professionally or delicately, and they usually have higher aesthetic quality. However,

for this type of images, as discussed in the previous section, traditional feature based

machine learning is hard to achieve the semantic segmentation to identify different

garments in pixel level accuracy. Therefore, in this case, only product portraits are

considered in this research.

Product portraits are images that only feature the target items, in our case, the

items that sellers want to sell. This allows the users to use some other items to

”decorate” the image in a limited extent, as long as the item for sale is staged for the

highlight.

Some examples of product portraits and its counterexample are given in fig.3.8.

Our system is design to process images like (b) and (c).

2.3.2 System Overview

As motivated before, we propose a system that autonomously extracts the color

of the featuring garment from a fashion image. As shown in fig.2.6, this autonomous

color extraction system can be divided into three modules: the segmentation module,

the grouping module, and the color processing module. Segmentation module takes

the input image and cut into smaller segments that share similar characteristics; the

grouping module uses the segmentation information, calculates the features of each

segments, and groups them into two classes: garment and non-garment region. The

last module is deployed to extract the color information, and to transfer numeric color
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(a) (b) (c)

Fig. 2.5.: Source: Poshmark.com. This is a set of example images of fashion photo.

All three images are posted by the same Poshmark seller in the same listing to promote

the necklace, but in (a) the promoted item is overshadowed by the pink dress. Other

two, (b) and (c), directly highlight the target item.
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Fig. 2.6.: The pipeline of Autonomous Garment Color Extraction System (AGCES).

coordinates into descriptive words, such as ”blue”, ”pink”, or ”white”. All modules

will be explained in the following sections.
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2.4 Image Segmentation

2.4.1 Over Segmentation

In this module, we decompose a given image into smaller perceptually homoge-

neous segments. By doing this the computation and complexity of the algorithm is

reduced. We propose the image segmentation structure that is prone to preserve edge

in the image, and sensitive towards both color and texture.

We use SLIC superpixels [45] to abstract the image into perceptually uniform

elements. SLIC algorithm calculates pixel perceptual distance in LABXY space, and

deploy K-means to group similar pixels together as a superpixel. By combining both

color and spatial information, SLIC superpixels are local, compact and edge aware.

Because of the nature of the SLIC superpixels, the algorithm tend to render noisy

superpixels where lines and edges congregate. Therefore, we adapt preprocessing

steps to the image proposed by Wang et al to smooth the image before superpixel

segmentation. Some result comparison is given later.

We further apply the graph-based image segmentation techniques to further group

superpixels together. In this kind of problems, an image is represented as a graph

G = (V ,E), where each vertex v ∈ V is a superpixel within the image, and the edges

in E is the similarity between two neighboring superpixels. A weight w is associated

with each edge based on the certain properties or criteria.

In more generic situations, the graph representation usually considers color dif-

ference between two neighboring superpixels as the only aspect of the edge weight.

For fashion images, however, with the goal of accentuating the different fabrics or

materials, we update the weight using a new method developed by Wang at al.This

method combines texture difference and color difference by calculating Local Binary

Pattern (LBP) within 3x3 neighborhood and CIE∆E. The standard CIE∆E 1976

is used to calculate the color similarity measurement between average colors of two

neighboring superpixels,
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Dcolor =
√

(L1 − L2)2 + (a1 − a2)2 + (b1 − b2)2,

where [L1, a1, b1] and [L2, a2, b2] are two different colors. Next we need to determine

the texture measurement, LBP.

The LBP an be calculated based on every pixel in each superpixel. For pixel p

and its corresponding superpixel sp, if all the surrounding pixels of p are also in sp,

do following:

1. Compare the L values of each surrounding pixel with central pixel in a clockwise

order. If neighboring value is greater or equal to the central value, then output

is 1, otherwise 0

2. Concatenate the binary results and form an 8-digit binary number

3. Convert the 8-digit binary number into a decimal number.

After getting all the decimal numbers of the eligible pixels within the superpixel, a

histogram is sampled into 9 bins and normalized. The final vector of normalized

occurrences from the histogram is the LBP vector.

After combining both texture and color measurements, we are able to produce

the new edge weights, and hence deploy Normalized Cut to composite the graph into

segments. The segmentation results and comparisons are given in fig.2.7.

In the picture of jeans, some noisy residual segments are rendered right below the

folded part. And the preprocessing (shown in the second row) eliminates such noisy

regions. However, there are also some other drawbacks from the smoothing. For

example, for the picture of bra, the segmentation results without smoothing shows

more fidelity towards the original object edges. As for the texture, In the picture of

a lady with sunglasses, the texture of the background has been preserved thanks to

LBP algorithm.
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2.4.2 Segmentation Grouping

The group module is used to group all the segments into two groups by determining

whether each segment should be in background or in the garment region. This can

be further divided into two steps: to design discriminative features to differentiate

garment and background as much as possible; to use the calculated features to make

decision.

(a)

(b)

(c)

(d)

Fig. 2.7.: The segmentation results. Row (a) is the original image; row (b) is the

images with preprocessing and LBP as texture cue; row (c) is the images without

preprocessing; row (d) is images with regular RAG, without preprocessing and LBP

as texture cue.
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Feature Engineering

After we investigate many fashion product portraits, there are some features that

can be generally applied to all fashion product portraits:

1. Fashion images, especially for product portraits, generally highlight the texture

of the fabric or any other materials. Therefore, garment regions should have

higher amount of high frequency details compared with non-garment regions.

2. Garment region usually also has greater contrast from the background region. []

3. Spatial information is also very important for product portraits, and it usually

locates at a certain part of the image.

4. Color information and other low level information are very important as it can

keep the classification results perceptually homogeneous.

Therefore, as shown in tab.2.2 we design four sets of measurements: Laplacian

feature set, Perrazi contrast feature set, spatial feature set, and low level feature set.

Among all four feature sets, the low level features are easy to obtain by averaging

pixel values in CIEL*a*b space and XY space, respectively. Thus these two features

will not be covered in full detail.

Laplacian Feature Set

Fashion product portraits are shot to present the fine details of the garment, there-

fore capturing constructive high-frequency details of the image can help determine

the garment region.

Since the Laplacian pyramid can also catch image details at different scales, we

adopt the Laplacian power summation features proposed by Wang at al [46], and a

2-level Laplacian pyramid is built and the pixels of Laplacian images are represented

by their absolute values to focus on the detail strength. One example is shown in

fig.3.1, and black or darker pixel mean the Laplacian difference at that position is

low.
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Table 2.2.: Feature Symbols

Feature Sets Feature Names Symbol

Laplacian
1st Order Laplacian L(1)

2nd Order Laplacian L(2)

Perrazi
Color Uniqueness U

Distribution D

Positioning

1st Boundary F(1)

2nd Boundary F(2)

Standard Deviation E

Low Level
Mean Color Values –

Centroid Position –

First, we calculate the Laplacian power images L(1) and L(2) by generating first

and second Laplacian pyramid layers of the gray scale image and taking the absolute

value. For each pixel p, its corresponding Laplacian power in i-th layer L(i) is l
(i)
p .

Therefore for i-th segment, its k-th order Laplacian power L(k)
i can be calculated by

L(k)
i =

1

|C(k)
i |

∑
p∈C(k)

i

l(k)p

Where C
(k)
i is the set of pixels in k-th layer that belongs to segment i, and |C(k)

i |

is the number of elements of this set. Note that for second layer, we also down sample

the segmentation map to match the Laplacian image.

Results of Laplacian features for for some images are shown in fig.2.9 column (c)

and column (d) respectively.

Perrazi Feature Set

It is also intuitive that for fashion product portraits, the garment should be high-

lighted in a situation where great contrast is created.
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Perrazi et al. [47] proposed an algorithm that produces image saliency maps by

evaluating color contrast and distribution contrast. However, the perrazi contrast is

calculated in a superpixel level, therefore transform from superpixel level features to

segment level features is required. First, for i-th super pixel, the color uniqueness Ui

can be calculated by

Ui =
Ns∑
j=1

wp
i,j|ci − cj|2

where Ns is the number of SLIC superpixels in the image, wp
i,j is the Gaussian weight

related to spatial correlation between superpixel i and j. ci is the mean color coordi-

nates of the superpixel i.

The distribution of superpixel i is given

Di =
Ns∑
j=1

wc
i,j|pi − pj|2

where wc
i,j is Gaussian weight related to color correlation between two superpixels.

Both wp
i,j and wc

i,j are to yield local contrast term, which bring more sensitivity to

similar color-wise or position-wise superpixels, respectively. These terms are given as

(a) (b) (c)

Fig. 2.8.: Visualization of Laplacian pyramid first 2 layers. a is the original image,

and b is the 1st layer of Laplacian pyramid. Likewise c is the 2nd layer.
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wp
i,j =

1

Zj
exp

(
−
|pi − pj|2

2σ2
p

)
and

wc
i,j =

1

Z ′j
exp

(
−|ci − cj|2

2σ2
c

)
Note that Z and Z ′ are scalars for the purpose of normalization, which means∑Ns

j=1w
(p)
i,j = 1 and

∑Ns

j=1w
(c)
i,j = 1. Heuristically parameter σp = 0.25, and σc = 20.

Once the superpixel-level color uniqueness and distribution are obtained, we com-

pute the segment-level features. For segment i and its corresponding set of superpixels

C,

Ui =
∑
s∈C

ms

Mi

Us

and

Di =
∑
s∈C

ms

Mi

Ds

where ms is the number of pixels in superpixel s, and Mi is the total number of pixels

in segment i. The sample results for color uniqueness and distribution features are

shown in fig.2.9 column (e) and (f).

Positioning Feature Set

The first feature that we would like to look at is how close the segment is to the

image boundary. Although it is not a hard line, the garment region tends to locate

at the center of the image, or at least on the Rule Of Third guidelines. Therefore a

frame or boundary feature is developed to show how many pixels of a given segment

are close to the borders. For a segment i, a frame feature Fi can be described as

Fi = 1− |Fi|
Mi

where Fi is the set of frame pixels in the segment i, and Mi is the total number of

the pixel in segment i. When Fi → 0, more pixels inside of segment i are on the

boundary, and it is less unlikely to be a garment segment; when Fi → 1, fewer pixels

are on the boundary, and the segment is more likely to be in the garment region.

However, the question unanswered is how to define the boundary pixel.
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We use two different definitions of boundary for this task:

1. Circle boundary F(1): a pixel p is a boundary pixel if its euclidean distance

between p and the center of the image is smaller than a preset threshold r.

2. Box boundary F(2): a pixel p is a boundary pixel if its distance to the closest

border of the image is smaller than a preset threshold h.

F(1) is focused on the central area of the image, and it is prone to overlook the pixels

close to the corners; F(2) is closer to the image frames in real life, but less selective.

We use r = 0.3×min{W,H} and h = 0.1×min{W,H}, where W and H are the width

and the height of the image, respectively. Our experiment shows that a combination

of both F(1) and F(2) yields a better result.

We also want to use the standard deviation of each segment to measure the 2D

dispersion. For i-th segment, and the set of its pixels Si,

Ei =

√
1

|Si|
∑
p∈Si

(xp − xc)2 + (yp − yc)2

Where (xc, yc) is the coordinate of centroid. Compare with distribution contrast

D which considers the superpixel distribution and the color difference, standard de-

viation feature E is more focused on how the pixels of the segment are distributed

regardless other visual clues. Results for these clues on some fashion product images

are shown in fig.2.9 column (g), (h), and (i).

2.4.3 Processing Features

First step is to normalize the feature vectors. The original feature values have

different ranges. For example, as one of the feature, average L channel value in

CIEL*a*b* can range from 0 to 100, while a*, b* values can also be negative. Other

than that, the range can also be a variable. For example, the range of centroid

position, which is the average (x,y) coordinate, is determined by the size of the
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image itself. Hence, it would be unwise to input raw feature values without any

normalization into next step.

For a given feature vector V = [v1, v2, ..., vN ], where vi is the feature value of i-th

segment. The normalized feature vector V′ can be expressed by

V′ =
V−min(V)

max(V)−min(V)

Therefore all the feature values are restrained to [0,1], and their individual impact

to our grouping system is unified. Different weights can be multiplied to the normal-

ized feature vector to adjust the significance of a certain feature to achieve optimal

selection result. Our experiment shows that a most desirable result occurs when the

standard deviation feature E is scaled by 0.7.

As stated in the previous section of spatial feature set, a combination of two

boundary features is used in the final feature set. The circle boundary F(1) tends

to be more progressive than the box boundary F(2): it works well when the item is

exclusively lated at the center of the image, but for images with large garment pieces,

where the garment spread horizontally or vertically in the image, it cuts through the

garment region. Therefore in the final feature set we are only use the normalized

F (2) feature to do the clustering, as well as the inner product of both. The new inner

product feature F is defined as

Fi = F′(1)i × F′(2)i

For central segments and marginal segments, F performs similarly as F(1) or F(2), as

central segments always have fewest boundary pixels and marginal segments always

have most boundary pixels. In the transition area between image center and bound-

ary, F behaves more conservatively. Based on our experiment and testings, the weight

of this feature is set as 0.6.
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Fig. 2.9.: Features for segment grouping. (a) original image, (b) RAG segmentation

result, (c) 1st order Laplacian power L(1), (d) 2nd order Laplacian power L(2), (e) color

contrast U, (f) distribution D, (g) circle boundary indicator F(1), (h) box boundary

indicator F(2), (i) standard deviation E
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2.4.4 Segment Selection

Our final goal in this module is to produce a mask that only recognizes the garment

region. This can be seen as a pixel level binary classification task: every pixel in

the image should be labeled as either garment or non-garment. As stated in the

introduction section, pixel level image segmentation is mostly studied using supervised

statistical learning especially deep neural network. However, by utilizing the features

introduced above, we are able to approximate the segmentation results by clustering

algorithms.

This approach seems not as ”smart” as neural networks and other supervised

classification algorithm, and learning with ground truth heuristically performs better

as they utilize each data point individually. However, clustering algorithms allows us

to consider the correlation between segments within the given image, and there are

some characteristics of this clustering task:

1. Binary clustering. Each segment can be either background or garment region

2. Few data points. Heuristically, there are about 20 segments in an image

3. Even cluster size. The garment usually has a significant amount of pixels in

product portraits.

This can be used to select the clustering algorithm that fits this problem best.

However due to the nature of clustering algorithms, the clustering result is less pre-

dictable and stable. Therefore, we propose a semi-supervised learning structure.

First, we choose three different clustering algorithms to perform clustering, and gen-

erate three clustering results Θ(1), Θ(2), and Θ(3). combine

Θ(k) =
[
θ1 θ2 · · · θN

]
where N is total number of segments in the image, and for i-th segment, the

prediction from k-th algorithm is θ
(k)
i
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θ
(k)
i =

 1, garment

0, other

One unanswered question is what algorithms to use. Our goal is to fully utilize

the advantage of the majority vote schema, where different decisions from various

clustering algorithms can be combined to render the final decision. Therefore, we aim

to introduce different types of clustering algorithms in the selection schema. Here

we employ three different algorithms: meanshift algorithm, Kmeans algorithm, and

agglomerative clustering algorithm.

• Kmeans algorithm is widely used centroid-based algorithm. The objective of

the kmeans is to find k cluster that can minimize the average distance between

the data points and their corresponding centroids. Kmeans algorithm is one of

foundamental algorithms in image processing and unsupervised learning due to

its simplicity and effectiveness.

• Agglomerative algorithm performs a hierarchical clustering procedure by a bot-

tom up approach, and it is considered as a connectivity-based algorithm. The

linkage criteria is ward, which minimizes the sum of squared differences within

all clusters [48]. Although the standard algorithm for hierarchical clustering

has a time complexity of O(n3) and O(n2) memory. In our case, since the num-

ber of segments/data points in each image are usually small (about 20), the

agglomerative algorithm will be a good fit for our system.

• Meanshift clustering is a density-based algorithm and aims to discover blobs in a

smooth density of samples [49]. Due to its mode-seeking nature, meanshift tends

to find local maxima where highest density of the data points will be reached.

This characteristics can future help us to identify the outstanding segments

(outliers) inside the image or small garment items in the image, and it works

better with uneven dataset. However, mean-shift algorithm works with search

windows and does not need the number of clusters beforehand. Therefore, we
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preset the search window bandwidth to 0.3 quantile of the dataset and run the

meanshift algorithm. If the clustering result does not contain 2 clusters, we

adaptively update the bandwidth so that the final clustering results would be

binary.

We further show quantitative results of different clustering algorithms in later

section. In Fig. 2.11, we are showing that some results from our semi-unsupervised

segment selection method. Pseudo colors, red and blue, are overlaid on the image to

distinguish two different labels.

Unlike the supervised classification algorithms, the labels produced by the cluster-

ing algorithm usually only serve the purpose of separating different clusters, and they

do not have a meaning. Therefore the actual labels produced by three algorithms

might have different meaning and are not unified. Therefore we need to unified the

label meaning and make sure each label should be matched with our definition above.

We first find a pixel that can be used as a reference, which should be labeled as

background, and then examine all the labels to see if the produced label matches the

reference label. If not, we take the complement of the original labels as the new label.

To choose the reference pixel that is in most cases a background pixel, we inves-

tigated many portraits photographs and found out that for image composition, most

important objects are aligned with or on the baroque diagonal, which is from the

lower left to upper right corner. Baroque diagonal is said to provide a more pleasing

and positive viewing experience, while the sinister diagonal has negative and concern-

ing psychological implication on it. So most of the product portraits avoid arranging

items on the sinister diagonal. [50] In Fig. 2.10, there are some examples given to

demonstrate some examples of object alignment in portrait photography. On other

fashion portrait examples we provide before it is very rare to see items that follows

the sinister diagonal. Thus, we use the top left pixel as the non-garment reference

pixel, and calibrate all three clustering results. Some sample results are shown in Fig.

2.11.
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Then we use majority vote scheme to finalize the results. The algorithm is given

in Alg.1. When disagreement exists, F(2) is used to eliminate some border segment,

making the selection more conservative.

Algorithm 1 Majority Vote

1: for i = 1 to N do

2: if θ
(1)
i = θ

(2)
i = θ

(3)
i = θi then

3: θ∗ = θi

4: else if Fi > 0.5 then

5: θ∗ = 0

6: else

7: θ∗ =
∑3

k=1 θ
k
i − 1

8: end if

9: end for

(a) (b)

Fig. 2.10.: Examples of Baroque and Sinister diagonal analysis in photography. Most

object align along or on the two diagonals in (a) [50], and based on (b) [51], baroque

diagonal is more visually pleasing or important than sinister.
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The final segmentation results are shown in the last column in Fig. 2.11. In

general the algorithm produces relative robust result.

(a) (b) (c) (d) (e)

Fig. 2.11.: The clustering results and final clustering result. The column (a) is the

original image; column (b) is the meanshift algorithm; column (c) is the agglomera-

tive clustering with Ward distance; column (d) is the Kmeans algorithm result; the

rightmost column are the final result
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2.5 Neural Network Training

As stated before, one of crucial requirement for building a supervised semantic

segmentation algorithm is the dataset. Furthermore, to train complex neural net-

work architectures, astronomically large datasets are desired that contain hundreds

of thousands images and manually labeled ground truths, and collecting data in such

a large scale is very challenging.

For segmenting the fashion garment, fashion datasets that suit our need are very

rare. Therefore, in this section, we adapt and repurpose a public dataset and train

a Deeplab semantic segmentation architecture in hope to better process images with

human bodies or multiple items.

2.5.1 Dataset Preparation and Model Training

One of datasets that recently become available for fashion segmentation research

is Multi-Human Parsing (MHP) dataset by Feng et al. [52, 53]. A snapshot of MHP

dataset is shown in Fig. 2.12. It consists of more than 15,000 images for training and

5,000 images for validation. All images are collected from stock photos, TV/movie

productions, and internet, and the collection shows large variation of culture, region,

and time/era. And for every training or validation image, there are pixel-level seg-

mentation maps corresponding to the semantic category of the human subjects and

clothing. In short, the scale of the dataset is ideal for training neural network based

algorithms.

While the focus of multi-human parsing is to label every pixel in an image (with

more than one persons) as a semantic category (body part, clothing item, and other

objects) and the human subject it belongs to, our fashion segmentation problem is

much simpler – only the semantic information of fashion and body part is needed.

Therefore, some modification on the annotations are needed to fit in our work before

training the network.
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Fig. 2.12.: A snapshot of Multi-Human Parsing Dataset [52,53]. The image collection

reflects a large variety of human subjects and real world scenarios, and all images

contain at least two persons.
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Data Adaptation

To fit the dataset into our research purposes of fashion segmentation, the following

modifications:

1. Merging multi-human segmentation ground truths into the single seg-

mentation label. Our research focus is to classify the clothing and body pixels

regardless different individuals in the image. Therefore, we would like to incor-

porate all the annotations into one single segmentation map as shown in .

2. Simplify and reduce the number of semantic categories in the seg-

mentation. Our goal is to reduce the unnecessary complexity of our problem.

The modification contains two folds:

• Combine subcategories into a blanket master category. For instance, we

combine left shoe and right shoe as shoes. This allows us to deploy image

augmentation techniques such as flipping to enrich our dataset.

• Remove unrelated labels like ball. These items not only are not relevant

to our mission, but also occur rarely in the dataset, which might further

skew the training and validation process.

Our simplified dataset contains 48 semantic labels, and we further enrich our

dataset variation using image augmentation techniques.

Data Augmentation

In hope of increasing the robustness of trained model and avoiding over-fitting, a

series of data augmentations are deployed. Image loading operation and augmentation

operations are executed by the dataset loader and the image transformation pipeline

jointly during the training. The transformation sequence is as:

1. random flip and rotation Flipping (vertical and horizontal) and rotation

are some of the most used techniques for enriching the dataset. Possibilities of
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random flipping horizontally and vertically are 0.5 for each operation, and we

set the rotation range as [-45◦, 45◦].

2. Gaussian noise and Gaussian blur We also further introduce gaussian noise

and gaussian blur in our training set to enhance the robustness of the trained

network. And previous work has shown that such training with noise is equiv-

alent to a form of regularization in which an extra term is added to the error

function [54]. For a given image, only up to one gaussian operation will be

applied. In other words, an image can be free from any gaussian operation.

However, an image can’t be blurred and get noise at the same time.

3. image scaling The MHP dataset contains images with different aspect ratios

and image resolutions. Thus, it is desired to unify the image shape before

training. First, we resize the image in such a fashion that the aspect ratio is

unchanged but the shorter side of image is 300 pixel wide/tall. Then, we rescale

the image with random scale factor ranging from 0.8 (zoom out with padding)

and 1.3 (zoom in in the center). In this way, we can encourage the network to

be more adaptive towards objects in different sizes.

4. random crop In addition to the image scaling, training and validation im-

ages are cropped randomly into 300× 300 patches by the image transformation

pipeline. Because the rescaling step is designed to confine the image dimension

roughly same as the cropping size, our final cropped patches are able to capture

the majority of image scene.

Fig. 2.13 shows some examples of training image patches after augmentation. The

augmentation the With all image augmentation operations, we can

Model Training

Here we are using the DeepLab v3+ proposed by Chen et al. [55]. DeepLab is a

series of semantic segmentation models developed at Google for understanding im-
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ages under the pixel level. Compared with the traditional deep convolutional neural

network segmentation models, where score maps for all semantic classes are gener-

ated at the end of the process, Deeplab networks utilizes Conditional Random Field

(CRF) to reinforce the exact outlines of objects and introduce atrous convolution to

assimilate larger field of view content. The networks have achieved state-of-the-art

performance on public benchmarking datasets and deployed on Google’s own imaging

devices.

(a) Original RGB training images after augmentation

(b) Ground truth annotation after augmentation

Fig. 2.13.: Visualization of three training images after augmentation (a) and their

corresponding ground truth annotation (b). All training patches are cropped into

300×300, and flipping, rotation, and blurring can be observed. The label for the ball

is remapped into background in the center patch.
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The newest version, DeepLab v3+, uses the encoder-decoder architecture and de-

ploys a decoder module to improve the segmentation performance on object bound-

aries. It also boosts the accuracy and runtime performance by using depth-wise

separable convolution in decoder and the atrous spatial pyramid pooling operations.

The model achieves the state-of-art results on PASCAL VOC 2012.

For our application, we choose Deeplab v3+ using ResNet [56] as backbone. To

battle the issue of the class imbalance, we both used frequency-based class weight and

focal loss to emphasize the importance of under-represented classes. The balanced

weight w(m) for class m can be defined as

w(m) =
1

log(1 + f(m))

where f(m) is the class frequency in the training data batch. This will significantly

boost the importance of the class that has low frequency in the dataset.

Another way to emphasize the learning for hard examples is focal loss. Focal loss

is proposed by Lin et al. [57] for dense object detection. Focal loss FL is defined as

FL(pm) = −(1− pm)γ log(pm)

where pm is defined as

pm =

p, if y = 1

1− p, otherwise

indicating the confidence of the prediction of class m. When an example is mis-

classified and pm is close to 0, the modulating factor is close to 1 and the loss is

unaffected.As pm is approaching 1, the weight goes down and the importance of the

well-classified examples is down-played. γ is the parameter that controls the effect of

focal factor. If γ = 0, focal loss is equivalent to cross entropy. When γ increases, the

effect of the focal factor increases accordingly.
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Table 2.3.: Training configuration

Configuration Parameters Note

Backbone ResNet Proven good accuracy

Loss Focal loss –

Crop Size 300× 300
Poshmark image size;

GPU memory constrain

Batch Size 8 Maximum under 300px crop size

Learning Rate 0.007 After tuning result

Learning Rate Scheduler Poly –

2.5.2 Experimental Results

We use balanced weight and focal loss to train DeepLab v3+ network with ResNet

as backbone. Table 2.3 shows the configuration we used for the optimal trained model.

Our training curves are shown in Fig. 2.14. Before talking about the curves, we

need to define the performance evaluation metrics first.

• Pixel Accuracy

For k+ 1 classes (K target semantic labels and 1 (one) background/unlabeled),

we define nij as the number of pixels where the ground truth label is i, and the

prediction is j. Therefore, we can define nii as True Positive (TP), nij as False

Negative (FN), and nji as False Positive (FP).

Thus, we can define the Pixel Accuracy (PA) [58] as

PA =

∑K
i=0 nii∑K

i=0

∑K
j=0 nij

=

∑K
i=0 nii
N

Where N =
∑K

i=0

∑K
j=0 nij is the total number of pixels in the image.

However, PA does not take the class imbalance issue into account while cal-

culating the final accuracy, and it can only show the performance for smaller
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classes compared with dominant classes while ignoring minority classes. Class

imbalance is prevalent in many semantic segmentation problems, including ours.

From the observation, we can see that classes like background, face, hair, and

arms are the predominant classes our dataset: faces and background almost

always exist in all image patches and occupy a significant portion of the image,

while classes like heels, helmets, and ties appear not only less often but also in

a relatively small size in our dataset. Therefore, we want to use Intersection

over Union (IoU) [58] metrics to evaluate the model performance.

• Mean Intersection over Union (MIoU)

In addition to calculating pixel accuracy, we also calculate Mean Intersection

over Union [59].

First, for each class, we calculate the IoU. For m-th class, the number of true

positive pixels, also known as the intersection, I(m), for class m can be written

as nmm. Then
∑K

j=0 nmj represents the number of pixels that are labeled as

m in ground truth, and
∑K

j=0 njm represents the number of pixels that are all

predicted as m by our model.

Therefore, the union for class m, U(m), can be written as

U(m) =
K∑
j=0

nmj +
K∑
j=0

njm − nmm

,

Note that we deducted the intersection in the calculation, as the intersection is

included in both
∑K

j=0 nmj and
∑K

j=0 njm.

Then the IoU for class m is

IoU(m) =
I(m)

U(m)
=

nmm∑K
j=0 nmj +

∑K
j=0 njm − nmm

Thus, the Mean IoU can be derived as
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MIoU =
1

K + 1

K∑
m=0

IoU(m) =
1

K + 1

K∑
m=0

nmm∑K
j=0 nmj +

∑K
j=0 njm − nmm

• Frequency Weighted Intersection over Union (FWIoU) We define the

frequecy of class m P (m) is the ratio of number of pixels labeled as m in the

ground truth to the total number of pixels.

P (m) =

∑K
j=0 nmj

N

And the FWIoU [60] can be expressed as weighted sum of IoU’s

FWIoU =
K∑
m=0

P (m)× IoU(m) =
1

N

K∑
m=0

nmm
∑K

j=0 nmj∑K
j=0 nmj +

∑K
j=0 njm − nmm

Compared with MIoU, FWIoU incorporates the occurrences of semantic cate-

gories in the calculation and gives an overall accuracy.

The model performances during the training are shown in Fig. 2.14, and segmen-

tation results are shown in Fig. 2.15 and 2.16.

1. Body parts like face, arms, hairs, and hands are easier to identify compared to

rest of the fashion categories. This is due to the consistent appearance of the

human body parts. However, feet are harder to detect, thanks to different foot

wears and in general less coverage and attention on foot.

2. The network tends to have better prediction on male clothing. This is due to

the fact that most men in the dataset are dressed relatively simple compared

with women’s dressing: less accessories, less frequent complicated patterns, and

more predictable dressing combinations (usually jacket+shirt+dress pants, or

shirt+dress pants). Note that we cannot conclude that the segmentation net-

work is able to identify the gender of the human subjects; our observation
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(a) Training loss vs epoch

(b) Pixel accuracy graph on validation dataset by iteration

(c) Mean IoU graph on validation dataset by iteration

(d) FWIoU graph on validation dataset by iteration

Fig. 2.14.: The training procedure and the model performance validation set during

the training process produced by Tensorboard. The network training converges at

about 36th epoch.
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simply suggests that the network captures the tendency of certain highly fre-

quent dressing combinations, and these patterns happen to echo men’s dressing

code in the dataset.

3. Similar classes (for example, robe and dress) create confusions. Moreover, items

of different categories can be worn or shown in different ways that further con-

fusion.

4. Smaller items such as necklaces and hair accessories tend to be ignored during

the segmentation. This might due to the fact that atrous convolution tends to

incorporate global context instead of localization.
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(a) Sample image patches for validation

(b) Ground Truth annotation

(c) Prediction from Deeplab model

Fig. 2.15.: First patch of examples of Deeplab model for fashion semantic segmenta-

tion. () shows three images, and ground truth annotation is shown in (). (c) shows

the prediction from the deeplab model. The model is able to produce high accuracy

prediction.
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(a) Sample image patches for validation

(b) Ground Truth annotation

(c) Prediction from Deeplab model

Fig. 2.16.: First patch of examples of Deeplab model for fashion semantic segmenta-

tion. (a) shows three images, and ground truth annotation is shown in (b). (c) shows

the prediction from the deeplab model. The model is able to produce high accuracy

prediction.
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(a) Sample image patches for validation

(b) Ground Truth annotation

(c) Prediction from Deeplab model

Fig. 2.17.: Second patch of examples of Deeplab model for fashion semantic segmen-

tation. (a) shows three images, and ground truth annotation is shown in (b). (c)

shows the prediction from the deeplab model. The model is able to produce high

accuracy prediction.
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(a) Original RGB training patches

(b) Ground truth annotation

(c) Deeplab prediction

Fig. 2.18.: Visualization of three training images after augmentation (a) and their

corresponding ground truth annotation (b). All training patches are cropped into

300×300, and flipping, rotation, and blurring can be observed. The label for the ball

is remapped into background in the center patch.
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2.6 Color Extraction and Fashion Color Naming

The first module of the Autonomous Garment Extraction System is to find the

color from the garment region, and correspond the color value to a certain color

description.

2.6.1 Color Extraction With Gaussian Mixure Model

Gaussian mixture model is a probabilistic model for representing subpopulations

that complies the normal distribution within an overall population, and it is widely

used in color imaging to extract the mean color from a population of color data points.

Here we use Gaussian Mixture Model and expectation maximization algorithm to

obtain the estimated average color(s) from given color vectors from garment region.

We set the number of Gaussian distributions as 2 to generate at least two colors for

each image. If these two colors are very similar to each other(∆E < 30), then we can

say that this garment only has one color. Sample result is shown in the Fig. 2.19.

The GMM-based image color summarizer matches the human visual perception.

Fig. 2.19.: Sample color extraction results

Next step is to match the color coordinates with the pre-defined color palette on

the fashion retail website, shown in Fig. 2.20(b).
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2.6.2 Fashion Color Naming on Online Fashion Marketplace

As illustrated in the previous section, for color management in the fashion in-

dustry, unlike other industries, where color names usually are objective and given

based on the color appearance, most of the fashion color naming is done by the

manufacturers individually before products are released. Other than that, season-

ally trending color names are also predefined and maintained every season by fashion

experts. Furthermore, those names are not standard color description used in the

previously mentioned scientific color naming systems. Yet it is not a standard color

naming system that is universally recognized by all fashion manufacturers.

(a) (b)

Fig. 2.20.: The color palette on different fashion website

Other than the problem of the lack of a universal standard fashion color system

for manufacturers, for fashion retail, especially online retailers, color naming also has

many challenges that are unique to it:

1. Different websites have different fashion palette definition. For instance, in Fig.

2.20, we show two palettes from Poshmark and Neiman Marcus, respectively.

For example, neutral and pattern only exist on the Neiman Marcus website.
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2. Some color families have more granular color descriptions. For example, on

the Poshmark website, the yellow family has yellow, gold, and orange. For

comparison, blue family only has one label.

3. Color can appear different on different websites. For example, Poshmark silver

is much lighter than Neiman Marcus silver.

4. Color names can also represent texture, like silver and gold on the Neiman

Marcus website, which indicate not only the color hue, but also the metallic

texture look.

Therefore, it is important to develop our algorithm based on the color philoso-

phy and organization of the marketplace, and a platform/marketplace-driven color

categorization algorithm is proposed.

2.6.3 Platform-driven Approach using CIELa*b* color difference

Focusing on the fashion marketplace definition, we extract the RGB values from

the website’s color palette, then we calculate and compare the color differences be-

tween extracted mean colors to all the reference colors. This is a very simple solution,

and generally works well when the colors are bright and highly saturated, for exam-

ple red and green. To further enhance the performance on other colors, colors are

grouped and classified using different strategies within each group.

The new color matching method first groups all the reference colors into three

kinds:

• Neutral colors – black, white, silver, and gray. These color appearances are

usually consistent and have a lower variance.

• Off-neutral colors – cream, brown, tan. Off-white colors have very long chroma

values, but have a moderate amount of variations.
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• Saturated colors – red, yellow, green, blue, purple, orange, pink. The first

impressions for these saturated colors usually are the appearances with high

chroma and saturation. However the variation is bigger than other two kinds.

Then, we categorize the extracted mean color into its corresponding kinds by the

following criteria:

• A color c is a neutral color if its chroma is smaller than 10.

• A color c is a saturated color if its chroma is higher than 20.

All the colors whose chroma is between 10 and 20 are the off-neutral color. There-

fore, each color only has to compare with its corresponding kind of colors, instead of

the entire set of reference colors. For both off-neutral color and neutral color set, we

use the reference color with the smallest ∆E as final color results, and for saturated

color, in order to accentuate the significance of hue, we use the color with smallest

cosine similarity. The results for neutral and saturated colors are improved.

Our nearest-neighbor-based algorithm is a straightforward answer to the color

matching problem. And it is very computationally easy to use, as it only needs to store

n reference colors and takes O(n) to produce the final answer, which is a constant. In

addition, for an online fashion marketplace or any online fashion retailer, the number

of color choices offered is always limited. However, this NN-based method has some

limitations:

• Accuracy. The model generally fails to provide accurate predictions due to

oversimplification. Our algorithm only uses a limited number of reference points,

and each class only has one point. The algorithm also oversimplifies the com-

plexity by drawing hard decision boundaries in Lab color space.

• Flexibility. The model can only work for reference points from the website,

and it cannot learn users’ color naming schema to further improve the color

naming algorithm.
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• Accuracy. The model generally fails to provide accurate predictions due to

oversimplification. Our algorithm only uses a limited number of reference points,

and each class only has one point. The algorithm also oversimplifies the com-

plexity by drawing hard decision boundaries in Lab color space.

• Flexibility. The model can only work for reference points from the website,

and it cannot learn users’ color naming schema to further improve the color

naming algorithm.

Our research also shows that human subjects tend to associate color appearance

to verbal description based on their own life experience, without referencing the color

palette provided by the marketplace platform. Fig. 2.21 shows three different items

sold on poshmark.com, and all of them are listed as pink. However only the left

one is actually closer to the pink color defined. Therefore, we want to build a data-

driven color naming classification method that can learn color naming schema from

the online fashion shoppers.

Fig. 2.21.: Examples of three pink dresses sold on Poshmark. All three dresses are

labeled as pink by their corresponding sellers on the website, but color appearances

are very different from the website’s definition.
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2.7 Data-driven Approach using Random Forest

2.7.1 Reversed Color Naming Experiment

For the fashion marketplace, it is important to constantly and actively learn color

descriptions from the online fashion community instead of from predefined labels. To

further study how the online fashion community names colors, we design and conduct

a psychophysical experiment called the Reversed Color Naming Experiment. We call

the experiment reversed because instead of asking human subjects to name the color

in a photograph, human subjects in our experiment are supposed to choose the color

from the image based on a given color name.

For this experiment, we collected more than 2,500 images from a fashion P2P

website; and their colors are labeled by their sellers while making the listing. Note

that 1) For our specific case, up to two color labels are allowed per listing by the

website. Therefore, sellers can only choose the top two predominant colors where

there are more than two colors on the garment. You can see the full color palette in

Fig. 2.20(a). 2) Each listing may contain multiple images, and we assume all images

within the same listing share the same color label.

We invited 6 human subjects to participate in our experiment. They are 20-

30 year-old adults with normal color vision. We chose this age range to reflect the

demographic of online fashion shoppers, and color vision screening was done by using

Color Blindness Test [61]. Although it was not a rigid requirement, all of our human

subjects were avid online fashion shoppers. Their previous online fashion shopping

experience helped them understand each image and its color. Each human subject

was assigned a set of fashion product images. On average, each person had 400 - 500

images to label within a week.

To keep our color experiment as simple and consistent as possible, we asked our

human subjects use an Apple MacBook Pro with Retina Display to view the images

and participate in the experiment. The experimental procedure can be described as

follows: For a given image, we present the label(s) associated with the listing, and
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our human subject is expected to use the color picker to choose the color pixel(s) that

is most representative of the color label. Then the selected color values are converted

to CIELab and the subject moves on to the next image.

In this part, we further discuss our paradigm of using the random forest algorithm

to extract human viewers’ fashion color naming schema.

2.7.2 Model Overview

We use a random forest [62] to match numerical color values to verbal description.

Random forest is one of most widely used machine learning algorithms due to the

good accuracy, robustness and ease of use. The algorithm is one type of ensemble

classification method that combines a set of simple decision tree classifiers such that

each tree is trained on a series of training data sampled independently and with the

same distribution for all trees in the forest.

By running many decision trees and aggregating their outputs for prediction, the

random forest algorithm fixes sub-par model robustness of a single decision tree; and it

can also control over-fitting. A typical random forest classification training workflow

can be described as follows:

1. Sample N different sets of training data from the original dataset using boot-

strapping.

2. If there are M features, max split feature m (m << M) is determined such

that at each node, m features are selected at random out of the entire set of M

features and the best split on these m is used to split the node. The value of

m remains unchanged during the forest growing.

3. Given each dataset, grow a decision tree to the largest extent possible. No

pruning is required.

For inference, for each data point, we pass the M -dimensional feature vector to

all the decision trees grown, and the final result is determined by majority vote.
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It has been shown that the classification error resulting with random forest de-

pends on two things [62]:

1. The correlation between any two trees in the forest. The more de-correlated

trees are, the more accurate the forest is.

2. The strength of each individual tree in the forest. A strong tree has high

accuracy, and increasing the strength of all the individual trees helps to improve

the forest accuracy.

We can adjust m to change the between-tree correlation and individual tree strength.

Larger m increases both the correlation and the strength. Therefore m should be

further fine tuned to ensure optimal performance.

2.7.3 Feature Design

As previously stated, the key requirement of random forest is a large pool of

features. We hereby introduce all features we engineer in this work.

We developed a set of seven features for our classifiers. All of our features are

based in CIELab color space. The first three features are the L, a∗, and b∗ values.

Furthermore, we define chroma C as

C =
√
a∗2 + b∗2, (2.1)

and hue H as

H = arctan

(
b∗

a∗

)
(2.2)

where a∗ and b∗ are from the CIELa*b* color coordinates. We also introduce other

quadratic features like La∗ and Lb∗. We will further study the feature importance

later.
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2.7.4 Model Evaluation and Analysis

We split our data from the reversed color naming experiment into 70/15/15 for

training, validation, and testing, respectively. Then, multiple combinations of hyper

parameters (the number of trees, maximum split feature m) are proposed for model

selection. After validation, we grow 25 trees for our classifier; and we follow the

general practice and choose m as b
√
Mc = 2. Figure 2.22 shows the confusion matrix

on the testing set for our proposed algorithm. We have the following observations

from our testing:

• Overall, our algorithm performs very well with average testing accuracy of

80%. Compared with previous 60% accuracy from the previous nearest-neighbor

method, a huge improvement can be gained by using random forest.

• Generally, focal colors like blue, purple, and orange have higher accuracy.

• Off-white colors (gray, cream, silver) create much confusion.

• There are also a couple of confusing pairs: pink-purple, tan-gold-brown, tan-

cream, yellow-gold. These pairs can be shown to be very close to each other.

Furthermore, we study the importance of all the features. Feature importance is

calculated as node impurity (here we use Gini impurity index) decrease weighted by

the probability of reaching that node. The node probability can be calculated by the

number of samples that reach the node, divided by the total number of samples. The

higher the value the more important the feature [63]. Figure 2.23 indicates the feature

importance from the most to the least important. We can see that luminance value

is the most important feature of all; and all other features share relatively similar

importance. We can also see that by adding non-linear features to the classification

system, we drastically improve the model complexity from the nearest-neighbor based

color naming method.
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Fig. 2.22.: Confusion matrix for testing set based on trained random forest classi-

fier. Overall, our results are showing that the algorithm is able to produce reliable

color descriptions. Some confusions can be observed between silver and gray (texture

difference), tan and gold (fuzzy definition), and tan and cream (fuzzy definition).

Fig. 2.23.: Feature importance for our trained random forest classifier.



65

2.8 Pipeline Integration

In this section, we discuss the final integration of the AGCES. In the previous

sections, we develop different modules for functionalities including segmentation or

semantic segmentation, color extraction, and color mapping. The final step of the

system is to integrate all the modules together, to create a complete pipeline that

produce color names, given a color input image.

2.8.1 Pipeline Assembly

The entire AGCES pipeline contains three modules: segmentation, color extrac-

tion, and color mapping. We show the pipeline in Fig. 2.24 with all the intermediate

results. As stated before, Gaussian Mixture Model (GMM) does a good job for color

extraction, and the Random-Forest-based color mapping system is developed and

tested to better map color coordinates to color verbal descriptions. Our color clas-

sification model is trained using data from Reversed Color Naming Experiment and

saved for further inference. And GMM model is built for each semantic label.

Fig. 2.24.: The final pipeline that combines segmentation module, color extraction

module, and color mapping module. We show all intermediate results between each

stage. Note that the numeric label is only for demonstration and is not corresponding

to the true semantic segmentation in the rest of the work.
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For the segmentation module, we use Deeplab segmentation module as a demon-

stration. The difference is that for clustering-based segmentation module, there

wouldn’t be semantic labels associated with the foreground.

2.8.2 Segmentation Map Post Processing

As previously observed, the segmentation map tends to bleed over the object

boundary, and created a ”bloated” segmentation map. Also, the model will generate

some small noisy segments within large segment. This can cause some problems for

color extraction:

• Generally speaking, edges occur where the color of the neighboring pixels changes

drastically, and the ”bloated” segmentation map will include some pixels on

both sides of the edges. Therefore, the color extraction results can be altered

by introducing these outliers.

• Small satellite segments tend to be incorrect prediction and have irregular colors,

therefore, we can boost accuracy by eliminating incorrect labels. Moreover,

small segments will introduce more complexity to compute the image color.

Therefore, the segmentation map should be further processed before color extrac-

tion. Specifically, we want to shrink the segment boundaries using image morphology.

We use erosion with disk mask with radius of 2 to process each semantic label. Then,

we use the reduced collection of pixels for color extraction and color mapping.

Fig.2.25 shows a comparison between with and without post processing. The

figure shows that the post processing eliminates some of the noisy segments (dress)

and corrects some color labels, for example, face color (gold/tan v.s. cream) and

leg color (gold/orange v.s. gold). Overall, we see the improvement and benefit by

deploying labelmap erosion into our pipeline.
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(a) Color segmentation result without post processing

(b) Color segmentation result with post processing

Fig. 2.25.: Comparison between with and without segmentation map post processing.

(a) shows the original image (left), segmentation map from Deeplab model (middle),

and object color table without post processing (right). (b) shows the same original

image and segmentation map, but the object color table with segmentation map post

processing (right).
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Fig. 2.26.: Example of AGCES pipeline on Poshmark product portrait with human

model. We can see that our pipeline is able to extract the garment information and

name the color accurately.

2.8.3 Results

In this section, we show results from the pipeline. In Fig. 2.26 and 2.27, some

examples of segmentation results and object color tables. We find that our pipeline

is able to extract the semantic label and find corresponding color name for fashion

portraits as we defined before. But due to the limitation of semantic segmentation,

the pipeline assumes all the pixels of the same label belong to the same instance.

Therefore, for images where multiple persons wearing garments of different colors,

the GMM model tends to summarize the average color, which is less accurate.
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Fig. 2.27.: Examples of AGCES pipeline. We can see that for images with human

body the results are more rebust for segmentation and able to extract color accurately.

There are misclassification for some Poshmark images that only showcase the item.
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2.9 Segmentation Algorithm Evaluation

To further investigate the performance of our two different methods, traditional

clustering-based segmentation method and DeepLab-based semantic segmentation,

on real life amateur fashion image dataset.

2.9.1 Data Collection and Segmentation

We obtained a collection of about 85 fashion images from the online fashion mar-

ketplace, namely Poshmark. The images are collected on Poshmark website, and to

make sure that all the major categories (shirts, shorts, pants, dresses, sweaters, coats,

bags, shoes, and other accessories) are covered evenly in our evaluation, we collected

8-9 fashion listings from the website’s search results. Then, images are labeled in

image semantic segmentation tool in Matlab. Note that:

• The distribution of fashion item categories in the dataset for this quantitative

evaluation does not necessarily reflect the real category distribution on the

website.

• Images are retrieved from the latest results from the search engine. This is to

make sure that our data reflects the most recent online fashion image trends.

• When multiple images are provided in the listing, the thumbnail image is chosen,

as the thumbnail is regarded as the first impression of the listings.

• The images are labeled as foreground/background, and the output is binary

images.

Some of the images collected in this dataset are shown in Fig. 2.28, and their cor-

responding segmentation labels visualized as binary segmentation masks are shown

in Fig. 2.29. It can be seen that the images collected from real life fashion market-

place can be different from our underlying assumptions for clustering and network

based segmentation algorithms: the segmentation algorithm assumes input images
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are fashion product portraits (single item, no complicated layout and styling), and

the neural network approach is trained on human parsing dataset, which does not

include images without human bodies and single items. Therefore, it is important to

benchmark both algorithms in the real life dataset. In the next two subsections, we

will show benchmark results of both algorithms on the evaluation dataset.

2.9.2 Majority Selection Module Ablation Study

As mentioned in the previous section, in our clustering segmentation pipeline, we

use the majority vote scheme to render the final decisions (on which segments are

foreground and which are background) based on the judgements from three different

clustering algorithms: KMeans, Meanshift, and Agglomerative algorithm. And before

combining all the clustering labels, we also correct the clustering labels from each

algorithm by setting the label of the top left corner pixel to 0.

To demonstrate the effectiveness of the final implemented system, it is desired to

do segmentation performance comparison against our evaluation dataset. Specifically,

we look into following algorithm configuration variation:

1. Effectiveness of selected clustering algorithms and configurations. Here,

we want to compare the effectiveness of the configurations of the agglomerative

clustering algorithms.

2. Effectiveness of majority selection scheme. To show the advantage of

using three clustering algorithms instead of only one, we compare using each

individual clustering algorithms with using majority vote to combine all three

algorithm.

3. Effectiveness of our clustering label correction process. Like mentioned

in the previous section, clustering algorithms only produce labels for separat-

ing data points into different groups, and the labels generated do not carry

any meaning. Therefore, we need to correct the labels by assigning the label
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of top-left pixel as 0, assuming the top left pixel is always background. We

further investigate the effectiveness of this assumption and correction process

Fig. 2.28.: Examples of images collected from Poshmark website for evaluation. A

number of characteristics can be found: first, the images are not necessarily only

centered around the item for sale; garments sometimes are folded and styled for

display, instead being worn on model. These unique characteristics can potentially

bring challenges to our both clustering-based and network-based algorithms.
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on kmeans. Note that, although our quantitative investigation has been only

conducted to kmeans, this also applies to all other clustering algorithms.

Fig. 2.29.: Binary segmentation masks for images shown in Fig. 2.28. The white

pixels indicates the pixels of garment for sale in the listing, and the black pixels are

ones of the background. Note that garment items other than the on sale items are

considered as background in our segmentation (for example, the second and forth

image).
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Table 2.4.: Comparison of different algorithm configuration as segment selection

method in clustering algorithm (mIoU). Here we benchmark different linkage types

used in the agglomerative algorithm. We also benchmark the effectivness of clustering

label correction process on KMeans. Note that the same process is used for all other

configurations.

Clustering Algorithm mIoU

Agglomerative
Ward 71.36%

Single 45.03%

Meanshift – 50.46%

KMeans
Corrected 71.86%

Uncorrected 46.68%

Majority selection 72.76%

The segmentation comparison is presented in Table. 2.4. First, we show the

segmentation accuracy of using agglomerative, meanshift, and kmeans clustering al-

gorithms individually. It can be observed that our algorithm achieves higher mIoU by

using three algorithms and majority selection scheme. Secondly, it can be observed

that agglomerative algorithm with Ward linkage has higher segmentation accuracy

across all individual clustering methods. Thirdly, the clustering correction process

considerably increases the accuracy of clustering algorithms.

Fig. 2.30 further shows some examples of the difference of segmentation perfor-

mances.

2.9.3 Segmentation Algorithm Benchmark

We show the segmentation comparison between clustering algorithm and neural

network in Fig. 2.31 and Fig. 2.32. It can be observed that the clustering-based

algorithm can generally extract the fashion image subjects accurately when the image
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(a) (b) (c) (d) (e)

Fig. 2.30.: Additional segmentation results comparisons between agglomerative

(ward), kmeans, and meanshift. (a) original images, (b) ground truth segmenta-

tion labels, (c) agglomerative algorithm, (d) kmeans algorithm, and (e) meanshift

algorithm.
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has a clear background. However, because the algorithm is human-agnostic and

fashion-agnostic, human body and other garments can be included. On the other

hand, we can see that DeepLab network works very well for images where garments

are worn or demoed by humans or mannequins. However, networks are having worse

performance on images of bags, shoes, and jewelries. There are several reasons:

1. Items like bags, jewelries, and shoes have lower occurrence in the training

dataset. Therefore, segmentation results for these categories inherently have

lower accuracy than other categories like dresses and pants.

2. In the training set, these items are usually not the focus of the image, where

accessories mostly appear small and blurry. Therefore, the garment appearance

in product portrait is very different from in training dataset.

Here, we run both image segmentation algorithms on the evaluation dataset. In

our evaluation, we find the foreground in both ground truth mask and prediction mask

and calculate the mean IoUs of each image. However, since the DeepLab network

produces more sophisticated segmentation map including background, garments, and

human body parts, we need to transform semantic segmentation results to binary

segmentation. We combine the body part segmentation labels with background, and

treat all clothing garments labels as foreground.

Furthermore, to investigate algorithms’ performance difference between different

types of the images, we tag the images in the dataset in which garments are modeled

or displayed by human model or mannequins, and calculate mIoUs on modeled images

and non modeled ones. Theoretically, images with modeled garments tend to have

more than one items, which can be challenging for algorithms to separate different

items and skin colors.

We show results in the Table 2.5. Our Poshmark evaluation dataset consists of

30 modeled images and 55 non modeled ones. We can see that, for fashion product

portraits, clustering algorithm achieves a higher accuracy than deep lab segmentation

that is trained on human parsing dataset due to the lack of human body cue. On the
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(a) (b) (c) (d)

Fig. 2.31.: Segmentation results comparisons between two algorithms. (a) original

images, (b) ground truth segmentation labels, (c) clustering segmentation algorithm,

and (d) prediction from neural network.
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(a) (b) (c) (d)

Fig. 2.32.: (Continued) Segmentation results comparisons between two algorithms.

(a) original images, (b) ground truth segmentation labels, (c) clustering segmentation

algorithm, and (d) prediction from neural network.
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Table 2.5.: Average segmentation accuracy comparison between clustering algorithm

and trained DeepLab network (mIoU).

Clustering MHP Network

Non modeled 80.41% 49.68%

Modeled 58.73% 78.09%

Overall 72.76% 60.07%

other hand, semantic segmentation algorithm proves to be more accurate for separat-

ing garment items from the background for modeled images. These two algorithms

show unique advantages in different image types, and overall, because of the compo-

sition of the dataset, the clustering algorithm outperforms the semantic segmentation

network trained on MHP.
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2.10 Conclusion and Future Work

In this project, we propose a system that autonomously extracts the garment from

the fashion product portrait photographs and assigns the color of the garment with

a verbal descriptive name. This system contains three modules: first module takes

the input image and partitions the image into perceptually meaningful segments;

second module utilizes the designed the features to group all the garment segments

and others; the last module extracts the mean colors using Gaussian Mixture Model,

and matches the color coordinate with corresponding color names predefined on the

fashion market website. We evaluate the performance of segmentation module case-

by-case, and that of color extraction module by statistical performance measurement.

Our segmentation module can achieve reasonably good semantic segmentation result

for fashion product portraits, and our color extraction model achieves over 70% ac-

curacy based on our dataset.

Fashion color naming has been a crucial yet under studied problem for the online

fashion market. In this work, we explore a new adaptive approach to match color

values to descriptive color names. A reversed color naming experiment is proposed to

collect color naming data; and a new random-forest based color classification system

is used.

Our random forest classifier shows great improvement over our previous model

and achieves high accuracy of color name prediction. Furthermore, the algorithm has

the potential of further learning new fashion color vocabulary in the future if new

trainable data is given.

The accomplished work we mentioned above helps to identify the garment region

in fashion product portrait images, and also produce accurate color naming on the

extracted garment region. To further improve our system practicality and capability,

the following dissertation research is enumerated below:

• Image color calibration.

As we stated in the previous section, many of the sellers on the P2P fashion mar-
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ketplace do not possess sufficient professional photography skills and equipment

to produce color-wise accurate images consistently. We provide an example in

Fig. 2.33. Although the color reproduction accuracy does not necessarily de-

teriorate the segmentation results, it significantly effects the color conclusion

drawn by the algorithm. To further improve the accuracy of color extraction,

two facets should be considered:

1. For single image, white balance should be calibrated and restored if nec-

essary.

2. Further improve semantic segmentation to process fashion images with var-

ious view points, with/without human model, and instance segmentation.

3. If the listing provides more than one images, potential color calibration

cross multiple images can be implemented.

• Adaptive and active learning for ever-changing fashion trends.

As mentioned before, a very interesting aspect of fashion is that there are always

new trends and styles coming up in the fashion world.

1. New fashion color names can be learned dynamically from the fashion

community and expert. Another option is to match different garments

that share the same color.

2. New fashion item styles can also be recognized actively. This can fur-

ther enhance our semantic segmentation performance by eliminating some

ambiguities.
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(a) (b)

Fig. 2.33.: Example of the variation of color editing done by user. 2.33a and 2.33b

are for the same listing, and these two shots are for the same item. Because of the

color editing done by the seller, it is hard to tell the real color of the item. Source:

Poshmark.com
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3. NEURAL NETWORK APPLICATIONS ON INKJET

PRINTING QUALITY AND FORENSICS

3.1 Overview

In Chapter 2, we conduct a thorough investigation on fashion image analysis. Like

other mostly studied image understanding problems, the mission of our fashion image

understanding is to recognize human subjects and fashion objects and to extract

information from real world images. Our research shows different approaches to

incorporating machine learning methodologies in different complexity scales (both

traditional machine learning algorithms and neural networks), achieving high image

segmentation and color extraction accuracy with limited or no suitable data sources.

Chapter 3 focuses on image understanding problems on inkjet printing analysis,

where the explicit semantic content is not the end goal of research project. Inkjet

printing analysis aims to learn the printing quality and extract unique dot pattern of

inkjet printer that can be used to identify the source machine for forensics and anti-

counterfeiting purposes. Neither the print quality nor the dot pattern is a localized

feature; implicit image quality metrics and printing forensics are related to texture

and pattern that occurs throughout the image.

Despite the huge difference on the nature of two problems mentioned above, they

share challenges of data collection. For fashion analysis, collecting data requires less

of domain expertise, and it can be done by a larger pool of human subjects that

have had related experience before. Therefore, data collection campaigns can be

conducted on a large scale using crowd sourcing platforms like Amazon’s Mechanical

Turk [64]. However, for problems like medical imaging and inkjet imaging, image

data and ground truth collection are usually done by domain experts like medical

doctors and image scientists, and it is unrealistic to find a large pool of experts to do
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a huge amount of data labeling with a fairly tight budget. Hence, datasets for such

uses are usually much smaller.

To circumvent training large neural networks for every specific use, our research

suggests that pretrained neural network that have learned complex features from

millions of images from datasets like ImageNet [3] or COCO [2] can be used as human

vision feature generators for print image analysis. This allows us to use pre-trained

model and directly use features generated by the network in lieu of transfer learning

or network fine tuning. We illustrate the implementation on inkjet printing quality

analysis in Section 3.2, and printer forensics in Section 3.3.
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3.2 Image Quality Assessment Using Computer Vision

3.2.1 Introduction

Image quality assessment is very important for electronic imaging systems. It

allows us to predict the quality of the image, so that it can be maintained, controlled

and possibly enhanced before production or further processing [65]. Hence, a reliable

image quality paradigm is crucial in the development of image processing systems.

There have been many efforts developing image quality assessment methods and

tools in the imaging community. In general, the methodology of image quality assess-

ment can be divided into two schools: subjective methods [66], where human viewers

are involved to evaluate the quality of images, and objective methods [67], where the

numerical metrics are calculated from the image. Theoretically, subjective methods

tend to be more accurate and reliable, as images are ultimately viewed by human

viewers. However, subjective methods are not practical due to time and labor cost.

Thus, objective image quality metrics are highly desired in the imaging industry to

predict the quality of an image as close as possible to the subjective assessment.

Traditional objective image processing-based image quality assessment pipelines

[68] for image noise use filter-based techniques to focus on the structure within the

certain (pre-determined) frequency range, and analyze the image linearly channel by

channel. However, such approaches based on linear combination of filters may not be

best suited for the task of modeling human perception of printed image noise.

Neural network based computer vision models have shown great potential to mimic

human vision in many fields, and increasing research efforts are being put into using

computer vision to do image quality assessment [69]. In this paper, we use computer

vision (CV) models to build appearance-based metrics to evaluate the visual image

quality of printed images, in particular, the micro uniformity [70] in a print. We

aim to characterize the visual noise that is perceived by human viewers from printed

images. Our model leverages recent developments in deep neural networks and ma-

chine learning to mimic noise perception of the human vision system. Our experiment
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Fig. 3.1.: Overall framework of computer vision based image quality analysis system.

shows that the proposed model achieves high accuracy for both subjective and ob-

jective micro uniformity assessment tasks. Furthermore, to demonstrate the viability

of the proposed model, we show the effectiveness of the off-the-shelf neural network

features for decision making in various image quality assessment tasks.

3.2.2 Data Acquisition

Our dataset consists of 75,000 RGB image patches (224x224x3) from 600 dpi scans

of full page CMYK halftone inkjet prints on 6 different papers. These 6 media types

and their respective printing conditions were chosen to produce nearly identical colors

but with various levels of graininess noise according to human perception and ana-

lytical image analysis. In the context of this chapter, paper type is just a convenient

label for various levels (classes) of image noise.

The digital image patch used in this experiment is shown in Fig. 3.1. Note that

the dimension of the image is chosen to fit in the input layer of the Residual Neural

Network. Also, the contrast of the scanned images are adjusted and normalized to

control the environment and reinforce our pipeline to learn from the noise and nothing

else.
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3.2.3 Machine Learning Based Image Quality Assessment

The modeling framework can be described as follow: We use a pre-trained Residual

Neural Network ResNet50 [56], to retrieve a 2,048 dimension feature vector from an

input RGB image. We then use the Principal Component Analysis (PCA) [71] to

further reduce the feature dimensions to 48. Finally, the reduced feature is input to

a support vector machine that has been trained for various objective and subjective

image quality assessment tasks such as media type classification, visual noise metric,

and IQ noise ranking.

Media Type Classification

As noted previously, the media type is a surrogate for different levels of image

noise. Due to the different physical and chemical attributes of the media and the

physics of ink-media interaction, the printed images have different IQ noise appear-

ance on different media. Therefore, we aim to use discriminant features extracted

from a Convolution Neural Network (CNN) to pinpoint the source media of image.

We train a multi-class Support Vector Machine (SVM) classifier to predict the

correct media types for given images. We split the dataset into 80% and 20%, and

train the classifier on the 80%. We show the results in Fig. 3.2. It shows that our

model achieves higher than 95% accuracy across all paper types. This suggests that

the noise patterns for each paper type are distinct and the CV model successfully

learns to recognize them. Compared with traditional IQ metrics, where only real val-

ues are produced as the representation of the quality, our model can further approach

the human vision system by reflecting the type of source based on distinct image

visual appearance.
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Fig. 3.2.: Confusion matrix on test data for media classification.
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Image Quality Ranking

In addition to the media classification capability, the proposed model also shows

ability to perform pair wise image quality comparison, and it can produce an overall

subjective IQ rankings through out all the studied images.

First, we had a human expert rank the images in order of preference from 0, the

best image quality, to 5, the worst image quality. We verified that the ranking is

generally consistent for images of the same media type, so we assigned the same rank

to all images of a media type. Then, we trained a set of five binary SVM classifiers,

and combined them to produce discrete number from 0 to 5 as image quality ranking.

Fig. 3.3 shows the final prediction accuracy. Overall ranking prediction is higher

than 95%, except for paper C which appears have some confusion with paper D.

Coincidentally, papers C and D are from the same manufacturer.

Note that although the rankings are given by experts by paper types, hence the

rankings are directly associated with the paper types, there are differences between

media classification and image quality ranking prediction. For media type classifica-

tion, we consider every class to be independent, and there is no correlation assumed

between classes. However, the pair wise ranking prediction is ordinal regression, and

the algorithm needs to find the correct order based on image quality and find the

right boundaries between two classes that have similar image quality performance.

Fig. 3.3 also shows the difference between media type classification and ranking pre-

diction. Comparing Fig. 3.2 and Fig.3.3, we can see that ranking prediction has more

confusion between papers C and D, but little confusion can be observed in the media

type classification.

Image Noise Level Prediction

Finally, in the context of objective image quality analyses, we consider the ability

of our image quality assessment model to quantitatively predict the noise level. We
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Fig. 3.3.: Confusion matrix on test data for image quality ranking. Here we keep all

paper types in order of image quality. 0 means the best image quality, and 5 means

the worst image quality.
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Fig. 3.4.: Plot of ground truth noise measure vs prediction from noise level regressor.

The x-axis is the ground truth, and y-axis is the prediction from our regression model.

use an industry standard image quality tool to measure the visual high frequency

noise level from patches, and trained a SVM regression model to predict it.

The regression results on test data are shown in Fig. 3.4. A linear correlation

between ground truth and prediction can be observed. The R-Squared score of our

regression model is about 0.86, suggesting a good agreement between objective metric

and metric inferred from the neural network model.

3.2.4 Model Ablation Study

To validate and demonstrate the viability of our model, we aim to further exam-

ine the proposed model. Although, explaining and examining the machine learning

classifier, including traditional machine learning methods and deep learning methods,

has been drawing more and more attention recently, most of the classifier explainers

found in the recent literature [72, 73] are focused on explaining spatially localized
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features for generic image recognition or text classification tasks. However, this is not

applicable in our study. All the images in our experiment look roughly the same; the

distinct features of interest is the noise (i.e. texture), which is not local. Therefore,

we propose two approaches to explain our model: (a) by checking the separability

of features generated by the pre-trained neural network and (b) by determining the

confidence level change of the SVM classifier as the noise structure is altered.

Effectiveness of Neural Network Vision Features

Although the IQ assessment pipeline achieves high accuracy using the ResNet50,

further testing on the effectiveness of the neural network features is still desired for

following reasons:

• Networking repurposing: It has been shown that the hierarchical combi-

nation of convolution layers in the neural networks is capable of extracting

localized features. However, for image quality assessment of noise, no localized

semantic features are included in the images.

• Dataset difference: Our pre-trained network was trained on ImageNet [1]

dataset. ImageNet contains millions of images labeled with semantic labels,

and it is designed to train and benchmark classifiers to do image and object

recognition. Therefore, no information regarding image quality is given during

the network training.

Therefore, the effectiveness of neural network features needs to be validated for

IQ assessment. Here, we propose that neural network features are effective if the

extracted neural network visual feature can separate the data points by their visual

appearance differences.

To demonstrate the separability of the neural network features, we plot data

points by first and second PCA components, and the visualization is shown in Fig.

3.5. We can see that datapoints of the same media type are well clustered, and some
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Fig. 3.5.: Plot of data points by 1st and 2nd PCA components. Data points are color

coded by media types, and image quality rankings from human expert are marked on

the different point clouds.

separability between different clusters can be observed. In fact, one can argue as more

latent features (e.g. PCA components) are included, the point clouds will become

completely separable from each other. Hence, near perfect classification results can

be expected.

To further enhance the between class separability of the neural network features,

we use Linear Discriminant Analysis (LDA) [74] to process the neural network features

and visualize the first two LDA components in Fig. 3.6. Unlike the PCA, the LDA

uses the class labels to separate the data points in orthogonal spaces. We can see

that a good separability can be achieved using just 2 LDA components. The only

overlap observed occurs between papers C and D, which correlates with our previous

observation in image quality rankings.

Therefore, we can conclude that neural network features from pre-trained ResNet

are effective in discriminating between visual appearances of images required for image

quality assessment tasks.
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Fig. 3.6.: Plot of data points by 1st and 2nd LDA components. Data points are color

coded by media types, and image quality rankings from human expert are marked on

the different point clouds.
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Classification Explaining

We now consider the decision making of the SVM classifier. Unlike most of the

classifier explainers, which find localized stimulating regions within an image corre-

sponding to a class label, we attempt to find the relevant frequency ranges in the

image that allows the classifier to make its prediction.

Our approach is described as follow: First, we filter original images with a low pass

filter. Here we chose filters with cut-off frequency ranging from 0 to 10 cycle/mm.

Then, the filtered images are fed into our pipeline to predict the different media types.

We monitor the confidence of the true class from the SVM classifier as the cut-off

frequency is changed.

Fig. 3.7 shows the confidence level versus cut-off frequency. The following obser-

vations can be made:

1. The confidence of classifier is very low when only near-DC component is included

in the image. This is not surprising because that the near-DC component should

look very similar on all different media types, which is a constant tone patch of

contrast adjusted color.

2. The confidence of classifier is almost at 1 when the cut-off frequency is greater

that 10 cycles/mm suggesting there no discriminating features of frequency

greater than 10 cycles/mm .

3. The confidence level jump occurs when the cut-off frequency is between 4-6

cycles/mm. Each media type has a distinct response corresponding to the noise

frequencies that the classifier has learned to discriminate the media type.

Note that, in Fig. 3.7, the confidence curve representing paper type B does not

go down to near 0 when only near DC component is included. This is caused by

the nature of the multi-class classifier. Given an arbitrary image, the classifier is

designed to assign one of six labels. Therefore, one of the six labels is selected as
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Fig. 3.7.: The plot of media type classifier’s confidence response corresponding to

frequency.

default classifier when the classifier is not able to produce any confident decision. In

our case, paper B is the default classifier label.

To summarize, we demonstrated that the neural network feature utilized by our

image quality assessment model is able to recognize the image quality differences

within the test images, and our pipeline makes the classification decision based on the

high frequency noise between 4 and 6 cycles/mm. We note that these frequencies are

in the visual noise high frequency (VNHF) range typically associated with graininess

noise.

3.2.5 Conclusion

We propose a neural network based image quality assessment model to characterize

graininess noise in the printed images. Our pipeline utilizes a pre-trained residual
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neural network to process the images with various levels of image noise, and extracts

features for both subjective and objective image quality assessment tasks, including

media type classification, IQ ranking prediction, and IQ noise level prediction. The

proposed model achieves high accuracy on the aforementioned IQ assessment tasks

without additional neural network training and other processing. Compared with

traditional filter based IQ metrics, our model is able to better approximate the human

vision system and successfully assess images based on visual appearance.

Furthermore, we propose a new methodology for explaining and examining the

IQ assessment classifier. First, We show that visual features extracted from neural

networks are effective and highly discriminating for visual appearance and image

quality. Then, we show that our trained classifiers are responding to image noise

frequencies between 4 6 cycles/mm, which one often attributes to graininess.
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3.3 Intrinsic Signatures for Forensic Identification of SOHO Inkjet Print-

ers

In a 2006 report, The U.S. Secret Service estimated that 1 in 10,000 currency

notes in circulation is a counterfeit1. In Europe, Small Office Home Office (SOHO)

inkjet printers now account for over 50% of the production of counterfeit currency

notes. Authorities charged with tracking counterfeit currency to its source have a

range of resources at their disposal. Even if these tools do not definitively identify

the particular unit that was used to produce a counterfeit note, any information that

they provide can prove to be a valuable aid to the investigation.

There are many possible approaches to forensic printer identification [75]. Some of

these methods require labor intensive effort by a highly trained observer. Examples

include inspection of prints under a microscope [76], chemical analysis of the inks

used to print the suspect currency [77], and detection of spur marks from the gears

used to advance the media through the printer [78]. Other methods are based on

image analysis, including analysis of the structure of printed character glyphs [79,80],

analysis of page geometric distortion [81], analysis of halftone dot structure [82],

and analysis of the memory contents of the suspect printing device, combined with

analysis of the printed page [83].

In this section, we focus on the development of intrinsic printer features for SOHO

inkjet printers that are based on the analysis of the printer dot structure in highlight

regions. In contrast to Ref. [82] above, which considers only laser electrophotographic

printers that use periodic, clustered-dot halftoning patterns, here we consider the spa-

tial arrangement and size of individual ink drops in dispersed-dot, aperiodic (stochas-

tic) halftone patterns.

We also introduce the Printer Identification System (PIS) that can autonomously

identify the source machine based on a given print sample. This system is made

possible by the power of recent developments in Deep Neural Networks (DNNs). A

1For the full report, go to: https://www.federalreserve.gov/boarddocs/rptcongress/

counterfeit/counterfeit2006.pdf
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number of effort has been made to combine DNN and halftoning. Moon et al. [84]

characterized the Inkjet printer model using Deep Neural Networks. Ferreira et al. [85]

used a combination of Neural Netwokr classifiers and external classifiers to do laser

printer classification on low resolution scanned images. Here, we use Residual Neural

Network (RNN) [56] to classify high-resolution inkjet print captures.

3.3.1 Experiment Design and Sample Acquisition

The goal of this paper is to develop features that can serve as intrinsic signatures

for SOHO inkjet printers. As mentioned above, inkjet printers use dispersed-dot

aperiodic (stochastic) halftoning algorithms. We specifically choose to analyze the

halftone dot patterns in highlight regions, since such regions most clearly illustrate

the spatial pattern of dots (each dot corresponds to a single inkjet drop), and the size

of these dots.

To support this research project, we purchased 16 inkjet printers ranging in price

from $30 USD to $90 USD. This printer set consisted of 9 different models from 4

major SOHO inkjet printer manufacturers, namely HP, Cannon, Epson, and Brother.

In addition, for three of these models, we purchased three units of each model in

order to explore unit-to-unit variations within the same printer model. One of the

printers was dead on arrival, so all of our experiments were based on 15 printers. As

a means of identification, each of the units was assigned an alphabet ranging from A

to H, among which Printers C, D, E are from the same manufacturer, and Printers

F, G, and H are from another manufacturer.

Test Page Design

For our paper, we designed a test page consisting of constant-tone patches with

gamma-corrected absorptance levels of 21%, 15%, 10%, 5%, and 0% for each of three

colorants (CMY). Our analyses are entirely based on the constant-tone dot patterns.

We printed the test page with each of the 15 target printers, and captured images of
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selected regions using a QEA PIAS-II camera (Resolution 7663.4 dpi with 3.2mm×

2.4mm field of view (1024 × 768 pixels). We found that when the cyan, magenta,

and yellow level is 5%, the dots are dense enough so that their spatial relationship is

prominent, yet dot coalescence is reasonably less frequent. For the simplicity of this

paper, the 5% cyan, 5% magenta, and 5% yellow patches will be referred as Triple 5

patches from now on.

Another two vital settings in our experiments are the printer driver settings and

the media used. All the pages are printed in the best print quality mode, and the

resolution is set to 600 dpi. We choose 600 dpi because this is the standard resolution

for SOHO inkjet printers. Also more intrinsic features of the dot spatial relationships

can be shown by controlling all the prints to have the same resolution. As for the

media, since we target the currency counterfeiting issue, it is desired to study the

printer behavior with similar media. Note that some countries have switched to

polymer banknotes in an effort to combat counterfeiting and reduce costs. Printing

on this special media is beyond our research area. Paper-based currency like the

U.S. Dollar is what we try to simulate. According to the Bureau of Engraving and

Printing2, US paper currency is made up of 75% cotton and 25% linen. Therefore,

in our experiment, we acquired two types of linen paper from Envelopes.com and

Southworth. We also used Boise Multi-Use Copy paper in our experiment, as it

represents plain paper that is daily used and most accessible among all the paper

types.

Our second half of the experiments is for the classification. This test page consists

of 40 repetition of a group of test targets. These test targets are 5% cyan, 5% magenta,

5% yellow, 5% black and Triple 5, respectively. These patches are designed to be

about 3mm× 2mm to fit in the field of view of the QEA PIAS-II. The bar on top of

the patches is designed to help the user align the field of view of the camera with the

lattice of printer-addressable points.

2For more information on U.S. currency and its paper and ink, see: https://www.moneyfactory.

gov/hmimpaperandink.html
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(a) (b)

Fig. 3.8.: Designed test pages. (a) is the Phase I test page that is used to select

a valid target; (b) is the phase II test page that contains same tone color patches

replicated across the page.

3.3.2 Printer Characterization

We propose four different features to characterize the dot patterns from the cap-

tures shown in Fig. 3.9 Row 1: Dot Size, Dot Density, Average Distance to the

Nearest Dot, and Nearest Dot-Sector Density Function. All our analyses are based

on separate color channels, so we will do color separation first.
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Colorant Separation

A colorant channel separation is desired to study the printhead characteristics

individually. The following processes are used to obtain different channels:

Media pixel elimination. As shown in Fig. 3.9 Row 1, paper pixels are rep-

resented as white pixels in the captures, therefore we are able to identify the me-

dia/white pixels by examining a modified measure of color saturation S in CIELab

color space

S =
c∗2

L∗
, (3.1)

where c∗2 is the square of the chroma value, and c∗2 = a∗2 + b∗2. We use c∗2 instead of

c∗ in saturation calculation to balance the significance of the chroma and the lightness

when the Lightness value is small. Since we only have yellow, magenta, and cyan ink,

if a pixel is inked, it can only be one of, or a combination of these three primary

colors (it is unlikely to have all three ink drops overlap together in such a light color,

as shown in Fig. 3.9 Row 1). Therefore, as shown in Fig. 3.10, the saturation for

inked pixels is higher, and other un-inked pixels have relatively low saturation value.

Hence, we can eliminate the media pixels by thresholding S. Our experiment shows

that when the threshold is 3, the separation performance is optimal.

Ink separation. To separate different ink colors, we measure the hue angle hab

for every inked pixel.

hab = arctan(
b∗

a∗
). (3.2)

The quadrant is determined by the signs of the a∗ and the b∗, and all the angles are

calculated in radians. As shown in Fig. 3.11, the majority of the color pixels have

the hue angle between [-2, 2], where three peaks can be identified: (from left to right)

cyan ink peaks around -2, magenta ink peaks around -0.3, and yellow peaks around

1.5. Therefore we can separate the colored pixels by determining the closest peak.

Some results are shown in Fig. 3.9. Although it is rare to see in these light color

patches, ink overlapping and coalescence still can happen. We define the color pixels

whose hue angles are between two adjacent peaks as overlapping pixels; and they
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count to both ink maps. Note that we are viewing the unwrapped histogram in Fig.

3.11. The real hue angle is distributed as a closed ring. Therefore, the cyan peak

should also be adjacent to the yellow peak.

After the procedure illustrated above, we also would like to filter out noisy pixels.

Firstly, insignificant clutters of pixels can be found in the captured images that are

too small to be considered as an individual ink drop. Thus, we only consider dot-

clusters that have more than 30 pixels. Secondly, pixels near a capture boundary

should be eliminated from further study, as the full picture of their surroundings is

unclear. Therefore, we only consider dots that are at least 50 pixels away from any of

the boundaries. Then, we can perform connected component analysis to determine

the different drops. Once we have a list of drops, data can be gathered about the

drops such as their size, location, and compactness.

Dot Statistics

The print head and the ink used are critical aspects of the inkjet printer: print

heads control the size of the ink drops and other behaviors of the jets, and the chemical

nature of the ink determines the appearance of the prints and the ink spread on the

paper, hence changing the dot shape. However, for a certain printer model, the

print heads deployed and the ink selection are usually fixed, leading to consistent dot

statistics as a unique feature shared within the same model. Therefore, we studied

the dot statistics of the halftone image microscopic structure. And for each ink, we

created the following features: Dot Area and Dot Density.

Dot Area

For Dot Area, we use the number of camera pixels to represent the size of the

printed dot. Since we are using the same magnification throughout all the captures,

the number of pixels is proportional to actual dot size measured in mm2. The dot

size comparison over all the models is shown in Fig. 3.12. It can be seen that the

printers models from same manufacturer, for example, Printers C, D, and E, have



104

similar dot sizes. Another three printers, Printers F, G, and H are also from the same

manufacturer; and therefore their yellow dots are much bigger than are those for the

other colorants. Note that Printer F is from a different series than Printer G and H;

and the size of the dots from Printer F is quite different than the size of the dots from

Printers G and H.

Dot Density

Another feature that we find to be distinctive is the dot density, or dot pixel-

cluster count per capture. As shown in the Fig. 3.9, different printer models have

not only very different overall dot densities (Row 2 in Fig. 3.9), but also different dot

densities in the three different channels (Rows 3, 4, and 5 in Fig. 3.9). Hence, we

evaluate all the captures and plot the bar chart on dot counts in Fig. 3.13. As seen

in the figure, the dot densities of all the printers are very different: Printer B has

overall the smallest number of dots across all 8 models and 3 colorants. Printers F,

G, and H all have smaller numbers of yellow dots, but the portions of cyan, magenta

and yellow dots are quite different; Printers A, C, D, ad E have relatively similar

proportions of dots across the three colorants with nearly the same densities for cyan

and magenta. But the overall dot densities for Printer E are significantly larger than

are those for Printers A, C, and D.

Spatial Distribution

Other than looking into the dot statistics, it is also very important to charac-

terize the spatial dot distribution within each colorant. We propose two metrics to

characterize the spatial distribution between the dots.

Average Distance to the Nearest Dot (ADND)

Average Distance to the Nearest Dot (ADND) is a measure of how close together

the dots are. For each dot that is fully surrounded by its neighbors, we find out

the distance between this dot and its nearest dot. Then, we are able to determine

the ADND by average all the distances obtained in the capture image. As shown in

Figure 3.14, we can see that Printers F, G, and H have a very distinct dot spatial

arrangement compared to the others. The yellow dots are much sparser compared
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with other colorants. This is also consistent with the data shown in the Figs. 3.12

and 3.13, where we see that the yellow dots are much larger, and fewer in number for

Printers F, G, and H, than for the other printers. Meanwhile Printers C, D, and E

have similar spatial distributions, as they all from the same manufacturer.

Small ADND values also might also indicate a phenomenon that we call dot pair-

ing. Dot pairing occurs when dots of the same colorant frequently occur in close,

often nearly horizontal, proximity to each other. Note that unlike a major dot and

its satellite dots, which is another distinct phenomenon that can be observed in high

resolution captures, dot pairing is more consistent and the two dot sizes are relatively

similar. It happens more frequently among the printers with smaller drop size. A

set of examples are given in Fig. 3.15. As can be seen in the figure, cyan dots or

magenta dots are paired together horizontally. The effect of dot pairing on the visual

appearance of the print is not investigated in this study. But this phenomenon is very

distinct and could be a good indicator of the printer model.

Nearest Dot-Sector Density Function (ND-SDF)

The ADND metric draws a picture of how individual dots are spaced in the print:

the biggest circle, centered at the centroid of the dot, which does not have any other

dots inside of it. This concept of the dot placement measurement does not take into

account the dot alignment or any other directional information. Therefore, we propose

the second measure Nearest Dot-Sector Density Function (ND-SDF). Inspired by the

phenomenon of dot pairing, the ND-SDF metric is designed to capture the orientation

of the dot and its nearest neighboring dot. The algorithm is described as below:

1. Set up 7 sectors as shown in Fig. 3.16.(a);

2. For color channel c, calculate Sc, the set of all the dots that are not near a

bounary of the capture image field of view;

3. For each dot d ∈ Sc, search for the nearest dot in one of the sectors shown in

Fig. 3.16.(a). If such a dot d′ exists, do:

(a) Calculate the elevation or depression angle α between d and d′;
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(b) Register α to the corresponding sector i by adding 1 to count;

4. Normalize each individual sector value by dividing by the sum of all sector

values.

Note that to avoid repetition, only dots in Quadrants I and IV are considered

during the calculation. An example ND-SDF calculation is given in the Fig. 3.16.(b).

The cyan ND-SDF histogram is shown in Fig. 3.17. We choose to show the cyan

ND-SDF, as the cyan dots are more likely to pair together than other colorants. We

can see that both Printers A and F have very high values in Bins -1, 0, and 1. This

means that most of the nearest dot pairs accumulate around the same height. Our

findings also correspond to what can be observed in Fig. 3.15.

3.3.3 Printer Identification System (PIS)

In the previous section, some hand-crafted features are engineered and designed

to capture the characteristics of the microscopic structures from different prints. Al-

though handcrafted features are intelligible to human examiners, there are some draw-

backs:

1. It is rather tricky to model dot behaviors, as the inkjet imaging pipeline and

inkjet marking engine technology is rather complex, and also stochastic rather

than deterministic.

2. Handcrafted features cannot cover all the features seen and processed by the

human viewers.

3. When future new printers join in the study, more features might need to be

designed.

Therefore, a machine-learning based Printer Identification System (PIS) that can

capture features autonomously is preferred for an anti-counterfeiting effort. Recent

years have witnessed the rapid development of Deep Neural Networks (DNNs), and



107

many DNN image object recognition applications have been used in our daily life.

Hence, we aim to exploit the DNN’s object recognition power to build a printer

model classifier. We choose the Residual Network (RNN) [56], as it is one of the most

popular and accurate networks in terms of image recognition3; and RNN also avoids

some problems for network training. Here, we use ResNet50, a 50 layer version of

the Network. Compared with ResNet50, other variations (101 layers or 152 layers)

have deeper structures, which means that they are more prone to overfitting, while

producing marginal accuracy gain.

First, steps should be taken to transform the data collected from the second phase

experiment on 6 printers to data that can be used by the network. For each printer,

we acquire more than 40 Triple 5 patches using PIAS-II, and cut the each capture

into 224 × 224 smaller images which is the acceptable input size of the network. As

illustrated in the previous section, it is desirable to avoid the dot patterns around

the image boundaries. Thus, we only collect 12 images from each original capture as

shown in Fig. 3.18. Therefore, more than 3,500 image patches are collected as the

training and testing dataset. Figure 3.19 presents some examples of the preprocessed

input images.

Then, the pre-trained ResNet50 model is used to extract the features from the

input images. Since all the weights in the model have been pre-trained using ImageNet

[1], the model is well adapted to recognize both high level object details, as well as

low level image features. However, original ResNet50 model outputs an label of an

object in real life, for instance car, cat, dog, etc.; and this does not correspond to

the desired labels in our task. Hence, we extract all the features from the second last

layer and train another classifier, which is much simpler, lighter weight, and equally

effective. The ResNet50 model produces 2,048 features for a single input image. But

these features should not be directly used for the classification task for the following

two reasons:

3ResNet50 won 1st place in the ILSVRC 2015 classification competition with top 5 error rate of
3.57%. For more information: http://image-net.org/challenges/LSVRC/2015/index
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1. The dimension of the feature domain directly effects the computational com-

plexity of the training process. With more features to take into account, more

time is needed to train the classifier.

2. Using the full size feature sets will lead to overfitting. Considering the limited

number of data points we have, a smaller feature set can help improve the

generalization performance.

Thus, we use Principle Component Analysis (PCA) to reduce the feature space

to 48 dimensions. We only use the first 48 features for training. Note that before

conducting PCA, we shuffle and split the data into training and testing sets, and

PCA model is fitted to the training set. Then, the same model is used to transform

the testing set.

The final step is classification. We use Support Vector Machine (SVM) as the

classifier model, and Radial Basis Function (RBF) as the feature space kernel. The

confusion matrix of the testing results is shown in Fig. 3.20. The results here are

promising: most of the prediction on the testing set is correct, especially for Printer

G, H and E all the predictions are correct. Theoretically overfitting is avoided by

using SVM classifier and PCA dimension reduction.

3.3.4 Conclusion

In recent years, SOHO inkjet printers play an important role in modern office

productivity, but they are also being used as one of the major counterfeiting tools

around the world. In this paper, we investigate the intrinsic signatures of currently

popular SOHO inkjet printers, And we develop an identification system to predict the

deployed printer by examining a printed document. We acquired 8 printer models

from 4 major SOHO printer manufacturers. By examining the dot patterns at a

microscopic level, we are able to design four intrinsic inkjet printer features that

can capture both dot features and spacing features: Dot Size, Dot Density, Average

Distance to Nearest Dot and Nearest Dot-Sector Density Function. We find that the
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printers made by the same manufacturers share more similarity than ones from other

manufacturers. Our features are also able to capture phenomena like dot pairing.

Finally, we use a Deep Neural Network to extract high dimensional intrinsic features

from the collected prints, and fit a Principle Component Analysis model to reduce the

feature set to 48 features. A SVM-based classifier is trained on the reduced feature

set, and our testing results show the overall prediction accuracy is higher than 95%,

and for some printer models the accuracy approaches 100%.
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(a) (b) (c)

Fig. 3.9.: Sample separation results. The first row shows the original captures. The

second row shows the images after eliminating the white media pixels. And the

remaining three rows show the cyan, magenta and yellow channels, respectively. Col-

umn (a) shows the results for Printer B, Column (b) shows separation results for

printer D, Column (c) shows the results for Printer H.
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Fig. 3.10.: Distribution of pixels in a typical captured images according to saturation.

The saturation has a peak around 3 and a long tail as the saturation value increases.

Note that the observation applies across all the printers.
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Fig. 3.11.: Distribution of the pixels in a typical captured images according to the

hue. The histogram has three peaks around -1.7, -0.3, and 1.5 (rad). Note that the

observation applies across all the printers.
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Fig. 3.12.: Average cyan, magenta, and yellow dot sizes comparison over all printer

models.
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Fig. 3.13.: Average cyan, magenta, and yellow dot counts (number of dot pixel-

clusters contained within the capture images) comparison over all printer models.

The error bars show +/- 1 standard deviation.
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Fig. 3.14.: Comparison of Average Distance to the Nearest Dot (ADND) for the cyan,

magenta, and yellow dot separations over all the printer models.
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(a) Printer F (b) Printer G (c) Printer H

Fig. 3.15.: Examples of dot pairing. Printer F has the most frequent dot pairing

phenomena, Printer G has less, and Printer H has the least.

(a) Sector Design (b) ND-SDF Example

Fig. 3.16.: Nearest Dot-Sector Density Function (ND-SDF) concept
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(a) Printer A (b) Printer B (c) Printer C (d) Printer D

(e) Printer E (f) Printer F (g) Printer G (h) Printer H

Fig. 3.17.: ND-SDF of cyan dots across all 8 printer models.

Fig. 3.18.: Example of retrieving 224× 224 images from original capture.
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(a) (b) (c)

Fig. 3.19.: Sample ResNet50 input images. All the images are cropped to size 224×

224. Image (a) is from Printer D, image (b) is from Printer G, and image (c) is from

Printer B.
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Fig. 3.20.: The confusion matrix of the classification results.
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4. CONCLUSION

Machine learning algorithms, especially neural networks, have been widely used in

image understanding problems, thanks to its supreme learning (it can learn to solve

complex tasks), versatility (same architecture can be applied to different problem

sets), and acceleration capability (special hardwares are developed for fast runtime

inference). However, due to the unique nature of the problem, finding suitable data

or learning from limited data is a constant challenge. In our work, we present several

different approaches to develop machine learning based image understanding appli-

cations for fashion and inkjet image analysis.

In Chapter 2, we studied and investigated the fashion garment color naming prob-

lem. We introduced Autonomous Garment Color Extraction System (AGCES) that

utilizes both unsupervised learning and supervised semantic segmentation neural net-

work to extract garment component. Our segmentation model is capable of processing

fashion images with human included. We also proposed the Reversed Color Naming

Experiment. Our research shows that our trained DeepLab model achieve over 80%

validation pixel accuracy and almost 80% Frequency Weighted Intersection over Union

accuracy. Finally, our final AGCES integration is able to produce close color predic-

tion for different fashion items and body parts in the image. Overall, our AGCES

has been proven to be promising and effective for the color garment extraction task.

In Chapter 3, we aim to apply machine learning algorithms to analyze inkjet

print quality and printer intrinsic signature for anti-counterfeiting purposes. In lieu

of extracting semantic informations from real life images, we apply neural network

architecture to learn non-localized texture information from test targets in printing

laboratories. Our research shows that using Residual Neural Network that is trained

on mega datasets like ImageNet can perceive image quality and texture features. Thus

robust pipelines for noise analysis and printer identification are built without intense
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training. Our pipelines can achieve high accuracy to perform inkjet image analysis. In

addition, a novel model examination methodology is proposed to further validate the

effectiveness of the neural network backbone that is trained on completely irrelevant

data. Overall, the data-driven computer vision approach presents great value and

potential to improve future inkjet imaging technology, even when the data source is

limited.

In conclusion, the major contribution of this work can be summarized as following:

• Our fashion image analysis is focused on understanding the semantics of the

online fashion images.

– Developed a novel clustering-based AGCES pipeline for online fashion gar-

ment color extraction.

– Adapted and repurposed public available datasets with pixel-level segmen-

tation map. Trained a semantic segmentation neural network for identify-

ing and segmenting clothing using human presence.

– Designed and conducted Reversed Color Naming Experiment to collect

association between fashion color names and color appearance on market-

place images.

– Trained random-forest-based color naming algorithm to utilize the color

naming data collected from Reversed Color Naming Experiment. We

achieved high accuracy.

• Our image/print quality and forensics analysis utilizes the power of pre-trained

neural network.

– Developed a computer vision pipeline for inkjet print quality and forensics

analysis using neural network as a backbone without intense training.

– Modeled noise level and print quality with the print quality pipeline, and

our model is able to capture the print quality and characters of high fre-

quency noise on scanned printed test images.
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– Our SVM-based Printer Identification System is able to predict the source

machine by examining the dot patterns with high accuracy.

– Conducted an ablation study to study the neural network backbone’s be-

havior towards different frequency components of test images.
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